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Introduction 

hie purpose of this book is to teach you how to write programs in 
assembly language. Why would you want to study a computer language 
which has acquired the reputation of being somehow mysterious and 
difficult to learn? 

Assembly language is always the fastest and most powerful language 
available for a given computer. It is essential in programs where pure 
speed of operation is important, such as graphics, sorting, and sustained 
number-crunching. It is also the only language that can make use of all 
of a particular machine's hardware features. With higher-level languages, 
such as BASIC or Pascal, the programmer is always insulated from the 
computer by the language itself - you can only do what the writers of 
the language decided you should be able to do. Inevitably, then, you can 
not tap the full power of the computer. 

For these reasons, many types of programs, such as operating 
systems, compilers, word processors, and graphics programs, are almost 
always written in assembly language. So, if you want to do this sort of 
programming, you need to know assembly language. 

But assembly language is not just practical, it is also a fascinating and 
rewarding field of study. It is so closely tied to the physical reality of the 
computer that it does not suffer from the somewhat arbitrary quality of 
higher-level languages. Everything you do in assembly language is the 
result of the way the computer operates, not the way the designers of a 
higher-level language decided to do things for the sake of ease and 
convemence. 

We can think of higher-level languages as being like stodgy luxury 
sedans: they're comfortable and easy to use, but the steering is imprecise, 
the suspension insulates you from the feel of the road, and if you try to 
push them too fast they slide into the ditch. 

Assembly language, on the other hand, is the sports car of computer 
languages. In a sports car you're close to the road. The steering, brakes 
and gears are light and precise, and the car is built for speed and 
efficiency. It may not be quite as comfortable as a sedan, but it's fast, and 
more importantly, it's fun to drive. 

Assembly language is fun in the same way: it's fast, it's efficient, and it 
gives you the satisfaction of having complete control over a powerful and 
finely-tuned machine. 



Is Assembly Language Really So Hard to Learn? 

Unfortunately, assembly language has developed the reputation of 
being difficult to learn. Many people - even those who had no trouble 
learning a higher-level language such as BASIC - think that assembly 
language is somehow beyond them. This belief is fostered by many books 
on assembly language, which, strange as it may seem, appear to be 
written with the assumption that the reader already knows all about the 
subject the book is attempting to teach! For instance, many assembly
language books start off by listing and describing all of the scores of 
machine instructions. This is a good bit like giving a student in a first
year French class a dictionary, and telling him that as soon as he's 
memorized it he can go on to the next lesson! There must be an easier 
way. 

We believe that assembly language, in spite of its reputation, is 
actually not too much harder to learn than any other computer language, 
provided that it is presented gradually and easily, so that the reader does 
not feel overwhelmed at the beginning. It's this sort of easy, step-by-step 
presentation that we have attempted to achieve in this book. For this 
reason we've avoided "clever" programming; that is, shortcuts which 
increase the speed or compactness of the program at the expense of 
clarity. Once a program has been written in an obvious way, it can always 
be modified to make it faster or smaller. Like poetry, very compact 
programs can be beautiful once you understand them, but require far 
more time to understand than a more obvious, less compact routine. 

Why Is This Book Unusual? 

Assembly Language Primer for the IBM PC and XT is unusual - and we 
believe superior to other books on the market - in several respects. First, 
it not only teaches assembly language, it teaches it in the context of a 
particular computer: the IBM PC. As we'll see, this provides significant 
advantages over books that try to cover all the computers which use a 
particular microprocessor chip. 

Second, this book makes use of the built-in DOS function calls, which 
vastly simplify programming and can make even short programs 
powerful. 

Third, to make things easy for the complete novice, this book makes 
extensive use of IBM's DEBUG utility, which provides a far simpler and 
less threatening introduction to assembly-language programming than 
more conventional approaches that plunge you immediately into the 
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complexities of a full MACRO Assembler program. 
Finally, this book uses the graphics and sound capabilities of the IBM 

PC. This makes the learning experience more interesting. Plus, by 
making use of these features, you can ensure that the programs you 
write will be fun to use. If you decide to market your programs, graphics 
and sound will make them more popular and profitable. 

Why Learn Assembly Language on the IBM PC? 
If you are interested in writing programs for commercial use, the 

answer to the question posed above must be obvious: the IBM enjoys 
unprecedented sales growth. If you write a popular program for the IBM 
PC, you are guaranteed one of the largest markets in the personal 
computer field. There are other reasons, however, why the IBM PC is an 
especially appropriate computer on which to learn assembly language. 

First, both the hardware and the software on the IBM PC are top 
quality. They are solid and reliable. You don't have to worry - as you do 
on some machines - that a hardware failure will suddenly cause a 
system crash and destroy a file you've spent hours creating, or that a 
mysterious bug in the assembler will prevent your program from 
assembling correctly, even though it is correctly written. 

Second, if you want to be in the forefront of what's happening in 
computers, it's important to learn about the new 16-bit technology. The 
internal characteristics of the 8088 are 16-bit. This makes the IBM PC an 
ideal "stepping stone" to using an 8086 16-bit system. 

Finally, the IBM PC Disk Operating System (PC-DOS) is far more 
powerful and versatile than earlier microcomputer operating systems. By 
writing programs under this operating system you ensure not only that 
your programs can make use of an extensive number of powerful DOS 
functions, but that you are learning how a sophisticated, state-of-the-art 
system operates. You also benefit from the fact that PC-DOS is very 
similar to (and is in fact derived from) another operating system, MS
DOS. By writing programs that run under PC-DOS you can (if you 
follow a few simple rules) ensure that the same programs will run under 
MS-DOS. MS-DOS is used on many non-IBM computers, so if you are 
interested in marketing your product, you will have a program you can 
sell to IBM PC owners and to owners of a host of other computers as well. 

Who This Book Is For 
This book is primarily intended for the person who has no previous 
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experience in assembly language programming: the rank beginner. 
However, it will benefit the programmer who knows assembly language 
for a different microprocessor, such as the 8085, Z-80, or 6502, and who 
wants to learn how the 8088 family of chips work 

The Rank Beginner 
If you have never written in assembly language, and have only a 

vague idea what it's all about, then this book is for you. We start at the 
very beginning, without inflated expectations about your knowledge of 
the subject. 

Although the reputation that assembly language has for being 
difficult to learn is largely undeserved, many people still find it a bit less 
obvious than the simpler higher-level languages such as BASIC and 
Pascal. For this reason, we recommend that you have some experience 
with a higher-level language before you read this book. Although it is 
possible to learn assembly language as a first computer language, it's 
probably easier to cut your teeth on BASIC. 

Once you know a little about a higher-level language, you'll not only 
understand in general what computer languages are supposed to do, but 
you will also have picked up the jargon and some of the ideas that are 
necessary for a real understanding of computers. 

The Experienced Assembly Language Programmer 
Although this book is oriented toward the beginner, you will still find 

it valuable if you are an experienced assembly-language programmer 
who is not yet familiar with the 8088 microprocessor and its 
implementation in the IBM PC. You may whiz through the book faster 
than the beginner, but even the initial chapters will be of interest, since 
it's here that you will learn how to use DEBUG - an essential tool -
and various other useful skills. 

In fact, if you are used to 8-bit microprocessors, you will find the 16-
bit 8088 to be, in many ways, a whole new ball game. The use of memory 
segmentation, the extensive instruction set, the implementation of 
graphics and sound, the string-handling instructions, and the multiple 
addressing modes all require thorough examination, which this book 
provides. 

The Equipment You Need to Use This Book 

In this section we're going to discuss the equipment, both hardware 
and software, you need to best profit from this book. 
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Hardware 
This is very much a "hands-on" book. Although you can gain a 

general understanding of assembly language by reading it without a 
computer at your disposal, you will be far better off if you have the 
computer on your desk before you start to read. As with other computer 
languages (and non-computer languages) it's only through practice that 
real mastery is achieved. 

So we'll assume that you have access to an IBM Personal Computer, 
either a model with one or two floppy diskette drives, or the newer model 
with the fixed disk: the PC XT. You definitely can not use the cassette
based version of the PC, since the assembler program, various other 
software, and the entire DOS function approach used in this book, all 
require the disk operating system. Very few IBM PCs are sold in the 
cassette configuration, but if yours is one of them, rush out today and 
buy a set of floppy disk drives. If you're serious about computers, you 
won't regret it. 

Memory Size and the Assembler 

How big a memory do you need to create assembly-language 
programs? That depends which assembler you want to use. When you 
buy the standard IBM MACRO-Assembler, you actually get two 
assemblers in the same package: MASM and ASM. MASM stands for 
"Macro-ASseMbler," and is the full-scale assembler with all the bells and 
whistles. If you use this program you'll need a minimum of 96K, and 
you'll find that 128K is more useful. 

ASM, which is sometimes called the "Small Assembler," is a more 
modest version of MASM. It leaves out some of MASM's more advanced 
features, such as MACROs and conditional assembly, and in consequence 
requires considerably less memory space. ASM will run in a 64K system 
if you are using PC-DOS version 1.00 or 1.10, but again you will 
probably be happier with more memory- 96K or 128K- especially if 
you plan to write large programs. However, if you are using DOS version 
2.00, then you will need a minimum of 96K, with 128K being preferable. 

Since this book does not describe MACROs and conditional assembly, 
there's no problem using ASM. In fact, ASM even has some advantages: 
since it's smaller, it loads faster and takes up less space on your disk. 
Thus we use ASM throughout the book (although you can use MASM if 
you want, and if you have enough memory). 

So the answer to how much memory you need is: an absolute 
minimum of 64K, provided you are using DOS version 1.00 or 1.10, and 
ASM. However, we recommend that you upgrade to 128K if you can. 
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Display Monitors 

You can use this book with any of the display options available on the 
PC: either the monochrome monitor used with a monochrome adapter 
board, an RGB (red, blue, green) color monitor, a non-IBM black and 
white monitor, or a TV set hooked up to the color graphics adapter 
board via an RF (radio frequency) modulator. Any of these options will 
permit you to operate the examples in this book with one exception: if all 
you have is the monochrome display, you won't be able to make use of the 
section on color graphics, in chapter 10. However, if you have any sort of 
monitor connected to the color graphics adapter board, you will be able 
to explore both color graphics and character graphics. 

The examples used in this book are all based on an 80-column 
display. With TV sets, and some low-quality color monitors, an 80-
column display isn't practical because the screen resolution is so low that 
the characters get fuzzy; if that's the case then 40 columns must be used. 
If you're using 40 columns, you will need to do a little mental 
reformatting to compare the printouts in this book with those on the 
screen, which will be "wrapped around"; but this should not be a major 
problem. 

Printers 

It's very nice but not absolutely necessary to have a printer when 
writing assembly language programs. Especially as your programs grow 
longer, looking at a printed listing rather than at the same listing on the 
screen will be much more convenient and will give you a better idea of 
the overall operation of your program. Also, when debugging a program, 
it's nice to be able to look at the listing at the same time you're executing 
the program and watching the results on the screen. 

However, most of the programs in this book are short enough that a 
printer isn't really necessary. A printer is like a house in the country: if 
you have one you'll love it, but if you don't you'll get along just fine 
anyway. 

As you become deeply involved in assembly language programming, 
to the point where you're writing really long programs, then the ideal 
printer would have more than 80 columns; say 132. This gives you room 
on your listings for line numbers and extensive comments. Line numbers 
are a useful addition to long programs because they can be used to 
create a cross-reference file of symbolic names, as we'll see in chapter 6 
when we discuss the CREF program. 

One way to get a "wider" printer, if you have an IBM dot-matrix 
printer or an Epson MX-80 or FX-80, is to set it to "compressed" mode. 

6 Assembly Language Primer for the IBM PC & XT 



(In chapter 4, we show you the techniques you'll need to write a program 
to do this.) Compressed mode gives you a 136-character width. However, 
the characters are somewhat harder to read. 

Normally the standard SO-column printer is fine. The listings used in 
this book were originally generated with a standard Epson MX-80 in 
normal mode. 

Documentation 

Along with your IBM PC you'll want to have the IBM Personal 
Computer Technical Reference manual, available from IBM. It is packed full 
of details on the operation of the PC. Many of these details will become 
important to us as we explore the things that assembly language can do. 
Also, appendix A of the manual contains a complete listing of the ROM 
routines built into the computer. After you learn about these routines in 
chapter 9, you'll find that appendix A will make fascinating reading. 
(You'll need various other manuals from IBM as well: we'll discuss them 
in the section on software.) 

IBM-Compatible Computers 

Many computers claim to be "IBM-compatible," meaning that they 
will run the same software (and in some cases use the same hardware) as 
the IBM PC. So do you absolutely have to have an IBM PC to use this 
book? Maybe not - it depends on which computer you have, since there 
are various degrees of compatibility. 

As a minimum you need a computer that runs the MS-DOS 
operating system (from which PC-DOS, the system used on the PC, is 
derived). This way the DOS function calls - which form such an 
important part of this book - will still apply. However, that's only part of 
the story. If you want to benefit from the chapter on color graphics, then 
your computer will have to use the same approach to graphics as the 
IBM PC does. If you want to understand ROM functions, then the ROM 
in your computer should operate the same way the IBM PC's does. If you 
want to use the loudspeaker to generate sound, then your computer will 
have to do it in a similar way to that of the IBM PC. And so on. 

Some computers are compatible in most of these respects, and others 
in only a few of them. If you have an IBM-compatible computer, you can 
give this book a try and see how far you get. Most things will probably 
work. But it takes a detailed understanding of the features of the IBM PC 
and another particular computer to know in advance how compatible 
they really are. 

Figure 1-1 summarizes the hardware needed to use this book. 
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Software 
Let's assume that you have an IBM PC or XT with the necessary 

peripherals as described previously. What software do you need to use for 
this book? 

The Operating System 

For starters you'll need the PC-DOS. At this writing, version 1. 10 of 
this system is included with the IBM PC, and version 2.00 is included 
with the fixed-disk version of the IBM PC: the XT. For PC owners 
version 2.00 is available as an option for a very reasonable price. 

This book will not be very useful if you are running an operating 
system other than IBM PC-DOS, such as CP/M-86 or UCSD p-System. 
Why? Because (among other reasons) our programming examples make 
extensive use of the specific DOS functions built into PC-DOS. If you use 
a different operating system, these functions will in most cases be 
different, and the programs won't work. 

D 

Figure 1-1. Hardware needed for this book 

8 Assembly Language Primer for the IBM PC & XT 

. __ Monochrome Display, or 
...-- RGB color monitor, or 

black and white 
monitor, or 
TV set 

IBM PC or XT 
64K of memory - or more 

Single diskette drive, or 
dual diskette drives, or 
fixed disk plus 
diskette drive 

.1 I It 

Printer (very nice, 
but not essential) 



Which Version of PC-DOS? 

This book will work with any of the current releases of PC-DOS: 
1.00, 1. 10 and 2.00. We expect that it will also work with any future 
releases. However, there are some advantages to using version 2.00 (or 
later), instead of 1.00 or 1.10. First, IBM PC-DOS version 2.00 contains 
a very useful enhancement to the DEBUG program which is part of the 
DOS. This is a "mini-assembler," built right into DEBUG. As we 
mentioned earlier, we will write a number of programs using this 
DEBUG mini-assembler rather than the more cumbersome ASM (or 
MASM). It is possible to do this using the older versions of DEBUG that 
do not have this mini-assembler capability (and we show you how to do 
it), but it's easier to create the program examples if you have it. 

The second reason why IBM PC-DOS version 2.00 is preferable has 
to do with the way disk files are accessed. Version 2.00 introduces a whole 
new system of file access, called "file handle access," which we cover in 
chapter 12. File handle access is a very powerful and flexible system. It 
uses pathnames rather than simple filenames, and is therefore the only 
system that will work if you have a hard disk drive. Thus if you are 
interested in learning about this latest file access method, you will need 
version 2.00. 

There are, however, some disadvantages to using PC-DOS 2.00. The 
first is its size. If you have a small amount of memory, like 64K, you will 
find that version 2.00 takes up so much space that you don't have room 
for the assembler and assembly-language programs. So if you have a 64K 
system, stick to DOS version 1.10. This book will work fine with 1.10, 
except for the slight inconvenience in writing programs in DEBUG, and 
the inability to perform file handle disk access. 

The second disadvantage of 2.00 is compatibility. If you write a 
program in version 1. 10, it will work on version 2.00. However, most 
version 2.00 programs will not work on version 1.10 or 1.00. If you're 
writing programs to be used on the the widest possible number of 
different PCs, then 1.10 should be your choice. 

In sum, we recommend that you use PC-DOS version 2.00 if you can. 
Its increased capabilities, especially the "mini-assembler" in DEBUG, 
make it well worth the modest price. 

DOS Utility Programs 

Along with PC-DOS you get a number of utility programs, which are 
referred to in IBM's documentation as "external routines" (to distinguish 
them from the functions built right into the PC-DOS program, which are 
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called "internal routines"). Three of these programs are essential to the 
use of this book. They are: 

1. DEBUG. This program is used to monitor, debug and edit 
assembly-language programs. Learning to use it, which we teach you 
in the first few chapters, is vital to an understanding of assembly 
language. 

2. LINK. This program is used to change an intermediate form of 
assembly-language programs, called OBJ ( object) files, into an 
executable program called an EXE (executable) file. (These terms will 
all be explained in the following chapters.) 

3. EXE2BIN. This program converts EXE files to COM (command) 
files. COM files are another, somewhat simpler, form of executable 
program. 

Operating System Documentation 

Along with the PC-DOS operating system described above, you'll also 
need the IBM Personal Computer Disk Operating System manual which 
accompanies it. The manual is the definitive word on the operating 
system, and also on the various utility programs such as DEBUG, LINK, 
and EXE2BIN. Although we explain how to use these utilities, you will 
still find the manual important for reference. Also - and this is very 
important - appendix D of the manual is a list of all the DOS functions 
available in the operating system. We will explain how to use many of 
these functions, but for those not covered, and as a reference to all of 
them, the IBM manual is invaluable. 

Assembler Programs 

You will need the IBM PC MACRO-Assembler, a software package 
offered as an option by IBM. This package contains two different 
assemblers: ASM and MASM. If you have a 64K system you will have to 
use ASM. If you have more memory you can use MASM, although (as we 
noted earlier) we recommend using ASM for the examples in this book 
because of its smaller size and faster loading. 

Another program in the MACRO Assembler package which you may 
find useful is CREF; it produces a cross-reference table of the variable 
names used in your program. 

Of equal importance to the assembler program itself is the IBM 
Personal Computer MACRO Assembler manual which accompanies it. The 
manual contains a complete list of all the 8088 instructions, a list of all 
the pseudo-operations used with the assembler, and descriptions of the 
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various other conventions you'll need to know to use the assembler. 

Text Editor or Word Processor Program 

In order to create the source files for assembly-language programs 
you'll need some sort of text edit or word-processing program. If you're a 
Pascal programmer you're used to this process and you know what 
"source files" are, but if you've only programmed in BASIC, the idea of 
preparing a source file may be new to you. Source files (also called ASM 
files) for assembly-language programs are text files, just like letters or 
other documents. They constitute the first step in the assembly process 
(unless you're using DEBUG). To create a source file you'll need a word
processing program such as IBM's Personal Editor, WordStar, Easywriter, 
or any one of the dozens of other excellent programs on the market. 

There is a text-editing program which is one of the utility programs 
that comes with PC-DOS. It's called EDLIN (for EDit LINes). It is 
possible to use EDLIN to create assembly source files. In fact, it works 
fairly well for short programs. However, as your programs become longer, 
EDLIN's limitations become increasingly apparent. 

For one thing, EDLIN is a "line-oriented" (as opposed to a "screen
oriented") text editor. This means that you have to specify what line you 
want to edit, rather than simply move the cursor to that line; this makes 
it difficult to "move around" in the file. This and other factors make 
EDLIN suitable only for very short source files. 

If you don't already have a good word-processing program, or a full
screen text editor, our advice is to go out and buy one and become 
familiar with it before you become deeply involved in assembly language. 
However, it is beyond the scope of this book to recommend a word 
processor, or to describe how to use it. 

The Approach Used in This Book 
As we mentioned above, this book is unusual in several respects. The 

most important of these is that it teaches assembly language in the 
context of a specific computer: the IBM PC, rather than for all computers 
using a particular microprocessor. What's so unusual about a book that 
teaches assembly-language programming for a particular computer? And 
why is this a superior way to learn programming? 

Assembly language consists of instructions to a particular 
microprocessor. The microprocessor chip that powers the PC is the Intel 
8088. This microprocessor is the "brains" of the computer. Physically it's 
very small, consisting of a slice or "chip" of silicon no bigger than your 
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thumbnail; but mentally it's a giant. The microprocessor interprets 
instructions you send it in machine language (created by assembly 
language), and- based on these instructions - causes the computer to 
do all the things computers do so well: getting data from the outside 
world, processing it, and outputting it again. 

So what would be wrong with a book that taught assembly language 
for the 8088 microprocessor, without regard to a specific computer? 
There are a number of books that attempt this approach; they are 
supposed to work with any computer that contains an 8088 or 8086 
microprocessor chip. But the fact is, it's very difficult to learn assembly 
language without reference to a particular computer. There are several 
reasons for this. 

First, while the actual instructions to the 8088 chip may be the same 
on different computers, assemblers (the programs that translate these 8088 
instructions into a form the computer can understand) may be different 
on different machines. So an assembler format that works on one 
computer may not work on another. If you're reading a book that 
describes the assembler on machine A, and you're using machine B, then 
the programs you write may well not run. 

Second, there are always a great many differences between computers 
in such seemingly minor areas as the way the keyboard is used, the 
format of the screen display, and the operating system commands 
necessary to accomplish a given task. Since we already know in this book 
what machine you're using, we can tell you exactly what keystrokes and 
commands to use to accomplish a given task, such as assembling your 
program, linking it, and trying it out. No general 8088 book can do that. 

There's a third reason it's more effective to teach assembly language 
for a particular computer rather than for a particular chip. Many 
computers - including the IBM PC - contain, buried deep within the 
Disk Operating System (DOS), a collection of routines which can be used 
by assembly-language programmers to vastly simplify the programs they 
write. In fact, these routines are so powerful, and such an integral part of 
today's sophisticated computers, that their use is almost essential for all 
but the most trivial programs. However, since these DOS routines differ 
from one machine to another, no book which attempts to teach 8088 
assembly language in general can make use of them. This book makes 
extensive use of DOS functions. In fact one of the goals of the book is to 
teach you everything you need to know to make full use of these 
powerful software tools. 

What it boils down to is this: given the advantages of our approach as 
outlined above, we think you'll find it easy and enjoyable to learn 
assembly language from this book. 
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Assembly Language 
and Debug 

Concepts 
Assembly language versus higher-level languages 
Using DEBUG 
Memory 
Memory addressing 
ASCII codes 

Debug Commands 
D = Dump 
F = Fill 

/ n this chapter we're first going to talk about assembly language in 
general. We'll explain how it differs from higher-level languages such as 
BASIC or Pascal, and talk in a general way about the operation of an 
assembler and how it differs from the interpreter or compiler used in 
higher-level languages. 

In the second part of this chapter we'll introduce you to DEBUG, the 
utility program which will be your gateway into assembly-language 
programming. 

Assembly Language and Higher-Level Languages 

As is true with most computer languages, it's hard to describe 
assembly language meaningfully without reference to examples of specific 
programs. In the next chapter you'll encounter your first assembly
language program, and then you'll begin to see what assembly language 
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is all about. In the meantime, we'll provide an overview concerning what 
assembly language is, and how it differs from other computer languages. 

Higher-Level Languages - More Abstract 
If you are familiar with a higher-level language such as BASIC or 

Pascal, you know that there is a certain level of abstraction involved in 
program statements in these languages. A BASIC statement such as 

LET A= 3 

A := 3 

or, in Pascal, 

is operating on an abstract level in that we don't usually know, or need to 
know, where in the computer the "A" is, or what changes are taking place 
in the computer when A is assigned the value 3. This is because higher
level languages are oriented toward the handling of numbers with 
algebra-like formulas. Thus FORTRAN, one of the earliest of the higher
level languages, stands for FORmula TRAN slator - a language in which 
it is easy to express formulas. BASIC is a descendant of FORTRAN, and 
it too - as is Pascal - is oriented primarily toward processing numerical 
data in this abstract, algebraic context. Programmers in these languages 
want to be insulated from what's really going on inside the computer so 
they can concentrate on the formulas. 

Analogy - a Newspaper Office 

As an analogy to a higher-level language, we can think of a 
newspaper office. Reporters write stories about the affairs of the day: an 
election in Pennsylvania, a flood on the Mekong River, a riot in Bombay. 
This information is all transmitted to the newspaper office. There it is 
edited, typeset, pasted up, printed, and finally distributed to newsstands 
and tossed by small children into people's driveways. 

The data processed by the newspaper is abstract. Although you can 
touch the medium (paper) that contains it, you can't touch the actual 
news: you can't build houses out of headlines or drive gossip to work. 
The value of news lies in the information itself. 

In a similar way a computer program written in a higher-level 
language is concerned with something abstract: variables representing 
numbers and characters. 
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Assembly Language - More Concrete 
In contrast, assembly language operates on a very concrete level. It 

deals with bits, with bytes, with words (two bytes side-by-side), with 
registers - which, as we'll see, are physical places in the microprocessor 
where bytes and words are stored - and with memory locations, which 
have specific numerical addresses and specific physical locations in the 
memory chips inside the PC. 

An analogy to assembly language might be a brick factory. In this 
factory, clay, water, and energy to run the kilns are the raw materials. The 
factory performs certain operations on these raw materials, and the 
output from the factory is the bricks themselves, packaged in bundles 
which can be lifted onto trucks by forklifts and delivered to building sites. 

You can touch a brick, but you can't touch a news story. Similarly, you 
can (or could, if you were very small) touch the registers and memory 
locations that assembly language deals with, while you can't touch the 
variable "A" in a BASIC program. (See Figure 1-1.) 

The General and the Specific 
If you travel to another city, you will have to buy another newspaper, 

but the news will be much the same. We could say that the "program" -
the series of operations used to generate the news - is similar in most 
newspapers. Higher-level languages are similar in that they can run on a 
variety of different computers: the BASIC program on my IBM PC will 

Assembly language -
as substantial as a brick 

,,~,,. ,, ' 

Higher-level languages -
as abstract as yesterday's news 

Figure 1-1. Assembly language and higher-level languages 
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probably - with some minor modifications - run on someone else's 
Apple. 

In the brick factory, on the other hand, the operations are much more 
specific. The clay must be dumped into tanks, the water must be mixed 
in, and the kiln must be heated to a certain temperature. These 
procedures are applicable only in one particular factory. If the foreman 
says to turn up the temperature of kiln number five to 2000 degrees, this 
instruction is tailored specifically to the physical equipment of one 
particular factory. In a similar way, programs written in assembly 
language are specific to a particular microprocessor chip, and in many 
cases to the specific computer which contains the chip as well. 

What Does an Assembler Do? 
If you've written programs in BASIC, you're familiar with the two

step process involved: first you write a group of BASIC program 
statements which make up a program; then later, when you execute the 
program, these statements are "interpreted," or changed into machine
language instructions which are executed by the 8088 microprocessor. 
(We'll have a lot more to say about machine language in the following 
chapters. Don't worry if you don't completely understand what we mean 
by it at this point.) 

You may not be very aware of this interpretation process in BASIC, 
since it is made to appear "invisible" to the user; but it takes place 
nevertheless. The individual program lines are interpreted one at a time, 
and the resulting machine-language instructions for each line are 
executed by the 8088, before the next line is interpreted. (Refer to Figure 
1-2 for a simplified view of this process.) 

In compiled languages such as Pascal, things are handled a little 
differently. The user first creates a source file, which is a text file of the 
entire program. This is then changed into machine-language instructions 
by a compiler program. (Actually a linker is used too, but we'll ignore it 
for the moment.) In a compiled language such as Pascal, the entire 
program is transformed into machine language at once. 

Assembly language resembles a compiled language more than it does 
an interpreted language such as BASIC. An assembler source file 
consisting of the text of the program is first created. This is then 
assembled into machine-language instructions by an assembler program. 
The assembler performs a process very similar to a compiler, except that -
as we'll see in the next chapter - there is a far closer correspondence 
between an assembly-language instruction and a machine-language 
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instruction than there is between a Pascal statement and the resulting 
group of machine-language instructions. 

What we've described is the traditional way of transforming an 
assembly-language program into machine-language instructions. 
However, in the first few chapters of this book we' ll use a d ifferent 
approach: a feature of the DEBUG program called a "mini-assembler." 
Using DEBUG it's almost as easy to create and run short assembly
language programs as it is to create and run interpreted programs such 
as with BASIC. We'll introduce you to DEBUG later in th is chapter, and 
show you how it can be used to assemble a p rogram in chapter 2. 

~O PRINT " BASIC" r----..-- ~I _in_te_r_pr_e_te_r~--"'""~~

Single line of 
BASIC code 

----►I Compiler 

Entire Pascal 
program 

Entire assembly-language 
program 

Assembler 

Figure 1-2. Interpreters, compilers, and assemblers 

Small group of 
machine-language 
instructions 

Large group of 
machine-language 
instructions 

Large group of 
machine-language 
instructions 
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Microprocessors 

We've mentioned microprocessors several times. A microprocessor is a 
single chip of silicon which performs all the basic functions of a 
computer. Because assembly language is inextricably entwined with a 
particular microprocessor chip - the Intel 8088 in the case of the IBM 
PC - we'll talk a bit here about the 8088 and its history. Figure 1-3 gives 
a representation of the 8088's development. 

The very first microprocessor was the 4004, manufactured by the 
Intel Corporation. It appeared in 1970. Before the 4004, computers were 
made differently. The earliest solid-state computers had thousands of 
individual transistors mounted on hundreds of printed circuit boards, 

t 
8080 

Figure 1-3. 8088 family tree 
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which occupied enormous cabinets in air-conditioned rooms and cost 
hundreds of thousands of dollars. Later, integrated circuits - which put 
a dozen or more transistors in a little package - reduced the size of a 
computer to somewhat smaller cabinets in rooms that weren't necessarily 
air-conditioned, but the computer still cost in the six or even seven-figure 
range. 

The 4004, in what is surely one of the most astonishing 
accomplishments of our age, squeezed all these cabinets into an object so 
small it would blow away if you sneezed, and cost (in quantity) less than a 
good dinner. 

The 4004 was not really a very powerful microprocessor. It operated 
on data which was only 4 bits wide, and had a rather rudimentary 
instruction set. But it was followed soon after by the first 8-bit 
microprocessor, the 8008. The 8008 evolved into the 8080 (a much easier 
to use 8008), and then into the 8085, a refined 8080, which is still in use 
in millions of computers. 

The next major advance was to go from eight bits to sixteen bits, 
since 16-bit microprocessors provide more power and the capability to 
use a larger memory than do their 8-bit cousins. The microprocessor that 
achieved this breakthrough was the Intel 8086. The 8086 operates on 16-
bit data: it requires a 16-bit memory, 16-bit data buses (which connect 
the components of the computer system together), and other 16-bit 
peripheral devices. 

However, because 8-bit computers have been around for so long, 
many of these peripheral devices exist at a reasonable price only in 8-bit 
form. So Intel created another version of the 8086, which it called the 
8088. The 8088 has an internal architecture like the 8086: the same 16-
bit registers. But when it talks to the outside world, it does so with 8-bit 
data: one byte at a time. Thus the memory and peripherals used with an 
8088 can be the tried and true (and cheaper) 8-bit models. This reduces 
the cost of the computer system, and is the approach used in the IBM 
PC. 

DEBUG Versus the Assembler 
As we noted above, there are two major ways to write short assembly

language programs on the IBM PC. The first way is to use the assembler 
program ASM, or its more sophisticated cousin MASM. (We explained 
the difference between these two programs in the Introduction.) People 
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usually write assembly-language programs in one or the other of these 
assembler programs. (Yes, we know you may not be entirely clear at this 
point what an assembler program is supposed to do. That's all right -
we'll get to it soon.) 

The other way to write assembly-language programs is to use a 
different kind of program called DEBUG. DEBUG is not really an 
assembler program. Its primary use is for "debugging" (that is, fixing the 
errors in) assembly-language programs. However, you can also write short 
assembly-language programs with DEBUG. 

We've chosen to write the programs in the first few chapters of this 
book using DEBUG. There are several reasons for this. First, DEBUG is 
a much easier program to operate than the ASM (or MASM) assembler 
program. To type in and execute a program using DEBUG requires 
calling up only DEBUG itself: a simple process. Using an assembler, on 
the other hand, involves using a text editor, the assembler itself, a 
program called LINK, and often another program called EXE2BIN. 
Each of these programs requires a rather complex series of commands to 
make it work. We figured you'd have enough on your mind being 
introduced to a new computer language, without having to learn how to 
operate all these other programs at the same time. 

DEBUG's second advantage is that programs written with it require 
less "overhead" than those written with the assembler. This overhead 
comes in the form of program statements which must appear in the ASM 
"source file," but which are not necessary in DEBUG. (Don't worry if you 
don't understand what we mean by "source file"; we'll explain everything 
eventually.) By using DEBUG you avoid having to start your day with a 
lot of incomprehensible program lines that would be necessary in the 
assembler. 

Third, using DEBUG puts you in closer contact with what is really 
going on in your computer than using the assembler would. As we'll soon 
see, DEBUG has features that make it possible to get down to the most 
fundamental level of your computer's operation (short of opening up the 
cover and probing about with meters and oscilloscopes). Sooner or later, 
if you write programs in assembly language, you're going to have to 
understand this fundamental level and learn to use DEBUG; so now 
seems like a good time to start. 

Of course, as we'll find later, the assembler has all sorts of powerful 
features that make it indispensable for assembling long programs, but for 
the moment, DEBUG will do just fine. The table below summarizes the 
advantages and disadvantages of DEBUG and the assembler. 
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DEBUG versus Assembler 

DEBUG 

Easy to run 
Low overhead programs 
Close to the machine 

Not so versatile 
Good on short programs 

The Window of the 8088's Soul 

Assembler 

Hard to run 
More program overhead 
Isolated from the 
machine 
Very versatile 
Good on long programs 

An old saying has it that "the eyes are the windows of the soul." We 
might say that DEBUG is the window of the 8088's soul. Besides being 
useful for assembling programs, DEBUG is also used to examine and 
modify memory locations; to load, store and start programs; and to 
examine and modify registers (we'll learn what "registers" are later). In 
other words, DEBUG is designed to put us in touch with various physical 
features of the IBM PC. 

Before we write our first 8088 assembly-language program in the 
next chapter, we're going to get to know our way around DEBUG: rev it 
up, so to speak, find out where the controls are, and taxi it out of the 
hangar and around the runway. Then we'll be ready for takeoff in 
chapter 2. 

Getting DEBUG Rolling 
All right, let's leap into the cockpit, get a firm grip on the keyboard, 

and get DEBUG rolling! We'll assume that you have a disk with DEBUG 
on it inserted in drive A, and that the A> prompt is waiting for your next 
move. (If you have a fixed disk you'll have to make sure DEBUG has 
been copied to the fixed disk, and you'll also have to imagine a "C>" 
whenever you see an "A>" in the text of this book.) As we noted in the 
introduction, DEBUG is one of the programs provided on the "system 
disk" that contains the PC-DOS. 

Following the DOS prompt, enter the program name "DEBUG". 
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(When we tell you to "enter" something in this book we mean to type the 
"something" and then press the g key - the one just to the left of 
the numeric keypad.) 

A>debug <-- Enter thi s 
<-- DEBUG's prompt character 

The single dash that appears on the screen is DEBUG's "prompt," the 
symbol it uses to tell you that it's ready to listen to what you have to tell 
it. 

The "D" Command 
You tell DEBUG what to do by typing in single-letter commands, 

usually followed by one or more numbers. When we refer to these single
letter commands in the text we usually use uppercase letters to make 
them stand out (like "D"). However, when you type them in, you can use 
lowercase. It works just as well as uppercase, and is easier to type. For 
example, enter the letter "d", followed by the digits "l", "O", and "O". 

-d100 <-- You enter this 

08Fl :0100 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 
08Fl:0110 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 
08Fl:0120 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 
08Fl:0130 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 
08Fl :0140 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 
08Fl :0150 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 
08Fl:0160 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 
08Fl:0170 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 

Wow - look at all those numbers! What does it all mean? Well, first 
of all, you may not see all zeros on your display as we show here. What 
the "D" command has done is to "dump," or display, a portion of your 
computer's memory on the screen. Each pair of numbers represents one 
byte, or eight bits, of data stored in a particular memory location. If your 
computer's memory happened to have other data in it before you loaded 
DEBUG, it will appear here when you type "D", so you may see all sorts 
of junky-looking numbers, like this: 

-d100 

08Fl :0100 03 EB 42 90 75 03 EB 41-90 2C 30 72 38 3C 0A 73 
08Fl :0110 34 52 8B D3 9F 03 DB 03-DB 03 DA 03 DB Dl DE 9E 
08Fl :0120 Dl D6 8A D0 B6 00 9F 03-DA Dl DE 9E Dl D6 5A E8 
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08Fl:0130 21 00 72 0A 74 0A 2C 30-72 04 3C 0A 72 D3 41 4A 
08Fl:0140 8A C7 0A C0 C3 9F 41 4A-9E F9 C3 E8 05 00 75 01 
08Fl :0150 C3 EB F8 8A C5 0A Cl 75-01 C3 49 42 8B F2 AC 24 
08Fl :0160 7F 0A C0 F9 75 01 C3 3C-0C F9 75 01 C3 3C 0A F9 
08Fl:0170 75 01 C3 3C lA F9 75 01-C3 72 01 C3 F5 C3 A9 46 

! . r . t . , 0r . <. rSAJ 
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All the numbers in this display are in hexadecimal. In fact, 
hexadecimal is the only numbering system that DEBUG knows about, so 
if you aren't already acquainted with this way of representing numbers, 
now is the time to read appendix A in the back of this book. 

(Welcome back, those of you who have been reading appendix A.) 
Let's adopt this convention: hexadecimal numbers - except those in 
program listings or where the context makes clear what they are - will 
be followed by a small letter "h" to distinguish them from decimal 
numbers. Decimal numbers - again, unless the context makes it clear -
will be followed by a small "d". Numbers from 0 to 9 are the same in 
both systems, so they don't really need to be followed by a distinguishing 
letter, although they sometimes are for consistency. Of course, since 
DEBUG only speaks hexadecimal, it doesn't use an "h" in its printouts, 
and you don't need to put one after hexadecimal numbers you type in as 
DEBUG commands. 

As you know, it requires two hexadecimal digits to represent an 8-bit 
byte of data. This two-digit hexadecimal number can range in value from 
00h to FFh (which is from 0 to 255d). Thus all the two-digit numbers in 
the printout above fall into this range. There are 16d of these numbers 
on each line of the display. The dashes in the middle of the printout are 
placed there for clarity, to separate the left-hand eight bytes on the line 
from the right-hand eight bytes. 

Addresses 
The numbers in the column to the left (like 08F 1:0120) are the 

memory addresses of the bytes of data. Thus each byte shown in the dump 
occupies a specific address, as shown in Figure 1-4. 

The vertical column to the left in Figure 1-4 represents an actual 
section of your computer's memory. Notice how each memory location, or 
byte, corresponds to a particular number in the DEBUG dump. 

Each address consists of two numbers separated by a colon. What do 
these two numbers mean? 

Offset Address 

The 0 100 part of the number, to the right of the colon, is called the 
offset address. For the next few chapters this will be the only part of the 
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address we'll be concerned with, so if you want to skip the next few 
paragraphs it won't really do you any harm. 

Segment Addresses 

The 08F I part of the number, to the left of the colon, is the segment 
address. (Your system might have a number other than 08F 1. That's fine 
too.) The segment part of the address is such a complex and far-out 
thing that we're going to postpone a thorough discussion of it until 
chapter 8. However, we'll tell you here in very general terms what it 
means, so you won't have to wonder about it for six more chapters. 

To find a real address, take the segment address, shift it left 
one place, and add the offset address. 

Briefly, the idea of the two-part address is this. The 8088 operates 
mostly on numbers which are four hexadecimal digits wide, like FFFFh or 
1234h. (We'll abbreviate the word "hexadecimal" to "hex" from now on.) 

08Fl:0100 
0101 
0102 
0103 
0104 
0105 
0106 

010F 

08Fl:0100 03 EB 42 90 75 03 EB 41-90 2C 30 72 38 3C 0A 73 

Portion 
of 
memory 

03 
EB 
42 
90 
75 
03 
EB 

~ 
Figure 1-4. Each byte in the dump is a byte in memory 
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However, there are so many possible memory addresses in the 8088 that 
it takes numbers with five hex digits to specify them, such as FFFFFh or 
12345h. The engineers at Intel invented the following solution to this 
dilemma. They used two four-digit hex numbers to represent each 
memory address: the first number is the offset address and the second is 
the segment address. These numbers are combined in an unusual way to 
form the real or absolute address. The segment address (the number on the 
left) is shifted left one digit - which is the same as multiplying it by 1 Oh. 
It is then added to the offset address (the number on the right). 

For example, suppose an address shown in our DEBUG dump is 
08Fl :0120. What absolute address do these numbers represent? We take 
the 08Fl and shift it left to get 08Fl0. Then we add the 120. The 
resulting five-digit sum is the hex number representing the absolute 
address of this particular memory location, as shown below: 

Ii Shift left ----+-08F10 

IAdd---. 0120 

I 09030 .,_ Absolute address 

08Fl:0120 

~ Offset address 

Segment address 

From now until chapter 8 we're not going to be concerned with the 
segment part of the address. How is this possible? The reason we can get 
away with paying attention only to the offset part of the address is that 
we're going to operate only in a certain part of memory: a part called a 
segment. This part of memory is 64K bytes long, which is 65536d bytes, 
or FFFFh bytes. It can be specified with a single four-digit hex number, 
so all we need to specify an address in the segment is the four-digit offset 
address. If this isn't completely clear, trust us. It will all be explained in 
chapter 8, on memory segmentation. 

Offset Addresses and DEBUG 

Notice how each offset address (we'll just call them "addresses" now, 
at least until chapter 8) in the left-hand column of a DEBUG "dump" 
ends with a zero. If you're familiar with hex numbers you should 
understand why this is so. There are 16d, or 10h, bytes in each line, so 
when you've counted from Oh to Fh, you're ready to increase the ten's 
column by 1, since 1 Oh is the number that comes after Fh in hex. So we 
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display 16d ( 1 Oh) bytes, and then move down one line, increment the 
address by 1 Oh, and display 1 Oh more bytes. 

The display would be easier to read and understand if it had the one's 
column values of the addresses printed across the top, like this: 

0 1 2 3 4 5 6 7 8 9 A B C D E F 
08Fl:0100 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 
08Fl:0110 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 
08Fl:0120 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 
08Fl:0130 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 
08Fl:0140 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 
08Fl:0150 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 
08Fl:0160 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 
08Fl:0170 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 

But it doesn't. Anyway it should be clear that the first byte on the top 
row is at memory location 0100, the next is at 0101, the next at 0102, 
and so on. Similarly, the first byte on the second row is at 0110, the 
second at O 111, and so on. 

The "F" Command 
Want to see this display change? An easy way to do that is to use 

DEBUG's "F" or "fill" command. This command fills a part of memory 
with a particular hex number. To use "fill" you enter "f' followed by 
three numbers, each number separated by a space. The first of these 
numbers is the address where you want to start filling, the second is the 
address where you want to stop filling, and the third is the constant (from 
OOh to FFh) that you want to use to fill in between the first address and 
the second. Notice that while the data to be filled in consist of two-digit 
hex numbers (bytes), the addresses are four-digit hex numbers. Of 
course, you don't need to type leading zeros, so you can type fewer than 
four digits for the addresses when appropriate, as it is here. 

Enter this: 

-f120 14f ff I I Coo,to,tto be filled;, 

Ending address 

Starting address 

Nothing will appear to happen. To see what's changed, you have to 
dump the same part of memory again: 
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-d100 
08Fl:0100 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 
08Fl:0110 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 
08Fl:0120 FF FF FF FF FF FF FF FF-FF FF FF FF FF FF FF FF 
08Fl:0130 FF FF FF FF FF FF FF FF-FF FF FF FF FF FF FF FF 
08Fl:0140 FF FF FF FF FF FF FF FF-FF FF FF FF FF FF FF FF 
08Fl:0150 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 
08Fl:0160 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 
08Fl:0170 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 

Well, look at that! All the memory locations between 120 and l 4F are 
now filled with FF, just as you specified with the "F" command. (Of 
course if you started off with other numbers instead of zeros, they'll still 
be there instead of the zeros shown in this dump.) 

ASCII Codes 
You may have been wondering about all the little dots and odd 

characters on the right-hand side of the dump display. These are the 
characters (like "A", "B", and so on) that the numbers to the left 
represent. The number which represents a particular character is called 
its "ASCII Code." (ASCII stands for "American Standard Code for 
Information Interchange.") As you probably know, the ASCII code is the 
normal way to represent characters in a computer's memory. (There is a 
very nice table of these codes in the IBM Personal Computer Technical 
Reference manual.) 

Since neither 00 nor FF represents a printable ASCII character, the 
positions in the ASCII display corresponding to these numbers are filled 
with dots, which indicate "no printable character." (If your computer's 
memory was filled with junk rather than all zeros to begin with, some of 
the numbers may have been printable characters.) To see the character 
display change, along with the numbers, let's try filling in parts of 
memory with numbers that we know represent printable ASCII 
characters. 

Enter the following DEBUG commands: 

-f100 117 61 
-f178 17f 24 

-d100 
08Fl:0100 61 61 61 61 61 61 61 61-61 61 61 61 61 61 61 61 
08Fl:0110 61 61 61 61 61 61 61 61-00 00 00 00 00 00 00 00 
08Fl:0120 FF FF FF FF FF FF FF FF-FF FF FF FF FF FF FF FF 
08Fl:0130 FF FF FF FF FF FF FF FF-FF FF FF FF FF FF FF FF 
08Fl:0140 FF FF FF FF FF FF FF FF-FF FF FF FF FF FF FF FF 

aaaaaaaaaaaaaaaa 
aaaaaaaa ....... . 
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08Fl:0150 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 
08Fl:0160 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 
08Fl:0170 00 00 00 00 00 00 00 00-24 24 24 24 24 24 24 24 . .. .. ... $$$$$$$$ 

61 hex is the ASCII code for a lowercase "a," and 24 hex is the code for 
the dollar sign ($). We can see them both as numbers, and, to the right, 
as characters. 

Summary 

In this chapter we've talked about how assembly language differs 
from higher-level languages, and also explained something about the 
operation of the DEBUG utility program. You may find it useful at this 
point to experiment a bit with DEBUG. Try filling in different constants 
to see how they look when you "dump" them. Examine different parts of 
memory. You'll be using DEBUG a great deal in the chapters to follow, 
and you should feel comfortable about using it. 
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Instant Program 

Concepts 
Writing a simple program in machine or assembly language 
Assembly language instructions 

Debug Commands 
E = Enter 
A = Assemble 
U = Unassemble 
G = Go 

8088 Instructions 
MOY = Move 
INT = Interrupt 
JMP = Jump 

DOS Functions 
Display Output 
Program Terminate 

/ n this chapter we're going to start by describing the writing of a 
complete, though very short, assembly-language program. Then we'll go 
back and talk in more detail about the steps used in the process and what 
they mean. We'll finish up with some variations on our program. 

Writing Your First Program 

You're going to write your first program in assembly language, but 
you don't know assembly language yet. Obviously, there will be many 
aspects of the process that won't seem completely clear to you. Don't 
worry! Our approach is to show you first what something looks like, and 
afterwards explain why it looks that way and how it works. 
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By moving in this direction, from the concrete to the abstract (rather 
than the other way around), we hope to avoid the sort of academic 
theory-oriented descriptions that leave most readers confused, bored, and 
frustrated. Instead, you'll first get the feeling of the process (the roar of 
the motor and the rush of the wind in your hair, to return to our flying 
analogy). Later we'll explain what happened. 

The Two Versions of DOS 
There's a small problem we better deal with right away. This has to 

do with which version of DOS you're using. As we noted in the 
introduction, the DEBUG in DOS version 2 (that is, versions 2.00 and 
later) contains a built-in mini-assembler which will help in the creation of 
assembly-language programs. The DEBUG in DOS version 1 (versions 
1.00 and 1.10) does not have this capability, so for those readers using 
this version we need to take a slightly different tack. 

We'll handle this situation in the following way. We'll first explain how 
to type in a program if you're using DOS version 1. Even if you have 
version 2, you should read this part, try it out, and understand it. There 
are two reasons why this is a good idea. The first is that you will be 
introduced to a new DEBUG command: the "E" (for "Enter") command. 
The second is that after you've typed in the program using "E", you'll be 
better able to appreciate how lucky you are to have DOS version 2, with 
its advanced version of DEBUG and its mini-assembler capability. 

Writing the Program with the "E" Command 
In this section we'll create an assembly language program using 

DEBUG's "E" command. (The term "assembly language" is actually not 
quite right in this particular instance, as we'll see later in the chapter, but 
that needn't concern us now.) If you have DOS version 1 this is the only 
way to use DEBUG to create a program. If you have version 2, you 
should, as we suggested above, follow along anyway, typing in the 
commands we show. 

The purpose of the "E" command is to enter a byte (or bytes) of data 
into memory. It's a little like the "F" command described in the last 
chapter, except that you can enter a series of different bytes; they don't all 
have to have the same value, as "F" required. 

The series of bytes we're going to enter with "E" will constitute our 
program. To insert this program into memory, you enter the "E" 
command, followed by the address where you want the program to go. In 
our case, we're going to put it at location 1 00h, so we enter "e" followed 
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by "100". The program will respond by printing out the address, followed 
by its current contents: 

-e100 - You enter this 

-~ : ~ 61. - - The cursor will wait here for you to type in a two-digit number 

B2 
1 
B4 
2 
CD 
21 
CD 
20 

i i Offset address is the same as what you typed in 
Segment address doesn't matter 

As shown here the contents of location 100 happen to already be 
61h, since that's what we put there with the "F" command earlier. 
However, it doesn't really matter what was there before: the important 
thing is what we're going to put there now. 

To "enter" a two-digit hex number into this location we type the 
number followed by the space bar (not the ~ key). The space bar 
has the effect of entering one number and going on to the next one. The 
g key, on the other hand, enters the number and then terminates 
the entire "E" command sequence and returns us to the DEBUG prompt. 
After you have entered a number and pressed the space bar, the 
command will then print the old contents of the next location, and wait 
for you to type in the new contents. 

The series of hex numbers we want to type in is the following: 

These are the numbers that constitute our program. Type each number, 
press the space bar, type the next number, and so on. After you've typed 
in all 8 numbers, the screen should look like this: 

-e100 
04B5:0100 61.b2 61. 1 61. b4 61. 2 61. cd 

T t t t t t 
DEBUG prompt Press space bar following these numbers 

61.21 61 . cd 

t t 
61. 20 

t 
Press~ 
following ast 
number 
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After we type the last number, we press ~ to tell DEBUG that 
we're through. This should cause the reappearance of the DEBUG 
prompt (-). If you don't type any number at all before hitting the space 
bar, the byte in that location will remain unchanged, as you may discover 
if you make a typing mistake. If you make a mistake, just press g 
to get back to the DEBUG prompt, and start over. 

You've now placed your program in the computer's memory, from 
location 100 to 107, using the "E" command. We'll explain how to 
execute or "run" the program in a moment. 

Writing the Program with the "A" Command 
Here's where you DOS version 1 users become, briefly, mere 

spectators. You should read through this section so you know what you're 
missing, and more importantly, because program descriptions in the next 
few chapters are going to be based on the "A" command approach 
outlined here. You'll need to know both approaches, so you can use "E" 
even though we're talking about "A"; that is, translate our descriptions of 
the "A" approach into operations with "E". This won't be as hard as it 
probably sounds; so read on. Or, better yet, hurry out and buy a copy of 
DOS version 2. 

The "A" command accomplishes the same thing as the "E" command 
- that is, putting the bytes which constitute our program into memory 
- but it does it in a different way. When we use the "A" command we 
don't insert hex bytes into memory directly. Instead, we type in a series of 
"mnemonic symbols." ("Mnemonic" simply means "easy to remember.") 
These symbols are supposed to be easier to remember than the hex 
numbers they represent. They are two- or three-character names which 
stand for certain assembly-language instructions. An instruction tells the 
microprocessor what operation is to be done. It is usually followed by a 
space and then by some letters and numbers that indicate what the 
operation is to be done to. 

Expressed in mnemonic symbols, our program looks like this: 

mov dl , l 
mov ah ,2 
int 21 
int 20 

Looks short, but absolutely incomprehensible, doesn't it? That's all 
right, it won't be long before you can churn out this kind of thing in your 
sleep. We're going to type in this program, then dissect it a little and see 
if we can get a feel for how the "A" approach relates to the "E" approach, 
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-a100 

and for what assembly language is all about. 
Enter the letter "A" followed by the address where you want the 

program to go. Here's a rule you should remember: Programs written in 
DEB UC should always start at 1 OOh. The reasons for this will become clear 
later, when we talk about the difference between COM files and EXE 
files. 

Programs written in DEBUG should always start at offset 
address 0 1 00h. 

When you enter "A" followed by an address, DEBUG will 
automatically echo the address: 

08Fl: 100 T 

The cursor will wait here, blinking 

DEBUG will then sit there waiting for you to type in the mnemonic codes 
for your program. Enter "mov dl, l" on the first line. That's "mov" as in 
the first three letters of "move," a space, which is important, then "dl, l" 
follow. Don't confuse letters and numbers: it's the letters "dl", followed by 
a comma and the number "l ". The screen should now look like this: 

08Fl:0100 mov dl , l 
08Fl:0102 _ 

You've typed your first line of assembly language! You should reward 
yourself, in a modest sort of way (with a cookie, or perhaps a swig of 
Scotch). 

The assembler is waiting for line two. Enter "mov ah,2". Then the 
third line, "int 21 ", and the fourth, "int 20". After you've finished these 
four lines, you're done. So when the program tells you 

08Fl:0108 

you simply press g to let it know you're through assemblying this 
program and want to get back to DEBUG's prompt. 
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Your screen should now look like this: 

-al00 
08Fl: 0100 mov dl , 1} 
08Fl :0102 mov ah ,2 . 
0SFl: 0104 int 21 <- Enter these lines 

08Fl :0106 int 20 
08Fl: 0108 <- Simply press ENTER here 

<- Now you're back in DEBUG 

So, you now have two different ways to enter your program, 
depending on which version of DOS you have. In either case the 
program itself should now be sitting in memory, waiting to be executed. 
There's a lot to say about the relationship between these two approaches 
to putting the program into memory, but if you're a real red-blooded 
programmer you can't wait to run the program. So let's do that first, and 
talk later. 

Running the Program 

What does this program do? Does it balance your checkbook? 
Calculate accounts receivable? We're afraid it's not quite so ambitious as 
that. Let's see what happens when we run it. To execute the program we 
use the "G" (for "Go") command. Simply enter the letter "g". It's not 
followed by any numbers (this time). This will cause the program to be 
executed, just as entering RUN does in BASIC. 

-g <- Enter this 

Q 
Program terminated normally 

What happened? The program printed a happy face on the screen! 
If you didn't get a happy face, you probably made a mistake typing in 
the program. It's easy to mistype something, with all the numbers and 
unfamiliar symbols. Start over with the "E" or the "A" command, and try 
agam. 

Unfortunately mistakes in assembly-language programs can have 
more serious consequences than those in higher-level languages like 
BASIC. In higher-level languages the interpreter or compiler usually 
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protects the operating system from the consequences of errors in 
programming, so that your machine keeps running and says something 
like "Error in line 2034." 

In assembly language, however, there is no such protection. Assembly 
language is the most fundamental level of the machine: there is nothing 
on a "supervisory level" overseeing the assembly-language program, as 
the interpreter or compiler does in higher-level languages. So if you 
make a mistake in assembly language it is woefully easy to "crash" your 
operating system - that is, alter parts of it in memory so that it no 
longer works and you need to reset the entire computer, either by hitting 
the @, ~ and ~ keys simultaneously, or, in even worse cases, by 
turning the entire computer off and then on again. But all this is 
academic - you're never going to make a programming error, are you? 

Let's look in memory with the "D" command and see if we can find 
our little program. 

-d100 
08Fl: 0100 
08Fl: 0110 
08Fl :0120 
08Fl :0130 
08Fl: 0140 
08Fl:0150 
08Fl :0160 
08Fl :0170 

Program--------------~ 

B2 01 B4 02 CD 21 CD 20-61 61 61 61 61 61 61 61 
61 61 61 61 61 61 61 61-00 00 00 00 00 00 00 00 
FF FF FF FF FF FF FF FF-FF FF FF FF FF FF FF FF 
FF FF FF FF FF FF FF FF-FF FF FF FF FF FF FF FF 
FF FF FF FF FF FF FF FF-FF FF FF FF FF FF FF FF 
00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 
00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 
00 00 00 00 00 00 00 00-24 24 24 24 24 24 24 24 

,___ 
2.4.M!M aaaaaaaa 
aaaaaaaa . . . . . .. . 

... .. ... $$$$$$$$ 

There it is, in the first 8 locations, from 100 to 107, as you can see by 
comparing these numbers with those typed in using "E". Our program 
has overlaid the 61s that were there before. 

The symbols on the right, 2.4.M!M, are meaningless. They just 
happen to be the ASCII equivalents of the numbers that make up the 
program. 

What an Assembler Really Does 

If you typed in the program using "E" you probably aren't too 
surprised to see these numbers reappear when you look in memory with 
"D". After all, you entered the numbers into memory, and there they are, 
just where you put them. 

But how did they get there if you used the "A" command? You typed 
in mnemonic instructions, and lo and behold, there are hex numbers 
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sitting in memory! What's happened here is what this book is all about: 
the "A" command assembled the mnemonic instructions into hex numbers. 
This is the function of an assembler; both of DEBUG's mini~assembler 
invoked with the "A" command, and of its large-scale relatives, the ASM 
and MASM assemblers. We'll have more to say about this in a moment. 
First let's look at our little program from another perspective. 

The "U" Command 
There's a more elegant and useful way to look at our program than 

by using "D" as we did above: the "U" command. We've assembled our 
program with "A", or typed in the pre-assembled hex numbers with "E". 
Now let's use the "U" command to unassemble it. "U" is the opposite of 
the "A" command. Where "A" takes us from symbolic mnemonic codes to 
the hex digits of machine language, "U" takes us from hex digits back to 
mnemonic codes. (Actually the usual word for "unassemble" is 
"disassemble." But, since the "D" command was already taken, IBM 
decided to use "unassemble." We'll use both words in this book, as the 
spirit moves us.) 

To "unassemble" your program, enter "U", followed by the address 
where you want to start disassembling, then a comma, and then the 
address where you want to stop disassembling, like this: 

-u100 , 106 - You enter this 

08Fl:0100 B201 
08Fl:0102 B402 
08Fl :0104 CD21 
08Fl :0106 CD20 

MOV 
MOV 
INT 
INT 

DL ,01 
AH ,02 
21 
20 

- The program prints 
out all this! 

There's the program in both hex codes and mnemonic instructions, all 
nicely arranged for you to admire! Thus the hex number B201 is the 
machine-language equivalent of the assembly-language statement "MOY 
DL,01" and so on for the other instructions. As before, the numbers on 
the left, such as 0SFl:0100, are the addresses of the locations occupied 
by the program. There's an address printed for each instruction, and 
since each of the instructions happens to occupy just two bytes, the 
addresses are all even numbered: 100, 102, 104 and 106. 

Machine Language and Assembly Language 
The hex numbers on the left in the "U" listing above are what is 
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called machine language. These numbers occupy specific memory 
locations, and the 8088 microprocessor looks in these locations, takes the 
numbers out of them, figures out what they mean, and executes them. 
These numbers are called "machine language" because it's the machine -
the microprocessor - that understands them and operates on them. As 
far as we humans go, such numbers are hard to understand and hard to 
remember. For a human to decipher a program written entirely in hex 
numbers requires the most masochistic form of mental discipline, while 
the microprocessor chip, no larger than a pea, handles it easily. It is 
perhaps better not to dwell on the philosophical implications of this. 

08Fl:0100 B201 MOV DL,01 
08Fl:0102 B402 MOV AH,02 
08Fl:0104 CD21 INT 21 
08Fl:0106 CD20 INT 20 -- -------------Machine Assembly 

language language 

..-Assembly-
- Disassembly .,.. 

Take heart , however. The mnemonic instructions in the column on 
the right in the listing, as shown above, are not comprehensible to the 
microprocessor, clever though it may be. They form what is properly 
called "assembly language," and while you may not understand these 
instructions now, you soon will even though you are merely a human 
being. 

It is the job of an assembler to translate assembly language, which is 
comprehensible to humans, into machine language, which is 
comprehensible to microprocessors. 

Assembler programs translate assembly language into 
machine language. 

Assembly-Language Instructions 

You've typed in the program, and run it, and disassembled it again, 
but of course you still don't really understand how it does what it does. 
To understand the program we must understand the individual 
instructions in it, and what they do. In this section we'll look at the 
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instructions one by one. But first we need to understand another 
fundamental concept: registers. So let's digress for a moment, and return 
to our program later. 

Registers 
A register is a place in the microprocessor where our program can 

put a byte, or sometimes two bytes, of data. A register is something like a 
memory location, except that it has various special properties which a 
memory location doesn't. One of these properties is that the 
microprocessor can do a simple kind of arithmetic on the contents of 
registers; whereas it can only put bytes into, and take them out of, 
memory locations. However we won't be concerned with this arithmetic 
capability in this chapter. For the moment, think of registers as places, 
like memory locations, where we can put eight-bit bytes of data. 

The registers in the 8088 are given two-letter names. There are a 
dozen or so of these registers, but we're going to put off looking at all of 
them at once until the next chapter. Our particular program concerns 
itself with only two of the registers: the DL register and the AH register. 

There are four instructions in the program, one on each of the four 
lines in the listing above. The first two deal with registers. 

The MOV Instruction 
The first instruction, "MOV DL,01", occupies memory locations 100 

and 101, and consists of the bytes B2 and O 1. 

08Fl:0100 B201 MOV DL ,01 

W +ake this number 
and MOVe it into 
the DL register 

This instruction tells the 8088, "take the number O 1 h, and move it 
(MOV for "move") into the DL register." This way of writing the 
instruction may seem somewhat backwards to you, moving things from 
right to left. It's a convention that probably ha,d its origin in the kind of 
statements used in higher level languages, like BASIC's 

LET A=2 

where the quantity on the right gets "assigned" or put into the variable 
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on the left. At any rate, after this instruction is executed, there will be a 
byte with the value 1 in the DL register. Where does the 8088 get the 0 1? 
It's actually part of the instruction: the second byte. The 8088 
microprocessor looks at the first part of the instruction, the B2, in 
memory, figures out that this means "move the following 8-bit constant 
into the DL register," and then gets the 8-bit constant from the very next 
memory location (0101h) and places it in the DL register. The operation 
of the MOV DL,0 1 instruction is shown in Figure 2-1. 

When we introduce each assembly-language instruction in this book 
we're generally going to start with a box which summarizes the ways the 

Memory 

DL register 

This hex number 
tells the 8088, "Toke 
the constant from the 
following memory location 
and put it in 
the DL register"----~ 

Here's the 
constant 01 moving 
from location 101 
to the DL register 

(A few microseconds later) 

DL register 

Here's the 
DL register with 
the constant in it 

Figure 2-1. Operation of the MOY DL, 01 instruction 

B2 
01 
B4 
02 
CD 
21 
CD 
20 

FC 
FD 
FE 
FF 
100 
101 
102 
103 The 
104 program 

105 
106 
107 
108 
109 
l0A 
l0B 
l0C 
l0D 
l0E 
l0F 

+ 
Memory 
addresses 
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instruction can be used; and the MOV instruction - your first assembly 
language instruction - is no exception. However, you should understand 
that at this point you don't need to understand everything that's in the 
box. For our program we're only interested in one use of the MOV 
instruction: the "immediate to register" byte MOV. As you've seen, this 
means taking a constant two-digit hex value which is part of the 
instruction (it "immediately" follows the instruction in memory, hence the 
name), and putting it in a register. The other uses of this instruction, 
involving MOVes to and from memory and between registers, will be 
covered later. Likewise, at a later time we'll also explain the meaning of 
the word "flags" used in the bottom line. 

Thus for the moment you can ignore most of the following box: 

MOV Instruction 
Moves byte or word from/to register/memory/immediate. 

Move immediate value to Register 

MOV DL ,01 ;byte 
MOV AX ,1234 ;word 

Move immediate value to Memory 

MOV MBYTE , 12 ;byte 
MOV MWORD , 1234 ;word 

Move Register to Register 

MOV DL ,BL ;byte 
MOV AX ,BX ;word 

Move Register to Memory 

MOV MBYTE , BL ; byte 
MOV MWORD , DX ; word 

Move Memory to Register 

MOV CH ,MBYTE2 ;byte 
MOV AX,MWORD4 ;word 

Flags affected: none 
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The second instruction in our program is also a MOY instruction: 

08Fl :0102 B402 MOV AH ,02 

This means, as you no doubt have figured out, "take the number 02, 
and MOVe it into the AH register." Because we're moving the constant 
into a different register, AH instead of DL, the hex code for the 
instruction is different: B4 instead of B2. And since it's the constant 02h 
that's being moved into a register, the second byte of the instruction is 02. 
Otherwise the operation of this instruction is just the same as the first 
one. 

But why are we putting these constants in these registers? What does 
that have to do with printing a happy face on the screen? Fear not, 
things will become clearer as we describe the next two instructions. 

The INT Instruction 
INT is a sort of ''.jump to subroutine" instruction. It stands for 

"INTerrupt," and there are various reasons why it isn't a real ''.jump to 
subroutine," but for the time being we can think of it that way. It's a little 
like a GOSUB in BASIC or a CALL in various other languages. It 
transfers control from our program to another routine somewhere else in 
memory. Then, when that routine is done, control is returned to the line 
following the INT in our program. 

So when the instruction 

08Fl:0104 CD21 INT 21 

is executed, the program jumps to a special part of DOS, a routine whose 
number is 21 h, and when this routine is finished, control returns to the 
next line of the program, the INT 20 at address 106. This is shown in 
Figure 2-2. 

(Remember, this is a simplified view of INT. Actually the INT 
instruction involves a transfer to a special address called an "interrupt 
vector," which in turn transfers control to the routine. However, the effect 
is much the same as we've shown. 

As with the MOY instruction, you can ignore, at least for the 
moment, a lot of the material in the following box. 
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INT Instruction 
Calls a routine pointed to by an interrupt vector. 

Control is transferred with an indirect call through any of 
the 256 interrupt vectors located from absolute address 
00000h to 00400h. The address of the routine, in 
segment:offset form, must be in the vector. 

Control is returned to the calling program from the routine 
with the IRET instruction. 

Flags affected: IF, TF 

The Display Output Function 
What does this special DOS routine number 21h do? That depends, 

as we'll see on the number in the AH register at the time we execute the 
INT 21. Routine 21 h is a sort of switchyard, which will route us to a 
number of different DOS functions, depending on the number in AH. In 
our case we want to display a character on the screen, so we put the 
number 2 in the AH register. DOS routine number 21 h will then transfer 
control to the "Display Output" function, whose purpose is to write a 
single character to the screen. 

This Display Output routine is one of the famous "DOS Functions" 
we've mentioned before. We'll be talking about these functions at length 
later. For the time being, the important things to know about them are 
that they are assembly-language routines built into the PC-DOS, so that 
they are always available in memory when you need them, and that they 
are all reached by executing an INT 21h instruction, with different 
values in the AH register. 

Your program must do three things to cause the "Display Output" 
function to actually display a character. First it must put the numeric 
value of the character to be displayed into the DL register. The numeric 
value for the happy face is 1. (It's like an ASCII value, except that for 
special characters like the happy face it's not really ASCII, it's a code 
IBM invented.) So the first instruction in our program puts 0lh into the 
DL register. 

The second thing the Display Output function needs is to have the 
number 2 put into the AH register, as we explained above. This is the 
number that tells the operating system that we want the Display Output 
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function, and not some other function (like Keyboard Input or Print 
String, which we'll talk about in the next chapter). 

The third thing our program has to do is execute the INT 21 
instruction itself, so that control will be transferred to the Operating 
System, which will then look in the AH register to figure out what we 
want to do, namely, display a character. 

As we do with assembly-language instructions, we're going to 
summarize each DOS function in a box. In the case of DOS functions, 

The CD21 instruction 
tells the 8088, "Get 
your next instruction 
from routine #21" 

When routine #21 is 
finished, it tells the 
8088 to get its next 
instruction from the 
location following the C 

~ 

--

-{ 
L-+ 
D21 

I -
Start / 

L,; 

L,; 

L,; 

,,, 
End 

/ 

I 

,,, 

,,, 

/ 

B2 ,, 
01 ,, 
B4 ,, 
02 ,, 
ctr· 

,,. 21 '• 

CD ,, 
20 ,,, 

/ 

,, 

Routine #21 
locoted somewhere 
in memory 

100 
101 
102 
103 
104 
105 
106 
107 

Figure 2-2. Operation of the INT 21 instruction 
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however, most of the contents of the box should be familiar to you (unlike 
instructions boxes, which, at this point, leave many unexplained details). · 

DISPLAY OUTPUT Function- Number 02h 
Enter with: 

Reg AH= 2 

Reg DL = Numeric value of character 

Execute: 

INT 21 

Return with: character displayed on screen 

Comments: @) (Break) causes exit from function 

The instructions that make up the Display Output routine are not in 
the same place in memory as our program. In fact, we actually don't 
know where they are, and we don't need to know. The hardware in the 
8088 will take care of transferring control from the CD2 l instruction in 
our program, to the beginning of the Operating System, and then 
getting back to our program when the Operating System has told the 
Display Output Routine to print the character from the DL register. 

Whew - what a lot of complexity in one little instruction. Perhaps 
Figure 2-3 will help make it clearer. 

The Program Terminate Interrupt 
The last instruction in the program is another INT instruction, this 

time to DOS routine number 20h. 

08Fl:0106 CD20 INT 20 

This routine is much simpler than DOS routine number 21 h, in that 
there 's only one thing it can do. Therefore, you don't have to put 
anything in any of the registers before you call it. The routine is called 
the "Program Terminate Interrupt." Its job is to ensure that, when a 
"user program" (such as the one we've just written) has finished 
executing, it correctly transfers control back to DOS or DEBUG, 
whichever is being used to run the program (in this case DEBUG). 
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PROGRAM TERMINATE Interrupt 
Execute: 

INT 20 

Return with: control returned to supervisor program -
DOS or DEBUG 

Thus the INT 20 instruction is very similar to a STOP or END 
instruction in higher-level languages. When the INT 20 instruction has 
done its work, control goes back to DEBUG and you get the "Program 
terminated normally" message, and the DEBUG prompt. 

Variations on a Theme 

Now that we have our program up and running, let's try changing it 

Operating Some other 
system function 

I I The value in - - - the AH register 

J 
,, 

Our I; determines which function ,,, ,,, will be executed program ,, I; 

I .- ,,, - I; The value in 
,, I; the DL register ,,, V I_,, determines which 

B2 
,, I; 

character will ,,, 
01 be displayed 

L,, 

B4 Display output 
Control returns to ,,, our program when 

02 

]-
function the function is finished 

I 

CD I/ ,; 

; ,,-

21 
,, -~-cg> ;1__....--

CD :7 - ,, 

20 
,, 
,, '-- ~ ,, J Video 

screen 

Figure 2-3. The operating system and functions 
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a little here and there to see what happens. This should give you more 
understanding of how the program works. 

Printing Different Characters 

What modifications to this program do you think we would need to 
make it display some other character, say the letter "X", instead of the 
happy face? That's right: all we need to do is change the first line, so that 
instead of MOVing a 1 (the happy face code) into the DL register, we 
move a 58h, which is the ASCII code for "X". 

Assuming that your program is still in memory (if it's not you can 
type it in again with "A" or "E"), use "U" to look at it again: 

-u100 107 
08Fl :0100 B201 
08Fl:0102 B402 
08Fl:0104 CD21 
08Fl :0106 CD20 

MOV 
MOV 
INT 
INT 

DL ,01 
AH ,02 
21 
20 

All we need to do is change one byte in this program to make it print 
an "X". That's the "O l" at location 101. We could do this using "A", and 
simply assemble a new instruction, 

mov dl , 58 

right over the top of the old one at location 101. But since we only need 
to change one byte, let's use the "E" command instead. 

We want to change the byte at location 101 from 01 to 58h, so we 
enter "E" followed by that address: 

-e101 
08Fl:0101 

<-- Enter "e" and the address 
01. 58 <-- Type "58" 

j Lss g here 

Old value 

Since we only want to put one byte into memory, we press g immediately 
following the byte. 

So we've changed the O 1 to a 58h. If we list the program again with 
"U" we'll see the change incorporated in it: 

-u100, 107 
08Fl:0100 B258 
08Fl:0102 B402 
08Fl:0104 CD21 
08Fl:0106 CD20 

MOV 
MOV 
INT 
INT 

DL , 58 
AH ,02 
21 
20 
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-g 
X 

Now if we run it again with "G" we should see an "X" displayed on 
the screen: 

Program terminated normally 

-e101 

Not bad! It worked again. By looking up the ASCII values of various 
characters, you can change the program to print whichever one you want. 

The Endless Loop 
Before we go on to a more thorough discussion of assembly language, 

let's do one more variation on this program. Suppose instead of printing 
one character, we wanted to print a whole series of the same character. 
How would we modify the program to do that? It's not hard: we simply 
put a ''jump" instruction at the end of the program, which takes us back 
to the beginning so that our "Display Output" function will be repeated 
over and over. 

Let's also go back to the happy face - it's more upbeat than the "X". 
Put the number 01 back into location 101 

08Fl:0101 58.1 

-a106 

to restore the happy face. 
Now we'll install a new instruction in our program. This instruction 

goes at the end of the program, overlaying the INT 20 instruction at 
location 106. It's a ''jump" to the beginning of the program, at location 
100, so the program becomes an endless loop. 

If you're using DOS version 2, enter "al06", and when the address is 
printed, enter ''jmp 100". Then on the next line hit g again to go back to 
DEBUG. 

08Fl:0106 jmp 100 
08Fl:0108 

<-- Enter imp l 00 

<--Press g 

If you're running DOS version 1, you'll have to type in the hex code 
for this instruction using "E". The hex code is EBF8h. 
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-e106 
04B5:0106 

Old values 

I \ 
CD.EB 20.F8 

\ I 
New values 

Now "unassemble" the program to make sure it looks right: 

-u100 , 106 
08Fl :0100 B201 
08Fl :0102 B402 
08Fl: 0104 CD21 
08Fl :0106 EBF8 

MOV 
MOV 
INT 
JMP 

DL,01 
AH,02 
21 
0100 

The ]MP Instruction 

The box containing the summary of the JMP instruction is largely for 
later reference. You can ignore most of it at this point. 

JMP Instruction 

Jumps to new memory location. 

Within-segment short jump: to address within -128 to + 127 
bytes 

JMP NEAR._LABEL 

Within-segment long jump: to address in same segment 

JMP NEAR._LABEL 

Intersegment jump: to address in a different segment 

JMP FAR._LABEL 

The last two types can also be "indirect jumps," that is, 
jumps to the memory address contained in a memory 
address , a register, or a memory address modified by a 
register. 

JMP WOR._VAR 
JMP AX 
JMP ADDR_PTR [BX] 
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Let's look at the JMP instruction a little more closely, to see how "JMP 
100" gets assembled into "EBF8." You don't need to remember the details 
of this process, but it will give you some idea of what DEBUG's "A" 
command (or the assembler) has to figure out to arrive at the correct 
machine language equivalent of a particular assembly-language 
instruction. 

The first two hex digits that make up the instruction are EB, which is 
the code for a "short" jump. (We'll talk about the difference between long 
and short jumps later.) What does the F8 mean? You might expect to see 
the address 100 that we're jumping to, but you don't. This is because the 
jump is a relative jump. Instead of using the address of the place we're 
going to jump to, JMP uses the distance to the place we're going to jump. 

Even after you know this, the F8 still doesn't make much sense. There 
are two reasons for this. The first is that since the jump is backwards, the 
number of bytes that need to be jumped is negative. If we were going to 
jump forward eight bytes, the instruction would simply be EB08. But 
since we're going to jump backward eight bytes, we form a negative 
number by subtracting 8 from 00. If you had FF and added 1 to it, you'd 
get 00. So if you have 00 and you subtract 1 from it, you get FF. Subtract 
1 again and you get FE. Count down by 1, eight times, and you get FD, 
FC, FB, FA, F9, F8. 

But what have we jumped 8 bytes from? This brings us to the second 
reason the F8 is confusing: it doesn't tell you to jump 8 bytes from the 
jump instruction itself, it tells you to jump 8 bytes from the byte following 
the jump instruction. That would be from location 108 to location 100, 
which is in fact 8 bytes. Expressed arithmetically, this looks like 

100h - 108h = F8h 

Whew. What a lot of complexity in just one little instruction. 
Fortunately the "A" command (and, as we'll see later, the assembler 
programs ASM or MASM) do all these tedious calculations for us, so that 
we don't even have to think about the hex representations of instructions 
unless something goes wrong. 

DOS version 1 users are at a disadvantage here, since they have no 
easy way to start with the assembly language mnemonics and end up with 
the machine language numbers, at least not using DEBUG. Thus if 
version 1 users were trying to figure out the hex equivalent of the JMP 
100 instruction so they could type them in, they'd either need to go 
through the calculation just described, or else try to figure it out by trial 
and error, guessing a number and then using "U" to see if it was right. 

Actually version 1 users don't need to do either of these things for the 
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-g 

examples in this book, since we supply all the hex equivalents, so that "E" 
can be used immediately. You can find these hex codes by looking at the 
"U" listing included with each program. 

In and Out of the Endless Loop 

Have you waited all this time to try the new program? Good - that 
shows admirable restraint. Try it now. Enter the "G" command: 

Wow - look how fast the screen fills up with happy faces! All right, 
now stop the program. How do you do that? Just hit lliiJ (Break) (the 
lliiJ and ( Break ) keys together) as you would for any other program, 
and presto, we're back in DEBUG. This is possible because the Display 
Output function is programmed to look for @"D ( Break ) at the same 
time it's printing characters on the screen. We can thus tell it, "Stop! 
Don't print that character - I want to get back to DEBUG!" 

When you escape from your program back to DEBUG you'll get a 
display like this: 

AX=0201 BX=0000 CX=0000 DX=0001 SP=FFEE BP=0000 SI=0000 D1=0000 
DS=08Fl ES=08Fl SS=08Fl CS=08Fl IP=0106 NV UP DI PL NZ NA PO NC 
08Fl:0106 EBF8 JMP 0100 

Don't worry about what all this means at this point - we'll look into it 
later. Do note, however, that the last line of the display contains one of 
the instructions from your program, in this case the JMP 0100. This 
shows what instruction was being executed when you pressed the lliiJ 
( Break ) keys. 

Perhaps this is a good time to end the chapter, with the screen 
(mostly) full of happy faces. 

Summary 

In this chapter you've learned a good bit about DEBUG, written your 
first assembly-language program and some variations on it, and explored 
some of the ways to see what your computer is doing on a very 
fundamental level. 

We hope that this chapter has given you an idea (although at this 
point it will be a somewhat impressionistic idea) of what assembly 
language is all about, and whetted your appetite for a more detailed 
understanding. 
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~ 
What Is Assembly 
Language? 

Concepts 
Machine language versus assembly language 
Registers 
Saving programs to disk from DEBUG, and loading them back 
Input/Output ports 
logic instructions 
Toggling a bit to beep the speaker 

Debug Commands 
R = Registers 
N = Name 
W = Write 
Q = Quit 
L = load 

8088 Instructions 
INC = Increment 
LOOP = loop 
IN = Input 
OUT = Output 
AND = logical "AND" 
XOR = logical "Exclusive OR" 

Applications 
SMASCII program - Displays entire character set 
SOUND program - Beeps the speaker 

J n the last chapter we led you straight into the heart of the 8088 
microprocessor. We showed you how to examine memory, write 
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programs, assemble them, disassemble them, and execute them. We did 
this to show you that programming in assembly language doesn't have to 
be all that difficult. However, there were some details that we left out 
along the way. 

In the first part of this chapter we're going to fill in some of these 
details. Then we'll go on to write some more programs; to consolidate 
what we've learned. 

Filling in Details 
An assembly-language programmer is primarily concerned with three 

things: instructions, memory, and registers. In the process of writing our 
first assembly-language programs in the last chapter we talked a little 
about each of these topics. In the following sections we'll take a somewhat 
more leisurely look at each of the three, and try to deepen your 
understanding of what assembly language is all about. 

Machine Language, Assembly Language, and Physical 
Reality 

Although we've talked so far about assembly-language instructions, 
and the data they operate on, in terms of hexadecimal numbers, the fact 
is that if we look at things in a more fundamental way we should be 
talking about binary numbers, not hexadecimal numbers. Let's look at an 
example of what we mean. 

Remember the happy face program you wrote in the last chapter? It 
looked like this when you disassembled it with "U": 

-u100 , 107 
08Fl :0100 B201 
08Fl :0102 B402 
08Fl :0104 CD21 
08Fl :0106 CD20 

MOV 
MOV 
INT 
INT 

DL ,01 
AH ,02 
21 
20 

As you learned, the symbolic statements on the right of this listing 
constitute a form of assembly language. The mini-assembler in DEBUG 
translates these statements into the hex numbers in the columns on the 
left. These hex numbers are called machine language. 

Although we glossed over this point in the last chapter, it is not 
actually the hex digits themselves which are read and understood by the 
8088 microprocessor, but the binary numbers or bit-patterns they 
represent. Hex digits are merely a way to make binary digits easier for us 
humans to read. 
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For instance, the instruction MOV DL,O 1 in the program above is 
translated into the hex number B201. The B2 part of this instruction 
goes in location 100. However, B2 is not stored in the computer's memory 
as a hex number, but as a pattern of bits: 

B 2 0100Will~~ 
In fact, the entire program is stored in memory as a pattern of bits: 

0100 
0101 
0102 
0103 
0104 
0105 
0106 
0107 

I 
1 
0 
1 
0 
1 
0 
1 
0 
I 

I 

0 1 1 I 0 
0 0 o:o 
0 1 1 : 0 
0 0 o:o 
1 0 0 I 1 
0 1 o:o 
1 0 QI 1 

I 

0 1 o:o 
t 

I 

Physical 
reality 
(bit patterns) 

0 1 0 
0 0 1 

B2} 01 MOY AH,1 

1 0 0 
0 1 0 

B4} 
02 MOY DL,2 

1 0 1 
0 0 1 

CD} INT 21 
21 

1 0 1 
0 0 0 

CD} INT 20 

t0 f 
Machine Assembly 
~nguage ~nguage 
(hex digits) (symbolic instructions) 

Notice how each of the instructions in our program occupies a 
specific place in the computer's memory. In this program all the 
instructions are two bytes long, but other instructions can vary in length 
from one byte to five bytes, and sometimes even more. 

The earliest microcomputers (such as the venerable IMSAI-8080) had 
lights on the front panel which could be set to show the bit patterns 
inside the computer. It was possible to "step through" a program and 
look at the binary representations of all the program instructions, much 
as we've shown you in the diagram above. This was occasionally helpful 
in debugging some complex internal process (especially for hardware
oriented users). 

If we had such an old-fashioned computer with front panel switches, 
we could actually look at, say, memory location O 100 and see the lights lit 
where the bits were turned on, as shown in Figure 3-1. 

Since the PC is so modern, it doesn't have these lights, but DEBUG 
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shows us the contents of memory just as well - in fact better, because 
DEBUG is far more convenient to use than a bunch of front panel 
switches, and also because it's far easier to read four hex digits than a 
line of sixteen lights. However, using DEBUG does deprive us of a certain 
insight into what happens deep inside the computer: it's easy to forget 
that the hex digits which DEBUG shows us are not really what's in the 
computer's memory and registers: these hex digits merely stand for a 
binary pattern of bits. (Later in this chapter we'll see how important actual 
bit patterns can be: we'll write a program which must manipulate bits in 
order to make sounds on the speaker.) 

Bit Numbering 
What is memory? From an assembly-language programmer's 

viewpoint, memory is a place in your computer where you can store 
something called "bytes." A byte is simply eight bits arranged in a row. A 
bit is the smallest possible unit of information: either yes or no, on or off, 
1 or 0. Thus each memory location consists of eight places where bits can 
be stored, like this: 

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0 

r i L i i i L I 
z D 

ONE BYTE 

The way the bits are numbered - whether from right to left or left to 
right - is largely arbitrary. The figure above shows how IBM likes to do 
it, as do most computer manufacturers, but some manufacturers start 
with O (or sometimes 1) on the left instead of the right. Each bit can have 
a value of either O or 1, so if we placed the byte represented by, say, the 

Old fashioned microcomputer 

O O O O O O O X O O O O O O O O 
X O X X O O X O Contents 

~~~~~~~~~~~~~00~ 

Address 
~On 

Off 

Figure 3-1. Old-fashioned microcomputer with front-panel lights 

54 Assembly Language Primer for the IBM PC & XT 



hex number C3 (which is 11000011 in binary, since C = 1100 and 
3 = 0011) into a memory location, the location would look like this: 

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit l bit 0 

(1 (1 (o (o Co (o (1 (1 0 
In a computer's memory there are many thousands of locations like 

this, into which 8-bit numbers can be placed. Here's how a small section 
of memory looks, filled in with binary numbers: 

I 

00000000 

00000000 

11000011 

00000000 

00000000 
I 

~ 

~ 

,,; 

,,; 

,~ 

0100 

0101 

0102 

0103 

0104 

There's our friend, C3, in location 102. The other locations happen to 
contain zeros. 

As we discussed in the last chapter, we are, for the next few chapters, 
confining ourselves to a single segment of memory, or 65536 bytes. 
Although this is only a fraction of the memory the IBM PC can hold, it is 
nevertheless a large number of bytes. When we show figures, such as the 
one above, which depict a half-dozen bytes of memory, it's important to 
remember that in reality the memory locations in our segment start at 
0000 and go all the way up to FFFFh or 65536d, as shown - somewhat 
fancifully - in Figure 3-2. 

Registers 

In the last chapter you were introduced to two registers: AH and DL. 
We used the AH register to hold a number that told the operating system 
what DOS function we wanted to perform when we executed an INT 21 
call to DOS, and we used the DL register to hold the numerical ASCII 
value of a particular character to be displayed. We showed these 8-bit 
registers as containing pairs of hex numbers, but of course what each 
really contains is eight bits: 
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(o I o I o I o I o I o I o 1 , 0 = 01h 
DL register 

(o I o I o I o I o I o I 1 I o O = 02h 
AH register 

As we mentioned, a register is a physical device built into the 
computer. It's something like an address in memory, but since it's part of 

0000 
f------i 

0001 
0002 

0102 
1-------1 0103\...-__ , 

0104 

Figure 3-2. One segment of memory 
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the microcomputer chip itself, rather than part of a memory chip located 
somewhere else on the computer, data can be moved from register to 
register very quickly. The 8088 instructions can also do a far wider 
variety of things to registers than they can to memory locations. For 
instance, arithmetic and logical operations can be performed on data in 
registers, addresses stored in registers can be used to point to locations 
in memory, and registers can be used to read and write data to the 
peripherals connected to the computer. 

Although so far we've shown you only two registers, there are actually 
eight 8-bit general-purpose registers. (There are some other more 
specialized registers as well, but we'll ignore them for the time being.) 
These eight registers are called: 

AH and AL 

BH and BL 

CH and CL 

DH and DL 

As you can see, we've arranged the eight registers in pairs. That's 
because they're arranged in pairs in the 8088 microprocessor. Why is 
this? 

Some data which we want to manipulate is 8 bits wide, as we saw in 
the programs in the last chapter. However, we often want to be able to 
operate on 16-bit-wide data. This data might be just numbers, or it 
might be addresses: as we've seen, a 16-bit number can specify any 
address in our current 64K data segment. 

Instead of having some 8-bit registers and other 16-bit registers, the 
designers of th.e 8088 decided to group pairs of 8-bit registers together to 
form 16-bit registers. 

In 8088 assembly-language format, the 16-bit register is 
differentiated from the two 8-bit registers by giving it the same first letter 
as the pair from which it was made, but ending it in the letter "X": 

8-bits 8-bits 16-bits 

~and~ = r AX 0 
~and ooJ = r BX 0 
~and~ = r ex 0 
~and@] = r DX IJ 
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A more detailed picture, showing the positions occupied by individual 
bits in the AX register, looks like this: 

16-bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
8-bi 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 

Ci 111oIoIo1011111oIo1111111, 1, 1, 0 
I Contents = C3 I Contents = 3F I 

AH register: 8 bits AL register: 8 bits 

Contents = C33F 
AX register: 16 bits 

The upper row of bit numbers shows how the bit positions are 
numbered in the 16-bit register, while the lower row shows the 
numbering for the two halves of the register used as two separate 8-bit 
registers. The "H" in the register name stands for "high," and the "L" 
stands for "low," since (for instance) the AH register forms the high part 
of the AX register, containing the most significant bits, and the AL 
register forms the low part, with the least significant bits. For example, 
the most significant digits of the 4-digit hex number e33F are e3, shown 
in the AH register in the figure above, and the least significant digits are 
3F, in the AL register. 

These four 16-bit registers, AX, BX, ex, and DX, are in many ways 
identical to one another. However, depending on the circumstance, they 
may have areas of specialization. The AX register has special circuitry 
that makes it more suitable for doing arithmetic and logical operations 
than the other registers. The BX register can be used to point to 
memory addresses in a way that other registers can't, and the ex register 
is often used for counting. As we learn more about assembly-language 
instructions we'll begin to see how these specialized features of the 
different registers are used. 

Manipulating Registers with DEBUG 
DEBUG has a command which enables us not only to look at the 

registers in the 8088 (really at the hex representations of their contents), 
but to change the contents as well. 

Load DEBUG as described in the last chapter, and when the prompt 
appears, type "R" (for "Registers"). You'll be rewarded with a very 
complicated looking display: 
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A>debug 
-r 
AX=0000 BX=0000 CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000 
DS=08Fl ES=08Fl SS=08Fl CS=08Fl IP=0100 NV UP DI PL NZ NA PO NC 
08Fl:0100 0000 ADD [BX+SI] ,AL DS :0000=CD 

This is the same kind of display you saw in the last chapter when you 
terminated the endless loop program with IT!D ( Break ). 

For the time being, you can ignore most of the display. Notice, 
however, the first four entries on the top row: 

AX=0000 BX=0000 CX=0000 DX=0000 

This tells you that the contents of all four major registers in your 8088 
are set to zero. The contents of the registers will change when a program 
executes instructions that put data into the registers, as your programs 
did in the last chapter with MOV DL,01 and MOV AH,02. For this 
reason, if you use the "R" command after running a program, you may 
find that some of the registers contain values other than zero. 

There is another way to change the contents of the registers: You can 
do it directly from DEBUG, using a variation of the "R" command. For 
instance, enter the command "R" followed by the letters "AX" (for the 
AX register). DEBUG will respond by printing out the letters "AX", 
followed by the current contents of AX, which in this case is 0000. It then 
prints a colon and sits there waiting for you to enter a number 
representing the new contents of AX. 

-rax 
AX 0000 

<-- DEBUG waits far you to enter a new value 

Suppose you now enter "1234". 

-rax 
AX 0000 
: 1234 <-- You enter 1234 

<-- Back to the DEBUG prompt 

This places the hex number 1234 into the AX register. This is the same 
as putting 12 in the AH register, and 34 in the AL register. With 
DEBUG, you can't access the two halves of the register separately - you 
must deal with them both together. To verify that what you put in AX is 
really there, type just plain "R" again: 
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-r 
AX=1234 BX=0000 CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 01=0000 
DS=08Fl ES=08Fl SS=08Fl CS=08Fl IP=0100 NV UP DI PL NZ NA PO NC 
08Fl:0100 0000 ADD [BX+SI],AL DS:0000=CD 

And there it is, 1234 in the AX register. 
Similarly, let's put FFFFh into the CX register: 

-rcx 
ex 0000 
: ffff 

<-- Enter this for "Register CX" 

<-- Current contents is 0000 
<-- Change it to FFFFh 

Checking again with "R", we get: 

-r 
AX=1234 BX=0000 
ES=08Fl SS=08Fl 
08Fl: 0100 0000 

CX=FFFF DX=0000 SP=FFEE BP=0000 SI=0000 01=0000 
CS=08Fl IP=0100 NV UP DI PL NZ NA PO NC 

ADD [BX+SI], AL OS: 0000=CD 

You can do this with any of the four major registers: AX, BX, CX, 
and DX; and with a variety of other registers as well, although we're 
going to ignore these other registers for the time being. 

This ability to examine and modify the contents of registers directly 
from DEBUG will become important when we learn how to follow the 
operation of your program while it's running, a topic we'll cover later 
when we talk about the "T" (for "Trace") command. 

ASCII Display Program 
Let's write another program. This one will display all the ASCII 

characters (and all the special non-ASCII IBM characters as well) on the 
screen. It will also introduce you to a new instruction. Once you've 
written the program, we'll show you how to save it on your disk, so that 
you can execute it directly from DOS without getting into DEBUG. 

From DEBUG, use the "A" command to type in the following little 
program. As you can see, we've added comments to each line. You can't 
type these in, since DEBUG doesn't accept comments, but when we 
explain the program, they'll help clarify its operation. 

A>debug 
-a 
08Fl:0100 mov dl,0 
08Fl:0102 mov ah,2 
08Fl:0104 int 21 

<-- Put first character in DL 
<-- Specify Display Output function 
<-- Call DOS to print character 
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08Fl:0106 inc dl 
08Fl:0108 jmp 102 
08Fl:010A 

<-- Change to next character 

<-- Go back to display next character 

<-- Press g to end assembly 

Note that the first time you use "A" after calling DEBUG, you don't 
need to specify "al00". DEBUG assumes you want to start at 100h unless 
you tell it otherwise. Use "U" to see that everything looks all right: 

-u100,108 
08Fl:0100 B200 
08Fl:0102 B402 
08Fl: 0104 CD21 
08Fl:0106 FEC2 
08Fl:0108 EBF8 

MOV 
MOV 
INT 
INC 
JMP 

DL,00 
AH,02 
21 
DL 
0102 

(If you're using DOS version 1, you'll have to use "E" to type in the 
hex numbers B2, 00, B4, 02, CD, 21, FE, C2, EB, F8, as we explained in 
the last chapter.) 

The INC Instruction 

As you can see, this program uses a new instruction which you 
haven't seen before: INC. The purpose of this instruction is to increment 
- that is, add one to - the contents of a register. 

INC Instruction 

Increments the contents of a register or memory address. 

To increment a register: 

INC BX 
INC AL 

To i~crement a memory address: 

INC WORD_VAR 
INC BYTE_VAR 
INC TABLE [BX] 

Flags affected: AF, OF, PF, SF, ZF 

Figure 3-3 shows how the INC DL instruction works. 
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Operation of the ASCII Program 

What does this INC instruction do in our program? As you can see, 
the first three instructions of the program are very similar to the 
program in the last chapter which printed a happy face on the screen. 
The only difference is in the first instruction : the constant loaded into the 
DL register to be printed is O instead of 1 ( 1 is the code for a happy 
face). So we can surmise that the first thing the program is going to do is 
print something: whatever the character is that corresponds to 0. 

The JMP instruction at the end of the program should also be a 
familiar sight. From the last program in the last chapter, we know that 
this JMP takes us back to the start of the program, turning the program 
into an endless loop. 

That leaves only the INC instruction unexplained. Its purpose is to 
increment - add one to - the DL register, every time we cycle through 
the program. Since the value in the DL register determines what 
character will be displayed when we call the Display Output function , we 
can see that a different character will be displayed each time. The first 
time through the loop this number will be 0, then 1, and so on up to 
FFh, which is 255d. This is as high a number as can be expressed in a 
single byte, so the next time through the loop, DL will be back at 0. Each 
of the numbers from O to FFh represents a different character, so the 
program will show them all to us on the screen, over and over again. 

DL register 

( A6 0 
After the INC DL 
instruction is executed, 
the DL register's 
contents have been 
increased by 1 

DL register 

r A? 0 

Figure 3-3. Operation of the INC DL instruction 
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Saving the Program to Disk 
Before you run the program, save it on your disk. This is a three-step 

process: first we tell DEBUG the name of the program we want to save, 
then we tell it how large the program is, and finally we tell it to actually 
write the program to the disk. 

To specify the name, we type the command "N" (for "Name"), 
followed immediately (no space) by the name of the file we want the 
program saved under. The filename itself can be anything we want, but 
the extension must be COM if we want to execute the program later 
directly from DOS. This is because a COM file has certain attributes that 
make it compatible with DEBUG. (We'll have more to say about this later, 
in chapter 8, on memory segmentation.) We'll call our program ASCII, 
so we enter: 

-nascii .com 

Next, to tell DEBUG how long a program is (that is, how many bytes 
we want to save), we use both the BX and the CX registers. The CX 
register holds the low-order, least significant part of this number, and the 
BX register holds the high-order part. Notice that we're now talking 
about 16-bit wide registers, which can hold numbers up to FFFFh, or 
65536d. A program this long is a big program. Since by using only the 
CX register we can save programs up to this length, the chances are we'll 
never have to put anything in the BX register. However, we must be sure 
it's set to zero. Then we put the actual number of bytes occupied by our 
program into the CX register. 

You need to be a little careful figuring out this number. If the 
program starts at 100 and the last byte used is 109 (as in the program 
above), then how many bytes must be saved? Not 9, but 1 0d, which is Ah. 
This is because we start counting at 100, not 101. So we enter: 

-rbx 
BX 0000 

<----- Enter this to see the BX register 

<----- It's already set to zero 

-rcx 
<----- Just press ~ here, since it's already zero 
<----- Enter this to see the CX register 

ex 0000 <----- It's zero too 

:a 

-w 

<----- Enter number of bytes in program 

Finally, to actually write the program, we enter "W" (which stands for 
guess what). 

<----- You type this 

Writing 000A bytes <----- DEBUG tells you this 
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DEBUG then tells you how many bytes it's writing, and that's it - the 
program is on the disk. (If you had wanted it on a different drive you 
could have entered, for instance, -nb:ascii.com. when you named it.) 

The "Q" Command 

Now you can execute the program directly from DOS. To do this you 
need to exit from DEBUG to the operating system. There's a DEBUG 
command for this: "Q" for "Quit." Enter it, and presto, you're back in 
PC-DOS. 

-q <-- Enter this to escape from DEBUG 

K> <-- You're back in DOS 

Now that you're back in DOS you can see if the program has in fact 
been saved on the disk. Do it in the usual way, with the DIR command. If 
it's not on the disk, you probably made a typing mistake somewhere in 
the "save" process. 

Executing the Program from DOS 

Executing COM programs from DOS is easy: you just type the name 
of the program. 

K>ascii 

Wooey, look at all those characters fill up the screen! The beeper, which 
is also a character (7h), sounds too. To stop the program, hit ~ 
( Break). 

Notice that you have now created a complete, stand-alone, run-it
anytime program. If someone wants to see the character set available on 
your IBM, all you have to do is power up the system, wait for the A> 
prompt, and enter the program name "ascii". If they want a copy of the 
program, you can copy it to another disk just as you would any other file 
or program. In other words, you've written a perfectly good assembly
language application program! It may not be quite as useful as a word 
processor or a spreadsheet program, but the concept is the same. 

Reloading the Program in DEBUG 
If you want to modify or examine the program again, there are two 

ways to get it back into DEBUG. The first way is to enter the program 
name at the same time you load DEBUG. The thing to remember here is 
that you must use the full filename, including the extension, as shown here: 
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1 Don't forget the extension 

A>debug ascii. com 

T 
COM file to be loaded with DEBUG 

You can also load DEBUG first, and then load the program. This is 
done by first filling in the program name with the "N" command, and 
then loading it with the "L" (for "load") command. "L" is the opposite of 
"W" --it causes the COM file to be loaded back from the disk into 
DEBUG. Here's how that looks: 

A>debug 
-nascn. com 
-1 

You'll hear the disk drive whirr, and if you use "U", you'll see that 
your program is back in memory again. 

-u100,108 
08Fl:0100 B200 
08Fl:0102 B402 
08Fl:0104 CD21 
08Fl:0106 FEC2 
08Fl:0108 EBFS 

MOV 
MOV 
INT 
INC 
JMP 

DL,00 
AH,02 
21 
DL 
0102 

Now if you want you can also run it directly from DEBUG by using 
the "G" command, just as you have done with the other programs we've 
written. The moral here is that as far as DEBUG is concerned, a program 
can either be typed in with "A" or "E", or it can be loaded in from the 
disk with "L": the result is the same. Try running the program: 

-g .,._ Enter "G" to run the ASCII program from DEBUG 

Again, the screen will fill up with the character set, over and over 
again. 

SMASCII - Making the ASCII Program Smarter 

It would be somewhat more elegant if our ASCII program only 
printed the character set once, and then returned to DOS (or DEBUG, if 
we ran it from there) without our having to interrupt it with the ~ 
( Break ) keys. Let's modify it to do that, and at the same time introduce 
another 8088 instruction: LOOP. 
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-a100 

From DEBUG, type in the following program (not the comments, of 
course): 

0905:0100 rnov cx,100 
0905:0103 rnov dl,0 
0905:0105 rnov ah,2 
0905:0107 int 21 
0905:0109 inc dl 
0905:010B loop 105 
0905:0100 int 20 
0905:010F 

<--Setup the count for the LOOP 
<-- Put the first character in DL 
<-- Specify Display Output 
<-- Call DOS to display character 
<-- Change to next character 
<-- Loop until CX is zero 
<-- Exit to DEBUG or DOS 

Here it is disassembled with "U": 

-u100,10d 
08Fl:0100 B90001 
08Fl:0103 B200 
08Fl:0105 B402 
08Fl:0107 CD21 
08Fl:0109 FEC2 
08Fl:010B E2F8 
08Fl:010D CD20 

MOV 
MOV 
MOV 
INT 
INC 
LOOP 
INT 

CX,0100 
DL,00 
AH,02 
21 
DL 
0105 
20 

This program is very much the same as the ASCII program shown 
earlier, except that it starts off with a MOV CX, 100 instruction, and 
finishes with LOOP 105 and INT 20. We've already learned that the 
INT 20 is a sort of "exit" instruction. What about MOV CX, 100 and 
LOOP 105? 

The LOOP Instruction 

LOOP is a powerful instruction that functions somewhat like a 
FOR ... NEXT loop in BASIC. The idea is this: You put a number, which 
is the number of times you want to do something, into the CX register. 
Then, every time you execute the LOOP instruction, it decrements (that is, 
subtracts 1 from) the contents of the CX register. LOOP then jumps back 
to the address written as part of the LOOP instruction, in this case, 105. 
More accurately, it jumps to this address unless the count in CX is zero. If 
CX contains zero, no jump takes place, and the program goes on to the 
instruction following the LOOP. In other words, when CX goes from 1 to 
0, LOOP stops looping. Figure 3-4 shows the operation of the LOOP 105 
instruction. 
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LOOP Instruction 
Jumps to start of loop until ex register is zero. 

T he nu mber of times the loop is to be executed must be 
placed in the ex register before LOOP is invoked : 

MOV CX,COUNT 
START: 

(instructions within loop) 

LOOP START 

Flags affected: none 

ex register 

I 54 L 
I 

The LOOP 105 instruction causes 
the program to jump up to 
location 105, and subtract 
one from the CX register, 
as long as the CX register 
is not zero 

100 

101 

102 

103 

104 

~105 

- 106 

107 

108 

109 

l0A 
10B 

CX register _ 1 • l0C 
I oL-}-------i-~1. 10D 

When the CX register becomes 
zero, the program goes on 
to the instruction following 
"LOOP 105" 

l0E 

I 

B9 

00 

01 
B2 

00 

B4 

02 

CD 

21 

FE 

C2 
1:-2 

F8 

CD 

20 

Figure 3-4. Operation of the LOOP 105 instruction 

:} MOVCX,100 

,, 

,, MOY DL,00 
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/ MOVAH,2 
,, 
,, > INT 21 
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/ INC DL 
,, 

,, LOOP 105 
,, 

,, INT 20 
,, 

,, 
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The effect is that all the instructions between the LOOP and the 
address pointed to by LOOP will be executed the number of times 
corresponding to the value originally placed in the CX register. In our 
case we want to print out all 256d possible characters, from Oto 255. 
The hex equivalent of 256d is 1 00h, so we put 1 00h in the CX register 
before we begin our loop. The program will then keep incrementing the 
number in the DL register from 0 to 255d, just as it did in the last 
program. However, when the count in CX reaches 0, the instruction 
following the LOOP will be executed, and control will pass to the INT 20 
instruction, which will terminate the program. 

Before you try out the program, save it to your disk. You can go 
ahead and execute it first with "G" if you want, but saving a newly written 
program to the disk before you run it is a good habit. That way if there's 
a bug in the program - or a design defect - that causes DEBUG and/or 
the entire operating system to crash, you won't lose the program. 

-nsmascn . com <-- Set the program name 

-rbx 
BX 0000 

-rcx <-- Set the length to Fh 

ex 0000 
:f 
-w <-- Write it to the disk 

Writing 000F bytes 

-q 

Now you can execute the program from DEBUG with "G", or you can 
get out of DEBUG and execute the program directly from DOS: 

A>smascii 

If you wrote it right, it'll put the entire IBM character set on the 
screen, once; then return you to the DOS prompt. This is a nice 
refinement over ASCII, which went on and on (until you hit~ 
( Break )). 

Some Sound Advice 
Before we wrap up this chapter, we're going to introduce you to one 

more feature of your PC: its ability to produce sound. You have no doubt 
seen the little speaker grill in the front of your machine, and heard it go 
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"beep" on start-up, and when, for instance, you type in too many 
characters for the keyboard buffer to hold. You may also have used the 
built-in BEEP, SOUND, and PLAY statements in BASIC. In this section 
we're going to show you how to control this sound capability with 
assembly language. 

Assembly language gives you far better control over the sound 
function than do higher level languages. We'll explore some of the really 
clever things you can do with sound in chapter 7. For now, we'll simply 
introduce you to the fundamentals of the sound mechanism. 

To produce sound on the speaker you need to be familiar with some 
powerful assembly-language concepts. The first of these new concepts is 
communicating with the outside world using IN and OUT instructions. 
These instructions are the only way an assembly language program can 
communicate with those peripheral devices for which there are no DOS 
functions. In fact, the DOS functions themselves use IN and OUT to 
communicate with all the peripherals, including the screen and keyboard. 

The other new concept we'll be exploring in this section is the use of 
the 8088 logic instructions. These instructions are common ones in 
assembly-language programs, and permit you to do logical manipulations 
on the bits in certain registers. 

We'll show you our sound-producing program, and then explain how 
it makes use of these ideas. 

The SOUND Program 
Use the "A" command in DEBUG to type in the following program 

(or use "E" to type in the hex values shown below). 

A>debug 
-a100 
08Fl:0100 in al,61 
08Fl:0102 and al , fc 
08Fl:0104 xor al ,2 
08Fl:0106 out 61,al 
08Fl:0108 mov cx,140 
08Fl:010B loop 10b 
08Fl:010D jmp 104 
08Fl:010F 

Make sure it's correct with "U": 

-u100,10e 
0905:0100 E461 
0905:0102 24FC 
0905:0104 3402 

IN 
AND 
XOR 

AL , 61 
AL,FC 
AL,02 
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0905:0106 E661 
0905:0108 B94001 
0905:010B E2FE 
0905:010D EBF5 

OUT 
MOV 
LOOP 
JMP 

61,AL 
CX,0140 
010B 
0104 

Before you run the program, save it to disk (you'll be sorry if you 
omit this step - don't say we didn't warn you): 

-nsound.com 
-rbx 
BX 0000 

-rcx 
ex 0000 
:f 
-w 
Writing 000F bytes 

-g 

Now run it: 

Well, what do you know? A nice tone sounds. The only trouble is, you 
can't turn it off! Now that's a real inconvenience. Even the 00 @] 
(Qill key combination - resetting the system - doesn't have any effect. 

You have to actually turn the whole computer off and then on again 
to get rid of the sound and recapture control of the computer. At least, 
this is true if you execute the program from DEBUG. If you execute it 
directly from DOS, you can interrupt it with 00@] (Qill; but, when 
you execute it from DOS, the tone has an unpleasant burbling sound to 
it. In chapter 7 we'll learn why this is tr~e, and in chapter 4 we'll learn 
how to guarantee that we can break into the program. But for now, let's 
content ourselves with trying to understand what our program does. 

Fiddling with the Outside World 
When we access most of the peripherals on the PC we can use DOS 

functions to help us out. You've already seen how this works with the 
Display Output function, which puts a character on the screen. When we 
use a DOS function we don't actually control the peripheral with 
instructions from our program: we let the DOS routine do that for us. 
This saves us a great deal of trouble and is generally just what we want. 

When we access the speaker, on the other hand, we actually use 
instructions in our program to cause something to happen to a physical 
device. We can't use a DOS function, because there is no DOS function 
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for the speaker (the creators of PC-DOS must not have thought it was 
important). This gives us the opportunity to explore just how powerful 
assembly language can be, when it communicates directly with devices in 
the outside world. 

To make sounds, our program actually turns on and off an electronic 
"gate" (which is a kind of switch). Each time we turn the gate on and 
then off again, we create a pulse: a brief period when current flows in a 
circuit. (See the illustration below.) These pulses are amplified and sent 
to the speaker, where they make a sound. This gate is turned on and off 
with the OUT instruction in the program above, as we'll explain soon. 

One 
pulse 
i..-.1 

Gate 

Gate 
turned off 

turned on 

Waveform sent 
to speaker 

The faster we send the pulses, the higher the pitch of the sound. We 
can control how fast we send the pulses by putting a delay into our 
program. We turn the gate on, delay, turn the gate off, delay, and so on. 
The LOOP instruction in the program above is used to cause the delay, 
as we'll see later. 

The OUT Instruction 
The instruction which turns the gate on and off is the OUT 61,AL in 

location 106 of our program. To understand what this instruction is 
doing you need to know about "Input/Output ports." 

Ports are somewhat like registers, in that you send 8-bit or 16-bit data 
to them (from the AL or AX register). You can also read their contents 
back into the AL or AX register. However, the big difference between 
ports and registers is that ports are connected to physical devices in the outside 
world. (See Figure 3-5.) 

So when you change something in a port, you are sending a message 
to some peripheral device, such as the video screen, disk drive, or in our 
case, the speaker. There can be, theoretically, up to 64K ports in the IBM 
PC. In reality only a small fraction of these are used, since there are 
usually less than a dozen peripherals connected to the PC. 

What Is Assembly Language? 71 



OUT Instruction 
Sends byte or word to input/output port. 

To output a byte to port number PORTNO 

OUT PORTNO ,AL 

To output a word to port number PORTNO 

OUT PORTNO ,AX 

The port number can also be placed in the DX register, prior 
to executing the OUT 

MOV DX,PORTNO 
OUT DX,AL 

Flags affected: none 

The OUT instruction is something like MOV, except that it doesn't 
MOVe a byte into a register, it MOVes it (copies it actually) from a register 
to a port. The register the byte (or word) is to be moved from (it must be 
either AL or AX), and the number of the port to be moved to, are 
specified in the instruction. Thus, 

OUT 61,AL 

causes the contents of the AL register to be placed in port number 61 . 
Figure 3-6 shows the operation of the OUT 61,AL instruction. 

AL or AX 
register 

8-bit or 16-bit 
1/0 port 

Figure 3-5. Input/output ports 

Peripheral device 
(gates, oscillators, 
keyboard, display, etc.) 
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Getting Down to Bits 

In the case of beeping the speaker we're really only concerned with 
two of the bits in the byte we send to port number 61 h. These are 
number 1 and number O (which as you recall from the bit numbering 
diagrams earlier in this chapter are the two bits on the right): 

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0 r X r X ( X ( X r X ( X n10 ( 0 0 
p O R T N U M B E R 6 l h t ie want to turn 

this bit off 

We want to toggle 
this bit on and off 

Bit O is connected to an oscillator which we want to turn off and leave 
off, so we want to set this bit to zero. (The oscillator is used in another 
method of sound generation which we'll learn about in chapter 7. For the 
time being we just want to deactivate it.) Bit 1 is connected to the gate 
which generates the pulses to be sent to the speaker, as we discussed. The 
other bits in this port (those marked "X" in the illustration above) do 
various other things, not related to the speaker (such as turning the 
cassette motor on and off), and for this reason must not be changed. Our 
goal is then to set bit O to 0, and turn bit 1 on and off just fast enough to 
make a nice tone in the speaker, but not change the other bits. How do 
we do that? We're going to need some more 8088 instructions. 

The IN Instruction 

In order to change bits O and 1 in port 61 h without changing the 
others, we need to find out how all the bits are initially set: whether to O or 
to 1. Once we know how they're set, we can write the unchanged values 
of the ones we don't want to change back into the port, and at the same 
time write the new values of the ones we do want to change. 

Figure 3-6. Operation of the OUT 61,AL instruction 
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IN Instruction 
Receives byte or word from input/output port. 

To input a byte from port number PORTNO 

IN AL ,PORTNO 

To input a word from port number PORTNO 

IN AX ,PORTNO 

The port number can also be placed in the DX register, prior 
to executing the IN 

MOV DX ,PORTNO 
IN AL , DX 

Flags affected: none 

So how do we find out the initial values of the bits in the port? We 
use the IN instruction, which is the opposite of OUT. IN reads the byte 
from a port into a register. The register and the port number are specified 
in the instruction. Thus, 

IN AL, 61 

takes the byte in port 61 and reads it into the AL register. Figure 3-7 
shows the operation of the IN AL,61 instruction. 

AL register 

5 4 3 2 
~ 

Other 
peripherals 

Speaker 
tone 
generator 

-?
Speaker toggle 

Figure 3-7. Operation of the IN AL,61 instruction 
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The AND Instruction 
Once we've read the contents of port 61 into AL, we want to change 

bits 0 and 1 so we can send them back out to the port. This is a two-step 
process. First we get rid of the old value of these bits using an AND 
instruction, then we use a special instruction called XOR to "toggle" the 
bit connected to the gate which drives the speaker. 

First we'll set the two unwanted bits to zero with an AND instruction. 

AND Instruction 
Performs logical "AND" on two operands. Result 
(conjunction) is stored in leftmost operand. 

Register with register 

AND AL ,BL 
AND BX ,CX 

Immediate with register or memory 

AND 01,BYTE 
AND MEM_WORD,WORD 

Register with memory and vice versa 

AND MEM_BYTE,DBYTE 
AND DBYTE,MEM_BYTE 

Flags affected: CF, OF, PF, SF, ZF 

Flags undefined: AF 

As you may recall from BASIC or some other higher-level language, 
ANDing two bytes together has the effect of turning off the bits in the 
result unless both of the corresponding bits in the two bytes are set to 1. 
If only one, or neither one, of the corresponding bits is set to 1, the 
resulting bit is set to 0. 

We can summarize this in the following table: 

0 ANDO 0 

0 AND 1 0 

1 ANDO 0 

1 AND 1 1 
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As an example we'll AND two bytes together: 

0 1 0 0 1 1 1 1 
1 1 1 1 0 0 0 1 

0 1 0 0 0 0 0 1 

<--This 

<--ANDed with this 

<--Gives this 

If you're not familiar with the use of this operation you might want 
to work out a few more examples before going on. (Notice that nothing is 
carried to the adjacent column in logical operations: each column is a 
separate stand-alone calculation.) 

AND can be used to "get rid of' (that is, set to zero) the bits we don't 
want in a byte, while at the same time keeping the bits we do want. This 
is often called "masking off' the unwanted bits. In our program we want 
to mask off the two least significant bits, 0 and 1, while keeping all the 
others. So we AND the byte in the AL register with the hex number FC, 
which is 11111100 in binary. 

Suppose the number we read from the port is 4Dh, which is 
01001101 binary. We mask off the two lower bits by ANDing on the FCh, 
which gives 70h, as shown in the figure below: 

0 1 0 0 1 1 0 1 
1 1 1 1 1 1 0 0 

01001100 

AL register 

4D 

(Before AND AL,FC 
is executed) 

AL register 

4C 
(After AND AL,FC 
is executed) 

<-- Number read from port 

<-- ANDed with this 

<--Gives this 

11111100 
ANDed with 
01001101 
gives 

----o 1 0 0 11 0 0 

Figure 3-8. Operation of the AND AL,FC instruction 
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The operation of the AND AL,FC instruction is shown in Figure 3-8. 

The XOR Instruction 

Now that we've gotten rid of bits 1 and 0, we need a way to turn bit 1 
on and off, over and over again, to generate our pulse train. What works 
nicely for this is a semi-magical instruction called XOR. 

XOR Instruction 
Performs logical Exclusive OR on two operands. Result 
(disjunction) is stored in leftmost operand. 

Register with register 

XOR AL ,BL 
XOR BX,CX 

Immediate with register or memory 

XOR DL.BYTE 
XOR MEM....WORD ,WORD 

Register with memory and vice versa 

XOR MEM....BYTE ,DBYTE 
XOR DBYTE ,MEM....BYTE 

Flags affected: CF, OF, PF, SF, ZF 

Flags undefined: AF 

We call the XOR instruction "semi-magical" because if something is 
on, XOR can turn it off, and if something is off, XOR can turn it on. 
How? XOR stands for "Exclusive OR," which means "either one or the 
other, but not both." In terms of how it operates on bits, XOR looks like 
this: 

0 XOR O 0 

0 XOR 1 1 

1 XOR O 1 

1 XOR 1 0 
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For example, 

11000011 
0 0 0 0 1 1 1 1 

11001100 

+-This 

+- XORed with this 

+-Gives this 

Notice how a 1 XORed with a 1 is 0, while a 0 XORed with a 1 is a I. 
If we repeatedly XOR a 1 with another bit, that bit will turn on, then off, 
then on, and so forth; as shown in the diagram below: 

0 XOR 1 = I 

1 XOR 1 = 0 

0 XOR 1 = I 

1 XOR 1 = 0 +- This toggles back and forth -----i This is the switch 

This toggles back and forth 

No such toggling action takes place when we XOR a 0 instead of a 1. 
In fact, XORing a Oto another bit leaves the other bit unchanged: 

This is the same h" l t as t 1s 

0XOR0 = 0 

1 XOR 0 = 1 .._.-, 
This leaves bit unchanged • 

In our particular case what we want to do is turn on and off bit 1 in 
the AL register, so we XOR AL with the hex number 2, which is 
00000010 binary. This leaves all the bits except bit 1 unchanged, while if 
bit I was a 0 it now becomes 1, and if it was a 1 it becomes 0. The 
operation of the XOR AL,2 instruction is shown in Figure 3-9. 

So in our program all we need to do is put this XOR instruction in a 
loop along with the OUT instruction, and then every tiine we go through 
the loop we'll change bit one in port 61 from I to 0 or from 0 to 1, thus 
"toggling" (switching) it repeatedly on and off. 
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The Time Delay 
The only thing left to explain about this program is the time delay in 

lines 108 and lOB. A delay is necessary in the loop that toggles bit 1 on 
and off, because the computer executes its instructions so very rapidly 
compared with the frequency of sound. The 8088 can whiz through our 
little program so fast, in fact, that the tone generated in the speaker 
would be far too high to be heard by human ears (or even dog ears). 

So we need to slow things down. We do this by setting up a LOOP 
instruction to cause a delay. This is done by putting the appropriate-sized 
count in the ex register, and then simply executing the LOOP 
instruction that many times. The LOOP is written to jump to itself until 
the count in ex goes to zero. 

0108 MOV CX, 140 
010B LOOP 010B 

<-- Sets count of 140h into loop counter 
<-- Jumps to itself 140h times 

By trial and error, we can determine that the length of time taken by 
the LOOP instruction, times 140h (320d), produces a delay just long 
enough to make a tone with a pitch in the audible range. 

When the LOOP instruction has finished jumping to itself, JMP 104 
is executed and control goes back up to toggle the bit again. The effect is 
bit-on, delay, bit-off, delay, and so on. 

AL register 

( 4C 0---~ 
(Before XOR AL,2 
is executed) 

AL register 

r 4E 0----
(After XOR AL,2 
is executed) 

01001100 
XORed with 
00000010 
gives 

---01001110 

Figure 3-9. Operation of the XOR AL,2 instruction 
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Here's an annotated version of the program to summarize how the 
various instructions work together: 

-u100,10e 
0905:0100 E461 
0905:0102 24FC 
0905:0104 3402 
0905:0106 E661 
0905:0108 B94001 
0905:010B E2FE 
0905:010D EBF5 

IN 
AND 
XOR 
OUT 
MOV 
LOOP 
JMP 

AL,61 
AL,FC 
AL,02 
61,AL 
CX,0140 
010B 
0104 

<-- Get old value from 1/0 port 
<-- Mask off lower two bits 

<-- Toggle bit l (on or off) 

<-- Send result to port 

<-- Set up delay of 140h cycles 

<-- Repeat this instruction 140h times 

<-- Go back to toggle again 

That's all there is to the program. It's a lot like someone standing next 
to a wall switch, flicking it on and off as fast as they can - except, of 
course, that the program is faster than the fastest human fingers, and the 
switch is connected to a speaker instead of a light. 

Changing the Pitch 
Want to change the pitch of the sound generated by our program? 

All you have to do is change the number you load into the CX register. 
This changes the delay, which changes how rapidly the gate is toggled, 
which changes the frequency of the sound. Smaller numbers will cause 
less delay, which will increase the frequency and generate a higher tone. 
Larger numbers will lower the tone. 

Let's raise the tone a bit by changing the 140h to 100h. 

0905:0108 B94001 MOV CX,0140 
i 
Change this from 40 to 00 to increase pitch 

Load the program from DEBUG (unless the program is still in 
memory, of course) and use "E" to change the 40 in location 109 to 0 
(this will change the 140h to 100h). 

A>debug sound.com 
-e109 
0905:0109 40 .0 

The resulting program is identical to the first one, except for the one 
changed byte: 
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-u100,10e 
0905:0100 E461 
0905:0102 24FC 
0905:0104 3402 
0905:0106 E661 
0905:0108 B90001 
0905:010B E2FE 
0905:010D EBF5 

IN 
AND 
XOR 
OUT 
MOV 
LOOP 
JMP 

AL,61 
AL,FC 
AL,02 
61,AL 
CX,0100 
010B 
0104 

<--- Shortened delay raises pitch 

-g 

Now run the program again. You should hear the difference in pitch. 

Of course, you have to restart your whole system after this 
experiment, so it's not a convenient program to experiment on very 
much. Later we'll show you how to transform it into a more useful 
program. 

Summary 

In this chapter we've talked some more about how assembly language 
uses the computer's memory and registers. You've learned how to 
examine and modify the 8088's main registers - AX, BX, CX, and DX 
- using DEBUG's "R" command; how to save a program on disk using 
the "N" and "W" commands, and how to get it back again using "N" and 
"L." You know how to make the speaker produce a tone. And finally, 
you've learned some more 8088 instructions: INC, LOOP, IN, OUT, 
AND, and XOR. 
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~ 
Inside DOS-The Disk 
Operating System 

Concepts 
The purpose of DOS 
The different parts of DOS 
The IP register 
Memory buffers 
Indirect addressing 
Using the BX register as a pointer 
Sending messages to the printer 
Sending control codes to the printer 

Debug Commands 
RIP To change to IP register 

8088 Instructions 
DB = Define byte to assemble strings (pseudo-op) 

DOS Function Calls 
Keyboard Input 
Print String 
Buffered Keyboard Input 
Printer Output 

Applications 
EMPHAP program - Turns on printer's "emphasized" print 
NORMALP program - Restores printer's normal print 

J n the IBM PC, as in most modern computers, there is an intimate 
connection between the assembly-language programs which run in the 
computer, and DOS - the Disk Operating System. In this chapter we're 



going to talk about DOS, what it does, and how it relates to assembly 
language. We'll also write some programs that will extend your 
understanding of this relationship and teach you more about assembly 
language. 

What Is a Disk Operating System? 
You're probably already aware of many of the user-level functions of 

the DOS on your PC. Whenever you see the "A>" prompt it is DOS that 
has printed it, and when you type in a command like DIR or COPY, it's 
DOS that carries out the command. Also, when you type a program 
name like ASM or BASICA, it's DOS that finds the program and loads it 
into memory, and is waiting there to resume control when your program 
is finished. 

So one of the primary purposes of DOS is to manage other 
programs, by keeping them on the disk in such a way that they can be 
called by name, loaded into memory, and executed; and by providing 
functions to permit you to list, copy, and erase these programs or data 
files. 

These "file management" operations are an essential part of DOS, 
but they are not the whole story. Beneath the file management part of 
DOS is another, more sophisticated level, which can only be reached 
through assembly language. What is this deeper level of DOS, and what 
does it do? 

The Historical View 
The earliest operating systems performed only the file management 

functions, and provided no further interaction or assistance to other 
programs using the system, once they were loaded. Thus, if you wanted 
to write an assembly language program to, say, put a character on the 
video screen, you had to figure out exactly how the video circuitry 
worked, and then go through a complex series of instructions to tell this 
circuitry where to put the character. Similarly, if you wanted to write a 
file to the disk, you had to understand the most minute details of the disk 
operation, such as where every byte was located on the disk, how fast the 
disk was spinning, and how long it took the stepping motor to reach 
different tracks. As you can imagine, this made programs very long and 
complex. Figure 4-1 shows schematically what this looked like. 

These early operating systems had another disadvantage, too. If you 
physically interchanged your video terminal, your disk drive, or some 
other device, for one of a different kind, then you had to rewrite all the 
programs that used these devices, since the instructions in your program 
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that worked for one kind of device would not work for another that was 
even slightly different. Worst of all, your programs would only run on 
other computers which were exactly the same as yours: same video 
terminal, same disk drives, same everything. It was impossible to 
transport a program from one brand of computer to another. All this was 
very inconvenient. 

DOS to the Rescue 

Then someone had a very clever idea. This idea depended on the fact 
that the routines to access the peripheral devices - the video terminal, 
the disk drives, and so on - were already in the disk operating system. They 
had to be there, because DOS needed to interact with these peripherals. 
The clever idea was this: Why not make these routines accessible to other 
programs? That way, if you wanted to, say, write a character to the video 
screen, you wouldn't have to know anything about the video circuitry. All 
you would need to know was the entry point of the video routine and how 

User's 
program 

Routines to 
control 
peripherals 

DOS 

Routines to 
control 
peripherals 

~#,~ww 
Keyboard 

Video 
screen 

Disk drives 

~ fo--f-c8 

Figure 4-1. Old-fashioned operating systems 
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to tell it what character to print. Then you could let the DOS routine 
worry about all the tedious hardware-dependent details. Figure 4-2 shows 
a modern operating system, which lets the user program make use of its 
input/output routines. 

Does this remind you of anything? Have you realized that you've 
already written programs that use routines in DOS? The happy face 
programs use the Display Output function call to print characters on the 
screen. This function call required only three instructions: 

MOV DL ,1 
MOV AH ,2 
INT 21 

<-- Put ASCII character in DL register 

<-- Put DOS function number in AH register 

<-- Interrupt #21 call to DOS 

Putting a character on the screen would have required dozens of 
assembly-language instructions if we had written the routine to do it 
ourselves, as we would have had to do with the old-fashioned kind of 
operating system. We would have needed to worry about such topics as 

User's 
program 

Routines to 
control 
peripherals 

DOS 

~~~~& 
Keyboard 

Video 
screen 

Disk drives 

~IE§-f§j 

Figure 4-2. Modern operating systems 
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what mode the display was in, what the horizontal retrace was doing, 
whether the character was a linefeed (if so, we'd need to move the cursor 
down a line), whether we were on the bottom line (if so, we might need 
to scroll the screen up), and so on. But by simply calling a routine in 
DOS, we have changed our task from an extremely complex one, 
requiring detailed understanding of the computer's hardware, to a 
comparatively simple one needing only a few facts about the operating 
system, and only three instructions. 

Using the Speaker - No Help from DOS 
Remember the routine we wrote in the last chapter to make a "beep" 

sound on the speaker? This program provides a small example of the 
difficulties involved in writing our own routines to access a peripheral. In 
this routine we had to figure out all sorts of details, such as how long a 
delay loop to make to produce a given pitch. The resulting program was 
seven instructions long. If there were a DOS function call to perform this 
function (which there isn't), it would require no detailed understanding 
of how the speaker works, and could get by with only two instructions: 

MOV AH,99 
INT 21 

<-- Hypothetical number of BEEP function 
<--Coll DOS 

Of course, beeping the speaker is one of the simplest 1/0 jobs we can 
perform. The advantages to be gained by using DOS routines are much 
greater for other peripherals, such as the keyboard and disk drive, as we'll 
see. 

Program Transportability 
Besides the convenience of being able to write shorter programs and 

not needing detailed knowledge of how to program peripherals, there is 
another big advantage to letting DOS do our input/output. Our program 
will work even if we replace some of these peripherals - like the video 
terminal or the disk drives - with completely different models from 
different manufacturers. 

In fact, our program will even work on an entirely different computer, 
provided it uses the MS-DOS operating system. Since MS-DOS is very 
similar to PC-DOS (as we noted in the Introduction), you can take your 
happy face program and run it on any of the so-called "IBM compatible" 
computers that use MS-DOS. The DOS function calls will have the same 
numbers, and be accessed in the same way, so your program will operate 
just as before. On a small program like "happy face" this is hardly an 
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earth-shaking issue, but if you have invested thousands of hours in a 
sophisticated accounting or word-processing program, it's nice to know 
that it can be used on a variety of different computers, with little 
additional programming investment. It's also nice to know that what you 
learn in this book is applicable to other computers besides the IBM. 

Something Has to Change 
Of course, something has to change when you try to run the same 

program on a computer with different peripherals, or on a different 
make of con,_puter. What changes are the input/output routines, buried 
somewhere in DOS, which actually communicate directly with the 
physical device. Thus, if you got a different kind of disk drive, or video 
terminal, or wanted to use the operating system on a different computer 
altogether, then you would need to change your operating system to work 
with this new device. Actually, only part of DOS needs to be changed 
when these routines are changed, the part called IBMBIOS. 

We're going to learn more about IBMBIOS and the other parts of 
DOS in a moment. First, however, let's explore another example of a DOS 
function call, so you can begin to see the variety of different things these 
calls can do for your programs. 

The KEYBOARD INPUT Function 

KEYBOARD INPUT Function - Number Olh 
Enter with: 

Reg AH= I 

Execute: 

INT 21 

Return with: keyboard character in Reg AL 

Comments: @D (Break) causes exit from function 

You might think it would be a comparatively simple task to read a 
character from the keyboard into your program. Actually, it is if you use 
the DOS function call we're about to describe. If you wanted to write the 
code to do it yourself, it would take ten pages of code! How do we know? 
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Because that's how much code IBM used in the ROM routine built into 
the PC, as you can see by looking at appendix A in the IBM Personal 
Computer Technical Reference manual. 

What does all this ROM code do? WeU, for example, it has to figure 
out if the cm or ( Shift) or ITffi keys are pressed, and what this means 
when combined with other keys. It has to know what to do if ITffi 
( Break ) or cm ITffi ~ are pressed. It has to store normal key 
entries in a buffer (an area of memory), so that if your program is busy 
doing something else while you are typing, no keystrokes will be lost. If 
this buffer gets full, the routine has to sound the beeper to let you know. 
And so on, and so on. Aren't you glad you don't have to figure all this 
out every time you want to read a character from the keyboard? 

We'll be talking more about these ROM routines in chapter 9. Until 
then, all you need to know about them is that there are routines built into 
RO M to help with input/output, and that DOS makes use of these 
routines to simplify assembly-language programming. 

Here's a short program that makes use of the Keyboard Input 
function. Get into DEBUG, and type the following: 

A>debug 
-a100 
08Fl :0100 mov ah ,1} 
08Fl :0102 int 21 
08Fl :0104 int 20 
08Fl :0106 

- Enter these instru ctio ns 

<----- Press ~ to leove " A " command 

This is an even shorter program than the happy face one! To make sure 
it's accurate, unassemble it with "U": 

-u100,105 
08Fl :0100 B401 
08Fl:0102 CD21 
08Fl :0104 CD20 

MOV 
INT 
INT 

AH ,01 
21 
20 

Now, to execute this program, you type "G". Uh, oh - nothing seems 
to be happening. The computer is just sitting there. Is it stuck? No 
problem. Just press any key, "z" for example. 

-g 
z 
Program terminated normally 

The computer comes back to life, and you're in DEBUG again. What 
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was all that about? Nothing mysterious. When you started the program, 
the first instruction put a 1 in the AH register to tell DOS that we wanted 
to execute the Keyboard Input function. Then INT 21 called DOS (as 
you know), which took us straight to the routine to read a character from 
the keyboard. The function waits until something is typed before it lets 
the program go on, so until we hit a key the program sits there, looping 
endlessly in the DOS routine. 

Once we strike a key, the function terminates, and the next 
instruction in our program is executed, which is the INT 20, which 
terminates the program and returns us to DEBUG. The ASCII value of 
the character is also returned in the AL register, although this short 
program does not make use of that fact. 

Potential Trouble 
There's one character which will cause things to act a little differently 

if you type it in this program: the (QdJ ( Break) key. Let's see what 
happens: 

-g - Run the program 
Z - Type a normal character 
Program terminated normally 
-g - Run t(e pro)ram a ain 
• C - Type Ctrl Break 

AX=0100 BX=0000 CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000 
DS=08Fl ES=08Fl SS=08Fl CS=08Fl IP=0104 NV UP DI PL NZ NA PO NC 
08Fl :0104 CD20 INT 20 

Wow! You get the printout of all the registers that you got before by 
typing DEBUG's "R" command. And now, try typing "g" to run the 
program agam: 

-g - Run it 
- It doesn ' t wait for you to type something! 

Program terminated normally 
-g - Try it aga in 

- Same result 
Program terminated normally 

Something's gone wrong with the program. It no longer waits for our 
input from the keyboard when we type "G" to run it; it says "Program 
terminated normally" immediately. Why is that? 
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The Instruction Pointer Register 
Look closely at the register display we just saw. There's a new part of 

this display you should learn about, in order to understand where our 
program went awry. In the middle of the middle row it says "IP= 0104." 
Why is this important? To understand its significance, you need to know 
that the 8088 keeps track of where it is in a program by keeping the 
address of the instruction currently being executed in the IP register. The IP 
register is a 16-bit register something like AX, BX, and so on, except that 
it is used only to hold the address of the current instruction. Each time an 
instruction is executed, the 8088 updates the IP register to point to the 
next instruction. 

The 8088 microprocessor keeps track of where it is with the 
Instruction Pointer (IP) register. 

Thus, at the beginning of our program, IP contains 100, since that's 
where all programs are supposed to start in DEBUG. In fact, DEBUG 
puts this value into IP when it's first loaded, as you can see by loading 
DEBUG and typing "R" immediately. After we execute the first 
instruction in our program, the IP contains 102, since that's the address 
of the next instruction. And finally, for the last instruction, it contains 
106. When the program terminates with an INT 20 instruction, DEBUG 
automatically sets the IP register back to 100, so that it's ready to start 
the program again. 

Now, the reason our program doesn't work the way it should is this: 
when you hit (9D (Break), DEBUG terminated the program right in 
the middle, just before the program had a chance to execute the INT 20 
instruction. The instruction shown in IP in the register display is the one 
about to be executed. So, when we return to DEBUG from our program, 
the IP contains 104, not the 100 that it should. Since the program has 
not terminated with an INT 20 instruction, the IP will not be reset to 
100. So when you type "G", DEBUG will start the program at whatever 
address is in the IP register. If 104 is in IP, then that's where the program 
will start. But the only thing at 104 is an INT 20, which will terminate 
the program and bring us straight back to DEBUG with "Program 
terminated normally." The call to the Keyboard Input function will never 
be executed. 

How can you start over at the beginning of the program? It turns out 
you can modify the contents of the IP register with DEBUG, just as you 
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-rip 

can the AX and other general purpose registers. Enter "R", followed by 
"IP". 

- You type this, to see the IP register 

IP 0104 
:100 

- Contents of IP 
- Type this to change it to 100 

-g - Now try the program again 
Z - It waits for you to type a character! 
Program terminated normally 

-a100 

So we've fixed it! The moral is that it's only when your program starts 
at 100 and terminates itself with an INT 20 that DEBUG will 
automatically reset the IP to 100. If you start the program somewhere 
else, or terminate it in the middle, then you can't be sure what may be 
left in the IP. To avoid problems, get in the habit of checking the IP by 
typing "RIP", and setting it back to 100 if necessary, before you type "G" 
to run a program. 

Typing in a Sentence 
Suppose we wanted to use the Keyboard Input function to type in 

something longer than a single character. As you might guess, we can 
simply change the INT 20 to a jump back to the beginning of the 
program: JMP 100. Here's what you type in: 

08Fl:0100 mov ah ,1 
08Fl:0102 int 21 
08Fl:0104 jmp 100 
08Fl:0106 

And here it is disassembled with "U": 

-u100 ,105 
08Fl:0100 B401 
08Fl: 0102 CD21 
08Fl:0104 EBFA 

MOV 
INT 
JMP 

AH ,01 
21 
0100 

Now when we run the program we can type in a whole sentence. 
While you're typing you can experiment with some of the editing 
features built into this system call. For instance, if you make a mistake, 
you can back-space. If you type~ J (the "J" key pressed while the 
~ key is held down) you'll get a linefeed. And if you hit~, the 
cursor will return to the start of the line, although you will still be in the 
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-g 

function. But if~ does this, how do we escape from our program? 
Try @] ( Break ) - without further ado you'll be back in DEBUG: 

Now is the time for all good men to come to the aid of their country. 
Ac 

AX=010D BX=0000 CX=0000 DX=0000 SP=FFEE BP=0000 S1=0000 D1=0000 
DS=08Fl ES=08Fl SS=08Fl CS=08Fl IP=0104 NV UP DI PL NZ NA PO NC 
08Fl:0104 EBFA JMP 0100 

-g 

Actually it's not quite as clean as this, because the AC prints over the 
first part of the phrase you typed in: 

Acw is the time for all good men to come to the aid of their country. 

Notice how the registers have all been printed out again, as they were 
when we typed@] (Break) in the single-key program above. Again, the 
IP contains 104. But this time it doesn't matter if we set it back to 100 or 
not: since the program consists of an endless loop, we can get into it 
anywhere without changing its operation. 

You may be concerned that the programs we've used to demonstrate 
these functions so far don't seem to do anything very useful. Don't worry. 
At the end of this chapter, and in the next chapter, we'll combine the 
function calls we've learned into larger programs that will actually 
perform useful services and amaze your friends. Now, however, let's go 
back and talk about the various parts of DOS, and where these function 
calls fit into the overall DOS organization. 

The Parts of DOS 
Earlier we mentioned ROM and IBMBIOS, and said that they were 

parts of the Disk Operating System. Let's stop a minute now and describe 
the major parts of DOS. This will give you a rough idea of what the 
various parts of DOS do, and where they fit in the computer's memory. 
Be aware, however, that you really don't need to know a great deal about 
the internal workings of DOS to write programs in assembly language. So 
don't worry if some of the details of its operation seem a little vague at 
this point; you'll learn more about the operating system as we go along. 

DOS is divided into four major parts: ROM, IBMBIOS, IBMDOS, 
and COMMAND. They are loaded into memory like this: 
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I - - 0 0000 bottom of memory 
IBMBIOS ., 

IBMDOS 

Resident 
part of 
COMMAND ., 

Transient 
part of 

I 

, 
' 

Space available for 
ser programs u 

COMMAND 
~ 

I 
Highest available RAM address 
(FFFF for 64K memory, 

------z---i---z lFFFF for 128K memory, etc.} 

~ 

I 
ROM 
routines 

FFFFF highest part of address 
space (always the same} 

Notice that the lowest addresses are shown at the top of the diagram. 
This may seem backwards, but it's the way program listings are written, 
and it's the way IBM does it, so for consistency we're going to follow this 
format too. 

To understand the roles played by the various parts of DOS, it's 
helpful to think of the entire operating system as some sort of large 
industrial corporation - we could call it "DOS Incorporated." The 
different parts of the system then correspond (very roughly) to the 
different management levels in the corporation. 

The Workers: ROM (Read Only Memory) 
ROM stands for "Read Only Memory." It corresponds to the blue

collar workers down on the floor of the factory, getting the actual work 
done. In DOS this work might be sending characters to the display 
screen, reading information from the disk drive and the keyboard, and so 
forth. By getting the work done we mean that the routines in ROM send 
instructions to peripheral devices such as the keyboard and disk drive 
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that actually do things in the outside world. This is the point where 
software "interfaces" (connects with) hardware. 

The "products" that the ROM routines are producing are generally 
concerned with moving information from hardware to software and vice 
versa: reading a character from the screen into memory, sending a group 
of data from memory to the disk, and so on. In other words, ROM 
contains most of the actual input/output routines that communicate with 
the peripheral devices connected to the PC. 

ROM is an actual physical part of the computer, a kind of memory 
like the RAM (Random Access Memory) you store your program in, 
except that the programs in ROM are installed by IBM at the factory and 
can't be changed. (They also don't vanish when you turn off the 
computer, the way programs stored in RAM do.) Since ROM is part of 
the physical computer it is documented in the IBM Personal Computer 
Technical Reference manual, which describes the physical characteristics of 
the machine, rather than in the IBM Personal Computer Disk Operating 
System manual. 

You might not think of ROM as being part of DOS, since it exists 
even in cassette-based IBM PCs that don't have any disk drives. However, 
ROM contains routines to access the disks as well as the other 
peripherals, and when DOS is loaded from the diskette, the routines in 
ROM become an integral part of the operating system. 

The remaining parts of DOS come on the DOS diskette, and are 
loaded in from the diskette when you initialize your system, either by 
turning it on, if it's off, or by hitting @ ~ ~-

The Foreman: IBMBIOS 
IBMBIOS supervises the activities of the ROM routines. If IBMDOS 

or another program wants to use a routine in ROM, the request is 
"passed through" IBMBIOS. That is, the request goes to IBMBIOS, 
which decides what to do with it before passing it on to the appropriate 
ROM routine. This has several advantages. If IBM discovers a mistake in 
the ROM, or if they want to modify it for some reason, they can't actually 
change the ROM (at least in those computers that have already been 
sold), since the ROM is a permanent part of the computer. But they can 
change the DOS diskette, which contains IBMBIOS, so that it 
incorporates the changes. This is like a human foreman who has learned 
so well what mistakes his employees are likely to make that he can 
compensate for them in the finished product. 

Thus by issuing a new operating system with the revised IBMBIOS, 
IBM can in effect change the input/output routines in ROM, even though 
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ROM itself is unchanged. (It's modification of this sort that led to new 
revisions of the operating system being issued, such as when DOS 1.00 
became 1.10, and so on.) Also, various error situations which can occur 
when an 1/0 routine is in use can be dealt with more flexibly if they are 
not a permanent part of ROM. 

Management: IBMDOS 
IBMDOS concerns itself with more general, less detailed problems 

than do ROM and IBMBIOS. You can think of it as the management 
part of DOS, having a larger perspective than the workers or the 
foreman. For instance, ROM and IBMBIOS know how to write a 
particular sector (a small amount of disk information) to the disk, but 
IBMDOS knows what entire file is to be written to the disk, and keeps 
track of what sectors have been written so far and where they are on the 
disk. (Don't worry, we'll be talking more about sectors and files, among 
other things, in the chapters on the disk system.) 

IBMDOS also contains the "entry points" for the DOS function calls 
discussed previously, like the Display Output and Keyboard Input 
functions we've already used. (Entry points are simply addresses where 
these routines begin in memory.) It's this part of DOS that our assembly
language programs will be communicating with when they need to 
perform any input or output operations. The actual input/output routines 
may be in ROM, but your program must go through IBMDOS to use 
them, just as in a corporation we wouldn't place an order for 1000 
widgets with the workers in the assembly line; we'd talk with some 
management-level people on a higher floor. 

Chief Executive Officer: COMMAND.COM 
COMMAND.COM is responsible for controlling the overall activities 

of the operating system. It's the part of DOS that prints the A> prompt 
and then figures out what to do with what you type in. You might say it is 
the intelligent part of the operating system. The other parts merely do 
what they're told, either by COMMAND.COM, or by another assembly
language program. 

COMMAND.COM actually comes in two parts: a resident part, which 
lies just above IBMDOS in low memory, and a transient part that sits all 
the way at the top of memory, up to FFFF if you have 64K, up to I FFFF 
if you have 128K, and so on. (Notice the difference between the memory 
you actually have, which might be say, 128K, and the entire addressable 
memory space in the computer, which is one megabyte, or l ,000K, with a 
high address of FFFFF.) 
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"Resident" means that this part of COMMAND.COM remains in 
memory at all times. The resident portion of COMMAND.COM contains 
basic control functions and error-handling routines. The transient 
portion communicates with users via the A> prompt, and contains the 
internal DOS commands like DIR, TYPE, and COPY. The transient part 
of COMMAND.COM can actually be written over by user programs if 
they need a lot of memory space. It is then loaded back into memory 
from the diskette by the resident portion when the user program is 
finished. 

Acting Chief Executive Officer 
When we write an applications program in assembly language (or in 

a higher-level language like Pascal, which is then compiled into machine 
language), and then execute it, this program takes over temporarily from 
the COMMAND.COM program, and assumes command of the computer 
itself. It then has access to all the facilities provided by IBMDOS, 
IBMBIOS, and ROM,just as COMMAND does when it's in charge. It 
can use these resources for its own purposes, and COMMAND can only 
regain control when the program is over, as when it executes the INT 20 
interrupt. 

Chairman of the Board 
And who, you might ask, tells COMMAND.COM what to do? Why, 

you do - whenever you type a command following the A> prompt. Was 
it not this opportunity to exercise corporate power that convinced you to 
buy a computer in the first place? 

Figure 4-3 gives some idea how the various parts of DOS fit together. 

DOS Functions 
We learned above that the DOS functions are input/output routines 

located in the ROM and IBMBIOS portions of DOS. They are accessed 
by making interrupt calls in the form of INT 21 to the IBMDOS part of 
the operating system, which then passes our request on to the 
appropriate routine in IBMBIOS or ROM. The particular function to be 
used is selected, as we've seen, by placing a particular number in the AH 
register before making the INT 21 call to DOS. 

In chapter 2 we used the Display Output DOS function to write a 
happy face and other characters on the screen, and in this chapter we 
used the Keyboard Input DOS function to get a character from the 

96 Assembly Language Primer for the IBM PC & XT 



keyboard. What other DOS functions are there? 
The most complete description of these functions is given in 

appendix D of the IBM Personal Computer Disk Operating System manual, 
which comes with your copy of DOS. In DOS version 1.10 the functions 
start with O and go up to number 2Eh. We wind up with a total of 41 
functions (not all the available numbers were assigned). DOS version 2.00 
uses 74 functions, and there is no reason why new versions of DOS will 
not contain even more. It might be educational for you to look through 
this appendix, just to get a rough idea of the kinds of things these calls 
do. Many of the descriptions will be mysterious to you at this point, but 
by the time you finish this book you will be reading appendix D for 
relaxation, like the Sunday comics. 

Since there are so many functions we are not going to provide 
detailed descriptions of them all in this book. Instead, we will concentrate 
on the most commonly used ones, and those that most easily demonstrate 
how particular parts of the operating system work. Once you know these, 
you should be able to figure out how the others work, since there are 
many similarities. 

DOS functions can be divided roughly into two categories: those that 
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deal with the disk, and those that deal with other peripherals, such as the 
video screen, keyboard, and printer. The non-disk functions are generally 
simpler, so we will cover several more of them in this chapter. We'll 
discuss the disk functions in chapters 11 and 12. 

The Print String Function 
Let's start off by learning a new DOS function: one that prints a 

string of characters. 

PRINT STRING function - Number 09h 
Enter with: 

Reg AH= 9 

DS:DX = address of start of string 

Execute: 

INT 21 

Comments: string must terminate with"$" (dollar sign) 

You may have noticed something new in the box above: the 
expression 

Reg DS :DX = address of start of string 

This means that the function needs both the segment address and the 
offset address of the string, and that the segment address is to be placed 
in the DS register and the offset address is to be placed in the DX 
register. You don't need to know about the DS register yet. DEBUG (or 
DOS) takes care of making sure the correct value is in this register, so for 
the time being you can ignore it. Later, in chapter 8 on memory 
segmentation, we'll find out about the "Segment Registers," of which DS 
1s one. 

We already know how to print a single character on the screen, using 
the Display Output function. That's good as far as it goes, but many 
times in a program we'd like to display a whole string of characters at 
once. Print String lets us do just that. 

Here's how it works. Before you can use this function you need to put 
the string - consisting of the actual characters you're going to print -
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somewhere in memory. (Makes sense, doesn't it? Can't print them if 
they're not there.) The string consists of ASCII characters, and it must 
end with a dollar sign ($). The dollar sign is the only way the function 
knows when it has come to the end of the string, so it's important that 
you don't forget it. 

Strings to be printed by the Print String function must end 
with a dollar sign. 

To use the Print String function you first put the starting address of 
the string in the DX register. Next, you put the function number 9 in the 
AH register, and finally you call DOS with an INT 21. Let's write a 
program that makes use of this function to print a string. 

A>debug 
-a100 
08Fl:0100 mov dx ,109 
08Fl:0103 mov ah ,9 
08Fl:0105 int 21 
08Fl:0107 int 20 
08Fl :0109 db 'Good Morning , Robert!$' 
08Fl : 011F 

The "DB" Pseudo-Op 
All the instructions in this program look pretty familiar except for 

this one: 

08Fl :0109 db 'Good Morning , Robert !$' 

This doesn't look like an ordinary assembly-language instruction, and it's 
not. In fact, it's a very strange sort of animal. Instead of being an 
instruction that tells the 8088 microprocessor to do something, it's an 
instruction that tells DEBUG (or the assembler program - when we get 
to that in the next chapter) what to do. In this case, it tells DEBUG to 
put all the bytes represented by the characters between the single quote 
marks into memory. Thus "G" is translated into its ASCII code 4 7h, "o" 
into 6Fh, and so on. These values are then placed in memory. Note that 
the "DB" itself is not placed in memory, since it is not really an 
instruction and is not going to be executed by the 8088. Once it has told 
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DEBUG to put the characters in memory, its job is done. It's called a 
"pseudo-op" because it's not really an "operation code" or instruction. It 
goes in the same place in the program as regular instructions, but it has 
a different purpose. 

"DB" stands for "Define Byte," and as you can see it's very useful for 
putting ASCII codes into memory, since we don't have to look up the 
code for each value and then type it in with the "E" command. (If you 
don't have DOS version 2, you'll have to use the "E" command anyway, 
but you won't need to look up the values, since we'll show them when we 
disassemble the program with "U.") 

You can also use "DB" to put numeric values into memory, either by 
themselves, or with ASCII characters. We'll show an example of this in 
the next section. 

Don't forget the philosophical difference between regular assembler 
instructions like MOV and JMP (which are sometimes called "operation 
codes," or "op-codes") and pseudo-ops like DB . Instructions tell the 8088 
microprocessor what to do at the time the program is executed. Pseudo
ops, on the other hand, tell the assembler program (in this case DEBUG), 
what to do when the program is being assembled. 

"Instructions" are instructions to the microprocessor. 

"Pseudo-ops" are instructions to the assembler. 

Here's the program unassembled (or disassembled) with "U": 

-u100 , 108 
0905 :0100 BA0901 
0905:0103 B409 
0905:0105 CD21 
0905 :0107 CD20 

MOV 
MOV 
INT 
INT 

DX ,0109 
AH ,09 
21 
20 

To see what bytes the db pseudo-op has placed in memory, "U" is not 
much help, since these bytes are not program instructions. Instead, we'll 
use "d," which provides not only the hex values of these bytes , but the 
ASCII characters they represent: 

-d100,11f 
08Fl :0100 BA 09 01 B4 09 CD 21 CD-20 47 6F 6F 64 20 4D 6F 
08Fl :0110 72 6E 69 6E 67 2C 20 52-6F 62 65 72 74 21 1.i 3A 

Dollar sign 
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The program occupies the first 9 bytes of the top row. Then our 
string of characters starts, and continues all the way to the byte at 11 E. 
Notice that the last byte is a dollar sign (24h), as required by the Print 
String function. 

Save the program to your disk: 

-nwakeup . com 
-rbx 
BX 0000 

-rcx 
ex 0000 
:lF 
-w 
Writing 001F bytes 

Now, finally, run the program! 

-g 
Good Morning , Robert! 
Program terminated normally 

Terrific! It works just fine. 
You can also execute the program directly from DOS, which can 

provide you with a nice way to start your day. Turn on the computer, and 
type: 

A>wakeup 
Good Morning , Robert! 

It's kind of nice: a personal greeting from the cold impersonal 
machine. Of course, you can customize this program with your own 
name, simply by changing the phrase between the quotes in the "db" 
pseudo-op. Try it! 

Buffered Keyboard Input Function 
Now that you know how to print out a string of characters, how about 

reading a string in from the keyboard? Here's a DOS function which will 
do just that. 

Inside DOS-The Disk Operating System 101 



BUFFERED KEYBOARD INPUT Function -
Number OAh 

Enter with: 

Reg AH = 0Ah 

Reg DS:DX = address of buffer 

Execute: 

INT 21 

Return with: keyboard characters in buffer 

Comments: First byte of buffer = maximum character 
count 
Second byte = actual number of characters 
typed 

Here's a program that makes use of the Buffered Keyboard Input 
DOS function . 

A>debug 
-a100 
08Fl:0100 mov dx,109 
08Fl:0103 mov ah,a 
08Fl:0105 int 21 
08Fl:0107 int 20 
08Fl:0109 db 20 
08Fl:010A 

What's going on here? The idea is that the characters you type on the 
keyboard will be stored in a buffer (a buffer is just a sequence of memory 
locations). In the program above the buffer is defined in the program 
line 

08Fl: 0109 db 20 

This tells DEBUG to set aside 20h (32d) unused locations in memory. 
Your program tells the function where this buffer is by placing its address 
in the DX register with the MOV DX, 109 instruction. The function 
number is Ah, so that's placed in the AH register, and then you call DOS 
with INT 21 as usual. 
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A "buffer" is a sequence of memory locations. 

The key to using this function is to understand how the buffer is 
organized. Here's a diagram of the buffer: 

I 20 I 13 I B Y I • • • . I i I n I g 

l l Message in ASCII 

Actual number of characters typed in 
Maximum number of characters 

The first byte of the buffer holds a number which is the maximum 
number of characters the function will accept from the keyboard - in 
this case 20h, which is 32d. If you type more characters than that, the 
beep sounds, and the cursor refuses to move any further right (as we will 
see shortly). This number can never be larger than 255d (FFH), since it 
only occupies one byte. 

The second number is filled in by the function (not by your program) 
after you type in the message and press g . It's the actual number of 
characters you typed in. This is the only way your program can figure 
out how many characters were in your message. 

The message itself goes in the bytes following these two one-byte 
numbers. 

Let's try out our program and see what happens. If you want, save it 
to disk first: 

-nbuffin.com 
-rbx 
BX 0000 

-rcx 
ex 0000 
:a 
-w 
Writing 000A bytes 

Let's examine it with "U" to make sure it looks right: 

-u100,108 
0905:0100 BA0901 
0905:0103 B40A 
0905:0105 CD21 
0905:0107 CD20 

MOV 
MOV 
INT 
INT 

DX,0109 
AH ,0A 
21 
20 
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To check that our buffer has been initialized properly we can dump 
just the single byte at 109 by typing: 

-d109 , 109 
0905 :0109 20 

The single byte at 109 is, of course, the maximum number of 
bytes the buffer can hold: 20h. 

Let's run the program with "G", and then type something in: 

-g 
By brooks too broad for leaping 
Program terminated normally I 

At this point we couldn't type ony more characters. 

Actually, we could only type 3 ld characters before the beeper 
sounded, not 32d, the number we put in the first byte of the buffer to 
specify the maximum number of characters (32d = 20h). This is because 
the enter character itself (often called a "return" or "carriage return" 
which has the value 0Dh) is always placed at the end of the message, and 
room needs to be saved for it. Look at the buffer with DEBUG: 

-d100 ,12f 
0905:0100 
0905: 0110 
0905:0120 

Actual number of 
characters typed 

Maximum number/ Beginning of 
Program of characters I /message 

BA 09 01 B4 0A CD 21 CD-20 20 lF 42 79 20 62 72 
6F 6F 6B 73 20 74 6F 6F-20 62 72 6F 61 64 20 66 
6F 72 20 6C 65 61 70 69-6E 67 0D 00 00 00 00 00 

I 

: . . 4. M ! M . By br 
ooks too broad f 
or leaping ..... . 

Return character at end of message 

If you run it again, but hit g before you've filled up the buffer, 
then there will be a smaller count in the second byte of the buffer: 

-g 
Question Authority ! 
Program terminated normally Actual number of characters typed 

-d100 ,12f 
0905 :0100 
0905 :0110 
0905:0120 

l 
BA 09 01 B4 0A CD 21 CD-20 20 13 51 75 65 73 74 
69 6F 6E 20 41 75 74 68-6F 72 69 74 79 21 0D 66 
6F 72 20 6C 65 61 70 69-6E 67 0D 00 00 00 00 00 
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Notice how the remnant of the old message is left in the buffer. We 
(or our program) know that this is junk because the character cou·nt is 
only 13h, which is 19d: the number of characters in "Question 
Authority!" 

The Mirror Program 
Let's put together the last two DOS functions we've learned, and 

make a program that takes a sentence you type in, and echos or 
"mirrors" it back onto the screen. 

-a100 
0905:0100 mov dx,116 
0905:0103 mov ah,a 
0905:0105 int 21 
0905:0107 mov dl,a 
0905:0109 mov ah ,2 
0905:010B int 21 
0905:010D mov dx,118 
0905:0110 mov ah,9 
0905:0112 int 21 
0905:0114 int 20 
0905:0116 db 30 
0905: 0117 

<-- Buffered Keyboard Input 

<-- Display Output (linefeed) 

<-- Print String 

<-- Return to DEBUG or DOS 
<-- Maximum characters 

Type this in (don't type in the comments on the right, of course). 
Then save it to disk in the usual way as MIRROR.COM. Here's what it 
looks like with "U": 

-u100, 115 
0905:0100 BA1601 
0905:0103 B40A 
0905:0105 CD21 
0905:0107 B20A 
0905:0109 B402 
0905:010B CD21 
0905:010D BA1801 
0905:0110 B409 
0905:0112 CD21 
0905:0114 CD20 

MOV 
MOV 
INT 
MOV 
MOV 
INT 
MOV 
MOV 
INT 
INT 

DX, 0116 
AH,0A 
21 
DL,0A 
AH,02 
21 
DX, 0118 
AH,09 
21 
20 

And here's the buffer, which starts at 116: 
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Maximum Actual number of 
number of characters typed 

-d110, 14f 
0905:0110 
0905:0120 
0905:0130 
0905 :0140 

characters I Beginning of 
Last part I message 

~ I 
B4 09 CD 21 CD 20 30 00-00 00 00 00 00 00 00 00 
00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 
00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 
00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 

4.M!M 0 .... ..... 

-g 

Let's see what the program does. As you can see, it's divided into 
three major parts. The first part gets our input from the keyboard and 
puts it into the buffer set up at location 116. The message actually goes 
into the addresses starting at 118; as before, 116 holds the maximum 
count, and 117 is filled in with the actual number of characters received 
from the keyboard. 

The second part of the program uses the Display Output function to 
print a linefeed. (The ASCII code for a linefeed is 0Ah, which we type in 
as "a". This is necessary because Buffered Keyboard Input prints a 
carriage return at the end of the string, but not a linefeed; so that the 
cursor simply goes back to the beginning of the line you typed in. If we 
started printing here, we would write directly over what we had just 
typed in. Yes, we forgot this when we first wrote the program!) 

Finally, the third part of the program uses the Print String function 
to print out the phrase we typed in. As far as this function is concerned, 
the buffer starts at the place where the first character of the message is, 
not where the max count is, so 118 is the number we put in the DX 
register. 

Another important thing to remember about the Print String function 
is that the only way it knows when to stop outputting characters is 
when it sees the dollar sign ($). It's very important, therefore, to terminate 
the sentence you type in with a "$" sign. Otherwise this function will run 
amok, madly printing all the junk it finds in memory, and covering the 
screen with weird symbols. A more sophisticated program could fill in the 
dollar sign for us, but this simple program is not fail-safe in this regard. 

All right, let's try it out. Start the program with "g", and then type 
something in: 

The curfew tolls the knell of parting day ,$ 
The curfew tolls the knell of parting day , 
Program terminated normally 

- You type this 

- Program prints this 
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There it is, a perfect echo. 
Now you can look at the buffer with "d" to see what happened: 

-d110, 14f 
0905 :0110 B4 09 CD 21 CD 20 30 2B-54 68 65 20 63 75 72 66 
0905:0120 65 77 20 74 6F 6C 6C 73-20 74 68 65 20 6B 6E 65 
0905:0130 6C 6C 20 6F 66 20 70 61-72 74 69 6E 67 20 64 61 
0905:0140 79 2C 24 0D 00 00 00 00-00 00 00 00 00 00 00 00 

4.M!M 0+The curf 
ew tolls the kne 
11 of parting da 
y, $ . . .... . .. . . . . 

-q '---- This is the obligatory dollar sign ---~ 

One of the important things to notice in this program is the different 
way the two function calls deal with the buffer. The address passed to 
Buffered Keyboard Input in the DX register is actually two bytes before 
the start of the string, to allow for the "maximum-characters" number 
and the "characters-typed-in" number. The number passed to Print 
String, however, is at the start of the string itself. Since Print String pays 
no attention to the "characters-typed-in" number, a"$" must be used to 
end the string. Figure 4-4 shows how the buffer looks to the two 
functions. 

Writing to the Printer 

Let's see if we can get the hang of using a whole new piece of 
peripheral equipment, the printer. We're also going to talk about an 
important new idea called indirect addressing, so even if you don't have a 
printer you should read this section. 

The Printer Output Function 

PRINTER OUTPUT Function - Number 05h 
Enter with: 

Reg AH= 5 

Reg DL = character to be printed 

Execute: 

INT 21 
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Characters are sent to the printer using the Printer Output function 
which sends one character at a time from the DL register, much as the 
Display Output function does for the video screen. (In fact, if you don't 
have a printer you can rewrite these programs to work with the Display 
Output function , so that you can see what they do.) There is no function 
which sends a string of characters to the printer all at once, as the Print 
String function does to the video. 

This leads to an interesting problem. Suppose we have a string of 
characters in memory somewhere, such as we did in the last section when 
we filled up a buffer in memory with characters using the Buffered 
Keyboard Input function. And suppose we want to send these characters 
to the printer to be printed out. How do we get the characters from their 

Buffer as 
seen by 
"Print String" 
("$" terminates 
the string) 

Low memory 

l~t I 

~ 

Max chars 

Actual chars 

"T" 
"h" 
"e" 

I 
"d" 
"a" 
II y" 

"" I 

"$" 

,, 
Hi memory 

J 

,.,. 

.,. 

,.,. 
.,. 

J 

'J 

J 

.,. 

• 

~ 

Buffer as 
seen by 
"Buffered 
Keyboard 
Input'' 
("$" is just 
another 
character) 

Figure 4-4. How the buffer is used in the MIRROR program 
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-a100 

memory locations into the DL register so we can send them to the 
printer? 

We're going to show you two different ways to access strings of 
characters in memory. The first is clumsy, but will serve as an 
introduction to a technique called indirect addressing. The second will 
make use of indirect addressing in a different way, to do the job 
considerably more elegantly. 

The Not-So-Elegant Way to Print a String 

In the following program we're going to send the word "hi" to the 
printer. Then, since the printer will not actually print anything unless it 
has received an entire line (80 characters), or unless it receives a carriage 
return, we'll send it a carriage return. Finally, to make sure that the next 
line we print doesn't print over the first one, we'll send it a linefeed as 
well. These four characters - "h", "i", 0Dh (the ASCII code for a 
carriage return), and 0Ah (the ASCII code for a linefeed) - will all be 
assembled by DEBUG into a buffer in memory. 

Type in the program shown below. (The square brackets, which you 
haven't encountered before, are on the two keys to the right of the "P" 
key, and are lowercase. We'll explain in a moment what they do.) 

0905 :0100 mov dl , (122] 
0905 :0104 mov ah ,5 
0905 :0106 int 21 

<-- Send "h" to printer 

0905 : 0108 mov dl , (123] 
0905 :010C mov ah ,5 
0905 :010E int 21 
0905 : 0110 mov dl , (124] 
0905 :0114 mov ah ,5 
0905 :0116 int 21 
0905 : 0118 mov dl , (125] 
0905 :011C mov ah ,5 
0905 :011E int 21 
0905 :0120 int 20 
0905 :0122 db 'hi' ,0d ,0a 
0905 :0126 

<-- Send "i" to printer 

<-- Send carriage return to printer 

<-- Send linefeed to printer 

<-- Return 

<-- ASCII string 

Save the program if you want, as "PRINTHI.COM". 

-rbx 
BX 0000 
-rcx 
ex 001E 
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:26 
-nprinthi.com 
-w 
Writing 0026 bytes 

Use "U" to see that you typed it in accurately: 

-u100,121 
0905 :0100 8A162201 
0905:0104 B405 
0905:0106 CD21 
0905 :0108 8A162301 
0905 :010C B405 
0905:010E CD21 
0905 :0110 8A162401 
0905 :0114 B405 
0905:0116 CD21 
0905 :0118 8A162501 
0905 : 011C B405 
0905 :011E CD21 
0905 :0120 CD20 

MOV 
MOV 
INT 
MOV 
MOV 
INT 
MOV 
MOV 
INT 
MOV 
MOV 
INT 
INT 

DL , [0122] 
AH ,05 
21 
DL, [0123] 
AH ,05 
21 
DL , [0124] 
AH ,05 
21 
DL , [0125] 
AH,05 
21 
20 

And "d" to look at the ASCII string: 

-d120, 12f 
08Fl :0120 6C 46 68 69 00 0A 87 DA-E8 86 F0 E8 DE FA 0E 00 

Linefeed 

,~~rriage return 

"h" 

lFhi. . . Zh .ph' z . . 
-..--

ASCII values 

Now, run the program, making sure that your printer is turned on, 
and set to "on-line": 

-g <-- Nothing printed on screen, but printer prints 
Program Terminated Normally 

If all went well, your printer printed the word "hi." If you run the 
program a second time, it will print "hi" again on the next line, and so 
on. 

Indirect Addressing 

Now we're going to talk about the square brackets in the program. 
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Recall that if you have the instruction 

mov dl,122 

the number 122h will be placed in the DL register. What about the same 
instruction with brackets around the 122? 

mov dl , [122] 

This instruction takes the contents of memory location 122 and places it in 
register DL. If you aren't familiar with this concept of indirect addressing 
it may take a little getting used to. 

Look at the dump we made of the ASCII string in locations 122 to 
125. The first letter, "h," is in location 122. When the instruction 

mov dl , [122] 

is executed, the contents of location 122, which is 68h (the ASCII code for 
"h"), will be placed in the DL register. The number 122 itself doesn't go 
anywhere, but the instruction uses it to figure out where to get the "h". 
Figure 4-5 shows how this works. 

To print the next character we execute the same sequence of 
instructions, but this time we take the character out of memory location 
123. This is the "i" character. We do the same thing with the carriage 
return (ODh), and linefeed (OAh) , and our message is completed. 

I 

However, you will no doubt have noted how inefficient this program 

I 
DL Register 

.... 

68 IJ 
MOV DL,(122] 

68 = "h" 
69 = "i" 

OD 
QA 

1 .... 

0122 
0123 
0124 
0125 

Figure 4-5. Operation of the MOV DL,[122] instruction 
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-a100 

is. It has to execute a com 1 I d'[f; . . 
to load a diffi P ~te y I erent mstruct1on every time it wants 
th erent character mto the DL register. If you're thinking that 

ere ~ust be_a ~etter way, yo~'re_a~solutely right. We've introduced you 
to the idea of md1rec~ add:e~smg m its simplest form; now let's go on and 
see how powerful an idea It 1s when it's used in a slightly different way. 

"Indirect addressing" means referring to the address of 
something, rather than to the something. 

A More Elegant Way to Print a String 

Use DEBUG to type the following program into memory. This 
program will send a complete string of any length to the printer. In this 
case the string ( courtesy of an anonymous 16th century poet) is in line 
111: 

0905: 0100 mov ex , 31 <--- Number of characters to print 

0905: 0103 mov bx , 111 <---Address of first character 

0905: 0106 mov dl , [bx] <--- Put the character in DL 
0905: 0108 mov ah , 5 <--- Printer Output DOS function 

0905: 010A int 21 <--- Call DOS 
0905: 010C inc bx <--- Increment the pointer 

0905: 010D loop 106 <--- Loop until done 
0905: 010F int 20 <--- Return to DEBUG or DOS 

0905:0111 db 'She is most fair , though she be marble-hearted. ',0d,0a 
0905:0142 

Here's the "U" listing: 

-u100 ,10f 
0905:0100 B93100 
0905:0103 BB1101 
0905:0106 8A17 
0905:0108 B405 
0905:010A CD21 
0905:010C 43 
0905:010D E2F7 
0905:010F CD20 

MOV 
MOV 
MOV 
MOV 
INT 
INC 
LOOP 
INT 

CX,0031 
BX, 0111 
DL, [BX] 
AH,05 
21 
BX 
0106 
20 

You can save this program on your disk as "PSTRING.COM". Here's 
what the string itself looks like in memory, using "D": 
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-dlll, 141 
0905:0111 53 68 65 20 69 73 20-6D 6F 73 74 20 66 61 69 
0905:0120 72 2C 20 74 68 6F 75 67-68 20 73 68 65 20 62 65 
0905:0130 20 6D 61 72 62 6C 65 2D-68 65 61 72 74 65 64 2E 
0905:0140 0D 0A 

She is most fai 
r, though she be 
marble-hearted. 

Now you can run the program in the usual way with "G" and see the 
entire line of poetry printed out. Notice how short the program is, and 
how long a string it can print. In fact, the string can be as long as you 
want. How does this program work? 

Indirect Addressing with a Register Pointer 

In the PSTRING program the square brackets do not surround a 
memory address as they did earlier in the PRINTHI program. Instead 
they surround the BX register: 

0905:0106 8A17 MOV DL, [BX] 

This instruction makes use of a special property of the BX register: 
If you put a memory address in BX, and then use BX with brackets 
around it in an instruction, references to [bx] will operate on the contents 
of the memory address contained in BX, not on BX itself. 

Let's see how this fits into the program. Most of the program is 
enclosed in a loop, as we can see from the MOY eX,31 instruction at the 
beginning of the program, and the LOOP 106 instruction near the end. 
We put the number of characters to be printed into ex so the loop will 
be executed this many times, then load the address of the first character 
into BX so that BX will point to this character. By "point to" we mean 
that BX now contains the memory address of the character. Now, using 
the square brackets, we write the instruction MOY DL,[BX], which 
means: "Take the character which is in the memory location which is in 
BX, and put this character in DL." Figure 4-6 shows how this works. 

Now comes the clever part, where we use the real power of indirect 
addressing. Instead of having to write another instruction to get the next 
character in the string into DL (as we did in the last example), all we have 
to do is increment the address in the BX register, and then execute the same 
MOY DL,[BX] instruction again . Since the address in BX will now be 
112 instead of 111, the character we put into DL will be the "h" in "She" 
instead of the "S." We can proceed like this through the entire string, 
printing the characters until ex reaches 0, and the LOOP instruction no 
longer causes a jump back to the start of the loop, but instead "falls 
through" (goes on to) the INT 20 instruction which ends the program. 
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BX register 

I 0122 68 = "h" 0122 
69 = "i" 0123 

68 OD 0124 
DL register OA 0125 

MOV DL,[BX] 

Figure 4-6. Operation of the MOV DL,[BX] instruction 

No 

Set number 
of characters 
to print in ex 

Set pointer to 
start of string 
in BX 

Get character 
from buffer, 
put in DL 

Send character 
to printer 

Increment buffer 
pointer in BX 

Figure 4-7. Flow chart of the PSTRING program 
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Figure 4-7 shows a flow chart of the operation of the PS TRI NG 
program. 

We'll be dealing with indirect addressing from time to time in the 
following chapters, so you'll have a chance to see it in action again, if it 
wasn't entirely clear to you this time around. 

Remember the PSTRING program. At some point, when you want to 
print something out on the printer, you'll probably need to turn this 
program into a little subroutine that can be used in larger programs to 
provide printer output. 

Sending Control Codes to Your Printer 
While we're on the subject of the printer, let's talk about how to send 

it control codes. What are control codes? They're one- two- or three
character codes that tell the printer to do things like print condensed 
characters, double width characters, or emphasized characters; or to 
change the number of lines per inch or the number of characters per 
line; or to skip over perforations at the end of a page. There are dozens 
of these control codes, and without assembly language there is really no 
easy way to send them to the printer. It can be done in BASIC, but that 
means loading BASIC every time you want to change something in the 
printer, which can be an inconvenience. 

This discussion is geared to the standard IBM dot-matrix printer, 
which is in reality an Epson MX-80. If you are using another kind of 
printer the control codes may be different, but the principles are the 
same. You'll simply have to look up the codes in the manual that comes 
with your printer, and apply them as in the following examples. 

MODE, a DOS command, can be used to change the characters per 
line and the lines per inch vertical spacing on the printer, so we don't 
need to do that. Instead, let's write a little routine to shift into 
"emphasized" printing. In this mode, the print head makes two passes 
across the page, with the paper rotated very slightly in between passes. 
The result is that the spaces between the dots are filled in, resulting in a 
much better looking print, which is sometimes called "correspondence 
quality" (a more or less appropriate term, depending on who the 
correspondence is to). 

Turning On Emphasized Print 

The control code that we've used for emphasized print is 
<escape>"E". You'll need to check the manual for your printer to find 
your code. In BASIC you would send this code to the printer with the 
statement 
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LPRINT CHR$ (27) "E" 

27d is the ASCII code for the "escape" character. 
Here's how to do it in assembly language: 

-a100 
0905:0100 mov cx,2 
0905:0103 mov bx,111 
0905:0106 mov dl, [bx] 
0905:0108 mov ah ,5 
0905:010A int 21 
0905:010C inc bx 
0905:010D loop 106 
0905:010F int 20 
0905:0111 db lb, 'E' 
0905: 0113 

This is exactly the same program as the one in the last section which 
sent a string to the printer. This version also sends a string to the printer, 
but in this case the string, in locations 111 and 112, consists of only two 
characters: a lBh, which is the ASCII code for the "escape" character, 
and an "E", which is the specific character that puts the printer into 
emphasized mode. Thus we put a 2 into CX at the beginning of the 
program, since we only want to print two characters. 

The "U" listing of the program is: 

-u100,10f 
0905:0100 B90200 
0905:0103 BB1101 
0905:0106 8A17 
0905:0108 B405 
0905:010A CD21 
0905:010C 43 
0905:010D E2F7 
0905:010F CD20 

MOV 
MOV 
MOV 
MOV 
INT 
INC 
LOOP 
INT 

CX,0002 
BX, 0111 
DL, [BX] 
AH,05 
21 
BX 
0106 
20 

And examining the two characters with "d" shows: 

-d110, llf 
08Fl:0110 76 lB 45 C0 A2 70 46 A2-6F 46 A2 6E 46 04 02 A2 

~ Letter"E" 
"Escape" code 

v. E@"pF"oF"nF .. 11 

1 
ASCII equivalents 

So, try out the program! You can either type "G" from DEBUG, or 
you can save the program in the usual way as "EMPHAP.COM" (for 
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"EMPHAsized Print"), and execute it from DOS - the obvious course of 
action if you want to be able to use the program conveniently whenever 
you want. 

When you run the program the printer may or may not make a little 
clicking sound. In either case it should put itself into "emphasized mode." 
All subsequent characters sent to it will be printed in emphasized print, 
as you can verify by typing (9D ~ to turn on the printer, and then 
typing something. 

Wow! Look at that! If you haven't used emphasized mode before, 
you'll be amazed at how nice it is. Of course it takes twice as long to print 
everything, because the printing head has to make two passes across the 
page for every line; but this is a small price to pay if you are writing a 
letter that may land you a hot new job. 

Turning Off Emphasized Print 

How do you get back to normal print mode, when you no longer want 
emphasized print? Simply send another control code, this time 
<escape>"F". Here are the "A" and "U" listings for a program to do 
that. As you can see, it is identical to the EMPHAP program, except that 
it sends <escape>"F" instead of <escape>"E". 

-a100 
0905:0100 mov cx, 2 
0905:0103 mov bx, 111 
0905:0106 mov dl , [bx] 
0905:0108 mov ah, 5 
0905:010A int 21 
0905:010C inc bx 
0905:010D loop 106 
0905:010F int 20 
0905:0111 db lb, 'F ' 
0905: 0113 

-u100,10f 
0905:0100 B90200 
0905:0103 BB1101 
0905:0106 8A17 
0905:0108 B405 
0905:010A CD21 
0905:010C 43 
0905 :010D E2F7 
0905:010F CD20 

MOV 
MOV 
MOV 
MOV 
INT 
INC 
LOOP 
INT 

CX,0002 
BX,0111 
DL, [BX] 
AH , 05 
21 
BX 
0106 
20 
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Here too is the "D" dump showing the two characters in the message 
buffer: 

-d110 , llf 
08Fl :0110 76 1B 46 C0 A2 70 46 A2-6F 46 A2 6E 46 04 02 A2 

~ letter"F" 
"Escape" code 

v. F@"pF"oF"nF .. 11 

'( 
ASCII equivalents 

Save this program as "NORMALP.COM" (for NORMAL Print). Try it 
out. The printer should revert to normal mode. 

You can modify these little programs to do other things to your 
printer. Sometimes you need to send it only one control character (instead 
of the two in these examples), and sometimes it needs three. For example, 
for double-width printing you need to send three characters: 
<escape>"W"l (that's "W" followed by the number 1). <escape>"W"0 
turns double-width mode off. <escape>"A"l8h causes the printer to 
double space. 

Now that you know how to take command of the printer, you could be 
in great demand by IBM PC users who want a quick way to tell their 
printer to change modes, and are tired of doing it in BASIC, or not at 
all. 

Summary 
In this chapter you've practiced your assembly-language skills at the 

same time you learned about DOS function calls. You've been introduced 
to the Disk Operating System and its various parts, and seen how they 
work together. You should know what function calls are, and how they are 
typically called from your assembly-language program. You've learned a 
number of new function calls, and you know how to get strings from the 
keyboard and send them to the video screen and the printer. 

We've also covered indirect addressing - a powerful technique for 
accessing memory - and its use with the BX register as a pointer. You 
may be surprised that we have introduced no new 8088 instructions. In 
fact, the ones you've learned already are so powerful, when used with 
function calls, that you've needed only five instructions for all the 
programs in this chapter. 

In the next chapter you'll learn some new instructions, and also how 
to use MASM and ASM, the full-size, ultra-sophisticated assemblers we'll 
be using in the rest of the book. 
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~ 
Introduction to the IBM 
MACRO Assembler 

Concepts 
MASMandASM 
Source and object files 
TXT, OBJ, EXE, and COM files 
The LINK and EXE2BIN programs 
LST files 
Deciphering machine language op-codes 
Using batch processing 

J n this chapter we're going to move into the big leagues and 
introduce you to the MACRO assembler that's available from IBM as the 
standard assembler program for the PC. We'll talk about the purpose of 
an assembler, its differences from the "A" command in DEBUG, and 
then use the assembler to assemble the happy face program that was 
your first programming example in chapter 2. You'll learn how to create 
a "source file" using your word processor or text editor and how to 
assemble, link, and convert your program to a COM "object file." 

For practice, we'll run through the process again with a second 
program you're already familiar with, the SMASCII program from 
chapter 4, and show you how to use another important feature of the 
assembler, the LST file, which gives the most complete possible picture of 
your program. 

This chapter will use short examples to explain the operation of the 
assembler. In the next chapter you'll put what you've learned to more 
senous use. 
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MASM and ASM 
As we mentioned in the Introduction, IBM actually provides two 

different assemblers on the same disk when you buy the IBM MACRO 
Assembler. One is MASM, the full-scale version of the assembler. The 
second is ASM, a small-scale version of MASM which takes up less 
memory and therefore loads from the disk somewhat faster than MASM, 
but which lacks some of MASM's more sophisticated features. The 
difference in memory is important if you have a 64K machine, since only 
ASM will fit in this space. To run MASM you need at least 96K; 
preferably more, so you can assemble larger programs. The features left 
out of ASM are macros, conditional assembly, and full printout of error 
messages. 

If you have only 64K you will have to use ASM. If you have 96K or 
more you have a choice. Our preference is to use ASM, since it is smaller 
and therefore loads from the disk into the PC somewhat faster than 
MASM. Since we will be doing a great many comparatively short 
assemblies in this book, it makes sense to use the fastest possible method. 
The error messages - which are given as numbers in ASM - are easily 
looked up in the back of the IBM Personal Computer MACRO Assembler. 

However, whether to use ASM or MASM is really a matter of 
personal preference (that is, if you have 96K or more). Try out both 
assemblers. They will operate in just the same way, except for the points 
noted above, so either can be used with this book. Since we prefer to use 
ASM, we will refer to ASM when we are talking about the assembler, but 
you can use MASM instead if you wish. 

Word Processor, Text Editor, or Programs 
As we mentioned in the introduction, you will need some sort of text 

editor or word processor program in order to create the text files that 
constitute the input to the assembler. It is possible to use EDLIN, the text 
editor included as part of the PC-DOS operating system. This works 
adequately, especially on short programs. However, as the programs get 
longer you will appreciate more and more some of the advanced features 
of a good word processing program, such as screen editing (moving the 
cursor around the screen to make corrections, rather than doing it line by 
line as in EDLIN), the ability to move quickly from one part of a long 
document to another, the greater ease of making insertions and deletions 
in a line, and the ability to move entire blocks of text from one part of the 
document to another. 

We are going to assume that you have either EDLIN or a word 
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processor up and running on your system, and that you know enough 
about how to use it that you can type in the simple example programs 
from this book. 

If you are using a word processor that has a "nondocument" mode 
- that is, one designed especially for program listings (as opposed to 
paragraphs of prose) - then you should use that feature. 

What Does an Assembler Do? 

You already know - from using the "A" command in DEBUG- that 
an assembler takes symbolic instructions (like MOY AH,2) and 
transforms them into machine language: the binary numbers which are 
actually placed in the memory of the computer to be executed by the 
8088 microprocessor (like 10110100 00000010). We see a hexadecimal 
representation of these binary numbers (B402) when we use the "U" 
command in DEBUG to "unassemble" our program. This process is shown in 
Figure 5-l. 

As you learned, a program consisting of binary numbers can then be 
saved on the disk as a COM file. 

Input to the Assembler 
The operation of a true assembler such as ASM (or MASM) is 

somewhat different from that of the DEBUG "A" command. The first 
difference is that instead of typing the symbolic instructions directly into 
the program, as you do in DEBUG, you type them into a completely 

Binary numbers 
in the computer's 
memory 

I -
B4 

/ 

02 Output 
CD .,. -
21 .,. 

CD 

20 .,. 

,, Symbolic 
- Instructions 

DEBUG "A" 
command Input MOV AH,2 

- INT 21 
INT 10 

,,, -
(Typed into 
DEBUG) 

Figure 5-1. Input and output of the DEBUG "A" command 
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separate text file created with a word processing program. This text file -
which must always have the file extension ASM (as in MYPROG.ASM) -
then becomes the input for the ASM program. 

Source files for ASM (or MASM) always have the file 
extension ASM 

Output from the Assembler 

The outputs of the "A" command and ASM are also different. The 
"A" command simply puts binary numbers into the computer's memory, 
in the form of a program which can be immediately executed. ASM, on 
the other hand, creates a disk file called an OBJ (for "OBJect") file. This 
OBJ file cannot simply be loaded into memory and executed. It is in a 
complex format and contains information about where various parts of 
the program are to be loaded and how they might be combined with 
other programs. 

Figure 5-2 shows the input and output of the ASM program. 

Disk file called 
"PROGRAM.OBJ" 

Output 
ASM 
program 

Figure 5-2. Input and output of ASM 
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Disk file called 
"PROGRAM.ASM" 

MOV AH,2 
INT 2 
INT 20 

-----



The LINK and EXE2BIN Programs 
It's the job of a completely different program, called LINK, to turn 

the OBJ file into a file which can be loaded into memory and executed. 
At this point we don't need to know too much about what LINK does. 
(We'll cover the more sophisticated uses of LINK in later chapters.) We 
do need to know that the output of LINK is a kind of file called an EXE 
(for "EXEcute") file. EXE files can be loaded into memory directly and 
executed. They can also, if they are written correctly, be converted into 
COM files which are just the same as the COM files that result from 
saving to disk a program typed into DEBUG using the "A" command. A 
program called EXE2BIN ("EXE to BINary") is used for this conversion. 
(Actually EXE2BIN gives its output file - unless it's told otherwise - an 
extension of BIN, but this is essentially the same as COM. More on this 
later.) 

What a lot of file extensions to have to think about! Don't worry. It's 
not really as bad as it looks. Figure 5-3 shows the relationship of the 
programs ASM, LINK, and EXE2BIN to ASM, OBJ, EXE and COM 
files. 

COM or EXE, What's the Difference? 
Both COM and EXE files can be loaded into memory and executed 

as programs. What's the difference between these two kinds of files, and 
why would we prefer one over another? 

A COM file is the simplest way of storing a program. It consists only 
of the binary numbers that make up the program. Since there is no other 
information in the file besides these binary numbers, a COM file takes up 
the smallest possible amount of space in memory; whereas an EXE file, 
which also contains a "header" consisting of various information about 
the file, is much longer. If your program is 100 bytes long, the COM file 
will be 100 bytes long. An EXE file, on the other hand, has a minimum 
length of 640 bytes, even if your program is only 2 bytes long. Because 
they are smaller and simpler, COM files load faster than EXE files. 

Another advantage of COM files for our purposes in this chapter is 
that they can make use of the simple INT 20 return to DEBUG. INT 20 
works all right in EXE programs executed directly from DOS, but in 
DEBUG it causes trouble, and we'll be using DEBUG a good bit in this 
chapter to execute and interact with our programs. EXE files require a 
more complex return procedure, so we can avoid a little overhead by 
using COM files. 

On the other hand, there are disadvantages with COM files. First, 
they cannot occupy more than 64K of memory space. This is not a 
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problem in the relatively small programs we will be writing in this book, 
but for large system programs it can be a disadvantage. 

Second, COM files cannot be linked up with other files when they are 

Executable 
program 

I 
E4 , ..... 

61 
~ 

24 , 

FC 

34 

02 

EC 

Cl ..... 

ASM file 

© 
0 

ASM program 

OBJ file 

© 
0 

LINK program 

EXE file 

© 
0 

EXE2BIN 
program 

COM file 

© 
0 

Figure 5-3. Relationship of ASM, LINK, and EXE2BIN 
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loaded. The real purpose of the LINK program is to be able to combine 
several different programs into a larger program when they are loaded. 
This can have all sorts of advantages in sophisticated programming 
situations. We'll cover some of these toward the end of the book, but for 
the moment we don't really care about this advantage of EXE files either. 

The third advantage of EXE files is that it is easier to make use of 
different memory segments to perform different functions. We'll be 
discussing memory segmentation in a later chapter, so again, for the time 
being, this advantage is not important to us. 

The last advantage of EXE files is important to us, and that is the fact 
that it takes one more step to turn an ASM file into a COM file than it 
does to turn it into an EXE file: the use of the EXE2BIN program to 
change the EXE file into a COM file. This is an inconvenience, but not a 
serious one for short programs. 

All things considered, it seems easiest to start off producing COM 
files, so that's what we'll do in the balance of this chapter. 

Assembling Your First Program 

Now that you have a rough idea of what an assembler is supposed to 
accomplish, let's give ASM (or MASM, if you have chosen to use it) a try 
and see how it works in real life. Our first program will be the very 
simple one we started off with in chapter 2: putting the happy face on 
the screen. 

Organizing Your Disk 
In writing this book we used a PC with double-density, double-sided 

disk drives. There is plenty of room on these diskettes for all the files 
we'll be using to assemble programs. These files are: 

ASM 

Word Processor Program (including overlays) 

LINK 

EXE2BIN 

DEBUG 

The ASM file for our program 

The OBJ file for our program 

The EXE file for our program 

The COM file for our program 
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The LST file for our program (more on this later) 

However, if you have disk drives with smaller capacity, you may need 
to distribute these programs between two different diskettes. You could, 
for instance, keep the word processing program and the ASM files of 
your programs on one drive, and the ASM, LINK, and EXE2BIN and 
DEBUG programs on the second drive. 

There are too many variables here to recommend a system that will 
apply to everyone. In this book we'll assume that all programs are on a 
single diskette in the A drive. 

Creating the ASM File 
Set up your word processing program (or EDLIN) to create a file 

called HAPPY2.ASM. (The "2" distinguishes this program from the one 
you wrote earlier.) Note that you don't have a choice about the file 
extension ASM: all files that will be used as input to the assembler must 
have this extension. 

Now type in the following program: 

prognam segment -------, 

assume cs : prognam .,__ 

mov dl , 1 
mov ah,2 
int 21h 
int 20h 

prognam ends --------, 

end --------

These additional statements are 
necessary when using ASM 

(Note that the segment name used in the first, second, and next-to-last 
lines of the program is "prognam", not "program".) 

A tab setting of 8 on your word processor is useful in spacing over to 
the column where the instructions are, although as far as the assembler is 
concerned a tab or any number of spaces are equivalent. We use two 
spaces between the operator (the instruction itself, like "MOV" or "INT") 
and the operand (the thing the operator operates on, like "dl,l" and 
"2lh"), but here again the assembler will like one or more spaces or tabs 
just as well. 

The blank lines are inserted for clarity: to separate parts of the 
program that do different things. You can put them in with your word 
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processor by simply hitting g twice at the end of a line. 
Once this program is typed in as shown, and saved to your disk as 

HAPPY2.ASM, it becomes the source file for your program. We'll explain 
how to assemble it in a moment, but first let's make sure we understand 
all of the details. 

You should recognize the entire middle part of the program: it's 
almost exactly what you typed into DEBUG using "A" in order to create 
the happy face program in chapter 2. 

Using Numbers in ASM 

There is one subtle difference, though. Can you find it? That's right: 
the numbers 21 and 20 are followed by an "h". This is because ASM 
assumes numbers are decimal unless told otherwise; whereas DEBUG always 
uses hex numbers. This doesn't matter on smaller numbers, like the 1 
and the 2, which are the same in decimal and hex, but it's very important 
for all numbers over 9. It's also very easy to forget, so if your program 
doesn't work, this is one of the first things to look for: Are all hex 
numbers followed by "h"? 

When using the assembler, all hexadecimal numbers must be 
followed by the letter "h". 

Although the middle part of the program is roughly the same as the 
DEBUG version, four new lines have been added - two at the beginning 
and two at the end of the program. Let's take a look at them and see 
what they do. 

Defining the Segment 

Two of the new program lines form a pair. These are: 

prognam segment 

and 

prognam ends 

These lines tell ASM and LINK that the program will be located in a 
segment called "prognam" (for "PROGram NAMe"). This can be any 
name you like, but these two statements must be here, and the same 
segment name must be used in both. Later, when we talk about memory 
segmentation, we'll find out what these lines really do. Now however you 
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must accept them on faith: they're there, they must be there, and that's 
how it is. 

Similarly the line 

assume cs:prognam 

must also be included at the start of the program. It tells the assembler 
that the segment where the program is, "prognam", is the one which will 
be in the CS (Code Segment) register. It's not clear why the assembler 
can't make this assumption by itself, but it can't, so again this line must 
be here, and that's how it is. 

The END Pseudo-Op 

In the last chapter you learned about the "DB" pseudo-op, which was 
an instruction to the assembler (either the DEBUG "A" command or to 
ASM) to put certain bytes into memory. END is also a pseudo-op, or 
instruction to the assembler. Its purpose is very simple: it tells ASM that 
the program is over, and not to expect any more program lines. Failure 
to include END at the end of your program will cause the assembler to 
generate petulant error messages, although it will still assemble correctly. 
Later we'll see that END can also be used to specify the starting point of 
a program. 

Now you know about all the parts of the program in the ASM file. 
Remember the four new lines you've learned: 

prognam segment 
assume cs:prognam 
prognam ends 

end 

These same lines (with perhaps a different segment name) will appear, 
always in the same order, in all the programs you write to generate COM 
files. 

Using ASM to Create the OBJ File 
The next step is to assemble the program. We'll assume that you have 

HAPPY2.ASM (the file you have just created), the program ASM (or 
MASM), the program LINK, and the program EXE2BIN on the disk in 
drive A. 

You then type: 

A>asm happy2 
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Notice that you don't type the file extension following the file name. The 
assembler assumes that any file it's going to assemble has the extension 
ASM. If you type in the extension, the assembler will be confused and 
trouble can result. 

Don't type the file extension of the file you are about to 
assemble with ASM (or MASM). 

The assembler will respond with a sign-on message, and then ask you 
to tell it the names of three files: the OBJ file to be generated (as we 
discussed above), the listing file (LST), which we'll ignore for the moment 
but come back to later, and the cross reference file (CRF), which we won't 
worry about for the moment either. The assembler has already decided 
what names you are probably going to give to these files, and included 
them in square brackets as default values. ("Default" means what you get 
if you don't specify something else.) These default values are 
HAPPY2.OBJ, NUL.LST, and NUL.CRF. The name "NUL" means "no 
file," so in fact no list or cross-reference files will be generated if these 
NUL names are used. To invoke these default values, all you have to do 
is press g after each of the colons. 

Here's what the assembler prints: 

The IBM Personal Computer Assembler 
Version 1. 00 (C)Copyright IBM Corp 1981 

Object filename [HAPPY2 .0BJ]: 
Source listing [NUL.LST] : 
Cross reference [NUL.CRF] : 

Warning Severe 
Errors Errors 
0 0 

<- Press ENTER for HAPPY2.0BJ 
<- Press ENTER for no LST file 
<- Press ENTER for no CRF file 

Once you've pressed g three times, ASM will go on to 
assemble the program. This will take a few seconds, and you'll hear the 
disk clicking as it reads the ASM file and writes the OBJ file. 

ASM Error Messages 

Once the program is assembled the number of "Warning Errors" and 
"Severe Errors" will be printed out. This is the moment of truth, and it's 
hard not to feel a little adrenaline rush while you wait to see whether 
your assembly will be perfect, or whether there are all sorts of disastrous 
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errors that will involve lots of puzzlement and extensive rewriting of your 
program. A silent prayer is often helpful here, as the assembler goes 
about its work. 

Warning errors are caused by things the assembler doesn't understand, 
but which it doesn't think are serious enough to keep the program from 
assembling correctly. Severe errors are those which it thinks will result in a 
nonfunctional program. You should go back and fix up either kind of 
error before going on to use LINK. 

If there are errors, their reference numbers (or a brief description, if 
you're using MASM) will be printed out immediately following the 
program line in which they occur. You can cause these errors to be 
printed to your printer if you toggle it on with ~ ( PrtSc ) before you 
call ASM. (They will also be included in the LST file, which will be 
generated if you type HAPPY2.LST in answer to the second file name. 
We'll get to the LST file soon.) All the errors and a few lines describing 
likely causes for them are listed in appendix A of the IBM Personal 
Computer MACRO Assembler manual. You may spend many happy hours 
browsing through that appendix, so you should make sure you can find 
it. 

At this point any errors should be the result of mistakes made while 
typing in the program. A popular error is number 10, "Syntax Error," 
which occurs when the assembler can't figure out what you're trying to 
say. However, typing mistakes can generate all sorts of strange messages 
as well, some of which may be very obscure, so the first thing to do if 
errors occur is to proofread your ASM source file. When you find the 
error, correct it with the word processor, then go back and reassemble the 
ASM file. Do this until you achieve an error-free assembly. 

The result of a successful assembly is the HAPPY2.OBJ file. When 
the assembly is completed, you can use DIR to look for this file on your 
diskette. 

Using LINK to Create the EXE File 
Assuming that you now have the HAPPY2.OBJ file on your disk, the 

next step is to convert the OBJ file to an EXE file, using the LINK 
program. 

Type the following: 

A>link happy2 

Again, you must not use a file extension. LINK is expecting an OBJ file, 
and telling it that it has one will only confuse it. The linker will respond 
with messages similar to those of the assembler. The "run file" is the 
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EXE file that we want. The list file is useful if we are linking larger 
programs together, but will not be useful now. Libraries are groups of 
programs that you may call on in special circumstances to combine with 
your program (such as those used when linking Pascal programs) but will 
not concern us here. So, as you did with ASM, you simply press g 
in response to all three file names: 

IBM Personal Computer Linker 
Version 2.00 (C)Copyright IBM Corp 1981 , 1982, 1983 

Run File [HAPPY2.EXE] : 
List File [NUL.MAP]: 
Libraries [.LIB]: 
Warning: No STACK segment 

~ P,ess ~gl to, HAPPY2.EXE 
- Press +J for no MAP file 
- Press +J for no LIB files 

There was 1 error detected. 

The phrase "Warning: no STACK segment," and the fact that there 
was "1 error detected" don't really mean anything to us at this point. 
Stack segments are not used in COM files, so there's no way we can get 
rid of these "error messages." This is unfortunate, since they sit there 
making us feel a little nervous and guilty, even after we've proved that 
our program is going to run just fine. 

The linker can generate all sorts of other error messages as well, but 
if you've typed in the above program correctly they should not appear. 

The result of this LIN King process should be the file HAPPY2.EXE 
on your disk. Make sure it's there with DIR. 

Using EXE2BIN to Create a COM File 

EXE2BIN is easier to use than ASM or LINK. All you do is type 
"exe2bin", then the name of the EXE file you want to convert, again 
without the file extension, and finally the name of the file you want to 
convert it to, this time Uust to keep you on your toes) with the file 
extension. 

A>exe2bin happy2 happy2 . com 
t t 

EXE fi le COM file 
(no extension) (extension.COM) 

The default value of the second name is a file with an extension of 
BIN, so if you leave the second name out, (like this): 

A>exe2bin happy2 
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you'll get a HAPPY2.BIN file. If you then want to run this directly from 
DOS you'll have to convert it to a COM file with the RENAME utility. So 
the first approach - typing in the desired COM file - is simpler. 

Running the Program 
You should now have a file called HAPPY2.COM on your diskette. 

You can execute this file directly from DOS, simply by typing the 
filename - no extension is required. 

A>happy2 
Q 

<------ You type the program name 

<------ Happy face appears 
A> <------ Returns to DOS 

You can also execute the program from DEBUG, after loading it in 
when you call up DEBUG. In this case, you do need the file extension. 
(Learning when to use extensions and when not to use them is, as you 
can see, part of an elaborate initiation ritual.) 

A>debug happy. com 
-g 

<------ You type this to load program 

<------ You type this to execute program 

<------ Program prints happy face Q 

Program terminated normally. <------ Return to DEBUG 

<------ New DEBUG prompt 

What Good Is It, Anyway? 
So, after all that, we're just about back to where we were when we 

typed the program in using the "A" option in DEBUG. It's a lot more 
complex using this assembler approach to go from typing in the 
program to executing it, and there don't seem to be any benefits. So far, 
that's true. The advantages of the assembler only start to be apparent 
when we get to longer programs. However, before we plunge into really 
big programs, we need to develop our familiarity with the assembler and 
the assembling process. 

Let's do a slightly longer program now - one which shows off 
(among other things) one of the really nice features of the assembler: 
symbolic addressing, which is using names for addresses instead of 
numbers. · 
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Assembling SMASCll2 
Remember SMASCII, the program that printed out all the ASCII 

characters just once and then returned very nicely to DOS or DEBUG? 
Hop into your trusty word processor and type it in (using the assembler 
format from the last example) like this: 

prognam segment ;start of segment 

next: 

assume cs :prognam ;assume what's in CS 

mov cx ,100h 
mov dl , 0 

mov ah , 2 
int 21h 
inc dl 
loop next 

int 20h 

;put count in ex 
;first ASCII character 

;Display Output funct 
;call DOS to print 
;next ASCII character 
;do again , unless done 

;return to DOS 

prognam ends 

end 

;end of segment 

;end of assembly 

Comment Fields 
As you can see, there are several new things in this program. The 

most obvious is that the program lines have comments added to them. 
This is a really nice aspect of assembly language, as compared at least 
with interpreted languages like BASIC. You can put as many comments 
(each preceded by a semicolon";") in the source file as you like - they 
won't add anything to the OBJ, EXE or COM files. All they do is make 
the program much easier to understand. 

Not all programmers add a comment to every line, as we have done 
here, but they probably should. An assembly-language source file is not 
necessarily an easy thing to understand, and the more comments you add 
the easier it becomes. Don't forget that - even if no one is ever going to 
look at your program but you - what's clear to you now may be obscure 
when you go back to make a change in the program. And if anyone else 
is ever going to look at your listings, comments are even more important. 
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You can never have too many comments in an assembly
language source file. 

As an example of good use of comments, look at the ROM BIOS 
listing in appendix A of the IBM Personal Computer Technical Reference 
manual. Every line (unless it's part of a table of similar items) has a 
comment. 

If you think this sounds like we're exhorting you to use a lot of 
comments in your listings, you're right. No one was ever sorry for having 
explained too many things, but the wailing and lamentation of 
programmers who didn't use enough comments can be heard throughout 
the land. 

The rule for using comments is very simple: comments must start with a 
semicolon. They can occur anywhere on a line, but everything following 
the semicolon will be treated as a comment; that is, it will be ignored by 
the assembler. The usual places to start comments are at the beginning of 
the line, or at the beginning of the comment field. 

What's a "field"? It's simply one of the parts of a line of assembly 
code. There are four fields: 

The label field 

The operator field 

The operand field 

The comment field 

Here's an example of an instruction that uses all four fields: 

start: mov dl,l ;first character .__, _,,_ .__, 
I L Comment field 

L Operand field 

Operator field 

~----- Label field 

You've met operators and operands before. The comment field is to 
the right of the operand field, and is separated by one or more spaces or 
tabs. What about the label field? Read on. 
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Symbolic Addresses 
You've probably noticed another new aspect of the program: the 

name "next:" halfway through the program, and the "loop next" at the 
bottom. What's that all about? 

In the DEBUG version of this program we said "loop 105", in order 
to jump back and display the next character. You can see by comparing 
the two versions that the word "next" now stands for the address 105. The 
advantage of using a symbolic name is that when we're writing the 
program we don't need to know, or care, what actual address we'll be 
jumping back to. We just put the label - as the "next:" in the left column 
is called - at the appropriate line in the program. Then whenever we 
want to refer to this place in the program, we don't need to know its 
address, we simply refer to the name used as the label. 

One of the more obvious benefits of labels is that it's easier to change 
our program - by adding or deleting a line, for instance. Suppose we 
added an instruction to the early part of the SMASCII program so that 
instead of LOO Ping back to 105, we were LOO Ping back to 107. If we 
were using numbers for addresses we would have to change the LOOP 
instruction itself, to LOOP 107. But if we're using labels no change is 
necessary, since the assembler will now figure out where the "NEXT:" 
label is, and modify the LOOP NEXT instruction accordingly. 

The label can be quite long - up to 31 characters. (Actually it can be 
longer, but only the first 31 characters are recognized by the assembler.) 
This makes it possible to use very descriptive labels, like "line_inpuL 
flag". (The words of multi-word labels can be separated by underline 
symbols.) However, the use of very long names tends to make it harder to 
produce an organized looking listing, since it's harder to get the columns 
to line up. In this book we'll stick to fairly short names, but for an 
example of some longer names, look at the ROM BIOS listing in your 
IBM Personal Computer Technical Reference manual, and at the Bluebook of 
Assembly Language Routines for the IBM PC and XT by Christopher L. 
Morgan (New York: Plume/Waite, New American Library, 1984). 

The label field is the first one on each line. It's separated from the 
operator field by one or more spaces or tabs, as usual. We'll show you 
many more examples of labels used for symbolic addresses as we go 
along. A label field can either go on the same line as the instruction it 
labels, or it can go on the preceding line. 
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0000 

0000 
0003 
0005 
0005 
0007 
0009 
000B 

000D 

000F 

"Symbolic Addressing" means using a name to refer to an 
address rather than the actual hexadecimal number. 

We're going to assemble SMASCII2 in just the same way as we did 
HAPPY2, with one exception: we're going to generate a new file, one of 
the ones for which we used the default value of NUL last time. This is 
the LST, (for LiST), file. The reason we want to produce this file will be 
obvious once we see it. 

So, with your SMASCII2.ASM file and ASM and LINK on the same 
disk, call up ASM and answer its questions the same way as before, 
except that for the second file name, instead of hitting~' type the 
program name. You can also add the file extension LST, but it's not 
necessary, since if you don't type it, "LST" will be added automatically. 

The LST File 
Now if you use DIR to look at the directory you'll see a new file: 

SMASCII.LST. Use the TYPE function from DOS to type it out. It 
should look like this: 

PAGE 1-1 

prognam segment ;start of segment 

assume cs :prognam ;prognam in CS 

B9 0100 mov ex , 100h ;put count in ex 
B2 00 mov dl ,0 ;first ASCII character 

next : 
B4 02 mov ah ,2 ;Display Output funct 
CD 21 int 21h ;call DOS to print 
FE C2 inc dl ;next ASCII character 
E2 F8 loop next ;do again, unless done 

CD 20 int 20h ;return to DOS 

prognam ends ;end of segment 

end ; end of assembly 

Page Symbols-1 
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Segments and groups: 

PROGNAM. 

Symbols: 

NEXT .. ... 

Warning Severe 
Errors Errors 
0 0 

N a rn e 

N a rn e 

Size align combine class 

000F PARA NONE 

Type Value Attr 

L NEAR 0005 PROGNAM 

Well, isn't that the slickest thing you ever saw? All the addresses and 
actual machine language are printed out next to the symbolic instructions 
that represent them. This is a fascinating listing, because it shows us 
what the assembler did. The input to the assembler, the source or ASM 
file, is represented by the columns on the right, and the output - the 
OBJ file - is represented by the columns on the left. There is a lot of 
space between these two columns because the assembler, as you will see 
later on, often generates a lot of hex numbers for a single assembly
language instruction. 

This part of the LST file, showing the program, is the bread and 
butter file when debugging (finding the errors in) assembly-language 
programs. To debug a program, or even to understand it completely, it's 
usually necessary to be able to look at both the assembly-language and 
the machine-language versions of the program side by side. The machine 
language by itself is too obscure and hard to understand, and the 
assembly-language object code doesn't tell you what the assembler 
program has really placed in your computer's memory. You will generally 
need to print out the LST file on your printer to get the full benefit from 
it, although it is possible to debug programs without the printed version. 
In the next chapter we're going to introduce DEBUG's powerful "T" (for 
"trace") command, and then this LST printout will prove invaluable for 
following what is really going on in your program. 

Following the program are two lists called "segments and groups" and 
"symbols." The segment name you used in the program is the only entry 
in the first list, and the label "next" is the only entry in the second. These 
lists are generated because in larger programs it often helps to be able to 
quickly look up the location of a particular symbol or segment name. For 
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the smaller programs we will be concerned with, these lists are not so 
important, and can usually be ignored. 

Linking SMASCII2 
The linker is used just as it was before: 

A>link smascii2 

IBM Personal Computer Linker 
Version 2.00 (C)Copyright IBM Corp 1981, 1982, 1983 

Run File [SMASCII2. EXE]: <- Press ENTER 
List File [NUL. MAP] : <- Press ENTER 
Libraries [.LIB]: <- Press ENTER 
Warning: No STACK segment 

There was 1 error detected. 

And again this should generate an EXE file, whose existence you can 
check using DIR. 

Converting SMASCII2 with EXE2BIN 
To convert the EXE file to a COM file, type: 

A>exe2bin smascii2 smascii2.com 

Executing SMASCII2 
As before, SMASCII2 can be executed either from DOS or from 

DEBUG. From DOS, type: 

A>smascii2 

and from DEBUG, type: 

A>debug smascii2.com 

-g 

Either way the program should run just as it did before, when you 
created it with DEBUG's "A" command. If not, back to the old drawing 
board. There's probably a typo somewhere. 
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Deciphering Machine-Language Op-Codes 

Now that you have a LST file to study, you may have begun to wonder 
exactly what the correspondence is between the assembly-language 
mnemonics and the hex numbers in the resulting machine code. For 
instance, you have probably noticed that INT 20 always translates into 
the hex number CD followed by the hex number 20. CD is obviously the 
op-code for INT, and the 20 is simply an 8-bit number, so this instruction 
isn't hard to figure out. 

However, for other instructions, like MOV, things can get rather 
complicated, and all sorts of different hex numbers can turn up in the 
machine language translation. In the SMASCII listing above, for 
example, B9, B2, and B4 are all used for the MOV instruction. How does 
the assembler know which of these numbers to use? And do we really 
need to know how it knows this? 

We aren't usually going to be too concerned with the actual numbers 
stored in our computer's memory. After all, you have the assembler to 
generate these numbers for you, and if you have some numbers and you 
want to know what they mean, you can always use the "U" command to 
disassemble the code. For this reason we don't show the machine 
language equivalents in the instruction summaries in this book. 

A Simple Example 
Once in a while, however, it's useful to know exactly what the binary 

equivalent of a certain instruction is supposed to be. Figuring it out can 
be an obscure process, but let's run through it for an example 
instruction, say the MOV CX, 1 0Oh instruction which is the first one in 
the SMASCII program above. The machine-code equivalent of this 
instruction, as shown in the LST file, is B9 0100. The 0 100 is clear 
enough - it's simply the constant that will be MOVed to CX. But where 
does the B9 come from? 

First, look up MOV in the IBM Personal Computer MACRO Assembler 
manual. You'll find several sections devoted to this instruction. The one 
you want is "TO Register FROM Immediate-data". Under "Encoding" 
you'll see the cryptic notation: 

1011 wreg data data-high* 

*present only if w = 1 

Let's analyze this. The first four digits, 1011, are binary for the hex 
number "B". That explains where the first digit of the B9 0100 comes 
from. The "w" means "word". The 8088 needs to know whether it's 
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supposed to be MOVing a byte or a word, and "w" represents a single bit 
which tells it. If this bit is on (set to 1), the data is a word. If it's off 
(cleared to 0), then the data is a byte. 

How about the "reg"? As you may have guessed, this stands for 
"register". If you look at the beginning of the chapter on instruction 
mnemonics in your IBM Personal Computer MACRO Assembler manual, 
you'll see a table showing the "reg" values for all the registers and their 
numbers. There are actually two tables, one for 8-bit registers (like CL), 
and one for 16-bits (like BX). Our instruction is going to put a word into 
the 16-bit register CX, so what we want is the 16-bit code for CX, which 
is given as the 3 digit binary number 001. 

Putting all this together, we can now construct the first two digits of 
the op-code, as shown in Figure 5-4. 

So that's how the hex number B9 0 I 00 is constructed. Unfortunately, 
there are even more complicated examples. 

A More Complicated Example 
When indirect addressing is used in an instruction the calculation of 

the machine language op-code becomes somewhat more involved. Take 
for example the MOY DL,[BX] instruction at address 0106 of the 
PRINTHI2.COM program. (As you recall, this instruction uses indirect 
addressing, signaled by the square brackets, to MOVe the contents of the 
memory location contained in BX, and place it in the DL register.) The 
machine language equivalent of this instruction, as shown in the "U" 
listing for the PRINTHI2.COM program, is 8Al 7. Where do these 
numbers come from? 

reg 

B 9 

"w" = 1 because we're moving 
a word, not a byte. 
"reg" = 001, the code for 
the CX register: 

Figure 5-4. Machine code of the MOV CX,0100 instruction 
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Again, look up the MOV instruction in the IBM Personal Computer 
MACRO Assembler manual. This time we want the section called: 

TO Register FROM Register 

TO Register FROM Memory-or-Register Operand 

TO Memory-or-Register Operand FROM Register 

The encoding here is given as: 

100010dl modregr/m addr-low* addr-high* 

*these bytes omitted in register to register moves, when ... 

Now if that doesn't look like an expression from genetic engineering, 
what does? Let's see if we can make sense of it. 

Figure 5-5 shows what is meant by the various notations in the two
byte form of this instruction. The addr-low and addr-high are not used 
in the particular case of MOV DL, [BX], because we are not using what 
is called the "displacement," which is simply an address like 0200 (or a 
label representing the address). 

As you can see, the first six bits of the instruction are always the 
same. The next bit is the "d" bit, which stands for "Direction." If d = 1, 
data goes from memory to a register; if d = 0, data goes from a register 
to memory. The term EA is used to refer to memory. It stands for 
"Effective Address," which means the actual memory address where the 
data is to be placed (or taken from). This EA may be found by combining 
several different things, like a displacement, and the number in BX, and 

8 A 7 

67(:(:f :(:(:(: (~J (:f :(:(;[:(~6' (~J --- --- ~ 
::~c"e"~"EA 1 ;:d";"w" /mod 

destination = reg 

reg 
/ 

reg = 010 
Indicates DL register 
(8-bit register) 

rim 

I 
When "w" = 0, 
we're moving a 
byte, not a word 

mod= 00 When r/m = 111 
Indicates that EA = [BX) + displacement 
displacement high and 
displacement low ore absent 

Figure 5-5. Machine code of the MOY DL, [BX] instruction 
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the number in another register like SI. (We'll see examples of these more 
complex addressing modes later in the book.) In our case the EA is 
simply the number in the BX register. 

Next we have the "w" bit, which we have discussed. It is 0, because we 
are dealing with a byte. (In our edition of the IBM Personal Computer 
Macro Assembler manual there is a misprint for the value of this bit: it is 
shown as a "l ", instead of a "w" as it should be.) 

Now we get to a new designation, the "mod" field. "Mod" stands for 
"MODify," and is used to indicate whether displacement fields are part of 
the instruction, and if so whether there will be high and low 
displacements, or just low. We are not using displacements, so this field is 
set to 00. The various values of the "mod" field are listed at the 
beginning of the chapter on instruction mnemonics in the IBM Personal 
Computer MACRO Assembler manual. 

We've talked about the "reg" field. In our example the code 0 10 
indicates the DL register, since we are talking about 8-bit registers (as 
specified in the "w" bit). 

Finally we have a new field, "rim," which stands for 
"register/memory." The various values this field can take on are also listed 
in the instruction mnemonics chapter referenced above. In our case r/m 
= 111, which means EA = [BX] + displacement. Since we are not using 
a displacement (as indicated by the "mod" field), this can be interpreted 
as EA= [BX]. 

Putting all these fields together, as shown in Figure 5-5, we arrive at 
the hex number 8Al 7 for the machine-language translation of MOV 
DL,[BX]. 

Whew! Imagine how hard the MACRO Assembler has to work to 
figure this kind of thing out, dozens of times a second. Remember, you 
will very seldom need to go through this process - but now you know 
how to do it. 

For more detail on this topic see 8088/8086 16-bit Microprocessor 
Primer by Christopher L. Morgan and Mitchell Waite (New York: 
Byte/McGraw-Hill, 1982). 

Using a Batch File to Speed Assembly 
We've assembled two programs in this chapter, and the steps have 

been the same for both. We call up the assembler with our program 
name, and then hit ~ for the three questions the assembler asks. 
Then we do the same thing with the LINK program, and finally we call 
up EXE2BIN with the name of our program followed by the name of the 
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resulting COM file. All this typing can get pretty repetitious. Is there a 
way to automate it? After all, we are using a computer! 

The batch processing feature of DOS is exactly what's called for here. 
(If y"ou're unfamiliar with this DOS capability you should read about it in 
IBM's Personal Computer Disk Operating System manual.) To use batch 
processing, you first create a file which contains a number of commands 
to DOS. When this file is subsequently executed, the commands will be 
carried out, one after the other, quickly and without typing errors, while 
you sit back and enjoy a cup of coffee. 

The Command Line in ASM 
Before you can create the appropriate batch.file, you need to be aware 

that ASM (or MASM) can be operated in two different modes. In the 
mode you've been using so far, you simply type ASM followed by the 
name of the program. Then when the program starts to execute, it asks 
you questions about the names of the files you want generated, as we saw 
earlier: 

A>asm happy2 

The IBM Personal Computer Assembler 
Version 1.00 (C)Copyright IBM Corp 1981 

Object filename [HAPPY2.0BJ]: 
Source listing [NUL.LST]:HAPPY2 
Cross reference [NUL.CRF]: 

<-- Press g (or enter HAPPY2 ) 
<--Pressg 
<--Pressg 

But there's another way to tell ASM what output files we want. We 
can enter all the information on the command line, immediately 
following the name of the program we want to assemble: 

A>asm happy2 happy2 nul nul _,I---, I LNoCRFfile 
. L_No LST file 
'-------HAPPY2. OBJ 

~------HAPPY2.ASM input file 

This second mode comes in handy, since a command line such as that 
above is a command to DOS , and can therefore be executed in a batch file. 

The Command Line in LINK 
The LINK program also required us to press g three times 

once it was loaded: 
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A> link smas ci i 

IBM Personal Computer Linker 
Version 2.00 (C)Copyright IBM Corp 1981, 1982, 1983 

Run File [SMASCII2.EXE]: -Pressg 
-Pressg List File [NlJL.MAP]: 

Libraries [.LIB]: -Pressg 
Warning: No STACK segment 

There was 1 error detected. 

LINK requires a somewhat more complex approach to be used in 
"command line" mode than ASM did. Instead of putting the names of 
the output programs on the command line as we do with ASM, it's 
necessary to create a separate file called AUTOLINK, which has no file 
extension. We need to put the names of the output files in AUTOLINK, 
or blank lines (press g ) if we want their default values. For different 
uses of LINK this AUTOLINK file can be very complex, but for our 
purposes all we want to do is tell LINK to use the four default file 
names; so we want to send it four carriage returns (gs). We thus 
need a file called AUTOLINK with four carriage returns in it. 

EDLIN is perfect for creating such a file. Once created, the file looks 
like this when we examine it again with EDLIN: 

A>edlin autolink 
End of input file 
*1 

* 

~: - Four carriage returns ( gs) 
1: * l 
4: 

Creating Batch Files 
Batch files use the notation"% l", "%2", and so on to refer to the file 

names typed in by the user when the batch file is executed. Let's take a 
look at a batch file we can use to turn an ASM file into an COM file, to 
get an idea how it all works. 

Here's the batch file: 
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asm %1 %1 nul nul 
link %1 @autolink 
erase %1.bak 
erase %1. obj 
exe2bin %1 %1. com 
erase %1. exe 

<-- Create OBJ file with same name as ASM file 
<-- Create EXE file with same name as OBJ file 
<-- Erase BAK file produced by word processor 
<-- Erase OBJ file 
<-- Convert EXE file to COM file 
<-- Erase EXE file 

We create this file using EDLIN or a word processor, and we give it 
the name COMASM.BAT. (You can make up your own name if you 
prefer, but you must use the extension BAT.) In order to use this file all 
we have to do is enter COMASM followed by the name of the ASM file 
which we want to assemble automatically, link and convert into a COM 
file. For instance, to use this batch file on the SMASCII program, we 
would enter 

A>comasm smascii 

That's all we have to do! The COMASM batch file will take care of the 
entire process for us. 

The first line of the batch file causes ASM to generate a 
SMASCII.OBJ file. The second line causes LINK to generate an EXE 
file. Now, our particular word-processor program generates two files 
when we create a text file: the second is a backup file with the extension 
BAK. We want to get rid of this file to save space on the disk, so the next 
line erases SMASCII.BAK. We've already used the OBJ file, 
SMASCII.OBJ, so we erase that too, in the next line. The next to last 
line of the program tells EXE2BIN to convert SMASCII.EXE to 
SMASCII.COM, and finally we erase SMASCII.EXE. 

So, when you start this process you'll have a single file, 
SMASCII.ASM. At the end of the process you'll have two files: 
SMASCII.ASM and SMASCII.COM. All the intermediate files have been 
erased to save space on the disk. 

We recommend you create your own batch file and use it in the 
example programs that follow in this book. The time it saves will amply 
reward your efforts in creating it. 

Summary 

In this chapter you've learned how to write programs in a form 
suitable for assembly by the IBM MACRO Assembler, and how to 
assemble the programs. You've also learned how to change the OBJ file 
to an EXE file with LINK, and how to change the EXE file to a COM file 
with EXE2BIN. You've been introduced to the idea of symbolic 

Introduction to the IBM MACRO Assembler 145 



addressing, and you know how to create a LST file. You've learned how 
the MACRO Assembler figures out the machine-language numbers that 
correspond to the symbolic instructions in the source code, and finally 
you've learned how to use batch processing to simplify the assembly 
process. In the next chapter you're going to put what you've learned here 
to use. 
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~ 
Using the IBM 
MACRO Assembler 

Concepts 
Two's complement arithmetic 
Flags 
Conditional jumps 
Subroutine calls 
Cross-reference file 

Debug Commands 
T = Trace 
Breakpoints using G 

8088 Instructions 
ADD=Add 
ROL = Rotate left 
DEC= Decrement 
JNZ=Jump if not zero (or JNE=Jump if not equal) 
CMP = Compare 
JL = Jump if less than (or JNGE = Jump if not greater nor equal) 
NOP= No operation 
SUB= Subtract 
JG= Jump if greater than (or JNLE = Jump if not less nor equal) 
CBW = Convert byte to word 
XCHG = Exchange registers 
MUL = Multiply 
PROC = Define a procedure {pseudo-op) 
CALL= Call a procedure 
RET = Return from a procedure 
PAGE= Number program lines {pseudo-op) 

Applications 
BINIHEX routine - Binary to hexadecimal converter 
DECIBIN routine - Decimal to binary converter 
DECIHEX program - Decimal to hexadecimal converter 

147 



/ n the last chapter you learned the fundamentals of using the IBM 
MACRO Assembler (either ASM or MASM, depending on the size of 
your system and your own preference). In this chapter we're going to put 
what you learned to work. 

We'll start off by writing a short program called BINIHEX, which 
will take a binary number stored in the BX register, and print it out on the 
screen as a hexadecimal number. This program will introduce some new 
8088 instructions, and will also introduce you to the use of the "T" (for 
"Trace") command in DEBUG, which is a very powerful debugging tool. 

Next we'll write a second program, DECIBIN, which takes a decimal 
number you type in at the keyboard, and converts it to a binary value in 
the BX register. Again, this program will introduce new 8088 
instructions. 

Finally (did you guess this?) we'll put BINIHEX and DECIBIN 
together in a larger program, called DECIHEX, which will take the 
decimal number you type at the keyboard, and print the hexidecimal 
equivalent out on the screen. You will thus end up with a useful utility 
program which can be called directly from DOS: a decimal to hex 
converter, for those of you who are tired of looking things up in tables. 

The BINIHEX Program 
The purpose of BINIHEX is to take a binary number from a register 

in the 8088, and print it out on the screen, in hex. As an example of the 
usefulness of this kind of routine, look at the DEBUG program: it uses a 
similar routine to print out the addresses, and the contents of the 
addresses, whenever you use "D" (and most of the other commands as 
well). BINIHEX is a sort of window into the 8088: with it, we can 
examine the bits that constitute the contents of the otherwise invisible 
registers in the microprocessor chip, and display them on the screen. 
We'll find a variety of uses for this routine throughout the book, 
including the decimal to hex conversion routine. 

Writing the Source File 
Instead of showing you the ASM file as you should type it in, we're 

going to do things a little differently and show you the LST file which is 
produced when you assemble the program. As you recall, this file has the 
machine language on the left and the original assembly language on the 
right. Using the LST file has the advantage of letting you see right away 
what the machine language for the program looks like, and saves us 
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0000 

0000 
0002 
0004 
0006 
0008 
000A 
000C 
000E 
0010 
0012 
0012 
0014 
0016 
0018 
001A 

001C 

001E 

showing two listings, one for ASM and one for LST, which contain much 
of the same information. We'll follow this procedure from now on in this 
book. Here's the listing: 

prognam segment ; start of segment 

assume cs:prognam 

BS 04 mov ch,4 ;number of digits 
Bl 04 rotate: mov cl,4 ;set count to 4 bits 
D3 C3 rol bx,cl ;left digit to right 
8A C3 mov al,bl ;move to AL 
24 0F and al,0fh ;mask off left digit 
04 30 add al,30h ;convert hex to ASCII 
3C 3A cmp al,3ah ; is it > 9 ? 
7C 02 j 1 printit ;jump if digit =0 to 9 
04 07 add al, 7h ; digit is A to F 

printit: 
8A D0 mov dl,al ;put ASCII char in DL 
B4 02 mov ah,2 ;Display Output funct 
CD 21 int 21h ; call DOS 
FE CD dee ch ; done 4 digits? 
75 E6 jnz rotate ;not yet 

CD 20 int 20h ;return to DEBUG 

prognam ends ; end of segment 

end ; end of assembly 

Of course, to create the ASM file, you type in only the symbolic 
instructions from the right-hand columns. The numbers in the left-hand 
columns don't really exist until you've created the ASM file and 
assembled it. 

Type in the program, and then assemble it with ASM, taking care to 
answer BINIHEX to the question about the LST file name: 

A>asm binihex <--- You enter this 

The IBM Personal Computer Assembler 
Version 1.00 (C)Copyright IBM Corp 1981 

Object filename [BINIHEX.OBJ]: 
Source listing [NUL.LST]:binihex 
Cross reference [NUL.CRF]: 

<--- Press ENTER 

<--- Enter the program name 
<--- Press ENTER 
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Warning Severe 
Errors Errors 
0 0 

Now you can print out the LST file, and see if it's just the same as the 
one shown above. 

Once the program is assembled, use LINK to create the EXE file, 
and then EXE2BIN to create the COM file, just as you did in the last 
chapter. When you've finished, you'll have a COM file that can be 
executed from DOS and from DEBUG. 

Operating the BINIHEX Program 
Before we go on to explain how this program works, we'll tell you 

how to operate it. The chances are you're going to try running it anyway, 
right? It's well known that no one ever reads the documentation before 
putting the product into use. 

First, try running the program directly from DOS. You should get a 
four-digit number printed out on your screen, like this: 

A>binihex 
0000 

The only trouble is, this number is always zero! So what good is that? 
No good at all, if the program is executed by itself, from DOS. However, 
if we get into DEBUG and start to fool around, we can begin to see what 
BINIHEX can do. 

A>debug binihex.com 
-g 
0000 
Program terminated normally 

Same result. The trouble is, the program is printing out the contents 
of the BX register, as it's designed to do, and, unless we put something in 
it, the content of this register is zero. So let's put something in it. 
Remember that although we'll be typing in a hex number, this number 
will exist physically in the register in binary. Still in DEBUG, try this: 

-rbx 
BX 0000 
: 1234 

<-- You type "rbx" to see the BX register 
<-- It's zero 

<-- Change it to 1234h 
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Now, run the program again. (You might want to check that the IP 
register is set to 100 before you do this, as discussed in the last chapter.) 

-g <-- Type "g" to run the program 
1234 <-- It prints out the contents of BX 

Program terminated normally 
<-- Back to DEBUG 

So it seems to be working! Try inserting some other numbers, like ffff 
and abed, into the BX register, and then running the program. It should 
print them out too. 

It may not seem that this program accomplishes very much. You put a 
hex number into the BX register with "R," and the program prints it out, 

No 

Set count of 
digits to 4, 
in CH 

Rotate BX left 
1 digit (4 bits) 

Get rightmost digit 
from BX, convert 
it to ASCII 

Return 

(Enter with hex 
number in BX) 

Add 7 
to it 

Figure 6-1. Flow chart of the BINIHEX program 

Using the IBM MACRO Assembler 151 



unchanged. Later, however, when a binary number has been placed in 
BX by another routine, printing it out in hex will give us new and 
important information. 

How Does BINIHEX Work? 
Let's examine the inner workings of the program. The flow chart of 

its operation is shown in Figure 6-1. 

Rotating the BX Register 

We start off with four hex digits (sixteen binary digits) in the register 
BX. We want to print these four hex digits out, one at a time: first the 
one on the left, then the second from the left, and so on. The first thing 
we do is rotate the entire contents of BX one hex digit, which is four bits, 
to the left. That puts the leftmost digit in the right-hand place. For 
instance, if the number we inserted into BX was 1234, after rotating it 
one digit to the left BX would contain 2341. (When you rotate the 
contents of a register, the things that are pushed off one end re-enter at 
the other end. We'll have more to say about this when we talk about the 
ROL instruction.) This is shown in Figure 6-2. 

Rotate BX 
like this 

To yield this. 

---~, ---1.,► Convert this digit 
to ASCII and print 

Repeat process 

-.-
~· ---1.,► Print next digit 

-.-.... , ----1.,►Print next digit 

-.-
~· __ ....,.,_Print next digit 

Figure 6-2. Rotating the BX register 
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Changing the Hex Digit to ASCII 

The 1 is the first hex digit we want to print, so we move the BL part 
of BX into the AL register with a MOV instruction. The AL register is 
the preferred place to do arithmetic, since this register can generally 
perform 8-bit arithmetic faster than the other registers, (although they 
can do most of the things AL can do, in a pinch). 

AL now contains 41h. We don't care (yet) about the 4, so we mask off 
the 4 with the AND instruction using 0Fh (which is 00001111 binary) as 
the mask. 

Now the ASCII value of the printable character "0" is 30h, the ASCII 
value of lh is 31h, and so on up to 9h, whose ASCII value is 39h. So to 
convert these digits to ASCII, we add 30h to them, with the ADD 
instruction. We are then, except for one small problem, ready to send this 
number off to the Display Output function to be printed (using the 
instructions following the label "printit"). 

The small problem is caused by the fact that we are dealing with hex 
rather than decimal digits. The ASCII values of the first ten hex digits 
are in order: 

ASCII 
value 

digit (hex) 
0 30 
1 31 
2 32 
3 33 
4 34 
5 35 
6 36 
7 37 
8 38 
9 39 

And the ASCII values of the last six hex digits are in order: 
ASCII 
value 

digit (hex) 
A 41 
B 42 
C 43 
D 44 
E 45 
F 46 
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But unfortunately there is a gap between the two series of values: the 
difference between 3Ah (which is one past "9," where "A" ought to be) 
and 41h (where "A" actually is), is 7. So if the digit we are about to print 
is a hex digit from A to F, we need to add 7 to it to get the correct ASCII 
value. To find out if the digit is in the first series (0 to 9) or the second (A 
to F) we use the CMP (for "CoMPare") instruction, which we'll describe 
below. If the content of AL is less than 3Ah (the value which is one 
larger than the ASCII value of "9"), then we need to add the additional 
7. Otherwise, we want to jump over this ADD instruction, and go directly 
on to print the digit. 

Do It All Four Times 

Once the first digit has been printed out in ASCII, we want to rotate 
BX again to get the second digit from the left, which is 2, and print that. 
When we've printed all four digits, we're done. 

New Instructions 

To perform as described our program needs some new 8088 
instructions. Let's look at these new instructions and see how they 
operate. 

The ADD Instruction 

The ADD instruction does just what you expect it to: adds the 
contents of the rightmost operand to the contents of the leftmost 
operand, and leaves the result in the leftmost operand. Thus, if AX 
contains 20 and CX contains 30, after you execute the instruction 

ADD AX , CX 

then AX will contain 50, while CX is unchanged. Similarly, a constant 
can be added to a register, as we described with the AND instruction in 
the last chapter. 

For the moment don't worry about the "FLAGS" part of this 
instruction box. We'll be getting to flags soon. 
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ADD Instruction 
Adds two operands. Result (sum) is stored in leftmost 
operand. 

To add contents of two registers: 

ADD AL ,BL 
ADD BX ,CX 

To add constant to register: 

ADD DL , 2Ah 

To add register to memory: 

ADD MWORD , DX 

Also, a number can be added to a memory address, and a 
memory address can be added to a register. 

Flags affected: AF, CF, OF, PF, SF, ZF 

Signed Arithmetic 

It should be noted that the ADD instruction, like other arithmetic 
instructions in the 8088, performs signed arithmetic. That means that it 
thinks of the high-order bit (number 7 in 8-bit quantities, and number 15 
in 16-bit quantities) as being a sign bit. (See Figure 6-3.) 

(7(6(5(4(3(2(/(0~ 
-.----.---
Sign-bit 7-bit value 

a) 8-bit register 

/IS/14-/13/12 /II /0/ 9/B / 7/6(.5 /4/.3 /2 / I (0~ 
I I I I I I I I I I I I I I 

l 
Sign-bit 

b) 16-bit register 

I 
15-bit value 

Figure 6-3. Signed numbers 
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Thus (for 8-bit numbers) the number 0lh is just+ 1, while the 
number FFh is -1. 7Fh is just 7Fh (127d), while 80h is interpreted as 
-80h (-128d); 81h is -7Fh ( -127d), and so on. This way of representing 
signed numbers is called "two's complement arithmetic," a phrase which 
is useful to impress potential employers if nothing else. The table below 
summarizes the way 8-bit numbers are represented. 

Contents of Arithmetic Decimal 
Register Value Equivalent 

00 0 0 
01 1 1 

•••• Q'l-•••• ...... ~ .. 2 . ........ 
7E 7E 126 
7F 7F 127 
80 -80 -128 
81 -7F -127 
82 -7E -126 .......... . . . . . . . . . ......... 
FD -3 -3 
FE -2 -2 
FF -1 -1 

Similarly, for 16-bit numbers, anything over 7FFFh (32767d) is 
considered to be negative. If you have the 16-bit number FFF0h, which is 
-lOh, and you add it to 60h with an ADD instruction, the result will be 
50h. And if the content of a register is 0000, and you decrement it 
(subtract 1 from it) with a DEC instruction, it will become FFFFh, which 
is -1. 

You don't really need to be a whiz at this sort of arithmetic to get 
along in assembly language. The important thing to keep in mind is that 
the 8088 considers those numbers whose leftmost bit is set ( = 1) to be 
negative, and those numbers whose leftmost bit is cleared ( = 0) to be 
positive. 

The ROL Instruction 

The ROL instruction takes the bits in a register and rotates them to 
the left. "Rotate" means that the bits rotate around the register: they are 
pushed off one end, and rotate around to the other end. The bit pushed 
off the end is also placed in the carry flag. (We'll talk about flags in the 
next section. For the time being, think of the carry flag as a place to store 
a single bit.) 
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ROL Instruction 

ROtates a register Left. 

All bits in register move left 

Bits from left-hand end appear on right-hand end, and in 
the carry flag 

To rotate 1 bit: 

MOV DL ,1 

To rotate more than 1 bit, put number of bits to shift in CL 
register first. 

MOV CL ,3 
ROL BX ,CL 

Figure 6-4 shows how the ROL instruction operates. (In other 
instructions, called "shifts," the bits pushed off one end of the register 
disappear forever, and zeros are added at the other end.) 
The ROL instruction will rotate any of the registers AX, BX, CX, DX, 
and also any of the 8-bit halves of these registers: AL, DH, and so on. It 
will also rotate a memory address. 

There are two ways to use this instruction. If you only want to rotate 
one bit, then you can write: 

ROL AL ,1 

b) [TIJ @@@nnnn@@@~@@n~no 
After execution of ROL BX, 1 

Figure 6-4. Operation of the ROL instruction 
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(You can use whatever register you want, instead of AL.) 
If you want to rotate more than one bit at a time (as we do in 

BINIHEX), you put the number of bits you want to rotate in the CL register, 
before you execute the ROL. Examples: 

MOV CL ,4 
ROL DH ,CL 

MOV CL , 8 
ROL AX ,CL 

;rotate DH four bits left 

;rotate AX eight bits left 

The CL register acts as a "count" for the number of times to 
shift a register using a rotate or shift instruction. 

The Flags 
Before we go on to talk about the next instructions, JNZ, CMP, and 

JL, you need to be aware of things called "flags." There are nine of these 
flags, but at this point you don't need to know about all of them. 
However, there are three or four which are important, and you should be 
aware of the existence of the others. 

The flags are one-bit registers, grouped into a single 16-bit register 
which is called, logically enough, the flag register. Since there are only 
nine flags, only nine of the sixteen bits are used, scattered more or less 
randomly in the register. The reasons for this randomness are historical: 
The flags in the low part of the register occupy the same bit positions 
they did in the older 8-bit 8080 microprocessor. The flags in the high 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Direction Trap 
flag flag 

Figure 6-5. The flag register 
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half of the register are new to the 8088. The flag register is shown in 
Figure 6-5. 

The flags are set (meaning set to 1) or cleared (meaning set to 0) , 
when certain instructions - mostly those involving comparisons and 
arithmetic or logical operations - are executed. For instance, if you 
subtract two numbers, and the result is zero, then the zero flag will be 
automatically set, as in this program fragment: 

MOV AL,21 
SUB AL,21 

That is, if we put 21 in the AL register, and then subtract the same 
number from it, the result is zero, so the zero flag will be set: that is, it 
will contain a 1. 

Accessing the Flags from DEB UC 

It's possible to look at the flags with DEBUG to see how they're set, 
and to change them if desired. Get into DEBUG and type "R" to see the 
registers: 

A>debug 
-r 
AX=0000 BX=0000 CX=0000 DX=0000 SP=FFEE BP=0000 S1=0000 DI=0000 
DS=08Fl ES=08Fl SS=08Fl CS=08Fl IP=0100 NV UP DI PL NZ NA PO NC 
08Fl: 0100 03EB ADD BP, BX Flags 

The two-letter mnemonics on the right in the middle row are the flag 
settings. The following table (which can be found in the DEBUG section 
of IBM's Disk Operating System manual, under "Register Command") 
shows what the mnemonics mean. The trap flag is not shown in the 
DEBUG display, so it is not listed here. 

Flag Name 

Overflow (yes/no) 
Direction ( decrement/increment) 
Interrupt (enable/disable) 
Sign (negative/positive) 
Zero (yes/no) 
Auxilliary Carry (yes/no) 
Parity (even/odd) 
Carry (yes/no) 

Set Clear 

ov NV 
DN UP 
EI DI 
NG PL 
ZR NZ 
AC NA 
PE PO 
CY NC 
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-rf 

You can change the flag settings in DEBUG by using the RF 
command. When you type "rf', DEBUG will print out all the flag 
settings, and wait for you to type in a two-letter mnemonic, which will 
presumably be the opposite of one of the ones shown. 

For instance, if we type "rf' and find that the sign flag is set to PL for 
"plus," (meaning that bit #7 is 0), then we can set it to NG for "negative" 
(meaning that the bit will contain 1), by typing "ng", as shown below: 

NV UP DI PL NZ NA PO NC -ng 

Then you can check that the change was made with "r": 

-r 
AX=0000 BX=0000 CX=0000 DX=0000 SP=FFEE 
DS=08Fl ES=08Fl SS=08Fl CS=08Fl IP=0100 

BP=0000 S1=0000 DI=0000 
NV UP DI NG NZ NA PO NC 

i 
Sign flag is now negative 

The flags we will encounter most often in this chapter are the zero 
flag, the sign flag, the overflow flag, and the carry flag. 

Flags hold the result of one instruction so another 
instruction can find out what happened. 

Effect of the Flags 

Once the flags are set, they can then influence other instructions, 
usually those called "conditional jumps." For instance, there is an 
instruction JZ, for "Jump if Zero." If the zero flag is set, this instruction 
will cause a jump to the address specified in the operand field of the 
instruction. If the zero flag is not set, the instruction following the jump 
instruction will be executed. We'll examine an example of this process in 
the BlNIHEX program soon, after we discuss a few more instructions. 

The DEC Instruction 

This instruction is frequently used in counting operations, where a 
total count is put in a register, and then decremented each time some 
operation is performed. When the operation has been performed the 
specified number of times, the count in the register reaches zero, and this 
sets the zero flag. The zero flag can in turn influence the result of a 
conditional jump instruction like JNZ. 
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DEC Instruction 

Decrements a register. 

Can be used to subtract 1 from any of the 8-bit or 16-bit 
registers in the 8088. 

DEC DX 
DEC SI 
DEC BL 

Flags affected: AF, OF, PF, SF, ZF 

In BINIHEX we want to print four hex digits , so at the start of the 
program we put the number 4 in the CH register to keep track of this. 
Then each time we finish printing a digit we decrement the count in CH, 
using the DEC instruction in location 18. Until CH reaches zero, the JNZ 
instruction in line 001A (described below) causes a jump back to the 
"rotate" label at location 0002, where another digit is printed. When CH 
does become zero, we've finished all four digits, so we go on to the INT 
20 instruction in location 001 C, which terminates the program. The 
DEC instruction is half of this process; the other half is JNZ. 

The JNZ Instruction 

JNZ Instruction 

Jumps if zero flag not set. QNZ stands for "Jump if Not 
Zero"). 

Jumps to the memory location in the operand field if the 
zero flag is not set. 

JNZ DO_AGAIN 
JNZ LOC2 

Note: memory location to be jumped to must be within -128 
or + 127 bytes from the JNZ instruction. 

The mnemonic JNE ("Jump if Not Equal") can also be used 
for this instruction. 
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The JNZ instruction is quite straightforward once the zero flag has 
been set to the appropriate value by some other instruction. If the zero 
flag is set to zero as a result of a previous arithmetic or logical operation, 
comparison, or increment or decrement not being zero, then the 
instruction following the JNZ in the program will be executed. If the zero 
flag is set to one, as the result of a previous operation being zero, then the 
JNZ will cause a jump to the location specified in the operand field of the 
instruction. 

In our program, JNZ will cause a jump back to the "rotate" label, as 
described above, until the contents of CH becomes zero, at which time 
the instruction following the JNZ, the INT 20, will be executed. 

The CMP Instruction 

CMP Instruction 
CoMPares two values. 

Flags are set according to result of comparison. 

To compare two registers: 

CMP AL ,DL 
CMP BX,CX 

To compare a register and an immediate value: 

CMP AL,lllh 
cMP ex, 10 

To compare a register with a memory location: 

CMP CL,MBYTE 
CMP DX,MWORD 

Flags affected: AF, CF, OF, PF, SF, ZF 

This instruction compares the values in two registers, and sets the 
flags according to the results of the comparison. For instance, if two 
numbers are equal, the zero flag will be set. Also, appropriate flags will 
be set to show if one number is larger than the other. 

Visualizing CMP as Subtraction 

One way to visualize what flags are being set by CMP is to imagine 
that the second (right-hand) number in the comparison is "subtracted" from the 
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first (left-hand) number. We put the word "subtraction" in quotes here 
because no actual subtraction takes place. The flags are changed as if the 
subtraction had taken place, but nothing is changed in the registers or 
memory. It's a sort of "phantom" subtraction. 

For example, if the AX register contains 200, and the instruction 

CMP AX, 80 

is executed, then the sign flag will be set to PL (PLus), since the 
result of subtracting 80 from 200 is plus. On the other hand, if AX 
contains 40, and the same instruction is executed, the sign flag will be set 
to NG (NeGative), since the result of subtracting 80 from 40 is negative. 
In addition, various other flags will be set, depending on the results of 
this imaginary subtraction. For instance, if the two numbers being 
compared by CMP are equal, the zero flag will be set, as if one number 
had been subtracted from another, leaving zero. 

Don't forget that no actual subtraction takes place when this 
instruction is executed. The content of the registers used in the operand 
field remains the same; only the flags are changed. 

The JL Instruction 

JL Instruction 
Jumps if X is less than Y where X and Y are the operands 
in a preceding CMP instruction. (JL stands for "Jump if 
Less than.") 

Jumps to the memory location in the operand field if the sign 
flag is not equal to the overflow flag. 

CMP AX ,8000h 
JL DO__AGAIN 

CMP CL ,DL 
JL LOC2 

; jump if AX less than 8000h 

;j ump if CL less than DL 

Note: memory location to be jumped to must be within -128 
or + 127 bytes from the JL instruction. 

The mnemonic JNGE ("Jump if Not Greater nor Equal") can 
also be used for this instruction. 
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There are two ways to look at the operation of this instruction. One is 
the official way, shown in the IBM Personal Computer MACRO Assembler 
manual. This states that this instruction will cause a jump only if the sign 
flag is not equal to the overflow flag. This may be true, but it's not the 
way you probably want to look at it when you're writing a program. Who 
knows when the sign flag will equal the overflow flag? 

A more useful way to visualize the operation of JL is as the direct 
result of a CMP instruction. For example, suppose we had the following 
program fragment: 

CMP AL ,BL 
JL PURPLE 

This is equivalent to saying, "If AL is less than BL, then jump to 
location PURPLE." We read the two items in the CMP statement from 
left to right as if they were in plain English, and place between them the 
inequality suggested by the jump instruction, in this case "Less than." 
This is shown in Figure 6-6. 

Thus if AL contains 10 and BL contains 20, the jump to PURPLE 
will take place, since AL is less than BL; whereas if AL contained 100 
and BL contained 20, the jump would not take place. 

The CMP instruction and conditional jump instructions (like 
JL and JG) work together to form program branches. 

In the BINIHEX program we compare the ASCII character in AL 
with 3Ah, using the CMP instruction at location 000C, in order to find 
out if the digit to be printed needs to have 7 added to it, as discussed 
earlier. If AL is less than 3A, then the JL instruction in location 000E 
causes a jump to PRINTIT. If, however, the content of AL is greater 

CMP AL,BL t 4.___ _ ___, 
If AL is LESS than JL, then jump to PURPLE 

--~• ♦ l Pu1'LE 

Figure 6-6. Comparisons and inequalities 
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than or equal to 3A, we go on to the ADD instruction in location 0010, 
which adds a 7 to the ASCII value of our character. 

Using DEBUG's Trace Command 
Sometimes (perhaps "usually" is a better word) something goes wrong 

in the operation of a program that you're writing, and it's difficult to 
discover what it is simply by examining the listing. When you execute the 
program everything happens too fast to watch, of course. It would be 
nice if there were a way to execute a program one instruction at a time, 
with time between the instructions to see what the effect of each 
instruction had been. DEBUG's "T" (for "Trace") command does just this. 

The operation of "T" is very simple: when you type "t", DEBUG will 
execute one instruction in your program. Type "t" again, and it will 
execute the next instruction. Each time it does this it also prints out the 
contents of all the registers, just as the "R" command does. The 
instruction which will be executed is the one at the address contained in 
the IP register, so that by changing the contents of IP (with the "RIP" 
command) you can start tracing through a program anywhere you like. 
Once the program is started, of course, the IP is incremented 
automatically to the next instruction, just as it is when the program is 
running normally. 

Tracing BINIHEX 
The program we have just described, BINI HEX, provides a nice 

example of the use of the trace command. Call up DEBUG and 
BINIHEX.COM at the same time: 

A>debug binihex. com 

You'll need to do a couple of things before you can start tracing. The 
first is to put a number into the BX register so you can watch the 
operation of the program as it prints it out. It's good if all the digits in 
the number are different, so you can distinguish them more easily: 

-rbx 
BX 0000 
: 1234 

Now, it is a sad but true fact that you cannot use DEBUG to trace the 
operation of the DOS function calls. If you try to do it (and you probably 
will), you'll find that you're tracing into all sorts of strange and wonderful 
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places in your computer's memory, but that you never get back to your 
program! The way to avoid this problem is to follow a simple rule: never 
try to trace an INT instruction. 

The NOP Instruction 

The easiest way to avoid tracing an INT instruction is to put NOP 
(for "NO oPeration") instructions into our program in place of the INT 
21 at line 0016. Because INT 21 requires two bytes, and NOP only one, 
we need to insert two NOPs, at 0016 and 0017. 

-a116 
0905:0116 nop 
0905:0117 nop 
0905 :0118 

- Enter first "nop" 

- Enter second "nop" 

- Press Enter 

(If you are using DOS version 1, you can use "E" to insert "90" into these 
two locations. 90 is the machine-language op-code for NOP.) 

NOP Instruction 
Does nothing at all. (NOP stands for "No OPeration") 

Occupies one byte. Useful for replacing unwanted 
instructions. 

NOP is an instruction which does absolutely nothing. However, it 
takes up one byte of space in memory. Thus it is useful when you want to 
get rid of some instructions in memory without disturbing the rest of the 
program. 

Operating the Trace Command 
Now that we've taken care of the preliminaries, we can start tracing. 

We'll assume your IP is still set at O 100, as it was when you first loaded 
DEBUG. If not, change it with RIP. 

To see the contents of the registers before the first instruction is 
executed in trace mode, you should start off your tracing session by 
typing "r": 
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Note contents of BX 
I -r 

AX=0000 BX=:1234 
DS=0905 ES=0905 
0905:0100 B504 

CX=001E DX=0000 SP=FFFE BP=0000 SI=0000 DI=0000 
SS=0905 CS=0905 IP=0100 NV UP DI PL NZ NA PO NC 

MOV CH , 04 I 
Start location 

There's the 1234 you put into the BX register. CL contains IE, left 
over from some previous operation, and AX and DX are empty. The IP is 
at 100, where it should be, and the instruction we are about to execute is 
MOY CH,04. Let's do it. Type "t" and press ENTER. 

Here's the 4 in CH 

-t I 
AX=0000 BX=1234 CX~ lE DX=0000 SP=FFFE BP=0000 SI=0000 DI=0000 
DS=0905 ES=0905 SS=0905 CS=0905 IP=0102 NV UP DI PL NZ NA PO NC 
0905:0102 B104 MOV CL ,04 

-t 

Great - there's the 04 in CH, the high part of CX. Next we'll put 04 in 
CL: 

Another 4 in CL 
I 

AX=0000 BX=1234 
DS=0905 ES=0905 
0905 :0104 D3C3 

CX=0404 DX=0000 SP=FFFE BP=0000 SI=0000 DI=0000 
SS=0905 CS=0905 IP=0104 NV UP DI PL NZ NA PO NC 

ROL BX,CL 

And there it is. Now we're going to rotate the BX register left 4 bits, since 
4 is the number in CL. Watch what happens to BX: 

BX has been rotated 
-t I 
AX=0000 BX=2341 
DS=0905 ES=0905 
0905 :0106 8AC3 

CX=0404 DX=0000 SP=FFFE BP=0000 SI=0000 DI=0000 
SS=0905 CS=0905 IP=0106 OV UP DI PL NZ NA PO CY 

MOV AL ,BL 

Look at that! The 1 moved around to the right-hand side, and the other 
three digits shifted over to the left. 

For the moment the only part of BX we need is the 1, which is the 
first digit we're going to print out, so we copy BL to AL: 
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-t rS r1i 
AX=0041 BX=2341 CX=0404 DX=0000 SP=FFFE BP=0000 S1=0000 01=0000 
DS=0905 ES=0905 SS=0905 CS=0905 IP=0108 OV UP DI PL NZ NA PO CY 
0905:0108 240F AND AL ,0F 

Mask off the extraneous 4 with an AND instruction: 

Mask off the 4 
-t I 
AX=0001 BX=2341 
DS=0905 ES=0905 
0905:010A 0430 

CX=0404 DX=0000 SP=FFFE BP=0000 S1=0000 01=0000 
SS=0905 CS=0905 IP=010A NV UP DI PL NZ NA PO NC 

ADD AL, 30 

Add 30h to make it an ASCII character: 

ASCII value 
-t I 

AX=0031 BX=2341 
DS=0905 ES=0905 
0905 :010C 3C3A 

CX=0404 DX=0000 SP=FFFE BP=0000 S1=0000 01=0000 
SS=0905 CS=0905 IP=010C NV UP DI PL NZ NA PO NC 

CMP AL, 3A 

Now we need to find out whether the hex digit we're printing is from 
0 to 9 or from A to F, so we compare it with 3Ah. 

-t 
AX=0031 BX=2341 
DS=0905 ES=0905 
0905:010E 7C02 

CX=0404 DX=0000 SP=FFFE 
SS=0905 CS=0905 IP=010E 

JL 0112 

BP=0000 S1=0000 01=0000 
NV UP DI NG NZ AC PO CY 

T 

-t 

Note change in sign flag 

Notice that CMP doesn't change any of the registers, but it does 
change the sign flag from PL (plus) to NG (negative). That's how the JL 
instruction knows that the contents of AL (31h) is less than 3Ah. So it 
performs the jump to 0112 (rather than simply going on to the next 
instruction): 

AX=0031 BX=2341 
DS=0905 ES=0905 
0905:0112 8AD0 ..__... 

CX=0404 DX=0000 SP=FFFE BP=0000 S1=0000 01=0000 
SS=0905 CS=0905 IP=0112 NV UP DI NG NZ AC PO CY ..__... 

MOV DL,AL I 
I Note that the IP register is changed to new address 

New address 

Now we're getting set up to print the digit out, using the Display 
Output function. We MOVe the character from AL into DL, and the code 
for the Display Output function, which is 2, into AH. 
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ASCII "l" 
-t I 
AX=0031 BX=2341 CX=0404 DX=0031 SP=FFFE BP=0000 SI=0000 DI=0000 
DS=0905 ES=0905 SS=0905 CS=0905 IP=0114 NV UP DI NG NZ AC PO CY 
0905:0114 B402 MOV AH ,02 

We've NOPed out the actual INT instruction, so we pass over the two 
NOPs without incident: 

Display Output function number 
-t I 
AX~ 31 BX=2341 
DS=0905 ES=0905 
0905:0116 90 

CX=0404 DX=0031 SP=FFFE BP=0000 SI=0000 DI=0000 
SS=0905 CS=0905 IP=0116 NV UP DI NG NZ AC PO CY 

NOP 

-t 
AX=0230 BX=2341 CX=0404 DX=0030 SP=FFFE BP=0000 SI=0000 DI=0000 
DS=0905 ES=0905 SS=0905 CS=0905 IP=0117 NV UP DI NG NZ AC PE CY 
0905:0117 90 NOP 

Now we want to find out if we've done all four digits, so we decrement 
CH: 

-t 
AX=0230 BX=2341 CX=0404 DX=0030 SP=FFFE BP=0000 SI=0000 DI=0000 
DS=0905 ES=0905 SS=0905 CS=0905 IP=0118 NV UP DI NG NZ AC PE CY 
0905:0118 FECD DEC CH 

This does not change the zero flag from NZ to ZR, since the result in 
CH is 03; so we jump back to print another digit, starting at location 
0102: 

Decremented number 

-t I 
AX=0230 BX=2341 CX~ 04 DX=0030 SP=FFFE 
DS=0905 ES=0905 SS=0905 CS=0905 IP=011A 
0905:011A 75E6 JNZ 0102 

And here we go again: 

-t 

BP=0000 SI=0000 DI=0000 
NV UP DI PL NZ NA PE CY 

T 
Unchanged 

AX=0230 BX=2341 CX=0304 DX=0030 SP=FFFE BP=0000 SI=0000 DI=0000 
DS=0905 ES=0905 SS=0905 CS=0905 IP=0102 NV UP DI PL NZ NA PE CY 
0905:0102 B104 MOV CL,04 T 

New location after jump 
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You can trace through the process again, and watch the next digit get 
printed (not really printed, because of the NOPs). We'll leave you to do it 
on your own, but by this time you should have gotten the idea of how 
trace works. You will also have gotten a very graphic explanation of how 
the program works. 

The DECIBIN Program 

0000 

0000 

0003 
0003 
0005 
0007 
0009 
000B 
000D 
000F 

In this section we're going to write another program, called 
DECIBIN, which accepts a decimal number typed on the keyboard and 
converts it to a binary number in the BX register. Later we'll combine 
this program and BINIHEX to create a decimal ~o hex conversion 
program. DECIBIN will also be used in several other situations later in 
the book, where we want to input decimal numbers into a program. In 
higher-level languages like BASIC this sort of conversion is built in, but 
in assembly language we need to build up a library of subroutines which 
we can plug into other programs as we need them. (A good place to find 
such subroutines is the Bluebook of Assembly Language Routines for the IBM 
PC and XT, by Christopher L. Morgan [New York: Plume/Waite, New 
American Library, 1984]. It contains more sophisticated versions of the 
programs we're demonstrating here, as well as many other routines for a 
wide variety of programming functions.) 

Type in the right-hand columns of the following LST file: 

BB 0000 

B4 01 
CD 21 
2C 30 
7C 10 
3C 09 
7F 0C 
98 

;DECIBIN--Program to get decimal digits 
from keyboard and convert them 
to binary number in BX 

prognam segment 

assume cs:prognam 

mov bx ,0 ;clear BX for number 

;Get digit from keyboard, convert to binary 
newchar: 

mov ah ,1 ;keyboard input 
int 21h ;call DOS 
sub al , 30h ;ASCII to binary 
jl exit ; jump if < 0 
cmp al , 9d ; is it > 9d ? 
jg exit ;yes , not dee digit 
cbw ;byte in AL to word in AX 

; (digit is now in AX) 
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0010 
0011 
0014 
0016 

0017 
0019 

001B 
001B 

0010 

;Multiply number in BX by 10 decimal 
93 xchg ax,bx ;trade digit & number 
B9 000A mov cx,10d ;put 10 dee in CX 
F7 El mul ex ;number times 10 
93 xchg ax,bx ;trade number & digit 

;Add digit in AX to number in BX 
03 D8 add bx,ax ;add digit to number 
EB E8 Jmp newchar ;get next digit 

exit: 
CD 20 int 20h 

prognam ends 

end 

Then assemble, link, and convert it to a COM file in the same way as 
before. 

Operating the DECIBIN Program 
To use this program you execute it, then type in any positive decimal 

number less than 65535, and then press~ (or any key other than 
a decimal digit). The program will take the decimal number you have 
typed in, 4096 for example, and convert it to its binary equivalent stored 
in the BX register. You can then examine the BX register with DEBUG 
to make sure that the program has done what it's supposed to do. 

Since the output of the program is a number in the BX register, there 
is no point in operating the program directly from DOS. It would work, 
but you wouldn't be able to see the results. Thus, you must execute the 
program from DEBUG. However, there is a slight problem: If you load 
the program in with DEBUG, type "g" to run the program, and then 
look at the BX register with the R command, you will find that it is 
always 0000. This is because when the INT 20 function terminates a 
program, it sets all the registers to 0000. 

Breakpoints 
The answer to this problem is to stop the program before it reaches 

the INT 20. To do this, we'll use another of DEBUG's features, called 
breakpoints. A breakpoint is a marker you put in a program which says to 
DEBUG: "Execute the program normally, but when you get to this point, 
stop the program and print out the contents of the registers, then go back 
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to DEBUG." DEBUG does this by inserting instructions into the program 
that will cause a jump out of the program to DEBUG at the specified 
point, and then immediately replacing those instructions with the original 
ones from the program once the point is reached. 

You set up breakpoints at the same time you execute a program using 
the "G" command. To do this you simply type the address where you 
want the breakpoint after the "g" and before you press g . You can 
specify up to ten breakpoints at once this way, but in our case we only 
need one. We want to stop execution just before we perform the final 
INT 20 instruction, so we'll put our breakpoint right on top of the INT 
20, which is at location OOIB. So to run the program we do this: 

A>debug decibin.com 
-g llb 

~ Load in DEBUG and the program 
~ Enter "g" and the breakpoint 

65535 ~ Type the decimal number, press g 
Once you hit g , the program will be executed; but instead of 

terminating normally, it will be interrupted at the breakpoint, and 
DEBUG will print out the registers at that point. 

AX=01DD BX=FFFF CX=000A DX=0000 SP=FFFE BP=0000 SI=0000 DI=0000 
DS=0905 ES=0905 SS=0905 CS=0905 IP=011B NV UP DI NG NZ NA PE CY 
0905:011B CD20 INT 20 

-rip 

BX contains FFFF, which is hex for 65535d, so it works! If we want to 
try it on another number, we must be careful to set the IP register back 
to 100, since after the breakpoint IP will retain the address of the 
breakpoint, not the start of the program: 

IP 011B 
:100 
-g llb 
9 
AX=01DD BX=0009 CX=000A DX=0000 SP=FFFE BP=0000 SI=0000 DI=0000 
DS=0905 ES=0905 SS=0905 CS=0905 IP=011B NV UP DI NG NZ NA PE CY 
0905:011B CD20 INT 20 

Here we typed 9, and got 9 in the BX register. 

How Does DECIBIN Work? 
The operation of this program makes use of the following algorithm 

("algorithm" is a fancy word for "method"): 
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1. Put zero in BX register. 

2. Get decimal digit from keyboard, convert to binary. 

3. Multiply whatever was in BX before, by 10d (0Ah). 

4. Add new digit to BX. 

5. Go back to step 2, unless a non-digit was typed, in which case, the 
program is finished. 

This works because each time we type a decimal digit (instead of 
~), we're really saying two things. First, we're giving the program 
the value of the new digit in the one's column. Second, we're telling the 
program that all the digits we typed before must be moved one column 
left; that is, multiplied by 10d. 

The 8088, bless its little heart, has a multiply instruction, so we can 
use that to multiply by 10d, instead of the convoluted algorithms 
necessary with lesser microprocessors. 

There are a few new instructions in this program, including the 
multiply, so let's examine them before we explore how the program works 
in detail. 

The SUB Instruction 

SUB Instruction 
Subtracts right-hand operand from left-hand. Result 
(difference) is stored in left-hand operand. 

To subtract contents of registers: 

SUB AL ,BL 
SUB BX,CX 

To subtract number from register: 

SUB DL , 2Ah 

To subtract register from memory: 

SUB MWORD ,DX 

Also, a number can be subtracted from a memory address, 
and a memory address can be added to a register. 

Flags affected: AF, CF, OF, PF, SF, ZF 
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This instruction is rather similar to ADD. You need to remember that 
the quantity in the right-hand operand is subtracted from the quantity in 
the left-hand operand (not the other way around.) In DECIBIN we need 
to subtract 30h from the ASCII code for the character that was typed in, 
in order to convert it to binary. This is done with the SUB AL,30h in line 
0007. 

Notice that following this subtraction the flags are set just as if we had 
compared two numbers with a CMP instruction. So the JL EXIT in the 
next line will cause a jump if the contents of AL are less than 30h. The 
only way this could be true is if the character we typed in was not a 
number at all, so we exit the program on characters less than 30h. 

The JG Instruction 

JG Instruction 
Jumps if X is Greater than Y where X and Y are the 
operands in a preceding CMP instruction. 

Jumps to the memory location in the operand field if the sign 
flag is equal to the overflow flag and the zero flag is not set. 

CMP AX , 8000h 
JG DO_AGAIN ; jump if AX greater than 8000h 
CMP CL ,DL 
JL LOC2 ; jump if CL greater than DL 

Note: memory location to be jumped to must be within 
-128 or + 127 bytes from the JG instruction. 

The mnemonic JNLE ("Jump if Not Less nor Equal") can 
also be used for this instruction. 

Flags affected: none 

As you can see, JG can be thought of as the opposite of JL. Like JL, 
it can be interpreted in two different ways. You can think of it as causing 
a jump when the sign flag is equal to the overflow flag and when the zero 
flag is 0. Or you can use the more intuitive approach and think of it as 
jumping when the left-hand operand in a preceding CMP (or SUB) 

174 Assembly Language Primer for the IBM PC & XT 



instruction is greater than the right-hand operand. (See the discussion on 
the JL instruction.) Figure 6-7 shows how this works. 

In our DECIBIN program we've changed the ASCII digit that was 
typed in, to binary. Now we want to check if it's greater than 9, since if it 
is, it is not a decimal digit after all and we want to exit from the program. 
So we compare AL with 9d in line 000B, and if AL is greater than 9d, 
we jump to exit, via the JG EXIT instruction in line 000D. 

The CBW Instruction 

CB W Instruction 

Converts Byte to Word. 

The byte must be in AL, the word is always in AX. 

If the number in AL is positive, AH is filled with 00. 

If the number in AL is negative, AH is filled with FF. 

CBW 

Flags affected: none 

This is a useful instruction when you've been dealing with an 8-bit 
quantity (a byte), and you want to make it into a 16-bit quantity (a word). 
Later on in the program we're going to add the binary digit in the A 
register to the binary number in BX, and we need both these registers to 

CMP AL,BL + .,___ __ __, 
If AL is GREATER than JL, then jump to PURPLE 

....-----• + 1c PmtLE 

Figure 6-7. Comparisons and inequalities with JG 

Using the IBM MACRO Assembler 175 



be words, since the ADD instructions can not add a byte to a word. We 
start off with a byte in AL, so to make it into a word in AX, we use the 
CB W instruction. 

Note that assuming the number in AL is positive (bit 7 is zero), AH 
will be automatically set to zero by this instruction. 

The XCHG Instruction 

XCHG Instruction 

Exchanges the contents of two registers, or a register and a 
memory location. 

Works on either 8-bit or 16-bit registers (the segment 
registers cannot be used). 

XCHG AX ,BX 
XCHG CL , AL 
XCHG MWORD,DX 
XCHG BL ,MBYTE 

Flags affected: none 

In order to multiply two words, one must be in AX and the other in 
some other register (as we'll see). We have a number in BX we want to 
multiply by 10, and we have the digit we're going to add to it later in AX. 
The easiest way to handle this is to switch them: exchange AX and BX. 
Then we put the 1 0d into CX, and we're ready to multiply AX by CX. 
After we're done, we switch AX and BX back again with another XCHG 
instruction, so the effect has been to multiply BX by 10. This process is 
shown in Figure 6-8. 
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The MUL Instruction 

In our program the 16-bit word is switched from BX into AX, and 
multiplied by I Od, which leaves the result, a huge 32-bit quantity, in DX 
and AX. We are not interested in the high half of the result, in DX, since 
we are not going to try to convert numbers larger than FFFF anyway. So 

Digit to be Number 
added to BX, to be 
once BX is multiplied 
multiplied by 10d 

by~ (oooio oooc LJ LJ 
AX BX ex DX 

Switch AX and BX with XeHG. 

(ooo30 0ooc0 LJ LJ 
AX BX ex DX 

Put 10d (=Ah) into ex. 

~(ooocO ? LJ 
BX DX X 

"MULeX" AX* ex 
Multiply AX by ex. 
High half of answer· 

DX + AX in DX, low half in AX. 

Low half High half 

~ (ooocO @ooAO @oooO 
AX BX ex DX 
Switch AX and BX again with XeHG. 

rooocO @fnJ LJ LJ 
AX BX ex DX 
Add digit in AX to number in BX. 

rooocO 002AIJ LJ LJ 
AX BX ex DX 

Figure 6-8. Operation of DECIBIN program 
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we ignore DX, and switch the result in AX back into BX. Then we add 
the digit (which started in AX, switched to BX, and is now back in AX). 
The binary equivalent of the decimal digits which have been typed in so 
far is now in BX, and we go back to read another character, which will 
either be another digit, or a nondigit which will cause us to exit from the 
program. 

MUL Instruction 
MULtiplies contents of A register, and operand register or 
memory address. 

To multiply bytes, one number is in AL, second is in 8-bit 
register, or in memory: 

MUL CL 
MUL BL 
MUL MBYTE 

Result is a 16-bit quantity in AX. 

To multiply words, one number is in AX, second is in 16-bit 
register, or in memory. 

MUL ex 
MUL BX 
MUL MWORD 

Result is a 32-bit quantity, high half in DX, low half in AX. 

Flags affected: CF and OF = 0 if high-order half of result is 
zero, otherwise they = 1. 

The DECIHEX Program 
We're now ready to combine BINIHEX and DECIBIN into a 

veritable giant of a program called DECIHEX, for "Decimal to 
Hexadecimal" converter. This program will use DECIBIN to get a 
decimal number from the keyboard and convert it to binary in the BX 
register, and then BINIHEX to print out the contents of BX on the 
screen in hex. Our plan is to take DECIBIN and BINIHEX and modify 
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0000 

them slightly so they are both procedures instead of programs. (We'll 
explain procedures soon.) Then we'll write a short main program which 
will call each procedure in turn. 

We'll need another small addition to our program: a routine to print 
a carriage return (er) and linefeed (If). We need to print the er/If 
combination after we have received the decimal number from the user; 
otherwise the hex number we print out - the hex equivalent of the 
number - will print on top of the original decimal number on the screen 
display. 

The overall structure of the DECIHEX program is shown in Figure 
6-9. 

As you can see, there's one main program and three procedures. The 
main program calls the three procedures in turn. 

Here's the complete program: 

;DECIHEX--Main Program 
Converts decimal on keybd to hex on screen 

. ********************************************* 
' decihex segment 

I 
I 
I 
I 
I 
I 

Get decimal 
number from 
keyboard, 
leave in BX. 

Print number 
from BX out 

I I ) L ____________ J.,,, BINIHEX procedure 

Figure 6-9. Structure of the DECIHEX program 
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0000 E8 000E R 
0003 E8 0047 R 

0006 E8 002A R 
0009 E8 0047 R 

000C EB F2 

000E 

000E BB 0000 

0011 
0011 B4 01 
0013 CD 21 
0015 2C 30 
0017 7C 10 
0019 3C 09 
001B 7F 0C 
001D 98 

001E 93 
001F B9 000A 
0022 F7 El 
0024 93 

0025 03 D8 
0027 EB E8 
0029 
0029 C3 

002A 

assume cs:decihex 

;MAIN PART OF PROGRAM. Connects procedures 
together. 

repeat: call decibin ;keyboard to binary 
call crlf ; print er and lf 

call binihex ;binary to screen 
call crlf ; print er and lf 

jmp repeat ;do it again 

;PROCEDURE TO CONVERT DEC ON KEYED TO BINARY 
; Result is left in BX register 

decibin proc near 

mov bx,0 ;clear BX for number 

;Get digit from keyboard, convert to binary 
newchar: 

mov ah,1 ;keyboard input 
int 21h ;call DOS 
sub al,30h ;ASCII to binary 
jl exit ;jump if< 0 
cmp al,9d ;is it> 9d? 
jg exit ;yes, not dee digit 
cbw ;byte in AL to word in AX 

; (digit is now in AX) 

;Multiply number in bx by 10 decimal 
xchg ax,bx ;trade digit & number 
mov cx,10d ;put 10 dee in ex 
mul ex ;number times 10 
xchg ax,bx ;trade number & digit 

;Add digit in ax to number in bx 
add bx,ax ;add digit to number 
jmp newchar ;get next digit 

exit: 
ret 

decibin endp 

;return from decibin 

;end of decibin proc 

;PROCEDURE TO CONVERT BINARY NUMBER IN BX 
; TO HEX ON CONSOLE SCREEN 
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002A 

002A 
002C 
002E 
0030 
0032 
0034 
0036 
0038 
003A 
003C 
003C 
003E 
0040 
0042 
0044 

0046 

0047 

0047 

0047 
0049 
004B 

004D 
004F 
0051 

0053 

0054 

0054 

binihex proc near 

B5 04 mov ch,4 ;number of digits 
Bl 04 rotate: mov cl,4 ;set count to 4 bits 
D3 C3 rol bx, cl ;left digit to right 
8A C3 mov al,bl ; move to AL 
24 0F and al,0fh ;mask off left digit 
04 30 add al , 30h ;convert hex to ASCII 
3C 3A cmp al , 3ah ;is it> 9? 
7C 02 jl printit ;jump if digit= 0 to 9 
04 07 add al, 7h ; digit is A to F 

printit: 
8A D0 mov dl,al ;put ASCII char in DL 
B4 02 mov ah, 2 ;Display Output funct 
CD 21 int 21h ; call DOS 
FE CD dee ch ; done 4 digits? 
75 E6 jnz rotate ;not yet 

C3 ret ;return from binihex 

binihex endp 

---------------------------------------------
;PROCEDURE TO PRINT CARRIAGE RETURN 

AND LINEFEED 

crlf proc near 

B2 0D mov dl, 0dh ;carriage return 
B4 02 mov ah, 2 ;display function 
CD 21 int 21h ; call DOS 

B2 0A mov dl,0ah ;linefeed 
B4 02 mov ah, 2 ;display function 
CD 21 int 21h ; call DOS 

C3 ret ;return from crlf 

crlf endp 

---------------------------------------------' decihex ends 
. ********************************************* ' 

end 

There it is , by far the largest program you've worked on to date. You 
should be able to save a lot of typing by using your word-processing 
program to merge DECIBIN.ASM and BINIHEX.ASM together, and 
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then adding the other parts of the program to them. 
You'll notice that only one change has been made to the instructions 

in DECIBIN and BINIHEX: the INT 20 instruction at the end of each 
has been changed to a RET. That's because INT 20 is only used to 
return from a main program to DOS or DEBUG. It doesn't work at all to 
return from a procedure, which is what we need to do at the end of 
DECIBIN, BINIHEX, and LFCR. 

Type in the program in the usual way, assemble it, link it, and convert 
it to a COM file. As before, we'll tell you what it does before we talk about 
how it works. 

Operating the DECIHEX Program 
Your diligence in writing DECIBIN and BINIHEX can now be 

rewarded. Our new DECIHEX program does not require DEBUG to 
operate. You can use it from DEBUG if you want, but you can also invoke 
it directly from DOS. 

Once it's loaded it will sit there waiting for you to type in a decimal 
number. Type in the number, up to 65535d, then press g. The hex 
equivalent will be printed out on the next line. (Don't try negative 
numbers: the program can't handle them. It will exit if you type any 
character except the decimal digits O through 9.) 

A>decihex 
4096 

- Enter name of program 
- Enter decimal number 

1000 
10 
000A 
·c 
A> 

- Hexadecimal result will be displayed 

- Enter another decimal number 

- Hex r~inted out 
- Type lQ!!J ( Break ) to exit 
-Back in DOS 

The program will then wait for another number, and so on. To 
escape from the program you'll need to type (Qd] C or (QdJ (Break), 

since no escape mechanism was built into the program itself. 

How Does DECIHEX Work? 
The main part of the program consists entirely of CALL instructions. 

These, along with the RETs at the end of the procedures, are the only 
new instructions in the program. There is also a new pseudo-op, called 
PROC. These three things are interrelated, so let's see what they do. 
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The CALL Instruction 

CALL Instruction 
CALLs a subroutine. 

Transfers control to the address of the subroutine in the 
operand field. 

Also sets up return by placing address following the CALL 
on the stack. 

CALL can be either short or long. 

In a short CALL, the contents of the IP register are 
placed on the stack. 

In a long CALL, the contents of, first the CS register, and 
then the IP register, are placed on the stack. 

CAL SUBR 

Flags affected: none 

A CALL is like a JMP to another memory location, except that in 
addition to jumping to a new location, the CALL instruction also stores 
the memory address of the location just following the CALL instruction 
itself. Where does it store this address? In a part of memory called the 
stack. We're not going to get into the operation of the stack at this point; 
it will be covered in the next chapter. For the time being you can simply 
think of it as a place to store addresses. The result is that when a RET 
instruction is executed at the end of a procedure, the 8088 knows what 
memory address to return to. The operation of CALL and RET in 
procedures is diagrammed in Figure 6-10. 

There are two variations of the CALL instruction. Long CALLs are 
calls to procedures in a different memory segment than the calling 
program. Since we haven't learned about segments yet, we'll ignore this 
possibility for the moment. Short CALLs are made to procedures in the 
same segment as the calling program, which is the case in our program. 
Now, the tricky part is that, although a long CALL and a short CALL use 
different machine language op-codes, there is no difference in the way long 
calls and short calls are written in the source (ASM) file. They are both just 
CALL. How then does the assembler know, when it sees CALL, whether 
to assemble a long call or a short one? 
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The answer is that it looks at the routine you have CALLed to get its 
answer. And what exactly is it that you CALL? It's something called a 
procedure. A procedure is a group of assembly language instructions, 
much like a program, which have been grouped together. A procedure 
usually performs a specific, well-defined task. In BASIC and some other 
higher-level languages, and in other dialects of assembly language, a 
procedure is often called a subroutine. 

The P ROC Pseudo-Op 

The PROC pseudo-op is used to identify procedures. Remember the 
SEGMENT and ENDS pseudo-ops that were used to define a segment? 
The PROC pseudo-op is similarly part of a pair: PROC and ENDP. 
They're used to surround a procedure, like this: 

Main program 

I JULES PROC NEAR 

RET 

RET 

JIM ENDP 

JIM procedure 

Figure 6-10. Operation of the CALL and RET instructions 
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SUB....NAME PROC FAR ;start of procedure 

(procedure goes here) 

RET 

SUB....NAME ENDP 

; (procedure ends with RET) 

;end of procedure 

There are two kinds of "procedures," NEAR and FAR. These 
definitions have to do only with how the procedure will be called with 
CALL and how it will return to the calling program with RET. If it is a 
NEAR procedure, it will be called with a NEAR CALL, and if it is a FAR 
procedure it will be called with a FAR CALL. So the only real function of 
the PROC pseudo-op (besides setting off blocks of code and so making 
the documentation of the programming a little clearer), is to tell the 
assembler whether CALLs to that procedure will be NEAR or FAR. 

The RET Instruction 

RET Instruction 

RETurns from procedure. 

Transfers control to the address on the top of the stack. This 
address was placed there earlier by a CALL instruction. 

RET can be either near or far. 

A near RET returns from a NEAR procedure, taking one 
word from the stack and placing it in the IP. 

A far RET returns from a FAR procedure, taking the 
first word from the stack and placing it in the IP, then 
taking the second and placing it in CS. 

RET 

Optionally, RET can also pop additional values off the stack. 

RET 12 

Flags affected: none 
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The RET instruction transfers control from a procedure back to the 
program which called it. This is possible because the address of the 
instruction following the CALL instruction is stored on the stack. When 
the 8088 sees the RET, it simply looks on the stack, and transfers control 
to the address it finds there. RET instructions can be NEAR or FAR. 
This is determined by the assembler, which looks to see if the RET is in a 
NEAR or FAR procedure. If it's in a NEAR procedure, the RET is 
assembled as a NEAR RET. If it's a FAR procedure, then it's a FAR RET. 

PROCs, CALLs, and RETs 

So, as we've seen, all the "nears" go together and all the "fars" go 
together. A NEAR CALL calls a NEAR PROC which returns with a 
NEAR RET, and a FAR CALL calls a FAR PROC which returns with a 
FAR RET. When we're writing our program the only thing we need to 
specify is the PROC: we must choose FAR or NEAR. The assembler will 
figure out the CALLs and the RETs. 

The idea behind this way of doing things is to make it harder to make 
a mistake. If you had to specify both the CALLs and the RETs, the 
chances are you would sooner or later mix them up, and then your 
program would be in big trouble. Using the PROC approach means that 
the assembler has the responsibility of matching up the CALLs and RETs, 
and it, presumably, is infallible. 

PROC was invented to save you from yourself. 

Since we are only dealing with calls in the same code segment at this 
point, all our PROCs, CALLs and RETs will be NEAR. 

The operation of the DECIHEX program should now be clear. The 
four CALL instructions at the start of the program spell it out: get a 
decimal number from the keyboard with DECIBIN, then print a cr/lf to 
move down to the next line; print the hex version of the number with 
BINIHEX, then print another cr/lf to get ready for the next input. 

Note that DECIBIN leaves the binary equivalent of the decimal 
number in BX. It stays there, unchanged, because LFCR does not 
damage the contents of BX. Then, when BINIHEX is called, it finds this 
number in BX and converts it to hex. We can say that BX has been used 
to pass (transfer) a value from one procedure to another. 
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Formatting Procedures and Segments 

To highlight the various procedures in our program listing, we have 
divided them with dashed lines. This makes it easier to see at a glance 
where all the procedures begin and end in a long program. Similarly, 
we've started the segment with a line of stars (asterisks), and ended it with 
another line of stars. Although only one segment is used in this program, 
future programs will have more segments, and visually separating one 
from another will make the listing easier to read. We'll follow these 
conventions throughout the book. The general structure of this format is 
shown below . 

. ************************* ' 

procedure 
-- - -- - - -- - -- --- -- - ---- -- - Segment 

procedure 

. ************************* ' 

procedure Segment 

. ************************* ' 

Cross-Reference: Using the CREF Program 

Before leaving this chapter, we're going to introduce you to another 
program: CREF. This program is interesting, but certainly not essential 
to the operation of the assembler and the writing of the short assembly 
language programs in this book. If you're in a hurry, you can skip this 
section. But if you plan to write really long assembly language programs 
at some future time, then read on. 

The CREF program is included on the disk with MASM and ASM, 
and is described in the IBM Personal Computer MACRO Assembler manual. 
The purpose of CREF is to produce a cross-reference listing of the 
symbolic names used in the program. 

What good is a cross-reference listing? In short programs it isn't all 
that valuable. But when you're debugging a really long program it can be 
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very useful. Suppose you find, for instance, that you need to change the 
symbolic name of a particular location in memory from REPEAT to 
DO_AGAIN. It's easy to change the REPEAT location itself, but what 
about all the references to it? You may have all sorts of JMP REPEAT 
instructions scattered throughout your program. The cross-reference file 
generated by CREF gives you an easy way to find where they all are. 

Line Numbers and the PAGE Pseudo-Op 
As we'll see below, the CREF program generates its cross-reference 

table using the line numbers in the program listing to refer to various 
locations. These line numbers are simply the ordinal number of each line 
in the listing, starting at the top. However, as we've seen, no such 
numbers appear on the LST files generated by ASM that we've seen so 
far in this book. You could count the lines yourself on the ASM or LST 
file, but this is rather tedious; it's the kind of thing computers are 
supposed to do for you. 

It turns out there is a way to get the assembler to generate these line 
numbers: the PAGE pseudo-op. PAGE is used at the beginning of an 
ASM file, mostly to specify the number of characters per line and the 
number of lines per page in the LST file. One instance in which this 
might be useful is if you have a printer with 132 columns, and you want 
the LST file to make use of this increased width. In our case we aren't 
going to change the width so we use the PAGE pseudo-op without any 
parameters. This gives us default values of 66 lines per page and 80 
characters per line. This is just what you get if you don't use PAGE at all. 
However, using PAGE causes the line-numbering feature to be turned on. 

The DECIHEX program that follows is somewhat different from the 
previous DECIHEX program we examined. The beginning of the ASM 
file of this DECIHEX program shows how the PAGE pseudo-op is 
positioned at the start of the program. 

page - Page pseudo-op 

;DECIHEX--Main program 
Converts decimal on keybd to hex on screen 

, 
decihex segment 

main proc far 

assume cs:decihex 
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' ;MAIN PART OF PROGRAM. Links procedures 
together. 

t 

display equ 2h ;video output 
key_in equ lh ;keyboard input 
doscall equ 21h ;DOS interrupt number 

repeat: 

push ds ; ds on stack 
sub ax , ax ;set ax=0 
push ax ;zero on stack 

call decibin ;keyboard to binary 
call lfcr ; print lf and er 

. . (balance of program deleted) 

Once you have PAGE in your ASM file, you can assemble the file and 
generate the cross-reference file. When you use the assembler you need 
to specify the CREF filename, as shown here: 

A>asm decihex 
The IBM Personal Computer Assembler 
Version 1.00 (C)Copyright IBM Corp 1981 

Object filename [DECIHEX.OBJ ]: nul 
Source listing [NUL .LST]: decihex 
Cross reference [NUL.CRF]: decihex 

Warning Severe 
Errors Errors 
0 0 

- OBJ file not needed 
- Specify the LST filename 
- Specify the CRF filename 

The first output file from the assembler that we're interested in is the 
LST file, shown below. As you can see, it now sports line numbers on the 
left-hand side. 

Unfortunately, these line numbers take up a lot of room, so that the 
comments on the right get chopped off on our SO-column screen and on 
our SO-column printer. This is a rather serious problem. We don't want 
to sacrifice comments in order to have line numbers. The best solution is 
to have a printer wider than 80 columns. In any case, here's the 
beginning of the LST file, with the comments cut off on the right to fit 
on the page: 
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1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 

page 
;DECIHEX--Main program 

' 
Converts decimal on keybd to hex on 

' 0000 decihex segment 
-------------------------------------

0000 main proc far 

assume cs:decihex 

' ;MAIN PART OF PROGRAM. Links subrouti 
together. 

' = 0002 display equ 2h ;video output 
= 0001 key_in equ lh ;keyboard inpu 
= 0021 doscall equ 21h ;DOS interrupt 

0000 lE push ds ; ds on stack 
0001 2B C0 sub ax, ax ; set ax=0 
0003 50 push ax ;zero on stack 

0004 E8 0012 R repeat: call decibin ; keyboard to b 
0007 E8 004B R call lfcr ; print lf and 

000A E8 002E R call binihex ;binary to scr 
0000 E8 004B R call lfcr ; print lf and 

0010 EB F2 J mp repeat ; do it again 

0012 main endp 
-------------------------------------

' 0012 decibin proc near 

' ;PROCEDURE TO CONVERT DEC ON KEYED TO 
result is left in BX register 

0012 BB 0000 mov bx,0 ; clear BX for 

' ;get digit from keyboard, convert to b 

(balance of program deleted) 

The assembler also generated a CRF file. This is an intermediate 
step in the generation of the cross-reference file, which has the file 
extension REF. The CREF program is used to generate the REF file from 
the CRF file. (What would a linguist make of a sentence like that?) 
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A>cref decihex 
List [DECIHEX.REF ]: 

- Enter CREF and filename 

- Specify the name of the REF file 

The resulting REF file is shown below. The line number where a 
symbol is defined is marked with a number sign (#). The other numbers 
are all the other line numbers in the program where that symbol is 
referenced. Thus REPEAT occurs in line 23, and is referenced only in 
line 29 (as you can verify from the LST file above). As we noted, for short 
programs the use of line numbers and the CREF utility is of somewhat 
questionable value. However, if you are writing really long programs, 
especially if you have a 132-column printer, it can be very useful. 

Symbol Cross Reference r# is definition ) Cref-1 
BINIHEX ... . .. . . . . . ... . .. . 

DECIBIN 
DECIHEX 
DISPLAY 
DOSCALL 

EXIT 

KEY_I N 

LFCR 

MAIN 

NEWCHAR 

PR INTIT 

REPEAT 
ROTATE 

Summary 

26 67# 89 

23 
5# 

15# 
17# 

46 

16# 

24 

8# 

42# 

79 

23# 
73# 

34# 
10 
83 
44 

48 

43 

27 

31 

60 

81# 

29 
86 

64 
106 

95 
84 

61# 

92# 

107 

99 
96 

103 

100 

In this chapter you've honed your skills with the MACRO Assembler 
by practicing on three different programs, ending up with a very usable 
decimal to hex conversion program. You've learned many new 8088 
instructions, and two new features of DEBUG: the T command, and the 
use of breakpoints. You've also been introduced to PROCedures, CALLs, 
RETurns, and the relationship among them. Finally you learned about 
the PAGE pseudo-op and the CREF cross-reference utility. 
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192 

[Z] 
How Does It Sound? 

Concepts 
White noise 
The stack 
Using the timer to generate sound 
Putting data in memory: why we need segments 

8088 Instructions 
ROR = Rotate right 
PUSH = Store on stack 
POP = Remove from stack 
NEG = Change sign of number 
SHL = Shift left (or SAL = Shift arithmetic left) 
DIV = Divide 
EQU = Equivalence: (pseudo-op} 

DOS Functions 
Check Standard Input Status (Check Keyboard Status) 

Applications 
NOISE program - Sound of surf 
GUN program - Machine gun 
SIREN program - Strange siren sound 
SPACEWAR$ program - Unearthly burble 
KAZOO program - Plays a kind of music 
PIANO program - Turns keyboard into piano 

You've spent the last two chapters working hard, learning how to use 
the assembler and writing some pretty serious programs. For a change of 
pace we're going to write some programs that use the sound-producing 
capabilities of your PC. These programs will be kind of fun, and they 
have the advantage that you can hear instantly what the program is doing, 
so you can debug them with your ears! 



There will also be some new things to learn about the 8088 and the 
assembler in this chapter. We'll talk about the mysterious thing called the 
"stack," and about the EQU pseudo-op, and we'll cover a number of new 
8088 instructions. We'll also touch on storing data in memory, which will 
lead into the next chapter, on memory segmentation. 

Why Use Sound? 
Why would you want to use sound in your programs? If you're 

writing a game, of course, the answer is obvious: everybody likes music 
and sound effects. But even gray flannel suit programs like data base 
managers and spreadsheets can profit from the use of sound. Most such 
programs make a limited use of sound to indicate error messages, just as 
the keyboard routine in your DOS will beep at you when its buffer gets 
too full. But there is also a lot to be said for programs that play simple 
tunes to indicate the completion of a process or the need for input from 
the user, or that make rude noises when you make a mistake. Sound can 
become part of your interaction with the machine. Just as graphics (which 
we'll be covering in a later chapter) can aid this interaction, sound can 
provide a more interesting and varied form of communication between 
human and computer. 

The White Noise Program 
Remember our first sound program (called SOUND), the simple tone 

generator in chapter 2? It looked like this, disassembled with the "U" 
command: 

-u100,10e 
0905:0100 E461 
0905:0102 24FC 
0905:0104 3402 
0905:0106 E661 
0905:0108 B94001 
0905:010B E2FE 
0905:0100 EBF5 

IN 
AND 
XOR 
OUT 
MOV 
LOOP 
JMP 

AL,61 
AL,FC 
AL ,02 
61,AL 
CX,0140 
010B 
0104 

This program created a sound using a very fundamental method: it 
actually sent signals to the loudspeaker which pushed the cone of the 
loudspeaker in and out. (You might want to reread this section in chapter 
2, if your memory of it has become hazy.) 
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0100 

0100 

0100 

0100 

0100 

0103 
0105 
0107 
0109 

One of the advantages of this system of sound generation is that it 
gives you complete control over the speaker. You don't have to send it a 
fixed note or frequency - you can mix up all sorts of different 
frequencies and send them at the same time. We're going to take 
advantage of this possibility to create a kind of sound called "white 
noise." It is an equal mixture of all audio frequencies, just as white light 
is a mixture of different frequencies of light, or colors. 

If you're a BASIC programmer you'll recognize that there's no way to 
get the kind of effect we're describing here in that language. You're 
restricted to the fixed group of-musical tones that BASIC wants you to 
use. Only assembly language gives you the freedom to fool around with 
the sound generators, achieving strange and wonderful effects, some of 
which, if you're inventive, may have never been heard on earth before. 

Here's the LST file for the NOISE program. Type in the assembly 
language part of it, and assemble, link, and convert it to a COM file in 
the usual way. Then try it out. You should get a rushing sound, like static, 
with no musical tone at all. 

Like the earlier SOUND program, the only way to stop this program 
is with a system reset. Sorry about that - we'll show you how to fix this 
problem soon. 

BA 0140 

E4 61 
24 FC 
34 02 
E6 61 

;NOISE--Makes a sound with the 
speaker 

can't be stopped except by reset 

' '********************************************* ' prognam segment ;define code segment 

main proc far ;main part of program 

assume cs:prognam 

org 100h ; start of program 

start: ;starting execution address 

mov dx,140h ;initial value of wait 

rn al,61h ; get port 61 
and al, 11111100b ;AND off bits 0, 1 

sound: xor al,2 ;toggle bit #1 in AL 
out 61h,al ;output to port 61 
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010B 
010F 
0111 

0113 
0115 
0119 

011D 
011F 

0123 

0123 

81 C2 9248 add dx,9248h ;add random pattern 
Bl 03 mov cl, 3 ;set to rotate 3 bits 
D3 CA ror dx ,cl ;rotate it 

SB CA mov cx,dx ;put in ex 
81 El 01FF and ex, lffh ;mask off upper 7 bits 
81 C9 000A or ex, 10 ;ensure not too short 

E2 FE wait: loop wait ; wait 
EB E6 jmp sound ;keep on toggling 

main endp ;end of main part of program 

' prognam ends ;end of code segment 
·********************************************* ' 

end start ;end assembly 

This program is really not so different from the SOUND program of 
chapter 2. Of course it looks different because it's written in real 
assembly language, rather than with DEBUG. But the only operational 
difference is in the length of time we wait between sending pulses to the 
speaker. In SOUND we always waited the same length of time, an 
interval determined by the number we placed in the CX register before 
we executed the LOOP instruction in location 0l0B. Since these intervals 
were always the same, the resulting sound was a more or less pure tone. 

What would happen if instead of using constant intervals, as in 
SOUND, we sent pulses to the speaker at varying intervals? We'd get a 
mixture of all audio frequencies at equal energy, and the result would be 
white noise. That's what the NOISE program does. We send a pulse, wait 
a few milliseconds, send another pulse, wait a completely different number 
of milliseconds, send another pulse, and so on. 

Random Number Generator 

The question is, how do we get some random numbers to use for the 
intervals between sending the pulses? There are all sorts of ways to do 
this. The one we've selected is simple, but effective. 

We keep our random number in the DX register. Every time we need 
a new random number, we add a fixed number to the old one (the fixed 
number is 9248h, which is 1001001001001000 binary), and then rotate 
the result 3 bits right. These two actions are sufficient to produce a series 
of numbers which are random enough for our needs in this program. It 
also uses a new instruction, ROR. 
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The ROR Instruction 

ROR Instruction 

ROtates a register Right. 

All bits in register move right. 

Bits from right-hand e1 j appear on left-hand end, and in 
the carry flag. 

To rotate 1 bit: 

ROR DL ,1 

To rotate more than 1 bit, put number in CL first: 

MOV CL ,3 
ROR BX,CL 

Flags affected: CF, OF 

This instruction is just like the ROL instruction in the last chapter, except 
that it moves all the bits right instead of left. 

Now that we have a random number, we need to make it a little less 
random. We need to keep it between certain limits: it should not be 
larger that 200h, nor smaller than 1 Oh. These numbers correspond 
roughly to the useable frequencies of the speaker. 

We make sure our number isn't too large by masking off the upper 7 
bits with an AND instruction, so the result has a maximum value of 
1 FFh. And we make sure it isn't too small by ORing on a 10h, which 
means it can never be smaller than that. The resulting semi-random 
number is then placed in the CX register and used as a counter for the 
LOOP instruction, just as in the old SOUND program. Then we jump 
back up to toggle bit number 1 in the AL again, and the process is 
repeated over and over, resulting in the strange noise you heard from 
your speaker when you ran the program. 

What's this noise good for? Well, it's a nice imitation of distant surf, 
or freeway traffic. A short burst of it would sound like an explosion. And 
combined with normal tones, all sorts of effects are possible. Our next 
example will show you how to turn it into a burst of machine gun fire. 
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The Machine Gun Program 

0100 

0100 

0100 

0100 
0103 
0103 
0104 
0107 
010A 
010C 
0100 
010F 

0111 

0111 

It's not that we want to dwell particularly on instruments of 
destruction, but this sound is a rather easy one to derive from the 
preceding program, and it does begin to demonstrate some of the ways 
we can use white noise. If you prefer, you can think of the sound as 
coming from a high-speed typist. 

Here's a good opportunity to save yourself some keystrokes. Use the 
COPY command to make a copy of the NOISE program. You can call it 
GUN. Then modify it with your word processor until it looks like this: 

B9 0014 

51 
ES 0111 R 
B9 4000 
E2 FE 
59 
E2 F4 
CD 20 

;GUN--Makes machine gun sound 
fires fixed number of shots 

'********************************************* , 
prognam segment ;define code segment 

main proc far ;main part of program 

assume cs:prognam 

org 100h ;start of program 

start: ;starting execution address 

mov cx,20d 
new_shot: 

push ex 
call shoot 
mov cx,4000h 

silent: loop silent 
pop ex 
loop new_shot 
int 20h 

;set number of shots 

; save count 
;sound of shot 
;set up silent delay 
;silent delay 
;get shots count back 
;loop till shots done 
;return to DOS 

marn endp ;end of main part of program 

;SUBROUTINE TO MAKE BRIEF NOISE 

shoot proc near 

0111 BA 0140 
0114 BB 0020 

mov dx ,140h 
mov bx ,20h 

;initial value of wait 
;set count 

0117 E4 61 
0119 24 FC 

in al,61h ;get port 61h 
and al ,11111100b ;AND off bits #0, #1 
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011B 
0110 

011F 
0123 
0125 

0127 
0129 
0120 

0131 

0133 
0134 

0136 
0138 

013A 

013B 

013B 

34 02 
E6 61 

81 C2 9248 
Bl 03 
03 CA 

8B CA 
81 El 01FF 
81 C9 000A 

E2 FE 

4B 
75 E5 

24 FC 
E6 61 

C3 

sound: xor al ,2 ;toggle bit #1 in AL 
out 61h,al ;output to port 61 

add dx,9248h ;add random bit pattrn 
mov cl,3 ;set to rotate 3 bits 
ror dx,cl ;rotate it 

mov ex, dx ;put in ex 
and ex , lffh ;mask off upper 7 bits 
or ex , 10 ;ensure not too short 

wait: loop wait ; wait 

;made noise long enough? 
dee bx ; done enough? 
jnz sound ;jump if not yet 

; turn off sound 
and al ,11111100b ;AND off bits 0, 1 
out 61h,al ; turn off bits 0, 1 

ret 

shoot endp 

;return from subr 

' prognam ends ;end of code segment 
. ********************************************* ' 

end start ;end assembly 

So how does this all work? As you can see, our old program has been 
turned into a PROeedure, or subroutine, which is eALLed from the 
main program. The main program first sets up a count in the ex 
register. This count is the number of shots to be fired . Each shot will 
consist of an interval of white noise followed by an interval of silence. So 
we set up this count, and then call SHOOT - which is the noise 
subroutine - to make the noise, and then have a moment of silence 
created by the LOOP SILENT instruction at location O 1 OA. Then we 
decrement the count of the number of shots, and check to see if this 
count has gone to zero; if so, we return to DOS; if not, we go do another 
shot. 

But as you can see, it isn't really as simple as that. After all, we start 
off using the ex register to hold the number of shots, but later we put 
4000h into it to cause a silent delay. Why doesn't the count of the number 
of shots get destroyed when we put the 4000h into ex? The answer is 
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that we've saved the contents of CX on the stack, by using a PUSH 
instruction. Later we get the contents back from the stack by using a POP 
instruction. 

What is this thing called a stack? And where is it? 

The Stack, PUSH, and POP 
The stack is a strange and mysterious entity which is very important 

in the design and programming of most modern computer systems. It is, 
in fact, often said that a computer uses "stack architecture" if it has a 
stack - meaning that the stack is the important thing to know about the 
overall design of the computer. 

What is the stack? Operationally, it's a special place to put 16-bit 
quantities, like the contents of the CX register (or any of the other 16-bit 
registers). To store the contents of a register on the stack, you execute a 
PUSH instruction, and to take it off again, you do a POP. 

The stack is a lot like any other stack, say a stack of dishes in a 
restaurant. When a dish is washed and ready to be stored, it's placed on 
the top of the stack. When a waiter needs a new plate he takes it off the 
top of the stack. This kind of stack is called LIFO, for "Last In, First 
Out," meaning that the last dish placed on the stack is the first one to be 
removed. 

Of course, in our stack we're not storing dishes, but 16-bit quantities. 
You can use the stack yourself to store the contents of registers, but the 
8088 also uses the stack. What for? To store the return address when we 
do a CALL instruction to a procedure. (A NEAR CALL will cause a one
word address to be stored on the stack, and a FAR CALL will store a two
word address, although so far we're only interested in NEAR CALLS.) As 
you learn more about the stack you'll begin to realize how CALL and 
RET operate. 

The stack is a place in memory to store the contents of 16-bit 
registers. 

What sort of thing is the stack? It's simply a sequence of memory 
locations: a section of memory set aside to serve as temporary storage. 
How does stack storage differ from ordinary memory storage? First, it's 
faster and easier: the PUSH and POP instructions which store and 
retrieve values from the stack are short, efficient instructions. Second, 
since there is only one stack (at any given time, anyway), it's easy to find. 
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If one routine puts a value on the stack, another routine knows it can get 
it off the stack if it needs it. All this will be made clearer as we go along. 

Where Is the Stack? 

Which memory locations does the stack occupy? Well, you can tell 
where they are simply by using the "R" command in DEBUG. Let's load 
the GUN program and try it: 

A>debug gun.com 
Contents of stock pointer 

-r I 
AX=0000 BX=0000 
DS=0905 ES=0905 
0905:0100 B91400 

CX=0014 DX=0000 SP=FFFE BP=0000 SI=0000 01=0000 
SS=0905 CS=0905 IP=0100 NV UP DI PL NZ NA PO NC 

MOV CX,0014 

There's a register we haven't told you about yet, called the Stack 
Pointer (SP) register. There it is on the top row, fifth from the left. (If this 
were a yearbook photo of the registers, the Stack Pointer would probably 
have been voted "Most Popular," whereas the Instruction Pointer would 
have been named "Most Likely to Succeed." Well, anyway.) 

The purpose of the Stack Pointer is to point to the top of the stack. What 
does this mean? Simply that the SP register contains the address of the 
16-bit value which was last put on the stack. Thus if the SP register starts 

FFF6 
SP register FFF7 

L FFF8 0 ► FFF8 

Stack FFF9 
pointer FFFA 
always 
points FFFB 
to top FFFC of stack 

FFFD 
FFFE 
FFFF 

Section of memory 
used by stack 

I -
.. 

..... 

,,, 
✓ 

,,, 

_,, 

_,, 

_,, 

✓ 

,,, 

Last value 
placed on 
stack 

Second value 
placed on 
stack 
First value 
placed on 
stack 

Figure 7-1. Stack pointer register 
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out at FFFE and you put something on the stack, SP will automatically 
change to FFFC. After the second thing it will change to FFFA, and after 
the third thing it will contain FFF8. Figure 7-1 shows how the Stack 
Pointer looks after three 16-bit quantities have been placed on the stack. 

In the DEBUG printout, the top of the stack is at memory location 
FFFE. How did it get there? It turns out that when a COM file is loaded, 
the Stack Pointer is automatically set to the top of the memory segment 
that the program is in. In any given segment the addresses run from 

a 

b 

C 

d 

AX 

MOY AX,1234h r 1234 0 
Stock 
pointe 

... 
r 

AX 

PUSH AX 1234 

AX 

MOY AX,O 
_, 0 Stock I O pointe 

.. 
r 

AX 

POP AX 1234 

Figure 7-2. Operation of the stack 

I 

,,, 
,,, 
; 

/ 

; 

; 

34 
12 

I 

; 

,,, 
34 ; 

12 ,,, 
,,, 
,,, 

34 
12 

FFFA 
FFFB 
FFFC 
FFFD 
FFFE 
FFFF 

FFFA 
FFFB 
FFFC 
FFFD 
FFFE 
FFFF 

FFFA 
FFFB 
FFFC 
FFFD 
FFFE 
FFFF 

FFFA 
FFFB 
FFFC 
FFFD 
FFFE 
FFFF 
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0000 to FFFF. The program, as you know, starts at 0100 and grows 
toward higher addresses. 

The stack, on the other hand, starts at FFFE and grows in the other 
direction, toward lower addresses. (It can't start at FFFF because, since 
it's storing 16-bit quantities, it must always point to even-numbered 
locations.) Figure 7-2 shows a number being stored from the AX register 
onto the stack with a PUSH, then removed with a POP. 

In this figure we show the AX register being loaded with a known 
quantity: 1234h. The stack pointer is at FFFE. Then we take this 
quantity in the AX register and PUSH it onto the stack. PUSH AX 
means that we transfer the 16-bit value from the AX register to the stack, 
and at the same time change the SP register to point to the address of 
this value on the stack. 

Now, to show that there is nothing up our sleeve, so to speak, we zero 
out the contents of AX by loading it with 0. Is the original value now 
lost? No, it's still on the stack. How can we get it back again? With a POP 
AX instruction, which causes the contents of the memory location 
pointed to by the Stack Pointer to be transferred from the stack back into 
the AX register. 

The PUSH Instruction 

PUSH Instruction 
Moves 16-bit quantity from register to stack (or from 
memory location to stack). 

First the SP (Stack Pointer) register is decremented 2 bytes. 
Then the content of the register (or memory location) in the 
operand field is written to the stack, at the address pointed to 
by SP. 

PUSH AX 
PUSH DX 
PUSH SI 
PUSH ES 
PUSH MWORD 
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-a100 

The POP Instruction 

POP Instruction 

Moves 16-bit quantity from stack to register (or from stack 
to memory location). 

First the contents of the stack location pointed to by SP (the 
Stack Pointer) are transferred into the register (or memory 
location) in the operand field. Then the address in SP is 
incremented two bytes. 

POP AX 
POP DX 
POP SI 
POP ES 
POP MWORD 

Let's use DEBUG to get a feel for what's happening when we use the 
stack, and for how the PUSH and POP instructions work. Bring up 
DEBUG and type in the following little program. This is not really an 
executable program, so don't try to run it with "G". It is meant to be 
traced through one step at a time with "T" to give you a graphic picture 
of what the stack is doing. Whereas in Figure 7-2 we PUSHed one 16-bit 
number onto the stack and then POPped it off, we are now going to use 
DEBUG to show two 16-bit quantities being PUSHed onto the stack and 
POPped off. 

08Fl:0100 rnov ax ,1234 
08Fl:0103 rnov bx ,5678 
08Fl :0106 push ax 
08Fl:0107 push bx 
08Fl:0108 rnov ax ,0 
08Fl:010B rnov bx ,0 
08Fl:010E pop bx 
08Fl:010F pop ax 
08Fl : 0110 
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Here it is, unassembled with "U": 

-u100 ,10f 
0905:0100 B83412 
0905:0103 BB7856 
0905:0106 50 
0905:0107 53 
0905:0108 B80000 
0905:010B BB0000 
0905:010E 5B 
0905:010F 58 

MOV 
MOV 
PUSH 
PUSH 
MOV 
MOV 
POP 
POP 

AX,1234 
BX, 5678 
AX 
BX 
AX,0000 
BX,0000 
BX 
AX 

This program loads AX with 1234h, BX with 5678h, and then puts 
the contents of these two registers on the stack, using PUSH instructions. 
Then it puts zeros in AX and BX so we can see they're really empty 
(nothing up our sleeve!). Finally it POPs the old values back off the stack 
into the registers again. An important thing to notice here is that the 
order of POPping things off the stack must be the reverse of the order they 
were PUSHed on with . 

POP things off the stack in the opposite order they were 
PUSHed on. 

Let's follow the operation of our test program, step by step. Enter "R" 
to see the registers before we start tracing. The first two instructions load 
the registers with the constants. Note how the contents of AX and BX 
change. 

-r 
AX=0000 BX=0000 
DS=0905 ES=0905 
0905:0100 B83412 
-t 

AX=1234 BX=0000 
DS=0905 ES=0905 
0905 :0103 BB7856 
-t 

CX=0010 DX=0000 SP=FFFE BP=0000 SI=0000 01=0000 
SS=0905 CS=0905 IP=0100 NV UP DI PL NZ NA PO NC 

MOV AX ,1234 

CX=0010 DX=0000 SP=FFFE BP=0000 SI=0000 DI=0000 
SS=0905 CS=0905 IP=0103 NV UP DI PL NZ NA PO NC 

MOV BX ,5678 

AX=1234 BX=5678 CX=0010 DX=0000 SP=FFFE BP=0000 SI=0000 01=0000 
DS=0905 ES=0905 SS=0905 CS=0905 IP=0106 NV UP DI PL NZ NA PO NC 
0905:0106 50 PUSH AX 
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Now we PUSH the contents of AX and BX onto the stack. Notice how 
the Stack Pointer changes from FFFE to FFFC (2 fewer than FFFE), and 
then to FFFA (2 fewer again). The Stack Pointer is decremented because 
the stack is growing downward in memory, from higher to lower 
addresses. It moves two bytes at a time because we are storing 16-bit 
quantities, which require two bytes each. 

-t 
AX=1234 BX=5678 
DS=0905 ES=0905 
0905:0107 53 
-t 

CX=0010 DX=0000 SP=FFFC BP=0000 SI=0000 DI=0000 
SS=0905 CS=0905 IP=0107 NV UP DI PL NZ NA PO NC 

PUSH BX 

AX=1234 BX=5678 CX=0010 DX=0000 SP=FFFA BP=0000 SI=0000 DI=0000 
DS=0905 ES=0905 SS=0905 CS=0905 IP=0108 NV UP DI PL NZ NA PO NC 
0905:0108 B80000 MOV AX ,0000 

Now we zero out AX and BX: 

-t 
AX=0000 BX=5678 CX=0010 DX=0000 SP=FFFA BP=0000 SI=0000 DI=0000 
DS=0905 ES=0905 SS=0905 CS=0905 IP=010B NV UP DI PL NZ NA PO NC 
0905:010B BB0000 MOV BX,0000 

-t 
AX=0000 BX=0000 
DS=0905 ES=0905 
0905:010E 5B 

CX=0010 DX=0000 SP=FFFA BP=0000 SI=0000 DI=0000 
SS=0905 CS=0905 IP=010E NV UP DI PL NZ NA PO NC 

POP BX 

Fine - both registers are zeroed out. (Remember that the POP at 
0 I OE above has not yet been executed: the printout shows the instruction 
about to be executed.) Let's look at the area of memory where the stack is, 
to see what's happening. 

0 1 2 3 4 5 6 7 8 9 A B C D E F 
-dffc0 , ffff 
0905:FFC0 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 
0905:FFD0 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 
0905:FFE0 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 
0905:FFF0 00 00 0A 01 0E 01 05 09-00 06~ 00 00 

I I 
BX AX 
stored stored 
here here 

... .. .. . .. xV4 ... 
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-r 

The first PUSH instruction stored the content of the AX register, 
which was 1234, into memory locations FFFD and FFFC (remember, 16-
bit quantities are always stored most significant byte first ; that's why the 
numbers appear to be backwards). The location to be stored into is 
always 1 less than the address in the Stack Pointer. The PUSH instruction 
also changes the Stack Pointer from FFFE to FFFC. 

The next PUSH instruction stores the contents of BX, 5678, into 
memory locations FFFB and FFFA, and changes the Stack Pointer to 
FFFA. 

When we take things off the stack with POP instructions the process 
is reversed. 16-bit quantities are moved from their memory locations on 
the stack, and placed in the register specified in the operand field of the 
POP. The Stack Pointer is also incremented two bytes for each POP. Thus, 
although the quantities previously placed on the stack are actually still in 
memory, they are no longer accessible to PUSH and POP instructions. 
They have been "forgotten" because the Stack Pointer is now pointing 
above them in memory, and the next time something is placed on the 
stack, they will be written over. 

Let's see how POP works: 

AX=0000 BX=0000 CX=0010 DX=0000 SP=FFFA BP=0000 SI=0000 DI=0000 
DS=0905 ES=0905 SS=0905 CS=0905 IP=010E NV UP DI PL NZ NA PO NC 
0905 :010E 5B POP BX 
-t 

AX=0000 BX=5678 CX=0010 DX=0000 SP=FFFC BP=0000 SI=0000 DI=0000 
DS=0905 ES=0905 SS=0905 CS=0905 IP=010F NV UP DI PL NZ NA PO NC 
0905 :010F 58 POP AX 
-t 

AX=1234 BX=5678 CX=0010 DX=0000 SP=FFFE BP=0000 SI=0000 DI=0000 
DS=0905 ES=0905 SS=0905 CS=0905 IP=0110 NV UP DI PL NZ NA PO NC 
0905 :0110 90 NOP 

Each POP places the appropriate value in the specified register, and 
we're back where we started. (The last instruction, NOP, is not executed.) 

Conclusion of the Machine Gun Program 
Now we can use our newly acquired knowledge of the stack to 

understand the operation of the machine gun program. In fact, let's use 
the same technique we did above: we'll trace through it with "T" to see 
how it works. 
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A>debug gun.corn 

-r 
AX=0000 BX=0000 CX=0014 DX=0000 SP=FFFE BP=0000 SI=0000 DI=0000 
DS=0905 ES=0905 SS=0905 CS=0905 IP=0100 NV UP DI PL NZ NA PO NC 
0905 :0100 B91400 MOV CX,0014 

-t 

We put the number of shots (20d is 14h) in CX, then we save it on 
the stack with a PUSH CX. 

AX=0000 BX=0000 
DS=0905 ES=0905 
0905:0103 51 

CX=0014 DX=0000 SP=FFFE BP=0000 SI=0000 DI=0000 
SS=0905 CS=0905 IP=0103 NV UP DI PL NZ NA PO NC 

PUSH ex 
-t 

AX=0000 BX=0000 CX=0014 DX=0000 SP=FFFC BP=0000 SI=0000 DI=0000 
DS=0905 ES=0905 SS=0905 CS=0905 IP=0104 NV UP DI PL NZ NA PO NC 
0905:0104 E80A00 CALL 0111 

-rip 

We don't want to trace the operation of the SHOOT subroutine 
(which starts at 0111), so we'll skip over the CALL to it by advancing the 
IP register to one instruction past the CALL, which is address O 107. 
Then we'll type "R" to see where we are: 

IP 0104 
:107 

- Old value of IP, ready to do CALL 
- New value of IP, one byte past the CALL 

-r 
AX=0000 BX=0000 CX=0014 DX=0000 SP=FFFC BP=0000 SI=0000 DI=0000 
DS=0905 ES=0905 SS=0905 CS=0905 IP=0107 NV UP DI PL NZ NA PO NC 
0905 :0107 B90040 MOV CX,4000 

-t 

Now we set up a delay loop by placing 4000h in CX, and then 
executing the LOOP instruction 4000h times. 

AX=0000 BX=0000 
DS=0905 ES=0905 
0905:010A E2FE 

CX=4000 DX=0000 SP=FFFC BP=0000 SI=0000 DI=0000 
SS=0905 CS=0905 IP=010A NV UP DI PL NZ NA PO NC 

LOOP 010A 

However, we don't really want to trace through this loop 4000h times, 
so again we skip over it by manually resetting the IP register to the 
instruction following the LOOP: 
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-rip 
IP 010A 
:10c 

<-- Old IP value: location of loop 

<-- New IP value: one byte past the loop 
-r 
AX=0000 BX=0000 CX=4000 DX=0000 SP=FFFC BP=0000 S1=0000 DI=0000 
DS=0905 ES=0905 SS=0905 CS=0905 IP=010C NV UP DI PL NZ NA PO NC 
0905 :010C 59 POP ex 
-t 

AX=0000 BX=0000 CX=0014 DX=0000 SP=FFFE BP=0000 S1=0000 01=0000 
DS=0905 ES=0905 SS=0905 CS=0905 IP=010D NV UP DI PL NZ NA PO NC 
0905 :0100 E2F4 LOOP 0103 

-t 

When we execute the POP CX instruction, guess what happens? The 
value of the number of shots to fire, which was 14h, is restored in the CX 
register. Great! That's exactly what we wanted. Now we can do the LOOP 
instruction to see whether we've done all the shots yet. 

AX=0000 BX=0000 
DS=0905 ES=0905 
0905:0103 51 

CX=0013 DX=0000 SP=FFFE BP=0000 S1=0000 01=0000 
SS=0905 CS=0905 IP=0103 NV UP DI PL NZ NA PO NC 

PUSH ex 

And we haven't, so we wind up at the beginning of the main program 
again, saving the CX register on the stack - and the whole process starts 
again. It will only terminate when we've used up all the shots: that is, 
when the count in CX goes to zero. 

Generating Sound with the Timer 

Thus far we have been generating sounds by toggling the speaker on 
and off with individual instructions from our program. This technique 
gives us the maximum control of the kinds of sounds we want to make. 
However, there is another way to generate sounds, one which is more 
convenient, but provides less control. The remaining programs in this 
chapter will make use of this second technique, which is to use what IBM 
calls a "timer." 

This timer is an oscillator circuit which is built into the computer. It 
does to the speaker just what your SOUND program from chapter 2 did: 
It sends a series of evenly spaced pulses to the speaker. However, it does 
this with hardware rather than software. Figure 7-3 shows how the 
hardware is organized. 

There are actually three different timers, or oscillators, built into the 
PC. Timer0 is used in DMA (Direct Memory Access) data transfers, and 
needn't concern us here. Timer 1 is used as the system clock. It causes an 
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interrupt 18 times every second to update the time. Timer2 is connected 
to the speaker. 

Using the timer to generate sounds is a little more complicated than 
simply sending pulses to the speaker, as we did before. There are three 
steps involved. First we load a certain number, 10110110 binary, into 
timer2 to "initialize" it. Second we load a 16-bit number into timer2 to 
establish the frequency of the tone to be generated. Finally we open a 
switch in output port 61 h to actually turn on the sound. The program 
fragment below shows how this is done. 

;load 1/pitch into timer2 (assume it's in BX) 

mov al , 10110110b ;put magic number 
out 43h,al , into timer2 
mov ax ,bx ;move 1/pitch into AX 
out 42h,al ;LSB into timer2 
mov al , ah ;MSB to AL, then 
out 42h,al to timer2 

; turn on tone 
in al , 61h 
or al ,3 
out 61h ,al 

;read port B into AL 
; turn on bits 0 and 1 
; to turn on speaker 

The number that we send the timer is not the frequency (pitch) of the 
tone we want, but a number proportional to the inverse of the frequency. 
That is, the larger the number we send, the lower the pitch will be. 
Numbers above 2000h generate very low tones, while those smaller than 

Bit 0 

Bit 1 
1/0 port 61h --~ AND 

Timer2 
{oscillator) 
circuit 

gate 

1/0 port 61h 
1/0 port 43h 
8-bit 

1/0 port 42h 
(two 8-bit outs 
set 16-bit "1/pitch" number) 

Figure 7-3. Sound hardware 

Amplifier 

Speaker 
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about 1 Oh generate tones too high for human hearing. We'll refer to the 
number we send the timer as I/pitch, so we won't forget that it's not the 
frequency. Figure 7-4 shows the relationship of our "I/pitch" number and 
the frequency. 

Let's talk in more detail about the three steps needed to use timer2 
as a sound generator. First we alert the timer that we're about to send the 
number. We do this by sending a special binary number, 10110110. The 
reasons for the various bit settings in this number are too complex to go 
into here - all we need to know is that the number does its job, getting 
the timer ready to receive the I/pitch number. 

Since I/pitch is a 16-bit number, and the input and output ports 
operate with 8 bits, we need to send the number in two steps: the least 
significant byte (LSB) followed by the most significant byte (MSB). The 
OUT instruction uses the AL register, so we must juggle the MSB from 
AH to AL with a MOV instruction. 

Turning on the gate to start the tone sounding is just the same as it 
was in the earlier examples using the bit-toggling approach. Now, 
however, once we turn on the sound, the tone will continue until we 
specifically turn it off. Our program doesn't need to continue to interact 
with the speaker - it can go off and do whatever it wants, and the sound 
will continue. In fact, once we turn on the sound this way, it will continue 
until we reset the computer, or send instructions from our program to 
stop it. This can be especially useful in game programs, where we want a 
sound to continue while the program does something else: updating the 
video display, for example. 

I._,. __ __..,I Longer 
Period period 

- 1/pitch 

'~'Shorter 
~period 

- 1/pitch 

Figure 7-4. Frequency and "1/Pitch" 
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0100 

0100 

0100 

0100 

0103 
0105 
0107 
0109 
010B 
0100 
010F 
0111 
0113 

0115 
0116 
0119 
011B 

The SIREN Program 
This program is a simple one which makes use of the timer to 

produce a variable pitch. In fact, it produces all possible pitches, by 
starting with a I/pitch number of FFFFh (the lowest possible tone) and 
going all the way up to 0, the highest possible tone. This is done by 
keeping the I/pitch number in the BX register, and decrementing it every 
so often. Each time we establish a new, higher pitch we wait in the LOOP 
instruction for a while to give the tone a chance to sound; then we go 
back to lower the pitch again. Notice that once the magic number 
1011011 Ob is installed in the timer, it's not necessary to replace it each 
time we send the I/pitch. 

BB FFFF 

B0 B6 
E6 43 
8B C3 
E6 42 
8A C4 
E6 42 
E4 61 
0C 03 
E6 61 

4B 
B9 0064 
E2 FE 
EB EA 

;SIREN--Uses Timer2 to run speaker 
features siren effect 

'************************************** ** ** *** ' prognam segment ;define code segment 

main proc far ;main part of program 

assume cs :prognam 

org 100h ;first address 

start : ;starting execution address 

;start 1/pitch at FFFFh 
mov bx ,0ffffh ;set 1/pitch in BX 

; sound the tone 
mov al,10110110b ;put magic number 
out 43h,al into timer2 

tone: mov ax ,bx ;move 1/pitch into AX 
out 42h,al ;LSB into timer2 
mov al ,ah ;MSB to AL , then 
out 42h,al to timer2 
in al,61h ;read port B into AL 
or al ,3 ; turn on bits 0 and 1 
out 61h,al ; to turn on speaker 

; increase the pitch and wait a bit 
dee bx ; increase the pitch 
mov cx ,100d ;set up wait loop 

wait: loop wait ;wait 
jmp tone ;go do new tone 
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011D 

011D 

marn endp ;end of main part of program 

' prognam ends ;end of code segment 
. ********************************************* ' 

end start ;end assembly 

Most of the program is just like the code fragment shown earlier. 
We've added instructions to set BX to FFFF at the beginning. After the 
tone has been turned on, we decrement BX to get ready to set the next 
tone, and then wait with the LOOP for the tone to sound for a while at 
that pitch. 

Try typing the program in, assembling, linking, converting and 
running it. You'll find that the lower pitches rise very slowly, but that as 
the pitch gets higher the rate of change increases, shooting up suddenly 
into inaudibility. 

You can modify this program in various ways to change the sound. 
Instead of starting at FFFFh and going to 0, you could narrow the limits, 
and thus the frequency shift of the number. By decreasing the number 
placed in the CX register for the delay, you can speed up the program, 
and at the same time start to introduce a new "voice," a change in the 
quality of the sound. 

Again, the only way to exit from this program is to reset your 
computer. However, this is the last time we will require this inelegant 
method of terminating a program. We promise! 

The Space Wars Program 
Our next program is the same as SIREN except for two things. First, 

instead of jumping back up to simply place a new value for 1/pitch into 
the timer, we now jump two instructions higher, to "sounder," and reset 
the timer with the magic number. This causes a significant change in the 
sound quality, as you will see when you run the program. 

Second, we have incorporated a new feature - you can now 
terminate the program and cause a return to DOS by pressing any key 
while the program is running. Hooray! No more tedious groping for the 
on-off switch. 

Here's what the program looks like: 

;SPACEWARS--Uses Timer2 to run speaker 
produces weird rising burble 
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0100 

0100 

0100 

0100 BB 0200 

0103 
0103 B0 B6 

0105 E6 43 
0107 8B C3 
0109 E6 42 
010B 8A C4 
0100 E6 42 
010F E4 61 
0111 0C 03 
0113 E6 61 

0115 4B 
0116 74 E8 

0118 B9 0320 
011B E2 FE 

0110 B4 0B 
011F CD 21 
0121 FE C0 
0123 75 DE 

0125 CD 20 

0127 

0127 

·********************************************* ' prognam segment ;define code segment 

main proc far ;main part of program 

assume cs:prognam 
org 100h ;starting address 

start: ; starting execution address 

;initial value of 1/pitch 
mov bx,200h ;set 1/pitch in BX 

;sound the tone 
sounder: 

tone: 

mov 
out 
mov 
out 
mov 
out 
rn 
or 
out 

;put magic number al, 10110110b 
43h,al into timer2 

;move 1/pitch into AX 
;LSB into timer2 

ax,bx 
42h,al 
al,ah 
42h,al 
al,61h 
al,3 
61h,al 

;MSB to AL, then 
to timer2 

;read port B into AL 
;turn on bits 0 and 1 
;to turn on speaker 

;increase the pitch and wait a bit 

wait: 

dee bx ;increase the pitch 
jz start ;when BX=0, reset it 

mov cx,800d 
loop wait 

;set up wait loop 
; wait 

;check if keyboard character typed 
mov ah,0bh ;get kbd status 
int 21h ;call DOS 
inc al ;if AL not FF, then 
jnz sounder no key pressed 

;key pressed, return to DOS 
int 20h ; return 

to DOS 
main endp ;end of main part of program 

' prognam ends ;end of code segment 
·********************************************* ' end start ;end of assembly 
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Check Standard Input Status DOS Function 

To check to see if a key was pressed, we use a new DOS function, 
"Check Standard Input Status." 

CHECK ST AND ARD INPUT ST A TUS Function 
-Number OBh 

Enter with: 

Reg AH= Obh 

Execute with: 

INT 21h 

Return with: 

AL=FFh if character typed 
AL=00h if nothing typed 

Comment: ~ (Break) causes exit from function. 

This command was called "Check Keyboard Status" in DOS versions 
1.00 and 1. 10, and generally speaking this would be an appropriate 
name, and certainly a less ponderous one. However, in DOS version 2.00 
there is redirection of input and output, so that sometimes this function 
will be used with devices other than the keyboard. Hence the substitution 
of "Standard Input" for "Keyboard." However, for our purposes it's the 
same thing. 

The feature of this function that makes it especially useful is that it 
doesn't wait for you to type something. It checks the keyboard: If 
something is typed it puts FF in the AL register; if nothing is typed it 
puts 00 in AL. In either case it goes on to the next instruction in the 
program. This makes it an indispensable function in those situations 
where we want our program to keep running, doing something, while at 
the same time we check the keyboard to see if the user wants to break 
into the program (to end the program, for example). BASIC 
programmers will recognize that this function operates like INKEY$. 

Check Standard Input Status doesn't wait for a key to be 
pressed before going on to the next program instruction. 
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We check the keyboard status in lines O 11 D and O 11 F. Now, if the 
result returned in AL is FFh, we know that something has been typed 
and we want to exit from the program with an INT 21. Otherwise we 
want to return to put the magic number into the timer again, at 
"sounder." To find out what's in AL, we increment it. If it was FF, it will 
now be zero, and our JNZ instruction at location 0123 will "fall through" 
to the INT 21 h. If it was 00 (nothing typed) it will be 1 when we 
increment it, and the JNZ will cause a jump back to "sounder." 

Controlling Sound with the Keyboard 

Our next programs are somewhat more ambitious. They are 
interactive programs, in that you can control, from the keyboard, the 
pitch of the tone being generated by the speaker. 

The KAZOO Program 
In this program you have four control keys: 

1 - raises the pitch 

2 - lowers the pitch 

9 - turns the sound on 

0 - turns the sound off 

Once you press, say, "l ", the tone will rise and continue to rise until 
you press either "2" to start it going down, or "O" to turn it off altogether. 
The resulting wailing is something like the sound of a kazoo, and lends 
itself to certain kinds of music, such as "The Flight of the Bumblebee." 

There is a new pseudo-op in the program, EQU, which we'll talk 
about as soon as you've typed in the program and tried it out. Here's the 
listing: 

;KAZOO--Uses Timer2 to run speaker 
produces variable-pitch sounds 

= 0061 
= 0007 
= 000B 
= 0021 

portB equ 
keybd2 equ 
status equ 
doscall equ 

61h 
7h 
0bh 
21h 

;I / 0 Port B 
;keybd input , no echo 
;check kbd status 
;DOS interrupt number 

·********************************************* ' 0100 prognam segment ;define code segment 
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---------------------------------------------
0100 marn proc far ;main part of program 

assume cs :prognam 

org 100h ;start of program 

0100 start: ;starting execution address 

; initial values 
0100 BB 0500 mov bx ,500h ;set 1/pitch in BX 
0103 B2 00 mov dl ,0 ;set pitch change to 0 
0Hf5 B6 03 mov dh,3 ;set on/off status on 

0107 sounder : 
0107 B0 B6 mov al , 10110110b ;put magic number 
0109 E6 43 out 43h,al into timer2 
010B tone: 
010B 8B C3 mov ax ,bx ;move 1/pitch into AX 
010D E6 42 out 42h,al ;LSB into timer2 
010F 8A C4 mov al , ah ; MSB to AL , then 
0111 E6 42 out 42h,al 

' 
to timer2 

0113 E4 61 in al ,portB ;read port B into AL 
0115 24 FC and al ,11111100b ;mask off bits 0, 1 
0117 02 C6 add al ,dh ;add on/off status 
0119 E6 61 out portB ,al :to turn speakr on/off 

;raise or lower pitch by amount in AX 
011B 8A C7 mov al ,bh ;divide BX by 100h 
011D B4 00 mov ah ,0 ; top half of AX= 0 
011F 0D 0001 or ax , 1 ;make sure at least 1 
0122 0A D2 or dl ,dl ; does DL = 0? 
0124 74 02 jz skip if so , AX is plus 
0126 F7 D8 neg ax ;make AX negative 
0128 03 D8 skip: add bx ,ax ;add change to pitch 

012A B9 0200 mov ex , 200h ;set up wait loop 
012D E2 FE wait: loop wait loop a while 

012F B4 0B mov ah ,status ;check status function 
0131 CD 21 int doscall ; call DOS 

0133 FE C0 inc al ; if AL was FF , then 
0135 74 02 jz read.....key ; character was typed 
0137 EB D2 jmp tone ;sound tone again 
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0139 
0139 B4 07 
013B CD 21 
013D 3C 31 
013F 74 0E 
0141 3C 32 
0143 74 0E 
0145 3C 39 
0147 74 0E 

0149 3C 30 
014B 74 0E 
014D EB BC 

014F 
014F B2 00 
0151 EB B8 
0153 
0153 B2 01 
0155 EB B4 
0157 
0157 B6 03 
0159 EB AC 
015B 
015B B6 00 
015D EB A8 

015F 

015F 

;read keyboard to get digit 
, l=lower pitch, 2=raise pitch, 9=on, 0=off 

reacLkey: 

lower: 

higher: 

mov ah,keybd2 
int doscall 
cmp al, '1' 
j z lower 
cmp al, '2' 
j z higher 
cmp al, '9' 
j z turn_on 

cmp al, '0' 
jz turn_off 
jmp tone 

mov dl,0 
jmp tone 

mov dl,+1 
jmp tone 

turn_on: 

;keybd funct , no echo 
; call DOS 
; is it 1 ? 
, lower pitch 
;is it 2? 

raise pitch 
; is it 9 ? 

turn on tone 

; is it 0 ? 
turn off tone 

;not recognized 

mov dh,00000011b 
j mp sounder 

turn_off: 
mov dh,0 
j mp sounder 

main endp ;end of main part of program 

prognarn ends ;end of code segment 
. ********************************************* ' 

end start ;end assembly 

The EQU Pseudo-Op 

When we use the instruction INT 21h we are doing an "interrupt 
number 21" call to DOS so that it can perform one of the DOS 
functions. The number 2 lh, used like this, is not particularly revealing of 
the purpose of the instruction. Anyone looking at the program listing 
who didn't know what the 21 h meant would not understand the purpose 
of the INT instruction. It would be nice if there were a way tQ use a 
symbolic name for these numbers in the operand field, in the same way 
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that we use labels to stand for particular memory addresses. 
This is the purpose of the EQU instruction. Look at the EQU 

statements at the top of the program: 

portB equ 
keybd2 equ 
status equ 
doscall equ 

61h 
7h 
0bh 
21h 

; I /0 Port B 
;keybd input, no echo 
;check kbd status 
;DOS interrupt number 

EQU stands for "EQUivalent." The first program line in this section 
tells the assembler, "From now on, whenever you see the word 'portB', 
translate it into the number 6lh." Similarly, "keybd2" is EQUivalent to 
7h, "status" is 0Bh, and "doscall" is 21 h. 

There is no change in the output from the assembler when you use 
EQU statements. The instruction 

int 21h 

assembles exactly the same as 

doscall equ 21h 

int doscall 

The only difference is the way the ASM and LST files look. When adding 
an EQU pseudo-op will make your program easier to read and 
understand, then it's a good idea to use it. Otherwise, it's a complete 
waste of time. 

When to use EQUs and when not to is largely a matter of style. Some 
programmers use lots of them, some not so many. Our philosophy is 
generally to use them when they stand for something external to the 
program like the numbers of DOS functions, but not to use them for 
numbers that are important in themselves, like masks and fixed 
numerical constants. But you can do whatever you want; no one will 
revoke your programming license. 

We've used a few EQUs in the program above to ease you gradually 
into their use; later on we'll use more of them. 

Operating KAZOO 

The flow chart in Figure 7-5 shows the general structure of the 
KAZOO program. 

There are two main parts to the program. The first, from the 
beginning to location 0 12D, the end of the "wait" loop, is involved with 
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creating the tone. The second part, from 012F to the end, reads what 
you type on the keyboard and makes appropriate changes. These two 
parts of the program communicate through the DH and DL registers. 

The DH register holds a number which determines whether the tone 
will be on or off. The number 3 turns it on, while O turns it off. These 

Prepare timer 
to accept ------------, 
1/pitch 

Put 1/pitch 
into timer 

Calculate pitch 
change, based 
on pitch 

own ~ake 
pitch 
change 
negative 

Figure 7-5. Flow chart of the KAZOO program 
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numbers are set up in the second part of the program in response to the 
user typing "9" or "O" on the keyboard. They are then, in the first part of 
the program, added to the number found in portB, which is port 61h (as 
defined in the EQU statement). The result is sent back to portB to turn 
the sound on or off, just as it has been in all the preceding sound 
programs. 

The DL register holds either O or 1, depending on whether the pitch 
is rising or falling. If the pitch is rising, the number is 1, if falling, it's 0. 
Again, this number is set in the second part of the program, and used in 
the first to change the pitch. 

When KAZOO is running normally, with nothing being typed on the 
keyboard, it cycles repeatedly through the top half of the program, 
changing the pitch each time, much like the SIREN program. The 
differences are that the pitch change is more sophisticated, being 
proportional to 1/pitch (as we'll see), and being either positive or negative 
(depending on DL); and that the tone can be either on or off (depending 
on DH). When something is typed on the keyboard, then the second half 
of the program comes into play, and the value in DH or DL is changed 
according to the character typed. 

Changi,ng the Pitch 

Changing the pitch when the appropriate key is pressed is not as 
simple as it might seem. The problem is that the musical scale, at least as 
we perceive it, is arranged in a geometric progression rather than an 
arithmetic progression. That is, the higher the frequency of the note, the 
more you need to change the frequency to get to the next note. In other 
words, the numbers you must add to low frequencies to change them are 
smaller than the numbers you must add to high frequencies to change 
them the same amount. Another way to see this is to realize that to go 
from a particular frequency or musical note to one octave above that 
note, you don't add a fixed amount to the frequency, you double the 
frequency, whatever it is. 

Although the number we're dealing with, "1/pitch," is the inverse of 
the frequency, the same principle applies. When this number is small, 
like 100, we want to be adding small numbers to it, like 1, to change the 
pitch. When it is large, like 20000, we want to add larger numbers to it, 
like 20. 

To figure out how much to change 1/pitch (which is in the BX 
register), we'll divide it by 100h. This turns out to be easy to do: we 
simply take the high half of BX and put it in the low half of another 
register, AX. Then we make sure the high half of AX is zero. AX now 
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contains a number 1/1 OOh the size of the one in BX. We add this number 
to BX, and we've changed I/pitch by an amount proportional to I/pitch, 
which is just what we set out to do. That's what the MOY AL,BH 
instruction at 01 lB and the ADD BX,AX at 0128 accomplish. 

We don't want an increment of zero, or the sound would get stuck on 
the same note forever, so we OR on a 1 to AX, in location O 11 F. And we 
need to know whether to add or subtract the change in pitch, based on 
the number O or 1, in the DL register. We want to use the same ADD 
instruction even if we're going to subtract, and we do this by making AX 
negative with the NEG instruction at location O 126. 

The NEG Instruction 

NEG Instruction 
Changes sign of operand. 

The arithmetic sign of the operand is changed, using two's 
complement arithmetic. 

NEG AL 
NEG BX 

Flags affected: AF, CF, OF, PF, SF, ZF 

Thus if the AX register contains 1 Oh, the instruction NEG AX will 
change it to -lOh, which is FFFOh. 3h would be changed to -3h, which is 
FFFDh, and so on. 

The actual process used by this instruction to change the sign is 
interesting for those of you who are two's complement arithmetic buffs. 
The instruction first complements all the bits in the original number. 
("Complements" simply means to change O to 1, and 1 to 0.) NEG then 
adds 1 to the result. The result is the negative of the number. 

0010h = 00000000 00010000 b 

11111111 11101111 b 
+ 1 

FFF0h = 11111111 11110000 b 

- Start with this 

- Complement each bit 

-Add one 

- Result is two 's complement 
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The PIANO Program 
Our next program is somewhat similar to KAZOO, in that it plays 

different notes and is controlled from the keyboard. However, PIANO, as 
the name implies, is much more structured in that it has a fixed 
repertoire of notes, each of which is sounded by pressing a particular key. 
The number keys (the ones on the top row, not the numeric keypad) are 
used to play the notes of the scale, with "l" being C, "2" being D, and so 
on up to "8", an octave above the first C. It's easy to play simple tunes 
with this program, but they must fall in that one octave. This is not a lot 
of notes, but if you want to join a rock group you will be able to make up 
in the uniqueness of your instrument what it lacks in range. 

Actually, it's not hard to do what PIANO does by using BASIC, which 
has a nice set of statements for generating notes. However, our assembly
language program will introduce you to some important new 
instructions, and to the use of data stored in memory. Examining how 
the computer deals with data in memory will demonstrate that we still 
have some things to learn about the 8088, and will lead to some questions 
about memory segments, which we'll (lnswer in the next chapter. 

In fact, the somewhat convoluted way we have to go about writing this 
program so that it will work without segments, and so that it will convert 
to a COM file, will be considerable incentive to find out more about 
segments. 

Here's the PIANO program: 

;PIANO--Uses Timer2 to run speaker 
number keys play notes of the scale 

= 0061 
= 0007 
= 0021 
= 0003 

portB equ 
keybd2 equ 
doscall equ 
conLc equ 

61h 
7h 
21h 
03h 

;I /0 Port B 
;keybd input, no echo 
;DOS interrupt number 
;control-C ASCII code 

0000 

0000 

0100 

0100 

'********************************************* ' 
prognam segment ;define code segment 

main proc far ;main part of program 

assume cs :prognam 

org 100h ;first address 

start : ;starting execution address 
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;read keyboard to get digit from 0 to 7 
0100 reacLkey: 
0100 B4 07 mov ah,keybd2 ;keybd funct, no echo 
0102 CD 21 int doscall ; call DOS 
0104 3C 03 cmp al, conLc ;is it control-C? 
0106 74 34 jz exit ;yes, so exit 
0108 2C 31 sub al,31h ;change ASCII to digit 
010A 24 07 and al,00000111b ;mask off uppr 5 bits 
010c D0 E0 shl al,1 ;* by 2 (2 bytes/word) 
010E 98 cbw ;byte--> word in AX 
010F 8B D8 mov bx,ax ;put in BX (for table) 
0111 B8 0000 mov ax,0 ;numerator (low word) 
0114 BA 0012 mov dx,12h , (high word) 
0117 F7 B7 013E div [13Eh + bx] ;divisor from table 
0118 8B D8 mov bx,ax ;save quotient in BX 

;set 1/pitch into timer, then turn on tone 
011D B0 B6 mov al, 10110110b ;put magic number 
011F E6 43 out 43h,al , into timer2 
0121 8B C3 mov ax,bx ;1/pitch into AX 
0123 E6 42 out 42h,al ;LSB into timer2 
0125 8A C4 mov al, ah ;MSB to AL, then 
0127 E6 42 out 42h, al to timer2 
0129 E4 61 in al,portB ;read port B into AL 
012B 0C 03 or al,3 ;turn on bits 0 and 1 
012D E6 61 out portB,al ;to turn on speaker 

;sound note for a while, then turn it off 
012F B9 FFFF mov cx,0ffffh ;set up for delay 
0132 E2 FE wait: loop wait ; delay 
0134 E4 61 lil al,portB ;read port B into AL 
0136 24 FC and al,11111100b ;mask lower 2 bits 
0138 E6 61 out portB,al ;to turn off speaker 
013A EB C4 jmp reacLkey ;go get another digit 

;control-C typed, so exit 
013C exit: 
013C CD 20 int 20h ;return to DOS 

;frequencies of notes 
013E 0106 dw 262d ;C 
0140 0126 dw 294d ;D 
0142 014A dw 330d ;E 
0144 015B dw 347d ;F 
0146 0188 dw 392d ;G 
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0148 0188 
014A 01EE 
014C 020C 

014E 

014E 

marn 

dw 
dw 
dw 

endp 

440d 
494d 
524d 

; A 
;B 
; C 

;end of main part of program 
---------------------------------------------' prognam ends ;end of code segment 

. *********** ** ******************************** ' 

end start ; end assembly 

Get digit (0 to 7) ....---- from keyboard 

Convert it to 
binary number 

Use it as pointer 
to get pitch 
from table 

Divide constant by 
pitch to get "1/pitch" 

Figure 7-6. Flow chart of the PIANO program 
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Figure 7-6 shows a flow chart of the program. As you can see it is 
quite straightforward, and in many ways similar to the previous sound 
program, KAZOO. The interesting part is how we find the frequency of 
the note we want to play. The frequencies of the notes are arranged in a 
table at the end of the program. If we type a "1", we want to get the first 
one of these frequencies from the table, and divide it into a fixed constant 
- which turns out to be 120000h - to get the "1/pitch" number which 
is to be put into the timer. (Of course, we don't really mean "1/pitch," we 
mean "120000/pitch," but that's hard to write.) If we type "2" we want 
the second frequency, and so on. This process is shown in Figure 7-7. 

To get the appropriate frequency from the table we want to change 
the digit which was typed in, iRto a pointer to the table of frequencies. 
We'll put this pointer in the BX register, and then, using indirect 
addressing, we'll be able to access the appropriate frequency. To do this 
we first turn the digit which was typed on the keyboard into binary -
and subtract 1 at the same time - by subtracting 31h. W,e make sure the 
result is in the range O to 7 by ANDing off the upper 5 bits. Then we 
multiply by two, since there are two bytes for every frequency in the table. 
Multiplying by two is always easy in assembly language: all you have to do 
is shift your number one bit to the left. To do this, we use a new 
instruction, SHL. 

0 Table r iN 262d 

~=g 294d 120000h 
~126h 

0 330d 
Divide 

Number typed 0 347d constant 
on keyboard 120000h 
selects 0 392d by frequency 
frequency ,., 1 

from table 

© Dr --i Timer2 IJ 440d 

0 494d u Result goes 

Speaker 
to timer2 

® 
to determine 

524d 1/pitch. 

Figure 7-7. Operation of the PIANO program 

How Does It Sound? 225 



The SHL Instruction 

SHL Instruction 
Shifts a register Left. (SHL stands for "SHift logical Left." 
Also called SAL, for "Shift Arithmetic Left.") 

All bits in register move left. 

Bits from left-hand end appear in the carry flag, 0 bits are 
shifted into the right-hand end. 

To shift I bit: 

SHL DL,1 

To shift more than one bit, put the number in CL first: 

MOV CL ,3 
SHL BX ,CL 

Flags affected: CF, OF, PF, SF, 2F 

The difference between shift instructions and rotate instructions is 
that in shifts the bits are pushed off one end of the register and zeros are 
shifted in at the other end. In rotates the bits from one end rotate around 
to the other end. Bits aren't lost in rotates, but in shifts the bits shifted 
out of the end of the register are gone forever ( except that the last one 
shifted is in the carry flag). 

A shift is more appropriate than a rotate for multiplying by 2, since 
we don't want any bits that might have been left over in the high bit 
positions to rotate around and get into the low-order positions. (Yes, we 
know, we masked them off, but it's the principle of the thing.) 

Using Indirect Addressing with the Assembler 

Once we get our pointer (the original digit we typed, converted to 
binary, minus 1, times 2), we want to put it in BX so we can use indirect 
addressing to get the frequency out of the table. (Reread the section on 
indirect addressing in chapter 4, if you've forgotten what it is.) We're 
going to take this frequency, when we get it, and divide it into a constant 
to arrive at I/pitch. (If you want you can "tune" your IBM piano - move 
all the notes up or down at once - by changing this constant.) Let's see 
how we do division with the 8088. 
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The DIV Instruction 

DIV Instruction 
DIVides two numbers. 

Divides contents of A register by contents of operand register 
( or memory address). 

To divide a word by a byte, put word in AX, byte in operand 
register (or memory location). 

MOV AX,NUMERATOR 
DIV DIVISOR (8-bit register or addr ) 
Quotient will be in AL 
Remainder will be in AH 

To divide a double-word by a word, put double-word in DX 
and AX, and word in operand register (or memory address). 

MOV DX,HI_NUMERATOR 
MOV AX ,LO_NUMERATOR 
DIV DIVISOR (16-bit register or addr ) 
Quotient will be in AX 
Remainder will be in DX 

Flags affected: flags are undefined after DIV 

If you want to divide a byte by a byte, you have to first make the 
numerator in AL into a word in AX by using the CBW (convert byte to 
word) instruction, and if you want to divide a word by a word, you have to 
first make the numerator into a double-word in the DX+ AX double
register, using the CWD (convert word to double-word) instruction. A 
double-word is simply a 32-bit quantity occupying two registers. 

We need to use double-word division because we want our result to 
have the accuracy of a word, not a byte - we can't "fine-tune" the I/pitch 
number enough if it's only eight bits long. To create the double-word 
constant we place the number 120000h into DX and AX in two separate 
instructions. 

Now we come to the $64,000 dollar question: what do we divide by? 
Well, we divide by the 16-bit quantity we find in the table of frequencies 
at a certain address. This address is found by adding the pointer, which 
we derived from the typed-in digit above, to the address of the start of 
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the table - 0 l 3Eh. Since we've placed our pointer in BX, we can express 
this address as "l 3Eh + bx", where bx really means the contents of the BX 
register. 

Thus if BX contained four, the "effective address" would be l 3Eh + 
4, or 142h. The square brackets mean "indirect addressing," so 
(assuming BX still contains 4), [13eh + bx] means the contents of memory 
location 0142h. If we had typed "3" (whose ASCII code is 33h), it would 
have been converted into 4 (by subtracting 31 and multiplying by 2). This 
corresponds to the third entry in the table, which is at address 0142h ... 
just what we want. Now we have both the numerator and the divisor for 
our division, which looks like this: 

120000h 
1/pitch = -------

frequency from table 

The result of the division is what we call 1/pitch, the number we send 
to timer2 to specify the tone. In the next part of the program we simply 
turn on this tone, wait a while, turn it off again, and go back to read 
another note at the keyboard. Unlike the KAZOO program, we wait for a 
digit to be typed before sounding a tone. 

You'll find that the keyboard has a rather strange "touch" for a piano, 
and that the keyboard buffer lets you type faster than the program can 
play the notes. If you want a surprise, try typing on the function keys, 
(ID through (TIQJ. 

Type in this program and try it out! Who knows, maybe you'll 
discover, buried deep within yourself, a hidden talent for music. You've 
already discovered such a talent buried deep within the computer. 

Tuning Up the PIANO 

Besides certain musical limitations, PIANO has a glaring defect from 
a programmer's viewpoint. Have you seen what it is? It's the fact that we 
had to use an absolute number to specify the address of the operand in the 
DIV instruction in line O 117. This absolute address is O l 3Eh. 

0117 F7 B7 013E div [13Eh + bx] ;divisor from table ---I 
how did we know what number to put here? 

Have you asked yourself how we knew what number to put in the 
brackets when we were writing the program? The fact is, we didn't. Since 
we didn't yet have a LST file, we didn't know where the frequencies were 
going to come out. We had to assemble the program twice, once to find 
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013E 
0140 
0142 
0144 
0146 
0148 
014A 
014C 

out this address, and the second time for real. Obviously we don't want to 
use a programming technique that requires us to do our assemblies 
twice. There could hardly be anything more inelegant, not to mention 
time-consuming. 

What we really wanted to do, of course, was to use a label for the 
table ( called, for instance, "table"): 

; frequencies of notes 
table 

0106 dw 262d ;C 
0126 dw 294d ;D 
014A dw 330d ;E 
015B dw 347d ;F 
0188 dw 392d ;G 
01B8 dw 440d ;A 
01EE dw 494d ;B 
020c dw 524d ;C 

Then we could have referred to this symbolic address instead of an 
absolute numerical address, and let the assembler figure out where 
"table" was: 

0117 F7 B7 013E div [table+ bx] ;divisor from table 

But this doesn't work! Why not? On the answer to this question 
hangs a long and complex tale. 

How the Assembler Thinks about Segments 

If we refer to a label in a jump or call instruction, there's no problem. 
However, if we refer to a label in an instruction which is concerned with 
data, such as MOV, or an arithmetic or logical instruction like ADD, we'll 
have trouble. If the data (with its label) follows the instructions that refer 
to it, the program won't assemble properly. If the data precedes the 
instruction that refers to it, the EXE file won't convert to a COM file. 

One reason for all this difficulty is that the assembler assumes that data 
are kept in a different memory segment from the program. Another is that we 
are using COM files. 

In the next chapter we're going to explain memory segments and 
EXE files in detail, and then we'll learn the answer to the problems posed 
above. 
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Summary 

In this chapter you've practiced your assembly-language skills on the 
sound-producing facilities of the PC. You now know how to make 
different kinds of sounds using two basic sound-producing methods: 
toggling a gate on and off, and sending a I/pitch number to timer2. 

You've also learned about the stack, an extremely important and 
versitile feature of the 8088. We'll be coming back to the stack in later 
chapters. You've learned some new 8088 instructions, and about EQU, 
the pseudo-op that makes constants easier to understand. And finally, 
confronted with some problems of storing data in our program, you've 
learned that we still have a lot left to learn about memory segmentation 
and EXE files. 
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tffi 
Memory Segmentation 
and EXE Files 

Concepts 
Memory segmentation 
Segment registers 
EXE files 
SI and DI registers 
String-handling instructions 

8088 Instructions 
REP= Repeat 
MOVS = Move string 
CMPS = Compare strings 
SCAS = Scan string 
CLO = Clear direction flog 
STD = Set direction flog 
REPE = Repeat while equal (or REPZ = Repeat while zero) 
REPNE = Repeat while not equal (or REPNZ = Repeat while 
not zero) 

here are two kinds of files which can be executed by the 8088 
microprocessor: COM files and EXE files. Thus far in this book we've 
shown executable programs in the form of COM files. The advantages of 
this approach are that COM files are simpler to understand, and require 
less overhead (in the form of a minimum number of statements needed 
to make a program run) than EXE files do. COM files are also faster to 
load and take up less memory space than EXE files, so they have a 
definite place in your PC's system for relatively small programs that don't 
do a lot of data manipulation. 
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However, for larger programs, EXE files have many advantages. One 
is that a number of EXE files can be combined, using LINK, to produce 
a single executable program. (We'll use this technique later in the chapter 
on interfacing with higher-level languages.) 

More important, however, is the fact that EXE files can make full use 
of the memory segmentation feature of the 8088 microprocessor. Thus you 
can put your program in one 64K segment, your data in a second 
segment, your stack in a third, and additional data in a fourth - thus 
utilizing up to four times 64K or 256K of memory for a single program. 
(And with a small amount of additional effort you can even go beyond 
these limits.) This means not only that your programs can be larger, but 
that they can be more dearly structured. Modern progamming 
techniques favor dividing programs into distinct parts whenever it will 
improve clarity. In addition, several EXE routines, combined into a larger 
program, can also share common data and stack segments. 

EXE files are also the more "standard" format for an executable 
program on the IBM PC: they are what IBM expects you to use most of 
the time. The MACRO Assembler, the linker, and the operating system 
are all set up to produce and execute EXE files with the minimum 
amount of fuss. 

One purpose of this chapter is to introduce you to the use of EXE 
files. However, in order for you to understand EXE files, you must also 
understand memory segmentation, which is itself an essential topic for 
anyone writing programs on the PC. We will, therefore, discuss both 
memory segmentation and EXE files more or less simultaneously. 

Later in the chapter we will also introduce the 8088's special string
handling instructions. These instructions, which operate on strings of 
bytes (or words) at a time, make use of memory segments in an 
interesting way. Studying how they work will therefore increase your 
understanding of the use of memory segments and the writing of EXE 
files. 

Memory Segmentation 

In chapter 1 we introduced the two-part addresses used in the 8088: 
addresses of the form 0915:0100, where 0915 is the segment address, and 
0100 is the offset address. This two-part memory system is necessary 
because the 8088 uses 16-bit registers, and at the same time must be able 
to address up to 1 megabyte of memory, which requires 20 bits. Let's 
review how this works, so that we'll be better able to understand the use 
of the segment registers. 
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Two-Part Addressing 
One megabyte is l,048,576d bytes. The hexadecimal equivalent of 

this number is 100000h, so the hex addresses in a memory this large will 
run from Oh to FFFFFh. These addresses, which use a single number to 
specify each address in the one megabyte address space, are called 
"absolute addresses." Thus we require absolute addresses of five hex 
digits, or 20 bits, to address the entire memory in the 8088. However, the 
8088 employs 16-bit architecture, meaning that the internal registers are 
all 16 bits or four hex digits wide. 

A logical question is, if it requires five hex digits to address the entire 
8088 memory, why not simply use registers this size? The reason the 
8088 uses 16-bit registers is that 16 bits is an even multiple of eight bits, 
or one byte. The byte has become the standard unit of information in the 
computer industry, largely because it is a convenient size for representing 
a single ASCII character. Registers which are not a multiple of a byte 
would create all sorts of compatibility problems when reading data from 
8-bit peripherals, so in general the registers in all computers are 
multiples of one byte (eight bits): either 8, 16, 32, or (in the case of huge 
mainframe computers) 64 bits wide. 

Why not use 16-bit registers to hold data bytes, and other 20-bit 
registers to hold memory addresses? Because having registers of two 
different sizes would cause a great increase in the complexity of the 
computer. What would happen when we tried to transfer a 16-bit 
quantity into a 20-bit register? Or vice versa? It would all be rather messy 
and complicated. 

Memory Segmentation is a way of making two 4-digit 
registers do the work of one 5-digit register. 

The designers of the 8088 thus came up with the scheme in which 
two 16-bit registers are used to generate one 20-bit memory address. The 
first of these registers contains part of the address, called the segment 
address, and the second contains another part of the address, called the 
offset address. As we learned, the absolute memory address is derived from 
the segment and offset addresses by multiplying the segment address by 
1 Oh, and then adding the offset address to the result. For example, the 
segment:offset address 2915:0100 is translated into its corresponding 
absolute address like this: 
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Segment address 
I 

2915 * 10h = 29150 

-r 

+ 0100 --0ffset address 

Absolute address - 29250 

Segment Registers 
The offset part of the address of a particular instruction being 

executed in a program is, as we've noted in previous chapters, contained 
in the IP register. Where is the corresponding segment address? It's in 
the code segment register, which is one of four segment registers. Thus if we 
know what's in the code segment register, and we know what's in the IP 
register, we can calculate the absolute address of a particular instruction. 
More to the point, the 8088 can calculate this address, so that it can 
figure out where to find the instruction. 

One of the questions confronting the designers of the 8088 was how 
many segment registers to have. If you use the "R" command in DEBUG, 
you'll see the answer they came up with: 

AX=0000 BX=0000 CX=0080 
DS=0905 ES=0905 SS=0915 

DX=0000 SP=0000 BP=0000 S1=0000 D1=0000 
CS=0916 IP=0000 NV UP DI PL NZ NA PO NC ----___...,._--------- -----..-..-

I 
1 

Code segment register 

Stack segment register 

Extra segment register 

Data segment register 

The number of registers turns out to be four: one segment register 
(CS) to hold the segment address of the program's instructions, one (SS) 
to hold the segment address of the stack, and two (DS and ES) to hold 
the segment addresses of two areas of data: the "data segment" and the 
"extra segment." 

Why not three segment registers, or five or six? Clearly four was a 
compromise between having too few to do the job conveniently, and 
having so many that the design and operation of the 8088 became 
unnecessarily complicated. However, four is a reasonable number. There 
are three different kinds of things that need to be addressed: code 
(program instructions), the stack, and data. Each of these gets its own 
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register, except that data get two. One reason for having two data 
registers will become clear when we talk about string-handling 
instructions. 

Segments 

When you put a number in a segment register you have in effect 
defined something called a "segment." This is a section of memory 64K 
(65536d, or 10000h) bytes long (one sixteenth of the total 8088 address 
space.) If the segment address is, for example, 0916h, then the addresses 
in this segment start at 0916:0000 and go up to 0916:FFFF, which is the 
highest address in this particular segment. The relationship between a 
segment and the register which defines it is shown in Figure 8-1. 

Since the segment address in effect always has a zero in the rightmost 

2915:0000 29150 

2915:0001 29151 

2915:0002 29152 

2915:0003 29153 

2915:0004 29154 

2915:FFFB 3914B 
2915:FFFC 3914( 

2915:FFFD 3914D 

2915:FFFE 3914E 
2915:FFFF 3914F 

t t 
Segment: Absolute 
offset addresses 
addresses 

Memory 

~: 
,._, 

J 

J 

,_, 

J 

,_, 

J 

Segment 
register 

2915 

One segment 

FFFB 

FFFC 

FFFD 

FFFE 

FFFF 

' Offset 
addresses 

Figure 8-1. Segment and segment register 
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position (because it was multiplied by I Oh), segments can only begin at 
addresses which are multiples of 10h (16d). In the 8088 groups of 10h 
( 16d) bytes are called "paragraphs," so we can say that segments must 
start on a "paragraph boundary." 

Where can you put the segments in memory? Just about anywhere 
you want. They can occupy completely separate parts of memory, they 
can overlap, and two or more segments can even occupy exactly the same 
space. Figure 8-2 shows some possible arrangements. As you'll see soon, a 
typical EXE file has an arrangement of its own. 

In the next section we're going to look at our first EXE program. 
You'll find that many of the differences between EXE and COM files have 
to do with the segment registers, so let's plunge ahead and see what they 
are. 

Extra 
l segment 

fl} Stack 
segment 

Figure 8-2. Possible arrangements of segments in memory 
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The PSTRING Program 
In this section we're going to rewrite a program you last saw long ago 

in chapter 4. It was the program called PSTRING which printed a string 
on the printer, using indirect addressing with the BX register. The 
characters of the string were stored in memory using a "DB" pseudo-op. 
Then the program printed them one at a time. BX pointed to the 
location of each character in the buffer, and CX was used to hold a count 
of the number of characters, decremented each time one was printed so 
the program would know when to stop. Here's how the program looked 
when we typed it in using the "A" command: 

0905:0100 mov cx ,0031 
0905 :0103 mov bx ,0111 
0905 :0106 mov dl [bx] 
0905 :0108 mov ah ,05 
0905 :010A int 21 
0905 :010C inc BX 
0905 :010D loop 0106 
0905 :010F int 20 
0905 :0111 db 'She is most fair , though she be marble-hearted. ',0d,0a 

And here's the corresponding listing using the "U" command: 

0905 :0100 B93100 
0905 :0103 BB1101 
0905 :0106 8A17 
0905 :0108 B405 
0905:010A CD21 
0905 :010C 43 
0905:010D E2F7 
0905 :010F CD20 

MOV CX ,0031 
MOV BX ,0111 
MOV DL , [DX] 
MOV AH ,05 
INT 21 
INC BX 
LOOP 0106 
INT 20 

As we saw in the PIANO program in the last chapter, difficulties can 
arise when we try to use symbolic labels for data in COM files. For 
instance, you can't say "MOV BX,TABLE", where TABLE stands for a 
memory location. You have to say "MOV BX, 131 ", or whatever the hex 
address of DATA is. In the simple approach developed in the last chapter, 
we had to assemble the program twice to discover what this number was. 

Actually, if you know how to manipulate segments, it is possible to 
use data labels in COM files. One approach is to put the address of the 
data segment into the code segment (CS) register. However, this does not 
remedy any of the disadvantages of COM files discussed earlier in the 
chapter. The size of the program, including data and the stack, is still 
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restricted to 64K, programs cannot share data and stack segments, and 
cannot be linked together. We will therefore ignore this approach. 

The easiest and most natural way to deal with data in a program is to 
put the data in a separate segment, and to do this we must use an EXE file. 
Let's see how to write PSTRING as an EXE file. 

= 0002 
= 0021 

= 0031 

0000 

0000 53 68 65 20 69 73 
20 60 6F 73 74 20 
66 61 69 72 2C 20 
74 68 6F 75 67 68 
20 73 68 65 20 62 
65 20 

0020 60 61 72 62 6C 65 
20 68 65 61 72 74 
65 64 2E 00 0A 

0031 

0000 

0000 

0000 

0000 lE 
0001 2B C0 
0003 50 

;PSTRING--Program to print a string 
Demonstrates EXE files 

display equ 
doscall equ 

2h ;display output function 
21h ;DOS interrupt number 

count equ 49d ;# of characters in string 

. ********************************************* ' 

datarea segment 

;string to be printed 

;define data segment 

string db 'She is most fair, though she be ' 

db 'marble-hearted. ',0dh,0ah 

datarea ends 
. ********************************************* ' 
prognam segment ;define code segment 

main proc far ;main part of program 

start: 

assume cs:prognam,ds:datarea 

;starting execution address 

;set up stack for return 
push ds 
sub ax, ax 
push ax 

;save old data segment 
;put zero in AX 
;save it on stack 
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; set DS register to current data segment 
0004 B8 ---- R 
0007 8E D8 

mov ax,datarea ;datarea segment addr 
mov ds,ax into DS register 

0009 
000C 

000F 
000F 
0011 
0013 
0015 
0016 

0018 

0019 

0019 

0000 

B9 0031 
BB 0000 R 

8A 17 
B4 02 
CD 21 
43 
E2 F7 

CB 

;PRINT CHARACTERS FROM STRING ON SCREEN 

mov cx,count ;put# of chars in ex 
mov bx,offset string ;addr of string 

nexLchar : 

marn 

mov dl , [bx] ;put one char in DL 
mov ah,display ;Display Char function 
int doscall ; call DOS 
inc bx ;advance pointer 

loop next_char ;repeat until done 

ret 

endp 

;return to DOS 

prognam ends 

;end of main part of program 

;end of code segment 
·********************************************* ' 

end start ;end assembly 

Differences between COM and EXE Files 
There are a lot of unfamiliar features in the program shown above. 

We'll go through these items one by one. When we're done, you'll know 
how to write an EXE file (or more accurately, how to write an ASM file 
which can be successfully assembled and turned into an EXE file with the 
linker). 

Data and Code Segments 

The first thing to notice in our program is that it has two segments 
now, rather than the single segment we have seen thus far with COM 
files . This new segment is the data segment, and is specifically for data 
that your program is going to operate on. In general form it looks like 
this: 

·********************************************* ' 

datarea segment 

;DATA GOES HERE 

;define data segment 
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0031 

0000 

0019 

datarea ends ;end code segment 
· ********************************************* ' 

In PSTRING the data consists of a string defined by two "DB" 
statements. 

The program instructions go in the code segment. In general form the 
code segment looks like this: 

·********************************************* ' 

prognarn segment 

;PROGRAM GOES HERE 

;define code segment 

prognarn ends ;end of code segment 
. ******************************************** ' 

As discussed before, we use asterisks in comment lines to separate 
one segment from another, for clarity in the listing. Both segments start 
with a segment pseudo-op, and end with an ends pseudo-op. 

The ASSUME Pseudo-Op 

ASSUME tells the MACRO Assembler which segments in your 
program listing will be associated with which segment registers. You have 
already used the ASSUME pseudo-op for COM files, in the form 
"assume cs:prognam." In general, we need an ASSUME statement for 
every segment, so we need to add one to cover our new data segment. 
Two or more ASSUMEs can be combined on the same line simply by 
separating them with commas, as we've done in the program above: 

assume cs:prognarn,ds:datarea 

assume 
assume 

We could also have used two separate statements and accomplished the 
same thing: 

cs :prognarn 
ds:datarea 

As you recall, there is a subtle point about ASSUME: it is (as are all 
pseudo-ops) an instruction to the assembler program, not an instruction for 
the 8088 microprocessor, or to your program. This is important to keep 
firmly in mind, as we'll see when we talk about setting up the DS register. 
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Setting Up the Stack for Return 

We're going to use a different procedure for returning from EXE 
files to DOS (or DEBUG) than we did with COM files. Before, we used 
the INT 20h ROM call. It is possible to use this same system for returns 
from EXE files, but it is more usual to use the new system we're about to 
show you. It's the standard one recommended by IBM. 

The new return procedure simply uses a RET instruction to transfer 
control from your program back to DOS or DEBUG. This causes one 
additional complexity. When we used the "INT 20" instruction before, 
the operating system took care of making sure the stack was restored to 
its proper value after the program was over. With the RET instruction, 
however, the responsibility of restoring the stack falls on the writer of the 
EXE program (that's you), rather than on the operating system. 

So when we first start our program we must initialize the stack so that 
it's ready for our return. To do this we need to put two things on the 
stack: first, the original value in the DS register (since, as we'll see, our 
program is going to change the value in this register); and second, a 
zero. Here's how the code looks: 

;set up stack for return 
0000 lE 
0001 2B C0 
0003 50 

push ds ;save old data segment 
sub ax ,ax ;put zero in fJ. 
push ax ;save it on stack 

We first PUSH the old value of DS onto the stack. The operating 
system needs the value of DS because it needs to restore this value when 
it takes control back from our program; otherwise it won't know where its 
data is. Oust as our program won't know where its data is unless we set 
the DS register correctly). Our technique of subtracting AX from itself is 
simply a quick way to generate a zero; then we PUSH the zero onto the 
stack. 

Telling the assembler what segment goes where, and telling 
the 8088, are two different things. 

Setting Up the DS Register 

We've already noted that we use the ASSUME pseudo-op to tell the 
MACRO Assembler which segment register it can expect to be used for 
which segment of the program. However, telling the MACRO Assembler 
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what's happening is only half the story. We must also actually put the 
starting address of each segment into the appropriate segment register. This is 
not true of the code segment, which is always set up correctly by the 
operating system. It is, however, true of the other three segments. For the 
time being we're ignoring the stack segment and the extra segment, so we 
don't need to worry about them; but we definitely do need to worry about 
the data segment; we need to put the address of the data segment in the 
data segment register. The code to do that looks like this: 

0004 B8 ---- R 
0007 8E 08 

;set OS register to current data segment 
mov ax,datarea ;datarea segment addr 
mov ds,ax into OS register 

The dashed line following the BS in location 0004 indicates that the 
assembler program did not know the address of the data segment 
DATAREA. We'll have more to say about this later. 

As it turns out, there is no 8088 instruction which will load an 
address into a segment register directly. You must first MOVe the address 
into another register, in this case AX, and then MOVe it into the segment 
register. 

If you forget this step - putting the address of the data segment in 
the DS register - the program will assemble correctly since the 
assembler doesn't know or care what is actually in any of the registers. It 
only knows what you've told it to assume is in the registers with the 
ASSUME statement. But when you execute the program, strange 
(generally bad) things will occur because the program - as a result of 
having the wrong address in the DS register - will be looking in the 
wrong part of memory, that is, in the wrong segment, for its data. 

Origin at 0000 

COM files always start at offset address 0 1 00h in their particular 
segment, but EXE files always start at 0. There is therefore no need for 
an ORG statement at the beginning of EXE files, since the default origin 
with no ORG statement is 0. 

Changing INT 20 to RET 

As we've mentioned, we're going to use a plain old RET instruction 
in our EXE files, rather than the INT 20 we've used so far. This must 
always be a FAR RET. It must therefore be used only in a FAR 
PROCedure. Thus our program starts with 

main proc far 
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and ends with 

main endp 

"'Main" is simply the name we give to the main part of the program; it 
could have been any name. (Re-read the sections on CALL, PROC, and 
RET in chapter 6 if you don't remember the differences between NEAR 
and FAR PROCedures.) 

Code labels are followed by a semicolon. Data labels are not. 

Using Labels with Data 

Notice the way we use a label to identify a particular data item: 

string db 'She is most fair , though she be ' 
I 

Label 

In the past when we've used labels in the code segment they have 
been followed by a colon, as in "start:" and so on. We can use labels in 
the same way to identify data items, but they are not followed by a colon. 
If you forget and put the colon there, you'll get error messages. This is 
another way in which the MACRO Assembler tries to save you from 
yourself, by keeping you from getting confused between labels for data 
and labels for program locations. 

What about the Extra Segment and the Stack Segment? 
There is no Extra Segment in this program, so you don't need to 

worry about it at all. (We'll use it later in the chapter, so you'll see how it 
works then.) However, there is a stack; yet there is no Stack Segment (SS) 
in the program listing, and the program doesn't try to load anything into 
the SS register. How is it that we can simply ignore the SS register this 
way? 

We're just lucky. When DOS (or DEBUG) turns control of the 
computer over to our program, the SS register is set to 0000. Also, the SS 
register is set to the same value as the data segment. Now, as you've 
learned already, the stack grows downward in memory from the top of its 
segment. If the SP (Stack Pointer) register is set to 0000, the first item 
placed on the stack will go at FFFE and FFFF, and subsequent values will 
be placed at addresses below that. 
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Thus the program and the data grow upward in memory; and the 
stack, which starts out about 64K bytes above the program, grows 
downward. If our program is short, and if the area occupied by the data 
is small, and if the stack doesn't get too big, the program and the stack 
will not run into each other. Figure 8-3 shows how the stack, the data, 
and the program segments relate to each other, for the case of our 
PSTRING program being loaded with DEBUG. 

Would you like to see the actual values assigned to the segment 
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0915:FFF F 

0919:0000 

Code 
segment 

Figure 8-3. Stack, code, and data segments in a small EXE file 
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-r 

registers? Simplicity itself. Just load DEBUG and PSTRING.EXE and 
look at the registers with the "R" command: 

AX=0000 BX=0000 CX=0080 DX=0000 SP=0000 BP=0000 SI=0000 DI=0000 
DS=0905 ES=0905 SS=0915 CS=0919 IP=0000 NV UP DI PL NZ NA PO NC 
0919:0000 lE PUSH DS 

-t 

The DS register contains 0905, so we know that in terms of absolute 
addresses the data segment starts at 09050 (at least for the moment; it 
will be changed soon, and then it will correspond with the figure). The 
stack segment starts at 09150, 100h bytes higher, and the code segment 
starts at 09190, 40h bytes above the start of the stack segment. 

However, when PSTRING is executed it is going to change the value 
in the DS register to the segment address of the data segment, so we had 
better trace through these instructions in the program before we examine 
the contents of the DS register further. 

Remember that it's important to check the value of the IP register 
before you begin to trace a program. If you have just loaded the progam, 
as we have here, IP will be automatically set to 0000 and there won't be 
any problem. However, if you have executed or traced any part of the 
program, you had better do an RIP and set IP back to zero. 

Start tracing: 

AX=0000 BX=0000 CX=0080 DX=0000 SP=FFFE BP=0000 SI=0000 DI=0000 
DS=0905 ES=0905 SS=0915 CS=0919 IP=0001 NV UP DI PL NZ NA PO NC 
0919:0001 2BC0 SUB AX,AX 

-t 

Notice how the first PUSH instruction (shown in the last printout 
above) changes the Stack Pointer (SP) register to FFFE, at the high end 
of the stack segment. 

AX=0000 BX=0000 
DS=0905 ES=0905 
0919:0003 50 

CX=0080 DX=0000 SP=FFFE BP=0000 SI=0000 DI=0000 
SS=0915 CS=0919 IP=0003 NV UP DI PL ZR NA PE NC 

PUSH AX 

Now the program is going to take the segment address of the data 
segment and put it in the DS register. How does the program know what 
this address is? We certainly didn't know when we wrote the program. 
The answer is that this address is determined either by DOS or by 
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DEBUG, whichever is loading our program, at the time the program is 
loaded. Remember how the LST file showed these instructions? 

;set DS register to current data 
segment 
0004 BS ---- R 
0007 SE DS 

mov ax,datarea ;datarea segment addr 
mov ds,ax into DS register 

-t 

There is an " -- -- R" in the place where the segment address of the 
data segment (which is called "datarea" in this program) is supposed to 
be. When the program is loaded, DOS (or DEBUG) figures out what 
number should go here, and fills it into its proper place in the program 
code in memory. Let's watch what happens next: 

AX=0000 BX=0000 
DS=0905 ES=0905 
0919:0004 BS1509 

CX=00S0 DX=0000 SP=FFFC BP=0000 SI=0000 DI=0000 
SS=0915 CS=0919 IP=0004 NV UP DI PL ZR NA PE NC 

MOV AX ,0915 

-t 
AX=0915 BX=0000 
DS=0905 ES=0905 
0919:0007 SEDS 

CX=00S0 DX=0000 SP=FFFC BP=0000 SI=0000 DI=0000 
SS=0915 CS=0919 IP=0007 NV UP DI PL ZR NA PE NC 

MOV DS,AX 

-t 
AX=0915 BX=0000 CX=00S0 DX=0000 SP=FFFC BP=0000 SI=0000 DI=0000 
DS=0915 ES=0905 SS=0915 CS=0919 IP=0009 NV UP DI PL ZR NA PE NC 
0919:0009 B93100 MOV CX ,0031 

As you can see, the DS register now contains 0915, which is the address 
of the stack segment - just what we want. 

The DS and ES registers don't have the correct values until 
your program puts them there. 

Now we can see that our data will start at absolute address 09150, 
and extend from there up to the beginning of the code part of our 
program at 09190, a difference of 40h bytes. Why 40h bytes? Because 
that's how much space our data needs: it's 31h bytes long, and since 
segments must start on "paragraph boundaries" - addresses which are 
multiples of 10h - the code segment starts 40h bytes beyond the start of 
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-u0,18 

the data. The program instructions extend up to 09190h + 18h (the 
number of bytes in the program), which is 091A8. 

The stack, on the other hand, is now at 09150h + FFFC, which is an 
absolute address of l 9 l 4C. This is almost 64K bytes above the program. 
The point is that there's plenty of room between the top of our program 
and the bottom of the stack, and that's why we can get away without 
specifying a stack segment. If we were writing larger programs, or using 
a lot of data, or were going to make extensive use of the stack, then we 
couldn't get away with this simple approach. Later we'll show you how to 
set up the stack segment when you need to. 

How the Program Looks in Memory 
Remember how the assembler could not generate the address of the 

data segment? This address will not be known until the program is 
loaded. If you want proof that DOS (or in this case DEBUG) can modify 
the code in our program and fill in this address, you can use the "U" 
command to list the program as it actually exists in memory: 

0919:0000 lE 
0919:0001 2BC0 
0919:0003 50 
0919:0004 B81509 
0919:0007 8ED8 
0919:0009 B93100 
0919:000C BB0000 
0919:000F 8A17 
0919:0011 B402 
0919:0013 CD21 
0919:0015 43 
0919:0016 E2F7 
0919:0018 CB 

PUSH 
SUB 
PUSH 
MOV 
MOV 
MOV 
MOV 
MOV 
MOV 
INT 
INC 
LOOP 
RETF 

OS 
AX,AX 
AX 
AX,0915 
DS,AX 
CX,0031 
BX,0000 
DL, [BX] 
AH,02 
21 
BX 
000F 

- Address filled in 
by DEBUG 

Notice how, in the instruction at location 0004, the number 0915 
(written reversed in the machine code as 1509) has actually been placed 
in its appropriate place in the instruction. Also notice that the program 
starts with an offset address of 0000 (the value in the IP register when 
we load the program) and a segment address of 0919 (the value we saw 
in the CS register). The "U" command in DEBUG thinks automatically 
in terms of the CS register. 

Perhaps you're wondering why the lowest available segment address 
seems to be 0915h, at least on our particular PC system. The answer is 
that the DOS 2.00 operating system (which we're using for this example) 
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-d0,3f 

takes up somewhat less than 9150h bytes in low memory. Our program 
must therefore start just above that. 

How the Data Look in Memory 
We can also look at our data, using the "D" command, but be careful! 

It will not automatically think in terms of the DS register until the 
program instructions that put the address of the data segment into the DS 
register have been executed. 

0915:0000 53 68 65 20 69 73 20 6D-6F 73 74 20 66 61 69 72 
0915:0010 2C 20 74 68 6F 75 67 68-20 73 68 65 20 62 65 20 
0915:0020 6D 61 72 62 6C 65 2D 68-65 61 72 74 65 64 2E 0D 
0915:0030 0A 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 

She is most fair 
, though she be 
marble-hearted .. 

Here the segment address is 0915, which is the address in the DS 
register. Since we traced through the opening instructions of the 
program, DS contains the correct value. If we had not executed these 
instructions we would have been looking at the wrong segment when we 
examined memory with "D," and who knows what we would have seen. 

The OFFSET Operator 
Did you notice the word "offset" in a line of code from the PSTRING 

program above? 

mov bx,offset string ;addr of string 

What does this do? We're going to be using the BX register as a 
pointer to the various characters in the string. In other words, we're going 
to put the address of the first character into BX with the instruction 
shown above; then later we'll increment BX so it contains the addresses 
of other characters in the string, one after the other. 

What would happen, however, if we wrote: 

mov bx,string ; addr of string 

leaving out the word offset? Instead of putting the address of the first 
character of the string into BX, we'd be putting the character itself into 
BX. That's no good - in fact, the assembler wouldn't even let us do it; it 
would see we were trying to put an 8-bit character into a 16-bit register 
and an assembly error would result. 

What the word "offset" does is to tell the assembler that what we want 

248 Assembly Language Primer for the IBM PC & XT 



to put in BX is not the contents of "string", but the address of "string". 
The word "offset" in this case means the offset part of the address. 
(There is another, less commonly used operator called "seg", which 
performs a similar function for the segment part of the address.) 

Thus, whenever we want the address of a variable in a program 
instruction, rather than the value of the variable, we must precede the 
variable name with the word "offset". You'll see this word used often in 
the programs that follow. 

A Batch File for EXE Programs 
When you learned about COM files we showed you how to construct a 

batch file to speed up the process of going from an ASM file to an 
executable program. Now we can do the same for EXE files. Here's a 
batch file which will transform your ASM file into an EXE file, leaving 
nothing else in your directory. 

asm %1 %1 nul nul 
link %1 @autolink 
erase %1.bak 
erase %1. obj 

As before, the "autolink" file consists of nothing but three carriage 
return g characters. Its name is simply "autolink," with no file extension. 

You can call your batch file ASM2EXE.BAT for ASM to EXE. When 
executed it will erase the BAK file generated by your word processor and 
the OBJ file generated by the assembler, as well as create the EXE file. 

The PIANO Program as an EXE File 
Remember the trouble we had in the last chapter with the PIANO 

program? We had to assemble it twice: the first time just to figure out the 
address of our data (the table of frequencies), so that when we assembled 
it again we could use a hex address rather than a symbolic one. When we 
tried to use symbolic addresses in COM files we got into trouble. 

Let's see how this program would look as an EXE file. 

;PIANO--Uses Timer2 to run speaker 
; number keys play notes of the scale 
;EXE version 
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= 0061 
= 0007 
= 0021 
= 0003 

0000 

0000 
0002 
0004 
0006 
0008 
000A 
000C 
000E 

0010 

0000 

0000 

0000 

0106 
0126 
014A 
015B 
0188 
01B8 
01EE 
020C 

0000 lE 
0001 2B C0 
0003 50 

0004 BS ---- R 
0007 SE D8 

0009 
0009 B4 07 
000B CD 21 
000D 3C 03 
000F 74 34 
0011 2C 31 
0013 24 07 

portB equ 
keybd2 equ 
doscall equ 
conLc equ 

61h 
7h 
21h 
03h 

; I/O Port B 
;keybd input , no echo 
;DOS interrupt number 
;control-C ASCII code 

· ********************************************* ' 

datarea segment ;define data segment 

;frequencies of notes 
table dw 262d ;C 

dw 294d ;D 
dw 330d ;E 
dw 347d ;F 
dw 392d ;G 
dw 440d ;A 
dw 494d ;B 
dw 524d ;C 

datarea ends 
. *********************************** ********** ' 
prognam segment ;define code segment 

main 

start : 

proc far ;main part of program 

assume cs :prognam,ds:datarea 

;starting execution address 

;set up stack for return 
push ds ;save old data segment 
sub ax,ax ;put zero in AX 
push ax ; save it on stack 

;set DS register to current data segment 
mov ax,datarea ;datarea segment addr 
mov ds , ax into DS register 

;read keyboard to get digit from 0 to 7 
reacLkey: 

mov ah,keybd2 ;keybd funct, no echo 
int doscall ;call DOS 
cmp al,cont_c ;is it control-C? 
jz exit ;yes, so exit 
sub al,31h ;change ASCII to digit 
and al ,000001llb ;mask off hi 5 bits 
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0015 
0017 
0018 
001A 
0010 
0020 
0024 

0026 
0028 
002A 
002C 
002E 
0030 
0032 
0034 
0036 

0038 
003B 
0030 
003F 
0041 
0043 

0045 
0045 

0046 

0046 

00 E0 shl al ,1 ;* by 2 (2 bytes /word) 
98 cbw ;byte--> word in AX 
8B 08 mov bx , ax ;put in bx (for table) 
B8 0000 mov ax,0 ;numerator (low byte) 
BA 0012 mov dx , 12h 

' 
(high byte) 

F7 B7 0000 R div [table + bx] ;divisor from table 
8B 08 mov bx , ax ;save quotient in BX 

; set 1/pitch into timer, then turn on tone 
B0 B6 mov al , 10110110b ;put magic number 
E6 43 out 43h,al into timer2 
8B C3 mov ax,bx ;1 /pitch into AX 
E6 42 out 42h,al :LSB into timer2 
8A C4 mov al,ah ;MSB to AL , then 
E6 42 out 42h,al to timer2 
E4 61 rn al,portB ;read port B into AL 
0C 03 or al , 3 ;turn on bits 0 and 1 
E6 61 out portB , al ;to turn on speaker 

;sound note for a while, then turn it off 
B9 FFFF mov cx,0ffffh ;set up for delay 
E2 FE wait: loop wait ; delay 
E4 61 in al ,portB ;read port B into AL 
24 FC and al ,11111100b ;mask lower 2 bits 
E6 61 out portB,al ;to turn off speaker 
EB C4 jmp reacL.key ;go get another digit 

;control-C typed, so exit 
exit : 

CB ret ;return to DOS 

main endp ;end of main part of program 
---------------------------------------------' prognam ends ;end of code segment 

. ********************************************* ' 
end start ;end assembly 

There are several things to notice about this program. First, we've 
given the first location of our data the name "table." Again, this name, 
being in the data segment (not an address in the code segment), is not 
followed by a semicolon. 

Second, we've used this symbolic address in the DIV instruction at 
location 0020: 

0020 F7 B7 0000 R div [table+ bx] ;divisor from table 
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This instruction takes the content of the BX register and adds it to 
the offset address of "table" (which happens to be 0000, since "table" is 
the first item in the data segment), and uses the result as its EA (effective 
address). It then takes the word from this address and divides it into the 
double-word DX+ AX. The important point here is that we are able to 
use a symbolic name for "table," rather than a number as we did in the 
COM file version of this program. 

The "R" following the hex op-code in this instruction is a warning 
that the instruction references a segment outside the code segment. 
Programs that contain instructions that have this "R" (for "relocatable") 
in the LST file will not work as COM files - this is the giveaway that an 
EXE file is called for. 

The EXEFORM Program - A Nonprogram 

0000 

0000 

0000 

As you've noticed in the PSTRING and PIANO programs, EXE files 
have a fairly large amount of "overhead" in the form of program 
statements which must always be in the program, no matter what the 
program is supposed to do. If your word processor has the capability of 
reading one text file into another one (and it should), you can cut down a 
lot of the work of writing a program by setting up all this "overhead 
code" in a separate file. Call this file EXEFORM.ASM (for "EXE file 
FORMat"). Then, whenever you want to write a program that will 
become an EXE file, you can start off with this file, and fill in the 
program instructions and data in the appropriate places. 

Let's look at the LST file version of EXEFORM: 

;PROGRAM TITLE GOES HERE-
Followed by descriptive phrases 

;EQU STATEMENTS GO HERE 

· ********************************************* ' 

datarea segment 

;DATA GOES HERE 

;define data segment 

datarea ends 
·********************************************* ' 

prognam segment ;define code segment 
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0000 main proc far ;main part of program 

assume cs:prognarn,ds:datarea 

0000 start: ; starting execution address 

;set up stack for return 
0000 1E push ds ;save old data segment 
0001 2B C0 sub ax ,ax ;put zero in AX 
0003 50 push ax ;save it on stack 

;set OS register to current data segment 
0004 B8 ---- R mov ax ,datarea ;datarea segment addr 
0007 8E D8 mov ds , ax into OS register 

;MAIN PART OF PROGRAM GOES HERE 

0009 CB 

000A 

000A 

marn 

' subrl 

ret 

endp 

proc 

;return to DOS 

;end of main part of program 

near ;define subprocedure 

000A 

000A 

;SUBROUTINE GOES HERE 

subrl endp ;end subprocedure 

prognarn ends ;end of code segment 
' ********************************************* ' 

end start ;end assembly 

This is the bare skeleton of an EXE file. You can actually assemble, 
link, and execute this program, and it will return properly to DOS. Of 
course, that's all it will do: there are no instructions to make it do 
anything else. Its purpose is to serve as a sort of "template" for other 
programs. Type in the right-hand side of the listing, and save it on your 
disk as EXEFORM.ASM. Then whenever you're ready to write an EXE 
program, you can start with EXEFORM, fill in the 8088 instructions to 
make the program do what you want, and you're off and running. 

You'll notice that EXEFORM includes space for a subroutine -
actually a NEAR PROCedure. This procedure can be called from the 
main program with a CALL instruction, as we've seen before. You can 
add as many of these NEAR PROCedures in a program as you want. You 
should be familiar with these NEAR PROCedures from the DECIHEX 
program in chapter 6. 
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0000 
0000 

00A0 

0000 

0000 

0000 

0000 

Using the Stack Segment 
It is probably somewhat irresponsible for us to give the impression 

that it is good programming practice to ignore the stack segment as we 
have been doing up to now. In fact, it's much safer to set up a separate 
stack segment in your program. Then you know where it's supposed to 
be, and how big it is, and you can examine it more easily when you're 
debugging. 

You really should always use a stack segment. 

How do you set up a stack segment in your program? We've 
organized another form of the EXEFORM program which includes this 
feature, as shown in the listing below. (In the interests of conserving 
space we took out the subroutine at the end of this program. You can put 
it back in if you need it.) Here's the listing: 

14 [ 
73 74 61 63 
6B 20 20 20 

;PROGRAM TITLE GOES HERE-
Followed by descriptive phrases 

;EQU STATEMENTS CAN GO HERE 

. ********************************************* ' 

st_seg segment stack 
db 20 dup 

sLseg ends 

;define stack segment 
('stack ' ) 

. ********************************************* ' 
datarea segment 

;DATA CAN GO HERE 

datarea ends 

;define data segment 

. ********************************************* ' 

prognam segment ;define code segment 

main proc far ;main part of program 
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0000 

0000 1E 
0001 2B C0 
0003 50 

0004 B8 ---- R 
0007 8E 08 

assume cs:prognam,ds:datarea 

start: ; starting execution address 

;set up stack for return 
push ds 
sub ax, ax 
push ax 

;save old data segment 
;put zero in PY.. 
;save it on stack 

;set OS register to current data segment 
mov ax,datarea ;datarea segment addr 
mov ds,ax into OS register 

;MAIN PART OF PROGRAM CAN GO HERE 

0009 CB 

000A 

000A 

main 

' 

ret 

endp 

prognam ends 

;return to DOS 

;end of main part of program 

;end of code segment 
. ********************************************* ' 

end start ;end assembly 

As you can see, an addition has been made to the segment pseudo-op 
to define the stack segment, and a new pseudo-op, DUP, has been used 
in this segment. We'll cover these two items separately below. 

The Combine-type Entry in the Segment Pseudo-op 

We defined the stack segment in the usual way with a SEGMENT 
pseudo-op, but we also added something: the word STACK in the 
operand field. What does this do? Its purpose is to tell the linker that this 
segment is in fact a stack segment. One result of this is that the error 
message "Warning, no stack segment," which the linker has been 
bothering us with chapter after chapter, will now disappear. 

The more significant effect is that, if we were using the linker to 
combine several programs, the linker would know that this segment (ST_ 
SEG) should be combined with other stack segments into a single stack 
segment. Also, when our program is loaded, DOS (or DEBUG) will make 
sure that the Stack Segment register (SS) is loaded with the appropriate 
address. 

The word STACK used in this way in the SEGMENT pseudo-op is an 
example of something called a "combine-type." As you can see by looking 
up SEGMENT in the section on pseudo-ops in the IBM Personal 
Computer MACRO Assembler manual, there are several other combine-
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types: PUBLIC, COMMON, AT expression, and MEMORY. We'll be 
covering some of these later on in the book, but for the moment you don't 
need to know about them. 

The Align-type Entry in the Segment Pseudo-op 

While we're talking about the SEGMENT pseudo-op, we might also 
mention the "align-type" entry. This is an entry (a word) which precedes 
the combine-type in the segment pseudo-op. Its purpose is to tell the 
linker on what sort of address boundary the segment should start. The 
segment can start on a byte, which means any address; it can start on a 
word, which means an even-numbered address; it can start on a 
"paragraph," which is an address divisible by I Oh (16d); or it can start on 
a page, which is an address divisible by I 00h (256d). The words used to 
select these starting address boundaries are BYTE, WORD, PARA and 
PAGE, respectively. 

Usually we want the segment to start on a paragraph boundary; so 
we want the PARA align-type. However, PARA is the default align-type, 
so if we don't use any of these words, PARA is what we'll get. That's why 
we don't usually need to use the align-type entry in this pseudo-op. 

There can also be a "class" entry in the SEGMENT pseudo-op. This 
is a name, surrounded by single quotes, that is used by the linker to 
combine together segments which are in different programs but which 
have the same class name. 

An example of a segment pseudo-op specifying a data segment 
starting on a word boundary and having the combine-type entry "public" 
and the class 'zip_codes' would be 

data__seg segment word public 'zip_codes' 

For the time being you don't have to worry about any of this except 
the STACK combine-type. 

The DUP Expression 
DUP is not a pseudo-op itself, but is used as an optional expression 

in pseudo-ops like DB (Define Byte) and DW (Define Word). Its purpose 
is to make duplicate copies of whatever follows it, enclosed in 
parentheses, in the operand field of the pseudo-op. The number 
preceding the DUP tells how many copies are to be made. Thus in the 
example from the EXEFORM program above, the DB pseudo-op 
specifies that 20d copies of the string 'stack' (that's "stack" followed by 
three spaces) are to be placed in memory. You can see how the LST file 
displays the resulting hex characters. 
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0000 14 [ 
73 74 61 63 
6B 20 20 20 

db 20 dup ('stack ') 

As IBM suggests in the program listing in the IBM Personal Computer 
MACRO Assembler manual (appendix D), we have caused the stack to be 
filled in with the string "stack ", which is 8 characters long. Why do this? 
Because it makes it very clear where the stack is when you go to debug 
your program. Once you find the stack, you can see at a glance how 
much of it has been used: the parts not used are filled with the word 
"stack", which is readily visible with the "D" command. 

Let's see how this might look. Assemble and link the EXEFORM2 
program into an EXE file. Then load it, using DEBUG: 

A>debug exeform2 .exe 

-r 
AX=0000 BX=0000 
DS=0905 ES=0905 
0915 :0000 lE 

CX=0100 DX=0000 SP=00A0 BP=0000 SI=0000 0!=0000 
SS=0916 CS=0915 IP=0000 NV UP DI PL NZ NA PO NC 

PUSH OS 

Notice that the SP register no longer says 0000 as it does when we 
don't define a stack segment. It has been set to 00A0, which is just large 
enough to hold the 20d copies of the string "stack ", which we specified 
were to go in the stack segment. Now we'll examine the stack segment: 

-d916 :0 
0916:0000 73 74 61 63 6B 20 20 20-73 74 61 63 6B 20 20 20 stack stack 
0916:0010 73 74 61 63 6B 20 20 20-73 74 61 63 6B 20 20 20 stack stack 
0916:0020 73 74 61 63 6B 20 20 20-73 74 61 63 6B 20 20 20 stack stack 
0916:0030 73 74 61 63 6B 20 20 20-73 74 61 63 6B 20 20 20 stack stack 
0916:0040 73 74 61 63 6B 20 20 20-73 74 61 63 6B 20 20 20 stack stack 
0916:0050 73 74 61 63 6B 20 20 20-73 74 61 63 6B 20 20 20 stack stack 
0916:0060 73 74 61 63 6B 20 20 20-73 74 61 63 6B 20 20 20 stack stack 
0916 :0070 73 74 61 63 6B 20 20 20-73 74 61 63 6B 20 20 20 stack stack 
-d 
0916 :0080 73 74 61 63 6B 20 20 20-73 74 61 63 6B 20 20 20 stack stack 
0916:0090 73 74 61 63 6B 20 20 20-73 74 61 63 6B 20 00 00 stack stack . . 
0916 :00A0 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 . .... . . '.'. ' .... 
0916:00B0 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 .. '. ' .. ....... . ' 

You can see why we wanted to DUPiicate an 8-character string: it fits 
so neatly on the 16-character line. The stack will grow downward from 
0916:00A0. In this case the first two locations, at 009E and 009F, have 
already been filled in with zeros. 
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Segmentation and the String-Handling Instructions 
The 8088 contains some rather special instructions for handling 

strings. In this case "strings" means any sequences of bytes or words 
stored in memory, whether they are ASCII characters or not. These 
string-handling instructions are closely related to the idea of memory 
segmentation, and in particular to the use of the Extra Segment. We're 
going explain how these instructions work, and then show you a program 
that uses these string instructions to compare two strings, and at the 
same time makes use of the Extra Segment, the Data Segment, the Stack 
Segment, and the Code Segment. It will be your first view of a program 
making use of all four segments. 

Of course the string-handling instructions can be used for purposes 
other than text manipulation. In particular, they're useful for graphics, 
where their great speed can be used to do such things as moving an 
entire graphics image into the screen memory - a process important in 
animation. We'll be talking more about graphics in chapter 10. 

String-Handling Instructions 
The string-handling instructions make use of a unique idea in the 

8088 instruction set: the REP instruction. REP stands for "REPeat," and 
what it does is to cause the instruction which follows it to be repeated until CX 
becomes zero. REP is used with a special group of three instructions which 
can move a string from one place to another in memory, scan a string for 
a particular byte or word, and compare one string with another. These 
instructions are called MOVS (MOVe String), SCAS (SCAn String), and 
CMPS (CoMPare String). 

The REP Instruction 

REP Instruction 
Causes following string instruction to repeat. 

The string instruction following REP will be repeated until 
CX becomes zero. 

Flags affected: depends on string operation. 

The SI and DI Registers 

The string instructions make use of two registers which we haven't 
talked about yet: the SI and DI registers. You can see them in the upper 
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left-hand corner of the printout when you use the "R" command in 
DEBUG. SI stands for "Source Index," and DI stands for "Destination 
Index." These registers are used as pointers or indexes, to point to the 
strings to be operated on in memory. For instance, suppose we wanted to 
MOVe a string of bytes from one part of memory to another. We'd set the 
SI register to point to the start of the string we wanted to move, and we'd 
set the DI register to point to the first location of the area we wanted to 
move the string to. This operation is shown in Figure 8-4. 

Data Segment and Extra Segment 

Now, here's where the segments fit into the string handling 
instructions: the DI register is assumed to contain an address which is in 
the Data Segment, and the SI register is assumed to contain an address 
which is in the Extra Segment. Thus, before you can use the string-handling 
instructions, you have to do the following things: 

1. Set up a buffer (an area of memory) for one string in the data 
segment. 

2. Use an ASSUME statement to tell the assembler that the data 
segment will be in the DS register. 

3. Put the segment address of the data segment into the DS register. 

4. Put the offset address of the source string into the SI register. 

5. Set up a buffer for the second string (or the place the first string 

N o w 

N o w 

SI register 
(Points to locations in source string) 

t h e 

When SI and DI 
point here, the "i" 
character is transferred 

DI register 
(points to locations in 
destination string) 

m e Source string 
(in data segment) 

Destination string 
(in extra segment) 

Figure 8-4. Use of SI and DI registers for string instructions 
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will be moved to) in the extra segment. 

6. Use an ASSUME statement to tell the assembler that the extra 
segment will be in the ES register. 

7. Put the segment address of the extra segment into the ES register. 

8. Put the offset address of the destination string into the DI register. 

Also, we need to put the count of how many characters are to be 
moved, scanned, or compared into the ex register. 

The source buffer for string operations goes in the Data 
Segment, the destination buffer in the Extra Segment. 

The MOVS Instruction 

Strings are moved from one place to another in memory using the 
REP instruction followed by the MOVS instruction. 

MOVS Instruction 
MOVes a String from one location to another. 

Used following a REP instruction. The string in the data 
segment, pointed to by SI, is transferred to the buffer in the 
extra segment, pointed to by DI. 

The number of bytes to be moved is specified by the ex 
register. 

Each time MOVS is executed: 

1. SI is incremented (or decremented, depending on 
direction flag), either one or two bytes (depending on 
whether bytes or words are being transferred). 

2. DI is incremented (or decremented, depending on 
direction flag), either one or two bytes (depending on 
whether bytes or words are being transferred). 

3. ex is decremented. If it becomes zero, transfer is 
terminated. 

Flags affected: none 
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Shown below is some code that moves a string of 40 letter "a"s from a 
source buffer to a destination buffer. In the interest of brevity this is not 
a complete program. Only those instructions relating to the string
handling instructions are shown. 

We'll be using the string-handling instruction MOVS in this code 
fragment. There are two ways to put the RET instruction together with 
string-handling instructions like MOVS. The simplest, and the one we'll 
show you here, is to put them on the same line. 

'*************************************** ' data_seg segment 
source_buff er db 40 dup ( 1 a 1 ) 

data_seg ends 
'*************************************** ' extra_seg segment 
dest_buffer db 40 dup (?) 
extra_seg ends 
· *************************************** ' 

assume ds :data_seg 
assume es :extra_seg 

mov ax ,data_seg 
mov ds , ax 

mov ax ,extra_seg 
mov es , ax 

;tell assembler where 
segments are 

;put segment address of 
source buffer in OS 

;put segment address of 
dest buffer in ES 

mov si , offset source_buffer ;put offset address of 
source buffer in SI 

mov di , offset dest_buffer ;put offset address of 
dest buffer in DI 

cld ;set direction flag 

mov cx ,count 

rep movs 

to forward 

;put count in ex 

;move entire string! 

As you can see, there's a lot of setting up, but once it's done, the 
actual transfer of the data only takes two instructions, written on one 
line! They are each one-byte instructions, too, so the transfer goes very 
fast. 

How does it work? The REP instruction causes the MOVS instruction 
to be executed over and over until CX becomes zero. Each time the 
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MOVS instruction is executed it transfers a byte from the source buffer 
- at the location pointed to by SI; to the destination buffer - to the 
location pointed to by DI. It also increments the DI and SI registers to 
point to the next byte to be transferred and the next location it's to be 
transferred to. MOVS also decrements the ex register. If ex becomes 
zero, the process stops, and the program goes on to the next instruction 
following the MOVS. 

The CLD Instruction 

We've used another instruction you haven't seen before, called eLD. 
Remember back when we talked about flags, there was something called 
the "direction flag"? The direction flag is used to specify whether SI and 
DI will be automatically incremented, which has been our assumption in 
this discussion, or whether they will be decremented. eLD stands for 
eLear Direction flag, and clearing this flag specifies the "forward" 
direction, which means the pointers will be automatically incremented. If 
we had used the instruction STD - which means SeT Direction flag
the flag would have been set to "backwards" and these registers would 
have been automatically decremented. In that case we would have had to 
set SI and DI to the ends of their respective strings, rather than the 
beginnings. As you can see, the forward direction is more natural and is 
therefore more commonly used, so in general a eLD instruction will 
precede your string-handling instructions. 

CLD Instruction 
Sets Direction Flag to forward direction (eLD stands for 
"eLear Direction flag"). 

Used to specify that SI and DI will be automatically 
incremented during string-handling instructions. 

STD - (for "SeT Direction flag") is used to specify that SI 
and DI will be decremented. 

Flags affected: DF 

The Compare Strings Program 

In the next program we use the string-handling instruction eMPS to 
compare two strings. eMPS is similar to MOVS in the way it operates and 
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in how you need to set things up before you use it. However, instead of 
MOVing a string from one buffer to another, it CoMPares a string in one 
buffer with a string in another buffer. 

The CMPS Instruction 

CMPS Instruction 
CoMPares a String in one location to a string in another. 

Used following a REPE instruction. The string in the data 
segment, pointed to by SI, is compared to the string in the 
extra segment, pointed to by DI. 

The number of bytes to be compared is specified by the CX 
register. 

Each time CMPS is executed: 

1. SI is incremented (or decremented, depending on 
direction flag), either one or two bytes (depending on 
whether bytes or words are being transferred). 

2. DI is incremented (or decremented, depending on 
direction flag), either one or two bytes (depending on 
whether bytes or words are being transferred). 

3. CX is decremented. If it becomes zero, the process is 
terminated. 

Flags affected: AF, CF, OF, PF, SF, 2F 

You may have asked yourself this question: How do we know, when 
the comparison operation is over, whether the two strings we just 
compared were in fact the same? We use a variation of the RE Peat 
instruction, called REPE, which means "REPeat while Equal." This 
provides a way of terminating the comparison procedure before the CX 
register becomes zero. In a comparison, we generally want to stop the 
comparison process as soon as we realize that the comparison is failing, 
that is, when we discover that a character in the first string and the 
corresponding character in the second string are not the same. REPE will 
permit the CMPS instruction to be executed only as long as the results of 
the comparison are equal. Once a nonmatch is found, the program goes 
on to the instruction following the CMPS. 
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If the comparison does fail, so that REPE causes an early termination 
of the process, the CX register will not yet be zero. We can determine this 
fact using a JZ or JNZ instruction, since if CX had not become zero, the 
zero flag will not be set. This is how we find out the results of the 
comparison operation. 

Thus, our strategy is to perform the comparison by executing the 
REPE CMPS instruction combination, and then checking the zero flag. If 
it is zero, then all the bytes checked passed the comparison check, and 
the two strings are equal. If it is not zero, then the comparison 
terminated early, CX is not zero, and the two strings do not match. If we 
want, we can find out the location where the match fails by looking in the 
SI or DI registers, or by examining the count left in CX. 

The REPE and REPZ Instructions 

REPE Instruction 
Causes the CMPS or SCAS instruction that follows to be 
repeated (REPE stands for "REPeat while Equal"). 

The REPE and CMPS (or SCAS) instructions will be 
repeated until either CX becomes zero, or the results of a 
comparison cause the zero flag to be cleared (set to NZ), as 
the result of two bytes (or words) not matching. 

This instruction can also be written REPZ, for "REPeat while 
Zero." 

Flags affected: depends on string operation 

The SCAS Instruction 
There is another instruction, SCAS, which we won't describe in detail 

but which we'll mention to complete the list of string-handling 
instructions. It stands for "SCAn String," and (unlike MOVS and CMPS) 
operates on only one string, in the DS segment, pointed to by the SI 
register. The contents of the AL register ( or AX, if words are being 
scanned for) are compared with the succesive bytes in the string. Like 
CMPS, SCAS can be used with REP and REPE. It's probably most often 
used with another instruction, REPNE, which stands for "REPeat while 
Not Equal." SCAS scans through a string looking for a particular byte (or 
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= 0009 
= 000A 
= 0021 

word). If it finds it, we want to terminate the scan. That's why we use 
REPNE: as soon as a matching character is found, the search is ended, 
even though CX is not zero. 

The REPNE and REPNZ Instructions 

REPNE Instruction 
Causes the CMPS or SCAS instruction that follows to be 
repeated (REPNE stands for "REPeat while Not Equal"). 

The REPE and CMPS (or SCAS) instructions will be 
repeated until either CX becomes zero, or the results of a 
comparison cause the zero flag to be set (cleared to ZE), as 
the result of two bytes (or words) matching. 

This instruction can also be written REPNZ, for "REPeat 
while Not Zero." 

Flags affected: depends on string operation. 

The SEARCH Program Listing 
The following program uses the REPE and CMPS instructions to 

compare a "keyword," typed in by the user, to a "sentence," typed in 
following the keyword. If the keyword is contained in the sentence, the 
program prints "Match!!!" If the sentence does not contain the word, the 
program prints "No match." We've made this a complete program so you 
can see how the various parts all work together. The listing is fairly long, 
but it's divided into sections which individually are short and not difficult 
to understand. 

;SEARCH--Searches one string for another 
User types in keyword, then sentence 
Program decides if sentence contains word 
Prints out conclusion 

print_JTI equ 9h ;print string function 
buff_in equ 0ah ;buffered kbd input function 
doscall equ 21h ;DOS interrupt number 

. ********************************************* ' 
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0000 
0000 14 [ 

73 74 61 63 
6B 20 20 20 

00A0 

0000 

0000 7F 
0001 ?? 

0002 7F 
?? 

0081 14 
0082 ?? 

0083 14 [ 
?? 

0097 0D 0A 45 6E 74 65 
72 20 4B 65 79 77 
6F 72 64 3A 20 24 

00A9 0D 0A 45 6E 74 65 
72 20 53 65 6E 74 
65 6E 63 65 3A 20 
24 

00BC 0D 0A 4E 6F 20 6D 
61 74 63 68 2E 24 

00C8 0D 0A 4D 61 74 63 
68 21 21 21 24 

00D3 

0000 

0000 

sLseg segment stack ;define stack segment 
db 20 dup ('stack I) 

sLseg ends 

. ********************************************* ' 
datarea segment ;define data segment 

;buffer to hold sentence 
serunax db 127d ;max chars in sentence 
sen...real db? ;actual chars in sent. 
sentence db 127d dup (?) ;space for 127 chars 

;buffer to hold keyword 
key_max db 20d ;max chars in keyword 
key_real db? ;actual chars in keywd 
keyword db 20d dup (?) ;space for 20 chars 

messl db 0dh,0ah, 'Enter Keyword: $' 

mess2 db 0dh,0ah, 'Enter Sentence: $' 

mess3 db 0dh,0ah, 'No match.$' 

mess4 db 0dh,0ah, 'Match!!!$' 

datarea ends 
. ********************************************* ' 

prognam segment ;define code segment 

---------------------------------------------
main proc far ;main part of program 
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0000 

0000 1E 
0001 2B C0 
0003 50 

0004 B8 ---- R 
0007 8E D8 

0009 B8 ---- R 
000C 8E C0 

000E 

000E BA 0097 R 
0011 B4 09 
0013 CD 21 

0015 BA 0081 R 

0018 B4 0A 
001A CD 21 

001C 

001C BA 00A9 R 
001F B4 09 
0021 CD 21 

0023 BA 0000 R 

0026 B4 0A 
0028 CD 21 

start: 

assume cs:prognam,ds :datarea 
assume es:datarea 

;starting execution address 

;set up stack for return 
push ds ;save old data segment 
sub ax , ax ;put zero in AX 
push ax ;save it on stack 

;set DS register to current data segment 
mov ax ,datarea ;datarea segment addr 
mov ds,ax into DS register 

;set ES register to current extra segment 
mov ax,datarea ;datarea segment addr 
mov es,ax into ES register 

;GET KEYWORD AND PUT IN BUFFER 
new_key: 

;print "enter keyword" message 
mov dx ,offset messl ;addr in DX 
mov ah ,print_m ;print string function 
int doscall ;call DOS 

;get keyword and put in buffer 
mov dx,offset key_max ;addr of buffer 

mov ah,buf.f_in ;buffered keybd input 
int doscall ;call DOS 

;GET SENTENCE AND PUT IN BUFFER 
new_sent : 

;print "enter sentence" message 
mov dx ,offset mess2 ;addr in DX 
mov ah,print_m ;print string function 
int doscall ;call DOS 

;get sentence and put in buffer 
mov dx ,offset sen_max ;addr of buffer 

mov ah ,buff_in ;buffered keybd input 
int doscall ;call DOS 
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002A FC 

002B A0 0001 R 
002E 2A 06 0082 R 
0032 7C 25 
0034 98 
0035 SB D0 
0037 42 

0038 BB 0002 R 

003B 

003B SB FB 

003D BE 0083 R 

0040 A0 0082 R 
0043 98 
0044 SB CS 

0046 F3 / A6 

0048 74 06 

004A 43 

;SEARCH FOR KEYWORD IN SENTENCE 

;SI register holds pointer to keyword 
;DI register holds pointer to sentence 
;BX register holds pointer to 

current starting place in sentence 
;DX register holds count of chars in sentnece 

less chars in keyword+ 1 
;CX register holds count of chars in word 

cld ;set direction flag to forward 

;calculate length of sentence less 
length of keyword , put in DX 

mov al ,se!Ll'eal ; length of sentence 
sub al ,key_real ;less length of word 
jl no_Jflatch ;word longer than s. 
cbw ;change byte to word 
mov dx , ax ;put in DX 
inc dx ; + 1 

;set BX to first character in sentence 
mov bx ,offset sentence 

compare: 

;set DI to BX--this is place in sentence 
where comparison will begin 

mov di ,bx 

;set SI to start of keyword 
mov si ,offset keyword 

;set CX to number of characters in keyword 
mov al ,key_real ;get count 
cbw ;change byte to word 
mov cx ,ax ; put in ex 

;compare keyword to this part of sentence 
repe cmpsb ;compare characters 

;repeat until ex= 0 
;or nonrnatch is found 

JZ match ;match found 

;no match found here . Advance BX to next 
character in sentence, check if done 

inc bx ; advance pointer 

268 Assembly Language Primer for the IBM PC & XT 



004B 4A 
004C 74 0B 
004E EB EB 

dee dx 
j z no_match 
j mp compare 

; done? 
;yes , no match 
;no, try again 

0050 
;print "match" message 
match: 

0050 BA 00C8 R 
0053 B4 09 
0055 CD 21 
0057 EB C3 

mov dx,offset mess4 ;addr in DX 
mov ah,print_m ;print string function 
int doscall ;call DOS 
jmp new_sent ;get another sentence 

;print "no match" message 
0059 no_match: 
0059 BA 00BC R 
005C B4 09 
005E CD 21 
0060 EB BA 

mov dx,offset mess3 ;addr in DX 
mov ah,print_m ;print string function 
int doscall ; call DOS 
jmp new_sent ;get another sentence 

0062 CB ret ;return to DOS 

0063 

0063 

main endp ;end of main part of program 
, 
prognarn ends ;end of code segment 
·********************************************* , 

end start ;end assembly 

The flow chart in Figure 8-5 shows the overall operation of the 
SEARCH program. 

One important thing to notice in the SEARCH program is that it uses 
the same segment for both the data segment and the extra segment. There's no 
reason why the program can't do this, as long as it tells the assembler 
what it's doing, using the ASSUME statements; and puts the proper 
segment address into the DS and ES registers, as shown in locations 0004 
through OOOC. 

The result is that the extra segment is the same segment as the data 
segment. This makes things a little easier when we're using string
handling instructions, since we don't have to remember in which segment 
a particular variable or buffer is: it's always in "datarea," whether it's in 
the data segment or the extra segment. 

The printing of messages and the reading of strings from the 
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keyboard should be familiar to you. We've used the Print String and 
Buffered Keyboard Input DOS functions before. Notice again how the 
word "offset" is used to specify the address of a message or buffer, rather 
than the data at that address. 

Once the keyword and the sentence are safely stored in their buffers, 
the program can proceed to the actual comparison. It uses the BX 
register to hold a pointer to the characters in the sentence buffer. The 
comparison starts on the first character. Let's assume that our keyword is 
three letters long. A comparison is then made between the keyword and 

Figure 8-5. Flow chart of the string search program 
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the first three letters of the sentence. This comparison is made as follows: 

1. The SI register points to the letters in the keyword. 

2. The DI register points to the letters in the sentence. 

3. The ex register holds the count of the number of letters in the 
keyword. 

Figure 8-6 shows how the registers are used as pointers. 
The eMPS instruction is repeated until either ex becomes zero, or 

until the comparison fails. If ex becomes zero before the comparison 
fails, we know we have a match, so we jump to the section of the program 
which prints out "Match!!!" If the comparison fails, we increment BX to 
point to the second letter in the sentence, and test letters 2, 3, and 4 
against the keyword. 

How does the program know when to stop? Suppose the sentence is 
10 letters long, and the keyword is 3. There's no point in testing closer to 
the end of the sentence than the 8th letter. For instance, don't try to 
match 9,10,11 against 1,2,3, because there is no 11th letter in the 
sentence. The number of letters in the sentence we want to check is thus: 

10 - 3 + I = 8. 

In general the number of letters we want to check is equal to the 
length of the sentence, less the length of the keyword, plus 1. The 
program calculates this number in locations 002B to 0037. One of the 
nice things about the Buffered Keyboard Input DOS function is that it 

BX i DI 

rN (o (w ( ( r/f-'~ rh G ( (t n (m 12: O Sentence 
I I 
I I 

I I I I 
I I I I 

~Keywo,d 

SI 

BX points to start of part of 
sentence being matched. 

DI and SI are incremented together 
by the CMPS instruction in the 
course of the 3-letter comparison. 

Figure 8-6. Use of pointers in the string search program 
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returns these lengths for us, in the "sen_real" and "key_real" locations 
immediately preceding the buffers, so we don't have to calculate them 
ourselves. 

Type in this program, assemble it, and try it out. It's kind of fun 
watching it work, and knowing that only two short instructions are 
involved in the actual comparison process. 

Summary 

In this chapter you've learned about memory segmentation and about 
EXE files. You were also introduced to the 8088's string-handling 
instructions, which gave you a chance to see one of the common 
applications of the segment registers, in particular the extra segment. 
We'll use the segment registers again very soon, in a slightly different 
way. 
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~ 
Inside the ROM 

Concepts 
The ROM BIOS 
The ROM BIOS listing 
Keyboard scan codes 
Keyboard shift status 
The monochrome screen 
Video character attributes 

8088 Instructions 
INT = Interrupt 
IRET = Interrupt return 

ROM BIOS Functions 
Keyboard 

Video 

Return ASCII and Scan Code 
Return Shift Status 

Clear Screen 
Scroll Active Page Up 
Set Cursor Position 

be question "What is ROM?" sounds like it might be asked in a 
Zen monastery about an obscure point of religious doctrine, but in our 
case it has a very specific answer. ROM is the Read Only Memory built 
into your IBM PC. The ROM contains a group of routines whose 
purpose is to operate the various peripherals connected to the computer, 
such as the video screen, keyboard, and disk drives. These routines are 
called collectively ROM BIOS, for "Basic Input/Output System." 

This part of ROM occupies the absolute memory addresses from 
FE000h up to the top of memory at FFFFFh, which is 2000h bytes, or 
8K of memory. Another, larger part of ROM is dedicated to the BASIC 
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interpreter. This starts at F6000 and goes up to the bottom of the ROM 
BIOS, which is 32K. We aren't going to be concerned with ROM BASIC, 
the unraveling of which would require another book in itself. In fact, 
IBM chose not to document the ROM BASIC, so there are no routines in 
it that we can use conveniently. (That doesn't mean there aren't all sorts 
of good routines in there if you wanted to disassemble the code with "U" 
and figure out what it does, but that's another story.) The location of the 
two kinds of ROM in relation to the entire I-megabyte address space of 
the IBM PC is shown in Figure 9-1. 

One thing to keep distinct is the difference between ROM BIOS and 
DOS. The ROM BIOS was installed in your computer by IBM, and is an 
integral part of the PC, like the case and the power cord. PC-DOS, on the 
other hand, is manufactured by Microsoft, Inc., and is not an integral 
part of the computer. In fact, it is even possible to run your PC with 
operating systems other than PC-DOS. Thus, although they have learned 
to work together very well, ROM BIOS and DOS are quite distinct and 

Actual 
available 
RAM in 
128K 
system 

F6000---.. 
FE000~ 

ROM BIOS 

00000 

10000 

20000 
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40000 

50000 

60000 

70000 

80000 

90000 

A0000 

B0000 
coooo 
D0000 

E0000 

F0000 

FFFFF 

BASIC ROM 

Entire 
1-megabyte 
address 
space 

Figure 9-1. ROM location in address space 
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were implemented by different companies with somewhat different 
philosophies. 

The ROM BIOS routines are - in a sense - on a lower level than 
the DOS functions (like "Display Output" and "Keyboard Input") that 
we've used in earlier chapters. That is, the ROM routines are closer to 
the hardware, and further away from our program. Generally, our 
program will call a DOS function, which will in turn call a ROM routine, 
which will then perform a specific 1/0 function such as printing a 
character on the screen. 

ROM versus DOS 
However, it sometimes happens that there is no DOS function that 

does what we want to do. In that case, our program can access the ROM 
routine directly, without going through DOS at all. There are advantages 
and disadvantages to this. 

Generally (as we'll see) ROM routines are more flexible and versatile 
than DOS functions in dealing with a specific piece of hardware. On the 
other hand, this versatility can make them somewhat less convenient to 
use. 

A more serious drawback to using ROM routines is that they can 
make your program less portable. What does that mean? Portability 
refers to the ability of a program to run on a variety of different 
machines. If you stick to using DOS functions, your program will 
probably work on any computer that can run a similar version of PC
DOS such as MS-DOS. However, if you use routines in the ROM BIOS, 
then your program must operate on a computer which has equivalent 
routines actually built into its own ROM. Building an IBM-equivalent 
ROM like this is a somewhat taller order for a manufacturer, so there are 
some so-called "IBM-compatible" PCs that will not run programs that 
make use of the ROM routines. 

For programs with the maximum degree of portability, therefore, 
stick to DOS functions. However, since there are many things you can't 
do with DOS, we will show you some features that are only available in 
ROM, and explain how to use them. Learning about ROM will also 
prepare you for the next chapter, on graphics. There are, as we will 
learn, graphics routines built into ROM which greatly simplify drawing 
pictures and doing a variety of other things on the screen. 

The ROM BIOS Listing 
The first thing you need to know about the ROM BIOS is where to 

learn more about it. IBM has included a complete listing of the entire 
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ROM BIOS in appendix A of the IBM Personal Computer Technical 
Reference manual. This is rather amazing: many manufacturers are prone 
to a paranoid secrecy about their ROM. The listing is so packed full of 
routines, comments, and clever ideas that several books could be written 
about it alone. You should glance through it to get an idea of what's 
involved. 

Interrupts and ROM Routines 
Before we plunge into our first ROM routine, you should understand 

how your program accesses the ROM BIOS. Actually, you have already 
made use of this process for two different functions: first, to call DOS 
with an INT 21 instruction; and second, to terminate a program with an 
INT 20. What happens when these INT instructions are executed? 

INT causes a software-generated interrupt to take place. (There are 
also hardware-generated interrupts, but we aren't going to discuss them 
in this book.) What's a software-generated interrupt? That's a somewhat 
complex story. 

The first 1024d bytes in your PC's memory are used to hold a series 
of 256d addresses. These addresses are called "interrupt vectors." The 
word "vector" in this context means that the address is used to hold 
another address: a pointer to another location elsewhere in memory. Each 
vector has four bytes: two for the offset address of a particular routine, 
and two for its segment address. Each of these vectors is assigned to an 
interrupt number, which for some reason is called an interrupt type. The 
256 interrupt types are numbered from Oto FFh. 

Some of these interrupt types are used by DOS, some are used by 
ROM BIOS, and some are even used by the BASIC interpreter. Interrupt 
type 21 h is used by DOS for function calls, as you already know. The 
types we'll be concerned with here are the ones used for ROM routines. 
These are numbered from 1 Oh to 17h. A complete list of interrupt types 
can be found in the section on ROM and System Usage in the IBM 
Personal Computer Technical Reference manual. 

The interrupt vectors are used by the INT instruction to transfer 
control to a particular routine. Here's how the process works. Suppose 
you execute an INT 16h. This is essentially the same as a FAR CALL to 
the address in the interrupt vector number 16h. How can we tell what 
this address is? Let's get into DEBUG and prowl around. First we'll dump 
the beginning of the interrupt vector table: 
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A>debug 
-d0:0 
0000:0000 43 31 DB 00 3F 01 70 00-C3 E2 00 F0 3F 01 70 00 
0000:0010 3F 01 70 00 54 FF 00 F0-00 00 00 00 00 00 00 00 
0000:0020 A5 FE 00 F0 87 E9 00 F0-00 00 00 00 00 00 00 00 
0000:0030 00 00 00 00 00 00 00 00-57 EF 00 F0 3F 01 70 00 
0000:0040 65 F0 00 F0 40 F8 00 F0-41 F8 00 F0 59 EC 00 F0 
0000:0050 39 E7 00 F0 59 F8 00 F0-2E ES 00 F0 02 EF 00 F0 
0000:0060 00 00 00 F6 F2 E6 00 F0-6E FE 00 F0 38 01 70 00 
0000:0070 53 FF 00 F0 A4 F0 00 F0-22 05 00 00 00 00 00 00 
-d 
0000:0080 FB 0B DB 00 80 01 34 05-42 02 00 06 70 02 00 06 
0000:0090 E2 04 34 05 04 14 DB 00-21 15 DB 00 E7 27 DB 00 
0000:00A0 07 0C DB 00 26 01 70 00-00 00 00 00 00 00 00 00 
0000:00B0 00 00 00 00 00 00 00 00-60 03 34 05 00 00 00 00 
0000:00C0 EA 08 0C DB 00 00 00 00-00 00 00 00 00 00 00 00 
0000:0000 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 
0000:00E0 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 
0000:00F0 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 

Cl [. ?.p.Cb .p?.p . 
? . p. T .. p ... . ... . 
%- . p. i . p ... . .. . . 
. .. . . ... Wo .p?. p. 
ep.pMx.pA.x .pYl.p 
9g.pYx.p.h.pRo .p 
... vrf . pn- . p8 . p. 
S .. p$p . p" ..... . . 

{. [ ... 4.B ... p .. . 
b. 4. T. [. ! . [. g ' [. 
"[.&.p .. """. 
.. . . .. . . m. 4 .. .. . 
j . . [ . . """ " .. 

There are four bytes per interrupt vector, so to find the address of a 
particular interrupt type, we multiply it by four. 16h is 22d, times 4 is 
88d, which is 58h. Here are the four bytes at that address: 

0000:0050 39 E7 00 F0 59 F8 00 F0-2E ES 00 F0 02 EF 00 F0 9g.pYx .p.h.pRo .p ---I 
Interrupt type l 6h Address F000:E82E 

As you know, 16-bit numbers are stored in memory with the least 
significant byte first. Similarly, the offset part of an address is stored 
before the segment address. So the address represented by the bytes 
shown above is F000:E82E. This is the same as absolute address FE82E, 
and that's the address of the keyboard routine in ROM, a fact we can 
verify by looking in the table of contents that precedes the ROM BIOS 
listing in the IBM Personal Computer Technical Reference manual. 

Something else to notice in the dump above is that not all the possible 
interrupt addresses are used: many simply contain zeros. 

The INT Instruction 

Executing an INT 16h instruction will take us to address F000:E82E, 
which is the Keyboard 1/0 routine in the ROM BIOS. What do we find 
there? Look up the appropriate page in your ROM BIOS listing. You will 
find a routine labeled "INT 16". The routine begins with a series of 
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comments which explain how this routine is to be used. If we enter the 
routine with AH= 0, the routine will return the next character typed on 
the keyboard in AL, and the scan code in AH. This sounds a good bit 
like the Keyboard Input DOS function, except for the new phrase "scan 
code." What does this mean? 

INT Instruction 
Calls an interrupt routine. 

Transfers control to the routine whose address is at n * 4, 
where n is the interrupt type number. 

Also sets up return by placing flag register, segment address, 
and offset address of instruction following the INT (that is, 
contents of CS and IP registers) on the stack. Clears the trap 
flag and interrupt flags. 

Return from routine must be via IRET instruction. 

Flags affected: IF, TF 

Scan Codes and the Keyboard 

The ordinary letters on the keyboard, like "a" and "b", generate an 
ASCII code. You've already made use of this operation when you used 
the Keyboard Input DOS function call. But what happens when you 
press keys that don't have an ASCII code, like the function keys and the 
( Caps Lock) or ( Num Lock) keys? In this case the DOS functions become 
somewhat awkward to use: you have to make the DOS call twice: the first 
time it returns a 00; the second time it returns a number which is 
(usually) something called the scan code (which we'll describe soon). The 
ROM routine we are about to describe, on the other hand, returns both 
the ASCII code (if one exists), and the scan code at the same time. 

Every key has a Scan Code (except the shift keys like (QJ, 
(QD, ( Caps Lock), and~), hut not every key has an 
ASCII code. 

Let's write a program that will use interrupt type 16h to call the 
Keyboard 1/0 ROM routine, and print out the numbers returned by the 
routine. Since the Scan Code is returned in AH and the ASCII code in 
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= 0002 
= 0021 

0000 

0000 

0000 
0002 
0004 
0006 
0009 
000B 
000D 
000F 
0011 
0013 
0015 
0017 
0019 
001B 
0010 
001F 

0021 

0023 

AL, we can see both these aspects of each key press simply by printing out 
the contents of AX. To do this we'll combine the BINIHEX routine we 
wrote earlier to print out the contents of a register in hex, with some very 
simple new code to call the ROM routine. We'll also print the actual 
character (if it exists in printable form). This requires a separate step -
a DOS function call - because the ROM routine does not automatically 
echo the key press to the screen. The program then types a carriage 
return and linefeed, so it will be ready for the next character on the next 
line. 

Keyboard Input/Output Program 

B4 00 
CD 16 
8B D8 
E8 0025 R 
B2 20 
B4 02 
CD 21 
8A D3 
B4 02 
CD 21 
B2 0D 
B4 02 
CD 21 
B2 0A 
B4 02 
CD 21 

EB DD 

CD 20 

;KEYBOARD I/0 TEST--Prints out 
;scan code and ASCII of any key 

display equ 
doscall equ 

2h 
21h 

;display character fnc 
;DOS interrupt routine 

'**************************************** *** ** , 

pro_nam segment ;define code segment 

marn proc far ;main part of program 

assume cs:pro_nam 

again: mov ah,0 ;read character funct 
int 16h ;keyboard I/0 ROM call 
mov bx,ax ; move AX to BX 
call binihex ;print scancode & char 
mov dl , 20h ;print space 
mov ah ,display 
int doscall 
mov dl ,bl ;print character 
mov ah,display; in ASCII 
int doscall 
mov dl ,0dh ;print return 
mov ah ,display 
int doscall 
mov dl ,0ah ;print linefeed 
mov ah,display 
int doscall 

jmp again ; get another one 

int 20h ;return from program to DOS 
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0025 

0025 

0025 
0027 
0029 
002B 
0020 
002F 
0031 
0033 
0035 

0037 
0037 
0039 
003B 
0030 
003F 
0041 

0042 

0042 

main endp ;end of main part of program 
---------------------------------------------' binihex proc near 

;SUBROUTINE TO CONVERT BINARY NUMBER IN BX 
TO HEX ON CONSOLE SCREEN 

B5 04 mov ch ,4 ;number of digits 
Bl 04 rotate: mov cl,4 ;set count to 4 bits 
03 C3 rol bx ,cl ; left digit to right 
SA C3 mov al ,bl ;move to DL 
24 0F and al ,0fh ;mask off left digit 
04 30 add al ,30h ;convert hex to ASCII 
3C 3A cmp al ,3ah ; is it > 9? 
7C 02 jl printit ; no, so 0 to 9 digit 
04 07 add al , 7h ; yes , so A to F digit 

printit: 
SA 00 mov dl,al ;put ASCII char in DL 
B4 02 mov ah ,display ;display output funct . 
CD 21 int doscall ;call DOS 
FE CD dee ch ; done 4 digits? 
75 E6 jnz rotate ; not yet 
C3 ret ; done subroutine 

binihex endp 
---------------------------------------------' pro_nam ends ;end of code segment 

'********************************************* ' 

end ;end assembly 

As you can see, the real meat of this program is in just four lines: 

mov ah ,0 
int 16h 

;read character function 
;keyboard I/O ROM call 
;move AX to BX mov bx,ax 

call binihex ;print scancode & char 

We set up for this interrupt by putting a function number in the AH 
register (0 in this case), just as we do for function calls. The scan code 
and ASCII codes are returned in AH and AL, so we print them out 
together with BINIHEX. 

What do the scan codes look like? Assemble the program as an EXE 
file and run it. Press some keys. Here's the result for some lowercase 
letters: 
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1E61 <----a 
3062 <----6 
2E63 <----C 
2064 <----d 
Lt...ASCII codes 

Scan codes 

3B00 
3C00 
3D00 
3E00 
3F00 
4000 
4100 
4200 
4300 
4400 

As you can see, the scan codes aren't related to the ASCII codes, or 
to each other, in any easily understood way. It seems that characters close 
together on the keyboard tend to have scan codes that are close together 
numerically. Here's what the function keys produce: 

<----Fl 
<----F2 
<----F3 
<----F4 
<----FS 
<----F6 
<----F7 
<----F8 
<----F9 
<----Fl0 

The keys on the numeric keypad also have scan codes. These codes 
will be different if the @, (QD, or (QJ keys are depressed at the same 
time. Try it! 

Now you know how to find out about all the keyboard keys. This is 
invaluable for writing games and for any program that uses the function 
keys or cursor control keys. A word-processing program is an obvious 
example of a serious program that would make use of the scan codes for 
this purpose. 

The IRET Instruction 

You won't need to use an IRET instruction in your program, unless 
you're writing your own interrupt routine. However, we'll show you what 
it looks like. IRET is simply the way the routine which is called with an 
INT instruction returns to the calling program. IRET reverses what INT 
did, POPping the appropriate addresses off the stack, and restoring them 
to the IP and CS register. It's very much like a FAR RET following a 
CALL to a FAR PROCedure. 
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IRET Instruction 
Returns from interrupt to calling program. 

POPs contents of IP register, CS register, and flag register off 
the stack, thus restoring control to instruction following INT 
in calling program. 

Flags affected: all (but previous values are restored) 

Interrupt 
vectors 

0000:0058 2E 
___ __,... 

0059 ES 
___ __,... 

005A 00 
I----_. 

005B F0 

Colling 
program 

0915:0002 INT I----_. 
0003 16 

INT 16 causes 
a FAR CALL 
to address 
contained in 
interrupt vector 
16h. 
Return address is 
pushed onto stock. 

ROM BIOS 
routine 

Stock 

04 

00 

15 

09 
Flogs 

IRET causes 
l,,::=:::=::=:::p1 return from 

F000:E82E 

E82F 

IRET 

Figure 9-2. Operation of the INT and IRET instructions 
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Figure 9-2 summarizes how control is transferred from the calling 
program to the interrupt routine in the ROM BIOS, and back again. 

Finding the Shift Status 
Even though you can read the scan codes, you still don't know 

everything about the keyboard. The (QJ, (fill,@, ( Num Lock), 

( Scroll Lock ), ~' and ( Caps Lock ) keys don't have scan codes. This is 
because they do not generate characters of their own: they only change 
the codes generated by other keys. So how can your program find out 
whether, for instance, the ( Num Lock) key is depressed, or whether it has 
been toggled to read numbers or cursor control keys from the numeric 
keypad? 

To answer this question we must delve further into the mysterious 
world of the ROM BIOS listing in appendix A of the IBM Personal 
Computer Technical Reference manual. You'll note in the comments at the 
start of the INT 16 section of the listing that there is a function which 
will return the current "shift status" if register AH contains 2. The bit 
settings for the shift status code can be found in the "equates" for a 
variable called "KB_FLAG". Equates are just EQU pseudo-ops used to 
define various parameters at the beginning of the program. The EQUs 
which follow after "shift flag equates within KB_FLAG" tell us that the 
bits of this flag are used as shown in the following figure: 

KB_FLAG 

r 7 1
2 

6 1
2 

5 1
2 

4 1
2 

3 r 2 1\ 1
2 

0 o 
I ~ight shift key depressed 

eft shift key depressed 

Control key depressed 

Alt key depressed 

Scroll lock state active 

Num lock state active 

Caps lock state active 

Insert state active 

Thus by using this function of the INT 16h keyboard 1/0 routine, we 
can read a byte which tells us all about the shift keys and the shift states 
on the keyboard. Here's a short program to do it. This program reads the 
KB_FLAG continuously, so that whenever a shift key is depressed, this 
fact shows up immediately on the screen. (Be careful, though - if a shift 
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= 0002 
= 0016 

= 0002 
= 0021 

= 000D 

0000 

0000 

0000 
0002 
0004 
0006 
0009 
'300B 
J00D 
000F 

0011 

0011 

0011 
0013 
0015 
0017 
0019 
001B 
0010 
001F 
0021 
0023 
0023 

key stays depressed for too long, you may have to cheer it up with a few 
kind words or a bouquet of roses.) 

;SHIFT STATUS TEST PROGRAM--
Displays shift status continuously 

slLstat equ 2h ;shift status function 
key_rom equ 16h ;keyboard ROM call 

display equ 2h ;DOS display routine 
doscall equ 21h ;DOS interrupt number 

return equ 0dh ;carriage return 

. ********************************************* ' prognam segment ;define code segment 

marn proc far ;main part of program 

assume cs:prognam 

B4 02 again: mov ah,slLstat ;sh status function 
CD 16 int key_rom ;call kbd ROM routine 
8B D8 mov bx,ax ;put result in BX 
E8 0011 R call binihex ;print out result 
B2 0D mov dl,return ;print carriage return 
B4 02 mov ah,display 
CD 21 int doscall 
EB EF jmp again ;repeat 

main endp ;end of main part of program 
---------------------------------------------' binihex proc near 

;SUBROUTINE TO CONVERT BINARY NUMBER IN BX 
TO HEX ON CONSOLE SCREEN 

B5 04 mov ch,4 ;number of digits 
Bl 04 rotate: mov cl,4 ;set count to 4 bits 
D3 C3 rol bx,cl ;left digit to right 
8A C3 mov al,bl ;move to DL 
24 0F and al,0fh ;mask off left digit 
04 30 add al, 30h ;convert hex to ASCII 
3C 3A cmp al,3ah ;is it> 9? 
7C 02 jl printit ;no, so 0 to 9 digit 
04 07 add al,7h ;yes, so A to F digit 

printit: 
8A D0 mov dl,al ;put ASCII char in DL 
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0025 
0027 
0029 
002B 
002D 

002E 

002E 

B4 02 mov ah,display ;display output funct. 
CD 21 int doscall ;call DOS 
FE CD dee ch ;done 4 digits? 
75 E6 jnz rotate ;not yet 
C3 ret ;done subroutine 

binihex endp 

prognam ends ;end of code segment 
. ********************************************* ' 

end ;end assembly 

Type in the program and give it a try. You'll learn everything you ever 
wanted to know about the keyboard shift status. 

This has been a brief introduction to the keyboard ROM routines. In 
the next section we'll explore another part of ROM: the routines used to 
send information to the video screen. 

Video ROM Routines 
The video ROM routines are considerably more complicated and 

extensive than the keyboard routines. In addition to manipulating the 
monochrome screen, they can also be used for plotting points on the 
color screen. We'll be covering their use with color graphics in the next 
chapter. For the moment, let's learn some useful ROM routines on the 
monochrome display. 

IBM's ROM BIOS listing (appendix A of the IBM Personal Computer 
Technical Reference manual) has many pages of comments describing how 
to use the Display (VIDEO) 1/0 interrupt routine. A tip of the hat to 
IBM for providing this information. 

One of the things it's nice to be able to do from your assembly 
language program is to clear the screen. In BASIC and DOS 2.00 you do 
this by executing a CLS instruction, but there is no such instruction in 
8088 code. However, a ROM routine makes it fairly easy. 

Check the ROM BIOS listing for a description of the function called 
Scroll Active Page Up. This routine is invoked by using an INT 1 Oh 
instruction with the AH register holding a 6. We'll see how to use this 
routine more completely in a minute; for the moment we're only 
interested in how to use it to clear the screen. The comments tell us that 
AL= 0 will "blank the entire window." What does this mean? 

The "window" is simply a section of the screen, described as being so 
many rows high and so many columns wide. The upper left-hand corner 
of the screen is the starting place for these measurements, since it's here 
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that both the column and row numbers are zero. The row numbers run 
down the screen from O to 24, and the column numbers run across the 
screen from O to 79 (since it's a 25 by 80 screen). Figure 9-3 shows how 
this looks. 

The Scroll Up function needs coordinates for two corners of a 
rectangular window: the upper left-hand corner, and the lower right
hand corner. These coordinates must be placed in the following registers: 

CH <----- Upper left row 
CL <----- Upper left column 
DH <----- Lower right row 
DL <----- Lower right column 

Using this routine to clear the screen consists of putting these values 
into the registers for that portion of the screen, or "window," that we 

Row0 
Column 0 

Row0 
Column 79 

Row 
numbers 

1\01234 
O ■ I 
l I 
2 I 

3 
4 -

j~ 

,w 

..__ 

21 ----
22 

..__ 
:~ I 23 --

24 I 

' 

Row 24 
Column 0 

Column numbers 

~ 
Row 12 
Column 40 

' 
' Full viewing area: 

25 rows x 80 columns 

Video screen 

Figure 9-3. Character positions on the monochrome screen 
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want to clear. AH must hold a 6 to designate the Scroll Up function, and 
AL must be 0, to tell the function that we want to clear the screen. For 
example, if we want to clear the entire screen, the following code fragment 
will do the trick: 

;clear screen, using scroll up function 

mov 
mov 
mov 
mov 
mov 
mov 
mov 
int 

ah ,6 ;scroll up function 
al ,0 ;code to blank screen 
ch,0 ;upper left row 
cl , 0 ;upper left column 
dh , 24 ; lower right row 
dl, 79 ; lower right column 
bh , 7 ;blank line attribute 
10h ; video ROM call 

Attributes 
One point which we didn't mention, but which you can see in the 

above listing, is that the BH register must be set to a particular attribute 
number. What does this mean? 

Each of the 2000d (25 times 80) character positions on the 
monochrome display is actually represented by two bytes. The first of these 
bytes is simply the ASCII code for the character at that position. The 
second byte is something called an attribute byte. This attribute byte 
determines whether a character is blinking or not, whether it is intensified 
or not, and whether it is in "reverse video" (black on white) or not. 

Every character on the monochrome screen has its own 
attribute: blinking or not, intensified or not, normal or 
reverse video. 

A single byte is used to hold the attribute number for each character. 
We can give a particular character an attribute by using the Scroll Up 
function. When we clear the screen with this function, all we have to do is 
change the value in BH when we call the function. In the code above, 
since the entire screen is cleared, all the characters on the screen will be 
given the particular attribute. 

The individual bits in the attribute byte are arranged as shown below: 
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Blink 

I 
Background 
000 = black 
111 = white 

Intensity 

2 0 

I 
Foreground 
000 = black 
111 = white 

0 = normal 
1 = blinking 0 = normal 

1 = intensified 

How do you use this information? Suppose you want want to write 
characters on the screen in reverse video; that is, black figures on white, 
instead of the normal white on black. The "normal" attribute is 07h, 
which in binary is 00000111. As you can see in the figure above, that 
means the foreground will be white, the background will be black, and 
the blink and intensity bits will be normal. To change to reverse video we 
would use an attribute of 70h, which makes the foreground black and the 
background white. 

If we wanted white on black, but blinking, we'd use 87h (10000111 
binary). The attributes can be combined in any combination. So for 
instance, we could have reverse intensified blinking by using Flh 
( 11110001 binary). 

In the next section we'll show you how to change the attributes so you 
can see these effects in action, but in the program we're putting together 
now we want normal video characters, so the number we put into the BH 
register is 7. The "clear screen" code fragment shown above will cause 
the entire screen to be cleared. We aren't going to make this into an 
executable program; instead, we're going to combine it with some other 
routines into a larger program in the next section. 

Windows 
The ROM routines in the IBM PC give you the ability to do 

something in assembly language that few other personal computers can: 
divide the screen into different areas called "windows," which can be used 
independently of each other. This feature is used by many advanced 
programs, especially the new breed of "integrated" software. These 
programs combine the abilities of two or more traditional programs, such 
as word processors, databases, and spreadsheets, into a single program. 

How would such a program use windows? Suppose you were writing 
a letter on the word-processor part of the program, and you wanted to 
include a list of sales figures which were obtainable in the database 
program. You could keep the letter in one window on one side of the 
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screen, and look through the database in a separate window on the other 
side of the screen for the figures you wanted. When you found them, you 
could insert them into your letter, a process greatly facilitated by being 
able to see both your letter and the data at the same time. 

It's beyond the scope of this book to present such a program. What 
we will do is show you how to get a single window to work on your screen. 
When you need several windows, you can then use one in each routine. 
As many windows as you want can coexist on the screen at the same time 
(providing they all fit, of course). 

The following program creates a window 20 columns across and 9 
rows high in the middle of your screen. It then waits for you to type 
something. Whatever you type will be displayed in this window. The 
characters will be entered on the bottom line of the window, and when 
each 20-character line is full it will scroll upward. Lines at the top of the 
9-line high window will scroll into oblivion, never to be seen again, just as 
lines do at the top of the normal display screen. Figure 9-4 shows what 
the window looks like. 

8 

Column numbers 
30---~-so 

Rowoombml ' 

Video screen Normal 25x80 
full screen 

Figure 9-4. Small window in center of screen 

9x20 window 
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0000 

0000 
0002 
0004 
0006 
0008 
000A 
000C 
000E 

0010 

0010 
0012 
0014 
0016 
0018 

001A 

0010 
0010 
001F 
0021 
0023 
0025 

0027 
0029 
002B 

Here's the listing for the complete WINDOW program: 

;WINDOW--Demonstrates video window function 
Uses ROM routines 

B4 06 
B0 00 
B5 00 
Bl 00 
B6 18 
B2 4F 
B7 02 
CD 10 

B4 02 
B6 10 
B2 lE 
B7 00 
CD 10 

B9 0014 

B4 01 
CD 21 
3C 03 
74 14 
E2 F6 

B4 06 
B0 01 
B5 08 

;keyboard writes into a window 20 chars wide 
and 9 chars high in middle of screen 

'********************************************* ' 
prognam segment ;define code segment 

assume cs :prognam 

;clear screen, using scroll up function 

mov ah, 6 
mov al , 0 
mov ch,0 
mov cl , 0 
mov dh, 24 
mov dl , 79 
mov bh, 7 
int 10h 

;scroll up function 
;code to blank screen 
;upper left row 
;upper left column 
; lower right row 
; lower right column 
;blank line attribute 
; video ROM call 

;position cursor at bottom of window 
pos_curse: 

mov ah, 2 ;position cursor funct 
mov dh,16 ;starting row 
mov dl , 30 ;starting column 
mov bh,0 ;current page 
int 10h ; video ROM call 

;get characters from keyboard 

mov cx, 20d 

geLchar: 
mov ah, 1 
int 21h 
cmp al ,3 
j z exit 
loop geLchar 

; scroll up 
mov ah ,6 
mov al , 1 
mov ch ,8 

;set count to 20 

;kbd input function 
; call DOS 
;if char is ctrl-C 

then exit 

;scroll up function 
; number of lines 
;upper left row 
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002D 
002F 
0031 
0033 
0035 

0037 

0039 

003B 

Bl lE mov cl, 30 ;upper left column 
B6 10 mov dh,16 ;lower right row 
B2 32 mov dl,50 ;lower right column 
B7 02 mov bh,7 ;normal attribute 
CD 10 int 10h ; video ROM call 

EB D7 jmp pos_curse ;go reset cursor 

CD 20 exit: int 20h 

prognam ends ; end of code segment 
. ********************************************* ' 

end ;end assembly 

As you can see, this program makes use of several different video 
ROM routines: Clear Screen, Position Cursor, and Scroll Up. The first 
thing we do is to clear the entire screen. If you had several windows 
operating on your screen at once, you would want to able to clear them 
separately. This would be easily accomplished by changing the row and 
column values in the Clear Screen function. 

Next we want to position the cursor at the lower left-hand corner of 
the window, so that when we start to type, the letters will go in the right 
place. This is done with another video ROM function, Position Cursor, 
which is activated with an INT 10h and AH= 2, as shown in the 
following code fragment: 

;position cursor at bottom of window 
mov ah,2 ;position cursor funct 
mov dh,16 ;starting row 
mov dl,30 ;starting column 
mov bh,0 ;current page 
int 10h ;video ROM call 

As you can see, all we have to do to activate this function is specify 
the row and column where we want the cursor to go, and the "current 
page." What does "page" mean? It turns out that it's possible to have 
different screens full of information sitting in memory at the same time, 
so you can switch back and forth from one to another. This makes it 
possible to to fill the screen almost instantly with an entirely different 
picture. We aren't going to explore this feature of the IBM PC in this 
book, so we simply set BH to 0, which means the current or "normal" 
page. 

Now that the cursor is properly positioned, we use the old familiar 
DOS function Keyboard Input to get the characters from the keyboard and 
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put them on the screen. However, we don't want to exceed the 20-
character width of the window, so we use a LOOP instruction to count 
20d characters. 

At the end of the line we activate the Scroll Up function. This is the 
same as Clear Screen, except that AL= l, the number of lines to scroll 
up, rather than 0. Also, we put in the coordinates of our window, rather 
than the coordinates of the full screen. When we execute this function, 
all the lines in the window scroll up, and a new line appears at the 
bottom of the window with the attribute specified in BH. Again, we use 
the normal attribute 07h here. 

Type in this program, assemble it, and try it out. It's kind of fun to 
see the screen reduced to mini-size, and to imagine all the wonderful 
things you can do with multiple windows. 

Changing the Attribute 

We promised you earlier that we'd show you how to change the 
attribute. Call up the WINDOW program shown above with DEBUG: 

~debug window.exe 

Now what we want to do is modify the attribute byte in the Scroll Up 
function. The instruction that does that is on line 0033, and the attribute 
byte is the second byte in this instruction, at 0034, so that's what we'll 
change. Here's what that line looks like: 

0033 87 07 
I 

rnov bh, 7 ;normal attribute 

Byte to be changed. 

Let's make it reverse video, which is an attribute of 70h. Since this is 
an EXE file, the data segment and code segment have different segment 
addresses, so we need to type the segment address as well as the offset 
address when we use the "E" command to change the byte: 

-e915: 34 -------Type the segment and offset addrress 
0915: 0034 07. 70 Type 70, the attribute for reverse video 

I 
Segment address (may be different on your system) 
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To make sure you're at the beginning of the program before you run 
it, set IP back to 0000: 

-rip - Make sure IP is 0 
IP 0000 
:0 
-g - Run the program again 

When you start to type into the window everything will seem normal for 
the first line. But when the second line scrolls into view, it will be in 
reverse video. To really make this program look good you would want to 
make the first line reverse video as well. To do this you would write 
another section of the program to clear only the bottom line, setting BH 
to the reverse video attribute 70h. 

Try it. After the first line has scrolled off the top of the window, you 
have an entire little rectangle of text in reverse video! If you had several 
different windows, you could give them all different attributes: one 
blinking, one reverse video, and so on. The possibilities are endless. 

Summary 

In this chapter you've learned how to use some of the routines built 
into your PC's Read Only Memory. There are other routines which we 
haven't covered; you can discover some of these for yourself by reading 
the ROM BIOS listing in your IBM Personal Computer Technical Reference 
manual. There are also a number of graphics-oriented video routines; 
we're going to investigate these in the next chapter. 
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[m] 
Monochrome 
and Color Graphics 

Concepts 
Memory-mapped graphics 
Plotting a dot - Monochrome 
Changing graphics modes 
Plotting a dot - Color 
Drawing a line - Color 

8088 Instructions 
TEST = Test bits 
LABEL = Defines variable type {pseudo-op) 
SEGMENT AT = Specifies absolute segment address 
(pseudo-op) 

ROM BIOS Functions 
Set Graphics Mode 
Write Dot 

Applications 
Drawing pictures - Monochrome 
Drawing pictures - Color 
Line-drawing routine 

Writing graphics programs is one of the most exciting and 
rewarding fields in programming. The finished product is something 
everyone can relate to. While writing an extra-fast sort routine may elicit 
yawns from all but the knowledgeable few, a dazzling graphics program 
will win oohs and ahs even from children and grannies. Also, program 
development is simplified in graphics work because mistakes are so easy 
to find: The image on the screen looks wrong, and the way in which it 



looks wrong points the way to the error in the program. 
Graphics is a field in which assembly language shows itself to full 

advantage. Because an image on a video screen consists of thousands, or 
tens of thousands of elements, manipulating these images requires a 
great many programming instructions. The speed advantage that 
assembly language has over higher-level languages is critical here: Most 
advanced graphics techniques, such as animation, are possible only in 
assembly language. 

In this chapter we're going to introduce you to how this fascinating 
visual world works in the IBM PC. We'll start off with a description of the 
monochrome screen. Although the graphics possibilities are limited here, 
it serves as an introduction to the more complicated color graphics 
modes, which will be covered next. 

Graphics Modes in the IBM PC 
In this section we're going to briefly describe the differences between 

the two main graphics modes on the IBM PC: monochrome and color. 

Monochrome Display 
So far we have assumed that you were using the monochrome 

monitor that comes with the IBM PC. It's a high-quality black and green 
monitor which is excellent for displaying text. However, it is less useful for 
displaying graphics - pictures - on the screen. The reason is that there 
are only 2000d separately-addressable positions on this monitor: 80 
columns across by 25 rows down. Each of these 2000d locations is called 
a "pixel" in the graphics business. (IBM calls pixels "pels" for "picture 
elements.") This number of pixels provides very poor resolution for 
drawing pictures. 

The effective resolution can be improved in certain situations by 
using the graphics characters which are built into the PC. Thus, if you 
want to draw a box, there are characters that will print on the screen as 
lines and corners; so that by combining them cleverly you can achieve a 
box with much finer lines than you could by simply turning on some of 
the 2000 pixels in a box-like pattern. (For a detailed discussion of 
character graphics on the monochrome screen, see BASIC Primer for the 
IBM PC and XT, by Bernd Enders and Bob Petersen [New York: 
Plume/Waite, New American Library, 1984].) Figure 10-1 shows the 
difference between using special characters to draw a box, and simply 
turning "on" some of the pixels to do the same job. 

However, drawing boxes is a special case: in general there's no point 
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in trying to draw sophisticated pictures on the monochrome screen. 

Color Display 
Fortunately IBM has provided for a different kind of video display: 

the "color board," an option which permits you to use a color monitor or 
standard color TV set with your PC. The color board is a printed circuit 
board (a "card") that plugs into one of the card slots in your machine. It 
contains the circuitry that lets the computer communicate with a TV set 
or monitor. To use a TV set you will need not only the color card, but an 
RF (radio frequency) modulator to turn the signals from the color card 
into a form similar to TV broadcast signals that is digestible by your TV 
set. If you have an RGB (red, green, blue) color monitor you won't need 
this modulator. Also, you'll get better color and finer resolution than a 
TV set can deliver. 

There are actually two different ways to use this color capability. 
Depending on which mode you prefer, you can either have a picture with 
320 pixels horizontally and 200 vertically, where each pixel can be any of 
four colors; or you can have a picture with 640 pixels horizontally and 
200 vertically, but in black and white. Either of these options can be 
selected by software (assuming the color card is installed). We'll show you 
how to do this later in the chapter. 

Crude box drawn 
by turning on 
pixels 

■ =One pixel 

Nicer box drawn 
using graphics 
characters 
r--, 
~ 
L __ .J 

[l[J 
r--, Uc 

Graphics 
characters 

Figure l 0-1. Boxes drawn with special characters on monochrome screen 
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Memory-Mapped Graphics 

The IBM PC uses memory-mapped graphics. What does this mean? 
One of the questions the designers of a computer system have to answer 
is this: How will the information which is to be displayed be transmitted 
from the computer to the screen? 

One solution is simply to send one character at a time to the screen, 
like a stream of parts on a conveyer belt. That's the effect we get when we 
use the Display Output DOS function: We send a character, it gets 
displayed on the screen at the current cursor position, and that's it. With 
this system we don't worry where the character goes on the screen: we 
assume it will simply be displayed following the last one we sent. This 
system has been in use in many operating systems, such as CP/M, for a 
long time. It works quite well if what you want to put on the screen is 
confined to ASCII characters or simple graphics characters. 

In memory-mapped graphics there is one location in 
memory corresponding to each pixel on the screen. 

However, if you want to draw real pictures on the screen, you need a 
more sophisticated method. The IBM PC uses memory-mapped 
graphics. This means that for every pixel on the video screen, there is a 
corresponding location in memory which tells the video circuitry what to 
put on the screen in that location. Figure 10-2 shows what we mean by 
this. 

Memory Mapping in the Monochrome Display 
What does memory mapping mean in the case of the monochrome 

display? Imagine that you type the name "Euclid" on the keyboard, so 
that these letters appear on the screen. There they are in green, right 
before your eyes. Now, in your computer's memory there is a fixed 
address corresponding to the location on the screen of each of the letters 
E,u,c,l,i,d. If you knew where to look, you would, in fact, see the ASCII 
code for the letters. Want to try it? 

Hop into DEBUG, and when you get the prompt simply enter the 
name "Euclid". You'll get an error, because of course DEBUG is not 
familiar with the famous founder of geometry. 
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A>debug 
-Euclid 

' Error 

Next you want to arrange things so the name "Euclid" is on the second 
line from the top of your screen (you'll see why in a minute). So just keep 
pressing g until it gets up there: 

-Euclid 
' Error 

<--- One dash (DEBUG prompt) 
<--- The name is one line from the top of the screen 

<--- Dashes from pressing g 

Now for the payoff. We're going to use the "D" command to dump 
the part of memory that contains the characters in the name "Euclid". So 
we type "d" followed by the segment address of the monochrome video 
memory - which is B000h - then a colon, then the offset address -
which is 0000 for the character in the upper left-hand corner of the 

Each pixel corresponds 
to a location 
in memory. 

Video screen 

Figure 10-2. Memory-mapped graphics 
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screen. Then a space, and finally an "f" so only one line will be printed 
out: 

-d b000:0 f 
B000:0000 2D 07 45 07 75 07 63 07-6C 07 69 07 64 07 20 07 -.E.u.c . l.i .d. 

I I I I I I I 
"-" "E" "u" "c" "I" "i" "d" 

Well, would you look at that! There are those well-known letters, 
sitting in your computer's memory. Try the same procedure with another 
name: Plato, for instance. The name will appear in the same memory 
locations. 

This should give you an idea what we mean by memory-mapped 
video. For every location on the screen, there is a corresponding location 
in memory. If you see a character on the screen, then you know you can 
look in memory and find the ASCII code that generated that character. 

Attributes 
Have you noticed something strange about the printout above? The 

ASCII characters that spell out "Euclid" occupy every other byte in 
memory, not every byte as you might expect. The odd-numbered bytes 
are all filled with 07h. Why is this? 

In the last chapter we described the "attribute," a mysterious number 
which could cause a character on the screen to appear in reverse video, 
blinking, or intensified. As you recall, the attribute number 07h gave a 
"normal" character (green on black, non-blinking, etc.). Is it merely 
coincidence that the number 07h crops up in these two places? 

The fact is that every character on the monochrome video screen is 
represented by two locations in memory. The even location holds the 
ASCII code for the character, and the odd location holds the attribute. 
Thus location B000:0000 contains the first ASCII character, and 
B000:0001 contains the attribute of the character, and so on. Now you 
know how it is that every character can have a different attribute. 

Drawing on the Screen with DEBUG 
If we can find out what's on the screen by examining memory with 

DEBUG, can we also change what's on the screen by inserting things in 
memory? Why not? 

Get into DEBUG. We're going to make things a little easier on 
ourselves by changing the segment address in the DS register so that we 
don't have to keep typing in 8-digit addresses. The "D" and "E" 
commands in DEBUG always operate in reference to the DS register, so 
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by changing the address in this register we can change the segment these 
commands take as their "default" value. We set DS to B000h, which is 
the segment address of the monochrome video display in memory. 

A>debug 
-rds 
OS 08Fl 
:b000 

- DS register 
-Old va lue 
- Enter segment address of monochrome display 

Now hit the ~ key enough times to scroll this off the top of the 
screen, so you're left with nothing but the DEBUG dash prompt "-" at 
the top of the screen. Then use the "E" command to insert some 
numbers into memory, as shown below: 

-e0 - (Note : you don't need to type a segment address) 
B000:0000 20 .41 07.f0 3E.42 07 . 87 20.43 07 .f 20 . 

ABC 

I I I I I I 
"A" Scan "B" Scan "C" Scan Don't 

code code code type 
for for for ENTER 
reversed, blinking intensified yet! 
blinking 

When you first type the "41" the letter "A" will appear in the upper 
left-hand corner of the screen. When you add the "fO" the "A" will 
immediately turn into reverse video and start flashing. The other letters 
and attributes will appear one by one as you type them in, as shown here: 

11 L Intensified 

LBlinking 
Reverse video and blinking 

How Big Is the Monochrome Memory? 

The monochrome video memory contains 2000d character positions, 
each of which needs two bytes, for a total of 4000d bytes, or from 0 to 
F9Fh. Figure 10-3 shows how this section of memory is related to the 
characters on the screen. 

You can check to see if this is true by using the "F" command to "fill" 
the memory with a constant and noting the effect on the screen. There is 
a small glitch with using "F" in this context. Since it fills every location, 
whatever we put into the even (ASCII) locations will also go into the odd 
(attribute) locations. But let's give it a try anyway. Type: 
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-f0 fgf 7 

The screen will instantly be filled with little diamonds. This is the 
character the IBM PC puts on the screen when it sees a 07h. 07h is also 
the "normal" attribute, so the diamonds are green on black, non
blinking, and non-intensified. Try this: 

-f0 f9f 70 

Now we get the screen filled with lowercase "p"s, in reverse video, 
since 70h is the ASCII for "p" and also the reverse video attribute. 

The FILLS Program 
Now you know how to fill the video memory with a constant using 

B000:0000 

0001 

0002 

0003 

0004 

0005 

ASCII ,,, 
Attribute ,,, 

ASCII 

Attribute ,,, 

ASCII ,,, 

Attribute ,,, 

,-- - -
,---

r--

--!-' 

' ,i Columns from 0 to 79 
I I I I 
I I I 
I I • 

I I 

Rows 
Video screen from 

0 to 24 

I 

I I I I 

0F9C 

0F9D 

0F9E 

0F9F 

v 
ASCII 

"' 
Attribute v 

ASCII 
,,, ' 

Attribute ,,, . 

Figure 10-3. Monochrome memory and the video screen 
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0000 

DEBUG. What would an assembly-language program that did the same 
thing look like? 

;FILLS--Fills monochrome video memory 
with happy faces 

. ********************************************* ' ;define video memory as a segment 

video segment at 0b000h 
0000 0800 [ db 800h dup (?) 

?? 

0800 

0000 

0000 

0000 lE 
0001 2B C0 
0003 50 

0004 BS ---- R 
0007 SE 08 

0009 BS 0701 
000C BB 0000 
000F B9 0F9F 

0012 89 07 
0014 43 
0015 43 
0016 E2 FA 

0018 CB 

video ends 

. ********************************************* ' coder segment ;define code segment 

' fills proc far ;main procedure 

assume cs:coder ;tell ASM where we are 
assume ds :video ;and where video is 

;set up stack for return 
push ds 
sub ax, ax 
push ax 

;save old OS contents 
;make a zero 
;save on stack 

;put the video memory segment in OS 
mov ax,video 
mov ds, ax 

;set up to insert happy face , normal attribute 
mov ax,0701h ;happy face 
mov bx,0 ;start of buffer 
mov cx,0f9fh ;count 

;fill the screen with happy faces 
again: mov [bx],ax ; insert char 

inc bx ;incr pointer 
inc bx two bytes 
loop again ;again 

ret ;return to DOS 

302 Assembly Language Primer for the IBM PC & XT 



0019 

0019 

fills endp ;end of procedure 
' ---------------------------------------------
coder ends ;end of code segment 
;******************************************* ** 

end ;end of assembly 

Assemble and link FILLS into an EXE file. This program first 
changes the data segment to be the video memory at segment address 
B000h,just as we did above in DEBUG. Then it uses a loop, as we've 
seen in earlier programs, to fill memory up with happy faces. 

Some things to notice about FILLS: 

1. It uses a full word (not a byte) for the fill so it can insert both the 
ASCII character and the attribute at the same time. Then it 
increments the pointer (BX) twice. 

2. It can't use an INT 20h to return from the program because the 
program itself alters the OS register. It must therefore save OS at the 
beginning of the program, and return with a RET. 

Otherwise this program is fairly straightforward. How about something a 
little more ambitious? 

The DRAW-I Program 
The program we're about to describe will permit you to draw pictures 

on the screen. It will also give you a good idea of the limitations of 
graphics in the monochrome mode. You'll see the kind of crude pictures 
that result when the lines are a whole character wide and high. On the 
other hand, the patterns you can create with this program have a certain 
modern-looking angularity to them. You might use this program to 
generate designs for company logos or high-tech wallpaper. 

Type in the program, and assemble and link it into an EXE file. 
When you execute it, nothing will happen until you press one of the 
cursor control keys (which are on the numeric keypad). Then the 
"cursor" (actually the square graphics characters) will materialize and 
begin to move around the screen, leaving a trail of clones of itself 
wherever it goes. The result is a series of thick lines, with right angle 
turns. To exit from the program, type (fill C. 

Type in the program, and assemble and link it into an EXE file. 

= 0000 
= 0016 

;DRAW-1--Program to draw on screen with 
cursor arrows. Uses ROM routines 

reacL_c equ 0h ;read character code 
key_rom equ 16h ;ROM keyboard routine 
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= 0048 
= 0050 
= 004D 
= 004B 
= 00DB 
= 0003 

0000 
0000 
0000 0FA0 [ 

?? 

0FA0 

0000 

0000 

0000 

0000 lE 
0001 2B C0 
0003 50 

0004 B8 ---- R 
0007 8E C0 

0009 B9 07D0 
000C BB 0000 
000F 26 : C7 87 0000 R 0700 
0016 43 
0017 43 
0018 E2 F5 

001A B5 0C 
001C Bl 28 

001E 
001E B4 00 
0020 CD 16 
0022 3C 03 
0024 74 2F 

up equ 48h ;scan code for up arrow 
down equ 50h ;scan code for down arrow 
right equ 4dh ;scan code for right arrow 
left equ 4bh ;scan code for left arrow 
block equ 0dbh ;solid graphics character 
ctrl_C equ 3h ;control-C (break) char 
·********************************************* ' video segment at 0b000h ;define extra seg 
wcLbuff label word 
v_buff db 25 * 80 * 2 dup (?) 

video ends 
. ********************************************* ' pro_nam segment ;define code segment 

main proc far ;main part of program 
assume cs:pro_nam 
assume es:video 

start: ; starting execution address 
;set up stack for return 

push ds ;save DS 
sub ax,ax ;set AX to zero 
push ax ;put it on stack 

;set ES to extra segment 
mov ax,video 
mov es, ax 

;clear screen by writing zeros to it 
even bytes get 0 (character) 
odd bytes get 7 (normal "attribute") 

mov ex, 80 * 25 ;count 
mov bx,0 ;start of buff 

clear: mov [wcLbuff + bx], 0700h 
inc bx ;incr pointer 
inc bx twice 
loop clear ;do again 

;screen pointer will be in CX register 
row number (0 to 24d) in CH 

; column number (0 to 79d) in CL 
;set screen pointer to center of screen 

mov ch ,12d ;# rows divided by 2 
mov cl,40d ;# columns div by 2 

;get character from keyboard , using ROM BIOS 
routine 

geLchar: 
mov 
int 
cmp 
JZ 

ah , reacLc 
key_rom 
al, ctr LC 
exit 

;code for read char 
;keyboard I/O ROM call 
;is it control-C? 
; yes 
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0026 
0028 
002A 
002C 
002E 
002E 
0030 
0032 
0034 
0034 
0036 
0038 
003A 
003A 
003C 
003E 
0040 
0040 
0042 

0044 
0046 
0048 
004A 

004C 
004E 
0053 
0055 
0056 

0056 

8A C4 mov al,ah ;put scan code in AL 
3C 48 cmp al,up ; is it UP arrow? 
75 02 jnz noLup ; no 
FE CD dee ch ;yes, decrement row 

noLup: 
3C 50 cmp al,down ;is it DOWN arrow? 
75 02 jnz noLdown ; no 
FE C5 inc ch ; yes, increment row 

noLdown: 
3C 40 cmp al ,right ;is it RIGHT arrow? 
75 02 jnz noL.right ; no 
FE Cl rnc cl ; yes , increment column 

noLright: 
3C 4B cmp al,left ;is it LEFT arrow? 
75 02 jnz lite_i t ; no 
FE C9 dee cl ;yes, decrement column 

li te_i t: 
B0 A0 mov al,160d ;bytes per row into AL 
F6 E5 mul ch ;times# of rows 

result in AX 
8A 09 mov bl, cl ;# of columns in BL 
00 C3 rol bl,1 ;times 2 to get bytes 
B7 00 mov bh,0 ;clear top part of BX 
03 08 add bx,ax ; add AX to it 

' gives address offset 
;address offset in BX. Put block char there 

B0 DB mov al ,block 
26: 88 87 0000 R mov [v_buff + bx] , al 
EB C9 jmp geLchar ;go get next arrow 
CB exit : ret ;return to DOS 

marn endp ;end of main part of program 
---------------------------------------------

pro_nam ends ;end of code segment 
. ********************************************* ' end start ;end assembly 

This program uses the keyboard ROM call we described in the last 
section to figure out which of the cursor control keys are being pressed. 
Notice that it doesn't matter how the ( Num Lock) key is toggled; the scan 
codes are the same whether these keys are in "Edit Mode" or "Numeric 
Mode," so our program doesn't need to worry about that. 

For a change, the program uses the Extra Segment instead of the 
Data Segment to reference the video memory. Why? Well, sometime you 
might want to modify this program, and use some data in it (maybe to 
print a message). To do this, it would be more convenient to put the data 
in the data segment and save the video memory for the extra segment, so 
that's what we've done. The program loads the segment address "video" 
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0000 

into the ES register, and uses an ASSUME statement to tell the assembler 
that's what it did. 

In the last chapter we showed you how to clear the screen using the 
Scroll Up ROM call. Here we clear it in a more direct way, by writing 
zeros into all the ASCII video memory locations. We also put 07h into all 
the attribute positions. This is the most direct and the fastest way to clear 
the screen. 

The LABEL Pseudo-op 

In the Extra Segment we show the following section of code: 

label word 
0000 0FA0 [ 

wcLbuff 
v_buff db 25 * 80 * 2 dup (?) 

?? 

What does this mean? Well, first we want to define a buffer of 25d times 
80d times 2 bytes, which is the number of bytes in the monochrome 
memory. We need it defined in terms of bytes because, when we move our 
graphics character around the screen later in the program, we aren't 
going to change the attribute bytes at all; we'll simply change the ASCII 
(even) byte for the appropriate location. 

On the other hand, when we clear the screen, it's more efficient to 
think of the screen in terms of words. That way we can write 80 * 25 
words into the memory, instead of 80 * 25 * 2 bytes, which would take 
twice as long. 

LABEL Pseudo-op 
Defines (or redefines) the type of a variable or location 
name. 

WORD_VAR DW 1234h 
BYTE_VAR LABEL BYTE 

WORD_VAR LABEL WORD 
BYTE_VAR LABEL BYTE 

;defines location as word 
;defines first byte of 
location as byte 
;defines location as word 
;defines location as byte 

This pseudo-op is typically used when a location needs to be 
defined as two different types at the same time. 

Data types: BYTE, WORD, DWORD 

Code types: NEAR, FAR 
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This is where the LABEL pseudo-op comes in. It lets us define the 
same location in memory in two different ways. First, using the DB 
pseudo-op, we define the locations in the buffer WD_BUFF as bytes. Our 
assembly language instructions can now reference this block of memory 
as bytes, but not as words. Then, using the LABEL pseudo-op, we also 
define the locations as words. Now our program can refer to a location in 
the buffer either as a byte, or as a word. 

The DB (or DW) and LABEL pseudo-ops are similar in that they 
both define memory locations to be of a certain type, but DB and DW 
actually set aside the specified bytes or words in memory, while LABEL only 
names and sets the type of a particular memory location. 

The assembler knows the difference between words and 
bytes, and makes sure you know it too. 

Type Checking 

The MACRO Assembler needs the LABEL pseudo-op in its bag of 
tricks because it is so "hard-line" about data types. For instance, if you've 
defined a variable to be a word with a DW pseudo-op, then you are in big 
trouble with the assembler if you ever try to treat the variable as a byte or 
as a double-word. For instance, if your program has the statement 

worcLvar dw 1234h 

and later in your program you want to get the 8-bit part of this, 34h, into 
the AL register, you can't just say 

mov al ,worcLvar 

because the assembler will recognize that you are trying to put a 16-
bit word into a byte-sized register. In order to save you from what it 
assumes is your own stupidity, it flags this as an error. If you really want 
to refer to the same location in two different ways, then you must use 
LABEL to de.fine it in two different ways. 

Operating DRA W-1 

At the heart of the program are two numbers which define the 
current location of the "cursor" (the solid block character) on the screen. 
The row number (from O to 24d) is kept in the CH register, and the 
column number (from O to 79d) is kept in the CL register. At the start of 
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the program these two values are set to put the cursor in the center of 
the screen. 

This section of the program has two parts. The first part, from 
"geLchar" down to "noLright", is concerned with reading the keyboard 
to see which of the four cursor movement keys the user has pushed, and 
then changing the values in CH and CL to reflect these values. Thus, if 
the program finds that the left arrow has been pushed, it decrements the 
column number in CL. The ROM keyboard routine, called with INT 
16h, is used to read the keyboard, since we want to get the scan codes for 
the cursor-motion keys. (This ROM routine was described in the last 
chapter.) 

The second part of the program then "paints" the block character at 
whatever location CH and CL specify. The program continuously cycles 
through this loop, checking the keyboard and displaying the block 
character at the current cursor location. If the cursor has not moved 
since the last display, it is displayed again at the same place. 

The trick here is to translate the row and column numbers in CH 
and CL into a single offset address in BX. Once we have the offset 
address in BX, it's easy to use indirect addressing to write the block 
graphics characters to this location in memory. To make an address out of 
the numbers in CH and CL, we first multiply the number of bytes per 
row (160d) by the row number in CH. Then we multiply the column 
number in CL by 2, since there are two bytes for each location. Finally we 
add these two results to obtain the offset address. This is all done in the 
six instructions following the "lite_it" label. The block graphics character 
is then written into memory at this address with the indirect addressing 
instruction 

mov [v_buff + bx] ,al 

You can probably think of a lot of changes and improvements you 
could make to this program., You might want to try drawing with a 
graphics character other than the block; an asterisk, for example. Or you 
could add an "erase" feature to the program by writing blanks to the 
screen if a certain keyboard key was pressed while moving the cursor. 

Dissolve: Monochrome to Color 
In the next section we're going to move on to color graphics. If you 

don't have the "color card" installed in your set you won't be able to try 
out the programs in the rest of this chapter. However, you might want to 
read the section anyway. You'll find out how the graphics display differs 
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from monochrome, and how to draw dots and lines. In addition you'll 
learn a new 8088 instruction, a new pseudo-op, and more about how 
segments operate. 

Color Graphics 

Now we'll introduce you to the exciting world of color graphics. 
Actually, this topic is so varied and can lead in so many directions that we 
can only scratch the surface. Whole books can be written about graphics 
on the IBM PC. (An excellent one is Graphics Primer for the IBM PC, by 
Mitchell Waite and Christopher L. Morgan [Berkeley: Osborne/McGraw
Hill, 1983].) What we hope to do here is show you the fundamentals, so 
you can get started writing your own graphics programs. We'll leave the 
more far-out applications for other books. 

What's the Difference Between Monochrome and Color? 

How does the color display differ from monochrome (besides being in 
color)? First of all, the color display has a much higher resolution, and 
thus must use much more memory. As we mentioned, the color adapt~r 
board provides two choices: 320x200 medium resolution, with four 
different colors; and 640x200 high resolution, in black and white. In this 
discussion we're going to concentrate on the 320x200 color display. The 
640x200 is actually very similar - by understanding one you will 
understand the other. 

Changing Modes 
Let's assume that you use the monochrome display for programming, 

but that you also have your color board installed and your monitor or TV 
set hooked up and ready to go. (If you are using only the color display, 
then you will not need the information in this section.) The question is: 
How do you get the computer to send its output to the color display 
instead of to the monochrome display? 

If you have DOS 2.00 it's easy to change graphics modes: there is a 
DOS command called MODE which will do it for you. For instance, to get 
into the medium resolution color mode, you would enter 

A>mode co40 

There are many other options with the MODE command. You can read 
about them in the IBM Personal Computer Disk Operating System manual. 
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However, to use MODE you have to be a human being, typing from 
the keyboard. Your program can't access this feature. Also, if you are 
using DOS 1.10, MODE will not have the capability to change the display. 
It is therefore useful to know how to write a program which will change 
graphics modes. Also, understanding how such a program works will 
increase our understanding of how the IBM PC handles graphics. 

To change graphics modes, our program needs to do two things: 

1. Alter some bits in a special byte in memory called the "equipment 
flag." 

2. Tell the ROM BIOS video routine what display mode it wants. 

The Equipment Flag 

If you look through the ROM BIOS listing in your IBM Personal 
Computer Technical Reference manual, you'll find a section called "ROM 
BIOS Data Areas." The segment address of this section of code is 40h. At 
offset address 1 Oh in this segment is the equipment flag. (That's absolute 
address 004 lOh.) When the PC is first turned on, a ROM BIOS routine 
reads the settings of your peripheral hardware switches and stores their 
on/off states in the equipment flag location. If we want to change 
displays, we must "fool" the BIOS routines into thinking that the switch 
settings have changed. We do this by putting new values in certain bits of 
this memory location. 

[1 Mtt) (a (2 (, (o 0 
00 = Color card (40 x 25 characters) 
10 = Color card (80 x 25 characters) 
11 = Monochrome display 

Specifically, we change bit 4 from 1 to 0 if we want to change from 
monochrome to color. Bit number 5 is always set on, unless we want to 
change to the 40 character mode, which means that text will appear in 
forty columns on the screen instead of 80. The other bits do not apply to 
the video displays at all, but their settings must not be lost when bits 4 
and 5 are changed. 

ROM BIOS Video Routine 

Now that you have chosen the active display using the equipment flag, 
you need to control the graphics mode. If the color card is selected you 
do this with a call to a ROM BIOS routine. 

310 Assembly Language Primer for the IBM PC & XT 



Go back to the ROM BIOS listing and you'll find a "Set Mode" 
function under the Video_IO section (INT 10h). There are a number of 
different options here, but we're only going to talk about three of them: 

1. 80x25 black and green text (the regular monochrome display). 
Called with AL=2. 

2. 640x200 black and white (high resolution). Called with AL= 6. 

3. 320x200 color (medium resolution). Called with AL= 4. 

To activate one of these modes your program must do an INT 10h, 
with AH= 0 (to select the "Set Mode" function) and AL set as shown 
above. This will tell the ROM BIOS what mode you want to be in, and all 
subsequent output to the screen will be directed accordingly. 

The CHAMODE Program 

= 0001 
= 0009 
= 0021 

0000 
0010 
0010 
0012 

0000 

The CHAMODE program gives you three choices when you first 
execute it: 

Type "m" for "monochrome," normal black and green display. 

Type "h" for "high resolution," 640x200 black and white. 

Type "c" for "color," 320x200. 

When you make your selection it then modifies the Equipment Flag 
and sends the appropriate message to ROM BIOS, thus switching your 
system into the desired mode. Type in the program, assemble, and link it. 
Also, convert it into a COM file with EXE2BIN. For variety and fast 
loading we've used the COM file format in this program. 

???? 

;CHAMODE--Program to change screen modes 

key_in equ 
pstring equ 
doscall equ 

lh 
9h 
21h 

;keyboard input 
;print string 
;DOS interrupt number 

· ********************************************* ' 

;SEGMENT TO CONTAIN EQUIPMENT FLAG 

rorn_da segment 
org 

eq_flag dw 
rorn_da ends 

at 40h 
10h 
? 

' ********************************************* ' 
codeseg segment ;define code segment 
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assume cs:codeseg 
assume ds:codeseg 

0100 org 100h 
0100 start: 

;print intro message 
0100 BA 015F R mov dx,offset mess ; addr of mess 
0103 B4 09 mov ah,pstring ;print string function 
0105 CD 21 int doscall ;call DOS 

;set data segment to equipment flag 
assume ds:rorn_da 

0107 B8 ---- R mov ax,rorn_da ;set DS to 
010A 8E D8 mov ds,ax ; equipment flag 

;get input letter 
010c B4 01 mov ah,key_in ; keyboard input 
010E CD 21 int doscall ,; call DOS 
0110 3C 6D cmp al, 'm' ; is it "m" ? 
0112 74 0A je mono ;monochrome 
0114 3C 68 cmp al, 'h' ;is it 11 h11 ? 
0116 74 1B je hL.res ;hi res blk and white 
0118 3C 63 cmp al,' c' ;is it "c"? 
011A 74 2C je color ;320x200 color 
011C EB E2 jmp start ;unknown input 

;SET UP FOR MONOCHROME DISPLAY 
011E mono: 
011E Al 0010 R mov ax, eq_flag ;get equipment flag 
0121 25 00CF and ax,11001111b ;mask off video bits 
0124 0D 0030 or ax,00110000b;monochrome bits 
0127 A3 0010 R mov eq_flag, ax ; back into flag 

012A B0 02 mov al,2 ;80 column b & w code 
012C B4 00 mov ah,0 ; "setmode" function 
012E CD 10 int 10h ; call Video BIOS 
0130 EB 2B 90 jmp exit 

;SET UP FOR 640 x 200 BLACK AND WHITE 
0133 hL.res: 
0133 Al 0010 R mov ax, eq_flag ;get equipment flag 

0136 25 00CF and ax,11001111b ;mask off video bits 
0139 0D 0020 or ax,00100000b ;color card 80 x 25 
013C A3 0010 R mov eq_flag, ax ; back into flag 
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013F B0 06 
0141 B4 00 
0143 CD 10 
0145 EB 16 90 

0148 
0148 Al 0010 R 
014B 25 00CF 
014E 00 0020 
0151 A3 0010 R 

0154 B0 04 
0156 B4 00 
0158 CD 10 
015A EB 01 90 

0150 
0150 CD 20 

015F 00 0A 
0161 54 79 70 65 20 22 

60 22 20 66 6F 72 
20 38 30 78 32 35 
20 60 6F 6E 6F 63 
68 72 6F 60 65 00 
0A 

0180 20 20 20 20 20 22 
68 22 20 66 6F 72 
20 36 34 30 78 32 
30 30 20 62 20 26 
20 77 00 0A 

019C 20 20 20 20 20 22 
63 22 20 66 6F 72 
20 33 32 30 78 32 
30 30 20 63 6F 6C 
6F 72 00 0A 

01B8 53 65 6C 65 63 74 
69 6F 6E 3A 20 24 

01C4 

mov al,6 ; 640x200 bl & white 
mov ah ,0 ; "set mode" function 
int 10h ; call Video BIOS 
jmp exit 

;SET UP FOR 320 x 200 COLOR MODE 
color: 

mov ax, eq_flag ;get equipment flag 
and ax,11001111b ;mask off video bits 
or ax,00100000b ;color card 80 x 25 
mov eq_flag, ax 

mov al,4 
mov ah,0 
int 10h 
jmp exit 

exit: 
int 20h 

;SIGN-ON MESSAGE 

mess db 13 ,10 

; back into flag 

;320x200 color 
; "set mode" function 
; call Video BIOS 

;return to DOS 

db 'Type "m" for 80x25 monochrome' , 13 , 10 

db ' 11 h11 for 640x200 b & w',13 ,10 

db ' "c" for 320x200 color',13,10 

db 'Selection: $' 

codeseg ends 
. ********************************************* ' 

end start 
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The SEGMENT AT Expression Pseudo-op 

There are a few new things to notice about the CHAMODE program. 
First, it uses a new form of the SEGMENT pseudo-op: 

segment at 40h 

In this case we know the absolute address where we want the segment 
to begin, so we can specify it explicitly. Now when DOS (or DEBUG) 
loads the program it has no choice about where to put this segment: the 
address has already been specified. The equipment flag has an address of 
10h in this segment, so the program sets that up with an ORG pseudo
op in the usual way. We can find the segment and offset addresses to use 
for the equipment flag by looking in the ROM BIOS listing and using the 
same addresses used by the program there. 

Another thing to notice is that since this program is a COM file, 
we've put the sign-on messages in the same segment as the code. We had 
to do this, because there can only be one segment in a COM file. But, 
you may ask, what about the segment with the equipment flag? That's a 
separate segment - how can it work in a COM file? The answer is that 
it's all right to use more than one segment in a COM file, provided it has 
been given an absolute address with the SEGMENT AT pseudo-op. 

You can have more than one segment in a COM file, 
provided the additional segments are defined with 
SEGMENT AT. 

Operating CHAMODE 

The program is fairly straightforward. After printing the sign-on 
message, it reads the keyboard with a DOS function to find which of the 
three modes has been selected, then it branches to one of three very 
similar routines. In each routine the appropriate bit or bits are ORed 
onto the Equipment Flag, without disturbing the other bits. Then the 
Video ROM routine is called, with AL set to the appropriate number, as 
described above. 

Before referencing the Equipment Flag, the DS register has to be 
loaded with the segment address where this location is, namely 40h. But 
we can't do that until after we print the messages, since the messages are 
in the code segment, and DS must contain the address of the code 
segment to reference the messages. Once the messages are printed, we 
can change DS. 
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Exploring Color Graphics with DEBUG 
Now that you can switch back and forth between different display 

modes using the CHAMODE program, let's use DEBUG to investigate 
some of the characteristics of the color graphics display. In this section 
we'll be talking about the 320x200 color mode, not the 640x200 black 
and white mode. 

The Color Graphics Memory Map 

As you recall, in the monochrome display, two bytes of memory were 
allotted to each character position on the screen: one for the ASCII code, 
and one for the attribute. In the color mode the correspondence between 
memory and the video screen is somewhat different. Instead of two bytes 
being assigned to each position on the screen, only two bits are. This is 
because there are so many more screen locations to assign. In the 
monochrome mode there were only 25 rows times 80 columns, for a total 
of 2000 screen locations. In the color mode there are 320 times 200 
screen locations, or pixels. But 320 times 200 is 64,000d pixels! 
Assigning even one byte to each of these locations would use up too 
much memory, so each byte is used to represent four pixels, as shown 
here: 

76543210 rrrrrrrro 
1st pixel I 3rd ~ixel I t 2nd pixel 4th pixel 

One byte 
in the medium 
resolution 
color video 
memory 

Each pixel contains one of four colors 

Two bits represent four things, so there is a choice of four different 
colors for each pixel. One of these colors is usually black, so that we can 
have blank, uncolored areas on the screen. This leaves three numbers for 
colors, as shown: 

00 = black 

01 = yellow 

10 = blue 

11 = white 

Experimenting with DEBUG in the Color Memory 

Let's get into DEBUG and see if we can manipulate the color 
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memory. If you're using the monochrome display, the first thing you want 
to do is call up CHAMODE, and use it to switch to the color display (or 
you can use the MODE command from DOS). 

A>chamode 

type 11 m11 for 80x25 monochrome 
11 h11 for 640x200 b & w 
11 c11 for 320x200 color 

Selection: c <-- Type this to get into color 

Then, on the color screen, call up DEBUG. 
It's more convenient, as we learned when we investigated the 

monochrome memory, to set the data segment register to the segment 
address of the color memory, so we'll start off doing that: 

A>debug 
-rds 
OS 08Fl 
:b800 

-f0 400 55 

<-- Set the data segment to the color memory 

Now, try typing the following: 

<-- Turn first 400h * 4 locations yellow 

A dozen yellow lines appear at the top of the screen! At least, they may 
be yellow - it depends how your TV is adjusted, and even what kind of 
TV set or monitor you have. 

What we've done is to use "F" to fill in the first 400h locations of the 
color memory with a constant, 55h. Let's see what this looks like on the 
bit level: 

76543210 

Co n (o (, (a n (o n o 
5 5 

As you can see, 55h is 0 1010101 binary. If we insert commas, the 
binary number should be easier to read: 01,01,0l,0l. This will put a 1 in 
each of the four color locations, thus giving them all the same color, 
number 1, which should be yellow. 
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There are two more colors to go. Let's make the next dozen lines 
blue: 

-f 400 800 aa <-- Turn next 400h * locations blue 

AAh is 10,10,10,10 binary, which puts a 10 in each pixel, the code for 
blue. 

Finally, the third color can be used, which will give us a dozen lines of 
white: 

-f 800 c00 ff <-- Turn next 400h * 4 locations white 

Here we get an 11 - the code for white - in each pixel location. 

The Two Halves of the Color Memory 

You may have noticed something else about the lines that "F" placed 
on the screen: only half of them are there. That is, only the even scan 
lines are filled in. The odd ones, in between, have not been turned on. 
Why is this? 

It turns out that the color memory in the IBM PC is actually divided 
into two parts, one for the even scan lines and one for the odd. This 
arrangement was adopted to make it easier for the video hardware to 
write the picture to the screen. It looks like this: 

0000 

1F3Fh 

2000h 

3F3Fh 

L...-

, 

, 

Even scan lines 
(0,2,4 ... 198d) 

Odd scan lines 
(l,3,5 ... 199d) 

So if you want to see the lines between the lines filled in, you need to 
start at the top of the second part of the color memory and repeat the 
three steps above. Try it: 

-f 2000 2400 55 
-f 2400 2800 aa 
-f 2800 2c00 ff 

<-- Fill in the odd lines with yellow 
<-- Fill in the odd lines with blue 
<-- Fill in the odd lines with white 

As you can see, filling in an area with a solid block of color requires 
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two passes, one for the even lines, and one for the odd. Figure 10-4 
shows the relationship of the color screen to video memory. 

T ired of all those colors? You can erase the entire screen by fi lling it 
with zeros: 

-f0 3f 3f 0 <-- Clear entire screen 

Another easy thing to do is to create dotted lines. If, say, two of the 
pixels in a byte are set to color values, and the next two are set to zero, 
the result will be a dotted line. The hex number AO is 10, 10,00,00 in 

B800:0000 

0001 

0002 

1F3E 
1F3F 

2000 

2001 
2002 

3F3E 

3F3F 

. ., -
I/ 

,; 

Odd 
scan ..... line - ~ 

I/ 

., 

.l 

• - - . - - -

., 

~ ,--

-+---+--+---r 

= -

Even scan line 
1 w 

••• •• •••.- RowO 
~ ►• .. •••••...-Rowl ........ Row2 

••••• 
Even scan line 

• •••• •••••• 
Row 198--♦-• • • • •--
Row199-.e• ••1 

The symbol• 
represents one 
pixel or "pel:' 

JI 
~ 

t1 ,1t 
~ ~ 

Figure 10-4. Color memory and the video screen 
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binary, which will give us two blue dots followed by two spaces: 

-f0 400 a0 <-- Dotted blue line 

= 0048 
= 0050 
= 004D 

BASIC 2.00 offers an option called STYLE, in the LINE statement, 
which will achieve some of these effects, but again assembly language 
gives you a far greater range of possibilities. 

It's fun to play around with various patterns, such as alternating solid 
and dotted lines for a textured effect, but we'll tear ourselves away from 
that sort of thing at this point, and write some programs. 

DRAW-CO: The DRAW Program in the Color Mode 
The next program is a variation of the DRAW program we wrote 

earlier for the monochrome screen. As with the monochrome version, you 
can cause a line to be drawn in any of the four directions on the screen 
by pressing the cursor keys. However, this program, DRAW-CO (for 
"COior") has an added feature. Before you start to draw with the cursor 
keys, you must press a number key from Oto 3. Pressing 1, 2, or 3 will 
cause the line to be colored in one of the three colors. Pressing 0 will 
cause the line to disappear - that is, the location of the moving dot will 
change, but you won't be able to see it, since it will be drawing a black 
line on a black background. To exit from the program and return to 
DOS, press the ~ key. 

Type in the program, assemble it into an EXE file, and try it out. (Be 
sure to toggle the ( Num Lock) key correctly.) Nothing will appear to 
happen until you press an arrow key; then the moving line will appear. 
You'll learn some interesting things about color graphics. One of the first 
things you may discover if you have a TV set is that not all vertical lines 
produce the same color! This is a result of the way the TV set is made: 
because of limitations in the TV circuitry, vertical lines, even drawn in 
the same color, will have different colors in different locations. This 
problem can make the creation of sophisticated pictures on the TV 
screen something of a challenge. A color monitor does not have this 
problem. 

Here's the DRAW-CO program: 

;DRAW-CO--Program to draw on screen with 
cursor arrows. Uses ROM routines 

;For 320 x 200 medium res color mode 
up equ 48h ;scan code for up arrow 
down equ 50h ;scan code for down arrow 
right equ 4dh ;scan code for right arrow 
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= 004B 
= 0018 

0000 

0000 

0000 

0000 lE 
0001 2B C0 
0003 50 

0004 B4 06 
0006 B0 00 
0008 B9 0000 
000B B2 4F 
0000 B6 18 
000F CD 10 

0011 BA 0064 
0014 B9 00A0 

0017 
0017 B4 00 
0019 CD 16 
0018 3C lB 
0010 74 2A 

001F 3C 33 
0021 7F 08 
0023 3C 30 
0025 7C 04 

left equ 4bh ;scan code for left arrow 
escape equ lbh ; "escape" character 
. ********************************************* ' 

pro_nrun segment ;define code segment 

marn proc far ;main part of program 

assume cs:pro_nrun 

start: ;starting execution address 

;set up stack for return 
push ds ;save OS 
sub ax,ax ;set AX to zero 
push ax ;put it on stack 

;clear screen by scrolling it, using ROM call 

mov ah, 6 ;scroll up function 
mov al,0 ;code to blank screen 
mov cx,0 ;upper left= 0,0 
mov dl, 79 ;lower right corner 
mov dh,24 at 79,24 
int 10h ;call video interrupt 

;screen pointer will be in ex, DX registers 
row number (0 to 200d) in DX 
column number (0 to 320d) in ex 

;set screen pointer to center of screen 
mov dx ,100d ;# rows divided by 2 
mov cx,160d ;# columns div by 2 

;get character from keyboard, using ROM BIOS 
routine 

geLchar: 
mov ah,0 ;code for read char 
int 16h ;keyboard I/0 ROM call 
cmp al,escape ;is it escape char? 
jz exit ; yes 

cmp al,33h ; is it more than "3" 
jg ploLit ;yes, not a color 
cmp al,30h ;is it less than "0" 
j 1 ploLit ;yes, not a color 
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0027 
0029 

002B 
002B 
002D 
002F 
0031 
0032 
0032 
0034 
0036 
0037 
0037 
0039 
003B 
003C 
003C 
003E 
0040 

0041 
0041 
0043 
0045 

0047 

0049 

004A 

004A 

8A D8 
EB EC 

8A C4 
3C 48 
75 01 
4A 

3C 50 
75 01 
42 

3C 4D 
75 01 
41 

3C 4B 
75 01 
49 

8A C3 
84 0C 
CD 10 

EB CE 

CB 

mov bl,al ;save it in BL 
jmp geLchar ;get next character 

;figure out which way to go, and draw new line 
ploLi t: 

mov al,ah ;put scan code in AL 
cmp al, up ; is it UP arrow? 
jnz noLup ;no 
dee dx ; yes, decrement row 

noLup: 
cmp al,down ;is it DOWN arrow? 
jnz noLdown ;no 
inc dx ; yes, increment row 

noLdown: 
cmp al,right ;is it RIGHT arrow? 
jnz noLright ;no 
rnc ex ; yes, increment column 

noLright: 
cmp al,left ;is it LEFT arrow? 
jnz li te_i t ;no 
dee ex ; yes, decrement column 

;use ROM routine to write dot 
;requires row# in DX, col in CX, color in AL 
li te_i t: 

mov al,bl ;set color value 
mov ah, 12d ;write dot function 
int 10h ;video BIOS routine 

jmp geLchar ;go get next arrow 

exit: ret ;return to DOS 

marn endp ;end of main part of program 

proJ1am ends ;end of code segment 
. ********************************************* , 

end start ;end assembly 

The Write Dot ROM BIOS Routine 

The program is fairly easy to understand: it is in many ways similar 
to the earlier monochrome DRAW program. The most important 
difference is that it makes use of a ROM BIOS routine called Write Dot. 
This is one of the functions of the video 1/0 section of ROM . Write Dot is 
entered with the following registers set: 

Monochrome and Color Graphics 321 



AH= 12h 

DX = row number of dot to be displayed 

CX = column number of dot to be displayed 

AL = color value of the dot 

Then the usual INT I Oh is executed. Of course, before this routine is 
used, the display has to be switched to the graphics mode (with 
CHAMODE or MODE). 

The use of this ROM routine to plot points is a great convenience, 
since it saves having to write the code necessary to figure out where the 
dot is going to go (a process which is complicated by having to deal with 
the two banks of memory for odd and even scan lines, as we'll soon see). 

The program always keeps the current values of the pixel's row and 
column available in the DX and CX registers respectively. When a cursor 
control key is pressed, the value in DX or in CX will change. When (Dis 
pressed, the value of DX is decremented; when (I) is, the value is 
incremented. When G:J is pressed, the value of CX is decremented, when 
G is, the value is incremented. 

Since AL is used for arithmetic in the course of the program, BL is 
used to hold the current color value. This value is moved into AL just 
before the ROM routine is called. 

DRA W2CO: Using a Subroutine to Plot the Dot 

It's interesting to imagine just what the ROM BIOS Write Dot routine 
does. Essentially it has to translate the row and column numbers in DX 
and CX into a memory address in the video memory. The segment 
address of this part of memory is B800, and - as we learned- there 
are two separate "banks" of memory: one from offset address Oto 1F3Fh 
for the even scan lines, and one from 2000h to 3F3F for the odd scan 
lines. The fact that there are two banks complicates the calculation of the 
address. 

Also, since there are four pixels in every byte, the program must 
figure out not only the address to be modified, but which of the four two
bit color values within this byte is to be modified. 

Let's take the DRAW-CO program and modify it to use its own 
subroutine to plot the dot. This will provide experience in the common 
programming problem of accessing the graphics memory, and at the 
same time give you an appreciation of just how much hard work the 
ROM BIOS routines do for you when you call them. We'll call the 
program DRAW2CO. 

What modifications do we need to make to DRAW-CO so that it can 

322 Assembly Language Primer for the IBM PC & XT 



use its own subroutine (besides writing the routine itself)? Since the 
program must access the video memory directly, it must declare a 
segment to correspond to it. We'll use the Extra Segment (so that the 
program may use a separate data segment in possible future 
modifications). We must tell the assembler about this segment with the 
ASSUME pseudo-op, and (don't forget!) actually put the segment address 
of the video segment into the ES register. This is done in addresses 0004 
and 0007 of DRAW2CO. Then we must remove the instructions that 
called the ROM BIOS Write Dot routine, and substitute a CALL to our 
own subroutine, which we'll call PLOTSUB. (Again, remember to toggle 
( Num Lock ) correctly.) 

Here's the program listing for DRAW2CO: 

;DRAW2CO--Prograrn to draw on screen with 
cursor arrows. Uses internal 
subroutine to plot dot 

;For 320 x 200 medium res color mode 

= 0048 
= 0050 
= 0040 
= 004B 

up 
down 
right 
left 

equ 48h ;scan code for up arrow 
equ 50h ;scan code for down arrow 
equ 4dh ;scan code for right arrow 
equ 4bh ;scan code for left arrow 

= 0018 

0000 
0000 
0000 
0000 

0000 

0000 

0000 

0000 lE 
0001 2B C0 
0003 50 

escape equ lbh ; "escape" character 

' ********************************************* ' 

video segment at 0b800h ;define extra seg 
wcLbuff label word 
v_buff label byte 
video ends 
· ********************************************* ' 

pro_nam segment ;define code segment 

main 

start : 

proc far ;main part of program 

assume cs :pro_nam,es:video 

;starting execution address 

;set up stack for return 
push ds ;save OS 
sub ax,ax ;set AX to zero 
push ax ;put it on stack 
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0004 BS ---- R 
0007 SE C0 

0009 B4 06 
000B B0 00 
000D B9 0000 
0010 B2 4F 
0012 B6 18 
0014 CD 10 

0016 BA 0064 
0019 B9 00A0 

001C 
001C B4 00 
001E CD 16 
0020 3C 1B 
0022 74 2B 

0024 3C 33 
0026 7F 0A 
0028 3C 30 
002A 7C 06 

002C 24 03 
002E SA D8 
0030 EB EA 

0032 
0032 SA C4 
0034 3C 48 
0036 75 01 
0038 4A 
0039 
0039 3C 50 

003B 75 01 
003D 42 

;set extra segment to video memory 
mov ax,video ;get video address 
mov es,ax put in ES 

;clear screen by scrolling it, using ROM call 

mov ah,6 ;scroll up function 
mov al,0 ;code to blank screen 
mov cx,0 ;upper left= 0,0 
mov dl, 79 ;lower right corner 
mov dh,24 at 79 , 24 
int 10h ;call video interrupt 

;screen pointer will be in ex, DX registers 
row number (0 to 200d) in DX 
column number (0 to 320d) in ex 

;set screen pointer to center of screen 
mov dx ,100d ;# rows divided by 2 
mov cx,160d ;# columns div by 2 

;get character from keyboard, using ROM BIOS 
routine 

geLchar: 
mov ah,0 ;code for read char 
int 16h ;keyboard I/O ROM call 
cmp al,escape ; is it escape char? 
jz exit ; yes 

cmp al ,33h ; is it more than "3" 
jg· ploLit ;yes, not a color 
cmp al,30h ; is it less than "0" 
j 1 ploLit ;yes, not a color 

;number from 0 to 3, so it is a color value 
and al,3 ;mask off upper 5 bits 
mov bl ,al ;save it in BL 
jmp geLchar ;get next character 

;figure out which way to go, and draw new line 
ploLi t : 

mov al , ah ;put scan code in AL 
cmp al , up ; is it UP arrow? 
JnZ noLup ;no 
dee dx ;yes , decrement row 

noLup: 
cmp al,down ; is it DOWN arrow? 

jnz noLdown ;no 
inc dx ;yes , increment row 
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003E 
003E 3C 4D 
0040 75 01 
0042 41 
0043 
0043 3C 4B 
0045 75 01 
0047 49 

0048 
0048 SA C3 
004A ES 0050 R 
004D EB CD 
004F CB 

0050 

0050 

0050 53 
0051 51 
0052 52 
0053 50 

0054 52 
0055 B0 28 
0057 81 E2 00FE 
005B F6 E2 

005D SA 
005E F6 C2 01 
0061 74 03 
0063 05 2000 

noLdown: 
cmp 
JnZ 
me 

al,right ;is it RIGHT arrow? 
noLright ; no 
ex ;yes, increment column 

noLright: 
cmp 
jnz 
dee 

al,left ;is it LEFT arrow? 
li te_i t ; no 
ex ;yes, decrement column 

;call PLOTSUB routine to write dot 
;requires row# in DX, col in CX, color in AL 
li te_i t: 

;put color back in AL 
; write dot 

exit: 

mov al,bl 
call plotsub 
J mp geLchar 
ret 

;go get next arrow 
;return to DOS 

main endp ;end of main part of program 

plotsub proc near 

;SUBROUTINE TO PLOT A POINT ON SCREEN 
Medium res graphics mode 
320 x 200 color 

; Enter with: 
X-coordinate in ex (column number: 0-319 ) 
Y-coordinate in DX (row number: 0-199) 
color in AL (0=off, 1,2,3=colors) 

push bx 
push ex 
push dx 
push ax 

;save BX 
; save column 
;save row 
;save color 

;multiply the row number by# of bytes per row 
, (80 , but since already mult by 2, use 40) 

push dx ; save row for odd/even 
mov al , 40 ;bytes /row div by 2 
and dx,0feh ;mask off odd/even bit 
mul dl ;AX now is row address 

;figure out if we should add 2000h for 2nd 
memory bank, if odd row number 

pop dx ;get original row# 
test dl,l ; test odd/even bit 
jz not_odd ;Jump on even row 
add ax ,2000h ;add to get 2nd bank 
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0066 
0066 SB D8 

0068 51 
0069 D1 E9 
006B D1 E9 
006D 03 D9 

006F 59 
0070 81 El 0003 
0074 41 
0075 58 
0076 B2 FC 
0078 
0078 D0 CS 
007A D0 CS 
007C D0 CA 
007E D0 CA 
0080 E2 F6 

0082 26: 20 97 0000 R 
0087 26: 08 87 0000 R 

008C 5A 
008D 59 
008E 5B 
008F C3 

0090 

0090 

noLodd: 
mov bx,ax ;save row addr in BX 

;add column address to row address 
push ex ;save column address 
shr cx,1 ;shift it right to 
shr cx,1 kill BIT-POS bits 
add bx, ex ;add it to addr in BX 

;use BIT-POS bits to put COLOR and MASK in 
the right position 

shift : 

pop ex 
and ex, 3 
inc ex 
pop ax 
mov dl,0fch 

ror al ,1 
ror al ,1 
ror dl , l 
ror dl,1 
loop shift 

;get original col# 
;save BIT-POS bits 
;get one free shift 
;get color 
;DL=mask: 11,11 ,11,00 
;AL=color: 00,00,00,cc 
; shift color 

two bits right 
;shift mask 

two bits right 
;do it BIT-POS times 

;get contents of byte, mask off all but color 
bits, OR on color bits. 

and [v_buff + bx],dl ;mask off 
or [v_buff + bx],al ;OR on color 

pop dx 
pop ex 
pop bx 
ret 

;restore row 
;restore column 
;restore BX 
;return 

plotsub endp 

' pro_nam ends ;end of code segment 
. ********************************************* 
' 

end start ;end assembly 

Operating the PLOTS UB Subroutine 

PLOTSUB uses the CX, DX, and AL registers to hold the column 
number, the row number, and the color value, respectively. Figure 10-5 
shows how these registers will look. 

The first thing the PLOTSUB subroutine does is translate the 
screen row number in DX into the memory address which is the 
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beginning of the row. To do this, the row number must be multiplied by 
the number of bytes per row, which is 80d (since there are 320 pixels per 
row, and 4 pixels in each byte, and 320/4 = 80.) However, the rightmost 
bit of the row number is used to specify whether the row is odd or even, 
so it doesn't count in the above multiplication. Its presence does mean 
that the rest of the number is shifted left one bit, or in effect has already 
been multiplied by two. So instead of multiplying by 80d, we can 
multiply by 40d. The result is the offset address of the beginning of the 
row where our pixel is located. 

Next the program checks to see if the row is odd or even. If it's an 
odd row, then 2000h must be added to the address, since it's in the 
second memory bank, the one which starts at 2000h. We do this at 
program addresses 005D to 0066, and to do it neatly we make use of a 
new instruction: TEST. 

The TEST Instruction 

This instruction provides a convenient way of seeing if a particular bit 
or group of bits is set in a particular register. It performs a logical AND 
just like an AND instruction, but it doesn't change the operand; it merely 
sets the flags as if the AND had been carried out. In this way it's like 
CMP, which performs a subtraction, but also doesn't change the operand. 

Column 
number 
(in CX) 

Row 
number 
(in DX) 

Color 
(in AL) 

rrrrrrrro -----------------Column address Position 
in byte 

rrrrrrrro 
I 

Row address Odd or 
even row 

rrrrrrrro ---Colorvalue 
0 = off 
l = color l 
2 = color 2 
3 = color 3 

Figure 10-5. Registers used to plot a dot 
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TEST Instruction 
ANDs two operands, but does not change them. 

To test two registers: 

TEST AL,BL 
TEST BX,CX 

To test constant and register: 

TEST DL,03h 

To test register and memory: 

TEST MWORD ,DX 

This instruction is most often used to see if a particular bit 
or bits are set in a register or memory location. 

Flags affected: AF, CF, OF, PF, SF, ZF 

TEST is just what we need to see if the odd/even bit is set in the row 
number: we TEST DL against a constant of 1, which is the bit we want to 
examine. (We could have tested DX instead of DL, but we don't care 
about the high-order bits, and testing a byte is a shorter instruction than 
testing a word.) If the bit is set, the the zero flag is set to NZ (not zero), 
and the program will add the 2000h to obtain the address in the second, 
odd-numbered, memory bank. This address is saved in the BX register. 

The program then adds the column address to the row address 
already calculated in BX. Since the rightmost two bits of the column 
address specify which bits in the byte are being used, the program shifts 
the CX register right twice to get rid of them (temporarily) before adding 
the result to BX. BX now holds the address of the pixel we're going to 
change. 

Now we have to figure out which two bits in this address are to have 
the new color value written into them. If these two bits are 00, then the 
leftmost pixel will be modified; if they are O 1, then the second pixel from 
the left will be modified, and so on. 

What we want to do is to write the two new color value bits into this 
position in the byte, while leaving the other six bits undisturbed. So we 
want to AND off the two bits in question in the original byte, then OR on 
the two new color bits. However, the location of the color bits, and the 
mask used to AND off the old color bits, will be in one of four different 
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places, depending on the value of the bit position bits. Thus we must 
generate new configurations for both these quantities. The program does 
this by starting with both the color bits and the mask in the rightmost two 
bit positions, and rotating them once if BIT-POS is 00, twice if BIT-POS 
is O 1, and so on. The rotations are carried out in locations 0078 to 0080. 
Figure 10-6 shows the relationship of the color bits and the mask to the 
bit-position values. 

That's about it. The program then ANDs off the unwanted two bits 
in the byte in the memory location in BX, and ORs on the color bits, as 
described above. And presto, a dot appears (or disappears) on your color 
screen. 

Drawing Lines 

Writing a program to draw straight lines on the screen is pretty 
straightforward, so long as the lines fall into one of two categories: 
vertical or horizontal. We're going to show you a short program that 
draws a grid of lines on the screen, like a checkerboard, to show you how 
simple it is to draw lines that make an angle of either O degrees or 90 
degrees from the horizontal. Drawing lines that make any other angle, on 
the other hand, is surprisingly difficult. We'll cover that in the last section 
of this chapter. 

Color bits 
I 

01 r,mitir10 
1 0 r1 1: rutc o 

r1 mio 
Color 

Bit position 
(Low-order two bits 
of column number) 

miiraC O 
Mask 

Figure 10-6. Bit positions in memory addresses 
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The GRID Program: Vertical and Horizontal Lines 
The program which follows draws vertical lines every 20d pixels 

across the screen, and horizontal lines every 20d pixels down the screen. 
The result is a grid-like checkerboard pattern. 

0000 

0000 

0000 

0000 lE 
0001 2B C0 
0003 50 

0004 B4 0o 
0006 B0 00 
0008 B9 0000 
000B B2 4F 
000D B6 18 
000F CD 10 

0011 BA 0000 

0014 
0014 ' B9 0000 
0017 
0017 B0 01 
0019 B4 0C 

;GRID--Program to draw grid on screen 
Uses ROM routine 

;For 320 x 200 medium res color mode 

. ********************************************* ' 

pro-11am segment ;define code segment 

main proc far ;main part of program 

assume cs :pro-11am 

start: ;starting execution address 

;set up stack for return 
push ds ;save DS 
sub ax ,ax ;set AX to zero 
push ax ;put it on stack 

;clear screen by scrolling it , using ROM call 

mov ah,6 ;scroll up function 
mov al ,0 ;code to blank screen 
mov cx ,0 ;upper left= 0,0 
mov dl , 79 ; lower right corner 
mov dh , 24 at 79 , 24 
int 10h ;call video interrupt 

;pixel location kept in ex, DX registers 
row number (0 to 200d) in DX 
column number (0 to 320d) in ex 

;DRAW HORIZONTAL LINES EVERY 20 PIXELS 
mov dx ,0 ;set to first line 

;draw one horizontal line at DX 
hline : 

hdot : 
mov cx ,0 

mov al , l 
mov ah , 12d 

;start of horiz line 

;set color to 1 
;write dot function# 
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0018 
0010 
001E 
0022 

0024 
0027 
002B 

0020 

0030 
0030 
0033 
0033 
0035 
0037 
0039 
003A 
003E 

0040 
0043 
0047 

0049 

004A 

004A 

CD 10 int 10h ; call Video ROM 
41 inc ex ; next dot 
81 F9 012C cmp cx,300 ; done all dots? 
7C F3 jl hdot ; not yet 

;next horizontal line 
83 C2 14 add dx, 20 ;advance to next line 
81 FA 00C8 cmp dx, 200 ;off the screen yet? 
7C E7 jl hline ; not yet 

;DRAW VERTICAL LINES EVERY 20 PIXELS 
B9 0000 mov cx ,0 ;set to first line 

;draw one vertical line at ex 
vline: 

BA 0000 mov dx ,0 ; start of vert line 
vdot : 

B0 02 mov al,2 ;set color to 2 
B4 0C mov ah ,12d ;write dot function# 
CD 10 int 10h ; call Video ROM 
42 inc dx ; next dot 
81 FA 00B4 cmp dx ,180 ; done all dots? 
7C F3 jl vdot ;not yet 

;next vertical line 
83 Cl 14 add cx,20 ;advance to next line 
81 F9 0140 cmp cx ,320 ;off the screen yet? 
7C E7 jl vline ; do next 1 ine 

CB ret ;return to DOS 

main endp ;end of main part of program 
---------------------------------------------' pro_nam ends ;end of code segment 

. ********************************************* ' 

end start ;end assembly 

The GRID program works by starting off with row and column 
numbers of zero. DX and ex are used to hold the row and column 
numbers as usual. To produce each horizontal line, DX is held fixed, 
while ex is incremented one pixel at a time, from 0 to the end of the line 
at 300. Likewise, to produce each vertical line, ex is held constant, while 
DX is incremented pixel by pixel until the end of the line at 100. For 
simplicity, the ROM BIOS video Write Dot routine is used to put the dots 
on the screen. 
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Diagonal Lines 
Now we come to the interesting part of the story: drawing lines which 

aren't vertical or horizontal. For example, suppose we want to draw a line 
which rises 3 pixels vertically while it's going across the screen 5 pixels. 
At the end points (0,0) and (5,3) the line passes exactly through the 
center of the dot locations on the video screen. But between the end 
points the line does not fall on any of the possible pixel positions. Figure 
10-7 shows what this looks like. 

The question is, then, how is a line-drawing program going to know 
where to put the intermediate pixels? Since it can't put them exactly on 
the line, it has to make a decision about which of two possible pixel 
positions to put each dot on. The dashed lines between pixel locations in 
the figure connect the possible choices at each location. 

Multiplying by the Slope 

If you remember your geometry, you may recall that any diagonal line 
can be represented by the formula: 

y = mx + b 

where m is the slope of the line, and b is a constant which determines at 
what point the line will pass through the Y-axis. In Figure 10-7, bis 
zero, and the slope of the line is 3/5 , so we have: 

y = 3/5 * X 

Now, when we're drawing the points on the line, it's easy to change 

,-, I -\ ,-, I -\ ,_ I \ _, \ _, . 
- I 

,-, ,-
y ,_ , \ \ _, 

1 ,-, 
\ --' 

I -, 
\ -I ,_ 

I -' I )1 \ -I ' 
• I 

'_;o 
0 2 3 4 5 

I ., X 

::; Dotted circles represent pixel positions 
on the screen. Note the line passes 
through only the start and end points. 

Figure 10-7. Typical diagonal line 
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the X coordinate; we simply add one to it, so X goes from Oto I to 2 up 
to the end point at 5. But it's not so easy to figure out the corresponding 
Y coordinates. When Xis 0, then Y is 0. What's Y when X is I? Applying 
the formula above, 

y = 3/5 * I = 3/5 

Similarly, when X is 2, 
y = 3/5 * 2 = 6/5 

Solving the equation this way tells us where Y is supposed to be. 
However, since we can only plot pixels on integer values of Y, we have to 
round off the Y values: 3/5 rounds off to 1, as does 6/5. The next Y value 
is 9/5, which rounds off to 2, and so on. Figure I 0-8 shows how the pixels 
look when drawn using this algorithm. 

So what's wrong with this system? The problem is that it takes too 
long to calculate points this way. There are often hundreds of points on a 
line (not six, as in our example), and in many graphics programs there 
are a lot of lines, or even lines that need to appear to move (as for 
instance when you're landing a plane on a simulated aircraft-carrier 
deck, and the deck must get closer to you in real time). So routines to 
draw lines must be fast. 

There are two reasons why multiplying by the slope is slow. First, 
multiplication takes a long time. Even though the 8088 in the IBM PC 
can multiply in one instruction (unlike many computers), the instruction 
itself is a slow one (relative to other instructions such as ADD). Second, 
because the slope is a fraction, we can't use simple integer arithmetic. We 
must use real numbers (single precision), or binary fractions, both of which 
are much slower and more complex to operate on. What we need is a 
different approach altogether. 

Y = 9/5 
Y = 6/5 

Y = 3/5 
Y=O 

3 

' 2 

, __ +-11-+-+--+-+--I-+-+--+ 0 

0 2 3 4 5 

Y = 15/5 = 3 

Figure 10-8. Calculating points using the slope 
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Bresenham's Algorithm 

Along comes Bresenham, with a line-drawing method which has 
become famous in the computer industry. Essentially his method involves 
keeping track of a number, called an error term, which is related to the 
difference between where the pixel should go, if it could be drawn right 
on the line, and where it must go, since it can only occupy integer pixel 
locations. Each time we move over one unit in the X direction, we add a 
certain constant to this error term. If the resulting new value for the 
error term is big enough , we increment Y (so the pixel at the next higher 
value of Xis plotted one point higher on the Y-axis than before), and 

Is ERRORTERM < = half X?~_Yi_e_s-, 

No 

Figure l 0-9. Flow chart of Bresenham's algorithm 
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also subtract another constant from the error term. Sound confusing? It'll 
be clearer when we run through a specific example. 

Let's define some terms, so we can talk about things more clearly. 
X and Y will be the coordinates where we're going to plot a particular 
pixel. In Figure 10-8, X and Y both start at O; X ends at 5 and Y ends at 
3. The difference between the starting and ending addresses we'll call 
delta_x and delta_y (delta stands for difference). So 

delta_x = 5 - 0 = 5, and 

delta_y = 3 - 0 = 3 

We'll also define half of delta_x as a constant called halfx. However, 

0 

l . 2 3 4 5 

ERRORTERM 0 -2 l -1 2 

Add 3 
3 l 4 2 (DELTA_Y) 

Result < =2? No Yes No Yes No 

Subtract 5 
-2 -1 0 (DELTA_X) 

Increment Y? Yes No Yes No Yes 

Figure 10-10. Applying the algorithm to a 5-over by 3-up line 

2 
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halfx must be an integer, so we truncate any fractional part. Thus 

halfx = delta__x / 2 = 5 / 2 = 2 

Figure 10-9 shows a flow chart of Bresenham's algorithm, using these 
definitions. 

Let's see what happens when we apply the algorithm to our original 
example. X and Y both start at 0, as does the error term. As we saw, 
delta__x is 5, delta_y is 3, and halfx is 2. Figure 10-10 shows how the 
error term changes as we apply the algorithm to it. By comparing this 
figure with the flow chart in Figure 10-9, you should be able to follow the 
use of the algorithm. 

We start with the error term at zero, and plot the point at the current 
values of X and Y: 0,0. Xis then automatically incremented. To figure 
out whether to increment Y, we first add delta__y, which is 3, to the error 
term. If the result is less than halLx, which is 2, no action is taken. 
However, if the result is greater than halLx, then Y in incremented and 
delta__x, which is 5, is subtracted from the error term. 

The process is repeated for subsequent points until X reaches the end 
of the line. 

Making the Steps Symmetrical 

One of the desirable attributes of a good line-drawing algorithm is 
that the steps in the line be symmetrical. This is especially important in 

0 0 0 0 

CB G) © © © :t 
0 2 3 4 5 6 7 8 9 10 

-
ERRORTERM 0 1 2 3 4 -5 - 4 - 3 - 2 - 1 

Add 1 1 2 3 4 5 - 4 - 3 - 2 - 1 0 

Result < = 5? Yes Yes Yes Yes No Yes Yes Yes Yes Yes 

Subtract 10 - 5 

Increment Y? No No No No Yes No No No No No 

Figure 10-11. Applying the algorithm to a 10-over by 1-up line 
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0000 

0000 
0002 
0004 
0004 
0006 

0008 
000A 

lines which are almost horizontal or almost vertical. For instance, suppose 
we want to draw a line from 0,0 to 10, 1. That is, the line will go 10 units 
in the horizontal direction, while it's rising only 1 unit in the vertical 
direction. At some point in its length the line will have to change from 
Y = 0 to Y = 1; ideally we would like this to happen in the middle of the 
line, where X = 5. 

Figure 10-1 l shows Bresenham's algorithm applied to this situation. 
Here, delta_x = 10, delta_y = 1, and halfx = 5. Note how the algorithm 
causes the line to break in the middle, just where we want. 

The DRA WLINE Program 
The program DRAWLINE, shown in the listing below, demonstrates 

the use of Bresenham's algorithm on the 320x200 color screen. The 
heart of the program is the LINESUB routine, which actually draws the 
line. This routine can be used in any program requiring rapid line 
drawing. You can incorporate it in programs which draw stars or cat's 
cradle patterns, or if you're ambitious, you can get started on the carrier
landing simulation program we mentioned earlier. 

To use DRAWLINE, type in five decimal numbers: Xl, Yl (the 
starting coordinates of the line); X2, Y2 (the ending coordinates); and a 
color value from Oto 3. After the fifth number the program will draw the 
line and then wait for the next set of five numbers to be typed in. To 
return to DOS, press the ~ key. The program should be run as an 
EXE file, and CHAMODE should be used (if necessary) to shift the 
system into the 320x200 color mode before running the program. 

???? 

???? 

???? 

???? 

???? 

???? 

;DRAWLINE--Program to draw diagonal lines 
Uses ROM routines 

;For 320x200 color graphics modes 

. ********************************************* ' 

datarea segment 

delta_x dw ? 
delta._y dw ? 
halfy label word 
halfx dw ? 
count dw ? 

xl 
yl 

dw 
dw 

;define data segment 

x2-xl 
y2-yl 
y2-yl / 2 
x2-xl / 2 

set to long axis 

first X coordinate 
first Y coordinate 
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000C ???? x2 dw ? second X coordinate 
000E ???? y2 dw ? second Y coordinate 
0010 ???? color dw ? color, 0-1 or 0-4 

0012 datarea ends 
·********************************************* ' 

0000 pro_nam segment ;define code segment 

---------------------------------------------
0000 main proc far ;main part of program 

assume cs:pro_nam,ds:datarea 

0000 start: ;starting execution address 

;set up stack for return 
0000 lE push ds ;save OS 
0001 2B C0 sub ax,ax ;set AX to zero 
0003 50 push ax ;put it on stack 

;clear screen by scrolling it, using ROM call 

0004 B4 06 mov ah, 6 ;scroll up function 
0006 B0 00 mov al,0 ;code to blank screen 
0008 B9 0000 mov cx,0 ;upper left= 0,0 
000B B2 4F mov dl, 79 ;lower right corner 
0000 B6 18 mov dh,24 at 79,24 
000F CD 10 int 10h ; call video interrupt 

;SET UP BEGINNING AND END OF LINE 
AND CALL LINESUB TO DRAW LINE 

0011 newline: 
0011 E8 00F2 R call decibin ; xl 
0014 89 lE 0008 R mov xl, bx 
0018 E8 00F2 R call decibin ; yl 
0018 89 lE 000A R mov yl, bx 
001F E8 00F2 R call decibin ; x2 
0022 89 lE 000C R mov x2, bx 
0026 E8 00F2 R call decibin ; y2 
0029 89 lE 000E R mov y2,bx 
0020 E8 00F2 R call decibin ;color 
0030 89 1E 0010 R mov color,bx 

0034 E8 0039 R call linesub ; draw line 

0037 EB 08 jmp newline ;do it again 
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0039 

0039 

0039 Al 000E R 
003C 2B 06 000A R 

0040 BE 0001 
0043 7D 05 
0045 BE FFFF 
0048 F7 D8 
004A 
004A A3 0002 R 

004D Al 000C R 
0050 2B 06 0008 R 

0054 BF 0001 
0057 7D 05 
0059 BF FFFF 
005C F7 D8 
005E 
005E A3 0000 R 

0061 Al 0000 R 
0064 3B 06 0002 R 
0068 7C 06 
006A E8 0074 R 
006D EB 04 90 

0070 
0070 E8 00A9 R 

main endp ;end of main part of program 
---------------------------------------------' linesub proc near 

;LINESUB--SUBROUTINE TO DRAW LINE 

' ; Input is xl , yl (start of line ) 
x2 , y2 (end of line) 
color (0-1 or 0-4) 

;find IY2-yll -- result is delta_y 
mov ax , y2 ; get y2 
sub ax ,yl ;subtract yl 

;result in AX 
;figure out if delta_y is positive or negative 

SI=l if positive , SI=-1 if negative 
mov si , l ;set flag to positive 
jge store_y ; keep it that way 
mov si , -1 ;set flag to negative 
neg ax ;set to abs value 

store_y: 
mov delta_y,ax ;store delta_y 

;find lx2-xl l -- result 
mov ax ,x2 

is delta_x 
; get x2 
;subtract xl 
;result in AX 

sub ax ,xl 

; figure out if delta_x is positive or negative 
DI=0 if positive , DI=l if negative 

mov di ,1 ;set flag to positive 
jge store__x ; keep it that way 
mov di , -1 ;set flag to negative 
neg ax ; set to abs value 

store__x: 
mov delta_x,ax ;store delta_x 

;figure out if slope is greater or less than 1 
mov ax ,delta_x ;get delta_x 
cmp ax,delta_y ;compare deltas 
jl csteep ;slope > 1 
call easy ;slope < 1, or= 1 
jmp finish 

csteep: 
call steep ;slope > 1 
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;DONE LINE--RETURN 
0073 finish: 
0073 C3 ret 

0074 linesub endp 
------------------------ ---------------------

0074 easy proc near 

; SLOPE < 1 

;calculate half of delta_x , call it half x 
0074 Al 0000 R mov ax ,delta_x ;get lx2-xll 
0077 D1 E8 shr ax , 1 ;shift right to divide 
0079 A3 0004 R mov halfx , ax 

' 
by 2 

; initialize values 

007C 8B 0E 0008 R mov cx ,xl ;set xl 
0080 8B 16 000A R mov dx ,yl ;set yl 
0084 BB 0000 mov bx ,0 ; initialize BX 
0087 Al 0000 R mov ax ,delta_x ;set count 
008A A3 0006 R mov count , ax 

' to lx2-xl l 
008D newdot: 
008D E8 00DE R call dotplot ;plot the dot 
0090 03 CF add cx ,di ; inc /dee X 
0092 03 lE 0002 R add bx ,delta_y ;add IY2-yl l to BX 
0096 3B lE 0004 R cmp bx ,halfx ; compare to lx2 -xl l/2 
009A 7E 06 jle dcount 

' 
(don't inc /dee Y) 

009C 2B lE 0000 R sub bx ,delta_x ;subtract lx2-xl l 

' 
from BX 

00A0 03 D6 add dx ,si ; inc /dee Y 
00A2 dcount : 
00A2 FF 0E 0006 R dee count ; done 1 ine yet? 
00A6 7D ES jge newdot ;not yet 

00A8 C3 ret ; done line 

00A9 easy endp 
--------------------------------------- ------' 00A9 steep proc near 

; SLOPE > 1 

;calculate half of delta_y, call it half y 
00A9 Al 0002 R mov ax ,delta_y ;get IY2 -yl l 
00AC D1 E8 shr ax ,1 ;shift right to divide 
00AE A3 0004 R mov halfy, ax 

' 
by 2 
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;initialize values 
00Bl 8B 0E 0008 R mov cx,xl ;set xl 
00B5 8B 16 000A R mov dx,yl ;set yl 

00B9 BB 0000 mov bx,0 ;initialize BX 
00BC Al 0002 R mov ax,delta_y ;set count 
00BF A3 0006 R mov count,ax to x2-yl 

00C2 newdot2: 
00C2 E8 00DE R call dotplot ;plot the dot 
00C5 03 06 add dx ,si ;inc /dee Y 
00C7 03 lE 0000 R add bx,delta_x ;add lx2-xl l to BX 
00CB 3B lE 0004 R cmp bx, halfy ;compare to IY2-yl l/ 2 
00CF 7E 06 j le dcount2 ;don't inc /dee X 
0001 2B lE 0002 R sub bx,delta_y ;subtract IY2-yl l 

' 
from BX 

0005 03 CF add cx,di ; inc /dee X 
0007 dcount2: 
0007 FF 0E 0006 R dee count ; done line yet? 
00DB 70 E5 jge newdot2 ;not yet 

0000 C3 ret ;return to main dline 

00DE steep endp 
---------------------------------------------' 00DE dotplot proc near 

;SAVE REGISTERS AND CALL PLOT ROUTINE 

00DE 53 push bx ;save registers 
00DF 51 push ex 
00E0 52 push dx 
00El 50 push ax 
00E2 56 push si 
00E3 57 push di 

;use ROM routine to write dot 
;requires row# in DX , col in CX , color in AL 

00E4 Al 0010 R mov ax ,color ;set color value 
00E7 B4 0C mov ah , 12d ;write dot function 
00E9 CD 10 int 10h ;video BIOS routine 

00EB 5F pop di ;restore registers 
00EC 5E pop Sl 

00ED 58 pop ax 
00EE 5A pop dx 
00EF 59 pop ex 
00F0 5B pop bx 
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00Fl C3 

00F2 

= 0001 
= 0021 

00F2 

00F2 

00F5 
00F5 
00F7 
00F9 
00FB 
00FD 
00FF 
0101 

0102 
0103 
0106 
0108 

0109 
010B 
010D 
010D 

010E 

010E 

BB 0000 

B4 01 
CD 21 
2C 30 
7C 10 
3C 09 
7F 0C 
98 

93 
B9 000A 
F7 El 
93 

03 D8 
EB E8 

C3 

ret 

dotplot endp 

;return 

' key_in equ lh 
21h 

;keyboard input 
doscall equ ;DOS interrupt number 

' decibin proc near 

;SUBROUTINE TO CONVERT DEC ON KEYED TO BINARY 
result is left in BX register 

mov bx ,0 ;clear BX for number 

' ;get digit from keyboard , convert to binary 
newchar: 

mov ah ,key_in ; keyboard input 
; call DOS int doscall 

sub al ,30h 
j 1 exit 
cmp al , 9d 
jg exit 
cbw ; byte 

; ASCII to binary 
; jump if < 0 
; is it > 9d ? 
;yes , not dee digit 

in AL to word in AX 
; (digit is in AX) 

' ;multiply number in bx by 10 decimal 
xchg ax ,bx ; trade digit & number 
mov cx ,10d ;put 10 dee in ex 
mul ex ;number times 10 
xchg ax ,bx ;trade number & digit 

' ; add digit in ax to number in bx 
add bx,ax ; add digit to number 
jmp newchar ;get next digit 

exit : 
ret 

' decibin endp 

' pro-11am ends ;end of code segment 
. ********************************************* ' 

end start ;end assembly 

The real work in the LINESUB routine is performed in the following 
section of code: 
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mov cx ,xl ;set xl 
mov dx,yl ;set yl 
mov bx,0 ; initialize BX 
mov ax,delta_x ;set count 
mov count ,ax to lx2-xll 

newdot: 
call dotplot ;plot the dot 
add cx,di ;inc/dee X 
add bx ,delta_y ;add IY2-yll to BX 
cmp bx , halfx ;compare to lx2-xl l/2 
jle dcount 

' 
(don't inc /dee Y) 

sub bx ,delta_x ;subtract lx2-xll 
from BX 

add dx , si ;inc/dee Y 
dcount: 

dee count ; done 1 ine yet? 
jge newdot ;not yet 

The first five instructions here initialize various values. Then, starting 
at "newdot," the line is actually drawn. This section of code corresponds 
with the flow chart shown in Figure 10-9. By comparing the code and the 
flow chart, you should have no trouble understanding how it works. 
There are only a few short instructions in this loop, so the line can be 
plotted very quickly. 

There are several complexities in the LINESUB routine which we 
haven't dealt with yet. 

Complexity One 

The first complexity is that the end points of the line may be such 
that Xl is greater than X2, or YI is greater than Y2. When this is the 
case we need to decrement the values of X or Y as we draw the line, rather 
than increment them. For this reason, the program figures out the sign 
of X2 - XI and sets the DI register to either + 1 or -1 accordingly. 
Similarly, SI is set to + 1 or -1 according to the sign of Y2 - Y 1. DI and 
SI are then added to tbe X and Y values in CX and DX to effect the 
appropriate increment/decrement. 

Complexity Two 

The second complexity is that the slope of the line may be less than 1 
or greater than 1. (A slope of 1 corresponds to a 45-degree angle.) So far 
we've examined cases where the slope is less than 1. In this case Y 
changes less than X over the course of the line, so we know we always 
increment X to get to the next point, and that we sometimes increment Y 
and sometimes don't, depending on the results of the algorithm. 
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When the slope of the line is greater than 1, the situation is reversed. 
We need to increment Y every time, and sometimes increment X and 
sometimes not. Otherwise there won't be enough pixels drawn on the 
line. (For instance, a line that went from X = 0 to 3, and from Y = 0 to 10, 
would have only 3 dots on it if we were to draw only one dot for every X 
position.) 

Thus we need two parts of the program: one for slopes less than 1 
and another for slopes greater than 1. The two procedures EASY and 
STEEP are used for these two cases. 

There are many refinements that can be made to this program to 
make the generation of lines even faster. However, most of these 
refinements make the program more difficult to understand. For 
instance, a possible enhancement is to use self-modifying code. This 
gives some increase in speed, but makes the program harder to 
understand, and harder to write and debug. We won't pursue these 
esoteric matters further here. 

Summary 
In this chapter we've covered some of the more common techniques 

used in graphics. You should have an idea how the bytes in memory 
correspond to the pixels on the screen in both the monochrome display 
and the 320x200 color display. You've learned how to plot points on the 
screen, and how to draw vertical, horizontal, and even diagonal lines. 
This should be all you need to get started in the space-age field of 
computer graphics! 
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[Il] 
Reading and Writing 
Disk Files 

Concepts 
File access - Sequential, Random, and Random Block 
File Control Block (FCB) 
Data Transfer Area (DTA) 

DOS Functions 
Open File 
Sequential Read 
Create File 
Sequential Write 
Close File 
Random Read 
Random Block Read 
File Size 

Applications 
SET-BO - Creates a file of birthdays 
GET-BO - Finds all birthdays on a given date 
MOD-BO - Modifies existing birthday file 
SAVEIMAG - Dumps screen image to disk file 
(See appendix B for programs.) 

/ n this chapter we explore one of the most important groups of DOS 
function calls: those that access the disk. Almost all but the most minor 
programs require disk access. If you 're writing a word processing 
program, you need to read and write the text fi les from the disk. If 
you 're writing a finance program, then you 'll need to access tables of 
figu res stored on the disk. Graphics programs will read pictures stored as 

345 



files on the disk, and so on. In short, without disk capability, few 
programs can do useful work. 

Essentially what this chapter teaches is how to read files from the 
disk, and write them to the disk, in a variety of different ways. If you 
have been impressed before with how much trouble and effort DOS 
function calls can save, here you will be amazed. Instead of having to 
deal with bytes, tracks, sectors, rotation speed, track interleaving, and 
other esoteric topics, we can deal simply with filenames. The DOS disk 
function calls will take care of transforming our request for a file into the 
detailed instructions that will access the actual bits at individual locations 
on the disk. 

This chapter will cover some of the fundamental concepts involved in 
disk access, and then go on to explore in more detail three of the 
techniques used in the IBM PC-DOS functions: sequential access, 
random access, and random block access. We'll save the fourth method of 
disk access - file handles - for the next chapter. 

The Historical Perspective 

The DOS functions in IBM PC-DOS versions 1.00 and 1.10 provide 
for three different ways to read and write files to the disk; DOS version 
2.00 provides four different techniques. The reason there are so many 
different ways to do things is largely historical. 

In the beginning there was CP/M (Control Program for Micro
processors), the operating system that is the distant ancestor of PC-DOS. 
The earliest versions of CP/M used sequential access to read and write 
files to the disk. Briefly, this meant that a file was divided into records, 
which could then be accessed only in sequence, from the first record 
in the file to the last record. (A record is simply a subdivision of a file, 
much as a book is divided into chapters.) Later versions of CP/M added 
a refinement to this, called random access. This meant that you could 
get at a record in the middle of a file. 

To maintain a measure of compatibility with this earlier operating 
system, Microsoft, Inc. - the designers of PC-DOS- included both 
sequential and random access DOS functions in version 1 of the 
operating system. However, they added another method, called random 
block access. Where the earlier methods could read or write only one record 
with one function call, the random block method could read or write an 
entire file with a single call. 

In PC-DOS version 2.00, Microsoft added yet another way to access 
disk files: with.file handles. The need for this additional system resulted 
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from the introduction of tree-structured directories. In a complex 
directory system, a simple fi lename is no longer adequate to specify a file: 
an entire pathname may have to be used, such as: 

\DIR1 \LETTERS\XCORP2 .TXT. 

None of the earlier DOS functions could handle pathnames, so an 
entirely new system had to be introduced. Once the pathname for a file 
has been given to the operating system, it assigns it a file handle, which is 
a 16-bit number. From there on this simple number may be used to 
reference the file for reading and writing, rather than the long pathname. 

Floppies and the Fixed Disk 
The techniques described in this chapter apply equally well to 

reading and writing files on floppy diskettes and on fixed disks. As far as 
your programs are concerned, the fixed disk is almost the same as a 
diskette. One difference is that the fixed disk is always assumed to be 
drive C. (It can also be drive D, but let's ignore that possibility in this 
discussion.) To access a file (in the root directory) on the hard disk you 
would have to precede it by the drive specifier (C:). For example, 

C: CHAP-11 . TXT . 

On the other hand, floppies can be in drive A or drive B - in the 
examples in this chapter we generally assume drive A, so that no drive 
specifier is needed preceding the filename. 

The other difference is that it's highly probable that if you have the 
fixed disk you will be using the tree-structured directory (available under 
DOS version 2.00). If so, you will be referring to files by pathnames, and 
not simply by filenames. In this case you will have to use the file handle 
approach to accessing those files which are on the disk. The sequential, 
random, and random block access techniques will not work unless you are 
already in the same directory as the file you want to access (then a 
pathname is not required). 

Even if you have a fixed disk, you can still access those files that are 
on floppy diskettes (in drive A or B) by using any of the methods 
described in this chapter. 

Which System Should You Use? 
Which of the four disk access systems should you use in a given 
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program? There's no easy answer. IBM recommends that you use the 
newest possible system provided with your particular operating system. 
That is, if you're using DOS 1.1, you should use random block access, 
and if you're using DOS 2.0, you should use file handles. However, there 
is a disadvantage to following this advice, which can be summarized in 
one word: compatibility. If you use file handles, your programs will not 
run on DOS versions 1.00 and 1. 10. If you use random block access, your 
programs will run under PC-DOS versions 1 and 2, but it will be more 
difficult to translate your programs to run under CP/M, should you ever 
want to. 

The later function calls are more powerful, but they are also, in some 
ways at least, more complicated. Of course, if you want to read and write 
to the fixed disk using pathnames, then you must use the file handle 
approach described in the next chapter. 

For the time being, don't worry about which approach to disk access 
is the best to use. When you've finished this chapter you'll be in a better 
position to decide which is best in your particular situation. 

What We're Going to Cover 
As we've said, in this chapter we're going to introduce you to three of 

the file accessing systems: sequential, random, and random block. 
However, because of the large number of disk-related DOS functions, 
and the enormous amount of material that would be necessary to 
completely describe all the variations of each approach, we're going to 
cover the different methods in different depths. 

We'll start by going into considerable detail about sequential access. 
This is the simplest method of accessing the disk, and will serve to 
introduce you to some of the key features of all file-accessing systems: 
opening and closing files, transferring information about the file between 
the disk and the operating system, and transferring the file itself. 

Random access is very similar to sequential access, so we'll cover it 
more rapidly, but still with enough detail to get you off and running. 
Similarly, we'll cover random block access fairly quickly. In the next 
chapter we'll go into more detail when we introduce file handles. 

While we don't describe every DOS function used for disk access, the 
material in this chapter should provide you with the ability to read, 
understand, and put to use almost everything you find in appendix D of 
the IBM Personal Computer Disk Operating System manual. 

Some Common Concepts Behind Disk Access Techniques 
No matter which approach you use to access the disk, there are 
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certain common requirements. First, there must be a way for your 
program to tell the operating system which file to access. This is · 
accomplished through an area in memory where your program stores the 
name of the file. Sometimes data besides the filename must go in this 
area as well, such as which record of a file to read. 

Second, there must be a place in memory where the data which will 
be read or written to the disk is stored (by the disk, when reading; and by 
your program, when writing). In the IBM PC this part of memory is 
called the Data Transfer Area, or DTA. 

Third, the file must be opened. This is somewhat analogous to 
opening a file folder before you put a report in your file cabinet (or take 
the report out). You can't just throw the report into the cabinet at 
random, it must go in a particular place. By opening a file, we tell the 
operating system where data which we subsequently read (or write) is 
going to go (or come from). 

Before reading or writing to a file, the file must be opened. 

Fourth, after the file has been accessed, especially if it has been 
written to, it must be closed. This is like returning the file folder to the 
filing cabinet after you have placed the report in it. By closing the file we 
make sure that the operating system knows where all the parts of the file 
are. If we write to a file and forget to close it, some or all of it may be 
lost. 

The remainder of this chapter will show how these four concepts are 
applied to the reading and writing of data from and to the disk, using 
the sequential, random, and random block approaches. 

Sequential Access 
Sequential access is the simplest, and historically the first, method 

used to access material on the disk. We'll explore in detail how sequential 
access is used for reading and writing files to the disk. 

Using DEBUG to Open a Sequential File 
Let's plunge right in and open a file. As we mentioned, it's necessary 

to open a file before we can read or write to it. Opening the file alerts the 
operating system that we intend to access a particular file, and provides 
our program with some necessary information about the file. Since the 
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instructions to open a sequential file are so simple, we'll use DEBUG, 
which will then permit us to quickly explore just what happens in the 
computer's memory when a file is opened. 

OPEN FILE Function- Number 0Fh 
Enter with: 

Reg AH = 0Fh 

Reg DS = segment address of FCB 

Reg DX = offset address of FCB 

The filename and extension must be entered in the File 
Control Block. 

Execute: 

INT 21 

Return with: 

Reg AL = 00 if file is found 
= FFh if file not found 

In the File Control Block, the drive number, current block, 
record size, file size, and date are filled in. 

Before you can open a file, it must already exist on the disk; that is, 
you can't open a nonexistent file. Let's create a file which we can then 
open. Use your word processor (or EDLIN - this is one place where 
EDLIN does the job just fine) to create a file consisting of several short 
lines of prose. Call this file TESTFILE.TXT, and store it on your disk. 
Let's say it looks like this: 

Now is the time 
for all good men 
to come to the aid 
of their country. 

Now, get into DEBUG, and type in the following program: 
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A>debug 
-a100 
08Fl :0100 mov dx ,5c 
08Fl :0103 mov ah , f 
08Fl:0105 int 21 
08Fl:0107 int 20 
08Fl :0109 

Here's what it looks like disassembled. (If you're using DOS version 1 
you can use the "E" command to type in the hex codes for this program.) 
We've also added some comments about what each instruction does. 

-u100,108 
08Fl :0100 BA5C00 
08Fl :0103 B40F 
08Fl: 0105 CD21 
08Fl :0107 CD20 

MOV 
MOV 
INT 
INT 

DX , 005C <-- Put address of FCB in DX 
AH , 0F <-- Open File function 
21 <-- Call DOS 

20 <-- Return to DEBUG 

In order to tell DOS what file we want to open, our program needs to 
put the filename in a place in memory agreed upon by both the program 
and the operating system. In sequential (and random) access this area of 
memory is called the File Control Block, or FCB. 

The File Control Block is a place in memory for passing 
messages about disk files between your program and the 
operating system. 

The FCB is actually part of a larger area called the Program Segment 
Prefix. In a COM file, which is what DEBUG creates, the program starts 
at segment address 100h. The part of the segment below the program, 
from O to FFh, is the Program Segment Prefix. The FCB occupies the 
part of the Program Segment Prefix from 5Ch to 7Ch (in random access 
files the FCB goes up to 80h). This is shown in Figure 11-1. 

Now that we have our little file-opening program in memory, let's take 
a look at the Program Segment Prefix so that we can see what happens 
to the FCB when we open a file. Before we look at it, however, we'll fill 
the entire FCB with a constant so we'll be able to tell what effect the 
Open File function has. We'll fill it with l lh, since we want to be able to 
tell if 00 has been written into it: 

-f 40 7f 11 
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-d0 

We could have started our fill at 5Ch, but 40 will give us a broac;ler 
picture. However, be careful not to start below 40h. Some locations below 
40h in the Program Segment Prefix are used by DEBUG and the 
operating system (as we'll see in a moment), so erasing them will cause 
trouble. 

Now we'll use D to see what the lower half of Program Segment 
Prefix looks like : 

08Fl :0000 CD 20 00 20 00 9A EE FE-lD F0 42 02 00 06 70 02 
08Fl:0010 00 06 E2 04 34 05 34 05-01 01 01 00 02 FF FF FF 
08Fl :0020 FF FF FF FF FF FF FF FF-FF FF FF FF FD 05 CA 2A 
08Fl:0030 00 06 00 00 00 00 00 00-00 00 00 00 00 00 00 00 
08Fl :0040 11 11 11 11 11 11 11 11-11 11 11 11 11 11 11 11 
08Fl :0050 11 11 11 11 11 11 11 11-11 11 11 11 

11 11 11 111 File 
08Fl: 0060 11 11 11 11 11 11 11 11-11 11 11 11 11 11 11 11 Control 
08Fl: 0070 11 11 11 11 11 11 11 11-11 11 11 11 11 11 11 11 Block 

We've separated the FCB from the rest of the Program Segment 
Prefix to show you where it is. There are all the l ls we put in. Also, there 
are all sorts of mysterious numbers in the first few rows of the Program 

0000 - -1 ' 005C _,, Program 

FCB segment 
0080 ,_,, prefix 

0100 
DTA _,, 

User's 
program 

~ 

In a COM file, ~ -
all the segment ._,__.., \i..., 
registers are 

set to the same LJJ 
segment. 

FFFF 

Only 
one 
segment 

> used in 
COM 
files 

I 

Figure 11-1. Program segment prefix in COM files 
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Segment Prefix. We don't really need to know what these numbers do, 
but we'll list their functions without further explanation just so you won't 
stay up all night wondering what these numbers are. Mostly they consist 
of addresses and information which the operating system (or DEBUG) 
needs to know about a particular file. It looks like this: 

Total 
INT 20 memory 
instruction size 

I I 

Long call to 
DOS function 
dispatcher 

I 

Terminate Control Break 
address exit address (IP) 

I I 
~ --------------08Fl: 0000 CD 20 00 20 00 9A EE FE-lD F0 42 02 00 06 70 02 

Control Break Critical Error 
exit address (CS) exit address 

I I _,.__.._ __ 
08Fl :0010 00 06 E2 04 34 05 34 05-01 01 01 00 02 FF FF FF 

The structure of the Program Segment Prefix is shown in more detail 
in appendix E of the IBM Personal Computer Disk Operating System 
manual. 

But to get back to opening a file, the question is: How do we put the 
name of the file which we want to open into the FCB? The answer is very 
simple. We use DEBUG's "N" command. Type "n", followed by the 
filename, with extension: 

-ntestfile . txt 

Now use "D" to see what's happened to the FCB: 

-d0 
0905 :0000 CD 20 00 20 00 9A F0 FF-0D F0 42 02 00 06 70 02 
0905 :0010 00 06 E2 04 34 05 00 06-01 01 01 00 02 FF FF FF 
0905:0020 FF FF FF FF FF FF FF FF-FF FF FF FF 02 09 CS 2A 
0905 :0030 00 06 00 00 00 00 00 00-00 00 00 00 00 00 00 00 
0905 :0040 11 11 11 11 11 11 11 11-11 11 11 11 11 11 11 11 
0905:0050 11 11 11 11 11 11 11 11-11 11 11 11 

00 54 45 53 
0905: 0060 54 46 49 4C 45 54 58 54-00 00 00 00 00 20 20 20 
0905 :0070 20 20 20 20 20 20 20 20-00 00 00 00 11 11 11 11 

0 1 2 3 4 5 6 7 8 9 A B C D E F 

M ... p . . pB . .. p. 
.. b. 4 . .. ... .. .. . 
. . . .. . ... . ... . H* 

....... . ... .. TES 
TFILETXT ..... 

Well, would you look at that! The filename has been changed to all 

Reading and Writing Disk Files 353 



capitals and filled into the FCB, starting at location 5D; and a bunch of 
00s and 20s have been written there, starting with the 00 at location SC 
and going up to 7B. What does it all mean? 

Figure 11-2 shows all the locations in the FCB and what they do. 

Decimal position 

I Hex offset addresses 
I 

0 SC Drive Number X 
1 5D u 
2 SE u 
3 SF u 
4 60 

-Filename 
u 

5 61 u Items marked with "U" 
6 62 u are to be 
7 63 u filled in by user 
8 64 u 
9 65 

!-File Extension 
u 

10 66 u 
11 67 u 
12 68 

(-Current Block 
X 

13 69 X 
14 1: (-Record Size 

X 
15 X Items marked "X" are 
16 1~ (-File Size (low) 

X filled in when the 
17 X file is opened 
18 1~ (-File Size (high) 

X 
19 X 
20 70 t X 
21 71 -Dote 

X 
22 72 
23 73 
24 74 
25 75 
26 76 

-System use 
27 77 
28 78 
29 79 
30 7A 
31 78 
32 7C -- Current Record u Used for sequential records 
33 7D ( ~! 34 7E -- Random record number (low) 

Used only for 
35 ~6 (-- Random record number (high) random records 
36 

Figure 11-2. Arrangement of the file control block 
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-g 

We'll be explaining the various parts of this figure one by one as we 
go along. Stick a bookmark in the page - you'll be referring back to this 
figure frequently. 

Now, finally, let's run our little DEBUG program, which will open the 
file TESTFILE.TXT. Running this program with the filename in the 
FCB, tells the operating system something like, "Track down 
TESTFILE.TXT and give me a rundown on it. I may want to be in 
touch with it later." To execute the program we simply use the "G" 
command: 

Program terminated normally 

-d0 

The red light on the disk drive will glow briefly, and you'll hear the 
disk drive whirr. The operating system has opened the file. 

Now we can see what happened to the FCB: 

0905 :0000 CD 20 00 20 00 9A F0 FF-0O F0 42 02 00 06 70 02 
0905 :0010 00 06 E2 04 34 05 00 06-FF FF FF FF FF FF FF FF 
0905 :0020 FF FF FF FF FF FF FF FF-FF FF FF FF 02 09 E6 FF 
0905 :0030 05 09 00 00 00 00 00 00-00 00 00 00 00 00 00 00 
0905 :0040 11 11 11 11 11 11 11 11-11 11 11 11 11 11 11 11 
0905 :0050 11 11 11 11 11 11 11 11-11 11 11 11 

M . . . p . . pB . .. p. 
.. b. 4 .......... . 
.. ............ f . 

01 54 45 53 
0905 :0060 54 46 49 4C 45 54 58 54-00 00 80 00 80 00 00 00 
0905 :0070 Fl 06 10 6E 40 34 00 00-00 34 00 00 11 11 11 11 

0 1 2 3 4 5 6 7 8 9 A B C D E F 

Drive Number 

.. . .. . . . . .... TES 
TFILETXT . ... .. . . 
q .. n@4 ... 4 . . . .. . 

What has the operating system found out for us about this file? First, 
the drive number at location 5C has been changed from 00 to 0 1. This 
means that the operating system has found the file on the current drive 
(the one in use at the moment), in this case drive A: (A = 1, B = 2, C = 
3, and so on). 

Records and Record Size 

Second, there is now an 80h at location 6A, which is the location 
which specifies the record size. This is the default record size. We could 
have specified something else, but since we didn't, the operating system 
fills in 80h ( 128d). This brings up another topic: records. 

Suppose you have a really big file on your disk, say the complete text 
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for a new novel. It just fits on the disk, but if you try to read it into 
memory it will be way too large. (Maybe the file is 300K long and you 
only have a 64K memory.) If you want to make some changes in the 
middle of the file, by reading it in and operating on it with your word 
processor, how can you do it? What's needed here is a way of dividing a 
file up into smaller parts, so we can work with manageable sections of it 
at a time, rather than trying to cram huge files into a small memory 
space. The answer, illustrated by Figure 11-3, is to use a record. 

A record can be any convenient size. However, back when CP/M was 
being developed on 8-bit computers, an 80h ( 128d) byte record was 
chosen as a more or less standard size record. Now with 16-bit machines 
with much larger memories, this record size seems a little small, but it's 
still around as the default value for sequential files. ("Default" means 
that's the record size you'll get if you don't tell the operating system 
otherwise.) The record size number is stored in locations 6A and 6B of 
the FCB. 

File Size 

The file size at locations 6C through 6F has also been filled in, with 
80h. This is the actual size in bytes of the entire file TESTFILE.TXT. (It 
turns out that 80h is the minimum file size generated by the word
processing program we used to create this file.) The file size consists of 
four bytes, and can therefore describe files up to about 4 billion bytes, 
which is large enough for almost anything. As you know, 16-bit numbers 
are stored in memory in reverse order: least significant bit first. Also, in 
double-word numbers, the order of the words is similarly reversed. Thus, 
because our file is 80h bytes long, the 80h appears as the first byte in the 
sequence instead of the last. 

Date 

The operating system has filled in locations 70h and 71 h of the FCB 

Record 
80h bytes 

Figure 11-3. 

File -

File divided into records 
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with the creation date of the file, expressed in a condensed format: 

71h 70h 
' ' 15 14 13 12 11 10 9 a:7 6 5 4 3 2 1 0 

I I I I I I I I I I I I I Double-word 

Year Month Day 

Possible values for the year run from Oto 119d, representing 1980 to 
2099. The month values run from 1 to 12d, and the day from 1 to 3 ld. 
Thus the F 1 06 returned by the operating system tells us that the file was 
created on July 17, 1983. (Reversing the Fl and the 06 gives us 0000011-
0111-10001 in binary, or 3-7-1 7 decimal, where the 3 means 1983.) 

Mysterious File Location Bytes 

The locations from 72h to 7Bh tell the operating system where the 
file is stored on the disk; however, the exact method for storing this 
information is complicated, and we don't need to get into it here. 

In the figure below we've reproduced the last two lines of the DEBUG 
dump shown earlier, and labeled some of the important locations to 
summarize this discussion. 

0905 :0060 
0905 :0070 

Record size File size 

I I 
54 46 49 4C 45 54 58 54-00 00 800080000000 
Fl 06 1D 6E 40 34 00 00-00 34 00 00 11 11 11 11 

Dote 

Used by the system to record 
the locations on the diskette 
occupied by the file 

I 
Current record 

Reading a File 

TFILETXT . . . .. . . . 
q . . n@4 . . . 4 ..... . 

Now that we've opened a file, we can think about how to read its 
contents from the disk into the memory of the computer. We'll use 
DEBUG again to write a short program which not only opens a file, but 
also reads the first record of the file, using the Sequential Read DOS 
function. 
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A>debug 
-a100 

SEQUENTIAL READ Function- Number 14h 
Enter with: 

Reg AH = 14h 

Reg DS = segment address of open FCB 

Reg DX = offset address of open FCB 

The filename and extension, and the current block, current 
record , and record size must be entered in the FCB. 

Execute: 

INT 21 

Return with: 

Reg AL = 00 if record read successfully 
= 01 if end-of-file, no data in record 
= 02 if DTA too small, transfer ended 
= 03 if end-of-file, partial record 

Enter DEBUG and type in the following program: 

08Fl :0100 mov dx,5c 
08Fl:0103 mov ah,f 
08Fl:0105 int 21 
08Fl:0107 mov ah ,14 
08Fl:0109 int 21 
08Fl:010B int 20 
08Fl:010D 

If you want, you can save this program on your disk in the usual way. 

-nreadrec.com 
-rbx 
BX 0000 

-rcx 
ex 0000 
: d 
-w 
Writing 000D bytes 
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Unassemblying the program with "U" shows the following hex codes 
(we've added comments as well): 

-u100,10c 
0905:0100 BA5C00 MOV DX,005C <-- Address of FCB into DX 
0905:0103 B40F MOV AH,0F <-- Open File function 
0905:0105 CD21 INT 21 <-Call DOS 
0905:0107 B414 MOV AH,14 <-- Read Record function 
0905:0109 CD21 INT 21 <-- Call DOS 
0905:010B CD20 INT 20 <-- Exit to DEBUG 

Before you run this program you must deal with a few preliminaries. 
Put l ls in the FCB as before, and in the memory space from 80 to FF. 
Why? This brings up the topic of the Data Transfer Area. 

The Data Transfer Area 

As we mentioned earlier, there must be a place in memory to store 
the actual data to be transferred between your program and the disk. If 
your program is reading a file, the operating system reads this data off 
the disk and places it in memory. If you're writing to the disk, your 
program first places the data in memory and then calls DOS to write the 
data to the disk. 

The part of memory used to transfer this data is called the "Data 
Transfer Area," or DTA. 

The Data Transfer Area is the place in memory where a 
record is stored on its way from or to a disk file. 

With sequential and random files only one record is transferred at a time. 
Thus the DTA needs to be only as large as one record. We've already 
mentioned that the default size for a record is 80h (128d) bytes. As you 
might guess, the default size for the DTA is also 80h bytes. There is also 
a default location for the DTA. It starts at offset address 80h, and goes up 
to FFh. (Your program can change this location by using function lAh, 
"Set Disk Transfer Address," but we don't need to worry about that for 
the moment.) 

Now that you know what the DTA is, you can fill both it and the FCB 
with l ls at the same time, in preparation for opening and reading a 
record. 

-f 40 ff 11 
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-e7c 

The Current Record Number 

The next thing we need to do is fill in the "current record number" 
in the FCB. If you refer to the parts of the FCB in Figure 11-2, you'll see 
that the current record number is at hex address 7Ch. What's the 
purpose of this number? 

Since we've divided our file into records, and since we're going to 
read or write one record at a time into the DTA, we need to know which 
record in the file we're going to transfer. That's the purpose of the current 
record number. In sequential files we start at the first record in the file, 
which is number 0. So before we can read or write a file we need to put 
the number O into location 7Ch. We'll do that using the "E" command. 

0905 : 007C 11. 0 <- type in Oto set FCB to the beginning of the file 

Finally we need to tell the operating system what file we want to 
access, so we use the "N" command as described above. (Remember that 
TESTFILE.TXT consists of a few short lines of prose created with your 
word processor or EDLIN.) 

-ntestfile . txt 

All set? Let's run the program! 

-g 
Program terminated normally 

So far so good, but how do we know what happened? The "bottom 
line" of course is whether we can find the contents of the record in the 
DTA, since what we're trying to do is read a record. But first let's check 
the FCB to see what happened to it. 

-d0 
0905 :0000 CD 20 00 20 00 9A F0 FF-0O F0 42 02 00 06 70 02 
0905:0010 00 06 E2 04 34 05 00 06-FF FF FF FF FF FF FF FF 
0905:0020 FF FF FF FF FF FF FF FF-FF FF FF FF 02 09 E6 FF 
0905:0030 05 09 00 00 00 00 00 00-00 00 00 00 00 00 00 00 
0905 :0040 11 11 11 11 11 11 11 11-11 11 11 11 11 11 11 11 
0905:0050 11 11 11 11 11 11 11 11-11 11 11 11 

01 54 45 53 
0905 :0060 54 46 49 4C 45 54 58 54-00 00 80 00 80 00 00 00 
0905:0070 Fl 06 10 6E 40 34 00 00-00 34 00 00 01 11 11 11 

I 
Record number 
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-d80 

Things are much the same as when we simply opened a file. However, 
there is one change: the current record number has been incremented. This is 
an important characteristic of sequential file access: each time a record is 
read, the current record number is automatically incremented to point to 
the next record in the file. Thus if you were reading a file with many 
records in it (rather than our little one-record demonstration), you could 
access the next record simply by repeating the Read Record function -
there would be no need to change anything in the FCB. 

So it's time for the moment of truth: is the record actually in the 
DTA? Let's dump it and see: 

0905:0080 4E 6F 77 20 69 73 20 74-68 65 20 74 69 6D 65 0D 
0905:0090 0A 66 6F 72 20 61 6C 6C-20 67 6F 6F 64 20 6D 65 
0905:00A0 6E 0D 0A 74 6F 20 63 6F-6D 65 20 74 6F 20 74 68 
0905:00B0 65 20 61 69 64 0D 0A 6F-66 20 74 68 65 69 72 20 
0905:00C0 63 6F 75 6E 74 72 79 2E-0D 0A lA lA lA lA lA lA 
0905:00D0 lA lA lA lA lA lA lA lA-lA lA lA lA lA lA lA lA 
0905:00E0 lA lA lA lA lA lA lA lA-lA lA lA lA lA lA lA lA 
0905:00F0 lA lA lA lA lA lA lA lA-lA lA lA lA lA lA lA lA 

Now is the time. 
. for all good me 
n .. to come to th 
e aid . . of their 
country ........ . 

There it is! Just as we typed it in. Because we used a word processor 
to create this file, the entire 128d byte record is used, and the unwritten 
bytes are filled in with lAh, which is the end-of-file character. On the 
other hand, if you have used EDLIN to create this file, the record will be 
exactly as long as the prose you put into it; it will not be filled out with 
end-of-file characters, but will have only one. 

If our file had been longer than 128d bytes it would have contained 
more than one record, and a second execution of the Read Sequential 
Record function would have been necessary to read the next record. 
However, it starts to get complicated to do this in DEBUG, so let's switch 
now to using the assembler, and see what a somewhat more sophisticated 
file-reading program looks like. 

READFILE - Program to Read Text Files 

The program shown below will read any text file and display it on the 
screen. It is very similar to the TYPE command built into the operating 
system, so it will give you some insight into how that command works. 

For READFILE to function properly the file to be read must consist 
of text, and it must terminate with an end-of-file character, lAh, as the 
last character in the file. This tells the program to stop reading records in 
the file. EDLIN and most word processors automatically put one (or 
more) end-of-files at the end of a file, so this should not be a problem. 
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= 0021 
= 000F 
= 0014 
= 0002 
= 005C 
= 001A 

0000 

007C 
007C 

0080 
0080 

0100 

0000 

0000 

0000 

0000 
0001 
0003 

0004 

?? 

80 [ 

lE 
2B C0 
50 

BA 005C 
0007 B4 0F 
0009 CD 21 

?? 

000B C6 06 007C R 00 

0010 
0010 BA 005C 
0013 B4 14 
0015 CD 21 

;READFILE--Reads sequential records of file 

doscall equ 
openf equ 
readseq equ 
display equ 

21h 
0fh 
14h 

2h 
5ch 
lah 

;DOS interrupt number 
;Open File function 
;Read Sequential rec 
;Display Charac funct 
;file control block 
;end-of-file character 

fcb equ 
eof equ 

. ********************************************* ' 
datarea segment ;program segment prefix 

org 7ch 
recno db ? ;record number 

org 80h 
dta db 80h dup (?) ;data transfer area 

datarea ends 
· **************** ****** *********************** ' 
pro_nam segment ;define code segment 

main proc far ;main part of program 

assume cs :pro_nam,ds:datarea 

start: ; starting execution address 

;set up stack for return 
push ds ;save DS 
sub ax ,ax ;set AX to 0 
push ax ;put it on stack 

;OPEN DISK FILE, SET RECORD NUMBER TO 0 
mov dx ,fcb ;set DX to FCB 
mov ah,openf ;Open File function 
int · dos cal 1 ; cal 1 DOS 
mov recno ,0 ;put 0 in 7C 

;READ RECORD FROM FILE, sequential mode 
reacLrec: 

mov dx ,fcb ;set DX to FCB 
mov ah ,readseq ;Read Rec function 
int doscall ;call DOS 
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0017 
001A 
0010 
0010 
0021 
0024 

0026 
0028 
002A 
002B 
002D 

002F 

0030 

0030 

B9 0080 
BB 0000 

8A 97 0080 R 
80 FA lA 
74 09 

B4 02 
CD 21 
43 
E2 F0 
EB El 

CB 

;PRINT RECORD FROM DISK TRANSFER AREA (DTA) 

printit: 

mov cx,80h ;number of chars in CX 
mov bx,0 ;initialize BX pointer 

mov dl, [dta + bx] ;get character 
cmp dl,eof ;end-of-file (lA) ? 
je exit ;yes, so file finished 

mov ah,display 
int doscall 
inc bx 
loop printit 
j mp reacLrec 

;Display function 
; call DOS 
;bump the pointer 
; do 80h times 
;go get another record 

exit: ret ;return to DOS 

marn endp ;end of main part of program 

pro__nam ends ;end of code segment 
'********************************************* ' 

end start ;end assembly 

As you can see, this program uses the same DOS functions as the 
DEBUG version shown earlier: the Open File and Sequential Read 
functions. Each time the program reads a record it then prints out the 
contents on the screen, using the Display Character function. As it does 
this it checks each character to see if it's an end-of-file character (lAh). 
When it finds one, the job is done, and it returns to DOS. 

There are several interesting points to notice about this program. 
First, how does the filename - of the file we want to read - get into the 
FCB? Second, why don't we need to put the DATAREA data segment 
into the DS register? And finally, how can we get away with writing over 
part of the FCB with the DTA? Let's look at these questions in order. 

How Does the Filename Get into the FCB? 

In DEBUG we inserted (into the FCB) the filename of the file we 
wanted to read by using the "N" command, which was tailored for that 
very purpose. Now we have a stand-alone program: how does the 
filename get into the FCB? 

The answer is simple: The operating system puts it there, if we type it 
following the primary program name. Thus if we wanted to read a file called 
NEWFILE.TXT, we'd call up READFILE like this: 

A>readfile newfile . txt 
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This is the same way you tell utilities like TYPE, ERASE, and 
RENAME what file you want to operate on. As does the "N" command, 
the operating system not only fills the filename into the FCB, it also fills 
in the various other fields, such as the record number, with their initial 
values. This is a great convenience. Think how hard your program would 
have to work to get the filename from the keyboard, change it to all caps, 
and then write it into the FCB and set all the other fields to their initial 
values. DOS handles it all for you, out of the goodness of its heart. 

Segments and the Program Segment Pre.fix 

Did you notice in READFILE that we didn't put the data segment 
name, DATAREA, into the DS register as we've done in the past? Herein 
lies a subtle and complex tale. 

When we used DEBUG to write our first file-reading program, the 
result was a COM file. The structure of a COM file is comparatively 
simple. All the segment registers are set to the same value. Thus there 
are no separate segments for data, extra segment, stack, and code. 
Everything is in the same segment. In a COM file, the Program Segment 
Prefix starts at location 0 in the segment, and extends up to location FF, 
for a total of 1 00h or 256d bytes. The FCB starts at 5Ch, and the DTA 
starts at 80h in the Program Segment Prefix. The program itself starts at 
location 100h. This was shown earlier in Figure 11-1. 

In EXE files things are a bit more complicated. There can be 
separate segments for data, extra data, the stack, and the code. The 
question is: Where is the Program Segment Prefix? Is it in one of these 
segments? The answer is no. The Program Segment Prefix is in a 
location of its own. How do we find it? Fortunately, both the DS and ES 
registers are set to point to it when an EXE file is first loaded. The 
operating system (or DEBUG, if we're debugging the program) takes care 
of setting DS and ES to the right segment address. This arrangement is 
shown in Figure 11-4. 

So for our program to access something in the Program Segment 
Prefix, it doesn't have to change the DS register at all. Of course, if we 
want to access data that our program has placed in the data segments, 
then we'll need to change the DS register to point to this segment. In some 
programs this involves switching the DS register back and forth 
repeatedly between its initial value (pointing to the Program Segment 
Prefix), and the value representing the address of the data segment in 
our program. 

Interference Between the DTA and the FCB 

You may have noticed that the FCB goes up to location 80h, and that 
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the DTA starts at location 80h, so there's an overlap of one byte, as 
shown in Figure 11-5. 

Isn't this overlap a problem? Yes it is. The reasons for it are rooted in 
the development of CP/M, in those distant times when CP/M went from 
using sequential access to random access and there was no place else to 
put something called the "random record number." For sequential access 
there's no problem, because this number isn't used. However, for random 
access we have to be careful. Often the DTA has to be moved to a 
different location to avoid conflict. We'll say more about this later. 

Data 

The address of 
this segment is 
in the OS and 
ES registers 
when the program 
is first loaded. 

Program segment prefix 

Code Program 

Stack 
segment 

Stack 

Figure 11-4. Program segment prefix in EXE files 

Extra 
Extra data 
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= 0021 
= 0016 
= 0015 
= 0010 
= 000A 
= 005C 
= 000D 
= 000A 

0000 

007C 
007C 

0080 
0080 

0100 

Writing a Sequential File 
Our next program is a simple one which takes sentences typed at the 

keyboard and writes them as records into a file on the diskette. Because it 
is such a simple program, we've taken certain shortcuts which make its 
operation a bit inelegant in some respects. We'll explain as we go along. 
Here's the program: 

?? 

80 [ 
?? 

7C 7D 7E 

Random 
record# 
(low) 

;WRITE-F--Writes sequential records 

doscall equ 
create equ 
writesq equ 
close equ 
buffin equ 
fcb equ 
return equ 
lfeed equ 

21h 
16h 
15h 
10h 
0ah 
5ch 
0dh 
0ah 

;DOS interrupt number 
;Create File function 
;Write Sequential rec 
;Close File function 
;buffered kbd input fn 
;file control block 
;ASCII carriage return 
; ASCII linefeed 

. ********************************************* ' 
datarea segment ;program segment prefix 

org 7ch 
recno db ? ;record number 

org 80h 
dta db 80h dup (?) ;data transfer area 

datarea ends 
·********************************************* ' 

7F 80 1 81 I 82 I 

Random 
record# 
(hi h) 

DTA 

File control block 

Figure 11-5. Overlap of FCB and DTA 
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0000 

0000 

0000 

0000 lE 
0001 2B C0 
0003 50 

0004 BA 005C 
0007 B4 16 
0009 CD 21 
000B C6 06 007C R 00 

0010 
0010 BB 0000 
0013 B9 0080 
0016 
0016 C6 87 0080 R 0D 
001B 43 
001C E2 F8 

001E C6 06 007E R 4E 
0023 BA 007E R 
0026 B4 0A 
0028 CD 21 
002A 80 3E 007F R 01 
002F 7E 14 

0031 8A lE 007F R 
0035 B7 00 
0037 C6 87 0081 R 0A 

003C BA 005C 
003F B4 15 
0041 CD 21 
0043 EB CB 

pro-11am segment ;define code segment 

main proc far ;main part of program 

assume cs:pro-11am,ds:datarea 

start: ; starting execution address 

;set up stack for return 
push ds ;save DS 
sub ax , ax ;set AX to 0 
push ax ;put it on stack 

;CREATE DISK FILE, SET RECORD NUMBER TO 0 
mov dx,fcb ;set DX to FCB 
mov ah,create ;Open File function 
int doscall ;call DOS 
mov recno ,0 ;put 0 in 7C 

;BLANK BUFFER BY FILLING WITH RETURNS 
newline: 

erase: 

mov bx ,0 
mov cx,80h 

;first char in DTA 
;CX is character count 

mov [bx+ dta],return ;put er in DTA 
inc bx ;advance pointer 
loop erase ;repeat until done 

;GET LINE FROM KEYBOARD 
mov dta-2 , 78 ;set max line length 
mov dx ,offset dta-2 ;addr of buffer 
mov ah,buffin ;buffered keybd input 
int doscall ;call DOS 
cmp dta-1 ,1 ;if no chars typed, 
j le exit ; then exit 

;insert linefeed following line of chars 
mov bl,dta-1 ;put actual char count 
mov bh,0 into BX 
mov [dta+bx+l],lfeed ;insert linefeed 

;WRITE RECORD TO FILE, sequential mode 
mov dx,fcb ;set DX to FCB 
mov ah,writesq ;Sequent Write funct 
int doscall ;call DOS 
jmp newline ;go get another line 
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0045 
0045 
0048 
004A 
004C 

0040 

0040 

BA 005C 
B4 10 
CD 21 
CB 

;CLOSE FILE AND EXIT 
exit : 

mov dx , fcb 
mov ah, close 
int doscall 
ret 

;put FCB address in DX 
;Close File function 
; call DOS 
;return to DOS 

main endp ;end of main part of program 

' pro-11am ends ;end of code segment 
'********************************************* ' 

end start ;end assembly 

WRITE-Fis called at the same time as the filename to be written to. 

A>write-f testl. txt 

As with READFILE, this fills in the FCB with the filename , 
TESTl.TXT. When it's first started, the program sits there and waits for 
us to type a sentence. We type something, which must be less than one 
screen line (actually less than 78d characters), and then press g. 
Whenever we do this, the program takes the entire DTA and writes it 
into the file as a single record. Then it goes back and waits for us to do it 
again. If we don't type anything, but simply hit g at the beginning of a 
line, the program knows we're done and returns to DOS. 

As you can see, this program introduces several new function calls. 

The Create File Function 

When we wanted to read a file , we assumed the file already existed. 
To access an existing file, we open it. However, when we want to write to a 
file, we can assume that the file does not yet exist. (We might also want to 
write to an existing file: we'll cover that later.) To create a file which does 
not exist we use the Create File function. 
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CREATE FILE Function - Number 16h 
Enter with: 

Reg AH 16h 

Reg DS segment address of FCB 

Reg DX = offset address of FCB 

The filename and extension must be entered in the File 
Control Block. 

Execute: 

INT 21 

Return with: 

Reg AL = 00 if creation is successful 
FFh if no space in directory 

In the File Control Block, the drive number, current block, 
record size, file size and date are filled in. 

If the file does not already exist, Create File creates it. If it does 
already exist, it is initialized to length zero, which destroys the previous 
contents of the file. 

The Sequential Write Function 

Writing to the diskette is similar to reading. Before we can write, the 
file must be opened or created, and the FCB has to be filled in 
accordingly. Each time we execute the Sequential Write function, a new 
record is written to the file and the record number is incremented. 
Actually the record may not be physically written to the disk every time 
this function is executed. If the record to be written isn't long enough to 
fill up an area of the diskette called a sector, it is placed in a buffer by the 
operating system. It stays there until there's a sector's worth of bytes, or 
until the file is closed; at which time all the accumulated records are 
written. You don't need to worry about this, since the operating system 
takes care of it automatically. A sector is 512d bytes, and is the primary 
unit of storage in the hardware-oriented world of the diskette drives. 
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SEQUENTIAL WRITE Function - Number 15h 
Enter with: 

Reg AH 

Reg DS 

Reg DX 

15h 

segment address of open FCB 

off set address of open FCB 

The filename and extension, and the current block, current 
record, and record size must be entered in the FCB. 
Execute: 

INT 21 

Return with: 

Reg AL = 00 if record written successfully 
= 01 if diskette is full 
= 02 if DTA too small , transfer ended 

The program is not as elegant as it might be. In what way? For one 
thing - in the interest of simplicity - there is no routine to print a 
carriage return and linefeed after each line is typed. As a consequence, 
each line you type overlays the previous one on the screen. We leave it to 
the reader to add a carriage return/linefeed routine. It could go after the 
section labeled "GET LINE FROM KEYBOARD." 

Second, since the same length record is always written, and the length 
of the lines typed in can vary from 2 characters up to 78, the program 
fills out the balance of the record with carriage returns. These can't be 
seen on the screen, but they take time to print; and the delay is 
noticeable when a file which was created with this program is printed out 
using TYPE or READFILE. This is a harder problem to correct. One 
way would be to wait until the DTA was full before calling the Sequential 
Write function . This would require our program to do a certain amount 
of bookkeeping - to keep track of how full the DTA was, and so on -
but would certainly be preferable in a serious program. 

Try using this program to create a record. Call it up, with the name 
of the file you want to create. Then enter some lines of prose ( each less 
than 78d characters). 
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A>write-f newfile.txt 
Gather ye rosebuds while ye may , 
Old Time is still a-flying: 
And this same flower that smiles 
Tomorrow will be dying. 

l These lines will 
today -actually overprint 

the first one 

Now use READFILE (or TYPE) to read the file back into memory 
and display it. It should contain all the lines you typed. Each of these 
lines is a separate record in the file, filled out with carriage returns to be 
128d bytes long. (You won't notice the linefeeds, except for the delay in 
printing the lines.) 

Record Lengths and the Operating System 

Notice that once a file is stored on the disk, there is no way to tell 
what size records were used to create it. On the disk it's simply a file with 
a certain number of bytes. If you use DIR or any other program to look 
at the file, you won't find out anything about how many records are in the 
file or how long they are. 

It's your program that decides what length records a particular file is 
to be divided into. It writes a certain number of records to the disk, 
which are then combined into a single file. Or it reads a certain number 
of records from a file, records whose length is again determined by the 
program. It's a little like ladling a cup of punch out of a big punch bowl. 
The cup holds one record's worth of punch. All the punch in the bowl is 
a file. You can use any size cup you want to take the punch out of the 
bowl, or to put it in, but once the punch is in the bowl it isn't divided into 
cups, it's just a big undivided mass. 

You could write a file using records of one length, and read it back 
using records of another length (though why you would want to do this is 
not clear). The point is that your program can think of a file as being 
divided into records of any length it wants, as shown in Figure 11-6. 

The Birthday Programs 
In appendix B we've included three example programs which make 

use of sequential files to create and use a file of birth dates. These 
programs show how sequential files can be used to store formatted data. 
The techniques used in the birthday programs can be used to store other 
- perhaps more useful - kinds of similar information, such as names 
and addresses, sales figures, stock prices, and so forth. 

The program SET-BD in appendix B lets you create a file of names 
and corresponding birthdays. You call up this program, then type in a 
name, a month, and a day; then another name, month and day; and so 
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forth until you're done. Each name/month/day group is an individual 
record. For efficiency, each record is 24d bytes long - that's smaller than 
the default value. This is an example of tailoring records for individual 
applications. (More information on operating the program is included in 
appendix B.) 

Once you have the birthdays in a file, you can put them to use with 
the second program, called GET-BD. Every day when you first sit down 
at the computer you can type: 

A>get-bd main .1st 

(where MAIN.LST is the name of the file the birthdays are stored in). 
GET-BD will read the current date from the system clock, and then go 
through the file to see if anyone has a birthday with the current day's 
date. If it finds any, it prints out the names. You can then call those 
people to wish them happy birthday. 

A third program, MOD-BD, is provided to modify the birthday file if, 
for instance, you find you've made a mistake, or you want to add some 
more names. 

If you're not going to be using sequential file access, then you can 
skip these programs and forge ahead with the remainder of this chapter. 

ONELINE.TXT 

~ow ( is t ( he t (ime ( for ( all l~ood r m~n (0 
File divided into records of 4 bytes 

ONELINE.TXT 

r Now is ( the t nme fo ( r all l~ood m (en. o 
The same file divided into records of 6 bytes 

ONELINE.TXT 

r Now is the time for all good men. 0 
The same file as the disk thinks of it 

Figure 11-6. File divided into records in different ways 

372 Assembly Language Primer for the IBM PC & XT 



Random Access 

The second way to read and write disk files is with the random access 
method. This is similar in many ways to sequential access, except that any 
record in a file may be accessed directly - there is no need to start at the 
beginning of the file and read all the records sequentially until you come 
to the one you want. The difference is shown in Figure 11-7. 

The Random Record Number 
One reason random records are easier to access is the way the 

random record number is structured. In sequential access there are 
actually two numbers used to specify the particular record in a file: the 
current record number at location 7Ch, and the current block number at 
locations 68h and 69h. When 127d records have been written to a file, 
the current record number is full. At this point a new "block" must be 
started, the current record number reset to zero, and the current block 
number incremented. This is somewhat awkward for your program to do 
(although it is possible) . 

The random record number, on the other hand, is simply a four-byte 
number. Thus random records start at O and go all the way up to more 
than 4 billion. (There isn't much chance you'll run out of record 
numbers.) Since the four bytes of the random record number constitute a 
double-word, they can be dealt with directly by assembly-language 
instructions, with no translation into blocks required. 

b) Random access 

Figure 11-7. Random access and sequential access 

Reading and Writing Disk Files 373 



The Random Read Function 

RANDOM READ Function-Number 21h 
Enter with: 

Reg AH = 21h 

Reg DS = segment address of open FCB 

Reg DX = offset address of open FCB 

The filename and extension, and the record size, and 
random record numbers must be entered in the FCB. 

Execute: 

INT 21 

Return with: 

Reg AL = 00 if record read successfully 
= 01 if end-of-file, no data in record 

02 if DTA too small, transfer ended 
= 03 if end-of-file, partial record 

The Random Read function is quite similar to the Sequential Read. 
However, one difference to keep in mind is that the random record 
number is not automatically incremented when a record is accessed, the 
way the current record number is. Thus, if you use the Random Read 
function to read a record, and then use it again without changing the 
random record number, you'll read exactly the same record again. In 
other words, it is your program's responsibility to insert the correct random 
record number in the FCB before every random disk access (read or write). 

The READRAND Program 
The program shown below reads a single random record from 

anywhere in the file. As with the other programs in this chapter, the file 
to be read from is specified by typing its name following "readrand." The 
record number to be read is specified by typing it in after the program is 
loaded. Here's the program: 
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= 0021 
= 000F 
= 0021 
= 0002 
= 0001 
= 005C 
= 001A 

0000 

0070 
0070 
007F 

0080 
0080 

0100 

0000 

0000 

0000 

0000 
0001 
0003 

0004 
0007 
0009 

???? 

???? 

80 [ 
?? 

lE 
2B C0 
50 

BA 005C 
B4 0F 
CD 21 

;READRAND--Reads random record in file 
record number is typed in by user 

doscall equ 
openf equ 
readran equ 
display equ 
key_in equ 
fcb equ 
eof equ 

21h 
0fh 
21h 

2h 
lh 

5ch 
lah 

;DOS interrupt number 
;Open File function 
;Read Random Record 
;Display Character fun 
;Keyboard Input funct 
;file control block 
;end-of-file character 

·********************************************* ' 

datarea segment 

org 7dh 
randlow dw ? 

randhi dw ? 

org 80h 

;program segment prefix 

;random rec numbers in FCB 
;random record number (lo) 
;random record number (hi) 

dta db 80h dup (?) ;data transfer area 

datarea ends 
. ********************************************* ' 

pro__nam segment ;define code segment 

main proc far ;main part of program 

assume cs:pro__nam,ds:datarea 

start: ; starting execution address 

;set up stack for return 
push ds ;save OS 
sub ax,ax ;set AX to 0 
push ax ;put it on stack 

;OPEN DISK FILE 
mov dx,fcb 
mov ah,openf 
int doscall 

;set DX to FCB 
;Open File function 
; call DOS 
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000B 
000D 
000F 
0011 
0012 
0015 

0018 
001E 
0020 

0022 
0025 
0028 
0028 
002C 
002F 
0031 
0033 
0035 
0036 

0038 

0039 

0039 

B4 01 
CD 21 
2C 30 
98 
A3 007D R 
C7 06 007F R 0000 

BA 005C 
B4 21 
CD 21 

B9 0080 
BB 0000 

8A 97 0080 R 
80 FA lA 
74 07 
B4 02 
CD 21 
43 
E2 F0 

CB 

;GET RECORD NUMBER FROM KBD, PUT IN FCB 
mov ah,key_in ;Keyboard Input funct 
int doscall ; call DOS 
sub al ,30h ;convert to binary# 
cbw ;convert byte to word 
mov randlow,ax ;put in FCB random low 
mov randhi,0 ;put 0 in random high 

;READ RECORD FROM FILE , random mode 
mov dx ,fcb ;set DX to FCB 
mov ah,readran ;Read Rec function 
int doscall ; call DOS 

;PRINT RECORD FROM DISK TRANSFER AREA (OTA) 
mov cx ,80h ;number of chars in ex 
mov bx ,0 ; initialize BX pointer 

printit: 
mov dl , [dta + bx] ;get character 
cmp dl ,eof ;end-of-file (lA) ? 
je exit ;yes , so file finished 
mov ah ,display ;display function 
int doscall ; call DOS 
inc bx ;bump the pointer 
loop printit ;do 80h times 

exit : ret ;return to DOS 

main endp ;end of main part of program 

' pro-11am ends ;end of code segment 
'********************************************* ' 

end start ;end assembly 

To keep this program simple we've left out a routine to translate 
decimal numbers typed at the keyboard to binary in the program. 
Instead, we read a single character from the keyboard, which we assume 
is a digit from 0 to 9, and convert it to binary by subtracting 30h. Thus, 
record numbers higher than 9 cannot be accessed . 

Also, to simplify the program we've left the DTA at its default 
address. Since we're using the random record number, which occupies 
locations from 7D to 80, there can be a conflict if we at the same time try 
to use location 80 as the first byte of the DTA. However, things work out 
all right in our program because we always zero out (write a zero to) the 
high part of the random record number after filling the DTA and before 
reading a record. 

To demonstrate how this program works, we created a short prose 
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file, using EDLIN. Here's what it looks like, read back again using 
READ FILE: 

A>readfile duchess. txt 
"It hardly matters," said the Duchess, removing an 

imaginary crumb from one of the antimacassars. "After all, the 
poor boy did have the temerity to question the established 
order." 

"But surely, " the vicar's face grew ashen, "that's not 
reason enough to. . . I mean, the lions? 11 

"Hush , " the Duchess told him soothingly. "The servants 
will hear you. 11 

Stored on the disk, this file - as we discussed before - is simply a 
string of characters. However, we'll assume that we want to access it in 
records of 80h bytes. READRAND uses this value for the record size, 
since it's the default value. Thus, each time we run the program, we'll see 
one 80h-byte record. Which record we see is determined by the digit we 
type after the program is loaded, as shown in the example session below. 

A>readrand duchess.txt 
1 
have the temerity to question the established order." 

"But surely, " the vicar's face grew ashen, "that's not 
reason enough 

A>readrand duchess. txt 
0 

"It hardly matters," said the Duchess, removing an 
imaginary crumb from one of the antimacassars . "After all, the 
poor boy did 

A>readrand duchess. txt 
2 
to. . . I mean, the lions? 11 

"Hush, " the Duchess told him soothingly. "The servants 
will hear you. " 

We asked for the second record of the file (number 1) first, then the 
first (number 0) and finally the last (number 2). 

Writing Random Records 
Writing random files is very similar to reading them, so we won't 

show an example program that does this. There are, however, several 
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possible pitfalls involved in using such a program. First, avoid writing 
noncontiguous records. What do we mean by that? Say you've written 
records 0, 1, 2, and 3. If you now write a record number 7, the operating 
system may become confused about the status of records 4, 5, and 6, and 
trouble can result. 

Similarly, don't try to read nonexistent records. If you've only written 
0, 1, and 2, you'll get unpredictable results if you try to read record 3. 

Random Block Access 

Random Block access makes it possible to read or write an entire file 
with one DOS function, instead of a single record. Random block access 
has the advantage of being simple to use: only one call to the function is 
necessary to read or write the file. On the other hand, it has the 
disadvantage that the Data Transfer Area which the file is read into (or 
written from) must be large enough to hold the entire file. 

Of course, if the files you want to read are fairly small, and your 
system has enough memory, then this isn't a problem. And it's also 
possible to break a large file down into several blocks (each containing a 
number of records), and access one block at a time until the entire file 
has been transferred. In short, Random Block access provides a 
considerably more flexible means of file access than the more traditional 
sequential and random access methods. Random Block access also works 
with DOS versions 1 and 2. The only potential compatibility disadvantage 
is that should you ever want to translate your program to run under the 
CP/M operating system in use on many 8-bit computers, you would need 
to modify your file-accessing routines, since CP/M does not use Random 
Block access. 

The Random Block Read Function 
We're going to show only the Random Block Read function. Random 

Block Write is very similar, and can be easily figured out from the 
techniques used for Read. 
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RANDOM BLOCK READ Function - Number 
27h 
Enter with: 

Reg AH 

Reg DS 

Reg DX 

Reg ex 

27h 

segment address of open FeB 

offset address of open FeB 

number of records to read 

The filename and extension, and the record size, and 
random record numbers must be entered in the FeB. 

Execute: 

INT 21 

Return with: 

Reg AL = 00 if all records read successfully 
01 if end-of-file, last record complete 

= 02 if DTA too small, transfer ended 
= 03 if end-of-file, last record partial 

Reg ex = actual number of records read 

As you can see, there is one important additional step to using this 
function: the number of records to be read must be placed in the ex 
register before the function is called. This is fine if we know in advance 
how big the file is, but what if we want to read an entire file of unknown 
size? One way would be to simply use a very large DTA and assume that 
the file would be small enough to fit. This would give an error return of 
AL= 01. We could then figure out the size of the file by looking at ex, 
which returns with the actual number of records read. 

The File Size Function 
Another way to read a file of unknown size is to figure out in advance 

how large it is by using the File Size DOS function. 
By using the File Size function we can set up our Random Block 

Read function to read exactly the right number of records at one time. 
We use this approach in the READBLOK program shown below. This 
program does just what READFILE and READRAND did; that is, it 
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reads a text file from the disk and displays it on the screen. In 
READBLOK, however, we can read the file with a single function call, so 
no looping is required in the program (except to print out the contents of 
the DTA on the screen). 

FILE SIZE Function- Number 23h 
Enter with: 

Reg AH 

Reg DS 

Reg DX 

23h 

segment address of unopened FCB 

offset address of unopened FCB 

The filename and extension, and record size must be entered 
in the FCB. 

Execute: 

INT 21 

Return with: 

Reg AL = 00 if file is found 
= FFh if file not found 

Random record file is set to number of records in the file, in 
terms of the record size specified on entry. 

Note that we must set the record size field before calling File Size, 
and that we can't open the file until we've obtained its size. Before using 
Random Block Read we set the random record number (four bytes) to 
zero, which is the start of the file. 

If we were going to divide a file into several blocks, then the random 
record field would be set automatically to point to the next record to be 
read, so it would not have to be changed for subsequent iterations of the 
Random Block Read call. 

The READBLOK Program 
The listing for READBLOK is shown below. 
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= 0021 
= 000F 
= 0023 
= 0002 
= 0009 
= 0027 
= 0024 

= 0080 
= 005C 
= 001A 

0000 

006A 
006A ???? 

0070 
0070 ???? 

007F ???? 

0080 
0080 4000 [ 

?? 

l 
4080 4E 6F 20 73 75 63 

68 20 66 69 6C 65 
6E 61 60 65 2E 24 

4092 42 61 64 20 72 65 
61 64 2E 24 

409C 

0000 

0000 

0000 

;READBLOK--Read File, using Random Block Read 
Display file on screen 

doscall equ 21h ;DOS interrupt number 
openf equ 0fh ;Open File function 
geLfs equ 23h ;get file size funct 
display equ 2h ;display character fun 
print-1Il equ 9h ;print message funct 
block_r equ 27h ;Random Block Read fun 
seLran equ 24h ;set random rec field 

r_size equ 80h ;record size 
fcb equ 5ch ;File Control Block 
eof equ lah ;end-of-file character 

·********************************************* ' datarea segment 

org 
rs_field dw 

rl 
r2 

org 
dw 
dw 

6ah 
? 

7dh 
? 
? 

;define data segment 

;rec size field in FCB 

; random rec size (low) 
;random rec size (hi) 

org 80h ;start of OTA 
dta db 4000h dup (?) ;data transfer area 

messl db 'No such filename.$ ' 

mess2 db 'Bad read.$' 

datarea ends 
. ********************************************* ' 

pro-11am segment ;define code segment 

main 

start: 

proc far ;main part of program 

assume cs:pro-11arn,ds:datarea 

;starting execution address 
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;set up stack for return 
0000 lE push ds ;save OS 
0001 2B C0 sub ax,ax ;set AX to 0 
0003 50 push ax ;put it on stack 

;SET RECORD SIZE IN FCB 
0004 C7 06 006A R 0080 mov rs_field,r_size 

;GET FILE SIZE 
000A BA 005C mov dx, fcb ;FCB into DX 
000D B4 23 mov ah,get_fs ;get file size funct 
000F CD 21 int doscall ; call DOS 
0011 FE C0 inc al ;is AL=0? (was it FF?) 
0013 74 3D JZ nofile ;yes, so no file found 
0015 8B 0E 007D R mov cx,rl ;put file size into CX 

; OPEN THE FILE 
0019 BA 005C mov dx, f cb ;put FCB addr in DX 
001c B4 0F mov ah, openf ;Open File function 
001E CD 21 int doscall ; call DOS 

;ZERO OUT RANDOM RECORD FIELD 
0020 C7 06 007D R 0000 mov rl, 0 ;low byte 
0026 C7 06 007F R 0000 mov r2,0 ;high byte 

;READ BLOCK 
; (number of records still in CX) 

002C BA 005C mov dx,fcb ;put FCB address in DX 
002F B4 27 mov ah,block_r ;block read function 
0031 CD 21 int doscall ;call DOS 
0033 0A C0 or al,al ;check if read o.k. 
0035 75 21 jnz bacLread ;if AL not 0, bad read 

;PRINT OUT CONTENTS OF BUFFER 
0037 B8 0080 mov ax,r_size ;bytes/record in AX 
003A F7 El mul ex ;# of records in ex 
003C 8B C8 mov cx,ax ;# of bytes now in ex 
003E BB 0000 mov bx,0 ;set pointer to 0 
0041 do_print: 
0041 8A 97 0080 R mov dl, [dta + bx] ; get character 
0045 80 FA lA cmp dl,eof ;end-of-file (lA) ? 
0048 74 07 je exit ;yes 
004A B4 02 mov ah,display ;display function 
004C CD 21 int doscall ; call DOS 
004E 43 inc bx ;bump pointer 
004F E2 F0 loop do_print ;do all characters 
0051 CB exit: ret ;return to DOS 
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0052 
0052 
0055 
0058 
0058 
005B 
005E 
005E 
0061 
0063 
0065 
0067 

0068 

0068 

BA 4080 R 
EB 07 90 

BA 4092 R 
EB 01 90 

B8 ---- R 
8E D8 
B4 09 
CD 21 
CB 

;PRINT OUT MESSAGES 
nof ile: 

mov dx, offset messl ;get message 
jmp prinL.mess 

bacLread: 
mov dx, offset mess2 ;get message 
jmp prinL.mess 

prinL.mess: 

main 

' 

mov 
mov 
mov 
int 
ret 

endp 

ax ,datarea 
ds , ax 
ah ,print_m 
doscall 

;put data segment 
; in DS register 
;print message funct 
; call DOS 
;return to DOS 

;end of main part of program 

pro_nam ends ;end of code segment 
· ********************************************* ' 

end start ;end assembly 

In this program we've included some error messages. First, if the 
filename specified is not found , the "No such filename" message will be 
printed. You can try this out easily, by calling up the program with a 
nonexistent filename: 

A>readblok nosuch.fn 
No such filename . 
A> 

Also, if for any reason the read operation is less than successful, the 
"Bad Read" message will be printed. 

Segment Management 

There's an important detail to notice about the error-printing part of 
this program. Remember that when the operating system first loads the 
program it automatically sets the DS and ES registers to point to the 
Program Segment Prefix. They don't automatically point to the data 
segment. That's all right, as long as we don't want to access anything in 
the data segment. However, the error messages are in the data segment. 
How can we get at them? 

No problem. We simply place the address of DATAREA (the data 
segment) in DS before trying to access our error messages. We do this in 
locations 005E and 0061. 
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Random Block Write and the SA VEIMAG Program 
In appendix B you'll find a program called SAVEIMAG. This 

program takes the image of the monochrome screen, converts it to a file 
of ASCII characters, and writes it to the disk. It is analogous to the 
"screen dump" function which sends the screen image to the printer 
when (QJ ( PrtSc ) are pressed, except that the image is saved as a file on the 
disk, rather than as a printout. This can be useful if, for example, you 
want to incorporate the screen image into a longer text file or manipulate 
it with your word processing program. 

SAVEIMAG makes use of the Random Block Write function to write 
a buffer containing all the screen characters to the disk at one time. Since 
the number of characters is known in advance, we simply write enough 
records to include the full number of characters. The record size is the 
default value of 80h, and the number of characters to be written is 
2050d, so the number of records (we let the assembler calculate it for us) 
is 10h. This is the number placed in CX before calling the Random Block 
Write function. 

Summary 

In this chapter you've learned about three methods of accessing files 
on the disk: sequential access, random access, and random block access. 
From the information in this chapter you should be able to solve almost 
any disk-access problem, with one exception: you can't deal with 
pathnames. Read on for a solution. 
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File Handle Disk A·ccess 

Concepts 
File Handles 
ASCIIZ strings 
Access codes 
File attributes 

DOS Functions 
(DOS version 2.00 only) 
Open a File 
Read from a File or Device 
Create a File 
Write to a File or Device 
Close a File Handle 
Move File Read/Write Pointer 

/ n this chapter we're going to cover the last, and most sophisticated, 
of the four PC-DOS file access techniques: file handles. As we noted in 
the last chapter, the need for this new method arose because of the 
pathnames introduced in DOS 2.00. The file access techniques discussed 
in the last chapter all use the File Control Block to tell the operating 
system what filename to access, and the FCB has room only for an 8-
character filename (plus 3-character extension), not a pathname. Thus a 
whole new system had to be created, and Microsoft, Inc. (the developers 
of PC-DOS) took advantage of this opportunity to develop a file access 
technique that was radically different from those that had gone before. 

Features of File Handle Access 

What's so different about file handle access? Three major features. 
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No More FCB 
First, there is no more File Control Block. The various numbers in 

the FCB such as record size, file size, record number, and so forth , have 
been absorbed into DOS and are no longer "visible" to your program. To 
put it another way, you don't have to worry about them anymore. As for 
the filename itself, it has been replaced by the pathname, and the 
pathname has been made part of something called an ASCIIZ string. 
More on this later. 

No More Records 
The second major difference between file handle access and earlier 

systems is that the whole concept of records has disappeared. Now, only 
bytes are considered. A file is viewed as containing so many bytes, and if 
you want to read the file, that's how many bytes you read, using a single 
function call. Neither your program nor the operating system has to 
worry about records or record sizes. Random block access, discussed in 
the last chapter, went part way in this direction, but still operated in 
terms of records. 

Introducing File Handles 
The third way file handle access is different is that once a file has 

been opened, it is thenceforth referred to, not by its pathname - which 
can be long and cumbersome - but by a 16-bit file handle. Each open file 
is assigned a unique one. This file handle simply provides a shorthand 
way of referring to the file. Instead of all the Read, Write and other DOS 
functions having to communicate a long pathname to the operating 
system to access a file, they can use the file handle instead. Figure 12-1 
shows - somewhat impressionistically - how this looks . 

For those of you who are familiar with BASIC, there is some 
similarity between the file handle system used in PC-DOS, and BASIC's 
approach to disk files . In BASIC you first open a file with a statement 
like this: 

100 OPEN "R" 2 "PROGNAM/ EXT" I, 
Buffer number 

This statement opens a file called PROGNAM.EXT for random access, 
and assigns to the file a buffer number of 2. Subsequent access to this file 
is made using this buffer number, not the file name. Thus to read 
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something from record number R % in the file, the BASIC program 
would execute this statement: 

200 GET 2, R% 
I 

Buffer number 

Note how a single number has been assigned to the file, and is now used 
for reading and writing to the file. The buffer number in BASIC and the 
file handle in PC-DOS perform similar functions. 

Other Features 

There are other - less major - features of the file handle access 
technique. We'll mention them here briefly, then plunge right into an 
example program which opens a file, so we can see the ideas in action. 
Then we'll discuss all these aspects of file handle access in greater detail, 

Fourscore and seven 
The operating system years ago our 

forefothers brought File identifies a file by 
forth upon this its pathname. 
continent a new 

I DIRl "-- DIR2 "-- FILE.TXT I 
Pathname 

File handle 

Fourscoreland ~ven 
The Open a File function 
causes a file handle r::u 0006 ijht File (a 16-bit number) 

forth upon this to be assigned 
continent a new to the file. 

I DIRl "-- DIR2 "-- FILE.TXT I 

Fourscore and seven 
From then on (until the 

r::Q 0006 Qht 

file is closed), a program 
File can access the file 

forth upon this using the file handle 
continent a new instead of the pathname. 

Figure 12-1. Pathnames and file handles 
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before moving on to programs that read and write files. 
First, errors are handled in a more uniform way with file handle 

access than with the older disk access techniques. If an error of any kind 
occurs in any of the file handle DOS functions, the 8088 carry flag is set 
on return from the function. Thus a simple JC instruction is sufficient for 
your program to determine if an error has occurred. The AX register 
returns an error code, and the error codes are the same for all the 
functions, which makes it easier for your program to analyze them. 

Second, when a file is opened it is given an access code. This 
determines whether the file is opened for reading, writing, or both. The 
access code can help to ensure that your program doesn't do something 
unexpected to the file, like write to a read only file. 

Finally, when a file is first created it is given an attribute. This 
determines whether a file is read only, hidden, a system file, and so forth. 
We'll cover all this in more detail later. 

The ZOPEN Program 
The following program not only opens a file using the file handle 

technique, but also prints out a message and error code if there are any 
errors, and prints out the numerical value of the file handle if the file was 
opened successfully. By playing with this program we will begin to learn 
how to use the new file handle access technique; to get a handle on 
handles, so to speak. 

To print out file handles and error codes in hex, the program 
incorporates the BINIHEX subroutine described in chapter 6. 

Here's the program: 

0000 

0000 31 
0001 ?? 

0002 32 [ 
?? 

l 
0034 00 0A 45 6E 74 65 

72 20 50 61 74 68 

;ZOPEN--Program to open file 
uses ASCIIZ format 
prints file "handle" if found 

· ********************************************* ' 

datarea segment 

narnbuff db 49 
db ? 
db 50 dup (?) 

;define data segment 

;maximum bytes 
;bytes actually read 
;buffer 

intro db 0dh ,0ah, 'Enter Pathname: $' 
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6E 61 6D 65 3A 20 
24 

0047 45 72 72 6F 72 20 
24 

004E 0D 0A 24 
0051 

0000 

0000 

0000 
0000 
0001 
0003 

lE 
2B C0 
50 

0004 B8 ---- R 
0007 8E D8 

0009 
0009 BA 0034 R 
000C B4 09 
000E CD 21 

0010 BA 0000 R 
0013 B4 0A 
0015 CD 21 

0017 BA 004E R 
001A B4 09 
001C CD 21 

001E 8A lE 0001 R 
0022 B7 00 
0024 C6 87 0002 R 00 

0029 BA 0002 R 

emess db 'Error$' 

crlf db 0dh,0ah, '$' ;return and linefeed 
datarea ends 
· ***************************************~***** ' 

zopen segment ;define code segment 

main proc far ;define main process 

assume cs:zopen, ds :datarea 

;SET UP STACK FOR RETURN 
start : 

push ds 
sub ax,ax 
push ax 

;save DS 
;set AX to zero 
;put it on stack 

;SET OS TO DATA BUFFER 
mov ax,datarea 
mov ds,ax 

;READ IN PATHNAME OF FILE TO BE OPENED 
newf ile: 

mov dx, offset intro ;intro message 
mov ah,9h ;print message funct 
int 21h ;call DOS 

mov dx,offset nambuff ;addr of buffer 
mov ah ,0ah ;buff kbd input funct 
int 21h ;call DOS 

mov dx ,offset crlf ;return+ linefeed 
mov ah ,9h ;print message functn 
int 21h ;call DOS 

;INSERT ZERO IN BUFFER FOLLOWING NAME 
mov bl,narnbuff+l ;get# of bytes read 
mov bh ,0 , put in BX 
mov [narnbuff+bx+2] ,0 ;zero into byte 

;SET DS:DX TO ASCIIZ STRING 
mov dx ,offset narnbuff+2 ;addr of name 
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002C B0 00 

002E B4 30 
0030 CD 21 

0032 8B 08 
0034 72 05 
0036 E8 0046 R 
0039 EB CE 

003B 
003B BA 0047 R 
003E B4 09 
0040 CD 21 
0042 E8 0046 R 
0045 CB 

0046 

0046 

0046 B5 04 
0048 Bl 04 
004A 03 C3 
004C 8A C3 
004E 24 0F 
0050 04 30 
0052 3C 3A 
0054 7C 02 
0056 04 07 
0058 
0058 8A 00 
005A B4 02 
005C CD 21 
005E FE CD 
0060 75 E6 
0062 C3 

0063 

0063 

;SET AL TO ACCESS CODE 
mov al,0 

;OPEN THE FILE 
mov ah,3dh 
int 21h 

mov bx,ax 
j c error 
call binihex 
jmp newf ile 

;ERROR ROUTINE 
error: 

;file open for reading 

;funct # to open file 
; call DOS 

; put "handle" in BX 
; error return? 
;no, print handle 
;get another file 

mov dx , offset emess ;error message 
mov ah,9h ;funct # to print mess 
int 21h ;call DOS 
call binihex ;print error number 
ret ;return to DOS 

main endp ;end main process 

' binihex proc near 

' ;SUBROUTINE TO CONVERT BINARY NUMBER IN BX 
; TO HEX ON CONSOLE SCREEN 

mov 
rotate: mov 

rol 
mov 
and 
add 
cmp 
jl 
add 

printit: 
mov 
mov 
int 
dee 
jnz 
ret 

t 

binihex endp 

ch,4 
cl , 4 
bx ,cl 
al ,bl 
al,0fh 
al ,30h 
al, 3ah 
printit 
al, 7h 

dl,al 
ah,2 
21h 
ch 
rotate 

;number of digits 
;set count to 4 bits 
;left digit to right 
;move to DL 
;mask off left digit 
;convert hex to ASCII 
;is it> 9? 
;no, so 0 to 9 digit 
;yes, so A to F digit 

;put ASCII char in DL 
;display output funct 
;call DOS 
; done 4 digits? 
;not yet 
; done subrqutine 

zopen ends ;end code segment 
·********************************************* t 

end start ;end assembly 
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If you want, you can type in this program and try running it now, 
even though we haven't yet explained how it works. All the program does 
is open the file whose pathname you type in following the program's 
prompt. If the file is opened without error, it prints the 16-bit file handle 
which DOS has assigned to the file; it then asks you for another 
pathname. If it can't find the file, or if some other error takes place, it 
prints "Error" followed by the error number, and returns to DOS. Let's 
try it out: 

A>zopen 

Enter Pathname: zopen. 1st 
0005 
Enter Pathname : zread.lst 
0006 
Enter Pathname: zwrite.lst 
0007 
Enter Pathname: dirl \header.txt 
0008 
Enter Pathname: dirl \box. txt 
0009 
Enter Pathname: dir2 \function . txt 
Error 0004 

The six pathnames we used all exist, so the program printed out the 
file handle assigned to each one, until the last. What happened there? 
The trouble is that only five files can be opened at once when using file 
handles. Error 4 is "too many open files, no handles left." (We'll talk 
more about errors later.) 

If only five files can be opened at once it's not clear why 16-bit file 
handles are necessary: 8-bit handles would have been plenty large 
enough. However, 16-bit handles is what they are. Perhaps they leave 
room for future expansion. 

What happens if we try to open a nonexistent file? 

A>zopen 

Enter Pathname: nosuch .fil 
Error 0002 

Error 2 is "fi le not found," which is just what you'd expect. 
Now that we see what the program does, let's investigate in detail how 

it does it. 
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Pathnames 

It's not quite as easy for our program to get hold of a pathname as it 
was to access the filename in the FCB. In ZOPEN, the program itself 
accepts the responsibility of getting the pathname from the user, first 
printing the "Enter Pathname:" prompt message. 

The pathname could also have been obtained from the buffer at 
location 80h in the Program Segment Prefix. Everything we type in 
following the name of the file to be loaded is left in this buffer for access 
by our program. We can verify this using DEBUG: 

A>debug zopen.exe \dirl \asmfiles \zopen. asm 
-d80 
0905:0080 19 20 5C 64 69 72 31 5C-61 73 6D 66 69 6C 65 73 
0905:0090 5C 7A 6F 70 65 6E 2E 61-73 6D 0D 00 00 00 00 00 
0905:00A0 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 
0905 :00B0 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 
0905:00C0 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 
0905:00D0 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 . 
0905:00E0 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 
0905:00F0 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 

. \dirl \asmfiles 
\zopen. asm . ... . . 

There's the entire pathname in memory, waiting for our program to 
grab hold of it. However, for references to different pathnames from 
within the program, this is somewhat awkward because the Program 
Segment Prefix is in a different segment than the DATAREA data 
segment in which our program's messages are stored. To print a message 
we'd need to put the address of DATAREA in DS; but to read the 
pathname we'd have to put the value that was originally in DS back into 
DS. Switching back and forth like this is tedious, so it's more convenient 
to keep the pathname buffer in our own program's data segment. 

The maximum pathname length allowed is 63d bytes, so we'll 
somewhat arbitrarily limit the buffer's size to 50d bytes. We'll use the 
Buffered Keyboard Input function to do the reading - this gives us full 
editing functions as we type the pathname. 

ASCIIZ Strings 

To open a file we must communicate the pathname of the file to the 
Open a File DOS function (number 3Dh). However, this function is 
actually not expecting the pathname as input. It is expecting a slight 
variation of the pathname called an ASCIIZ string. This is simply the 
pathname followed by a byte with a value of zero (hence the name 
ASCIIZ, for "ASCII-Zero"). The segment and offset addresses of the 
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resulting ASCIIZ string are then placed in the DS and DX registers, so 
that when the Open a File function is called it will know what pathname 
to open. See Figure 12-2. 

The zero byte is inserted in the buffer following the pathname (see 
locations 001 E to 0024 of the program) to form the ASCIIZ string. The 
DS register was set to DATAREA early in the program, so it points to the 
segment address of the ASCIIZ string; the offset address is set in location 
0029. 

Access Code 
A file can be opened with one of three access codes: 

0 - File is open for reading. 

1 - File is open for writing. 

2 - File is open for both reading and writing. 

These codes tell the operating system things like, "I'm opening a file 
for reading only. If I try to write to it later, it's a mistake; don't let me do 
it." 

When a file is created, it's given an attribute. We'll talk about attributes 
later, when we cover the Create a File function. However, one of the 
attributes that can be given a file is read only. If, in an attempt to open a 
file which has been given the read only attribute, your program uses an 
access code that permits writing, an error message 5, "Access denied," 
will be generated. Attributes and access codes together constitute a 
means of protecting files from being improperly read or written to. 

The access code is set by the program using the instruction in 
location 002C. The code used is 0, which opens the file for reading. 

The Open a File Function 
Now that DS:DX is loaded with the address of the pathname and AL 

is set to the access code, we're ready to open the file. Note that the Open 

Pathname Zero byte 

ro( (R (, (>JF (1 (L rE ( (r (x (r ro10 
ASCIIZ String 

Figure 12-2. Pathname and ASCIIZ string 
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a File function, number 3Dh, is not the same as the earlier Open File 
function, number Fh, used for sequential and random access. 

OPEN A FILE Function- Number 3Dh 
Enter with: 

Reg AH = 3Dh 

Reg DS = segment address of ASCIIZ string 

Reg DX = offset address of ASCIIZ string 

Reg AL = access code 

Execute: 

INT 21 

Return with: 

Carry flag = 0 if operation successful 
= I if error occurred 

Reg AX = file handle if file opened successfully 
= error code if error occurred 

Possible errors are 2, 4, 5 and 12 

When the Open a File function is executed, there are two possible 
results: either the file is found and opened successfully, or it isn't. If it is 
opened successfully, AX will contain the 16-bit file handle which will be 
used in all subsequent references to the file, such as reading it, writing to 
it, or closing it. Clearly your program should take care not to lose this 
number. It's like the claim check for your coat at a restaurant: if you lose 
it, you won't be able to access the file, or your coat, again. 

File Handles 
As we've seen, there are only so many file handles. Also, we've seen 

that the handle numbers seem to start with 0006, rather than with 0000 
as you'd expect. Why? The handle numbers 0000 to 0005 are predefined 
by DOS, and already stand for various input and output devices, as 
shown in the list below: 

Handle - Predefined Files 

0000 - Standard input device. Input can be redirected. 
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0001 - Standard output device. Output can be redirected. 

0002 - Standard error output device. Output cannot be redirected. 

0004- Standard auxiliary device. 

0005 - Standard printer device. 

These predefined file handles are used with redirection, the advanced 
PC-DOS feature that lets you take the input or output which would 
normally go one place, and redirect it someplace else, say to the printer 
instead of a disk file. We're not going to discuss redirection here; for an 
explanation of redirection and other DOS advanced features, see DOS 
Primer for the IBM PC and XT by Mitchell Waite, John Angermeyer, and 
Mark Noble (New York: Plume/Waite, New American Library, 1984). 

If the carry flag is set on return from opening the file, it means an 
error has occurred. 

Errors-
Errors are handled much more uniformly in the file handle functions 

than in the sequential and random functions. In all the file handle 
functions, if the carry flag is set on completion of the call, it means that 
an error has occurred. A zero in the carry flag means the operation was 
successful. If an error occurred, the AX register always contains the error 
code, and these codes are all taken from the same list (although not all 
the errors on the list are possible with a given function). 

Here's the list of error codes: 

Decimal 
Code 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

Hex 
Code 

01 
02 
03 
04 
05 
06 
07 
08 
09 
OA 
OB 
oc 

Error 
Description 

Invalid function number 
File not found (a common error) 
Path not found 
Too many open files (no handles left) 
Access denied (wrong attribute or access code) 
Invalid handle 
Memory control blocks destroyed 
Insufficient memory 
Invalid memory block address 
Invalid environment 
Invalid format 
Invalid access code 
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13 
14 
15 
16 
17 
18 

OD 
OE 
OF 
10 
11 
12 

Invalid data 
(not used) 
Invalid drive specified 
Attempted to remove the current directory 
Not same device 
No more files 

Many of these codes sound like damage reports from a space mission 
("Memory control blocks destroyed, Captain"), but others, such as "File 
not found," are quite common. Since the same codes are used by all the 
functions, your program can use a single subroutine to figure out what 
error occurred and print out an appropriate message, rather than having 
separate error routines for Open a File, Read File, and so on. 

By now you should have a grasp of file handles, pathnames, and 
ASCIIZ strings, and how they fit together. Let's see how we'd read a file , 
using these ideas. 

The ZREAD Program 

0000 

0000 
0001 
0002 

0034 

00FC 

The program below does just what the various READ programs in 
the last chapter did, and what the TYPE function in DOS does: It reads 
a text file from the disk and displays the results on the screen. After 
loading, the program - like the ZOPEN program - prints "Enter 
Pathname" and waits for you to do just that. It then tries to open the file. 
If the file is opened successfully, the program reads its contents, using the 
Read from a File or Device function, and prints it out on the screen. Here's 
the program: 

31 
?? 

32 [ 
?? 

C8 [ 
?? 

l 
0D 0A 45 6E 74 65 
72 20 50 61 74 68 

;ZREAD--Program to read file 
uses ASCIIZ format 

' . ********************************************* ' 

datarea segment 

nambuff db 49 
db ? 
db 50 dup (?) 

;define data segment 

; maximum bytes 
;bytes actually read 
; name buff er 

datbuff db 200 dup (?) ;data buffer 

intro db 0dh,0ah, 'Enter Pathname: $' 
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6E 61 6D 65 3A 20 
24 

010F 45 72 72 6F 72 20 emess db 'Error$' 
24 

0116 0D 0A 24 crlf db 0dh, 0ah, '$' ;return and linefeed 
0119 datarea ends 

·********************************************* ' 

0000 zread segment ;define code segment 

---------------------------------------------
0000 main proc far ;define main process 

assume cs : zread, ds:datarea 

;set up stack for return 
0000 start: 
0000 lE push ds ;save DS 
0001 2B C0 sub ax ,ax ;set 1':/.. to zero 
0003 50 push ax ;put it on stack 

;set DS to data segment 
0004 BS ---- R mov ax ,datarea 
0007 SE D8 mov ds , ax 

;READ IN PATHNAME OF FILE TO BE OPENED 
0009 newfile: 
0009 BA 00FC R mov dx, offset intro ;intro message 
000C B4 09 mov ah, 9h ;print message funct 
000E CD 21 int 21h ; call DOS 

0010 BA 0000 R mov dx,offset nambuff ;addr of buffer 
0013 B4 0A mov ah,0ah ;buff kbd input funct 
0015 CD 21 int 21h ; call DOS 

0017 BA 0116 R mov dx,offset crlf ;return+ linefeed 
001A B4 09 mov ah, 9h ;print message functn 
001C CD 21 int 21h ; call DOS 

; Insert zero in buffer following name 
001E 8A 1E 0001 R mov bl ,nambuff+l ;get# of bytes read 
0022 B7 00 mov bh ,0 put in BX 
0024 C6 87 0002 R 00 mov [nambufftbx+2] ,0 ;zero into byte 

;OPEN FILE 
0029 BA 0002 R mov dx,offset nambuff+2 ;addr of name 
002C B0 00 mov al ,0 ;file open for reading 
002E B4 3D mov ah , 3dh ;funct # to open file 
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0030 CD 21 int 21h ; call DOS 
0032 8B D8 mov bx ,ax ;handle/error in BX 
0034 72 2B jc error ;error return? 

;READ FILE 
0036 newbuff: 
0036 B9 00C8 mov ex, 200 ;# of bytes to read 
0039 BA 0034 R mov dx ,offset datbuff ;addr of buffer 
003C B4 3F mov ah , 3fh ;read from file functn 
003E CD 21 int 21h ; call DOS 
0040 72 lF jc error ; error return? 
0042 3D 0000 cmp ax,0 ;no, are we at EOF? 
0045 74 19 je exit ;yes , exit 

;DISPLAY BUFFER CONTENTS 
0047 8B F3 mov si,bx ;save handle 
0049 8B C8 mov cx ,ax ;# chars read in CX 
004B BB 0034 R mov bx,offset datbuff ;addr of buffer 
004E newchar: 
004E B4 02 mov ah,2 ;display output funct 
0050 8A 17 mov dl, [bx] ; get character 
0052 80 FA lA cmp dl,lah ;is it end-of-file? 
0055 74 09 je exit ;yes, exit 
0057 CD 21 int 21h ;call DOS , display it 
0059 43 inc bx ;point to next char 
005A E2 F2 loop newchar ; done all chars? 
005C 8B DE mov bx,si ;yes , restore handle 
005E EB D6 jmp newbuff ;go fill buffer again 
0060 exit : 
0060 CB ret ;return to DOS 

;ERROR ROUTINE 
0061 error: 
0061 BA 010F R mov dx , offset emess ;error message 
0064 B4 09 mov ah, 9h ;funct # to print mess 
0066 CD 21 int 21h ; call DOS 
0068 E8 006C R call binihex ;print error number 
006B CB ret ;return to DOS 

006C main endp ;end main process 
---------------------------------------------

' 006C binihex proc near 

' ;SUBROUTINE TO CONVERT BINARY NUMBER IN BX 

' 
TO HEX ON CONSOLE SCREEN 

006C B5 04 mov ch ,4 ;number of digits 
006E Bl 04 rotate: mov cl , 4 ;set count to 4 bits 
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0070 
0072 
0074 
0076 
0078 
007A 
007C 
007E 
007E 
0080 
0082 
0084 
0086 
0088 

0089 

0089 

D3 C3 rol bx, cl ;left digit to right 
SA C3 mov al,bl ;move to DL 
24 0F and al,0fh ;mask off left digit 
04 30 add al,30h ;convert hex to ASCII 
3C 3A cmp al, 3ah ; is it > 9 ? 
7C 02 j 1 pr inti t ; no, so 0 to 9 digit 
04 07 add al, 7h ;yes , so A to F digit 

printit: 
SA D0 mov dl,al ;put ASCII char in DL 
B4 02 mov ah, 2 ;display output funct 
CD 21 int 21h ; call DOS 
FE CD dee ch ; done 4 digits? 
75 E6 jnz rotate ; not yet 
C3 ret ; done subroutine 

' binihex endp 
---------------------------------------------' zread ends ;end code segment 

·********************************************* ' end start ;end assembly 

ZREAD first obtains the pathname and turns it into an ASCIIZ 
string to open the file just as ZOPEN did. Once the file is opened, the 
program reads it. 

The Read from a File or Device Function 
Here's where we use the file handle that was returned in the AX 

register when we opened the file. The Read from a File or Device function 
requires the file handle to be in BX, so we MOVe it over. The address of 
the buffer we're going to put the file in is placed in DS:DX. We also must 
tell the function how many bytes to read. This can be almost any number 
we like, as long as we have room for the buffer in memory. Telling it to 
read more bytes than are in the buffer is an invitation to have a text file 
written on top of your program. 

There are all sorts of things your program can find out about what's 
happened on its return from the Read from a File or Device function. If an 
error occurred, AX will return error code 5 or 6. If the operation was 
successful, AX will return the number of bytes that were actually read 
into the buffer. If it returns zero, no bytes were read; there was nothing 
to read but the end-of-file. 

Notice that this function must be repeated each time the number of 
bytes specified in CX is read into the buffer. In this respect it's more like 
the Sequential Read function than the Read Random Block function of 
the last chapter. Of course, if you already know how large the file is, and 
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you have room for it in memory, you can read it all in with a single call to 
this function. 

Since the function will read an end-of-file character into the buffer as 
just another character, the program needs to check for this character and 
terminate the program if it finds it. 

READ FROM A FILE OR DEVICE Function 
Number 3Fh 
Enter with: 

Reg AH = 3Fh 

Reg BX = the file handle 

Reg CX = number of bytes to read 

Reg DS = segment address of data buffer 

Reg DX = offset address of data buffer 

Execute: 

INT 21 

Return with: 

Carry flag = 0 if operation successful 
1 if error occurred 

Reg AX = number of bytes actually read 
= 0 if only end-of-file found 
= error code if error occurred 

Possible errors are 5 and 6 

Something else to notice is that we need to keep the file handle in 
BX, so that each time we call the Read from a File or Device function it will 
access the right pathname. Since the program also uses BX as a pointer 
when printing out the contents of the buffer, it's necessary to save BX 
somewhere while this is going on. We save it in the SI register. We could 
also have saved it by PUSHing it, but this leads to complications because 
of the multiple exits from the interior of the "newchar" loop. Remember, 
whatever is PUSHed must get POPped. It's bad form to exit from a 
program without POPping everything you PUSHed. 

Now that we know how to read files using file handles, what about 
writing to them? 
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Writing to a File 

Here's a program that uses file handles to let you type in a prose file 
from the keyboard. You call the program, and when it executes it says 
"Enter Pathname." You type in the name of the file you want your text 
written to. Then it says "Enter text." You can type in as many lines of text 
as you want. Each line must be less than 80 characters, and must be 
terminated with g. Typing g at the beginning of a line terminates the 
program, as you can see from the sample session: 

tvzwrite 
Enter Pathname: dirl \filel. txt ----Pathname entered by user 
Enter text: 
Once upon a midnight dreary , 
While I pondered, weak and weary, 
Over many a quaint and curious volume 
g typed by user to terminate program 

~ Text entered by user 
of forgotten lore j 

Here's the program: 

0000 

0000 32 
0001 ?? 

0002 32 [ 
?? 

0034 50 
0035 ?? 

0036 50 
?? 

0086 ???? 

0088 0D 0A 45 6E 74 65 
72 20 50 61 74 68 
6E 61 6D 65 3A 20 
24 

009B 0D 0A 45 6E 74 65 
72 20 54 65 78 74 
3A 0D 0A 24 

;ZWRITE--Program to write file 
from keyboard input 

Uses ASCIIZ format 

' ********************************************* ' 

datarea segment ;define data segment 

nambuff db 50 ;max pathname bytes 
db ? ;bytes actually read 
db 50 dup (? ) ;name buffer 

datbuff db 80 ;maximum text bytes 
db ? ;bytes actually typed 
db 80 dup (?) ; text buffer 

handle dw ? ;handle storage 
intro db 0dh,0ah, 'Enter Pathname: $' 

intro2 db 0dh,0ah, 'Enter Text : ' ,0dh,0ah , '$' 
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00AB 45 72 72 6F 72 20 
24 

00B2 0D 0A 24 
00B5 

0000 

0000 

0000 
0000 lE 
0001 2B C0 
0003 50 

0004 B8 ---- R 
0007 8E D8 

0009 BA 0088 R 
000C B4 09 
000E CD 21 

0010 BA 0000 R 
0013 B4 0A 
0015 CD 21 

0017 BA 00B2 R 
001A B4 09 
001c CD 21 

001E 8A lE 0001 R 
0022 B7 00 
0024 C6 87 0002 R 00 

0029 BA 0002 R 
002C B9 0000 
002F B4 3C 
0031 CD 21 
0033 A3 0086 R 
0036 72 57 

emess db 'Error$' 

crlf db 0dh,0ah, '$' ;return and linefeed 
datarea ends 
. ********************************************* ' 

zread segment ;define code segment 

main proc far ;define main process 

assume cs:zread, ds:datarea 

;set up stack for return 
start: 

push ds 
sub ax,ax 
push ax 

;save DS 
;set AX to zero 
;put it on stack 

;set DS to data segment 
mov ax,datarea 
mov ds,ax 

;READ IN PATHNAME OF FILE TO BE OPENED 

mov dx, offset intro ;intro message 
mov ah,9h ;print message funct 
int 21h ;call DOS 

mov dx,offset nambuff ;addr of buffer 
mov ah,0ah ;buff kbd input funct 
int 21h ;call DOS 

mov dx,offset crlf ;return+ linefeed 
mov ah,9h ;print message functn 
int 21h ;call DOS 

;Insert zero in buffer following name 
mov bl,nambuff+l ;get# of bytes read 
mov bh,0 ; put in BX 
mov [nambufftbx+2],0 ;zero into byte 

;CREATE FILE 
mov dx,offset nambuff+2 ;addr of name 
mov cx,0 ;normal attribute 
mov ah,3ch ;create file function 
int 21h ;call DOS 
mov handle,ax ;store handle 
jc error ;error return? 
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;GET TEXT FROM KEYBOARD 
0038 BA 009B R mov dx, offset intro2 ;intro message 
003B B4 09 mov ah, 9h ;print message funct 
003D CD 21 int 21h ; call DOS 
003F newline: 
003F BA 0034 R mov dx,offset datbuff ;addr of buffer 
0042 B4 0A mov ah,0ah ;buff kbd input funct 
0044 CD 21 int 21h ; call DOS 
0046 80 3E 0035 R 01 cmp datbuff+l,1 ;if no chars typed 
004B 7E 37 jle exit ;then exit 

;insert return and linefeed after typed chars 
004D SA lE 0035 R mov bl,datbuff+l ;put character count 
0051 B7 00 mov bh,0 ; in BX, then insert 
0053 C6 87 0036 R 0D mov [datbufftbxt2] ,0dh ;return in buf 
0058 C6 87 0037 R 0A mov [datbufftbx+3] ,0ah ;linefd in buf 
005D 80 06 0035 R 02 add datbuff+l, 2 ;add 2 to count 

0062 BA 00B2 R mov dx,offset crlf ;return+ linefeed 
0065 B4 09 mov ah, 9h ;print message functn 
0067 CD 21 int 21h ; call DOS 

;WRITE FILE TO DISK 

0069 SB lE 0086 R mov bx,handle ;get handle back in BX 
006D BA 0036 R mov dx,offset datbuff+2 ;addr of buff 
0070 SA 0E 0035 R mov cl,datbuff+l ;# of bytes to write 
0074 B5 00 mov ch,0 , into ex 
0076 B4 40 mov ah,40h ;write file function 
0078 CD 21 int 21h ; call DOS 
007A 72 13 jc error ; error return? 
007C 3A 06 0035 R cmp al,datbufftl ;# of bytes written 
0080 75 0D jne error ;same as requested? 
0082 EB BB jmp newline ; go read another 1 ine • 

;CLOSE FILE AND EXIT 
0084 exit: 
0084 SB 1E 0086 R mov bx,handle ;get handle back in BX 
0088 B4 3E mov ah,3eh ;close handle function 
008A CD 21 int 21h ; call DOS 
008C 72 01 jc error ;error return? 
008E CB ret ;return to DOS 

;ERROR ROUTINE 
008F error: 
008F BA 00AB R mov dx, offset emess ;error message 
0092 B4 09 mov ah, 9h ;funct # to print mess 
0094 CD 21 int 21h ; call DOS 
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0096 8B lE 0086 R 
009A E8 009F R 
0090 EB ES 

mov bx,handle ;handle is error# 
call binihex ;print error number 
jmp exit 

009F 

009F 

009F 
00Al 
00A3 
00A5 
00A7 
00A9 
00AB 
00AD 
00AF 
00Bl 
00Bl 
00B3 
00B5 
00B7 
00B9 

00BB 

00BC 

00BC 

BS 04 
Bl 04 
03 C3 
8A C3 
24 0F 
04 30 
3C 3A 
7C 02 
04 07 

8A 00 
B4 02 
CD 21 
FE CD 
75 E6 

C3 

main endp ;end main process 

' binihex proc near 

;SUBROUTINE TO CONVERT BINARY NUMBER IN BX 
TO HEX ON CONSOLE SCREEN 

mov ch,4 ;number of digits 
rotate: mov cl, 4 ;set count to 4 bits 

rol bx, cl ;left digit to right 
mov al,bl ;move to DL 
and al,0fh ;mask off left digit 
add al, 30h ;convert hex to ASCII 
cmp al,3ah ;is it> 9? 
j 1 printit ; no, so 0 to 9 digit 
add al,7h ; yes, so A to F digit 

printit: 
mov dl,al ;put ASCII char in DL 
mov ah, 2 ;display output funct. 
int 21h ; call DOS 
dee ch ; done 4 digits? 
jnz rotate ; not yet 

ret ; done subroutine 

' binihex endp 

zread ends ;end code segment 
. ********************************************* ' end start ;end assembly 

ZWRITE gets the pathname and turns it into an ASCIIZ string the 
same way ZOPEN and ZREAD did. However, we're going to assume (as 
we did with WRITE-Fin the last chapter) that we want to create a new 
file to write to. In this case we need to use the Create a File function, 
rather than Open a File. 

The Create a File Function 
There are some important differences between opening a file and 

creating it (besides the obvious one that an existing file is opened while a 
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new file is created). Most important, it's when a file is created that it can 
be given an attribute, as we'll see below. 

N9tice that if the file being created has the same name as one that 
already existed, the old one will be destroyed. Newly created files are 
always given the read/write access code. 

CREATE A FILE Function- Number 3Ch 
Enter with: 

Reg AH = 3Ch 

Reg DS = segment address of ASCIIZ string 

Reg DX = offset address of ASCIIZ string 

Reg CX = attribute to be given file 

Execute: 

INT 21 

Return with: 

Carry flag = 0 if operation successful 
= 1 if error occurred 

Reg AX = file handle if file opened successfully 
= error code if error occurred 

Possible errors are 3, 4, and 5 

As the Open a File function did, this function returns the file handle 
in the AX register. 

File Attributes 
The attribute is a byte permanently assigned to every file to provide 

information about the file to the operating system. The attribute byte 
looks like this (notice that more than one of these bits can be set at the 
same time): 
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Read-Only 

Hidden file 

System file 

Volume label 

Subdirectory 

Archive bit 

01 - If the Read Only bit is set, then you can't open the file for 
writing (using function 3D). 

02 - Hidden files cannot be seen using DIR. 

04 - System files also cannot be seen using DIR. IBMBIO.COM and 
IBMDOS.COM are marked Read Only, Hidden, and System. 

08 - If this bit is set, the file is not a file at all, but the volume /,abel 
for the diskette. 

10 - If this bit is set, the file is not a file, but a subdirectory. 

20 - The Archive bit is set when a file has been written to and 
closed. It's used by the FDISK utility. 

The useful bits for the average programmer are Read Only and 
Hidden. You can probably think of some files of your own you'd like to 
keep people from writing on, or knowing about altogether. However, for 
ordinary files none of these bits are set, and the attribute byte is 00. As 
with file handles themselves, it's not clear why a 16-bit register is used to 
hold this byte (room for expansion of the byte to a word, perhaps?). The 
CX register is used to communicate the byte to the Create a File 
function. 

The attribute byte of an existing file can be changed by using the 
Change File Mode function (43h). 

The Write to a File or Device Function 
Once the file is created, the ZWRITE program goes on to read a line 

of text from the keyboard. The Buffered Keyboard Input function is used 
for this in the same way as the disk-writing programs in the last chapter, 
with the maximum number of characters allowed set to 80d. 

Once we've got the line of characters in the DATBUFF buffer, we're 
ready to write them to the disk. 
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WRITE TO A FILE OR DEVICE Function 
Number 40h 
Enter with: 

Reg AH = 40h 

Reg BX 

RegCX 

Reg DS 

Reg DX 

Execute: 

INT 21 

Return with: 

the file handle 

number of bytes to write 

= segment address of data buffer 

= offset address of data buffer 

Carry flag O if operation successful 
1 if error occurred 

Reg AX number of bytes actually written 
= error code if error occurred 

Possible errors are 5 and 6 

This function returns, in the AX register, the number of bytes 
actually written, so your program can compare this with the number of 
bytes it tried to write. If they're different, there's trouble, probably due to 
a full disk. 

Disk Access Without Records 
One of the differences between file handle disk access and earlier 

forms of disk access is that the Read and Write functions are no longer 
operating in terms of records. 

The ZWRITE program opens the text file on the disk, and then 
repeatedly gets a string of characters from the keyboard, and writes it to 
the file. As in the examples of writing to the disk in the last chapter, each 
new string is appended to the existing file. However, unlike the examples 
from the last chapter which operated in terms of fixed record lengths, the 
strings added to the file don't all need to be the same length. Each time we call 
the Write to a File or Device function, we specify the number of bytes to 
be added on - appended - to the file. We can write 3 bytes to a file one 
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time, and 2000 ( or any other number) the next. They'll just get appended 
to the file. There's no waste, and no need to fill out unused parts of 
records with throw-away characters. 

In our program, anywhere from 1 to 80 bytes can be appended each 
time we type in a new line. The program just goes on getting a new line 
from the keyboard, and writing it to the file, over and over again, until 
you run out of patience. 

The Close File Handle Function 
When you type g at the beginning of the line to signify that you're 

through, the program must then close the file to ensure that the 
operating system records it on the disk. 

CLOSE A FILE HANDLE Function 
Number 3Eh 
Enter with: 

Reg AH 

Reg BX 

Execute: 

INT 21 

Return with: 

3Eh 

file handle 

Carry flag = 0 if operation successful 
= 1 if error occurred 

Reg AX = error code if error occurred 

Possible error is 6 

This is a very simple function, requiring only that the file handle be 
supplied on entry. The file is closed, and the internal buffer in which 
DOS has been storing data (waiting for enough characters to fill a 512-
byte sector) is written to the disk. You'll see the light go on and hear the 
disk drive whirr. 

Getting to the Middle of a File 

In this section we're going to discuss another aspect of file handle 
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disk access: using files with records. Space does not permit us to show an 
example of this, but the concept is straightforward, and you should find 
enough information here to understand how to use the technique. 

In the example above we created a text file which consisted of a file of 
a certain length filled with bytes of text. It was not divided into records, 
and there was no point in either us, or our program, thinking of it in 
terms of records. 

However, there are situations where a file is more conveniently 
thought of in terms of records. The birthday files discussed in the last 
chapter are examples. Other examples would be mailing lists, accounts 
receivable, and so on - files where each name or customer is given a 
record containing the same information in the same format. 

Now, suppose you have created such a record-oriented file, and you 
want to access a record in the middle of it, say the 13th record in a 30-
record file (perhaps the 13th of your 30 customers). A normal Read will 
start at the beginning of the file, and a normal Write will start at the end. 
Assuming we know how many bytes into the file we want to be (probably 
the number of records times the bytes per record), how do we get there? 

Read/Write Pointer 

Remember in the ZWRITE program how every time we wrote to the 
file, the new string was appended to the existing file? The operating 
system knows where to put the new string because it keeps track of its 
place in the file with something called the read/write pointer. Every time a 
string was written to the file by ZWRITE, the read/write pointer was set 
to the end of the string that was written. 

To access a particular record in a file we need to move the read/write 
pointer to the beginning of the record. This is shown in Figure 12-3. 

30 bytes 30 bytes 30 bytes 30 bytes 30 bytes ,_.,.._,_.,.._ 
RECl REC2 REC3 

Read/write 
pointer 
set to 90 
(3 times 30) 

Subsequent 
Reads or Writes 
will begin at the 
location of the 
read/write pointer. 

Figure 12-3. The read/write pointer 
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There is a file handle DOS function which does just what we want: it 
moves the read/write pointer to any point in the file we specify. 

MOVE FILE READ/WRITE POINTER Function 
Number 42h 
Enter with: 

Reg AH = 42h 

Reg AL = "method value" 

Reg BX = the file handle 

RegCX 

Reg DX 

Execute: 

INT 21 

Return with: 

number of bytes offset into file (high) 

number of bytes offset into file (low) 

Carry flag = 0 if operation successful 
1 if error occurred 

Reg DX = new location of read/write pointer (high) 

Reg AX = new location of read/write pointer (low) 
= error code if error occurred 

Possible errors are 1 and 6 

The exact operation to be carried out by this function is determined 
by a number called the "method value." This value is placed in the AL 
register when the function is called. It can have the following values: 

00 - The read/write pointer is moved into the file the number of 
bytes in the double-word offset CX:DX, counting from the 
beginning of the file. 

01 - The pointer is moved to the current location plus the offset in 
CX:DX. 

02 - The pointer is moved to the end-of-file, plus the offset in 
CX:DX. When the offset is zero, this returns the file's size. 

As we noted, we're not going to provide a program example for this 
function, but its use is fairly simple. After a file is opened, you use this 
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function to set the read/write pointer to the location you want in the file. 
A subsequent Read or Write will start at that point in the file. This gives 
you the same power to go directly into the middle of a file that random 
access gave in the last chapter. 

Summary 

In this chapter you've learned how to read and write files to the disk 
using the file handle method of access. There are many other functions 
that can be carried out using file handles and ASCIIZ strings. For 
instance, there are functions which will rename a file (56h) and delete a 
file (41h). There are also functions which manipulate directories, such as 
Create a Subdirectory (39h), Remove a Directory Entry (3Ah), and 
Change the Current Directory (3Bh). While discussion of these functions 
is beyond the scope of this book, the knowledge of file handle disk access 
gained from this chapter should make it easy for you to understand these 
other functions as well. Just read the descriptions in appendix D of the 
IBM Personal Computer Disk Operating System manual. 
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~ 
Interfacing to 
BASIC and Pascal 

Concepts 
USR function in BASIC 
CALL function in BASIC 
Memory allocation for BASIC and assembly routines 
Use of the BP register 
Functions and procedures in Pascal 
Use of PUBLIC and EXTERNAL 

8088 Instructions 
PTR Pointer (pseudo-op) 

Applications 
DECIHEX- BASIC Decimal to Hexadecimal Converter 

(uses BINIHEX routine) 
HEXIDEC - BASIC Hex to Decimal Converter 

(uses DECIBIN routine) 
COUNTER - Assembly routine to count given letter in string 
COUNT - BASIC program to count letters in string 

(uses COUNTER routine) 
PORTIN -Assembly routine to access IN instruction from Pascal 
PORTOUT - Assembly routine to access OUT instruction from 

Pascal 
BLAISER - Pascal program to make "blaiser" sounds 

(uses PORTOUT routine) 

C ombining assembly-language routines with programs in h igher
level languages like BASIC and Pascal is an effective solution to a variety 
of programming problems. T he strong points of assembly language are 



its speed and its ability to directly access all of a computer's hardware. 
Programs in higher-level languages, on the other hand, are often faster 
and easier to write and debug than assembly-language programs. Many 
programmers obtain the best of both worlds by writing the main parts of 
their programs in higher-level languages and coding certain routines -
those requiring speed or direct access to various 1/0 devices - in 
assembly language. 

In this chapter we'll show you how to combine assembly-language 
routines with programs written in IBM BASIC and IBM Pascal. 

General Interfacing Considerations 

It is actually fairly easy to interface Pascal to an assembly-language 
routine. This is because the output of the Pascal compiler is a machine
language program, or more specifically an OBJ file. This OBJ file is 
indistinguishable from an OBJ file produced by the assembler. The 

c=i 

Pascal 
text file 

© OBJ file 

I 

c=i 

Assembly
language 
text file 

© OBJfile 

0 

Single resulting 
EXE file 

Loaded into 
memory for 
execution by DOS 

Figure 13-1. Assembly language and Pascal 
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purpose of the linker program LINK is to merge several OBJ files 
together to create a single EXE file. LINK can do just this with a Pascal
generated OBJ program and an assembler-generated OBJ routine, and 
presto, the Pascal program is linked to the assembly-language routine. 
This is shown schematically in Figure 13-1. 

BASIC 
interpreter 

BASIC 
statements 

CJ 
© 

CJ 
© 
0 

Assembly
language 
text file 

OBJ file 

EXE file 

Binary 
file 

Loaded into 
memory by 
BASIC "BLOAD" 

Communication 
via FAR calls 

Figure 13-2. Assembly language and BASIC 
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Other compiled languages, such as C, can be interfaced to assembly
language routines in much the same way Pascal can. In fact, after 
reading the section on Pascal interfacing, you should be able to combine 
assembly-language routines with almost any compiled higher-level 
language. 

BASIC, which is an interpreted language, is more complex to interface 
than Pascal. This is because what the programmer thinks of as a BASIC 
program is not the same thing as what the operating system thinks of as a 
BASIC program. To the programmer, the BASIC statements with their 
line numbers constitute the program; but to the operating system, the 
BASIC interpreter itself is the program being executed, and the BASIC 
statements are merely data being fed to the program. This is why you 
can't use the LINK program to connect a BASIC program to an 
assembly-language routine, or to anything else for that matter. The 
assembly routine and BASIC interpreter (which contains the BASIC 
program) simply sit in memory together in different places. It's up to the 
programmer to know where the assembly routine is located in memory 
and code this information into the BASIC program. Figure 13-2 shows 
how this looks. 

The Three Parts of the Interface Problem 
In the following sections we're going to show you the details of how 

assembly-language routines are interfaced to programs written in BASIC 
and in Pascal. Several problems arise when one language is combined 
with another. We'll mention these problems briefly here, and then - in 
the separate sections on BASIC and Pascal - show the details of how 
they are solved in particular circumstances. 

Problem 1 - Memory Allocation 

Usually when you're running a higher-level language program there's 
no trouble about where to put the program in memory. The interpreter 
(in the case of BASIC) or the linker (in the case of Pascal) takes care of 
figuring out an appropriate place to put the program, and loading it 
there. You don't usually even need to worry where the program is. 

When you add an assembly-language routine to your program, things 
can get more complicated. In Pascal the process is relatively 
straightforward: the assembly-language routine is treated as another 
program module, and the linker decides where it should go. In BASIC, 
on the other hand, a few tricks are required to figure out how to put the 
routine in memory, and once it's there to find out where it is so you can 
tell the BASIC program. 
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Problem 2 - Transferring Control to the Assembly-Language 
Routine 

Control is generally passed to the assembly routine with a FAR CALL 
assembly-language instruction executed by the higher-level language. 
This assembly-language CALL is produced by either a USR or a CALL 
statement in BASIC, or a CALL instruction in Pascal. The question is: 
how does the calling program know where the assembly routine is? In 
BASIC the programmer must figure out where the routine is going to be 
loaded, and code this address explicitly into the BASIC program. In 
Pascal the linker takes care of figuring out the addresses. 

Problem 3 - Passing Arguments 

In most cases information must be communicated between the 
assembly-language routine and the higher-level language program. This 
information is usually in the form of numbers or addresses (which are 
numbers too). The numbers passed from one program to another are 
called arguments. 

The higher-level language program and the assembly routine must 
agree on a protocol, a systematic approach, for passing arguments back 
and forth. The USR call in BASIC can pass only one argument and 
return only one argument. These are placed in a special area of the 
BASIC interpreter called the Floating Point Accumulator, abbreviated 
FAC. (This is true even for integer arguments.) BASIC's CALL 
statement, on the other hand, can pass many arguments back and forth 
between the calling program and the called routine. It works by placing 
the addresses of the arguments on the stack. Pascal's CALL instruction is 
similar, except that, in addition to placing the addresses of the arguments 
on the stack, the arguments themselves can also be placed on the stack, thus 
simplifying access. 

We'll show the details of all these processes in the following sections. 

Interfacing to BASIC with USR 
In the following sections we'll assume that you know enough about 

BASIC programming to follow the rather short programs used as 
examples. Some of these programs have names that are the same or very 
similar to programs we've already discussed. These are new programs 
though, so proceed carefully. 

The "traditional" (meaning the oldest) way to interface assembly 
routines to BASIC is with the USR statement. This is a fairly simple 
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approach which is applicable to routines that don't need more than one 
argument. 

The DECIHEX Program 
As our first example of combining an assembly-language routine with 

a BASIC program with USR, we'll show you a program that translates a 
decimal number into a hex number. There are really two parts to this 
operation; first , to get a decimal number from the keyboard and turn it 
into binary, and then to print out the binary number in hex on the 
screen. BASIC is very good at the first part : reading a decimal number 
from the keyboard and turning it into binary. A simple INPUT statement 
reads the number from the keyboard and stores it as a binary number in 
BASIC's data space. However, translating binary to hex is not such an 
easy routine to write in BASIC, since BASIC thinks of numbers in 
decimal and has no real talent for taking numbers apart bit-by-bit. Here, 
assembly language is a more natural choice. 

Figure 13-3 shows how the two routines relate to each other. 
Remember: This is a different program than the DECIHEX we saw 
earlier in the book. We've added the ampersand(&) to the name of the 
Assembly portion of the program to avoid confusion with the earlier 

Keyboard 

0 
t:=====:;:===~' Decimal number 

via INPUT 
32751 

BASIC 
program 

statement 

DECIHEX.BAS 

FAC 1 1 1 1 O O O 0 
01111111 

Binary number 
stored in the FAC 

BINIHEX& 

Assembly 
routine 

7FFO 

Hex number via 
Display Output 
function 

Video screen 

Figure 13-3. Operation of the DECIHEX program 
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version. Also, we've added ".BAS" to the BASIC part of the program for 
the same reason. These distinctions will be used throughout the following 
sections. 

The BASIC Program: DEC/HEX.BAS 

Let's write a BASIC program that will perform its half of the job: 

10 DEFINT A-Z 
20 DEF SEG = &H0 
30 DEF USR0 = 0 
40 INPUT "Decimal Number" ; N 
50 PRINT "Hex Equivalent is : "; 
60 D = USR0(N) 
70 PRINT:PRINT 
80 GOTO 40 

= 0002 
= 0021 

In line 40 the program invites the user to input the decimal number; 
the result is stored as variable N. 

The key statement in this program is line 60. We want to pass the 
binary representation of the number N to an assembly routine, and have 
the assembly routine print out the hex equivalent. Line 60 does just that. 
Note the argument (N) to be passed to the routine. (You can read all 
about the USR statement in the IBM Personal Computer BASIC manual.) 
There isn't any value to pass back to BASIC, so D is a "dummy" 
argument; it's there for format only. 

Notice too that we've defined all variables (including N) to be integers 
with the DEFINT A-Z statement. This is important. We must always be 
very clear what type of arguments are being passed. 

The Assembly Routine 

The assembly routine is very similar to the BINIHEX routine we 
wrote in chapter 6. However, BINIHEX& will only work with BASIC 
programs; it should not be used with other assembly-language programs. 

;BINIHEX&--Binary to hexadecimal converter 
Converts internal binary to hex on screen 
For use with BASIC programs 

display equ 
doscall equ 

2h 
21h 

;video output function 
;DOS interrupt number 

· ************************* ********** ********** ' 0000 binihex segment 
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0000 

0000 
0002 

0004 
0006 

0008 
000A 
000C 
000E 
0010 
0012 
0014 
0016 
0018 
001A 
001A 
001C 
001E 
0020 
0022 
0024 
0024 

0025 

0025 

main proc far 

assume cs :binihex 

;check that argument is really integer 
3C 02 cmp al ,2 ;2 is code for integer 
75 20 jne exit ;wrong argument 

;get integer from Floating Point Accumulator 
8B 07 mov ax , [bx] ; integer into AX 
8B D8 mov bx ,ax ; into BX for binihex 

;print out binary number in BX on screen 
B5 04 mov ch ,4 ;number of digits 
Bl 04 rotate: mov cl ,4 ;set count to 4 bits 
D3 C3 rol bx ,cl ;left digit to right 
8A C3 mov al ,bl ;move to AL 
24 0F and al ,0fh ;mask off left digit 
04 30 add al,30h ;convert hex to ASCII 
3C 3A cmp al,3ah ;is it > 9? 
7C 02 jl printit ;no, so 0 to 9 digit 
04 07 add al, 7h ;yes , so A to F digit 

printit: 
8A D0 mov dl ,al ;put ASCII char in DL 
B4 02 mov ah ,display ;display output funct 
CD 21 int doscall ; call DOS 
FE CD dee ch ; done 4 digits? 
75 E6 jnz rotate ;not yet 

exit : 
CB ret ;return to DOS 

main endp 

' binihex ends 
· ********************************************* ' end main 

There are two differences between this routine and the earlier 
BINIHEX. First, we don't need to save the DS register on the stack. 
BASIC is not expecting us to do that, the way DOS is. Second, the 
program starts off with several lines of code which check AL to see what 
number it contains. 

Argument Type Returned in AL Register 

Sometimes it's convenient if your assembly routine can have a way of 
checking that the argument passed to it is what it expected. Other times, 

Interfacing to BASIC and Pascal 419 



the type of argument may not even be known in advance, and the 
assembly routine will need a way to figure out what it is. BASIC takes 
care of this situation by putting a number in the AL register to indicate 
the type of argument being passed. As an added convenience, this value 
is the same as the number of bytes in the argument: 
Value Type 
in AL of 
Register Argument 

2 
3 
4 
8 

Integer (two bytes) 
String (3-byte string descriptor) 
Single-Precision Floating Point (four bytes) 
Double-Precision Floating Point (eight bytes) 

Our BINIHEX& program checks that AL contains 2, since it's 
expecting an integer. If it finds something else, it exits immediately, 
before it can get into trouble. 

The Floating Point Accumulator 

The next question is, where is the program going to look for the 
argument- the binary number N? 

In order to carry out floating point operations (those involving 
arithmetic on single- and double-precision numbers), BASIC uses an area 
of its internal memory space called the F AC (Floating Point 
Accumulator). The developers of BASIC decided that this area would 
also be a convenient place to pass arguments back and forth between 
BASIC and assembly routines. What does the FAC look like? It's just an 
8-byte section of memory, like this: 

Floating point accumulator 

049F 

04A0 2 
i----------1 

04Al 3 

04A2 4 
1---------1 

BX---♦- 04A3 5 .._ Integer lo byte 

04A4 6 .._ Integer hi byte 

04A5 7 

04A6 8 
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The argument occupies different positions in the FAC, depending on 
its type. We've shown in the diagram above how the integer is situated. 
Single- and double-precision floating point numbers are more complex, 
and won't be covered here; they are described in appendix C of the IBM 
Personal Computer BASIC manual. Strings are not passed in the FAC at 
all; we'll show how they're handled later. 

Of course, BASIC must tell the assembly routine where in memory its 
FAC is. It does this by passing the segment address of the FAC in the DS 
register, and the offset address in the BX register. This is what the DEF 
SEC and the DEF USR statements in the BASIC program do: arrange 
for these values to be placed in the appropriate registers when USR is 
executed. Actually, it's somewhat more complicated than that. When 
control is passed to the assembler routine, the BX register always points 
to byte number 5 in the FAC, rather than simply to the first byte. 
Conveniently, this is also where integers are placed. 

Notice that at this point we don't yet know what values to use for the 
segment and offset addresses of the assembly routine, so we don't know 
what values to use in the DEF SEC and DEF USR statements. Thus the 
BASIC program DECIHEX.BAS, shown above, has these statements 
filled in temporarily with zeros. Later we'll see how to find the correct 
addresses to fill into these statements. 

If the assembler routine doesn't need to change the DS register for its 
own use, DS will retain the segment address of BASIC's FAC throughout 
the program, as our DECIHEX.BAS program does. If the assembly 
routine does need to access a data segment of its own, it will need to save 
DS and restore it when it accesses the FAC and when it returns to the 
BASIC program. 

It should now be clear how the BINIHEX& routine gets hold of the 
integer it's going to convert to hex. Since BX already points to the 
integer, the program can simply do an indirect MOV from [BX] into AX. 

With the binary value of N firmly in its possession, BINIHEX& can 
now convert it into hex and print it out in the usual way, using the 
Display Character function. 

Returning to BASIC 

The BASIC interpreter originally called the assembly routine with a 
FAR CALL (generated by the USR statement), so to return to BASIC the 
assembly routine must execute a FAR RET. Thus (as we learned in 
chapter 6) the routine must be part of a FAR procedure. 

Installing the DEC/HEX Program with BIN/HEX& 

Even though we've finished writing the BASIC program and the 
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assembly routine, we're still a fair distance from getting them installed in 
the computer's memory in such a way that they can work together. This 
process is quite involved, so we'll go through it step by step. (This is a 
more detailed view of the procedure recommended in appendix C of the 
IBM Personal Computer BASIC manual.) 

Deciding ~here the Assembly Routine Will Fit 

There are a variety of memory locations where the assembly routine 
can be installed. If you have a 64K system, then the routine must go 
inside the area normally occupied by BASIC. BASIC must then be 
encouraged not to use this area for itself, since that would destroy the 
routine. Thus a part of memory above the BASIC work area must be 
reserved. This can be done either when BASIC is loaded, with the /M 
option, or from within the program, with the CLEAR command. The 
following statements both reserve 2K of memory space above the BASIC 
work area for assembly routines: 

A>basic /m:&h8800 

10 CLEAR ,&h8800 

<c- When BASIC is called up 

<c- From inside BASIC program 

Of course, reserving this area decreases the space available for BASIC 
programs by a corresponding amount. Figure 13-4 shows how the 
assembly routine is installed inside BASIC's normal space. 

For larger systems the assembly routine can be placed outside BASIC. 
This doesn't cost anything in terms of BASIC program capacity. In the 
examples which follow, we'll assume that you have 96K or more of 
memory, and can thus place your assembly-language routine outside of 
BASIC. 

Creating an EXE File in High Memory 

If the assembly routine is going to go outside of BASIC, then where 
exactly is it going to go? We can let the linker program figure this out. 
Until now, we've used LINK to create EXE files in the low end of 
memory. It has installed our EXE files at the lowest available memory 
address, above the resident part of the operating system. But now BASIC 
occupies this space. Fortunately LINK has an option which will cause an 
EXE file to be installed in high memory, directly below the transient part 
of DOS. This is done by appending the parameter "/high" to the 
program name when we invoke the linker. (We'll show an example of this 
soon.) Figure 13-5 shows where things will fit together in memory. 

Before things get more complicated, let's start making a list of what 
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has to be done. (You may want to refer to Figure 13-5.) The steps up to 
this point are: 

STEP 1. Create an ASM file of the complete assembly routine. 

STEP 2. Assemble it in the usual way. 

A>asm binihex& 

00000 
Resident part 

Low memory 

of operating 
system 

BASIC 
interpreter 

BASIC 
program 
statements 

1//ll////l/l/ll/ll//llli 111/i 

BASIC 
segment 

y//1~ 1/l//ll/l////llll/llli 

BASIC 
stack 
space 

Assembly 
Assembly routine 
installed inside 

language BASIC segment 
routine 

Figure 13-4. Assembly routine inside BASIC segment 
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STEP 3. Link the resulting OBJ file, using the HIGH parameter. 

A>link binihex&/high 

These three steps produce the file BINIHEX&.EXE. 

Installing the EXE File with DEB VG 

We need to load the resulting EXE file, and find out where it is, so we 
can tell our BASIC program where to look for it. DEBUG serves the 

00000 

BASIC 
segment 

Resident part 
of operating 
system 

BASIC 
interpreter 

BASIC 
program 
statements 

1/ll//l////l///lll////2 

'l//////lll////lll///2 

BASIC 
stack 
space 

Transient part 
of operating 
system 

1111/1 

p//lli 

Low·memory 

Assembly routine 
installed outside 
BASIC segment 

Figure 13-5. Assembly routine outside BASIC segment 

424 Assembly Language Primer for the IBM PC & XT 



purpose here - we call it up with the EXE file of the assembly routine. 
Then we use the "R" command to look at the registers. The value in the 
CS register is the segment address of our routine; the value in IP is the 
offset address. The offset address will be O if a program starts execution at 
its lowest memory address - that is, if its entry point is 0000 - which is 
the case in the examples in this chapter. 

STEP 4. Call up DEBUG with the EXE file. 

A>debug binihex&.exe 

STEP 5. Use "R" to see the values in the CS and IP registers. 

-r 
AX=FFFF BX=0000 
DS=0905 ES=0905 
1F94 :0000 3C02 

CX=0080 DX=0000 SP=0000 BP=0000 S1=0000 D1=0000 
SS=1F94 CS=1F94 IP=0000 NV UP DI PL NZ NA PO NC 

CMP I AL ,02 I 
Segment Offset 
address of address of 
BINI HEX& BINI HEX& 

The next step is really cute. We want to get into BASIC, but we want 
to do it without losing DEBUG or the assembly routine. So we'll stay in 
DEBUG, and load BASIC just as if it were any other program, by using 
the "N" and "L" commands. (We'll load BASICA in the example below, 
but regular disk BASIC would work just as well.) Once BASIC is loaded, 
we want to execute it. We can do this with the "G" command. 

STEP 6. Set BASIC's name in the FCB for loading. 

-nbasica . com 

STEP 7. Load BASIC. 

-1 

STEP 8. Execute BASIC. 

-g 

At this point the screen should clear and you should get BASIC's 
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sign-on message and the "Ok" prompt. Now you can either type in the 
BASIC program DECIHEX.BAS or, if you wrote it earlier and saved it 
to the disk, you can load it back in with the "load" command. 

STEP 9. Load (or type in) the BASIC program. 

Ok 
load 11 DECIHEX.BAS 11 

Now both the BASIC program and the assembly routine are in 
memory, and you're ready to tell the BASIC program the segment and 
offset addresses of the assembly routine, which you learned with the "R" 
command in step 5. The segment address from the CS register is used in 
the DEF SEG statement, and the offset address from the IP register is 
used in the DEF USR statement. In our example, the value in IP was 0, 
so the value in DEF USR remains O as well. 

STEP 10. Put the segment address in the DEF SEG statement. 

20 DEF SEG = &H1F94 

STEP 11. Put the offset address in the DEF USR statement. 

30 DEF USR0 = 0 

The resulting DECIHEX.BAS program looks like this: 

10 DEFINT A-Z 
20 DEF SEG = &H1F94 
30 DEF USR0 = 0 
40 INPUT "Decimal Number"; N 
50 PRINT "Hex Equivalent is: 11 ; 

60 D = USR0(N) 
70 PRINT: PRINT 
80 GOTO 40 

You may want to save the BASIC program at this point. That way, if 
something goes wrong, you won't lose it. 

STEP 12. Save the BASIC program. 

Ok 
save 11 DECIHEX.BAS 11 
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Ok 
run 

The moment of truth is now upon you. The BASIC program is 
complete, and the assembly routine is installed. Everything should be 
ready to go. 

STEP 13. Execute the BASIC program. 

Decimal Number? 10 <-- You type in the decimal number 

Hex Equivalent is: 000A <-- The program prints the hex equivalent 

Decimal Number? 100 
Hex Equivalent is: 0064 

Decimal Number? 1000 
Hex Equivalent is: 03E8 

Decimal Number? 10000 
Hex Equivalent is: 2710 

Decimal Number? 
Break in 40 

<-- Here you type @D ( Break ) 

Ok <-- You're back in BASIC command mode 

Debugging 

Of course, things may not have gone as smoothly as that. There may 
be bugs in the assembly routine, in the BASIC program, or in the 
communications between them. We have several steps still to complete: 
the saving of the assembly routine as a binary file and the inclusion of a 
corresponding BLOAD statement in the BASIC program. However, until 
the program actually works, there's no reason to perform these steps, so 
let's talk about how to find the bugs in your programs. 

We debug the assembly routine by going back to step 4 and starting 
over at the point where we use DEBUG to load the EXE file. We continue 
through steps 5, 6, and 7 as before, but when we get to step 8 we do 
something a little different: we put in a breakpoint (or more than one, if 
we need to). A convenient place for the breakpoint in a short routine like 
this is right at the beginning. (Breakpoints were described in chapter 6.) 
Both the segment and offset addresses must be specified when we set the 
breakpoint. 
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STEP 8-A. Execute BASIC with a breakpoint. 

-g lf94: 0 <-- Starting address of routine 

Once BASIC appears we'll load DECIHEX.BAS as we did before in 
step 9. If DECIHEX.BAS was saved, we probably won't need to do steps 
10, 11, and 12 again. We'll simply run the program. As soon as the USR 
statement is executed, control will go to the assembly routine, and the 
breakpoint will be triggered, which will return us to DEBUG. From there 
on we can trace through the assembly routine, examine registers, modify 
code, and so on, until we find the problem: the usual dark night of the 
soul. 

Saving the Assembly Routine as a Binary File 

You could go through all the steps above every time you wanted to 
load your assembly routine into memory with your BASIC program, but 
there is a simpler way. Now that you have everything debugged and 
working, what you want is a way for the BASIC program itself to take 
over the responsibility of loadi ng the assembly routine. 

The problem is that BASIC doesn't understand EXE files. EXE files 
can be loaded anyplace in memory, depending on where the operating 
system wants to put them. BASIC, on the other hand, is only comfortable 
loading assembly-language programs that occupy a definite fixed location 
in memory. Such files are called "binary files." BASIC can create a binary 
file with a special command called BSAVE, which means "Binary SAVE." 

To use BSAVE your BASIC program needs to know the name of the 
file you want to save, where it is (both the segment and offset addresses), 
and how long it is. The segment address must be given with a DEF SEC 
statement, since BSAVE only gives the offset address. The BSAVE 
command, with the DEF SEC statement that must accompany it, looks 
like this: 

DEF SEG = &hlf94 <-- Segment address of file 

BSAVE "filename.bin",0,&h25 

---r-11 
Filespec Length of file 

Offset address of file 

The filename of the program can be whatever you want. The file 
extension can be BIN to show it's a binary file. The segment address and 
offset address are the ones you found before in the CS and IP registers, 
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Ok 

using the "R" command in DEBUG. The length of the file can be 
determined from the LST file which you can generate when you assemble 
the program. It can be expressed in decimal, or in hex if preceded by 
"&h." (Remember that the first byte is 0, so the number of bytes is one 
more than the last address used.) 

In our case we need to save the BINIHEX& assembly routine as a 
binary file. Let's add this step to the list: 

STEP 14. From BASIC, save the assembly routine as a binary file. 

def seg = &hlf94 
Ok 
bsave 11 binihex&.bin 11 ,0,&h25 

Modifying the BASIC Program to Load the Binary File 

Now that the assembly routine has been saved in a form which is 
palatable to BASIC, we can modify the BASIC program so that it can 
load the assembly routine itself, thus relieving you of the responsibility. 
We do this by putting a BLOAD command in the BASIC program. 
BLOAD is much like BSAVE, except that you don't need to specify the 
length of the program: this information is in the binary file. Again, the 
segment address of the file must be specified with a DEF SEC statement. 
Since this statement is already in your program, only the BLOAD 
command must be added. 

DEF SEG = &hlf94 <--- Segment address of file 

BLOAD "filename.bin" ,0 --r--1 
Filespec Offset address of file 

STEP 15. Add a BLOAD command to the BASIC program to load 
the assembly-language routine. 

25 bload"binihex&.bin" ,0 
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STEP 16. Save the resulting BASIC program. 

Ok 
save 11 DECIHEX.BAS 11 

Here's a listing of the resulting complete DECIHEX.BAS program, as 
it should be recorded on your disk: 

10 DEFINT A-Z 
20 DEF SEG = &H1F94 
25 BLOAD 11 BINIHEX&.BIN 11 ,0 
30 DEF USR0 = 0 
40 INPUT "Dec irnal Number 11 ; N 
50 PRINT "Hex Equivalent 1s : 11 ; 

60 D = USR0 (N) 
70 PRINT: PRINT 
80 GOTO 40 

Of course the order of the statements is important. You can't do the 
BLOAD until you've defined the segment address with DEF SEG, and 
you can't call the assembly routine with USR until you've loaded it into 
memory with BLOAD. 

Running the Complete DEC/HEX Program 

That's about it. After only 16 steps you've got everything organized 
and ready to go. You can now execute the DECIHEX program from 
BASIC whenever you want, and it will automatically load in the 
BINIHEX& assembly routine and interface to it. 

Remember, DECIHEX.BAS is not a self-contained program. The 
assembly routine BINIHEX&.BIN must be resident as a file on the disk when 
you run the BASIC program. In the example above we didn't specify a 
drive preceding the filespec, so the default or "current" drive is assumed. 
If the assembly routine will always be on a different drive from the 
BASIC program, you can use drive specifications (like "b:binihex&.bin") 
in both the BLOAD and BSAVE commands. 

You can use the BINIHEX& routine in any BASIC program. It could 
be part of a program to simulate a hex calculator, for example, or you 
could use it in a disassembler program (like the "U" command in 
DEBUG). 

The HEXIDEC Program 

In the example above (DECIHEX) we passed an argumentfrom the 
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BASIC program to the assembly routine. What happens if we want to 
pass an argument from the assembly routine back to BASIC? 

The next example program, HEXIDEC, takes (as the name implies) a 
hexadecimal number from the keyboard and prints out the decimal 
equivalent. The assembly routine HEXIBIN& is used to get the hex 
number from the keyboard and turn it into binary. This binary number 
is then placed in the FAC, and control is passed back to the BASIC 
program which prints out the decimal equivalent of the binary number. 
(This is the opposite of the previous DECIHEX example.) 

We won't repeat all the steps of interfacing the two programs - they 
are essentially the same as before. Instead we'll concentrate on how the 
argument is passed from the assembly routine to BASIC. 

The BASIC Program 

Here's the BASIC program: 

10 DEFINT A-Z 
20 DEF SEG = &H1F94 
30 DEF USR0 = 0 
35 BLOAD"HEXIBIN&. BIN" 
40 PRINT "Hex Number? "; 
50 N = USR0(D) : PRINT 
60 PRINT "Decimal Equivalent 1s "; N 
70 PRINT 
80 GOTO 40 

= 0001 
= 0021 

0000 

As you can see this program has many similarities to the earlier 
example. However, it now calls the assembly routine first, and then prints 
out the argument returned, N. In this case the argument passed to the 
assembly routine, D, is a dummy argument. 

The Assembly Routine 

Here's the listing of the assembly routine HEXIBIN&: 

;HEXIBIN&--Hexadecimal to binary converter 
Converts hex from keyboard to binary 
For use with BASIC programs 
on entry , BX holds FAC address 

key_in equ 
doscall equ 

lh 
21h 

;keyboard input 
;DOS interrupt number 

. ********************************************* ' hexibin segment ;define segment 
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0000 

0000 
0003 
0003 
0005 
0007 
0009 
000B 
0000 

000F 
0011 
0013 
0015 
0017 

0019 
0019 
0018 
0010 
001F 
0021 

0023 
0023 
0025 

0026 

0026 

BA 0000 

B4 01 
CD 21 
2C 30 
7C 18 
3C 0A 
7C 0A 

2C 27 
3C 0A 
7C 0E 
3C 10 
70 0A 

Bl 04 
03 E2 
B4 00 
03 00 
EB E0 

89 17 
CB 

marn proc far ;define procedure 

assume cs:hexibin 

;get digit from keyboard, convert to binary 
mov dx,0 ;clear DX for number 

newchar: 
mov 
int 
sub 
jl 
cmp 
jl 

;not dee digit 
sub 
cmp 
jl 
cmp 
jge 

ah,key_in ;keyboard input 
doscall ;call DOS 
al,30h ;ASCII to binary 
exit ;jump if< 0 
al,10d ;is it< 10d? 
adcLto ;yes, so it's digit 

(0 to 9), maybe letter (A to F) 
al,27h ;convert ASCII to bin 
al,0ah ;is it< 0a hex? 
exit ;yes, not letter 
al,10h ;is it> 0f hex? 
exit ;yes, not letter 

;is hex digit. Add to number in DX 
adcLto: 

mov 
shl 
mov 
add 
jmp 

cl, 4 
dx, cl 
ah,0 
dx,ax 
newchar 

;set shift count 
;rotate DX 4 bits 
; zero out AH 
;add digit to number 
;get next digit 

;put number in Floating Point Accumulator 
exit: 

mov [bx],dx ;number from DX 
ret ;return to BASIC 

marn endp 

' hexibin ends 

;end procedure 

;end segment 
·********************************************* ' 

end marn ;end assembly 

Notice that although the assembly routine doesn't reference the FAC 
until the end of the routine, it needs to be sure to get the address of the 
FAC at the beginning of the program and save it, so it will know where it 
is when the time comes to pass the argument back to BASIC. In this case 
the problem can be handled very simply: BASIC passes the address of 
the FAC to the assembly routine in the BX register, which can leave it 
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there until it needs it. That's why the DX register is used to hold the 
binary number, rather than BX. If we had been going to use BX in the 
body of the program, we would have had to save the FAC address 
somewhere else, probably by PUSHing the BX register onto the stack. 

Returning the two-byte integer value from the DX register to the FAC 
is easy: all it takes is an indirect MOV through [BX]: 

rnov [bx] , dx 

Escaping from the Program 

A small problem arises in this particular program when we want to 
leave the program and return to the BASIC command mode. Typing 
lli[) ( Break) doesn't work! This is because the input from the keyboard 
to the program happens in the assembly routine, which doesn't know 
what to do with the lli[) ( Break ). Actually, if you type lli[) ( Break ) and 
then follow it with some other character, like a space, you'll find yourself 
back in BASIC. Another approach would be to modify your assembly 
routine to recognize lli[) ( Break). 

Using Strings as Arguments 

Numbers, whether they are integers or single- or double-precision 
floating point, are transferred between BASIC and assembly routines 
using the Floating Point Accumulator, as we've seen. Strings are handled 
differently. The reasons for this have to do with the way BASIC stores 
and operates on strings. 

To keep track of all its variables, BASIC maintains a variable table 
which contains all the numeric variables in a given program. BASIC uses 
this table whenever it needs to find the value of one of the variables. The 
current values of numeric variables are actually kept in the table. However, 
since strings are long and can be any length, they are not themselves kept 
in the variable table. Instead, each string is represented in the variable 
table by a three-byte "string descriptor." The first byte of the descriptor 
contains the length of the string, and the next two bytes contain the offset 
address of the string in BASIC's data space. It's this string descriptor that 
our assembly routine must make contact with if we want to pass string 
variables back and forth. 

Suppose you're using USR to pass control from BASIC to an 
assembly routine, and you want to pass a string argument to the routine. 
How do you do it? As far as the BASIC program is concerned, the 
process is much the same as passing a numeric variable: the string 
variable is simply listed as the argument in a USR statement. The 
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Ok 
RUN 

assembly routine, on the other hand, no longer looks in the FAC for the 
variable. Instead, it looks in the DX register for the address of the string 
descriptor. This process is shown in Figure 13-6. 

Program to Alter a String 

Here's a BASIC program which calls an assembly routine to "code" a 
particular string into another form. Coding strings in this way can make 
your programs or data files harder for an unauthorized person to read. 
To be understood, such strings must be decoded with another program. 
In this case the coding process consists merely of adding 1 to the ASCII 
values of each character in the string. The resulting coded string is 
returned to the BASIC program, and can be printed out. 

Here's an example of the program in use: 

Type string to be coded: Now is the time for all good men. 
Original version: Now is the time for all good men . 
Coded version: Opx!jt 1uif 1ujnf!gps!bmm 1hppe 1nfo / 
Ok 

Every character is transformed into the one next-higher in the 

DX register 

DX register 
points to 
string 
descriptor 

String 
descriptor 

Length 
of string 

Address of 
string (low) 

Address of 
string (hi) 

String variable 
in memory 

String 
descriptor 
points 
to string 

"N" 
II QI/ 

"w" 

"i" 
"s" 

"t" 

"h" 
II e" 

Figure 13-6. Accessing a string descriptor 
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alphabet: "a" becomes "b" and so on. As a code, this may not stump the 
KGB for very long, but as soon as you see how to pass string variables 
you'll be able to write your own more sophisticated coding algorithms. 
(For instance, you might add I to the first letter, 2 to the second, 3 to the 
third, and so on.) 

Here's the BASIC program CODE.BAS: 

10 DEFINT A-Z 
20 DEF SEG = &H1F94 
30 DEF USR0 = 0 
35 BLOAD"CODESUB.BIN" ,0 
40 PRINT"Type string to be coded: 11 ; 

50 LINE INPUT ST$ 
60 CS$=USR0 (ST$+" 11 ) 

70 PRINT"Original version: 11 ; ST$ 
80 PRINT"Coded version: 11 ; CS$ 

There's a rather strange construction in line 60. Perhaps you're 
wondering why we don't simply say 

60 CS$=USR0(ST$) 

0000 

0000 

The answer has to do with the way BASIC operates on string variables. If 
we had simply used ST$ as the argument, BASIC would have passed the 
string descriptor for this variable to the assembly routine, and ST$ itself 
would have been modified. However, by tacking on the plus sign and 
quotes, we fool BASIC into thinking we're going to do some arithmetic 
on the string. It then copies the string into a work area, and does the 
indicated operation there, which consists of concatenating the null string, 
which is the same as doing nothing. However, it is now the string 
descriptor for the work area which is passed to the assembly routine. The 
original string ST$ is left unmodified, as can be seen in the printout of 
the program's operation above. 

Here's the assembly routine CODESUB: 

;CODESUB--Changes string to "coded" string 
Adds 1 to every character in the string 
For use with BASIC programs 

· ********************************************* ' codesub segment 

main proc far 
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0000 
0002 

0004 
0006 
0008 
000A 
0000 
000F 

0012 
0012 
0015 
0016 
0018 
0018 

0019 

0019 

3C 03 
75 14 

8B DA 
B5 00 
8A 0F 
83 F9 00 
74 09 
8B 77 01 

80 04 01 
46 
E2 FA 

CB 

assume cs:codesub 

;check that argument is really a string 
cmp al ,3 ;3 is code for string 
jne exit ;wrong argument 

;get address of string descriptor from DX 
mov bx ,dx ;descriptor into BX 
mov ch ,0 ;clear hi half length 
mov cl , [bx] ; length of string 
cmp cx ,0 ; if length is zero , 
je exit then exit 
mov si , [bxtl] ; address of string 

;add 1 to every character in string 
newchar: 

add byte ptr [si] ,1 ;add 1 to char 
inc si ;point to next char 
loop newchar ; loop until done 

exit : 
ret ;return to DOS 

main endp 

' codesub ends 
· *** ****************************************** ' end main 

This routine takes the address of the string descriptor out of DX and 
puts it into BX where it can be used to get the length and address of the 
string itself through indirect addressing. Since BX is busy holding the 
address of the descriptor, we'll use the SI register to hold the address of 
the string. This will be the register which is incremented to point to 
successive characters in the string as we add 1 to them. 

The Pointer Operator: PTR 

You'll notice that the instruction that does the adding of the constant 
1 to the byte addressed by SI is a rather complex instruction. 

add byte ptr [si] ,1 ;add 1 to char 

What does "byte ptr" do here? The problem is that if we simply say 

add [si] ,1 ; add 1 to char 

then the assembler will not be clear whether we want to add 1 to the byte 
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pointed to by SI, or to the word pointed to by SI. There is no other clue 
given in the instruction, such as the name of a variable which has already 
been declared to be a byte or a word. 

The PTR operator exists to clarify whether a byte or a word is meant 
in such situations. It can also be used to override the assembler's 
assumptions, if it has any, about whether an indirect address refers to a 
byte or a word. 

An assembly routine must not try to change the length of a 
BASIC string. 

The Returned String Argument 

The string passed back to BASIC is simply the modified string. Notice 
that this string must exist in BASIC before you call the assembly routine, 
and that the assembly routine can't change the length of the string. 

Interfacing to BASIC with CALL 
The chief limitation of USR is that it allows only one argument to be 

passed to the assembly routine, and only one to be returned to BASIC. 
Suppose you need to pass more? You can do it by passing the address of 
an array or a string in which you've stuffed a number of variables, but 
IBM's BASIC (unlike earlier BASICs) provides an easier way: the CALL 
statement. 

CALL makes it possible, and even easy, to communicate any number 
of arguments between BASIC and an assembly routine. In the BASIC 
program the list of arguments is simply placed in parentheses following 
"CALL" and the name of the subroutine: 

CALL SUBR (ARGl, ARG2 , ARG3, ARG4 , ARG5 , etc . ) 

Any of these arguments can go in either direction, that is, from 
BASIC to the assembly routine or back from the routine to BASIC. The 
name of the assembly routine to be called, shown as "SUBR" in the 
example above, is really only the variable name whose integer value is the 
offset address of the assembly routine. Thus the value of this variable must be 
defined before the CALL statement, as shown here: 
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SUBR = 0 <-- 0000 is the offset address of the assembly-language routine 

CALL SUBR (ARGl, ARG2) <-- Name used in call is variable with this value 

Ok 
RUN 

In our case the offset address is 0, so SUBR is simply an integer variable 
with a value of 0. 

What BASIC does is take the addresses of all the arguments in the 
CALL list and put them on the 8088's stack (which is referenced by the 
SP register). It's then up to the assembly routine to use these addresses to 
find the variables it needs for input, and store the variables it wants to 
send back to BASIC. The tricky part is to come up with an easy way of 
getting at this list of addresses on the stack. Let's look at an example. 

The COUNT Program 
In this BASIC program you first enter a string, then you enter a 

single character. The BASIC program calls an assembly routine called 
COUNTER, which figures out how many times the character occurs in 
the string. It passes this number back to BASIC, which prints it out. (You 
could do the same thing in BASIC with an INSTR statement, but it 
would be much slower.) 

Here's an example of the program in operation: 

String to be searched? She sells sea shells by the seashore. 
Character to be counted? s 

Character 's' occurs 7 times in string 
She sells sea shells by the seashore. 
Ok 

(The capital "S" doesn't count, since the program is rather literal about 
upper and lower case.) Here's the BASIC part of the program: 

10 DEFINT A-Z 
20 DEF SEG = &H1F94 
25 BLOAD"COUNTER.BIN" 
30 COUNT= 0 
40 INPUT"String to be searched"; S$ 
50 INPUT"Character to be counted"; C$ 
60 AC = ASC (C$) 
70 CALL COUNT(N,AC,S$) : PRINT 
80 PRINT "Character ' 11 ; C$; 11 ' occurs"; N; "times in string" 
90 PRINTS$ 
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For simplicity we let the BASIC program convert the search character 
to its ASCII value, before calling the assembly routine. Thus the string 
S$ and the integer AC are the values being passed to the assembly routine, 
and the integer N - the count of the number of occurrences of the 
character in the string - is the value being returned to BASIC. 

The assembly routine COUNTER looks like this: 

0000 

0000 

0000 55 
0001 8B EC 

0003 8B 5E 06 
0006 8A 0F 
0008 8B 57 01 

000B 8B 5E 08 
000E 8B 07 

;COUNTER--Counts number of occurrences of 
a character in a string 

For use with BASIC program 

·********************************************* ' pro_nam segment para 
assume cs:pro_nam 

' counter proc far 

;Assume addresses of three variables are 
;on the stack in the form 

; 0 old BP register <- base pointer 
; 1 hi 
;2 offset return address 
; 3 hi 
;4 segment return address 
; 5 hi 
;6 string (lo) ;bp + 6 
; 7 (hi) 
;8 character (lo) ;bp + 8 
; 9 (hi) 
;10 count (lo) ;bp + 10 
; 11 (hi) 

push bp 
mov bp,sp 

;save calling prog BP 
;establish new BP 

;get address of string descriptor , then 
;length of string and address of string 

mov bx, [bp+6] ;addr of string desc 
mov cl, [bx] ;string length in CL 
mov dx, [bx+l] ;string addr in DX 

;get addr of character, then character 
mov bx, [bp+8] ;addr of character 
mov ax, [bx] ;character in AL 
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0010 
0012 
0015 
0017 
0017 
0019 
0018 
001C 
001C 
0010 

001F 
0022 

0024 
0025 

0028 

0028 

8B DA 
BA 0000 
B5 00 

3A 07 
75 01 
42 

43 
E2 F8 

8B 5E 0A 
89 17 

50 
CA 0006 

;search for char in string, count matches 
mov bx,dx ;addr of string in BX 
mov dx,0 ;DX holds count 
mov ch,0 ;zero out hi half CX 

nexLchar: 
cmp 
jne 

al, [bx] 
noLequal 
dx 

; match? 
;no 

inc 
noLequal: 

;yes, increment count 

inc bx 
loop nexLchar 

;increment pointer 
; done string? 

;put count into address of count 
mov bx, [bp+ 10] ; addr of count in BX 
mov [bx],dx ;put count in address 

;restore base pointer, return to BASIC 
pop bp ; restore BP reg 
ret 6 ;return, POP 6 bytes 

counter endp ;end procedure 

pro_nam ends ;end of code segment 
. ********************************************* ' 

end ;end assembly 

As you can see, there's something new going on in this program: the 
use of the BP (Base Pointer) register. Let's digress for a bit and discuss 
the BP register; then we'll explain how it's used in this program. 

The Base Pointer Regi,ster 

Some registers can be used for indirect addressing, like the BX, SI, 
and DI registers; others, like AX, can't. Of the registers which can be 
used for indirect addressing, each normally operates with a particular 
segment register. Thus if you use the BX or SI register indirectly, you can 
assume that it is referencing the data segment (unless you tell them 
otherwise with a segment override operator). Similarly (as you learned in 
the section on string-handling instructions) the DI register is assumed to 
reference addresses in the extra segment. 

As you've learned, one of the nice things about indirect addressing is 
that if you have a bunch of data items located next to each other in 
memory, you can point a register at the first item in the list, and access 
the others simply by using a different displacement in the address. The 
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displacement is simply the fixed number which is always added to the 
address in the register. Thus if BX contains the address of the first byte 
in a list, [bx] will refer to the first byte, [bx+ l] will refer to the second 
byte, [bx+ 2] to the third, and so on. The numbers 1 and 2 in this 
example are displacements. 

Now, when we use CALL to pass variables from BASIC to an 
assembly routine, it does so by putting the addresses of these variables on 
the stack. There they are, all sitting there next to each other in the stack 
segment. It would be nice if there were a register which could be used to 
indirectly address this list of addresses. However, since the stack is 
(naturally) in the stack segment, none of the registers mentioned above 
will do the job without additional inelegant finagling. What we need is a 
register whose natural tendency is to refer to addresses in the stack 
segment. 

Why not just use the stack pointer (SP)? Well, if you did, then every 
time you PUSHed or POPped something in your program, the contents 
of the SP would change, and all the references to SP would be wrong. 
What we need is a second register which uses the stack segment for its 
addressing. 

Well, it turns out that the Base Pointer register is just what we need; 
it can be used to indirectly address the stack segment. All the registers 
which can be used for indirect addressing, and their default segments, 
are shown in Figure 13-7. 

We can put the address of the first item on the stack into the BP, and 
then, changing the displacement, refer to the items in order as [bp], 
[bp+2], [bp+4], and so on. The reason it's not [bp], [bp+ l], [bp+2], 
[bp + 3] etc., is that only words can be PUSHed onto the stack. Since 

BX 

SI 

Doto 
segment 

Extra 
segment 

I 

.,. 
✓ 

✓ - ✓ 

.,. 
.,. 
✓ 

.,. 
✓ 

.,. 

BP 

Stock 
segment 

I -.,. 
✓ 

.,. _. 
✓ 

.,. 

.,. 
✓ 

.,. 
.,. 
.,. 

Figure 13-7. Registers and default segments 
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words, rather than bytes, are stored on the stack and referenced by BP, 
only even-numbered displacements are used with the BP register. 

Using BAS/C's CALL Statement with the BP Register 

In actual practice the arguments aren't at the top of the stack. BASIC 
first places the addresses of the arguments on the stack, and then does a 
FAR CALL to get to the assembly routine. A FAR CALL always places 
the return address (both segment and offset) on the stack. So when 
control is finally passed to the assembly routine, the stack looks like this: 

I 
I/" ,/ 

Offset return address (lo) ◄-./ 
Top of stack 

Hi ./ 

Segment return address (lo) / 

Hi ./ 

Address of 5$ descriptor (lo) I/ 

Hi I/ 

Address of character AC (lo) / 

Hi I/ 

Address of count N (lo) I/ 
Hi I/ 

Since our program is going to be changing the contents of the BP 
register, it's prudent to save the old value on the stack, in case the calling 
program was using it. Having done this, we'll then take the current 
contents of the stack pointer register (SP), and place it in the BP, ready to 
be used to access the stack. This is done in the first two instructions in 
the COUNTER program. BP now points to the top of the stack. If we 
PUSH more things on the stack during the course of our program, SP 
will change as the top of the stack moves toward the bottom of memory 
(upwards in the figure), but BP will remain unchanged. The figure 
below shows where BP points, and how indirect references can now be 
made to the various items in the stack. 
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I 
V / 

Old contents of BP V 
<----- BP points here 

Hi I/ 
Offset return address I/ 

BP+ 2 

Hi I/ 
Segment return address I/ 

BP+ 4 

Hi / 

Address of S$ descriptor / 
BP+ 6 

Hi / 
Address of character AC I/ 

BP+ 8 

Hi / 

Address of count N I/ 
BP+ 10 

Hi / 

Our program will not be interested in the return addresses; it only 
cares about the address of the string descriptor for the string S$, the 
address of the ASCII value of the character to be searched for, and the 
address of the count to be returned. 

The next group of instructions in the program gets the address of the 
string descriptor from [BP+ 6], and puts this in BX so it can reference 
the contents of the descriptor: the length and address of the string. The 
ASCII value of the character to be searched for is obtained in a similar 
way, as shown in the code fragment below, excerpted from the 
COUNTER program: 

0003 8B 5E 06 
0006 8A 0F 
0008 8B 57 01 

000B 8B 5E 08 
000E 8B 07 

;get address of string descriptor, then 
;length of string and address of string 

mov bx, [bp+6] ;addr of string desc 
mov cl, [bx] ; string length in CL 
mov dx, [bxtl] ;string addr in DX 

;get addr of character, then character 
mov bx, [bpt8] ;addr of character 
mov ax, [bx] ;character in AL 

Once COUNTER knows where the string and the character are in 
memory, it counts how many times the character appears in the string. To 
return the resulting value of N, it simply inserts this integer into the 
address which it obtains from the stack, as shown in the following 
instructions: 
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;put count into address of count 
001F 8B 5E 0A 
0022 89 17 

mov bx , [bp+10] ;addr of count in BX 
mov [bx] ,dx ;put count in address 

A FAR RET then returns control to the BASIC program, which finds 
the value of N waiting for it. 

Using CALL Versus USR 
As you can see, it's slightly more difficult to set up your assembly 

routine to use CALL than it is to use USR. CALL, however, provides far 
more flexibility, in that any number of arguments can be passed both 
from BASIC to the assembly routine and back from the routine to 
BASIC. 

A possible disadvantage of using CALL is that not all versions of 
BASIC contain this statement. Thus, if you want your program to be 
compatible with BASICs running on other computers, you're better off 
sticking to USR. However, for programs which will only be run on the 
IBM PC, or on machines using similar versions of Microsoft's BASIC, 
CALL is a more logical choice because of its superior capabilities. 

Interfacing to Pascal 

As we hinted at the beginning of this chapter, it's easier to interface 
an assembly-language routine to a Pascal program than to a BASIC 
program. In fact, it's so much easier that if you planned to write a large 
program with many references to assembly routines, it might well pay 
you to learn Pascal to do it, rather than hassling with the complexities of 
BASIC. 

Let's see what's involved in the assembly/Pascal connection. In the 
discussion that follows, we'll assume you know enough about Pascal to 
understand the short programs used as examples. 

Pascal uses a very similar technique to the BASIC CALL statement 
for passing arguments between the program and the assembly routine. 
That is, the 8088 stack is used to store either the addresses of the 
arguments or the arguments themselves, and usually (as with BASIC's 
CALL) the BP register is used as a semipermanent pointer to the stack to 
facilitate referencing the arguments. (If the use of the stack for this 
purpose or the use of the BP register is not clear to you, then you should 
reread the appropriate sections in the first part of this chapter.) 

Our example program will demonstrate passing arguments from 
Pascal to the assembly routine and passing them back again. 
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The BLAISER Program 
BLAISER is a Pascal program which makes the sound of a space-age 

weapon being fired: the dreaded "blaiser." (Any similarity between the 
name of this device and the name of a certain 17th century computer 
hacker is definitely intentional.) A blaiser produces a tone which rapidly 
shifts its frequency, covering most of the audible spectrum in a half
second or so. Because Pascal is a compiled language (rather than an 
interpreted one as BASIC is), the code generated when BLAISER is 
compiled will be plenty fast enough to produce this effect. (BASIC would 
be too slow in this application.) 

Pascal and Sound Generation 
To make sounds, a program must be able to access the PC's speaker. 

Unfortunately, IBM Pascal does not have any statements built into it to 
produce sound. However, as we saw in chapter 7, the speaker can be 
activated by IN and OUT assembly-language instructions. Pascal has no 
such IN and OUT instructions, so if we want to use Pascal to produce 
sound, we must write an assembly routine containing these instructions, 
and interface this routine with our Pascal program. In effect we will be 
extending the Pascal language by adding a function and a procedure to it 
which will execute the IN and OUT instructions. (Since this example 
involves the use of the speaker, you should review chapter 7 on sound, if 
any details of generating sound with IN and OUT instructions are hazy 
to you.) 

BLAISER.P AS: The Pascal Part of the Program 
The BLAISER program is borrowed from Pascal Primer for the IBM 

PC by Michael Pardee (New York: Plume/Waite, New American Library, 
1984). In that book the Pascal program is divided into two parts. We'll 
follow the same format here. 

Pascal Program Section 1: PORTIO.PAS 

The first part of the Pascal program, PORTIO.PAS, consists only of 
statements that define the assembly-language routines PORTIN and 
PORTOUT. Separating out this part of the Pascal program permits a 
variety of different programs to make easy use of these definition 
statements in PORTIO.PAS, without the statements having to be 
rewritten for each program. 

Here's the listing for this part of the program: 
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*************************************************************** 
PORTIO Pascal port I/0 external declarations 
*************************************************************** 
} 
Function Partin (port_addr:word) :byte; external; 

external; Procedure Portout (port_addr:word; data:byte); 

The purpose of these statements is simply to specify the "types" of 
the function PORTIN and the procedure PORTOUT, and the data types 
of their arguments; and to declare that PORTIN and PORTOUT are 
external routines. An external routine is one which Pascal will not expect 
to find when the program is compiled. It is not until the program LINK 
puts the different assembly language and Pascal routines together that 
the "external" routines will need to be available as a specified disk file. 
(We'll explain this process below.) 

A function is a Pascal construct that returns a value but does not 
affect anything outside itself, such as variables in memory or 1/0 
hardware. That's what we want PORTIN to do: return the value read 
from a particular input/output port, without doing anything else. The 
Pascal program will send this function the value of the port to be 
accessed, "porLaddr" (which is a word type); and the function will 
return a byte value, "portin", representing the value read from the port. 

A procedure, on the other hand, can affect things external to itself. In 
this case our Pascal program will tell the procedure PORTOUT what 
value it wants to send (the byte type "data") and the port it wants to send 
it to (the word type "porLaddr"), and PORTOUT will transmit the value 
to the port. 

Pascal Program Section 2: BLAISER.PAS 

The second part of the Pascal program, BLAISER.PAS, contains the 
body of the program. An INCLUDE statement in BLAISER.PAS tells the 
Pascal compiler to include PORTIO.PAS when the program is compiled. 
This will combine the two sections of the program. 

Here's the listing for this part of the program: 

**************************************************************** 
BLAISER.PAS Blaiser Blast sound demo 
**************************************************************** 
} 
Program Blaiser_blast (input,output); 
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Const 

Var 

speaker 
timer 
toggle_on 
toggle_off 
max_count 
scaler 

code, 

= #61; 
= #42; 
= #4f; 
= #4d; 
= 250; 
= 2; 

count :word 

{$include: 'portio.pas'} 

Begin 
Repeat 

Write ('press enter to fire'); 
Readln; 
Portout (speaker, toggle_on); 
For count:= 0 to max_count do 

[ 
code:= Sqr (count) Div scaler; 
Portout (timer, lobyte (code) ); 
Portout (timer, hibyte (code) ); 
l; 

Portout (speaker, toggle_off); 
Until count= #ffff; 

End 

The values of the various input/output ports which will be accessed 
are specified in the declarations part of the program. Port 61h (called 
"speaker") is used to turn the sound on, and port 42h (called "timer") 
receives the number that determines the frequency of the sound. "Toggle_ 
on" and "toggle_off' are the two values which, when sent to port 61h, 
will turn the timer on and off. 

The program lines in the executable part of the program actually 
generate the sound. First, the program writes a prompt message, "press 
enter to fire," to the screen, and waits for the user to hit ~. Once this 
happens, the program turns the speaker on by sending 4Fh to the 
speaker timer switch, which is on l/0 port number 61 h. Then the 
frequency of the tone is set by sending two bytes in succession to the 
timer itself, which is port number 42h. These two bytes form a 16-bit 
number which specifies the frequency of the tone. To produce the desired 
effect, this tone is then changed and sent to the timer again. This is done 
count number of times. The variable code is used as the number to send 
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to the timer. This number is continuously changed according to the 
formula 

count2 

code=-----
2 

This formula was derived by using trial and error until it sounded right. 
You can modify it to produce all sorts of different effects. 

The program generates the sound of a single blaiser blast, and then 
displays the prompt again so the user can fire the blaiser over and over by 
pressing g. 

PORT IN and PORTO UT: The Assembly Language Part of the 
Program 

Although only one assembly routine, PORTOUT, is actually used by 
the BLAISER program, two routines are referred to in PORTIO.PAS, so 
we'll show them both here. You will find them very useful if you're 
programming in Pascal on the IBM PC and want to generate sounds or 
use the I/0 ports in other ways. (More information on the uses of 
PORTIN and PORTOUT can be found in Pascal Primer for the IBM PC, 
referenced above.) · 

Each of these assembly routines is a separate source (ASM) file. They 
are listed separately below: 

: ************************************************ ' PORTIN--Routine to read contents of an I/0 Port 
to be used with Pascal programs 

· ************************************************ ' 

coder segment byte public ;define segment 

assume cs :coder 

------------------------------------------------' portin proc far 

push bp 
mov bp ,sp 

;define procedure 

;save old BP 
; load current SP into BP 

mov dx , [bpt6] ;put port address in DX 
in al , dx ;read data byte into AL 

pop bp 
ret 2 

;restore old BP 
;return to Pascal prog 
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portin endp ;end procedure 

coder ends ; end segment 
·************************************************ ' end ;end assembly 

. ************************************************ ' PORTOUT--Routine to send data byte to I/0 Port 
to be used with Pascal programs 

. ************************************************ ' 
coder 

' portout 

segment byte public ;define segment 

assume 

proc far 

push bp 
mov bp ,sp 

cs:coder 

;define procedure 

; save old BP 
;load current SP into BP 

mov dx , [bp+8] ;put port address in DX 
mov al , [bp+6] ;put data byte in AL 
out dx ,al ;output the byte 

pop bp 
ret 4 

;restore old BP 
;return to Pascal prog 

portout endp ;end procedure 

coder ends ;end segment 
. ************************************************ ' end ;end assembly 

PUBLIC Declarations 

Notice that in these assembly routines the code segment must be 
declared PUBLIC. When the time comes to link the assembly routines 
with the Pascal program, this is how LINK will know that PORTIN and 
PORTOUT will be referenced by another program. Notice too that 
although it is the segment (CODE) which is declared PUBLIC, it's the 
name of the PROCEDURE (PORTIN or PORTOUT) which will be 
referenced by the calling program. 

Another thing to remember is that the order of thL various definitions 
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in the assembly routine is important. Thus the ASSUME pseudo-op must 
come before the PUBLIC declaration, and so on. If you rearrange things, 
you may get into trouble. 

Passing Arguments and the Stack 

How the stack looks when the assembly routine PORTOUT takes 
control is shown in Figure 13-8. 

PORTOUT accesses the information on the stack in much the same 
way BASIC does, but with one difference. In BASIC, only the addresses of 
the arguments can be placed on the stack. This leaves it to the assembly 
routine to remove the address from the stack and then use indirect 
addressing to get at the actual argument. In Pascal, on the other hand, 
the arguments themselves can be placed on the stack and accessed directly 
by the assembly routine. This is what PORTOUT and PORTIN do. 

Passing Addresses 

It is also possible in Pascal to pass the address of a piece of data, 
rather than the data itself, although we don't show this in our example. 
To pass the address of an argument you use the VAR operator in front of 
the data declaration in the procedure or function definition. For instance, 
the following statement will cause the address of the DATAl word-type 
argument to be passed to the assembly routine: 

Function Whatsis (var datal:word;) :byte ; 

0 

2 

3 

4 

5 

6 

7 

8 

9 

I -
lo 

hi 
lo 

hi 

lo 

hi 

lo 

hi 

lo 

hi 

L...-

/ 

., 

., 

.... 

., 

., 

/ 

Old BP 

Offset return 
address 

Segment return 
address 

Data byte 

Port address 

external; 

Figure 13-8. The stack when PORTOUT is entered 
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In this case a byte value is returned by the function, although "data l" is 
a word variable. 

Connecting the Pascal Program and the Assembly Routine 

Now that we know what our Pascal program and our assembly 
routine look like, we can try to put them together into an executable 
program. For a diagram of this process, refer back to Figure 13-1 at the 
beginning of this chapter. 

Starting with OBJ Files 

First we must use the assembler (ASM or MASM) to turn the source 
(ASM) files for our assembly routines into OBJ files, in the usual way. 

A>asm portout 

Then we use the PAS 1 and PAS2 parts of the Pascal compiler to 
compile an OBJ file of the Pascal program. Since the BLAISER.PAS 
program INCLUDEs the program PORTIO.PAS, it follows that 
PORTIO.PAS must be available on the disk too. 

A>pasl blaiser 

A>pas2 blaiser 

Linking the OBJ Files 

Assuming all went well up to now, we're ready to link BLAISER.OBJ 
and PORTOUT.OBJ together. When we do this we need to be careful 
that the Pascal library is on the default drive, along with the OBJ files. 

A>link blaiser+portout 

The different OBJ files can be listed in the command line, separated 
by spaces or plus signs. 

Running the Program 

The result of the linking process is an EXE file, BLAISER.EXE. This 
can be executed directly from DOS. 

A>blaiser 

The result will be the sound of a single blaiser shot. 
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Summary 

In this chapter you've learned how to interface routines written in 
assembly language to BASIC and Pascal programs. This gives you the 
valuable ability to rewrite in assembly language those parts of your 
BASIC or Pascal programs which require speed, bit-twiddling, or access 
to hardware devices such as Input/Output ports. 

You've also learned how to pass arguments from one routine to 
another by using the stack and the BP register, a technique which can be 
used not only between assembly language and higher-level languages, but 
between different assembly-language routines, which can later be linked 
together with the linker. 
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Appendix A 
Hexadecimal Numbering 

/n this appendix we're going to discuss the hexadecimal numbering 
system. Familiarity with this system is essential if you want to write 
assembly-language programs, and it's also useful in other areas of the 
computer field - understanding it is a real mark of computer literacy. 
Unfortunately, like assembly-language programming itself, hexadecimal 
numbers can look intimidating at first, with their strange mixture of 
letters and decimal digits. We hope the following discussion will demystify 
the hexadecimal system for you, and thus provide a valuable tool for 
understanding programming and computers. 

What Is a Numbering System? 

Over the course of millennia humans have learned to assign symbols 
to different numbers of objects. At first these symbols were oral: "one 
mastodon, two clubs, three men." When writing came into use these 
counting symbols were translated into a written form: one wedge-shaped 
symbol meant "one," two such symbols together meant "two," and so on. 
This was all right for small numbers of objects, but writing fifteen little 
wedges to stand for fifteen sheep was inconvenient. 

The Roman numbering system was an attempt to streamline things 
by assigning single symbols to numbers other than one, so that "V" was 
five, "X" was ten, and so on. However, this system was not completely 
successful, as generations of school children can attest. 

It was the Arabs who figured out a system so efficient that it is still in 
use today. Their idea was to assign single symbols to numbers up to a 
certain value, and then start over in a different column when the list of 
symbols had been exhausted, using a special symbol to indicate an 
"empty" column. Thus, 
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1 
2 
3 
4 
5 -- List of symbols 

6 
7 
8 
9 

10 -- Start over with the same symbols, but I now using two columns 

The "O" represents an empty column 

This system seems perfectly natural to us, since we are so used to 
working with it; but in fact the idea of using columns in this way - to 
indicate value-and the idea of using a symbol to stand for nothing, or 
"zero," are both very profound. It's hard to imagine a successful 
numbering system that does not use these concepts. 

Notice, however, that the number of symbols to be counted before 
moving to the next column is purely arbitrary. There is no particular 
reason why there are exactly ten numbers. Well, of course there is a 
reason: the fact that we happen to have ten fingers. But there's no 
mathematical reason. Counting, arithmetic, and mathematics would all 
work just as well with some other number, say eight: 

1 
2 
3 
4 -- List of symbols 

5 
6 

l6 __ St?rt over with the same symbols, but 
using two columns 

In fact, several numbering systems besides those based on ten have 
been used in the course of history. The Babylonians favored a system 
based on sixty, which lingers on, anachronistically, in our clocks and 
watches. In this system we count up to fifty-nine seconds, then increment 
the next column to one minute and start over with zero seconds. 

What Numbering System Do Computers Like? 

If people feel at home with the decimal numbering system (ten 
numbers) because they have ten fingers, what numbering system do 
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computers feel at home with? Computers are filled with thousands of tiny 
switches called transistors. Each of these little devices can be in either of 
two states: switched on or switched off. That is, a transistor can store this 
very small amount of information: "on" or "off." This much information 
- the choice between two things (yes or no, on or off, black or white) -
is called a bit. If we decide to call the "off'' state of a transistor "zero,'' and 
the "on" state "one,'' we have a very simple numbering system with only 
two possible states. 

Transistor 

~=0 
The same 
transistor 
in its other 
state 

~=l 

To represent more than two numbers in a computer we need more 
transistors. Suppose, for example, we have two transistors. Each can be 
either O or 1, so together they can represent four different states: 

First Second 
transistor transistor 

0 0 First state 

0 0 Second state 

0 0 Third state 

0 0 Fourth state 

Let's simplify how we write this by representing the little transistors 
more symbolically, using "O" to stand for "off," and "1" to stand for "on." 

00 = 0 
01 = l 
10 = 2 
11 = 3 -- Decimal numbers 

I 
Binary numbers 
representing transistors 
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The Binary System 
The numbers on the left, which stand for the "on" or "off' state of 

the transistors, are examples of the binary numbering system. Binary 
means "based on two," just as decimal means "based on ten." Notice how, 
since there are only two numbers in binary, 0 and 1, we must put a 1 in 
the next column over after only two things have been counted: 

? (-- List of symbols 

l O -- Start over with the same symbols, but 
using two columns 

Suppose we had three transistors: 

First Second Third 

Transistor Transistor Transistor 

How many things could we count? Let's represent the transistors in 
binary again: 

000 = 0 
001 = 1 
010 = 2 
011 = 3 
100 = 4 
101 = 5 
110 = 6 
111 = 7 -- Decimal numbers 

I 
Binary numbers 

As you can see, each time we add a transistor - which is the same 
thing as adding another column in our binary numbering system - we 
can count up twice as far as we could before. With four transistors, or 
binary digits, we can count to 16; with five we can count to 32, and so 
on. 

Computers frequently use eight transistors - which is the same as 
eight bits - to represent a number, so the number can be as large as 
255, as shown in this table: 
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00000000 = 0 
00000001 = l 
00000010 = 2 
00000011 = 3 
00000100 = 4 
00000101 = 5 
00000110 = 6 
00000111 = 7 
00001000 = 8 
00001001 = 9 
00001010 = 10 
00001011 = 11 
00001100 = 12 
00001101 = 13 
00001110 = 14 
00001111 = 15 
00010000 = 16 

11111100 = 252 
11111101 = 253 
11111110 = 254 
11111111 = 255 -- Decimal numbers 

I 
Binary numbers 

From the above discussion we can see that there are two numbering 
systems in the computer world: the binary numbering system, which is 
natural for computers, and the decimal system, which is more natural for 
humans. 

How much of a problem is the use of these two numbering systems -
decimal and binary- in assembly-language programming? If we need to 
convert from binary to decimal, we can use a table like the one above, or 
better yet, let the computer figure out what the decimal equivalent of a 
particular binary number is, and print it out. Isn't this all we need to 
know? After all, most higher-level computer languages, such as BASIC, 
do this sort of conversion so routinely that we're not even aware that the 
computer is thinking in binary: it prints out decimal numbers, we type in 
decimal numbers, and the computer takes care of all the conversions. 
Why can't we do the same thing in assembly language? 

The problem is that in assembly language (and in various non-
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standard circumstances in other languages as well) we often need to look 
at the data in the computer in its untranslated or binary state. This is 
important because we're often concerned with the state of particular bits, 
rather than with the numbers these bits represent. When we're interested 
in bits we want a numbering system that shows us the state of these bits 
- on or off, 0 or 1. We can, for instance, immediately see that the binary 
number 11111100 hqs all its bits set to 1, except the two on the right; 
whereas when we look at the equivalent decimal number, 252, this 
information is no longer obvious. 

The reason the decimal number 252 doesn't tell us very much about 
bit patterns is that each decimal digit does not represent a fixed number 
of transistors (or binary digits). For instance, you can't use exactly three 
binary digits to represent the decimal numbers, since with three bits -
as we saw above - you can only count up to eight. On the other hand, if 
you use four binary digits you're forced to count up past ten to sixteen. 
One decimal digit represents somewhere between three and four bits: so 
there just is no simple relationship between binary and decimal numbers. 

The Hexadecimal System 
What would be ideal for talking to computers is a numbering system 

that has the advantages of binary - an easy to understand relationship 
between the state of the transistors in the computer and the number itself 
- and of decimal - numbers concise enough to be easily understood by 
humans. 

Two such systems are in fairly wide use: the octal, or base-eight 
system, and the hexadecimal, or base sixteen system. Octal is actually 
much easier to learn than hexadecimal, but it takes three binary bits to 
represent an octal number, and three is thought to be an awkward 
number in the computer business, since it does not go evenly into an 8-
bit byte. Hexadecimal has therefore become the standard computer 
numbering system. 

What exactly is a "base-sixteen" system? It has sixteen symbols for 
numbers, starting at O and going up to ... oops. We run out of decimal 
digits at nine, so we need six more. What to do? Why not use some other 
common symbols - letters - for the digits beyond nine? The result 
looks like this: 
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0000 = 0 = 0 
0001 = 1 = 1 
0010 = 2 = 2 
0011 = 3 = 3 
0100 = 4 = 4 
0101 = 5 = 5 
0110 = 6 = 6 
0111 = 7 = 7 
1000 = 8 = 8 
1001 = 9 = 9 
1010 = A= 10 
1011 = B = 11 
1100 = C = 12 
1101 = D = 13 
1110 = E = 14 
1111 = F= 15 

10000 = 10 = 16 
10001 = 11 = 17 
10010 = 12 = 18 

Decimal numbers 

Hexadecimal numbers 

Binary numbers 

Notice how four binary digits correspond to exactly one hexadecimal 
digit. When the hexadecimal number gets so big it has to use two digits 
(going from F to 10 hexadecimal, which is from 15 to 16 decimal), the 
binary numbers also shift into another column (from 1111 to 10000). It's 
this exact relationship of four binary digits to one hexadecimal digit that 
makes the hexadecimal numbering system so much more useful in 
computers than the decimal system. 

Hexadecimal to Binary Conversions 
When you see a hexadecimal digit- in a DEBUG dump, for instance 

- you can convert it immediately to binary, using the table above. 
If there are two hexadecimal digits in a number, they are converted to 

binary one at a time, again according to the above table. For instance, 

A8h = 10101000 
11 

A 8 
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since Ah = 1010, and Sh = 1000. (From now on in this appendix, 
numbers followed by "h" will represent hexadecimal numbers.) 

Hexadecimal numbers with any number of digits can be converted to 
binary in a similar way. For instance, 

B49Ah = 1011010010011010 

Hexadecimal Arithmetic 
What happens when you try to perform arithmetic in the 

hexadecimal numbering system? For small numbers it's not so hard. For 
instance, 

4h 
+ 2h 

6h 

This is just the same as decimal. 
How about 

Ah 
+ 4h 

Eh 

Not too bad either. We count 4 past A: "B, C, D, E," much as we used to 
count on our fingers when we were first learning the decimal system. 

When we need to carry, things get a little trickier, since we need to 
remember that "F" in hexadecimal plays the role of "9" in decimal: it's 
the last digit before 10. 

Ah 
+ Sh 

12h 

We find this result by counting eight digits past A: "B, C, D, E, F, 10, 
11, 12." 

After a while you get the hang of doing hexadecimal arithmetic on 
small numbers. However, large numbers are another story. Confronted 
with 

A84Bh 
+ 7C5Fh 

? 
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most of us would head for the showers. What to do? One answer is to 
convert the hexadecimal numbers to decimal, do the arithmetic, and 
convert them back again to hexadecimal. 

Converting Between Hexadecimal and Decimal 
Besides simplifying arithmetic on large hexadecimal numbers, 

hexadecimal to decimal conversions are often useful in their own right. 
For instance, to use PEEKs and POKEs in BASIC, you may need to 
represent memory addresses in decimal; whereas technical literature on 
computers often gives memory addresses in hexadecimal. Assuming you 
don't have a conversion table, you'll need to do the conversion by hand. 

Hexadecimal to Decimal Conversions 

The important thing when finding the decimal equivalent of a 
hexadecimal number is to remember that the digits in each column of a 
hexadecimal number are each worth sixteen times more than the digits in 
the column to the right. Thus 30h is sixteen times larger than 3h, and 
300h is sixteen times larger than 30h. (In the same way digits in the ten's 
column in the decimal system are worth ten times more than the digits in 
the one's column, and so forth.) 

Let's find the decimal equivalent of BF3Ch. (In these examples we'll 
show decimal numbers followed by "d" to avoid any possibility of 
confusion.) The one's column of the hexadecimal number is easy: we 
simply look up the number in the table above, which tells us that Ch is 
12d. The ten's column must be multiplied by sixteen, the hundred's 
column must be multiplied by 256d (which is 16d times 16d), and the 
thousand's column by 4096d (256d times 16d). 

12d ld 
3d • 16d 

15d • 256d 
lld • 4096d 

12d 
48d 

3840d 
45056d 

Decimal total = 48956d 

Thus BF3C hexadecimal is 48956 decimal. 

Decimal to Hexadecimal Conversions 

To do conversions in the other direction, from decimal to 
hexadecimal, we reverse the process: we now use division by 16 instead of 
multiplication. Let's take the same number we just converted to decimal 
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and see if we can convert it back to its original hexadecimal value. 
To find the hex digit on the left (the "thousands" column), we want to 

see how many times 4096d goes into the number. For the hundred's 
column we want to see how many times 256d goes into the remainder of 
the preceding thousands operation, and so on. 

Here's what the complete process looks like: 

48956 I 4096 = 11 lld = Bh 
remainder = 3900 

3900 I 256 = 15 15d = Fh 
remainder = 60 -- B F 3 C h 

60 /16 = 3 3d = 3h 
remainder = 12 

12 / 1 = 12 12d = Ch 
no remainder 

That's really all there is to hexadecimal to decimal conversion. The 
methods shown work for numbers with any number of digits - the more 
digits, the more steps are required, but the process is the same. 

Now you understand binary numbers and hexadecimal numbers, and 
how to convert back and forth between these new systems and the old 
familiar decimal system. As with most new skills, practice is the best way 
to increase your familiarity with hexadecimal. Keep plugging away, and 
eventually those funny numbers will start to seem perfectly normal, and 
you'll wonder why all humans, or at least programmers, don't grow more 
fingers and count in hexadecimal too! 
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Appendix B 
Supplementary Programs 

Programs 
MEMSCAN - Displays usage of the PC's address space 
HEXIDEC - Hexadecimal to decimal converter 
PRIME - Finds prime numbers using sieve of Eratosthenes 
SET-BO - Creates a file of birthdays 
GET-BO - Lists people with birthdays on today's date 
MOD-BO - Modifies the birthday file 
SAVEIMAG - Saves screen image to disk file 

hi.is appendix contains listings for a number of programs which are 
too long to include in the main part of the book. These programs offer 
additional examples of assembly-language programming, while at the 
same time providing some interesting and useful utilities for your IBM 
PC system. 

Only the ASM files for these programs are listed. They should be 
typed in as shown, then assembled and linked into EXE files. 

MEMSCAN 
MEMSCAN produces a visual image of the entire one-megabyte 

address space of the PC. Those areas of memory which are currently in 
use (occupied by programs) are marked with Xs, while unused areas are 
filled in with periods. This can be useful in figuring out which areas of 
memory are occupied by the operating system, which by applications 
programs, how large a particular program is, and so on. To use this 
program, simply enter "memscan" following the DOS (or DEBUG) 
prompt, as shown below: 
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A>memscan 

0000: 
1000: 
2000: 
3000: 
4000: 
5000: 
6000: 
7000: 
8000: 
9000: 
A000: 
B000: 
C000 : 
D000 : 
E000 : 
F000: 

0000 2000 4000 6000 8000 A000 C000 E000 
XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXX. XX .XXXXX 
XXXXXXXX XXX . .. . . . . XXXXXX X .. .. . .. . . . . X ... .... .. . . . . XXXXXX XXXXXXXX 

xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx 

xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx 

X X X X X X X X 
000 400 800 C00 1000 1400 1800 1C00 

Segment addresses are shown on the left-hand side, and offset 
addresses run across the top. Each individual symbol (an X or a period) 
represents 400h bytes of memory. The values of individual symbols in 
each group of eight positions are shown for reference at the bottom of 
the printout. 

Notice that in this example the monochrome display can be seen to 
be in use at B000:0 to B000:7FFF. The color display memory (at B800 :) 
is not in use. The resident part of the operating system and various other 
programs occupy the lower part of memory, and the transient part of the 
operating system can be seen starting at 1000:CS00. Since this is a 128K 
(20000h bytes) system, there is nothing above 1000:FFFF. Isolated areas 
of usage with a single "X", such as the one at 1000:9000, are probably 
stack areas. 

To see only the area occupied by the operating system, power down 
the computer to erase all the memory locations. Then boot up the 
operating system and immediately run MEMSCAN. The resulting Xs will 
show you how big your operating system is. You can also see how large 
other programs are by loading them, then exiting them and running 
MEMSCAN. MEMSCAN will overlay the previous program, but that 
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won't matter, since the memory locations occupied by a program will not 
be erased until the computer is powered down. 

MEMSCAN works by making certain assumptions. First, it assumes 
that memory with nothing in it will have all the bytes set to the same 
value. (This could be 00, or FF, or some other value, depending on the 
hardware.) Second, it assumes that memory with a program in it will have 
bytes set to very different values. MEMSCAN examines pairs of memory 
locations. If they are different, there is a possibility that a program 
occupies that part of memory. To be sure, the program checks a third 
location. If it's different too, the program marks that 400h-byte section 
with an X and goes on to the next section. If a pair of locations is the 
same, the program skips over eight bytes and looks again. 

Here's the listing for MEMSCAN: 

;MEMSCAN--Scans entire megabyte of memory 

Assigns a symbol to each group of 1024 bytes 
symbol is 11 11 if nothing there 
symbol is 11 X11 if something there 

Output arranged: 
8 groups /division, 
8 divisions / line , 
16 lines /screen 

1024 * 8 * 8 * 16 = 1048576 

pmess equ 
display equ 
doscall equ 

9h 
2h 
21h 

;print message function 
;display output char fn 
;DOS interrupt address 

. ********************************************* 
' 
' ; segment to define ES 

x_seg segment 
x_byte db ? 
x_seg ends 
' ********************************************* ' 
' ;variable storage area 

var_area segment 

' lines db ? 
div_line db ? 
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gp_div db ? 

header db 0000 2000 4000 
8000 A000 C000 

colon db I' $' 
footer db 0ah, 0dh, 'X X X X 

db 0ah, 0dh, '000 400 800 C00 
, 
var_area ends 
·********************************************* ' 

memscan segment 

main proc far 

assume cs:memscan, ds:var_area 
assume es:x_seg 

;set up stack for return 
start: 

push ds ;save OS 
sub ax,ax ;clear AX to 0 
push ax ; push 0 

;set data segment to work area 
mov ax,var_area 
mov ds,ax 

' ;initialization 
mov lines , 16d 
sub ax,ax 
mov es,ax 

' ;print header 

;lines per screen= 16 
; set AX to 0 
;set ES register to 0 

call crlf ;skip a line 
mov dx,offset header ;addr of message 
mov ah,pmess ;print mess function 
int doscall ;call DOS 
call crlf ;skip a line 

;start a new line 
new_line : 
;print contents of ES register at start of line 

mov bx ,es ;print contents of ES 
call binihex; on screen in hex 

;print colon and space 
mov dx,offset colon 
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' 

mov ah,pmess 
int doscall 

;print message funct 
; call DOS 

mov div_line,8d ;divisions per line= 8 
mov bx,0 ;set BX to zero 

;start a new division 
new_div: 

mov gp_div , 8d ;groups /division= 8 

;start a new group 
new_grp: 

mov cx,128d ;samples per group= 128d 

' ;read two bytes and compare them 
new_byte: 

mov al, [bx+ x_byte] 
mov ah, [bx+ x_byte + 2) 
and ax , 7f7fh ;mask off high bits 
cmp al,ah ;does 1st= 2nd? 
Je nx_byte ;yes, nothing here 

' ;may be something, look at third byte 
mov dl, [bx+ x_byte + 5) 
and dl, 7fh ;mask off high bit 
cmp al, dl ; does 1st = 3rd ? 
je nx_byte ;yes 
cmp ah,dl ;does 2nd= 3rd? 
je nx_byte ;yes 

' ;three bytes all different found, 
so there's something in this group 

mov dl,'X' ;print "X" 
mov ah ,display ;display function 
int doscall ;call DOS 

' ;advance BX to next group 
and bx,0fc00h ;mask off lower 10 bits 
add bx,1024d ;add 1024d (400h) 
jmp done_grp ;done this group 

' ;nothing found yet, get next byte 
nx_byte: 

add 
dee 
jnz 

; done group , 
mov 

bx,8d ;increment byte pointer 
ex ;done this group? 

new_byte ;not yet 
so print a period 

dl , '.' ;char in DL 
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mov ah,display ;display function 
int doscall ;call DOS 

' ;we've done one group (1024 bytes) 
done_grp: 

dee gp_div ;done a division? 
jnz new_grp ;no, do next group 
mov dl,' ' ;yes, print space 
mov ah,display ;display function 
int doscall ; call DOS 

;we've done one division (8 groups) 
done_div: 

dee di v_line 
jnz new_div 
call er lf 
mov ax ,es 
add ax,1000h 
mov es , ax 

;done 8 divisions? 
;no, do next division 
;yes, print er & lf 
;advance the ES 

to next segment 
(add 65536d) 

;we've done one line (8 segments) 
done_line: 

dee lines ;done 16 lines? 
jnz new_line ;no, do next line 

' ;print out values of X positions on bottom row 
mov dx,offset footer 
mov ah,pmess ;print message function 
int doscall ;call DOS 
ret ;yes, return to DOS 

main endp 

' crlf 

crlf 

' 

proc 

mov 
mov 
int 
mov 
mov 
int 
ret 
endp 

near 

dl ,0dh 
ah,display 
doscall 

dl,0ah 
ah,display 
doscall 

binihex proc near 

' 

;carriage return 
;display function 
;call DOS 
;linefeed 
;display function 
;call DOS 

;subroutine to convert binary number in BX 
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to hex and print out on console screen 

mov 
rotate: mov 

rol 
mov 
and 
add 
cmp 
jl 
add 

printit: 

ch,4 
cl, 4 
bx ,cl 
al,bl 
al,0fh 
al ,30h 
al, 3ah 
printit 
al , 7h 

mov dl, al 

' 

mov ah,display 
int doscall 
dee ch 
jnz rotate 
ret 

binihex endp 

' memscan ends 

;number of digits 
;set count to 4 bits 
;left digit to right 
;move digit to AL 
;mask off left digit 
;convert hex to ASCII 
; is it > 9 ? 
;no, so 0 to 9 digit 
;yes, so A to F digit 

;put ASCII char in DL 
;display function 
; call DOS 
; done 4 digits? 
;not yet, do another 
; done subroutine 

. ********************************************* ' end start 

HEXIDEC 
HEXIDEC is a hexadecimal to decimal converter program. You type 

a positive hex number from O to FFFF on the keyboard, and the program 
will print out the decimal equivalent, from O to 65535, on the screen. To 
exit from the program, type @] ( Break ). This program is the reverse 
of the DECIHEX program developed in chapter 6. 

Here's an example of output from the program: 

A>hexidec 
0 <-- Enter a hex number 
00000 <-- Program prints out decimal equivalent 

10 <-- Hex 
00016 <-- Decimal 
fff 
04095 
1000 
04096 
8000 
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32768 
ffff 
65535 
' C <-- Type (® ( Break ) to exit 
A> 

Here's the listing for HEXIDEC: 

;HEXIDEC--Main program 
Converts hex on keyboard to dee on screen 

' hexidec segment 

main proc far 

assume cs:hexidec 

;MAIN PART OF PROGRAM. Links subroutines 
together. 

' display equ 2h ;video output 
key_in equ lh ; keyboard input 
doscall equ 21h ;DOS interrupt number 

push ds ; ds on stack 
sub ax ,ax ;set ax=0 
push ax ;zero on stack 

call hexibin ;keyboard to binary 
call crlf ;print er & linefeed 

call binidec ;binary to decimal 
call crlf ;print er & linefeed 
jmp main ;get next input 

main endp 

' hexibin proc near 

;SUBROUTINE TO CONVERT HEX ON KEYED TO BINARY 
result is left in BX register 

mov bx ,0 ;clear BX for number 

' ;get digit from keyboard , convert to binary 
newchar : 
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' 

mov 
int 
sub 
jl 
cmp 
jl 

ah,key_in 
doscall 
al, 30h 
exit 
al,10d 
adcLto 

;keyboard input 
; call DOS 
; ASCII to binary 
; jump if < 0 
;is it> 9d? 
;yes, so it's digit 

;not digit (0 to 9), maybe letter (A to F) 
sub al,27h ;convert ASCII to bin 
cmp al,0ah ; is it < 0a hex? 
jl exit ;yes, not letter 
cmp al, 10h ;is it> 0f hex? 
jge exit ;yes, not letter 

' ;is hex digit. Add to number in BX 
adcLto: 

mov cl,4 ; set shift count 
shl bx,cl ;rotate BX 4 bits 
mov ah,0 ;zero out AH 
add bx,ax ;add digit to number 
jmp newchar ; get next digit 

exit: 
ret 

' hexibin endp 

' binidec proc near 

;SUBROUTINE TO CONVERT BINARY NUMBER IN BX 
TO DECIMAL ON CONSOLE SCREEN 

mov cx,10000d ;divide by 10000 
call dec_div 
mov cx,1000d ;divide by 1000 
call dec_div 
mov cx,100d ;divide by 100 
call dec_div 
mov cx,10d ;divide by 10 
call dec_div 
mov cx,ld ;divide by 1 
call dec_div 
ret ;return from binidec 

' dec_div proc near 

' ;sub-subroutine to divide number in BX by 
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, 

number in CX, print quotient on screen 
(numerator in AX+DX , denom in CX) 

mov ax ,bx ;number high half 
mov dx ,0 ;zero out low half 
div ex ; divide by ex 
mov bx,dx ;remainder into BX 
mov dl ,al ;quotient into DL 

;print the contents of DL on screen 

, 

add dl ,30h ;convert to ASCII 
mov ah ,display ;display function 
int doscall ;call DOS 
ret ;return from dec_div 

dec_div endp 

, 
binidec endp 

, 
crlf proc near 
, 
;prints carriage return and linefeed 

mov dl ,0ah ; linefeed 
mov ah ,display ;display function 
int doscall ;call DOS 

mov dl,0dh ;carriage return 
mov ah ,display ;display function 
int doscall ;call DOS 
ret 

, 
crlf endp 

' hexidec ends 
end main 

PRIME 
Two articles in Byte magazine (September 1981 and January 1983) 

described a program that finds prime numbers, using a method called 
the "sieve of Eratosthenes." Besides being an interesting method for 
finding primes, the program is also widely used as an informal 

472 Assembly Language Primer for the IBM PC & XT 



benchmark for testing the speed of different computer languages. 
Programs in a wide variety of languages, running on different computers, 
have been written to find primes up to 16381. 

In the sieve of Eratosthenes method, all the integers (1, 2, 3, etc.) up 
to a certain value are thought of as being placed on a list. First all the 
multiples of two are crossed out, leaving only odd numbers. Then all the 
multiples of three are crossed out, then the multiples of four, and so on. 
When this process is completed, only prime numbers are left on the list, 
since those that are a multiple of some other number have been crossed 
out. 

The Byte articles reported an enormous variation in the speed of 
different languages on different computers. (Ten iterations were used to 
avoid excessively short times for the fastest computers.) Large mainframes 
running assembly language were, as might be expected, the fastest: the 
IBM 3033 took 0.0078 seconds. Many of the slower BASICs and other 
higher-level languages, running on smaller computers, took up to 3000 
seconds. 

We thought it would be interesting to write versions of this program 
in BASIC and assembly language on the IBM PC, and compare their 
speeds of operation. We won't attempt to analyze in detail how the 
programs work, but you might find analyzing them to be an interesting 
exerose. 

Here's the BASIC version of the program: 

10 DEFINT A-Z 
20 DIM MARK(16381) 
25 COUNT=0 
30 FOR 1=3 TO 16381 STEP 2 
40 MARK(I)=0 
50 NEXT I 
60 FOR I=3 TO 16381 STEP 2 
70 IF MARK(I)=l THEN GOTO 130 
80 'PRINT I; 
85 COUNT=COUNT+l 
90 J=I 
100 FOR J=J+I TO 16381 STEP I 
110 MARK(J)=l 
120 NEXT J 
130 NEXT I 
135 PRINT: PRINT COUNT "primes" 
140 STOP 

This BASIC program took 3 minutes and 3 seconds, or 1830 
seconds to complete the ten iterations of the process. 
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Here's the assembly language version of the program: 

;PRIMES3--Finds all prime numbers to 16381 
using sieve of Eratosthenes 
prints out total number 

max equ 
display equ 
prinLJII equ 
doscall equ 

16381d 
2h 
9h 
21h 

;highest number 
;display char function 
;print message function 
;DOS interrupt number 

· ********************************************* , 

datarea segment ;define data segment 

numbers db max dup (?) ;buffer for integers 
messl db 'calculating ... $' 
mess2 db ' $' ;three spaces 

datarea ends 
·********************************************** , 

pro_nam segment ;define code segment 

main proc far ;main part of program 

start: 

assume cs:pro_nam,ds:datarea 

;starting execution address 

;set up stack for return 
push ds 
sub ax,ax 
push ax 

;set DS to data segment 
mov ax,datarea 
mov ds,ax 

;PRINT INITIAL MESSAGE 

;save DS on stack 
;set AX to zero 
;put on stack 

mov dx,offset messl ; load address 
mov ah,print_Jll ;print message function 
int doscall ;call DOS 

;SET COUNT OF PRIMES TO ZERO (CX REGISTER) 
mov ex , 0 ; set ex to 0 
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;FILL ODD NUMBERS IN ARRAY WITH ZERO 

mov bx,3 ; start at 3 
f ilL0: 

mov [numbers+ bx] ,0 ;insert 0 
inc bx ;skip to next 
inc bx odd number 
cmp bx,max ;done yet? 
jle fill_0 ;not yet 

;FIND PRIMES, CROSS OUT ALL THE NONPRIMES 

mov bx,3 ; start with 3 

;has this number been flagged as a nonprime? 
search: 

mov al, [numbers + bx] ; number into AL 
cmp al,1 ;is it marked with 1? 
je go_next ;yes, so it's nonprime 

;no, so it's a prime. 

;the semicolon can be removed from the 
;following line to print out the primes 

call binidec ;print the prime 
inc ex ;count the prime 

;cross out all the numbers that are multiples 
of this prime, by marking them "1" 

mov si,bx ;j=i 
cross_out: 

add si,bx ;j=j+i 
cmp si,max ;gone too far yet? 
jg go_next ;yes 
mov [numbers+ si],1 ;cross it out 
jmp cross_out ;do next one 

;have we looked at all the numbers? 
go_next: 

inc bx 
me bx 
cmp bx,max 
jle search 

;skip to next 
odd number 

; are we done? 
; not yet 

;PRINT OUT TOTAL NUMBER OF PRIMES AND RETURN 
mov bx,cx ;put count in BX 
call binidec ;print it 

ret ;return from program to DOS 
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marn endp 

' binidec proc 

;end of main part of program 

near 

; SUBROUTINE TO CONVERT BINARY NUMBER IN BX 
TO DECIMAL ON CONSOLE SCREEN 

push 
push 

bx 
ex 

;print three spaces 

;save BX 
;save ex 

mov dx,offset mess2 ;spaces message 
mov ah ,print__rn ;print message func 
int doscall ;call DOS 

;divide by successive powers of 10d 
mov cx ,10000d ;divide by 10000 
call dec_div 
mov cx ,1000d ;divide by 1000 
call dec_div 
mov cx ,100d ;divide by 100 
call dec_div 
mov cx ,10d ;divide by 10 
call dec_di v 
mov cx , ld ;divide by 1 
call dec_di v 

pop 
pop 

ex 
bx 

;restore ex 
;restore BX 

ret ;return from binidec 

dec_div proc near 

;sub-subroutine to divide number in BX by 
number in CX, print quotient on screen 

mov ax ,bx ;put number in tJ. 
cwd ;ax into ax and dx 
div ex ;divide by ex 
mov bx ,dx ;remainder into BX 
mov dl ,al ;quotient into DL 

;print the contents of DL on screen 
add dl,30h ;convert to ASCII 
mov ah,display ;display function 
int doscall ;call DOS 
ret ;return from dec_div 
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dec_div endp 

binidec endp 

' pro_narn ends ;end of code segment 
. ********************************************* ' 

end start ;end assembly 

The assembly-language program took 8 seconds for ten iterations, 
which is about 230 times faster than the BASIC program. If there's a 
more compelling argument favoring assembly language over higher-level 
languages, especially interpreted ones, we don't know what it is. 

There is a CALL BINIDEC instruction in the middle of the PRIME 
program, preceded by a semicolon so that it becomes a comment. If the 
semicolon is removed, the prime numbers will be printed out as the 
program runs. (Of course the printing process slows down the program, 
so you can't leave this instruction in when you're measuring the speed of 
the program.) With the semicolon removed, the following printout of 
prime numbers is generated (we haven't shown all of it). 

A>prirne 
calculating. . 00003 00005 00007 00011 00013 00017 00019 00023 
00029 00031 00037 00041 00043 00047 00053 00059 00061 00067 
00071 00073 00079 00083 00089 00097 00101 00103 00107 00109 
00113 00127 00131 00137 00139 00149 00151 00157 00163 00167 
00173 00179 00181 00191 00193 00197 00199 00211 00223 00227 
00229 00233 00239 00241 00251 00257 00263 00269 00271 00277 
00281 00283 00293 00307 00311 00313 00317 00331 00337 00347 

etc., up to 16381. 

The Birthday Programs 

The three programs in this section are used to create, use, and 
modify a file of birthdays. As we noted in chapter 11, these programs 
serve as an example of the use of records in disk files, and of the 
sequential method of disk access. 

The first program, SET-BD, creates the birthday file. It prompts you 
for a person's name, and then for the month and day of the person's 
birthday. Then it repeats the process for the next person, until it has 
recorded all the birthdays you wanted it to. This information is stored in 
a disk file, with one record used for each person. 
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On any given day you can then call up the program GET-BD from 
DOS. This program reads the system clock to find out the date, then 
reads the birthday file to see if anyone on the list has a birthday with that 
date. If someone does, the name is printed out, and you can then call to 
wish your friend a happy birthday. 

The third program, MOD-BD, is used to modify the birthday file, or 
to add additional names to it (SET-BD can only be used once). 

The files used by these programs consist of records which contain 
24d bytes each. The first byte is a count of the number of letters in the 
name. The name follows, with up to 2 ld characters. The last two bytes of 
the record contain the numbers representing the month and the day of 
the person's birthday. This buffer is located in the default DMA area of 
the FCB, from 80h to 97h, as shown in the figure below: 

7f 80 81 82 83 94 95 96 97 

I I 17 )I I I I 
I Lunt 

Max count 

Name: up to 21d characters 

Of course the ideas used in these birthday programs can be extended 
to other programs which create much more complex records. Instead of 
simply a birthday, records can contain account numbers, payment dates, 
balances, and so on. This is how files are created for use in mailing lists, 
accounts receivable, database, and other similar programs. 

The SET-BD Program 
As noted above, SET-BD is used to create the file of birthdays. When 

you call it from DOS you must also enter the name of the file the 
birthdays will be written to. If you forget to do this, the program will 
simply return to DOS. 

Here's an example of the use of the SET-BD program: 
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A>set-bd test. bd <-- You must enter the name of the file 

Enter name: George Jones l 
Enter month of birth (1-12): 5 -- First person 

Enter day of birth (1-31): 15 
Enter name: Emily Emlen l 
Enter month of birth (1-12): 6 --Second person 

Enter day of birth (1-31): 16 
Enter name: Carole Christian ! 
Enter month of birth (1-12): 9 --Third person 

Enter day of birth (1-31): 17 
Enter name: <-- Press g to terminate program 

In this case we've only entered three names; you can enter as many as 
you like. 

Here's the listing for the SET-BD program: 

;SET-BD--Program to write name and birthday 
to file 

; name of file must follow 11 set-bd 11 , 

as in A>set-bd birthday. txt 

;asks for name , and day and month of birthday 
;writes this information as one record of file 
; record is 22d bytes long 
;repeat as often as necessary 
;terminate with enter for name 
;NOTE: program can only be used ONCE PER FILE 
;uses Sequential Write DOS function 

doscall equ 21h 
create equ 16h 
w_seq equ 15h 
close_f equ 10h 
print_m equ 9h 
buff_in equ 0ah 
key_in equ lh 
display equ 2h 
name_sz equ 21d 
rec_sz equ name_sz+3 
fcb equ 5ch 

;DOS interrupt number 
;Create File function 
;Write Sequential rec 
;Close File function 
;print message function 
;buffered keybd input 
;keybd input (1 char) 
;display output funct 
;max length of name 
;name plus 3 bytes 

. ********************************************* ' datarea segment ;define data segment 

;DEFINE FILE CONTROL BLOCK 
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org 6ah 
r_field db ? 

org 7ch 
recno db ? 

;record size field 

;record number 

;DEFINE DATA TRANSFER AREA 

org 7fh ; input buffer 
buffer label byte 
max_cnt db name_sz ; length of name 

count 
bname 
month 
day 

org 80h ;data transfer area 
db ? ;filled in by buff_in 
db name_sz dup (?) ;buffer for name 
db ? ;byte for month 
db ? ;byte for day 

;this data 1s in segment set by LINK to DATAREA 

messl db 
mess2 db 
mess3 db 

'Enter name: $' 
'Enter month of birth (1-12): $' 
'Enter day of birth (1-31 ): $' 

datarea ends 
. ********************************************* , 

pro-11am segment ;define code segment 

main proc far ; main program 

assume cs:pro-11am,ds :datarea 

;SET UP STACK FOR RETURN 
start: 

push ds 
sub ax,ax 
push ax 

;CREATE FILE 

mov dx ,fcb 
mov ah ,create 
int doscall 
or al ,al 
jnz done 

;save DS 
;set AX to zero 
;put zero on stack 

;FCB address in DX 
;Create File function 
; call DOS 
;see if found (AL=0)? 
;no room in directory 

;SET RECORD SIZE , RECORD NUMBER 
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mov r_field,rec_sz ;set size of record 
mov recno,0 ;set record count to 0 

;GET INFORMATION FROM USER 
nexLrec: 

;print "name" message 
mov dx,offset messl ;addr in DX 
call p-1Iless ;print message 

;set maximum name size in input buffer 
mov max_cnt,name_sz 

; get name 
mov dx,offset buffer ;set addr of buff 
mov ah,buff_in ;keyboard input funct 
int doscall ;call DOS 
call crlf ;new line 

;check if name has no 
mov al,count 
or al, al 
J z done 

;print "month" message 

characters (user is done) 
;get# of chars input 
; is it zero? 
;yes, user is done 

mov dx,offset mess2 ;addr in DX 
call p-1Iless ;print message 

; get month 
call decibin 
mov month,bl 
call crlf 

;print "day" message 

; get month 
;put month in buffer 
; new line 

mov dx,offset mess3 ;addr in DX 
call p-1Iless ;print message 

; get day 
call decibin 
mov day,bl 
call crlf 

; get day 
;put day in buffer 
; new line 

;WRITE RECORD FROM BUFFER TO DISK 

mov dx,fcb 
mov ah,w_seq 
int doscall 
jmp nexLrec 

;FCB address in DX 
;write sequential func 
; call DOS 
;go get next record 
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;DONE , SO CLOSE FILE, RETURN TO DOS 

done: 
mov dx,fcb ;FCB address in DX 
mov ah, close_f ;Close File function 
int doscall ; call DOS 
ret ;return to DOS 

main endp ;end of main program 

' decibin proc near 

;SUBROUTINE TO CONVERT DEC ON KEYBD TO BINARY 
result is left in BX register 

mov bx,0 ;clear BX for number 

;get digit from keyboard, convert to binary 
newchar: 

mov ah,key_in ;keyboard input 
int doscall ;call DOS 
sub al ,30h ;ASCII to binary 
jl exit ;jump if < 0 
cmp al ,9d ;is it > 9d? 
jg exit ;yes , not dee digit 
cbw ;byte in AL to word in AX 

; (digit is in AX) 

' ;multiply number in bx by 10 decimal 
xchg ax ,bx ; trade digit & number 
mov cx,10d ;put 10 dee in CX 
mul ex ;number times 10 
xchg ax ,bx ; trade number & digit 

' ; add digit in ax to number in bx 
add bx,ax ;add digit to number 
jmp newchar ;get next digit 

exit : 
ret 

' decibin endp 

p_mess proc near 

;SUBROUTINE TO PRINT MESSAGES 
enter w address of message in dx 

482 Assembly Language Primer for the IBM PC & XT 

I 



push ds 
mov ax,datarea 
mov ds,ax 
mov ah,print_m 
int doscall 
pop ds 
ret 

;save old value of DS 
;put new data seg 

in DS 
;print message function 
; call DOS 
;restore old DS value 

p_mess endp 

crlf proc near 

;CRLF--Subroutine to print carriage return 
and linefeed 

mov dl,0ah ;linefeed 
mov ah,display ;display function 
int doscall ;call DOS 

mov dl,0dh ;carriage return 
mov ah,display ;display function 
int doscall ;call DOS 
ret 

crlf endp 

pro_nam ends ;end of code segment 
'********************************************* ' 

A>date 

end start ;end of assembly 

The GET-BD Program 
When GET-BD is first called it must be followed by the name of the 

file containing the birthdays Gust as SET-BD was). It will then read the 
system clock to determine the date, and check the file for matches with 
this date. If it finds any, it will print out the person's name. In the 
example below we use the DATE function just so you can see it really is 
September 17th; you wouldn't normally need to do this. 

Current date is Sat 9-17-1983 
Enter new date: 

.- Call DOS DATE function 
<- It's September 17th 
<-Press g 

A>get-bd test.bd 
Carole Christian 

<- Call GET-BO 
<- Phone Caro le, tell her " Happy Birthday!" 
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Here's the listing of the GET-BD program. 

;GET-BD--Program to search file for names 
with today's birthday 

; name of file must follow "get-ed". E.g.: 
A>get-bd birthday. txt 

; if no matches, nothing will be printed 

;uses sequential read 

doscall equ 21h 
opeILf equ 0fh 
r_seq equ 14h 
display equ 2h 
g_date equ 2ah 
name_sz equ 21d 
rec_sz equ name_szt3 
fcb equ Sch 

;DOS interrupt number 
;Open File function 
;Read Sequential rec 
;display output funct 
;get date function 
;max length of name 
;name plus 3 bytes 

·********************************************* ' datarea segment ;define data segment 

;DEFINE FILE CONTROL BLOCK 

org 6ah 
r_field db ? 

org 7ch 
recno db ? 

;record size field 

; record number 

;DEFINE DATA TRANSFER AREA 

org 7fh ; input buffer 
max_cnt db name_sz ;max length of name 

org 80h ;data transfer area 
count db ? ;filled in by buff_in 
bname db name_sz dup (?) ;buffer for name 
month db ? ;byte for month 
day db ? ;byte for day 

datarea ends 
. ********************************************* ' 
pro_nam segment ;define code segment 
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marn proc far ; main program 

assume cs:pro_narn,ds :datarea 

;SET UP STACK FOR RETURN 
start: 

push ds 
sub ax , ax 
push ax 

;save OS 
;set AX to zero 
;put zero on stack 

;OPEN FILE 

mov dx ,fcb 
mov ah,opeILf 
int doscall 
or al ,al 
Jnz done 

;FCB address in DX 
;Open File function 
; call DOS 
;see if found (AL=0)? 
;can't find file 

;SET RECORD SIZE , RECORD NUMBER 

mov r_field ,rec_sz ;set size of record 
mov recno ,0 ;set record count to 0 

;READ RECORD FROM DISK INTO BUFFER 

nexLrec : 
mov dx ,fcb 
mov ah ,r_seq 
int doscall 
or al, al 
jnz done 

;FCB address in DX 
;Read Sequential rec 
; call DOS 
;end-of-file? (AL<>0?) 
;yes, so we're done 

;GET MONTH AND DAY FROM INTERNAL CLOCK 

mov ah ,g_date ;get date function 
int doscall ;call DOS 

;COMPARE MONTH AND DAY IN RECORD WITH 
CURRENT MONTH AND DAY 

cmp month ,dh ;DH is current month 
jnz next__rec ;no match; get next rec 
cmp day ,dl ;DL is current day 
jnz next__rec ;no match; get next rec 

;MONTH AND DAY MATCH , SO PRINT NAME 

Appendix 8-Supplementary Programs 485 



mov cl ,count ; letter count in CX 
mov ch , 0 ; (zero out top half) 
mov bx ,offset bname ;start of buffer 

new_char: 
mov dl , [bx] 
mov ah,display 
int doscall 
inc bx 
loop new_char 

call er lf 
jmp nexLrec 

;get char from buffer 
;display char function 
; call DOS 
;bump pointer 
; do until CX=0 

;new line 
;get next record 

;DONE , SO RETURN TO DOS 

done: 

main 

' crlf 

ret 

endp 

proc near 

;return to DOS 

;end of main program 

;CRLF--Subroutine to print carriage return 
and linefeed 

mov dl, 0ah ;linefeed 
mov ah ,display ;display function 
int doscall ; call DOS 

mov dl,0dh ;carriage return 
mov ah ,display ;display function 
int doscall ; call DOS 
ret 

crlf endp 

pro_nam ends ;end of code segment 
· ********************************************* ' end start ;end of assembly 

The MOD-BD Program 
This program is used to modify or add to the file created with SET

BD. It first goes through the names on the list one by one, asking if you 
want to modify them. If you don't want to modify a particular record, 
you type "n". At the end of the list it asks if you want to append another 
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name to the list. If you type "n" the program exits. If you want to modify 
an existing record, or add another record to the file, just type "y" and fill 
in the information as in SET-BD. 

Here's an example of MOD-BD in operation on the file created above. 

A>mod-bd test.bd 

George Jones 
00005 
00015 
MODIFY THIS RECORD? (y/n): n 
Emily Emlen 
00006 
00016 
MODIFY THIS RECORD? (y /n): n 
Carole Christian 
00009 
00017 
MODIFY THIS RECORD? (y /n): n 
ADD ANOTHER RECORD? (y /n) : y 
Enter name: Dennis Douglas 
Enter month of birth (1-12): 9 
Enter day of birth (1-31): 17 

Now if we run GET-BD again, we'll see two names, since both these 
people have a birthday on September 1 7. 

A>get-bd test.bd 
Carole Christian 
Dennis Douglas 

Here's the listing for MOD-BD. 

;MOD-BD--Program to modify or add to info 
in birthday file 

; name of file must follow 11 mod-bd 11 • E.g.: 
A>mod-bd birthday.txt 

;file must already have been created by set-bd 

;displays contents of each record , asks if user 
wants to change it 

;uses sequential read and write 
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doscall equ 21h ;DOS interrupt number 
open_f equ 0fh ;open file function 
w_seq equ 15h ;write sequential rec 
r_seq equ 14h ;read sequential rec 
close_f equ 10h ;close file function 
print_m equ 9h ;print message function 
buff_in equ 0ah ;buffered keybd input 
key_in equ lh ;keybd input (1 char) 
display equ 2h ;display output funct 
name_sz equ 21d ;max length of name 
rec_sz equ name_szt3 ;name plus 3 bytes 
fcb equ Sch ;File Control Block 
leLy equ 79h ; letter 11 y11 

'********************************************* ' datarea segment ;define data segment 

;DEFINE FILE CONTROL BLOCK 

org 6ah 
r_f ield db ? 

;record size field 

; record number org 7ch 
recno db ? 

;DEFINE DATA TRANSFER AREA 

org 7fh ; input buffer 
buffer label byte 
max_cnt db name_sz ;length of name 

org 80h ;data transfer area 
count 
bname 
month 
day 

db ? ;filled in by buff_in 
db name_sz dup (?) ;buffer for name 
db ? ; byte for month 
db ? ; byte for day 

; this data 1s in segment set by LINK to DATAREA 

mess0 db 
messl db 
mess2 db 
mess3 db 
mess4 db 

'MODIFY THIS RECORD? (y/n): $' 
'Enter name : $' 
'Enter month of birth (1-12) : $' 
'Enter day of birth (1-31): $' 
'ADD ANOTHER RECORD? (y/n) : $' 

datarea ends 
· ********************************************* ' 

pro....nam segment ;define code segment 
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marn proc far ; main program 

assume cs:pro_nam,ds:datarea 

;SET UP STACK FOR RETURN 
start: 

push ds 
sub ax, ax 
push ax 

; save OS 
;set AX to zero 
;put zero on stack 

;OPEN FILE 

mov dx,fcb ;FCB address in DX 
mov ah,open_f ;open file function 
int doscall ; call DOS 
or al,al ;see if found (AL=0)? 
jz seLsize ;found OK 
Jmp done ;no such filename 

; (note: this jump too long for "jnz done") 

;SET RECORD SIZE, RECORD NUMBER 

seLsize: 
mov r_field,rec_sz ;set size of record 
mov recno,0 ;set record count to 0 

;READ RECORD 
nexLrec: 

call crlf ;print return, linefeed 
mov dx,fcb ;FCB address in DX 
mov ah,r_seq ;read sequential funct 
int doscall ;call DOS 
or al,al ;end-of-file? (AL<>0?) 
jz p__rec ;no 
jmp encLfile ;yes 

; (note: this jump too far for 11 jnz encLfile 11 ) 

;PRINT CONTENTS OF RECORD FROM BUFFER 
p__rec: 

;print name 
mov cl,count ;letter count in CX 
mov ch, 0 (zero out top half) 
mov bx,offset bname ;start of buffer 

new_char: 
mov dl, [bx] ;get char from buffer 
mov ah,display ;display char function 
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int doscall 
inc bx 
loop new_char 
call er lf 

; call DOS 
;bump pointer 
; do until CX=0 
;new line 

;print month 
mov bl,month 
mov bh,0 
call binidec 
call crlf 

;month from buffer 
; (zero out top half) 
;print in decimal 
;new line 

; print day 
mov bl,day 
mov bh,0 
call binidec 
call crlf 

; day from buff er 
; (zero out top half) 
;print in decimal 
;new line 

;ASK IF USER WANTS TO CHANGE IT 

; print "modify? 11 message 
mov dx,offset mess0 ;addr in DX 
call p__rness ;print message 

;get "y" or "n" answer 
mov ah,key_in ;keyboard input funct 
int doscall ;call DOS 
cmp al, le Ly ; is it letter "y" ? 
jne next__rec ;no, go read next rec 

;yes, so user wants to modify record 
dee recno ;decrement record# 

;GET INFORMATION FROM USER 
modJec: 

call crlf ;print return, linefeed 

;print "name" message 
mov dx,offset messl ;addr in DX 
call p__rness ;print message 

;set maximum name size in input buffer 
mov max_cnt,name_sz 

; get name 
mov dx,offset buffer ;set addr of buff 
mov ah,buff_in ;keyboard input funct 
int doscall ;call DOS 
call crlf ;new line 
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;check if name has no 
mov al,count 
or al, al 
J z nexL.rec 

;print 11 month 11 message 

characters (user is done) 
;get# of chars input 
;is it zero? 
;yes, get next record 

mov dx,offset mess2 ;addr in DX 
call p_JUess ;print message 

; get month 
call decibin 
mov month,bl 
call crlf 

; get month 
;put month in buffer 
; new line 

;print 11 day 11 message 
mov dx,offset mess3 ;addr in DX 
call p_Jlless ;print message 

; get day 
call decibin 
mov day,bl 
call crlf 

; get day 
;put day in buffer 
; new line 

;WRITE RECORD FROM BUFFER TO DISK 

mov dx,fcb 
mov ah,w_seq 
int doscall 
jmp nexLrec 

;FCB address in DX 
;write sequential func 
; call DOS 
;go get next record 

;END OF FILE. SEE IF USER WANTS TO ADD RECORD 
encLf ile: 

;print "add another record" message 
mov dx,offset mess4 ;addr of message 
call p_Jlless ;print message 

; get 11 y11 or 11 n11 answer 
mov ah,key_in ;keyboard input funct 
int doscall ; call DOS 
cmp al, leLy ;is it letter "y"? 
je mocLrec ; yes, go add new rec 

; no, so user is done. 

;DONE, SO CLOSE FILE, RETURN TO DOS 
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done: 

main 

, 

mov 
mov 
int 
ret 

endp 

dx,fcb 
ah, close_f 
doscall 

;FCB address in DX 
;close file function 
; call DOS 
;return to DOS 

;end of main program 

binidec proc near 

;SUBROUTINE TO CONVERT BINARY NUMBER IN BX 
TO DECIMAL ON CONSOLE SCREEN 

mov cx,10000d ;divide by 10000 
call dec_div 
mov cx,1000d ;divide by 1000 
call dec_div 
mov cx,100d ;divide by 100 
call dec_div 
mov cx ,10d ;divide by 10 
call dec_div 
mov cx,ld ;divide by 1 
call dec_div 
ret ;return from binidec 

, 
dec_div proc near 
, 
;sub-subroutine to divide number in BX by 

number in CX, print quotient on screen 

mov ax,bx ;put number in AX 
cwd ;ax into ax and dx 
div ex ;divide by ex 
mov bx,dx ;remainder into BX 
mov dl,al ;quotient into DL 

, 
;print the contents of DL on screen 

add dl,30h ;convert to ASCII 
mov ah,display ;display function 
int doscall ;call DOS 
ret ;return from dec_div 
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dec_div endp 

' binidec endp 

' decibin proc near 

;SUBROUTINE TO CONVERT DEC ON KEYED TO BINARY 
result is left in BX register 

mov bx ,0 ;clear BX for number 

;get digit from keyboard , convert to binary 
newchar : 

mov ah ,key_in ;keyboard input 
int doscall ;call DOS 
sub al ,30h ;ASCII to binary 
j 1 exit ; jump if < 0 
cmp al ,9d ; is it > 9d? 
jg exit ;yes , not dee digit 
cbw ;byte in AL to word in AX 

; (digit is in AX) 

' ;multiply number in bx by 10 decimal 
xchg ax ,bx ; trade digit & number 
mov cx , 10d ;put 10 dee in CX 
mul ex ;number times 10 
xchg ax ,bx ; trade number & digit 

' ; add digit in ax to number in bx 
add bx,ax ;add digit to number 
jmp newchar ;get next digit 

exit : 
ret 

' decibin endp 

p_mess proc near 

;SUBROUTINE TO PRINT MESSAGES 
enter w address of message in dx 
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push ds 
mov ax,datarea 
mov ds , ax 
mov ah ,print-111 
int doscall 
pop ds 
ret 

;save old value of DS 
;put new data seg 

in DS 
;print message function 
; call DOS 
;restore old DS value 

p_mess endp 

crlf proc near 

;CRLF--Subroutine to print carriage return 
and linefeed 

mov dl,0ah ;linefeed 
mov ah,display ;display function 
int doscall ; call DOS 

mov dl,0dh ;carriage return 
mov ah,display ;display function 
int doscall ;call DOS 
ret 

crlf endp 

pro_nam ends ;end of code segment 
' ********************************************* ' end start ;end of assembly 

SAVEIMAG 
SAVEIMAG is a way of saving the screen image as a disk file. You can 

cause the screen image to be printed on the printer by pressing 
@JI~; SAVEIMAG performs a similar function, but saves the image 
to a disk file. This is useful if you want to record in a text file a process 
that took place on the screen, including prompts displayed by the 
program as well as input from the keyboard. For instance, all the DEBUG 
dumps and trace sessions, as shown in the early chapters of this book, 
were saved to the disk with SAVEIMAG. 

SAVEIMAG works by taking all the characters in the monochrome 
display screen, creating a disk file from them, and writing it to the disk 
with the Random Block Write DOS function. Attributes are not saved; 
only the ASCII characters. 
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This program saves all 80 characters from each line. However, in 
order to be useful as a text file, the resulting image must have a carriage 
return inserted at the end of each line. This makes every line 81 
characters long. Thus when you use TYPE to look at the contents of a file 
generated with SAVEIMAG, it will appear to be double-spaced. A word 
processor program, however, will read it correctly. 

Here's the listing of the SAVEIMAG program: 

;SAVEIMAG--Save image of screen memory on disk 
in text form ("attributes" not saved) 

c_count equ 2000d ;number of orig chars 
new_cnt equ 2050d ;includes rets & lfs 
clLline equ 80d ;chars per output line 
r_size equ 80h ;record size 
Lsize equ new_cnt /r_size ;number of recs 

doscall equ 21h ;DOS interrupt number 
create equ 16h ;create file function 
close_f equ 10h ;close file function 
print-1TI equ 9h ;print message funtion 
block_w equ 28h ;rand blk write func 
seLdta equ lah ;set Disk Transfer Addr 

fcb equ 5ch ;File Control Block 
screen equ 0b000h ;segment of screen mem 

eof equ lah ;end-of-file character 
car_ret equ 0dh ;carriage return char 
Lfeed equ 0ah ;linefeed character 

·********************************************* ' 
stacker segment stack ;define stack segment 

db 
stacker ends 

40h dup ('stack ... ') 

· ********************************************* ' 

datarea segment ;define data segment 

;these items are in the "program segment 
prefix" segment 

org 
rs_field dw 

6ah 
? ;rec size field in FCB 
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rl 
r2 

org 
dw 
db 

7dh 
? 

? 

org 80h 

;random rec size (low) 
;random rec size (high) 

buffer db new_cnt dup (?) 

;these items are in the datarea segment 

messl db 'No space on disk. $' 

datarea ends 
· ********************************************* ' 
video 
vicLl 
video 

segment ;define extra segment 
db (?) 
ends 

. ********************************************* ' 

pro_nam segment ;define code segment 

main proc far ;main part of program 

assume cs:pro_nam,ds:datarea 
assume ss:stacker,es:video 

start: ;starting execution address 

;set up stack for return 
push ds ;save OS 
sub ax ,ax ;set r,;x to 0 
push ax ;put it on stack 

;MOVE TEXT IN SCREEN MEMORY TO BUFFER 

;set up screen pointer 
mov ax ,screen 
mov es,ax 
mov si ,0 

;set up buffer pointer 

;screen memory address 
; into ES 
;0 in screen pointer 

mov di ,0- ;0 in buffer pointer 

;set up count 
mov cx,c_count ;chars in screen mem 
mov dh ,ch_line ;set chars / line count 
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;transfer the characters from screen to buffer 
transfer : 

mov al , [vicLl + si] ; char from screen 
inc si ;bump screen pointer 
inc si twice 
mov [buffer+ di] ,al ;put char in buff 
inc di ;bump buff pointer once 

; if at end of line (multiple of 80d chars ), 
then insert return and linefeed in buffer 

dee dh ;done this line? 
Jnz no_return ;not yet , do next char 

mov [buffer + di] ,car_ret ; insert ret 
inc di ;bump pointer 
mov [buffer + di ), l_feed ; insert lf 
inc di 
mov dh ,clLline ;reset chars / line count 

no_return: 
loop transfer ;get next character 

; CREATE THE FILE 

mov dx ,fcb 
mov ah , create 
int doscall 
inc al 
je no_space 

;SET RANDOM RECORD FIELD 

mov rl ,0 
mov r2 ,0 

;WRITE BLOCK TO DISK 

mov cx ,Lsize 
mov dx ,fcb 
mov ah ,bloclLw 
int doscall 
or al ,al 
jnz no_space 

;CLOSE FILE 

;put FCB addr in DX 
;create file function 
; call DOS 
; if AL was FF , then 

no space to write 

; low word 
;high byte 

;put file size in ex 
;put FCB address in DX 
;block write function 
; call DOS 
;check if write o. k. 
; if AL not 0, bad write 
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mov dx,fcb ;put FCB addr in DX 
mov ah,close_f ;close file function 
int doscall ;call DOS 

exit: ret ;return to DOS 

;PRINT OUT MESSAGE 

no_space: 
mov dx, offset messl ;get message 
push ds ;save old value of OS 
mov ax,datarea ;put seg addr of 
mov ds,ax datarea in OS 
mov ah,print..Jll ;print message function 
int doscall ;call DOS 
pop ds ;restore value of OS 
jmp exit 

main endp ;end of main part of program 

' pro_nam ends ;end of code segment 
. ********************************************* ' 

end start ;end assembly 
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ASCII codes, 27 
ASCIIZ strings, 392 
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transferring, 416 
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BLAISER.PAS program, 445, 446 
BLOAD: BASIC statement, 427, 429 
BSAVE: BASIC statement, 428 
Base Pointer (BP) register, 440, 442 
Batch file(s), 142 

for EXE files, 249 
for COM files, 144 

Binary file, 428 
Binary numbering system, 455, 456 
Bit numbering, 54 
Bits, 73 
Breakpoints, I 7 I 
Bresenham's algorithm, 334 
Buffered keyboard input function, IOI 
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COUNTER routine, 439 
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Close a file handle function, 408 
Close file function, 368 
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Create file function, 368 
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DEC instruction, 160 
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DOS functions, 2, 96 
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DRAWLINE program, 337 
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Decimal numbering system, 454 
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Disk operating system, 3, 8 
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EDLIN, 11, 120 
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Equipment flag, 310 
Error handling 

file handle access, 387, 395 
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F (Fill) command, 26 
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Fixed disk, 34 7 
Flag register, 158 
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Floating point accumulator (FAC), 

420,432 
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G (Go) command, 34, 171 
GET-BD program, 483 
GRID program, 330 
GUN program, 197, 206 
Graphics characters, 295 
Graphics modes, 309 

changing, 309 

HAPPY FACE program, 29 
HAPPY2 program, 126 
HEXIBIN& program, 431 
HEXIDEC program, 469 
HEXIDEC.BAS program, 430 
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Hex to ASCII conversion, 153 
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explained, 453 
Hexadecimal arithmetic, 460 
Hexadecimal numbering system, 458 
Hexadecimal numbers, 127 

in ASM files, 127 
Hexadecimal to binary conversion, 459 
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IBM PC, 5, II 
IBM compatible, 7 
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IBMDOS, 92, 95 
IN instruction, 73 
INC instruction, 61 
INT instruction, 41, 42, 277 
IRET instruction, 28 l, 282 
Indirect addressing, 109, 110 

through registers, 112, l 13 
using with assembler, 226 

Input/Output ports. See: ports 
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Instruction encoding, 139 
Instruction fields, 134 
Intel Corporation, 18 
Interpreted languages, 16 
Interpreter, 17 
Interrupts, 276 

JG instruction, 174 
JL instruction, 163 
JMP instruction, 48 
JNZ instruction, 161 

KAZOO program, 215,218 
KEYBOARD I/0 program, 279 
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Keyboard, 278 
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LINESUB routine, 337 
LINK, 10, 123, 130, 232 

for Pascal and assembly language, 
415 

in high memory, 422 
using, 130, 138 

LOOP instruction, 66, 80 
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Line numbers, 188 
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MACRO-Assembler, 5, 10 
MASM, 5, 10, 20, 120 
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MIRROR program, 105 
MOD-BD program, 486 
MODE: DOS command, 309 
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MOVS instruction, 260 
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Macros, 120 
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Memory segmentation, 232 
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segment, 232 
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422,423 
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color, 315 
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Method value, 410 
Microprocessor, 18 
Monochrome display, 295 
Monochrome memory, 300 
Monochrome screen, 286 
Move file read/write pointer function, 

410 
Multiplication, 173, 176 
Musical scale, 222 

N (Name) command, 63 
NEAR calls and procedures, 186, 187 
NEG instruction, 221 

NOISE program, 193 
NOP instruction, 166 
NORMALP program, 118 
Numbering systems, 453 

OBJ file(s), 122, 137,451 
OFFSET operator, 248 
OUT instruction, 71, 72 
Open a file function, 393 
Open file function, 350 
Opening files, 349 

PAGE pseudo-op, 188 
PC-DOS, 3, 8, 9 
PIANO program, 222, 228 

as EXE file, 249 
PLOTSUB routine, 323, 326 
POP instruction, 199, 203 
PORTIN routine, 448 
PORTOUT routine, 448 
POSITION CURSOR: ROM routine, 

291 
PRIME program, 472 
PROC pseudo-op, 184 
PSTRING program, 112, 115 

rewritten for ASM, 237 
PTR operator, 436 
PUBLIC declaration, 449 
PUSH instruction, 199, 202 
Pascal, I, 14 

interfacing to assembly language, 
412,444 

Pathnames, 385, 392 
Pitch, 80 
Ports, 7 I 
Print string function, 98 
Printer(s), 6, I 07 

control codes, 115 
Printer output function, I 07 
Procedures, 183, 184, 186, 187 
Program terminate interrupt, 44, 45 
Program segment prefix, 351, 352, 

364 
Psuedo-ops, I 00 

Q (Quit) command, 64 

R (Read) command, 63 
R (Registers) command, 58 
READBLOK program, 380 
READFILE program, 361 
READRAND program, 374 
REF file, 191 
REP instruction, 258 
REPE instruction, 264 
REPNE instruction, 265 
RET instruction, 185, 242 
RF (Register Flags) command, 160 
RIP (Register IP) command, 91 
ROL instruction, 156 
ROM BIOS listing, 275, 283 



ROM, 92, 93, 273 
compared with DOS, 275 

ROR instruction, 196 
Random block file access, 346, 378 
Random block read function, 378 
Random file access, 346, 373 
Random number generator, 195 
Random record number, 373 
Random read function, 374 
Read from a file or device function, 

396,399 
Read/write pointer, 409 
Reading files, 357 
Records, 355,371,407 

formatted, 478 
Registers, 38, 55, 56 
Reverse video, 299, 30 l 
Rotating registers, 152 

SAVEIMAG program, 384, 494 
SCAS instruction, 264 
SCROLL UP: ROM routine, 29 l 
SEARCH program, 262, 265 
SEGMENT AT pseudo-op, 314 
SEGMENT pseudo-op, 126 
SET MODE: ROM routine, 311 
SET-BD program, 478 
SHIFT STATUS program, 284 
SHL instruction, 226 
SI register, 258, 27 l 

SIREN program, 21 l 
SMASCII program, 65 
SMASCII2 program, 133 
SOUND program, 69, 208 
SPACEWARS program, 212 
STD instruction, 262 
SUB instruction, 173 
Saving programs on disk, 63 
Scan codes, 278 
Segment management, 383 
Segment registers, 234, 242 

values assigned to, 244 
Segments, 127, 229, 235, 364 
Sequential file access, 346, 349 
Sequential read function, 358, 363 
Sequential write function, 369 
Shift status, 283 
Signed arithmetic, 155 
Slope, 333 
Sound generation, 68, 193 
Source (ASM) file, 11 
Stack, 199, 200, 241, 257 
Stack segment, 234, 243 

using, 254 
String descriptor, 433, 434 
String-handling instructions, 258 
Subroutines, 183 
Symbolic addressing, 135 

T (Trace) command, 165 

TEST instruction, 327, 328 
Timers, 208 
Transportability, 86 
Two's complement arithmetic, 156, 221 
Type checking, 307 

U (Unassemble) command, 36 
USR: BASIC statement, 416, 423 
Unassemble, 36, 37 

Versions of DOS, 5, 9 
Video ROM routines, 285,310 

W (Write) command, 63 
WINDOW program, 290 
WRITE DOT: ROM routine, 321 
WRITE-F program, 366 
White noise, 193 
Windows, 285, 288 
Word processor program, 11, 120 
Write to a file or device function, 406 
Writing files, 366 
Writing random records, 377 
Writing to a file 

file handle access, 40 I 

XCHG instruction, 176 
XOR instruction, 76 

ZOPEN program, 388 
ZREAD program, 396 
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Assembly language is the fastest and most powerful language available for any 
computer. It can access all of a machine's features, and it avoips the restrictions 
of higher-level languages such as Pascal and BASIC. Programs demanding 
speed or flexibility, such as graphics routines, word processors, and 
spreadsheets, are best written in assembly language. 

Assembly language is often considered difficult to learn, but Assembly 
Language Primer proves this need not be true. Robert Lafore's unique use of 
DOS functions makes it possible to write programs that perform interesting 
tasks in just a few easily understood lines. By writing those initial programs 
with DEBUG, and later with the IBM Assembler ASM, Lefore takes you quickly 
into assembly language programming, avoiding the complex overhead of the 
assembler and linker programs. 

As you learn assembly language you'll also learn how to use the built-in 
PC-DOS and ROM functions; how the video memory works; how to write 
graphics routines; how to make music and sound effects; how to access the 
keyboard, display, printer, and disk systems; and much more. 

Assembly Language Primer for the IBM PC & XT is fully illustrated, contains 
over 100 example programs, and is completely compatible with other books in 
the Plume/Waite IBM Primer series. 

, > The Waite Group is a San Rafael, California based producer of high-quality 
- books on personal computing. Acknowledged as a leader in the industry, the 

Waite Group has written and produced over thirty titles, including such best 
sellers as Unix Primer Plus, Graphics Primer for the IBM PC, CP/M 

, - 1 , <'(/; Primer, and Soul of CP/M. Internationally known and award winning, 

~

, l . ~ l·) Waite Group books are distributed world-wide, and have been repack-
(/ \. ~ ,----1 , aged with the products of such major companies as Epson, Wang, 

. 1/(~ 0 
/ Xerox, Tandy Radio-Shack, NCR and Exxon. Mr. Waite, President of 

,"< /j.,Y ~B-- _/ the Waite Group, has been involved in the computer industry since· 
· ''•'. . · "' \'-~~. / J 1 1972 when he bought his first Apple I computer from Steven Jobs. 
Mitchell Waite ----.. \ \, · 
President "\ 
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