
HPBooks

BASIC Program
Conversions

How to Convert Programs
from One Computer to Another

Includes

IBM PC & PCj
Commodore 64

Apple He & n+
TRS-80 Models III & IV

TRS-80 Color Computer

Editors of Computer Skill Builders • Bill Crider, Managing Editor



BASIC Program
Conversions
How to Convert Programs

from One Computer to Another

Iiiclu(i6si

IBM PC & PCjr, COMMODORE 64, APPLE He & n+,
TRS-SO MODELS ffl & IV, TRS-80 COLOR COMPUTER

Computer Skill Builders
Bill Crider, Managing Editor

in consultation with Chuck Steele, David Byrum, David Lovelock,
Ignacio Mendivil, Joseph Rotello

HPBooks®

Publisher: Rick Bailey
Editorial Director: Theodore DiSante

Art Director: Don Burton
Book Design: Leslie Sinclair

Typography: Cindy Coatsworth, Michelle Carter
Director of Manufacturing: Anthony B. Narducci

Published by HPBooks, Inc., P.O. Box 5367, Tucson, AZ 85703 602/888-2150
ISBN: 0-89586-297-2 Library of Congress Catalog No. 84-80558

© 1984 HPBooks, Inc. Printed in USA
3rd Printing

NOTICE: The information contained in this book is true and complete to the best of our
knowledge. All recommendations are made without any guarantees on the part of the author or
HPBooks. The author and HPBooks disclaim all liability in connection with the use of this
information.



Table of Contents

1 How To Start Converting Programs 4
2 About BASIC Commands and Programs 15
3 Alphabetic Listing of BASIC Words 28
Index 240

Introduction

A computer can do amazing things if it is given logical instructions. But the instructions must be
in the appropriate dialect of the appropriate language. If you thought any computer running BASIC
would run any BASIC program, you have by now discovered that you were sadly mistaken.
Like French people who will accept only "French French" and openly scorn "Franglais," your

computer won't accept BASIC programs not written in its specific dialect. For example, you will
find that Apple BASIC will not run on an IBM PC, TRS-80 Model IV, Commodore 64, or TRS-80
Color Computer.

THREE SCENARIOS
This can be a real problem. Consider the plight of the following individuals:

Sue the Teacher—Sue knew that she would be using her school's microcomputers to teach
arithmetic in the fall; She assumed that she would be using the TRS-80 in the school library.
Because her nearby Radio Shack store was offering a BASIC programming class for teachers at a
reduced rate, she eagerly enrolled.



After learning programming, she spent her whole summer writing a math program for her
students. The first day of school she was greeted by her principal at the door. "Good news. Sue,"
the principal beamed, "The PTA has donated two Commodore computers to the school, and we
are going to put one in your class. You won't have to share the TRS-80 with the science teacher."
Chuck the Manager—Chuck, an up-and-coming manager in a prospering company, felt that his
company could control inventory better with a microcomputer. But his boss was opposed to the
idea. "We've managed our inventory on 3x5 cards for 15 years. Why should we change now?" the
boss scowled.

Not easily intimidated. Chuck decided to take matters into his own hands. He bought an Apple.
Not finding any inventory programs he liked, he spent all his evenings for the next month writing a
program. When his boss saw it, he was impressed. "There's only one problem," he pointed out.
"An Apple doesn't have enough disk space to put all our inventory on one disk. We will buy an
IBM PC." You can guess what happened next. Chuck's program wouldn't run on the PC!
Joe the Gamesman—Joe had a great idea for a new game that was interesting and exciting. He
spent many hours programming it in TRS-80 Color Computer BASIC. When it was perfected, he
made an appointment with a software publisher. The publisher was also excited, and offered him a
sizable royalty for the program. There was only one hitch. "Joe, we offer only programs that run on
at least three popular machines," the publisher informed him. "Which other machines do you have
this running on?"

WHAT TO DO?

If one of these scenarios describes your situation, you have only three possible means of
obtaining software for your computer:
Solution 1—Purchase, or otherwise obtain, only that software written for your computer,
Solution 2—Write your own software.
Solution 3—Convert existing software to your computer's dialect.
You may decide to take Solution I and purchase only that software already written for your

machine. Or, obtain it by other means, such as through your users-group's public domain library.
This is certainly the easiest method of solving the problem, but also the most expensive.

Solution 2, writing your own software, is only a solution if you are an experienced programmer
and have plenQr of time. Very few people are in this category.

Solution 3, converting existing software, combines the best features of I and 2. You save the
money you would spend on new software, and you don't need as much time to develop it. If you are
converting a program you or your associates have already been using on a different machine, you
will save the training time involved with a new program. You will also avoid the bugs and
limitations inherent in new software. However, you may possibly put in a few bugs of your own.

Modifying an existing BASIC program from one machine to another is not difficult. In fact, it is
both fun and interesting. It is also one of the easiest ways to learn the BASIC dialect of the second
machine if you do not already know it.
For the most part, the various computers actually share basic terms and keywords. The only

difference is that some BASIC functions may be known by another name on another machine.



1 How To Start
Converting Programs

We'll start by looking at some elementary concepts of program conversion. Let's call the machine
the program was originally written for the source. The machine you want it to run on is the target.

LEVELS OF CONVERSION
There are many different levels of converting BASIC programs from source to target.

First Level—Little or no conversion may be required. For example, a program written for the
TRS-80 may run on an IBM PC with no changes. If this is the case, you are either very lucky or
working with a very simple program! You can just type in the program and run it.

Usually, many of the words in the target program will be the same as in the source program, but
not all of them.
Second Level—The source and target languages may have the same function, but different words
are used. For example, CLS on a TRS-80 will do the same thing as HOME on an Apple. All you
have to do in this case is substitute the target word for the source word.
Third Level—It's possible that a word used in the source language means something entirely
different in the target language. This requires more ingenuity than the first and second levels. If you
do not translate the word—having mistaken it for a first-level conversion—you will not get
expected results. In this case you may have to write a subroutine (or use one from this book) that
simulates the source word for the target computer.
An example of this is RND, In TRS-80 BASIC, RND(n) will generate a random integer between

0 and n, inclusive. In Applesoft BASIC, RNDCn) generates a random number between 0 and 1,
non-inclusive. You would therefore have to replace the TRS-80 command with a subroutine in
Applesoft BASIC. You could use this:

INT(RND(1 )*n+.5)

to get the same results in a program converted from a TRS-80 to an Apple computer.
Fourth Level—In this case the word in the source language has no equivalent in the target language.
Translation at this level is more demanding. Typically, you must write a subroutine to approximate
the effect of the source word.
For example, in IBM BASIC

A$=STRING$(B,C)

assigns to A$ the value of B characters having the ASCII value of C.



1 0 A$=STRING$(5,42)

20 PRINT A$

would print

*****

because the ASCII value of an asterisk is 42. Commodore BASIC does not have this function. You

would have to use the program line

PRINT "*****'•

to simulate it. In this case, * is the character you want to print.
This example also illustrates another possible pitfall in conversion. The expressions STR$,

STRIG and STRINGS all look similar, but have radically different meanings. Watch your spelling
and typing, and never assume that a command means what you expect it to mean. Look it up if you
are not sure.

Another fourth-level possibility applies to machine language and PEEKs and POKEs. If the
source program calls a machine language routine, you may have to write a subroutine that emulates
the machine code. Rewriting machine language routines into BASIC almost always slows the
program down. If the source code uses PEEKs and POKEs, you will have to determine their
equivalents for your machine or write an equivalent subroutine.
You can recognize machine language by such words as CALL, SYS, USR and BLOAD (in some

cases). Another clue is a loop that reads a series of DATA statements and POKEs the values into
consecutive memory locations.
Fifth Level—It's possible that an entire expression, line or subroutine in the source language may
be emulated in the target language with a single word. This is just the opposite of Level 3. Actually,
Level 5 is easier than Level 3 or Level 4, but requires a sharp eye to catch.
Here's an example:

130RA=1/AR

140FORI=X-RTOX+R

150H=I: V=Y+SQR( (R'^2) - (H-X)'^2)*AR

160 HPLOTH,V

170H=I: V=Y-SQR( (R''2) - (H-X)'^2)*AR

180 HPLOTH,V

190 NEXT I

200 FORI=Y-R*ARTOY+R*AR

210V=I: H=X+SQR( (R'^2) - (RA*(V-Y) )^2)

220 HPLOTH,V

230 V=l: H=X-SQR( (R'^2) - (RA* (V-Y) ) ̂̂2)

240HPLOTH,V

250 NEXT I

That Apple routine draws a circle. The whole routine could be replaced in a program for the IBM
PC with just one statement:

10 CIRCLE (X,Y),R

The key is to identify what a routine does within the program. Usually this means running it.
Then determine if the target computer allows an easier way.
Sixth Level—This is not a level at all, but a statement of impossibility. That is, some programs or
commands simply may not be translated into the target language. This is most likely to occur in
graphics, PEEKs and POKEs and machine-language parts of a program.
If you have a color program designed to run on a high-resolution Apple screen, for example, you

will never be able to convert it exactly into TRS-80 Model III BASIC. This is because the TRS-80
Model ni does not have high-resolution or color. There is no way to even simulate the Ai^lesoft

5



COLOR commmand. You must either greatly modify the program—if the particular graphics are
not necessary—or abandon the project.
Another example concerns memory. If the source program uses 64K RAM and your machine has

only 48K RAM, the program won't fit.
Another impossiblity would be to translate from compiler BASIC on the source to interpreter

BASIC on the target—and in some cases vice-versa. It is unlikely, however, that you will have
access to the source code of a program written in compiler BASIC. The programs you fmd in
magazines, books, electronic bulletin boards and users groups are usually interpreter BASIC.

CONVERSION STRATEGY
If you convert programs with a hit-or-miss technique, you will find it slow and frustrating. Even

so, this is exactly what many programmers do. A typical unplanned session goes like this:
The programmer types in a program from a magazine or other similar source. When he tries to

run the program, it crashes. The programmer looks at the line number of the error message, and
edits that line. Run again, crash again.
This time the line number leads the programmer to what might as well be Greek. He has never

seen these words before. Nor does the computer's reference manual list the words, so he deletes
the line with the offending syntax.
When he runs the program again, it seems to work for a while, but then the screen fills with

gibberish—yet no error messages. Finally, he gives up.
There is a better way!

What You Need—You should have at least an elementary working knowledge of the target BASIC.
If you know no programming at all, you may be able to translate simple programs with the help of
this book, but it is easy to get in over your head. Start simple and work your way up.
You should also have this book. You will find it irreplaceable for cross-referencing the most

popular BASICs. The programming hints in it will save you hours of work.
A printout of the source program is essential. You could possibly work with just the program in

memory and on the screen, but you will soon see that this is not the best method.
The printout may take many forms. Perhaps you have a book of BASIC programs in a "generic"

BASIC or one that is written for a different computer. Possibly you are looking at a magazine article
with the listing. Or best of all, you have a printout from a computer. If you can, specify a
double-spaced printout on wide paper that has room for margin notes.
You must have the target computer. Otherwise, what's the point of converting? Even if you did

make the conversion, how would you know it ran correctly? Debugging is essential to any program
conversion.

The BASIC documentation for the target computer is also necessary. It helps with syntax and
vocabulary. Some may have translation tips, too.
Useful But Not Essential—Having the source computer is convenient. If you can run the program
on the source computer you will gain invaluable insight into what the program is supposed to do.
This will help you when debugging the program on the target computer. It's especially useful when
writing graphics routines.
The BASIC documentation for the source machine will help determine if the word on the source

is really the same as for the target. If it has a memory map, you may even be able to translate the
PEEKS and POKES.
With a good word processor you can convert a program more easily. The "search-and-replace"

feature makes overaU fixes efficient. In addition, a word processor usually allows full-screen editing.
Some users groups and electronic bulletin boards actually have programs designed to convert

programs from one machine to another. Typically, these make simple search-and-replace changes

6



and alert you to lines requiring further attention. Such programs will speed you along in the early
stages of the project, but will not do it all. They can't follow program logic and cannot handle most
graphics displays. Even so, they are helpful if available. Check with some of the "old-timers" in
your users group to see if a conversion program is available.

Multicolored, felt-tipped highlighting pens will make the job easier by allowing you to mark up
your printout. Use different colors to indicate different sections or conversion problems. You will
be able to refer to your marked-up printout more quickly and better remember significant portions.
Find a roomy area to work in. Typically, computers seem to leave little space on a desk for

printouts, books and notepads. If you can, make room for your references and printouts around the
computer. We have found it helpful to have a small, four-wheeled cart with space underneath for
disks and pens and a flat top for notepads and printouts. A typing stand is nice for setting books next
to the computer.

UNDERSTAND THE PROGRAM LOGIC
Learn the logical flow of the program. This is the most important step in converting a program

from one machine to another. Don't pass it by. The sample program we will use—PICK UP
STICKS—is short, but the principles illustrated become even more valuable as you translate longer
programs.

How To Do It—If you have the source machine available, run the program several times, using all
possible options. Take notes on what happens in what order. Sketch the menu screens and especially
the graphics screens.
If the source computer has "screen-dump" utility, use it to print out different screen displays on

hardcopy. Does the program use color? Animation? Scrolling? Number your sketches or screen
printouts and give them titles, such as Main Menu, Option Menu #i, or Graphics Screen #3. If you
have a camera, take color photos of any particularly intricate screen displays. An instant-developing
Polaroid or Kodak camera is very useful for this purpose.
Be sure you thoroughly understand program operation before you move on to the next step.

Determine Memory Used by Program—As mentioned earlier, this can be important. In fact, you
may discover at this stage that you can't make a conversion.
Use the PRE or MEM command as explained in Chapter 3. If the program uses more memory

than available on the target machine, you cannot convert. In fact, if it uses more than about 75% of
the target memory, you may have difficulty running it unless you modify it to use less RAM. You
may have to break a large program into modules—called overtoys in some documentation—to get
the program into memory a little at a time.
Using Pens and Printout—Using the source-program printout and highlighting pens, determine
the logical flow of the program. Mark logical sections and subroutines. Label them with appropriate
titles. Use expressions such as Input Routine, Error-Trapping Routine or Disk-I/0 Routine.
You may want to develop a flowchart of the program and tape it to the wall near your computer.

Write notes to yourself in the printout margins as you go through it. Figure 1-1 on the next page
shows what a simple game program might look like after it has been marked up.
Write in Pseudocode—This is merely an explanation in English of what each program section does
or is supposed to do.
This allows you to break the overall project into small, manageable tasks rather than approaching

it as one monstrous endeavor.

Don't make your pseudocode too detailed. Go for the "big picture." A pseudocode description
of the game in Figure 1-1 is shown in Figure 1-2.
You will refer to the pseudocode repeatedly when you encounter GOTO and GOSUB statements.

This saves you from searching through printouts or screens of information when you are converting
a large program.



'3(ijpur

100 REM*******************

110 REM PICK-UP-STICKS GAME

120 REM*******************

130 PRINT "THE OBJECT OF THIS GAME IS " ;

140 PRINT "TO PICK UP STICKS IN SUCH " ;

150 PRINT " A WAY THAT YOU ARE NOT THE " ;

160 PRINT "ONE TO PICK UP THE LAST " ;

170 PRINT " STICK. WE WILL START WITH " ;

180 PRINT "21 STICKS AND YOU WILL " ;

190 PRINT "HAVE THE FIRST TURN. YOU " ;

200 PRINT "MAY PICK UP EITHER 1 ,2,3, " ;

210 PRINT " OR 4 STICKS PER TURN. " : PRINT

220 S=21-:^ OF Snct\fi
230 PRINT "HOWMANY STICKS DO YOU WISH

240 INPUT "TO PICK UP " ; P-# ir,CK%

250 IFP<>INT(P) THEN600-f»A<.ri«O cncse*d

260 IFP<1 ORP>4THEN700 —

270 S=S-5 Tb

280 PRINT "I WILL PICK UP ";5-P;

290 PRINT "THAT LEAVES " ; S; " STICKS . "

300 IFS>1 THEN 230 — one t£FT

31 0 PRINT "YOU MUST PICK UP THE LAST " ;

320 PRINT "STICK, SO I WIN. " :PRINT

330 INPUT " SHALL WE PLAY AGAIN (Y/N) " ; A$
340 IFA$="Y"THEN220

350 END

600 PRINT "YOU CAN'T PICK UP A " ;

61 0 PRINT "FRACTION OF A STICK! " : PRINT

620 GOTO 230

700 PRINT " THE RULES SAY YOU MAY ONLY " ;

71 0 PRINT "PICKUP 1 ,2 , 3 OR 4 STICKS. "

720 GOTO 230

<«oS6W

Cjot*\P>yr^^

(I

fofi. ^S

1^30-300

o

Fig. 1-1 /Begin by making notes to yourseif on a printout of the program you want to convert. This way, you wiil understand
program flow and make the task of converting more efficient.

8



Program Lines What They Do

100-210 Instructions

220 Initialize variables
230-240 input routine
250-260 Catch errors
270-300 Computer's turn; go back to input
310-350 End of game; start another
600-720 Error-trapping routines

Fig. 1 -2/A pseudocode explanation of the PICK-UP-STICKS
program olarlfles Its major segments.

Handling Variables—Make a list of the variables, their names and how they are used. This will be a
very important reference if your program is long. If you have a cross-refereme utility, now is the time
to use it.

This is a program that reads a file and compiles useful information from it. Usually a
cross-reference utili^ constructs lists of variables and the lines where they are found, Usts of lines
that call other line numbers (GOSUBs, GOTOs, etc.) and the lines they call, and sometimes lists of
variable values at each line.

Figure 1-3 on the next page shows how a cross-reference listing for PICK UP STICKS might look.
Also, review the reserve words of the target computer and the acceptable format for its variables.

Are all the variables of the source language compatible with the target language? Are the
variable-name rules the same on both computers? If not, note those that you will have to rename.
(The rules for naming variables for each computer are listed in Chapter 2 under Data types) Post
the list next to the flowchart.
Handling Machine Language—Highlight any PEEICs and POKEs or machine-language routines.
Look up the PEEK and POKE equivalents in the target documentation and write them in the
printout margin. If there are no equivalents on the target machine, note it in the margin.
Try to determine what the original programmer was doing, and ask yourself "What other method

could I use to achieve the same effect?"
Syntax Considerations—If your printout does not differentiate between the letter O and the
number zero (0), go through the printout and mark all zeros by putting a slash through them. If it is
difficult to distinguish between the number 1, the letter 1 and the letter I, mark them somehow.
As you are going through the printout, be dert for other syntax considerations. If the source

differs from what you expect, doublecheck to see if the targ:et will accept it. If not, note in the
margin what requires changing.
Arrays—Note any arrays in the program. Did the programmer DIMension them at the beginning?
Do the current dimensions make the best possible use of memory? Eliminate any doubts by
DIMensioning them yourself.

9



Variable Locations
P appears in 240,250,260,280
S appears in 220,270,290,300
A$ appears in 330,340

Line Calls
220 is called by 340
230 is called by 300,620,720
600 is called by 250
700 is called by 260

Running Variable Values For Sample Run
at 220 8=21

at240P=3

at 270 8=16
at240P=4

at 270 8=11
at240P=1

at 270 8=6
at240P=3
at 2708=1

at330A$=N

Fig. 1-3/A sample printout from a cross-reference utility
sfiows the variable locations, line calls and running variable
values.

RUN THE PROGRAM ON THE TARGET MACHINE
Now that you understand the program and what it should do, load it into your computer. If you

already have it on a medium your computer can read, you are a step ahead. If not, type it in.
If you are typing the program lines into your computer, you will be tempted to make many

changes. If so, observe the following general rules:
Variables—Change those variable names that are inappropriate. But be careful to change them
consistently! For example, don't call a variable TITLE in one place and TI in another place.
Statements—Change only those statements you are sure should be changed.
Syntax—Don't change tyntax yet
Renumbering-Don't renumber the lines yet. If you do, you will run into problems with GOSUBs,
GOTOs and IF-THEN statements.

REM—Add any REM statements that will help you later when debugging.
Indent—Use indentation to make loops easier to read. For example, a FOR-NEXT loop might be
indented this way:

10 F0RA=1 TO 10

20 PRINT "ALOOP#",A

30 F0RB=1T0 5

40 PRINT "THIS IS A TEST"

50 NEXTB

60 NEXTA

10



See how easy it is to read that the B loop occurs completely within the A loop? This type of
indentation will assist you when you are not sure what is going on within a loop. If the machine
you're using does not allow leading blanks in statements, you can usually indent by using
colons—as with the Commodore 64, for example.
Typing and Proofing—Type very carefully and proofread at least twice—once on the screen, and
again from a printout after you have typed in the program.
Using Conversion Aids—You may have various conversion aids not previously discussed. One of
the most useful—but probably also the most imperfect—is a Conversion Program. This is an
advanced t3^e of special-application word processor. It reads in a file in one BASIC language and
outputs it as a file in the target language.
Conversion programs are limited for several reasons. First, they cannot take into account all the

possible permutations of the BASIC language. Second, they cannot correct syntax. Third, they
cannot translate PEEKs, POKEs, machine language routines or screen displays. Fourth, and most
important, they do not ̂ ow what a program is supposed to do. They cannot verify that the product
is running correctly.
In spite of these limitations, conversion programs can help. They serve primarily as a

search-and-replace tool. Where commands have a direct equivalent (Level 2) , they can take the
tedium out of the task. They may also identify areas requiring further intervention on your part

If you have a conversion program, use it, but don't expect it to work perfectly.
Word Processor-If you haven't already been using it to enter the program, now is the time to load
the word-processor or programmer's-aid program. You should first use it to do any
search-and-replace taslte you have identified. All the words with a direct equivalent in the target
language can be replaced this way.
As you are doing this, you may wish to use some particular character—such as the asterisk—to

mark those places requiring special attention. Instead of marking them within the line, set them off
with remark lines. TWs way you can find them again easily. Here is an example:

300 REM*******The next 5 lines need attention

This will add a few lines to the program, but you can delete them when you work on the routine in
question.
If your word processor has a spelling checker, you may want to use it. But be aware that it is going

to find a large number of "misspelled" words, namely the variables and alniost all the reserve
words#

If your spelling checker can build a custom dictionary, add all your reserve words to it as you
come across them. Don't add the variables, though. Even if your spelling checker identifies most of
the words as "misspelled," it is useful in that it brings each one to your attention. You may fmd
problems you would have otherwise overlooked.
Renumbering—It's possible that your program is getting cluttered by this time. If that is the case,
you may wish to use the RENUMBER command to give you more working space. You can do this
at any time, but keep in mind that you will have to run your cross-reference utility again when the
linft numbers change. And you should note the changes on your psuedocode listing.

Also, because you have been working with the program already, you probably have some idea of
where each routine is located within it. You will have to "releam" the line numbers if you
renumber them.

Another way to resolve the numbering problem and create some working space between the lines
is to simply add a 0 to each line number with your word processor. Line 12 becomes line 120; line 30
becomes line 300, and so forth. This will not affect your previously prepared reference aids and will
give you 99 lines to work with between each of the old lines. Remember that your highest line
number can't be greater than 65535. (63999 for Applesoft and Commodore 64 BASIC.)
When you are completely finished debugging the converted program, it makes sense to use the

RENUMBER command to make it more readable. There is really no need to renumber before then.

11



ABOUT EQUIPMENT DISCUSSED IN THIS BOOK

There are hundreds of microcomputers on the market today, and each computer may be able to
use multiple dialects of BASIC. It would be Impossible to cover even half of the total possibilities In
the space available. Therefore, this book Is limited to the five brands that comprise at least 90% of
computers In use.
Of these brands we cover one model extensively and may discuss a second model only If It

differs from the first. In each case, we limit the discussion to one BASIC W each brand, and
comment If the second machine differs.
Remember that just because a computer may have 64K RAM, It Is not necessarily true that a 64K

program will run on It. The computer must also have memory available for the BASIC Interpreter
Itself. Typically, a 64K machine will not run a program that Is longer than 40K. The actual length of
program that your computer will run depends not only on memory, but also on the size of the
BASIC Interpreter, the amount of variable storage space needed by the program and the amount of
work space needed by that particular program.

APPLE PRIMARY DISCUSSION
Model: Apple lie
Memory: 64K RAM
Monitor: Color
Storage: Disk Drlve(s)
DOS: Apple DOS 3.3
BASIC: Applesoft BASIC

APPLE SECONDARY DISCUSSION
Model: Apple 11+
Memory: 48K RAM
Monitor: Color

Storage: Disk Drlve(s)
DOS: Apple DOS 3.3
BASIC: Applesoft BASIC

COMMODORE 64 DISCUSSION
Model: Commodore 64
Memory: 64K RAM
Monitor: Color
Storage: Disk Drive(s)
DOS: DOS 2.6
BASIC: PET BASIC 2.0

IBM PRIMARY DISCUSSION
Model: IBM PC or XT
Memory: 64K RAM
Monitor: Color
Storage: Disk Drlve(s)
DOS: 2.0
BASIC: 2.0

IBM SECONDARY DISCUSSION
Model: IBM PCjr
Memory: 128K RAM
Monitor: Color
Storage: Disk Drive, BASIC Cartridge
DOS: 2.1

BASIC: Cartridge BASIC

RADIO SHACK TRS-80 PRIMARY DISCUSSION
Model: Model IV
Memory: 64K RAM
Monitor: Monochrome
Storage: Disk Drlve(s)
DOS: TRS-DOS 6.0.0
BASIC: TRS-DOS 6.0.0 BASIC

RADIO SHACK TRS-60
SECONDARY DISCUSSION
Model: Model III
Memory: 48K RAM
Monitor: Monochrome
Storage: Disk Drlve(s)
DOS: TRS-DOS 1.3
BASIC: TRS-DOS 1.3 BASIC

RADIO SHACK TRS-80
COLOR COMPUTER (COCO)
Model: Color Computer
Memory: 48K RAM
Monitor: Color
Storage: Disk Drlve(s)
BASIC: Disk Extended Color BASIC 1.0

12



USING THIS BOOK

By now you're probably wondering when you were going to get to use this book. Now is the time!
At this point you should be very close to having a program that will run. Now you need to get down
to details of the various routines that present translation difficulties.

First, identify what a word or routine is supposed to do. Then refer to the alphabetic listing in this
book. Chapter 3. Look up that word. Read the text portion at the beginning of the chapter to gain a
better understanding of what is involved in translating that type of command. Then look at the
command specifically.
Sometimes you will be given an alternate command, sometimes a suggested subroutine. If you

must add lines to insert a subroutine, be careful not to renumber any lines that may be called from
another routine. If you must use a long routine—or if the routine must be used more than
once—consider using a GOSUB instruction.
Make sure you haven't used the variable names in the subroutine in some other way elsewhere in

your program. If you have used them, rename them in the subroutine.

FINAL DEBUGGING

When you have completed all the substitutions, you will be ready for the final debugging. Load
the program into your computer and try running it. If it runs the first time, give yourself a big pat on
the back! Chances are it will not run perfectly. In this case you are ready to endure the programming
ritual called debugging.
Each time the program crashes it should give you an error message. Refer to the computer's

documentation to determine what the message means. Use your editor or word processor to correct
the offending program line. Save the corrected version on disk and try again.

If your computer has a TRACE or TRON function, use it. There are also commercial programs
available that allow you to view your program in special ways as you run it. If you have one of these
available, you may wish to use it.
You will probably spend very little time "tweaking" the program if you have followed the

systematic approach advocated here. If you find you are spending more time debugging than in
previous stages, you probably failed to grasp the overall flow and logic of the program before
starting. Go back and start over!
When you have finished debugging the program, you should look over it again to be sure you

have optimized memory usage. You may wish to delete most of your REMs now. And you may find
that combining some lines make it run faster. Like a living organism, a program should be in a
constant state of change and improvement.

LEGAL CONSIDERATIONS

Converting programs from one computer to another may present some complicated legal
problems. Guidelines discussed here are general and may or may not apply to your specific case. If
you have any doubt at all, seek legal counsel.

If a program is in the public domain, you can usually do whatever you wish with it—convert it,
use it or sell it. The problem is being certain of a program's status. A program is public domain if the
author has allowed it to be so. Generally the programs on electronic bulletin boards and in club
libraries are in the public domain. If they have a copyright notice anywhere in the listing they are
probably not in the public domain.
Programs found in books and magazines are usually not ia the public domain. Although they may

not have a copyright notice in the listing, they are covered by the copyright notice at the beginning
of the book or magazine. If you are just using the program on your computer and are not making
any profit on it, the right to copy it from a magazine or book is implied. But check with your lawyer
if you have any doubts or want to make money from the program.
Programs purchased in local computer stores or through the mail are also not generally in the

public domain. There are a few exceptions. If you wish to convert a program that you are reasonably
certain is not in the public domain, you must have the written permission of the copyright holder to
copy it, convert it, use it on multiple machines, or especially to sell it.

13



If you wish to convert it to another machine and are willing to give the converted version to the
copyright holder, you will usually find the owner very helpful. This is because having multiple
versions of a program makes it more salable.
If you plan to use the converted program on multiple machines, the copyright owner will likely

grant you permission, but may ask for an additional license fee. If you plan to convert it and sell the
converted version, the owner will probably either deny permission or allow you to do it only if you
pay a royalty.

WHERE DO YOU FIND PROGRAMS?

You can find programs to convert in a variety of places. Some possibilities follow:
1) Programs you have written.
2) Programs your friends or business associates have written.
3) A users-group library.
4) Electronic bulletin boards.
5) Computer magazines.
6) Computer books.
7) Trade journals in your field.
8) Programs you have purchased.

Again we emphasize: Check the copyright status ofa program before you convert it.

14



2 About BASIC
Commands
and Programs

The various things you can do with BASIC commands vary little from machine to machine. But
how you implement those actions with BASIC syntax and program structure vary greatly.
This chapter discusses the various actions, giving you the commands that cause them. Chapter 3

lists the specific commands in alphabetical order, explaining the parameters included with them and
comparing their usage on each machine.
Computing has three stages—input, processing and output. Each stage can be broken down into

sub-stages. Looking at it this way fragments the explanation—such as splitting up file handling into
two steps—but provides a logical way to understand this chapter.

USING THE NEXT CHAPTER
It would be impossible to detail every possible usage of every BASIC command on each of the

computers discussed in this book. Therefore, we didn't try to do that!
Instead, each command has been explained in sufficient detail for you to understand what it does,

what the syntax is, what parameters or switches are needed, and in some cases what the common
program structure is. If you still need help, refer to the documentation that came with the target
computer. Let it be the final arbiter of any doubts you have about syntax or legal parameter values.

If we couldn't simulate the command in less than 15 lines of BASIC code, without
machine-language code, or without hardware modification, then simulation was considered beyond
the scope of this book. You'll see something like Not available. Cannot be simulated. In these cases
we mean that it can't be simulated within these limitations. If you are an experienced programmer,
you may wish to attempt simulation if the command is essential to your program.
In a few cases machine-language routines or extensive PEEKs and POKEs were used where

necessary.

IS



VARIABLE TYPES

On the TRS-80 Color Computer, all variables are implicitly floating-point variables unless they
have the trailing $. In this case, they are string variables.
On the Apple and Commodore 64 computers, all variables are Implicitly floating-point numeric

variables unless they have a trailing % symbol (Integer) or $ (string).
Variable types can be defined by using type declarations—such as DEFDBL or DEFSNQ—on the

IBM and TRS-80 computers. If a type declaration is not used, the type Is defined by the following
trailing type Indicators:

I

#

$

Integer
Single-precision
Double-precision
String

ABOUT TERMINOLOGY
In this book, an instruction is any BASIC word or reserved word. For example, commands and

statements are both instructions.

If an instruction has no line number before it, it is called a command because it is issued from the
command mode. It is sometimes called the immediate mode.

If a line number precedes an instruction, it is called a statement. Therefore

RUN

is a command, but

10 RUN

is a statement. Despite this distinction, the terms instruction, command and statement are used
interchangeably in most computer literature—including this book.
An algorithm is a series of instructions. For example, a program is an algorithm. A program may

consist of one statement, or many statements. Usually a portion of a program—or a small program
that does a specific task and is inserted into a larger program—is called a routine. If a routine is
accessed by a GOSUB statement, it is called a subroutine.

All or part of a program may also be generically called code, because an algorithm is just a series
of codes the computer understands.

ABOUT SYNTAX
The syntax of a command has been indicated using symbols and conventions compatible with the

IBM PC BASIC 2.0 documentation. Some of the conventions will seem strange to programmers
familiar only with Apple, Commodore or TRS-80 documentation. Here is what the conventions
mean.

COMMAND
A word in all capital letters is a 1^ word. It is usually the command under discussion.

16



yariable

A word or letter in lowercase is a variable or constant that must be supplied by the programmer,

filename

The words^fe md filename are used to denote a valid filename, whether variable or constant. This
implies all the data associated with or required by the computer in use. This may include a drive or
device designator, a filename of the correct length and an extension. In IBM BASIC 2.0 it may also
be a path.

N
Items enclosed in brackets are optional. They are not required for correct program execution. For
example, PRINT #1, al,b] means that you can have more than one variable printed to a file. In
addition to a, you could also include b.
•••

An ellipsis (three dots) indicates a list based on a pattern. For example, PRINT #1, a[,bl... means
you may have more variables PRINTed to the file than just a and b. You could also have c, dand
others.

()
If parentheses are indicated, they must be included. Also be sure to include all punctuation and to
differentiate between 1 (one) and 1 (the letter 1), as well as between 0 (zero) and 0 (the letter oh).

INPUT
Before your computer can do any useful work, it must have some data. Getting this data is called

input. It can come from a number of locations—keyboard or joysticks, storage devices such as a
disk drive or cassette player, or from another external communication device such as a modem,
graphics table, A/D converter or host computer. In addition, data may be accessed either serially or
randomly.

KEYBOARD, JOYSTICKS
AND LIGHT PENS

The Apple computer normally gets its input from the keyboard. Input may be redirected to files
using PR#, thus rendering the keyboard ineffective until input is directed back to it. No keyboard
buffer is used—only one character can be sent at a time. Apple normally uses up to three paddles
instead of joysticks, but some companies have released joysticks as well. Unlike other computers,
Apple rea^ a resistance value from the paddles rather than an x,y coordinate.
The IBM PC has a unique keyboard. Key assignments are all under software control. Some keys

can be "event trapped." The keyboard has a 15-character buffer, which can be accessed from
BASIC. In addition to the shift and control keys, it has an ALT key—the PCjr has a FN key. They
work the same way. Four joysticks are supported. A light pen will work, too. You can open the
keyboard as a file for input.
The keyboard on the Commodore 64 also has many unique features. It includes a 10-key

buffer—accessible from BASIC—known as the (fynamic keyboard. In addition to four function keys,
each key is addressable as a command or graphics character using the shift or Commodore key. You
can open the keyboard as a file for input. Two joysticks are supported.
The keyboards on Radio Shack computers are "economy" models. They have no control key and

no buffer. Models III and IV do not support joysticks. On the Color Computer, the keyboard may
be opened as an input file. Two joysticks are supported.
Keyboard and Joystick Commands—Those relating to keyboard or joystick usage are in the box on
the next page.

17



KEYBOARD AND JOYSTICK VOCABULARY

CMD INPUT# LINEINPUT PR#

GET INPUTS LINEINPUT# READ

GET# INPUTLINE PDL READ#

IN# JOYSTK PEN STICK

INKEY$ KEY PEEK STRIG
INPUT KEYS POKE

STORAGE

This part of program operation is critical if you want to retrieve information, programs or data for
re-use. These commands get information from a disk drive or cassette recorder.
Cassette—All computers discussed in this book—except the TRS-80 Model IV—are capable of
using cassette-based programs and files. The Model IV uses cassettes only in the Model III mode or
for downloading from the Model 100. The file structure for sequential access files is similar for each
of them, but the syntax of the command for opening and closing the files differs. The Apple is the
only one that cannot turn the cassette motor on and off under program control.
The TRS-80 Color Computer, IBM PCjr and Commodore 64 can use cartridge-based software.

Cartridges are not compatible among machines.
Sequential Access—Converting sequential-access, disk-fUe-handling routines from one computer
to another is not difhcult. Although the commands have different syntax, usage is very similar.
Apple is somewhat different from the others. It uses a syntax that accesses the DOS disk routines.
Here's the general syntax:

10PRINTCHR$(4) ; "OPEN filename"

20PRINTCHR$(4) ; "READ filename"

30 INPUT A$

Thereafter, all input words will receive data from the disk file instead of the keyboard. Because
Apple does not keep track of the number of records in the file and does not have an end-of-file
marker, the program should also keep track of those items. The general procedure for other
computers is:

10 OPEN "I", 1, "filename"

20 INPUT#1 , A$

The specific syntax will vary, but you can have multiple files open, and send output to or get input
from each. Simply specify the number of the file buffer.
Random File Access—The ̂ntax of random-file-access routines varies greatly among computers,
but there are only two general methods of actual data handling. Apple and Commodore have a
method that differs from other computers. They handle each record as one long string, without
breaking it up into fields. Accessing a specific item in a record requires positioning the pointer at the
^cific byte, or reading the entire record and breaking it up with string functions. Conversely, IBM
and Radio Shack computers define a record as a number of fields of specific length in a random file.
Each field may be accessed individually.
Disk—The TRS-80 Color Computer and the Commodore 64 allow accessing information directly
from a specified sector of a disk from within a BASIC program—a task handled by DOS on other
computers. Commodore also allows direct access to the routines controlling the disk drive, via.
MEMORY commands.

18



Disk and Tape Input Commands—Those relating to reading disk or tape files are in the following
box.

DISK AND TAPE-FILE VOCABULARY

APPEND CSAVEM INPUT PR#

AUDIO DOLOSE INPUT# PRINT#

B-A: DELETE INPUTS PRINT#USING

B-F: DIR KILL PRINT

B-P: DIRECTORY LINEINPUT PRINT USING
B-R: DLOAD LINE INPUT# PUT

B-W: DLOADM LOAD PUT#

BACKUP DOPEN LOADM READ

BLOAD DRIVE LOF READ#

BLOCK-READ: DSAVE LPOS RECALL

BLOCK-WRITE: DSKINI M-E: RECORD

BLOCK-ALLOCATE: DSKIS M-R: RESTORE

BLOCK-EXECUTE: DSKOS M-W: RMDIR

BLOCK-FREE: EOF MEMORY-EXECUTE: RUN

BUFFER-POINTER ERASE MEMORY-READ: SAVE

BSAVE FIELD MEMORY-WRITE: SAVEM

CATALOG FILE MERGE SCRATCH

CHAIN FILES MKDIR SHLOAD

CHDIR FORMAT MOTOR SKIPF

CLOAD FRE NAME ST

CLOADM FREE NEW STATUS

CLOSE GET# OPEN STORE

CMD GET OUT UNLOAD

COPY IN# OUTPUT WRITE

CSAVE INP POINTER WRITE#

EXTERNAL COMMUNICATIONS

Computers receive input from peripherals—such as the display, modem, printer and A/D
converters—in diverse ways. The IBM has the richest BASIC vocabulary for external input Other
computers may require machine-language programming. Because IBM OPENs the COM port like a
file, all file input commands apply. Other commands relating to external input include the following
words.

EXTERNAL-INPUT VOCABULARY

COM

CMD
CSRLIN
IN#

IN

INP
LPOS

PEEK

POINT
POSN
PPOINT

SCREEN

ST
STATUS

WAIT

19



PROCESSING
This category includes commands dealing with program flow, functions, operators, data types,

and memory and machine interfacing.

PROGRAM FLOW

Commands for program flow are almost identical for all computers discussed in this book. You
should note that some of the computers do not include the ELSE command, and some do not
include WHILE-WEND loops

PROGRAM-FLOW VOCABULARY

AUTO GOSUB ONERR SHELL
BUFFER-POINTER GOTO POINTER SKIPF
CHAIN IF REM SPEED-
CHDIR IF-THEN REN STOP
CMD IF-THEN-ELSE RENAME THEN
DATA KILL RENUM TO
DELETE LIST RENUMBER TRADEOFF
ELSE LLIST RESTORE TRACE ON
END M-E RESUME TRACE
ERASE MEMORY-EXECUTE RESUME NEXT TROFF
ERL MKDIR RETURN TRON
ERR NEXT RMDIR WAIT
ERROR NOTRACE RUN WEND
ERRSS ON ERR GOTO SCRATCH WHILE
FOR ON ERROR GOTO

FUNCTIONS

Numeric functions, such as SIN, SQRT and VAL, are used nearly the same way on all the
computers discussed here. One exception is RND.

String functions are also very similar, with a few exceptions. For example, MID$ and SCREEN as
statements have radically different definitions from those they have when used as functions.

FUNCTION VOCABULARY

ABS EOF LEFTS MKSS
ASC ERL LOC OCTS
ATN ERR LOF PDL
CDBL ERRSS LOG PEEK
CHR$ EXP LPOS PEN
CINT FIX M-R: POINT
COS FRE MEM POS
CSRLIN HEXS MEMORY-READ: PPOINT
CVD INKEYS MIDS RIGHTS
CVI INP MKDS RND
CVN INPUTS MKIS ROW
CVS JOYSTK MKNS SCREEN

(Continued at top of next page.)

20



FUNCTION VOCABULARY (cont)

SGN SQR STRIG TIMES
SIN STATUS STRINGS VAL
SPACES STICK TAN VARPTR
SPC( STRS TIS VARPTRS

OPERATORS

Few differences exist among numeric operators used on the various computers. Not all systems
will perform modulo arithmetic or integer division, for example. But all systems provide the same
exponentiation, negation, addition, subtraction, multiplication and division operators.

Relational operators are the same on all computers. Logical operators NOT, AND and OR are
included on all systems, but not all use XOR, EQV and IMP. Apple, however, does not allow
bitwise manipulation with the logical operators, as the others do. Some differences exist in the
priority order of operations, so doublecheck if you are experiencing unexpected results from
operations.

BASIC OPERATORS
A Exponentiation
- Negation
* Multiplication
/ Floating-Point Division
\ Integer Division
MOD Modulo Arithmetic

+ Addition
- Subtraction
= Equality
< Less Than
> Greater Than
NOT

AND

OR
XOR

EQV
IMP

DATATYPES

This section includes constants, variables, strings, numerics and arrays. Variable names must
always begin with a letter.
Apple uses floating-point numbers with nine digits of precision. Though you can use INT to get

an integer, it will still be stored as a floating point. Variable names may be any length, but only the
first two digits are significant, and they may not contain embedded key words.
IBM uses integers, single-precision numbers (seven or fewer digits of precision), and

double-precision numbers (17 digits of precision, of which 16 are printed). Variable names may be
any length, of which only the first 40 characters are significant.

21



The Commodore 64 uses floating-point numbers with nine digits of precision. Though you can
use INT to get an integer, it will still be stored as a floating point. Variable names may be any length,
but only the first two digits are significant, and they may not contain embedded key words.
The TRS-80 Model IV uses integers, single-precision numbers (seven or fewer digits of

precision), and double-precision numbers (17 digits of precision, of which 16 are printed). Variable
names may be 40 characters long, and each character is significant
The TRS-80 Model III and TRS-80 Color Computer use integers, single-precision numbers

(seven or fewer digits of precision), and double-precision numbers (17 digits of precision, of which
16 are printed). Variable names may be any length, of which only the first two characters are
significant

VARIABLE-TYPE VOCABULARY

CDBL CVS FIX OCT$
CHR$ DATA HEX$ OPTION BASE
CINT DEFDBL INT STR$
COMMON DEFFN LET STRINGS
CONCAT DEFINT MKD$ SWAP
CSNG DEFSNG MKI$ VAL
CVD DEFSTR MKN$ VARPTR
CVI DIM MKS$ VARPTRS
CVN

MACHINE AND
MEMORY INTERFACE

The interface to the machine and memory is necessarily different on the computers. Some words
used, such as PEEK and POKE, perform the same function but require completely different
addresses. Some machines don't allow USR(n). Some reserved words are unique to the individual
machine, such as MEMORY-EXECUTE on the Commodore 64.
In fact, you may not be able to translate a program that depends heavily on a machine or memory

interface. In such cases it may be easier to rewrite the program.

MACHINE AND MEMORY-INTERFACE VOCABULARY

B-A: BSAVE MEMORY-EXECUTE: SAVEM
B-F: CALL MEMORY-READ: SHLOAD
B-P: DEFSEG MEMORY-WRITE: SPEED-
B-R: FRE OUT STATUS
B-W: HIMEM: PCLEAR SYS
BLOAD INP POLS SYSTEM
BLOCK-READ: LOADM PCOPY UNLOAD
BLOCK-WRITE: LOMEM: PEEK USER
BLOCK-ALLOCATE: M-E: PMODE USR
BLOCK-EXECUTE: M-R: POKE VARPTR
BLOCK-FREE: M-W: POP VARPTRS
BUFFER-POINTER: MEM PR# VERIFY

22



OUTPUT
This category includes commands dealing with display, sound, the printer, storage and external

communications.

DISPLAY

Some of the greatest differences among the systems imder discussion concern the screen display.
Some differences exist in the way text and graphics are displayed in terms of the SYNTAX used, the
modes available, colors available, and differences in the physical size and shape of the display screen.
The Apple allows monochrome text of 40 or 80 columns by 24 rows. Low-resolution graphics

allows 40x48 pixels, with 16 colors available. High-resolution graphics offer 280x192 pixels, with six
colors available. The shape table feature allows fast DRAWing and manipulation of predefined
shapes.
The IBM PC provides both text and graphic modes. The text mode may be 40 or 80 columns by

25 rows, which may be displayed in any one of 16 foreground and eight background colors. Limited
graphics are possible on the text screen by using a set of built-in character graphics. There are
several grapMcs modes with various levels of resolution, but a graphics adapter card is required. A
medium-resolution graphics mode allows text on the screen, and has a resolution of 320x200 pixels
with six foreground colors available—three colors at a time—and 16 background colors. Only black
and white are available in the highest resolution—640x200 pixels. Advanced graphics features
include PAINT tiling, GETting and PUTting screen blocks, and a graphics language.
The IBM PCjr allows all of the same modes as the PC, with the addition of a 160x200 pixel

low-resolution mode (15 foreground and 16 background colors), an additional four-color
medium-resolution mode, a 16-color medium-resolution mode, and a four-color high-resolution
mode. This means that there are seven modes on the PCjr, as opposed to three on the PC. The PCjr
also allows PALETTE and PALETTE USING commands.
The Commodore 64 text mode has 24 rows of 40 columns each. Characters may be displayed in

16 colors. It has several combinations of graphics modes, including bit mapping the screen.
Resolutions available are 160x200 and 320x200 pixels. Advanced capabilities include sprites and
programmable character sets. Many of the graphics features require extensive PEEKing and
POKEing.
The TRS-80 Model III allows either 32 or 64 columns by 16 lines on the text screen. The Model

IV has 80 columns by 25 rows. The only graphics options available are block graphics characters,
although individual graphics blocks may be turned on and off. Color is not available.
The TRS-80 Color Computer provides both text and graphic modes. The text mode is 32

columns by 16 rows, which is limited to one color. Several graphics resolutions are available,
including 128x96,128x192 and 256x192. Eight colors are available, depending on which resolution
you choose. Advanced graphics features include GETting and PUTting screen blocks, and a
graphics language.
Display Processing Commands—Those associated with display output include the following list..

DISPLAY-OUTPUT VOCABULARY

CIRCLE FLASH HLIN-AT PAGE

CLS GET HPLOT PAINT

CMD GR HTAB PALETTE

COLOR HCOLOR INVERSE PALETTE USING

COLOR= HCOLOR= KEY PCLEAR

CSRLIN HGR LINE POLS

DRAW HGR2 LOCATE PCOPY

DRAWTO HUN NORMAL PEEK

(Continued at top of next page.)

23



DISPLAY-OUTPUT VOCABULARY (cont.)

PEN PRINT ROT= VLIN-AT
PLOT PRINT® SCALE VPOS
PMAP PRINT# SCALE= VTAB
PMODE PRINT#USING SCREEN WIDTH
POINT PRINT AT SCRNf WINDOW
POINTER PRINT USING SET WRITE
POKE PSET SHLOAD WRITE#
PPOINT PUT VIEW XDRAW
PR# RESET VLIN XPLOT
PRESET

SOUND

Although it has a built-in speaker, the Apple supports sound only with PEEKs and POKEs or
machine-language programs.
The IBM PC supports extensive sound capabilities through the PLAY and SOUND commands. It

too has a built-in speaker. You may also turn the cassette on and off via the cassette port, and thus
generate sound. The IBM PCjr has even greater sound capabilities, including a three-voice music
generator and a NOISE command.
The Commodore 64 supports up to four voices, but only by machine-language programming or

PEEKS and POKES.
The TRS-80 Model HI and Model IV do not support sound, but you can turn the cassette on and

offon the Model III.

The TRS-80 Color Computer supports extensive sound capabilities, including a music language
used with the PLAY command. Another command, AUDIO, allows you to direct cassette output to
the monitor speaker.
Sound Processing Commands—Instructions used with sound output are in the following box.

SOUND-OUTPUT VOCABULARY

AUDIO MOTOR PEEK POKE
BEEP NOISE PLAY SOUND

PRINTER

There are two fundamental ways computers deal with the printer—as a device or as a file.
Apple always treats it as a device. PR#1 usually sends output to the printer as well as to the screen.
IBM and the TRS-80 Color Computer will treat the printer either way. You can open it as a file or

use commands such as LPRINT, which treat it as a device.
The Commodore 64 makes no distinction between devices and files as far as PRINTing to them is

concerned.

The TRS-80 Model III and Model IV treat the printer only as a device, accessing it with
commands such as LPRINT.

24



Printer Processing Commands—Those relating to the printer include all those that relate to file
output—IBM, Commodore 64 and COCO—plus the following.

MORE PRINTER VOCABULARY

CMD POSN PRINT#U8ING TAB

LLIST PR# PRINT USING TAB(
LPOS PRINT ST WRITE

LPRINT PRINT® STATUS WRITE#

LPRINT USING PRINT#

STORAGE

Methods of outputting data to cassette or disk are similar to input methods.
Commodore allows you to write directly to a specified sector of the disk using the BLOCK and

BUFFER commands. COCO allows you to do the same, but utilizes the DSK commands. In
addition, both of these and the other computers handle disk output automatically through their
DOS routines.

See the discussion of input above, or the discussions of the commands in chapter 3, for more
details on the different file structures.

Output Storage Commands—Those relating to output to cassette and disk are in the following box.

OUTPUT VOCABULARY

APPEND CHDIR DSKIS PRINT USING

B-A: CLOSE DSKOS PUT

B-F: CMD ERASE PUT#

B-P: COLLECT FIELD RENAME

B-R: COPY FILES RMDIR

B-W: CSAVE KILL SAVE

BACKUP CSAVEM LOF SAVEM

BLOCK-READ: DOLOSE MKDIR SCRATCH

BLOCK-WRITE: DELETE MOTOR SYSTEM

BLOCK-ALLOCATE: DIR OPEN TAB

BLOCK-EXECUTE: DIRECTORY OUTPUT TAB(
BLOCK-FREE: DOPEN PR# STORE

BUFFER-POINTER DRIVE PRINT UNLOAD

BSAVE DSAVE PRINT# WRITE

CATALOG DSKINI PRINT#USING WRITE#

EXTERNAL COMMUNICATIONS

Outputting methods to external devices, such as modems or relays, are very diverse. The IBM
has the richest BASIC vocabulary for external output. Other computers may require
machine-language programming.

25



Because the IBM OPENs the COM port as a fUe, all the file output commands apply. Other
commands relating to external output include the following.

EXTERNAL-OUTPUT VOCABULARY

AUDIO MOTOR OUT PR#
CMD OFF PEEK WAIT
COM ON POKE

RESERVED WORDS
Words in this list are used by various computers as reserved words. Apple and Commodore do

not allow embedded reserved words in variable names. Therefore, you should avoid using these
words in variable names.

Not all of these words are used on the machines covered in this book. But to get maylmum
portability from your software, you should avoid using them.

RESERVED WORDS

ABS BLOCK-READ: CLOG CVT$F DRIVE FIELD
ACS BLOCK-WRITE: CLOSE CVT%$ DS FIF
ACSD BLOCK-ALLOCATE: CLR CVTF$ DSAVE FILE
ACSG BLOCK-EXECUTE: CLRDOT DASH DSKINI FILES
ADR BLOCK-FREE: CLS DAT DSKI$ FILL
AND BUFFER-POINTER CMD DATA DSKO$ FIN
APPEND BOLD CO DATES DSP FIND
ARCOS BPUT CODE DCLOSE EDIT FINPUT
ARCSIN BREAK COLLECT DEBUG ELSE FIX
ARCTAN BRIGHTNESS COLOR DEF END FLASH
ASC BSAVE COLOR- DEFDBL ENTER FLOW
ASCII BUTTON COM DEFFN ENVIRON FLT
ASN BYE COMMON DEFINT ENVIRONS FMT
ASND CALL CON DEFSEG EOF FN
ASNG CATALOG CONCAT DEFSNG EQ FNEND
AT CDBL CONSOLE DEFSTR EQV FONT
ATAN CM CONT DEFUSR ERASE FOR
ATN CHAIN COPY DEG ERDEV FORMAT
ATND CHANGE COS DEGREE ERDEVS FOUT
ATNG CHAR$ COSD DEL ERL FPRINT
AUDIO CHAR COSG DELETE ERR FPUT
AUTO CHARSIZE COSH DET ERRL FRAC
AXIS CHDIR COUNT DIGITS ERRN FRE
B-A: CHR CSAVE DIM ERROR FREE
B-F: CHR$ CSAVEM DIR ERRSS FUNTIL
B-P: CINT CSH DIRECTORY EXAM FUZZ
B-R: CIRCLE CSNG DLOAD EXCHANGE GE
B-W: CLEAR CSRLIN DLOADM EXEC GET#
BACKUP CLG CUR DMS EXIT GET
BAPPEN CLK$ CVD DOPEN EXP GIN
BASE CLK CVI DOS EXT GO
BEEP CLOAD CVN DOT FDIM GOTO
BGET CLOADM CVS DRAW FETCH GOODBYE
BLOAD CLOCK CVT$% DRAWTO FGET GOSUB

(Continued at top of next page.)

26



RESERVED WORDS (cont.)

GOSUB-OF LI MONITOR POSITION SCALE TAN
GOT LIN MOTOR POSN SCALE- TAND
GOTO LINE MPY PPOINT SER TANG
GOTO-OF LINEINPUT MTPACK PR# SCRATCH TANH
GR LINE INPUT# NAME PRECISION SCREEN TAPPEND
GRAD LINK NE PRESET SCRN TEXT
GRAPHICS LINPUT NEW PRI SCRNC THE
GT LIS NEX PRINT SECRET THEN
HCOLOR LIST NEXT PRINT® SEGS Tl
HCOLOR« LLIST NOFLOW PRINT# SEG TIS
HEADER LN NOISE PRINT#USINQ SET TIM
HEX$ LOAD NORMAL PRINT AT SETCOLOR TIMES
HGR LOADM NOT PRINT USING SETDOT TIME
HGR2 LOC NOTE PSET SGET TIMER
HIMEM: LOCATE NOTRACE PTR SGN TLIST
HLIN LOF NULL PTRIG SHELL TLOAD
HLIN-AT LOG NUMS PUT SHLOAD TNH
HOME LOG10 NUM PUT# SHUT TO
HPLOT LOGE OCTS RAD SIN TOP
HSORN LOMEM: OFF RADIAN SIND TRACE OFF
HTAB LPOS OLD RAN SING TRACE ON
IF LPRINT ON RANDOM SINH TRACE
IF-GOT LPRINTUSING ON ERR GOTO RANDOMIZE SKIPF TRAP
IF-GOTO LSET ON ERROR GOTO RBYTE SLEEP TROFF
IF-LET LT ONERR RDRAW SNH TRON
IF-THE M-E: ON-GOSUB REA SORT TSAVE
IF-THEN M-R: ON-GOT READ SOUND TYP
IF-THEN-ELSE M-W: ON-GOTO READ# SPA TYPE
IMAGE MAN OPEN RECALL SPACES UNLOAD
IMP MARK OPTION RECORD SPACE UNTIL
IN# MAT CON OPTION BASE REM SPC USER
INCH MAT IDN OR REMARK SPC( USING
INCHAR MAT INPUT OUT REN SPEED- USR
INDEX MAT INV OUTPUT RENAME SPUT VAL
INIT MAT PRINT PADDLE RENUM SQR VARPTR
INKEY$ MATREAD PAGE RENUMBER SORT VARPTRS
INP MATTRN PAINT REP ST VERIFY
INPUT MATZER PALETTE REPEATS STATUS VIEW

INPUT# MAT* PALETTE USING RES STE VIEWPORT
INPUTS MAT-h PAUSE RESET STEP VLIN
INPUT1 MAT- PCLEAR RESTORE STICK VLIN-AT
INPUTLINE MAT- PCLS RESUME STO VPOS
INSTR MAX PCOPY RESUME NEXT STOP VTAB

INT MDD PDL RET STORE WAIT
INTERS MEM PEEK RETURN STRS WBYTE

INVERSE MEMORY-EXECUTE: PEN RIGHTS STR WEAVE

lOCTL MEMORY-READ: PI RIGHT STRIG WEND

lOCTLS MEMORY-WRITE: PIN RMDIR STRINGS WHILE

JOYSTK MERGE PLAY RMOVE STRING WIDTH

KEY MIDS PLOT RND STUFF WINDOW

KEYS MID PMAP ROT- SUB WRITE

KILL MIN PMODE ROTATE SUBEND WRITE#

LE MKDS POINT ROW SUM XDRAW
LEFT MKDIR POINTER RSET SWAP XIO

LEFTS MKIS POKE RU SYS XOR

LEN MKNS POLL RUN SYSTEM XPLOT
LET MKSS POP SAVE TAB XRA
LGT MOD POS SAVEM TAB(

27



3 Alphabetic Listing of
BASIC Words

ABS
APPLE lie & 11+
ABS (x) returns the absolute value of
X, where x is any numeric expression.

IBM PC & PCjr
Same.

COMMODORE 64
Same.

AND
APPLE IIe&II +
AND is a logical operator that returns
a True (1) or False (0) value based on
a bitwise computation. The truth table
for AND follows:

X

T

T

F

F

y
T

F

T

F

xANDy
T

F

F

F

IBM PC & PCjr
AND is a logical operator that returns
a True (1) or False (0) value based on
a bitwise computation. The truth table
for AND follows:

X

T

T

F

F

y
T

F

T

F

xANDy
T

F

F

F

AND may also be used to test for a
particular bit pattern. See page 3-28 in
the IBM BASIC documentation for a
detailed explanation.

COMMODORE 64
AND is a logical operator that returns
a True (—1) or False (0) value. The
truth table for AND follows:

X

T

T

F

F

y
T

F

T

F

xANDy
T

F

F

F

28



CLEAR
APPLE Ile&UN
CLEAR dctra vaMWcs xixl R
iRtcrnxl comrol suck.

IBM PC A PCjr
CLEAR l.hl Lrnll (BASIC 2.0>
where o a the opiioRal namber of
byiei you want for BASIC wotkiipKe.
ind n Is (he opiionsi suck space you
desire Used alone. CLEAR frees all
memory, erases all DIMs. OEFs and
variable values, sod sets any sound.
PEN andSTRKi values loOEF.

CLEAR Llal LbI l.tll (Cartridac
BASIC Onlyl clears memory, where a
IS ihc optional number of byies you
want tar BASIC workspace, a is the
opiianal stack space you desire, and «
speciHes the total number of bytes to
set aside tor video memory. Used
alone. CLEAR frees all memory,
erases all DIMs. DEFs and variable
values, and seu any SOUND. PLAY.
PEN and STRIU values lo OFF

COMMODORE 64
CLR aborts all lotical Itlei that n

TRS-80 Models IV A 111 TRS-80 Color Coopater COMMENTS
CLEAR Ul Ul (Model iVI where

variables to tero. and releases a
array space, but dees noi alTect th
BASIC proitsm in memory.

imHcMinB Ihc number of ̂ tcs tt
allocate tor slack sMnpe (defiiuli
n-SI2>. CLEAR ehmhiaies all
varlabka and doses aHlifca.

CLEAR ■ IModei III) where • is the
amotffii of space to reserve for strint
stonse. Dcftuh'M bytes. Note thai
this does not aflcct (Ika.

CLEAR fall Idnl where ■ n the
amount of space to allocate for sirtnc
stonte—default'100 byiea-and a
H the hishcst ntcmoty htcttma
avdhUe tor BASIC This command
also mtnalues all varnblea. Note that
this is the opposite order of TRS-tO
ModdlV

If It's aviibbte. you may with to use
ERASE 10 dear seme memory If you
don't went to loie the vatoes stored in
vattaMc*. amysand OEF ititcmeiits.

CLOAD
APPLE He A11+
LOAD aujcs the next progr
the cagetie to lo«L Note il
cuKtie mutt be ready!

IBM PC A PCjr
LOAD fe3l:lnitBtiilctl,RI loads the
oexi program on the cassette, unless
the opitooal RIcutnc is supplied. In
this case H sniches the castette for
the named toe. If the R option is
spcdfleiL the ptotrero it

COMMODORE 64
tXlAD IfflciittMl|.4tvMIJecatia«l
where (lltetBc is the name of ihc file

TRS-80 Models IV A 111
The Model IV opcnics Bom eaaxiie
only in the Model III or Model 100
mode. The Model 100 is not covered

>l:disk-<:
defaitii'l. Leeatloa is the type of
load you wish to achieve—0 lihc
default I toads In tt the sttn of BASIC,
t loads in (torn where h was saved.
Files tived on cassette with a non-
rekxauUe U>AD-see SAVE-ire
LOADcd bKfc into the same locaiion
Ihey came rrom. This igooces Iba loca-

CtDAD Wlwimtl (Model III) loads
the nest toe on caMte (MO nteniary
tfMeiaare is specified, the eomptncr

TRS-80 Color Compatcr
CLOAD HDaiarett toeds i protiam
fioro ostetie. where nksaac IS a toe
on ihe anecto tf (UtstBt tt

omiiied, the aexi pratnua on tbc

COMMENTS
Some eontpiMn date all (Mca and re-
Inilitltre all vattabk values wbsa
asked to LOAD or CLOAD a

CLOAD? contpBcs the (Be in
mctnoiy to the ocxi toe on the
cassette. If the IBcs do not match bU
tor bit. the word BAD Is displiycd en

at the opuotial mctttory io-

Althouxh LOAD doses aS IBcs when

COLUMN ENDS HERE-

3. Nor does it
tcsei BASIC memory pointers Alter
(he LOAD is complcic. it automatiCBl-
ly RUNS the BASIC procixm in
memory.

Be careful when tnlog LOAD to chain
BASIC prognms. The (Irst prognm
thai has the iniiixl LOAD in it must
be longer than any pragrtms subtc-
qucnih called. If you wish to LOAD
tod RUN a longct program from a
diorter one, use the thnamic key-

1 the fotlowing prognm

lines. Remember, ihottgh. ibai this
lechninue dean all the variables.

It pRiirrciingi 1471-LOAD*
CilHtl34)*ftlananu*
CHRtC}4)-,a-

3* P0M3t4,4; PRINT: PRINT

in POXB 198.4: POKC 611.19
48 r0RI'2TO4:P0t(B

6ie<I.11:Nn(T
18 END

- COPY CONTINUES HERE

Sometimes, conversion information for a certain computer is so iong and detaiied that it won't
fit in one ooiumn. When that happens, the ooiumn ends with a soiid biaok bar. The copy
continues under the next biaok bar in a ooiumn to the right—typioaiiy the next ooiumn. See
the above iilustration.

TRS-80 Models IV & III TRS-80 Color Computer COMMENTS
Same. Same.

TRS-80 Models IV & III
AND is a logical operator that returns
a True (1) or False (0) value. The
truth table for AND follows:

X

T

T

F

F

y
T

F

T

F

xANDy
T

F

F

F

TRS-80 Color Computer
AND Is a logical operator that returns
a True Q) or False (0) value. The
truth table for AND follows:

COMMENTS

X

T

T

F

F

y
T

F

T

F

X ANDy
T

F

F

F

29



APPEND
APPLE Ue& 11+
PRINT D$;'AFFEND fUename"
where D$ is equal to CTRL-D or
CHR$(4). Opens the sequential file
filename and positions the pointer at
the end of the file, so that data may be
written to it.

IBM PC & PCjr
OPEN"filename" FOR APPEND
AS #n opens the sequential data file
filename as logical file n, and posi
tions the pointer at the end of the file.

COMMODORE 64
Although there is no documented
reference to APPEND in the Commo
dore Model 1S41 disk drive manual, it
is possible to simulate it on all current
disk drives:

10 OPENn, dv,
sa,"filename,A"

where n is the logical file number to
be written to, dv is the disk drive
device number (usually 8), sa is the
secondary address, and filename is
the name of the file. When the file is
then written to, the new data will be
inserted at the end of the file.

ASC
APPLE lie & 11+
ASC(n$) returns the ASCII value of
the first character of n$, where n$ is
any string expression except a nuU.
This is the reverse of CHR$.

IBM PC & PCjr
Same.

COMMODORE (4
Same.

ATN
APPLE IIe&U+
ATNCx) returns the angle whose tan
gent is X. The value returned is single
precision, and is measured in radians
in the range —ir/2 to ir/2.

IBM PC & PCjr
Same.

COMMODORE 64
Same.

30



TRS-80 Models IV & III TRS-80 Color Computer COMMENTS
OPEN "E", b, filename l,rl] where
"E" is required for the extend
("append") mode, b is the number of
the buffer in the range 1-1S, filename
is the name of the file, and rl is the
optional record length of the data
fields in filename. This file OPENing
method will cause data written to the
file to be appended to the end. Also
see OPEN for other uses of this
command.

Because COCO does not have an
APPEND mode, you must use pro
gram lines similar to the following to
append to a file. This renames the file
with the name "TEMP.DAT",
OPENs the file, reads it into the new
file to move the pointer to the end,
and returns you to the main program.
You can then write your data to the
file. F$ is the variable reserved for the
filename, which you must assign
before calling this routine. You must
also be sure to close the file. And, if s
a good idea to KILL TEMP.DAT
when you're finished.

1000 RENAME F$ TO " TEMP. DAT "
1010 OPEN "I", 1 , "TEMP.DAT"
1020 OPEN "0" ,2,F$
1030 IFEOFd ) GOTO 1070
1040 LINE INPU-f #1 , T$
1050 PRINT #2, T$
1060 GOTO 1030
1070 CLOSE #1
1 080 RETURN '

To simulate APPEND on cassette,
the entire data file must be read into
memory. Add the data to the file—be
sure to increase the record counter if
there is one—and write the file back
out to cassette.

See OPEN FOR APPEND. Note that
some other BASICs not covered in
this book use APPEND as a form of
MERGE, loading a program into
memory rather than adding data to
the end of a file.

TRS-80 Models IV & 111
Same.

TRS-80 Color Computer
Same.

COMMENTS

TRS-80 Models IV & III
Same.

TRS-80 Color Computer
Same.

COMMENTS
To convert degrees (D) to radians
(R), use the following formula:
R«D*3.141593/180

Also note that AT is used within
other commands by Apple and
TRS-80, so it should not be assigned
as a variable.

31



AUDIO
APPLE ne& 11+
There is no way to control starting and
stopping of the cassette on the Apple.
Simulating AUDIO would be impossi
ble without hardware modification. If
this function is desired, you need an
interface with the RS232 port.

IBM PC & PCjr
If you wish to hear audio from a
cassette, such as a tutorial tape, under
program control, you can leave the
earplug jack out of the cassette. Then
use the following program lines to
operate the cassette for 60 seconds.
Adjust the time period by altering line
1020:

1000 MOTOR ON
1010 A=TIMER

1020 WHILE TIMER<A+60
1030 WEND

1040 MOTOR OFF
1050 RETURN

COMMODORE 64
The Commodore cassette recorder
does not allow audio recording.
AUDIO cannot be simulated.

AUTO
turns on automatic line-numbering. It
is not used within programs.

B-A (See BLOCK)

BACKUP
is a reserved word for the TRS-80
Color Computer. It is used to create
backup disks, but is not used within
BASIC programs. It would erase the
program from memory.

BEEP
APPLE lie & 11+
PRINT CHR$(7) causes the speaker
to sound 1000 Hz tone for .10
seconds.

PEEK (—16336) causes the speaker
to emit a single click.

IBM PC & PCjr
BEEP

BEEP ON (Cartridge BASIC Only)
BASIC OFF (Cartridge BASIC Only)
sounds the speaker at 800Hz for 1/4
second and is the equivalent of
PRINT CHR$(7). In Cartridge
BASIC, BEEP may be used with
SOUND to select the active speaker:

SOUND OFF: BEEP OFF selects the
internal speaker only.
SOUND ON: BEEP OFF selects the
external speaker only.
SOUND OFF: BEEP ON selects
both speakers (default setting).

COMMODORE 64
Although there is no BEEP command
on the Commodore 64, the following
program lines produce a similar
effect. In this subroutine, T is the
numeric value associated with the
tone (range 0-2S5). D is a positive
integer associated with tone duration.

1000 T=60: D=100: 3=54273
1010 POKES,T: POKES+5,240
1020 POKES+23,5: POKES+3,17
1030 F0RA=1 TOD: NEXT
1040 POKES+23,0: POKE3,0
1 050 RETURN

B-F (See BLOCK)

32



TRS-80 Models IV & III
Because the Model IV does not use
cassette (except in Model III mode),
you cannot simulate AUDIO on it

On the Model in, if you wish to hear
audio from a cassette, such as a tuto
rial tape, you can leave the earplug
jack out of the cassette. Then use the
following program lines to operate the
cassette. The cassette will continue to

operate until a key is pressed and held
for a few seconds.

IFI$="" THEN

TRS-80 Color Computer
AUDIO ON turns on cassette output
to the tv speaker.

AUDIO OFF toggles it off. You must
use MOTOR ON to start the cassette
motor. Use MOTOR OFF to stop it.

COMMENTS

PRINT#-1 ,"
1010 I$=INKEY$ :

1000
1020 RETURN

TRS-80 Models IV & III TRS-80 Color Computer COMMENTS
Models IV

capabilities
modification
programming.

and III have no sound
without hardware

or machine-language

SOUND t,d where t is a numeric
value relating to tone (range 1-255),
and d is a numeric value relating to
duration (range 1-128). You can
simulate BEEP with a tone and
duration of your choice. For example,
SOUND 200,2 is a fair representation
of BEEP.

33



BLOAD
APPLE He & U+
BLOAD filename (,An] [,Sm] I,Do]
I»Vp] where filename is a binary file,
and n is a memory address from
0-65535-for a 64K RAM ma
chine—where the file is to be loaded
If An is omitted, the file is loaded into
the memory address from which it
was saved. Parameter m is a slot
number (range 1-7) of the disk drive
controller. Parameter o is 1 or 2, rep
resenting the desired disk drive.
Parameter p is the volume number of
the disk to be accessed. If omitted,
volume number is ignored. BLOAD
loads a binary file, such as a screen
image or machine-language program,
into memory.

IBM PC & PCjr
BLOAD d:filename (,offset] where
d: is the name of a storage device,
such as CASl: or A;. Filename is the
name of the file to be loaded. Offset is
an optional offset from the memory
location defined in the most recent
DBF SEG. BLOAD loads a memory
image file, such as a machine- lan
guage program or screen saved with
the BSAVE instruction, into a speci
fied memory location.

Note: Because you can easily load a
program into any memory location,
be careful not to overwrite a memory
area currently used by BASIC.

COMMODORE 64
Be careful when loading a binary file,
such as a machine-language program,
from within a BASIC program. A
LOAD from within a program causes
that BASIC program in memory after
the load to RUN. Consequently, the
program may get into an infinite loop
with a line like the following:
10 LOAD "filename",8,1

where 8 is the device number and 1 in
dicates a nonrelocatable load.

If you wish to simulate BLOAD
where the file is to be loaded into the
address from which it was saved, use
one of the following routines:

10 IFA=0THENA=1 :
LOAD"filename",8,1

2 0 REM REST OF PROGRAM HERE

The above lines must be near the
beginning of the BASIC program be
cause the program will be reRUN
after line 10 is executed once. Because
LOAD does not clear variables, A has
the value 1 on the second time
around, so the rest of the line is not re-
executed.

If it is necessaiy to LOAD a binary file
from well within the BASIC program,
then use the following lines:

OPEN8,8,8
"filename,P,R"

1010 POKE780,0
1020 SYS 65493

1030 CLOSE 8
1 040 REM PROGRAM CONTINUES

EXECUTING FROM HERE

To simulate BLOAD where the file is
to be loaded into a memory address
different from where it was saved (a
relocatable load), use the following
routine. DV is the device number,
usually 8. SA is the decimal-starting
address at which the file "filename"
will be loaded.

10 NA$="filename":
N=LEN(NA$)

20 DV=8:SA=32768
30 FOR 1=1 TON:

M=ASC(MID$(NA$,1,1)):
POKE 2023+1,M: NEXT

40 POKE 183,N: POKE
187,232: POKE188,7

50 SH=INT(SA/256):
SL=SA-SH*256

34



TRS-80 Models IV & III
SYSTEM "LOADIXI fflename"
(Model IV) loads the machine-
language file filename into memory.
If the X is included, it will load from a
non-system disk. The default file
extension is /CMD. Programs to be
loaded must reside above address
x'3000.

Note: Be careful to protect high
memory at the MEMORY SIZE
question when first entering BASIC
to avoid overwriting your BASIC
program. You should answer the
MEMORY SIZE question with the
highest address you want BASIC to
use. This is one byte less than the
location you intend to load your
machine-language routine into. You
can also protect high memory with the
CLEAR command.

CMD"L'%fUename (Model m)
where filename is a machine-
language routine, normally created by
the DUMP command.

Note: Be careful to protect high
memory at the MEMORY SIZE
question when first entering BASIC
to avoid overwriting your BASIC
program. You should answer the
MEMORY SIZE question with the
highest address you want BASIC to
use. This is one byte less than the
location you intend to load your
machine-language routine into. You
can also protect high memory with the
CLEAR command.

An alternative scheme would be to
avoid using DUMP to save the
machine-language program. See
BSAVE. Instead, you could PEEK
the address you wish to save, convert
it with CHR$(n), and PRINT it to a
file. Simulating BLOAD would be
accomplished with a routine that
would OPEN that file for input, use
INPUT# to get each value, convert it
with ASC(n$), and then POKE it into
the appropriate memory location.

TRS-80 Color Computer COMMENTS
CIX)ADM name I,offset] where
name is a machine-language program
to be loaded from cassette. If offset is
omitted, the program will load as
specified in the program itself.
Otherwise, offset is added to the
loading address.

IX)ADM filename I,offset] loads a
machine-language program from disk.
If an extension is not specified for the
filename, BASIC uses /BIN. If the
offset address is not specified, BASIC
loads the program into the location
specified within the program.

60 P0KE186,DV:POKE 185,0:
POKE 780,0

70 POKE 781, SL: POKE 782, SH
80 SYS 65493

35



BLOCK-ALLOCATE, BLOCK-FREE, BLOCK-READ,
APPLE He & 11+
Not available. Cannot be simulated.

IBM PC & PCjr
Not available. Cannot be simulated.

COMMODORE 64
'BLOCK-READ:"c,d,t,b
• BLOCK-WRITE: "c,d.

'BLOCK-FREE: "d,t,b
•BUFFER-POINTER:

PRINT#f,"i
PRINT#!, •
t,b
PRINT#!, "BLOCK-ALLOCATE:
"d,t,b
PRINT#!,'
PRINT#!,'
"c,l
These commands allow you to read
(BLOCK-READ) and write
(BLOCK-WRITE) data directly to
disk, allocate space on a disk for data,
logically free up space for data (by
writing to the RAM, not actually
erasing), and change the location of
the data pointer.

Here, ! is the number used to OPEN
the file, c is the channel number, d is
the drive number, t is the track
number and b is the block number.
To use these you must OPEN the
command channel (#15) as well as
the file buffer. These are often
abbreviated with only their first
letters (B-R, B-W, B-A, B-F and
B-P). These commands may be used
from BASIC, but are most useful
when used with machine-language
programs. They are very hazardous
without careful syntax and program
structure.

For a full discussion of their proper
use, see the 1541 Disk Drive User's
Manual pages 26 through 33.

B-R (See BLOCK)

36



BLOCK-WRITE, BUFFER-POINTER
TRS-80 Models IV & III
Not available. Cannot be simulated.

TRS-80 Color Computer
DSKI$d,t,s,sl$,s2$
DSKO$ d,t,s,sl$,s2$
These commands allow you to read
(DSKI$) and write (DSKO$) data
directly to the disks, where d is the
number of the disk drive, t is the track
number, and s is the sector number.
The strings to be input and output are
represented by sl$ (which will be
read from or written to the first 128
bytes of the sector) and s2$ (which
relates to the last 128 bytes of the
sector).

COMMENTS
Direct access to disk sectors is not

available from BASIC on the other
computers covered by this book. Data
is written onto the disk under the

control of the Disk Operating System.

37



BSAYE
APPLE He & 11+
BSAYE filename ,An, Lq I,Sm] [,Do|
l>YpI where fiOiename is a binary file,
and n is a memory address from
0-65535—for a 64K RAM ma
chine—where the first byte of the file
is located. Parameter 4 is the number
of bytes to be saved, range 0-32767.
Parameter m is a slot number, range
1-7, of the disk drive controller.
P^ameter o is 1 or 2, representing the
desired disk drive. Parameter p is the
volume number of the disk to be
accessed. If omitted, the volume
number is ignored. BLOAD loads a
binary file, such as a screen image or
machine-language program, into
memory.

IBM PC & PCjr
BSAYE d:filename, offset, length
saves a memory-image file, where d:
is the optional device name—default
is currently logged disk drive. Offset
is a numerical offset into the location
specified in the most recent DEF
SEG, and length is a numeric expres
sion between 1 and 65535 indicating
the length of the segment to be saved.

COMMODORE 64
The following program lines will simu
late the BSAYE command on the
Commodore 64. In it, filename is the
name of the file, SA is the decimal
memory location where the save is to
start, and EN is the decimal memory
location where the save is to end.

10 SA=32768

20 EN=33000: EN=EN+1

30 SH=INT(SA/256):
SL=SA-SH*256

40 EH=INT(EN/256):
EL=EN-EH*256

50 POKE 2024,PEEK(43):
POKE 2028,SL

60 POKE 2025,PEEK(44):
POKE 2029,SH

70 POKE 2026,PEEK(45):
POKE 2030,EL

80 POKE 2027,PEEK(46):
POKE 2031,EH

90 POKE43,PEEK(2028)
100 POKE 44,PEEK(2029)
110 POKE45,PEEK(2030)
120 POKE46,PEEK(2031)
130 SAVE "filename",8
140 POKE43,PEEK(2024)
150 POKE 44,PEEK(2025)
160 POKE45,PEEK(2026)
170 POKE46,PEEK(2027)

BUFFER-POINTER (See BLOCK)

B-W (See BLOCK)

38



TRS-80 Models IV & III
SYSTEM "DUMP fUeS (START «
al, END » a2, TRA » a3
I,ASCII,ETX- vl) " (Model IV) will
DUMP a segment of memory top
disk, where file$ specifies the name
of the fUe to be written. Parameter al
specifies the starting address of
memory to be DUMPed, a2 specifies
the ending address, a3 specifies the
address where program execution will
start. Using ASCII specifies that the
DUMP is to an ASCII file. ETX is re
quired when using ASCII and specifies
that the character at the end of an
ASCII file is equal to the hexadecimal
value V. Control will return to your
BASIC program after the DUhW is
executed.

CMD'T" , "DUMP file$ (START
= al,END = a2, TRA = a3, RELO
= a4)" (Model HI) will DUMP a
ment of memory to disk, where file$
specifies the name of the file to be
written. Parameter al specifies the
starting address of memory to be
DUMPed, a2 specifies the ending
address, a3 specifies the address
where program execution will start.
Parameter a4 specifies the start ad
dress at which the program is to be
reloaded. However, you will not
return to BASIC after the DUMP is
executed. You will be left in TRS-

TRS-80 Color Computer
CSAVEM filename, start, end,
offset saves a machine-language pro
gram on cassette specified in the
filename, starting at memory address
start and ending at memory address
end. Offset is the actual memory ad
dress at which execution will start

SAVEM filename, start, end, trans
fer saves a machine-language pro
gram on the disk drive specified in the
filename, starting at memory address
start and ending at memory address
end. Offset is the actual memory ad
dress at which execution will start.

DOS. Your BASIC program may or
may not still be available using the
BASICS command.

An alternative scheme on either
computer would be to avoid using
DUMP to save the machine-language
program. Instead, you could PEEK
the addresses you wish to save by
using a loop. Then convert the values
returned with CHR$(n), and PRINT
them to a file. Simulating BLOAD
would be done with a routine that
would OPEN that file for input. Use
INPUT# to get each value, convert it
with ASC(n$), and then POKE it into
the appropriate memory location.

COMMENTS

39



CALL
APPLE He & 11+
CALL n where n is a decimal numeric
expression in the range of
—65535-65535, representing a
memory location. CALL causes exe
cution of the machine-language rou
tine at memory location n.

IBM PC & PCjr
CALL ii[(xl [,x2]...)] where n is the
name of a numeric variable and xl,
x2... are names of variables to be

passed as arguments to a machine-
language routine. CALL executes a
machine-language subroutine at the
location specified by the most recent
DBF SEG and the offset defined by
variable n.

COMMODORE 64
SYS n where n is decimal numeric ex

pression the range 0-65535 represent
ing a memory location. The command
causes execution of the machine-

language routine starting at memory
location n.

MEMORY-EXECUTE calls ma
chine-language code that is present in
the 1541 disk drive's RAM or ROM.
Because memory maps of the 1541'$
operating system are not widely
available, this kind of code is rare. In
the example below, SA is the start
address in decimal of the

machine-language code to be
executed. L and H are the low and
high bytes of SA when written in
hexadecimal:

10 SA=60064:H=INT(SA/256)
:L=SA-H*256

20 OPEN 15,8,15 ■
30 PRINT#15,

"M-E"CHR$(L)CHR$(H)
40 CLOSE 15

You can also use a MEMORY-
WRITE command to write code to the
1541 RAM.

CATALOG
APPLE He & 11+
CATA1X)G [,Ss](,Dd] where s speci
fies slot number 1-7 and d specifies
drive 1 or 2. CATALOG will display
the directory of the specified drive. It
may be used in the programming
mode when preceded by CHR$(4). If
the drive number is omitted, the most
recently selected drive will be used.
The code format is;

10 PRINTCHR$(4) ;
"CATALOG,S6,D2"

If the catalog listing is too long to fit
on one screen, it will halt at the end of
each screenful. Listing continues
when the user presses any key.

IBM PC & PCjr
FILES (filename] lists the name of
the file specified. If the optional file
name is omitted, all files are listed.
You can use the wildcards * and ? to
obtain a list of all files that satisfy a
particular pattern. You can also specify
a drive other than the default. In
BASIC 2.0 or Cartridge BASIC,
FILES can also contain a path
command, which cannot be simulated
on any other machine.

Use of this command in Cartridge
BASIC will result in an ILLEGAL

FUNCTION CALL if DOS 2.1 is not
present.

Command DIR is used in DOS only.

COMMODORE 64
Although there is no command in
Commodore 64 BASIC to obtain a
catalog (directory), the following pro
gram lines produce a similar effect.
However, they will cause the directory
to replace the current program in
memory. If you need a program that
reads the directory without destroying
the program in memory, see the 1541
Disk Drive User's Manual, page 47.
100 POKE 631 ,19: POKE

632,13: POKE633,13:
POKE 198 3

110 PRINT CHR$( 147) "LIST"
120 LOAD "$",8: END

40



TRS-80 Models IV & III
CALL n I,a where n is a non-
array variable specifying the beginning
address of the machine-language su
broutine being called, and a, b,... are
variables representing parameters
passed to the machine-language
routine.

TRS-80 Color Computer
EXEC In] transfers control to the
machine-language program at mem
ory location n. If n is omitted, it as
sumes the address specified at the last
CLOAD.

COMMENTS
Also see the USR function and
VARPTR.

The primary difference between USR
and CALL is the ability to pass multi
ple arguments or parameters to the
machine-language routine using
CALL. In addition, CALL does not
require POKEing the address of the
routine, but rather specifies it in the
CALL statement.

The method of passing parameters to
the machine-language routine varies
from machine to machine. IBM
passes parameters through its stack,
while TRS uses registers HL, DE and
EC. Consult the manuals for a more
detailed explanation.

TRS-80 Models lY & III
SYSTEM "DIR:d" (Model IV) wiU
display the directory of disk drive d,
then continue program execution.
The drive number is not optional.

CMD"D:d" (Model ffl) will display
the directory of drive d, then continue
program execution. The drive
number is not optional.

TRS-80 Color Computer
DQt Id] where d specifies the drive
number to be accessed. The command
will display the directory of the speci
fied drive, then continue program
execution.

COMMENTS

41



CDBL
APPLE He & 11+
Because Apple allows up to nine digits
of precision for floating-point
numeric constants, CDBL is not
available and caimot be simulated.

IBM PC & PCjr
CDBLte) where n is any numeric
expression. CDBL converts n to a
double-precision number having 17
digits of precision, of which 16 are
printed. Note that not all the digits
will be accurate because not all were
supplied with n.

COMMODORE 64
Because Commodore allows up to
nine digits of precision for
floating-point numeric constants,
CDBL is not available and cannot be
simulated.

CHAIN
APPLE He & 11+
Applesoft BASIC does not use
CHAIN. Simulate it with the following
procedme:

Protect high memory by using the
HIMEM instruction. Then POKE the
common variables into the protected
memory. Use RUN (or MERGE and
then RUN) to start the new program.
Then PEEK the variables back into
the program out of high memory.

CHAIN filename I,SsH,Ddll,Vv]
(Integer BASIC Only) where filename
is the name of the flle, s is the
number of the slot, d is the number of
the disk drive, and v is the volume
number of the disk. CHAIN loads and
runs the specified program, maintain
ing the variables and arrays from the
previous program.

IBM PC & PCjr
CHAIN filename I,line] I,ALL]
causes the program filename to be
run beginning with the line number
specified, and with all variables the
same as in the program currently in
memory. If the line number is
omitted, the execution begins with
the first line of the new program. If
ALL is omitted, then the original pro
gram must have a COMMON
statement

Use of this command in Cartridge
BASIC will result in an ILLEGAL
FUNCTION CALL if DOS 2.1 is not
present.

CHAIN MERGE filename
[,DELETE range] merges the new
program with the current one, option
ally DELETing some lines of the cur
rent one. This is different from

MERGE in that it executes the pro
gram after merging it. The range
option allows you to indicate which
lines to delete, using the same format
you would use with the LIST
command. By using the MERGE
option, the OPTION BASE setting
and all user-defined functions and
variable ^es—such as DEFINT,
DEFSNG, DEFDBL, DEFSTR and
DEF FN—are preserved. Otherwise,
they would have to be restated.
CHAIN also causes a RESTORE to be
executed, so a READ statement will
read the first data item, not the next
one.

COMMODORE 64
LOAD [filename]],device]I,location]
where filename is the name of the flle
you wish to load. Default on cassette
is the next flle, but the flle name must
be specified on disk. Device is the
storage device—cassette=l, disk=8,
default=l. Location is the type of
load you wish to achieve—0 (the
default) loads in at the start of BASIC;
1 loads in from where it was saved.

Files saved on cassette with a non-
relocatable load—see SAVE—are
loaded back into the same location
they came from and ignore the loca
tion direction. Although LOAD
closes all files, when used as a state
ment within a program it does not
clear variables. Nor does it reset the
BASIC memory pointers.

After the load is complete, it auto
matically RUNs the BASIC program
in memory. Be careful when using
LOAD to chain BASIC programs.
The first program that has the initial
LOAD in it must be longer than any
of the programs subsequently called.
However, some variable declarations
may be lost, so you should redeclare
the variables in the chained program.
With this in mind, you can use LOAD
siniilarly to CHAIN.

42



TRS-80 Models IV & 111
CDBL(n) where n is any numeric
expression, CDBL converts n to a
double-precision number having 17
digits of precision, of which 16 are
printed. Note that not all the digits
will be acciuate because not all were
supplied with n.

TRS-80 Color Computer
Because the COCO allows only up to
nine digits of precision for
floating-point numeric constants,.
CDBL is not available and cannot be
simulated.

COMMENTS

TRS-80 Models IV & III
CHAIN fflename I,line] I,ALL]
(Model IV) causes the program file
name to be run beginning with the
line number specified, and with all
variables the same as in the program
currently in memory. If the line
number is omitted, execution begins
with the first line of the new program.
If ALL is omitted, then the original
program must have a COMMON
statement.

CHAIN MERGE filename
(,DELETE range] (Model IV)
merges the new program with the cur
rent one, optionally DELETing some
lines of the current one. This is dif
ferent from MERGE in that it exe
cutes the program after merging it.
The range option allows you to indi
cate which lines to delete, using the
same format you'd use with the LIST
command. By using the MERGE
option, you preserve the OPTION
BASE setting and all user-defined
functions and variable types—such as
DEFINT, DEFSNG, DEFDBL,
DEFSTR and DEF FN. Otherwise,
they would have to be restated.
CHAIN also causes a RESTORE to be
executed, so a READ statement will
read the first data item, not the next
one.

CHAIN is not available on the Model
m, but can be simulated. First, protect
hi^ memory when you encounter
the MEMORY SIZE question when
entering BASIC. Then POKE the
variables to be common into the pro
tected memory. Use RUN (or
MERGE and then RUN) to start the
new program, then PEEK the varia
bles back into the program out of high
memory.

TRS-80 Color Computer
Not available on the COCO, but
CHAIN can be simulated by protect
ing a portion of memory using the
CLEAR command. Then POKE the
variables to be common into the pro
tected memory. Use RUN (or
MERGE and then RUN) to start the
new program. Then PEEK the varia
bles back into the program out of pro
tected memory.

COMMENTS
The CHAIN instruction leaves files
open. Also see MERGR.

43



CHDIR
APPLE He & 11+
Not available. Cannot be simulated.

IBM PC & PCjr
CHDIR path where path is a string
constant not more than 63 characters
long specifying the new directory that
becomes the current directory.
CHDIR is used by IBM only—and
only in DOS versions 2.0 and 2.1.

Use of this command in Cartridge
BASIC will result in an ILLEGAL
FUNCTION CALL if DOS 2.1 is not
present

COMMODORE 64
Not available. Cannot be simulated.

CHR$
APPLE ne&U+
CHR$(n) where n is an ASCII code
in the range 0-255. CHR$ returns the
character represented by ASCII code
n.

IBM PC & PCjr
CHR$(ii) where n is an ASCII code
in the range 0-255. CHR$ returns the
character represented by the ASCII
code n.

COMMODORE 64
CHR$(n) where n is an ASCII code
in the range 0-255. CHR$ returns the
character represented by the ASCII
code n. Some non-standard CHR$
codes that occur frequently in Com
modore 64 program listings are listed
below:

CHR$(I4) Switch to lower case
CHR$ (17) Move cursor down
CHR$(18) Switch reverse on
CHR$(19) Move cursor to home

position
CHR$(20) Delete a character
CHR$ (29) Move cursor right
CHR$(142) Switch to upper case
CHR$(145) Move cursor up
CHR$(146) Switch reverse off
CHR$(147) Clear screen and move

cursor home

CHR$(148) Insert a character
CHR$(133) toCHR$(140)

Refer to function keys
fl tof8

CHR$(96) toCHR$(127)
Refer to graphics
characters

CHR$(161) toCHR$(191)
Refer to graphics
characters

CINT
APPLE He & 11+
Not available. Use INT instead.

IBM PC & PCjr
CINT (n) where n is a numeric
expression between —32768 and
32767. Converts n to an integer by
rounding.

COMMODORE 64
Not available. Use INT instead.

44



TRS-80 Models IV & III TRS-80 Color Computer COMMENTS
Not available. Cannot be simulated. Not available. Cannot be simulated.

TRS-80 Models IV & III
CHR$(ii) where n is an ASCII code
in the range 0-2SS. CHR$ returns the
character represented by the ASCII
coden.

TRS-80 Color Computer
CHR$(n) where n is an ASCII code
in the range 0-255. CHR$ returns the
character represented by the ASCII
coden.

COMMENTS

TRS-80 Models IV & III TRS-80 Color Computer COMMENTS
CINT (n) where n is a numeric
expression between —32768 and
32767. Converts n to an integer by
rounding.

Not available,
instead.

Use INT or FIX

CINT
FIX

INT

Ifnis
positive

Ifnis
negative

Rounds up Rounds up
Truncates Truncates

Truncates Rounds up
(negatively)

45



CIRCLE
APPLE ne&II+
Not available. Simulate it with the fol
lowing routine. You must define the
following variables before entering
the routine:

X  X coordinate of the center.
Range 0-279.

Y . y coordinate of the center.
Range 0-159

R Radius of the circle measured in
screen points.

C  Color ofthe circle. Range 0-7.
AR Numeric expression affecting

the aspect ratio. AR=3/4 is a
circle. AR>3/4 draws an ellipse
with the major axis axis in the y
direction. AR<3/4 yields an el
lipse with its major axis in the x
direction.

You cannot specify a circle or arc that
would lie outside the range of the
screen, or you will get an ILLEGAL
QUANTITY error. Get semicircles by
manipulating the loops in lines 140
and 200. Get quarter circles by mani
pulating lines ISO, 170, 210 and 230
along with the loops in lines 140 and
200.

130 HGR:HC0L0R=C: RA=1/AR
140 FORI=X-RTOX+R
150 H=I: V=Y+SQR ((R'^2) -

(H-X)^2)*AR
160 HPLOTH,V
170 H=l: V=y-SQR( (R'^2) -

(H-X)'^2)*AR
180 HPLOTH,V
190 NEXT I
200 FORI=y-R*ARTOy+R*AR
21 0 V=I: H=X+SQR (ABS((R'^2) -

(RA*(V-y))^2))
220 HPLOTH,V
230 V=l: H=X-SQR (ABS( (R'^2) -

(RA* (v-y) )^2))
240 HPLOTH.V
250 NEXT I

IBM PC & PCjr
CIRCLE (x,y) ,r I,color [,start,end[,as
pectin draws a circle, arc or ellipse
where x and y are the coordinates of
the center of the circle or ellipse, and
r is the radius measured in screen

points. Color is a an optional number
whose range depends on the screen
chosen. See COLOR. Start and end
are angles measured in radians in the
range of —2*ir to 2*ir, which indi
cate the start and end of an arc.

Aspect is a numeric expression. If it is
5/6 in medium resolution or 5/12 in
high resolution, a circle is drawn. If
aspect is less than 1, then r is the x
radius. If aspect is greater than 1,
then r is the y radius.

COMMODORE 64
Not available. Simulate it with the fol
lowing routine. You must define the
following variables before entering
the routine:

X  X coordinate of the center.
Range 0-319.

Y  y coordinate of the center.
Ranp 0-199

R Radius of the circle measured in
screen points.

AR Numeric expression affecting
the aspect ratio. AR=3/4 is a
circle. AR>3/4 draws an ellipse
with the major axis in the y
direction. AR<3/4 yields an el
lipse with its mqjor axis in the x
direction.

You must also call a high-resolution
screen routine, such as the one listed
at HGR. Subroutine 1000 should be a
routine that will set individual points,
such as those listed at HPOINT. Get

semicircles by manipulating the loops
in line 310 and 370. Get quarter circles
by manipulating lines 320, 340, 370
and 400 along with loops in lines 310
and 370.

REM HIGH RES SCREEN

LOADER GOES HERE (SEE
HGR)
RA=1/AR: REMX,y,RANDAR
MUST BE LOADED BEFORE

THIS LINE

FORI=X-RTOX+R

H=l: V=y+SQR((Rt2)-
(H-X) t2)*AR
GOSUB1000

H=l: V=y-SQR((Rt2)-
(H-X)t2)*AR
GOSUB1000
NEXT I

FOR I=y-R*ARTOy+R*AR

V=l: H=X+SQR (ABS( (Rt2) -
(RA*(V-y))t2))
GOSUB1000
V=l:H=X-SQR(ABS((Rt2)-
(RA* (V-y) )t2))
GOSUB1000
NEXT I

REM PROGRAM CONTINUES

HERE

1000 REM PLOTTING SUBROUTINE
HERE (SEEHPOINT)

300

310
320

330
340

350
360

370
380

390
400

410
420

430

46



TRS-80 Models IV & UI
Not available and cannot be easily
simulated on the TRS-80 Models IV
or in. They do not support high-
resolution graphics.

TRS-80 Color Computer
CIRCLE (x,y),rl,c,hw,start,endl
draws an ellipse, circle or arc with a
centerpoint at (x,y). Parameter x has
range of 0-255; y has range of 0-191.
Parameter r is the radius of the circle
measured in screen-position points.
Parameter c is the optional color
number in the range of 1-8, with the
default as the current foreground
color. Parameter hw is the optional
height/width ratio and is a numeric
expression in the range of 0-255
(default=l). Start and end are the
optional starting and stopping points
for an arc. The range for each is 0-1,
with the default for start being 0 (the
three o'clock position) and the
default for end being 1 (also the three
o'clock position).

COMMENTS

To convert degrees (D) to radians
(R), use the following formula:
R=D*3.141593/180

47



CLEAR
APPLE IIe&U+
CLEAR clears variables and resets
internal control stack.

IBM PC & PCjr
CLEAR [,[nl I,mil (BASIC 2.0)
where n is the optional number of
bytes you want for BASIC workspace,
and m is the optional stack space you
desire. Used alone, CLEAR frees all
memory, erases all DIMs, DEFs and
variable values, and sets any sound,
PEN and STRIG values to OFF.

CLEAR l,(nl I,ml (,vll (Cartridge
BASIC Only) clears memory, where n
is the optional number of bytes you
want for BASIC workspace, m is the
optional stack space you desire, and v
specifies the total number of bytes to
set aside for video memory. Used
alone, CLEAR frees all memory,
erases all DIMs, DEFs and variable
values, and sets any SOUND, PLAY,
PEN and STRIG values to OFF.

COMMODORE 64
CLR aborts all logical files that may
be open, sets all nonreserved
variables to zero, and releases all
array space, but does not ̂ ect the
BASIC program in memory.

CLOAD
APPLE lie & 11+
LOAD causes the next program on
the cassette to load. Note that the
ca^ette must be ready!

IBM PC & PCjr
LOAD casl:|filename]I,RI loads the
next program on the cassette, unless
the optional filename is supplied. In
this case it searches the cassette for
the named file. If the R option is
specified, the program is run as soon
as loaded.

COMMODORE 64
LOAD [filename]I,device]!,location]
where filename is the name of the file
you wish to load. Default on cassette
is the next file, but the filename must
be specified on disk. Device is the
storage device—cassette™I; disk=8;
default™!. Location is the type of
load you wish to achieve—0 (the
default) loads in at the start of BASIC;
1 loads in from where it was saved.
Files saved on cassette with a non-
relocatable LOAD—see SAVE—are
LOADed back into the same location
they came from. This ignores the loca
tion direction.

Although LOAD closes all files when
used as a statement within a program,
it does not clear variables. Nor does it
reset BASIC memory jminters. .Mer
the LOAD is complete, it automatical
ly RUNs the BASIC program in
memory.

Be careful when using LOAD to chain
BASIC programs. The first program
that has the initial LOAD in it must
be longer than any programs subse
quently called. If you wish to LOAD
and RUN a longer program from a
shorter one, use the dynamic key
board as in the following program

48



TRS-80 Models IV & III
CLEAR l,m] [,nl (Model IV) where
m is an optional integer indicating the
highest memoiy location available to
BASIC, and n is a numeric constant,
numeric variable or expression
indicating the number of bytes to
allocate for stack storage (default
n=512). CLEAR eliminates all
variables and closes all files.

CLEAR n (Model ni) where n is the
amount of space to reserve for string
storage. Default=50 bytes. Note that
this does not affect flies.

TRS-80 Color Computer
CLEAR hi [,ml where n is the
amount of space to allocate for string
storage—default=200 bytes—and m
is the highest memory location
available for BASIC. This command
also initializes all variables. Note that
this is the opposite order of TRS-80
Model IV.

COMMENTS
If it's available, you may wish to use
ERASE to clear some memory if you
don't want to lose the values stored in
variables, arrays and DEF statements.

TRS-80 Models IV & III
The Model IV operates from cassette
only in the Model III or Model 100
mode. The Model 100 is not covered
in this book.

CLOAD [fUename] (Model m) loads
the next ffle on cassette into memory.
R filename is specified, the computer
searches for that file on cassette.

CLOAD? compares the file in
memory to the next file on the
cassette. If the files do not match bit
for bit, the word BAD is displayed on
the screen.

TRS-80 Color Computer
CLOAD [filename] loads a program
from cassette, where filename is a file
on the cassette. If filename is
omitted, the next program on the
cassette is loaded.

CIX)ADM"filename" [,n] loads the
machine-language file filename,
beginning at the optional memory lo
cation offset n.

COMMENTS
Some computers close all files and re
initialize all variable values when
asked to LOAD or CLOAD a
program.

lines. Remember, though, that this
technique clears all the variables.

10 PRINT CHR$ (147) "LOAD"
cim$(34) "filename"
CHR$(34)" 8"

20 POKE 214,4 : PRINT: PRINT
"RUN"

30 P0KE198,4: POKE 631,19
40 FOR I>2 TO 4: POKE

630+1,13: NEXT
50 END

49



CLOSE
APPLE lie &n+
PRINT D$; "CLOSE filename"
closes the sequential file filename,
where D$=CHR$(4), Apple does not
use file numbers as the other comput
ers do.

IBM PC & PCjr
CLOSE ([#]filell,[#lfile21...] where
filel, file2,... are file numbers of files
previously OPENed. If the optional
file numbers are omitted, all files are
closed. # signs are also optional. If
any data is still stored in the file
bi^er, it is written to the file before
the file is CLOSEd. END, NEW,
RESET, SYSTEM or RUN without
the R option will also close all files.

COMMODORE 64
CLOSE n where n is the number of a
file or device previously OPENed.
Any data stored in the buffer is
written to the file before it is CLOSEd.

SYS 65511 closes all open files.

CLR (See CLEAR)

CLS
COMMODORE 64
PRINT CHR$(147); clears the
screen and moves the cursor to the
upper-left corner.

APPLE lie & 11+
HOME clears the text
window—which may or may not be
the entire screen—and moves the
cursor to the upper-left comer.

IBM PC & PCjr
CLS clears the screen and moves the

cursor to the home position. In text
mode, home is the upper-left corner
of the screen. In graphics mode,
home is the center of the screen.

If you are using a viewport defined
with the VIEW command, only the
viewport will be affected, and the
cursor will be centered in the

viewport. To clear the whole screen in
such a case, use VIEW without any
parameters. Then use CLS.

CMD
APPLE Ue&n+
See PR#.

IBM PC & PCjr
SeeLPRINTorLLIST.

COMMODORE 64
CMDn redirects output to the pre
viously OPENed device n—range
1-255—instead of to the monitor. It is
deactivated by PRINT#n, a process
called mlistenmg by Commodore. It is
most commonly used to redirect
output to the printer, device #4.

This efifecf is achieved on other
computers by using PR# (Apple) or
by using LPRINT or LLIST.

50



TRS-80 Models IV & UI TRS-80 Color Computer COMMENTS
C1X)S£ In[,n...]| where n is a CLOSE I#n] closes all communica
number of an open file range of 1-15. tions to buffer n. If n is omitted, all
If n is omitted, all OPEN files are OPEN files are CLOSEd. The follow
CLOSEd. ing are possible buffers:

n—1-15 File opened with that
number

n=0 Screen or Keyboard
n=—1 Cassette
n=—2 Printer

TRS-80 Models IV & III
CLS clears the screen and moves the
cursor to the upper-left comer.

TRS-80 Color Computer
CLS l(n)l where n is a numeric
expression (range 0-8) specifying
screen color. Clears the screen to the
specified color. Default is green,
Possible values for n are listed below;

COMMENTS

0 Black

1 Green

2 Yellow
3 Blue
4 Red
5 Buff
6 Cyan
7 Magenta
8 Orange

TRS-80 Models IV & HI
Not available on the Model IV.
Output can be redirected to the printer
withLLISTorLPRINT.

CMD"A" (Model m) causes the
computer to return to DOS and dis
play the message OPERATION
ABORTED. This is similar to

SYSTEM on most other computers.

CMD"B","switch" (Model HI)
where switch is either "ON" or
"OFF"—switch must be enclosed in
quotation marks. CMD"B" toggles
the break key on or off. BASIC pro
gram execution will continue after
using CMD"B". There is no com-

TRS-80 Color Computer
Not available. Caimot be simulated.

mand to achieve this on other
computers, but might be possible
with POKES if you can determine the
location to POO for your computer.
For example, CTRL-BREAK is dis
abled on the IBM PC with the
following:

10 DEF SEGs0: POKE
&H6C,&H53: POKE
&H6d,&hff:poke
&H6E,&H00: POKE
&H6F ,&HF0: DEF SE6

CMD"C" I,option] (Model m)
where option is either "R" (to
remove remarks only) or "S" (to
remove spaces only). If option is
omitted, both remarks and spaces will
be removed from the BASIC program
in memory. BASIC program execu
tion will continue after using
CMD"C". This command cannot be
easily simulated from within a BASIC
program on other computers. But
there are commercial utilities available
for most other computers that will do
this from outside the program.

51



CMD (cont.)
TRS-80 Models IV&m
CMD"D:d" (Model IE) where
parameter d specifies a currently con
nected disk drive number,
CMD"D:d" will display the directory
of the specified drive. Note that the
drive specification is not optional.
BASIC program execution will con
tinue after using CMD"D". See
CATALOG, DIR and FILES for
explanations of how this is accom
plished on other computers.

CMD "I",command (Model El)
where command is a legal DOS com
mand or a Z-80 program name,
CMD " I" will exit B^IC and execute
the specified command. E the com
mand does not overlay BASIC, you
will be returned BASIC. Otherwise,
you will remain in DOS.

This instruction is similar to SYSTEM
on the TRS-80 Model IV; to PRINT
CHR$(4); "command" on the Apple;
to POKEing the keyboard buffer on
the IBM PC; or to using the dynamic
keyboard of the Commodore 64. Any
disk-operating commands may be
issued from a BASIC program on the
COCO, but the program may or may
not be left in memory afterward,
depending on the command.

CMD"J",s,d (Model El) where s
specifies the source date, and d speci
fies the destination date. This com
mand converts Julian dates to stan
dard dates and vice-versa. The source
date must be in the form mm/dd/yy
for standard-to-Julian conversion, or
-yy/ddd for Julian-to-standard
conversion. Note that specification of
a Julian date requires a leading
hyphen. BASIC program execution
will continue after using CMD " J ".

Other computers covered in this book
have no equivalent to CMD"J",
However, a program could be written
40 do the same thing.

CMD "L",filename (Model El)
where filename is a machine-language
routine or program. This command
will load the specified file into
memory. E the loaded file does not
overlay BASIC or TRSDOS, control
will be returned to BASIC. See
BLOAD for a discussion of how this
is accomplished on other computers.

CMD "0",n,array (start) (Model
IE) will sort an array, where n speci
fies the number of items to be sorted,
array is the variable name of the array
to be sorted, and start specifies the
array element to be the first element
sorted. BASIC program execution will
continue after using CMD " O ".

The other computers covered in this
book do not have built-in sort
routines. There are many possible
ways of writing sort routines for each
of them.

CMD"P",status (Model IE) returns
information about the printer, where
status is a string variable that will re
ceive the returned status from the
printer. CMD"P" will return dtf-
ferent values for diEerent printers.
The string variable status may be
examined by the program for an ex
pected value, such as a value repre
senting "printer ready." BASIC pro
gram execution will continue ^ter
using CMD "P".

CMD"R" (Model IE) causes the
real-time clock to be displayed in the
upper-right comer of the screen and
updated every second. The clock is
turned off by the command
CMD " T". BASIC pro^am execution
will continue after using CMD"R"..
There is no way to easily simulate this
as a background task from BASIC on
any other computer, but there are
ut^ties commercially available that
do this on the IBM PC.

CMD"S" (Model IE) causes the
computer to exit BASIC and return to
DOS. This is similar to SYSTEM on
other computers. See SYSTEM.

CMD"T" (Model IE) turns off the
clock display. See CMD"R". BASIC
program execution will continue after
using CMD "T".

CMD"X",target (Model IE) cross-
references the program in memory,
listing all occurrences of the target
variable. E the target variable is a re
served word—such as INPUT—it

must not be enclosed in quotation
marks. E the target variable is a literal
string, it must be enclosed in quota
tion marks. No other computers cov
ered in this book have this as a resi

dent command, nor can it be simulat
ed without extensive code. Most
computers have commercially availa
ble utilities that do this.

CMD"Z","switch" (Model IE)
where switch is either "ON" or
"OFF"—which must be enclosed in
quotation marks. CMD"Z","ON"
causes all output going to the screen
to also go to the printer, and vice-
versa. CMD"Z","OFF" causes this
echoing to stop. BASIC program exe
cution continues ^ter using
CMD"Z".

On the Apple, you can have simulta
neous output to the screen and the
printer by specEying PR#n, where n
is the number of the slot where the
printer card resides—usually #1.
Echoing is disabled by PR#0.

You can redirect output to other
devices on the Commodore 64 with
the CMDn command, but simultane
ous output is not available on it or the
TRS-80 Models IV or El.

DYNAMIC KEYBOARDS

The Commodore 64 has a keyboard buffer that can be loaded with characters from within a
program. When the program ends, these characters are printed on the screen and can be used to
execute commands not usually available from within a program. You can get some very unusual
and sophisticated effects this way. Some include programs that create or destroy their own lines
while running, and programs that exit to the command level, then return to the program.

(Continued at top of next page.)

52



DYNAMIC KEYBOARDS (cont.)

The memory locations usually used by this technique are 198 (which contains the number of
characters in the keyboard buffer) and 631 to 641 (the keyboard buffer that contains the ASCII
codes of the keys to be printed). Here is a very simple example to demonstrate using this
technique.

10 REM THIS LINE WILL BE DELETED

20 PRINT CHR$ (147) "10": REM CLEARS SCREEN AND PRINTS 1 0 AT HOME
POSITION

30 POKE 198, 2 : POKE 631 ,19: POKE 632,1 3
40 END

When this program is RUN the screen is cieared, and the number 10 is printed in the home
position. Two characters—"move cursor to home" and a carriage return—are then placed In the
keyboard buffer. When the program ends, these characters are printed on the screen, which
causes the cursor to be moved over the 10 already there. When the program is LISTed, line 10 will
be gonel
The IBM PC also allows access to the keyboard buffer. You can read or change the status of

several important keys, clear the buffer, or plug values Into the buffer. The values you plug Into the
buffer will be retrieved the next time you allow keyboard access, such as when using INKEY$ or
when returning to the command mode.
The following PEEKs and POKEs let you toggle the keys as Indicated. You must deciare DEF

SEG—64 before using them.

POKE 23

POKE 23

POKE 23

POKE 23

POKE 23

POKE 23

POKE 23

POKE 23

POKE 23

POKE 23

POKE 23

POKE 23

POKE 23

POKE 23

POKE 23

POKE 23

POKE 26

(PEEK (23) OR 64) turns CAPS LOCK on
(PEEK (23) AND 191) turns CAPS LOCK off
(PEEK (23) OR 32) turns NUM LOCK on
(PEEK (23) AND 223) turns NUM LOCK Off
(PEEK (2 3) OR 16) turns SCROLL LOCK on
(PEEK (2 3) AND 2 3 9) turns SCROLL LOCK Off
(PEEK(23) OR 128) turns INS on
(PEEK (23) AND 127) turns INS off
(PEEK (2 3) OR 8) turns ALT on
(PEEK (23) AND 247) turns ALT Off
(PEEK (2 3) OR 4) turns CTRL on
(PEEK (23) AND 251) turns CTRL off
(PEEK (2 3) OR 2) turns LEFT SHIFT on
(PEEK (23) AND 253) turns LEFT SHIFT Off
(PEEK (23) 0R1) turns RIGHT SHIFT on
(PEEK (23) AND 254) tums RIGHT SHIFT Off
(PEEK (28)) Clears the keyboard buffer

You can send characters to the keyboard buffer with the following code:

REM SUBROUTINE TO PUT CHARACTERS INTO KEYBOARD BUFFER

DEFSEG=0

X=LEN (a$ ) : REM a$ SHOULD BE DEFINED BEFORE THIS ROUTINE. IT IS WHAT
YOU ARE GOING TO SEND TO THE BUFFER

POKE 1050,30 : POKE 1052, 30+(X*2) : REM TELLS BUFFER HOW MANY
CHARACTERS TO EXPECT

FOR 1 = 1 T0X*2 STEP 2

POKE 1053+1,ASC(MID$(a$,(1+1)/2,1 ))
NEXT I

RETURN

1i

1010

1020

1030

1

1050

1060

1070

If you want the buffer to include a carriage return, you should include this line:

1015 a$=a$+CHR$(1 3)

If you know exactly what you wish to put in—instead of using a$—you could greatly simplify the
routine. In the example below, the command RUN followed by a carriage return is sent to the buffer.

1000 REM SUBROUTINE TO PUT RUN AND CARRIAGE RETURN INTO THE BUFFER
1010 DEFSEG=0: POKE 1050,30: POKE 1052, 38
1020 POKE 1054,82: POKE 1056,85: POKE 1058,78: POKE 1060,13
1030 RETURN

53



COLOR. COLOR=
APPLE He &n+
COLOR=n sets the color for plotting
in low-resolution graphics. Parameter
n is a numeric expression in the range
0-255 modulo 16. If n is a real
number, it is converted to an integer
before the modulo arithmetic is
performed. Possible values for n are
as follows:

0

1

2

3

4

5

6

7

Black

Magenta
Dark blue
Purple
Dark green
Gray
Medium blue
Light blue

8 Brown
9 Orange
10 Grey
11 Pink
12 Green
13 Yellow
14 Aqua
15 White

Parameter n is set to 0 by the GR
command. When in TEXT mode,
COLOR assists in determining which
character will be affected by the PLOT
command. COLOR is ignored when
in the high-resolution graphics mode.

HCOLOR=n where n is a numeric
expression in the range 0-7. Sets the
color plotted in the high-resolution
graphics mode. Color assignments for
n are given below. Note that if n=3,
the dot will be blue if the x coordinate
is even, green if the x coordinate is
odd, and white only if (x,y) and
(x+l,y) are both plotted.
0 Black 1
1 Green
2 Blue
3 White 1
4 Black 2

Depends on
monitor

Depends on
monitor

White 2

IBM PC & PCjr
COLOR Ifg] (,(bg][,bd]] sets the
screen colors in the TEXT mode,
where fg is the fore^ound color repre
sented by a numeric expression in the
range 0-31. Default=7 or the most re
cently stated value. Parameter bg is
the background color in the range 0-7.
Default=0 or the most recently
stated value. And bd is the border
color in the range 0-15. Default=0 or
the most recently stated value.

Following are color-parameter values
for foreground and border with the
color graphics adapter:

0 Black
1

2

3

4

5

Blue
Green

Cyan
Red

Magenta

9 Light Blue
10 Light Green
11 Light Cyan
12 Light Red
13 Light

Magenta
14 YeUow
15 High-intensity

White

6 Brown
7 White

8 Grey

A foreground color of 16-31 will pro
duce the same colors as the above
table, but in blinking mode. For
example, 16 produces blinking black
and 31 produces blinking high-
intensity white.

The background color numbers are
the same, but limited to the range 0-7.

On the PCjr you can use the
PALETTE and PALETTE USING
commands to obtain any color combi
nation for foreground, background
and border.

With the monochrome adapter (not
available on the PCjr), the color
parameter values are below:

0
1

2-7

Black
Underline

White

As with the color-graphics adapter,
adding 8 to the foreground will pro
duce a high-intensity color. For
example, COLOR 15 will produce
high-intensity white, COLOR 9 will
produce high-intensity white,
underlined. Adding 16 to the fore
ground will produce a blinking
foregroimd.

The background parameters with the

COMMODORE 64
To set the color of the screen, border
or cursor on the Commodore 64, use
one of the following POKEs, with N
selected out of the following table:

POKE 53280 ,N Colors BORDER
POKE 5 3 2 81, N Colors SCREEN
POKE 646, N Colors CURSOR

The value of N must be an integer in
the range of 0-15, and produces the
result indicated in the following table:

0 Black
1 White
Red

Cyan
Purple
Green

Blue
Yellow

8 Orange
9 Brown
10 Light Red
11 Grayl
12 Gray 2
13 Light Green
14 Light Blue
15 Gray 3

See HGR for a further discussion of
COLOR on the Commodore 64.

monochrome display (not available
on the PCjr) are below:

0-6
7

Black

White

COLOR [bg](,Ip]] in the Screen 1
medium-resolution graphics mode,
which requires the color-graphics
adapter, where bg is the background
color in the range 0-15 (default=7 or
the most recently named value),
using the above table. Parameter p is
the numeric expression in the range
0-255, indicating which palette to use.
If p is even, palette 0 is selected,
which includes the attributes green,
red and brown. If p is odd, palette 1 is
chosen, which includes the attributes
cyan, magenta and white. The attri
bute used is determined when giving
a graphics command, such as PSET,
PRESET, LINE, CIRCLE, PAINT or
DRAW.

Using COLOR in the Screen 2 high-
resolution graphics mode will result in
an ILLEGAL FUNCTION CALL
error.

54



TRS-80 Models IV & III
Cannot be simulated on the TRS-80
Models IV or m.

COLOR [fg|[,Ibg]] (Cartridge BASIC
Only) in the Screen 3 low-resolution
graphics mode. Screens 4 and 5
medium-resolution graphics mode,
and Screen 6 high-resolution graphics
mode this command selects the fore
ground attribute and background
color. Parameter fg is the foreground
attribute; range 1-15 for Screen 3,
range 1-3 for Screen 4, range 1-15 for
Screen 5, and range 1-3 for Screen 6.
Parameter bg is the background color,
range 0-15. The colors associated with
the numeric values are the same as in
the above table. The exception is that
on Screen 4 and 6 the default colors
for foreground attributes 1, 2 and 3
are cyan, magenta and white. You can
change these defaults with the
PALETTE and PALETTE USING
commands.

In any of the COLOR commands you
may omit a parameter by including a
comma before the following
parameters. In this case, the old value
is considered to be still in effect

TRS-80 Color Computer
COLOR (fg,bg) sets the color of the
display, where fg is the color for the
foreground, and bg is the color of the
background. Depending upon the
PMODE selected, the range of fg and
bg may be 1-2, 1-4 or 1-8, with the
actual color-number correspondence
varying.

SET (x,y,c) determines the color of
an individual screen point, where x
and y are screen coordinates and c is a
numeric expression associated with
the color. Possible values for c follow:

COMMENTS

0 Black 5 Buff
1 Green 6 Cyan
2 Yellow 7 Magenta
3 Blue 8 Orange
4 Red

55



COM
APPLE IIe&U+
Not available. Cannot be simulated.

IBM PC & PCjr
ON COM (n) GOSUB x enables
event trapping for a COM port, where
n is a numeric expression representing
communications adapter 1 or 2, and x
is a line number of a subroutine. ON
COM enables trapping of activity for
the specified COM port if followed by
a COM ON instruction, unless x rep
resents line 0. In this case, trapping is
disabled.

COM (n) ON where n is a numeric
expression representing communica
tions adapter 1 or 2. This instruction
initiates checking for activity at the
specified adapter each time BASIC
starts a new statement. If characters
have come into the adapter, BASIC
branches immediately to the line
number specified in the ON COM(n)
GOSUB X instruction.

COM (n) OFF where n is a numeric
expression representing communica
tions adapter I or 2. This instruction
causes trapping for the specified adap
ter to cease. If any characters come
into the adapter, they are not
remembered.

COM (n) STOP where n is a numeric
expression representing communica
tions adapter 1 or 2. This instruction
causes trapping for the specified adap
ter to cease, but any characters
coming into the adapter are
remembered—until the buffer
overffows—and an immediate trap
takes place when a COM (n) ON com
mand is reached.

When a trap occurs during COM (n)
ON status, a COM (n) STOP is im
mediately executed. A RETURN
from a trap immediately executes a
COM (n) ON unless a COM (n) OFF
is used within the routine. All COM

commands are disabled when error
trapping occurs as the result of an ON
EBLROR GOTO command.

COMMODORE 64
WAIT n,ml,p] where n is a memory
location (range 0-6SS3S), m and p are
in the range 0-255 with the optional p
defaulting to 0. WAIT is not the same
as COM, but can be used to roughly
approximate its action. WAIT causes
program execution to halt until the
value of the bit at memory location n
changes in a specific way dictated by
the other two parameters. Parameter
n is exclusively ORed with p, then the
result is ANDed with m, continuing
until the final result is non-zero. It is

seldom used.

56



TRS-80 Models IV & III TRS-80 Color Computer COMMENTS
Not available. Cannot be simulated Not available. Cannot be simulated
on TRS-80 Models IV and III without on COCO without machine-language
machine-language routines. routines.

57



COMMON
APPLE ne& 11+
Not available. Simulate it by protect
ing a portion of memory with
HIMEM. POKE the value of the varia
bles into the protected memory, RUN
the new program, then PEEK the
values of the variables you wish to use
in the second program out of memory.

IBM PC & PCjr
COMMON vll,v2...1 where vl,
v2,... are variables passed to the
chained program. COMMON passes
the named variables to a program
chained with the CHAIN command.
Array variables must have () append
ed to the variable name. If the ALL
option is invoked with the CHAIN
command, COMMON is not
necessary. It is also not necessary to
reDIMension any arrays when using
the CHAIN command. You can use
any number of COMMON
statements, but the same variable
cannot appear twice.

COMMODORE 64
Not needed on the Commodore 64 if
you just LOAD the new program
from within the currently running
program, and the currently running
program is longer than the new
program. The new program automati
cally RUNs. Variables are not cleared,
although any open files are CLOSEd,
Also see LOAD.

CONT
is not available within a BASIC
program. It is used in the direct mode
to continue execution of a program
ceased due to an error or user
intervention. If a program has been
edited while stopped, CONT cannot
be used. If an error condition has not
been corrected, CONT cannot be
used. CONT is essentially identical in
use on every machine, except that it is
spelled CON for Apple Integer
BASIC,

COPY
APPLE Ue& 11+
Simulate it with the following routine:
10 ONERR GOTO 200
20 D$sCHR$(4)
30 PRINT D$; "OPEN f ilel "
40 PRINT D$; "OPEN f ile2 "
50 PRINT D$ ; "READ f ilel "
60 INPUT A$
70 PRINT D$; "WRITE f ile2 "
80 PRINT A$
90 GOTO 50
200 PRINT D$; "CLOSE f ilel "
210 PRINT D$; "CLOSE file2"

Note that this copies only sequential
data files, and only one at a time.

IBM PC & PCjr
Simulate it with the following routine
with filel (the file you wish to copy)
and fiie2 (the resulting copy):
10 OPEN "filel " FOR INPUT AS

#1

20 OPEN "file2" FOR OUTPUT
AS #2

30 WHILE NOT EOF{ 1 )
40 LINE INPUT #1 ,1$
50 PRINT#2,1$
60 WEND

70 CLOSE

COMMODORE 64
COPY (usually abbreviated C) this
command makes a duplicate copy of a
program or sequential file under
another name on the same disk when
a single disk drive is used. Format is
as follows, with Filel the source file
and File2 the destination file. 8 is the
drive number.

10 OPEN 15,8,15; PRINT#15,
"C0:File2=File1":CLOSE
15

58



TRS-80 Models lY & III
COMMON vll,v2...1 (Model IV)
where vl, v2,... are variables that will
be passed to the chained program.
COMMON passes the named varia
bles to a program chained with the
CHAIN command. Array variables
must have () appended to the variable
name. If the ALL option is invoked
with the CHAIN command,
COMMON is not necessary. It is also
not necessary to reDIMension any
arrays when using the CHAIN
command. You can use any number
of COMMON statements, but the
same variable cannot appear twice.

To simulate the COMMON instruc
tion on the Model III, protect a block
of high memory, POKE the variables
you wish to preserve into protected
memory, and RUN (or MERGE and
RUN) the new program, then retrieve
variable values by using PEEK.

TRS-80 Color Computer
Cannot be simulated on COCO. You
have to protect a block of high
memory with the CLEAR statement
Then POKE the variables you wish to
preserve into protected memory,
RUN the new program (or merge
with the R option) and retrieve the
variable values by using PEEK.

COMMENTS

TRS-80 Models IV & lU TRS-80 Color Computer COMMENTS
Simulate it as follows: OPEN the
target file as #1 using the "E " option,
and OPEN the source file as #2 using
the "I" option. Read the data from
the source file (1) and write it to the
target file (2) until EOF (2) returns
true. Then close both files.

COPY "filel" TO "me2" copies
filel into file2. You must specify the
drive number at the end of each
filename.

59



COS
APPLE He & 11+
COS (x) where x is an angle measured
in radians. COS returns the cosine of
angle x. The returned value is a
floating-point number.

IBM PC & PCjr
Same.

COMMODORE 64
Same.

CSAVE
APPLE lie & 11+
SAVE where no argument is given.
Saves on cassette the program
currently in memory. Note that the
cassette must be ready!

IBM PC & PCjr
SAVE "lCASl:lrilename" [,A1I,P1
saves the file filename on the
cassette. In Cassette BASIC, CASl:
can he omitted. The A option saves it
as an ASCII file. The P option saves it
in the "protected" mode. If no option
is given, the program is saved in
binary form.

COMMODORE 64
SAVE "filename" saves the file
filename on the cassette.

CSNG
APPLE He &U+
Because the Apple does not use
double-precision numbers, the CSNG
statement cannot be simulated on it.
To convert an integer to a
floating-point value, just assign it to a
variable without the % symbol
following it. Thus a=a%. Then use a
instead of a%.

IBM PC & PCjr
CSNG(x) converts the numeric
expression x to a single-precision
expression. A single-precision
variable has seven or fewer digits, is
an integer in the range
—32768-32767, has an exponential
form using E, or has a trailing
exclamation point (!). If x is an
integer, the resulting single-precision
expression can he no more accurate
than X. If X is a double-precision
expression, the single-precision
expression is achieved by rounding.

COMMODORE 64
Because Commodore does not use
double-precision numbers, the CSNG
statement cannot be simulated on it.

To convert an integer to a
floating-point value, just assign it to a
variable without the % symbol
following it. Thus a=a%. Then use a
instead of a%.

CSRLIN
APPLE lie & 11+
Simulate it with the following routine:
10 ROW=PEEK(37)+1

where ROW is the variable name
denoting the line number, range 1-24.

IBM PC & PCjr
CSRLIN returns the value of the line

of the active screen on which the

cursor is positioned. Range 1-25.

COMMODORE 64
Simulate it with the following routine:

10 ROW=PEEK(214)+1

where ROW is the variable name
denoting the line number, range 1-25.

60



TRS-80 Models IV & III TRS-80 Color Computer
Same. Same.

COMMENTS
To convert degrees (D) to radians
(R), use the following formula:
R«D*3.141593/180

TRS-80 Models IV & III TRS-80 Color Computer COMMENTS
The Model IV cannot access the
cassette from BASIC unless it is in the

Model III emulation code.

CSAVE"fflename" (Model III)
saves the file filename on the cassette.

CSAVE "filename"I,A] saves the
file filename on the cassette. If the A
option is specified, it is saved as an
ASCII file.

CSAVEM writes a machine-language
file to the cassette.

TRS-80 Models IV & III
CSNG(x) converts the numeric
expression x to a single-precision
expression. A single-precision
variable has seven or fewer digits, is
an integer in the range
—32768-32767, has an exponential
form using E, or has a trailing
exclamation point (!). If x is an
integer, the resulting single-precision
expression can be no more accurate
than X. If X is a double-precision
expression, the single-precision
expression is achieved by truncating
to seven digits, then rounding with
the 4/5 rule to six digits before
displaying.

TRS-80 Color Computer
Because the COCO does not use
double-precision numbers, the CSNG
statement cannot be simulated on it.
To convert an integer to a
floating-point value, just assign it to a
variable without the % symbol
following it. Thus a=a%. Then use a
instead of a%.

COMMENTS

TRS-80 Models IV & III
ROWCO) (Model IV) returns the row
location of the cursor on the Model
IV. Note that the 0 is a dummy argu
ment that should not be changed.

Simulate the command on the Model
m by using:

10 DBF FNROW(d) =INT ( (PEEK
(16416)+(PEEK(16417)

TRS-80 Color Computer COMMENTS
Cannot be easily simulated on the
COCO in BASIC.

AND 3)* 256)/64) +1
20 XsFNROW(0)

FN ROW(0) will return the vertical
position of the cursor.

61



CVD, CVI, CVS
APPLE Ue& 11+
Because of the way it stores data in
random files, there is neither a means
nor a need to simulate these on Apple.

IBM PC & PCjr
CVKn) where n is a two-byte string,
converts a string read from a random
access disk file into an integer. It does
not change the actual bytes, only the
way BASIC interprets them.

CVS(n) where n is a four-byte string,
converts a string read from a random
access disk file into a single-precision
number. It does not change the actual
bytes, only the way BASIC interprets
them.

CVD(n) where n is an eight-byte
string, converts a string read from a
random access disk file into an

double-precision number. It does not
change the actual bytes, only the way
BASIC interprets them.

COMMODORE 64
There is neither a means nor a need to
simulate these on Commodore
because of the way it stores data in
random files.

DATA
APPLE IIe&ll+
DATA cl,cl... where c is a constant of
any form. DATA defines constants to
be used by a READ statement. Note
that the variable type (numeric or
string) defined in the READ
statement must agree with the
constant type in the DATA statement.

IBM PC & PCjr
Same, except that the use of this
command in Cartridge BASIC results-
in an ILLEGAL FUNCTION CALL
if DOS 2.1 is not present.

COMMODORE 64
Same.

DATES
APPLE IIe&II +
Because the Apple does not have an
internal calendar, you must simulate
DATES. Define a string variable,
such as DS, as the date string. It will
have to be input each time a program
is used.

IBM PC & PCjr
DATES sets or retrieves the date.
Used as a variable, the form is

1 0 V$=DATE$

where vS is any string variable name.
It returns the lO-character string mm-
dd-yyyy. The actual date may have
been set by DOS prior to entering
BASIC, or within BASIC using the
DATES statement. Used as a
statement, the form is

DATE$=x$

where xS has the form mm-dd-yy,
mm/dd/yy, mm-dd-yyyy or
mm/dd/yyyy. If the first two digits of
the year are omitted, it is assumed to
be 19yy. The value of yyyy must be in
the range 1980-2099.

COMMODORE 64
Because the Commodore 64 does not
have an internal calendar, you must
simulate DATES. Define a string
variable, such as DS, as the date
string. It will have to be input each
time the program is used.

62



TRS-80 Models IV & III
CVKn) where n is a two-byte string,
converts a string read from a random
access disk file into an integer. It does
not change the actual bytes, only the
way BASIC interprets them.

CVSOi) where n is a four-byte string,
converts a string read from a random
access disk file into a single-precision
number. It does not change the actual
bytes, only the way BASIC interprets
them.

CVDCn) where n is an eight-byte
string, converts a string read from a
random access disk file into a
double-precision number. It does not
change the actual bytes, only the way
BASIC interprets them.

TRS-80 Color Computer
CVN(n$) where n$ is a five-byte
coded string, this command converts
n$ into a number. This is the
complement to MKN$.

COMMENTS
CVI, CVS and CVD are exact
opposites of MKI$, MKS$ and
MKD$, respectively.

TRS-80 Models rv&ni TRS-80 Color Computer COMMENTS
Same. Same.

TRS-80 Models IV & III
DATES (Model IV) returns the date.
The date can be reset with the follow
ing routine:

10 D$="DATE " + "mm/dd/yy"
20 SYSTEM D$

where mm is the month, dd is the day
and yy is the year. Notice that you
must enter both digits, for example
0I/0I/8S, as a string argument, and
the space must be included after the
word DATE.

TIMES (Model m) returns both date
and time. When the computer is
turned on or reset, these are set to 0.
They can be reset with the following
routine:

10 DEFINTT,!: DIMTM(5)
20 CL=16924

TRS-80 Color Computer
Because the COCO does not have an
internal calendar, you must simulate
DATES. Define a string variable,
such as DS, us the date string. It will
have to he input each time a program
is used.

30 PRINT "INPUT 6 VALUES
SEPARATED BY COMMAS:

MONTH, DAY, YEAR, HOUR,
MINUTES,SECONDS"

40 INPUTTM(0) , TM{ 1) ,
TM(2), TM(3), TM(4),
TM(5)

50 FOR 1=0 TO 5
60 POKECL-I, TM(I)
70 NEXT I

COMMENTS
Because Af is a reserved word, do not
use DATE or DAT as a variable
name. Some BASICs do not allow re

served words to be imbedded in a
variable name.

Because the clock is sometimes

turned off, such as during cassette
operations, clock-dependent programs
should allow for occasional resetting
of the clock.

63



DEBUG
is not used within a program.

DEF
APPLE lie & 11+
DEF FNn(a) gives a user-defined
function. Parameter n is a numeric
variable and a is an argument (a
numeric variable name) that will be
passed to the function when it is
called, and e is a numeric expression
of less than 239 characters. The func
tion defined must return a numeric
value, and no more than one argu
ment may be used. The value of argu
ment a is local to the function. That
is, it does not matter if you use the
same argument name elsewhere in
the program.

Be careful not to define two functions
whose names have the same first two
characters, because only the first two
characters of a variable name are
significant. Note that all DEFined
functions are cleared by the LOMEM
command.

IBM PC & PCjr
DEF FNn((alI,a2]...)l'=e gives a
user-defined function where n is a
string or numeric variable and al,
a2,... are variable names that will be
replaced with a value when the func
tion is called. If more than one value
is provided, they are "plugged in" to
the function on a one-to-one basis.
The value returned by the function is
set by the expression e, which shows
what operations will be performed on
the arguments al, a2,... when the
function is called. This must return a
value consistent with the variable
type named by n.

Note that al, a2,... may be the same
as vturiable names found elsewhere in
the program, but they do not affect
the rest of the program because they
are local to the function. If the variable
names used in expression e are not
found within al, a2,... then the func
tion will look for them in the program.

You can define a function that does
not require arguments al, a2,... For
example,

10 DEF FNR=RND8

defines a function that returns a
random number. If you define a func
tion to require arguments, and then
call it without the arguments
supplied, you will get a syntax error.
Similarly, if you provide too many
arguments, you will get a syntax error.

COMMODORE 64
DEF FNn(a)="e gives a user-defined
function. Parameter n is a numeric
variable of one or two characters, and
a is an argument (a numeric variable
name) that will be passed to the func
tion when it is called. Parameter e is a
numeric expression. The function
defined must return a numeric value,
and no more than one argument may
be used. The value of argument a is
local to the function. That is, it does
not matter if you use the same argu
ment name elsewhere in the program.

On the Commodore 64, n may be up
to two characters, and a is limited to
floating-point numeric variables.
FNn(a) must be defined by
DEFFN(a) before it is called by the
program. DEFFNn(a) may be defined
in terms of other user-defined
functions. Expressions like
FNm(FNp(a)) and FNm(X*X) are
acceptable.

DEF SEG
APPLE lie & 11+
Not available. Cannot be simulated.

IBM PC & PCjr
DEF SEG [s'nl where n is a numeric
expression in the range 0-65535.
Defines the current segment of
memory. Note that DEF and SEG
must be separated by a space, or
BASIC will assume you are defining a
variable with the name DEFSEG.

Any BLOAD, BSAVE, CALL,

COMMODORE 64
Not available. Cannot be simulated.

PEEK, POKE or USR that follows a
DEF SEG statement will be relative
to that segment. If n is omitted,
BASIC'S data segment is assumed.

64



TRS-80 Models IV & III
Same as IBM, except that a space is
not required between DBF and FN on
theModellll.

TRS-80 Color Computer
DBF FNn(a) =e gives a user-defined
function. Parameter n is a numeric
variable, and a is an argument (a
numeric variable name) that will be
passed to the function when it is
called. Parameter e is a numeric
expression. The function defined
must return a numeric value, and no
more than one argument may be
used. The value of argument a is local
to the function. That is, it does not
matter if you use the same argument
name elsewhere in the program.

COMMENTS
Many times a short routine that re
turns only one value may be DEFined
as a function rather than used as a
GOSUB. This saves disk space,
speeds up the program, and allows
more program versatility. Variable
values remain local to the function,
and the program is more readable.

TRS-80 Models IV & III TRS-80 Color Computer
Not available. Cannot be simulated. Not available. Cannot be simulated.

COMMENTS

Note that the address you specify
should be l/16tb the actual address
you want. The address you refer to
will be a multiple of 16. DBF SBG

cannot be simulated on other

machines, nor is there any reason to
do so.

65



DEFDBL, DEFINT, DEFSNG, DEFSTR
APPLE He &n+
Variable types are not explicitly stated
in a DEF statement on the Apple.
Instead, all variables are implicitly
floating-point numeric variables
unless they have a trailing % (integer)
or$ (string).

IBM PC & PCjr
DEF type letter [-letter] I,letter
[-letter]] ... where type is INT, SNG,
DBL or STR, and letter is any letter of
the alphabet This command explicitly
DEFines any variable whose name
starts with the letter(s) specified as
INTegers, SiNGle precision, DouBLe
precision or STRings. Default is
single precision if DEFtype is not
used. A type-declaration character
(%,!, # or $) always takes precedence
over a DEF statement. The statement
should be at the beginning of the
program, before any variables it de
clares are used.

COMMODORE «4
Variable types are not explicitly stated
in a DEF statement on Commodore.
Instead, all variables are implicitly
floating-point numeric variables
unless they have a trailing % (integer)
or$ (string.

DEF USR
APPLE He & 11+
Because Apple has only one allowable
USR function, DEF USR cannot be
simulated in less space than it would
take to simply re-POKE the starting
address before each USR call.

IBM PC & PCjr
DEF USR[n]»°offset where n is a
digit from 0 to 9 (default=0),
specifying which USR routine is being
referenced. Offset is an integer in the
range 0-65535. The offset is added to
the segment most recently defined in
a DEF SEG to obtain the actual
starting address of the USR routine.
The USR routine is later called with

the command USR[n].

COMMODORE 64
Because Commodore has only one
allowable USR function, DEF USR
cannot be simulated in less space than
it would take to simply re-POKE the
starting address before each USR call.

DEL, DELETE
APPLE He & 11+
DEL a[,b] where a and b are program
line numbers, with b the larger line
number. DEL is normally used in the
command mode, but may be used in
programming mode to delete program
lines. Program execution will halt
after the DELete is completed, and
you must type RUN to start it again.

IBM PC & PCjr
DELETE [a][-b] where a and b are
program line numbers, with b the
larger line number. DELETE is
normally used in the command mode,
but may be used in the programming
mode to delete program lines.
Program execution will halt after the
DELETE is completed. A period (.)
can optionally replace line numbers
when referring to the current line.

COMMODORE 64
Although there is no DELETE
command on the Commodore 64, the
following program lines, which make
use of the computer's dynamic
keyboard, produce the same effect.
This routine will delete all line
numbers between A and B, then
terminate the program. If this routine
is renumbered, the number 140,
which is in quotation marks in line
130, must be changed to reflect the
renumbering.

100 P=0: GOT0140
110 PRINT CHR$(147 )P
120 POKE 631,19: POKE

632,13: POKE633,13:
POKE 198,3

66



TRS-80 Models IV & III
DEF type letter [-letter] [,letter
[-letter]] ... where type is INT, SNG,
DEL or SIR, and letter is any letter of
the alphabet. This command explicitly
DEFines any variable whose name
starts with the letter(s) specified as
INTegers, SiNGle precision, DouBLe
precision or STRings. Default is
single precision if DEFtype is not
used. A ^e-declaration character
(%,!, #, or $) always takes precedence
over a DEF statement. The DEF
statement should be at the beginning
of the program, before any variables it
declares are used.

TRS-80 Color Computer
Variable types are not explicitly stated
in a DEF statement on the COCO.
Instead, all variables are implicitly
floating-point numeric variables
unless they have a trailing $ (string).

COMMENTS

TRS-80 Models IV & III
DEF USR[n]'>° address where n is a
digit from 0 to 9 (default=0),
specifying which USR routine is being
referenced. Address is an integer in
the range 0-6SS3S. The address is the
actual starting address of the USR
routine. The USR routine is later

called with the command USR[n].
The space between DEF and USR is
significant on the Model IV, but not
on the Model in.

TRS-80 Color Computer
DEF USR[n]*address where n is a
digit from 0 to 9 (default=0),
specifying which USR routine is being
referenced. Address is an integer in
the range 0-65535. The address is the
actual starting address of the USR
routine. The USR routine is later
called with the command USR[n],

COMMENTS

TRS-80 Models IV & III
DELETE [a][-b] where a and b are
program line numbers, with b the
larger line number. DELETE is
normally used in the command mode,
but may be used in the programming
mode to DELETE program lines.
Program execution will halt after the
DELETE is completed. A period (.)
can optionally replace line numbers
when referring to the current line.

TRS-80 Color Computer COMMENTS
DEL [a][-b] where a and b are
program line numbers, with b the
larger line number. DEL is normally
used in the command mode, but may
be used in the programming mode to
DELETE program lines. Program
execution will halt after the DELETE
is completed.

DEL • without line numbers will
delete the entire program.

130 PRINTCHR$ (19) CHR$(17)
"P="P+1": GOT0140": END

140 A=2 : B=1 5: IF P> B THEN
STOP: REM WILL DELETE ALL

LINES FROM 2 TO 15
150 IFP<ATHENP=A
160 GOTO 110

67



DIM
APPLE lie &n+
DIM arrayname (a I,b...]) I,array-
name (a where a and b are
values specifying the number of ele
ments in each dimension of
arrayname. The array name may be
either a string or a numeric variable
name. Applesoft BASIC allows a
maximum of 88 dimensions. The
number of elements in each dimen
sion is limited only by the amount of
available memory. DIM may specify a
list of array names, separated by
commas.

Note: DIM is used differently in integ
er BASIC. Numeric arrays are limited
to one dimesion, and string arrays are
not allowed. DIM is used with strings
to specify maximum string length.

IBM PC & PCjr
DIM arrayname (a [,b...])[,array-
name (a [,b...])...] where a and b are
values specifying the number of ele
ments in each dimension of
arrayname. The array name may be
either a string or a numeric variable
name. The maximum number of
dimensions allowed is 2SS. The maxi
mum number of elements in each
dimension is 32767, which may be
limited by memory. DIM may specify
a list of array names, separated by
commas.

Note: The minimum value for sub
scripts is 0, unless the OPTION BASE
statement is used. See OPTION
BASE.

COMMODORE 64
DIM arrayname (a I,b...I)I,array-
name (a [,b...l)...] where a and b are
values specifying the number of ele
ments in each dimension of
arrayname. The array name may be
either a string or a numeric variable
name. The maximum number of
dimensions allowed is 255. The maxi
mum number of elements in each
dimension is 32767, which may be
limited by memory. DIM may specify
a list of array names, separated by
commas.

DIRECTORY
APPLE He & 11+
CATALOG [,Ssn,Ddl where s speci
fies slot number 1-7, and d specifies
drive 1 or 2. CATALOG will display
the directory of the specified drive,
and may be used in the programming
mode when preceded by CHR$(4). If
the drive number is omitted, the most
recently selected drive will be
selected.

IBM PC & PCjr
FILES ["d:"l displays the files on
the specified drive, where d is the
drive name. If the drive is not
specified, the currently logged disk
drive is used. DIR is used in DOS
only.

Use of this command in Cartridge
BASIC will result in an ILLEGAL
FUNCTION CALL if DOS 2.1 is not
present.

COMMODORE 64
Although there is no CATALOG or
DIRECTORY command on the Com
modore 64, the following program
lines produce a similar effect. The pro
gram halts after the listing. In fact, the
program is no longer in memory. It
has been replaced by the directory. If
you require a program that reads the
directory without destroying the pro
gram in memory, see the 1541 Disk
Drive User's Manual, page 47.

100 POKE631,19: POKE
632,13: POKE633,13;
POKE 198,3

110 PRINT CHR$ (147) "LIST"
120 LdAD "$" ,8: END

DLOAD
APPLE He &U+
Not available.

IBM PC & PCjr
Not available.

COMMODORE 64
Not available.

68



TRS-80 Models lY & III
DIM arrayname (a I,b...1)1,array-
name (a where a and b are
values specifying the number of ele
ments in each dimension of
arrayname. The array name may be
either a string or a numeric variable
name. The number of dimensions and
elements in each dimension is limited
only by the amount of available
memory. DIM may specify a list of
array names, separated by commas.

Note for TRS-80 Model IV: The mini
mum value for subscripts is 0, unless
the OPTION BASE statement is used.
See OPTION BASE.

TRS-80 Color Computer
DIM arrayname (a (,b...])[,array-
name (a (,b...l)...] where a and b are
values specifying the number of ele
ments in each dimension of
arrayname. The array name may be
either a string or numeric variable
name. The number of dimensions and
elements in each dimension is limited
only by the amount of available
memory. DIM may specify a list of
array names, separated by commas.

COMMENTS
An array that is not DIMenaoned
defaults to 11 elements, numbered
0-10. Thus if A(l) is used, A(0),
A(2),...A(10) are automatically
available.

TRS-80 Models IV & III
SYSTEM "DIR" (Model IV) will
display the directory from BASIC,
and may be used in either command
or program mode.

CMD "D:d" (Model III) where
parameter d specifies a currently con
nected disk-(kive number. Displays
the directory of the specified drive.
Note: Drive specification is not
optional. BASIC execution will con
tinue after using CMD "D ".

TRS-80 Color Computer
DIR Idl where d specifles the drive
number to be accessed. DIR will dis
play the directory of the specified
drive, and program execution will
continue.

COMMENTS

TRS-80 Models IV & III
Not available.

TRS-80 Color Computer COMMENTS
DIX)AD "filename","n" downloads
a' machine-language program from
another computer. Filename is the
name of the file to be transferred.
Parameter n is either 0 (signifying the
transfer at 300 baud) or 1 (signifying
1200 baud). This command is poorly
documented by Radio Shack and isn't
available on other machines. On most

computers, external transfer of files is
handled by commercially available
software.



DOPEN
APPLE lie &n+
Not available.

IBM PC & PCjr
Not available.

COMMODORE 64
DOPEN#il, "fUename'MLiI.Dd.lxl
DOPEN is a reserved word not used
on the Commodore 64 unless BASIC
4.0 is being used. In BASIC 4.0, Lr in
dicates the record length of a relative
file. If no value is given, then a
sequential file is assumed to be in use.
Parameter d is the number of the disk
drive where the file resides. If parame
ter X is R, the file is OPENed for
reading. If parameter x is W, the file is
OPENed for writing. Note that file
name may NOT be a string variable.

See OPEN for the same command on
other computers, as well as normal
Commodore 64 operation.

DRAW
APPLE He & 11+
DRAW n lAT c,rl places a shape on
the screen, where n specifies a shape
in the shape table currently in
memoiy, c specifies the column, and
r specifies the row for DRAWing on
the high-resolution screen. If c and r
are omitted, the shape will be drawn
at the most recently specified
location. Also see XDRAW, ROT=
and SCALE.

IBM PC & PCjr
DRAW "lXln$"
DRAW "X"-t-VARPTR$(n$) draws
the object specified by the graphics
language command in n$. If n$ is a
constant, it must be enclosed in quota
tion marks, but X may be omitted.
The second method for using DRAW
is primarily for those programs that
will be compiled, but is legal syntax
for interpretive programs too.

COMMODORE 64
Simulating would require extensive
machine-language programming.
Commercial software is available to
give the Commodore 64 similar
capabilities.

COMMENTS
GRAPHICS COMMAND
LANGUAGE
These are the commands used within
the string for the DRAW command
on the IBM PC, PCjr and COCO.
Commands within a string should be
separated by a ̂micolon, and x and y
coordinates should be separated by a
comma. Placing a + or — before a
coordinate causes motion to be rela
tive to cursor position, rather than
absolute.

B  Causes the cursor to not
DRAW on the next motion
command.

N  Causes the cursor to return to
its previous location following
the next motion command.

An Turns the cursor the relative
angle specified by n, range
0-3: 0=0', 1=90', 2=180',
3=270'.

Cn Changes the drawing color.
See COLOR for legal values.

Pn,m In IBM BASIC 2.0 or Car
tridge BASIC only, sets the
color. Color for the painting
option is specified by n. The
color for the bound^ is set
by m. See COLOR for legal
values.

TAn In IBM BASIC 2.0 or Car
tridge BASIC only, causes the
direction of drawing to be
turned by an angle of n
degrees. Range —360-360.

Un Moves up a distance of n
times the scaling factor—see
option S below—from the
last point referenced.

Dn Moves down a distance of n
times the scaling factor from
the last point referenced.

Ln Moves left a distance of n
times the scaling factor from
the last point referenced.

Rn Moves right a distance of n
times the scaling factor from
the last point referenced.

£ n Moves diagonally up and
right a distance of n times the
scaling factor from the last
point referenced.

70



TRS-80 Models IV & 111
Not available.

TRS-80 Color Computer
NotavaUable.

COMMENTS

TRS-80 Models IV & III
Because Models III and IV do not
have graphics capabilities, DRAW is
not available and cannot be simulated.

TRS-80 Color Computer
DRAW "|Xln$" draws the object
specifled by the graphics language
commands in n$. If n$ is a constant, it
must be enclosed in quotation mar^,
but X may be omitted.

COMMENTS
(See below left)

Fn Moves diagonally down and
right a distance of n times the
scaling factor from the last
point referenced.

Gn Moves diagonally down and
left a distance of n times the
scaling factor from the last
point referenced.

Hn Moves diagonally up and left
a distance of n times the scal
ing factor from the last point
referenced.

Mx,y Moves to the coordinate
specified by x and y. Motion
is absolute unless x is prefixed
with either + or —, in which
case the move will be relative

to the last cursor position.

S n Sets the scaling factor with n.
The actual scale is n/4.
Default for n is 4, so the
default scaling factor is I.
Range for parameter n is
1-255 for IBM; 1-62 for
COCO.

Xn$ Calls substring n$ and con
tinues with the next
command.

71



DRIVE d
APPLE IIe&II+
Not available.

IBM PC & PCjr
Not available.

COMMODORE 64
Not available.

DSKINI
APPLE He & 11+
Disks must be initialized from the
command mode.

IBM PC & PCjr
Disks must be initialized from DOS.

COMMODORE 64
NEW initializes, or formats, a new
disk. It is usually abbreviated as N.
Typical lines to do this follow:

10 OPEN 15,8,15
20 PRINT#15,

"N0:diskname,id"
30 CLOSE 15

In this code, id represents a two-
character identifier that you want to
assign to the disk. It should be unique
for each disk. Diskname is the name
you wish to give the disk. The NEW
operation takes about two minutes
per disk.

DSKIS. DSKOS
APPLE He &n+
Not available.

IBM PC & PCjr
Not available.

COMMODORE 64
PRINT#f, "BLOCK-READ: "c,d,t,b
PRINT#f,"BLOCK-WRITE:
"c,d,t,b
PRINT#f, "BLOCK-ALLOCATE:
"d,t,b
PRINT#f, "BLOCK-FREE:
"d,t,b
PRINT#f, "BUFFER-POINTER:
"c,l
These commands allow you to read
(BLOCK-READ) and write
(BLOCK-WRITE) data directly to
disk, allocate space on a disk for data,
logically free up space for data (by
writing to the RAM, not actually
erasing), and change the location of
the data pointer.

Here, f is the number used to OPEN
the file, c is the channel number, d is
the drive number, t is the track
number and b is the block (sector)

72



TRS-80 Models IV &m TRS-80 Color Computer COMMENTS
Not available. DRIVEd changes the logged drive to

drive d, default=0. The default drive
cannot be redefined on other comput
ers covered in this book. You simply
include the drive specification in
those commands that use non-default
values.

TRS-80 Models IV & 111
CMD"!","FORMAT" will allow
you to format a disk from BASIC, but
you will be returned to DOS
afterward, and the program in
memory will be lost.

TRS-80 Color Computer
DSKINI d formats the disk in drive
number d, default=0. Using the com
mand in a program causes the program
to be erased from memory.

COMMENTS

TRS-SO Models IV & HI
Not available.

number. To use these you must
OPEN the command channel (#15)
as well as the file buffer. These are
often abbreviated with only their first
letters (B-R, B-W, B-A, B-F and
B-P). These commands may be used
from BASIC, but are most useful
when used with machine-language
programs. They are very hazardous
without careful attention to syntax
and program structure.

For a full discussion of their proper
use, see the 1541 Disk Drive User's
Manual

TRS-80 Color Computer
DSKI$d,t,s,sl$,s2$
DSK0$d,t,s,sl$,s2$
These commands allow you to read
(DSKI$) and write (DSKO$) data
directly to the disks, where d is the
number of the disk drive, t is the track
number, and s is the sector number.
The strings being input and output are
represented by sl$ and s2$. The
former represents the first 128 bytes
of the sector, the latter the last 128
bytes.

COMMENTS

Direct access to the disk sectors is not
available from BASIC on the other
computers covered by this book. Data
is written onto the disk under the con
trol of the Disk Operating System.

73



EDIT
Although used in the direct mode to
Initiate editing a line, EDIT is not
used within a program.

ELSE (See IF-THEN-ELSE)

END
APPLE He & 11+
Terminates program execution and
closes all files.

IBM PC & PCjr
Same.

COMMODORE 64
Same.

ENVIRON, ENVIRONS
APPLE He & 11+
Not available. Do not use it as a
variable name because it contains the
embedded reserved word ON.

IBM PC & PCjr
These are undocumented reserved
words for IBM computers.

COMMODORE 64
Not available. Do not use it as a
variable name because it contains the
embedded reserved word ON.

EOF
APPLE Ue& 11+
Although Apple does not have an
EOF function, you can obtain similar
results with the following routine. In
it, the reading loop reads data from
the sequential file filename. When
the end of the file is reached, an OUT
OF DATA error occurs. Line 100
then transfers control to line 500. The
POKE resets the error flag, line 510
closes the file and program execution
continues.

100 ONERRGOTO 500
110 D$=CHR$ (4) : REM CONTROL

D

120 PRINTD$; "OPEN filename"
130 PRINT D$; "READ filename"
140 REH
150 REM PLACE A LOOP HERE THAT
160 REM READS THE DESIRED

DATA

170 REM
500 POKE 216,0
51 0 PRINT D$; "CLOSE

filename"

IBM PC & PCjr
EOFCn) returns a —1 (True) if the
end of file n is reached, where n is the
number of a file that has been
OPENed. This is useful for avoiding
an END OF FILE error.

COMMODORE 64
The EOF function can be simulated
on the Commodore 64 with the fol*
lowing program lines:

100 OPEN8,8,8,"filename,
S,R"

110 GET#8, A$: A$=A$+CHR$(0)
120 REM

130 REM MANIPULATE A$ HERE
140 REM
150 IF (ST) AND 64=64 THEN

CLOSE 8: GOT0170
160 GOTO110
170 REM PROGRAM EXECUTION

CONTINUES HERE

74



TRS-80 Models IV & III TRS-80 Color Compnter COMMENTS
Same. Same.

TRS-80 Models IV & III
These are undocumented reserved
words for the TRS-80 Model IV
computer.

TRS-80 Color Computer
Not available.

COMMENTS

TRS-80 Models IV & III
£OF(n) returns a —1 (True) if the
end of file n is reached, where n is the
number of a file that has been
OPENed. Range for n is 1-15. This is
useful for avoiding an END OF FILE
error.

TRS-80 Color Computer
EOFCn) returns a —1 (True) if the
end of file n is reached, where n is the
number of a file that Im been opened.
For cassette files, n=—1. For key
board files, 11=0. For disk files, the
range for n is 1-15. This is useful for
avoiding an END OF FILE error.

COMMENTS

75



EQV
APPLE ne&n+
xEQVy can be simulated by DEF
FNEQV(x,y) = (x OR NOT y) AND
(NOTxORy)
The truth table for this algorithm is:

(xORNOTy)
AND

X  y (NOTxORy)
T  T T
T  F F
F T F
F  F T

Be aware that NOT doesn't perform
bitwise operations in the same
manner as it does for other computers.

IBM PC & PCjr
xEQVy is a logical operator indicating
whether two numeric values x and y
are equivalent The truth table for
EQV follows

X

T
T

F

F

y
T

F

T

F

xEQVy
T

F

F

T

COMMODORE 64
xEQVy can be simulated by using the
algorithm (x OR NOT y) AND
(NOTxORy)

The truth table for this algorithm
(whereT=—1 andF=0) follows:

(xORNOTy)
AND

X  y (NOTxORy)
T  T T
T  F F
F T F

F  F T

ERASE
APPLE He & n+
CLEAR is used instead of ERASE.
Note that this clears both variables
andairays.

IBM PC & PCjr
ERASE namel(,name2]... where
namel, namel,.** are names of arrays
previously used by the program.
ERASE selectively eliminates arrays
from a program—as opposed to
CLEAR, which erases all arrays and
variables. This is usually used to free
memory space or to allow reDIMen-
sioning of the array.

COMMODORE 64
CLR is used instead of ERASE. Note
that it does not allow the reDIMen-
sioning of an array and also CLEARs
variables.

ERDEV, ERDEV$
These are undocumented reserved
words on IBM.

76



TRS-80 Models IV & III
xEQVy (Model IV) is a logical opera
tor indicating whether two operators
are equivalent. The truth table for
EQV follows:

X

T

T
F

F

y
T

F

T

F

xEQVy
T

F

F

T

xEQVy (Model III) can be simulated
by (x OR NOT y) AND (NOT x OR
y)
The truth table for this algorithm
follows:

(xORNOTy)
AND

X  y (NOTxORy)
T  T T

T  F F
F T F

F  F T

TRS-80 Color Computer
xEQVy can be simulated by using the
algorithm: (x OR NOT y) AND
(NOTxORy)

The truth table for this algorithm
follows:

(xORNOTy)
AND

X  y (NOTxORy)
T  T T

T  F F

F T F

F  F T

COMMENTS

TRS-80 Models IV & III
ERASE namel(,name2]... (Model
rv) where namel, nameZv are
names of arrays previously used by
the program. ERASE selectively elim
inates arrays from a program—as op
posed to CLEAR, which erases all
arrays and variables. This is usually
used to free memory space or to allow
reDIMensioning of the array.

CLEAR (Model III) is used instead
of ERASE. Note that CLEAR also
ERASES all variables.

TRS-80 Color Computer
CLEAR is used instead of ERASE.
Note that CLEAR also ERASEs all
variables.

COMMENTS

77



ERL, ERR
APPLE He & 11+
The line number of the line in which
the most recent error occurred can be
determined by:

PEEK(218)+PEEK(219)*256

The error number of the most recent
error can be determined by:

PEEK(222)

IBM PC & PCjr
ERL is a variable with the value of the

line number of the line in which an
error occurred. Default=0.

ERR is a variable with the value of

the error number that most recently
occurred. Default=0.

COMMODORE 64
Cannot be simulated without
machine-language programming.

ERROR
APPLE He & 11+
Not used as a reserved word, but
should not be used as a variable name
because it contains the embedded
reserved word OR.' The user-defined,
error-code function (as on IBM)
cannot be simulated in BASIC.

IBM PC & PCjr
ERRORn simulates the error

number n. Range=0-255. You
should never find this used in a
program. It is primarily a debugging
tool. However, you may fmd
ERRORn used to define an error code

that does not normally exist in
BASIC. For example,

1 0 ON ERROR GOTO 200
90 INPUT "Select a menu

choice";A
100 IF A> 9 THEN ERROR 220
200 IF ERR=220 THEN PRINT

"There are only 9
choices": RESUME 90

Thus you can have error routines
based on the logic of the program
rather than on the limitations of the

machine.

COMMODORE 64
Not used as a reserved word, but
should not be used as a variable name

because it contains the embedded
reserved word OR. The user-defined,
error-code function (as on IBM)
cannot be simulated in BASIC.

EXEC
APPLE Ue& 11+
EXEC filename executes the
batch-file filename. The file may
contain DOS commands, and may
load and run other BASIC programs.
If the batch file calls other BASIC
programs, those programs get their
input from the batch file. When the
batch file is finished, it closes and
control returns to the BASIC program
that called it.

IBM PC & PCjr
Cannot be simulated without a

machine-language routine. But you
can work from DOS to BASIC with a

batch file. In this way, the batch file
calls BASIC programs and/or DOS
programs, rather than the other way
around, as with EXEC.

COMMODORE 64
Cannot be simulated without a
machine-language routine.

78



TRS-80 Models lY & III
ERL is a function that returns the

value of the line number of the line in
which an error occurred. Default=0.
If the error occurred in the command
mode, then ERL=65535.

ERR is a function that returns the
value of the error number that most
recently occurred. Default=0. On the
Model III, you must use (ERR/2)+1
to get the actual error code.
ERR= (true error code—1) *2.

ERR (Model IV) returns the system
error number and description of the
most recent TRSDOS error.

Default=0.

TRS-80 Color Computer
Cannot be simulated without
machine-language programming.

COMMENTS

TRS-80 Models IV & III TRS-80 Color Computer COMMENTS
ERROR (n) where n is a value 0-255,
which specifies an error code. Used to
simulate errors while debugging
error-trapping routines.

Not used as a reserved word. The
user-defined, error-code function (as
on IBM) cannot be simulated in
BASIC.

TRS-80 Models IV & III
SYSTEM (command! (Model IV)
where command is any TRS-DOS
library command—except DEBUG or
any utility. This does not exactly
emulate the EXEC command as used
on the Apple, but can simulate it. If
you use SYSTEM without the
command, it returns you to
TRS-DOS and the program is lost.

TRS-80 Color Computer COMMENTS
Because DOS and BASIC are
transparent to the user, simulating
EXEC is not possible. You can
CHAIN other programs, and you can
initiate DOS conunands, such as
DSKINI. But the program in memory
will be lost.

79



EXP
APPLE He & 11+
EXP(x) returns the mathematical
number e raised to the x power,
where e is the base for natural
logarithms. If x is greater than
88.0296919, an overflow error will
occur.

IBM PC & PCjr
EXPCx) returns the mathematical
number e raised to the x power,
where e is the base for natural

logarithms. If x is greater than
88.02969, an overflow error will
occur.

COMMODORE 64
EXP(x) returns the mathematical
number e raised to the x power,
where e is the base for natural

logarithms. If x is greater than
88.0296919, an overflow error will
occur.

FIELD
APPLE Ue&n+
Apple accesses information in
random access files in a different
manner from IBM or TRS-80, requir
ing more information than the FIELD
command. In a file having undivided
records, you do not define field
length. The entire record is one field,
which can be read into memory as a
string. The various components are
then accessed using string functions,
such as MID$, LEFTS and RIGHTS.
In a file having divided records,
access fields by specifying the first
byte of the field with the "B" option.
TThe field is read from the byte speci
fied until it reaches a delimiter. For
example,

50 PRINT D$; "READ
FILE1,R22,B25"

60 INPUT A$

reads the 22nd record of FILEl, from
the 2Sth byte until it reaches a
delimiter, and assigns it to string
variable AS.

IBM PC & PCjr
FIELD[#]n,x AS yl,x AS yl... where
n is the number of an OPENed file
buffer, X is the number of characters
allocated to the field, and y is a string
variable that will be used to access the
data. FIELD is used to allocate space
and position of variables in a random-
file buffer. FIELD does not actually
insert or retrieve any data into the
disk file or buffer. It only designates
how that data will be inserted by PUT,
and retrieved by GET. The total
number of bs^tes allocated by FIELD
is limited to the number specified
when the file is opened. Otherwise,
you will get a FIELD OVERFLOW
ERROR.

When you have assigned a variable
name to y, do not use that variable
name in an INPUT or on the left side
of an assignment statement. If you
do, you will get some very unexpected
results!

COMMODORE 64

FIELD is not supported by the Com
modore 64. When manipulating string
data, it is the programmer's responsi
bility to maintain the logistics of
specific fields or data areas within a
record. When manipulating numeric
data, the record length specified in
the OPEN command is the maximum

length of the field. Maximum record
length is 254 characters. See OPEN.

Because of this method of accessing
random files, FIELD cannot be
simulated. Indeed, the whole file-
handling routine will need rewriting
to bring it into Apple-compatible
format.

FILES
APPLE He & n+
CATALOG [,Ss][,Ddl where s speci
fies slot number 1-7, and d specifies
drive 1 or drive 2. CATALOG will dis
play the directory of the specified
drive, and may be used in the pro
gramming mode when preceded by
CHR$(4). If the drive number is
omitted, the most recently selected
drive will be selected.

IBM PC & PCjr
FILES ("d:"l displays the files on
the specified drive, where d is the
drive name. If the drive is not
specified, the currently logged disk
drive is used. DIR is used in DOS

only.

Use of this command in Cartridge
BASIC will result in an ILLEGAL
FUNCTION CALL if DOS 2.1 is not
present.

COMMODORE 64
Although there is no FILES command
on the Commodore 64, the following
program lines produce a similar
effect. The program halts after the
listing. In fact, the program is no
longer in memory. It has been re
placed by the directory. If you require
a program that reads the directory
without destroying the program in
memory, see the 1541 Disk Drive
User's Manual, page 47.

100 POKE 631,19: POKE
632,13: POKE633,13:
POKE 198,3

11 0 PRINT CHR$ (147) "LIST"
120 LOAD "$" ,8: END

80



TRS-80 Models IV & III
EXP(x) returns the mathematical
number e raised to the x power,
where e is the base for natural
logarithms. If x is greater than
87.3365, an overflow error will occur.

TRS-80 Color Computer
EXP(x) returns the mathematical
number e raised to the x power,
where e is the base for natural
logarithms. If x is greater than
87.3365, an overflow error will occur.

COMMENTS

TRS-80 Models IV & III TRS-80 Color Computer COMMENTS
FIELD[#ln, X AS yl,x AS yl...
where n is the number of an OPENed
file buffer. Parameter x is the number
of characters allocated to the field,
and y is a string variable used to
access the data. FIELD is used to allo
cate space and position of variables in
a random-file buffer. FIELD does not
actually insert or retrieve any data
into the disk file or buffer. It only
designates how that data will be insert
ed by PUT and retrieved by GET. The
total number of bytes allocated by
FIELD is limited to the number speci
fied when the file is opened.
Otherwise, you wiU get a HELD
OVERFLOW ERROR.

When you have assigned a variable
name to y, do not use that variable
name in an input or on the left side of
an assignment statement. If you do,
you will get some very unexpected
results!

FIELD#n, X AS yl,x AS yl... where
n is the number of an OPENed file
buffer: —2 for printer, —1 for
cassette, 0 for screen and 1-15 for disk
drive buffers. Parameter x is the
number of characters allocated to the
field, and y is a string variable that will
be used to access data. FIELD is used
to allocate space and position of varia
bles in a random-file buffer. FIELD
does not actually insert or retrieve any
data into the disk file or buffer. It only
designates how that data will be insert
ed in the file buffer by PUT and re
trieved by GET.

The total number of bytes allocated
by FIELD is limited to the number
specified when the file is OPENed.
Otherwise you will get a FIELD
OVERFLOW ERROR. When you
have assigned a variable name to y, do
not use that variable name in an input
or on the left side of an assignment
statement. Otherwise, you will get
some imexpected results!

See OPEN.

TRS-80 Models IV & III
SYSTEM "DIR" (Model IV) wUl
display the directory from BASIC,
and may be used in either command
or program mode.

CMD "D:d" (Model ffl) where d
specifies a currently connected disk
chive number. The conunand will dis
play the directory of the specified
drive. Note: The drive specification is
not optional. BASIC program execu
tion will continue after the command
is used;

TRS-80 Color Computer
DIR [dl where d specifies the drive
number to be accessed. DIR will dis
play the directory of the specified
drive and program execution will
continue.

COMMENTS

81



FIX
APPLE He &n+
Simulate it with the following routine:

20 IPV=INT(V) THEN40
30 V=INT(V) :IFV<0 THEN

V=V+1

40 RETURN

Here V is a numeric variable. The
decimal portion of V will be truncated.

IBM PC & PCjr
FIX (value) where value is a numeric
expression. FIX will truncate the deci
mal portion of value. FIX is used to
obtain the whole-number part of a
decimal number.

COMMODORE 64
Simulate it with the following routine:

20 IFV=INT(V) THEN40
30 V=INT(V) :IFV<0 THEN

V=V+1

40 RETURN

Here V is a numeric variable. The
decimal portion of Y will be truncated.

FLASH
APPLE He & U+
FLASH causes subsequent display
output to alternately flash between
INVERSE and NORMAL.

IBM PC & PCjr
COLOR 16,7 is not precisely the
same as FLASH, but it does cause a
normal-on-inverse blinking display.
You can vary the first digit between
16 and 31 to vary foreground color,
and 0 and 7 to vary background color.

COMMODORE 64
Can be simulated with the following
routine, where MSGS is the string to
be flashed on line ROW at position
COL. It will flash on and off at the
DELAY rate until KEY$—in this
case the space bar—is pressed.

100 MSG$="HELLO" : R0W=1 :
C0L=2

110 DELAY=100 : KEY$=" "
120 POKE 783,0 : POKE

781 ,ROW; POKE 782, COL
130 SYS 65520: PRINT

CHR$(18)MS6$
140 FOR 1=1 TO DELAY: NEXT

150 POKE 783,0: POKE
781 ,ROW: POKE 782, COL

160 SYS 65520: PRINTMSG$
170 GET A$: IF A$=KEY$ THEN

200
180 FOR 1=1 TO DELAY: NEXT
190 GOTO 120
200 REM PROGRAM CONTINUES

HERE

FN
APPLE He & 11+
FN N(e) where N is a variable name
and e is an expression that specifies
the value to be evaluated by the
function. FN is used to call a function

IBM PC & PCjr
Same.

that has been deflned by the DEF FN
statement

COMMODORE 64
Same.

82



TRS-80 Models IV & 111
FIX (value) where value is a numeric
expression. FIX will truncate the deci
mal portion of value. FIX is used to
obtain the whole-number part of a
decimal number.

TRS-80 Color Computer
FIX (value) where value is a numeric
expression. FIX will truncate the decl
ine portion of value. FIX is used to
obtain the whole-number part of a
decimal number.

COMMENTS

TRS-80 Models IV & 111

Can be roughly simulated with the fol
lowing subroutine. This subroutine
will, however, consume a great deal
of processor time, and will not operate
in a background mode.

1000 REM INITIALIZE VARIABLES
1010 REM FLASH = NUMBER OF

TIMES TO FLASH

1020 REM DLAY=DELAY TIME FOR
ON/OFF

1030 REM P$=STRING TO BE
FLASHED

1040 REM LC=SCREEN LOCATION
(1 -1023) FORFLASHED
STRING

1 050 REMGOSUB 11 00 TO CALL
SUBROUTINE

1100 BL$=STRING$(LEN(P$),
32)

1110 FOR D1 =1 TO FLASH
1120 PRINT@LC, P$;: F0RD2s1

TODLAY:NEXTD2

1130 PRINT@LC, BL$; : FOR
D2=1 TODLAY: NEXTD2

1140 NEXTD1
1150 PRINT@LC,P$
1160 RETURN

Here FLASH is a numeric variable

containing the number of times to
flash F$. DLAY is a numeric variable
affecting the amount of time the
string is to remain on and off. F$ is a
string variable containing the string to
be flashed. LC is the screen location,
range 1-1023, at which F$ is to be
flashed.

TRS-80 Color Computer COMMENTS
Can be roughly simulated with the fol
lowing subroutine:

1000 REM INITIALIZE VARIABLES
1010 REM FLASH=NUMBER OF

TIMES TO FLASH

1020 REM DLAY=DELAY TIME FOR
ON/OFF

1030 REM P$=STRING TO BE
FLASHED

1 040 REM LC=SCREEN LOCATION
(0-510) FOR FLASHED
STRING

1050 REM GOSUB 11 00 TO CALL
SUBROUTINE

1100 BL$=STRING$(LEN(P$) ,
32)

1110 FOR D1 =1 TO FLASH
1120 PRINT ILC, P$; : F0RD2a1

TODLAY:NEXTD2

1130 PRINTILC, BL$; : FOR
D2=1 TODLAY: NEXTD2

1140 NEXTD1
1150 PRINT@LC,P$
1160 RETURN

Here FLASH is a numeric variable
containing the number of times to
flash F$. DLAY is a numeric variable
affecting the amount of time the
string is to remain on and off. F$ is a
string variable containing the string to
be flashed. LC is the screen location,
range 0-510, at which F$ is to be
flashed.

TRS-80 Models IV & m
Same.

TRS-80 Color Computer COMMENTS
Same,

83



FOR
APPLE IIe&II+
FOR var=vl TO v2 [STEP i] where
var is a numeric variable name. This

instruction executes a loop, terminat
ed by NEXT, with a beginning value
of vi and ending value of v2, incre
mented by STEP i. STEP, vl and y2
may be negative. STEP is optional
and is assumed to be +1 if not
specified. If you use GOTO or
GOSUB to break out of a loop too
often, you will encounter OUT OF
MEMORY errors. Therefore, plan
loops so that they always hit the
NEXT statement.

IBM PC & PCjr
FOR var=vl TO v2 [STEP il where
var is a numeric variable name. This

instruction executes a loop, terminat
ed by NEXT, with a beginning value
of vl and ending value of v2, incre
mented by STEP i. STEP, vl and v2
may be negative. STEP is optional
and is assumed to be +1 if not
specified.

COMMODORE 64
FOR var=vl TO v2 [STEP il where
var is a numeric variable name. This

instruction executes a loop, terminat
ed by NEXT, with a beginning value
of vl and ending value of v2, incre
mented by STEP i. STEP, vl and v2
may be negative. STEP is optional
and is assumed to be +1 if not
specified.

FORMAT
is an undocumented reserved word
for TRS-80s. Some computers have a
DOS command FORMAT that per
forms the same function as the
TRS-80 COCO command DSKINI.

FRE
APPLE lie & 11+
FRE(e) where e is a numeric expres
sion that is not evaluated, but must be
present. When used in the form of
PRINT FRE(e), FRE will return the
amount of available memory. When
used in the form of X=FRE(e), FRE
will force reorganization of the string
storage space. This may take a little
time.

IBM PC & PCjr
FRE(e)
FRE(e$) where e is any dummy
numeric or string value or variable.
Returns the amount of free memory
available measured in bytes. This
doesn't include the space used by the
interpreter. Therefore, be very careful
not to assume the value given by FRE
as the value you could use in a
CLEAR statement. If you use FRE
immediately after a CLEAR, you will
find the free memory is slightly (2K
to 4K bytes) smaller than the amount
of memory you reserved with the
CLEAR. Those 2K to 4K bytes are
used by the interpreter.

Use of this command in Cassette
BASIC will result in an ILLEGAL
FUNCTION CALL if DOS 2.1 is not
present.

COMMODORE 64
FRE(e) where e is a numeric expres
sion that is not evaluated but must be
present. FRE(e) does not always rep
resent the amount of avaUable
memory on the Commodore 64. Free
memory is calculated by

1 0 M=FRE(0)-(FRE(0)<0)
*256*256

When used in the form PRINT
FRE(e) or X=FRE(e), FRE will
force reorganization of the string stor
age space, called garbage collection,
which could take several minutes.

84



TRS-80 Models IV & III
FOR var=vl TO v2 [STEP il where
var is a numeric variable name. This

instruction executes a loop, terminat
ed by NEXT, with a beginning value
of vl and ending value of v2, incre
mented by STEP i. STEP, vl and v2
may be negative. STEP is optional
and is assumed to be +1 if not

specified.

TRS-80 Color Computer
FOR var=vl TO v2 [STEP i] where
var is a numeric variable name. This

instruction executes a loop, terminat
ed by NEXT, with a beginning value
of vl and ending value of v2, incre
mented by STEP i. STEP, vl and v2
may be negative. STEP is optional
and is assumed to be +1 if not
specified.

COMMENTS

TRS-80 Models IV & III
FRE(x$) where x$ is any dummy
string v£ilue or variable. Returns the
amount of free string space available.

FRE(n) where n is any dummy
numeric value or variable. Returns

the amount of free memory available.
Same as MEM.

TRS-80 Color Computer
MEM returns the amount of free
memory available.

COMMENTS

Also see MEM.

85



FREE
APPLE lie & 11+
Cannot be simulated without
machine-language programming.

IBM PC & PCjr
Cannot be simulated without
machine-language programming.

COMMODORE 64
Simulate it with the following program
lines:

2000 OPEN15,8,15,"I"
2010 PRINT#15,"M-R"

CHR$(250) CHR$(2)
2020 GET#15, A$:

A$=A$+CHR$(0)
2030 PRINT# 15, "M-R"

CHR$(252)CHR$(2)
2040 GET# 15, B$:

B$=B$+CHR$(0)
2050 PRINT

ASC (A$) +256*ASC (B$) "
BLOCKS FREE"

2060 CLOSE 15

GET, GET#
APPLE lie &U+
GET v$ [,x$...] (Keyboard Input)
where v$ and x$ are string variables.
GET is used to retrieve a single char
acter from the current input
device—usually the keyboard—for
each variable listed. GET varies from
the INPUT command in that it does
not display a prompt. It accepts input
without waiting for the RETURN key
to be pressed, and continues without
displaying the ̂ ped character.

GET a$ (Random File Access)
The format for this command is as
follows:

1 0 PRINT CHR$ (4) ; "OPEN
filename, Vv, Dd, Ss"

20 PRINT CHR$ (4) ; "READ
filename, Rn"

30 GETa$

where filename is the file being
accessed, v is the volume number of
the disk, d is the disk drive number, s
is the slot number that contains the
disk drive, and n is the record
number. This code is not as practical
as using INPUT in line 30 would be,
because GET will get only one charac
ter at a time. If you want more than
one character, you will have to loop
back to line 20 and concatenate a$
each time you GET it.

IBM PC & PCjr
v$=INKEY$ (Keyboard Input) gets
the first value at the keyboard buffer
and assigns it the value v$. INKEY$
does not pause for input If no value is
at the buffer, it assigns y$ as a null
value. If you want it to pause, then
you can either loop until INKEY$ re
turns a value different from null, or
use the INPUTS (I) function. If you
are trying to detect keys with extended
codes, use the INKEY$ function.
When a key with extended code is
pressed, the INKEY$ function returns
a two-character string. The first char
acter is null, and the second is the ex
tended code.

GET [#Ib[,r] (Random File Han
dling) where b is a previously defined
buffer number (value 1-15), and r
specifies a record number. Parameter
r is optional^ and is assumed to be the
next avaUable record if it is omitted.

GET is used to retrieve a specified
record from a random access file.
Remember to specify the number of
files you will have open when you call
BASIC.

GET (xl,yl)-(x2,y2), arrayname
(Graphics) where x and y are used to
specify the comer coordinates of a
rectangle on the screen and array-
name is the name of an array that
stores the values of points in the
rectangle. This is used for high-speed
movement or replication of graphics

COMMODORE 64
GET yl,x...| (Keyboard Input) reads
characters from the keyboard buffer.
If no character is pending, it returns a
null string. To avoid this you can use a
loop, as in line 100 below.

100 GET V$ : IF V$= " " THEN
100: REM LOOP UNTIL A KEY
IS PRESSED

110 IFV$<"0" ORV$> "9" THEN
100

120V=VAL(V$)

You could use V instead of V$ in line
100, but non-numeric input would
cause a syntax error. Using V$ and
adding lines 110 and 120 to this rou
tine allow you to input numeric data,
while avoiding syntax errors if a non-
numeric key is struck.

Conversely, if you used line 100
alone—with y$—you would get a
string variable even if a numeric key
were struck. If you wish to get multi
ple characters, use a string that col
lects and concatenates them, or use
the INPUT instruction.

GET# n, al$][,bl$]]... (Sequential
File Access, Screen Access) where n
is a device or file number, and a[$],
b[$],... are variable names. This in-
stmction reads data from a file or

device in the same way GET reads
from the keyboard. If device #3 is
specified, it reads the characters on
the screen sequentially. If no input is
received, characters are returned as a
null, and numbers are returned as a 0.

86



TRS-80 Models IV & III
Cannot be simulated without
machine-language programming.

TRS-80 Color Computer
FREE (d) reports the number of free
granules available on the disk in drive
number d. This command is used only
on the TRS-80 Color Computer.

COMMENTS

TRS-80 Models IV & III
v$=INKEY$ (Keyboard Input) gets
the first value at the keyboard buffer
and assigns it the value y$. INICEY$
does not pause for input. If no value is
at the buffer, it assigns v$ as a null
value. If you want it to pause, then
you can loop until INKEY$ returns a
value different from null.

GET I#lb[,r] (Random File
Handling) where b is a previously
defined buffer number—value
1-15—and r specifies a record
number. Parameter r is optional, and
is assumed to be the next available

record if it is omitted. GET is used to
retrieve a specified record from a
random access file.

objects. This command cannot be
readily simulated on other computers
without using machine language.
Therefore, simulation is beyond the
scope of this book. You may wish to
investigate the use of sprites on the
Commodore 64 or the shape table on
the Apple.

TRS-80 Color Computer
v$=INKEY$ (Keyboard Input) gets
the first value at the keyboard buffer
and assigns it the value v$. INKEY$
does not pause for input. If no value is
at the buffer, it assigns v$ as a null
value. If you want it to pause, then
you can either loop until INKEYS re
turns a value different from null or
use the INPUT function. To retrieve
multiple characters, use INPUT.

GET [#lbl,rl (Random File Han
dling) where b is a previously defined
buffer number—value 1-15—and r
specifies a record number. Parameter
r is optional, and is assumed to be the
next available record if it is omitted.
GET is used to retrieve a specified
record from a random access file.

GET (xl,yl)-(x2,y2), arrayname
1,GI (Graphics) where x and y are
used to specify the corner coordinates
of a rectangle on the screen, and ar-
layname is the name of an array that
will store the values of points in the
rectangle. G is optional for some uses.
When used, G tells the computer to
store in full graphics detail. This is
used for high-speed movement or
replication of graphics objects. This
command cannot be readily simulated
on other computers without using ma
chine language. Therefore, it is
beyond the scope of this book. You
may wish to investigate using sprites
on the Commodore 64 or the shape
table on the Apple.

COMMENTS
GET can be a very confusing conver
sion problem because it is used in
many different ways—random file
access, keyboard input and graphics.
Be careful to identify the results it cre
ates on the source machine before
translating it to the target.

87



GOSUB
APPLE He & 11+
GOSUB n where n is a line number
that begins a subroutine terminated
by the RETURN statement. GOSUB
causes program execution to jump to
the specified line, process the
instructions found there, and then
return to the instruction following the
calling GOSUB. Repeatedly breaking
out of subroutines with GOTO will

cause an OUT OF MEMORY error.

In integer BASIC you can use
variables for the line number.

IBM PC & PCjr
GOSUB n where n is a line number

that begins a subroutine terminated
by the RETURN statement. GOSUB
causes program execution to jump to
the specified line, process the
instructions found there, and then
return to the instruction following the
calling GOSUB. Be sure the
subroutines always end in a RETURN
statement, rather than branching
them with a GOTO.

COMMODORE 64
GOSUB n where n is a line number

that begins a subroutine terminated
by the RETURN statement. GOSUB
causes program execution to jump to
the specified line, process the
instructions found there, and then
return to the instruction following the
calling GOSUB. Repeatedly breaking
out of subroutines with GOTO will
cause an OUT OF MEMORY error.

GOTO
APPLE He & 11+
GOTO n where n is a line number in
the current program. GOTO causes
program execution to jump to the
specified line and continue execution
from that instruction on. Repeated
exits from loops—such as
FOR/NEXT or GOSUB-using
GOTO will cause an OUT OF
MEMORY error.

Apple Integer BASIC allows
computed line numbers in a GOTO.

IBM PC & PCjr
GOTO n where n is a line number in
the current program. GOTO causes
program execution to jump to the
specified line and continue execution
from that instruction on.

COMMODORE 64
GOTO n where n is a line number in

the current program. GOTO causes
program execution to jump to the
specified line and continue execution
from that instruction on. Repeated
exits from loops—such as
FOR/NEXT or GOSUB-using
GOTO will cause an OUT OF
MEMORY error.

GR
APPLE He & 11+
GR causes the Apple to display the
currently specified page of the low-
resolution graphic screen. If no page
has been specified, page 1 is assumed.
This screen will normally be 40 rows
by 40 columns with the bottom eight
rows open for up to four lines of text.
Make a full 48-row-by-40-column
screen by following the GR statement
with

POKE -16302,0: CALL -1998

IBMPC&PCjr
SCREEN 1 places the screen into the
medium-resolution graphics mode
(320x200). Used with the
color/graphics adapter only.

SCREEN 2 is the two-color, high-
resolution graphics mode (640x200).

SCREEN 3 (Cartridge BASIC Only)
places the screen in the low-resolution
graphics mode (160x200).

SCREEN 4 (Cartridge BASIC Only)
places the screen in the four-color,
medium-resolution graphics mode
(320x200).

SCREEN 5 (Cartridge BASIC Only)
places the screen in the 16-color,
medium-resolution graphics mode
(320x200). Requires 128KRAM.

COMMODORE 64
POKE 53265,PEEK(53265) OR 32:
POKE 53270,PEEK(53270) OR 16
sets the Commodore 64 into the
multi-color bit map mode (i.e.,
medium resolution). This is a very
complex mode in BASIC, requiring
extensive POKEs to control. A discus
sion of it is beyond the scope of this
book. Instead, see Commodore 64
Graphics & Sound Programming by
Stan Krute or How to Program Your
Commodore 64 by Carl Shipman.

SCREEN can also take many other
arguments. Also see SCREEN.

88



TRS-80 Models IV & III
GOSUB n where n is a line number
that begins a subroutine terminated
by the RETURN statement. GOSUB
causes program execution to jump to
the specified line, process the
instructions found there, and then
return to the instruction following the
calling GOSUB.

TRS-80 Color Computer
GOSUB n where n is a line number

that begins a subroutine terminated
by the RETURN statement. GOSUB
causes program execution to jump to
the specified line, process the
instructions found there, and then
return to the instruction following the
calling GOSUB.

COMMENTS

Only Apple Integer BASIC allows
computed line numbers in a GOSUB.

TRS-80 Models IV & III
GOTO n where n is a line number in

the current program. GOTO causes
program execution to jump to the
specified line and continue execution
from that instruction on.

TRS-80 Color Computer
GOTO n where n is a line number in
the current program. GOTO causes
program execution to jump to the
specified line and continue execution
from that instruction on.

COMMENTS
Only Apple Integer BASIC allows
computed line numbers in a GOTO.

TRS-80 Models IV & III
Cannot be simulated because TRS-80
Models III and IV do not have separ
ate graphic screens.

TRS-80 Color Computer
PMODE n where n is 2 or 3. Sets the
COCO into medium resolution.
PMODE is capable of taking several
other arguments not related to
medium resolution. Also see
PMODE.

COMMENTS

89



HCOLOR
APPLE He &U+
HCOLOR"=n where n is a numeric
expression in the range 0-7. Sets the
color plotted in the high-resolution
graphics mode. Color assignments for
n are given below. Note that if n=3,
the dot will be blue if the x coordinate
is even, green if the x coordinate is
odd, and white only if (x,y) and
(x+ l,y) are both plotted.
0

1

2

3

4

Black 1

Green

Blue
White 1
Black 2

5 Depends on
monitor

6 Depends on
monitor

7 White 2

IBM PC & PCjr
COLOR (bgl [,(p]] in the SCREEN 1
medium-resolution graphics mode,
which requires the color graphics
adapter, where bg is the background
color in the range 0-15 (default=7 or
most recently named value) as shown
in the chart below. Parameter p is the
numeric expression in the range
0-255 indicating which palette to use.
If p is even, palette 0 is selected,
which includes red, green and brown.
If p is odd, palette 1 is chosen, which
includes cyan, magenta and white.
The color within the palette that will
be used is determined when giving a
graphics command, such as PSET,
PRESET, LINE, CIRCLE, PAINT or
DRAW.

Parameter bg may be omitted by
including a comma before parameter
p. In this case, the old value of bg is
considered to still be in effect.

Color-parameter values with the color
graphics adapter are:

0

1

2
3

4

5

6

7

Black

Blue

Green

Cyan
Red

Magenta
Brown

White
8 Gray

9 Light Blue
10 Light Green
11 Light Cyan
12 Light Red
13 Light

Magenta
14 Yellow
15 High-

intensity
White

Using COLOR in the SCREEN 2 high-
resolution graphics mode will result in
an ILLEGAL FUNCTION CALL
error.

COLOR [fgl [,[bg]] (Cartridge BASIC
Only) in the SCREEN 6 high-
resolution graphics mode selects the
foreground attribute and background
color. Parameter fg is the foreground
attribute—range 1-3. Default colors
for foreground attributes 1, 2 and 3
are cyan, magenta and white. You can
change these defaults with the
PALETTE and PALETTE USING
commands Parameter bg is the back
ground color—range 0-15. The colors
associated with the numeric values for

the background are the same as in the
above table.

COMMODORE 64
To set the color of the screen, border
or cursor on the Commodore 64, use
one of the following POKEs, with N
selected out of the following table:

POKE 5 3 2 8 0, N Colors BORDER
POKE 5 3 2 81 , N Colors SCREEN
POKE 646, N Colors CURSOR

The value of N must be an integer in
the range 0-15, and produces the
result indicated in the following table:

0 Black
1 White
Red

Cyan
Purple
Green

Blue
Yellow

8 Orange
9 Brown
10 Light Red
11 Grayl
12 Gray 2
13 Light Green
14 Light Blue
15 Gray 3

See HGR for a further discussion of
high-resolution color on the Commo
dore 64.

90



TRS-80 Models IV & lU TRS-80 Color Computer COMMENTS
Cannot be simulated on the TRS-80'
Models rv or in.

COLOR (f,b) sets the color of the
display, where f is the color of the
foreground, and b is the color of the
background. Depending on the
PMODE selected, the range of f and b
may be 1-2,1-4 or 1-8, with the actual
colors that correspond to the numbers
varying.

SET (x,y,c) determines the color of
an individual screen point, where x
and y are screen coordinates and c is a
numeric expression associated with
the color. Possible values for c follow:

0 Black

1 Green
2 YeUow
3 Blue
4 Red

5 Buff
6 Cyan
7 Magenta
8 Orange

91



H£X$
APPLE lie & 11+
The following subroutine will return
the same value as would be returned
by HEX$, stored in the string R$.
Before calling this subroutine, assign
the number you wish to convert to the
variable NUMBER.

1

1010
1015

1020
1030
1040
1050

1060
1070
1

DIGIT$="0123456789ABCD
EF"
R$=""

IF NUMBER< 0 THEN

NUMBER= (65536 + NUMBER)
I=NUMBER

Q=INT(I/16)
R=I-Q*16

R$=MID$(DIGIT$,R+1,1)+
R$

I=Q

IF I>0 GOTO 1030
RETURN

IBM PC & PCjr
HEX$(n) where n is a numeric ex
pression in the range —32768-65535.
This function returns the hexadecimal

value of a decimal argument. If n is
negative, the two's complement form
is used. This means that
HEX$(-n) =HEX$(65536-n).

COMMODORE 64
The following subroutine will return
the same value as would be returned

by HEX$, stored in the string R$.
Before calling this subroutine, assign
the number you wish to convert to the
variable NUMBER.

DIGIT$="0123456789ABCD
EF"
IF NUMBER< 0 THEN
NUMBER= (65536 + NUMBER)
R$ = ""

I=NUMBER

Q=INT(I/16)
R=I-Q*16

R$=MID$(DIGIT$,R+1,1)+
R$

I=Q

IF I>0 GOTO 1030

RETURN

1010

1015
1020
1030
1040
1050

1060
1

1

HGR. HGR2
APPLE lie & 11+
HGR[2] causes the computer to dis
play the currently specified page of
the high-resolution graphics screen. If
no page is specified, page one is
assumed. This screen will normally be
280 columns by 160 rows, with a
window at the bottom consisting of
four rows of text. Following the HGR
statement with

POKE -16302,0

will change the window to graphics,
giving a full 280x192 graphics display.

IBM PC & PCjr
SCREEN 2 places the screen in the
two-color, high-resolution graphics
mode (640x280). Used with the
color/graphics adapter only.

SCREEN 6 (Cartridge BASIC Only)
places the screen in the four-color,
high-resolution graphics mode
(640x200). Requires 128K RAM.

SCREEN can take many other
arguments. Also see SCREEN for
more details.

COMMODORE 64
The following program lines set the
Commodore 64 into the high-
resolution mode, with a 320 column
by 200 row, two-color display. The
colors are determined by parameters
P and B in line 140. Parameter P rep
resents the pixel color, and B the
background. Parameters P and B are
in the range 0-15. For actual color
values, see the list of colors under
COLOR. In this example, the back
ground is blue and the pixels are black.
100 POKE 53272, PEEK (53272)

ORB

11 0 POKE 53265, PEEK (53265)
OR 32

120 FOR 1=8192 TO 16191
130 POKE 1,0: NEXT
140 P=0: B=6
1 50 FOR 1=1024 TO 2032

160 P0KEI,P*16+B:NEXT

Lines 120 and 130 clear the high-
resolution screen, which takes about

92



TRS-80 Models IV & III
HEX$(ii) (Model IV) where n is a
numeric expression in the range
—32768-65535. This function returns

the hexadecimal value of a decimal
argument. If n is negative, the two's
complement form is used. This means
that HEX$(-n) =HEX$(65536-n).

For the Model III, the following su
broutine will return the same value as

would he returned by HEX$, stored
in the string R$. Before calling this
subroutine, assign the number you
wish to convert to the variable

NUMBER.

DIGIT$="0123456789ABCD
EF"

101 0 IF NUMBER< 0 THEN
NUMBER= (65536 + NUMBER)

1015 R$=""
1020 I=NUMBER
1030 Q=INT(I/16)
1040 R=I-Q*16

1 050 R$=MID$ (DIGIT$ ,R+1 ,1 ) +

1060 I=Q
1070 IF I>0 GOTO 1030
1 080 RETURN

TRS-80 Color Computer COMMENTS
The following subroutine will return
the same value as would be returned
by HEX$, stored in the string R$.
Before calling this subroutine, assign
the number you wish to convert to the
variable NUMBER.

1

1010

1015

1020
1030

1040
1050

1060
1070

1080

DIGIT$="0123456789ABCD
EF"

IF NUMBER< 0 THEN

NUMBER= (65536 + NUMBER)
R$=""
I=NUMBER

Q=INT(I/16)
R=I-Q*16

R$=MID$(DIGIT$,R+1,1)+
R$

1=0

IF I>0 GOTO 1030
RETURN

TRS-80 Models IV & III
Cannot be simulated because TRS-80
Models IV and III do not support high
resolution.

TRS-80 Color Computer COMMENTS
PMODE n where n is 4. Sets the
COCO into high-resolution graphics
mode with two colors available.
PMODE is capable of taking several
other arguments not related to high
resolution. See PMODE.

45 seconds. If you want, replace them
with

120 SYS 2024

This executes almost immediately.
However, prior to calling the line, the
following program lines are needed:

10 FOR 1=2024 TO 2047 : READ
A: POKE I,A: NEXT

20 DATA 169, 0 , 168, 1 32 ,
251 , 162, 32,134

30 DATA252, 145, 251 , 200,
208, 251 , 232, 224

40 DATA 64, 240 , 4, 134,
252, 208, 242, 96

Other high-resolution screens availa
ble on the Commodore 64 are beyond
the scope of this book. See Commodore
64 Graphics ̂  Sound Programming by
Stan Krute.

To return to the low-resolution mode,
use the following program lines:

200 POKE 53265, PEEK (53265)
AND 223

210 POKE 53272, 21

93



HIMEM:
APPLE ne& 11+
HIMEM:m where m is to be. the
upper memory limit for BASIC pro
grams and variable storage. HIMEM:
will protect memory above value m
for reserved use. To find the current
value of HIMEM:, use the expression

PEEK(116)*256+PEEK(115)

IBM PC & PCjr
CLEAR [,(n]I,m]| where n is the total
amount of memory for BASIC to use,
and m is the total stack space to set
aside. CLEAR also closes all files and

clears all variables. The total amount

of memory available to BASIC is
found by using the PRE command,
and by adding the size of the interpret
er workspace—usually 2.5K to 4K.
For example, if you have 35K free
memory and a 4K interpreter
workspace, and you wish to protect
3K memory (35840+4096—3072=
36864), you would use:
CLEAR, 36864

If you have more than 96K memory,
there is no need to protect any
memory. Evers'thing above 96K is
inaccessible to BASIC under normal
circumstances. You can use PEEK,
POKE and DEF SEG to access this

memory, but BASIC will not other
wise know it exists.

COMMODORE 64
Memoiy locations $C000 to $CFFF
are already protected from BASIC on
the Commodore 64. If you need more
than 4K protected space, you can use
the following program lines to protect
the top of memory. Because the top of
memory is normally at $9FFF, you
will be protecting from some address
up to $9FFF. The code is

10 P0KE51 ,L: POKE 52,H:
POKE55,L: POKE56,H: CLR

where L is the decimal value of the

right two digits of the address—which
is expressed in hexadecimal. H is the
decimal value of the left two digits.
For example, if you wished to protect
from $9000 to $9FFF, you would use

10 POKE 51,0; POKE 52,144:
POKE 55,0: POKE 56,144:
CLR

since 90 hexadecimal=144 decimal,
and 00 hexadecimal=0 decimal. If
the address is in decimal, then L and
H can be calculated by H=INT
(address/256) and L=address—
H*256.

HLIN
APPLE Ue& 11+
HLIN b,e AT r where b specifies the
beginning column, e specifies the
ending column, and r specifies the
row on which to draw the line.

Parameters b and e may have a range
of 0-39, while r may have a range of
0-47. HLIN is used for drawing hori
zontal lines on the current low-
resolution screen. If HLIN is used in
the text mode, it will draw a line of
characters. The character used is
determined by the current color. If an
attempt is made to print in the lower-
right comer of the screen, the screen
will scroll up.

IBM PC & PCjr
LINE (hl,vl)-(h2,v2) I,Ial I,B[Fn
I,style] (Graphics Mode) where hi is
the beginning horizontal coordinate,
vl is the beginning vertical
coordinate, h2 is the ending horizon
tal coordinate, and v2 is the ending
vertical coordinate.

Possible ranges for h and v are indicat
ed below:

Resolution h v

Low (Cart. BASIC only) 0-159 0-199
Medium 0-319 0-199
High 0-639 0-199

The optional value a is the color that
will be used to draw. See COLOR for
a list of possible colors.

Specifying B will cause a box to be
(kawn, while BF will draw a filled box.
The style is used to determine wheth
er to draw a solid line or some sort of

COMMODORE 64
Although there is no HLIN command
for the Commodore 64, the following
program lines produce a similar effect:

100 R0W=1 : C0L=3: LN=23:
Lr=164

11 0 POKE 783,0 : POKE
781 ,ROW: POKE782,COL

120 SYS 65520

130 FOR 1=1 TOLN: PRINT
CHR$ (LI); : NEXT : PRINT

This produces a line of length LN
starting at ROW, COLumn. In this
case, the line is positioned at the
bottom of the cursor. To raise the
line, change LI from 164 to 114,102,
96, 99, 100, 101 or 163. If LI is 163,
the line is at the top of the cursor.
Here ROW must be in the range 0-24
and COLumn in the range 0-39. If an
attempt is made to print in the lower-
right comer of the screen, the screen
will scroll up.

94



TRS-80 Models lY & 111
CLEAR Ixll,yl (Model IV) where x
is the highest memory location you
wish to be available to BASIC, and y
is the number of characters of string
storage space to reserve. CLEAR
clears all variables, as well as reserving
string storage space and protecting
high memory.

The Model HI does not have a re
served word that protects high
memory from within a program. You
must do this when BASIC is initiated.
The computer will prompt MEMORY
SIZE?. You must then enter in the
highest memory address—in
decimal—you want used.

TRS-80 Color Computer
CLEAR lyl l,xl where y is the number
of characters of string storage space to
reserve, and x is the highest memory
location you want available to BASIC.
CLEAR clears all variables, as well as
reserving string storage space and pro
tecting high memory. Notice that this
syntax is the opposite of the Model IV!

COMMENTS

TRS-80 Models IV &m TRS-80 Color Computer COMMENTS
May be simulated on Models IV and
in with the following subroutine:

1 000 R0W=R0W-1 : PRINT!
ROW*64+BEGIN,"";

1010 FOR P=BEGIN TO E
1020 PRINT CHR$ (176) ;
1030 NEXTP
1 040 RETURN

ROW is the row number (1-16) on
which to draw the line, BEGIN speci
fies the column for the beginning of
the line, and E specifies the column
for the ending of the line.

LINE (hl,vl)-(li2,v2),a,Ibl where
hi is the beginning horizontal
coordinate, vl is the beginning verti
cal coordinate, hi is the ending hori
zontal coordinate, and y2 is the
ending vertical coordinate, hi and h2
may have a range of 0-255, while vl
and v2 may have a range of 0-191.
Parameter a is either PSET or
PRESET, one of which is required.
PSET sets the line in the foreground
color, while PRESET sets the line in
the background color. Parameter h is
either B or BF, both of which are
optional. Specifying B will cause a box
to be drawn, while BF will draw a
filled box.

dotted line. See the LINE statement
for further details.
In text mode, you can simulate HLIN
with

1000 TEMPC=POS (0) :
TEMPR=CSRLIN

1010 IFROW=25THENKEYOFP
1020 LOCATE ROW, BEGIN
1030 PRINT STRING$

(E-BEGIN+1 , PATTERN)
1 040 LOCATE TEMPR, TEMPC , 1
1 050 RETURN

ROW is the row on which to draw the
line, BEGIN is the beginning
column, E is the ending column, and
PATTERN is the ASCII value of the
character to be used in drawing the
line. Some good choices for the value
of PATTERN are 196, 223, 205 or
178. Any ASCII character may be
used except control characters.

95



HOME
APPLE lie & 11+
HOME clears the current text
window and moves the cursor to the
upper-left window corner.

IBM PC & PCjr
CLS clears the screen and moves the
cursor to the upper-left corner in text
mode, or to the center of the screen
or active viewport in graphics mode.

COMMODORE 64
Although there is no HOME com
mand on the Commodore 64, the
screen can be cleared and the cursor
moved to the upper-left corner by
using

PRINT CHR$(147);

HPLOT
APPLE lie &n+
HPLOT h,y ITO Ii2,y21... sets a
point on the high-resolution screen,
where h is the horizontal coordinate,
range 0-279, and v is the vertical
coordinate, range 0-159 (with text
window) or 0-191 (without text
window). HPLOT h,v is used to set
points on the high-resolution screen,
while HPLOT h,v TO h2,v2 will draw
a line. You can extend the line in any
direction by specifying additional TO
h3,v3 parameters.

IBM PC & PCjr
Capabilities of the DRAW command
exceed those of HPLOT. See DRAW.

COMMODORE 64
The following subroutine will set the
point h,v on the high-resolution
screen. For h the range is 0-319. For v
the range is 0-199. Prior to this, the
high-resolution screen routine must
have been called. See HGR. The
color of the point set is determined by
P in that routine.

1000 BY=8192+INT(V/8)*320 +
INT(H/8)*8+(VAND7)

1010 BI=7-(HAND7)
1020 POKE BY, PEEK(BY) OR

(2tBI)
1030 RETURN

HTAB
APPLE lie &n+
HTAB n tabs the cursor horizontally,
where n is a number between 0 and
255, specifying a horizontal position
from the beginning of the current
output line. HTAB is similar to TAB,
but is used independently from
PRINT statements. HTAB can also
move the cursor backward to the
beginning of the line. TAB cannot.

IBM PC & PCjr
LOCATE Irl (,|cl |,|vl I,[start]
I,stop]]]] places the cursor and speci
fies several options for cursor display.
Parameter r specifies the row (range
1-25), c specifies the column (range
1-40 or 1-80, depending on the cur
rent width). If v=0, the cursor is
invisible. If v=l, the cursor is visible.
Start and stop indicate the cursor
scan start and stop lines—range 0-31.
Start, stop and v do not apply in
graphics mode. If r=25, then you
must use the KEY OFF command
prior to the LOCATE command.

COMMODORE 64
Not available on the Commodore 64.

The following program lines produce
a similar effect:

100 ROW=10: C0L=4:

MSG$="HELLO"
110 POKE 783,0: POKE

781 ,ROW: POKE 782, COL
120 SYS 65520: PRINTMSG$

The above program will print the con
tents of MSGS on line ROW starting
at position COL.

96



TRS-80 Models IV & III TRS-80 Color Computer COMMENTS
CLS clears the screen and moves the
cursor to the upper-left corner.

CLS clears the text screen and moves

the cursor to the upper-left corner.

TRS-80 Models lY & III
Cannot be simulated because TRS-80

Models IV and III do not have high-
resolution graphics.

TRS-80 Color Computer COMMENTS
Capabilities of the DRAW command
exceed those of HPLOT. See DRAW.

TRS-80 Models IV & m TRS-80 Color Computer COMMENTS
PRINT @ n ̂ odel IV) or PRINT @
(r,c) where n is a screen position in
the range 0-1919, and (r,c) is a pair of
coordinates specifying the row-
range 0-23—and the column— range
0-79. This command places the cursor
at the specified position.

PRINT @ n (Model III) where n is a
screen position in the range 0-1023.
This command places the cursor at
the specified position.

PRINT @ n where n is a screen posi
tion in the range 0-511. This com
mand places the cursor at the specified
position.

97



IF-THEN-ELSE
APPLE He & 11+
IFaTHENb
or

IF a ITHENKGOTOI c where a is a
logical or arithmetic expression, b is
an instruction or line number, and c is
a line number. In the second usage,
you may use either THEN or GOTO
or both, but you must use at least one
of them. Ttds instruction set causes
the program to perform a conditional
branch, based upon whether the test a
returns true. If a is true, THEN (or
GOTO) is executed. If a returns false,
THEN (or GOTO) is ignored. Note
that if you have other commands on
the same line with the IF-THEN
instruction—even if separated by a
colon—they will be executed only if a
returns true.

If the source program has an ELSE
command in it, you can simulate this
by adding another IF-THEN that
covers the other condition. For
example,

10 IFA=1 THEN PRINT
"GOODBYE" ELSE PRINT
"HELLO"

in the source program would become:

10 IFA=1 THEN PRINT
"GOODBYE"

20 IF AO 1 THEN PRINT
"HELLO"

IBM PC & PCjr
IFaUTHENblUELSEdl
or

IF a 1,1 GOTO c [[,]ELSE d] where a
is a logical or arithmetic expression, b
is an instruction or line number, c is a
line number, and d is an
instruction—including, possibly,
another IF-THEN-ELSE instruc
tion—or line number. Commas are
optional. Use them for increased
readabili^. This instruction set causes
the program to perform a conditional
branch, based on whether the test a is
true. If a is true (not zero), THEN (or
GOTO) is executed. If a is false
(zero), THEN (or GOTO) is ignored
and the optional ELSE is executed.
Note that if you have other commands
on the same line with the IF-THEN
instruction—even if separated by a
colon—but before the ELSE, they will
be executed only if a is true.

COMMODORE 64
IFaTHENb
or

IF a [THEN! IGOTOI c where a is a
logical or arithmetic expression, b is
an instruction or line number, and c is
a line number. In the second usage,
you may use either THEN or GOTO
or both, but you must use at least one
of them. TMs instruction set causes
the program to perform a conditional
branch, based on whether the test a
returns true. If a is true, THEN (or
GOTO) is executed. If a returns false,
THEN (or GOTO) is ignored. Note
that if you have other commands on
the same line with the IF-THEN
instruction—even if separated by a
colon—they will be executed only if a
returns true.

If the source program has an ELSE
command in it, you can simulate this
by simply adding another IF-THEN
that covers the other condition. For
example,

10 IFA=1 THEN PRINT
"GOODBYE" ELSE PRINT
"HELLO"

in the source program would become

10 IFA=1 THEN PRINT
"GOODBYE"

2 0 IF A01 THEN PRINT

"HELLO"

IMP
APPLE He & 11+
Simulate it by using NOT x OR y.
This will work logically, but not
bitwise. On the Apple, 1 is True and 0
is False.

X

T
T

F

F

y
T
F

T

F

NOTxORy
T
F

T

T

IBM PC & PCjr
X IMP y where x and y are numeric
expressions. IMP is a logical and bit
wise operator that returns the follow
ing truth table:

X

T
T

F

F

y
T

F

T

F

xIMPy
T

F

T

T

COMMODORE 64
Simulate it by using NOT x OR y. On
the Commodore —1 is True and 0 is
False.

X

T

T

F

F

y
T

F

T

F

NOTxORy
T

F

T

T

98



TRS-80 Models IV & 111
IF a THEN b [ELSE c]
or

IF a [THEN] command [ELSE cl
where a is an expression that is either
true or false, b is executed if a is true,
and c is executed if a is false. Com
mand may be any BASIC instruction.
In the second case, THEN is optional
if no ambiguity exists. Parameter a
may be a logical, arithmetic or
Boolean statement. Parameters b and

c may be any instruction or a line
number.

TRS-80 Color Computer
IF a THEN b [ELSE cl
or

IF a [THEN] command [ELSE cl
where a is an expression that is either
true or false, b is executed if a is true,
and c is executed if a is false. Com
mand may be any BASIC instruction.
In the second case, THEN is optional
if no ambiguity exists. Parameter a
may be a logical, arithmetic or
Boolean statement. Parameters b and

c may be any instruction or a line
number.

COMMENTS

TRS-80 Models IV & 111
X IMP y (Model IV) where x and y
are numeric expressions. IMP is a log
ical and bitwise operator that returns
the following truth table:

X  y xIlHPy
T  T T
T P F
F T T
F  F T

Simulate it on the Model in by using
NOTxORy

X

T

T

F

F

y
T

F

T

F

NOTxORy
T

F

T

T

TRS-80 Color Computer
Simulate it by using NOT x OR y

X  y NOTxORy
T  T T
T  F F

F T T
F  F T

COMMENTS

99



IN#
APPLE lie & 11+
IN#x where x is a numeric
expression. IN# redirects input to
come from the slot specified by x.

IBM PC & PCjr
It is not necessary to redirect input be
cause all input commands specify
which buffer the input is to come
from.

COMMODORE 64
It is not necessary to redirect input be
cause all input commands specify
which buffer the input is to come
from.

INKEY$
APPLE He & 11+
GET T$ [,x$...] is used to retrieve a
single character from the current
input device—usually the key
board—for each variable listed, where
v$ and x$ are string variables. GET
varies from the INPUT command in
that it does not display a prompt. It ac
cepts input without waiting for the
RETURN key to be pressed and con
tinues without displaying the typed
character.

IBM PC & PCjr
v$=INKEY$ gets the first value at
the keyboard buffer and assigns it the
value v$. INKEY$ does not pause for
input. If no value is at the buffer, it as
signs y$ as a null value. If you want it
to pause, then you can either loop
until INKEY$ returns a value dif
ferent from null or use the
INPUT$(1) function. If you are trying
to detect keys with extended codes,
use the IN^Y$ function. When a
key with extended code is pressed,
the INKEY$ function returns a two-
character string. The first character is
null, and the second is the extended
code.

COMMODORE 64
GET v$[,x...] (Keyboard Input)
reads characters from the keyboard
buffer. If no character is pending, it re
turns a null string. To avoid this you
can use a loop, as in line 100 below:

100 GETV$: IFV$="" THEN 100

If you wish to get multiple characters,
use a routine that collects and concate
nates them, or use the INPUT
instruction.

INP
APPLE Ue&U+
Using ports on the Apple is not ac
complished without assembly lan
guage routines or extensive PEEKs
and POKEs. Therefore, it is beyond
the scope of this book. A good refer
ence on the subject is The Apple Con
nection by James W. Coffron.

IBM PC & PCjr
INP(n) reads a byte from the port
specified by n, where n is a port ad
dress in the range 0-65535. The ports
supported by IBM are indicated in the
Technical Reference Manual. Addition
al devices that use ports not supported
by IBM usually document which port
addresses they use.

COMMODORE 64
Using ports is not possible without
assembly-language routines or exten
sive PEEKs and POKEs. Therefore, it
is beyond the scope of this book.

ICQ



TRS-80 Models IV & III TRS-80 Color Computer COMMENTS
It is not necessary to redirect input be
cause all input commands specify
which buffer the input is to come
from.

It is not necessary to redirect input on
COCO because all input commands
specify which buffer the input is to
come from.

TRS-80 Models IV & III
v$=INKEY$ gets the first value at
the keyboard buffer and assigns it the
value v$. INJCEYS does not pause for
input. If no value is at the buffer, it as
signs v$ as a null value. If you want it
to pause, then you can loop until
INI^Y$ returns a value different
from null.

TRS-80 Color Computer
y$»INK£Y$ gets the first value at
the keyboard buffer and assigns it the
value v$. INKEY$ does not pause for
input. If no value is at the buffer, it as
signs y$ as a null value. If you want it
to pause, then you can either loop
until INK£Y$ returns a value dif
ferent from null or use the INPUT
instruction. To retrieve multiple
characters, use the INPUT
instruction.

COMMENTS

TRS-80 Models IV & III TRS-80 Color Computer
INF(n) reads a byte from the port
specified by n, where n is a port ad-
(kess in the range 0-25S. Ports sup
ported by Tandy are indicated in the
Technical Reference Manual

Using a port requires assembly-
language routines or extensive
PEEKS and POKEs. Therefore, it is
beyond the scope of this book.

COMMENTS
Also see OUT and WAIT.

101



INPUT
APPLE ne&II+
INPUT rpromptllM xll,x21...
pauses program execution to await
input from the keyboard, where
prompt is any string constant that fits
on one line, and xl, x2,... are string
or numeric variable names or array
elements to be assigned. The key
board input must be terminated with a
carriage return and must agree in type
with the variable name.

If multiple variables are to be
assigned, the user may either enter
them all on the same line separated by
commas, or delimit each with a car
riage return. If the prompt is omitted,
just a question mark is printed as a
prompt. If the prompt is included, it
does not print the question mark.
Only one space is permitted at the end
of the prompt. A null value—just a
carriage return—will be accepted if xl
is to be a string, but not if xl is a
number.

Quotation marks within the input are
allowed only if the first character is
also a quotation mark. CTRL-X and
CTRL-M are not allowed within a
stri^-input response. If the string
begins with a quotation mark, comma
and colon are also not allowed.

IBM PC & PCjr
INPUTl;ll"prompt";l xll,x2j...
pauses program execution to await
input from the keyboard, where
prompt is any string constant that will
fit on one line, and xl, x2,... are
string or numeric variable names or
array elements to be assigned. The
keyboard input must be terminated
with a carriage return and must agree
in type with the variable name.

If multiple variables are to be
assigned, the user must enter them all
on the same line, separated by
commas. If too many or too few re
sponses are entered, ?REDO FROM
START will be displayed, and the
INPUT command will be re-executed.
If the semicolon tdter INPUT is
included, the user's carriage return is
not echoed to the screen. If the
prompt is omitted, a question mark is
printed as a prompt. The prompt will
be followed by a question mark when
displayed. If the prompt in the comm-
mand is followed by a comma instead
of a semicolon, the question mark is
not displayed.

The keyboard input must be terminat
ed with a carriage return and must
agree in type with the variable name.
If a colon is used as a character, it and
the data up to the next carriage return
are ignored.

If a string response is to include a
comma, it must be completely en
closed in quotation marks.

COMMODORE 64
INPUT ["prompt",! xll,x2|...
causes program execution to await
input from the keyboard while print
ing the optional prompt and a question
mark. The prompt may be any string
constant less than 38 characters long.
Parameters xl, x2, ... are string or
numeric variable names or array ele
ments to be assigned.

While the routine is INPUTting, the
cursor will continue flashing, and the
keyboard input will echo to the
screen. The keyboard input must be
terminated with a carriage return and
must agree in type with the variable
name. IT multiple variables are to be
assigned, the user may enter them all
on the same line, separated by
commas. If too few responses are
entered, the symbol ?? will be dis
played while the computer awaits the
missing inputs. If too many responses
are entered, the message ?EXTRA
IGNORED appears and the extra re
sponses are rejected.

Conunas and colons are treated as
separators by INPUT, so their inad
vertent use usually results in too
many responses being entered. If the
input does not agree in ̂ pe with the
variable name, the message ?REDO
FROM START will be displayed, and
INPUT awaits the correct type of data.

Leading spaces are ignored, although
shifted spaces are not. If a colon is
used as a character, it and the data up
to the next carriage return are
ignored. If a string response is to in
clude a comma, a colon, a leading
space or any of the screen-editing
characters, then it should be com
pletely enclosed in quotation marks.

If a string response begins with a quo
tation mark, it cannot contain embed
ded quotation marks without the
?REDO FROM START message
occurring. INPUT accepts the entire
line that the cursor is on, including
characters after the cursor. The sum
of the number of characters in the
prompt plus the number of characters
in the input string cannot exceed 78
characters. Otherwise, you wiU get
imexpected results. Expressed anoth
er way, (number of characters availa
ble for input$)=78—LEN(prompts).

102



TRS-80 Models IV & III
INPUTI;! ("prompt";] xl[,x2]...
(Model IV) pauses program execution
to await input from the keyboard,
where prompt is any string constant
that will fit on one line, and xl, x2,...
are string or numeric variable names
or array elements to be assigned. The
keyboard input must he terminated
with a carriage return and must agree
in type with the variable name.

If multiple variables are to be
assigned, the user must enter them all
on the same line, separated by
commas. If too many or too few re
sponses are entered, ?R£DO FROM
START will be displayed, and the
INPUT command will be re-executed.

If the semicolon after INPUT is
included, the user's carriage return is
not echoed to the screen. If the
prompt is omitted, a question mark is
printed as a prompt. The prompt will
be followed by a question mark when
displayed. If the prompt in the comm-
mand is followed by a comma instead
of a semicolon, the question mark is
not displayed. If a string response is to
include leading blanks, a comma or a
colon, it must be completely enclosed
in quotation marks.

INPUT ("prompt";] xl(,x2]...
(Model ni) pauses program execution
to await input from the keyboard,
where prompt is any string constant
that will fit on one line, and xl, x2,...
are string or numeric variable names
or array elements to be assigned. The
keyboard input must be terminated
with a carriage return and must agree
in type with the variable name.

If multiple variables are to be
assigned, the user may enter them aU
on the same line separated by
commas or on separate lines. If too
many responses are entered,
?EXTRA IGNORED will be displayed
and program execution will continue.
If the prompt is omitted, a question
mark is printed as a prompt. The
prompt will be followed by a question
mark when displayed. If a string re
sponse is to include leading blanks, a
comma or a colon it must be com

pletely enclosed in quotation marks.

TRS-80 Color Computer
INPUT ("prompt";] xl(,x2]...
pauses program execution to await
input from the keyboard, where
prompt is any string constant that will
fit on one line, and xl, x2,... are
string or numeric variable names or
array elements to be assigned. The
keyboard input must be terminated
with a carriage return and must agree
in tt^pe with the variable name.

If multiple variables are to be
assigned, the user may enter them all
on the same line separated by
commas or on separate lines. If too
many responses are entered,
?EXTRA IGNORED wUl be
displayed, and program execution will
continue. If the prompt is omitted, a
question mark is printed as a prompt.
The prompt will he followed by a ques
tion mark when displayed. If a string
response is to include leading blanks,
a comma or a colon, it must be com
pletely enclosed in quotation marks.

COMMENTS
Syntax for INPUT varies widely. Be
careful to use the right combination of
quotation marks and punctuation!

103



INPUT#
APPLE He & 11+
INPUT vl(,v2l... will get input from
a sequential file if the file was pre
viously specified by using a routine
similar to the one below. While the
routine is in effect, input comes only
from the file, not the keyboard.

10 PRINT CHR$ (4) ; "OPEN
filename"

20 PRINT CHR$ (4) ; "READ
filename"

IBM PC & PCjr
INPUT #n,vll,v2l... gets a value or a
string from sequential filenumber n
and assigns the value to variable vl,
v2,... The variables may be string or
numeric, but the data must agree with
the variable in type. If a string value
begins with a quotation mark, it
cannot include embedded quotation
marks. The value delimiters may be
commas, colons, carriage returns or
line fee<te. Thus, these characters may
not be included as part of the
data—except that commas and colons
may be included inside quoted strings.

The file numbered n must have pre
viously been OPENed for input, and
may be KYBD:, a COM port, or any
other device providing a sequential
data stream. If INPUT # is used with

a random file, it simply gets the next
value after the pointer. GET does not
change the position of the pointer in a
random file. To use INPUT # with a
random file, the file must have delimi
ters in it. Therefore, INPUTS may be
a better choice.

COMMODORE 64
INPUT# n,vl(,v2...] gets a value or a
string from a sequential file number n
and assigns the value to the variables
vl, v2,... The variables may be string
or numeric, but the data must agree
with the variable in terms of type. The
value delimiter is usually a carriage
return, although a comma can be used
to separate multiple entries. If multi
ple variables are to be assigned, the
user may enter them separated by
commas or carriage returns. If too few
or too many responses are entered, no
error message occurs, although in the
latter case data will be lost. If a colon
is used as a character, it and the data
up to the next carriage return are
ignored.

Leading spaces are ignored. If a string
response is to contain a comma, a
colon, or any of the screen-editing
characters, then it should be com
pletely enclosed in quotation marks.
If a string value begins with a quota
tion mark, it cannot include embed
ded quotation marks without the
error message ?FILE DATA ERROR
appearing. After that, the program
halts execution.

The file numbered n must have been
previously OPENed and may be the
keyboard (device 0), the cassette
(device 1) or the disk drive (device
8). In the case of the keyboard, no
prompt question mark is displayed. If
the string exceeds 79 characters, the
message 7STRING TOO LONG
ERROR appears and execution halts.

104



TRS-80 Models IV & UI
INPUT #ii,vll,v2l... gets a value or a
string from a sequential file number n
and assigns the value to the variables
vl, v2,... The variables may be string
or numeric, but the data must agree
with the variable in terms of type.

If a string value begins with a quota
tion mark, it cannot include embed
ded quotation marks. The value
delimiters may be commas, colons,
carriage returns or line feeds. Thus
these characters may not be included
as part of the data—except that
commas and colons may be included
inside quoted strings. The file num
bered n must have previously been
OPENed for INPUT.

TRS-80 Color Computer
INPUT #n,vll,v2l... gets a value or a
string from a sequential file number n
and assigns the value to the variables
vl, v2,... The variables may be string
or numeric, but the data must agree
with the variable in terms of type.

If a string value begins with a quota
tion mark, it cannot include embed
ded quotation marks. The value
delimiters may be commas, colons,
carriage returns or line feeds. Thus,
these characters may not be included
as part of the data—except that
commas and colons may be included
inside quoted strings. The file num
bered n must have previously been
OPENed for INPUT. If n is -1, the
variable will be input from the
cassette.

COMMENTS

10S



INPUTS
APPLE lie & 11+
To simulate INPUTS on the Apple,
redirect input from the keyboard to
the file—unless you want the input to
come from the keyboard. Then use
GET with a loop to concatenate the
number of characters you wish to
GET. For example.

10

20

30

40
50

60

70

1010
1020

1030
1040
1050

PRINTCHR$ (4) ; "OPEN
filename"

PRINT CHR$ (4) ; "READ
filename"
CC=5: REM THE CHARACTER
COUNT YOU WISH TO READ

PROM THE FILE

6OSUB1000
PRINT " " : PRINT 18$
PRINT CHR$ (4) ; "CLOSE
filename"
END

REM SUBROUTINE TO READ CC

CHARACTERS INTO
VARIABLE IS$
IS$=""

FOR 1=1 TOCC

GETI$: IS$=IS$+I$
NEXT I

RETURN

IBM PC & PCjr
INPUTS(n[,[#I fl) where n is the
number of characters to read in from
file number f. File f must have been
previously OPENed for input or as a
random file. If f is omitted, the charac
ters will be read from the keyboard,
but no prompt will be displayed.
INPUTS allows the inclusion of con
trol characters (except CTRL-
BREAK) in the input string, and is
therefore preferred for use with COM
files.

COMMODORE M
Can be simulated with the following
program lines. Line 40 may generate
an unusual screen display if graphics
characters are read in.

1 0 OPEN

8,8,8,"filename,S,R"
20 CC=5: REM THE CHARACTER

COUNT

30 GOSUB1000
40 PRINT IS$
50 CLOSE 8

60 REM: PROGRAM CONTINUES
HERE

1000 IS$=""

1010 FOR 1=1 TOCC
1020 GET#8,I$: IS$=IS$+I$
1030 NEXT: RETURN

INSTR
APPLE ne & U+
Can be simulated on the APPLE with
the following routine. Here, bigS is
the string to be searched, and findS is
the string to be found, and n specifies
the position in bigS at which to begin
searching for find$. GOSUB 1000 will
return the position of the first
occurrence of find$ within
big$—returned in variable R. If find$
is not found in big$, R will be
returned equal to 0.

1000 BIG=LEN(big$):FIND=LEN
(find$):N=4

1010 R=0; FOR J=NTOBIG

1020 IFMID$(big$,J,FIND) =
f ind$ THENR=J: J=BIG

1030 NEXT: RETURN

IBM PC & PCjr
INSTR((n,l sl$, s2$) where n is an
integer between I and 255 that speci
fies the position of sl$ at which to
begin searching for s2$. Optional
parameter n is assumed to be 1 if
omitted. Parameter sl$ specifies the
string to be searched and s2$ specifies
the string to be found. INSTR will
return a value specifying the position
of the first occurrence of s2$ within
sl$. If s2$ cannot be found, if
n>LEN(sl$), or if sl$ is a null, the
function returns a 0. If s2$ is a null,
the function returns a 1.

COMMODORE 64
Simulate it with the following routine.
Here, big$ is the string to be
searched, find$ is the string to be
found, and n specifies the position in
big$ at which to begin searching for
find$. GOSUB 1000 will return the
position of the first occurrence of
find$ within big$—returned in
variable R. If find$ is not found in
big$, R will be returned equal to 0.

BIG=LEN(big$):FIND=LEN
(£ind$) : N=4

1010 R=0: FOR J=N TO BIG
1020 IFMID$(big$,J,FIND) =

f ind$ THEN R=J: J=BIG
1030 NEXT: RETURN

106



TRS-80 Models IV & 111
INPUT$(n(,[#l fl) (Model IV)
where n is the number of characters
to read in from file number f. File f
must be a sequential file previously
OPENed for input. If f is omitted, the
characters will be read from the
keyboard, but no prompt will be
displayed.

TRS-80 Color Computer
Simulate it with the following
subroutine. In this routine, you
should replace n with the number of
the file to be OPENed, —1 for
cassette, range 1-15 for disk.

COMMENTS

10
20

30

100
110

1

1010
1015

1020

1030

1040
1050
1060
1070

1080

OPEN " I",n," filename"
6OSUB1000

REM PROGRAM EXECUTION

CONTINUES HERE

CLOSE

END

REM SUBROUTINE TO

SIMULATE

A$=INPUT$(CC,n) WHERE
CC IS THE NUMBER OF

CHARACTERS TO READ

L=LEN (B$) : C$=""
IF L< CC AND EOF (n) THEN
1080
IF L<CC THEN LINE

INPUT#n,C$ ELSE 1050
B$=B$+C$+CHR$(13):
L-LEN(B$) : REM IF L> 255
YOU WILL GET OVERFLOW

ERROR

IFL<CCGOTO1015
A$=LEFT$(B$,CC)
B$=RIGHT$(B$, L-CC)
RETURN

PRINT "NOT ENOUGH DATA IN
filename"

RETURN

TRS-80 Models IV & III
INSTR([n,I sl$, s2$) where n is an
integer between 1 and 255 that speci
fies the position of sl$ at which to
begin searching for s2$. Optional
parameter n is assumed to be 1 if
omitted. Parameter sl$ specifies the
string to be searched and s2$ specifies
the string to be found. INSTR will
return a value specifying the position
of the first occurrence of s2$ within
sl$. If s2$ cannot be found, if
n>LEN(sl$), or if sl$ is a null, the
function returns a 0. If s2$ is a nuU,
the function returns a 1.

TRS-80 Color Computer
INSTR([n,] sl$, s2$) where n is an
integer between 1 and 255 that speci
fies the position of sl$ at which to
begin searching for s2$. Optional
parameter n is assumed to be 1 if
omitted. Parameter sl$ specifies the
string to be searched and s2$ specifies
the string to be found. INSTR will
return a value specifying the position
of the first occurrence of s2$ within
sl$. If s2$ cannot be found, if
n>LEN(sl$), or if sl$ is a null, the
function returns a 0. If s2$ is a null,
the function returns a 1.

COMMENTS

107



INT
APPLE IIe&II+
INTCn) where n is a number to be
converted into an integer. INT will
truncate the fractional part of n and
return the next lower integer.

IBM PC & PCjr
INT(n) where n is a number to be
converted into an integer. INT will
truncate the fractional part of n and
return the next lower integer.

COMMODORE 64
INT(n) where n is a number to be
converted into an integer. INT will
usually truncate the fractional part of
n and return the next lower integer.
However, INT(.9999999996)=1,
while INT(.9999999995) =0.

INTERS
is an undocumented reserved word
on IBM.

INVERSE
APPLE lie & 11+
INVERSE causes anything printed to
the screen to be reversed in color

from normal. INVERSE is cancelled
by the NORMAL command.

IBM PC & PCjr
COLOR x,y simulates an inverse
image if x and y are valid foreground
and background colors other than
those previously in use. Preferably,
they would be the opposite of those
previously in use. For valid colors,
see COLOR.

COMMODORE 64
Using the keys RVS ON (CTRL 9)
and RVS OFF (CTRL 0) or the codes
CHR$(18) and CHR$(146) will
toggle output between reverse
(inverse) and normal. When you in
clude your PRINT statement, simply
insert RVS ON after you type your
opening quotation marks and insert
RVS OFF before you type your closing
quotation marks. The message be
tween the quotation marks will then
print in reverse. A carriage return au
tomatically turns off reverse printing,
so RVS OFF is sometimes omitted at

the end of a message.

lOCTL, IOCTL$
are undocumented reserved words on
IBM.

108



TRS-80 Models IV & III
INT(ii) where n is a number to be
converted into an integer. INT will
truncate the fractional part of n and
return the next lower integer.

TRS-80 Color Computer
INT(n) where n is a number to be
converted into an integer. INT will
truncate the fractional part of n and
return the next lower integer.

COMMENTS

TRS-80 Models IV & III
Enabled on the Model IV by PRINT-
ing CHR$(16), and disabled by
PRINTingCHR$(17).

Not available on the Model III.

TRS-80 Color Computer COMMENTS
SHIFT-O will toggle output between
normal and inverse on the COCO.

When you include your PRINT
statement, just toggle to inverse after
you type your opening quotation
marks and back to normal before
typing your closing quotation marks.
The message between the quotation
marks will print inverse.

109



JOYSTK
APPLE He & 11+
PDL(n) where n is an integer in the
range 0-225. If values other than 0,1,
2 or 3 are used, the PDL function will
give erratic and unpredictable results!
Values of 0-3 return a "resistance
variable" for the respective paddle be
tween 0 and 150K ohms. This value
must then be interpreted to produce
the desired results. Note that this will
require extensive programming
changes when converting to or from
other computers.

Although it can handle four paddles,
the Apple can read the status only of
three paddle buttons. This is accom
plished with PEEK(—16287) for the
value of the button on paddle 0,
PEEK(—16286) for paddle 1, and
PEEK(—16285) for paddle 2. If the
value returned is ^eater than 127,
then the button is being pressed.

IBM PC & PCjr
STICK(n) where n is an integer in
the range 0-3. STICK returns the
coordinates of the joysticks.
STICK (0) obtains the values of both
joysticks, but returns the x coordinate
of joystick A.

STlCK(l), ST1CK(2) and ST1CK(3)
do not sample the joystick, but return
the coordinates retrieved by the most
recent ST1CK(0). STlCK(l) returns
the y coordinate of joystick A.
STICK (2) returns the x coordinate of
joystick R ST1CK(3) returns the y
coordinate of joystick B.

STRIGON
v=STRIG(n)
STRIG OFF where n is an integer
from 0-3 in BASIC, or 0-7 in Ad
vanced BASIC, Cartridge BASIC or
Compiler BASIC. STRIG ON causes
the program to begin checking the
status of the joystick buttons at the
beginning of execution of each pro
gram line. STRIG OFF ceases
checking. Interpret the value returned
by STRIG (n) with the table below:

Value If Value If
Button Button

nVaiut Batten Has Been Is Being Default
Number Pressed Pressed

0 A1 -1 0
1 A1 0
2 B1 -1 0

3 B1 -1 0

The following apply to Advanced,
Cartridge and Compiler BASIC only.

-1 0
~l 0

-1 0
-1 0

A2

A2
B2

B2

STRIG(n) ON
ON STRlG(n) GOSUB Une
STRIG(n) STOP
STRlG(n) OFF
These commands control event trap
ping for the specified joystick button
n. The value of n is indicated by the
chart below. The parameter line speci
fies a line to GOSUB if the specified
button has been pressed.

n  Button

0  A1

2  B1
4  A2

6  B2

When STRIG (n) ON has been speci
fied and the ON STRIG(n) GOSUB
line command is in effect, BASIC

COMMODORE 64
The Commodore 64 supports two
game ports, 1 and 2. The joystick in
port 1 is read by PEEKing 56321. Port
2 is read by PEEKing 56320. The
number returned by the PEEK is logi
cally ANDed with 15 to indicate the
direction according to the chart below:

NW=10 North=14 NE=6
West=ll Home=15 East=7
SW=9 South=13 SE=5

To read the "fire" button, the
number returned is logically ANDed
with 16. If the value resulting is 16,
the button is not pressed. If the value
is 0, the button is pressed.

The following program lines demons
trate how to read Port 2:

10 FOR 1=0 TO 10: READ
D$ (I) ; NEXT

20 DATASE,NE,E , ,SH,NW,
W,,S ,N,H,

30 F$(0)="PIRE":
F$(1)="SAFE"

40 PRINT CHR$ (147);
50 PRINTCHR$(19)D$( (PEEK

(56320)AND15) -5)
60 PRINTF$ ( (PEEK(56320)

AND 16)/16)
70 GOTO 50

checks at the beginning of execution
of each line to see if the button has
been pressed. If it has, the GOSUB is
executed. If not, program execution
continues uninterrupted. STRIG (n)
STOP causes trapping to cease, but
the computer remembers whether the
button was pressed. If so, when a
STRIG (n) ON is executed, the
GOSUB is executed immediately.
STRIG (n) OFF causes trapping to
cease, and even if the button is
pressed it will not be remembered.

110



TRS-80 Models IV & m TRS-80 Color Computer COMMENTS
Joysticks and paddles are not currently
supported on Models IV or III, al
though some independent manu
facturers have devised joysticks that
work through the cassette port.

JOYSTK(n) where n is an integer
from 0-3. This function returns a coor
dinate of the joystick. If n=0, it re
turns the horizontal coordinate of the
right joystick. If n=l, it returns the
vertical coordinate of the right
joystick. If n=2, it returns the hori
zontal coordinate of the left joystick.
If n=3, it returns the vertical coordi
nate of the left joystick.

Joystick buttons are accessed by
PEEKing memory location 6S280.
PEEK(65280) will return 127 or 255
if no button is pressed. It will return
126 or 254 if the right button is
pressed, or 125 or 253 if the left
button is pressed.

Ill



KEY
APPLE He &U+
Cannot be simulated.

IBM PC & PCjr
KEY ON causes the current assign
ments of the function keys to be dis
played in abbreviated form on the
screen line 25.

KEY OFF removes the function-key
display from the screen line 25 and
frees it for use by the programmer.
This is useful because line 25 does not
scroll with the rest of the screen.

KEY LIST displays the current
function-key assignments—all 15
characters.

KEY n,x$ assigns the value of x$ to
function key number n. Note:
LEN(x$) cannot be more than 15
characters.

KEY n, CHR$(x) + CHR$(y)
(BASIC 2.0 or Cartridge BASIC
Only) defines a key to be trapped,
where n is a numeric expression
(range 15-20), x is a numeric value
corresponding to the hex value for the
"latched" keys (see below), and y is a
scan code for the key to be trapped
(range 1-83). Key-scan codes may be
determined by referring to the BASIC
Reference Manual, Appendix K.

Hex values for the "latched" keys are:

Caps Lock &H40
Num Lock &H20 (Not on PCjr)
Alt &H08
Ctrl &H04
Shift &H01,&H02,&H03

You can add these values together to
achieve a combined value. For

example, &HOC would require that
the Alt and Ctrl keys both be
depressed.

ONKEY(n)GOSUBline causes exe
cution of the subroutine at the speci
fied line if a KEY(n) ON has been
executed, and function key n has
been depressed. In BASIC 2.0 and
Cartridge BASIC, the extended keys
specified by K£Y(n) may also be
trapped.

COMMODORE 64
Cannot be simulated without exten
sive machine-language programming.

KEY(n) ON enables the trapping of
the specified function key—or extend
ed keys in BASIC 2.0 or Cartridge
BASIC. Causes BASIC to check at the
beginning of the execution of each
line to see if the specified key has
been depressed. If it has, the routine
specified by ON KEY(n) GOSUB will
be executed.

KEY(n) STOP causes BASIC to stop
checking for n at the beginning of exe
cution of each line. But if n has been
depressed, it is remembered. When
the program encounters a KEY(n)
ON, it checks to see if the key has
been depressed, and acts accordingly.

KEY (n) OFF causes checking for the
specified key n to stop. Even if the
key is depressed, it will not be remem
bered and no action will be taken.

KEYS
is an undocumented reserved word
on the IBM PC.

112



TRS-80 Models rv & m TRS-80 Color Compnter COMMENTS
Cannot be simulated. Cannot be simulated.

113



KILL
APPLE He & 11+
Simulate it with the following program
lines

19 PRINT CHR$ (4) ; "OPEN
filename"

20 PRINT CHR$ (4); "DELETE
filename"

IBM PC & PCjr
KILL "filename" erases filename
from the disk. The file must have
been previously CLOSEd. Filename
can include a drive specification
and must include the extension. For

example,

KILL"b:file.bas"

Use of this conunand in Cartridge
BASIC will result in an ILLEGAL
FUNCTION CALL if DOS 2.1 is not
present

COMMODORE 64
Called SCRATCH and abbreviated S
by Commodore, it is simulated with
the following program lines:

10 OPEN15,8,15,
"S0:filename"

20 CLOSE 15

LEFTS
APPLE He & 11+
LEFTS (x$,n) returns a string
expression consisting of the left n
characters of xS, where n is a numeric
expression and xS is any string. The
range for n is 1-255. If n>LEN(xS),
xS is returned. If n=0, the null string
is returned.

IBM PC & PCjr
LEFTS(xS,n) returns a string
expression consisting of the left n
characters of xS, where n is a numeric
expression and x$ is any string. The
range for n is 0-255. If n>LEN(x$),
x$ is returned. If n=0, the null string
is returned.

COMMODORE 64
LEFT$(x$,n) returns a string
expression consisting of the left n
characters of x$, where n is a numeric
expression and x$ is any string. The
range for n is 0-255. If n>LEN(x$),
then x$ is returned. If n=0, the null
string is returned.

LEN
APPLE lie & 11+
LEN (x$) returns a value equal to the
number of characters—including any
blanks or unprintable characters—in
x$, where x$ is any string expression.

IBM PC & PCjr
Same.

COMMODORE 64
Same.

LET
APPLE ne&U+
lLET|n»x assigns the value of x to
variable n. The only restriction is that
X and n must be of the same data type.
LET is optional. The equals si^
alone is sufficient to i^e this
assignment

IBM PC & PCjr
Same.

COMMODORE 64
Same.

114



TRS-80 Models IV & III TRS-80 Color Computer
KILL "filename" erases the file file
name from the disk. The file must
have been previously CLOSEd. File
name can include a drive specifi
cation and must include the
extenaon. For example,

KILL "file/bas;2"

If no disk drive is specified, the file is
deleted from the first drive that has it

KILL"filename:d" erases the file
filename on disk drive number d. If d
is omitted, drive 0 is assumedL

COMMENTS
Files can be KILLed on cassette-based
systems ^ply by recording over
them.

TRS-80 Models IV & III
LEFT$(x$,n) returns a string
expression consisting of the left n
characters of x$, where n is a numeric
expression and x$ is any string. The
range for n is 0-255. If n>LEN(x$),
then x$ is returned. If n=0, the null
string is returned.

TRS-80 Color Computer
LEFT$(x$,n) returns a string
expression consisting of the left n
characters of x$, where n is a numeric
expression and x$ is any string. The
range for n is 0-255. If n>LEN(x$),
then x$ is returned. If ii'^'O, the null
string is returned.

COMMENTS
The only variation on this function is
that the range of n is 1-23S for Apple,
0-255 for all others.

TRS-80 Models IV & UI TRS.80 Color Computer COMMENTS
Same. Same.

TRS.80 Models IV & m TRS.80 Color Computer COMMENTS
Same. Same. Note: Non-extended color

BASIC does not recognize LET.

115



LINE
APPLE lie &n+
HPLOT xl,yl [TO x2,y21... will
draw a line between two points.
Parameters xl and x2 are column

numbers in the range 0-279, and yl
and y2 are row numbers in the range
0-191 if you have full screen graphics,
or 0-159 if you have a text window.
To use it, you must have first used
HGRandHCOLOR=.

To draw a box, use the following
routine:

10 HPLOT xl ,y1 TOxl ,y2 TO
x2,y2 T0x2,y1 TOxl ,y1

To draw a filled box, use this routine:

1000 F0Ry=y1 T0y2
1100 F0Rx=x1 T0x2
1200 HPLOTx,y
1300 NEXTX
1400 NEXTY

IBM PC & PCjr
LINE I(hl,vl)l - (h2,v2) I,[a] I,B
IF]] I,style] (Graphics Mode) where
hi is the beginning horizontal
coordinate, vl is the beginning verti
cal coordinate, li2 is the ending hori
zontal coordinate, and v2 is the
ending vertical coordinate.

Possible ranges for h and v are indicat
ed below:

Resolution h v

Low (Cart. BASIC only) 0-159 0-199
Medium 0-319 0-199
High 0-639 0-199

The optional value a is the color that
will be used to draw. See COLOR for
a list of possible colors.

Specifying B will cause a box to be
(hawn—with its opposite corners at
hl,vl and Ii2,v2. Specifying BP will
draw a filled box.

The style is used to determine wheth
er to draw a solid line or some sort of a
dotted line. The placement of the dots
is determined by the bit pattern of the
number used. For example, if
&HCCCC is used, it will display a
dashed line with the pattern
1100110011001100, where 1 repre
sents a dot and 0 represents a space
(&HCCCC = 11001100110 01100
binary).

Simulate it in text mode in its horizon

tal line-drawing capabilities by:

1000 TEMPC=POS(0) :
TEMPR=CSRLIN

1 01 0 IF ROW=25 THEN KEY OFF
1020 LOCATE ROW, BEGIN
1030 PRINT STRING$(E-BEGIN

+1 , PATTERN)
1040 LOCATE TEMPR, TEMPC, 1
1 050 RETURN

where ROW is the row on which to
draw the line, BEGIN is the beginning
column, E is the ending column, and
PATTERN is the ASCII value of the
character to be used in drawing the
line. Some good choices for the value
of PATTERN are 196, 223, 205 or
178. Any ASCU character may be
used except control characters.

Similarly, boxes may be constructed
using LOCATE and the graphics char
acters represented by ASCII 169-223.

COMMODORE 64
Can be simulated by the following
routine. You must define these varia
bles before entering the routine:

xl The x coordinate of the start
point in the range 0-319.

yl The y coordinate of the start
point in the range 0-199.

x2 The X coordinate of the end
point in the range 0-319.

y2 The y coordinate of the end
point in the range 0-199.

You must also insert a high-resolution
screen routine, such as the one listed
under HGR. The subroutine at line
1000 is the set-point subroutine, such
as the one listed under HPLOT.

REM HIGH RES SCREEN GOES

HERE!

IFxl =x2 THEN 380

M=(yl-y2)/(xl-x2): IF
ABS(M)>1 THEN 350
FOR 1=0 TO (x2 -xl ) STEP
SGN(x2-x1)
H=x1 +I: V=INT (yl +I *
M-I-.5): GOSUB1000
NEXT: GOTO 500

FOR 1=0 TO (y2-y1) STEP
SGN(y2-y1)
V=y1+I:
H=INT(x1+I/M+.5)
:GOSUB1000
NEXT: GOTO 500
FOR 1=0 TO (y2-y1) STEP
SGN(y2-y1)
H=x1: V= (yl +1): GOSUB
1000
NEXT: GOTO 500

REM PROGRAM CONTINUES

HERE

REM PLOTTING SUBROUTINE

GOES HERE

To draw a box you can put this routine
into a loop that repeats four
times—with new x and y coordinates
each time. You can draw a filled box
by using it as a line, but increment
either the x coordinates or the y coor
dinates enough times to produce the
desired effect

100

300
310

320

330

340

350

360

370

380

390

400

500

116



TRS-80 Models IV & m TRS-80 Color Computer COMMENTS
Simulate it in its horizontal line-
drawing capabilities on the Model III
and Model IV with the following
subroutine, where xl,yl is the starting
point, and x2,y2 is the ending point.
You must declare the x and y coordi
nates before entering this routine.
The range for the x coordinates is
0-47. The range for the y coordinates
is 0-127. To draw a box, you can
repeat this routine four times—with
new X and y coordinates each time.

300 IFx1=x2THEN380
310 M= (y1 -y2)/ (x1 -x2) : IF

ABS (M)>1 THEN 350
320 FOR 1=0 TO (x2-x1 ) STEP

SGN(x2-x1)
330 H=x1 +I: V=INT (y1 +I *

M+.5) : 6OSUB1000
340 NEXT: GOTO500
350 FOR 1=0 TO (y2-y1) STEP

SGN(y2-y1)
360 V=y1 +I: H=INT (x1 +I /

M+.5): GOSUB1000
370 NEXT: GOTO 500
380 FOR 1=0 TO (y2-y1) STEP

SGN(y2-y1)
390 H=x1 : V= (y1 +I) : GOSUB

1000
400 NEXT: GOTO 500

500 REM PROGRAM CONTINUES
HERE

1000 SET (H,V) : RETURN

A filled box can be drawn with the fol
lowing routine:

10 X1=0:X2=47 :REMRANGE
X=0TO47

20 Y1=0:Y2=127 :REMRANGE
Y=0TO127

30 GOSUB 1000
40 END

1000 F0RY=Y1 T0Y2
1100 F0RX=X1 T0X2
1200 SET (X,Y)
1300 NEXTX
1400 NEXTY

1500 RETURN

LINE [(hl,yl)l-(h2,v2),a,lbl draws
a line, where hi is the beginning hori
zontal coordinate, vl is the beginning
vertical coordinate, li2 is the ending
horizontal coordinate, and t2 is the
ending vertical coordinate. If (hl,Tl)
is omitted, the end point from the
previous LINE statement is used.
Parameters hi and h2 may have a
range of 0-255, while vl and v2 may
have arange of 0-191.

Parameter a is either PSET or
PRESET, one of which is required.
PSET sets the line in the foreground
color, while PRESET sets the line in
the background color. Parameter h is
either B or BF, both of which are
optional. Specifying B will cause a box
to be drawn. Specifying BF will draw a
filled box.

117



LINE INPUT
APPLE Ue&n+
Simulate it with the following routine.
IS$ will be the value that would have
been returned by LINE INPUT.

1010
1020

1

1035

1

1050

1060

REM SUBROUTINE TO

SIMULATE LINE INPUT

IS$=""
GET 1$: PRINT 1$;
IFI$=CHR$(13) THEN
RETURN

IFI$=CHR$(20)THEN
IS$=LEFT$(IS$,LEN(IS$)
-1 ) : GOTO 1020
IS$=IS$+I$
IF LEN (IS$) =255 THEN
RETURN

GOTO 1 020

IBM PC & PCjr
LINE INPUTI;ll"prompt";lx$
allows input of up to 254 char
acters—including commas and other
delimiters—where x$ is any string
variable. Prompt is a message that
wUl appear on the screen. Using a
semicolon after LINE INPUT will
allow you to input on the same line as
the prompt A question mark is not
displayed unless it is part of the
prompt Trailing blanks are ignored in
the input

COMMODORE 64
Can be simulated with the following
routine. IS$ will be the value which
would have been returned by LINE
INPUT. It will accept any key except a
carriage return.

1

1010
1020

1030

1035

1040

1050

1060

REM SUBROUTINE TO

SIMULATE LINE INPUT

IS$=""
GET 1$ ; PRINT 1$ ;
IFI$=CHR$(13) THEN
RETURN

IFI$=CHR$(20)THEN
IS$=LEFT$(IS$,LEN(IS$)
-1) : GOTO 1020
IS$=IS$+I$
IF LEN (IS$) =255 THEN
RETURN

GOTO 1020

LINE INPUT #
APPLE He & 11+
Simulate it with the following routine.
IS$ will be the value that would have
been returned by LINE INPUT #.
Note that the fQe must have been pre
viously OPENed for input, and input
must have been activated with

PRINT CHR$ (4); "READ
filename"

1

1010
1020
1030

1040
1050

1

REM SUBROUTINE TO

SIMULATE LINE INPUT #
IS$=""

GET 1$: PRINT 1$;
IFI$=CHR$(13) THEN
RETURN

IS$=IS$ + 1$
IF LEN (IS$) =255 THEN
RETURN

GOTO 1020

IBM PC & PCjr
LINE INPUT #n,x$ allows input of
up to 254 characters from a sequential
data file—including commas and
other delimiters—where x$ is any
string variable and n is the number of
a  sequential data file previously
OPENed for input. You can also use
LINE INPUT # to read from random
files if they have embedded carriage
returns.

COMMODORE 64
Simulate it with the following routine.
IS$ will be the first string returned
from the filename after this routine.

10

20
30

40
50

1010
1020

1030

1040

1050

1060

OPEN

8,8,8,"filename,S,R"
GOSUB1000
PRINT IS$:

REM-MANIPULATE IS$ HERE
CLOSE 8

END

REM SUBROUTINE TO

SIMULATE LINE INPUT#

IS$=""
GET#8,I$: PRINT 1$;
IFI$=CHR$(13)THEN
RETURN

IS$=IS$ + 1$
IF LEN(IS$)=255 THEN
RETURN

GOTO 1020

LIST
APPLE lie &n+
LIST [xH-lyll lists the program to the
screen, where x is the beginning—or
only—line number and y is the
ending line number. If y is omitted,
but the dash included, the program is
listed from x to the end. If you wish
for the program or portion of the pro
gram to be listed to a disk file, you
must have first opened the file and
specified that output be written to it.

IBM PC & PCjr
LIST [xll-[y]]I,file] lists the program
to the screen or file, where x is the
first (or only) line number to be
listed, y is the final line number to be
listed, and file is the filename to be
listed to, in ASCII form. If y is
omitted, but the dash included, the
program is listed from x to the end. If
the file name is omitted, the program
is listed to the screen.

COMMODORE 64
LIST Ix][-ly]) lists the program to the
screen, where x is the beginning—or
only—line number and y is the
ending line number. If y is omitted,
but the dash included, the program is
listed from x to the end. LISTing a
program during execution will cause
the execution to halt.

118



TRS-80 Models lY & 111
LINE INPUT[;][prompt;Ix$ allows
input of up to 254 characters (240 for
the Model III)—including commas
and other delimiters—where x$ is any
string variable. Prompt is a message
that will appear on the screen. Using a
semicolon after LINE INPUT on the

Model IV will allow you to input on
the same line as the prompt, but a
semicolon without a prompt is not al
lowed on the Model III. A question
mark is not displayed unless it is part
of the prompt. Trailing blanks are ig
nored in the input.

TRS-80 Color Computer
LINE INPUTI "prompt";lx$ allows
input of up to 249 char
acters—including commas and other
delimiters—where x$ is any string
variable and prompt is a message that
will appear on the screen. A semicolon
is not allowed without a prompt. A
question mark is not displayed unless
it is part of the prompt. Trailing
blanks are ignored in the input

COMMENTS

TRS-80 Models IV & III
LINE INPUT #n,x$ allows input of
up to 255 characters from a sequential
data file—including commas and
other delimiters—where x$ is any
string variable and n is the number of
a sequential data file previously
OPENed for input You can also use
LINE INPUT # to read from random
fries if they have embedded carriage
returns.

TRS-80 Color Computer
LINE INPUT #n,x$ allows input of
up to 249 characters from a sequential
data file—including commas and
other delimiters—where x$ is any
string variable and n is the number of
a sequential data file previously
OPENed for INPUT,

COMMENTS

TRS-80 Models IV & 111
Causes Models IV and in to return to
command mode when used in a
program.

TRS-80 Color Computer
Causes COCO to return to command
mode when used in a program.

COMMENTS

119



LLIST
APPLE He &n+
To list a program on the printer with
Apple, use the following routine,
where x is the slot number of your
printer—normally #1. You can also
specify the starting and ending line
numbers after the LIST.

100 PR#x: LIST: PR#0

IBM PC & PCjr
LLIST (xl[-[yl] where x is the be^-
ning line number and y is the ending
line number. LLIST will cause the
program—or specified lines—to print
on the printer, and then return
BASIC to the command level. You
must then RUN or CONTinue the
program.

If you wish to get around this
limitation, use the following
subroutine. The program will LLIST,
then continue. It does so because
lines 1010 and 1020 POKE the word
RETURN into the keyboard buffer.
Afterward the program returns to the
command level, the word RETURN
is obtained from the keyboard, and
the program continues. Thus line
1040 is superfluous. It is included
only for clarity.

1020

1030

1

DEF SEG=0

POKE 1050,30: POKE
1052,44:POKE1054,82:
POKE 1056,69: POKE
1058,84
POKE 1060,85: POKE
1062,82: POKE 1064,78:
POKE 1066,13
LLIST

RETURN

COMMODORE 64
The following routine will list a pro
gram on the printer, where X is the
device number of your
printer—usually 4. You can also speci
fy the starting and ending line num
bers after the LIST command. This
routine will return you to the com
mand mode.

10 PRINT CHR$( 147)
"PRINT#3: CLOSE 3"

20 POKE 198,3: POKE631,19:
POKE 632,13:POKE
633,13:X=4

30 OPEN 3,X: CMD3: LIST

LOAD
APPL£ne&n+
LOAD filename loads the specified
file, where filename is the name of
the file with any appropriate device
designation, such as dl. Ifno filename
is specified, the next file on the
cassette is assumed. All variables are
CLEARed and data files CLOSEd.
After LOADing, BASIC returns to
the command mode.

IBM PC & PCjr
lOAD "filename" [)RI loads the
specified file and optionally runs it,
where filename is the name of the file
with any appropriate device
designation, such as CASl: or A:.
Without DOS, device CASl: is
assumed. If the extension is left off
the filename, an extension of .BAS is
assumed. All variables are CLEARed
and data files closed, unless the R
option is chosen. In this case all data
files are left open. If the R option is
chosen, the program is immediately
run. Otherwise BASIC returns to the
command mode.

COMMODORE 64
LOAD ("filename"] [,device]
(,location] loads a file into memory,
where filename is the name of the file
you wish to load. Default is the next
file on cassette. Device is the storage
device—cassette=l, disk=8, de
fault—1. Location is the type of load
you wish to achieve. 0 is the default
and loads in at the start of BASIC, 1
loads in from where it was saved. File
name is not optional for a disk load.

Although LOAD closes all files, when
used as a statement within a program
it does not clear variables. Nor does it
reset the BASIC memory pointers.
After the load is complete, it auto
matically RUNs the BASIC program
in memory. LOAD "filename" on
the Commodore is equivalent to
RUN "filename" on other

120



TRS-80 Models IV & III TRS-80 Color Computer COMMENTS
LLIST lx][-[y]l where x is the begin
ning line number and y is the ending
line number. LLIST will cause the
program—or specified lines—to be
printed on the printer, and then
return BASIC to command level.
LLIST is identical to LIST but lists
the program to the printer. See LIST.

LLIST Ixll-Iyll where x is the begin
ning line number and y is the ending
line number. LLIST will cause the
program—or specifled lines—to be
printed on the printer, and then
return BASIC to the command level.
LLIST is identical to LIST but lists
the program to the printer.

TRS-80 Models IV & III TRS-80 Color Computer COMMENTS
LOAD "fflename"[,Rl loads the
specified file and optionally runs it,
where filename is the name of the file
with any appropriate device
designation, such as :0 or :I. If no
device is specified, BASIC searches
all drives, starting with 0. In cassette
BASIC the cassette is assumed. All

variables are CLEARed and data files
closed, unless the R option is chosen,
in which case all data files are left
open. If the R option is chosen, the
program is immediately run. Other
wise BASIC returns to the command
mode.

LOAD " filename "i,Rl loads the
specified file and optionally runs it,
where filename is the name of the
file. In a cassette-based system the
cassette is assumed. All variables are
CLEARed and data files closed,
unless the R option is chosen. In this
case all data files are left open. If the
R option is chosen, the program is im
mediately run. Otherwise, BASIC re
turns to the command mode.

computers. Be careful when using
LOAD to chain BASIC programs
together. The first program that has
the initial LOAD in it must be longer
than any programs subsequently
LOADed.

Also be careful when LOADii^
machine-language programs to avoid
repeatedly reLO^ing the same
program. See BLOAD. If you wish to
LOAD and RUN a long BASIC pro
gram from a shorter one, you can use
the dynamic keyboard with the rou
tine below, but remember that all
variables will be cleared.

1 0 PRINT CHR$ (147) "LOAD"
CHR$(34)"filename"
CHR$(34) ",8"

20 POKE 214,4: PRINT: PRINT
"RUN"

30 POKE 198,4: POKE 631,19
40 FOR 1=2 TO 4: POKE

630+1,13:NEXT
50 END

121



LOADM (SeeBLOAD)

LOC
APPLE He & 11+
Not available. Cannot be simulated.

IBM PC & PCjr
lX)C(x) returns the position of the
pointer in a file, where x is the
number of an open file. For random
files, it returns the number of the
most recently addressed record. For
sequential files, it returns the number
of records—128 byte blocks—written
to or read from the file since it was

opened. For a file that is actually a
COM buffer, it returns the number of
characters in the input buffer, up to a
maximum of255.

COMMODORE 64
Not available. Cannot be simulated.

LOCATE
APPLE lie & U+
HTAB n where n is a number be
tween 0 and 255, specifying a horizon
tal position from the beginning of the
current output line. HTAB is similar
to TAB, but is used independently
from PRINT statements. HTAB may
also move the cursor backward to the
beginning of the line. TAB may not.

VTAB n where n is a numeric expres-
aon between 1 and 24. VTAB moves
the cursor to line n. Columns remain
unchanged and only row position
changes.

IBM PC & PCjr
LOCATE Irl [,[cl t.lv] [,[startl
[,stopl]]] places the cursor and
specifies several options for cursor
display. Parameter r specifies the
row—range 1-25. Parameter c
specifies the column— range 1-40 or
1-80, depending on current width. If
v=0, the cursor is invisible. If v=l,
the cursor is visible. Start and stop
indicate the cursor scan start and stop
lines—range 0-31. Start, stop and v
do not apply in graphics modes. If
r=25, then you must use the KEY
OFF command prior to the LOCATE
command.

COMMODORE 64
Simulate it with the following program
lines. They will place the cursor on
line ROW at column COL. Of course,
you must assign values to ROW and
COL before calling the subroutine.

1000 POKE 783,0: POKE
781 ,ROW: POKE782,COL

1010 SYS 65520
1020 RETURN

LOF
APPLE Ue& 11+
Not available. It is the programmer's
responsibility to keep track of file
length by using a counter. Usually the
counter is the first item in the file. It is
read when the file is opened and
incremented each time data is written
to the file. Before the file is closed,
you must go back and rewrite the new
value into the first position.

IBM PC & PCjr
LOFCx) where x is the number of an
open file. Returns the length of the
file in bytes. If the file was created
under BASIC 1.1, the number
returned will be a multiple of 128. If it
was created outside BASIC or under

BASIC 2.0 or Cartridge BASIC, the
number will be the actual number of
bytes. If the file is a COM buffer, LOF
will return the amount of free space in
the buffer.

COMMODORE 64
Not available. It is the programmer's
responsibility to keep track of file
length by using a counter. Usually the
counter is the first item in the file. It is

read when the file is opened and
incremented each time data is written
to the file. Before the file is closed,
you must go back and rewrite the new
value into the first position.

122



TRS-80 Models IV & III
LOC(x) returns the position of the
pointer in the file, where x is the
number of an open file. For random
files, it returns the number of the
most recently addressed record. For
sequential files, it returns the number
of records—256 byte blocks—written
to or read from the file since it was
opened.

TRS-80 Color Computer
LOC(x) returns the position of the
pointer in the file, where x is the
number of an open file.

COMMENTS

TRS-80 Models IV & III
PRINT @ n or PRINT @ (r,c)
(Model IV) places the cursor at the
specified position, where n is a screen
position in the range 0-1919 and (r,c)
is a pair of coordinates specifying the
row (range 0-23) and column (range
0-79).

PRINT @ n (Model m) places the
cursor at the specified position, where
n is a screen position in the range
0-1023.

TRS-80 Color Computer
PRINT @ n j)laces the cursor at the
specified position, where n is a screen
position in the range 0-511.

COMMENTS

TRS-80 Models TV & HI
LOF(x) returns the number of the
last record in file x, where x is the
number of an open file.

TRS-80 Color Computer
LOF(x) returns the number of the
last record in file x, where x is the
number of an open file.

COMMENTS
LOF cannot be used with a

cassette-based system. You can keep
track of the length by using a counter
variable. Usually the counter is the
first item in the file. It is read when
the file is opened and incremented
each time data is written to the file.
Before the file is closed you must go
back and rewrite the new value into
the first position.

123



LOG
APPLE He & 11+
LOG(x) returns the natural logarithm
of X, where x is a numeric expression
greater than 0.

IBM PC & PCjr
Same.

COMMODORE 64
Same.

LOMEM:
APPLE He & 11+
LOMEM :x sets the lowest memory
location available to the program for
variable storage, where x is a numeric
expression representing a valid
memory location. This is contrasted
with HIMEM:, which sets the highest
memory location available for variable
storage. LOMEM: can only be set
higher than its current location, not
lower. LOMEM: clears all variable
values and erases all functions
defined with DEF FN, so it should
not normally be used in a program.
Or, use it only at the very beginning.

LOMEM: has no equivalent on other
machines, and no need to be simulat
ed on them.

IBM PC & PCjr
Not available.

COMMODORE 64
Not available.

LPOS
APPLE He &U+
Not available. Carmot be simulated.
However, the most common use of
LPOS—to insert a carriage return in a
string of data being printed—can be
achieved with the following routine.
You must define the string you wish
printed as T$ before entering the
subroutine. You can vary W to be
whatever width you want up to 255
characters. For output to go to the
printer or to a sequential file, you
must use the proper output routine
before calling this subroutine:
1000 W=40: P=1
1010 T2$=MID$(T$,P,W) : IP

LEN(T2$)=0THEN 1030
1020 PRINTT2$: P=P+W: GOTO

1010
1030 RETURN

IBM PC & PCjr
LPOS(n) returns the logical position
of the printer printhead in a buffer
specified by n. If n=0 or 1, then the
buffer is LPTl:. If n=2, then the
buffer is LPT2:. If n=3 then the
buffer is LPT3:. The range for n is
limited to 0 or I in Cartridge BASIC.
Note that this is not the physical posi
tion of the printhead, but the logical
position.

COMMODORE 64
Not available. Cannot be simulated.
However, the most common use of
LPOS—to insert a carriage return in a
string of data being printed—can be
achieved with the following routine.
You must define the string you wish
printed as T$ before entering the
subroutine. You can vary W to be
whatever width you want up to 255
characters. For output to go to the
printer or to a sequential file, you
must use the proper output routine
before calling tUs subroutine:
1000 W=40: P=1

1010 T2$=MID$(T$,P,W) : IF
LEN(T2$)=0 THEN 1030

1020 PRINTT2$; P=P+W; GOTO
1010

1030 RETURN

124



TRS-80 Models IV & in
Same.

TRS-80 Color Computer
Same.

COMMENTS

TRS-80 Models IV & III
Not available.

TRS-80 Color Computer
Not available.

COMMENTS

TRS-80 Models IV & III
LPOSOl) (Model IV) returns the log
ical position of the printer printhead.
The argument n is a dummy numeric
expression. Note that this is not the
physical position of the printhead, but
the logical position.

Not available. Cannot be simulated
on the Model III. However, the most
common use of LPOS—to insert a car
riage return in a string of data being
printed—can be achieved with the fol
lowing routine. You must define the
string you wish printed as T$ before
entering the subroutine. You can vary
W to be whatever width you want up
to 255 characters. For output to go to
a  sequential file, you must use
PRINT# in line 1020 ̂ instead of
LPRINT.

TRS-80 Color Computer
P0S(-2) returns the position of the
printhead. POSCO) returns the posi
tion of the cursor on the screen.

COMMENTS

1000 W=40: Pal
1010 T2$=MID$(T$,P,W) : IF

LEN(T2$)=:0 THEN 1030
1 020 LPRINT T2$ : P=P+W; GOTO

1010

1030 RETURN

125



LPRINT, LPRINT USING
APPLE ne&U+
To send output to the printer you
must redefine the output slot The
printer is usually slot #1. After send
ing output to the printer, you must
then redefine output to go only to the
monitor—slot #0. Therefore, you
could use the following program lines:
50 PRINT CHR$ (4); "PR#1"
60 PRINT "MESSAGE TO BE

PRINTED"
70 PRINT CHR$ (4); "PR#0"

Apple lacks the extensive formatting
capabilities of LPRINT USING.
These capabilities are not easily
simulated and are beyond the scope of
this book. You might consider con
verting any numeric expressions into
string expressions with STR$ and
operating on them with LEFTS,
MGHTS and other string-handling
commands. You can then print them
out in the format you desire. For for
matting dollars and cents, you can use
the following subroutine, where
AMT is the actual figure you wish
converted into dollars and cents. This
routine will prevent you from getting
values retumed in fractional cents,
will force zeros to be added after the
decimal—so you don't get such things
as $10.9—and will right-justify the
amounts to give you nice-looking
columns.

IAMT=100*(AMT+.005):
AMT=INT{AMT)

1010 PRINT "$";
SPC((AMT<100000)+(AMT<
10000)*+(AMT<1000));
AMT/100;

1020 IFINT(AMT-INT(AMT/100)
* 1 00 )=0 THEN PRINT
".00";: GOTO 1040

1030 IF
INT(AMT-INT(AMT/10)* 10
) =0 THEN PRINT "0";

1 040 AMT=AMT/1 00: PRINT:
RETURN

IBMPC&PCjr
LPRINT [nil;]... causes the numeric
or string expression n to be printed to
the printer. If the semicolon is
included, the next expression is print
ed on the same line. LPRINT inserts a

carriage return after the 80th character
printed on any one line. Thus if you
print exactly 80 characters plus a car
riage return, you will have a blank
line. You can change the value of the
line length with the WIDTH
command.

LPRINT USING v$;list where v$ is
a string constant or variable that con
tains special formatting characters.
List is a list of expressions to be
LPRINTed. This command formats
the printed output in specific ways
depending upon the contents of v$.
Detailed explanation of the formatting
characters is beyond the scope of this
book. For BASIC 2.0, refer to the
BASIC Reference Manml, pages
4-219 through 4-223. For Cartridge
BASIC, refer to the BASIC Reference
Manml, pages 4-286 through 4-291.

COMMODORE 64
PRINT#n,Im][;] causes the numeric
or string expression m to be printed if
file n has been opened to the printer.
If the semicolon is included, the next
expression will be printed on the
same line. For example,

50 OPEN4,4
60 PRINT#4, "MESSAGE TO BE

PRINTED"
70 CLOSE 4

Commodore lacks the extensive for
matting capabilities of LPRINT
USING. These capabilities are not
easily simulated and are beyond the
scope of this book. As a starter, you
might consider converting any numer
ic expressions into string expressions
with STR$ and operating on them
with LEFTS, RIGHTS, and other
string-handling commands. You can
then print them in the format you
desire.

126



TRS-80 Models IV & m TRS-80 Color Computer COMMENTS
LPRINT In] [;]... causes the numeric
or string expression n to be printed to
the printer. If the semicolon is
included, the next expression is print
ed on the same line.

LPRINT USING v$;list where v$ is
a string constant or variable that con
tains special formatting characters.
List is a list of expressions to be
LPRINTed. This command formats
the printed output in specific ways
depending upon the contents of v$.
Detailed explanation of the formatting
characters is beyond the scope of this
book. Refer to Operation and BASIC
Language Reference Manual, pages
136-140 for the Model in and to Disk
System Owner's Manual, pages 2-lSO
through 2-153 for the Model IV.

PRINT#-2,[n][;|... causes the
numeric or string expression n to be
printed to the printer. If the semicolon
is included, the next expression is
printed on the same line.

LPRINT -2, USING v$;list where
v$ is a shing constant or variable that
contains special formatting char
acters. List is a list of expressions to
be LPRINTed. This command formats
the printed output in specific ways
depending upon the contents of v$.
Detailed explanation of the formatting
characters is beyond the scope of this
book. Refer to Going Ahead With Ex-
tended Color BASIC, pages 129-132.

127



LSET, RSET
APPLE He & 11+
Simulate LSET with the following
routine:

1 000 REMROUTINE TO SIMULATE
LSET, WHERE L=LENGTH OF
FIELD AND S$ IS THE

STRING BEING MANIPULATED
1100 IFLEN(S$)>LTHEN

S$=LEFT$(S$,L) : RETURN
1200 IFLEN(S$)<LTHEN

S$=S$+" GOT01200
1300 RETURN

Simulate RSET with the following
routine:

1000 REM ROUTINE TO SIMULATE
RSET, WHERE L=LENGTH OF
FIELD AND S$ IS THE

STRING BEING MANIPULATED
1100 IFLEN(S$)>LTHEN

S$=LEFT$(S$,L) : RETURN
1200 IFLEN(S$)<LTHEN

S$=S$+""; GOTO 1200
1300 RETURN

IBM PC & PCjr
LSETv$=x$
RSET v$=x$ moves data into a
random-file buffer, where v$ is the
name of a string variable defined with
a FIELD statement, and x$ is a string
variable to be placed into that field.
These commands are used in prepara
tion for PUTting the data into a
random file. If x$ requires fewer bytes
than were allocated for v$, then x$ is
left-justified in the field by LSET, or
right-justified by RSET. The field is
padded with blanks. If x$ requires
more bytes than were allocated for v$,
then either instruction truncates x$
on the right. Note that these instruc
tions operate only upon strings.
Numeric data must be converted into

a string with MKI$, MKS$ or MKD$
before they are LSET or RSET.

You can also use these instructions

with a variable name that was not

defined in a FIELD statement to
format output to the printer. For
example,

1 00 A$=" " :REM 1 0 BLANKS
110 LSETA$=X$

will cause x$ to be left-justified in a
field of 10 blanks.

COMMODORE 64
Simulate LSET with the following
routine:

1000 REM ROUTINE TO SIMULATE
LSET, WHERE L=LENGTH OF
FIELD AND S$ IS THE
STRING BEING MANIPULATED

1100 IFLEN(S$)>LTHEN
S$=LEFT$(S$,L) : RETURN

1200 IFLEN(S$)<LTHEN
S$=S$+" GOT01200

1300 RETURN

Simulate RSET with the following
routine:

1000 REM ROUTINE TO SIMULATE
RSET, WHERE L=LENGTH OF
FIELD AND S$ IS THE
STRING BEING MANIPULATED

1100 IFLEN(S$)>LTHEN
S$=LEFT${S$,L) : RETURN

1200 IFLEN(S$)<LTHEN
S$=S$+"": GOTO 1200

1300 RETURN

M-E (See MEMORY-EXECUTE)

M-R (See MEMORY-READ)

M-W (See MEMORY-WRITE)

MEM
APPLE He &U+
FRE(O) may be used to simulate
MEM. It returns the amount of free
memory available to the user when
used in the form

PRINT FRE (0)

When FRE is used as an assignment
statement, such as

X^FRE(0)

FRE causes string space to be
reorganized.

IBM PC & PCjr
FRE(x) where x is a dummy string or
numeric argument. FRE returns the
amount of memory available to the
program, not including the
interpreter work area. It also causes
the computer to do "housecleaning,"
compacting the string storage space as
much as possible.

COMMODORE 64
FRE(x) returns a value that may be
used to calculate the free memory
space, where x is a numeric
expression that is not evaluated but
must be present. The actual amount
of free memory is calculated by

10 MEM=FRE(0)-(FRE(0)<0)*
256*256

When used in the form PRINT

FRE(0) or X=FRE(0), FRE wiU
force reorganization of the string

128



TRS-80 Models rv & m TRS-80 Color Computer COMMENTS
LSETv$»=x$
RSET y$=x$ moves data into a
random file buffer, where v$ is the
name of a string variable defined with
a FIELD statement, and x$ is a string
variable to be placed into that field.
These commands are used in prepara
tion for PUTting the data into a
random file. If x$ requires fewer bytes
than were allocated for y$, then x$ is
left-justified in the field by LSET, or
right-justified by RSET. The field is
padded with blanks. If x$ requires
more bytes than were allocated for v$,
then either instruction truncates x$
on the right. Note that these instruc
tions operate only upon strings.
Numeric data must be converted into

a string with MKI$, MKS$ or MKD$
before they are LSET or RSET.

You can also use these instructions
with a variable name that was not

defined in a FIELD statement to
format output to the printer. For
example,

100 A$=" ":REM 10BLANKS
110 LSETA$=X$

wiU cause x$ to be left-justified in a
field of 10 blanks.

LSETv$=x$
RSET v$=x$ moves data into a
random file buffer, where v$ is the
name of a string variable defined with
a FIELD statement, and x$ is a string
variable to be placed into that field.
These commands are used in prepara
tion for PUTting the data into a
random file. If x$ requires fewer bytes
than were allocated for y$, then x$ is
left-justified in the field by LSET, or
right-justified by RSET. The field is
padded with blanks. If x$ requires
more bytes than were allocated for v$,
then either instruction truncates x$
on the right Note that these instruc
tions operate only upon strings.
Numeric data must be converted into
a string with MKI$, MKS$ or MKD$
before they are LSET or RSET.

You can also use these instructions
with a variable name that was not

defined in a FIELD statement to
format output to the printer. For
example,

100 A$=" " :REH 10 BLANKS
110 LSETA$=X$

will cause x$ to be left-justified in a
field of 10 blanks.

TRS-80 Models IV & III
MEM returns the amount of free

memory available to the user.

TRS-80 Color Computer
MEM returns the amount of free
memory available to the user.

COMMENTS

storage space, called garbage
collection. This could take several

minutes under some circumstances.

129



MEMORY- EXECUTE
APPLE ne& 11+
Not available.

IBM PC & PCjr
Not available.

COMMODORE 64
It's possible to execute machine lan
guage that is present in the 1541 Disk
Drive's own ROM or RAM. The M-E
command is used as follows:

10 SA=60064:
H=INT(SA/256);
L=SA-H*256

20 OPEN15,8,15
30 PRINT#15,

"M-E"CHR$(L)CHR$(H)
40 CLOSE 15

In this code, SA is the start address in
decimal of the machine-language
code to be executed. L and H are the
decimal low and high bytes of SA
when written in hexadecimal. Because
memory maps of the 154rs operating
system are not widely available, this
code is seldom encountered. The

command is roughly equivalent to
CALL or SYS on other machines. It
cannot be simulated on other ma

chines because their disk drives do
not have their own memory area.

MEMORY-READ
APPLE He &n+
Not available.

IBM PC & PCjr
Not available.

COMMODORE 64
MEMORY-READ

On the Commodore 64 it is possible
to PEEK into the 1541 Disk Drive's
RAM and ROM areas using the M-R
command as follows:

10 OPEN15,8,15
20 PRINT#15,

"M-R"CHR$(L)CHR$(H)
30 GET#15, A$: IFA$ = ""
" "THEN A$=A$+CHR$ (0)

40 CLOSE 15

L and H are the decimal low and high
bytes of the address in hexadecimal of
the location to be read. Large
amounts of data PEEKed this way
may take several minutes to
complete. This command cannot be
simulated on other machines because
their disk drives do not have their

own memory area.

130



TRS-80 Models IV & m TRS-80 Color Compnter COMMENTS
Not available. Not available.

TRS-80 Models lY & 111 TRS-80 Color Computer COMMENTS
Not available. Not available.

131



MEMORY-WRITE
APPLE ne&n+
Not available.

IBM PC & PCjr
Not available.

COMMODORE 64
MEMORY-WRITE

It is possible to POKE the RAM aree
of the Commodore 1541 Disk Dri\
usioig the M-W command as follows:

10 0PEN15,8,15
20 PRINT#15,

"M-W"CHR$(L)CHR$(H)
CHR$(N)X$

30 CLOSE 15

L and H are the decimal low and hig
bytes of the start address in hexadec
mal of the code, N is the length of ti
code—range 1-34—and X$ is the coc
concatenated as character strings. F(
example, if the 3 bytes $FF $09 $1
were to be placed in the 154rs RAI
at $0500, then L=0, H=5, N=3, an
X$= CHR$(255) + CHR$(9) ■
CHR$(16). This command is equivi
lent to POKE. It cannot be simulate

on other machines because their dis

drives do not have their own memoi

area.

MERGE
APPLE He &n+
Not available, but you can CHAIN
programs in integer BASIC. In
Applesoft you can use the CHAIN
program on the DOS master disk to
get the same effect. Remember that
CHAIN does not keep the old
program in memory, but does keep
variables common.

IBM PC & PCjr
MERGE "file" where file is a valid

BASIC file that was saved in ASCII
format residing on disk (or on
cassette if DOS is not present).
MERGE merges the file in memory
with the file specified. If the line
numbers in memory are duplicated on
disk, the ones from the disk will
replace the ones in memory. If lines in
memory or on disk are not duplicated
in the other file, they will reside in
memory after the merge. MERGE
always returns BASIC to the
command level. You must then RUN

or CONTinue the program.

COMMODORE 64
Not easily accomplished on th
Commodore 64 from within BASK
It is beyond the scope of this book.

If you wish to get around this
limitation, you can use following
subroutine. The program will
MERGE, then continue. It does so
because lines 1010 and 1020 POKE

the word RUN into the keyboard
buffer. After the MERGE the
program returns to the command
level, the word RUN is obtained from
the keyboard, and the merged
program executes. Thus line 1040 is
superfluous. It is included only for

clarity. Be sure to include the correc
file name in line 1030.

Note that MERGE destroys al
variable values.

1000 DEFSEG=0
1010 POKE 1050,30:POKE

1052,38:POKE 1054,82
1020 POKE 1056,85: POKE

1058,78:POKE 1060,13
1030 MERGE file
1040 RUN

132



TRS-80 Models IV & III

Not available.

TRS-80 Color Computer COMMENTS
Not available.

TRS-80 Models IV & III TRS-80 Color Computer COMMENTS
MERGE "file" where file is a valid

BASIC file on disk. MERGE merges
the file in memory with the file
specified. The file on disk must have
been saved with the A option. If the
line numbers in memory are
duplicated on disk, those from disk
will replace those in memory. If lines
in memory or on disk are not
duplicated in the other file, they will
reside in memory after the merge.
MERGE always returns BASIC to the
command level. You must then RUN
the program.

MERGE "file" l,Rl where file is a
valid BASIC file residing on disk.
MERGE merges the file in memory
with the file specified. The file on disk
must have been saved with the A

option. If the line numbers in
memory are duplicated on disk, those
from the disk will replace those in
memory. If lines in memory or on
disk are not duplicated in the other
file, they will reside in memory after
the merge. MERGE always returns
BASIC to the command level. If you
include the R, the program will
immediately RUN. If you do not
include the R, you will be left in the
command mode.

133



MID$
APPLE IIe&n+
MID$(Sl$,nlI,n2]) (Function) re
turns the specified portion of string
Sl$. Parameter nl specifies the first
character of Sl$ to be returned, while
n2 specifies the total number of char
acters to be returned. If n2 is omitted,
MID$ will return the right portion of
Sl$, beginning with the character in
the nl position.

IBM PC & PCjr
MID$ (Sl$, nl I,n2l) = S2$ (Com
mand) replaces a portion of string Sl$
with S2$. Parameter nl—an integer
in the range 1-255—specifies the posi
tion of the first character in Sl$ to be
replaced. Parameter n2—an integer in
the range 0-255—specifies the
number of characters to be replaced.
Parameter n2 is optional, and is as
sumed to be LEN(S2$) if it is
omitted. If n2>LEN(S2$), then n2
will he considered equal to
LEN(S2$). If n2> LEN (RIGHTS
(Sl$,nl), then n2 will be considered
equal to LEN (RIGHTS (SlS,nl).
Thus SIS will not change in length
due to this operation.

MID$(SlS>nl[,n2l) (Function) re
turns the specified portion of SIS.
Parameter nl—an integer in the
range 1-255—specifies the first char
acter of SIS to be returned. Parameter
n2—an integer in the range 0-255
—specifies the total number of charac
ters to he returned. If n2 is omitted,
MIDS will return the right portion of
SIS, beginning with the character in
the nl position. If n2<=0, a null
string is returned. If nl>LEN(SlS), a
null string is returned.

COMMODORE 64
MlDS(Sl$,nlI,n2]) (Function) re
turns the specified portion of SIS.
Parameter nl specifies the first char
acter of SIS to be returned. Parameter
n2 specifies the total number of char
acters to be returned. If n2 is omitted,
MIDS will return the right portion of
SIS, beginning with the character in
the nl position.

MKDS
APPLE He & 11+
There is neither a way nor a need to
simulate MKDS on Apple because of
the way it stores data in random files.

IBM PC & PCjr
MKDS(n) converts the double-
precision value n into an eight-byte
string value so it can later be retrieved
from a random file as a numeric
value. MKDS varies from STRS in
that it does not actually cause n to be
stored as the ASCII value of the
numerals. It stores them as numbers
with the data-type specifier indicating
it is a string. This must be done prior
to LSETing or RSETing, which must
also be done prior to PUTing a value
to a random-access disk file.

You cannot perform string functions
on a string created with MKDS or
print it on the screen. It is just for the
purpose of random file storage.
MKDS is the inverse of CVDS, which
is used for retrieving a string convert
ed with MKDS.

COMMODORE 64
There is neither a way nor a need to
simulate MKDS because of the way it
stores data in random files.

134



TRS-80 Models lY & 111
MID$ (81$, nl (,n2]) = S2$ (Com
mand) replaces a portion of 81$ with
82$. Parameter nl—an integer in the
range 1-255—specifies the position of
the first character in 81$ to be
replaced. Parameter n2—an integer in
the range 0-255—specifies the
number of characters to be replaced.
Parameter n2 is optional, and is as
sumed to be LEN(82$) if it is
omitted. If n2>LEN(82$), then n2
will be considered equal to
LEN(82$). If n2>LEN(RIGHT$
(81$,nl), then n2 will be considered
equal to LEN (RIGHT$(81$,nl).
Thus 81$ will not change in length
due to this operation.

MID$(81$,nl(,n2]) (Function) re
turns the specified portion of 81$.
Parameter nl—an integer in the
range 1-255—specifies the first char
acter of 81$ to be returned, while
n2—an integer in the range 0-255
—specifies the total number of charac
ters to be returned. If n2 is omitted,
MID$ will return the right portion of
81$, beginning with the character in
the nl position.

TRS-80 Color Computer
M1D$ (81$, nl [,n2]) ~ 82$ (Com
mand) replaces a portion of 81$ with
82$. Parameter nl—an integer in the
range 1-255—specifies the position of
the first character in 81$ to be
replaced. Parameter n2—an integer in
the range 0-255—specifies the
number of characters to be replaced.
Parameter n2 is optional, and is as
sumed to be LEN (82$) if it is
omitted. If n2>LEN(82$), then n2
will be considered equal to LEN
(82$). If n2> LEN (RIGHT$ (81$,
nl), then n2 will be considered equal
to LEN(RIGHT$ (81$,nl). Thus
81$ will not change in length due to
this operation.

MID$(81$,nlI,n2]) (Function) re
turns the specified portion of 81$.
Parameter nl—an integer in the
range 1-255—specifies the first char
acter of 81$ to be returned. Parameter
n2—an integer in the range 0-255
—specifies the total number of charac
ters to be returned. If n2 is omitted,
MID$ will return the right portion of
81$, hegitu^ with the character in
the nl position.

COMMENTS
Be sure to identify whether your
source program is using MID$ as a
function or as a command. The syntax
is the clue.

TRS-80 Models IV & 111
MKD$(n) converts the double-
precision value n into a eight-byte
string value so that it can later be re
trieved from a random file as a numer
ic value. MKD$ varies from STR$ in
that it does not actually cause n to be
stored as the ASCII value of the
numerals, but stores them as numbers
with the data-type specifier indicating
it is a string. This must be done prior
to LSETing or RSETing, which must
also be done prior to PUTing a value
to a random-access disk file. You
cannot perform string functions on a
string created with MKD$ or print it
on the screen. It is just for the purpose
of random file storage. MKD$ is the
inverse of CVD$, which is used for re
trieving a string converted with
MKD$.

TRS-80 Color Computer
SeeMKN$.

COMMENTS

135



MKDIR
APPLE ne& 11+
Cannot be simulated.

IBM PC & PCjr
MKDlR path causes a new branch
directory to be created where path is a
valid DOS path. This command
cannot be simulated on BASIC 1.1 or
on any other computer. It is unique to
IBM. If you use tWs command in Car
tridge BASIC, DOS 2.1 must be
present.

COMMODORE 64
Cannot be simulated.

MKI$
APPLE Ue& 11+
There is neither a way nor a need to
simulate MK1$ on Apple because of
the way it stores data in random files.

IBM PC & PCjr
MKI$(n) converts the integer value
n into a two-byte string value so that
it can later be retrieved from a
random file as a numeric value. MK1$
varies from STR$ in that it does not
actually cause n to be stored as the
ASCII value of the numerals, but
stores them as numbers with the data

type specifier indicating it is a string.
TWs must be done prior to LSETing
or RSETing, which must also be done
prior to PUTing a value to a random
access disk file. You cannot perform
string functions on a string created
with MK1$ or print it on the screen. It
is just for the purpose of random file
storage. MK1$ is the inverse of CV1$,
which is used for retrieving a string
converted with MBClS.

COMMODORE 64
There is neither a way nor a need to
simulate MK1$ on Commodore be
cause of the way it stores data in
random files.

MKN$
APPLE ne&U+
There is neither a way nor a need to
simulate MKN$ on Apple because of
the way it stores data in random files.

IBM PC & PCjr
See MKD$, MK1$ and MKS$.

COMMODORE 64
There is neither a way nor a need to
simulate MKN$ on Commodore be
cause of the way it stores data in
random files.

136



TRS-80 Models lY & III TRS-80 Color Computer
Cannot be simulated. Cannot be simulated.

COMMENTS

TRS-80 Models IV & III
MKI$(n) converts the integer value
n into a two-byte string value so that
it can later be retrieved from a
random file as a numeric value. MKI$
varies from STR$ in that it does not
actually cause n to be stored as the
ASCII value of the numerals, but
stores them as numbers with the data

type specifier indicating it is a string.
This must be done prior to LSETing
or RSETing, which must also be done
prior to PUTing a value to a random
access disk file. You cannot perform
string functions on a string aeated
with MKI$ or print it on the screen. It
is just for the purpose of random file
storage. MKI$ is the inverse of CVI$,
which is used for retrieving a string
converted with MKI$.

TRS-80 Color Computer
SeeMKN$.

COMMENTS

TRS-80 Models IV & III
See MKD$, MKI$ and MKS$.

TRS-80 Color Computer COMMENTS
MKN$(n) where n is a numeric
expression. MKN$ converts the speci
fied value into a five-byte string value
for the purpose of random file
storage. This must be done prior to
LSETing or RSETing, which must
also be done prior to PUTting a value
to a random access disk file.

137



MKS$
APPLE He & 11+
There is neither a way nor a need to
simulate MKS$ on Apple because of
the way it stores data in random flies.

IBM PC & PCjr
MKS$(n) converts the single-
precision value n into a four-byte
string value so that it can later be re
trieved from a random file as a numer
ic value. MKS$ varies from STR$ in
that it does not actually cause n to be
stored as the ASCII value of the
numerals, but stores them as numbers
with the data-type specifier indicating
it is a string. This must be done prior
to LSETing or RSETing, which must
also be done prior to PUTing a value
to a random access disk file. You
cannot perform string functions on a
string created with MKS$ or print it
on the screen. It is just for the purpose
of random file storage. MKS$ is the
inverse of CVS$, which is used for re
trieving a string converted with
MKS$.

COMMODORE 64
There is neither a way nor a need to
simulate MKS$ on Commodore be
cause of the way it stores data in
random flies.

MOD
APPLE lie &n+
n MOD m performs modulo arithmet
ic on integer values in integer BASIC
only. The result is an integer value
representing the remainder portion of
n divided by m.

Applesoft (floating-point) BASIC
does not recognize MOD. You may
simulate it by defining the following
function:

DEPPNMD(n)=INT((n/m-INT
(n/m) )*ia+.jl5)*SGN(n/ia)

where n and m are integer values.
Parameter m must be assigned prior
to referencing FNMD(n). Subsequent
reference to FNMD(n) will return an
integer value representing the remain
der portion of n divided by m.

IBM PC & PCjr
n MOD m performs modulo arithmet
ic on integer values. If n or m are not
integers, they will be arithmetically
rounded prior to execution. The
result will be an integer value repre
senting the remainder portion of n
divided by m.

COMMODORE 64
Can be simulated by defining the fol
lowing fimction:

DBF FNMD(n)=INT((n/m-INT
(n/m) )*m+.05)*SGN(n/m)

where n and m are integer values.
Parameter m must be assigned prior
to referencing FNMDCn). Subsequent
reference to FNMD(n) will return an
integer value representing the remain
der portion of n divided by m.

MOTOR
APPLE ne& 11+
You cannot control the motor of the
cassette from within BASIC on the
Apple, except possibly through some
sort of an external control device.
There is no built-in command.

IBM PC & PCjr
MOTOR [n] where n is an integer
value, MC^R will turn the cassette
motor on or off. If n=0, the motor is
turned off. If n is not zero, the motor
will be tumed on. If n is omitted, the
motor will be switched from its cur
rent state to its opposite state.

COMMODORE 64
LOAD n turns the cassette motor on,
where n is the name of a file that you
are sure is not on the cassette.
However, program execution halts
and there is no way to turn the motor
off.

138



TRS-80 Models IV & 111
MKS$(ii) converts the single-
precision value n into a four-byte
string value so that it can later be re
trieved from a random file as a numer
ic value. MKS$ varies from STR$ in
that it does not actually cause n to be
stored as the ASCII value of the
numerals, but stores them as numbers
with the ̂ ta-type specifier indicating
it is a string. This must be done prior
to LSETing or RSETing, which must
also be done prior to PUTing a value
to a random access disk file. You
cannot perform string functions on a
string created with MKS$ or print it
on the screen. It is just for the purpose
of random file storage. MKS$ is the
inverse of CVS$, which is used for re
trieving a string converted with
MKS$.

TRS-80 Color Computer
SeeMKNS.

COMMENTS

TRS-80 Models lY & 111 TRS-80 Color Computer COMMENTS
n MOD m performs modulo arithmet
ic on integer values on Model IV. The
result will be an integer value repre
senting the remainder portion of n
divided by m.

The Model m does not recognize
MOD. You may simulate it by defin
ing the following function:

DEFFNMD(n,in) = (INT(n) -INT
(INT(n)/INT(in))*INT(m))

where n and m are integer values.
Subsequent reference to
FNMD(n,m) will return an integer
value representing the remainder por
tion of n divided by m.

Can be simulated by defining the fol
lowing function:

DEFFNMD(n)=(INT(n)-INT
{INT(n)/INT(ni) )*INT(m))

where n and m are integer values.
Parameter m must be assigned before
referencing the function. Subsequent
reference to FNMD(n) will return an
integer value representing the remain
der portion of n divided by m.

TRS-80 Models IV & 111 TRS-80 Color Computer COMMENTS
TRS-80 Model IV does not use
cassettes in the Model IV mode.

You can activate the cassette motor
on the Model in with the following
program lines. Be sure you have the
earplug out if you wish to hear the
audio, and don't have the record
button pressed. It will continue to
operate rmtil a key is pressed and held

MOTOR e where e is ON or OFF.
TUms the cassette motor on or off as
specified.

for a few seconds.

1000 PRINT#-1
1010 I$sINKEY$: IFI$a

1000
1020 RETURN

THEN

There's a good reason to turn on the
cassette motor. Perhaps you have a
tutorial audio tape you wish to work
with the program. Or, perhaps you
don't have the cassette plugged in at
all, but rather some other device that
can be activated by the same agnals.
See AUDIO,

139



NAME
APPLE He & 11+
PRINT CHR$(4); "RENAME

causes a to be

renamed b, where a and b are valid
filenames. Parameters s, d and v are
optional. Parameter s specifies the
slot number, d specifies the drive
number, and v specifies the volume
number.

You cannot renumber a BASIC pro
gram from within itself on the Apple.

IBM PC & PCjr
NAME "a" AS "b" causes a to be
renamed b, where a and b are valid
filenames. Quotation marks are neces
sary only if a and b are literal names
rather than string variables. If a is not
on the specified disk, or if b is already
on the disk, you will get an error.
NAME does not change the contents
of the file. If you use this command in
Cartridge BASIC, DOS 2.1 must be
present.

RENUM (newlinel [,[staTtIinel
I,increment]] renumbers the pro
gram, where newline will be the first
line number of the renumbered
sequence; default=10. Startline is
the current number of the first line to

be renumbered—default=first pro
gram line. Increment is the increment
to be used in renumbering;
default=10. If you specify startline,
pu must specify newline. Renumber
ing continues from startline to the
end of the program. RENUM also
makes the necessary adjustments to
all GOTOs, GOSUBs and other com
mands with line numbers. Program
execution halts when the RENUM

has been completed. You must type
RUN to begin the program again.

COMMODORE 64
The following routine causes filename
b to be renamed as filename a:

10 OPEN 15,8,15,"R0:a=b"
20 CLOSE 15

You cannot easily renumber a BASIC
program from within itself on the
Commodore 64.

140



TRS-80 Models IV & III
NAME "a" AS "b" (Model IV)
where a and b are valid filenames,
NAME causes a to be renamed b.

Quotation marks are necessary only if
a and b are literal names rather than
string variables. If a is not on the
specified disk, or if b is already on the
disk, you will get an error. New name
b cannot contain a password or drive
specification. NAME does not change
the contents of the file.

A file cannot be easily renamed from
within a BASIC program on the
Model III. You can use:

10 CMD "I" , "RENAME a b"

which will rename a to b, but will
return you to the operating system.
Another alternative—which won't
return the program to the DOS level
but will work only on ASCII files—is
to read the file into memory, then
write it out with a new file name and

kill the old file. The routine below will

accomplish this. Note that the
CLEAR command in line 10 should
appear at the beginning of the
program, and that lines 1000 and 1010
require operator input. These can be
easily modified to suit your needs:

1( CLEAR 11

1

1010

1020

1030
1040
1050

CLS: LINE INPUT "OLD FILE
NAME:" ;F1$
LINE INPUT "NEW FILE
NAME: " ;F2$
OPEN "I'M ,F1$
OPEN"O" ,2,F2$
IF EOF (1 ) THEN 1060
LINE INPUT #1 ,T$ : PRINT
#2,T$: GOT01040
CLOSE: KILL F1 $

RENUM [newline) [,[startlinel
(,increment]] renumbers the pro
gram, where newline will be the first
line number of the renumbered
sequence; default=10. Startline is
the current number of the first line to
be renumbered—default=first pro
gram line. Increment is the increment
to be used in renumbering;
default=10. If you specify startline,
you must specify newline. Renumber
ing continues from startiine to the
end of the program. RENUM also
makes the necessary adjustments to
all GOTOs, GOSUBs and other com
mands with line numbers. Program

TRS-80 Color Computer
RENAME "a" TO "b" causes a to
be renamed b, where a and b are valid
filenames. Quotation marks are neces
sary only if parameters a and b are lit
eral names rather than string
variables. If parameter a is not on the
specified disk, or if b is already on the
disk, you will get an error. If a drive
specifier is not used on parameter a,
BASIC will search drive 0 only.
RENAME does not change the con
tents of the file.

RENUM Inewline](,Istaitline]
f,increment]] renumbers 4he
program, where newline will be the
first line number of the renumbered

sequence; default=10. Startiine is
the current number of the first line to
be renumbered—default=first pro
gram line. Increment is the increment
to be used in renumbering;
default=10. If you specify startline,
you must specify newline. Renumber
ing continues from startline to the
end of the program. RENUM also
makes the necessary adjustments to
all GOTOs, GOSUBs and other com
mands with line numbers. Program
execution halts when the RENUM

has been completed, and you must
type RUN to begin the program again.

execution halts when the RENUM

has been completed, and you must
type RUN to begin the program again.

NAME (newline] IJstartline]
[,increment]] (Model 111) renumbers
the program, where newline will be
the first line number of the renum
bered sequence; default=10. Start-
line is the current number of the first
line to be renumbered; default=first
program line. Increment is the incre
ment to be used in renum
bering—default =10. If pu specify
startline, you must specify newline.
Renumbering continues from startline
to the end of the program. NAME
also makes the necessary adjustments
to all GOTOs, GOSUBs and other
commands with line numbers. Pro

gram execution halts when the
NAME has been completed, and you
must type RUN to begin the program
again.

COMMENTS
Notice that NAME is sometimes used

for renaming files, but on the TRS-80
Model 111 it is used for renumbering
program lines.

Notice also that the Commodore file-
renaming routine is opposite from the
other systems in that the direction of
assignment is different.

141



NEW
APPLE ne&n+
NEW clears the display wreen,
deletes the program currently in
memory, clears all variables and re
turns control to the command mode.

IBM PC & PCjr
NEW clears the display screen,
deletes the program currently in
memory, clears all variables and re
turns control to the command mode.

COMMODORE 64
NEW clears all variables and returns
control to the command mode. The
program is deleted in the sense that it
is no longer accessible. In fact, it is
still in memory and could be
recovered—sometimes called UN-

NEW or OLD—if you have an exten
sive knowledge of the inner workings
of the Commodore 64. NEW does not
affect machine-language programs.

NEW is also used on the Commodore

64 in a completely different way: As a
direct command to the disk drive.

When used in this way, it formats pre
viously unused disks, and is usually
abbreviated by N. For example, the
following program lines will format a
disk:

10 OPEN 15, 8, 15
20 PRINT# 15,

''N0 :diskname, id"
30 CLOSE 15

Parameter id is a two-character identi

fier that should be unique to this disk.
This use of NEW erases the entire
disk and formats it for read/write
operations. It takes about two minutes
to complete.

NEXT
APPLE He & 11+
NEXT terminates a FOR-NEXT
loop. Program execution either re
turns to the statement following FOR
or "falls through" the NEXT state
ment to the following statement,
depending upon the value of the
counter specified in the FOR
statement.

It is critical that you not use a GOTO
to break out of a FOR-NEXT loop. If
you do this repeatedly you will soon
get an OUT OF MEMORY error.

IBM PC & PCjr
NEXT terminates a FOR-NEXT
loop. Program execution either re
turns to the statement following FOR
or "falls through" the NEXT state
ment to the following statement,
depending upon the value of the
counter specified in the FOR
statement.

COMMODORE 64
NEXT terminates a FOR-NEXT
loop. Program execution either re
turns to the statement following FOR
or "falls through" the NEXT state
ment to the following statement,
depending upon the value of the
counter specified in the FOR
statement

It is critical that you not use a GOTO
to break out of a FOR-NEXT loop. If
you do this repeatedly you will soon
get an OUT OF MEMORY error.

142



TRS-80 Models IV & III
NEW clears the display screen,
deletes the program currently in
memory, clears all variables and re
turns control to the command mode.

TRS-80 Color Computer
NEW clears the display screen,
deletes the program currently in
memory, clears all variables and re
turns control to the command mode.

COMMENTS

TRS-80 Models IV & III
NEXT terminates a FOR-NEXT
loop. Program execution either re
turns to the statement following FOR
or "falls through" the NEXT state
ment to the following statement,
depending upon the value of the
counter specified in the FOR
statement

TRS-80 Color Computer
NEXT terminates a FOR-NEXT
loop. Program execution either re
turns to the statement following FOR
or "falls through" the NEXT state
ment to the following statement,
depending upon the value of the
counter specified in the FOR
statement

COMMENTS
Unstructured use of FOR-NEXT
loops—or any other branching—can
cause problems. You should always
be sure your loops have "one way in
and one way out."

143



NOISE
APPLE He &n+
Cannot be simulated without
machine-language programming.

IBM PC & PCjr
NOISE s,T,d (Cartridge BASIC
Only) causes a noise to be generated
through the external speaker, where s
specifies the noise source—range 0-7.
You can change the sound generated
for s=3 or s=7 by changing voice 3
with the PLAY command. See
PLAY. Parameter v controls volume

and is an integer in the range 0-lS.
Parameter d is the duration of the

noise measured in clock ticks. There
are 18.2 ticks per second. You must
execute a SOUND command before
the NOISE command. Otherwise, you
will cause an error condition.

COMMODORE 64
Simulating NOISE on the Conuno-
dore 64 requires extensive POKEing,
and is beyond the scope of this book.
For a good discussion of generating
sound from BASIC programs, see
Your Commodore 64, by Heilborn and
Talbot or How to Program Your Com
modore 64 by Carl Shipman.

NORMAL
APPLE Ue& 11+
NORMAL restores INVERSE or
FLASH to the normal text
mode—light characters on a dark
background.

IBM PC & PCjr
COLOR x,y gives a normal image on
the PC, where x and y are valid fore
ground and background colors. See
COLOR for valid colors.

COMMODORE 64
Not available. If FLASH is being
simulated, normal operation will be
resumed when you cease simulation.

NOT
APPLE lie &U+
NOT e where e is an expression that
may be tested true or false. NOT will
return 1 (True) if the expression is
false, and 0 (False) if the expression
is true.

IBM PC & PCjr
NOT e where e is an expression that
may be tested true or false. NOT will
return I (True) if the expression is
false, and 0 (False) if the expression
is true.

COMMODORE 64
NOT e where e is an expression that
may be tested true or false. NOT will
return —1 (True) if the expression is
false, and 0 (false) if the expression is
true.

NOTRACE
APPLE He & 11+
NOTRACE cancels the effects of
TRACE.

IBM PC & PCjr
TROFF cancels the effects of TRON.

COMMODORE 64
Not available on the Commodore be
cause TRACE is not used. Simulation

is possible but would require exten
sive machine-language routines
beyond the scope of this book.

144



TRS-80 Models IV & III
Cannot be simulated without machine
language.

TRS-80 Color Computer
Cannot be simulated without machine
language, but you can create some
siniilar effects with the SOUND
command.

COMMENTS

TRS-80 Models lY & III
Not available. If FLASH is being
simulated, normal operation will be
resumed when you cease simulation.
If inverse printing is enabled on the
Model IV, normal printing may be
resumed by PRINT CHR$(17). In
verse is not available on the Model ni.

TRS-80 Color Computer
Not available. If FLASH is being
simulated, normal operation will be
resumed when you cease simulation.
If inverse printing is enabled, it can be
disabled by SHIFT-0.

COMMENTS

TRS-80 Models IV & III TRS-80 Color Computer COMMENTS
NOT e where e is an expression that
may be tested true or false. NOT will
return 1 (True) if the expression is
false, and 0 (False) if the expression
is true.

NOT e where e is an expression that
may be tested true or false. NOT will
return 1 (True) if the expression is
false, and 0 (False) if the expression
is true.

TRS-80 Models IV & III TRS-80 Color Computer
TROFF cancels the effects of TRON. TROFF cancels the effects of TRON.

COMMENTS

145



OCT$
APPLE He & 11+
The following subroutine will return
the same value as would be returned
by OCT$, stored m the string R$.
Assign the number you wish to con
vert to the variable NUMBER before
calling this subroutme.

1000 DIGIT$="012345678"
1010 R$=""
1015 IF NUMBER< 0 THEN

NUMBERS (65536 + NUMBER)
1 020 I=NUMBER
1030 Q=INT(I/8)
1040R=I-Q*8
1 050 R$=MID$ (DIGIT$ ,R+1,1) +

1060 I=Q
1070 IF I> 0 GOT01030
1080 RETURN

IBM PC & PCjr
OCT$(n) returns the octal value of a
decimal argument, where n is a
numeric expression in the range
—32768-65535. If n is negative, the
two's complement form is used. This
means that OCT$(—n)=OCT$
(65536 -n).

COMMODORE 64
The followmg subroutine will return
the same value as would be returned
by OCr$. The result will be stored in
the string R$. Assign the number you
wish to be converted to the variable
NUMBER before calling this
subroutine.

1015
1020
1030
1040
1050

DIGIT$="012345678"
IF NUMBER< 0 THEN
NUMBERS (65536 + NUMBER)
R$s""

IsNUMBER

QsINT(I/8)
Rsl-Q*8

R$sMID$(DIGIT$,R+1,1)+
R$
IsQ

IF I>0 GOTO 1030
RETURN

ON COM (See COM)

ON ERR GOTO, ON ERROR GOTO, ONERR
APPLE lie &U+
ONERR GOTOn
When an error is encountered after
this statement, program execution
will jump to the routine beginning at
line n, and continue until the word
RESUME is encountered.

IBM PC & PCjr
ONERROR GOTOn
When an error is encountered after

this statement, program execution
will jump to the routine beginning at
line n, and continue until the word
RESUME is encountered.

COMMODORE 64
Not available. Cannot be easily
simulated.

146



TRS-80 Models IV & m
OCT$(n) (Model IV) returns the
octal value of a decimal argument,
where n is a numeric expression in
the range —32768-65535. This func
tion returns the octal value of a deci
mal argument. If n is negative, the
two's complement form is used. This
means that OCT$(—n)=OCr$
<65536- n).

For the Model ID, the following su
broutine will return the same value as

would be returned by OCT$. The
result will be stored in the string R$.
Assign the number you wish to con
vert to the variable NUMBER before
calling this subroutine.

1000 DIGIT$="012345678"
1 010 IF NUMBER< 0 THEN

NUMBERS (65536 + NUMBER)
1015 R$=""
1 020 IsNUMBER
1030 Q=INT(I/8)
1040 R=I-Q*8
1050 R$=MID$ (DIGIT$ ,R+1,1) +

1060 I=Q
1070 IF I> 0 GOT01030
1080 RETURN

TRS-80 Color Computer COMMENTS
The following subroutine will return
the same value as would be returned
by OCT$. The result will be stored in
the string R$. Assign the number you
wish to convert to the variable
NUMBER before calling this
subroutine.

1000 DIGIT$s"012345678"
1010 IF NUMBER< 0 THEN

NUMBERS (65536 + NUMBER)
1015 R$s" "

1020 IsNUMBER
1030 QsINT(I/8)
1040 R=I-Q*8

1050 R$sMID$(DIGIT$,R-i-1,1)-»'

1060 IsQ
1070 IF I>0 GOT01030
1080 RETURN

TRS-80 Models IV & 111
ON ERRORGOTOn
When an error is encountered after
this statement, program execution
will jump to the routine beginning at
line n, and continue until the word
RESUME is encountered.

TRS-80 Color Computer COMMENTS
Not available and cannot be easily
simulated.

147



ON-GOSUB
APPLE He &n+
ON y GOSUB iil(,n2...] causes
conditional program branching,
where v is a numeric expression and
nl, n2... are the beginning line num
bers of subroutines. The value of v
determines the line number executed
by the GOSUB. If v=l, then GOSUB
will reference the first line number. If
v=2 then GOSUB will reference the

second line number, etc. If v is 0 or
^eater than the number of lines
listed, program execution will "fall
through" to the next line. If t is less
than zero, an error condition will
result

IBM PC & PCjr
ON y GOSUB nl|,n2...] causes
conditional program branching,
where y is a numeric expression and
nl, n2... are the beginning line num
bers of subroutines. The value of v
determines the line number executed

by the GOSUB. If y=l, then GOSUB
will reference the first line number. If

y=2, then GOSUB will reference the
second line number, etc. If v is 0 or
greater than the number of lines
listed, program execution will con
tinue with the next line—the GOSUB
will not be executed. If v is less than
zero, an error condition will result.

COMMODORE 64
ON y GOSUB nl[,n2...] causes
conditional program branching,
where y is a numeric expression and
nl, n2... are the beginning line num
bers of subroutines. The value of y
determines the line number executed
by the GOSUB. If y=l, then GOSUB
will reference the first line number. If
y=2, then GOSUB will reference the
second line number, etc. If y is 0 or
greater than the number of lines
listed, program execution will con
tinue with the next line—the GOSUB

will not be executed. If y is less than
zero, an error condition will result.

The following program lines are com
monly used on the Commodore as a
branching method dependent upon
YES and NO responses.

10 ON -(A$="Y")-2*(A$=
"N")GOSUB100,200

20 REM PROGRAM CONTINUES
HERE

99 END

100 REM THIS IS REACHED IF
A$="Y"

110 RETURN

200 REM THIS IS REACHED IF
A$="N"

210 RETURN

If A$= "Y", then the first expression
in parentheses is true and returns the
value —I, while the second expres
sion in parentheses is false and is eval
uated as 0. Line 100 will therefore be
executed from line 10. If A$="N",
then in a similar way the entire state
ment is evaluated as 2 and line 200 is
executed. If A$ is neither "Y" nor
"N", then line 20 is executed. If v is
less than zero, an error condition will
result.

148



TRS-80 Models IV & III TRS-80 Color Computer COMMENTS
ON y GOSUB iil(,n2...1 causes
conditional program branching,
where v is a numeric expression and
nl, n2... are the beginning line num
bers of subroutines. The value of v
determines the line number executed

by the GOSUB. If v=l, then GOSUB
will reference the first line number. If

v=^2, then GOSUB will reference the
second line number, etc. If v is 0 or
greater than the number of lines
listed, program execution will con
tinue with the next line—the GOSUB
will not be executed. If v is less than

zero, an error condition will result.

ON V GOSUB nll,n2...l causes
conditional program branching,
where v is a numeric expression and
nl, n2... are the beginning line num
bers of subroutines. The value of v
determines the line number executed
by the GOSUB. If v=l, then GOSUB
will reference the first line number. If
v=2, then GOSUB will reference the
second line number, etc. If v is 0 or
greater than the number of lines
listed, program execution will con
tinue with the next line—the GOSUB
will not be executed. If t is less than
zero, an error condition will result.

149



ON-GOTO
APPLE He & 11+
ON V GOTO nl[,n2..J causes
conditional branching, where v is a
numeric expression and nl, n2... are
the beginning line numbers of
routines. The value of v determines

the line number executed by the
GOTO. If v=l, then GOTO will
reference the first line number. If
v=2, then GOTO will reference the
second line number, etc. If v is 0 or
greater than the number of lines
listed, program execution will
continue with the next line—the

GOTO will not be executed. If v is
less than zero, an error condition will
result.

IBM PC & PCjr
ON T GOTO nl|,n2...] causes
conditional branching, where v is a
numeric expression and nl, n2... are
the begiiming line numbers of
routines. The value of v determines
the line number executed by the
GOTO. If v=l, then GOTO will
reference the first line number. If
v=2, then GOTO will reference the
second line number, etc. If v is 0 or
greater than the number of lines
listed, program execution will
continue with the next line—the

GOTO will not be executed. If v is
less than zero, an error condition will
result.

COMMODORE 64
ON V GOTO nll,n2...] causes
conditional program branching,
where v is a numeric expression and
nl, n2... are the beginning line
numbers of routines. The value of v
determines the line number executed

by the GOTO. If v=l, then GOTO
will reference the first line number. If

v=2, then GOTO will reference the
second line number, etc. If v is 0 or
greater than the number of lines
listed, program execution will
continue with the next line—the

GOTO will not be executed. If v is
less than zero, an error condition will
result.

ON KEY (See KEY)

ON PEN (See PEN)

ON PLAY (See PLAY)

ON STRIG (SeeSTRIG)

ON TIMER (See TIMER)

150



TRS-80 Models IV & m TRS-80 Color Computer COMMENTS
ON V GOTO nl(,n2...) causes
conditional branching, where v is a
numeric expression and nl, n2... are
the beginning line numbers of
routines. The value of v determines
the line number executed by the
GOTO, If v=l, then GOTO will
reference the first line number. If
v=2, then GOTO will reference the
second line number, etc. If v is 0 or
greater than the number of lines
listed, program execution will
continue with the next line—the

GOTO will not be executed. If v is
less than zero, an error condition will
result

ON y GOTO nll,n2...l causes
conditional branching, where y is a
numeric expression and nl, n2... are
the beginning line numbers of
routines. The value of v determines
the line number executed by the
GOTO. If y=l, then GOTO will
reference the first line number. If
y=2 then GOTO will reference the

second line number, etc. If v is 0 or
greater than the number of lines
listed, program execution will
continue with the next line—the

GOTO will not be executed. If v is

less than zero, an error condition will
result.

EVENT TRAPPING ON THE IBM PC, XT & PCjr
Event trapping causes the program to test for the occurrence of some event before the execution

of each program line. IBM allows event trapping for several actions. If the event has occurred,
program control Is transferred to the line specified In the QOSUB portion of the command. This
powerful feature slows program execution slightly, but the trade-off In power Is worth the slight
delay. In some cases you may want to use event trapping to slow overall execution of a program.
The commands that allow event trapping are as follows:

ONCOMGOSUB
ON KEY(n) GOSUB
ON PEN GOSUB
ON PLAY(n) GOSUB
ON STRIG GOSUB
ON TIMER GOSUB

Notice that ON ERROR, ON... GOTO and ON... GOSUB are not event trapping In the sense of
checking for an action at the beginning of each program line. Also, KEY ON Is not the same as
KEY(n)ON.
These commands are active only If a COMMAND ON, such as KEY (n) ON, Is executed before

them. They are deactivated by a COMMAND OFF, such as KEY(n) OFF. If a COMMAND STOP Is
executed, such as KEY(n) STOP, event trapping at the beginning of each line ceases. However, If
the event occurs after the COMMAND OFF, the computer remembers It, and If a subsequent
COMMAND ON Is encountered, program control will Immediately be transferred to the line
specified In the GOSUB portion of the ON COMMAND GOSUB.
For a detailed description of these commands, see COM, KEY(n), PEN, PLAY, STRIG and TIMER.

151



OPEN
APPLE IIe&n+
PRINT CHR$(4) ; "OPEN
filename, Ln [,Ssl (,Dd] {,Vv|"
OPENs the file specified, where file
name is the name of the file, n is the
length of the records, s is the slot of
the disk drive controller (default=6),
d  is the drive number (de-
fault=currently logged drive), and v
is the volume number of thetlisk. If
you are opening a sequential file, Ln
is not used. It is required only for
random access files.

IBM PC & PCjr
OPEN "filename" [FOR model AS
I#lnum [LEN °=n] or OPEN modeZ,
I#]num,"filename" I,n] OPENs the
specified file, where filename is the
name and/or path for the file. It can
also be a device, such as CASl: or
LPTl:. Mode is either OUTPUT if the
file is to be written to, INPUT if the
file is to be read from, or APPEND if
the file is to be appended to. If mode is
omitted, random access is assumed.
ModeZ is either O if the file is to be

written to, I if the file is to be read
from, or R if the file is to be accessed
randomly. Num is the file
number—range 1-15. If num>3, you
must have set the number of files
with the /F switch when entering
BASIC. Parameter n is the record

length—range 1-32767,
default=128—for random files or for
sequential files in BASIC 2.0 or Car
tridge BASIC.

For a detailed discussion on all the

ramifications of the OPEN statement,
refer to the BASIC Reference Manual,
pages 4-189 through 4-199b or the
Cartridge BASIC Reference Manual,
page 4-233 through 4-239.

If you OPEN a COM adapter with the
OPEN statement, there are many
other parameters available for setting
baud rate, handshaking, etc. This
capability does not exist for other
computers and cannot be easily
simulated. A detailed discussion is

beyond the scope of this book. Refer
to the BASIC Reference Manual,
pages 4-194 through 4-199b for a
detailed discussion, or the Cartridge
BASIC Reference Manual, page 4-240
through 4-246.

COMMODORE 64
OPEN nl,dl,sa[," filename " I,type,
mode]]]] To communicate with any
device, you must OPEN a file to that
device. Parameters that the OPEN
command can take are as follows:

Parameter n is the logical file
number—range 1-255. If n is greater
than 127, a linefeed will be generated
after PRINT#. The number n used in
GET#n, PRINT#n, CLOSEn,
CMDn and INPUT#n causes the
command to relate to the file
OPENed with the number n.

Parameter d is the device number of
the peripheral—range 0-15. Some
commonly encountered device num
bers are O=keyboard, l=cassette
tape, 2=modem, 3=video screen,
4=printer, 8=disk drive.

Parameter sa is the secondary address
or command channel number. The

significance of this depends upon the
device. A value of 0-2 may relate to
the cassette, 0-10 may relate to the
printer, and 2-15 may relate to the
disk drives.

Type is the type of file. The default is
a program file. If type=S, it is a
sequential file, and if type=R, it is a
relative file.

Mode is the mode of access. If
mode=R, it is for reading. If
mode=W, it is for writing. And if
mode=A, it is for appending.

The actual usage of OPEN varies from
device to device, so a few examples
help clarify its use.

Cassette: Device 1
A secondary address of 0 indicates the
file is to be read. A 1 indicates data
will be written to it.

10 0PEN2,1 ,0,"file"
20 INPUT#2, A$: REM 6ET#2,

A$ COULD BE USED
30 CLOSE 2

The above lines will read one byte of
data, A$, from a cassette sequential
file named "file".

10 0PEN2,1,1
20 PRINT#2, A$
30 CLOSE 2

152



TRS-80 Models IV & III TRS-80 Color Computer COMMENTS
OPEN, "mode", num, "filename"
l,n] OPENs a file, where mode speci
fies how the file will be used. Num is

the buffer number—range 1-15. File
name is the name of the file, and n is
the record length for random access
files. Parameter n is not specified for
sequential access files—default=256.
The mode may be one of the
following: O for sequential output, 1
for sequential input, E for extended
mode (appending to sequential files),
D or R for random input/output.

OPEN "mode", #num,"filename"
I,nl OPENs a file, where mode speci
fies how the file will be used, num is
the buffer number, filename is the
name of the file, and n is the record
length for random access files.
Parameter n is not specified for
sequential access files—default=256.
The mode may be one of the
following: O for sequential output, 1
for sequential input, D for random
input/output Paratneter num may be
0 for display and keyboard, —1 for
cassette, —2 for printer, or 1-15 for
disk drives.

The above lines will write one byte of
data, A$, to a cassette sequential file
named "file".

Printer: Device 4

Here, you should use nothing after
the device number, so OPEN 1,4 will
OPEN the printer. There are two dif
ferent ways of printing to the printer,
depending on whether or not CMDn
is used.

10 0PEN1 ,4
20 PRINT#1 , A$
30 CLOSE 1

will print the string A$ on the printer.
Using CMD diverts all output to file
n, until a PRINT# statement is
encountered, which disables CMD.
10 OPEN 1,4
20 CMD1
30 PRINT A$
40 PRINT# 1
50 PRINT B$
60 CLOSE 1

will print A$ to the printer, and B$ to
the screen. A secondary address of 7
on the Commodore 1525 printer
selects a different character set.

Disk Drive: Device 8

On the disk drive, secondary ad
dresses of 2-14 have no particular
significance. But 15 is reserved for the
command channel.

10 0PEN1 ,8,2, "file,S>R"
20 INPUT#1 , A$ : REM

GET#1 ,A$ COULD ALSO BE
USED

30 CLOSE 1

will read one byte of data, A$, from
the disk sequential file named file.
Using 15 as a secondary address is il
lustrated as follows:

10 0PEN1,8,15
20 INPUT#1 , E, E$, T, S
30 IPE$<> "OK" THEN PRINT

E;E$;T;S: CLOSE 1: END
40 REM REST OF PROGRAM GOES

HERE

This routine identifies any disk drive
errors, for example, FILE NOT
FOUND. If E$="OK", no error
exists. If an error exists, then the
error number, error message, track
and sector are displayed. This routine
resets the error channel to normal.
Secondary address 15 is also used to
send commands to the disk operating
system. For example:

10 0PEN1,8,15
20 PRINT#1,"80:filename"
30 CLOSE 1

Will delete (SCRATCH, BULL) the
file named filename from the disk in
the drive. Secondary addresses of 0
and 1 are associated with loading and
saving and are undocumented and
seldom used.

153



OPTION BASE
APPLE ne&II+
The option base for Apple is always 0.
Thus, an array will automatically have
11 elements (0-10) if it is not
DIMensioned,

IBM PC & PCjr
OPTION BASE 1 sets the minimum
array subscript value to 1. Thus, if an
array is not DIMensioned, it will auto
matically have 10 elements (1-10). If
you try to use OPTION BASE after
any anays are DIMensioned or used,
an error will occur. In BASIC 1.1 or
earlier, a program that is being
chained cannot have an OPTION
BASE command.

If OPTION BASE is not declared, the
option base is 0. In that case an array
will automatically have II elements
(0-10) if it is not DIMensioned.

COMMODORE 64
The option base for the Commodore
64 is always 0. Thus, an array will au
tomatically have II elements (0-10) if
it is not DIMensioned.

OR
APPLE lie & 11+
OR is a logical and bitwise operator. It
allows an evaluation of two items, re
turning True (1) if either of the
values is true or non-zero. The logic
table for OR follows:

X

T
T
F

F

y
T

F

T

F

xORy
T

T
T

F

IBM PC & PCjr
OR is a logical and bitwise operator. It
allows an evaluation of two items, re
turning True (1) if either of the
values is true or non-zero. The logic
table for OR follows:

X

T

T

F

F

y
T

F

T

F

xORy
T

T

T

F

COMMODORE 64
OR is a logical and bitwise operator. It
allows an evaluation of two items, re
turning True (—1) if either of the
values is true or non-zero. The logic
table for OR follows:

X

T

T

F

F

y
T

F

T

F

xORy
T

T
T

F

OUT
APPLE lie &U+
Use of ports on the Apple is not posa-
ble without assembly-language rou
tines or extensive PEEKs and
POKEs, and is thus beyond the scope
of this book. A good reference on the
subject is The Apple Connection by
James W.Coffroa

IBM PC & PCjr
OUT n,m sends a byte to a machine
output port, where n is the port
number—range 0-65535—and m is a
numeric expression representing the
data—range 0-255. OUT is the oppo
site of INP, which reads a byte at a ma
chine port

COMMODORE 64
Use of ports on the Commodore 64 is
not possible without the use of
assembly-language routines or exten
sive PEEKs and POKEs, and is thus
beyond the scope of this book.

154



TRS-80 Models IV & III
OPTION BASE 1 (Model IV) sets
the minimum array subscript value to
1. Thus, if an array is not
DIMensioned, it will automatically
have 10 elements (1-10). If you try to
use OPTION BASE after any arrays
are DIMensioned or used, an error
will occur.

If OPTION BASE is not declared, the
option base is 0. In that case an array
will automatically have 11 elements
(0-10) if it is not DIMensioned.

The option base for the Model m is
always 0. Thus, an array will automati
cally have 11 elements (0-10) if it is
not DIMensioned.

TRS-80 Color Computer
The option base for the COCO is
always 0. Thus, an array will automati
cally have 11 elements (0-10) if it is
not DIMensioned.

COMMENTS

TRS-80 Models IV & III TRS-80 Color Computer COMMENTS
OR is a logical and bitwise operator. It
allows an evaluation of two items, re
turning True (1) if either of the
values is true or non-zero. The logic
table for OR follows:

X

T
T

F

F

y
T
F

T

F

xORy
T
T

T
F

OR is a logical and bitwise operator. It
allows an evaluation of two items, re
turning True (1) if either of the
values is true or non-zero. The logic
table for OR follows:

X

T

T

F
F

y
T

F

T

F

xORy
T

T

T

F

TRS-80 Models IV & m TRS-80 Color ComputeT COMMENTS
OUT ii,m sends a byte to a machine
output port, where n is the port
number—range 0-255—and m is a
numeric expression representing the
data—range 0-255. OUT is the oppo
site of IN?, which reads a byte at a ma
chine port.

Use of ports on COCO is not possible
without the use of assembly-language
routines or extensive PEEKs and
POKEs, and is thus beyond the scope
of this book.

155



PAINT
APPLE lie & 11+
Fill routines, such as accomplished by
PAINT, are not easily simulated on
the Apple in BASIC. Machine-
language graphics utilities are com
mercially available for this function. If
the figure to be PAINTed is a regular
figure or has easily defined
boundaries, you can use PLOT,
HPLOT, LINE or HLINE to define
and fill them. For example;

10 FOR y=y1 TO y2: FOR x=x1
to x2

20 HPLOTx,y: NEXTx; NEXTy

will draw a solid, filled box at xl,yl
with the diagonally opposite comer at
x2,y2. Note: xl must be less than x2,
and yl must be less than y2.

Similar algorithms may be defined for
other regular shapes. These algo
rithms may be stored in subroutines
and recalled as needed. This is not

exactly the same as PAINT, but may
fulfill the same need in some cases
without resorting to machine
language.

IBM PC & PCjr
PAINT (x,y) [,color] [.boundary]
I,background] fills in an area on a
graphics screen with a specified color
or pattem, where x and y are coordi
nates within the outline to be filled. If
parameter color is numeric, it specifies
the color to use for filling. See
COLOR for valid numeric values to
use for color.

If parameter color is a string
expression—BASIC 2.0 or Cartridge
BASIC only—then "tiling" occurs.
Tiling allows you to set individual
pixels in a specified pattern. A
detailed explanation of tiling is
beyond the purpose of this book.
Refer to the BASIC Reference
Manual, pages 4-204a through 4-204f
for a complete discussion, or Cartridge
BASIC Reference Manual pages 4-252
through 4-256.

Parameter boundary specifies the
color of the edges or boundaries of
the figure to be filled. Parameter back
ground is a one-byte string expression
that is used when tiling.

COMMODORE 64
Fill routines, such as accomplished by
PAINT, are not easily simulated on
the Commodore 64 in BASIC.
Machine-language graphics utilities
are commercially available for this
function. If the figure to be PAINTed
is a regular figure or has easily defined
boundaries, you can fill it by repeat
edly simulating HPLOT. For example:

1 00 REM HIGH RES SCREEN
ROUTINE GOES HERE

300 F0RV=Y1 TO Y2 STEP
SGN(Y2-Y1)

310 FOR H=X1 TO X2 STEP
SGN(X2-X1)

320 GOSUB1000
330 NEXT: NEXT
999 END

1000 REM PLOT SUBROUTINE GOES
HERE

will draw a solid, filled rectangle at
XI,Yl with the diagonally opposite
corner at X2,Y2. Before calling this
routine the high-resolution screen
routine must be called. See HGR. Su
broutine 1000 is the set-point
subroutine. See HPLOT. Similar al
gorithms may be defined for other
regular shapes. Note that this is not
exactly the same as PAINT, but may
fulfill the same need in some cases

without resorting to machine
language.

PALETTE, PALETTE USING
APPLE Ue&n+
Not avaUable. Cannot be simulated.

IBM PC & PCjr
PALETTE [attribute] [.color]
(Cartridge BASIC Only) assigns the
number color to the attribute number

attribute. The range for each is 0-1,
0-3 or 0-15, depending on which
SCREEN is in use. See COLOR or

SCREEN for a list of valid color
numbers. If attribute is omitted, it
defaults to the maximum attribute for
that SCREEN. If color is omitted, the
attribute will be reset to its default. If
both attribute and color are omitted,
all attributes are reset to their default
values. PALETTE does not affect
background, only the objects or text
in the foreground color.

COMMODORE 64
Not available. Cannot be simulated.

PALETTE USING [arrayname
(start)] (Cartridge BASIC Only) as
signs the colors for attributes using
the values from the array arrayname,
starting at position start within the
array. The array must have at least 16
elements past position start. The
range for the elements is 0-15, based
on the number of attributes available
for that SCREEN. See SCREEN. If
you do not wish to change a color, use
—1 in the appropriate position in th?
array. Also see COLOR.

156



TRS-80 Models IV & III
Because TRS-80 Models IV and III do
not have color capabilities, PAINT
cannot be simulated. See PRINT® on
the Model IV and SET on the Model

ni to create solid, regular figures.

TRS-80 Color Computer
PAINT (x,y),color,boundary fills a
figure with the appropriate color,
where x and y are the coordinates at
which to begin fUling. Parameter
color—range 0-8—specifies the color
with which to fill. Parameter
boundary—range 0-8—specifies the
color of the edges or boundaries of
the figure to be filled.

Possible values for color and boundary
follow:

COMMENTS

0 Black 5 Buff

1 Green 6 Cyan
2 Yellow 7 Magenta
3 Blue 8 Orange
4 Red

TRS-80 Models IV & m TRS-80 Color Computer
Not available. Cannot be simulated. Not available. Cannot be simulated.

COMMENTS

187



PCLEAR
APPLE lie & n+
Apple BASIC has no specific way to
reserve memory for graphics. This
can be a problem because the program
can write over the graphics screens.
You can, however, protect an extra
page of low-resolution graphics with
the following program lines, which
must be executed before the program
is loaded. This program calls the pro
gram "filename", which would be
your main program.

10 POKE103,0:POKE104,12
20 POKE 2048,0
30 RON "filename"

To protect your high-resolution
pages, use HIMEM:8192 if your pro
gram is small. Or you can use the fol
lowing program lines. They force
some low-memory loss, but not as
much as becomes unavailable by
using HIMEM:.

10 POKE 103,1: POKE 104,96
20 POKE24576,0
30 RUN "filename"

IBM PC & PCjr
The amount of memory available for
graphics is static on the PC. It cannot
be written over by the program.
Therefore, there is no need to simu
late PCLEAR.

CLEAR [,[n] I,m] I,v]] (Cartridge
BASIC Only) clears memory, where n
is the optional number of bytes you
want for BASIC workspace. Parameter
m is the optional stack space you
desire. Parameter v specifies the total
number of bytes to set aside for video
memory. Used alone, CLEAR frees
all memory, erases all DIMs, DEFs
and variable values, and sets any
SOUND, PLAY, PEN and STRIG
values to OFF.

COMMODORE 64
The Commodore 64 has no specific
way to reserve memory for graphics.
This can be a problem because the
program can write over the graphics
screens. The high-resolution screen
used under HGR could be protected
by using the counterpart of HIMEM:

10 POKE 51,0: POKE 52,32:
POKE 55,0: POKE 56,32:
CLR

Protecting other graphics pages could
be achieved in a similar way, but a dis
cussion of that is beyond the scope of
this book because of the complex
nature of other graphics screens.

PCLS
APPLE He & 11+
HOME clears the screen and places
the cursor in the upper-left corner in
the text mode.

To clear the high-resolution screen to
black, use the following call:

CALL -3086

To clear the high-resolution screen to
the most recent HCOLOR, use the
following call:

CALL -3082

IBM PC & PCjr
CLS clears the screen or the active
viewport to the current background
color and places the cursor in the
upper-left corner if the computer is in
text mode, or center of screen if the
computer is in a graphics mode.

COMMODORE 64
PRINT CHR$(147); wiU clear the
screen and move the cursor to the

upper-left corner of the screen.

158



TRS-80 Color Computer
Because TRS-80 Models m and IV do
not have graphics, there is no way and
no need to simulate PCLEAR.

TRS-80 Color Computer
PCLEAR n protects graphics
memory, where n is a numeric expres
sion in the range 1-8. This specifles
the number of memory pages to be
reserved, protecting that memory
space from being used by the program
for other purposes.

COMMENTS

TRS-80 Models IV & III
CLS clears the screen, but always to
black.

TRS-80 Color Computer
PCLS In] clears the current graphics
screen, where n is an optional
parameter specifying the color with
which to clear the screen. If n is

omitted, the current background
color is used.

COMMENTS

159



PCOPY
APPLE ne& 11+
You can quickly move from displaying
one graphics screen to another with
the following program lines. If you al
ready have the screens DRAWn or
BLOADed, you need not use lines 50
and 60. This code assumes that your
pictures were BSAVEd in the files pic-
turel and picture!. If you are switch
ing to page 1, use line 80. If you are
switching to page 2, use line 90. Using
the code as it is will switch from page
1 to page 2 so fast you probably won't
see page I. You could put a counting
loop in line 85 if you want to see them
both.

50 PRINTCHR$(4) ;BLOAD
picture1,A$2000:REM
LOAD HI-RES PAGE 1

60 PRINT CHR$ (4) ; BLOAD
picture2,A$4000:REM
LOAD HI -RES PAGE 2

70 POKE -16304,0: POKE
-16302,0: POKE -16297,0

80 POKE -16300,0: REMCALLS
PAGE1

90 POKE -16299,0 : REM CALLS
PAGE 2

IBM PC & PCjr
In the text mode IBM allows only
eight pages—numbered 0-7—when
the value of WIDTH=40. It allows
only four pages—numbered 0-3—
when the value of WIDTH=80. You
can switch between the page displayed
on the screen with the following pro
gram lines, where v is the page
number of the page to be viewed. The
three commas are mandatory. See
SCREEN for an explanation of its
other features.

1 0 SCREEN , , , V

BASIC 2.0 and earlier versions allow

only one graphics screen. The quickest
way to load a complete graphics
screen is to BLOAD it with the follow
ing program lines:

1 0 DEF SEG=&HB8000 : BLOAD
filename,0

where filename is the name under

which you BSAVEd the screen.

PCOPY Isource], [destination] (Car
tridge BASIC Only) where source and
destination are the numbers of valid
graphics pages. This command copies
the contents of source onto
destination. The range for source and
destination are determined by the
amount of memory required for each
(see SCREEN) and by the on-board
memory available as determined by
the CLEAR cormnand.

COMMODORE 64
Simulating PCOPY on the Commo
dore would require a machine-
language program, or extensive
PEEKS and POKES. Such discussion

is beyond the scope of this book.

160



TRS-80 Models IV &ni TRS-80 Color Computer COMMENTS
TRS-80 Models IV and III have only PCOPY source TO destination will
one screen available, so it is not possi- copy the contents of graphics page
ble to simulate PCOPY on them. source onto graphics page

destination. Parameters source and
destination may be in the range 1-8,
depending on the PMODE.

161



PDL
APPLE lie & 11+
PDL(ii) returns a value related to the
position of the joystick, where n is an
integer in the range 0-225. If values
other than 0,1, 2 or 3 are used, PDL
will give erratic and unpredictable
results! Values of 0-3 will return a
"resistance variable" for the respec
tive paddle between 0 and 150K
ohms. This value must then be inter
preted to produce the desired results.
This will require extensive program
ming changes when converting to or
from other computers.

Although it can handle four paddles,
the Apple can read the status of only
three paddle buttons. This is accom
plished with PEEK(—16287) for the
value of the button on paddle 0,
PEEK(—16286) for paddle 1, and
PEEK(—16285) for paddle 2. If the
value returned is greater than 127,
then the button is being pressed.

IBM PC & PCjr
STICK(n) where n is an integer in
the range 0-3, STICK returns the
coordinates of the joysticks.
STICK (0) obtains the values of both
joysticks, but returns the x coordinate
of joystick A. STlCK(l), ST1CK(2)
and ST1CK(3) do not sample the
joystick, but return the coordinates re
trieved by the most recent STICK (0).
STlCK(l) returns the y coordinate of
joystick A. ST1CK(2) returns the x
coordinate of joystick B. STICK (3) re
turns the y coordinate of joystick B.

STRIGON

STRIG(n)
STRIG OFF where n is an integer
from. 0-3 in BASIC—or 0-7 in
Cartridge, Advanced or Compiler
BASIC—STRIG ON causes the pro
gram to begin checking the status of
the joystick buttons at the beginning
of execution of each program line.

Value If Value If

Button Button
Button Has Been Is Being

B Value Number Pressed Pressed Default
0 A1 -1 0

1 A! -1 0

2 B1 -1 0
3 B1 -1 0

The following apply to Advanced,
Cartridge and Compiler BASIC only.

-I 0
-I 0

A2
A2

B2

B2

STRIG(n) ON
ON STRIG (n) GOSUB line
STRIG(n) STOP
STRlG(n) OFF
These commands control event trap
ping for the specified joystick button
n. The value of n is determined by the
chart below. The parameter
line—range 1-65535—specifies a line
to GOSUB to if the specified button
has been pressed.

n  Button

0  A1
2  B1
4  A2

6  B2

When STRIG (n) ON has been speci
fied and the ON STRlG(n) GOSUB
line command is in effect, BASIC
checks at the beginning of execution
of each line to see if the button has
been pressed. If it has, the GOSUB is
executed. If not, program execution

COMMODORE 64
The Commodore 64 supports two
game ports, 1 and 2. The joystick in
port 1 is read by PEEKing 56321,
while port 2 is read by PEEKing
56320. The number returned by the
PEEK is logically ANDed with 15 to
indicate the direction according to the
chart below.

NW=10 North=14 NE=6
West=ll Home=15 East=7
SW=9 South=13 SE=5

To read the "fire" button, the
number returned is logically ANDed
with 16. If the value resulting is 16,
the button is not pressed. If the value
is 0, the button is pressed.

The following program lines demons
trate how to read Port 2:

10 FOR 1=0 TO 10 : READ
D$(I) : NEXT

20 DATASE,NE,E ,,SW,NW,
W,,S ,N,H,

30 F$(0)="FIRE":
F$(1)="SAFE"

40 PRINT CHR$( 147);
5 0 PRINT CHR$ (19) D$ ((PEEK

(56320)AND15)-5)
60 PRINTF$((PEEK(56320)

AND16)/16)
70 GOTO 50

continues uninterrupted. STRIG (n)
STOP causes trapping to cease, but
the computer remembers whether the
button was pressed. If so, when a
STRIG (n) ON is executed, the
GOSUB is executed immediately.
STRIG (n) OFF causes trapping to
cease, and even if the button is
pressed it will not be remembered.

162



TRS-80 Models IV & III
Joysticks and paddles are not currently
supported on TRS-80 Models IV or
m, although some independent or
ganizations have devised joysticks
that work through the cassette port

TRS-80 Color Computer
JOYSTKCn) returns a coordinate of
the joystick, where n is an integer
from 0-3. If n=0, it returns the hori
zontal coordinate of the right joystick.
If n=I, it returns the vertical coordi
nate of the right joystick. If n=2, it re
turns the horizontal coordinate of the
left joystick. If n=3, it returns the
verticd coordinate of the left joystick.

The buttons of the joystick are ac
cessed by PEEKing memory location
65280. PEEK(65280) will return 127
or 255 if no button is pressed. It will
return 126 or 254 if the right button is
pressed, or 125 or 253 if the left
button is pressed.

COMMENTS

163



PEEK
APPLE He &n+
PEEK(iii) where m is a valid memory
location. The command will return
the value of the contents of memory
location m.

IBM PC & PCjr
PEEK(ni) where m is a valid memory
location offset from the currently
DEFined SEGment. The command
will retum the value of the contents of
memory location m.

COMMODORE 64
PEEK(m) where m is a valid memory
location. The command will retum

the value of the contents of memory
location m.

MEMORY-READ

It is possible to PEEK into the 154rs
RAM and ROM areas by using the
M-R command as follows:

10 0PEN15,8,15
20 PRINT#15,

"M-R"CHR$(L)CHR$(H)
30 GET#15, A$: IFA$="" THEN

A$=A$-I-CHR$(0)
40 CLOSE 15

Here, parameters L and H are the
decimal low and high bytes of the
address—in hexadecimal—of the loca
tion to be read. Large amounts of data
PEEKed in this w^y take a long time
to complete.

PEN
APPLE He & 11+
The method of interfacing with a light
pen on the Apple depends on the
specific supplier of the light pen. The
necessary documentation and soft
ware should accompany the light pen.

IBM PC & PCjr
PEN ON

ONPENGOSUBline
PEN STOP (Advanced, Cartridge
and Compiler BASIC Only)
PEN OFF

These commands enable or disable

trapping for the use of the light pen.
The parameter line—range 1-65535
—specifies a line to GOSUB if the pen
has been used.

When PEN ON has been specified
and the ON PEN GOSUB line com
mand is in effect, BASIC checks at the
beginning of execution of each line to
see if the pen has been used. If it has,
the GOSUB is executed. If not, then
program execution continues
uninterrupted. PEN STOP causes
trapping to cease, but the computer
remembers whether the pen was
used. If so, when a PEN ON is
executed, then the GOSUB is execut
ed immediately. PEN OFF causes
trapping to cease, and even if the pen
is used, it will not be remembered.

Do not use cassette I/O with the pen
in use.

COMMODORE 64
Though the Commodore 64 supports
a  light pen, there is no PEN
command. Its simulation is beyond
the scope of this book. Refer to the
Commodore 64 Programmer's Refer
ence Manual, page 348. Any commer
cially available light pen should come
with the appropriate software to read
it.

PEN (n) reads the light pen
coordinates, where n is an integer in
the range 0-9. The pen is read accord
ing to the following:

n=0 If the pen was used since the last
time checked, it returns —I.
Otherwise it returns 0.

n=l Returns the most recent x coor
dinate where the pen was
activated—range 0-319 in
medium resolution, 0-639 in
high resolution.

n=2 Returns the most recent y coor
dinate where the pen was
activated—range 0-199.

164



TRS-80 Models IV & III
PEEK(m) where m is a valid memory
location. The command will return

the value of the contents of memory
location m.

TRS-80 Color Computer
PEEK(ni) where m is a valid memory
location. The command will return

the value of the contents of memory
location m.

COMMENTS

TRS-80 Models IV & III TRS-80 Color Computer COMMENTS
Light pens are not currently supported
by Radio Shack.

Light pens are not currently supported
by Radio Shack.

n=3 Returns — 1 if the pen is current
ly down, 0 if the pen is currently
up.

n=4 Returns the most recent x coor

dinate of the pen—range 0-319
in medium resolution, 0-639 in
high resolution.

n=5 Returns the most recent y coor
dinate of the pen—range 0-199.

n=6 Returns the number of the line
where the pen was last activated
in text mode—range 1-24.

n=7 Returns the number of the
column where the pen was last
activated in text mode—range
1-40 or 1-80, depending on
screen WIDTH.

n=8 Returns the number of the line
where the pen was last activated
in text mode—range 1-24.

n=9 Returns the number of the
column where the pen was last
activated in text mode—range
1-40 or 1-80, depending on
screen WIDTH.

165



PLAY
APPLE lie & 11+
Not available. Cannot be simulated
without using machine-language
subroutines.

IBM PC & PCjr
PLAYsl$
PLAY sl$(,[s2$](,s3$]| (Cartridge
BASIC Only) plays notes, where sl$
is a string expression specifying the
note, octave, note length, tempo,
volume and pause-length. Parameters
s2$ and s3$ are similar but control
voices 2 and 3 in Cartridge BASIC.
Notes are specified with the letters A
to G, with an optional # (sharp), +
(sharp), or — (flat). Notes may also
be specified with integers in the range
0-84, with 0 representing a rest. The
note must actually exist on the piano
keyboard.

Octaves are specified by the letter O,
followed by a numeral from 1-7. If
octave is omitted, 04 is used. You can
also change octaves by using < to
lower the octave and > to raise the

octave.

Note lengths are specified by the
letter L, followed by a numeral from
1-64. If note length is omitted, current
note length is used. Actual note
length is I/n, where n is the length
specified. Dotted notes are achieved
by use of a period after the note.

Tempo is specified by the letter T, fol
lowed by a numeral from 32-255. If
tempo is omitted, T120 is used. MF
causes program execution to await
completion of play of each note
(foreground mode).
MB causes the note to be played
while program execution continues
(background mode). Up to 32 notes
may be buffered this way. MN causes
normal play of the notes. That is, each
note plays for 7/8 of the time specified
by L. ML (legato) causes each note to
play the full length specified by L. MS
(staccato) causes each note to play
3/4 the length specified by L. Pause-
length is specified by the letter P, fol
lowed by a numeral from 1-64.

Volume (Cartridge BASIC only) is
controlled by the letter V, followed by
an integer in the range 0-15
(default=8). Volume is invalid only
when a SOUND ON has been
executed.

COMMODORE 64
Though the Commodore 64 supports
extensive sound capabilities, there is
no PLAY command. Its simulation is

beyond the scope of this book. For a
good discussion of generating sound
from BASIC programs, see Your Com
modore 64 by Heilbron and Talbot or
How to Program Your Commodore 64
by Carl Shipman. Also, machine-
language sound utilities are commer
cially available for this function.

You can set up a string variable with
music commands and cause them to
be executed with the command Xn;,
where n is the name of the string. The
numbers used in music commands
can also be variables, if you use the
form C=n;, where C is the command
and n is the variable. Note that the
semicolon is required, except when
using MF, MB, MN, ML, or MS—in
which cases it is not allowed.

Variables may also be used in the
forms

PLAY "C"+VARPTR$ (n$)
PLAY"C="+VARPTR$(n)

where C is the command and n is the
variable specifying the string to be
played or the numeric argument for
the command.

FLAY(n) (BASIC 2.0 or Cartridge
BASIC Only) returns the number of
notes in the music background buffer,
where n is a dummy numeric
argument. This command has mean
ing only when the music is in the back
ground mode—otherwise it always re
turns 0. The maximum number of
notes that may be buffered is 32.

166



TRS-80 Models IV & III TRS-80 Color Computer
Not available on the Models IV or HI
and cannot be simulated without

machine-language subroutines and
hardware modification.

PLAY s$ plays notes, where s$ is a
string expression specifying the note,
octave, note length, tempo, volume
and pause-length. Notes are specified
with the letters A to G, or a numeral
from 1-12. Octaves are specified by
the letter O, followed by a numeral
from 1-5. If octave is omitted, 02 is
used. Note lengths are specified by
the letter L, followed by a numeral
from 1-255. If note length is omitted,
the current note length is used.
Tempo is specified by the letter T, fol
lowed by a numeral from 1-255. If
tempo is omitted, T2 is used. Volume
is specified by the letter V, followed
by a numeral from 1-31. If volume is
omitted, V15 is used. Pause-length is
specified by the letter P, followed by a
numeral from 1-255.

COMMENTS

Differs from SOUND in that SOUND
is oriented toward absolute pitch in
cycles per second (decimal). PLAY is
oriented toward a piano-s^le note
system (octal).

PLAY ON

PLAYOFF

PLAY STOP
ON PLAY (n) GOSUB (fine)
These commands enable or disable
trapping for the status of the music
buffer. The parameter line—range
1-65535—specifies a line to GOSUB
to if the music buffer has fewer than

n—range 1-32—notes in it. These
commands are used only when music
is in the background mode.

When PLAY ON has been specified
and the ON PLAY GOSUB line com

mand is in effect, BASIC checks at the
beginning of execution of each line to
see if the music buffer has fewer notes

in it than specified by the PLAY(n)
statement. If it has, the GOSUB is
executed. If not, then program execu
tion continues uninterrupted. PLAY
STOP causes trapping to cease, but
the computer remembers whether the
buffer contains fewer than n notes. If
so, when a PLAY ON is executed, the
GOSUB is executed immediately.
PLAY OFF causes trapping to cease,
and even if the buffer has fewer notes
than n, it will not be remembered.

167



PLOT
APPLE He & 11+
PIOT h,v places a block at the speci
fied coordinates on the low-resolution
screen, using the current low-
resolution display color. Parameter h
specifies the horizontal
coordinate—range 0-39—and v speci
fies the vertical coordinate—range
0-39 with text window, 0-47 with full
screen graphics.

IBM PC & PCjr
PSET (x,y)I,coIor] sets a point to the
specified color, where x and y are
valid coordinates on a graphics
screen. The values available for color

are determined by the current
SCREEN. See SCREEN. If color is
not specified, the point will be set to
the foreground color.

DRAW "lXln$"
DRAW "X" -1- yARPTR$(n$)
draws the object specified by the
graphics language commands in n$. If
n$ is a constant it must be enclosed in
quotation marks, but the X may be
omitted. The second method of using
DRAW is primarily for those pro
grams that will be compiled, but is
legal syntax for interpretive programs
too. For a discussion of the graphics
language commands, see DRAW.

COMMODORE 64
Simulate it with the following routine.
It will print the letter A at row 20,
column 30. Of course, any character
could be printed in place of A, includ
ing any graphics character.

10 R=20:C=30
20 POKE 783,0: POKE781 ,R:

POKE 782,0
30 SYS 65520 : PRINT "A" ;

Here, parameter R must be in the
range 0-24. Parameter C must be in
the range 0-39. If you attempt to print
in the lower-right screen comer, the
screen will scroll up.

PMAP
APPLE He &U+
Not available. Carmot be simulated.

IBM PC & PCjr
PMAP (BASIC 2.0 and Cartridge
BASIC Only) is used to translate be
tween the world coordinate system
and the physical coordinate system as
defined by the VIEW and WINDOW
commands. These commands cannot

be simulated on other machines. See

the IBM BASIC Reference Manual,
page 4-212b or 4-275 through 4-276
in the Cartridge BASIC Reference
Manual for complete reference to this
powerful command.

COMMODORE 64

Not available. Cannot be simulated.

168



TRS-80 Models IV & III
PRINT @ (v,h) ,CHR$ (191);
(Model IV) may be used to simulate
PLOT, where v specifies the vertical
coordinate and h the horizontal
coordinate. This statement will place a
graphics block (CHR$(191)) at the
specified screen location. Parameter v
may be in the range 0-23, and parame
ter h may be in the range 0-79. There
is no way to simulate the color func
tion of PLOT on the TRS-80.

SET (h,v) (Model III) may be used
to simulate PLOT, where h specifies
the horizontal coordinate and v speci
fies the vertical coordinate. This state
ment will place a graphics block at the
specified screen location. Parameter h
may be in the range 0-127, and
parameter v may be in the range 0-47.
There is no way to simulate the color
function of PLOT on the TRS-80,

TRS-80 Color Computer
S£T(h,y,c) may be used to simulate
PLOT, where h specifies the horizon
tal coordinate, v specifies the vertical
coordinate, and c specifies the color to
be SET. This statement will place a
graphics block at the specified screen
location. Parameter h may be in the
range 0-63. Parameter v may be in the
range 0-31. Parameter c may be in the
range 0-8.

COMMENTS

TRS-80 Models IV & lU TRS-80 Coloi Compnter
Not available. Caimot be simulated. Not available. Cannot be simulated.

COMMENTS

169



PMODE
APPLE He & 11+
GR causes the Apple to display the
currently specified page of the low-
resolution graphic screens. If no page
has heen specified, page 1 is assumed.
This screen will normally be 40 rows
by 40 columns with the bottom 8 rows
open for up to 4 lines of text. A full 48
row by 40 column screen can be ob
tained by following the GR statement
with POKE -16302,0: CALL-1998.

HGRI2] causes the Apple to display
the currently specified page of the
high-resolution graphics screen. If 2 is
not specified, page 1 is assumed. This
screen will normally be 280 columns
by 160 rows, with a window at the
bottom consisting of 4 rows of text.
Following the HGR statement with
POKE —16302,0 will change the
window to graphics, giving a full
280x192 graphics display.

IBM PC & PCjr
SCREEN [ml(,[cH,a][,T])l sets the
screen attributes to be used, and may
be used to simulate PMODE. Parame
ter m represents the SCREEN mode
to be used. Default=current
SCREEN mode. Possible screens
follow:

SCREEN 0 is the text mode at current
WIDTH (40 or 80). In Cartridge
BASIC, WIDTH 80 is available only if
you have 128K RAM.

SCREEN 1 is the four-color,
medium-resolution graphics mode
(320x200).

SCREEN 2 is the two-color, high-
resolution graphics mode (640x200).

SCREEN 3 (Cartridge BASIC Only)
is the 16-color, low-resolution graph
ics mode (160x200).

SCREEN 4 (Cartridge BASIC Only)
is the four-color, medium-resolution
graphics mode (320x200).

SCREEN 5 (Cartridge BASIC Only)
is the 16-color, medium-resolution
graphics mode (320x200). Requires
128KRAM.

SCREEN 6 (Cartridge BASIC Only)
is the four-color, high-resolution
graphics mode (640x200). Requires
128KRAM.

Parameter c enables or disables color.

If m=0 and c=0, color is disabled.
Otherwise, it is enabled. If m=l, the
opposite is true. Color is enabled by
c=0, but otherwise disabled. If m=2,
c will have no effect. Parameters a and
v may be specified only in the text
mode (m=0) and have a range of 0-7
if W1DTH=40, or 0-3 if
WIDTH=80. Parameter a specifies
the active page, that is, the page to be
affected by output statements to the
screen. Default=current page.
Parameter v specifies the visual page,
that is, the page displayed. Default=a.

COMMODORE 64
The following program lines set the
Commodore 64 into high-resolution
mode with a 320 column by 200 row
display screen, having two colors
available. The colors are determined

by parameters P and B in line 140.
Parameter P represents the pixel
color and B the background. Parame
ters P and B are in the range 0-15. For
actual color values, see COLOR. In
this example, the background is blue
and the pixels are black.

100 POKE53272, PEEK(53272)
OR 8

110 POKE 53265, PEEK (53265)
OR 32

120 FOR 1=8192 TO 16191

130 POKE 1,0: NEXT
140 P=0: B=6
150 FOR 1=1024 TO2032

160 POKE I,P* 16+ B: NEXT

Lines 120-130, which clear the high-
resolution screen, take about 45
seconds to execute. If desired, they
could be replaced by the single line:

120 SYS2024

This line executes almost
immediately. However, prior to call
ing this line, the following program
lines are necessary:

10 FOR 1=2024 TO 2047: READ
A: POKE I,A: NEXT

20 DATA 169, 0, 168, 132,
251 , 162, 32, 134

30 DATA 252, 145, 251 , 200,
208, 251 , 232, 224

40 DATA 64, 240 , 4, 134,
252, 208, 242, 96

Other high-resolution screens are
available on the Commodore 64, but
a discussion of them is beyond the
scope of this book.

To return to low-resolution mode,
use the following program lines:
200 POKE 53265, PEEK(53265)

AND 223

210 POKE 53.272, 21

For more information on graphics, a
good reference is Commodore 64
Graphics & Sound Programming by
Stan Krute or How to Program Your
Commodore 64 by Carl Shipman.

170



TRS-80 Models lY & 111
Because TRS-80 Models IV and III do
not have separate graphics screens,
there is no method and no need to

simulate PMODE.

TRS-80 Color Computer
PMODE [ml I,pi defines the graphics
mode, where m specifies the
mode—range 0-4—and p specifies the
memory graphics page you wish to
start on. Possible modes follow:

Grid Color
PMODE Size Mode

0  128x96 Two color
1  128x96 Four color
2  128x192 Two color
3  128x192 Four color

4  256x192 Two color

If m is omitted, the most recently as
signed value is used. If PMODE has
not been previously used, parameter
m defaults to 2. If p is omitted, the
most recent value is used. If PMODE
has not been previously used, parame
ter p defaults to I.

Required
1
2
2

4

4

COMMENTS

The ranges available for a and v are in
the table below:

m Value
0
0

I*

2*
1-6**

WIDTH
Value
40

80

Range For
aAndv
0-7

0-3

Not available

Not available

Depends on
RAM

* Other than Cartridge BASIC
**Cartridge BASIC

If all parameters are valid, the screen
is erased, the new mode takes effect,
the background and border are set to
black, and the foreground is set to
white. Don't forget to reset the
COLOR after using SCREEN,

171



POINT
APPLE lie & 11+
SCRN (h,v) where h specifies a hori
zontal coordinate and y specifies a
vertical coordinate. SCRN returns a

code for the color currently displayed
at the specified coordinates on the
low-resolution screen. If the specified
coordinate is black—unlit-'then a

zero is returned. This allows SCRN to
effectively simulate POINT.

IBM PC & PCjr
POINT (h,v) returns the color
number of the specified point on the
screen, where parameters h and v
specify legal absolute horizontal and
vertical coordinates. This command

will return a value of — 1 if the speci
fied coordinates are out of range. The
range of color numbers returned
depends on the current SCREEN. See
COLOR for a list of valid color num

bers that may be used.

POINT (n) (BASIC 2.0 and Cartridge
BASIC Only) returns the value of the
current x and y coordinates on the
graphics screen. Parameter n may
have a value of 0-3, where ii=0 re
turns the current physical x coordinate
and n=l returns the current physical
y coordinate. If WINDOW is active,
n=2 will return the current world x

coordinate and n=3 will return the
current world y coordinate. If
WINDOW is not active and parameter
n has a value of 2 or 3, the value re
turned will be the same as values re

turned for n=0 and n=1.

COMMODORE 64
Different models of the Commodore

64 deal with the color screen in vari
ous ways due to different graphics
chips that Commodore has installed
in their machines from time to time.
Therefore, no attempt will be made
here to simulate POINT on the
Commodore.

POKE
APPLE Ue& 11+
POKE (m,n) where m specifies a
legal memory location, and n specifies
a value—range 0-255. POKE will
store the specified value into the
specified memory location.

IBM PC & PCjr
POKE m,n where m specifies a legal
memory location offset from the cur
rently DEFined SEGment, and n
specifies a value—range 0-255. POKE
will store the specified value into the
specified memory location.

COMMODORE 64
POKE m,n where m specifies a legal
memory location, and n specifies a
value—range 0-255. POKE will store
the specified value into the specified
memory location.

MEMORY-WRITE

It's possible to POKE to the 1541 disk
drive's RAM area using the M-W
command as follows:

10 OPEN 15,8,15
20 PRINT#15,"M-W"CHR$(L)

CHR$(H)CHR$(N)X$
30 CLOSE 15

Variables L and H are the decimal low

and high bytes of the start address—in
hex—of the code. N is the length of
the code—range 1-34, and X$ is the
code concatenated as CHR$ strings.
For example, if the three bytes $FF,
$09, and $10 were to be placed in the
1541 Disk Drive's RAM at $0500,
then L=0, H=5, N=3 and
X$=CHR$(255) +CHR$(9) +CHR$
(16).

172



TRS-80 Models IV & UI
POINT (h,v) where h specifies a
horizontal coordinate and v specifies a
vertical coordinate. POINT returns a

True (—1) if the specified coordinate
is "lit," or a False (0) if the specified
coordinate is not lit. Parameter h may
have a range of 0-127, and parameter
V may have a range of 0-47.

TRS-80 Color Computer
POINT (h,v) where h specifies a
horizontal coordinate and v specifies a
vertical coordinate. POINT returns a

— 1 if the specified coordinate is a text
character, 0 if the coordinate is not
"lit," or the color code (1-8) if the
coordinate is "lit." Parameter h may
have a range of 0-63. Parameter v may
have a range of 0-31.

COMMENTS

TRS-80 Models IV & III TRS-80 Color Computer COMMENTS
POKE m,n where m specifies a legal
memory location, and n specifies a
value—range 0-255. POKE will store
the specified value into the specified
memory location.

POKE ni,n where m specifies a legal
memory location, and n specifies a
value—range 0-255. POKE will store
the specified value into the specified
memory location.

173



POP
APPLE lie &n+
POP causes the most recent return
address to be deleted from the top of
the return-address stack. Therefore,
the previous return address will be
used when a RETURN is
encountered. POP is used as a way of
modifying program branching. Some
experts consider this poor program
ming practice.

IBM PC & PCjr
Because POP is considered poor pro
gramming practice, you should try to
modify the program so that this in
struction is not necessary. However,
if you wish to simulate POP, you can
use a variable flag to control the
branching, as follows:

10 GOSUB100
20 REM THE PROGRAM

EVENTUALLY RETURNS HERE

100 REM THIS LINE BEGINS
FIRST SUBROUTINE

110 GOSUB200
120 IFX=1 THEN 140

130 REM MORE PROGRAM LINES GO
HERE...

140 RETURN

200 REM THIS LINE BEGINS
SECOND SUBROUTINE

21 0 X=1 ; RETURN

Variable flag X in line 120 causes the
code in line 130 to be ignored.
Therefore, the X=1 in line 210 takes
the place of POP.

COMMODORE 64
Because POP is considered poor pro
gramming practice, you should try to
modify the program so that this in
struction is not necessary. However,
if you wish to simulate POP, you can
use a variable flag to control the
branching, as follows:

10 GOSUB100
20 REM THE PROGRAM

EVENTUALLY RETURNS HERE

100 REM THIS LINE BEGINS
FIRST SUBROUTINE

110 GOSUB200
120 IFX=1 THEN 140
130 REM MORE PROGRAM LINES GO

HERE...

140 RETURN
200 REM THIS LINE BEGINS

SECOND SUBROUTINE

210 X=1 : RETURN

Variable flag X in line 120 causes the
code in line 130 to be ignored.
Therefore, the X=1 in line 210 takes
the place of POP.

POS
APPLE He & 11+
POS(n) where n is a dummy value.
POS(n) returns the current horizontal
cursor position. Range is 0-39 if in 40-
column mode, 0-79 if in 80-colunm
mode.

IBM PC & PCjr
POS(n) where n is a dummy value.
POS(n) returns the current horizontal
cursor position. Range is 1-40 if in 40-
column mode, 1-80 if in 80-column
mode.

COMMODORE 64
POS(n) where n is a dummy value.
POS(n) returns the current horizontal
cursor position. Range is 0-39.

POSN
is an undocumented reserved word
on TRS-80 Model m.

PPOINT
APPLE He & 11+
SCRN (x,y) returns the color code
for the cell at (x,y), where x is a
column number and y is a row
number in the medium-resolution

mode. SCRN is not meant for use in
high-resolution mode.

IBM PC & PCjr
POINT (x,y) returns the color
number of the specified point on the
screen, where parameters x and y
specify legal absolute horizontal and
vertical coordinates. This command
will return a value of — 1 if the speci
fied coordinates are out of range. The
range of color numbers returned
depends on the current SCREEN. See
COLOR for a list of valid color num

bers that may be used.

POINT(n) (DOS 2.0 and Cartridge

COMMODORE 64
Different models of the Commodore
deal with the color screen in various

ways because of the different chips in
stalled in various production series.
Therefore, no attempt will be made
here to simulate POINT on the

Commodore.

BASIC Only) returns the value of the
current x and y coordinates on the
graphics screen. Parameter n may
have a value of 0-3, where n=0 re-

174



TRS-80 Models IV & UI TRS-80 Color Computer COMMENTS
Because POP is considered poor pro Because POP is considered poor pro
gramming practice, you should try to gramming practice, you should try to
modify the program so that this in modify the program so that this in
struction is not necessary. However, struction is not necessary. However,
if you wish to simulate POP, you can if you wish to simulate POP, you can
use a variable flag to control the use a variable flag to control the
branching, as follows: branching, as follows:

10 GOSUB100 10GOSUB100
20 REM THE PROGRAM 20 REM THE PROGRAM

EVENTUALLY RETURNS HERE EVENTUALLY RETURNS HERE

100 REM THIS LINE BEGINS 100 REM THIS LINE BEGINS

FIRST SUBROUTINE FIRST SUBROUTINE

110 GOSUB200 110 GOSUB200

120 IFX=1 THEN 140 120 IF X=1 THEN 140

130 REM MORE PROGRAM LINES GO 130 REM MORE PROGRAM LINES GO
HERE... HERE...

140 RETURN 140 RETURN

200 REM THIS LINE BEGINS 200 REM THIS LINE BEGINS
SECOND SUBROUTINE SECOND SUBROUTINE

210 X=1 : RETURN 21 0 X=1 : RETURN

Variable flag X in line 120 causes the Variable flag X in line 120 causes the
code in line 130 to be ignored. code in line 130 to be ignored.
Therefore, the X=I in line 210 takes Therefore, the X=I in line 210 takes
the place of POP. the place of POP.

TRS-80 Models IV & III
POS(n) where n is a dummy value.
POS(n) returns the current horizontal
cursor position. Range is 1-80.

TRS-80 Color Computer COMMENTS
POS(—2) returns the current hori
zontal print head position on the
printer.

POS(0) returns the current horizontal
cursor position on the display.

TRS-80 Models IV & lU
POINT (x,y) tests whether a cell is
on or off, where x and y are legal
screen coordinates. It returns True
(—1) if the cell is on, False (0) if the
cell is off.

turns the current physical x coordinate
and n=l returns the current physical
y coordinate. If WINDOW is active,
ii=2 will return the current world x
coordinate and n=3 will return the

TRS-80 Color Computer
PPOINT (x,y) tests whether or not a
screen cell is on or off, where x and y
are screen coordinates. PPOINT re
turns the color of the specifled cell if it
is on. See COLOR for a list of the
numeric values for colors.

current world y coordinate. If
WINDOW is not active and parameter
n has a value of 2 or 3, the value re
turned will be the same as values re

turned for n=0 and ii=I.

COMMENTS

175



PR#
APPLE He & 11+
PR# 11 where n specifies a slot
number—range 1-7. PR# directs
subsequent output to the specified
slot. When used in a BASIC program,
PR# must follow a PRINT statement
and must be preceded by
CONTROL-D. Common usage of
PR# includes sending output tP the
printer (normally PR#I),"booting"
the disk (normally PR#6) and
returning output to the screen
(PR#0).

IBM PC & PCjr
Because all output statements include
a device or file buffer number, PR# is
not used on the PC. For example,
PRINT# can be used to direct output
to any device that has been OPENed
with a buffer number. You can also
send output to the printer with
LPRINT.

COMMODORE 64
CMDn redirects output to file
number n—range 1-255. File number
n and the device must have been

previously OPENed. CMDn is
deactivated by PRINT#n and is
normally used to redirect output to
the printer—device 4.

PRESET
APPLE He & 11+
Simulate it by using COLOR or
HCOLOR—depending on the resolu
tion mode you are using—to set the
current foreground color to the back-
groimd color. Then use PLOT(x,y) or
HPLOT(x,y) to set the point to that
color. Don't forget to change the fore
ground color back to its previous
value!

IBM PC & PCjr
PRESET (x,y)l,coIorI sets a point to
the specified color, where x and y are
valid coordinates on a graphics
screen. See COLOR for a list of valid
color numbers for each SCREEN
mode. If color is not specified, the
point will be set to the background
color. In Cartridge BASIC, color will
be the attribute—not necessJarily the
specific color. See PALETTE.

COMMODORE 64
Simulate it with the routines under
COLOR, PLOT and HPLOT.

176



TRS-80 Models IV & III
Because all output statements include
a device or file buffer number, PR# is
not used on the Model IV. For
example, PRINT# can be used to
direct output to any device that has
been OPENed with a buffer number.
You can also send output to the
printer with LPRINT.

Because the Model III does not use
slots, you cannot specify slot
numbers. The same functions are
usually accomplished with reserved
words, such as LPRINT or LLIST
(output to the printer), PRINT or
LIST (output to the screen).

TRS-80 Color Computer
Because all output statements include
a device or file buffer number, PR# is
not used on the COCO. For example,
PRINT# can be used to direct output
to any device that has been OPENed
with a buffer number. You can also
send output to the printer with
LPRINT.

COMMENTS

TRS-80 Models IV & ni TRS-80 Color Computer COMMENTS
RESET (x,y) will turn off, or reset, a
graphics block specified by coordi
nates X and y. Range for parameter x
is 0-127. Range for parameter y is
0-57.

PRESET (x,y) will turn off a graphics
point, where x and y specify valid
coordinates of a graphics point to be
reset to the background color.

177



PRINT, PRINT USING
APPLE He & 11+
PRINT list will print the specified
list, where list is a list of expressions
to be written to the current output
device. Items in list are separated by
semicolons or commas. String-literal
items must be enclosed within double
quotation marks.

Apple lacks the extensive formatting
capabilities of PRINT USING. These
capabilities are not easily simulated
and are beyond the scope of this book.
As a starter, you might consider con
verting any numeric expressions into
string expressions with STR$ and
operating on them with LEFTS,
RIGHTS and the other string-
handling commands. You can then
PRINT them in the format you desire.

For formatting dollars and cents, you
can use the following subroutine.
AMT is the actual figure you wish
converted into dollars and cents. This
routine will prevent you from getting
values returned in fractional cents,
will force zeros to be added after the
decimal so you don't get such things
as SlO.9, and will right-justify the
amounts to give you neat columns.

1000 AMT=100* (AMT+.005) ;
AMT=INT(AMT)

1010 PRINT
SPC((AMT<100000)
+(AMT<10000)+(AMT<
1000));AMT/100;

1020 IF INT(AMT-INT(AMT/100)
*100)=0THENPRINT
".00"; : GOTO 1040

1030 IF INT(AMT-INT(AMT/10)
*10)=0 THEN PRINT "0" ;

1040 AMT=AMT/100; PRINT:
RETURN

IBM PC & PCjr
PRINT list will print the specified
list, where Ust is a list of expressions
to be written to the current output
device. Items in list are separated by
blank spaces, semicolons or commas.
String-literal items must be enclosed
within double quotation marks.

PRINT USING v$; list will print the
specified list, where v$ is a string con
stant or variable that contains special
formatting characters. List is a list of
expressions to be PRIN^Ted. This
command formats the printed output
in specific ways, depending upon the
contents of v$. Detailed explanation
of the formatting characters is beyond
the scope of this book. Refer to the
BASIC Reference Manual, pages
4-219 through 4-223 or to the Car
tridge BASIC Reference Manual,
pages 4-286 through 4-291.

COMMODORE 64
PRINT list will print the specified
list, where list is a list of expressions
to be written to the current output
device. Items in list are separated by
semicolons or commas. String-literal
items must be enclosed within double
quotation marks.

The Commodore 64 lacks the exten
sive formatting capabilities of PRINT
USING. These capabilities are not
easily simulated and are beyond the
scope of this book. As a starter, you
might consider converting any numer
ic expressions into string expressions
with STR$ and operating on them
with LEFTS RIGHTS, and the other
string-handling commands. You can
then print them out in the format
desired.

PRINT®
APPLE He & 11+
To simulate PRINT®, use

10 HTAB x: VTAB y: PRINT list

where x is the horizontal coor
dinate—range 1-40—and y is the
vertical coordinate—range 1-24—of
the position to start PRINTing. List is
the list of items to PRINT,

IBM PC & PCjr
To simulate PRINT®, use

10 LOCATE (x,y) :PRINTlist

where x and y are valid screen
coordinates. List is the list of items to
be printed starting at (x,y).

COMMODORE 64

Although there is no PRINT® com
mand on the Commodore 64, the fol
lowing program lines produce a similar
effect:

100 RO=10: C0L=4:
MSG$="HELLO"

110 POKE783,0: POKE781 ,R0:
POKE 782,COL

120 SYS 65520 : PRINT MSG$

This will print the contents of MSG$
on line RO starting at position COL.

178



TRS-80 Models IV & III TRS-80 Color Computer COMMENTS
PRINT list will print the specified
list, where list is a list of expressions
to be written to the current output
device. Items in list are separated by
semicolons or commas. String-literal
items must be enclosed within double

quotation marks.

PRINT USING v$; Ust wfil print the
specified list using the specified
format, where y$ is a string constant
or variable containing special format
ting characters. List is a list of
expressions. This command formats
the printed output in specific ways
depending upon the contents of y$.
Detailed explanation of the formatting
characters is beyond the scope of this
book. Refer to the Operation and
BASIC Language Reference Manual,
pages 136 through 140 for the Model
III, and to Disk System Owners
Manual, pages 2-150 through 2-153
for the Model IV.

PRINT list will print the specified
list, where list is a list of expressions
to be written to the current output
device. Items in list are separated by
semicolons or commas. String-literal
items must be enclosed within double
quotation marks.

PRINT USING y$; list will print the
specified list using the specified
format, where y$ is a string constant
or variable that contains special for
matting characters. List is a list of ex
pressions to be PRINTed. This com
mand formats the printed output in
specific ways, depending on the con
tents of y$. Detailed explanation of
the formatting characters is beyond
the scope of this book. Refer to Going
Ahead With Extended Color RiS/C,
pages 129 through 132.

TRS-80 Models IV & III
PRINT @ n, list will print the speci
fied list at the specified screen
location, where n specifies a location,
range 0-1919 (Model IV), or range
0-1023 (Model 111). List is a list of ex
pressions to be PRINTed.

PRINT @ (r,c), list (Model IV) will
print the specified list at the specified
location, where r specifies the
row—range 0-23—and c specifies the

TRS-80 Color Computer
PRINT @ n, list will print the speci
fied list at the specified location,
where n specifies a location in the
range 0-511. List is a list of expres
sions to be PRINTed.

column—range 0-79. List is a list of
expressions to be PRINTed.

COMMENTS

179



PRINT#, PRINT# USING
APPLE lie & 11+
Because of the way it handles files,
Apple does not use PRINT#. When
you have used a line such as

10 PRINT CHR$ (4) ; "WRITE
filename"

all subsequent PRINT statements will
PRINT to the file filename. Of
course, filename must have been pre
viously OPENed for output

For a method of formatting output
similar to PRINT# USING, see
PRINT USING.

IBM PC & PCjr
PRINT# n, list outputs data to a
sequential file, where n is the number
used to OPEN the file. List is a list of
expressions to be written to the file.
The expressions may be constants or
variables, string or numeric. The ex
pressions must be delimited by
semicolons or commas. This causes

embedded spaces to be printed to the
file, just as it would on the screen with
a PRINT command. If the items are
to be delimited by quotation marks,
you must specifically PRINT
CHR$(34) to the file. If the items con
tain embedded spaces, commas,
colons or semicolons, you must also
delimit them by PRINTing
CHR$(34) on each side of the string.
You can avoid some of the problems
associated with delimiters by using
WRITE# instead of PRINT# if your
application will allow it.

PRINT# n USING v$; list where n
is the number used when the file was

OPENed, v$ is a string constant or
variable containing special formatting
characters, and list is a list of expres
sions to be PRINTed to a sequential
file. This command formats the

output in specific ways, depending on
the contents of v$. Detailed explana
tion of the formatting characters is
beyond the scope of this book. Refer
to the BASIC Reference Manual,
pages 4-219 through 4-223, or Car
tridge BASIC Reference Manual,
4-292 through 4-294.

COMMODORE 64
PRINT#ii,list outputs data to a
sequential file or device, where n is
the file number used to OPEN the
device. List is a list of expressions to
be written to it. The expressions may
be constants or variables, string or
numeric. The expressions must be
delimited by semicolons or commas.
This will cause embedded spaces to be
printed to the file, just as it would be
on the screen with a PRINT
command. If the items contain em

bedded spaces, commas, colons,
semicolons or screen editing
characters, you must enclose each of
them in quotation marks. If quotation
marks themselves are to be sent, they
should be represented by CHR$(34).
Devices that can be written to in this
way include any storage device, the
printer, screen or modem. Also see
OPEN.

PRINT# works exactly like PRINT.
The only difference is that the infor
mation in the list gets printed to the
sequential file or device specified in
the OPEN command, rather than to
the monitor. No spaces are permitted
between PRINT and #. For example,
to write the variable NUM$ to the file
named PRACTICE:

100 0PEN1 ,8,2,
"0:PRACTICE, S,W"

110 PRINT#1 , NUM$; CHR$ (13);

The ;CHR$(13); is absolutely neces
sary to make sure that only a carriage
return is placed at the end of the line.
Without this coding, a return and a
linefeed are written at the end of the
line. This can cause problems on the
subsequent input of this data from the
disk file.

To send a command to the disk, you
must access the command channel
#15, like this:

100 OPEN 15,8,15
110 PRINT#15, "disk command"

For a description of possible disk com
mands see INITIALIZE, VALI
DATE, SCRATCH, COPY, RE
NAME and NEW.

To create a relative file that will con

tain NR records of LN length, you
would use the following program
lines. Parameter n is the file number.

180



TRS-80 Models IV & III
PRINT# n, list outputs data to a
sequential file, where n is the number
used to OPEN the file. List is a list of

expressions to be written to the file.
The expressions may be constants or
variables, string or numeric. The ex
pressions must be delimited by
semicolons or commas. This will
cause embedded spaces to be printed
to the file, just as it would on the
screen with a PRINT command. If the
items are to be delimited by quotation
marks, you must specifically PRINT
CHR$(34) to the file. If the items con
tain embedded spaces, commas,
colons or semicolons, you must also
delimit them by PRINTing
CHR$(34) on each side of the string.
On the Model IV, you can avoid some
of the problems associated with
delimiters by using WRITE# instead
of PRINT# if your application will
allow it.

PRINT# n USING v$; list where n
is the number used when the file was
OPENed, v$ is a string constant or
variable containing special formatting
characters, and list is a list of expres
sions to be PRINTed to a sequential
file. This command formats the
output in specific ways, depending on
the contents of v$.

Detailed explanation of the formatting
characters is beyond the scope of this
book. Refer to the Operation and
BASIC Language Reference Manual,
pages 136 through 140 for the Model
III, and to Disk System Owners
Manual, pages 2-150 through 2-153
for the Model IV.

CH is the channel (secondary
address) you wish to use. See OPEN.
100 OPEN 15,8,15
110 OPENn, 8, CH,

"0:filename,L,"+
CHR$(LN)

120 PRINT#15,"P"CHR$(CH)CH
R$(NR)CHR$(0)

130 PRINT#n,CHR$(255) ;
CHR$(13);

140 CLOSE n

TRS-80 Color Computer
PRINT# n, list outputs data to a
sequential file, where n is the number
that was used to OPEN the file, and
list is a list of expressions to be written
to the file. The expressions may be
constants or variables, string or
numeric. The expressions must be
delimited by semicolons or commas.
This will cause embedded spaces to be
printed to the file, just as it would on
the screen with a PRINT command. If
the items are to be delimited by quota
tion marks, you must specifically
PRINT CHR$(34) to the file. If the
items contain embedded spaces,
commas, colons or semicolons, you
must also delimit them by PRINTing
CHR$(34) on each side of the string.

PRINT# n USING v$; list where n
is the number used when the file was

OPENed, v$ is a string constant or
variable containing special formatting
characters, and list is a list of expres
sions to be PRINTed to a sequential
file. This command formats the
output in specific ways, depending on
the contents of v$.

Detailed explanation of the formatting
characters is beyond the scope of this
book. Refer to Going Ahead With Ex
tended Color BASIC, pages 129
through 132.

COMMENTS

To access a relative file, use the
following:

100 OPEN 15,8,15
110 OPENn, 8, CH, "relative

file"

120 R1=NR: R2=0: IFR1>255

THENR2=INT(R1/256):
R1=R1-256 * R1

130 PRINT#15,
"P"CHR$(CH)CHR$
(R1)CHR$(R2)CHR$(P)

"P" indicates that you wish to posi
tion the pointer. The CH must be the
same as in the OPEN conunand. R1

and R2 are the high- and low-byte ad
dresses for the record number you are
using CRN). And parameter P is the
exact position wit^ the record you
are interested in accessing.

After accessing a record within a rela
tive file in the manner shown, you can
either input data from the file—see
INPUT#—or write data to the record

of interest by using PRINT#. Within
the record you are writing, all data is
lost to the right of where you are writ
ing new data. To write to the middle
of a record and preserve all data to the
right of your position, you must first
input and save each field in the record
starting with the one you wish to
change. Then rewrite these fields
back to the record, including any
changes you wish to make.

PRINT#n is also used as the opposite
of CMDn, before closing the pre
viously OPENed file n. See CMD.
For further details on Commodore

file I/O, see OPEN.

181



PSET
APPLE He & 11+
Simulate it by using COLOR or
HCOLOR to set the desired fore
ground color. Then use PLOT(x,y) or
HPLOT(x,y) to set the point.

IBM PC & PCjr
PSET (x,y)I,color] sets a point to the
specified color, where x and y are
valid coordinates on a graphics
screen. See COLOR for a list of valid
color numbers for each SCREEN
mode. In Cartridge BASIC, color will
be the attribute—not necessarily the
specific color. See PALETTE. If color
is not specified, the point will be set to
the foreground color.

COMMODORE 64
Simulate it by using the subroutine at
HGR to set the desired background
and pixel colors, and the subroutine
listed under HPLOT to set the desired

point

PUT
APPLE He &U+
Applesoft BASIC does not recognize
a PUT command because it writes
directly to the disk file instead of to a
buffer. For random access file
handling, records are PRINTed under
the auspices of OPEN and WRITE.
See OPEN and WRITE.

IBM PC & PCjr
PUT I#1 n I,rl (File Handling) writes
a record from a random buffer to a

file, where n is the number used when
the file was OPENed, and t is the
record number to be written to. If
parameter r is omitted, the record
goes into the next available record. If
n refers to a COM file, r is the
number of bytes to write. The record
must have been previously placed
into the buffer with PRINT#,
PRINT# USING, WRITE#, LSET or
RSET. Use of this command in Car

tridge BASIC requires the presence of
DOS 2.1.

PUT (x,y), array I,action] (Graph
ics) is the opposite of the graphics
usage of GET, in that it converts in
formation from array into screen dis
play with (x,y) being the upper-left
corner of the resulting display. The
action taken with the data from the

array can take five forms. These oper
ators are actually operating on the
binary representation of the value of
the colors on the screen versus the

colors in the array.

XOR, the default action, is used for
animation. It causes screen points to
be inverted where a point exists in the
array image. If an array is PUT to the
same location a second time, the
previous background is restored
unchanged.

PSET takes the data from the array
and puts it directly onto the
screen—the exact opposite of GET.
PRESET causes a negative image of

COMMODORE 64
The Commodore 64 does not recog
nize a PUT command because it

writes directly to the disk file instead
of to a buffer. For random access file
handling, records are PRINTed under
the auspices of OPEN and PRINT#.
See OPEN and PRINT#.

To simulate the graphics usage of
PUT, you can use sprites. A discus
sion of sprites is beyond the scope of
this book. Refer to the Commodore 64
Programmer's Reference Guide, pages
139 to 182, or How to Program Your
Commodore 64 by Carl Shipman.

the data in the array to be PUT on the
screen. AND is used to set a point
only if the point is already set on the
screen. OR superimposes the image
onto the existing image.

182



TRS-80 Models iy& III TRS-80 Color Computer COMMENTS
SET (x,y) turns on a screen point,
where x and y specify the coordinates
of a graphics block to be set, or turned
on. Range for parameter x is 0-127,
and range for parameter y is 0-57.

PSET (x,y) turns on a screen point,
where x and y specify valid coordi
nates of a graphics point to be set to
the foreground color.

TRS-80 Models IV & III
PUT n l,rl (File Handling) moves
data from a buffer to a file, where n
specifies a buffer number that has
been OPENed. See OPEN. Parameter
r specifies the record number to be
added to an OPEN random

file—range 1-65535. Parameter r is
optional. Default is the next record. If
r is greater than the end of file, then
the new end of file will be equal to
parameters

The graphics usage of PUT cannot be
simulated on the Model IV or Model
m.

TRS-80 Color Computer
PUT#n l,rl (File Handling) moves
data from a buffer to a file, where n
specifies a buffer number that has
been OPENed. See OPEN. Parameter
r specifies the record number to be
added to an OPEN random file.

Parameter r is optional. Default is the
next record. If r is greater than the
end of file, then the new end of file
will be equal to parameter r.

PUT (xl,yl)-(x2,y2),source,action
is the opposite of the graphics usage
of GET, in that it converts informa
tion from array into screen display
with (xl,yl) being the upper-left
corner of the resulting ^splay.
Parameter (xl,yl) specifies the start
ing point and (x2,y2) specifies the
ending point. Source specifies an
array containing the graphics data to
be displayed. Parameter action speci
fies how the array will be displayed.
Action may take five forms: PSET
sets the points contained in the array.
PRESET resets the points contained
in the array. AND performs a bitwise
comparison of the points in the array
and the points on the screen. Any
point set in both will be set on the
final screen. OR performs a bitwise
comparison (like AND) and sets any
points on the final screen that exist in
either the array or the original screen.
NOT reverses the state of each point
in the original screen, regardless of
the array contents.

COMMENTS

1S3



RANDOM, RANDOMIZE
APPLE He & 11+
RND(ii) reseeds the random number
generator, where n is any negative
integer. The new random sequence
will be different from that generated
by power-up, but the same seeds will
generate the same sequences each
time the program runs.

IBM PC & PCjr
RANDOMIZE reseeds the random
number generator. When this com
mand is used, the program will
prompt for a random number seed. If
you do not wish the program to stop
and prompt for a number, you can in
clude the TIMER command. It will

then get its seed from the current
value of the timer. To use TIMER
with Cartridge BASIC, have DOS 2.1
present. Example:

1 0 RANDOMIZE TIMER

COMMODORE 64
RND(n) reseeds the random number
generator, where n is any negative
number. The new random sequence
will be different from that generated
by power-up, but the same seeds will
generate the same sequences. To
reseed the random number generator
in a random manner, use RND(-TI).
It uses the current timer value as the

seed.

READ
APPLE He & 11+
READ nll,n2...] reads data from
DATA statements in the program and
assigns the values to the variables nl,
n2,... READ is always used in con
junction with a DATA statement. The
variables may be string or numeric,
but the data read must agree in type
with the variable name. Subsequent
READ statements read the next data

item following the one most recently
read. Trying to READ more data than
is contained in the DATA statements
will produce an error condition.

IBM PC & PCjr
Same.

COMMODORE 64

Same.

RECALL
APPLE He & 11+
RECALL n reads values from the

cassette into array n.

IBM PC & PCjr
INPUT#b,n(l)I,n(2)...l may be
used to simulate RECALL, where b is
the buffer number used to OPEN the
data file, and n(l), n(2)... specify the
anay elements to be input.

COMMODORE 64
INPUT# b, n(l)(,n(2)I... inputs data
nl, n2... from a sequential file, where
b is the number used to open the file.
For more details on its use and

limitations, see INPUT#.

184



TRS-80 Models IV & III
RANDOM will reseed the random
number generator, so that each run
will produce a Cerent series of
random numbers.

TRS-80 Color Computer
RND(n) reseeds the random number
generator, where n is any negative
integer. The new random sequence
will be different from that generated
by power-up, but the same seeds will
generate the same sequences each
time the program funs.

COMMENTS

TRS-80 Models IV & III TRS-80 Color Computer
Same. Same.

COMMENTS

TRS-80 Models IV & III TRS-80 Color Computer COMMENTS
Model IV does not support cassette
tapes, so RECALL cannot be simulat
ed for cassette input. To input data
from disk, use

INPUT#b,n(1 )[,n(2) . ..]

Parameter b is the buffer number
used to OPEN the data file, and n(l),
ii(2)... specify the array elements to
be input.

INPUT #—l,ii(l)I,ii(2)...l causes
the Model III to turn on the tape
player and input the variables speci
fied into the array. Notice the minus
sign between # and 1. This specifies
cassette tape. The command INPUT
#1 ,n(l)[,ii(2)...] (without the minus
sign) specifies disk input from the file
OPENedas#!.

INPUT #-l,n(l)U(2)...l causes
the COCO to turn on the tape player
and input the variables specified into
the array. Notice the minus sign be
tween # and 1. This specifies cassette
tape. The command INPUT #1
,n(l)(,n(2)...] (without the minus
sign) specifies disk input from the file
OPENedas#!.

RECORD#ii, RN, P is a reserved
word not available on the Commodore
64 unless it is using BASIC 4.0. It is
very unlikely that you will encounter
it. In BASIC 4.0, tiiis command looks
at position P in record RN in the pre
viously opened file n. Using a file #
different from that used in the OPEN
command causes a FILE NOT OPEN
ERROR. If position P is not specified,
then position 1 is assumed. If parame
ter n, RN or P is determined by a
loop, then that variable must be en
closed within parentheses.

185



REM
APPLE He & 11+
REM specifies that the data following
the REM is not executable code.

IBM PC & PCji
REM specifies that the data following
the REM is not executable code.
REM may be abbreviated with a
single quotation mark C).

COMMODORE 64
REM specifies that the data following
the REM is not executable code.

RENAME
APPLE Ue& 11+
PRINT CHR$(4);" RENAME a,
b[,s] [,dl I)T]" where a and b are valid
filenames. RENAME causes file a to
be renamed b. Parameters s, d and v
are optional, where parameter s speci
fies the slot number, d specifies the
drive number, and v specifies the
volume number.

IBM PC & PCjr
NAME "a" AS "b" where a and b
are valid filenames. NAME causes file

a to be renamed b. Quotation marks
are necessary only if a and b are literal
names rather than string variables. If
a is not on the specified disk, or if b is
already on the disk, you will get an
error. NAME does not change the
contents of the file. Use of this com
mand in Cartridge BASIC will result
in an ILLEGAL FUNCTION CALL
if DOS 2.1 is not present

COMMODORE 64
10 OPEN 15,8,15, "ROra-b"
where a and b are valid filenames.
This routine causes file b to be

renamed a. Notice that this syntax is
the opposite of other computers!

186



TRS-80 Models IV & in
REM specifies that the data following
the REM is not executable code.
REM may be abbreviated with a
single quotation mark C).

TRS-80 Color Computer COMMENTS
REM specifies that the data following
the REM is not executable code.
REM may be abbreviated with a
single quotation mark C).

TRS-80 Models IV & III TRS-80 Color Computer COMMENTS
NAME "a" AS "b" (Model IV)
where a and b are valid filenames.

NAME causes file a to be renamed b.
Quotation marks are necessary only if
a and b are Uteral names rather than
string variables. If a is not on the
specified disk, or if b is abeady on the
(Usk, you will get an error. The new
name b caimot contain a password or
drive specification. NAME does not
change the contents of the file.

A file cannot be easily renamed from
within a BASIC program on the
Model ni. You can use

10 CMD "I" , "RENAME a b"

It will rename file a to b, but will
return you to the operating system.
Another alternative will not return
the program to the DOS level, but will
work only on ASCII files: Read the
file into memory, write it out with a
new file name, then kill the old file.
The following routine will accomplish
this. Note that the CLEAR command
in line 10 should appear at the begin
ning of the program. Lines 1000 and
1010 require operator input. You can
modify them to suit your needs.

10 CLEAR 11
1

1010

1020

1030
1040

1050

1060

CLS: LINE INPUT "OLD FILE
NAME:";F1$
LINE INPUT "NEW FILE
NAME: " ;F2$
OPEN "I" ,1 ,F1$
OPEN "O" ,2,F2$
IF EOF (1 ) THEN 1060
LINE INPUT #1 , T$ : PRINT
#2,T$: GOT01040
CLOSE: KILL F1 $

RENAME "a" TO "b" where a and

b are valid filenames. RENAME
causes file a to be renamed b. Quota
tion marks are necessary only if a and
b are literal names rather than string
variables. If file a is not on the speci
fied disk, or if b is abeady on the disk,
you will get an error. If a drive speci
fier is not used for file a, BASIC will
search drive 0 only. RENAME does
not change the contents of the file.

Notice that NAME is sometimes used
for renaming files, but on the TRS-80
Model III it is used fot renumbering
program lines.

187



RENUM
APPLE lie & 11+
You cannot renumber a BASIC pro
gram from within itself on the Apple.

IBM PC & PCjr
RENUM (newlinel IJstartlinel I,in
crement]] renumbers the program,
where newline will be the first line
number of the renumbered sequence;
default=10. Startline is the current
number of the first line to be
renumbered—default=first program
line. Increment is the increment to be

used in renumbering; default=10. If
you specify startline, you must speci
fy newiine. Renumbering continues
from startline to the end of the

program. RENUM also adjusts all
GOTOs, GOSUBs and other com
mands that include line references.
Program execution halts when
RENUM has been completed. You
must type RUN to start the program
again.

COMMODORE 64
You cannot renumber a BASIC pro
gram from within itself on the Com
modore 64.

188



TRS-80 Models IV & in TRS-80 Color Computer COMMENTS
RENUM [newlinel (,Istartline] (,in
crement]) (Model IV) renumbers the
program, where newline will be the
first line number of the renumbered
sequence; default=10. Startline is
the current number of the first line to
be renumbered—default=first pro
gram line. Increment is the increment
to be used in renumbering;
default=10. If you specify startline,
you must specify newline. Renumber
ing continues from startline to the
end of the program. RENUM also ad
justs all GOTOs, GOSUBs and other
commands that include line

references. Program execution halts
when RENUM has been completed.
You must type RUN to start the pro
gram again.

NAME [newline] (,[startline] [,in
crement]] (Model 111) renumbers the
program, where newline will be the
first line number of the renumbered
sequence—default= 10. Startline is
the current number of the first line to
be renumbered—default=first pro
gram line. Increment is the increment
to be used in renumbering;
default=10. If you specify startline,
you must specify newline. Renumber
ing continues from startline to the
end of the program. NAME also cor
rects all GOTOs, GOSUBs and other
commands that include line

references. Program execution halts
when the operation has been
completed. You must type RUN to
start the program again.

RENUM [newline] [, [startline] [,in
crement]] renumbers the program,
where newline will be the first line

number of the renumbered sequence;
default=10. Startline is the current
number of thq first line to be
renumbered—default=first program
line. Increment is the increment to be

used in renumbering; default=10. If
you specify startline, you must speci
fy newline. Renumbering continues
from startline to the end of the
program. RENUM also adjusts all
GOTOs, GOSUBs and other com
mands that include line references.

Program execution halts when
RENUM has been completed. You
must type RUN to start the program

Notice that some computers use
NAME for renaming files, but on the
TRS-80 Model 111 it is used for renum
bering program lines.

189



RESET
APPLE Ue& 11+
CLOSE (File Handling) can be used
to simulate the IBM command

RESET. Used without any
parameters, it will close all open files.

PLOT h,v (Graphics) may be used to
simulate the TRS-80 command
RESET, where h specifies the hori
zontal coordinate—range 0-39—and v
specifies the vertical coordi
nate—range 0-39 with text window,
0-47 with full screen graphics. PLOT
will place a block at the specified coor
dinates on the low-resolution screen,
using the current low-resolution dis
play color. Therefore, if you set the
current color to the background color,
the point will be "reset"

IBM PC & PCjr
RESET (File Handling) closes all
files and clears the system buffer.
DOS 2.1 must be present before using
RESET in Cartridge BASIC.

PRESET (x,y) [,color] resets a point,
where x and y are valid screen
coordinates, and color is a valid color
number or attribute number for the
SCREEN in use. If color is omitted,
the background color (0) is used. For
a discussion of valid color numbers,
see COLOR.

COMMODORE 64
Simulate it in its file-handling sense
by executing

SYS 65511

to close all files.

Simulate it as a graphics command by
using the subroutine under PLOT and
printing a blank space in the back
ground color. The number of the
background color can be determined
with

(PEEK(53281) AND 15)

RESTORE
APPLE He & 11+
RESTORE resets the DATA pointer
to the first DATA statement, allowing
DATA lines to be accessed more than

one time.

IBM PC & PCjr
RESTORE (nl where n specifies a
program line containing a DATA
statement. RESTORE n resets the
DATA pointer to that line, allowing
DATA lines to be accessed more than

one time. If parameter n is omitted,
the next READ will access the first
DATA line in the program.

COMMODORE 64
RESTORE resets the DATA pointer
to the first DATA statement, allowing
DATA lines to be accessed more than

one time.

RESUME
APPLE He & 11+
RESUME returns control from an
error-handling routine to the state
ment that caused the error.

IBM PC & PCjr
RESUME In]
RESUME NEXT returns from an
error-handling routine. Parameter n
specifies a line number where execu
tion is to RESUME. If n is zero, or
omitted, program execution will
RESUME at the statement that
caused the error. If RESUME NEXT
is used, program execution will
RESUME at the statement following
the statement that caused the error.

COMMODORE 64

Because Commodore does not support
ON ERROR type statements, there is
no way and no need to simulate
RESUME.

190



TRS-80 Models IV & III
PRINT @ (y,h),CHR$(32) (Model
IV Graphics) may be used to simulate
RESET, where v specifies the vertical
coordinate and h specifies the hori
zontal coordinate. Used in this way,
PRINT @ will place a bla^
space—CHR$(32)—at the specified
screen location. Parameter v may be
in the range 0-23, and parameter h
may be in the range 0-79.

RESET (h,v) (Model HI Graphics)
where h specifies the horizontal coor
dinate and T specifies the vertical
coordinate, RESET will place a blank
space at the specified screen location.
Parameter h may be in the range
0-127. Parameter v may be in the
rai^ge 0-47.

CLOSE (File Handling) simulates
IBM's RESET. The difference is that
CLOSE will close the cassette files.
RESET will not

TRS-80 Color Computer
RESET (h,T) (Graphics) where h
specifies the horizontal coordinate,
and V specifies the vertical coordinate.
RESET will turn off a graphics block
at the specified screen location.
Parameter h may be in the range 0-63.
Parameter v may be in the range 0-31

CLOSE (File Handling) simulates
IBM's RESET. The difference is that
CLOSE will close the cassette files.
RESET will not.

COMMENTS

TRS-80 Models IV & III
RESTORE resets the DATA pointer
to the first DATA statement, allowing
DATA lines to be accessed more than

one time.

TRS-80 Color Computer
RESTORE resets the DATA pointer
to the first DATA statement, allowing
DATA lines to be accessed more than
onetime.

COMMENTS

TRS-80 Models IV & III
RESUME In)
RESUME NEXT returns from an

error-handling routine. Parameter n
specifies a line number where execu
tion is to RESUME. If n is zero, or
omitted, program execution will
RESUME at the statement that

caused the error. If RESUME NEXT

is used, program execution will
RESUME at the statement following
the statement that caused the error.

TRS-80 Color Computer
Because COCO does not support ON
ERROR type statements, there is no
way and no need to simulate
RESUME.

COMMENTS

191



RETURN
APPLE ne& 11+
RETURN causes program execution
to return from a subroutine to the

statement immediately following the
calling GOSUB.

IBM PC & PCjr
RETURN bl causes program execu
tion to return from a subroutine to
the statement immediately following
the calling GOSUB. If parameter n is
included, program execution will
return from the subroutine to the line

number specified by n.

COMMODORE 64
RETURN causes program execution
to return from a subroutine to the
statement immediately following the
calling GOSUB.

RIGHTS
APPLE ne&n+
RIGHT$(x$,n) where n is a numeric
expression and x$ is any string. This
function returns a string expression
consisting of the right n characters of
x$. The range for n is 1-255. If
n>LEN(x$), then x$ is returned. If
n=0 then an ILLEGAL QUANTITY
ERROR will result.

IBM PC & PCjr
RIGHT$(x$,n) where n is a numeric
expression and x$ is any string. This
function returns a string expression
consisting of the right n characters of
x$. The range for n is 0-255. If
n>LEN(x$), then x$ is returned. If
n=0 then the null string is returned.

COMMODORE 64
RIGHT$(x$,n) where n is a numeric
expression and x$ is any string. This
function returns a string expression
consisting of the right n characters of
x$. The range for n is 0-255. If
n>LEN(x$), then x$ is returned. If
n=0 then the null string is returned.

RMDIR
APPLE lie & 11+
Cannot be simulated.

IBM PC & PCjr
RMDIR path where path is a string
expression that specifies the subdirec
tory to be removed from the existing
disk directory. Because none of the
other computers covered by this book
has a multiple directory, there is no
method of simulating RMDIR. To
use this command in Cartridge
BASIC, you must have DOS 2.1
present.

COMMODORE 64
Cannot be simulated.

192



TRS-80 Models IV & III TRS-80 Color Computer COMMENTS
RETURN causes program execution
to return from a subroutine to the
statement immediately following the
caUingGOSUB.

RETURN causes program execution
to return from a subroutine to the
statement immediately following the
calling GOSUB.

TRS-80 Models IV & III

RIGHT$(x$,n) where n is a numeric
expression and x$ is any string. This
function returns a string expression
consisting of the right n characters of
x$. The range for n is 0-255. If
n>LEN(x$), then x$ is returned. If
n=0 then the null string is returned.

TRS-80 Color Computer
RIGHT$(x$,n) where n is a numeric
expression and x$ is any string. This
function returns a string expression
consisting of the right n characters of
x$. The range for n is 0-255. If
n>LEN(x$), then x$ is returned. If
n=0 then the null string is returned.

COMMENTS
The only variation on this function is
that the range of n is 1-255 for Apple
and 0-255 for all others.

TRS-80 Models IV & III TRS-80 Color Computer COMMENTS
Cannot be simulated. Cannot be simulated.

193



RND (Also See RANDOM, RANDOMIZE)
APPLE He & 11+
RNDCn) returns a pseudo-random
number, where n is any numeric
argument. If the sign of n is positive,
RND will return a random number be

tween 0 and 1. If n has a value of zero,
RND will return the same number
produced by the previous RND call. If
the sign of n is negative, the value of
n will act as the seed for a new
random number sequence. The same
seed number always produces the
same number sequence.

To obtain a number in a range other
than O-I, multiply the returned RND
value times a constant—such as 10.

IBM PC & PCjr
RNDCn) returns a pseudo-random
number, where n is any numeric
argument. If the sign of n is positive,
RND will return a random number be
tween 0 and 1. If n has a value of zero,
RND will return the same number

produced by the previous RND call. If
the sign of n is negative, the value of
n will act as the seed for a new

random number sequence. The same
seed number always produces the
same number sequence.

To obtain a number in a range other
than 0-1, substitute the value of the
upper limit for n in the following
formula:

R=INT(RND*(n+1))

COMMODORE 64
RNDCn) generates a floating point
pseudo-random number between 0
and 1—excluding 0 and 1. The numer
ic argument n dictates the sequence of
numbers generated. If parameter n is
positive, then the same sequence of
numbers is generated from power-up,
independent of the magnitude of n. If
the sign of n is negative, then the
value of n will act as the seed for a
new number sequence. Different
seeds generate different sequences of
random numbers. The same seed

generates the same sequence of
numbers. For example, the program

10 R=RND(-1) : PRINTRND(I)

always generates the same results, no
matter how often it is run. If n=0,
then a random number is generated
by the computer's clock. The usual
way to generate a random seed is to
use RNDC-TI), which uses the current
value in the timer as the seed.

To generate a random integer between
the integers a and b, including a and
b, use the following formula:

10 R=INT(RND(1)*(b-a+1)
+a)

ROT =
APPLE He &n+
ROT"n specifies the amount of rota
tion to be applied to a high-resolution
graphics shape prior to DRAWing or
XDRAWing it on the screen. Parame
ter n is a numeric argument represent
ing 1/64 of a circle. For example,
ROT=32 specifies 180 degrees of
rotation.

IBM PC & PCjr
DRAW "TA n" causes rotation of
the figure to be drawn by subsequent
DRAW commands, where n is the
number of degrees for the figure to be
turned. Range is —360-360.

COMMODORE 64
Cannot easily be simulated on the
Commodore 64 and is beyond the
scope of this book.

ROW
APPLE He & 11+
Simulate it with this routine:

10 R=PEEK{37)+1

where R is the variable name denoting
the screen line number—range 1-24,

IBM PC & PCji
CSRLIN returns the value of the line
of the active screen on which the
cursor is positioned—range 1-2S. It
may be used to simulate ROW.

COMMODORE 64
Simulate it with the following routine,
where R is the variable name denoting
the line number—range 1-25:

10 RsPEEK(214)+1

194



TRS-80 Models lY & 111
RND(ii) returns a pseudo-random
number, where n is a numeric
argument—range 0-32767. If parame
ter n=0, a number between 0 and 1
will be returned. If n Is greater than 0,
RND will return a number between 1

and the Integer value of the parameter
n.

TRS-80 Color Computer
RNDOi) returns a pseudo-random
number, where n Is a numeric argu
ment with a value of 1 or greater,
RND will return a random number be
tween 1 and the specified value of
parameter n.

COMMENTS

TRS-80 Models IV & 111
Cannot easily be simulated on the
TRS-80 Models IV and III because
they do not have graphics screens.

TRS-80 Color Computer
DRAW "Ax" causes subsequent fig
ures to be DRAWn with the angular
displacement specified by x. Possible
values for parameter x follow;

x=0 0® (default)
x=l 90®
x=2 180®

x-3 270®

COMMENTS

TRS-80 Models IV & 111
ROW(0) returns the row location of
the cursor on the Model IV. Note that
the 0 Is a dununy argument that
should not be changed.

Simulate It on the Model III with

TRS-80 Color Computer
Neither ROW nor the address where
the cursor location Is kept Is docu
mented for the COCO by Radio Shack.

COMMENTS

10 DEF FNR(d)*INT((PEEK
(16416)+{PEEK(16417)
AND3)*256)/64)+1

20 XsFNR(0)

FNR(0) will return the vertical posi
tion of the cursor.

195



RSET (See LSET)

RUN

APPLE He & 11 +
RUN

RUN Inl
RUN [filename]
In the first form, RUN will begin
executing the program currently in
memory, starting at the lowest line
number. In the second form, RUN
will begin executing the program
currently in memory, starting at the
line number specified by parameter n.
In the final form, RUN will LOAD
the program specified by filename
from disk, and begin execution at the
lowest line number. However used,
the RUN command will reset all

numeric variables to zero and all

string variables to null.

IBM PC & PCjr
RUN

RUN [nl
RUN (fUename|[,R)
In the first form, RUN will begin
executing the program currently in
memory, starting at the lowest line
number. In the second form, RUN
will begin executing the program
currently in memory, starting at the
line number specified by parameter n.
In the final form, RUN will LOAD
the program specified by filename
from disk, and begin execution at the
lowest line number. If the R option is
included, all data files remain open.
Otherwise, all data files will be closed.
However used, the RUN command
will reset all numeric variables to zero

and all string variables to null.

COMMODORE 64

RUN

RUN [nl
In the first form, RUN will begin
executing the program currently in
memory, starting at the lowest line
number. In the second form, RUN
will begin executing the program
currently in memory, starting at the
line number specified by parameter n.

The Commodore 64 does not have a
RUN [filename] command, but its
effect can be simulated in one of two
ways. First, you can use

LOAD "filename",8

which will automatically load and run
the BASIC program specified by
filename, if filename is shorter than
the program calling it. Second, you
can use the dynamic keyboard
technique. For more details on that
technique, see LOAD.

SAVE
APPLE He & 11+
SAVE filename [,Ss[[,Ddl[,Vv|
where filename specifies a file. SAVE
will place a copy of the program cur
rently in memory onto the specified
diskette. Parameters s, d and v are
optional, with s specifying the slot, d
specifying the drive, and v specifying
the volume of the diskette to receive

the SAVEd file. This command must
be preceded by PRINT CHR$(4);.

IBM PC & PCjr
SAVE " filename "[,A[[,P] where
filename specifies a file. SAVE will
place a copy of the program currently
in memory onto diskette. If switch A
is appended, the program will be
saved in ASCII format. If switch P is
appended, the program will be saved
in an encoded binary format. This pre
vents subsequent LISTing or EDITing
of the program, which is useful for
code protection.

COMMODORE 64

SAVE[fiIename][,device] places a
copy of the BASIC program currently
in memory onto a storage device,
where filename is the name of the file
to be saved, and device is the storage
device. The filename may be a maxi
mum of 16 characters long. Values for
device may be 1 (cassette) or 8 (disk).
The filename is not optional for a disk
save, and the filename selected must
not already be on the disk being saved
to.

If you wish to replace a program al
ready on disk with the program iu
memory—and also call the new pro
gram on disk filename—there are two
different ways to do it:

100 SAVE"@0:filename",8

This first saves a copy of your new
program to disk, then changes the
pointers to this new program rather
than the old program. There are
sporadic references in magazines to
the occasional failure of this

command, although that may be due
to the misalignment of disk drives or

196



TRS-80 Models IV & III
RUN

RUN [nl
RUN (filename] [,R]
In the first form, RUN will begin
executing the program currently in
memory, starting at the lowest line
number. In the second form, RUN
will begin executing the program
currently in memory, starting at the
line number specified by parameter n.
In the final form, RUN will LOAD
the program specified by filename
from disk, and begin execution at the
lowest line number. If the R option is
included, all data files remain open.
Otherwise, all data files will be closed.
However used, the RUN command
will reset all numeric variables to zero

and all string variables to null.

TRS-80 Color Computer
RUN

RUN In]
RUN [filename] I,R]
In the first form, RUN will begin
executing the program currently in
memory, starting at the lowest line
number. In the second form, RUN
will begin executing the program
currently in memory, starting at the
line number specified by parameter n
In the final form, RUN will LOAD
the program specified by filename
from disk, and begin execution at the
lowest line number. If the R option is
included, all data files remain open.
Otherwise, all data files will be closed.
However used, the RUN command
will reset all numeric variables to zero

and all string variables to null.

COMMENTS

TRS-80 Models IV & III TRS-80 Color Computer COMMENTS
SAVE " filename" I, A] I,P] where
filename specifies a file. SAVE will
place a copy of the program currently
in memory onto diskette. Switches A
and P are optional. If switch A is
appended, the program will be saved
in ASCII format. If switch P is ap
pended (Model IV only), the program
will be saved in an encoded binary
format that prevents subsequent
LISTing or EDITing of the program.
This is useful for code protection.

SAVE "filename"],A] where file
name specifies a file. SAVE will place
a copy of the program currently in
memory onto diskette. Switch A is
optional. If switch A is appended, the
program will be saved in ASCII
format.

the non-uniqueness of disk IDs. See
NEW.

The second method is safer and re
quires the following program lines:

100 OPEN 15,8,15 "S0:
bufilename"

11 0 PRINT#15,
"R0:bufilename=
filename"

120 CL0SE15

130 SAVE"filename",8:
VERIFY"filename",8

Line 100 deletes the back-up copy of
filename, here called bufilename.
Line 110 renames the old filename

on the disk to bufilename. Line 130

SAVEs and VERIFIES the latest ver

sion of the program in the computer
to the disk under the name filename.

The disk finally contains two
programs—filename, which is your
latest version, and bufilename, which
was the version immediately preced
ing the latest modification. The pri

mary use for the latter code is while
constructing a program, in which case
the following lines are usually inserted
into the above routine.

10 GOTO 200

140 END

200 REM MAIN PROGRAM STARTS
HERE

Now, whenever the latest version ot
your modified program needs to be
saved, you merely type

RUN 100

197



SCALE =
APPLE He & 11+
SCALE=11 sets the scale factor for
subsequent shapes drawn from the
high-resolution shape table, where n
is an integer in the range 1-255. The
shape will be drawn n times the origi
nal size.

IBM PC & PCjr
DRAW "S n" causes all objects sub
sequently DRAWn to be DRAWn to
the scale specifled by n—default is 4,
range 1-255. The actual scale factor is
n divided by 4, thus the default scale
factor is 1. This accomplishes scaling
by affecting the distances traveled by
the U, D, L, R, E, F, G, H and M
parameters of the DRAW command.

COMMODORE 64
Simulating SCALE on the Commo
dore 64 is not easily accomplished in
BASIC without machine-language
routines. It is beyond the scope of this
book.

SCRATCH
APPLE He & 11+
Simulate it with the following program
lines:

1 0 PRINT CHR$ (4) ; "OPEN
filename"

20 PRINT CHR$ (4) ; "DELETE
filename"

IBM PC & PCjr
KILL "filename" erases the file file
name from the disk. The file must
have been previously CLOSEd. FUe-
name can include a disk drive
specification, and must include the.
extension. For example:

KILLlb:file.bas]

COMMODORE 64
Killing a file is called
"SCRATCHing" by Commodore. It
is usually abbreviated "S" and is ac
complished with these lines:

10 OPEN 15,8,15,"S0;
filename"

20 CLOSE 15

198



TRS-80 Models IV & m TRS-80 Color Computer COMMENTS
You cannot simulate SCALE on the
Model IV or Model III because they
do not provide graphics capabilities.

DRAW "S n" causes all objects sub
sequently DRAWn to be DRAWn to
the scale specified by n—default is 4,
range 1-255. The actual scale factor is
n divided by 4, thus the default scale
factor is 1. This accomplishes scaling
by affecting the distances traveled by
the U, D, L, R, E, F, G, H and M
parameters of the DRAW command.

TRS-80 Models IV & lU
KILL "filename" erases the file file
name from the disk. The file must
have been previously CLOSEd. File
name can include a disk drive
specification, and must include the
extension. For example:

KILL"file/bas:2"

If no disk drive is specified, the file is
deleted from the first drive that has it.

TRS78O Color Computer COMMENTS
KILL "filename:d" erases the file
filename on disk drive number d. If d
is omitted, drive 0 is assumed. Files
can be KILLed on the cassette-based
COCO by simply recording over them.

199



SCREEN
APPLE Ue& 11+
See HGR, GR and TEXT. They're
used on the Apple to control screen
attributes.

IBM PC & PCjr
SCREEN Im) [,lcl [JalLvl] l,el]
(Statement) sets the screen attributes
to be used. Parameter m represents
the mode to be used—default is cur
rent mode.

Possible values for m are 0-6. Their
significances follow:

SCREEN 0 is the text mode at current

WIDTH (40 or 80). In Cartridge
BASIC, WIDTH 80 is only available if
you have 128K RAM.

SCREEN 1 is the four-color,
medium-resolution graphics mode
(320x200).

SCREEN 2 is the two-color, high-
resolution graphics mode (640x200).

SCREEN 3 (Cartridge BASIC Only)
is the 16-color, low-resolution graph
ics mode (160x200).

SCREEN 4 (Cartridge BASIC Only)
is the four-color, medium-resolution
graphics mode (320x200).

SCREEN 5 (Cartridge BASIC Only)
is the 16-color, medium-resolution
graphics mode (320x200). Requires
128KRAM.

SCREEN 6 (Cartridge BASIC Only)
is the four-color, high-resolution
graphics mode (640x200). Requires
I28KRAM.

Parameter c enables or disables color,
depending on the value of m. Parame
ter a specifies the active page-
default is the current page. The active
page is the one that will be addressed
by output statements to the screen.
Parameter v specifies the page that is
displayed—the visual page. The
default visual page is the active page.

Ranges available for a and v, and the
result of c=0, are given in the table
below:

WIDTH Range Fat
m Value Value aAndv Result of c-d

0  40 0-7 Color disabled

0  80 0-3 Color disabled

!• Not available Color enabled

2* Not available c has no effect

!•• Depends on RAM Color enabled
2*0 Depends on RAM chas no effect

2** Depends on RAM chas no effect
4** Depends on RAM Color enabled

5** Depends on RAM ehas no effect

6** Depends on RAM e has no effect

* Other than Cartridge BASIC
••Cartridge BASIC

COMMODORE 64
The following program lines sets the
Commodore 64 into high-resolution
mode with a 320 column by 200 row
display screen, having two colors
available. Colors are determined by
parameters P and B in line 140.
Parameter P represents the pixel
color, and B the background. Parame
ters P and B are in the range 0-IS. For
the actual color values, see the list of
colors under COLOR. In this
example, the background is blue and
the pixels are black.

100 POKE 53272, PEEK{53272)
OR 8

110 POKE 53265, PEEK(53265)
OR 32

120 FOR 1=8192 TO 16191
130 POKE 1,0: NEXT
140 P=0: B=6
150 FOR 1=1024 TO 2032

160 POKE I ,P* 16+B: NEXT

Lines 120 through 130, which clear
the high-resolution screen, take about
45 seconds to execute. If desired, they
could be replaced by the single line:

120 SYS2024

which executes almost immediately.
However, prior to calling this line, the
following lines are required:

10 FOR 1=2024 TO 2047: READ

A: POKE I,A: NEXT
20 DATA 169, 0, 168, 132,

251,162,32,134
30 DATA252, 145, 251 , 200,

208, 251 , 232, 224
40 DATA 64, 240, 4, 134,

252, 208, 242, 96

Other high-resolution screens are
available on the Commodore 64, but
require extensive knowledge of bit
mapping. A discussion of them is
beyond the scope of this book.

To return to low-resolution mode, the
following lines may be used:

200 POKE 53265, PEEK(53265)
AND 223

210 POKE 53272, 21

For more information on graphics,
see Commodore 64 Graphics & Sound
Programming by Stan Krute or How to
Program Your Commodore 64 by Carl
Shipman.

200



TRS-80 Models IV & III
Cannot be simulated on the Model IV
or Model III because they are always
in the text mode.

Parameter e is used in Cartridge
BASIC only. It specifies the amount
of video memory to erase if m or c is
changed. The range is 0-2 with the fol
lowing significance:

0 does not erase video memory
even if m or c changes.
1 erases the union of the new
page and the old page if m or c
changes—default.
2 erases all of video memory if
more changes.

If all parameters are valid, the screen
is erased, the new mode takes effect,
the background and border are set to
black, and the foreground is set to
white. Don't forget to reset the
COLOR after using SCREEN.

SCREEN (r,cl,zl) (Function) returns
the ASCII code—range 0-255—for
the character on the active screen at
the specified row and column.
Parameter r must be in the range
1-25. Parameter z is valid only in text
mode, and is an expression that eval
uates to a true or false value. If the ex

pression z evaluates as true, the color
attribute for the character is returned
instead of the code for the
character—range 0-255. This color at
tribute may be deciphered as follows:

1) (z MOD 16) is the foreground
color.

2) (((z-foreground)/16) MOD 128)
is the background color.
3) The expression (z>127) is True
(—1) if the character is blinking.
False (0) if not.

In graphics mode, if the specified loca
tion contains graphic information,
then the SCREEN function returns
zero.

TRS-80 Color Computer COMMENTS
SCREEN m,c selects the screen type
and color. If m=0, the text mode is
set. If m=l, the graphics mode is set.
Parameter c may be either 1 or 0. It
selects the color combination, or
palette, that will be used. The colors
in the palette are determined by
PMODE.

PMODE Im][,pl sets the graphics
mode, where m specifies the
mode—range 0-4. Parameter p speci
fies the memory graphics page you
wish to start on. Possible modes are
listed below:

Grid Color

PMODE Size Mode
0  128x96 TWo color
1  128x96 Four color
2  128x192 IWo color
3  128x192 Four color
4  256x192 IWo color

If m is omitted, the most recently as
signed value is used. If PMODE has
not been previously used, parameter
m defaults to 2. If p is omitted, the
most recent value is used. If PMODE
has not been previously used, p
defaults to 1.

Required
1
2
2
4

4

201



SCRN
APPLE He & 11+
SCRN (c,r) returns the color current
ly displayed on the low-resolution
graphics screen at column c and row c.
SCRN is not designed to be used in
high-resolution mode.

IBM PC & PCjr
POINT (x,y) returns the attribute of
the specified point on the screen,
where parameters x and y specify
legal absolute horizontal and vertical
coordinates. This command will
return a value of —1 if the specified
coordinates are out of range. See
COLOR for a listing of valid attribute
numbers for the various SCREEN
modes.

COMMODORE 64
Different models of the Commodore
64 deal with the color screen in vari

ous ways because of the different
chips installed in various production
series. Therefore, no attempt will be
made here to simulate SCRN.

SET
APPLE lie & 11+
PLOT x,y will place a block at the
specified coordinates on the low-
resolution screen, where x specifies
the horizontal coordinate—range
0-39—and y specifies the vertical
coordinate—range 0-39 with text
window, 0-47 with full screen
graphics. This command will use the
current low-resolution display color,
and may be used to simulate SET.

HPLOT x,y will set a point on the
high-resolution screen, where x is the
horizontal coordinate—range 0-279—
and y is the vertical coordi
nate—range 0-159 with text window
or 0-191 without text window,
HPLOT may be used to simulate SET.

IBM PC & PCjr
PSET (x,y) (,cJ (Graphics Modes
Only) may be used to simulate SET,
and causes the point specified by coor
dinates X and y to be set to attribute c.
The actual color specified by c will
vary, depending on the SCREEN in
use. See COLOR and PSET. If c is
omitted, the current foreground attri
bute is used. The range for x is 0-199.
The range for y depends on the
SCREEN in use. See SCREEN.

COMMODORE 64
Can be simulated by the following
routine, which will print the letter A
at row 20, column 30. Of course, any
character could be printed in place of
A, including any graphics character.

10 R=20: C=30

20 POKE 783,0: POKE781 ,R:
POKE 782,0

30 SYS 65520: PRINT "A" ;

Here, parameter R must be in the
range 0-24, and C must be in the
range 0-39. If an attempt is made to
PRINT in the lower-right corner of
the screen, the screen will scroll up.

SON
APPLE lie & 11+
SGN(x) where x is any numeric ex
pression or variable. SON returns —1
if X is negative, 0 if x is 0, and 1 if x is
positive.

IBM PC & PCjr
Same.

COMMODORE 64
Same.

202



TRS-80 Models IV & m
Cannot be simulated on the Model IV
or Model III because they do not have
color capabilities. See POINT for'a
similar function.

TRS-80 Color Computer
PPOINT (x,y) returns the color code
of the graphics point at coordinates
X—range 0-255—and y—range 0-191.
Note that the value returned by
PPOINT may be misleading if you
SET the point while in a different
PMODE than the current PMODE.

COMMENTS

TRS-80 Models IV & III
PRINT @ (x,y),CHR$a91) (Model
rv) may be used to simulate SET,
where x specifies the vertical
coordinate, and y specifies the hori-
ziuital coordinate. PRINT @ places
a graphics block (CHR$(191)) at the
specified screen location. Parameter y
may be in the range 0-23, and parame
ter X may be in the range 0-79.

SET (x,y) (Model ni) will place a
graphics block at the specified screen
location, where x specifies the hori
zontal coordinate, and y specifies the
vertical coordinate. Parameter x may
be in the range 0-127, and parameter
y may be in the range 0-47.

TRS-80 Color Computer
SET(x,y,c) will place a graphics block
at the specified screen location, where
X specifies the horizontal coordinate,
y specifies the vertical coordinate, and
c specifies the color to be SET.
Parameter x may be in the range 0-63.
Parameter y may be in the range 0-31.
Parameter c may be in the range 0-8.
See COLOR for a list of the actual
colors returned by the various values
ofc.

COMMENTS

TRS-80 Models IV & III TRS-80 Coloi Computer
Same. Same.

COMMENTS

203



SHELL
is an undocumented IBM reserved

word.

SHLOAD
APPLE Ue& 11+
SHLOAD loads a shape table from
cassette. It loads the table into the
highest available memory, then sets
HIMEM: just below it. Shapes can
then be called from the shape table by
shape number using DRAW x or
XDRAW X, where x is the shape
number.

IBM PC & PCjr
Though IBM does not utilize shape
tables, they can be simulated using
GET and PUT to manipulate shapes
on the screen. PRINT# and INPUT#
can then be used to save and load

arrays of shapes to disk or tape.

COMMODORE 64

Shape tables are not easily accom
plished on the Commodore without
extensive machine language.
Therefore, it is beyond the scope of
this book. You may wish to investigate
the use of sprites if you need to move
shapes around the screen. See the
Commodore 64 Programmer's Refer
ence Guide, pages 131 to 182.

SIN
APPLE lie &U+
SIN (a) where parameter a is an argu
ment expressed in radians. SIN (a)
will return the trigonometric sine of
the argument.

IBM PC & PCjr
Same.

COMMODORE 64

Same.

SKIPF
APPLE Ue&II+
PRINT CHRSC^rLOAD flle-
name" will cause the computer to
search for the specified file on cassette
if you do not have DOS loaded. If you
have DOS loaded, you omit the
filename, and the next program is
loaded. There is no way to skip to a
specified data file. Therefore, you
should be sure your data files are
saved on cassette immediately after
the program file that calls them.
Otherwise, you will have to search the
cassette manually.

IBM PC & PCjr
LOAD "CASl:fiIename" will cause
the computer to search for and load
the specified filename on cassette.
There is no way to skip to a specified
data file. Therefore, you should be
sure your data files are saved on
cassette immediately after the pro
gram file that calls them. Otherwise,
you will have to search the cassette
manually.

COMMODORE 64

Can be simulated with VERIFY on
the Commodore 64. Although not ac
tually intended for this purpose,
VERIFY without any parameters will
cause the program to skip over the
next program on cassette. It will dis
play a ?VERIFY ERROR if the pro
gram on cassette is not the same as
that in memory. But it will position
the tape at the end of that program. If
used in the program mode, execution
will stop after the error message. To
avoid this, use the following dynamic
keyboard technique:

100 PRINTCHR$ (147) "RUN
130"

110 POKE 198,2: POKE 631,19:
POKE 632,13

120 VERIFY

130 PRINTCHR$(147); :REM
PROGRAM CONTINUES HERE

204



TRS-80 Models IV & III TRS-80 Color Computer COMMENTS
INPUT#—1 will load values from
cassette tape, and PRINT#—1 will
write values to cassette tape. There is
no easy way to simulate shape tables
in BASIC on the TRS-80 because it
lacks extensive graphics capabilities.

Though COCO does not utilize shape
tables, they can be simulated using
GET and PUT to manipulate shapes
on the screen. PRINT# and INPUT#

can then be used to save and load

arrays of shapes to disk or tape.

TRS-80 Models IV & III TRS-80 Color Computer
Same. Same.

COMMENTS
To convert degrees (D) to radians
(R), use the following formula:
R=D*3.141593/180

TRS-80 Models IV & III TRS-80 Color Computer COMMENTS
Though there is no way to skip a speci
fied program on cassette with the
TRS-80, you may skip to and load a
program by specifying the program
name after CLOAD. There is no way
to skip to a specified data file.
Therefore, you should be sure that
data files are saved on cassette im
mediately after the program file calling
them. Otherwise, you will have to
search the cassette manually.

SKIPF ["name") where name is a
program to be skipped. Default is the
next program. SKIPF skips to the end
of the specified program on cassette.
This may be useful for moving to a
specific data file.

If this code is renumbered, then the
number 130 in quotation marks in
line 100 should be changed to refer to
the new line number.

205



SOUND
APPLE He &n+
Cannot be simulated on the Apple
without extensive machine-language
routines. They are beyond the scope
of this book.

IBM PC & PCjr
SOUND f,d
SOUND f, d, I,[volume] [,[voice])]
(Cartridge BASIC Only) generates
sound, where f is the frequency of the
note to be SOUNDed through the
speaker—range 37-32767—measured
in cycles per second. In Cartridge
BASIC, any value for f less than 110
will be interpreted as 110. Parameter
d is the duration of the soimd mea
sured in "clock ticks." There are 18.2
clock ticks per second—range is
0-65535 (.0015-65535 for Cartridge
BASIC). If d=0, the current sound is
turned off. If f=32767, the "sound"
is silence.

Volume is defmed by a numeric ex
pression in the range 0-15
—default=15. Voice is either 0,1 or
2, and specifies which voice is being
addressed. SOUND must be ON
when you use voice or volume.
Otherwise, you will get an ILLEGAL
FUNCTION CALL.

A new sound turns an old sound off
unless you have used a PLAY "MB"
statement. In that case the new sound
is buffered, awaiting the end of the
old sound before it begins. For an ex
tended discussion of the relationship
of SOUND to the notes of the key
board and to tempo, see the BASIC
Reference Manual, pages 4-262
through 4-264, or the Cartridge
BASIC Reference Manual, page 4-341.
The main difference between
SOUND and PLAY is that SOUND is
oriented to a decimal system. PLAY
is oriented to an octave system.

SOUND ON (Cartridge BASIC Only)
enables the external speaker and dis
ables the internal speaker.

SOUND OFF (Cartridge BASIC
Only) disables the external speaker
and enables the internal speaker.

SOUND ON and SOUND OFF used
in conjunction with BEEP ON and
BEEP OFF have the following effects:

SOUND OFF: BEEP OFF selects the
internal speaker only.
SOUND ON: BEEP OFF selects the
external speaker only.
SOUND OFF: BEEP ON selects
both speakers—default setting.

COMMODORE «4
Though the Commodore 64 supports
extensive sound capabilities, there is
no SOUND command. Its simulation
is beyond the scope of this book.
Machine-language sound utilities are
coimnercially available for this
function. Also see Your Commodore
64 by Heilbom and Talbott, Chapter 7.

206



TRS-80 Models lY & m TRS-80 Color Computer COMMENTS
Cannot be simulated on the TRS-80 SOUND f,d generates sound through
Models IV and III without extensive the speaker, where f is the pitch of the
machine-language routines. They are note to be SOUNDed and d is the du-
beyond the scope of this book. ration of the sound. Parameters f and

d have a range of 1 -255.

207



SPACES, SPG
APPLE He & 11+
SPC(n) prints n spaces, where n is
any numeric expression that will be
truncated to an integer. SPG can be
used only with a PRINT statement. If
SPG(n) is the last item in a PRINT
statement, it will be assumed to be
followed by a semicolon and therefore
does not cause a carriage return.

IBM PC & PCjr
SPAGE$(n) returns a string
consisting of n spaces, where n is an
integer numeric expression in the
range 0-255.

SPG(n) prints n spaces, where n is
any numeric expression. Parameter n
will be truncated to an integer. SPG
can be used only with a PRINT,
LPRINT or PRINT# statement. If
SPG(n) is the last item in a PRINT
statement, it will be assumed to be
followed by a semicolon and will not
cause a carriage return. If n is greater
than the width of the device being
printed to, the value used for n is N
MOD WIDTH,

COMMODORE 64
SPG(n) prints n spaces, where n is
any numeric expression. Parameter n
will be truncated to an integer. SPG
can be used only with a PRINT or
PRINT# statement. If SPG(n) is the
last item in a print statement, it will
be assumed to be followed by a
semicolon and will not cause a

carriage return.

SPEED =
APPLE lie & 11+
SPEED=n sets the speed of
execution of the program, where n is
an integer numeric expression in the
range 0-255, default=255. If n<255,
program execution slows down.

IBM PC & PCjr
You can slow the execution of a
program on the IBM by specifying
event trapping—ON COM, ON
PLAY, ON STRIG, ON PEN, ON
KEY, ON TIMER. These commands
cause BASIC to check for the event
before the execution of each line,
thus slowing program execution for
each statement included. You can

further slow execution by putting in
timer loops, such as the one below.
These will slow execution only of that
particular portion of the program.

10 F0RX=1 TO 100; NEXTX

COMMODORE 64

You can slow program execution by
putting in timer loops, such as the
following. These will slow execution
only of that particular portion of the
program.

10 F0RX=1 TO 100: NEXTX

SQR
APPLE He & 11+
SQR(ii) returns the square root of n,
where n is greater than or equal to 0.

IBM PC & PCjr
Same.

COMMODORE 64

Same.

208



TRS-80 Models IV & lU
SPACE$(ii) returns a string
consisting of n spaces, where n is an
integer numeric expression in the
range 0-255.

SPC(n) prints n spaces, where n is
any numeric expression. Parameter n
will be truncated to an integer. SPC
can be used only with a PRINT,
LPRINT or PRINT# statement. If
SPC(n) is the last item in a PRINT
statement, it will be assumed to be
followed by a semicolon and will not
cause a carriage return. SPC is useful
in that it does not use string space.

TRS-80 Color Computer
PRINT STRING$(ii,32) prints a
string of n spaces, and can be used to
simulate SPC(n).

COMMENTS

TRS-80 Models IV & III
You can slow program execution by
putting in timer loops, such as the
following. These will slow execution
only of that particular portion of the
program.

10 F0RX=1 TO 100: NEXTX

TRS-80 Color Computer COMMENTS
You can slow execution of a program
by putting in timer loops, such as the
following. These will slow execution
only of that particular portion of the
program.

1 0 FORX=1 TO 1 00 : NEXT X

TRS-80 Models IV & III
Same.

TRS-80 Color Computer
Same.

COMMENTS

209



ST
APPLE He & 11+
There is no need to simulate ST on
the Apple because it has built-in error
messages, as well as the more power
ful ONERR GOTO error-handling
routines.

IBM PC & PCjr
There is no need to simulate ST on
the IBM because it has built-in error

messages, as well as the more power
ful ERL, ERR, ERROR and ON
ERROR GOTO error-handling
routines.

COMMODORE 64
ST is used to return an eight-bit status
report on how the last input or output
operation occurred. The values re
turned by ST can indicate I/O errors
for cassette, disk, printer, or serial
bus peripheral devices. For example,
if ST=64, the end of the file was
encountered. And if ST=—128, the
device requested was not present. For
a detailed explanation see the Commo
dore 64 Programmer's Reference
Guide, pages 84 and 85. For an exam
ple of its usage see EOF.

STEP
APPLE He & 11+
STEP n sets the incremental value of
a loop, where n is any numeric
expression—default=l. It is used
only within a FOR-NEXT loop, such

IBM PC & PCjr
Same.

COMMODORE 64
Same.

10 FOR A=1 TO 10 STEP 21

NEXT A

If n is 0, the loop is infinite. If n is
negative, and the number the loop is
going TO is greater than the number
where it starts, or vice-versa, then
only the first iteration will be
executed. No error condition will
occur, and program execution will
continue.

STICK
APPLE He & 11+
PDLCn) tests the game paddles,
where n is an integer in the range
0-225. If values other than 0,1,2 or 3
are used, the PDL function will give
erratic and unpredictable results!
Values of 0-3 will return a "resistance
variable" for the respective paddle be
tween 0 and 150K ohms. This value
must then be interpreted to produce
the desired results. Note that this wiU
require extensive programming
changes when converting to or from
other computers.

IBM PC & PCjr
STICK (n) where n is an integer in
the range 0-3. STICK returns the
coordinates of the joysticks.
STICK (0) obtains the values of both
joysticks, but returns the x coordinate
of joystick A. STICK(l), STICK(2)
and STICK(3) do not sample the
joystick, but return the coordinates re
trieved by the most recent STICK (0).
STICK(l) returns the y coordinate of
joystick A. STICK(2) returns the x
coordinate ofjoystick B. STICK (3) re
turns the y coordinate of joystick B.

COMMODORE 64
The Commodore 64 supports two
game ports, 1 and 2. The joystick in
port 1 is read by PEEKing 56321. Port
2 is read by PEEKing 56320. The
number returned by the PEEK is logi
cally ANDed with 15 to indicate the
direction according to the chart below:

NW=10

West=ll

SW=9

North=14 NE=6
Home=15 East=7
South=13 SE=5

To read the "fire" button, the
number returned is logically ANDed
with 16. If the value resulting is 16,

210



TRS-80 Models IV & III
There is no need to simulate ST on
the Models IV and III because they
have built-in error messages, as well
as the more powerful ERL, ERR,
ERROR, ERR$ and ON ERROR
GOTO error-handling routines.

TRS-80 Color Computer
Not available and cannot be simulated
on the COCO without extensive
machine-language programming.

COMMENTS

TRS-80 Models IV & in TRS-80 Color Compnter COMMENTS
Same. Same.

TRS-80 Models IV & UI
Joysticks and paddles are not currently
supported on the Model IV or Model
ni. Even so, some independent
companies have devised joysticks that
work through the cassette port.

the button is not pressed. If the value
is 0, the button is pressed.

The following program lines demons
trate how to read Port 2:

10 FOR 1=0 TO 10 : READ
D$(I): NEXT

TRS-80 Color Computer
JOYSTKCn) returns a coordinate
from the joystick, where n is an integ
er from 0-3. If n=0, it returns the
horizontal coordinate of the right
joystick. If 11=1, it returns the vertical
coordinate of the right joystick. If
n=2, it returns the horizontal coordi
nate of the left joystick. If ii=3, it re
turns the verticd coordinate of the
leftjoystick.

COMMENTS

20 DATASE,NE,E ,,SW,NW,
W,,S,N,H,

30 F$(0)="FIRE":
F$(1 Ix-'SAFE"

40 PRINT CHR$( 147);
50 PRINT

CHR$(19)D$((PEEK(56320
)AND15)-5)

60 PRINT F$
((PEEK(56320)AND
16)/16)

70 GOTO 50

211



STOP
APPLE He &n+ IBM PC & PCjr COMMODORE 64
STOP causes program execution to
halt and returns to the command

level. The following message is
printed:

Same. Same.

BREAK IN X

where X is the line number containing
the STOP command. Files are not

closed and variables are not lost. The

program may be restarted with a
CONT command.

STORE
APPLE He & 11+ IBM PC & PCjr COMMODORE 64

STORE n where n is any valid numer
ic array name. STORE will cause the
values of the array, such as n(l),
n(2), n(3), ..., to be stored on the
cassette tape. No prompt will be
given, so the proper buttons on the
cassette must be previously pressed.
Note that the subscripts of the array
are not indicated in the command,
and that the array itself is not affected
by the storage. STORE is the comple
ment to RECALL.

Simulate it by PRINTing the data ele
ments to a cassette, or disk, data file.
One method would be to use a loop
that repeats itself as long as there are
array elements left.

Simulate it by PRINTing the data ele
ments to a cassette, or disk, data file.
One method would be to use a loop
that repeats itself as long as there are
array elements left.

STR$
APPLE Ue&U+
STR$(n) returns a string representa
tion of n, where n is any numeric
expression. That is, the digits in the
numbers will be treated as individual

characters rather than as a number. If
the number is negative, the minus
sign is included. This is the comple
ment to VAL, which returns a numer
ic expression when given a string
argument.

IBM PC & PCjr
STR$(n) returns a string representa
tion of n, where n is any numeric
expression. That is, the digits in the
numbers will be treated as individual
characters rather than as a number. If
the number is negative, the minus
sign is included. If the number is posi
tive or zero, a leading blank will be re
turned in the string. This is the
complement to VAL, which returns a
numeric expression when given a
string argument.

COMMODORE 64
STR$(n) returns a string representa
tion of n, where n is any numeric
expression. That is, the digits in the
numbers will be treated as individual

characters rather than as a number. If
the number is negative, the minus
sign is included. If the number is posi
tive or zero, a leading blank will be re
turned in the string. This is the
complement to VAL, which returns a
numeric expression when given a
string argument.

212



TRS-80 Models IV & lU TRS-80 Color Computer COMMENTS
Same. Same.

TRS-80 Models IV & III
Simulate it by PRINTing the data ele
ments to a cassette, or disk, data file.
One method would be to use a loop
that repeats itself as long as there are
array elements left.

TRS-80 Color Computer
Simulate it by PRINTing the data ele
ments to a cassette, or disk, data file.
One method would be to use a loop
that repeats itself as long as there are
array elements left.

COMMENTS

TRS-80 Models IV & III
STR$(n) returns a string representa
tion of n, where n is any numeric
expression. That is, the digits in the
numbers will be treated as individual

characters rather than as a number. If
the number is negative, the minus
sign is included. If the number is posi
tive or zero, a leading blank will be re
turned in the string. This is the
complement to VAL, which returns a
numeric expression when given a
string argument.

TRS-80 Color Computer
STR$(n) returns a string representa
tion of n, where n is any numeric
expression. That is, the digits in the
numbers will be treated as individual

characters rather than as a number. If

the number is negative, the minus
sign is included. If the number is posi
tive or zero, a leading blank will be re
turned in the string. This is the
complement to VAL, which returns a
numeric expression when given a
string argument.

COMMENTS

213



STRIG
APPLE lie & 11+
Although it can handle four paddles,
the Apple can read the status of only
three paddle buttons. This is accom
plished with PEEK(-16287) for the
value of the button on paddle 0,
PEEK(—16286) for paddle 1, and
PEEK(—16285) for paddle 2. If the
value returned is greater than 127,
then the button is being pressed.

IBM PC & PCjr
STRIG ON

STRIG(n)
STRIG OFF controls status checking
on the joystick buttons, where n is an
integer from 0-3 in BASIC, or 0-7 in
Advanced, Cartridge or Compiler
BASIC. STRIG ON causes the pro
gram to begin checking the status of
the joystick buttons at the beginning
of execution of each program line.

Value If Value H

Button Button

Button Has Been Is Being
B Value Number Pressed Pressed Default

0 A1 -1 0

1 A1 -1 0

2 B1 -1 0

3 B1 ~1 0

The following apply to Advanced
BASIC and Compiler BASIC only.

A2
A2
B2

B2

-1

-I
-1

STRIG (n) ON
ON STRIG (n) GOSUB Une
STRIG (n) STOP
STRIG (n) OFF
These commands enable or disable

trapping for the specified joystick
button n, with the value of n deter
mined by the chart below. The
parameter Rne—range 1-65535
—specifies a line to GOSUB to if the
specified button has been pressed.

n  Button

0  A1
2  B1
4  A2

6  B2

When STRIG (n) ON has been speci
fied and the ON STRIG(n) GOSUB
line command is in effect, BASIC
checks at the beginning of execution
of each line to see if the button has
been pressed. If it has, the GOSUB is
executed. If not, then program execu
tion continues uninterrupted.
STRIG (n) STOP causes trapping to
cease, but the computer remembers
whether the button was pressed. If so,
when a STRIG (n) ON is executed,
then the GOSUB is executed

immediately. STRIG (n) OFF causes
trapping to cease, and even if the
button is pressed it will not be
remembered.

COMMODORE 64

The Commodore 64. supports two
game ports, 1 and 2. The joystick in
port I is read by PEEKing 56321,
while port 2 is read by PEEKing
56320. The number returned by the
PEEK is logically ANDed with 15 to
indicate the direction according to the
chart below:

NW=10 North=14 NE=6
West=ll Home=15 East=7
SW=9 South=13 SE=5

To read the "fire" button, the
number returned is logically ANDed
with 16. If the value resulting is 16,
the button is not pressed. If the value
is 0, the button is pressed.

The following program lines demons
trate how to read Port 2:

10 FORI=0TO10: READ

D${I) : NEXT
20 DATASE,NE,E , ,SW,NW,

W,,S,N,H,

30 F$(0)="FIRE";
F$(1)="SAFE"

40 PRINT CHR$( 147) ;
50 PRINTCHR$(19)D$( (PEEK

(56320)AND15) -5)
60 PRINTF$ ( (PEEK(56320)

AND16)/16)
70 GOTO 50

214



TRS-80 Models IV & lU
Joysticks and paddles, and their
buttons, are not currently supported
by Radio Shack on the Model IV or
Model III. Even so, some independent
companies have devised joysticks that
work through the cassette port

TRS-80 Color Computer
Joystick buttons are accessed by
PEEKing memory location 6S280.
PEEK(65280) will return 127 or 255
if no button is pressed. It will return
126 or 254 if the right button is
pressed, or 125 or 253 if the left
button is pressed.

COMMENTS

215



STRINGS
APPLE lie & 11+
Simulate it with the following line,
where C$ specifies a character to be
repeated, and NMB is the number of
characters desired. The following line
will return, in variable T$, the speci
fied number of characters:

100 T$="" : FOR 1=1 TO NMB;

T$=T$+C$: NEXT I

IBM PC & PCjr
STRING$(n,m) or STRING$(n,x$)
where n specifies the number of
characters, m specifies an ASCII code
representing a character (range
0-255), and x$ specifies a character.
This function will return a string of
the specified number of characters.

COMMODORE 64
Simulate it with the following line,
where €$ specifies a character to be
repeated, and NMB is the number of
characters desired. The following line
will return, in variable T$, the speci
fied number of characters:

100 T$="": F0RI=1 TO NMB:

T$=T$+C$:NEXT I

SUB
is a TRS-80 Color Computer undocu
mented reserved word.

SWAP
APPLE IIe&II +
Simulate it with the following routine,
where SI and S2 are the variables to
be SWAPped. They could also be Sl$
and S2$. In that case, use T$ instead
ofT.

T=S1 : S1=S2: S2=T

IBM PC & PCjr
SWAP n,m exchanges the values of
variables n and m. The variables may
be any type—numeric, string or
array—but must both be of the same
type. Thus if n= 1 and m=2,

10 SWAPn,m

would cause m= 1 and n=2.

COMMODORE 64
Simulate it with the following routine,
where SI and S2 are the variables to

be SWAPped. They could also be Sl$
and S2$. In that case, use T$ instead
ofT.

T=S1 : S1=S2: S2=T

SYS
APPLE He & 11+
CALL n causes execution of the
machine-language routine at memory
location n, where n is a decimal
numeric expression in the range
—65535-65535, representing a
memory location.

IBM PC & PCjr
CALL nl(xl [,x2|...)] executes a
machine-language subroutine at the
location specified by the most recent
DBF SEG and the offset defined by
variable n, where n is a numeric
expression and xl, x2..., are names
of variables that are to be passed as
arguments to a machine-language
routine.

COMMODORE 64

SYS n causes execution of the
machine-language routine starting at
memory location n, where n is
decimal numeric expression in the
range 0-65535, representing a
memory location. You cannot pass
parameters to a machine-language
program on the Commodore 64
without POKEing the information
into a memory address and
subsequently retrieving it within the
machine-language routine.

216



TRS-80 Models IV & III
STRING$(ii,m) or STRING$(n,x$)
where n specifies the number of
characters, m specifies an ASCII code
representing a character (range
0-255), and x$ specifies a character.
This function will return a string of
the specified number of characters.

TRS-80 Color Computer
STRING$(n,m) or STRING$(n,x$)
where n specifies the number of
characters, m specifies an ASCII code
representing a character (range
0-255), and x$ specifies a character.
This function will return a string of
the specified number of characters.

COMMENTS
Simulation on the Apple and Commo
dore 64 can also be done by direct
assignment, such as:

This would create a string of 10
asterisks.

The advantage of using STRINGS is
that it does not use up string storage
space unless you assign a variable
name to it. Simulating it uses string
storage space.

TRS-80 Models IV & III
SWAP n,m (Model IV) exchanges
the values of variables n and m. The
variables may be any type—numeric,
string or array—but must both be of
the same type. Thus if n= 1 and m=2,

10 SWAPn,in

would cause m= 1 and n=2.

Simulate SWAP on the Model III with
the following routine, where SI and
S2 are the variables to be SWAPped.
They could also be Sl$ and S2$. In
that case, use T$ instead of T.
1000 T=S1 : S1=S2: S2=T

TRS-80 Color Computer COMMENTS
Simulate it with the following routine,
where SI and S2 are the variables to
be SWAPped. They could also be Sl$
and S2$. In that case, use T$ instead
ofT.

1000 T=S1 : S1=S2: S2=T

TRS-80 Models IV & III TRS-80 Color Computer COMMENTS
CALL n (,a [,b...|| causes execution
of the machine-language routine
starting at memory location n, where
n is a non-array variable specifying
the beginning address of the
machine-language subroutine being
called, and are variables
representing parameters being passed
to the machine-language routine.

EXEC In] transfers control to the
machine-language program at
memory location n. If n is omitted, it
assumes the address specified at the
lastCLOAD.

Also see USR and VARPTR. The pri
mary differences between USR and
CALL are that multiple arguments or
parameters can be passed to the ma
chine-language routine using CALL,
and that CALL does not require
POKEing the address of the routine,
but rather specifies it in the CALL
statement. The method of passing
parameters to the machine-language
routine varies machine. IBM passes
parameters through its stack. Radio
Shack uses registers HL, DE and BC.
See the manuals.

217



SYSTEM
APPLE He & 11+
Because the BASIC command mode
and the system command mode are
indistinguishable to the user,
SYSTEM is not used on the Apple.
There is no need to simulate it.

IBM PC & PCjr
SYSTEM closes all files and takes the
computer to DOS. The program in
memory is lost. This command is not
available in cassette BASIC. If you are
using Cartridge BASIC, DOS 2.1
must be present or an ILLEGAL
FUNCTION CALL error will result.

COMMODORE 64
Because the BASIC command mode
and the system command mode are
indistinguishable to the user,
SYSTEM is not used on the

Commodore 64. There is no need to
simulate it.

TAB
APPLE He & 11+
TAB(n) tabs to position n, where n is
an integer numeric expression in the
range 1-255, or I to the WIDTH of
the device. If n is greater than the
WIDTH of the device, TAB goes to
position n on the next line. If TAB is
the last item in a list, a semicolon is
assumed to follow it. TAB can be used
only in the context of PRINT
statements.

IBM PC & PCjr
TABCn) tabs to position n, where n is
an integer numeric expression in the
range 1-255, or 1 to the WIDTH of
the device. If n is greater than the
WIDTH of the device, TAB goes to
position n on the next line. If TAB is
the last item in a list, a semicolon is
assumed to follow it. TAB can be used
only in the context of PRINT,
LPRINT or PRINT# statements.

COMMODORE 64
TABCn) tabs to position n, where n is
in the range 0-255, from the left
margin of the cursor's line. If
parameter n is not an integer, n is
truncated. If n does not exceed the

current cursor position on the line,
then no tabbing is performed.
Because the screen is only 40
characters wide, if n exceeds 39 then
n=40 will take you to the left margin
of the following line, etc. If TAB is the
last item in a list, a semicolon is
assumed to follow it. TAB should be
used only in the context of PRINTing

218



TRS-80 Models IV & UI
SYSTEM [command] (Model IV)
executes the specified command,
where command is any valid DOS
command. If command is omitted,
you are returned to DOS, and the
program in memory is lost. If
command is included and is a valid
DOS library command, then
conunand is executed and you are
returned to BASIC with the program
in memory intact.

SYSTEM (Model III) places you in
the system mode for the sole purpose
of loading a machine-language
program from cassette. It should not
be used within a program.

CMD"S" (Model III) returns you to
DOS. You can re-enter BASIC with
your program intact if you have not
done anything that would alter the
memory space occupied by the
program or BASIC. To re-enter, type

BASIC -N-

The space between the word and the
asterisk is required.

CMD"I" command (Model III)
returns you to DOS and executes the
specified command, where command
is any valid DOS command or valid
program name. You automatically
re-enter BASIC if the BASIC memory
area is intact after command is
executed.

For a more detailed explanation of
how CMD may be used, see CMD.

TRS-80 Color Computer COMMENTS
Because the BASIC command mode
and the system command mode are
indistinguishable to the user,
SYSTEM is not used on the COCO.
There is no need to simulate it.

TRS-80 Models IV & III
TAB(n) tabs to position n, where n is
an integer numeric expression in the
range 1-255, or 1 to the WIDTH of
the device. If n is greater than the
WIDTH of the device, TAB goes to
position n on the next line. If TAB is
the last item in a list, a semicolon is
assumed to follow it. TAB can be used
only in the context of PRINT,
LPRINT or PRINT# statements.

to the screen. Using it to format
output to the printer may lead to
unpredictable effects.

TRS-80 Color Computer
TAB(n) tabs to position n, where n is
an integer numeric expression in the
range 1-255, or I to the WIDTH of
the device. If n is greater than the
WIDTH of the device, TAB goes to
position n on the next line. If TAB is
the last item in a list, a semicolon is
assumed to follow it. TAB can be used
only in the context of PRINT,
LPRINT or PRINT# statements.

COMMENTS

219



TAN
APPLE He & 11+
TAN(n) returns the
tangent of n, where
measured in radians.

trigonometric
n is an angle

IBM PC & PCjr
Same.

COMMODORE 64
Same.

TERM
APPLE He & 11+
Not available. Cannot be easily
simulated. Some commercial com

munications programs give similar
capabilities.

IBM PC & PCjr
TERM (Cartridge BASIC Only) loads
and runs a Terminal Emulator
program. All OPEN files are CLOSEd
and any BASIC program in memory is
lost. See the Cartridge BASIC Refer
ence Manual, pages 4-360 through
4-367 for complete details on TERM.

COMMODORE 64
Not available. Cannot be easily
simulated. Some commercial com
munications programs give similar
capabilities.

TEXT
APPLE lie & 11+
TEXT converts the display screen to
40 columns by 24 lines of text display.
This is the normal text mode.

IBM PC & PCjr
Simulate it with the following:

100 SCREEN 0,0

COMMODORE 64
To return to low-resolution
mode—after using the high-resolution
mode discussed under HGR—use the
following program lines:

200 POKE 53265, PEEK(53265)
AND 223

210 POKE 53272, 21

THEN (See IF-THEN-ELSE)

TI, TIMER
APPLE lie & 11+
Apple does not provide a built-in
timer, so there is no way to simulate
interval timing without extensive
machine-language programming or
installing a clock card.

IBM PC & PCjr
TIMER (BASIC 2.0 and Cartridge
BASIC Only) returns the number of
seconds since midnight, according to
the system clock. TIMER returns a
single-precision number accurate to
about 1/IOOth of a second. It is a
read-only function. Not available in
cassette BASIC. Cartridge BASIC
requires the presence of DOS 2.1 to
use TIMER.

COMMODORE 64
TI reads the interval timer, a "jiffy
clock." The value returned
represents the number of 1/60
seconds elapsed since the computer
was turned on. Maximum value is
5,184,000, or 24 hours. It is a
read-only function, equivalent to

256*256*PEEK (160) +256*PEEK
(161)+PEEK(162)

Timer accuracy is affected by I/O
operations, such as the use of the
cassette or disk drive, as well as other
operations, such as disabling the
RUNSTOP/RESTORE keys.

220



TRS-80 Models IV& III
Same.

TRS-80 Color Computer
Same.

COMMENTS
To convert degrees (D) to radians
(R), use the following formula:
R=D* 3.141593/180

TRS-80 Models IV & III TRS-80 Color Computer COMMENTS
Not available. Cannot be easily
simulated. Some commercial com
munications programs give similar
capabilities.

Not available. Cannot be easily
simulated. Some commercial com
munications programs give similar
capabilities.

TRS-80 Models IV & III TRS-80 Color Computer
Because there is no graphics screen on Simulate it with the following:
the TRS-80, there is no need to simu- -| a a screen 0 0
late TEXT.

COMMENTS

TRS-80 Models IV & III
If you set the TRS-80's internal time
clock to 00:00:00—see TIMES—you
can simulate Commodore's TI

function with the following:

For the Model IV:

200 T$=TIME$

210 S=VAL{RIGHT$(T$,2)) ;
M=VAL(MID$(T$,4,2)):
H=VAL(LEFT$(T$,2))

220 S=S+(M*60) + (H*360)
230 T=S*60

For the Model III:

200 T$=RIGHT${TIME$,8)
210 S=VAL(RIGHTS(T$,2)):

M=VAL(MID$(T$,4,2)) :
H=VAL(LEFT$(T$,2))

220 S=S+(M*60) + (H*360)
230 T=S*60

TRS-80 Color Computer
TIMER reads the interval timer. The

value returned represents the
approximate number of 1/60 seconds
elapsed since the computer was
turned on. When the timer reaches
65535, it resets to 0. This takes about
18 minutes. The timer can be set with

the command

1 0 TIMER=n

where n is in the range 0-65535. Note
that cassette I/O may cause erroneous
TIMER readings.

Elapsed time—in terms of the
number of 1/60 seconds elapsed since
initialization—will be returned in

variable T.

COMMENTS

221



TI$, TIMES
APPLE He & 11+
Apple does not provide a built-in
clock, so there is no way to simulate
one without extensive machine-

language programming or installing a
clock card.

IBM PC & PCjr
TIMES=n$ sets the clock, where n$
is a variable or constant with the form
hh[:mm][:ssl. Parameter hh is
hour—range 0-23. Parameter mm is
minutes—range=0-59. Parameter ss
is seconds—range 0-59. If mm or ss is
omitted, the default is 0.

n$=TIMES assigns the current value
of the clock to nS. The string assigned
to nS takes the form hh:mm:ss, where
hh represents the hour, mm repre
sents the minutes, and ss represents
the seconds. Ranges are as described
above. Note that the clock may have
been set using TIMES or may have
been set before entering BASIC.

COMMODORE 64
TlS=nS sets the clock, where nS is a
variable or constant with the format
of "hhmmss". All six parameters are
necessary. Anything in ss that exceeds
59 seconds is automatically converted
to minutes and seconds. Similarly, a
value for mm in excess of 60 is con
verted to hours and minutes.
However, if the final entry translates
to a time in excess of 24 hours, TI$ is
set to 000000. For example:

112233 is interpreted as II hours, 22
minutes, and 33 seconds.
112293 is interpreted as 112333—11
hours, 23 minutes, and 33 seconds.
118293 is interpreted as 122333—12
hours, 23 minutes, and 33 seconds.
238233 is interpreted as
240233—which is converted to

000000.

Note that this may be set during* the
program or before the program is
RUN. Its accuracy is affected by 1/0
operations, such as the use of the
cassette or disk drive, as well as other
operations, such as disabling the
RUNSTOP/RESTORE keys.

n$=TI$ assigns the current value of
the clock to n$. String assignment to
n$ takes the form of "hhmmss".
Parameter hh represents the
hour—range 0-23. Parameter mm rep
resents the minutes—range 0-59.
Parameter ss represents the
seconds—range 0-59.

TO (See FOR-TO)

TRACE, TROFF, TRON
APPLE He & 11+
TRACE turns the trace utility on.
This causes the line number of the
line in execution to be printed on the
screen, following a # symbol, at the
cursor position as the line begins
execution.

NOTRACE turns the trace utility off.

IBM PC & PCjr
TRON turns the trace utility on. This
causes the line number of the line in
execution to be printed on the
screen—inside a pair of square
brackets—at the cursor position as the
line begins execution.

TROFF turns the trace utility off.

COMMODORE 64
Simulating TRACE on the Com
modore 64 is not easily accomplished
in BASIC. It is beyond the scope of
this book.

222



TRS-80 Models IV & III
TIMES (Model IV) retarns the time
of day in the format hh:mm:ss. The
time may be set during initial power-
up by answering the TIME question
in TRS-DOS, or from BASIC by using
the statement:

SYSTEM "TIMEhhrmmtss"

where hh specifies two digits for
hours, mm specifies two digits for
minutes, and ss specifies two digits
for seconds.

TIMES (Model III) returns the date
and time of day in the format
dd/mm/yy hh:mm:ss. The time may
be set during initial power-up by
answering the TIME question in TRS-
DOS. Time may be obtained by using
the statement:

T$=RIGHT$(TIME$,8)

TRS-80 Color Computer COMMENTS
coco does not provide TIMES, and
it cannot be simulated in BASIC.

TRS-80 Models IV & 111 TRS-80 Color Computer COMMENTS
TRON turns the trace utility on. This
causes the line number of the line in

execution to be printed on the
screen—inside a pair of brackets—at
the cursor position as the line begins
execution.

TROFF turns the trace utility off.

TRON turns the trace utility on. This
causes the line number of the line in
execution to be printed on the
screen—inside a pair of square
brackets—at the cursor position as the
line begins execution.

TROFF turns the trace utility off.

TRACE functions are usually used at
the programming level, while debug
ging a program. These commands are
normally removed from the final ver
sion of a working program.

223



UNLOAD
APPLE He & 11+

Simulate it with the CLOSE

statement.

IBM PC & PCjr
Simulate it with the CLOSE
statement.

COMMODORE 64
Simulate it with the CLOSEn

statement, where parameter n is the
previously OPENed file. To close all
files, execute

SYS 65511

USING
is used by some machines to format
PRINTed output. See PRINT
USING.

USR
APPLE lie & 11+
USR(a) calls a machine-language rou
tine and passes argument a to it. Argu
ment a is any numeric or string varia
ble or expression that will be passed
to the routine. Also see CALL.

IBM PC & PCjr
USRinKa) calls machine-language
routine n, and passes argument a to it.
Parameter n is the number of the rou
tine as defined with DEF USR
n—range 0-9, default 0. Argument a
is any numeric or string variable or ex
pression that will be passed to routine
n. Also see CALL.

COMMODORE 64
USR(a) calls a previously written
machine-language subroutine, where
argument a is an arithmetic expres
sion in the range 0-65535. The su
broutine's address must have been
previously poked to addresses 785
and 786—in low byte, high byte
order. This function passes the argu
ment a to the subroutine via address
97. Returned to this address is the

new value for a.

VAL
APPLE lie &n+
VAL(x$) converts x$ to a numeric
expression, where x$ is any string
expression. Leading blanks, tabs and
line feeds are stripped from x$ before
the converaon is made. If the first
character of x$ is not numeric, the
value returned is 0. Thus, only that
left portion of x$ consisting of numer
ic characters is converted to a numeric

expression.

IBM PC & PCjr
yAL(x$) converts x$ to a numeric
expression, where x$ is any string
expresaon. Leading blanks, tabs and
line feeds are stripped from x$ before
the conversion is made. If the first
character of x$ is not numeric, the
value returned is 0. Thus, only that
left portion of x$ consisting of numer
ic characters is converted to a numeric
expression.

COMMODORE 64
yAL(x$) converts x$ to a numeric
expression, where x$ is any string
expression. Leading blanks and em
bedded spaces are stripped from x$
before the conversion is made. If the
first character of x$ is not numeric,
the value returned is 0. Thus, only
that left portion of x$ consisting of
numeric characters is converted to a

numeric expression.

yALIDATE
APPLE ne&U+
Not available. Cannot be simulated.

IBM PC & PCjr
Cannot be simulated in BASIC, but
with DOS procedure CHELDSK, simi
lar results are possible.

COMMODORE 64
yALIDATE deletes all improperly
CLOSEd files and creates a new block-
availability map of the disk. This
effect is obtained with the following
program lines, where 8 is the number
of the disk drive. Also note that

224



TRS-80 Models IV & HI TRS-80 Color Computer COMMENTS
Simulate it with the CLOSE UNLOAD d where d specifies a disk
statement. drive number. This command will

close all OPENed files on the specified
drive. UNLOAD does not close
cassette files.

TRS-80 Models IV & in
USRlnl (a) calls machine-language
routine n, and passes argument a to it.
Parameter n is the number of the rou
tine as defined with DEF USR
n—range 0-9, default 0. Parameter a
is an integer expression—range
—32768-32767. It will be passed to
routine n. Also see CALL for the
ModellV.

TRS-80 Color Computer
USR[n](a) calls machine-language
routine n, and passes argument a to it.
Parameter n is the number of the rou
tine as defined with DEF USR
n—range 0-9, default 0. Parameter a
is any numeric or string variable or ex
pression that will be passed to routine
n.

COMMENTS

TRS-80 Models IV & m
yAL(x$) converts x$ to a numeric
expression, where x$ is any string
expression. Leading blanks, tabs and
line feeds are stripped from x$ before
the conversion is made. If the first
character of x$ is not numeric, the
value returned is 0. Thus, only that
left portion of x$ consisting of numer
ic characters is converted to a numeric
expression.

TRS-80 Color Computer COMMENTS
yAL(x$) converts x$ to a numeric
expression, where x$ is any string
expression. Leading blanks, tabs and
line feeds are stripped from x$ before
the conversion is made. If the first
character of x$ is not numeric, the
value returned is 0. Thus, only that
left portion of x$ consisting of numer
ic characters is converted to a numeric
expression.

TRS-80 Models IV & OI
Not available. Cannot be simulated.

yALIDATE may be abbreviated to
justy:

10 OPEN 15,8,15:
PRINT#15,"VALIDATE":
CLOSE 15

TRS-80 Color Computer COMMENTS
Not available. Cannot be simulated.

225



VARPTR, VARPTR$
APPLE He & 11+
Cannot be simulated in BASIC on the

Apple without machine-language
programming. You can, however,
find the address of the first byte of
data about the most recently used
variable by PEEKing locations 131
and 132. You must multiply the value
found at 132 by 256, then add it to the
value found at 131. The result will be

the address of the data about the most

recently used variable.

IBM PC & PCjr
VARPTR (n) returns the address of
the first byte of data associated with
variable n, which may be a string,
numeric or array variable. The address
returned will be an integer in the
range 0 to 65535, which is an offset
from BASIC'S data segment.
Consequently, it is not affected by
DEF SEG. You should assign all
simple variables before calling
VARPTR for an array because the ad
dress of an array changes each time a
simple variable is assigned. VARPTR
is usually used to get an address to be
passed to a USR machine-language
routine.

VARPTR (#n) returns the starting
address of the file control block for
file number n, where n is the file
number named when the file was
OPENed. This is not the same as the
DOS file control block. The address
returned will be an integer in the
range 0-65535, which is an offset
from BASIC'S data segment.
Consequently, it is not affected by
DEF SEG. This command has no

meaning for cassette files.

VARPTR$(n) returns the address of
the variable n in the form of a three-
byte string. The first byte of the string
specifies the type of the variable. If
the first byte—byte 0—is 2, n is an
integer. If it is 3, n is a string. If it is 4,
n is a single-precision number. If it is
8, n is a double-precision number.

The second byte—byte 1—is the low
byte of the variable address. The third
byte—byte 2—is the high byte of the
variable address. You should assign
all simple variables before calling
VARPTR$ for an array because the
address of an array changes each time
a  simple variable is assigned.
VARPTR$ is most commonly used to
indicate a variable name in a com
mand string for PLAY or DRAW in
programs to be compiled, but it may
be found in interpretive BASIC pro
grams as well.

COMMODORE 64
Cannot be simulated without exten

sive machine language, which is
beyond the scope of this book.

226



TRS-80 Models IV & lU
VARPTR(ii) returns the address of
the first byte of data associated with
variable n, which may be a string,
numeric or array variable. The value
returned will be an integer that is the
absolute memory address of the data,
unless the value is negative. If the
value returned is negative, add 65S36
to it to obtain the absolute memory
address. VARPTR is usually used to
get an address to be passed to a USR
machine-language routine.

VARPTR (#n) (Model IV) returns
the starting address of the file data
buffer for file number n, where n is
the file number named when the file
was OPENed. The value returned will
be an integer that is the absolute
memory address of the data, unless
the value is negative. If the value re
turned is negative, add 6SS36 to it to
obtain the absolute memory address.
VARPTR is usually used to get an ad
dress to be passed to a USR machine-
language routine.

Simulate VARPTR$ by using
VARPTR to get an address. Then add
a value to that address. The value you
add depends upon what information
you need. You then PEEK the loca
tion represented by the address plus
the value. There are complex rules for
determining what value to add to the
address. They depend on the informa
tion you are seeking and the type of
variable you are using. For a detailed
discussion, refer to the Model IV Disk
System Owner's Manml, pages 2-183
to 2-186 or the Model III Operation
and BASIC Language Reference
Manual, pages 193 to 194.

TRS-80 Color Computer
VARPTRCn) returns the address of
the first byte of data associated with
variable n, which may be a string,
numeric or array variable. The value
returned will be the absolute memory
address of the data about the variable.
The data does not contain any infor
mation aboht the type of variable. The
programmer is responsible for passing
that to any USR routines. The actual
information found at the memory ad
dress returned by VARPTR depends
on the variable type. For a discussion
of the format of the information
found at the memory address, see
Going Ahead With Extended Color
Basic, pages 148 to 150. VARPTR is
usually used to get an address to be
passed to a USR machine-language
routine.

VARPTR$ cannot be simulated on
the COCO.

COMMENTS

227



VERIFY
APPLE He & 11+
Cannot be easily simulated on the
Apple. Some independent vendors
have published extensive programs
that can simulate it.

IBM PC & PCjr
The VERIFY option can be specified
only from DOS before entering
BASIC. Once specified, this option
causes all data written to disk to be

verified.

COMMODORE 64
VERIFY IfilenamelUevicel checks
the file filename against the BASIC
program in memory. If filename is
omitted and device is 1 (cassette), the
next program on cassette is assumed.
If device is 8 (disk), filename is not
optional. If device is omitted, the
cassette is assumed. If the programs
are not the same, a VERIFY ERROR
message is displayed and program exe
cution stops. VERIFY can also be
used as a convenient means of skip
ping over a program on cassette to get
to the next program, or the next free
area on the tape. See SKIFF.

VIEW
APPLE He & 11+
Not available. Cannot be simulated.

IBM PC & PCjr
VIEW [SCREEN] [(xl,yl)-(x2,y2)
I, [attribute] I, (boundary!]]] (BASIC
2.0 and Cartridge BASIC Only)
defines subsets of the viewing
screen—called viewports. Although
several viewports may be displayed at
a time, only one may be active. Used
in conjunction with WINDOW, it
may also accomplish scaling of
objects. VIEW is used only in the
graphics modes. If no parameters are
included, VIEW defines the entire
screen as the viewport and cancels any
other viewports in use. If the x and y
coordinate parameters are included,
they define the location of the view
port on the screen.

Note that VIEW will sort the coordi

nates correctly, so it does not matter
whether you specify the smaller value
of X as xl or x2, or the smaller value
of y as yl or y2. The only restriction is
that xl cannot equal x2, and yl
cannot equal y2. They must be valid
screen coordinates—i.e., they must
lie within the actual screen.

The color attribute parameter will fill
the viewport with the specified color.
See the COLOR command for specific
colors and an explanation of the rela
tionship between colors and
attributes.

The parameter boundary causes a
border line to be drawn around the

COMMODORE 64

Not available. Cannot be simulated.

viewport in the specified color from
the current palette. See COLOR for a
list of valid color numbers. If you do
not include SCREEN, the characters
you subsequently draw will be within
the viewport. That is, the upper-left
corner of the viewport becomes coor
dinate 0,0. If you do include
SCREEN, the upper-left corner of the
screen remains coordinate 0,0. Those
portions of the figures that you subse
quently draw outside the viewport will
not be drawn. This is known as
clipping.

You can accomplish scaling of objects
by defining WINDOW SCREEN as
the size of the actual screen. See
WINDOW. Then vary the size of the
viewport before drawing objects. In
this case you should not use SCREEN
within the VIEW command.

When you use VIEW, CLS will not
clear the whole screen. It will clear

only the current viewport. To clear
the entire screen, use VIEW without
any parameters, then CLS. Any RUN
command or SCREEN command—

i.e., not SCREEN as a parameter for a
VIEW or WINDOW command—will

disable the viewports.

228



TRS-80 Models IV & III
The VERIFY option (Model FV) can
be specified oifiy from DOS before
entering BASIC. Once specified, this
option causes all data written to disk
to be verified.

CLOAD?["filename"] (Model III)
compares the file filename from the
tape to the program in memory. If file
name is omitted, the next program on
cassette is compared.

TRS-80 Color Computer
VERIFY ON causes all disk output to
be verified.

VERIFY OFF causes cancellation of
verification.

COMMENTS

TRS-80 Models IV & III TRS-80 Color Computer COMMENTS
Not available. Caimot be simulated. Not available. Cannot be simulated.

229



VLIN
APPLE ne& 11+
VLIN yl,y2 AT x draws a vertical
line from row yl to row y2 at column
X on the low-resolution color display,
using the current color.

IBM PC & PCjr
LINE I(xl,yl)l-(x2,y2) [,[a][,BlF]]
I,style]] (Graphics Modes Only)
(kaws a line, where xl is the beginning
horizontal coordinate, yl is the begin
ning vertical coordinate, x2 is the
ending horizontal coordinate, and y2
is the ending vertical coordinate. The
ranges for x and y depend on the cur
rent value of SC^EN. See SCREEN.

The optional value a is the attribute
used for drawing. See COLOR for an
explanation of the possible values for
a. Specifying B will cause a box to be
displayed, with its opposite corners at
xl,yl and x2,y2. BF will display a
filled box.

The style is used to determine wheth
er to draw a solid line or some sort of a
dotted line. The placement of the dots
is determined by the bit pattern of the
number used. For example, if
&HCCCC is used, it will display a
dashed line with the pattern
1100110011001100. Here, 1 repre
sents a dot and 0 represents a space
because &HCCCC hexadecimal=
1100110011001100 binary.

COMMODORE 64
Although there is no VLIN command
on the Commodore, the following
program lines produce a si'milar effect:
100 R=1 : C0L=3; LN=5: LI=165
110 POKE 783,0: POKE781 ,R:

POKE 782,COL
120 SYS 65520
130 FOR 1=1 TOLN: PRINT

CHR$(LI)CHR$(17)CHR$(1
57) ;

140 next: print

This produces a vertical line of length
LN, starting at row R, column COL.
In this case, the line is positioned at
the left edge of the cursor. To move
the position of the line within the
cursor, change LI from 165 to 116,
103, 98, 125, 104, 121 or 167. LI
equal to 167 will position the line on
the right edge of the cursor.

VTAB
APPLE He & 11+
VTAB n moves the cursor to line n,
where n is a numeric expression be
tween 1 and 24. The column position
remains unchanged and only the row
position changes.

IBM PC & PCjr
LOCATE b] (,[c] (,[v] [, [start]
(,stop]]]] places the cursor and speci
fies several options for cursor display.
Parameter r specifies the row—range
1-25. Parameter c specifies the col
umn—range 1-40 or 1-80, depending
on the current WIDTH. If v=0 the
cursor is invisible. If v=l, the cursor
is visible. Variables start and stop in
dicate the cursor scan start and stop
lines—range 0-31. Start, stop and v
do not apply in graphics modes. If r is
25, then you must use the KEY OFF
command prior to the LOCATE
command.

COMMODORE 64
Simulate it with the following program
lines. They will place the cursor on
line R at column COL. Of course, you
must assign values to R and COL
before calling the subroutine.

POKE 783,0: POKE 781 ,R:
POKE 782,COL

1010 SYS 65520
1020 RETURN

230



TRS-80 Models IV & III
To simulate a vertical line drawn from
yl to y2 with VLIN, use

10 X=0 : FOR Y=Y1 TO Y2: REM
RANGE x=0 -47, RANGE
y=0-127

20 SET {X,Y)
30 NEXTY

TRS-80 Color Computer
LINE [(xl,yl)]-(x2,y2),a,[bl will
draw a line, where xl is the beginning
horizontal coordinate, yl is the begin
ning vertical coordinate, x2 is the
ending horizontal coordinate, and y2
is the ending vertical coordinate. If
(xl,yl) is omitted, the end point
from the previous LINE statement is
used. Parameters xl and x2 may have
a range of 0-255, while yl and y2 may
have a range of 0-191. Parameter a is
either PSET or PRESET, one of
which is required. PSET sets the line
in the foreground color, while
PRESET sets the line in the back
ground color. Parameter b is either B
or BF, both of which are optional. Spe
cifying B will cause a box to be
displayed, while BF will display a
filled box.

COMMENTS

TRS-80 Models IV & III
PRINT @ n (Model IV) or PRINT @
(r,c) places the cursor at the specifled
position, where n is a screen position
in the range 0-1919, and (r,c) is a pair
of coordinates specifying the
row—range 0-23—and the col
umn—range 0-79.

PRINT @ n (Model III) places the
cursor at the specified position, where
n is a screen position in the range
0-1023.

TRS-80 Color Computer
PRINT @ n places the cursor at the
specified position, where n is a screen
position in the range 0-511.

COMMENTS

231



WAIT
APPLE lie & 11+
WAIT addr,iil,iii] halts program exe
cution while monitoring the condition
of a memory location for a change in
status. Parameter addr is an

integer—range —65535-65535—but
not practical outside legal memory
addresses. It specifies which address is
to be monitored. The bit value read at

the address is first XORed with
m—default 0. This tests for the value

of each position. The resulting bit
value is then ANDed with n, thus
determining which bit positions are
tested. If the result of these operations
is 0, BASIC loops back and tests again.

This command is usually used for
communications. It is possible to
enter an infinite loop with this
command. The loop can be exited
only by resetting the machine.

Use of ports on the Apple is not ac
complished without the use of
machine-language routines or exten
sive PEEKs and POKEs. This is

beyond the scope of this book. A good
reference on the subject is The Apple
Connection by James W. Coffron.

IBM PC & PCjr
WAIT port,111,ml halts program exe
cution while monitoring the condition
of a machine-input port for a change
in status. Parameter port is an
integer—range 0-65535—specifying
which port is to be monitored. The bit
value read at the port is first XORed
with m—default 0. This tests for the
value of each position. The resulting
bit value is then ANDed with n,
determining which bit positions are
tested. If the result of these operations
is 0, BASIC loops back and tests again.

This command is usually used for
communications. It is possible to
enter an infinite loop with this
command. The loop can be exited
only by resetting the machine.

COMMODORE 64
WAIT n,m[,pl halts program execu
tion while awaiting a change in a bit at
a memory location, where n is a
memory location—range 0-65535—m
and p are in the range 0-255 with the
optional p defaulting to 0. WAIT
caiises program execution to halt until
the value of the bit at memory location
n changes in a specific way dictated by
the other two parameters. Parameter
n is exclusively ORed with p, then the
result is ANDed with m, continuing
until the final result is non-zero. The
command is seldom used.

WEND, WHILE
APPLE lie & 11+
Apple does not recognize the WHILE-
WEND commands, but they may be
simulated by IF-THEN loops. The
loops could be structured as in the
example below. The test in line 140
could be any test relevant to your
algorithm:

140 IFXO5THEN160: REM

TEST EXPRESSION

150 GOTO 190: REM TEST FAILED
160 REM OTHER STATEMENTS

HERE EXECUTED IF LINE 140

TEST SUCCESSFUL

180 GOTO 140: REM TEST AGAIN
190 REM PROGRAM EXECUTION

CONTINUES HERE

IBM PC St PCjr
WHILE test (Program lines to be ex
ecuted while test is true.)
WEND (Program lines to be executed
when test fails.)

These commands are used to structure

a program so that a series of com
mands is executed as long as a particu
lar expression tests true. WHILEs
may be nested, as with FOR-NEXT
loops. Parameter test may be any
logical. Boolean, string or mathemati
cal expression that can return a True
(non-zero) or False (0) value. For
example:

10 WHILE INKEY$ = ""
20 LOCATE 1,1: PRINT "PRESS

ANY KEY"
30 WEND

40 CLS: PRINT "THANK YOU FOR
PRESSING MY KEY"

COMMODORE 64
Commodore does not recognize the
WHILE-WEND commands, but they
may be simulated by IF-THEN loops.
The loops could be structured as in
the example below. The test in line
140 could be any test relevant to your
algorithm:

140 IFXO5THEN160: REM
TEST EXPRESSION

1 50 GOTO 190 : REM TEST FAILED
160 REM OTHER STATEMENTS

HERE EXECUTED IF LINE 140

TEST SUCCESSFUL

180 GOTO 140 : REM TEST AGAIN
1 90 REM PROGRAM EXECUTION

CONTINUES HERE

232



TRS-80 Models IV & lU
WAIT port,nl,ml (Model IV) halts
program execution while monitoring
the condition of a machine-input port
for a change in status. Parameter port
is an integer—range 0-255—specifying
which port is to he monitored. The bit
value read at the port is first XORed
with m—default 0. This tests for. the
value of each position. The resulting
bit value is then ANDed with n,
determining which bit positions are
tested. If the result of these operations
is 0, BASIC loops back and tests again.

This command is usually used for
communications. It is possible to
enter an infinite loop with this
command. The loop can be exited
only by resetting the machine.

Not available. Cannot be simulated
on the Model III.

TRS-80 Color Computer
The COCO requires machine-
language routines or extensive
PEEKs and POKEs to allow use of a
port. This is beyond the scope of this
book.

COMMENTS
Also see INP, COM and TERM.

TRS-80 Models iy& III
WHILE test (Program lines to be ex
ecuted while test is true.)
WEND (Program lines to be executed
when test fails.)

With the Model IV, these commands
are used to structure a program so
that a series of commands is executed
as long as a particular expression tests
true. WHILES may be nested, as with
FOR-NEXT loops. Parameter test
may be any logical. Boolean, string or
mathematical expression that can
return a True (non-zero) or False (0)
value. For example:

10 WHILE INKEY$=""
20 PRINT 11 , "PRESS ANY KEY"
30 WEND

40 PRINT "THANK YOU FOR
PRESSING MY KEY"

The Model m does not recognize the
WHILE-WEND commands, but they

TRS-80 Color Computer
The COCO does not recognize the
WHILE-WEND commands, but they
may be simulated by IF-THEN loops.
The loops could be structured as in
the example below. The test in line
140 could be any test relevant to your
algorithm:

140 IF X<> 5 THEN 160 ELSE
190 : REM TEST EXPRESSION

160 REM OTHER STATEMENTS
HERE EXECUTED IF LINE 140
TEST SUCCESSFUL

180 GOT0140: REM TEST AGAIN
190 REM PROGRAM EXECUTION

CONTINUES HERE

may be simulated by IF-THEN loops.
The loops could be structured as in
the example below. The test in line
140 could be any test relevant to your
algorithm:

COMMENTS

140 IF X<> 5 THEN 160 ELSE
190 : REM TEST EXPRESSION

160 REM OTHER STATEMENTS
HERE EXECUTED IF LINE 140
TEST SUCCESSFUL

180 GOTO 140 : REM TEST AGAIN
190 REM PROGRAM EXECUTION

CONTINUES HERE

233



WIDTH
APPLE He & 11+
Changing the width of the text screen
on the Apple depends on the monitor
card installed. If an 80-column card is

installed, you can normally switch be
tween 40 and 80 columns under soft
ware control. However, the com
mands that do this vary with the card
you use. If you wish to have the
screen narrower than the maximum

width normally available, use the fol
lowing program lines:

10 POKE 33,w

where w is the width you desire for
the text window. Parameter w must

be less than 40 when in 40-column
mode, and less than 80 when in 80-
column mode.

The following routine will cause a car
riage return to be inserted every w
characters in a PRINT statement. You

must define the string you wish to be
printed as T$ before entering the
subroutine. You can vary w to be
whatever width you want. For output
to go to the printer or to a sequential
file, use the proper routine before call
ing this subroutine.

1000 W=40: P=1
1010 0$=MID$(T$,P,W): IP

LEN(O$)s0 THEN1030
1 020 PRINT 0$ : P=P+W: GOTO

1010
1030 RETURN

IBM PC & PCjr
WIDTH (d,ls sets the width of output
for PRINT statements—the number
of characters after which BASIC will
insert a carriage return. Parameter d is
either a file number—range 1-15—or
a device name such as SCRN:, LPTl:
or COMl:. Parameter s specifies the
width—default 80 for screen and
printers, 255 for COM: devices. If d is
omitted then SCRN: is assumed and
only 20, 40 or 80 columns are valid,
depending on the machine configura
tion and version of BASIC used. The
screen will be cleared and the border
set to black. If you specify a device,
the current width is not changed until
you open the device at a later time. If
you specify a file number, the current
width is changed immediately, affect
ing the currently OPENed file
number.

COMMODORE 64
The following routine will cause a car
riage return to be inserted every W
characters in a PRINT statement You
must define the string you wish to be
printed as T$ before entering the
subroutine. You can vary W to be
whatever width you want. To cause
output to go to the printer or to a
sequential file, you must use the
proper routine before calling this
subroutine.

1000 W=40: P=1

1010 0$=MID$(T$,P,W) ; IF
LEN(O$)=0THEN 1030

1020 PRINT0$: P=P+W: GOTO
1010

1030 RETURN

Changing the width of the display
screen on the Commodore 64 is
beyond the scope of this book. It re
quires machine language and exten
sive knowledge of the graphics chips
in the computer.

WINDOW
APPLE Ue& 11+
Not available. Cannot be simulated.

IBM PC & PCjr
WINDOW HSCREENl (xl,yl)-
(x2,y2)] (BASIC 2.0 or Cartridge
BASIC Only) redefines the graphic
screen coordinates. You can define
the "world coordinates," which may
actually define an area larger than the
screen or may cause the screen to be
much smaller on a coordinate system.
Thus, you are not bound by the physi
cal borders of the screen. The x and y
coordinates can be any single-
precision, floating-point number. The
only restriction is that xl cannot equal
x2, and yl cannot equal y2.

WINDOW sorts the x and y coordi
nates so that the smallest values of x

COMMODORE 64
Not available. Cannot be simulated.

and y will always be considered first. If
the X and y coordinates are not
specified, the world coordinates equal
the normal graphic screen
coordinates.

If SCREEN is omitted, the screen is
given in true Cartesian co
ordinates—xl,yl is the lower-left co
ordinate. If SCREEN is included, the
screen is given in inverted Cartesian
coordinates—xl,yl is the upper-left
coordinate. This is the normal con

vention for computer-graphics
screens.

234



TRS-80 Models IV & III TRS-80 Color Computer COMMENTS
You can switch to large screen
type—32 columns on the Model HI,
40 columns on the Model IV—and
back by using PRINT CHR$
statements.

10 PRINT CHR$ (23): REM
SWITCH TO LARGE TYPE

20 PRINT CHR$(28) : REM
SWITCH TO SMALL TYPE

The following routine will cause a car
riage return to be inserted every W
characters in a PRINT statement You
must define the string you wish to be
printed as T$ before entering the
subroutine. You can vary W to be
whatever width you want up to 255.
For output to go to the printer, use
LPRINT instead of PRINT in line
1020. To send the output to a sequen
tial file, use PRINT# n in line 1020,
where n is the file number that was
used to open the file.

1000 W=40: P=1
1010 0$=MID$(T$,P,W) : IP

LEN(O$)=0THEN 1030
1020 PRINT 0$; P=P+W; GOTO

1010

1030 RETURN

The following routine causes a car
riage return to be inserted every W
characters in a PRINT statement You
must define the string you wish to be
printed as T$ before entering the
subroutine. You can vary W to be
whatever width you want up to 255.
For output to go to the printer, use
LPRINT instead of PRINT in line
1020. To send the output to a sequen
tial file, use PRINT# n in line 1020,
where n is the file number that was
used to open the file.

1000 W=40: P=1
1010 0$=MID$(T$,P,W) ; IF

LEN(O$)=0THEN1030
1020 PRINT 0$; P=P+W: GOTO

1010

1030 RETURN

TRS-80 Models IV & lU TRS-80 Color Computer
Not available. Cannot be simulated. Not available. Cannot be simulated.

COMMENTS

If you DRAW a figure outside the
screen coordinates, but within the
world coordinates, line clipping will
occur. You can use WINDOW in con

junction with the VIEW statement to
look at several portions of the world
coordinates at a time. You can also

use WINDOW—with or without

VIEW—to zoom and pan images.
Using RUN, SCREEN or WINDOW
commands, without parameters, can
cels any previous WINDOW
commands.

235



WRITE, WRITE#
APPLE lie & 11+
WRITE redirects output to a specific
file, as in

10 PRINTCHR$(4) ; "OPEN
filename"

20 PRINTCHR${4) ; "WRITE
filename"

where filename is the name of the file

to be written to. For more details, see
OPEN.

You can simulate the IBM command

WRITE on the Apple by PRINTing a
CHR$(44) between each item in the
list of items to be printed, and by
PRINTing CHR$(34) before and
after each string in the list. The items
should be separated by semicolons to
print them on the same line. Stripping
leading blanks from positive numbers
would require too much program
overhead for the intended benefit.

To simulate WRITE#, simply redirect
output to the specified file before the
PRINT statement, as discussed above.

IBM PC & PCjr
WRITE list outputs a list of expres
sions to the screen. The list can consist
of any variables or expressions
separated by commas or semicolons. .

WRITE# n, list outputs a list of ex
pressions to a sequential file, where n
is the number assigned to the file
when it was OPENed. The list can con
sist of any variables or expressions
separated by commas or semicolons.

The differences between WRITE and
PRINT are as follows: 1) WRITE
delimits each item with a comma. 2)
WRITE delimits strings with quota
tion marks. 3) WRITE follows the last
item in a list with a carriage
return/line feed. 4) WRITE does not
precede positive numbers with a
blank space.

To simulate the Apple word WRITE,
see OPEN.

COMMODORE 64
You can simulate the IBM word
WRITE on the Commodore by
PRINTing a CHR$(44) between each
item in the list of items to be printed,
and by PRINTing a CHR$(34) before
and after each string in the list. The
items should be separated by semico
lons to PRINT them on the same line.
Stripping leading blanks from a posi
tive number X is accomplished by
PRINTing X$, where X$=RIGHT$
(STR$(X),LEN(STR$(X) -1))

To simulate WRITE#, simply use
PRINT# n, in place of PRINT, after a
sequential file, n, has been OPENed.

To simulate the Apple word WRITE,
see OPEN.

236



I

TRS-80 Models IV & III TRS-80 Color Computer COMMENTS
WRITE list (Model IV) outputs a
list of expressions to the screen. The
list can consist of any variables or ex
pressions separated by commas.

WRITE# n, list (Model IV) outputs
a list of expressions to a sequential
file, where n is the number assigned
to the file when it was OPENed. The
list can consist of any variables or ex
pressions separated by commas.

The differences between WRITE and
PRINT are as follows: 1) WRITE
delimits each item with a comma. 2)
WRITE delimits strings with quota
tion marks. 3) WRITE follows the last
item in a list with a carriage
return/line feed. 4) WRITE does not
precede positive numbers with a
blank space.

To simulate the Apple word WRITE,
see OPEN.

You can simulate the IBM word
WRITE on the Model III by PRINT-
ing a CHR$(44) between each item in
the list of items to be printed, and by
PRINTing CHR$(34) before and
after each string in the list. The items
should be separated by semicolons to
print them on the same line. Stripping
leading blanks from positive numbers
would require too much programming
overhead for the intended benefit.

You can simulate WRITE# on the
Model III in the same manner by
using PRINT#.

To simulate the Apple word WRITE,
see OPEN.

WRITE list outputs a list of expres
sions to the screen. The list can consist
of any variables or expressions
separated by commas.

WRITE# n, list outputs a list of ex
pressions to a sequential file, where n
is the number assigned to the file
when it was OPENed. The list can con
sist of any variables or expressions
separated by commas.

The differences between WRITE and
PRINT are as follows: 1) WRITE
delimits each item with a comma. 2)
WRITE delimits strings with quota
tion marks. 3) WRITE follows the last
item in a list with a carriage
return/line feed.

To simulate the Apple word WRITE,
see OPEN.

237



XDRAW
APPLE lie & 11 +
XDRAW n lAT c,rl draws the shape
n from the shape table currently in
use. Parameter c specifies the row for
XDRAWing on the high-resolution
screen, while r specifies the row. If c
and r are omitted, the most recently
specified location will be used.
XDRAW differs from DRAW in that

XDRAW draws in the inverse of the

colors currently displayed under
where the shape will be. Thus the
shape n will be reversed out of the ex
isting screen. XDRAW also differs
from DRAW in that if a shape is
XDRAWn to the same location twice,
the screen under it will be restored to

its original state.

IBM PC & PCjr
PUT (x,y),n,lXORl causes the graph
ics array n to be PUT on the screen at
coordinates (x,y). Because XOR is
the default action for PUT, it does not
have to be explicitly stated. PUT with
the XOR option simulates Apple's
XDRAW in that it inverts an image
onto the existing graphics in the area
it is to occupy, and PUTting a shape to
the same location twice will return the

screen area occupied by it
undisturbed. See PUT.

COMMODORE 64
Simulating XDRAW on the Commo
dore is not easily accomplished with
out machine-language programming.
This is beyond the scope of this book.
If you need this capability, you may
wish to investigate the use of sprites.
See the Commodore 64 Programmer's
Reference Manual, pages 131 to 182.

XOR
APPLE He & 11+
Simulate it with ((x AND NOT y)
OR (NOT X AND y))

The truth table for this expression is
below:

((x AND NOT y)
OR

X  y (NOT X AND y))
T  T F

T P T

F  T T

F  F F

IBM PC & PCjr
XOR is a logical and bitwise operator
that exclusively ORs two values. The
truth table for XOR is below:

X

T

T

F

F

y
T

F

T

F

xXORy
F

T

T

F

COMMODORE 64
Simulate it with ((x AND NOT y)
OR (NOT X AND y))

The truth table for this expression is
below:

((xAND NOTy)
OR

X  y (NOT X AND y))
T  T F

T  F T

F T T

F  F F

XPLOT
is an undocumented reserve word for

Apple. No command has been as
signed to it.

238



TRS-80 Models IV & III
Cannot be simulated on the Models
IV or III because they lack graphics.

TRS-80 Color Computer
PUT (xl,yl)-(x2,y2),ii draws a
graphics rectangle with the upper-left
corner at coordinates (xl,yl) and the
lower-right corner at coordinates
(x2,y2). The contents of the rectangle
are determined by the values in the
array n. The array n must have been
previously created using the GET
statement. The COCO does not have
the capability to erase the rectangle
back to its previous state, so if this is
desired, you must first GET the origi
nal values of the rectangle and store
them in another array. Then you can
PUT that rectangle back with the PUT
command. See GET and PUT.

COMMENTS

TRS-80 Models IV & III
XOR (Model IV) is a logical and bit
wise operator that exclusively ORs
two values. The truth table for XOR is
below:

X

T

T

F

F

y
T

F

T

F

xXORy
F

T

T

F

Simulate it on the Model III with ((x
AND NOT y) OR (NOT x AND y»

The truth table for this expression is
below:

((x AND NOT y)
OR

X  y (NOTxANDy))
T  T F

T  F T
F T T
F  F F

TRS-80 Color Computer COMMENTS
Simulate it with ((x AND NOT y)
OR (NOTxANDy))

The truth table for this expression is
below:

((x AND NOT y)
OR

X  y (NOTxANDy))
T  T F
T  F T
F T T
F  F F

239



Index
A
ABS, 28-29
Algorithm, 16
AND, 28-29
APPEND, 30-31
ASC, 30-31
ATN, 30-31
AUDIO,32-33
AUTO,h-33
B
B-A, 32-33
B-F, 32-33
B-R, 36-37
B-W, 38-39
BACKUP, 32-33
BEEP, 32-33
BLOAD, 34-35
BLOCK-ALIjOCATE,36-37
BLOCK-FREE, 36-37
BLOCK-READ, 36-37
BLOCK-WRITE, 36-37
Brackets, 17
BSAVE, 38-39
BUFFER-POINTER, 36-37,38-39

C
CALL, 40-41
Cassette, 18
CATALOG, 40-41
CDBL, 42-43
CHAIN, 42-43
CHDIR, 44-45
CHR$, 44-45
CINT, 44-45
CIRCLE, 46-47
CLEAR, 48-49
CLOAD, 48-49
CLOSE, 50-51
CLR, 50-51
CMD, 50-52
COLOR, 54-55
COLOR=, 54-55
COM, 56-57
Command, 16
COMMON, 58-59
Constant, 17
CONT, 58-59
Conversion strategy, 6
COPY, 58-59
COS, 60-61
CSAVE, 60-61
CSNG, 60-61
CSRLIN, 60-61
CVD, 62-63
CVI, 62-63
CVS, 62-63

D
DATA, 62-63
Data types, 21
DATES, 62-63
DEBUG, 64-65
Debugging, 13
DEF,^S
DEFSEG, 64-65
DEFUSR, 66-67
DEFDBL, 66-67
DEFINT, 66-67
DEFSNG, 66-67
DEFSTR, 66-67
DEL, 66-67
DELETE, 66-67
DIM, 68-69
DIRECTORY, 68-69
Disk, 18
Display, 23
DLOAD, 68-69
DOPEN, 70-71
DRAW, 70-71
DRIVEd, 72-73
DSKI$, 72-73
DSKINI, 72-73
DSKOS, 72-73
Dynamic keyboard, 52-53

E
EDIT, 74-75
ELSE, 74-75
END, 74-75
ENVIRON, 74-75
ENVIRONS, 74-75
EOF, 74-75
Equipment in book, 12
EQV, 76-77

ERASE, 76-77
ERDEV, 76-77
ERDEVS, 76-77
ERL, 78-79
ERR, 78-79
ERROR, 78-79
Event trapping, 151
EXEC, 78-79
EXP, 80-81
External communications, 19,25

F
FIELD, 80-81
File, 17
Filename, 17
HLES, 80-81
Finding programs, 14
HX, 82-83
FLASH, 82-83
FN, 82-83
FOR, 84-85
FORMAT, 84-85
FRE, 84-85
FREE, 86-87
Functions, 20

G
GET, 86-87
GET#, 86-87
GOSUB, 88-89
GOTO, 88-89
GR, 88-89
Graphics command language, 70-71

H
HCOLOR, 90-91
HEXS, 92-93
HGR, 92-93
HGR2,92-93
HIMEM:, 94-95
HLIN, 94-95
HOME, 96-97
HPLOT, 96-97
HTAB, 96-97

I
IF-THEN-ELSE,98
IMP, 98-99
IN#, 100-101
INKEYS, 100-101
INP, 100-101
INPUT, 102-103
INPUT#, 104-105
INPUTS, 106-107
INSTR, 106-107
INT, 108-109
INTERS, 108-109
INVERSE, 108-109
lOCTL, 108-109
lOCTLS, 108-109

J
Joysticks, 17
JOYSTK, 110-111

K
KEY, 112-113
Keyword, 16
KEYS, 112-113
Keyboard, 17
KILL, 114-115

L
LEFTS, 114-115
Legal considerations, 13-14
LEN, 114-115
LET, 114-115
LINE, 116-117
LINE INPUT, 118-119
LINE INPUT #,118-119
Light pens, 17
LIST, 118-119
LLIST, 119-120
LOAD, 119-120
LOADM, 122-123
LOC, 122-123
LOCATE, 122-123
LOF, 122-123
LOG, 124-125
LOMEM:, 124-125
LPOS, 124-125
LPRINT, 124-125
LPRINT USING, 124-125
LSET, 126-127

M
Machine interface, 22
M-E, 128-129
M-R, 128-129
M-W, 128-129
MEM, 128-129
MEMORY-EXECUTE, 130-131
Memory interface, 22
MEMORY-READ, 130-131
MEMORY-WRITE, 132-133
MERGE, 132-133
MIDS, 134-135
MKDS, 134-135
MKDIR, 136-137
MKIS, 136-137
MKNS, 136-137
MKSS, 138-139
MOD, 138-139
MOTOR, 138-139

N
NAME, 140-141
NEW, 142-143
NEXT, 142-143
NOISE, 144-145
NORMAL, 144-145
NOT, 144-145
NOTRACE, 144-145

O
OCTS, 146-147
ON COM, 146-147
ON ERR GOTO, 146-147
ON ERROR GOTO, 146-147
ON KEY, 150-151
ON PEN, 150-151
ON PLAY, 150-151
ONSTRIG, 150-151
ON TIMER, 150-151
ON-GOSUB, 148-149
ON-GOTO, 150-151
ONERR, 146-147
OPEN, 152-153
Operators, 21
OPTION BASE, 154-155
OR, 154-155
OUT, 154-155
Output storage, 25

P
PAINT, 156-157
PALETTE, 156-157
PALETTE USING, 156-157
Parentheses, 17
PCLEAR, 158-159
PCLS, 158-159
PCOPY, 160-161
PDL, 162-163
PEEK, 164-165
PEN, 164-165
PICK UP STICKS, 8
PLAY, 166-167
PLOT, 168-169
PMAP, 168-169
PMODE, 170-171
POINT, 172-173
POKE, 172-173
POP, 174-175
POS, 174-175
POSN, 174-175
PPOINT, 174-175
PR#, 176-177
PRESET, 176-177
PRINT, 178-179
PRINT#, 180-181
PRINT®, 178-179
PRINT USING, 178-179
PRINT# USING, 180-181
Printer, 24
Program flow, 20

Pseudocode, 7
PUT, 182-183

R
RANDOM, 184-185
Random file access, 18
RANDOMIZE, 184-185
READ, 184^185
RECALL, 184-185
REM, 18^187
RENAME, 186-187
RENUM, 188-189
Renumbering, 11

Reserved words, 27
RESET, 190-191
RESTORE, 190-191
RESUME, 190-191
RETURN, 192-193
RIGHTS, 192-193
RMDIR, 192-193
RND, 194-195
ROT=, 194-195
ROW, 194-195
RSET, 126-127,196-197
RUN, 196-197

S
SAVE, 196-197
SCALE=, 198-199
SCRATCH, 198-199
SCREEN, 200-201
SCRN, 202-203
Sequential access, 18
SET, 202-203
SGN, 202-203
SHELL, 204-205
SHLOAD, 204-205
SIN, 204-205
SKIPF, 204-205
Sound,24
SOUND, 206-207
Source machine, 4
SPACES, 208-209
SPC, 208-209
SPEED=, 208-209
SQR, 208-209
ST, 210-211
STEP, 210-211
STICK, 210-211
STOP, 212-213
Storage, 18,25
STORE, 212-213
STRS, 212-213
STRIG, 214-215
STRINGS, 216-217
SUB, 216-217
SWAP, 216-217
Syntax, 16
SYS, 216-217
SYSTEM, 218-219

T
TAB, 218-219
TAN, 220-221
Target machine, 4
TERM, 220-221
Terminology, 16
TEXT, 220-221
THEN, 220-221
TI, 220-221
TIS, 222-223
TIMES, 222-223
TIMER, 220-221
TO, 222-223
TRACE, 222-223
TROFF, 222-223
TRON, 222-223

U
UNLOAD, 224-225
USING, 224-225
USR, 224-225

V
VAL, 224-225
VALIDATE, 224-225
Variable, 17
Variable types, 16
VARPTR, 226-227
VARPTRS, 226-227
VERIFY, 228-229
VIEW, 228-229
VLIN, 230-231
VTAB, 230-231

W
WAIT, 232-233
WEND, 232-233
WHILE, 232-233
WIDTH, 234-235
WINDOW, 234-235
Word processor, 11
WRITE#, 236-237
WRITE, 236-237

X
XDRAW, 238-239
XOR, 23^-239
XPLOT, 238-239

240



Step-by-Step Computer Guides
from HP Books

35 Amazing Games/Commodore 64—Mihalik $9.95
Basic Program Conversion—CSB/Crider 12.95
Commodore 64 Basic for Beginners—Shipman 12.95
Program IBM PC Advanced—Shipman (r) 14.95
Program IBM PC Beginners—Shipman (r) 14.95
Program IBM PC Color & Graphics—Shipman 21.95
Quick and Easy WordStar 2000—Crider 14.95
VisiCalc Apple II, II+, Me—Graver (r) 14.95

(r) = ring bound
All other books are paperback.

HP computer books are available wherever fine books are sold, or order direct from the
publisher. Send check or money order payable in U.S. funds to:

HPBooks, Inc., PO Box 5367, Dept. CNV-75, Tucson, AZ 85703

Include $1.95 postage and handling for first book; $1.00 for each additional book. Arizona
residents add 7% sales tax. Please allow 4-6 weeks for delivery. Prices subject to change.



EIGHT COMPUTER
BOOKS IN ONE!

This essential book solves the most difficult part of programming—converting a BASIC
program from one computer brand to another. For example, with this book you can
now convert a BASIC program that works on an APPLE 11+ to work on an IBM PCjr,
or vice-versa!

Includes the most popular computers available—IBM PC & PCjr, Commodore 64,
Apple He & II +, TRS-80 Models IV & III and TRS-80 Color Computer I Every
important BASIC command and statement is included—from ABS to XOR. The book is
arranged alphabetically, like a dictionary, so it's simple to use. You'll find detailed,
practical conversion information for today's most popular computers.

Introductory chapters discuss conversion strategy, practical solutions to programming
problems, and why converting programs is a great programming skill.

CLEAR
"^PPLEIIe4II + IBM PC 4 PCjr lels IV i III >ater COMMENTS

CLEAR D (Model III) where n is (he

CLOAD
APPLE IIe&II + PC & PCjr

froreLirwrri;5?.t.;rs
mode. The Model 100 is not covered on (he casseKe. If flleoune is asked lo LOAD or CLOAD a

iSinlii

boLd''as''Tn' (he followfng"p'fogram

Easy-to-use format compares BASIC commands for 8 different computers!

$12.95

ISBN D-iBTSati-ETI-E

BIPAD tSBBE 0

7547 62972


