
COMPUTE!'s

BEGINNER'S GUIDE TO

MACHINE LANGUAGE
ON THE

PC & PCjr
Christopher D, Metcalf and More B, Sugiyomo

Foreword by Richard Mansfield

A reference and guide to 8088 machine
language programming on the IBM PC, PCjr,
or any IBM-compatible personal computer.

A COMPUTE! Books Publication $14,95

I \

COMPUTEI's

Beginner's Guide to

Machine
Language

on the

IBM PC and PCjr

Christopher D, Metcalf
and

More B. Sugiyama

Foreword by Richard Mansfield

n

^ COMPUTE!'Publicatlonsjnc.®
t Oneof the ABC Publishing Companies

Greensboro, North Carolina

Copyright 1985, COMPUTE! Publications, Inc. All rights reserved

Reproduction or translation of any part of this work beyond that permitted by
Sections 107 and 108 of the United States Copyright Act without the permission of
the copyright owner is unlawful.

Printed in the United States of America

ISBN 0-942386-83-3

10 98765432

COMPUTE! Publications, Inc., Post Office Box 5406, Greensboro, NC 27403, (919)
275-9809, is one of the ABC Publishing Companies and is not associated with any
manufacturer of personal computers. IBM PC and IBM PCjr are trademarks of Inter
national Business Machines, Inc.

Contents
Foreword v

Acknowledgments vi

1 Introduction 1

2 Fundamentals 5

Section 1. Basic ML Programming
3 Getting Started 21
4 Arithmetic 48

5 Program Flow 63
6 Subroutines and the Stack 86
7 Addressing Modes 103

Section 2. Advanced Programming
8 Advanced Arithmetic 123

9 String Instructions 146
10 Using Machine Language with BASIC 164

Section 3. Interrupts
11 Overview of Interrupts 189
12 BIOS Interrupts 197
13 The DOS Function Interrupt 231

Section 4. Using the Assembler
14 Basic Assembler Control 255

15 Advanced Assembler Control 275

Section 5. Sample Programs
16 Sample Programs 311

Appendices
A The 8088 Instruction Set 363

B Addressing Modes and
Possible Register Arrangements 370

C MASM Pseudo-ops 372
D Binary Information 374
E ASCII Values 375

F Linking Pascal to Machine Language 379

Glossary 395
Index 405

n

Foreword

Machine language (ML) is the native language of any com
puter. When you program in a high-level language like
BASIC, each program statement must be translated into ma
chine language while the program is running. That seriously
slows up execution speed.

For many applications, BASIC is the language of choice
because its slow speed doesn't matter. But if speed is signifi
cant, ML is the answer. What's more, you'll gain significantly
more control over your computer when you can give it
instructions in its own language. You bypass the limitations
and blind spots of BASIC.

Unfortunately, many BASIC programmers have come to
believe that machine language is too complex to be easily
understood, that it's beyond their reach. This is a popular mis
conception, but it's a misconception nonetheless. In fact,
people who learned to program in ML have claimed that
learning BASIC was about as difficult. What's more, if you al
ready know BASIC, you already know most of the concepts
and structures that you'll need to program in ML.

COMPUTERS Beginner's Guide to Machine Language on the
IBM PC and PCjr makes learning 8088 ML easy. The authors
introduce you to the tools you'll need and start you off by
showing you, step by step, how to write simple programs.
Slowly, with numerous examples, they describe each ML com
mand. You'll soon be telling your assembler (either MASM or
the Small Assembler) exactly what you want it to do. And, after
you've got the basics down, you'll learn everything you need
to know to write complex programs entirely in ML.

This book includes more than 15 complete ML programs
for you to type in and assemble. Each program is more com
plex than the one before and guides you through new tech
niques. Many programs contain routines which can be simply
lifted as is and inserted into your own programs.

Do you want to use ML and BASIC together? Do you
want to merge one of your ML routines with a Pascal pro
gram? COMPUTEl's Beginner's Guide to Machine Language on
the IBM PC and PCjr shows you how. You'll even learn about
Macros: how and why they're used in ML programs, and how
to create a library of them.

Once you've learned the techniques of 8088 ML program
ming on the IBM, you'll find yourself returning to this book
again and again. It not only teaches, but is also an excellent
reference for the experienced programmer.

For almost every level of 8088 ML programming, from
rank beginner to veteran programmer, COMPUTEI's Beginner's
Guide to Machine Language on the IBM PC and PCjr can be
your guide to greater understanding of your machine and
effective, powerful programming methods. But if you're just
starting out with ML, you'll soon be writing your first ML pro
gram and can begin to explore the amazing world in the in
terior of your machine.

Richard Mansfield

Author of Machine Language For Beginners

Acknowledgments
This book has been the result of the efforts of many people.
We would like to thank the following who have been of great
assistance: Orson Scott Card, former book editor of COM
PUTE! Publications, without whom we would have never
even considered writing a book; Rosemary Morrissey, of Entry
Systems Division information at IBM, Boca Raton, for answer
ing our questions and for providing us with several useful
products; and Jeff Sensabaugh and Will Clemens for taking the
time to review our book. Their comments were most helpful in
the final editing process.

Christopher Metcalf
Marc Sugiyama
September 1984

n

1 1

VI

CHAPTER

1
Introduction

The PC is a powerful tool, whether for business uses, math-
ematic calculations, or game playing. It is sometimes astonish
ing to observe the speed at which some programs work,
whether spreadsheets, word processors, or flashy videogames.

Sometimes, however, BASIC is simply too slow. For fast-
moving games, complex calculations, and rapid communica
tion with external devices, BASIC often fails to perform as you
might wish. The answer to that problem is the subject of this
book. Machine language, the computer's native language, ex
ecutes many times faster than BASIC or even Pascal.

BASIC is useful in many situations, and is often all you
need to write a program. BASIC (or Pascal) programs are
usually much simpler to write, modify, and debug than ma
chine language. Furthermore, programs written in BASIC can
be transported from computer to computer almost without
modification.

There are times, though, that the benefits of machine lan
guage outweigh the advantages of BASIC and Pascal. Machine
language is fast, faster than BASIC or any of the other high-
level languages. Machine language also provides for a greater
degree of precision and control when dealing with the com
puter and all its associated hardware. Finally, machine lan
guage programs are often more compact than BASIC, and
invariably far shorter than the equivalent programs would be
in Pascal. When you need speed, precision, or compactness,
machine language is the best answer.

What You'll Need
This book assumes that you are using one of the IBM family
of personal computers (PC, PC/XT, Portable, or PCjr), or one
of the many PC compatibles. PCjrs must be the expanded ver
sion, with a disk drive and at least 128K of RAM. Other
computers require at least 64K (with DOS 1.10) or 96K (with
DOS 2.00 and above) and a disk drive. Any programmer using

1

1

Introduction
n

9 1

a noncompatible version of MS-DOS can use this book, but
don't be too surprised if some of the sample programs fail to
give the proper results.

That's the hardware needed. Below is a list of the soft

ware you will need.
DOS. We assume that you are using either DOS 2.00 or

2.10 (or their Microsoft equivalent); however, most of the M
explanation applies to DOS 1.10 as well. ' *

Text editor. Those who have never written a program in
an assembled or compiled language (like Pascal) may not be
familiar with text editors or source files. A text editor allows
you to enter your program (the source file) into the computer
and store it on disk. Assembly language source files are gen
erally given the extension .ASM.

Any editor or word processor which generates standard
DOS files can be used to enter your programs. A standard
DOS file, sometimes called a pure ASCII file, doesn't contain
any special word processor control codes. IBM's assembler will
assemble only standard DOS files.

Some word processors (WordStar and WordPerfect, for ex
ample) don't store their text files in this standard format;
however, most provide a way to handle DOS files. Word
processors vary considerably, so check with your manual for
the specifics. If your word processor doesn't handle DOS files,
use EDLIN. EDLIN is quite adequate as a program editor; be
sides, it came on your DOS disk, and you might as well use it.
If you would prefer a more powerful text editor, IBM sells
two: the Personal Editor and the Professional Editor.

The assembler. The most important software requirement
is an assembler. In this book, we'll assume you have the IBM
assembler. The assembler is the program which converts your
assembly language source file into an object file, usually given
the extension .OBJ. This file contains the actual machine lan
guage instructions which the computer will execute. We can
also have the assembler produce a list file. This file, with the
extension .LST, contains both the original source file and the
actual machine language program, generated by the assembler,
in the margin.

In writing the sample programs and the assembly ex
amples, we have assumed that you are using the IBM Macro
Assembler. The Macro Assembler is available from your IBM
dealer or product center, and is nearly identical to the version

1
Introduction

of MASM provided free with some MS-DOS computers. Al
though there are other assemblers available, the IBM Macro
Assembler is the most popular, as well as standard for IBM
equipment.

When you buy the IBM Macro Assembler package, you are
supplied with two assemblers, MASM.EXE and ASM.EXE.
MASM requires at least 96K of RAM, while ASM needs only
64K. If you have the memory, use MASM. There is little dif
ference in the performance of the two assemblers; however,
MASM offers additional commands and options, which will be
detailed in Chapter 15.

The linker. Before you can execute your object file, you
must link it using the LINK program provided on your DOS
disk. The LINK program converts the object file into an ex
ecutable file (with the extension .EXE). The LINK program can
also be used to join many object files (IBM calls these object
modules) together into a large program. These object modules
can be created with the assembler or other language compilers
such as the BASIC and the Pascal compilers.

How to Use This Book
In order to use this book to its fullest potential, we recom
mend that you have at least some knowledge of BASIC or
Pascal, enough so that you can write your own programs. Al
though a knowledge of BASIC is not essential, there will be
some sample programs written in BASIC when added clarity is
necessary. We assume that you know some of the computer
technical jargon, such as the words loop and subroutine. If you
are completely in the dark, take some time to read through the
glossary at the end of this book.

In addition, we assume that you are familiar with your
operating system, whether PC-DOS or MS-DOS. By this we
mean you know how to name files, to copy files from one disk
to another, and know how to format your own disks.

Machine language should not be the beginner's first com
puter language. It's not that it's harder to learn than other
computer languages—it's just less forgiving of mistakes. High-
level languages perform many error checks while executing
your program; assembly language performs almost none.

1

Introduction

Before You Get Started
Before you go on, make a working copy of the assembler and
your editor (whether EDLIN.COM, WordStar, or some other
word processor). You should also copy the assembler to your
working disk (either ASM.EXE or MASM.EXE; you don't need
both). You will also need LINK.EXE and DEBUG.COM from
your DOS program disks. Your work disk does not have to be
a boot disk, but copy COMMAND.COM onto the disk any
way, since DOS reloads it after every assembly. If you're using
a word processor, it's a good idea to copy it and all its asso
ciated program files onto your work disk, so you don't have to
trade disks every time you assemble.

In the next chapter we'll be discussing some of those
esoteric terms you may have heard from your hacker friends:
binary, hexadecimal, memory addressing, segments, registers,
and flags. If you're a hacker yourself, you should at least
glance through Chapter 2 and be sure you understand it
before starting on Chapter 3.

CHAPTER

2
Fundamentals

In this chapter we will discuss some of the basic concepts nec
essary for learning machine language. Most of these concepts
will be general to all computers, but we will also talk about
some features specific to the 8088, the microprocessor—the
brain—of your computer. First we'll discuss the computer's
numbering system, binary, and some related topics. Then we'll
examine the basic structure of the computer's microprocessor,
as well as some of the ideas that must be understood to pro
gram in machine language.

Our system of numbering is called decimal. In this sys
tem, each digit, as we move to the left, has ten times more
weight than the preceding one. So in the number 4782 we
have a one's digit, a ten's digit, a hundred's digit, and a thou
sand's digit, each with a value ten times the preceding one. In
other words, we have what is called a base 10 numbering
system.

The base 10 numbering system is not the system used by
computers. Microprocessors everywhere use base 2.

Binary
A computer is essentially a series of switches. Each switch is
either on or off. Thus the use of the base 2 numbering system,
in which each digit, instead of being 0 to 9, is either on or off,
either a 0 or a 1. This is the system called binary. This binary
system of numbering is responsible for much of a computer's
architecture: the size of the largest number it can store in a
memory location, the amount of memory it can have, even the
size of the screen.

As in the decimal system, each digit, as we move to the
left, has an increased value. But instead of ten times, each
digit as we move left has a value two times the preceding
digit: a one's digit, a two's digit, a four's digit, an eight's digit,
a sixteen's digit, and so on.

2

Fundamentals

Look at the binary number

10011

Reading from right to left, it has one 1, one 2, no 4's or 8's,
and one 16. Adding them all up (1 + 2 + 0 + 0 + 16), we
can see that 10011 in binary represents the number 19 in
decimal.

Table 2-1 shows the binary values of the decimal num
bers 0 to 9.

Table 2-1. Binary-Decimal Illustration

Decimal Binary
number eight's four's two's one's number

zero 0 0 0 0 0

one 0 0 0 1 1

two 0 0 1 0 10

three 0 0 1 1 11

four 0 1 0 0 100

five 0 1 0 1 101

six 0 1 1 0 110

seven 0 1 1 1 111

eight 1 0 0 0 1000
nine 1 0 0 1 1001

Table 2-1 may seem reminiscent of elementary school
lessons in addition, but in fact an understanding of binary is
critical to many aspects of 8088 programming and to com
prehending the structure and workings of the microprocessor.

Hexadecimal
As you can see from Table 2-1, even small numbers require
three and four digits in binary. Long strings of I's and O's may
be fine for the computer, but for the human programmer they
can get a little overpowering. Base 16, or the hexadecimal (hex
for short) number system, is used to get around this problem.
In this system, as you may have guessed, each succeeding
digit to the left is greater than the last by a factor of 16. Thus,
we have the I's digit, a 16's digit, a 256's digit, and so forth.
For example, the number 47 corresponds to seven I's and four
16's; (4 X 16) -F (7 X 1) = 71.

But wait. In base 10 (our decimal system), we have ten
different characters (0-9); in base 2 we have two (0 and 1). For

Fundamentals

base 16 we need 16 characters. We can understand this need
more easily by thinking of what 9 and 10 represent in hex: the
decimal numbers 9 and 16. Therefore, to represent in hex the
numbers between 9 and 16, the one's place must be able to
hold more than 9. In fact, we must be able to represent up to
15 ones in each place. For the first ten we use the base 10
digits 0 to 9. For the remaining six we use the letters A, B, C,
D, E, and F, to stand for 10, 11, 12, 13, 14, and 15 respec
tively. This is shown in Table 2-2.

Table 2-2. Decimal-Binary-Hexadecimal Numbers

Decimal Binary Hexadeci

0 00000000 0

1 00000001 1

2 00000010 2

3 00000011 3

4 00000100 4

5 00000101 5

6 00000110 6

7 00000111 7

8 00001000 8

9 00001001 9

10 00001010 A

11 00001011 B

12 00001100 C

13 00001101 D

14 00001110 E

15 00001111 F

16 00010000 10

17 00010001 11

18 00010010 12

3A uses both letters and numbers; A represents 10 (10
ones). This, added to the three I6's, gives us 58 (3 X 16 +
10) decimal.

Notice in Table 2-2 there's a correspondence between four
binary digits and one hexadecimal digit: Four binary digits
make up one hexadecimal digit. If you think about it, this
makes sense: The most that four binary digits can represent is
llllorl-l-2-l-4-l-8, which equals decimal 15. And 15 is
the largest number that one hexadecimal digit can represent (F
in hex). In fact, any combination of four binary digits can be
represented by a single hex digit.

2

Fundamentals

binary 0010 = hex 2 i—*
binary 0000 = hex 0
binary 1111 = hex F
binary 1011 = hex B

For this reason hexadecimal is often used for computer
programming in lieu of binary. It's compact (one digit instead
of four) and it fits in well with binary. Thus, many aspects of
machine language are best represented by hex.

Decimal, on the other hand, doesn't work well with bi
nary. You would need about three and a third binary digits to
make up one decimal number, and that's not possible. Deci
mal, therefore, is often not the numbering system of choice
when dealing with computers. Some computers do have a
provision to handle decimal directly, for the benefit of the pro
grammer; we'll discuss these in "Advanced Arithmetic"
(Chapter 8) later in the book.

Another system that works well with binary is base 8,
octal. In this system three binary digits make up one octal
digit, and we represent numbers in I's, 8's, 64's, and so forth.
Although it's not very common, IBM BASIC and the IBM
assembler provide for it.

The concept of base 2 and base 16 requires an extension
to our usual way of thinking about numbers. As you have
seen, a two-digit number is not merely composed of I's and
lO's, but I's and 2's, or I's and 16's. Now that you have
gained some understanding of the binary and hexadecimal
numbering systems, we'll turn our attention to arithmetic.
Once you've mastered the ideas inherent in using a new base,
arithmetic in that base is surprisingly simple.

Aiidimetic
Addition. Since binary arithmetic is somewhat complex

and rarely used, we'll deal only with hexadecimal in our dis
cussion of computer arithmetic. Let's begin with a few simple
two-digit additions:

47

-F 26 ^

6D

The idea is exactly the same as decimal addition. First you
add the one's digits. In this case, 7 + 6 = D. (Remember D is

2

Fundamentals

the hex symbol for 13.) Then, we add the sixteen's digits, 4 +
2, and get 6.

Now for a somewhat more complex example:

lA

+ 39

53

Here, we have A plus 9 in the one's digit. This would add
up to hex 13 (decimal 19), which is too big for a single hex
digit. So we adopt the same strategy we use in decimal: Take
only the 3 from hex 13, and add the 1 to the next column as a
carry. Thus, we have 3 in the one's column, and in the six
teen's column we have 1 plus 3, plus 1 from the carry, to
equal 5 in all. Here are a few more examples of hex addition
for you to study:

31 5A A3 99

+ 48 + 5A -F 3A + 2B

79 B4 DD C4

Subtraction. Subtraction in hex is also similar to decimal.

E3

- 79

6A

Here we must subtract 9 from 3. So, just as in decimal, we
borrow 10 (decimal 16) from the next column. That gives us
13 hex — 9, which works out to A. (Convert to decimal, if you
like: 19 — 9 = 10, or hex A.) Now we move to the next col
umn, the sixteen's. First we subtract 7 from E, to get a result
of 7 (in decimal, 14 — 7 = 7). However, we must subtract one
from this result, since we borrowed hex 10 in the one's col
umn. So, we have six 16's in the final answer. Here are a few
more practice hex subtractions:

74 AA 23 F2

- 42 - 3B - lA - BC

32 6F 09 36

Multiplication. Multiplication and division in hex are
easier than you would think. When dealing with computers,
most multiplying and dividing is in powers of 2 or 16. Thus,
it's often the case that you have to take some number and
multiply by 16. To do this, all you have to do is add a 0 to the
end of the number.

2
Fundamentals

45A9 X 10 = 45A90

or (using computer notation)

45A9 * 10 = 45A90

As you can see, multiplying by 10 hex (decimal 16) in hex
math is much like multiplying hy decimal 10 in decimal math.

Division. Division works the same way; if you need to
divide a number by 16, just shift it over one digit. Since
computers rarely use fractions or decimal points, the digit on
the end just drops off;

45A9 / 10 = 45A

Again, you may notice the similarity to decimal: Dividing
a decimal number by decimal 10 also shifts the number one
place to the right.

A calculator that allows hex math can be an important
tool when programming in machine language. If you plan to
do any serious programming in ML, you should consider
purchasing one.

For the moment there are just a few important concepts
about these alternate bases to remember:

• Why it is that computers use binary at the lowest level, and
why programmers prefer to use hex.

• How to add (most important) as well as subtract and mul
tiply in hex. This knowledge is necessary for understanding
and working with segments, which we shall discuss shortly.

Notation and Terminology
In our discussion of arithmetic, you may have been occa
sionally confused about whether a 10, for example, referred to
decimal, binary, or hexadecimal. To distinguish between the
systems, we sometimes follow the number by the base as a
subscript. Thus,

7116

would refer to 71 base 16. Computers can't handle subscripts,
so the assembler uses a letter suffix to indicate the base. Deci
mal numbers don't have a suffix. Binary numbers have a B
suffix (llOllOB); hexadecimal numbers, an H suffix (45H or
8AH). Since the assembler does not allow a number to begin
with a letter, any hex number that begins with a letter (A-F)
must begin the number with a zero (for example, FFH is repre-

10

2

Fundamentals

mm sented as OFFH; AOH becomes OAOH). A more complete dis
cussion of the assembler's numeric notation can be found in

Chapter 14.
psiB Bits, bytes, and nybbles. A bit is one binary digit, a 0 or

a 1. A byte is two hex digits, eight bits.
A byte is the basic unit of 8088 memory storage, and so is

particularly important. A byte can hold values from 0 to 255
decimal (GO to FF hex, or 00000000 to 11111111 binary).

A nybble is a four-bit quantity, usually thought of as half a
byte. A nybble can be represented by a single hex digit.

Finally, a word is two bytes, four hex digits, 16 bits. A
word can have a value from 0000 to FFFF hex.

More and larger units exist, but these are uncommon and
will be discussed later.

Most and least significant. Least and most significant are
terms usually applied to the bits and bytes making up larger
numbers. For example, in a byte (eight bits) the most signifi
cant bit (binary digit) is the leftmost one. This is the bit with
the highest value (128 in decimal) and thus the most signifi
cant. The least significant bit is the rightmost one (with a
value of one). The other common use of these terms is in ref
erence to words.

As we mentioned above, a word is composed of two bytes
(each holding up to FF hex). One often refers to the two
component bytes of words as most significant and least signifi
cant. For example, in the hex word 03AB, the 03 byte is the
most significant, and the AB byte is the least significant.

Computer Fundamentals
In order to successfully program in machine language, it is

mm essential to understand how to store numbers, and how to use
them when doing math. In this section, we'll discuss the topics
relating to storing and using numbers, as well as examining

mmm the 8088's internal registers.
Addressing. All computers have a certain amount of

memory, consisting of RAM (read/write memory) and ROM
m (read only memory). In this memory are stored both programs

and numbers. The computer keeps track of all this data (both
programs and numbers) by placing it at different addresses, or

(M, locations, within this memory. This concept may already be
_ . familiar to those of you who have had a need to use the

BASIC keywords POKE and PEEK. With the POKE statement.

2

Fundamentals

we POKE a number (a byte) into an address. PEEK, the
counterpart of POKE, tells us what number is already stored at
a specified address.

For example, load up BASIC on your computer and enter
POKE 10000,123

The POKE puts the number 123 at location 10000 (decimal).
We can use PEEK to tell us what is there:

PRINT PEEK(IOOOO)

The computer should display
123

Ok

Try PEEKing around in memory a little more. You'll find
that addresses range from 0 to 65535 and that the numbers
that can be placed in an address range from 0 to 255. Above,
we mentioned that a word can hold 0000 to FFFF hex, which
corresponds to 0 to 65,535 decimal.

Memory. From the point of view of PEEK, all that is
stored in memory is numbers. How then does the computer
store a program? The answer is simple: as numbers. Most of
the numbers from 0 to 255 can serve both as numbers and as

machine language instructions. For example, the five numbers
198 6 16 39 123 (in decimal) represent one machine language
instruction, telling the computer to put the number 123 into
location 10000 (as you did above with POKE). Luckily, using
the assembler, you will never need to know which numbers
make up which instructions.

An enormous variety of things are stored in a computer's
memory (machine language programs, BASIC programs, num
bers, and text), but in the end, everything is stored as a num
ber from 0 to 255. Of course, not all of this memory is RAM:
Some is empty space, some holds the Operating System, some
is used to display information on the screen, and so on. At
first, our programs will be using memory only as machine lan
guage programs and the data accompanying these programs.
Later, we will discuss storage of large numbers (up to 32 bits
in length) and of strings of characters.

Segments. Since the computer uses a word to hold ad
dresses, and a word can hold only numbers from 0 to 65,535,
many computers can therefore address only 65,536 bytes. This
is not true for the IBM's 8088 microprocessor.

12

2

Fundamentals

Instead of using one word to address memory, the 8088
uses two. To address any particular location, the 8088 adds the
two words together to find the actual address. However, to in
crease the amount of memory that can be accessed by a factor
of 16, the 8088 multiplies one of the words by hexadecimal 10
before adding it to the other. Multiplying by 16, as you may
recall, is the same as simply adding a 0 to the end of a hex
number. So, if one number is 1234 hex and the other (to be
multiplied) is 5678 hex, the computer would calculate the ac
tual address as:

1234

+ 56780

579B4

This segmented memory system, as you can imagine, al
lows a huge amount of memory to be addressed. The 8088
uses its segments to make available (in hex) 10000 * 10 =
100000 bytes or (in decimal) 65,536 * 16 = 1,048,576 bytes.
This number is known as a megabyte (metricized readers may
note the mega, or million, prefix). If you wish to put it in truly
impressive terms, think one thousand K.

The number that is multiplied by 16 is referred to as the
segment. The segment is almost always used to define the
beginning of a Wock of memory. Then, the offset, a word
value, is used to address one of 65,536 bytes within that seg
ment. The segment usually remains the same throughout a
program, so machine language programs usually only need to
specify the appropriate offset. Different segments are used for
the program, the data, and so forth. We'll discuss how seg
ments are used in more detail in a few moments.

Figure 2-1 diagrams one possible arrangement of four seg
ments. Note that the segments can overlap. The shaded areas
indicate the possible range of the offset values within each
segment.

Registers
Little machine language programming is done directly to
memory (in fact, some of it cannot be done directly to mem
ory). To improve performance and to simplify programming,
the 8088 uses registers. A register is one word that the 8088
holds within itself, directly available to the microprocessor, not

13

Fundamentals

Figure 2-1. Sample Segment Locations

Memory

Extra Segment

Stack Segment

Data Segment

Code Segment

n

> I

in memory. Using a register is always faster than using data in
memory, because registers are, in a sense, part of the 8088.
Furthermore, less space is used in program memory to specify
one register out of, perhaps, eight, as opposed to one address
out of 65,536.

General-purpose registers. The most used registers on
the 8088 are the four general-purpose registers, AX, BX, CX,
and DX (registers are named, not numbered, to distinguish
them from memory). Each of these holds a word (0-FFFF hex),
and each is often used for a different purpose.

For now, a few mnemonics will suffice to give a necessar
ily simplified picture. AX is the Accumulator; it often holds (or
accumulates) the values used by the various functions. As a
rule, the AX register serves as the pivotal register. BX is the
Base register (to be explained in Chapter 7, "Addressing
Modes"). CX is the Count register (as explained in "Program
Flow," Chapter 5, and "String Instructions," Chapter 9); DX is
the Data register. Most of the time, however, you can use
these registers interchangeably.

14

2
Fundamentals

Byte registers. Each of the general-purpose registers can
also be used as two separate bytes. When we discussed most
and least significant above, we mentioned that a word is often
separated into its two component bytes. Likewise, for each
general-purpose register, there is a high byte (most significant)
and a low byte (least significant). If AX is holding 487A, the
high byte holds 48 and the low byte holds 7A. The high and
low byte parts of the registers are symbolized by H and L;
thus we have AL and AH, BL and fe, CL and CH, and DL
and DH. The general-purpose registers are the only registers
that can be used both as bytes and words.

Index and pointer registers. The 8088's other registers
are more specialized, and more time will be devoted to them
in later chapters. For now, just remember that SI and DI are
index registers, and SP and BP are pointer registers. Most of
these registers can be used just like the general-purpose reg
isters above, but they have other uses, which we'll discuss in
due course.

Segment registers. The 8088 also has four specialized
registers it uses to hold the segment addresses of the different
parts of your program (code, data, and so forth). These seg
ment registers are named CS, DS, SS, and ES. CS stands for
Code Segment. CS holds the segment address for your program
code. DS is the Data Segment; your program's data is usually in
this segment. SS is the Stack Segment; this is where the stack
for the computer is based. If you're a machine language nov
ice, don't despair; the stack is discussed in detail in Chapter 6.
Finally, ES, the Extra Segment, is used to address the screen,
the Operating System, and so forth, as the programmer
wishes.

The Instruction Pointer. The IP, or Instruction Pointer,
holds an offset value that points into the code segment. This
register can't be directly accessed by your programs. Instead, it
serves as a pointer into your program. The 8088 uses this
pointer to execute the instructions one by one.

Learning machine language is like a giant jigsaw puzzle.
And parts of the puzzle are easier to find if you can look at
the entire picture. The problem with ML is that it is difficult to
see the whole picture before you understand the parts. At this
point the parts may seem disjointed and abstract. Don't worry
if this discussion of registers doesn't make sense now; as we
continue to use these registers throughout the book, their use

15

2

Fundamentals

will become more and more clear as you see the parts fitting
in to make the whole picture.

The flags register. One final word-sized register in the
8088 is devoted to the so-called flags. A flag is one bit, either
on or off; the on and off states of these flags tell the pro
grammer about various states in the microprocessor. The flags
are used with conditional jumps, much like IF-THEN state
ments, to make your program take different actions at critical
points.

Some of the flags are processor flags, telling the computer
what to do when certain situations occur (in this group are the
trap flag, the interrupt enable flag, and the direction flag). The
other flags are used for arithmetic on the computer. You'll find
that two of these other flags, the zero flag and the carry flag,
are very useful when doing math of all kinds. Two other flags
that are useful when doing signed math are the sign and over
flow flags. Table 2-3 is a complete list of the 8088's flags.

Table 2-3. The 8088's Flags

carry flag trap flag
parity flag interrupt enable flag
auxiliary carry flag direction flag
zero flag overflow flag
sign flag

Each of these flags will be explained in their appropriate
chapters. For now, just remember that a flag is a signal that in
dicates various states in the microprocessor.

Machine language is no harder to learn than BASIC.
Many of the operations in machine language are similar to
those in BASIC: moving information from variable to variable,
adding, subtracting, multiplying, dividing, dealing with strings,
and the like. In fact, many early programmers who had to
learn machine language as their first language had difficulty
making the transition to BASIC once it became available. Both
languages seem to require about as much effort to master.

Now that you have been introduced to the fundamentals
of the 8088—the numbering system, the uses of memory, seg
ments, registers, and flags—you are ready to begin your first
program, and be introduced to your first machine language
command.

16

n

1 1

n
Fundamentals

Figure 2-2. Registers on the 8088

-

AH AL AX \

BH BL BX / General

CH CL CX i Registers

DH DL DX

DI

SI

BP

SP

CS

DS

ES

SS

Index

Registers

Base

Registers

Segment
Registers

IP

Flags

17

n

SECTION

1
Basic ML

Programming

CHAPTER

3
Getting Started

We'll begin our discussion of the 8088 assembly language with
the simple MOV instruction and some of the assembler's
pseudo-ops. You will also learn how to use the utility program
DEBUG.

The MOV Instruction
The MOV instruction is the most used, and often most useful,
of the 8088 instructions. (Note that, by tradition, most assem
bly language mnemonics are three letters long.) It allows you
to move bytes or words between two registers or between reg
isters and locations in memory. The MOV instruction takes the
following format:

MOV destination,source

MOV takes the source value and moves it to the destination.

We will examine three variations on the MOV instruction in

this chapter: MOV immediate to register, MOV between reg
isters, and MOV with register indirect addressing.

MOV immediate to register. This first kind of MOV is
very straightforward—it moves an immediate value into a reg
ister. An immediate value is a number that's stored with the

machine language instruction itself, not in a separate data seg
ment. For example, the instruction
MOV BX,1234H

moves the hex number 1234 into the BX register. The immedi
ate value is stored as part of the instruction and is moved di
rectly into the register. This is similar to the BASIC LET
statement BX=&H1234.

The only limitation on the MOV instruction is that you
cannot move an immediate value into a segment register (CS,
DS, ES, or SS). Here are a few examples of valid MOV
instructions:

21

3
Getting Started

MOV DX,0A2H ;a hexadecimal number
MOV BL,4FH ,hexadecimal
MOV DL,241 ;decimal
MOV AH,10110101B ;binary

(See Chapter 2 for a discussion of the notation used to distin
guish binary, decimal, and hexadecimal.)

The immediate value must be the same size as the
destination register. In other words, you cannot move a word
into a byte register. For example, this is illegal:
MOV DL,4567H

DL is a byte register and 4567H is a word-sized number.
Moving data between registers. Moving a value from

one register to another is also quite simple. Below are just a
few of the numerous possible register-to-register moves. No
tice that the source and the destination registers must be the
same size (both either words or bytes).

MOV AX,BX
MOV DL,AH
MOV SI,DI
MOV ES,AX
MOV AH,CH

Register indirect addressing. This final kind of MOV
instruction uses register indirect addressing. This too is easy to
understand—once you get past the name. With this MOV the
computer uses the contents of a register as a memory address's
offset, while the DS register provides the segment. In the first
example below, the number stored in BX is used as an offset
into the data segment. (The computer multiplies the value in
the DS register by 10 hex, 16 decimal, and adds the contents
of BX. See Chapter 2 for more details on offsets.)
MOV AX,[BX]
MOV DL,[SI]
MOV [BX],AL
MOV [DI],DX

The contents of the memory location pointed to by BX are
moved to AX. The square brackets around BX mean "use the
quantity stored in BX as an indirect address." As we shall see
in later chapters, these square brackets are common to all in
direct addressing modes.

In the next example above, MOV DL,[S1], SI is used as the
offset, and the contents of the memory location pointed to by

22

3
Getting Started

SI are moved to DL. Notice, in the first example above, that a
word is moved, while in the second only a byte is moved. The
size of the number to be transferred is determined by the size
of the register involved. In the final two examples the destina
tion of the data is another register indirect address. The last
example moves the number in DX to the memory location
pointed to by DI.

Only four registers can be used in register indirect
addressing: BX, BP, SI, and DI. Note that you cannot move a
number directly from one memory location to another, so
something like

MOV [DI],[SI]

is illegal. If you need to move from memory to memory, you
must use two MOV instructions and a register. As we shall
see, the sample program "Switch" uses this technique.

The 8088 offers almost 20 different ways of addressing
data. In Chapter 8 all of the addressing modes will be brought
together and examined in detail. However, now that you are
familiar with at least some aspects of the MOV command, let's
take a look at the sample program Switch.

Writing a Program
The sample program. Switch (Program 3-1), will work with
any 8088 computer. Switch is accompanied by a brief tutorial
on the use of DEBUG, the machine language debugging tool
supplied with your DOS disk. Program 3-2 is a BASIC version
of Switch which may help improve your understanding of the
machine language version.

Switch is a fairly simple program. It copies the contents of
one eight-byte area (labeled SOURCE) to another eight-byte
area (labeled DEST, for destination). In the process, it reverses
the order of the bytes, so that the DEST area becomes a mirror
image of the SOURCE area.

Commenting the program. Before you enter Switch, take
a look at its structure. At the beginning of the program, there
are a number of lines preceded by semicolons. These are com
ments, like the single quote (') or REM statements in BASIC
programs. They are ignored by the assembler, but are crucial
in documenting your program. The first few lines of any pro
gram should give the name of the author and explain what
the program does. You might also want to include a date or

23

3
Getting Started

version number for your own reference. Remember, each com
ment line must be preceded by a semicolon.

Instruction lines. Lines which are not comments (instruc
tion lines) have a definite format and can be broken down into
specific fields:

Symbol Instruction Comment
NO—RESET: MOV [BX],AH ;store attribute
A—VERY—LONG—LABEL: ;this is a legitimate symbol

ADD AH,16
MOV AL,34 initialize AL

The first field contains a name, called a symbol. A symbol
can be of any length, but only the first 31 characters are rec
ognized as significant. In other words, the first 31 characters of
each S5nmbol must be unique. The alphabet characters (the let
ters A to Z), the digits (the numbers from 0 to 9), and the
characters ?, @, —, $, and . are all legal characters. Uppercase
and lowercase letters are considered identical; so the symbols
"sample", "Sample", and "SAMPLE" are all the same. The
first character in a symbol cannot be a digit; if it is, the assem
bler thinks that the symbol should be a number. If a period is
used in a symbol, it must be the first character. When a sym
bol is used to identify a position within a program (like
NO—RESET above), it is called a label. A label must be de
fined with a colon after its name. When a symbol is used to
reference data, it is called a variable. A variable is never de
fined with a colon.

The second field is the instruction field and contains the
operation and the operand. There are basically two kinds of
operations: those that produce actual machine code (opcodes,
a cryptic abbreviation for operation codes), and those that are
interpreted by the assembler and produce no machine code.
These operations which produce no code are called pseudo-ops
for false operations. Only a small number of the pseudo-ops
are detailed here. See Appendix C for a list of other pseudo-
ops available with the Macro Assembler.

The second part of the instruction field is the operand, the
information that the operation acts on. The number of oper
ands depends on the particular operation. Some operations
take only one operand, others take two, and a few take none.

24

3

Getting Started

Comment field is the last field of the line and is optional.
Comment must be preceded by a semicolon.

On an instruction line, only the operation and any asso
ciated operands are required. The label and the comment are
optional. Remember that the assembler considers lines which
start with semicolons comments and it ignores them entirely.

Pseudo-Operations
PAGE pseudo-op. The first operation in Switch is the

PAGE command. This pseudo-op tells the assembler the width
and length of a printed page in the list file. In Switch, PAGE
is used as follows:

PAGE ,96

The first parameter is the page length. Since none is specified,
58 is assumed. The next parameter is the width of the page.
The second operand, 96, sets the width to 96 characters,
which corresponds to a standard printed page at 12 characters
per inch.

The SEGMENT pseudo-op. The SEGMENT pseudo-op is
used three times in Switch. Its purpose is to define the various
segments for the DS, SS, and CS registers. SEGMENT first ap
pears in the program as:
DATA SEGMENT

SOURCE DB 1,3,5,7,11,13,17,19
DEST DB 0,0,0,0,0,0,0,0
DATA ENDS

Here, SEGMENT is used to create a separate segment for
the program's data. The label preceding the pseudo-op names
the segment DATA. The name is arbitrary; we could have
called it PAUL, ALEX, or AXZDFG, but naming the segment
DATA identifies its purpose. The ENDS pseudo-op at the end
of the segment declaration tells the assembler that the seg
ment named by the ENDS command is ending.

Program data. The source and destination areas, named
SOURCE and DEST respectively, are within the segment
DATA. The initial values of these data areas are defined with

the DB (Define Byte) pseudo-op. The eight bytes at SOURCE
are filled with the numbers 1, 3, 5, 7, and so forth, and the
eight bytes at DEST are filled with zeros.

25

3

Getting Started

Stack segment. The next use of the SEGMENT command
is to assign the stack segment. This is a special kind of seg
ment and for now must be included in all your programs.

STACK SEGMENT STACK

DW128DUP(?) *
STACK ENDS

We will be using this exact format in future programs for the ^
stack segment. Note that we have somewhat arbitrarily as
signed the stack segment the name STACK. In Chapter 6, we
will explain how and why to use this segment.

Code segment. The last segment we define is the code
segment. This is where the machine language instructions are
located. This segment has been given the name CODE. Within
the segment CODE, however, we must define a "FAR proce
dure." This is accomplished with the SWITCH PROC FAR
instruction. We have named the procedure SWITCH. This pro
cedural declaration is necessary if the program is to return to
DOS properly (right now, don't worry about why).

The ASSUME pseudo-op. The last pseudo-op before the
actual machine language instructions is ASSUME. The AS
SUME command tells the assembler what the segment reg
isters are supposed to be holding. This is necessary for the
program to assemble properly. It will be explained in more de
tail in Chapter 14.

The Machine Language
Now, finally, comes the assembly language. The PUSH DS
instruction stores DS on the stack. DS is stored this way so
that we can return to DOS. The next operation puts a zero in
the AX register (MOV AX,0). Then, we PUSH AX onto the ^
stack, the same way we pushed DS. This, too, is necessary in
order to return to DOS properly (this will all be explained in
Chapter 6).

Next we must set up the data segment, DS, so that we
can address our own data. We do this by assigning the DS
register to the location of our data segment. Unfortunately, the
8088 cannot move an immediate value directly into a segment ^
register. To overcome this limitation we first move the value
of DATA (which identifies our data segment's position) to AX
and then from AX to DS. At this point DS points to the first

26

3
Getting Started

address of our data segment. Note that setting up the DS reg
ister is much like using the DEF SEG command in BASIC
(before using PEEKs and POKEs).

The registers SI (Source Index) and DI (Destination Index)
are now given their initial values. These registers will act as
offsets into the segment DATA. SI is set to zero so that it
points to the first byte of the SOURCE area. DI is assigned the
value 15 so that it points to the end of the DEST area. The
next instruction, MOV AL,[SI], moves into AL the byte pointed
to by SI. This is the so-called register indirect addressing that
we discussed earlier. Notice, too, that this is the first line with
a label as well as a machine language instruction.

SUB DI,1 subtracts 1 from the value of DI. DI now points
to the next lower memory location. At the same time, we add
1 to the SI register with the ADD SI,1 instruction. SI now
points to the next piece of data in SOURCE.

Finally, we check to see if all the bytes have been moved.
If they have not, we jump to MOVE—BYTES (JNE, Jump if
Not Equal). If they have, we execute the RET (RETurn)
instruction, which returns us to DOS.

After the RET, we must tell the assembler that the proce
dure has ended (SWITCH ENDP), that the segment has ended
(CODE ENDS), and finally, that the program has ended
(END). The block-ending statements must be in the opposite
order as the beginnings (that is, you must maintain the correct
nesting order as with BASIC'S nested FOR-NEXT structures). If
you get the ENDP and the ENDS out of order, the assembler
will give you a block-nesting error.

Entering Source Code
Now that you have at least some idea of how SWITCH works,
enter the source code into your computer. Below is a short tu
torial on the use of EDLIN. If you have a line editor or word
processor which produces DOS-compatible files (see Chapter
1), use it and skip the EDLIN tutorial. If you're using your
own word processor, for best results set its formatting options
as follows: Set the margins at 0 and 79 and the tab stops
every eight spaces. Remember to press Enter after each line,
and to save the files as standard DOS (pure ASCII) text files.
Do not use line numbers.

27

3
Getting Started

Using EDLIN
Make sure that EDLIN.COM is in the default disk, and enter
the command:

A> EDLIN SAMPLE.TST

from the DOS prompt. This will load EDLIN and open a file
named SAMPLE.TST on the default disk. If you want
SAMPLE.TST somewhere else, enter the appropriate device
(and path name for DOS 2.00 users); for example, EDLIN
B:SAMPLE.TST will put SAMPLE.TST on drive B even though
you are logged onto drive A.

If SAMPLE.TST is a new file, you will get the message
New File. On the next line, you will see an asterisk. This is
EDLIN's prompt. If you get the End of Input File message,
you already have a file named SAMPLE.TST and EDLIN is
ready to edit it. Since we want to edit a new file, however,
leave EDLIN with the Q (Quit) command and answer Y to the
Abort edit (Y/N)? prompt. Try a new name for the file, one
that does not already exist on the disk.

Now that you have opened a new file, you can enter text
with the I (Insert) command. Type I and press Enter. You will
see the following:
♦I

You may now enter text. You can enter only one line at a
time, and pressing Enter moves you to the next line. Note that
the star after the line number tells you that this is the current
line.

If you make a mistake while entering a line, the Back
space key will delete the last character. Pressing the Esc key
erases the entire line (as in BASIC). Pressing F5 (or Fn-5 on
the PCjr) allows you to edit the line just as you can edit a
DOS command string. Try this as an example.

Type the text shown below and press F5.
l:* This is a sample line
An at sign (@) will appear at the end of the line. The message
"This is a sample line" is now stored as a string template.
Pressing the cursor-right key copies a character from this tem
plate to the displayed string. Pressing the Del deletes the next
character in the template; pressing the Ins key allows you to
add text without moving the template pointer. If you press

28

3

Getting Started

cursor right after you insert text, the insert mode will be
turned off and the next character will be taken from the tem
plate and displayed. Pressing F3 copies the remainder of the
template to the input string. Pressing F2, followed by a
character, copies all of the characters in the template up to the
specified character into the input string. F4 is similar, except
that it skips all of the characters in the template up to the
specified character. This may all seem confusing, but after
some experimentation and practice, it will become clear.

For practice, use the same sample line as above and press
F5. Now press the Del key five times and press F3. The line
should now read "is a sample line". Now, press F5 again,
press Ins and t)^e "That was ", and press F3. Now the line
reads "That was is a sample line". To correct our grammar,
press F5 again, press F2 and space, then F2 and space again,
press F4 and space, and F3. Finally, press Enter to go on to
line 2. Now the line should read "That was a sample line".
When you are done, you should have the following on your
screen:

l:*This is a sample line@
is a sample line@
That was is a sample line@
That was a sample line

2:*_

You can return to the command level of EDLIN by press
ing Ctrl-Break (or Fn-Break on the PCjr). The last line is not
inserted into your text.

Editing the entire file. Once you have entered a file with
EDLIN, you can review your work by entering the command
L (List). This will list the lines immediately before and after
the line you last entered. If you want to list other lines, pre
cede the L command with the starting and ending line num
bers separated by commas. For example, 3,5L will list lines 3
through 5.

If you need to insert additional lines, use the I (Insert)
command preceded by the number of the line you want to in
sert. Remember that EDLIN will insert lines before the line you
specify. For example, if you want to insert text between lines 4
and 5, use 41 as below:

29

3

Getting Started

n

* 1,5L
1: this

2; is

3: a

4: short

5: file

*41 ^
4:*very 1 H
5:*X

*1,6L
1: this

2: is

3: a

4: very
5: short

6: file

After we inserted the new line 4, all of the lines after the
old line 3 have been moved down one to make room for the
new line 4. You can append lines to the end of the file with
the #1 command.

To delete lines you merely specify the lines (as you did
with the List command) to remove and the D (Delete) com
mand. Specifying only one line number deletes just that line;
not specifying a line number deletes the current line. For ex
ample, if we decided that line 4 in the above sample file is not
needed after all, we can use the command 4D from the *
prompt. Line 4 will be deleted and lines 5 and 6 will auto
matically be renumbered to lines 4 and 5. Deleting lines one at
a time can be confusing because the line numbers are con
stantly updated. So check the line numbers carefully to avoid
deleting the wrong lines.

Editing the text. You can edit a line from the * prompt by
entering the number of the line you wish to change. The line
which you specify will be printed on the screen. On the
following line, EDLIN will print an input prompt. The text of
the specified line will be placed in the template buffer (as de
scribed above). You can edit the line just as if you had pressed
F5. For example ,entering 3 from the * lets you edit line 3 (see
below).

*3 ^
3: This is a sample line

30

3

Getting Started

There are two ways to leave EDLIN. Use the Q (Quit)
command if you do not want to save the file you are working
on. Answer the prompt Abort Edit (Y/N)?, with Y if you do
not want to save your file, or with N if you have second
thoughts. The E (End) command exits EDLIN and saves your
file.

You can reenter EDLIN just as you entered it the first
time; however, you will receive an End of Input File rather
than a New File message. You can now list and edit your file.
Remember to leave EDLIN through the E command if you
want to save your changes. Your old file is automatically re
named as a backup file (with a .BAK extension).

For a more detailed explanation of EDLIN, see your DOS
manual's section on EDLIN.

Entering Your Source Code with EDLIN
Now that you are acquainted with EDLIN, let's enter the
sample program Switch. From the DOS prompt, enter the
command EDLIN SWITCH.ASM (or whatever name you wish
to use). Make sure you are starting a new file (you should get
a New File message). Enter the 1 command and type the first
few lines of SWITCH.ASM. Your screen should look some

thing like the text below:
A> EDLIN SWITCH.ASM

New file

♦I
!:♦ ; SWITCH.ASM
2:*;
3:* ; Reverses an eight-byte buffer. DEBUG
4:* ; must be used to analyze the results.
5:* ; This program should work in any
6:*_

Enter Program 3-1, Switch. Be certain that you have en
tered it correctly, editing the text as necessary. When you are
done, exit EDLIN. If all goes well, you should now be ready to
assemble your program.

The Assembler
After you save your source code file on disk, enter the com
mand MASM (or ASM, depending on which assembler you
are using). The computer should respond as follows:

31

3

Getting Started

A> MASM

The IBM Personal Computer MACRO Assembler
Version 1.00 (C)Copyright IBM Corp 1981

Or, if you are using ASM:

The IBM Personal Computer Assembler
Version 1.00 (C)Copyright IBM Corp 1981

Answer the questions as follows (assuming that
SWITCH.ASM is the name of your source file). The name of
the source file is SWITCH.ASM, so type SWITCH and press
Enter. The assembler will automatically use the extension
.ASM. It will also assume that the name of the object file is
SWITCH.OBJ, so just press Enter. We want a list file, so type
SWITCH and press Enter. The assembler will append the .LST
extension. We do not want a cross-reference file so just press
Enter. You should have the following on your screen:

Source filename [.ASM]: SWITCH
Object filename [SWITCH.OBJ]:
Source listing [NUL.LSTj: SWITCH
Cross reference [NUL.CRF]:

If you prefer, you can specify different extensions. Also
note that the name of the .LST file defaults to "NUL.LST"; if
you do not want a list file, then just press Enter at this
prompt.

After you have answered all of the questions, the assem
bly process will begin. The assembly is done in two passes.
The assembler reads the source code once, doing a mock
assembly. This first pass determines the position of all the la
bels within the program. The second pass produces the actual
object file.

After a short while, the assembler should print:

Warning Severe
Errors Errors

0 0

on the screen. If you received any errors, either Warning or
Severe, reenter your editor and correct the problems. Re
assemble the program. Only when you receive no errors are
you ready to go on.

The assembler .LST file. Enter the command "TYPE

SWITCH.LST" to print the list file to the screen. You should
get a listing much like Program 3-3. If you want to send this

32

3

Getting Started

to the printer, turn on the printer echo (Ctrl-PrtSc, or Fn-Echo
on the PCjr) and use the TYPE command. When the entire file
has been printed, you should turn off the printer echo by
pressing Ctrl-PrtSc (or Fn-Echo) again. If you prefer, you can
tell the assembler to output the list file directly to the printer
by naming the list file PRN (for printer). However, this latter
method often does not work on non-IBM printers. Now let's
look at the list file's key components.

At the top of each page the assembler prints
The IBM Personal Computer MACRO Assembler 8-18-84 PAGE 1-1

After the assembler's name comes the date and the page num
ber. The number before the dash is the chapter number, while
the number after the dash is the page number. The chapter
number is not important.

The numbers which are printed on the left edge of the
page are the offsets into the current segment. Notice that the
first offset number does not appear until we define the first
segment. The numbers to the right of the offset are the data
which is stored at that offset. The data and the offset values

are always printed in hexadecimal. Starting about halfway
across the page is a listing of the source file. Bear in mind that
long lines will wrap around the edge of the page. This makes
reading the printout difficult, so use as many columns as pos
sible (96 is generally sufficient).

Also notice that on the line which moves DATA (the ad
dress of our data segment) into AX, there is no hexadecimal
value for DATA, only four dashes. This means that the assem
bler does not know where the segment DATA is going to be
located; the address of the data segment will be calculated
only when the program is loaded into memory.

The last page of the assembly listing is the symbol table. It
has information about the labels and variables used in the
program. They are in two groups and are arranged alphabeti
cally within the groups. The first group, titled Segments and
Groups, is a table of the segments which we defined in the
program. Their size (again in hexadecimal), alignment, and
combine class are also given. These last two entries are not
important until you know more about the assembler. The sec
ond list, titled Symbols, is a table of the labels and variables
which are used in the program. For now, don't worry about
their type and attributes.

33

3
Getting Started

The LINK Program
Once SWITCH assembles without errors, you are ready to link
the program. From the DOS prompt, execute the LINK pro
gram by typing LINK and pressing Enter:
A> LINK

IBM Personal Computer Linker
Version 2.00 (C)Copyright IBM Corp 1981, 1982,1983

If you are using DOS 1.10, you will see
IBM Personal Computer Linker
Version 1.10 (C)Copyright IBM Corp 1982

The LINK program will convert the .OBJ file generated by
the assembler into an executable .EXE file. The .EXE file can
be loaded and run like any other DOS program. Answer the
questions as follows. The name of the object file is
SWITCH.OBJ, so type SWITCH and press Enter. LINK will
automatically append the .OBJ extension. We want the .EXE
file to be called SWITCH.EXE, so just press Enter. Since we do
not want a .MAP file, nor have we defined any Libraries, just
press Enter to the last two prompts. You should have the
following on your screen:
Object Modules [.OBJ]: SWITCH
Run File [SWITCH.EXE]:
List File [NUL.MAP]:
Libraries [.LIB]:

You can specify a different extension for the object file if you
desire. However, you can't change the extension of the run
file, which is always .EXE. It is unlikely that you will receive
an error from the LINK program other than a Cannot Find File
error. If you receive such an error, be certain that you have
entered the name of the object file correctly.

Running Switch
Now that we have assembled and linked SWITCH, you are
ready to execute it. From the DOS prompt type
A> SWITCH

and press Enter. The DOS prompt should return after a mo
ment or two. If it does not, the computer has probably
crashed. Try pressing Ctrl-Break (Fn-Break on a PCjr). If this
does not return you to DOS, you will have to reset the com
puter with Ctrl-Alt-Del. If the crash is very severe, even this

34

3

Getting Started

may not revive the computer, in which case you will have to
turn the computer off and back on again. If your computer
crashes when you run Switch, you must double-check the
source program for any typing errors, correct them, and re
assemble the program. Unfortunately, we still do not know if
Switch actually works since it does everything internally. How
can we tell if it is doing anything at all? We must use DEBUG,
which allows us to examine our program and to watch it exe
cute instruction by instruction (using the Trace command). It
can also dump and unassemble memory, as well as change the
contents of registers and memory locations. DEBUG is sup
plied on your DOS disk.

Using DEBUG: the Unassemble Command
Type the command DEBUG SWITCH.EXE from the DOS
prompt. The DEBUG prompt, a dash (-), will appear on the
screen. Type U (for Unassemble) and press Enter. The
unassembly of the Switch program should be printed as
below:

-U

091B:0000 IE PUSH DS

091B:0001 B80000 MOV AX,0000
091B:0004 50 PUSH AX

091B:0005 B81F33 MOV AX,091D our data segment
091B:0008 8ED8 MOV DS,AX
091B:000A BEOOOO MOV SI,0000 start of source

091B:000D BFOFOO MOV DI,OOOF end of destination

091B:0010 8A04 MOV AL,[SI]
091B:0012 8805 MOV [DI],AL
091B:0014 83EF01 SUB DI,-I-01
091B:0017 83C601 ADD SI,-1-01
091B:001A 83FE08 CMP SI,-1-08
091B:001D 75F1 JNZ 0010

091B:001F CB RETF program ends

If you are using DEBUG from DOS 1.10, the last line of the
program will look like this:
091B:001F CB RET L DEBUG 1.10 differs

From now on, DOS 1.10 users should read RET L every time
RETF is used. Note that the number before the colon (the
09IB) may be different in your computer.

Let's take a close look at DEBUG's output. The example
below breaks a typical line down into three fields.

35

3
Getting Started

Address Bytes Assembly Instruction

091B:0012 8805 MOV [DI],AL

The first field indicates the address of the instruction in hexa
decimal. The number before the colon is the segment address
and the number after the colon is the offset into the segment.
This is known as the segmentoffset form of representing an
address.

The next field. Bytes, is the group of bytes that make up
the assembly language instruction. In the example above, the
two bytes which make up the instruction MOV [DI],AL are
88H and 05H.

If you compare the DEBUG output with the source code,
you will notice that there are no longer any labels. Also notice
that our JNE 0ump if Not Equal) has been turned into a JNZ
0ump if Not Zero) instruction. These are identical operations.
The ̂fference in name is for the sake of the human, not the
computer (all of the conditional jumps will be explained in
Chapter 5). Our RET has also been changed into a RETF. RETF
stands for Far Return, and wiU be explained in Chapter 6.

Also note how DEBUG shows bytes when a word value is
part of an operand. For example, the assembler .LST file may
unassemble an instruction as:

Assembler: BP OOOF MOV DI,15

while DEBUG reverses the order of the last two bytes:
DEBUG: BFOFOO MOV DI,OOOF

(Remember that it takes two bytes to make up a 16-bit word.)
In fact, the assembler is actually reversing the bytes, not DE
BUG. The two bytes which make up a word are stored in a
low byte/high byte format. This means that the least signifi
cant byte precedes the most significant byte (the byte which
represents the bigger value comes last). In the actual program,
the bytes appear as OF GO, not GO followed by GF, as the
assembler .LST file seems to imply.

The purpose of unassembling the file was to find the data
segment. If you look carefully, DATA has been turned into the
hex value G91D (this value varies; it depends on how your
particular computer is configured). In our case, the data, which
is a short series of prime numbers, can be found at 91D:G.

Using the Dump command. To check to see if the data is
there, we can instruct DEBUG to display a portion of memory.

36

Getting Started

Enter D followed by the desired segment and the offset. In
this case we would type (remember to use the segment you
determined, which might not be the same as the one given
below):

- D 91D:0

DEBUG should print something similar to the following:

- D 91D:0

091D;0000 01 03 05 07 OB OD 11 13-00 00 00 OO 00 00 00 00
0910:0010 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

091D:0020 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

0910:0030 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

091D:0040 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

0910:0050 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

0910:0060 46 FE EB D5 C4 IE AO 13-BO 00 26 38 07 75 09 A2 F k UD. . 0 . & 8 . u

0910:0070 AC13 26 88 47 01 EB 05-C6 06 AC13 FF BO 00 A2 , . & . G. k. F . , . . 0

The format of the memory dump can be broken down
into three sections as shown below.

Address 0910:0060

Sixteen bytes of data in hex format
46 FE EB D5 C4 IE AO 13-BO 00 26 38 07 75 09 A2

Character format F kUD. .O.&S.u."

The first field is the address, much like in the Unassemble
command. In the next section are the 16 bytes starting from
the address shown in the first field. In the last field are the

characters which represent the 16 bytes shown in the previous
field. Any unprintable characters are represented by a period.

The Go and Enter commands. The Go command is used

to execute the program. Type G (for Go) and press Enter. DE
BUG should print Program Terminated Normally and give you
the dash prompt. Now reexamine the data segment:
- D 91D:0

0910:0000 01 03 05 07 OB OD 11 13-13 11 OD OB 07 05 03 01

(Only the first line is shown here; the rest is unimportant.)
Notice that the eight zero bytes (the DEST data) are now filled
with the prime numbers in reverse order.

Now that we know that the program works, let's play
with it a little. We can use DEBUG to modify the SOURCE
memory area with the E (Enter) command. Type E 91D:0
"compute!" (remember to use your data segment address) and
press Enter. Then display the SOURCE area again:

37

3

Getting Started

E 91D:0 "compute!"
- D 91D:0

091D;0000 63 6F 6D 70 75 74 65 21-13 11 CD OB 07 05 03 01 compute! ,

Notice how the ASCII string compute! has filled the eight bytes
of the SOURCE area. The format of the E command is very "
simple. The numbers after the E are the location, and the
string in quotes is the data. The ending quote is required, or
you will get an error from DEBUG. Now run Switch again, us
ing the G command, and dump the data in the SOURCE
buffer area.

- G

Program terminated normally
- D 91D:0

091D:0000 63 6F 6D 70 75 74 65 21-21 65 74 75 70 6D 6F 63 compute!!etupmoc

The compute! has been reversed to !etupmoc.
This has demonstrated one method of entering data into

memory. See your DOS manual for the other available options
with this command.

The Register command. Type R and press Enter. DEBUG
should respond with something similar to the following:
- R

AX=0000 BX=0000 CX = 0080 DX = 0000 SP=01FC BP=0000 51=0000 DI=0000

DS=090B ES = 090B SS=091E CS = 091B IP = 0005 NV UP DI PL NZ NA PO NC

091B:0005 B81D09 MOV AX,091D

(The output on a 40-column screen will be different.) The first
two lines indicate the current values of the registers. At the
end of the second line is a list of the flags and their current
statuses. Table 3-1 gives the abreviations that DEBUG uses to
indicate the statuses of the 8088's flags (the different flags will
be explained in the following chapters).

Table 3-1. DEBUG Flag Status Names
Name of Flag Set (Flag=l) Clear (Flag=0)
Overflow OV = overflow NV = no overflow

Direction ON = decrement UP = increment U?
Interrupt El = enabled DI = disabled
Sign NC = negative PL = plus
Zero ZR = zero NZ = not zero

Auxiliary Carry AC = yes NA = no ' '
Parity PE = even PO = odd
Carry CY = carry NC = no carry i**

' \

The third line of DEBUG's response shows the address of
the next instruction, the bytes which make up that instruction,

38 n

3

Getting Started

and the unassembled instruction itself (this is the same format
as the Unassemble command). This is the instruction which
will be executed first when you enter the G command.

An option of the R command allows you to change the
values of the registers. Type R AX and DEBUG will respond:
- R AX

AX 0000

DEBUG is now waiting for you to enter the desired value for
the register AX. You can enter any word-sized value to be
placed in AX. Pressing Enter without any other input means
that you do not want to change the value in AX. Any of the
registers can be changed in this way.

The Trace command. Type T (for Trace) and press Enter.
The format of the output is identical to that of the R com
mand. If you enter T again, you will step through the next ma
chine language instruction. You can step through more than
one instruction at a time by specifying a number after the
Trace command. For example:

- T 10

will trace through the next 16 instructions (remember, DEBUG
does everything in hexadecimal).

This feature of DEBUG can be very useful in the debug
ging of a program. You can go through the program step by
step and examine the effects of different instructions on the
flags and the contents of the registers. Note that DEBUG occa
sionally skips instructions. There is nothing wrong with DE
BUG; this is perfectly normal. This skipping will be discussed
in Chapter 11.

For more examples of how to use DEBUG, see Section 5,
"Sample Programs," or your DOS manual. Play with DEBUG
and Switch. When you have had enough, you can exit the DE
BUG utility program with the Q (Quit) command.

Writing Your Own Programs
Program 3-4 is a fill-in-the-blank program, a program tem
plate, which you can use until you are more familiar with the
assembler and assembly language. Keep in mind that the
structure of the sample programs is not fixed, nor is it stand
ardized. You are free to format and structure your programs as
you will. The examples are simply guides that represent a for
mat which we like to use. Feel free to devise your own system.

39

S Program 3-1. SWITCH.ASM

; SWITCH.ASM

Reverses an eight byte buffer. DEBUG
must be used to analyze the results.
This program should work in any
MS-DOS computer.

; Marc Sugiyama 8/15/84

data

source

des t

data

f

stack

stack

code

swi tch

:

page ,96

segmen t

db 1,3,5,7,11,13,17,19

db 0,0,0,0,0,0,0,0

ends

segment stack
dw 128 dup (?)
ends

segmen t
proc far
assume cs:code,ds:data,ss:stack

push ds iset up for FAR RETurn to DOS
mov ax,0

:8egment which holds buffers

tsource buffer

lempty destination buffer

istack segment
tgive the stack 256 bytes

{Segment for code
{for proper return to DOS

O

3
OQ

Go

C/D

(T)
Pu

J 1 1 1 1) > 1 1]

I I I I I LI I I I

push ax

mov ax , da t a ;set up DS for data segment

mov ds , ax

mov s 1 ,0 ;f l rst byte of source area

mov d 1 . 1 5 i last byte of destination area

moV e_by t e s :

mov a 1 , [s 1] imove from source to AL

mov [d i] , a 1 ;move from AL to dest ination

sub d 1 . 1 ireduce dest pointer by one
add s 1 , 1 ; increase source pointer by one
cmp s 1 , 8 imoved ai l of the bytes?

j ne mo ve_by t e s l if not, do mo re.

f

ret :return to DOS

sw i t ch

code

endp

ends

end

O

<-t

5'
OQ

C/!)
rt

P
-i
1-t

a-

:end of procedure declaration

;end of code segment

:end of program

Program 3-2. SWITCH.BAS

100 * SWITCH.BAS

110 '

120 '

130 '

140 DEFINT A-Z

150 '

160 DIM DATASEGC15 D

170 FOR 1=0 TO 15:READ DATASEG(1) : NEXT

180 DATA 1 ,3,5,7,1 1 ,13,17,19: 'sourc

e

190 DATA 0,0,0,0,0,0,0,0 'dest

200 '

210 PR I NT"Before":GOSUB 380 'dump "memory"

220 •

230 SI = 0

MOV SI ,0

240 D I = 15

MOV DI ,15

250

BYTES:

260 AL = DATASEGC S I)

MOV AL, t S I]

270 DATASEGC DI J = AL

MOV t DI] ,AL

MOVE.

O
ft

3
HQ

n

O-

1) 1 3) 3 n 1 I 1

1 I I I I .1 (.1 M ' I I

280 DI = DI - 1

SUB DI , 1

290 81 = 81 + 1

ADD 81 , 1

300 ZF = (81 = 81

CMP 81 ,8

310 IF NOT ZF THEN 260

JNE M0VE_BYTE8

320 '

330 PR I NT:PR I NT"After":G08UB 380 'dump "memory
II

340 •

350 END

RET

360 •

370 ' Dump "memory" in hex

380 PR INT"memory: ";:I=0:GO8UB 410:PRINT ";

: I=8:G08UB 410:PR 1 NT

390 RETURN

400 '

410 FOR J=0 TO 7:PRINT RIGHT$C"0"+HEX$CDATA8EG

C I +J)) , 21 ; " " ; :NEXT

420 RETURN

O
fc
(-f
f-t

5'
OQ

(

C/!)
rt

P
►-t

O-

Program 3-3. SWITCH.LST

The IBM Personal Computer MACRO Assembler 01-01-80 PAGE 1-1

I SWITCH.ASM

i

I Reverses an eight byte buffer. DEBUG
I must be used to analyze the results.
I This program should work in any
t MS-DOS computer.

t

I

page ,96

0000 data segmen t
0000 01 03 05 07 OB OD source db 1,3,5,7,11,13,17

11 13

0008 DO 00 00 00 00 00 des t db 0,0,0,0,0,0,0,0
00 00

00 1 0 data ends

0000
(

stack segmen t stack
0000 80 t dw 128 dup C?]

????

(Segment which holds buffers

(Source buffer

(empty destination buffer

(Stack s e gme n t
(give the stack 256 bytes

o
m
r-t

5"
DO

I

(73

P
-t
r-t

m

Q.

0100

0000

0000

stack

(

code

swi tch

ends

segmen t

proc far

assume cs;code,ds:data,ss : stack

(segmen t for code

(for proper return to DOS

□ » :j :i \ □ I 1 zi n

I) I I t I I I I I 1

0000 IE push d s iset up for FAR RETurn to DOS
0001 88 0000 mov ax , 0

0004 SO push ax

0005 88 R

1

mov ax , da t a iset up DS for data segment

0008 8E D8 mov ds , ax

OOOA 8E 0000

t

mov s i , 0 ifirst byte of source area
OOOD 8F OOOF mov d i , 1 5 i last byte of destination area

0010 move_bytea:

0010 8A 04 mov a 1 . [s i 1 imove from source to AL

0012 88 05 mov [di 1,al ;move from AL to destination

0014 83 EF 01 a ub d i , 1 ;reduce dest pointer by one
0017 83 C6 01 add s i , 1 { increase source pointer by one
001A 83 FE 08 cmp s i , 8 ;moved al l of the bytes?
001D 75 F1 j ne move_by t e s l if not. do mo re.

001F CB

t

ret (return to DOS

0020

)

switch endp (end of procedure declaration
0020 code ends (end of code segment

end (end of program

The IBM Personal Computer MACRO Assembler 01-01-80 PAGE Symbo1s-1

o
n>

!3
(JQ

w
rr

!U

re

a.

Segments and groups:

Name

CODE

DATA

& STACK

Size

0020

0010

0100

al ign comb i ne class

PARA

PARA

PARA

NONE

NONE

STACK

ON
SymboIs:

Name Type Value At t r

DEST L BYTE 0008 DATA

MOVE BYTES L NEAR 0010 CODE

SOURCE L BYTE 0000 DATA

SWITCH F PROC 0000 CODE

Warning Sevare

Errors Errors

0 0

Length =0020

Program 3-4. Program Template

program name

descr ipt ion

author and date/version

page ,96

data 3egmen t

[put your data
... in here!

data ends

!3 egme nt for data

O
(T)

OQ
[

C/D
rt

I
G-

)) □ \ n I I :i 3

) ■ i I 1 } [i

stack

stack

)

code

p rog r am

I

segment stack
dw 128 dup (?)
ends

segmen t
proc far
assume cs : code,ds:data,ss:stack

push ds
mov ax.O

push ax

sstack segment
:give the stack 128 words

isegment for code

;for proper return to DOS

;for far return to DOS

mov ax,data

mov ds,ax

:set up your data segment in DS

[put your...
... program...

... code.. .

...In here)

ret ;return to DOS

p r og r am

code

endp

ends

end

:end of procedure declaration

:end of segment code declaration
;end of program

VI

CHAPTER

4
Arithmetic

Computers are known for their number-crunching abilities.
The 8088 is no exception; it is a very powerful microprocessor.
In this chapter, you will be introduced to the basic mathemat
ical operations of addition, subtraction, multiplication, and
division.

Negative Numbers
In Chapter 2 you learned that binary digits can be chained to
gether into eight-bit bytes. You were also told that a byte
could represent the numbers from 0 to 255 (0 to FF hex). This
is the unsigned number range of the byte. A byte can also
represent the signed number from —128 to +127. There are
still eight bits to a byte; only the interpretation of the bits is
different. When a byte is meant to represent a signed number,
the most significant bit (the bit representing 128) is the sign
bit.

When the sign bit is zero, the byte is positive (0 to 127).
When the sign bit is one, the byte is negative (— 128 to —1).

Signed words are similar to signed bytes. Recall that a
word is made up of 16 bits and can represent the numbers
from 0 to 65,535 (0 to FFFF hex). This is a word's unsigned
range. The signed range of a word is —32,768 to 32,767. The
sign bit is still the most significant bit of the number (the bit
representing 32,768). As with signed bytes, a sign bit with the
value of zero means that the word is positive (0 to 32,767),
while a sign bit with the value of one means that the word is
negative (— 32,768 to —1).

The actual storage of signed numbers is complex. The
method which is used is called twos complement. This method
of representing negative numbers is very similar to the one
used by counters on tape players. Most tape recorders have a
three-digit counter which can represent the numbers from 000
to 999. Let's pretend that the tape in the recorder is a number
line. The tape counter tells us where we are on the line.

48

4
Arithmetic

Try this exercise: Fast-forward the tape to the middle, and
zero the tape counter. Now, fast-forward the tape some more.
Note that the counter starts from 0 and counts up. When the
counter reads 005, we understand that we are five counts
away from 0 in the positive direction. Now rewind the tape.
The counter will begin to count down. When it passes 000, it
will start again from 999. We understand that when the
counter reads 999, we are one count away from 0; but this
time we are on the negative side. If we stop the tape when the
counter reads 990, we know that we are ten counts away from
0—we are at the position —10 on the tape.

Negative binary numbers are similar. For the moment,
consider only signed bytes. A byte can represent the numbers
from 0 to 255. You can think of a byte as a tape counter
which can count up only to 255. If we rewind from 0 with this
byte counter, the first number we will get is 255 (like we get
999 on a real tape counter), so 255 is like —1. Notice that the
most significant bit, the sign bit, is 1; thus the number is neg
ative.

For words, the only difference is that the maximum count
is not 255 but 65,535. When our "word counter" counts back
wards from 0, we get 65,535.

ADD, SUB, and NEG
ADD and SUB, add and subtract, are versatile instructions
which allow you to add to or subtract from registers or mem
ory addresses. The format of both instructions is the same:
ADD destination,source
destination = destination -I- source

SUB destination,source
destination = destination — source

Notice the mathematical representations of the operations.
ADD takes the source value, adds it to the destination, and
places the sum in the destination. SUB does the same, only it
subtracts rather than adds.

The source for these instructions can be a general register
(any register except the segment registers, the flags, and IP), a
memory location, or an immediate value. The destination can
be a general register or a memory location. As with the MOV
instruction, the source and destination cannot both be memory
locations.

49

4
Arithmetic

Because the 8088 is a 16-bit microprocessor with an 8-bit
heritage, the ADD and SUB instructions come in two forms,
one for 16 bits and the other for 8 bits. The assembler auto
matically determines which instruction you need to use. Below
are some examples of the ADD and SUB commands.
ADD AX,4 ;add 4 to the contents of AX
ADD BX,DX ;add contents of DX to BX, result in BX
ADD DL,DH ;8-bit addition
SUB DX,AX ;subtract AX from DX, result in DX
SUB [BX],AL /subtract AL from indirectly addressed memory

The NEGate instruction changes the sign of a number. If
the number was positive, it is made negative, and if it was
negative, it is made positive. NEC takes the form shown below:
NEG operand

The operand can be any general byte, word register, or
memory location. This instruction can be used when you need
to subtract a register from an immediate value. For example,
you cannot use SUB to subtract AL from 100:

SUB 100,AL

This is illegal because the destination cannot be an immediate
value. Instead, you have to use something like:
NEG AL

ADD AL,100

First we negate AL (so AL = —AL), then we add it to 100. In
other words, we have:

AL = —AL 'negate AL
AL = 100 -I- AL 'add (the negated) AL to 100

There are three processor flags which are important to
addition and subtraction. These flags are used for error check
ing and for program decision making. Decision making and
program flow are the topics of the next chapter.

The sign flag (abbreviated SF) indicates the sign of the re
sult of the last operation; however, only certain operations,
such as addition and subtraction, set this flag. If you are un
sure whether SF is set by an operation, check Appendix A. If
SF is set (has a value of one), the last result was negative. If it
is clear (has a value of zero), the result was positive.

The overflow flag (OF) is set whenever a mathematical op
eration overflows the range for signed numbers. OF is set if

50

4
Arithmetic

the result is greater than 127 or less than —128 for bytes, or
_ greater than 32,767 or less than —32,768 for words. If the re

sult is within the range of signed numbers, the overflow flag is
"> clear.

The last flag which should be mentioned in connection
with ADD and SUB, is the carry flag (CF). During addition, CF

mm is used to hold any carry out of the highest bit. Thus, for byte
addition, the carry represents the "ninth bit," and for word
addition, the carry is the "seventeenth bit." With subtraction,
CF is used to indicate a borrow into the highest bit. CF will be
important only when we begin to investigate advanced arith
metic in Chapter 8.

INC and DEC
INC (INCrement) and DEC (DECrement) are used to in
crement and decrement a register or memory location by 1.
The form of both these instructions is:

INC memory location
memory location = memory location 4- 1
DEC memory location
memory location = memory location — 1

INC and DEC set the sign and overflow flags, but do not set
the carry flag. Both instructions can operate on bytes or words.

INC and DEC are useful in addressing memory. We can
move a pointer up or down one byte within a table. For ex
ample, in the program "Switch" we could have used INC SI
and DEC D1 rather than the ADD and SUB instructions. They
can also be used in loops; more about loops later.

^ MUL
The multiply and divide functions are somewhat less versatile
than their addition and subtraction counterparts. However, the
8088 is the first microprocessor in wide use which offers mul-
tiply and divide operations. In the past—with 8080, Z80, and

~ 6502 systems—programmers had to write special subroutines
to multiply and divide.

MUL, the multiply instruction, allows you to find the
product of two numbers. There are two MUL instructions: one

^ for multiplying bytes, and another for multiplying words.
Byte multiplication multiplies the AL register by another

general byte register or an addressed memory location. You

mm

4
Arithmetic

cannot multiply by an immediate value. The format of this
instruction is:

MUL source

Since the product of two bytes can be greater than 255 (in
fact, it can be as great as 65,025), the 8088 uses all of AX to
store the result of byte multiplication; so AX = AL * source.

If the product is greater than 255, OF and CP are set (they
have the value of 1). For example, if we multiply 57 by 2i,
using byte multiplication, the product is 1368, far too large to
fit in a single byte. Since all of AX is used to store the result,
the carry and overflow flags will be set, indicating that the re
sult uses the high-order byte to store part of the product. If,
on the other hand, we multiply 45 by 4, the product is only
180, small enough to fit into one byte. The entire product will
fit in AL, so the carry and overflow flags are cleared. Note that
the other arithmetic flags are undefined.

Word multiplication multiplies the AX register by another
general word register or an addressed memory location. Again,
you cannot multiply by an immediate value. The format of
word multiplication is identical to that of byte multiplication,
only the source is a word, not a byte.

The product of two words can be considerably greater
than 65,535 (the capacity of a word), so the 8088 uses the AX
and DX registers to hold the result of word multiplication. AX
holds the least significant word, DX the most significant word.
In other words, AX and DX hold a 32-bit number. A 32-bit
number is often referred to as a double word.

If the result of word multiplication is greater than 65,535,
CF and OF are set to indicate that the high-order word (DX) is
used to hold part of the product.

You select which multiplication you want, either byte or
word, with the operand. If the operand is byte-sized, then
byte multiplication is used. If, on the other hand, the operand
is word-sized, word multiplication is used. For example, if
you use:

MUL BL

BL will be multiplied by AL. However, if you use:
MUL BX

BX will be multiplied by AX.
If you wish to square the value in AL (AL^), you can use

MUL AL

52

4
Arithmetic

This also works with AX.

IMUL
The IMUL instruction is identical to MUL in every respect, ex
cept that IMUL takes the sign of the number into consid
eration before it multiplies. In other words, MUL is used only
for unsigned numbers, while IMUL is used only for signed
numbers. It is very important that you make this distinction. If
MUL is used on signed numbers, or IMUL on unsigned num
bers, the results are interesting, but entirely meaningless.

DIV
Using the DIV instruction, you can divide two numbers to find
the quotient and the remainder.

Byte division is used to divide a word by a byte. The gen
eral format of byte division is
DIV source

The source can be any general byte register or a memory loca
tion. As with MUL, the source cannot be an immediate value.
With byte division, the word stored in AX is divided by the
source byte. The quotient is stored in AL, while the remainder
is stored in AH. For example, the code;
MOV AX,97
MOV BL,13
DIVBL

divides 97 by 13. After the division, AL will hold 7 (the quo
tient) and AH will hold 6 (the remainder). Note that all of the
arithmetic flags are undefined after division.

If you want to divide a single byte by another byte, you
have to set AH to 0 before you divide. For example, if you
would like to divide a number in AL by BL, you need to clear
AH first:

MOV AH,0
DIVBL

The second DIV instruction is used to divide a double
word by a word. The double word is stored in AX and DX, as
was described in the word multiplication discussion. The for
mat of word division is identical to that of byte division, only
the source must be a word, not a byte. Thus, the source must
be a general word register, or a word-sized variable.

53

4
Arithmetic

With word division the quotient is stored in AX, and the
remainder in DX. Note that if you are only dividing a word by
another word, you must set DX to 0 before you divide. For ex
ample, if you want to divide 15,837 by 1,343, you can use
something like:

MOV AX,15837
MOV DX,0
MOV CX,1343
DIV CX

After the division, AX will hold 11 (the quotient) and DX
1064 (the remainder). As with byte division, all of the
arithmetic flags are undefined after word division.

When using the DIV instruction you select which division
you want, byte or word, by the size of the operand. If the
operand is byte-sized, byte division is used. For example, if
you use

DIVBL

AX will be divided by BL. If, on the other hand, you use a
word-sized operand, then word division is used:

DIV CX

Here, the double word stored in AX and DX will be divided
by CX.

The 8088 has a rather dramatic way of indicating an error
in division. If there is a divide overflow, the 8088 generates a
type zero interrupt (interrupts are discussed in Chapter 11).
This causes the computer to print the message Divide Over
flow and exit the program. For example, the code below will
generate an overflow error:

MOV AX,900
MOV BL,3
DIVBL

In this example, the quotient is 300 (900 divided by 3).
This is a byte division (the divisor is a byte quantity), so the
quotient must fit in the AL register. As you can see, it does
not. The computer will print the message Divide Overflow and
program execution will cease.

One solution to this problem is to use word division even
though you are dividing by a byte.

54

4
Arithmetic

MOV AX,900
MOV DX,0
MOV CX,3
DIV CX

DOS 2.00 users note that, because of a bug in DOS 2.00,
the computer will crash when it tries to print the Divide Over
flow error message. You will probably be unable to reset the
computer with the Ctrl-Alt-Del combination. So, you'll have to
turn the computer off and reboot. This problem has been cor
rected in DOS 2.10. DOS 1.10 works fine as well.

IDIV

As there are signed and unsigned versions of the multiplica
tion instructions, there are signed and unsigned divisions. DIV
only works on unsigned numbers. If you are using signed
numbers, you must use IDIV. In all other respects, IDlV and
DIV are identical.

A Sample Program
The sample program for this chapter, "Primes," finds prime
numbers. Since it uses a word to store all of its results, it can
find primes up to only 65535 (there are over 6500 of them).
Primes was written to demonstrate some of the instructions in

troduced in this chapter; there are more efficient ways to write
this program.

A prime number is a number that is divisible only by one
and itself. The numbers 2, 3, 5, 7, and 11 are all prime. Prime
numbers occur at uneven intervals and have been the object of
much scrutiny in recent years. As you might imagine,
determining whether or not a number is prime is not very
difficult; just divide the number in question by all the numbers
between one and itself. For example, if we were testing the
number 15, we would divide 15 by the numbers 2 through 14.
If any of the numbers divided without remainders, we would
know that 15 is not prime. For smaller numbers this is a good
system; after all, the computer is very fast. Consider, however,
what would happen with very large numbers—for instance,
2003. The computer would have to do 2001 divisions to find
out whether it is prime. Even for a computer, that would take
a noticeable amount of time.

55

4
Arithmetic

We must find a way to reduce the length of the search for
even divisors. To begin with, the search can be shortened by
remembering that we need only check for possible factors. If a
number is not prime, its lowest possible factors will be prime
numbers. For example, 21 has two factors, 7 and 3 (both prime
numbers). (We could limit our search for factors still further by
searching up only to the square root of the number, but then
we would have to write a square root routine.)

Outlined below is the general flow of a program which
uses this method to find prime numbers. This is not what pro
grammers call a flow chart, but an English version of how the
program is supposed to work.

1. Divide the number in question by all of the previously
found primes.

2. If any of the numbers divide evenly, select a new number
and start checking to see if it is prime.

3. If the number is prime, add it to our list of prime numbers,
print the number, and look for the next prime.

The only hard part in our algorithm is printing the prime
numbers on the screen. DOS, however, helps out by providing
a Print Character routine. This DOS function is called by the
routine BYTE_OUT towards the end of Primes. DOS function

calls will be explained in Chapter 13.
The only difficulty in printing the number is converting

it from its binary form to a decimal form. The routine which
conducts this conversion is named DECIMAL—OUT.

DECIMAL—OUT divides the number it is trying to output
repeatedly by 10. This routine will be explained in more detail
in Chapter 6.

PRIMES.ASM
The first few lines are the comment header, common to all of
the sample programs. It identifies the program and its pur
pose, and gives the name of the author and the last date the
program was modified. Following these comments is the
PAGE pseudo-op, which defines the size of the printed page
as discussed in the last chapter.

After the PAGE pseudo-op is a constant declaration. De
claring a constant is much like assigning a value to a variable in
BASIC. The constant NUMBER—TO—EIND is assigned the
value 6542 through the EQU pseudo-op. NUMBER—TO—FIND

56

4
Arithmetic

represents the index of the last prime number we can find us
ing unsigned words to store the prime numbers. Constants
will be discussed in more detail in Chapter 14.

The SEGMENT pseudo-op which follows sets up the seg
ment for data. The DUP instruction in the primes declaration
tells the assembler to repeat what is inside the parentheses the
number of times specified to the left of the DUP instruction.
For details about the DUP instruction, see Chapter 14. The
question mark in the operand section of the DW and DB
pseudo-ops tells the assembler that it does not matter what is
stored in these locations during assembly and load. The
assembler simply makes note that these locations are there
and must be reserved for the program. Next we define the re
quired stack segment (as in "Switch"), and finally, the pro
gram segment.

Primes uses the 8088's addition, subtraction, multiplica
tion, and division instructions. It does so largely with unsigned
numbers. As the program shows, it is not very difficult to con
vert this particular mathematical procedure into a program
which the computer can execute.

57

CJI

00 Program 4-1. PRIMES.ASM

PRIMES.ASM

Finds prims numbers

This program should
MS-DOS computer

I

I

;

I

I

I

;

;

number_to_f1nd equ 6542

I

data segment

p r ime_numbe r dw

number_found dw

last_check dw

base dw

w

page .96

2,nu

ork in any

mber_to_
?

?

10

{number of pr imes to f ind

find dup(?) ;has first prime
{number of primes found

{ last number to divide by
{base to print the numbers in

3-

B "
rt

data ends

stack

stack

(

code

p r i mes

{

segment stack

dw 128 dup (?)
ends

segmen t

proc far

assume cs code , ds : data

{Stack segmen t

{give the stack 256 bytes

{segmen t for code

{for proper return to DOS

s s : s t ack

1 \ 7 1 1) U

push ds
mov ax,0

push ax
mov ax,data

mov ds.ax

ifor far return to DOS

;set up data segment in DS

mov d I , 0

mov number_found,0

tzero index in table of primes
izero number of primes found

nex t_pr ime:

inc number_found

cmp number_found,number.
je done
mov ax,prime_number[di 1
add di ,2

mov prime_number[di1,ax

pr ime_number(d i]

s i , 0

1

oi
VO

nex t_tes t:

add

mov

next_d i V i sor:

mov ax,prime_number[di]
mov dx.O

div pr ime_number (s i]
cmp dx,0

je next_test
add s i , 2

cmp s i ,d i

ifound another prime
.to_find {found al l primes?
{yes, we're done
(take current prime from table
ipoint to next entry
{Start checking with last prime

{Check next number as prime
{Zero index into primes table

{set current value

{prepare to divide

{divide by a pr ime
{rema inder zero?

{yes, do next number

{set for next pr ime
{run out of pr imes?

r-
n>
rt

n*

<y*
o

j ne nex t_d t v i sor ;no, then divide by next prime

i

done:

pr imes

;

caI I output
jmp next_pr ime

ret

endp

I Output number_found and the pr
I 01 preserved

{Output the info
;and find another prime

{return to DOS

{end of procedure declaration

ime number Cwith cr-lf)

output proc near

push di

mov ax,number_found

caI I dec imal_ou t

mov a I ,':'

cal l character_out

mov ax,prime_number[di]

cal l decimal_out
mov a I , 13

caI I character_out

mov a I , 10

cal l character_out

pop d i
ret

output endp

{

{ Output a hex word in decimal

{preserve DI
{print number of primes found

{Output a colon

{print the last prime

{do cr-lf

{restore DI

1 1 \) I 1 1) 1

1 ' 1 I I '■) I I 1 > J

Ov

I CX, AX, DX destroyed
;

decimal_out proc near
mov cx.O

another_d i g11:
i nc CX
mov dx,0
div base
push dx
cmp ax.O
jne another_d i g I t

p r i n t_d i g11 s:
pop ax
add a! . '0'
cal l character_out
I OOP p r i rt t_d 1 g i t s
ret

decimal_out endp

output a single character
character to print In AL
AX and DL destroyed

character_out proc near
mov dI ,a I
mov ah,2
Int 21h

(Counts digits to print

I Increment counter
(prepare to divide
(divide by base
(remainder is less sig digit
(is the quotient zero?
(if not, more number to convert

(retrieve digit from stack
(Convert to ASCi i
(print the character
(do a i i of the digits
(return to cai ier

(Character to output
(Output character function
(print character

5-

r(D

ON
NJ

ret

character.out endp

;

code ends

end

;end of segment declaration
;end of program

Program 4-2. PRIMES.BAS

100 ' BASIC VERSION OF PRIMES
110 '

120 '

130 '

140 DEFINT A-Z

150 '

160 NUMBERTOFINO = 300
170 DIM PRIMESCNUMBERTOFIND)

180 '

190 PRIMES(0)s2

200 '

210 NUMBERFOUND = NUMBERFOUND-M : IF NUMBERFOUND = N
UMBERTOFIND THEN END

220 PRIMES(DI+1)=PRIMES(DI):DI=DI+1
230 PRIMESCDI)=PRIMES(DI)-i-1 :SI =0

240 IF (PRIMES(DI) MOD PR IMES(SI))=0 THEN 230
250 SI-SI + 1:IF SKDI THEN 240

260 PRINT NUMBERFOUND;":";PRtMES(Dt)

270 GOTO 210

(T>

1 1 t 1 1 1 >]

CHAPTER

5
Program Flow

Program flow refers to the order in which a program's instruc
tions are executed. Programs written in BASIC, or any other
high-level language, tend to loop back on themselves, and to
skip over portions which do not need to be executed. This is
also true of machine language programs.

In this chapter, you will be introduced to ways of chang
ing program flow, jumps. There are two basic types of jump
instructions, conditional and unconditional. Both will be ex
amined in this chapter. This chapter also explains how to cre
ate machine language versions of BASIC'S IF-THEN-ELSE and
EOR-NEXT structures using assembly's CMP and LOOP
instructions.

The CMP Instniction
In high-level languages, decision making is usually based on
the IF-THEN-ELSE construction; in machine language it is not
quite so easy. In machine language, the CMP (compare)
instruction is used with conditional jumps to change program
flow. The conditional jumps jump only if a certain condition is
satisfied. For example, JZ (Jump if Zero) jumps only if the last
operation resulted in zero; if the result was nonzero, the com
puter "falls through" the conditional jump and executes the
next instruction following JZ. The CMP instruction corre
sponds to the IF part of BASIC'S conditional construction,
while the conditional jumps provide for the THEN and ELSE.

The general form of the CMP instruction is:

CMP first,second

CMP compares the values of two numbers. They both must be
either words or bytes—you can't mix and match. Any operand
legal with instructions such as MOV, ADD, or SUB is legal
with CMP. Remember that the 8088 does not allow both the
operands to be memory locations.

It is important to remember that there is only one CMP
instruction. The type of comparison (whether signed or

63

5
Program Flow

unsigned) depends solely on the operands. Signed and unsigned
comparisons are identical to one another. However, the flags
after signed and unsigned comparisons must be interpreted
differently. For this reason, there are two sets of conditional
jumps, one for unsigned and another for signed comparisons.

Conditional Jumps After CMP
A comparison is often followed by one of the numerous con
ditional jumps. The 18 conditional jumps generally used after
a CMP instruction are summarized in Table 5-1.

Table 5-1. Conditional Jumps Used after CMP

Instruction Jump if...(unsigned comparisons)

JE label first equals second
JNE label first not equal to second
JA label first above second
JAE label first above or equal to second
JB label first below second
JBE label first below or equal to second
JNA label first not above second
JNAE label first not above or equal to second
JNB label first not below second
JNBE label first not below or equal to second

Instruction Jump if...(signed comparisons)

JG label first greater than second
JGE label first greater than or equal to second
JL label first less than second
JLE label first less than or equal to second
JNG label first not greater than second
JNGE label first not greater than or equal to second
JNL label first not less than second
JNLE label first not less than or equal to second

These conditional jumps can be summarized more con
cisely, as in Table 5-2. Many of the conditional jumps come in
pairs: one with a positive condition, and another with a neg
ative. For example, JA (Jump if Above) is identical to JNBE
(Jump if Not Below or Equal to). Intel provides these alternate
terms entirely for the programmer's convenience.

The naming scheme of the jump instructions is very
consistent. Note that all instructions with below or above in
their names are used after the comparison of unsigned values.

64

Program Flow

while greater or less conditional jumps are used after compar
ing signed values. The JE and JNE instructions apply to the
comparison of both signed and unsigned values.

Table 5-2. Summary of Jumps

Jump if...

First > Second

First > Second

First = Second

First <> Second

First < Second

First < Second

Use with

unsigned operands
JA/JNBE
JAE/JNB
JE
JNE
JBE/JNA
JB/JNAE

Use with

signed operands

JG/JNLE
JGE/JNL
JE
JNE
JLE/JNG
JL/JNGE

It is important to remember that the names of the con
ditional jumps refer to the first operand versus the second. For
example, JG means jump if the first operand is greater than
the second. Below are some examples of comparisons and con
ditional jumping.

CMP AX,BX
JA AX_ABOVE_BX

CMP CX,AX
JB CX_BELOW_AX

CMP DX,SS
JE DX_EQUALS_SS

CMP AL,DL
JG AL_GREATER_THAN_DL

CMP BX,156H
JLE BX_LESS_THAN_OR_EQUAL_TO_156H

Machine Language IF-THEN-ELSE
The combination of the CMP instruction with conditional
jumps gives the machine language programmer the equivalent
of the high-level IF-THEN-ELSE construction. There are a
number of ways to implement such a structure in machine lan
guage. Here are two examples:

THEN:

CONTINUE:

CMP AX,10
JA THEN
ADD AX,1
JMP CONTINUE
MOV AX,0
(more code)

IF AX>10

ELSE AX=AX-hi

THEN AX=0

65

5

Program Flow

Notice that, in the above example, the ELSE and THEN parts
of the construction are not placed as they would be in BASIC.
Unless the condition is satisfied (first is above second), the
computer falls through JA to the next instruction (ADD AX,1)
and then performs a JMP to skip over the THEN portion.

CMP AX,10 ;IF AX>10
JNA ELSE ;(a negative condition)
MOV AX,0 ;THEN AX=0
JMP CONTINUE

ELSE: ADD AX,1 ;ELSE AX=AX+1
CONTINUE: (more code)

In this example the THEN and ELSE are placed in the familiar
order of BASIC, because JNA tests for the condition opposite
that of JA. Unless this condition is satisfied (first is not above
second), we fall through JNA to MOV AX,0, and then JMP
past the ELSE portion.

Both examples produce the same result, but with reversed
logic. Some people find the first example easier to follow, be
cause it tests for a positive rather than a negative condition.
Others find the second construction more natural. It is im

portant that you understand both.
The unconditional jump. JMP is an unconditional jump,

like the GOTO statement in BASIC; the jump is always per
formed. It is used to skip over the unneeded parts of the con
ditional structure. With more complex conditional structures,
you may begin to feel that your program plays leapfrog with
itself as it executes the ELSEs and skips the THENs, and vice
versa.

Conditional Jumps After Other Instructions
So far, conditional jumps have always followed a CMP
instruction; however, they may be placed anywhere within a
program. There is no rule that says conditional jumps must
follow the CMP instruction. In fact, they can follow ADD,
SUB, or any of the other instructions that affect the flags. As
you may recall, there are six arithmetic flags in the 8088;

The zero flag is set by certain operations (such as ADD,
SUB, INC and DEC) when the result of the operation is 0.
Otherwise, this flag is clear.

The carry flag is used as the overflow flag for unsigned
arithmetic. It becomes set when the result is less than 0 or
greater than 255, for bytes, or 65535, for words. This flag is

66

5
Program Flow

set by operations such as ADD and SUB. Note that INC and
DEC do not set the carry flag. In addition, the carry flag is
often used with subroutines in machine language.

The sign flag indicates the sign of the last result. When the
flag is set, the last result was negative. If the flag is clear, the
last result was positive. Again, only certain operations set this
flag; they include ADD, SUB, INC, and DEC. Essentially, this
flag mimics the most significant bit (the sign bit) of the result.

The overflow flag is used to indicate an overflow error.
When this flag is set, there has been an overflow; otherwise,
this flag is clear. An overflow error occurs when the result is
beyond the representable range of signed numbers (— 128 to
127 for bytes or —32768 to 32767 for words). Only certain op
erations such as ADD, SUB, INC, and DEC set this flag.

The other two arithmetic flags, the auxiliary carry flag (AF)
and the parity flag (PF), will not be detailed here (please refer
to the glossary); they are very rarely important to machine
language programming.

Table 5-3 lists the conditional jumps which depend solely
on the value of one flag:

Table 5-3. Conditional Jumps Relying on Only One Flag

Instruction Jump if... Flag status

JC carry CP = 1

JNC no carry CF = 0

JO overflow OF = 1

JNO no overflow OF = 0

JS sign (negative) SF = 1

JNS no sign (positive) SF = 0

JZ zero ZF = 1

JNZ no zero ZF = 0

JP/JPE parity PF = 1

JNP/JPO no parity PF = 0

These ten conditional jumps can be used after any operation
(you can even use them after the compare instruction if you
like). Below are some examples.

ADD AX,BX
JO OVERFLOW-ERROR ;if sum >32767 or <-32768

SUB CX,DX
JZ RESULT-WAS-ZERO ;if CX and DX are equal

67

Program Flow

MUL BL

JC WORD_RESULT

DEC COUNTER

JNZ COUNTER_NOT_ZERO

;if product uses all of AX

;if counter is not zero

Instructions which do not affect the flags (such as MOV)
can be placed between an instruction which does and the con
ditional jump itself, as shown below. See Appendix A for a
table detailing which instructions affect which flags.

CMP AX,BX ;finds which is greater...
MOV CX,AX ;...AX or BX, and stores...
JG AX_GREATER ;...larger value in CX
MOV CX,BX

AX_GREATER: (more code)

DX_CLEAR:

MUL BX

MOV CX,0

JNO DX_CLEAR
MOV CX,1
(more code)

;perform 16 bit multiply
;use CX to indicate

overflow...

;...into DX register

Conditional Jumps for Looping
Another common use of conditional jumps is controlling
loops. The most familiar looping statements in BASIC are FOR
and NEXT. In a FOR-NEXT structure, the following operations
are performed: The index (counter variable) is given an initial
value; it is incremented (or decremented) for each iteration of
the loop; and, it is checked against an end value. The BASIC
structure, FOR 1 = 1 TO 100:(do something):NEXT, could be
coded into machine language, assuming 1 is a variable in the
data segment, as:

;set up the index variable
;do the instructions within the loop
;increment the loop variable
;is the index variable 100?
;if so, end the loop

A more efficient version of the same loop looks like:
MOV 1,100 ;set up the index variable

LOOP: (do something) ;do the instructions within the loop
DEC I ;decrement the loop variable
JNZ LOOP ;if it's not zero, continue looping

LOOP:

MOV 1,1
(do something)
INC I

CMP 1,100
JNE LOOP

68

5
Program Flow

The second example is more efficient because there are
fewer instructions to accomplish the same task. A decremented
loop variable is more efficient because the zero flag will be set
automatically when the index becomes zero. With an in
cremented variable you must use the CMP instruction to end
the loop. However, often a loop must increment so both tech
niques are used.

There are many ways to structure a loop. You can in
crement or decrement the index variable. The incrementing or
decrementing can be at the beginning of the loop or at the
end. In addition, you can increment or decrement by some
number other than one. When you use ADD or SUB it might
be necessary to use a JNC rather than a JNZ. Remember, the
carry flag acts like an overflow for unsigned operations.

LOOP, LOOPE-LOOPZ, and LOOPNE-LOOPNZ
With the loops described above you must do everything, from
adjusting the index variable to deciding which kind of jump to
use. There are other, more specialized 8088 machine language
instructions, which facilitate the looping operation. The three
loop instructions described below give the programmer a com
pletely automatic looping system.

LOOP is the simplest looping instruction. Study the ex
ample below. Notice that the LOOP instruction uses the CX
register as its counter. This example does "something" 300
times. The LOOP instruction automatically decrements the CX
register and loops back to START_OF_LOOP if CX is not
zero.

MOV CX,300
START_OF_LOOP: (do something)

LOOP START_OF_LOOP

Variations of the LOOP instruction, LOOPE-LOOPZ and
LOOPNE-LOOPNZ, offer added versatility to the LOOP
instruction. LOOPE (loop if equal), also called LOOPZ (loop if
zero), loops back if CX is not zero and the zero flag indicates a
zero status. LOOPNE (loop if not equal), or LOOPNZ (loop if
not zero), loops back if CX is not zero and the zero flag in
dicates nonzero status. Thus, LOOPE can be considered loop
while equal, and LOOPNE, loop while not equal. CX merely
serves to put a limit to the number of possible loops. Both of
these instructions will be examined in more detail in the chap
ter on string instructions.

69

5
Program Flow

JCXZ and the LOOP Instructions
Unfortunately, the LOOP instructions decrement CX before
checking to see if it is zero. So, if you enter a LOOP structure
when CX is zero, the loop will be executed 65,536 times. If
this is what you intended, this is fine. If, on the other hand,
you want the loop to be skipped when CX is zero, you can use
the JCXZ (Jump if CX is Zero). Place the JCXZ instruction
before the loop as shown below. Now the loop will be skipped
when CX is zero.

JCXZ NO_LOOP
DO_LOOP: (whatever)

LOOP DO_LOOP

NO_LOOP: (continue)

The Unconditional Jump
JMP simply transfers control of the program from one place to
another, just like the BASIC GOTO statement. There is no de
cision making involved with this instruction; in other words,
the computer jumps unconditionally.

There are five kinds of unconditional JMPs. The assembler
automatically selects the correct JMP on the basis of the op
erand (the label you are jumping to).

Near jumps. Near jumping (referred to as an Intra Seg
ment Direct jump by IBM literature) has the general format as
shown below.

JMP label ;displacement to label
;is calculated by the
;assembler.

(some code)

label: (more code)

Near JMPs can jump anywhere within the code segment.
Near JMPs are called direct jumps because the position of the
next instruction is stored with the JMP instruction.

Short jumps. A short jump, or an Intra Segment Direct
Short jump, is identical to a near JMP. A short jump can be
only 127 bytes forward or 128 bytes backward. Trying to jump
too far with a short jump will result in a Relative jump out of
range error from the assembler. Note that, whenever possible,
the assembler will automatically use short jumps.

70

5
Program Flow

Short jumps are important because all conditional jumps
are short jumps, and all LOOP instructions use short jumps.
The range limitation on short jumps can become a problem
when you need a conditional jump to skip a very large part of
your program. You can overcome this limitation by reversing
the logic of your jump condition and skipping over an un
conditional (near) jump. For example, if this jump resulted in a
Relative Jump Out of Range error:

JGE SOME_PLACE
(more program)

You could replace it with:

JNGE SKIP ; (a negative condition)
JMP SOME-PLACE

SKIP: (more program)

Remember that the unconditional JMP can jump anywhere
within the current code segment. Unfortunately, there is no
way to overcome the limitation on LOOP instructions. Just use
short loops.

Far jumps. The far jump allows you to transfer control to
another segment. This kind of jump is also known as an Inter
Segment Direct Jump. Note IBM's careful use of the prefixes In
ter (between) and Intra (within).

The format of the far JMP is identical to that of near JMP;
however, the operand label must have a far attribute; that is,
the label must be the name of a far procedure. You will need
to use this instruction only if you write programs with more
than one code segment, but the assembler will use far jumps
automatically if the label has a far attribute.

Indirect jumps. Indirect jumps are jumps in which the
address of the next instruction is not coded as the operand of
the JMP operation, but is held in a data table or in a general
register. There are two kinds of indirect jumps, one for Intra
Segment jumps, and another for Inter Segment jumps. Ad
vanced programmers can use indirect jumps just as BASIC
programmers use the ON-GOTO construction.

A Sample Program
"Flash," as its name implies, flashes the screen several times.
With a color/graphics screen adapter, the background color of
the screen is changed as it is flashed. Flash_M (Program 5-1)
is for IBM PC users who have the monochrome screen

71

5
Program Flow

adapter. Flash_C (Program 5-2) is designed for a PC computer
with the color/graphics screen adapter and for the PCjr. They
should work with any of the compatibles, as long as the
screen adapters are fully compatible with the IBM boards. If
you are using a PC with both monochrome and color/graphics
adapters, try entering both programs. However, DOS 2.00
users should execute the MODE command to change to the
appropriate adapter before running the program; otherwise,
the results are unpredictable. DOS 1.10 users will have to load
BASIC and change monitors according to the BASIC manual.
Users of noncompatible systems should still look at these pro
grams, as they are good examples of short machine language
programs.

Flash uses the register DX as a counter; it determines how
many times the screen should be flashed. The BX register acts
as a pointer into the screen memory. We will use it to read and
write the screen attributes. The CX register, the counter for the
LOOP instruction, is used to determine how many attributes to
change. It is initialized to the value of the constant
SCREENSIZE, the size of the screen page. AH is used to hold
and check the attribute.

These programs introduce our first use of the SEGMENT
command. The SEGMENT command is being used to locate
the screen memory. The AT operand tells the assembler that
we want the segment to be located at a specific segment ad
dress; BOOOH for the monochrome screen, and B800H for the
color graphics screen. Note that these are not absolute ad
dresses (0 to FFFFF hex), but segment addresses (0 to FFFF
hex).

Notice the use of the assembler pseudo-op EQU. This
pseudo-op is used to assign a constant value to a symbol (not
a memory location, but an assembler value). The format is

symbol EQU value

Symbol is equal to the value.
At this point it is important to understand how IBM

computers handle screen memory. There are 2000 characters
on an 80-column screen. IBM computers use 4000 bytes (note
that this is 4000 bytes, not 4K bytes) to represent the charac
ters. The even-numbered bytes (0, 2, 4, etc.) hold the actual
character. The odd-numbered bytes (1, 3, 5, etc.) hold the
character's attribute. So the character in byte 0 has the

72

Program Flow

attribute defined by byte 1. The attribute byte of the mono
chrome screen adapter can be broken down as shown in Fig
ure 5-1. The F and I symbols show where flashing and
intensity attributes can be set.

The attribute byte for the color adapter is used as shown
in Figure 5-2.

Figure 5-1. Monchrome's Attribute

0 0 0 0 0 0 0 0

F 0 0 0 I 0 0 1

F 0 0 0 I 1 1 1

F 1 1 1 0 0 0 0

Figure 5-2. Color Attribute Byte

F R G B I R G B

- no display

- underline

- white on black

- black on white

■ Foreground Color
• Intensity

■ Background Color
- Flashing

You can combine the different color bits to mix your own col
ors. For example, if blue and red are on at the same time, the
screen displays purple.

Let's look at the basic flow of the program Flash M At
the start of the loop, AH is assigned the value of the normal,
white on black, screen attribute. AH is compared with the
attribute pointed to by the BX register. If AH and the attribute
are different, we use AH as the new attribute, changing the
screen attribute to normal.

If AH and the attribute are the same, we move the
reverse, black on white, attribute, into AH and use this as the
new attribute. Next, BX, the pointer into screen memory, is in
cremented and the LOOP instruction executed. As mentioned

73

5
Program Flow

above, screen memory is set up as a character byte followed
by an attribute byte, so we must add two to BX. We change
every other byte to get all of the attributes. Once this inner
loop is complete, we must manually decrement DX and jump
to LOOPO if it is not zero. When it is zero, we perform the
RET operation which returns us to DOS.

Flash_C is a little more complex. The bulk of the program
is the same; the only differences lie in the section which
changes the screen attribute. The first instruction retrieves the
current screen attribute. Next, 16 is added to the attribute byte.
This increments the background color by one. However, we do
not want to change the most significant bit, which controls the
flashing attribute of the screen. Here we can use a little trick;
remember that the most significant bit can be considered the
sign bit. If this sign bit is changed by the ADD operation, the
Overflow Flag (OF) is set, so if the OF is set, the attribute is
reloaded and the background color set to black. The rest is the
same as Flash_M.

Running FLASH
Assemble the program as FLASH.ASM. When complete, type
FLASH from the DOS prompt and press Enter. There may be
some picture snow or lightning on the color/graphics screen
when FLASH is executed in 80-column mode. This is normal.

The static can be eliminated if you use 40 columns. Remember
to be in a color mode, not a black-and-white mode. Execute
MODE CO40 or MODE CO80 before running FLASH just to
be sure (DOS 1.10 users must enter BASIC and use a SCREEN
0,1 and a WIDTH 40 or WIDTH 80 command).

If all goes well, the screen should flash for a few mo
ments and the DOS prompt should return. If nothing happens,
and the DOS prompt does not return, the computer has prob
ably locked up. Try resetting with the Ctrl-Alt-Del combina
tion. If this does not work, you will have to turn the computer
off and back on. Check the program carefully before reassem
bling. If the DOS prompt returns after a few seconds, but the
screen does not flash, check to be certain you are using the
correct version of FLASH. Monochrome screen adapter users
should have assembled Flash_M and color/graphics users the
Flash_C program. If you have both adapters, use the MODE
command from DOS to switch between the two displays

74

5
Program Flow

before you execute the appropriate program. PCjr users should
have entered the Flash_C program.

If your compatible computer does not seem to be work
ing, take a close look at the program before you assume the
hardware is at fault. Any of the full compatibles should be
able to execute these programs. If your machine is only
slightly compatible, the program may not work correctly.

Once you get the appropriate version of Flash running,
there are a number of modifications you can make to produce
your own version of Flash. You can change the number of
times the screen flashes by changing the constant FLASHES to
another value. In Flash_M, FLASHES should be an even
number if you want the screen to return to white on black; in
Flash_C, FLASHES should be a multiple of eight if you want
the screen to return to its original color. Try using Flash_M on
the color screen by changing the SCREEN segment to point to
the color screen. Try maWng the program flash only the top
half of the screen (easy) or only the bottom half (a little
harder).

Conditional Jumps
All 31 different conditional jumps are summarized in Table 5-
4. Note that there are really only 17 different conditional jump
instructions, but that some of the instructions have been given
more than one name. Some instructions have obvious aliases;
for example, JA Gump if Above) is the same as JNBE Gunt^p if
Not Below or Equal to). Other instructions are less obvious: JC
is the same as JB. When you use DEBUG to unassemble pro
grams, all of the conditional jumps will appear as the names
shown in Table 5-5 (since the instructions are identical, DE
BUG has no way of knowing if your source code has JA or
JNBE).

75

Program Flow

Table 5-4. The Conditional Jump Instructions
(* indicates conditional jumps for signed comparisons)

Operation
Name Full Explanation Jump if...

JA jump if above OF = 0 and ZF = 0

JAE jump if above or equal CF = 0

JB jump if below CF = 1

JBE jump if below or equal CF = 1 or ZF = 1

JC jump on carry CF = 1

JCXZ jump if CX zero CX = 0

JE jump if equal ZF = 1

»JG jump if greater ZF = 0 and SF = OF
*JGE jump if greater or equal SF = OF

*JL jump if less SF <> OF

•JLE jump if less or equal ZF = 1 or SF <> OF

JNA jump if not above CF = 1 or ZF = 1

JNAE jump if not above or equal CF = 1

JNB jump if not below CF = 0

JNBE jump if not below or equal CF = 0 and ZF = 0

JNC jump if no carry CF = 0

JNE jump if not equal ZF = 0

*JNG jump if not greater ZF = 1 or SFoOF

*JNGE jump if not greater or equal SF <> OF

*JNL jump if not less SF = OF

*JNLE jump if not less or equal ZF = 0 and SF = OF

*JNO jump if no overflow OF = 0

JNP jump if no parity PF = 0

JNS jump if no sign (positive) SF = 0

JNZ jump if not zero ZF = 0

*JO jump on overflow OF = 1

JP jump on parity PF = 1

JPE jump if parity even PF = 1

JPO jump if parity odd PF = 0

*JS jump on sign (negative) SF = 1

JZ jump on zero ZF = 1

CP—Carry Flag
OF—Overflow Flag
PF—Parity Flag
SF—Sign Flag
ZF—Zero Flag

76

5
Program Flow

Table 5-5. Conditional Jumps and Their Aliases
(*—for comparisons of signed values)

DEBUG names Aliases

JA JNBE
JB JC, JNAE
JBE JNA
*JG JNLE
*JGE JNL
*JL JNGE
*JLE JNG
JNB JAE, JNC
JNZ JNE
JPE JP
JPO JNP
JZ JE

77

00 Program 5-1. Flash M.ASM

FLASH_M.ASM

This program f lashes the IBM

monochrome screen. I t wi l l only work
wi th computers wi th IBM's monochrome

screen adapter or compat ible product.
If you are using both a monochrome
and color graphics screen adapters,
switch to the monochrome screen

before executing this program.

page ,96

Constants defini tion

flashes

screens

no rmaI

reverse

>

screen

s c r nmap

z e

eq u

equ

equ

equ

80

2000

7

1 12

segmen t at OBOOOh

dw screensize dupC?)

;number of times to f lash

;size of the screen C80x25)

;normal attr ibute

;reverse attr ibute

;3creen starts at B000:0000

:length of screen

•x)

o
TO

33

i

screen ends

stack s e gme n t stack stack s e gme n t

I i .] I D □ I) □

1) 1 J 1 1))

stack

dw 128 dup (?)

ends

;give the stack 256 bytes

VI
\£>

code segment
program proc far

assume cs:code , es

push ds

mo V a X , 0

push ax

mov ax,screen

mov es,ax

mov dx.fI ashes

IoopO: mov bx,1

mov cx.screensize
loopi: mov ah,normal

cmp ah,es:tbx1

jne nochange
mov ah,reverse

nochange:

mov es:[bx1,ah

add bx,2

loop loopi

dec dx

jne loopO
ret

program endp
code ends

end

;segmen t for code
;for proper return to DOS

screen,ss:stack

;for far return to DOS

tset up screen segment In ES

iNumber of times to flash

tWhere first attrib Is stored

InormaI attribute

l ie it reversed already?
l if it is, make it normal

imake attribute reversed

ipoint to next attribute

t I OOP unti l CX is zero
I done al l flashes?

i lf we have not, flash again
ireturn to DOS

tend of procedure declaration
tend of segment declaration
tend of program

oo
o Program 5-2. Flash_C.ASM

FLASH_C.ASM

This program flashes the IBM color
screen. It wi l l only work with
computers with IBM's coI or/graphics
adapter or compatible product. If
you are using both monochrome and
color graphics adapters in your
computer, switch to the coI or/graphics
screen before executing this program.
PCjr users should use this version of
the FLASH. If you are using a 40- S

3column screen, change screensize
to 1000

page ,96

constants definition

flashes equ 80 snumber of times to flash
screensize equ 80*25 ;screen size (80x25 or 40x25)

t

screen segment at 0B800h ;segment address B800

scrnmap dw screensize dupC?) ;length of screen
screen ends

23

i

1) 1 1) 1 1) 1 1

I l l t I 1 I » ;j

segment para stack
dw 128 dupC?)

ends

;

stack

stack

I

code segment
program proc far

assume cs : code , ds

push ds

mov ax , 0

push ax

IoopO:

I OOP 1 :

no_reset

:segment for the stack
sgive the stack 256 bytes

:s e gme nt for code
;procedure for return to DOS

screen,3s:stack

;for far return to DOS

mov ax,screen ;set up screen segment in ES

mov es , ax

mov dx,f1 ashes {Number of times to flash

mov bx , 1 {Where fi rst attrib is stored

mov cx,screens i ze {Length of screen area

mov ah,e s:[bx1 {get current attr ibute

add ah , 16 { increment backround color

j no no_rese t {affect bl inking (sign bi t?)
mov ah , es : (bx] .■get attr ibute again
and ah. 10001 1 1 lb {Zero backround color bits

mov es : [bx] , ah {Store attribute
add bx , 2 {point to next attr ibute

1 oop 1 oop 1 { 1 oop unti l CX is zero
dec dx {done al l flashes?

■-o
i-t
o

(TO

3
i

00
N)

jne loopO ;if we have not, flash again

ret

program endp
code ends

end

;return to DOS

;procedure compIe t e
;code segment complete
;program complete

Program 5-3 ♦ Flash.«M^BAS
100 ' FLASH_M.BAS
110 '

130 •

140 DEFINT A-Z

150 '

160 'Constants defini t ion

170 FLASHES = 80 'numbe

r of t imes to flash

180 SCREENSIZE = 80X25 'size

of t he screen

190 NORMAL = 7 'norma

I attribute

200 REVERSE = 112 ' rever
se attribute

210 '

220 DEF SEG = &HB000 'screen starts at B000:00

o
OQ

u

3

i

1 1 1 1 J 1 1

J ̂ 1 J • J J ; 1 ; J

00
V)

230 '

240 OX = FLASHES

MOV DX,FLASHES

250 BX = 1

MOV BX. 1

260 CX = SCREENS IZE

MOV CX,SCREENS IZE

270 AH = NORMAL

MOV AH.NORMAL

280 ZF (AH = PEEKCBX))

CMP AH.ES:(BXl

290 IF NOT ZF THEN 310

JNE NOCHANQE

300 AH = REVERSE

MOV AH.REVERSE

310 POKE BX.AH

NGE: MOV ES:(BXl.AH

320 BX - BX + 2

ADD BX.2

330 CX = CX - 1:IF NOT CX = 0 THEN 270
LOOP L00P1

340 DX = DX - 1:ZF = (DX = 0J

DEC DX

350 IF NOT ZF THEN 250

JNE LOOP0

360 END

RET

LOOP0

L00P1

NOCHA

1-1

o
(TO

33

^ Program 5-4. Flash—C.BAS

lee • FLASH_C.BAS

210 '

220 '

230 '

240 DEFINT A-Z

250 '

260 ' constants definition

270 FLASHES = 80

280 SCREENSIZE 80*25

'40*25 for 40x25 screen

290 '

300 DEF SEG = &HB800

310 '

320 DX = FLASHES

MOV DX.FLASHES

330 BX = 1

MOV BX,1

340 CX = SCREENSIZE

MOV CX.SCREENSIZE

350 AH = PEEK(BX)

MOV AH.ES:[BX]
380 SF AH AND 128:AH = AH 18

ADD AH.18

370 OF = (SF XOR (AH AND 128)) > 0;IF NOT OF T

HEN 400'JNO

o
(JQ

3

1 1 I] I 1 1) 1

I 1 I : 1 I ̂ I : J

380 AH = PEEK(BX)

MOV AH.ES:(BX]

390 AH = AH AND &H8F

AND AH,10001 1 1 IB

400 POKE BX.AH

MOV ES:[BXl.AH

410 BX = BX ■<- 2
ADD BX,2

420 OX = OX - 1: IF NOT CX = 0 THEN 350
LOOP LOOP

430 DX = DX - 1
DEC DX

440 IF NOT DX = 0 THEN 330
JNZ

450 END

0

1 ^
2

oo
CJl

CHAPTER

6
Subroutines and the

Stack

The stack is quite possibly one of the most useful and dy
namic storage methods available to a computer. Many large
computers rely solely on stacks for data manipulation. In an
effort to clarify a stack's design, many analogies have been ap
plied to its operation. Writers have called on everything from
dishes at a coffee shop to a programmer's cluttered desk.

Here we will use the analogy of cafeteria trays. The last
tray put on the stack is the first tray to come off. This makes
the pile of trays a last in, first out storage system, or LIFO for
short. The computer's stack can be thought of as this pile of
trays. The computer puts trays down one by one, and when it
needs them again, it takes them back. Notice that a stack re
verses the order of the trays.

Computer programmers have given names to the pro
cesses of putting something onto the stack and of taking it
back. The putting on is called PUSHing data onto the stack,
and the taking back, POPping. The 8088 has a variety of
PUSH and POP operations.

Implementing the Stack
Two registers are used to manage the stack, the SP (Stack
Pointer) and the SS (Stack Segment). SP always points to the
last piece of data PUSHed onto the stack. It starts at the high
est possible stack location and works its way down as infor
mation is added to the stack. SP acts as an offset from the

base of the segment pointed to by the SS register (Figure 6-1).
(See Chapter 2 if you are unfamiliar with segment:offset
addressing.)

86

i \

Subroutines and the Stack

Figure 6-1. SP Offset from SS

Offset

Higher Memory

Used Stack

Lower Memory

Top of stack

SP points here

SS points here

The microprocessor (the 8088) handles the stack as words,
not as bytes. Only words can be PUSHed onto and POPped
off the stack. In a PUSH operation, the 8088 decrements SP
by two and stores the word at the memory location pointed to
by SS:SP. When the word needs to be POPped back, the 8088
retrieves the word pointed to by SS:SP and increments SP by
two. Generally, it is not very important to know the mechan
ics of the stack; however, some types of programming require
a thorough understanding of stack manipulations (especially
when combining assembly language with Pascal or BASIC).

The maximum length of a stack is 64K (the addressing
limit of the SP register). For most machine language programs,
a stack of 256 bytes is sufficient. The DOS manual recom
mends that you reserve at least 128 bytes beyond your
requirements if you use DOS functions (such as character
print). If the stack is too small, the results are unpredictable.
The problem is that the computer starts to store the PUSHed
data in memory that was not reserved for the stack. This

87

6
Subroutines and the Stack

memory may have been reserved for something else, probably
data, possibly the program itself. More often than not, the
computer will crash.

Declaring the Stack Segment
Almost all machine language programs require you to declare
a stack segment. The only exceptions are device drivers and
.COM files. You must specifically tell the assembler to declare
a stack segment, but you cannot have more than one stack
segment per program. All of the sample programs have de
fined stack segments. Let's take a closer look.
stack SEGMENT STACK

DW XXX DUP (?) ;where xxx can be any number
stack ENDS

The name of the stack segment is stack. The operand of
the pseudo-op SEGMENT, STACK, tells the assembler that we
are defining a stack segment. DW should be used since the
stack is defined as word-sized data. The xxx DUP (?) is a spe
cial command that says to the assembler, "DUPlicate what's
between the parentheses xxx times." The question mark (?)
tells the assembler that the value stored at that location is un

defined. The xxx can be any number which does not exceed
the maximum stack length. The stack segment can be up to
65,536 bytes long (or 3X768 words). The stack ENDS ends the
stack segment definition. In the sample programs we have
used:

stack SEGMENT STACK

DW 128 DUP(?)
stack ENDS

Here, we have defined the stack to be 128 words (256 bytes)
long.

Now you know how a stack works and how it's defined.
Its use can be very powerful and convenient.

Subroutines
First off, you might ask, "What is a subroutine?" This is diffi
cult to answer, for it depends on your point of view. In a
sense, DOS considers all programs subroutines to itself, yet
parts of DOS can act as subroutines to your programs. How
ever, it is possible to generalize. A subroutine is often a short
program which does one task. DOS, for example, includes

88

6
Subroutines and the Stack

subroutines which print text to the screen and control disk
files. These subroutines cannot execute alone. They need a
program to call them and give them information to work on.

^ You can think of these subroutines as helpers. They make the
task of programming easier and less time-consuming.

Subroutines are also used to break large programs into
smaller, more manageable sections. In such a program, each
subroutine handles a specific task and the main routine calls
each subroutine as it is needed. Breaking a large program into
smaller parts makes it easier to find bugs because each sub
routine is responsible for a specific task. If something is not
working correctly, you know which routine is to blame.

It is often useful to include a comment header at the

beginning of your subroutines. The header should state the
routine's name and purpose. It should also indicate which reg
isters are preserved or which are destroyed. This way, you can
easily determine which registers are being altered and which
are maintained. Although it is nice to write subroutines which
alter no registers, this is often unnecessary. For example, if
your main routine does not use SI and DI, the program's sub
routines can use them freely without preserving them. If you
use these subroutines in another program which uses SI and
DI, however, the subroutines will need to preserve those reg
isters for your new program to work correctly.

CALL and RET. The 8088 implements subroutines with
two instructions, CALL and RET. There are four types of
CALLS and four types of RETs. Fortunately, the assembler se
lects the correct commands for us.

The CALL instruction is the machine language equivalent
of BASIC'S GOSUB command. As mentioned above, there are
four different CALL commands. They all have the same gen
eral format:

^ CALL operand
where the operand is either a label (direct CALL) or an ad
dressed memory location (indirect CALL).

^ The actual process of CALLing a subroutine is the same in
all cases. When the 8088 executes a CALL instruction, it
pushes the current position within the program on the stack,

^ and jumps to the specified routine. At the end of the routine, a
RET undoes the CALL. The computer pops the stack to re
trieve its previous program position and resume execution

6
Subroutines and the Stack

where it left off. As routines call other routines, the computer ^
is said to be going into deeper subroutine levels (see Figure 6-
2). As each routine comes to an end, the RET command pops
the computer up one level. The CALL and RET instructions af-
feet none of the flags and only the SP, IP, and possibly CS
registers.

Figure 6-2. Subroutine Levels

Main CALL
level

One level / CALL
down

Two levels ^ ^—
down

The near CALL, or a Direct Intra Segment CALL, is much
like a near JMP, in that the operand is a 16-bit displacement
to the called label. The actual calling mechanism works this
way: The IP (Instruction Pointer) register is pushed onto the
stack, then the new IP is calculated by adding a displacement
to the original IP. Program execution continues at this new po
sition. Since this instruction alters only the IP, you cannot
move from one segment to another.

The operand of a near CALL is a label. It must have a
near attribute. Generally, this refers to the names of near
procedures (those procedures defined with the PROC NEAR
command). For more information about the PROC command,
see Chapter 14.

Far CALLs, or Inter Segment Direct CALLs, are very much
like far JMPs. The operand of a far CALL is a double word.
Note that this CALL is absolute, not relative. Far CALLs push
both the CS (Code Segment) and IP onto the stack. The con
tents of the CS register are pushed first.

With a far CALL it is possible to CALL a subroutine in a
different code segment: The operand of a far CALL must have
a far attribute; in other words, it must be the name of a far

90

6
Subroutines and the Stack

procedure. Far procedures are defined with the PROC FAR
pseudo-op. See Chapter 14 for more details on the PROC
pseudo-op.

Indirect CALLs are similar to indirect JMPs. With indirect
CALLS, the address of the subroutine is not coded with the
instruction, but is held in a general register or a data table.
There are two indirect CALLs, one for Intra Segment CALLs
and another for Inter Segment CALLs. The indirect Intra Seg
ment CALL is much like a near CALL since it pushes only IP
onto the stack. Indirect Inter Segment CALLs push both CS
and IP onto the stack. Advanced machine language pro
grammers can use indirect CALLs just as BASIC programmers
use the ON/GOSUB construction.

There are basically two kinds of CALLs, near CALLs,
which push only IP onto the stack, and far CALLs which push
both CS and IP. As you may suspect, there are two kinds of
RETurns, one for near CALLs, and another for far CALLs. A
variation of the standard RET will be discussed with param
eter passing.

The near RET instruction, also called an Intra Segment RE-
Turn, pops IP off the stack and thus terminates a near sub
routine. A far RET (also called an Inter Segment RETum, or a
long RETum) pops both CS and IP.

It is important that subroutines accessed with near CALLs
end with near RETs, and that routines called with far CALLs
end with far RETs. Imagine the chaos if a far RET were exe
cuted after a near CALL. The IP register would be restored
correctly, but the CS register would take the value of whatever
was PLfSHed onto the stack before the near CALL. The
microprocessor would begin executing at some random ad
dress in memory. This would almost definitely crash the com
puter. Fortunately, the assembler takes care of this detail for
us. RETs in PROC FAR-ENDP structures are made far RETs,
and RETs in a PROC NEAR-ENDP structure, near RETs.

Programs Are Far Procedures
You may now be wondering why all programs are defined as
far procedures. Clearly, it's to force the assembler to make the
RET at the end of the program a far RET; but why? Notice
that the first instructions in every program are to push the DS
(the data segment) register and then a zero (via AX) onto the
stack. The reason for this can be explained as follows. When

91

6
Subroutines and the Stack

DOS transfers control of the computer to an .EXE file, it passes
some important information. DS and ES hold the base of the
program segment prefix. This prefix holds some critical data
for DOS while the program is executing.

To return to DOS, IP must be set to zero and CS to the
base of the program segment prefix. Since neither CS or IP
can be the destination of a MOV operation, the simplest way
to change them both is with a FAR RET operation.

The sequence

PUSH DS

MOV AX,0
PUSH AX

simulates a far CALL to our program. When the far RET is
performed, the microprocessor pops zero into IP and the base
of the program segment prefix into CS. It is also possible to
use an inter segment indirect JMP, but this is more complex
and requires more programming.

Our subroutines should all be near procedures. For this
reason, any program which includes its own subroutines must
be defined in at least two parts. One, the PROC FAR, is used
to hold the main program. The other, one or more PROC
NEARs, is used to hold the subroutines.

Using Subroutines
Before you can use subroutines effectively, there are some
considerations that need to be examined. For example, how do
you pass information from the main program to the subroutine
and from the subroutine back to the main program? How do
you write subroutines so that they do not affect any registers?

A subroutine must often use registers to perform its op
erations. In doing so, the original values contained in the reg
isters are destroyed. But suppose the program calling the
subroutine stored some important value in an affected register?
In addition, some subroutines require that the registers be set
to certain values before they are called (DECIMAL—OUT from
"Primes," for example, requires that AX be set to the number
to print). The original values of the registers must be stored,
either by the calling program or by the subroutine. You could
store the values in memory locations, but then you would
have to declare memory positions for the registers in the data

92

6

Subroutines and the Stack

segment. The simplest method is to PUSH the values of the
affected registers onto the stack, and POP them off afterwards.

PUSH. The format of the PUSH instruction is shown be

low. The operand can be any register or memory location. It
cannot be an immediate value.

PUSH operand

Here are some examples of legal PUSH instructions:
PUSH CS

PUSH AX

PUSH SI

PUSH [BX-k3]

Note that the 8088 can push only words onto the stack. No
provision is made for pushing bytes.

POP. The POP instruction takes an identical format.

Again, there is no provision for popping byte quantities from
the stack. Remember also that the stack returns values back

wards. If you use

PUSH AX

PUSH BX

PUSH DX

you have to use

POP DX

POP BX

POP AX

to restore the registers correctly. To PUSH all of the registers,
you have to use something like
PUSH AX

PUSH BX

PUSH CX

PUSH DX

PUSH SI

PUSH DI

PUSH BP

PUSH DS

PUSH ES

All of the registers are pushed except SB, CS, SP, and IP, since
these must remain the same for the subroutine to work. To re
store all of the registers, you would use:

93

6
Subroutines and the Stack

POP ES

POP DS

POP BP

POP DI

POP SI ' '

POP DX

POP CX ^
POP BX i

POP AX

It is not necessary to POP a value back into the register
that PUSHed it. You could (if you found it necessary) transfer
a value via the stack as below.

(calculate a value in AX)
PUSH AX

(do some program)
POP BX

(and use the value)

If you look carefully at the DECIMAL—OUT routine in the
sample program Primes, you will find that it uses this method
to move a value from DX to AX. Often you will see programs
setting the segment registers via the stack. For example to
MOV DS,CS (an illegal operation), you could use

PUSH CS

POP DS

PUSHF and POPF. There are two specialized PUSH and
POP instructions. PUSHF pushes the flags register onto the
stack, and POPF pops it back. Although this may not be a
commonly used instruction, it is the only way you can store
the flags.

PUSHF and POPF are often used to change or examine ^
the status of the flags. There is no 8088 instruction to move
the entire flags register into another register. The only way to
examine all of the 8088's flags is to PUSHF and POP the flags ,«««
word into another register as below.

PUSHF ;to get the flags
POP AX ;AX now holds the flags register

To move a value from a register to the flags, you could use
something like

PUSH AX ;AX holds the new flag values
POPF ;sets the flags register

The flags register can be broken down into bits as in Figure 6-3. ^

94

6
Subroutines and the Stack

Figure 6-3. The Flags Register

bit 15 bit 0

- - - - o D I T S Z - A - P - C

The following symbols are used: unused bit; A, Auxiliary
Carry flag (AF); C, Carry flag (CP); D, Direction flag (DP); I,
Interrupt enable/disable flag (IP); O, Overflow flag (OP); P,
Parity flag (PP); S, Sign flag (SP); T, Trap mode (single step)
flag (TP); Z, Zero flag (ZP).

Note that, using this technique, you can set several flags
(CP, DP, IP, etc.) at the same time. Generally, however, you
will want to set only the trap flag using this method. See
Chapter 11 for an example of this technique.

Parameter Passing
Subroutines often need to receive a value from the main rou
tine. In addition, the subroutine sometimes needs to return a
value or indicate an error condition. There are four ways that
a value or condition can be passed from the main program to
the subroutine or vice versa. Information can be passed via a
register, a memory location, the flags, or the stack. All four
have their own advantages and disadvantages.

Using registers. Passing parameters via registers is by far
the simplest approach. You load a register with the value that
you want to pass and call the routine. For example. Primes
passes a value in AX to the DECIMAI^OUT routine. Al
though this approach is simple, it might become difficult to
remember which routines take which registers. To alleviate
this problem, it is often convenient to add a list of the
parameter-passing registers to the comment header of the sub-
routine. This way you know which registers need to be filled

- - with what values.

Flags. Passing parameters via the flags is also very
convenient. Although you cannot pass a specific value, you

— ' can pass a condition. The most convenient flag to use is the
carry flag (CP). There are three instructions that can be used to
assign a value to the carry flag, CLC, STC, and CMC. CLC
(CLear Carry) makes the carry flag zero. STC (SeT Carry)
makes the carry flag one. CMC (CoMplement Carry) NOTs

95

6

Subroutines and the Stack

the carry; If it is zero, it is made one; if it is one, it is made
zero.

Passing information via the carry flag is most convenient
when the subroutine must return a condition to the calling
program. Many DOS functions set the carry flag on return to
indicate that an error has occurred. Another register holds the
error number. If the carry flag is clear, there is no error. You »
could do something like this with your subroutines. If the sub
routine needs to indicate an error condition, it could set the
carry. The calling program needs only to perform a JC or JNC
to determine if an error was encountered. Remember that
none of the CALLs or RETs themselves affect any of the flags.

Memory locations. If you would like to pass a large num
ber of values, it is most convenient to use memory locations.
Since it's impossible to pass a table or a string from a register
to a subroutine, the most common technique is to pass the ad
dress of the data in one of the registers (usually BX). This al
lows the subroutine to maintain its independence from the
main program, while you pass a table or string as a parameter.
In the comment header of the routine you should include a
description of the data table. This way, you know how to for
mat the table when you use the routine in another program.

Occasionally, it is convenient to pass just a few param
eters via memory locations, especially when the parameters
are already stored in memory. Such is the case with OUTPUT
from Primes. The OUTPUT subroutine could have been writ
ten to receive the parameters in different registers; however,
OUTPUT was not meant to be a general-purpose subroutine,
so it could rely on the Primes structure. DECIMAL—OUT,
however, which is called by OUTPUT, is a general-purpose
routine; it can be used anytime we want to print a binary
number in decimal.

Using the stack. The last method of transferring values
from the main program to the subroutine is via the stack. This
method of passing parameters is probably the most complex,
but it does offer some advantages over the other two systems.

96

Subroutines and the Stack

The basic principle is easy to understand: Push all of the
parameters you want to pass onto the stack before you call the
subroutine. Unfortunately, the routine which is called cannot
simply pop the values off the stack because the return address
is now on top of the stack. You could pop the return address
off the stack, pop the values, then push the return address
back onto the stack (as below), but there is a far more elegant
approach.

CALLER PUSH PARAM_ONE

PUSH PARAM_TWO

CALL ROUTINE

;store parameter one
;store parameter two
;call the routine

(more code) ;finish the program

ROUTINE

ROUTINE

PROC NEAR

POP AX

POP SI

POP DI

PUSH AX

(do whatever)
RET

ENDP

;get return address
;get parameter two
;get parameter one
;restore retum address
;use the parameters
;retum to caller

The BP (Base Pointer) register has, up to now, been unex
plained. This register is used to address data in the stack. In its
default addressing scheme, it acts as an offset into the stack
segment (the segment pointed to by SS), just as [BX] can be
used to address memory in the data segment (the segment
pointed to by DS). To read values from the stack, we move
the SP (stack pointer) register into BP, then use BP as an offset
into the stack (see Figure 6-4). BP must be adjusted to point to
the correct data, however.

97

Subroutines and the Stack
n

Figure 6-4. Using BP to Address Data on the Stack

Used

stack

Offset

first word

second word

next to last word

last word

-Top of stack

-BP (SP -b 2)

-SS points here

-SS points here

n

98

Subroutines and the Stack

As you can see from Figure 6-4, after moving SP into BP
we must add two to BP to address the last word stored on the
stack. Remember, the stack grows downward, from higher
memory locations to lower ones. For each additional word, we
must increment BP by two (if the addressing modes have you
confused, be patient; they are all explained in the next chap
ter). Now examine the code below:
CALLER PUSH PARAM_ONE

PUSH PARAM_TWO

CALL ROUTINE

(more program)

;store parameter one
;store parameter two
;call the routine
;finish up

ROUTINE MOV BP,SP
MOV SL[BP-l-2]
MOV DI,[BP-l-4]
(do whatever)
RET 4

;set BP
;get parameter two
;get parameter one
;use the parameters
;retum to caller

In this example, rather than pop the parameters off the
stack, we use BP as a pointer, and copy the parameters into SI
and D1 for processing. SP does not change, so the stack
(including the parameters) remains unaltered.

Note the RET 4 at the end of this subroutine. Routines
which are passed parameters via the stack need some way of
removing them. The calling program could pop them off the
stack, but this lacks elegance. Instead, Intel has provided us
with a command which automatically pops parameters from
the stack when we return from a subroutine. This command,
RET n, comes in two forms. The first is an Intra Segment and
Add Immediate to Stack Pointer RET instruction. In other words,
it is a near RET which also pops off the number of bytes
specified in the operand
RET«

where n is a 16-bit displacement.
This kind of near RET pops IP off the stack and adds the

displacement to the stack pointer. For example, RET 2 would
return from the subroutine and pop two bytes (or one word)
off the stack. RET 16 would return and pop 16 bytes (or eight
words) off the stack.

99

6
Subroutines and the Stack

The second form of the RET n command works like the
first, but is used to return from far procedures rather than near
procedures. The label Inter Segment and Add Immediate to Stack
Pointer identifies this as a long RETurn.

Many compiled and interpreted languages (such as Pascal
and BASIC) use the stack to pass parameters. BASIC also uses
this method when machine language subroutines are called
with USR or CALL statements (see Chapter 10).

Bear in mind that it is also possible to use the stack to re
turn values to a calling routine. The calling routine would then
pop the returned values off the stack (in this case, RET n
might not be used). Note, however, that the calling routine
must make room on the stack for the returned values if you
want to avoid popping and pushing the return address.

You might be wondering what advantages this system of
fers over the other methods of passing parameters. The great
est benefit comes in writing recursive routines, routines which
can call themselves. BASIC programmers will be completely
unfamiliar with this idea, since BASIC subroutines (unless
very cleverly written) cannot call themselves. In Pascal or
Logo, however, this is possible. Recursive routiries are not im
portant to beginning machine language programmers, but they
are very powerful, and particularly useful when you need to
analyze a large number of possibilities. The most common ex
ample of a recursive routine finds the factorial of a number
(X!, the product of all the numbers from 1 to X).

Decimal Output
Now that you understand the stack and subroutines, look at
the DECIMAL—OUT routine in the program PRIMES.ASM
from Chapter 4. Before we get into the actual code, let's con
sider how we can convert a binary number into decimal. The
method used in DECIMAL—OUT is to repeatedly divide the
number to be printed by 10. This can be made clear with an
example.

Suppose we start with the number 567. After the first di
vision by 10, the quotient will be 56, and the remainder 7.
Note that the least significant digit of 567 (the one's digit) is
the remainder. Now, divide by 10 again: The remainder will
be 6 (the ten's digit of the original number), and the quotient
5. It's clear what is going on. When we divide by 10 again, the
quotient is 0, and the remainder 5. The entire number has

100

6

Subroutines and the Stack

been converted. The one drawback to this system is that the
digits are converted from the least significant to the most, but
we must print the numbers starting from the most significant
to the least. We can use the stack to reverse the order of the
digits.

The comment header at the beginning of this subroutine
says that it is passed the number to print in AX, and that CX,
AX, and DX are destroyed. In the first instruction of the rou
tine, CX is set to zero. CX is used to count the number of dig
its that must be printed. Then CX is incremented by one. This
means that we will always print at least one digit. DX is set to
zero in preparation for the DIV by BASE. BASE is a variable
which holds the base of the printed number. If we make BASE
ten, the number will be printed in decimal; if BASE holds
eight, the number will be printed in octal (base 8). Next we
push DX onto the stack. Remember that DX holds the remain
der of the division, the digit that we want to print. Then we
check AX (the quotient) to see if it's zero. If AX is zero, the en
tire number has been converted, and we go to the part of the
routine which actually prints the number.

The printing part of the routine (labeled PRINT—DIGITS)
POPs the digits off the stack one by one, adds the ASCII
value of zero (to convert a number from 0 to 9 to a character
from 0 to 9), and calls the CHARACTER—OUT routine. Note
that CX holds the number of digits which were pushed onto
the stack, so the LOOP instruction will repeat until all of the
digits have been printed.

You can use this routine in your programs when you need
to print a binary number in decimal or some other base. Note
that you cannot use this routine to print a number in hex be
cause the characters A through F do not follow character 9 in
the ASCII character set. See Chapter 7 for a routine to print
numbers in hex.

A Few Points to Remember
When you are using the stack and writing subroutines it is im
portant to keep the following in mind:

• All PUSHes should have corresponding POPs (RET n, or an
adjustment of the SP, such as ADD SP,n, can be substituted).
In other words, you don't want to leave extra values on the
stack and you don't want to POP more values off the stack
than you put on.

101

6
Subroutines and the Stack

• The computer uses the same stack for CALL/RET and
PUSH/POP. If you leave extra values on the stack, the com
puter will use these values as the return address when it
leaves the subroutine. If you POP too many values off the
stack, you will lose one level of subroutines. Although you
can use this to bypass one level of RETums by POPping the
return address off the stack, this style of programming is
risky and needlessly complex.

• It is not necessary to POP a value into the register that
PUSHed the value.

Programs which have stack trouble often refuse to stop
running (they seem to run fine, but then start executing over
again when they should stop), or they run for a while and
mysteriously crash the computer. If you seem to have a persis
tent but elusive problem, check stack manipulations carefully.
Be particularly wary of PUSHing a register and jumping
around its POP. Nothing can cause more headaches than a
poorly managed stack.

102

CHAPTER

7
Addressing Modes

At first glance, the great variety of addressing modes available
to the 8088 machine language programmer can be mind-
boggling. To complicate matters further, there are many ways
to request the same addressing mode of the assembler. You
will find, however, that the seemingly complex address modes
are quite straightforward.

There are six addressing modes available to the 8088. The
purpose of the different modes is to give the programmer a
variety of ways to determine an effective address, the address
of the memory location which is going to be examined.

An effective address has two components, a segment ad
dress and an offset. The segment address is stored in one of
the four segment registers (CS, DS, ES, or SS). Remember,
these registers hold the addresses of your program's code seg
ment, data segment, extra segment, and stack segment. The
offset portion of the effective address can be a constant value,
the value of a register, the sum of a register and a constant
value, the sum of two registers, or the sum of two registers
and a constant value.

For all of the addressing modes, the segment address
marks the beginning of the segment, and the offset address
points to a location within the segment, relative to the
beginning.

Direct Mode Addressing
The first and simplest of the six addressing modes is direct
mode addressing. In this addressing mode, the offset is a con
stant value. This constant is usually the address of a variable
which is calculated by the assembler and is relative to the
beginning (the base) of the segment it's defined in. For ex
ample, if the data segment were defined as

DATA SEGMENT

SOME_DATA DW 933,9265
MORE-DATA DW 5543,839
DATA ENDS

103

7
Addressing Modes

n

the offset address of SOME_DATA would be calculated as 0.

SOME_DATA is the first variable defined, thus its address is
at the base of the segment DATA. On the other hand, the off
set address of the second variable, MORE_DATA, is 4 because
MORE—DATA begins four bytes after the base of the segment
DATA (the pseudo-op DW defines words, which are two bytes
long).

To use direct mode addressing, simply use the name of a
variable. For example, to move the value of SOME—DATA into
AX, you could

MOV AX,SOME-DATA

Remember that SOME—DATA itself is a symbol that
represents an address in memory. The above operation moves
the word pointed to by SOME—DATA into AX. In other
words, it is something like the BASIC
AX = PEEK(SOME_DATA)

If you want to move the actual address of SOME—DATA into
AX (perform AX = SOME—DATA), you have to use
MOV AX,OFFSET SOME-DATA

The OFFSET command tells the assembler that you want AX
to hold the address of SOME—DATA, not the word
SOME—DATA points to.

For tables of data, it is sometimes useful to use this
format:

MOV AX,SOME_DATA[0]

where [0] is a displacement into the SOME—DATA table. Be
careful; this is not like a BASIC array. In machine language
the number between the brackets always refers to bytes. Since
SOME—DATA is made up of words, use

MOV AX,SOME-DATA[2]

to access the second word (9265) of the SOME—DATA table.
If you prefer, you can also use
MOV AX,SOME-DATA+2

where the constant 2 is clearly added to the address of
SOME-DATA.

For the sake of clarity, the above examples use the
instruction MOV, and show different addressing modes only
in the source operand. The same rules apply to any instruction

104

7
Addressing Modes

which accepts addressing modes; and various addressing
modes can be used in the destination operand as well as the
source.

Register Indirect Mode Addressing
Only four of the registers can be used in register indirect
addressing: SI, DI, BX, and BP (source index, destination in
dex, base, and base pointer). In register indirect mode address
ing, the value contained in the register is used as the offset
address of the data. You must set the register to point to the
data you want to access.

Here are examples of this addressing mode, using each of
the four possible registers:

MOV AX,[SI]
MOV AX,[DI]
MOV AX,[BX]
MOV AX,[BP]

Of course, the destination operand can also use register in
direct addressing:
ADD [BX],AX
MOV [DI],DL
SUB [BP],AH

It is important to remember that the 8088 cannot perform
"memory to memory" operations; thus the following com
mands are illegal:

MOV (BX],[BP]
MOV SOME_DATA,[BX]

Programmers often use register indirect mode addressing
when they must access a one-dimensional array or table of
values. The following discussion provides examples of table
addressing.

Based Mode and Indexed Mode Addressing
Based mode addressing and indexed mode addressing are identi
cal in concept; the only difference is the register used. Based
mode addressing uses one of the base registers (BX or BP),
while indexed mode addressing uses one of the index registers
(SI or DI). The basic principle of based mode/index mode
addressing is to add a constant to the contents of the register.
The sum becomes the offset portion of the effective address.

105

7
Addressing Modes

The acceptable forms of based mode/indexed mode
addressing are numerous. The basic format is
MOV CX,[BX]+3

Another common format is

MOV CX,[BX+31

Both of these take the value of BX, add 3, and use the sum as
the address of the data. The different formats are only for the
convenience of the programmer. The assembler doesn't care
which format you use. The constant does not have to be a
positive number; the command
MOV CL,[BX-1]

is quite acceptable, and moves the byte below BX to the CL
register.

The constant can also be the name of a variable. Consider

the following data segment:
DATA SEGMENT

BYTE-DATA DB 1,3,3,7,5,2,9,4,9
WORD-DATA DW 848,664,2258,753,209
DATA ENDS

We can use either

MOV AL,BYTE-DATA[BX]

or

MOV AL,[BYTE-DATA+BX]

to get the BX byte in the BYTE—DATA table. For example, if
BX holds 3, AL will hold the fourth byte of BYTE—DATA, or
the number 7.

Word-sized data presents a slight problem because all
addressing is based on bytes, not words. We can use
MOV AX,WORD-DATA[BX]

to address the table WORD—DATA, but BX needs to hold 0 to
get the first word, 2 to get the second, 4 to get the third, etc.
After executing

MOV BX,6
MOV AX,WORD-DATA[BX]

AX holds 753.

Notice the similarity between based mode/index mode ^
addressing and register indirect mode addressing. In register

106

7
Addressing Modes

indirect mode addressing, the value of a register alone is used
as the address of the data. With based mode/indexed mode
addressing, the value of a register is added to a constant, and
the sum is used as the address of the data. As with register in
direct addressing, based mode/indexed mode addressing is
very useful in accessing a table or a one-dimensional array of
values.

Based Indexed Mode Addressing
You just saw how to form an address by adding a constant to
a register. You can also form an address by combining the
contents of two registers. With based indexed addressing the
contents of a base register (BX or BP) are added to the con
tents of an index register (SI or DI). The resulting sum is used
as the address of the data. There are only four possible
combinations of these registers: BP + SI, BP -f- DI, BX -I- SI,
or BX + DI. However, each combination can be expressed in
four alternate forms. The assembler interprets these four ex
pressions as identical:
MOV AX,[BP][SI]
MOV AX,[SI][BP]
MOV AX,[BP-FSI]
MOV AX,[SI-f-BP]

The most common use for this kind of addressing is in
accessing a two-dimensional array (an array with two sub
scripts). For example, the base register could hold the address
of the beginning of a row, while the index register could hold
the number of the column we are trying to access. In Figure 7-
1, BX holds the address of the row, and SI holds the number
of the column we are trying to address.

Based Indexed Mode with Displacement Addressing
The last addressing mode available to the machine language
programmer is called based indexed mode with displacement
addressing. This addressing mode is simply a combination of
the last two addressing modes. First the contents of two reg
isters are combined; then a constant is added to the sum of the
registers to form the effective address.

107

Addressing Modes

Figure 7-1. Two-Dimensional Table Access Using Based
Indexed Addressing

12

Values for
SI

Values

for BX

The assembler has a variety of possible formats for based
indexed mode with displacement addressing:
MOV AX,
MOV AX,
MOV AX,
MOV AX,
MOV AX,

;the three can appear in any order

;etc.

;or broken up in a variety of ways

BX+DI+12J
BX+12+DI

i2+DI+BX
DI+12I1BX]
BX+12][DI]

MOV AX,8+[BX][DI]+4 ;the constant can be in two parts
MOV AX,12+(BX][DI] ;or just in the beginning

and they go on and on. To the assembler, all of these instruc
tions are identical.

Often, the value of the constant is the address of a
variable:

MOV AX,ANY_DATA[BP][DI]
MOV AX,[ANY_DATA-I-BP-I-DI]

If you like, you can add another constant (beyond the address
of the variable):

MOV AX,ANY_DATAIBX][SI]-I-14

As with based indexed addressing, based indexed with
displacement addressing can be useful when accessing a two-
dimensional array.

108

7
Addressing Modes

The names of the different addressing modes we have
given here might be called the official Intel names. It is far
more important to understand how they work than to memo
rize the names. Table 7-1 at the end of the chapter lists all of
the addressing modes and their possible register combinations.
Note that the format of the operand is the one used by
DEBUG.

Eliminating Ambiguity: The PTR Instruction
Remember that any of the addressing modes described above
can be used as the source or the destination operand of an
instruction (but not both at the same time). Remember also
that the source can be an immediate value, and that a register
can act as either the source or the destination. When one op
erand is an immediate value, the size of the operation is some
times ambiguous. For example, in

CMP [BX],12H

the assembler has no way of knowing if [BX] points to a word
or a byte. If you try this, the assembler will respond with error
35 (Operand must have size). Note that the error for
CMP [BX],1234H

is different. If you try this, you will get error 50 (Value is out
of range), because the word 1234H is too large for the ex
pected use (comparison with the byte-sized memory location
addressed by [BX]).

When the size of an operation is ambiguous, the PTR
instruction is used to clarify the instruction. Our first statement
above must be replaced with

CMP BYTE PTR [BX],12H

if [BX] points to a byte, or with
CMP WORD PTR [BX],12H

if [BX] points to a word. However, the assembler can make
certain assumptions. If we define a variable in our data seg
ment as

MORE_INFO DW 5142,3387,9808

the instruction

CMP MORE_INFO[SI],43H

is not ambiguous. MORE_lNFO is defined as word data, so

109

7
Addressing Modes

the assembler assumes that [SI] points to a word. If, however, *
you want to compare 43H to the byte pointed to by [SI], you
can override the assembler's assumption with
CMP BYTE PTR MORE_INFO[SI],43H Pj
There is another method which is discussed in Chapter 15.

LDS/LES and the DD Pseudo-op
There are two very specialized instructions that are used to
load the DS and ES segment registers with values, LDS (Load
Data Segment) and LES (Load Extra Segment). The format for
these instructions is

LDS destination,source
LES destination,source

where destination is any general register and the source is a
memory location addressed by one of the methods described
above. The instruction moves the word pointed to by the
source into the destination register. The following (higher ad
dressed) word is moved into DS (if LDS is used), or ES (if LES
is used). Here are some examples:

LDS SI,DOUBLE_WORD_DATA[BX][DI]-f2
LES DI,DWORD PTR [BP][DI]
LES BX,DWORD PTR [BX]
LDS BP,DWORD PTR [BX]+4

If you do not specify DWORD PTR, the assembler will
give you error 57 (Illegal size for item). The addressed mem
ory location must be defined with the DD (Define Double
word) pseudo-op. The operands of the DD pseudo-op can be a
label or a constant value. See the examples below.
DOUBLE_WORD_DATA DD FAR_LABEL,FAR_PROC ,FAR labels ^

DD 1343234,432343 .constants

LDS and LES can be useful if your program has more
than one data segment. Remember to include an ASSUME ^
statement when DS or ES is changed.

Segment Overrides «
All memory access is performed using an offset into a seg
ment. The segments are defined by the four segment registers.
Machine language programs are addressed using the IP as an —
offset into the segment defined by the CS register. The stack is
addressed using the SP register as an offset into the segment

110

7
Addressing Modes

defined by the SS register. Most data is addressed using an
offset into the segment defined by the DS register. All of the
addressing modes described above are offset into the data seg
ment, except when BP is involved. When BP is used, the offset
is added to the SS, not the DS register. In other words, BP is
generally used to access the stack segment.

However, it is not mandatory to use DS or SS. You can
tell the 8088 which segment register to use for addressing data
with a segment override command. A segment override com
mand is sometimes called a segment prefix command, or just a
SEG command. The segment override tells the 8088 to use a
specific segment register when it addresses memory. There
are four segment override commands, one for each segment
register;

CS:

SS:

DS:

ES:

The segment override is often included with the addressing
mode. For example, if the BP register is used to address data
in the data segment rather than the stack segment, you can
use something like
MOV AX,DS:[BP]
MOV AX,DS:[BP+DI]

If the PTR command is used, it should appear before any seg
ment overrides, as in

MOV BYTE PTR ES:[BX],0
CMP WORD PTR CS:[DI],15H.

Bear in mind that the selection of the segment is generally
automatic. The assembler uses the ASSUME pseudo-op to
determine which segment register is used to address specific
data. Consider the following data segment declarations:
DATAl SEGMENT

FIRST DW 1,2,3,4
SOME DB 'MORE DATA'
DATAl ENDS

DATA2 SEGMENT

SECOND DW OAH,OBH,OCH,ODH
THIRD DB 'RUNNING OUT OF IDEAS'
DATA2 ENDS

111

7
Addressing Modes

and the ASSUME:

ASSUME ES:DATA1,DS:DATA2

Now, whenever FIRST or SOME is accessed, the ES register
will be used as the segment register. All instructions involving
the FIRST or SOME labels will have an extra segment over
ride. Any access to DATA2 uses the DS register. For example:
MOV AX,FIRST[BP] ;even though BP usually uses SS

If you prefer, you can also use:
MOV AX,ES:[BP]
MOV AX,DATA1:[BP]

All three of these examples use ES as the segment register.
The following
MOV AX,SECOND[BP] ;BP is now using DS as segment register
MOV AX,DS:IBP]
MOV AX,DATA2:IBP]

use DS rather than ES. Specifying a label name, a segment
name, or a segment register tells the assembler which segment
register to use. However, in

MOV BP,OFFSET SOME
MOV AX,(BP]

MOV AX,[BP] is ambiguous. The assembler has no way of
knowing if you want to use DS, ES, or SS as the segment reg
ister; thus the offset held in [BP] might point to an undesired
location. You must specifically tell the assembler which seg
ment register to use:

MOV BP,OFFSET SOME
MOV AX,ES:[BP]

If you do not specify a segment register, the assembler will as
sume the default segment. The default segment register is DS
unless BP is involved, in which case the default is SS. Again,
the segment assignment is generally automatic, but you must
be certain that you are communicating your ideas to the
assembler correctly, to avoid unpleasant surprises.

There are many uses for segment overrides. Anytime the
BP register is used to access data in the data segment, an over
ride is used. However, there are times when you might want
to use BX or DI to access the stack segment, or perhaps use BP
and SI to address something in the ES (Extra Segment). You
can even store data in the code segment and use the segment

112

7
Addressing Modes

override to access the data properly (see "Hexconv," the
sample program at the end of this chapter).

Special Consideration of the Segment Registers
The segment registers cannot be used as operands in any
instructions except MOV, PUSH, and POP. In other words,
the segment registers cannot be used in operations such as
ADD or SUB.

When the segment registers are the destination of the
MOV instruction, the source operand cannot be an immediate
value. The source can be any other register (except another
segment register) or an addressed memory location. Perhaps
this was designed for our safety. We wouldn't want a program
to haphazardly change the values of a segment register.

Specialized Addressing
There are three rather specialized but useful instructions that
are related to memory addressing. These are LEA (Load Effec
tive Address), XCHG (eXCHanGe), and XL AT (translate).

LEA. The Load Effective Address instruction calculates an
address and moves the calculated address into the specified
register. LEA takes the general format
LEA destination,source

where the destination can be any general word-sized register,
and the source is any addressed memory location. Remember
that the address, not the value contained in the addressed
memory location, is moved into the destination register. For
example:

LEA BX,[SI]IBP]-I-10

moves the quantity SI + BP -t- 10 into BX. It does not move
the word pointed to by SI -I- BP -I- 10 into BX. The purpose of
this instruction is to allow offsets to be subscripted with reg
isters. This is not permitted with the standard MOV instruc
tion. For example,
MOV BX,OFFSET SOME_DATA[BX]

is illegal; you must use instead
LEA BX,SOME_DATA[BX] ;get the offset
MOV BX,[BX] ;load the data in BX

113

7
Addressing Modes

You can also use LEA if more than two subscripting vari
ables are required. You might use something like
LEA BX,MORE_DATA[BX][DI]
MOV AX,[BX][SI]

if what you really wanted was M0RE_DATA[BX+DI-I-S1], a
nonexistent addressing mode. In this case, the LEA instruction
replaces the rather awkward
ADD BX,DI
MOV AX,MORE_DATAIBXJISI]

which is somewhat unclear.

You can also use LEA if you need to temporarily adjust
an offset. For example, you might write a program which
needs to address the memory around SI-16, in which case, it
would be to your advantage to use:
LEA DI,[SI-16]

and use DI for 81-16. This simplifies the code and may make
it easier to understand and follow.

XCHG. The exchange operation is much like the SWAP
operation in BASIC. XCHG takes the format

XCHG destination,source

and switches the contents of the source and destination. The
source and destination can be any general byte or word reg
ister, or any addressed memory location. You cannot XCHG
two memory locations, so one operand of XCHG must always
be a register. No flags are affected by XCHG.

Remember that this operation is more complex than
MOV. MOV copies a value from the source to the destination,
without destroying the contents of the source. XCHG switches
the two; what was in the destination is now in the source, and
what was in the source is now in the destination.

XLAT. XLAT takes the general form
XLAT source-table

It is a one-byte instruction used to retrieve single bytes from a
table of data. The source-table operand is only for the assem
bler. When you use DEBUG, XLAT will appear alone on a
line. XLAT "translates" a byte through a table lookup proce
dure. The BX register must hold the address of the table, and
AL the byte which is being translated. AL is used as an offset
into the table, and the byte which is addressed is loaded into

114

7
Addressing Modes

AL. The old AL is lost. The closest approximation of XLAT's
addressing is

MOV AL,[BX][AL] ;this is illegal, you must use XLAT

The source-table must be defined as a byte table; other
wise, an error from the assembler will result. Using XLAT is
rather cumbersome, but straightforward.
MOV AL,BYTE_TO_BE_TRANSLATED ;set byte to translate
MOV BX,OFFSET TABLE-NAME ;set base of table
XLAT TABLE—NAME ;do translation

You can use LEA BX,TABLE_NAME, rather than MOV
BX,OFFSET TABLE—isJAME if you so desire. When this code
fragment is executed, AL will hold the translated value. Note
that XLAT affects none of the flags.

XLAT will only translate byte-sized quantities. Because of
this limitation, the length of the translation table is limited to
256 bytes. You do not need to create a table which is 256
bytes long; however, neither the 8088 nor the assembler
makes any boundary checks on access to the table. Boundary
checks are the responsibility of the programmer. The sample
program Hexconv uses XLAT with a short 16-byte table.

Using XLAT
Our sample program for this chapter uses the XLAT instruc
tion in the process of converting a binary word into ASCII hex
digits. The number is printed on the screen. The routine is
given the number to print in AX.

WORD—OUT begins by saving the registers which it uses.
CH is used to count the number of hex digits that we must
convert, and CL is set to the number of rotates to perform
(ROL will be explained in the next chapter). Next, AX is
stored. We extract the lowest nybble (the nybble to convert) by
ANDing it with 15, set the base of the ASCII table (notice that
the table is in the code segment, not the data segment), and
perform XLAT. AL, which held a number from 0 to 15, now
holds an ASCII digit. We print the digit, recover AX, and
check to see if all of the nybbles have been converted. If they
have, we restore all the stored registers, and return to the call
ing program.

The sample calling program is not very complex; it just
sends WORD—OUT all of the numbers from 0 to FFFFH. If CX
is 0 after the INC CX command, then we have gone through

115

Addressing Modes

all of the numbers and CX has cycled back to 0. The program
can be stopped at any time by pressing Ctrl-Break (or Fn-
Break on the PCjr).

WORD—OUT can be used in any of your programs which
need to output hex numbers—simply extract the routine from
this program and insert it into yours. Likewise, you can extract
the DECIMAL—OUT routine from the "Primes" program if
you need to print numbers in decimal. When you do so, don't
forget to copy the routine CHARACTER—OUT as well.

Table 7-1. Table of Addressing Modes and Possible
Register Arrangements

Addressing Mode

Direct

Register Indirect

Based

Indexed

Based Indexed

Based Indexed with Displacement

Possible arrangements
(label)
^splacement
[BX]
[BP]
[SI]
[DI]
[BXd-n]
[BP+«]
[SI-l-w]
[DI-I-m]
[BX-I-SI]
[BX-I-DI]
[BP-I-SI]
[BP-I-DI]
[BX-t-SH-n]
[BX-bDH-n]
[BP-l-SH-n]
[BP-l-DH-«]

n represents a signed 8- or 16-bit displacement

116

])]]))) j) i

Program 7-1. Hex to ASCII Conversion Using XLAT

I HEXCONV.ASM

I This program outputs the hex numbers
i from OOOOH to FFFFH.

t

t

I

cr

I f

I

s tack

stack

t

code segment
program proc far

assume cs:code

push ds

mov ax.O

push ax

I

mov cx,0

another:

mov ax.cx

page ,96

equ 13
equ 10

segment stack
dw 128 dupC?)

ends

carria

stack

;zero c

ge return
l ine feed

ounter

loutput the counter

>
D.
CL

3 -O
OQ

O
Cl-
(D

c
a
l

l
w
o
 r
 d
_
o
 u
 t

m
o
v

d
 I

 ,
 c
 r

m
o
v

a
h
,
2

i
n
t

2
1
H

m
o
v

d
 I

 ,
 I
f

m
o
v

a
h
,
2

i
n
t

2
1
H

I
n
o

o
x

j
n
z

a
n
o
t
h
e
r

r
e
t

p
r
o
g
r
a
m

e
n
d
p

I t
 O
u
t
p
u
t

w
o
r
d

a
e

h
e
x

A
S
C
I

I
;

 v
a
l
u
e

p
a
s
s
e
d

i
n

A
X

I
 o
n
l
y

A
X

a
f
f
e
c
t
e
d

; h
e
x
c
o
n
v

p
r
o
c

n
e
a
r

a
s
c
i
l
n
u
m
s

d
b

'
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

w
o
r
d
_
o
u
t
: p
u
s
h

c
x

p
u
s
h

b
x

p
u
s
h

d
x

m
o
v

c
h
,
4

I
O
O
P
 1
:

m
o
v

c
I
,
4

r
0
 I

a
x
,
c
I

p
u
s
h

a
x

a
n
d

a
 I
 ,
 O
f
H

:
p
r
i
n
t

a

c
a
r
r
i
a
g
e

r
e
t
u
r
n

i
p
r
i
n
t

a

l
i
n
e

f
e
e
d

i
d
o

t
h
e

n
e
x
t

d
i
g
i
t

{
C
y
c
l
e
d

b
a
c
k

t
o

z
e
r
o
?

;
y
e
s
,

s
o

r
e
t
u
r
n

t
o

D
O
S

i
s
a
v
e

C
X

i
s
a
v
e

B
X

i
s
a
v
e

D
X

;
s
e
t

n
u
m
b
e
r

o
f

n
y
b
b
l
e
s

t
s
e
t

R
O
L

c
o
u
n
t
e
r

I
R
O
L

A
X

f
o
u
r

t
 i
m
e
s

;
s
a
v
e

A
X

t
g
e
t

a

s
i
n
g
l
e

n
y
b
b
l
e

t
o

p
r
i
n
t

1
)

]

1

]

J
 1

)

)

1

:i

I

I
I

I
I

 : ;
 j

I
I

I
I

m
o
v

b
x
,
o
f
f
s
e
t

c
o
d
e

X
 I

 a
t

a
s
c
 M
 n
u
m
s

h
e
x
c
o
n
v

c
o
d
e

m
o
v

d
 1

 ,
 a
 1

m
o
v

a
h
 ,
2

i
n
 t

2
1
H

p
o
p

a
x

d
e
c

c
h

j
n
z

1
o
o
p
 1

p
o
p

d
x

p
o
p

b
x

p
o
p

C
X

r
e
t

e
n
d
p

e
n
d
s

e
n
d

a
s
c
 i

i
n
u
m
s

;
s
e
 t

b
a
s
e

;
d
o

t
r
a
n
s
l
a
t
i
o
n

;
p
r
i
n
t

t
h
e

d
i
g
i

t

;
r
e
c
o
v
e
r

n
 u
m
b
 e
 r

s
c
h
e
c
k

c
o
u
n
t
e
r

;
 r
 e
c
o
v
e
 r

D
X

;
r
e
c
o
v
e
r

B
X

;
r
e
c
o
v
e
r

C
X

r
r
e
t
u
r
n

t
o

c
a
l
l
e
r

o
f

t
a
b
l
e

> G
-

D
-

P

-

(
T
Q S O o
-

f
D

v
O

f 1

n

SECTION

2
Advanced

Programming

CHAPTER

8
Advanced Arithmetic

As you become a more proficient programmer, you may find
that 16 bits is not enough room to store all of your data. After
all, limiting your calculations to the numbers from —32,768 to
32,767 (or 0 to 65,535 for unsigned numbers) can be constrict
ing. In this section you will learn how 16-bit words can be
chained together into 32-bit (or even 64-bit) quantities.

Adding Multiword Numbers
To understand how the computer can add two multiword
numbers together, consider how we add two multidigit num
bers. For example, when adding the numbers 17 and 25, first
add the one's digits: 7 plus 5 equals 12. The ten's part of our
partial sum is the carry into the next digit. In other words, we
have to carry a 1 into the next (more significant) digit. When
adding the ten's digits together, remember to include the
carry. Summing up, the 1, the 2, and the extra 1 from the
carry make 4. Remember, this is four lO's. Our complete sum
is 42. In our example, we carried from one digit to the next.
The 8088 uses the carry flag to carry from one word (or byte)
to the next.

When the microprocessor performs an ADD, however, it
does not take the carry flag into account. A second addition
instruction, ADC (ADd with Carry), is used when the state of
the carry flag must be considered. In all other respects, such as
possible operands and resulting flags, ADC is identical to
ADD. Using ADD with ADC, we can chain bytes or words to
gether into very large numbers.

For example, to add a 32-bit number stored in AXiDX (AX
holds the least significant word, and DX the more significant
word) to another in BX:CX (BX holds the least significant
word), you could use the following code (this stores the result
in BXiCX):

ADD BX,AX ;add the less significant words together...
ADC CX,DX ;...and the more significant words

123

Advanced Arithmetic

Note that you must start with the least significant and proceed
to the most significant word.

If you need even larger numbers (say 64-bit words), you
can use a loop to add them together. Consider this example
(for MASM only):

[in your data segment]
NUMBER-ONE DQ 1348176354 ;define a 64-bit word
NUMBER-TWO DQ 7564627653 ;define another
SUM DQ ? /-undetermined value for sum
[in your code segment]

MOV CX,4 /-number of words to add
/-together

MOV BX,0 /-point to least significant word
CLC ;so first ADC is like an ADD

LI: MOV AX,WORD PTR NUMBER_ONE[BX]
;add the two...

ADC AX,WORD PTR NUMBER-TWO[BX]
;.. .corresponding...

MOV WORD PTR SUM[BX],AX
/-...words together

INC BX /-point to next significant word
INC BX

LOOP LI /-finish them all

The DQ pseudo-op defines a 64-bit word (see Chapter 14 for
more details). Two INC BX instructions are used to add two to
BX. The ADD instruction cannot be used because it changes
the state of the carry flag; INC and DEC do not affect the
carry flag. Also notice that the carry flag was cleared (CLC)
before entering the loop. If the carry is clear, ADC is just like
ADD.

Subtracting Multiword Numbers
Subtracting two multiword numbers is just as simple as add
ing them. In subtraction, however, the carry flag is used to in
dicate a borrow into the highest bit rather than a carry.

Consider how we subtract two multidigit numbers. To
subtract 27 from 50, first subtract the ones. 7 cannot be sub
tracted from 0, so we borrow a 10 from the next higher digit;
10 minus 7 equals 3. When subtracting the ten's place, 1 must
be taken for the 10 borrowed earlier. Thus, 5 minus 2, minus
another 1 for the borrow, leaves 2. Remember, this is two
lO's. The difference is 23. The 8088 uses the carry flag to in
dicate a borrow from one word (or byte) to the next.

124

Advanced Arithmetic

When we use the SUB instruction, however, the
microprocessor does not consider the state of the carry flag
when it subtracts. You must use the SBB (SuBtract with Bor
row) operation if you want the microprocessor to take the
state of the carry flag into account. If the carry flag is set (in
dicating there was a borrow), SBB decrements the resulting
difference by one to take care of the borrow. SUB and SBB are
identical in terms of how they set the flags and the operands
they take. If the carry flag is clear (indicating no borrow), SBB
is just like SUB. We can subtract two multiword values using
SUB with SBB.

For example, if we want to subtract two 32-bit words, one
stored in AX:DX, the other in BX:CX (AX and BX hold the
least significant word; the result is stored in BX:CX), we can
use:

SUB BX,AX ;subtract the least significant words...
SBB CX,DX ;...and the more significant words

As with multiword addition, you must begin subtracting with
the least significant word and proceed to the most significant.
If you need larger numbers, say 64-bit quantities, you can use
a loop structure as shown above in the 64-bit word addition;
just change all of the ADCs to SBBs.

Comparing Multiword Numbers
When dealing with multiword numbers it is often convenient
to compare them with other multiword numbers. The tech
niques are quite easy to understand. Consider how you would
compare two multidigit numbers. Suppose you were asked
which is larger, 52 or 27. Clearly, 52 is larger. All you had to
do was look at the ten's digit (the most significant digit); you
didn't need to look at the one's digit to know that 52 is larger
than 27. Now, suppose you were asked how to compare 29
and 22. This time, the ten's digits are the same; you have to
inspect the one's place to determine which is larger.

The same techniques are used in programs that compare
two multiword numbers. Start by comparing the most signifi
cant words. If they are the same, check the next less signifi
cant words. Clearly, if all of the words are the same, the two
numbers are equal. The following code can be used to com
pare two double words; one is stored in AX:DX and the other
in BX:CX:

125

8

Advanced Arithmetic

CMP DX,CX
JNE DO_CONDITIONAL
CMP AX,BX

DO_CONDITIONAL: JA AX_DX_ABOVE_BX_CX

Converting Between Formats
When your program uses many different number sizes (bytes,
words, and double words), it often becomes necessary to con
vert between them. To convert unsigned numbers, you simply
put a zero into the more significant part of the number
(whether byte or word). For example, you would use MOV
AH,0 to convert an unsigned byte in AL into an unsigned
word in AX.

For converting signed numbers, the 8088 provides two
instructions, one to convert a byte to a word (CBW) and an
other to convert a word into a double word (CWD). Neither
CBW (Convert Byte to Word) nor CWD (Convert Word to
Double word) takes an operand. CBW converts the byte in AL
into a word in AX. CWD converts the word in AX into a

double word stored in AX and DX (DX holds the more signifi
cant word). Because their effect is to extend from smaller to
larger sizes, CBW and CWD are also known as sign extend
instructions. These operations are most often used before
signed division, when a signed word is divided by another
signed word, or a signed byte is divided by another signed
byte. For example, to divide a signed word in AX by another
signed word in BX:
CWD ;sign extend AX into DX
IDIV BX ;divide AX:DX by the signed word in BX

You can use the techniques discussed above to perform
many elaborate mathematical operations. By chaining bytes or
words together, you can represent extremely large numbers.
However, there are other ways of representing numbers
within the 8088 microprocessor.

Binary-Coded Decimal (BCD)
The 8088 provides three methods of storing numeric data. We
have already discussed pure binary. The other two systems are
powerful extensions of the binary system.

The basic principle of these "new" numeric data storage
techniques revolves around the idea of binary-coded decimal

126

Advanced Arithmetic

(BCD) numbers. In Chapter 2 you learned that computers
store all of their numbers in binary. While this is convenient
for the computer, humans generally find it difficult to under
stand, and even more difficult to convert to decimal. To assist
the programmer, the 8088 has been designed to use BCD as
well as pure binary. In BCD, each decimal digit is stored as a
four-bit binary number. Look, for example, at Figure 8-1.

Figure 8-1. BCD, Hex, and Binary

Binary Hex BCD

0000 0 0

0001 1 1

0010 2 2

0011 3 3

1000 8 8

1001 9 9

1010 A undefined
1011 B undefined

etc.

Notice that only the hex digits 0 to 9 are defined in BCD.
The hex digits A to F are undefined, and represent no value in
BCD. This type of numeric storage is convenient because it is
very easy to convert a BCD number into ASCII decimal. Each
four-bit number represents one decimal digit.

The 8088 uses the BCD storage technique in two ways,
packed and unpacked. In unpacked storage, each digit is given
an entire byte, the upper nybble is unused. IBM and Intel refer
to this kind of numeric storage as ASCII. Using this method,
you can store the numbers from 0 to 9 in one byte. This is far
less than is possible using binary (0 to 255), but it is extremely
easy to convert unpacked BCD into conventional ASCII (just
add 48, the ASCII code for the zero character, to the number).

Defining unpacked BCD data in a program is fairly sim
ple. Since only the digits from 0 to 9 are valid, the simplest
method is to use the DB pseudo-op.
UNPACKED_DATA DB 5,3,1 ;defines 135

Unpacked BCD digits are best defined starting from the least

127

Advanced Arithmetic

significant digit and ending with the most significant. Unfortu
nately, it is somewhat confusing because the numbers must be
read backwards.

You can also use the DW command, as in;

UNPACKED_WORD_DATA

DW 0301h ;defines 31 (unpacked)

Remember that the assembler automatically places the less
significant byte of a word first, so the order of the digits will
be correct if you use DW.

In packed BCD data, both the upper and lower nybbles
are used to hold decimal digits—two BCD digits per byte. This
kind of number storage is referred to as decimal in IBM and
Intel literature. Packed BCD number storage allows you to
store the numbers from 0 to 99 in a single byte. This is more
than unpacked BCD storage, but it is also more difficult to
convert packed BCD numbers into ASCII for output. The
methods for this are outlined in the discussion on bit shifting
later in this chapter.

There are two data-defining pseudo-ops you can use to
define packed BCD data. DB can be used as follows:
PACKED_BCD_DATA DB 12h,43h ,defines 1243 or 4312

With packed BCD numbers, it is more conventional to have
the less significant byte follow the more significant. Note that
this is the opposite to unpacked BCD numbers.

The DT pseudo-op is designed specifically to define
packed BCD data. Note that this command is not available
with ASM, the Small Assembler. DT (for Define Ten bytes) will
define 18 BCD digits. The first byte is used to hold the sign
(OOH is positive, BOH is negative); the other nine, the data.
The data is stored as most significant first; the last byte holds
the least significant digits. For example:
LARGE-DATA DT 7893146

becomes

00 00 00 00 00 00 07 89 31 46

A negative number, defined with

NEGATIVE-EXAMPLE DT -125368953553

would assemble as:

80 00 00 00 12 53 68 95 35 53

128

Advanced Arithmetic

If you use this command, you will have to write special
addition and subtraction routines which handle the sign of the
number. It was actually designed to be used with the 8087
Numeric Data Processor. Note that you can define only 18
digits; defining more results in a 29:Division by 0 or overflow
error from the assembler.

Using BCD Math
Unlike some microprocessors (such as the 6502), the 8088
does not have decimal or ASCII math modes. Instead, an
adjustment instruction is needed before or after each
arithmetic operation (ADD, SUB, MUL, DIV, etc.). Note that it
is the responsibility of the programmer to call these instruc
tions. There is no way to make the microprocessor perform all
of the mathematical operations in a BCD mode. There are six
adjustment instructions available; four pertain to ASCII math,
and two to decimal math.

AAA (ASCII Adjust for Addition). The AAA instruction
performs an ASCII adjustment on the result of an addition.
The instruction takes no operands and always adjusts the AL
register. Only the lower nybble of AL is considered. If the
BCD digit held in AL is valid, the upper nybble is cleared, as
are CF and AF. If the BCD digit held in AL is not valid (it is
hex A to F), the digit is adjusted to a valid digit, AH is in
cremented by one (to handle the carry), CF and AF are set (to
indicate a carry), and the upper nybble of AL is cleared.

For example, you would use
ADD AL,BL
AAA

if you are adding two valid unpacked BCD numbers stored in
AL and BL. If the sum of AL and BL is 9 or less, AAA appears
to do nothing. If the resulting sum is greater than 9, AAA ad
justs the sum by adding 6 (AA becomes 0, BH becomes 1,
etc.), AH is incremented by 1, and CF and AF are set. To
chain many unpacked BCD additions together you could use:
[in the data segment]
SMALL_1 DB 4,0 ;4 (least significant digit first)
SMALL_2 DB 7,0 ;7 as unpacked BCD data
SMALL—SUM DB ?,? ;undefined variable to hold sum
[in the code segment]
MOV AX,WORD PTR SMALL—1 ;add the two numbers together
ADD AX,WORD PTR SMALL-2

129

Advanced Arithmetic

AAA ;ASCII adjust lower digit
MOV SMALL-SUM[0],AL ;store adjusted digit
MOV AL,AH ;adjust the other digit
AAA

MOV SMALL_SUM[1],AL ;store adjusted higher digit

Notice that 16-bit addition is used. The way the numbers are
added is unimportant. It is easier to add the numbers together
first, and then adjust the sum. Any carry resulting from AAA
is handled automatically because the next higher digit is al
ready stored in AH. When AAA performs a carry (if the digit
is not valid), it increments the AH by one. AH is moved into
AL and then adjusted itself. Any carry resulting from this sec
ond adjustment indicates an overflow situation, and another
byte is needed to hold the sum.

This method is fine for small BCD numbers, but using it
with larger numbers would require a great deal of code. A
loop is more efficient, as the example below demonstrates.
[in the data segment]

ONE-NUMBER DB 2,5,1,2,5,0 ;52152 in unpacked

TWO-NUMBER

SUM

[and as your code]
MOV CX,6

MOV BX,0

CLC

LI: MOV AL,ONE-NUMBER[BX]
ADC AL,TWO-NUMBER[BX]
MOV SUM[BX],AL
INC BX

LOOP LI

MOV CX,6
MOV BX,0

MOV AL,SUM[BX]

L2: MOV AH,SUM[BX+1]

AAA

DB 0,4,6,8,0,0

DB 6 DUP(?)

form

;8640 in unpacked
form

;undefined sum of
two numbers

;number of digits to
add together
;point to the least
significant digit
;simulate "ADD" for
first ADC

;put one digit in AL
;add other digit to it
;store the sum

;point to next higher
digit
;do all of the digits

;number of digits
;point to least signifi
cant digit
;get least significant
digit of sum
;put next higher digit
in AH

;perform ASCII
adjust

130

Advanced Arithmetic

MOV SUM[BX],AL ;store the adjusted
sum

MOV AL,AH ;move next digit into
AL

INC BX ;point to next higher
digit

LOOP L2 ;do all of the digits

This code performs the same operations as the previous ex
ample, only this time the operations are performed in a loop
rather than in a straight line. Note that the entire number is
added together first, then the entire sum is adjusted. This is
only one illustration of how the AAA instruction can be used
to sum and adjust multidigit numbers.

AAS (ASCII Adjust for Subtraction). This instruction is
the subtraction equivalent of AAA. Like AAA, AAS does not
take an operand; it always performs an ASCII adjustment on
the AL register. If the unpacked BCD digit in AL is legal, AAS
clears the upper nybble of AL and clears CF and AF. If the
digit is not legal, AAS sets CF and AF, clears the upper nybble
of AL, and decrements AH by 1.

Illegal digits are always the result of an ASCII subtraction
when the result is negative. AAS is designed to cope with the
problem of negative fco numbers. In Chapter 4, we used the
analogy of a counter on a tape player to explain negative bi
nary numbers. We said that 999 was like — 1 (999 is one count
behind 0). A similar method is used to store negative numbers
in BCD.

Using AAS is just as simple as using AAA. For single-
digit applications, you could use code similar to the following
if you wanted to subtract an unpacked BCD digit in BL from
one in AL:

SUB AL,BL
AAS

fmm, For larger quantities, you will have to chain AAS instructions
together, as we chained AAA instructions together in the pre
vious section. For very large quantities, it is convenient to use

^ loops as we did above. Of course, for subtraction you would
substitute SUB for ADD, SBB for ADC, and AAS for AAA.

AAM (ASCII Adjust for Multiplication). AAM is used to
M convert the result of a multiplication into two valid BCD dig

its. This only applies to AL, so it is used after an eight-bit
multiplication. After AAM is performed, the lower digit of the

m 131

Advanced Arithmetic

product is stored in AL, and the upper digit in AH. The pre-
vious contents of AH are lost. Using AAM is very straight
forward; for example, to multiply an unpacked BCD digit in
AL by another in BL, use

MUL BL ;one of the operands for MUL is always AL
AAM

AAM will take the product of the MUL instruction and con-
vert it into two valid BCD digits; the least significant in AL,
and the more significant in AH. For BCD multiplication, you
must always use MUL, never IMUL. You can chain MULs to
gether (like you can chain ADDs and SUBs), but the tech
niques are rather difficult.

AAM can also be used anytime you would like to convert
a binary number from 0 to 99 into two unpacked BCD num
bers, for a simple decimal output routine for example. An out
put routine such as this is shown below. If AL does not
contain a binary number from 0 to 99, AAM returns invalid
BCD digits; no flags are set to indicate any kind of error.
AAM ;AL holds the number to print
ADD AX,'00' ;add ASCII zero to both unpacked digits
PUSH AX ;save AX
MOV AL,AH ;output the more significant digit first
CALL BYTE—OUT ;print character in AL
POP AX ;retrieve AX
CALL BYTE—OUT ;print the less significant digit

AAD (ASCII Adjust for Division). Unlike the other
ASCII adjust instructions, AAD is used before the mathemat
ical operation. AAD converts the two unpacked BCD digits
stored in AL and AH (AL holds the least significant digit) into
a binary number in AL. AH is set to 0. Using this instruction
is no more complicated than any of the others. To divide two
unpacked BCD numbers stored in AL and AH by another in
BL, use

AAD ;convert the two BCD digits into a binary number
DIV BL ;divide AX by BL
AAM ;convert the quotient (in AL) into a BCD number

Note that the above example destroys the remainder. If you
are after the remainder, not the quotient, you will have to
move AH (which holds the remainder after eight-bit division) ^
into AL before performing the AAM command, as in:

132

Advanced Arithmetic

AAD ;convert the two BCD digits into binary
DIV BL ;divide AX by BL
MOV AL,AH ;move the remainder into AL for conversion
AAM ;convert AL into valid BCD digits.

Chaining DIVs together is more difficult than chaining
MULs, although it can be done.

AAD is much like a converse of AAM. While AAM con

verts a binary number into two unpacked BCD digits, AAD
converts two unpacked BCD digits into a binary number. One
might use AAD in a simple decimal input routine which ac
cepts two ASCII digits, but requires a binary number for
calculations. Note that AAD does not check the validity of the
BCD digits before it performs the conversion. If the digits are
not valid, AAD will return an erroneous binary number. No
flags are set to indicate an error.

DAA (Decimal Adjust for Addition)
This instruction is similar to AAA above, but is used to adjust
the result of a packed BCD addition. It takes no operands, but
always adjusts the AL register. If the number is greater than
99, the carry is set, indicating that the next more significant
byte needs to be incremented by one.

Unlike AAA, which increments AH when a carry is nec
essary, DAA does not affect the AH register. It is the pro
grammer's responsibility to adjust the succeeding digits if the
carry flag is set (the auxiliary carry flag is set only to indicate a
carry out of the lower nybble).

You can use DAA just like AAA. For example, the fol
lowing code adds the two packed BCD numbers stored in AL
and BL:

ADD AL,BL
DAA

You can also chain decimal additions together, just as we
chained ASCII additions together. For larger numbers (such as
those defined with the DT pseudo-op), you would probably
use loops to sum the numbers together:
[in the data segment]

ONE-NUMBER DT 346346524 ;using DT command
TWO-NUMBER DT 687987346

SUM DT ? ;ten undefined bytes

[and as your code]
MOV CX,9 ;the number of bytes to add

133

Advanced Arithmetic

MOV BX40

CLC

LI: MOV AL,ONE_NUMBER[BX]
ADC AL,TWO_NUMBER[BX]
MOV SUM[BX1,AL
DEC BX

LOOP LI

;point to the least significant
digit
;simulate ADD for first ADC
;put one digit in AL
;add other digit to it
;store the sum
;point to next higher digit
;do all of the digits
;on exit here, carry set in
dicates overflow

L2:

MOV CX,9
MOV BX40
MOV AL,SUM[BX]

DAA

MOV SUM[BXJ,AL
DEC BX

MOV AL,SUM[BX]

ADC AL,0

LOOP L2

;number of bytes to adjust
;point to least significant digit
;get least significant digit of
sum

;perform decimal adjust
;store the adjusted sum
;point to next higher digit
;move next higher digit into
AL

;add in possible carry from
DAA

;do all of the digits

Note that INC does not affect the state of the carry flag, and
that DT defines the packed BCD numbers from the most
significant byte to least significant in increasing memory
locations.

DAS (Decimal Adjust for Subtraction)
DAS is sinular to DAA, but is used after subtraction rather
than after addition. The result of the subtraction must be
stored in AL. The carry flag is set if the next higher byte needs
to be adjusted because of a borrow. Like DAA, this instruction
does not affect the AH register. The succeeding byte must be
adjusted by the programmer. As with AAS, DAS adjusts the
difference according to our tape counter analogy for negative
numbers (see Chapter 4).

Use DAS just like AAS; to subtract a packed BCD value in
BL from one in AL, use

SUB AL,BL
DAS

Again, longer numbers can be subtracted just as they can be
added. For very long packed BCD values, you will want to use
loops, as we did above. Note that if you are using the DT for
mat, you must check the sign byte and adjust the result and
sign as necessary.

134

Advanced Arithmetic

Comparing BCD Numbers
Comparing BCD numbers is as easy as comparing normal bi
nary numbers. There is no need to adjust anything. Just use
the CMP instruction as you always have. Note that you must
start comparing with the most significant byte first, as de
scribed in the section on multiword math in this chapter.

Boolean Arithmetic

Boolean arithmetic refers to the logic operators. High-level
language users will be most familiar with these commands in
reference to conditional statements. We have all used ex

pressions like

IF A>15 AND C = 7 THEN . . .

or

IF J<3 OR K=2 THEN . . .

and, less frequently,

IF NOT L=4 THEN . . .

AND, OR and NOT are three of the various Boolean
mathematical functions. When used in conditional statements,
they serve as logic operators. Programmers who use the
BASIC graphics GET and PUT commands should also be
familiar with these operations. With the graphics commands
(as in machine language), however, their bit-oriented nature is
more apparent.

The 8088 has four Boolean arithmetic commands, AND,
OR, XOR, and NOT. The Boolean operators have the general
format shown below. The operator is one of the four Boolean
arithmetic commands. The function is the operation performed
by the operator. Any source or destination combination legal
with commands such as ADD or SUB is legal with the Boolean
operators. Note that the operator NOT has only one operand
which acts as both the source and the destination. The Bool

ean commands can perform their operations on either bytes or
words.

OPERATOR destination,source

destination = source FUNCTION destination

AND. We all understand the logical significance of the
English word and. In the statement "Send Jack and Jill to the
well," it is clear that both Jack and Jill are supposed to go to

135

8

Advanced Arithmetic

the well. In high-level languages, the AND operator serves a
similar purpose. It is generally used to link two logical state
ments together. When both of the logical statements are true,
the entire statement is true. In machine language, AND is a
little different.

The AND operation inspects each bit of its two operands
and sets the destination as follows:

0 AND 0 = 0

0 AND 1 = 0

1 AND 0 = 0

1 AND 1 = 1

In other words, a bit will be set in the destination only if it is
set in both the source and the destination. For example, if we
start with

llllOOOOB and IIOIOIIIB

after ANDing these two numbers together, we obtain the
result

llllOOOOB

AND IIOIOIIIB

IIOIOOOOB

Every time the corresponding bits are both 1, the result is a 1.
If a 1 and a 0 line up together, then the resulting bit is 0.

The AND operator can also be used to mask off unwanted
portions of a number. For example, we can isolate the lower
nybble of a BCD packed byte (held in BL) using the
instruction:

AND BL,OFH ;(0FH=00001111B)

This operation tells the microprocessor to AND the contents of
BL with OFH, and store the result in BL. For example, if BL O
holds OlOlOOllB,

OlOlOOllB contents of BL ^
AND OOOOllllB

OOOOOOllB

The upper nybble of BL has been masked off. This is useful
when you only want to deal with part of a number. For in
stance, the sample program in the last chapter used AND to
extract the low nybble from a number.

136

Advanced Arithmetic

^ You can also use this operation to isolate a single bit; you
simply AND the number you are inspecting with the appro
priate mask byte.

""f For example, if you want to isolate bit 5 (the bit
— representing the decimal value 32), you would use:

AND destination,32 ;(32D=00100000B)

This might prove useful in graphics applications.
Inspecting bits in this way proves so useful that Intel en

gineers provided the 8088 with another AND instruction
called TEST. TEST is identical to AND in all respects, except
that the result of the AND is not stored. For example, if you
use

TEST destination,16

the flags will be set just as in the operation
AND destination,16

but the value of the destination will be unchanged. After such
a TEST, you can JZ (Jump if Zero) or JNZ Qump if Not Zero)
to check for either a clear or set bit.

One often finds code such as

AND AX,AX

or

TEST AX,AX

This command is used to set the flags (PF, SF, or ZF) accord
ing to the value of AX. Note that the value of AX is
unchanged.

OR. The OR operator is, in a sense, the converse of the
AND operation. If we change our English example to read

p** "Send Jack or Jill to the well," it takes on a new meaning.
Now we are sapng that either Jack or Jill (or both of them,
making this OR inclusive) should go to the well.

The OR operation inspects the bits of the source and
destination. The bits of the result are set according to the
following rules:
0 OR 0 = 0

0 OR 1 = 1

1 OR 0 = 1

1 OR 1 = 1

If either (or both) of the bits is 1, the resulting bit is also 1.

137

8
Advanced Arithmetic

Only when both of the bits are 0 is the result 0. For example, >
if we start with the numbers

OlOlOlOOB and lllOlOlOB

and OR them together, we obtain the result
OlOlOlOOB

OR lllOlOlOB pi.1^

lllllllOB

This operation has combined the two numbers (do not confuse
this with adding them together). Whereas AND is used to
separate two numbers, OR is used to put them together. For
example, we could use OR to overlap two graphics images or
to pack unpacked BCD digits (see the section on bit shifting in
this chapter).

Programmers sometimes use code such as
OR AX,AX

when they want to set the flags according to the value of AX.
AX is not changed, but the SF, ZF, and PF flags are set
appropriately.

XOR. The Exclusive OR operation sets the bits of the re
sult according to the following rules:
0 XOR 0 = 0

0 XOR 1 = 1

1 XOR 0 = 1

1 XOR 1 = 0

A bit in the result is set only if the two bits of the operands
differ.

XOR is used to invert specific bits. If we start with the
two numbers

llllOOOOB and lOOlOlllB

in AL and BL respectively, and perform
XOR AL,BL

llllOOOOB

XOR lOOlOlllB

OllOOlllB

AL will hold OllOOlllB. XOR is very useful for graphics
applications. (See Chapter 12 for a discussion of XOR in ref- ^
erence to computer graphics.)

Programmers sometimes use code such as:

138

Advanced Arithmetic

XOR AX,AX

when they want to zero a register. To zero a register with the
MOV instruction requires more bytes than with XOR. If you
need to make a program compact, you can use XOR
register,register (or SUB register,register) when you need to zero
a register. (IBM programmers do this in the ROM BIOS; it's a
fairly common technique.)

NOT. The NOT instruction has the general format
shown below. The source can be any general register, or an
addressed memory location. NOT can be used on both bytes
and words. After a NOT is performed, the result replaces the
source value.

NOT source

NOT reverses the bits of the operand value. All of the I's
are made O's, and all of the O's are made I's. In other words, it
follows the rules

NOT 0 = 1

NOT 1 = 0

Generally, NOT is used to negate a number. The 8088 pro
vides a negate instruction (NEG), but it can be used only on
bytes or words. You cannot use NEG, for example, on a 32-bit
number. To negate a 32-bit number, you must first NOT the
two words and then add 1 to the result. The sample code be
low negates a 32-bit number stored in AX:DX (AX holds the
least significant word).
NOT AX ;take the ones complement of the number
NOT DX

ADD AX,1 ;add 1 to the result for twos complement
ADC DX,0

Shifting and Rotating
Bit shifting and rotating refers to the microprocessor's ability to
move the bits in a number left or right. You can shift or rotate
by a single bit or by a certain count. These instructions pro
vide an easy way to multiply or divide a number by a power
of 2 and for accessing different parts of a packed BCD number.

All of the bit-shifting instructions have the general format
shown below. The source can be any general register or an ad
dressed memory location. It can be either a byte or a word.
The count is either the number 1 (perform the operation once),

139

Advanced Arithmetic

or the CL register (where CL holds the number of times to
perform the shift operation).

OPERATION source,count

Shifts. There are four different shift operations, SHL
(SHift Left), SAL (Shift Arithmetic Left), SHR (SHift Right),
and SAR (Shift Arithmetic Right). They have the general for
mat shown below. All of the shifts set the overflow flag, sign
flag, zero flag, and parity flag accordingly. The source and
count are explained above.

SHL source,count
SAL source,count
SHR source,count
SAR source,count

SHL and SAL are identical instructions. When a number
is shifted to the left by one count, the most significant bit (the
sign bit in a signed number) is moved into the carry flag, a 0
is moved into the least significant bit, and all of the other bits
are moved one place to the left (see below). In other words,
bit 7 (the most significant) is moved into the carry flag, bit 6 is
moved into bit 7, bit 5 to bit 6, and so on. A 0 is moved into
the least significant bit, bit 0.

SAL

SHL 0-
7 6 5 4 3 2

This effectively multiplies the number by 2. For example, after
the following code is performed
MOV AL,01101001B
SHL AL,1

AL will hold 1101001 OB, the overflow flag will be set (because
the sign changed), and the carry flag will be clear (because bit
7 was a 0). If llOlOOlOB is shifted left again, the result will be
lOlOOlOOB, the overflow flag will be clear (because the sign
did not change), and the carry flag will be set.

SHR is the counterpart to SHL. SHR shifts the source
quantity to the right. When a number is shifted by one count
to the right, the least significant bit is moved into the carry
flag, a 0 is moved into the most significant bit, and all of the

140

! t

n

Advanced Arithmetic

other bits are moved one place to the right (see below). This
effectively divides the number by 2.

7 6 4 3

SHR 0 •E
Since a 0 is moved into bit 7, the sign of the number is no

longer meaningful. For this reason, SHR is reserved for un
signed numbers. If SHR is performed on lOOlOlOlB, the result
will be OlOOlOlOB, and the carry flag and the overflow flag
will be set (notice that the sign of the number changed).

SAR, the counterpart to SAL, is used to shift signed num
bers to the right. When SAR is performed, the least significant
bit is moved into the carry flag, the sign of the number is
examined and moved into the second most significant bit; the
other bits are moved once to the right. In other words, if the
number is positive, SAR operates identically to SHR. If the
number is negative, SAR moves a 1 (not a 0) into the most
significant bit. This has the effect of preserving the sign of the
source value.

7 6 5 4 3 2 1 0

SAR ■0
If SAR is performed on IIOIOIOIB (a negative number), the
result is IIIOIOIOB. If, on the other hand, the source value is
0010101 IB (a positive number), the result is OOOIOIOIB.

SHL and SHR are used on unsigned numbers, while SAL
and SAR are used for signed numbers. SAL and SHL are
identical; there is no need to handle the sign bit specially
when a number is shifted to the left. The SAL instruction was
included only to complete the naming scheme. Note that DE
BUG will not assemble SAL; you must use SHL.

For the right shifts, however, the sign bit must be handled
specially. SAR retains the sign bit, while SHR does not. Note
that whatever bit "fell off" the end of the number is held by
the carry flag.

141

Advanced Arithmetic

Rotates. There are four rotate instructions available on the

8088, ROR (Rotate Right), ROL (ROtate Left), RCR (Rotate
through Carry, Right), and RCL (ROtate through Carry, Left).
They take the general format shown below. Rotates set only
the carry and overflow flags. The other arithmetic flags are not
affected by these operations.

ROR source,count
ROL source,count
RCR source,count
RCL source,count

As stated before, the source can be a general register or
any addressed memory location. The count can be either the
value 1 or the CL register. If the count is the CL register, it
must hold the number of rotates to perform.

ROL rotates the number to the left. The most significant
bit is moved into the least significant bit and the carry flag.
The other bits are shifted one position to the left (see below).
For example, if the source value is 11001 lOlB, the result of a
ROL operation is 1001101 IB, and the carry flag is set.

ROL

0t
6 5 1 0

ROR is just the opposite of ROL. ROR takes the least
significant bit and moves it into the most significant bit and
into the carry flag. All of the other bits are shifted to the right
one position (see below). If the source value is 10110101B, the
result of a ROR is llOllOlOB, and the carry flag is set.

7 6 1 0

ROR

RCL moves everything to the left one bit. The most
significant bit is moved into the carry flag, the contents of the
carry flag is moved into the least significant bit, and the other
bits are shifted to the left one position (see below). For ex
ample, if OOlOlOOlB is RCLed when the carry flag is set, the
result is 0101001 IB, and the carry flag is clear.

142

8

Advanced Arithmetic

RCL 0-
7 6 5 4 3 2 1 0

RCR is similar to ROR; however, the carry flag is used as
an additional bit. In a RCR operation, the least significant bit
is moved into the carry flag, the contents of the carry flag is
moved into the most significant bit, and the other bits are
shifted one position to the right (see below). For example, if
the source value is lOlOlOOlB and the carry flag is clear, RCR
results in OlOlOlOOB, and the carry flag is set.

7 6 5 4 3 2 1 0

RCR ■0
Using Bit Shifting and Rotating
You can use shifts to multiply or divide a number by a power
of 2. For example,
SHL AX,1

multiplies the contents of the AX by 2. Performing the opera
tion twice multiplies AX by 4; three times, by 8, etc. This type
of multiplication is considerably faster than the corresponding
MUL or IMUL instruction. You can, of course, use CL as the
count for this operation. The code
MOV CL,3
SHL BX,CL

shifts BX three times, or multiplies the contents of BX by 8.
The operation
SHR AX,1

divides the unsigned value in AX by 2. If AX holds a signed
number, SAR should be used.

You can also use combinations of SHL and ADD instruc
tions to multiply a number by other integers. For example,
MOV CX,AX ;store AX in CX
SHL AX,2 ;multiply AX by 4
ADD AX,CX ;add original AX to the product (multiply by 5)
SHL AX,1 ;multiply by 2 again
effectively multiplies AX by 10.

143

Advanced Arithmetic

You can also combine rotates and shifts to shift numbers

larger than 16 bits left and right. For example,

SHL low_word,l ,-shift the lower word once
RCL high_word,l ;rotate lost bit into the higher word

shifts a two-word quantity once to the left. The SHL instruc
tion sets the carry flag to the bit which "fell off" the end of
the low word. The RCL moves that extra bit stored in the

carry flag into the least significant bit of the high word. You
can continue to chain RCLs if you need to shift a large number.

To shift a large number to the right, use
SHR high—word,l ;shift the high word once
RCR low_word,l ;rotate the lost bit into the lower word

If you are shifting a large signed quantity, remember to use
SAR rather than SHR. Start with the highest word when you
shift to the right, while you start with the lowest word when
you shift to the left.

You can use shifts and rotates to relocate nybbles from
one position in a number to another. The procedure
HEXCONV, in the sample program at the end of the last chap
ter, uses this technique to determine the values of the different
nybbles in order to print the correct digit. You can also use
shifts and rotates to compact or separate (pack or unpack)
BCD digits. If, for example, AH and AL hold unpacked BCD
digits (AH is most significant), you can use something like
MOV CL,4 ;set shift count
SHL AH,CL ;move digit in AH to the upper nybble
OR AL,AH ;OR the two digits together

to pack the data into AL. You can reverse the procedure, and
unpack the data, with the following code:
MOV AH,AL ;move the digits into the other register
MOV CL,4 ;set the shift count
SHR AH,CL ;move more significant digit into the lower nybble
AND AL,OFH ;remove more significant digit from other register

The AND masks the extra digit from the AL register. AH now
holds the more significant digit, and AL the lower.

You have been given some examples of the bit-shifting
operations. All of the bit shifting and rotating instructions are
diagrammed in Figure 8-2 below. As you have seen, shifting
can be used to multiply and divide numbers by powers of 2.
By combining bit shifts with other instructions, multiplying by
other integers is possible. This is considerably faster than MUL

144

Advanced Arithmetic

or IMUL. You can also use these instructions to isolate dif
ferent sections of a number, and to pack and unpack BCD
data.

Figure 8-2. Bit Shifts and Rotates

7 6 5 4 3 2 1 0

0-SAL

SHL

7 6 5 4 3 2 1 0

SHR 0

7 6 5 4 3 2 1 0

SAR

t
0

ROL0
7 6 5 4 3 2 1 0

T
7 6 5 4 3 2 1 0

ROR 0

7 6 5 4 3 2 1 0

RCL c

1

7 6 5 4 3 2 1 0

0RCR

C indicates the carry flag.

145

CHAPTER
) (

9
String Instructions ^

Machine language strings are a little different from BASIC
strings. There are a number of machine language instructions
used to move, compare, scan, and otherwise manipulate
strings.

In BASIC, strings are generally used to store characters.
Remember, however, that characters are bytes. In fact, BASIC
strings are really strings of bytes. A string is similar to a long
table of bytes. In other words, a string in BASIC is really a
kind of array. Each element in the array is one character in the
string. Strings in machine language are no more than arrays of
bytes. To add versatility to the string-handling abilities of the
8088, Intel has also provided for word strings. In a word string,
each element of the string is a word, rather than a byte.

There are five machine language instructions which are
used to manipulate strings: LODS, STOS, SCAS, MOVS, and
CMPS. Before we get into the details of the instructions, let's
examine some of the general principles of string handling.

The Direction Flag (DF)
Direction Flag, DF, is used to determine the directional opera
tion of the string instructions. If strings are stored in succeed
ing addresses, you must clear DF before performing any string
instructions. If your strings are stored in decreasing addresses,
you must set DF before any string instructions. The CLD
(CLear Direction flag) instruction is used to clear DF, while
STD (SeT Direction flag) is used to set DF. Generally, how
ever, strings are stored in succeeding addresses, so you will
want to use CLD before any string instructions.

The REPeat Prefixes
String instructions have a feature which makes them different
from the other instructions; string instructions can be repeated
automatically. The 8088 instruction prefix REP tells the
microprocessor to repeat the given string operation CX times.

146

f I

9

String Instructions

For the code below:

MOV CX,100
REP LODS

LODS will be executed 100 times (LODS is explained below).
There are two other REP instruction prefixes. The first,
REPE/REPZ, repeats if the zero flag indicates a zero result.
The other, REPNE/REPNZ, repeats if the zero flag indicates a
nonzero result. Note that the check against the zero flag is an
extension of the normal REP prefix.

The LODS Instruction
The LODS (LOaD String) instruction is used to access one
byte or word of a string. There are actually two LODS instruc
tions, one for bytes (LODSB) and another for words (LODSW).
LODSB transfers the byte pointed to by SI to AL and adjusts
SI to point to the next byte. LODSW transfers the word
pointed to by SI to AX and adjusts SI to point to the next
word. SI generally acts as an offset into the data segment;
however, the segment can be changed with segment overrides
(as described below).

LODS automatically adjusts SI to point to the next ele
ment in the string. This adjustment can be either positive (the
string is stored in increasing addresses) or negative (it is stored
in decreasing addresses). Remember that the direction flag
tells the microprocessor which way the strings are stored. If
the direction flag is clear (0), SI is incremented; if it is set, SI is
decremented. In other words, after an STD, SI will be
decremented each time LODS is used; after CLD, SI will be in
cremented each time LODS is used. Note that SI is adjusted
(incremented or decremented) by 1 for LODSB and by 2 for
LODSW.

The code below performs the same operation as LODSB
when the direction flag is clear:

MOV AL,[SI]
INC SI

First, the byte pointed to by SI is moved into AL, then SI is
incremented by 1.

The assembler accepts two formats for the LODS instruc
tion. First, you can explicitly specify LODSB or LODSW. The
other possibility is to use the format
LODS operand

147

9

String Instructions

where the operand is the name of the string being accessed. If
the string is made up of bytes, the assembler will use LODSB;
if, on the other hand, the string is made up of words, the
assembler will use LODSW. Note that the LODS instruction it
self does not take an operand. The operand is used solely by
the assembler to determine the size of the operand and which
segment register to use. If you do not have a specific operand,
you must use the following format to override the segment
register:

LODS size PTR segtnent-register:[Sl\

The size is either byte or word (for LODSB and LODSW) and
the segment-register is CS, DS, ES, or SS. If you do not specify
a size (you just use LODS segment-register:[Sl]), the assembler
will assume you want LODSB.

LODS can be used when you need to sequentially access
bytes or words in a table. LODS has the advantage that it
automatically increments or decrements the pointer register.
For example, you could use LODS to print a string one charac
ter at a time (the 0 byte indicates the end of the message):
[in the data segment]
MESSAGE DB 'This is a sample message',13,10,0
[in the code segment]

MOV SI,OFFSET MESSAGE ;get the address of the message
LI: LODSB ;load one byte of the message

CMP AL,0 ;is it the end of the message?
JE DONE ;yes, so we are done
CALL PRINT—CHARACTER ;print the character
JMPLl ;get the next byte of the message

DONE:

Note that we are using the PRINT—CHARACTER routine
from the program "Primes."

Also notice that SI is set to the address of the variable
MESSAGE. The OFFSET command was discussed briefly in
Chapter 7. OFFSET is used to determine the location of a vari
able. In this case, OFFSET will return the position of MES
SAGE relative to the base of the segment it is in. Remember
that OFFSET is an assembler command, not an 8088 com
mand. The command MOV SI,OFFSET MESSAGE will be
turned into an immediate MOV command, and the immediate
value will be the address of MESSAGE relative to the base of
the segment it's defined in.

148

9

String Instructions

The STOS Instruction
The STOS (STOre String) instruction is essentially the op
posite of LODS. STOS is used to store a byte or a word in a
string. Note that STOS uses ES:DI to address the string, not
DS:S1. There is no way to override the segment assignment of
STOS; you must always use ES.

As with LODS, there are two STOS instructions: STOSB
(for byte strings) and STOSW (for word strings). STOSB stores
AL in the memory address pointed to by ES:DI and adjusts DI
to point to the next byte. STOSW stores AX in the memory
address pointed to by ESiDI and adjusts DI to point to the
next word.

The direction flag is used by STOS in the same way it is
used by LODS. For STOSB, DI is incremented by one if DF is
clear and is decremented by one if DF is set. For STOSW, DI
is incremented or decremented (according to the state of DF)
by two.

The STOS instruction can be repeated a certain number of
times with the REP prefix. For example, you could use STOS
with REP to fill a portion of memory. The following code fills
the string TABLE with 100 ASCII spaces.
[in your extra segment]
TABLE DB 100 DUP(?) ;undefined table of 100 bytes

[in your code segment]
CLD ;work upwards in memory
MOV AL,'' ;space character in AL
MOV CX,100 ;number of times to repeat
MOV DI,OFFSET TABLE ;get the address of TABLE
REP STOS TABLE ;fill TABLE with spaces

The following code performs the same operation, but without
the STOS and REP instructions:

MOV CX,100 ;number of times to loop
MOV DLOFFSET TABLE ;get the address of TABLE

LI: MOV BYTE PTR ES:[DI],'' ;put a space in one byte of TABLE
INC DI ;point to next byte in TABLE
LOOP LI ;repeat the "fill"

Note that you can use REP prefixes with LODS as well,
but doing so is rather pointless.

As with LODS, the assembler accepts two formats for

149

9

String Instructions

STOS. You can either explicitly specify STOSB or STOSW, or
you can use the format

STOS operand

where the operand is the name of the string you are using. If
the string is a string of words, the assembler will use STOSW;
on the other hand, if the string is a string of bytes, the assem
bler will use STOSB.

The SCAS Instruction
The SCAS instruction (SCAn String) is used to search a string
for a specific byte or word. As with STOS, SCAS always uses
ES:D1 to address the string. You cannot override the segment,
so you must always use ES with SCAS.

There are two SCAS instructions, SCASB for bytes and
SCASW for words. The SCASB instruction reads the byte
pointed to by ES:D1 and compares it with the byte in AL. In
addition, DI is adjusted to point to the next byte in the string.
The SCASW instruction reads the word pointed to by ES:D1,
compares it with the word in AX, and adjusts DI to point to
the next word in the string.

As with the other string instructions, DF is used to deter
mine whether the pointer, DI in this case, should be in
cremented (if DF is clear) or decremented (if DF is set). In
either case, DI is adjusted by one if SCASB is used, and by
two, if SCASW is used.

After a SCAS operation, you can use any of the con
ditional jumps explained in Chapter 5. SCAS is the same as
the following comparison:
CMP accumulator,ES;[DI]

Since SCAS is a decision-making instruction, it is often
used with REPE or REPNE. You can use REPE and SCAS, for
example, to find the first nonzero element in a table of words:
[in your extra segment]
WORDS DW 100 DUE (?) ;undefined table of 100 bytes

/

[in your code segment]
CLD ;work upwards
MOV CX,100 ;length of table
MOV AL,0 ;looking for nonzero
MOV DI,OFFSET WORDS ;get address of table
REPE SCAS WORDS ;repeat until nonzero found

150

9

String Instructions

JCXZ ALL—ZEROS ;if CX = 0 then table all zeros
[nonzero was found, and next element pointed to by ES:DI]

If a nonzero element is found, ES:DI will point to the word
after the nonzero element. If you want to examine the nonzero
element, you will have to adjust DI back one element.

The following code performs a similar operation, but does
not use the SCAS instruction (note that, on return, DI is
slightly different below):

MOV CX,100 ;length of table
MOV AL,0 docking for nonzero
MOV DI,OFFSET WORDS ;get address of table

LI: CMP AL,ES:[DI] ;is element in table zero?
JNE L2 ;element is not zero
ADD DI,2 ;point to next element
LOOP LI ;do all 100 elements
JMP ALL-ZEROS ,-table is all zeros

L2: [nonzero was found, and is pointed to by ES:DI]

As with the other string instructions, the assembler will
accept two formats of the SCAS instruction. You can either
specify SCASB or SCASW (for byte or word scans), or you can
use the format

SCAS operand

where the operand is the name of the string you are scanning.
If the string is made up of bytes, the assembler will use the
SCASB operation. If the string is made up of words, it will use
the SCASW instruction. Note that the operand is solely for use
by the assembler. SCAS, as a machine language instruction,
does not take an operand.

The MOVS Instruction
The MOVS (MOVe String) instruction and the CMPS (CoM-
Pare String) instruction are probably the most complex of the
five string instructions. MOVS is used to move a string from
one place in memory to another. Again, there are really two
MOVS instructions: MOVSB to move byte strings, and
MOVSW to move word strings.

The MOVSB instruction moves the byte pointed to by
DS:SI to the memory address pointed to by ES:DI. Both SI and
DI are adjusted to point to the next byte according to DF.
Remember that if DF is clear, string operations work up in
memory (so for MOVSB, SI and DI are incremented by one),

151

9

String Instructions

and that if DF is set, string operations work down in memory
(for MOVSB, SI and DI are decremented by one). MOVSW
moves the word pointed to by DS:SI to the memory location
pointed to by ES;DI. DI and SI are adjusted to point to the
next word (SI and DI are incremented or decremented by two
depending on the state of DF). The segment register used to
address the destination must always be ES:DI. However, you
can change the segment register for the source with any of the
segment overrides as described below.

MOVS is often used with the REP prefix to move large
sections of memory from one place to another. The code
[in your data segment]
HERE DB 150 DUP(?) ;150 undefined bytes

[in your extra segment]
THERE DB 150 DUP(?) ;another 150 undefined bytes
[in your code segment]
CLD ;work up
LEA SI,HERE ;address of source string
LEA DI,THERE ;address of destination string
MOV CX,150 ;length of string
REP MOVS THERE,HERE ;move the string

copies the byte string HERE to the byte string THERE. Note
that we can also use REPE or REPNE because MOVS does not

set the zero flag.
As with the other string instructions, the assembler will

accept two formats for MOVS. You can specify MOVSB or
MOVSW when you want to move byte or word strings, or you
can use the format

MOVS destination,source

where the destination is the string pointed to by ES:D1, and the
source is the string pointed to by DS:S1. Note that both the
source and destination strings must be either bytes or words.
If the operands are byte strings, the assembler will use
MOVSB. If the operands are word strings, it will use MOVSW.
If you do not have specific operands the assembler can use to
determine which segment register to use, you must use the
following format to override the segment register:
MOVS size PTR [DI], size PTR segment-register:[Sl]

The size is either byte or word (for MOVSB and MOVSW),
and the segment-register is CS, DS, ES, or SS. Remember that
you cannot change the segment register for the destination,

152

9

String Instructions

only the source. Also note that if you do not specify a size
with the PTR instruction, the assembler will assume you want
MOVSB.

The CMPS Instruction
CMPS is used to compare two strings. As with the other string
instructions, there are actually two CMPS instructions: CMPSB
for bytes and CMPSW for words. CMPSB compares the byte
pointed to by ESiDl with the byte pointed to by DSiSI, and
adjusts SI and D1 to point to the next byte. CMPSW compares
the word pointed to by ESiDl with the word pointed to by
DSiSI, and adjusts DI and SI to point to the next word. As
with all string instructions, DF is used to determine whether SI
and DI should be incremented or decremented. Note that you
cannot change the segment used with the DI, you must always
use ES with DI. You can, however, change the segment used
with SI with one of the segment overrides. The techniques are
the same as those used with the MOVS instruction. After a

CMPS operation, you can use any of the conditional jumps ex
plained in Chapter 5. CMPS is the same as
CMP DS:[SI],ES:[DI]

where SI points to the first operand, while DI points to the
second.

REPE or REPNE prefixes are often used with this instruc
tion. This allows you to compare two strings and stop when
the two are the same, or are different. Note that this is not like
SCAS, which looks for only one particular byte or word in a
string. For example, the following code will compare two word
strings until there is a difference between them:
[in the data segment]
ONE_STRING DW 20 DUP(?)

f

[in the extra segment]
OTHER-STRING DW 20 DUP(?)

[in the code segment]
CLD ;work up in memory
MOV CX,20 ;length of strings
MOV SI,OFFSET ONE—STRING ;address of first string
MOV DI,OFFSET OTHER STRING ,'address of second
REPE CMPS ONE-STRING,OTHER_STRING .compare the two

Note that after the CMPS, 51 and DI will point to the word
after they differ, not the word where they differ.

153

9

String Instructions

As with all of the other string instructions, CMPS can
take two formats. You can specify CMPSB or CMPSW explic
itly, or you can use the instruction
CMPS operand—1,operand—2

Operand—1 is the string pointed to by DS:S1, and
operand—2 is the string pointed to by ES:DI.

Note that MOVS and CMPS are the only two machine
language instructions which perform memory-to-memory
operations.

The repeat prefixes can be used with any of the string
instructions. Also keep in mind that none of the string instruc
tions (as machine language instructions) take any operands.
The operands are specified only for the assembler, so that it
can determine whether it should use the byte or word version
of the instruction and which segment register to use.

Be careful using a REPeat prefix and a segment override
with a string instruction. If an interrupt (see Chapter 11) oc
curs while the string instruction with a segment override is
being repeated, the REPeat will not be completed. You must
do two things to overcome this problem. CX must be zero at
the end of the REPeated instruction and the interrupts must be
disabled before the string instruction, and reenabled after
wards (using the CLI and STI instructions discussed in Chap
ter 11).

CLI

Rl: REP MOVS WORD PTR [DI], WORD PTR ES:[SI]
JCXZ R2
DEC CX

JMP Rl
R2: STI

Remember, this applies only if the string instruction is being
repeated and there is a segment override. If the string instruc
tion is not being repeated or if there is no segment override,
there is no need to put in this special check (see the sample
program from Chapter 10 for an example of this technique).

String Search Example
The sample program for this chapter is called "SORT.ASM." It
alphabetically sorts a short list of character strings. The length
and number of strings are specified by the constants
STRING_LEN and NUMBER-STRINGS. In the example data

154

9

String Instructions

(called NAMES), the length of each string is 16 characters, and
there are 10 sample pieces of data. If you decide to change the
length of the strings or the number of strings, remember to
change these two constants at the beginning of the program.

The TEMP—STRING variable is used as a kind of string
"accumulator." There are three messages which are also de
fined in the data segment. The first, UNSORTED—MES, begins
with a carriage return and linefeed. This puts the cursor at the
beginning of the next line of the screen. Note that there is a
carriage return and a linefeed at the end of the string as well.
The 0 is used to indicate the end of the string; it will not be
printed. The second string, SORTED_MES, is similar. Note
that we can use just linefeeds if we want to move to the next
line of the screen. The last string defined in the data segment,
CR-LF, is just a carriage return and a linefeed.

Next we defined the stack segment, as always. Following
the stack declaration is the code segment. The first few
instructions set up the FAR RETurn to DOS. DS and ES are
set up as the data segment. Remember that some of the string
instructions (MOVS and CMPS, for example) must use ES.
The direction flag (DF) is cleared so that all string operations
are performed going up in memory, not down. The rest of the
main loop is well commented.

Notice how the PRINT—MES subroutine uses the LODSB
instruction. Since the string is terminated by a zero byte, when
AL holds 0, we know the entire string has been printed. The
PRINT—MES routine calls CHARACTER—OUT. This is the

same CHARACTER—OUT procedure that is used in the pro
gram in "PRIMES.ASM." The PRINT—STRINGS routine prints
the data (in this case the names). If you like, you can have it
print carriage returns between the strings (place the code to do
this after the LOOP PRINT—ONE—STRING instruction).

The actual sorting routine comes next. The sort procedure
searches the string for the lowest string (alphabetically) and
exchanges it with the first element in the array. Then, it
searches for the lowest string again (excluding the first one)
and exchanges it with the second string. This goes on until the
entire string has been sorted.

The routine SORT in SORT.ASM calls two other routines.
The first, FIND—LEAST, searches for the lowest string. When
the routine is called, BX must point to the first string to be
checked, and DL must indicate which string it is (first, second,

155

9

String Instructions

third, etc.). On return, BP points to the lowest string. The sec
ond, XCHG—STRINGS, exchanges the string pointed to by BP
with the one pointed to by BX.

The program SORT.ASM is intended as a demonstration
of the use of string instructions and is not very useful in its
present form because you must reassemble it each time you
need to sort new data. You must also reconfigure the program
if your strings are a different length from the ones given here.

f '

n

156 n

H I I I I I I I I

Program 9-1. SORT.ASM

SORT.ASM

This program sorts through a l ist of
length str ings. The str ings are
made up of characters, al though

any byte sized data can be sorted.

page ,96

f

s t r i n g_Ie n

n umb e r_s t r i n g s

e q u 16

e q u 10

dseg

n ame s

segmen t

t emp_s t r i n g

db 'Koumr i an T

db 'Berman J

db 'Fenn P

db 'Perry D

db 'Sensabaugh J

db 'Sug i yama M
db 'CI erne n s W

db 'Rieffel E

db 'Me t caI f C

db 'Hakansson A

db str ing_len dupC?)

J I ength of st r i ngs
; n umb er of str ings

;data to be sorted

temporary str ing var

U1

C/3

3
TO

3^
En 'O
f-t
-t

c
o

Ol
00

u n s o r t e d_me s

sorted mes

c r_ I f

d s e g

«

s s e 9

5 s eg

db 13,10, 'Here are the str ings before '
db 'they are sorted:', 13, 10,0

db 1 3 , 1 0 , 10,10, 'And now the str ings after

db 'the sort:',13,10,0

db 13,10,0 icr-l f str ing

ends

s e gme n t stack

dw 128 dupC?D

ends

; s t a c k s egme n t

c s e g s e gme n t

so r t_name s p r oc far

assume cs:cseg,ds:dseg,es:dseg,ss:sseg

push ds ;for far return to DOS
mov ax,0

push ax

mov ax , dseg

mov ds,ax ;set up DSEG in DS

mov es,ax ;set up DSEG in ES

old {Str ings stored upward

f

mov si ,offset unsorted_mes spr int f i rst message
cal l p r i n t_me s

cal l print_str ings ;pr int the str ings

cal l sort ;do the sorting
mov si ,offset sorted_mes spr int second message

(/)

p
tn ^

1 H) 1 J 1 1 □ 1 1

]))])) ; 1 1)]

cal l pr1nt^mes
cal l p rIn t_s t rIngs
mov 8l ,offset cr_lf

cal l prInt^mes
ret

8ort_names endp

f

print message pointed to by DS:SI
message Is terminated by a 0 byte

registers preserved

;pr

r e

assume no

«

s

I nt

sprint

strings

CR-LF

aga I n

turn to DOS

CJl
v£>

i

prlnt_mes proc near
another^char:

I odsb

cmp a I ,0
je done_prInt_mes
caI I character^out

jmp another_char
done_p rIn t_mes:

ret

p rIn t^mes endp

s

s print a character passed
s only DL and AX affected,

s

character^out proc near

mov dI •a I

sget byte of string

s is It the end marker?

syes, finished printing

sprint the character

sdo another character

sreturn to cal ler

In AL to screen

scharacter to output

C/5

QTQ

HH

rt

c
n
rt

o*

ON
o

ioutput character
sprint character

mov ah,2

int 21H

ret

character^out endp

I

s print the names

s length of each name in str ing^len
s number of strings to print in number_s trings
s assume al l registers destroyed

print.s trings proc near

mov si ,of f se t names

mov dh,numbe r_s t r i ngs

p r i n t_n e x t_s t r i n g :
mov cx,string_len

p r i n t_one_s t r i ng:

I odsb

cal l characte r_ou t

loop p r i n t_one_s t r i ng
dec dh

jnz print _n ex t_s t r i
ret

pr i nt^s t rings endp

s

I do the actual sort of the strings

I uses "selection sort" algorithm (see text)
s assume al l registers destroyed

ng

sbase of NAMES table

;numbe r to print

s length of each string

sget one byte

spr int the character

sdo rest of string
sdo other strings

s return to caI Ier

J i l l 1 1 1 1 1 1

I j I]) 1 1 1 1

i

sort proc near
mov bx,offset names

mov dI . 0

do_se I ect i on_aga i n :
cal l fInd_l eas t

caI I xchg_s t rIngs

add bx,s t rIng_l en
dl

dI ,number_s t r i ngs
do_seIec tIon_aga i n

i no

cmp

jbe

sort

ret

endp

;base of NAMES table
;• strings already sorted

If i nd I owes t s t rIng
;put in lowest string
;point to next string
{another string sorted
(Sorted ai l?

(no, more to do

(return to cal ler 3
(TO

find the least string
BX pionts to first string to sort
OL is the string's number

OX and BX preserved
BP tel ls which string is least

3
5) vo

C
n

O

fin least proc near
push dx

push bx

mov bpsbx

mov s i ,bx

mov di ,offset temp_str ing

mov ox , s t r 1ng_l en

save DX and BX

assume BX str ing least

move i t into t emp area

ON t emp_s tr ing,namesrep movs

search_loop:

cmp dI ,numbe r_s t r i ngs
j e found_l east

mov di ,offset tempest

mov s i ,bx

mov cx,s t r i ng_l en

repe cmps names,temp_

jcxz next_check

ja next_check

mov bp , bx

di ,offset t emp_s t

s I , bx

cx,str lng_len

mo V 8 t emp__s tr ing.

mov

mov

mov

rep

nex t_check :

i n c

add

jmp

found__ least

pop

pop

ret

f i nd_l eas t

;checked al l str ings?

;yes , so found i t

r ing ;check BX str ing...

;.. .against t emp area

str ing

are they ident ical?

is BX str ings greater?

BP pionts to least str ing
r ing smove new least to temp

d I

bx,str ing_len

sear ch_l oop

bx

dx

endp

names

;check the next str ing

; r ecove r BX and DX

;return to cal ler

C/5

13
QTQ

•-t

C
n
rt

o
3

; exchange str ing BX wi th str ing BP
; only DX and CX preserved

1 1) 1 1 1 1 1 1 1

xchg_strings proc near

mov si ,bp ;move BP str ing to temp
mov di ,offset temp_str ing

mov cx,string_len

rep movs temp_str inp,names
mov si fbx ;move BX str ing to BP

mov d i ,bp

mov cx,string_len
rep movs names,names

mov si ,offset temp_str ing ;mov temp to BX ^
mov d i , bx g*
mov cx,str ing_len ^
rep movs names , t emp_s t r i ng g
ret jreturn to cal ler g

o

X c h g_8 trings endp g-
3

cseg ends
end ;end of program

Ov

CHAPTER

10 :
Using Machine "

Language with BASIC
Why, you may ask, would someone want to use machine lan
guage with BASIC? Machine language programs have the
potential to do anything BASIC can manage, and to do it
much faster. But it is often more convenient to use an existing
BASIC feature, rather than invent a machine language routine
to perform the same task. Thus, parts of your program (writ
ten in BASIC) can use BASIC'S special features; parts of your
program (in machine language) can execute with the necessary
speed.

BASIC has many useful features. Here's a brief and in
complete list: full eight-byte floating-point number handling;
easy manipulation of strings; an enormous variety of trigo
nometric and transcendental functions; easy-to-use disk files;
simple text mode screen handling; extremely powerful graph
ics control, including DRAW, CIRCLE, PAINT, GET, PUT,
WINDOW, and VIEW; easy control of joysticks and other
peripherals; powerful PCjr music control; trapping of events
(keystrokes, timers, joysticks, light pen, and more). The list
goes on and on.

To make use of these features, the usual procedure is to
write a program in BASIC which communicates with its ma- ^
chine language subroutine(s) by the CALL or USR statements. '' '
Theoretically, it is also possible to write an all machine lan
guage program that directly calls the subroutines in the BASIC
interpreter ROM. However, BASIC is different on different
members of the PC family, so this approach is not very fea
sible.

In this chapter, we will begin by discussing the difficult
task of loading a machine language file into memory where it
can actually run with BASIC. Then we shall explain how
BASIC and machine language subroutines communicate with ' '
each other. The sample program included with this chapter is

164 n

10

Using Machine Language with BASIC

a routine called "Scroll/' which allows you to scroll the cur
rent screen any distance to the right or left.

Pascal users, don't despair: Appendix F discusses the rel
atively simple task of using machine language with your Pas
cal programs.

Until now, loading a file has always been simple. In
BASIC, you simply use the LOAD command; from DOS, you
just type the name of the program, and DOS loads and exe
cutes it. But to use machine language with BASIC, it is nec
essary to be rather more devious than with normal DOS
machine language programs. Don't worry too much, however;
once a machine language program is installed properly in
memory, BASIC'S BSAVE and BLOAD commands are all that
is needed to load and save it.

Where to Put the Program
One of the most difficult requirements for a machine language
routine to be used with BASIC is that it must not get in BA
SIC'S way. Almost any location within the BASIC work space
is fair game to be clobbered without the programmer's knowl
edge. "The BASIC work space typically starts at about the 26K
mark on the PCjr, and around the 42K mark for the PC's
BAS1C.COM (the work space is what the default DEF SEG
points to). BASIC takes over the entire 64K segment starting
from that point, and uses it for

BASIC'S own data area

COM buffers (for modem communication)
file buffers (for handling disk files)
your BASIC program
scalar data

array data
string data
stack space

Since the stack and string data grow down from the top of
memory, and scalar and array data grow up from the bottom
of memory, it's hard to find a place even relatively safe from
BASIC.

There are two ways of getting your machine language
routine in a safe place. First of all, BASIC provides some areas
that are safe. If your program doesn't use the disk drives, the
file buffers are safe places to put programs. See the BASIC

165

10

Using Machine Language with BASIC

manual's appendix on "Technical Information and Tips." It's
also possible to DIMension an array and then place a machine
language routine in the space allocated for the array data. You
can find the addresses of file buffers and variables with

BASIC'S VARPTR function. However, there is a difficulty with
this approach. Since your programs will be starting at some
unknown address within BASIC'S data area, and not at offset
zero within a segment, the addresses within your program
(references to data and the like) will be wrong. You can avoid
this problem by not using variables in your program, but this
tends to be somewhat limiting. Simple programs can be used
in this way (and POKEd in from DATA statements, too), but
not programs of any complexity.

Another approach is more promising. Since BASIC has
such a firm grip on its work-area segment, the easiest place to
put a machine language subroutine is outside this segment.
This approach is easier, but there are a few complexities. First
of all, not all computers have extra space outside of the BASIC
work area; a 64K PC, for example, has no room left over once
BASIC has taken over. Second, the PCjr and the PC have their
BASIC work areas in different places in memory, making it
hard to establish a segment address that is outside BASIC'S
work area on all computers.

As a rule, on 128K PCjrs, the best place to locate a ma
chine language subroutine is at segment address 1700H (the
92K mark). This leaves 20K of unused memory between BASIC'S
work area and the screen area (at segment address ICOOH). To
call a machine language routine at segment 1700H, use the
BASIC DEF SEG command:

DEF SEG = &H1700

and then use the CALL command.

If you have a PC with more than 96K of memory, any
segment address of ICOOH or above is okay, up to the limits
of your memory expansion. Use the DEF SEC command, as
above, to set the code segment to the right location.

If your computer has only 64K, don't worry. The BASIC
CLEAR command has a provision for freeing memory for ma
chine language. Normally the CLEAR command is used to
clear out your variable area. However, optional parameters can
be specified to change the way BASIC handles its work area.
The particular format of the CLEAR command that we're con
cerned with is

166

10

Using Machine Language with BASIC

CLEAR ,maxsize

The maxsize parameter tells BASIC how many bytes it can use
for its work area. So, if you have a 64K PC, you can specify
CLEAR ,16384

leaving only 16K for your BASIC program. If you're using
BASIC.COM (not BASICA), that should leave you all the room
from segment address BOOH to the top of your memory.

Another way to limit the size of BASIC'S work area is by
specifying a special parameter when you type BASIC from
DOS. Normally BASIC takes as much memory as it can, up to
a maximum of 64K, for its work area, but you can force it to
start out with less memory with the following parameter;
BASIC IMimaxsize

This way, BASIC starts out with less memory, and you don't
need to use the CLEAR command.

Program 10-1 is a short program that will tell you where
you can start putting your machine language programs. The
program is in machine language, and returns to the master
BASIC program the segment address of BASIC'S work area. By
adding lOOOH to that, we can find out where BASIC'S 64K
segment ends. If this program returns a value that's bigger
than your available memory, you'll have to use CLEAR or the
/M parameter to set up an area outside of BASIC. The ma
chine language data statements in Program 10-1 are equivalent
to this short machine language program. Later in the chapter,
we'll explain how it works.
CSEG SEGMENT CODE

PROGRAM PROCFAR

PUSH BP

MOV BP,SP
MOV SI,[BP-F6]
MOV [SI],OS
POP BP

RET 2

PROGRAM ENDP

CSEG ENDS

END

For PCjr owners and PC owners with the color/graphics
card, there's one other convenient spot to store programs. If
your program uses the 80-column text screen, but doesn't
change pages (see Chapter 12 for a discussion of pages),

167

10

Using Machine Language with BASIC

there's 12K of memory that can be used from segment address
B900H up to BBFFH. Also, if your PC has both the mono
chrome and color/graphics boards, you can store machine lan
guage on one while using the other. But be careful when using
this area: The SCREEN command can be used to wipe out all
of graphics memory, and the 16K graphics modes will clear
the color/graphics memory.

Loading the Program
Now we've established where to load programs. The next
question is how we load them. The easiest way to accomplish
this is with DEBUG. However, since we're loading our pro
grams into unusual places (the top of memory instead of the
bottom), we'll need a special machine language program to
load the combined BASIC/machine language program wher
ever we want it to go. Program 10-2 should be typed in and
used each time you load a program into BASIC for the first
time (after that, you can use BASIC'S BLOAD command).

Using EXELOAD. Once you've assembled and linked
"EXELOAD.ASM" (Program 10-2), you're ready to begin
bringing machine language programs into BASIC. We'll show
you the technique to load a BASIC/machine language pro
gram, even though we haven't written any as yet. For now,
we'll use the name "SCROLL.EXE" as our sample
BASIC/machine language program, and the segment address
ICOOH for our load address. To use EXELOAD, enter the
following:
A>DEBUG EXELOAD.EXE

-N SCROLL.EXE (use your filename here)
-E CS:12

091B:0012 00.00 17.1C (use your load address here)
-G

Program terminated normally
-Q

A>_

You have to use the N command to specify the name of your
machine language program for BASIC, and set the segment
address you want your program to load at with the E com
mand. Once these two parameters are set, execute EXELOAD
with the G command, then leave DEBUG with the Q com
mand. It's also possible just to type
168

n

n

10

Using Machine Language with BASIC

A>EXELOAD filename.EXE

if EXELOAD.ASM was assembled with the correct default seg
ment load address. So, 128K PCjr users might assemble a ver
sion with MOV AX,1700H, while PC users with more than
96K could assemble theirs with MOV AX,1C00H.

If you have an expanded PCjr or a PC with more than
96K, you can just type BASIC (or BASICA). Otherwise, you'll
have to specify the /M parameter. Eor example, if you have a
64K PC, you might want to specify

A>BASIC /M:32768

BSAVE and BLOAD. Einally, we're in BASIC, and our
machine language program is still in memory where the
EXELOAD program put it. At this point we should save the
program in BASIC'S own format, with the BSAVE command.
The BSAVE command allows us to store machine language
programs (or other data) on disk, and then retrieve them with
the BLOAD command, thus avoiding the DEBUGing and
EXELOADing. So you should enter

DEE SEG = &H1700

(using the address where you loaded your program in place of
1700 above). Then you save the program with the BSAVE
command:

BSAVE "SCROLL.BSV",0,/c«gf/i

Choose any name for the file you like; a good extension for
the file might be .BSV to indicate a BSAVEd file. The length of
the file is approximately the same as the length of the .EXE
file on your disk. However, if you're in doubt as to how much
memory to save, always save more than the bare minimum.

The hassle is finished; from now on, to use your machine
language program, all you have to do is enter
DEE SEG = &H address

BLOAD "filename.exf',0

using the correct address and filename, and the machine lan
guage program will be loaded in. Make sure, however, that
you always use the same segment address, since most pro
grams can't be relocated to different locations in memory.

Parameter Passing
Now that you know how to load a program, you can learn how

169

10

Using Machine Language with BASIC

to interface your machine language program with BASIC.
Most machine language subroutines require parameters from
the BASIC master program. For example, our scroll routine,
discussed at the end of this chapter, must be told how far to
scroll the screen. Of course, some machine language routines
always perform the same task, and don't require any param
eters, which simplifies the task of programming.

We'll begin our discussion with BASIC'S CALL command.
The other machine language command, USR, is more complex.
The CALL command takes the format

CALL variable[{variable[,variable]...)]

This notation means that you can CALL without any param
eters, with one, with two, or as many as you like. Since
BASIC always uses a far CALL, your programs must end with
a far RETurn, just like normal DOS programs; thus your pro
gram must be a far PROCedure.

If there are any parameters after the CALL statement,
BASIC prepares to pass them by placing a special pointer for
each variable on the stack before it calls your program. In this,
it is much the same as the stack parameter-passing we dis
cussed in Chapter 6. What is difficult, however, is that rather
than placing the values of the variables on the stack, it places
the address of the variables on the stack. Here's an example of
this technique; this short program multiplies two variables to
gether and leaves the result in a third:

CSEG SEGMENT 'CODE'

ADDER PROC FAR

ASSUME CS:CSEG

PUSH BP

MOV BP,SP
MOV SI,[BP+10]
MOV AX,[SI]
MOV SI,[BP-h8]
MUL [SI]
MOV SI,[BP-h6]
MOV [SI],AX
POP BP

RET 6

;BP must be saved
;BP points to stack area
;SI points to first parameter
;get value of first parameter
;SI points to second
;multiply second by first
;SI points to third
;leave answer in third
;restore BP
;far RETurn to BASIC

ADDER

CSEG

170

ENDP

ENDS

END

I '

n

10
Using Machine Language with BASIC

This program might be called from BASIC with this:
100 DBF SEG = &H1C00 'seg. addr. for 128K PCjr
110 BLOAD "ADDER.BSV",0 'program named "ADDER.ASM"
120 ADDER=0: A®/o=3: B»/o=5 'specify address and parameters
130 CALL ADDER (A®/o,B®/o,C®/o) 'CALL the machine language
140 PRINT C»/o 'print the result

All parameters must be integers. In this example, if A% holds
3 and B% holds 5, C% should hold 15 when the subroutine
returns to BASIC. If your program returns a value (or more
than one), it's probably easiest to place the value in a BASIC
variable (like C% above). It is possible to write a program that
returns a value directly, with the USR command. See the
BASIC manual for details.

If you like, you can assemble and link ADDER.EXE, enter
DEBUG with EXELOAD, use the N and E commands, execute
EXELOAD, quit DEBUG and enter BASIC, BSAVE the pro
gram, and test it. The program serves as a good example of
the EXELOAD technique, since it would be hard to put a bug
in an 18-line program.

Accessing Parameters from the Stack
You may have been a little puzzled by the displacements used
with BP to access the addresses of the variables. A closer look
will help you see the reasoning. Remember, a BASIC CALL
with parameters pushes a two-byte address for each parameter,
not a one-byte value. BASIC first pushes the three word-
length addresses onto the stack, and then executes a far CALL,
leaving two words of the return address (four bytes) on the
stack. Then, to save BP, we PUSH it onto the stack, depositing
another two bytes, or six in all. So, to back up to the actual
parameters, we start with [BP+6]. This skips over the inter
vening six bytes, pointing us to the last parameter pushed by
the CALL statement. We then work our way backwards by
twos as we load in the parameters nearer to the beginning of
the CALL parameters. Thus, the sum is put in [BP+6], which
holds a pointer to the last variable specified. In our example,
that was C%. [BP+8] holds the pointer to B%, and [BP-I-10]
holds the pointer to A%.

As a general rule, if you have a total of n arguments, the
displacement from BP of variable M (1, 2, 3 ... n) is
2*(n-M)+6.

171

10

Using Machine Language with BASIC

Removing Parameters
One other peculiarity about this program is that it ends, not
with a normal RET, but with a RET pop-value instruction.
This form of the RET instruction, as we discussed in Chapter
6, is used to dispose of PUSHed parameters for a subroutine.
With BASIC, it's the programmer's responsibility to remove
the appropriate number of bytes from the stack on exit from
the program. Assuming, as above, that n arguments were
specified in the CALL statement, your program should end
with

RET 2 * «

Types of Parameters
BASIC has four variable types, but you'll only need to concern
yourself with two. BASIC saves real numbers, both single- and
double-precision, in a format difficult to use with 8088 ma
chine language. However, BASIC'S integer types (declared
with a % suffix) and string types (with the $ suffix) are easier
to handle. Integers, as you may have deduced from the sample
program above, are stored by BASIC as normal, word-sized
signed values, just like machine language. To access one of
these variables, you must first get its address from the stack,
and then get the actual value contained in that address. Here
we're moving the value of the last parameter of the CALL
statement into DX:

MOV BX,[BP-l-6]
MOV DX,[BX]

Strings are handled differently. The address on the stack
doesn't point to the string itself. Instead, it points to a string
descriptor, three bytes long, with the following format:

byte 0 length of the string
bytes 1,2 address of the string in memory (a word value)

To look at a string in memory, you first load the address of
the string descriptor off the stack, then load the address of the
string itself from the string descriptor. BASIC allows you to
modify the actual string as you please, but you can't change
its length or its address. The string descriptor should be kept
intact.

172

10
Using Machine Language with BASIC

Entering and Exiting
When BASIC gives your subroutine control, the only registers
that are explicitly set are the segment registers. CS holds the
current DBF SEG value, and DS, ES, and SS hold the default
DEE SEG value of BASIC'S work area.

Most .EXE programs immediately begin by setting the DS
and ES registers to point to their own data segments. This
may be a mistake if your subroutine takes parameters from
BASIC, since you must keep at least one segment register
pointing into BASIC'S work area in order to read the values of
the parameters which were passed. Often the best approach
for a long program is to begin by setting DS to point to your
data segment, and use ES as a segment override to read the
variable parameters. Of course, you could do it the other way
around, or even use the SS register as a segment override.

The SS register, however, often has to be changed as well.
All DOS .EXE files define their own stack, and DOS automati
cally sets SS and SP to point to the correct part of memory
when such files begin to execute. However, with BASIC, the
burden of managing the stack is on the programmer. When
BASIC gives control to your program, the stack has only room
for eight word-sized values. If you need more stack space, you
will have to set SS and SP to point to your own stack.
Remember, however, to save the initial values, so they can be
recovered just before returning to BASIC. Unfortunately, most
DOS and BIOS interrupt routines use more than 16 bytes of
stack space, so if you use any interrupt routines you will al
most certainly need to switch the stack registers to point to
your program's own stack. Of course, if you don't use more
than 16 bytes of stack space, you don't need to move the
stack; nor, in fact, do you need to define a stack in your source
file at all, and you can ignore the Linker's no stack message.

The only requirement when you leave the program is that
the segment registers (CS, DS, ES, and SS) have the value
they had when your subroutine took over. SP and apparently
BP also need to be reset to their initial values.

Here's a program framework that you can use for long
BASIC/machine language programs:

173

10

Using Machine Language with BASIC

SSEG SEGMENT STACK 'STACK'

STK DW 64 DUP(?)

SSEG ENDS

DSEG SEGMENT 'DATA'

SP_STORE DW ?

SS_STORE DW ?

... your data here...

DSEG ENDS

;define a stack area

;store SP here
;store DS, ES, SB here

CSEG SEGMENT

ASSUME CS:CSEG,DS:DSEG
PROGRAM PROC FAR

MOV AX,DSEG
MOV DS,AX
PUSH BP

MOV BP,SP

MOV SI,[BP+6]

MOV AX,ES:[SI]

read all the parameters in here...

MOV SS_STORE,SS
MOV SP_STORE,SP
MOV AX,SSEG
MOV SS,AX
MOV SP,S1ZE STK

your program goes here...

MOV SS,SS_STORE

MOV SP,SP_STORE
MOV DS,SS_STORE
POP BP

PROGRAM

CSEG

RET n

ENDP

ENDS

END

initialize DS

;save BP on BASIC
,-stack
;BP points at BASIC
;stack
;read parameters from
;BASIC stack
;get a value...

;save DS, ES, SS
;save stack pointer
initialize our stack

;use SIZE operator

reload SS with

BASIC'S segment
reset BASIC'S stack

do the same with DS

recover BP from

BASIC'S stack

RET with pop-value

This program template assumes that you need to set up
your own stack (whether you use interrupt routines or for
some other reason), and assumes that you leave ES pointing to
the BASIC data segment. Just remember, DS, ES, and SS must

174

10

Using Machine Language with BASIC

•**1 point to the BASIC work area when your machine language
routine ends.

The sample program for this chapter is "SCROLL.ASM."
Enter it, assemble and link it, then load it into memory with
EXELOAD. When you enter BASIC, save it (with DEE SEG
and BSAVE). Then, you can enter and run two short BASIC

Sim programs written to show off the scroll routine. SCROLL-1
must be used with the color board for the proper effect;
SCROLL-2 can be used with color, monochrome, 40- or 80-
columns. Don't forget to change the DEF SEG at the start of
the two BASIC programs.

As you have seen, interfacing machine language routines
with BASIC is substantially unlike DOS programming. You
don't push a return address onto the stack, because BASIC has
already done that. You do have to initialize your own stack,
since BASIC doesn't do that. You have to reset DS, ES, and SS
for BASIC; DOS doesn't care. However, the programming is
not that much different from DOS, and the rewards of using
machine language in conjunction with BASIC are certainly
substantial enough to justify any added complexity.

175

1
0

Using Machine Language with B
A
S
I
C

(
0

oo

a0
)

uSc
tu

OJD
Ou

C
L

1
7
6

m
£

c
0
0

—
<

x
:

w
o

o
h
-

0
0

(
0

Z
£
.

o
£

0
0

C
O

—
s

<
o

<
(
0

w
C
D

C
£

X
0
0

0
)

4
>

-
O

C
,

<
o

X

f
—

a
>

s
£

4
>

»
—

•
•

0
0

+
+

r
-
s

C
D

0
n

C
O

U
J

<
0
0

#
C
O

'
-
s

w
£

U
l

^
 U
J
 ^

•
»

0
0

X
c
r

Q
C

1
-

<

c
X

-
c
.

C
/
D

U
J

K
O

>

w

4
)

U
J

O
0
0

<
C
L
S

QD

C
D
E

X
o

-

c
c

•
 U
J

O
)

£
O
J

c

<
O

—

C
O

0
)

H
-

O
0
e
i

(
0

>
h
-

^

(
0
z

•
J
C
.

I
I

U
J

G
C

0
0

Q
■

o
a

CD
O

G
C

0
0

»

w
(0

U
J

UJ
O

S

CO
z

0
.

£
(0

<
o

o
C

O
C

O

a

o
•
•

00
o

X
a

>

j

X
^

 -1
•
 •

C
O

•
J
Z

G
C

Q
C

U

J
-J

o
4

)
O

)
=

U
)

O
0

4>
O

O

h
-

<
O

)
®

U
)

•
•

4>

—
5

>

o

:
(0

x
:

(S
O

•
•

li
O

Q
3

00
U

)
6

(0

—
.

U
J

~
 •
.

I—
O

) ^

:

£
a

.
C

O
Q

1

-
Z

c
<

••

<
00

o
QC

<

X

—
H

^

1
-

-
fl

_
l

O

U
J

U
l

c
c

—
<

O
Cc
j

U
(

CJ)
O

u
.

c
r

z
a

1
<

<o

O

«

9

«

»
0

csj
C

O
tf)

(O
U

l
•
-

»
—

&

sC
O

<o<OU
J

XU
J

E4
)

Q
.

E
*D

3
c

X
(0

C
M

k
-

E
4

)
—

E
•
 •

TO
o

C
O

C
o

o
o

—
E

Z
U

J
C

o
o

+
-»

4>
x
:

•
—

x
:

c
•
—

o
o

U
J

3
c

—

X
£

3

U
l

CO
o

—
CO

c

o
3

4>
C

O
3

<
w

o
O

4>
•D

o
E

"O
•
•

•
•

U
J

CO
CO

X
c

U
l

T
J

0
)

CO
a

-
o

z>
4>

—

C
D

—

U
l

—

O
c4>

£
■O

E
CO

o
>

—
o

4>

—
CO

o
4>

<
£

o
X

T
£

T
—

CO
U

l
>

s
>

N
<M

XU
J

•
—

—
3

3
o

o
O

*
C

4
)

4
)

«
4>

4
)

Q
.

o
.

o
CO

CO
JC

>
o

c
—

—
<0O"D

4
)

CO

n

I
 I

I
I

>
 I

(

(

>

e
x
e
c

e
q
u

4
b
h

o
v
e
r
l
a
y

e
q
u

3

u
p
a

e
q
u

b
y
t
e

p
t
r

d
s
:
[
8
0
h
]

e
s
e
g

s
e
g
m
e
n
t

'
F
A
R
M
S
'

p
_
b
l
o
c
k

d
w

?
 ,
 ?

e
s
e
g

e
n
d
s

s
 s
 e
g

s
 s
 e
g

t e
s
e
g

s
e
g
m
e
n
t

s
t
a
c
k

'
S
T
A
C
K
'

d
w

1
2
8

d
u
p
(
?
D

e
n
d
s

s
e
g
m
e
n
 t

'
C
O
D
E
'

a
s
s
u
m
e

c
s
 :
 c
s
e
g
 ,
 e
s
:
e
s
e
g
,

e
x
e
l
o
a
d

p
r
o
c

f
a
r

p
u
s
h

d
 s

m
o
V

a
x
 ,
 0

p
u
s
h

a
x

f

m
o
v

b
x
 ,
 2
8
h

m
o
v

a
h
.
s
e
t
b
l
o
k

I
n
 t

b
d
o
s

:
 f
u
n
c
t
i
o
n

t
o

l
o
a
d
/
e
x
e
c
u
t
e

:
 s
u
b
f
u
n
c
t
i
o
n

t
o

l
o
a
d

;
P
S
P
'
s

u
n
f
o
r
m
a
t
t
e
d

p
a
r
m
s

a
r
e
a

j
t
h
i
s

s
e
g
m
e
n
t

h
o
l
d
s

p
a
r
a
m
e
t
e
r
s

;
 u
s
e
d

b
y

D
O
S
,

p
o
i
n
t
e
d

t
o

b
y

E
S

:
d
e
f
l
n
e

s
t
a
c
k

s
e
g
m
e
n
t

:
 .
.
.

a
s

2
5
6

b
y
t
e
s

s
 s
 :
 s
 s
 e
 g

;
s
e
t

u
p

f
a
r

R
E
T
u
r
n

o
n

s
t
a
c
k

s
e
t

c
u
r
r
e
n
t

b
l
o
c
k

s
i
z
e

t
o

2
8
0
H

b
y
t
e
s

V

I
a

D
O
S

C C/
3 5
"

Q
T
Q

W n 5
r
5 n> r O
Q

^
c p
(
T
Q D
-

W > c/
:)

n

m
o
v

a
x
,
e
s
e
g

m
o
v

e
s
,
a
x

m
o
v

a
x
,
1
7
0
0
h

;
m
a
k
e

E
S

p
o
i
n
t

t
o

E
S
E
G

^
s
e
g
m
e
n
t

a
d
d
r
e
s
s

t
o

l
o
a
d

a
t

0
0

m
o
 V

p
_
b
1
o
c
k
,
a
x

;
 s
 t
 0
 r
 e

1
n

 p
a
r
 a
m
e
 t
 e
 r

b
l
o
c
k

m
o
 V

p
_
b
 1

 0
 c
 k

2
 ,
 a
 X

:
 f
o
r

D
O
S
'
s

E
X
E
C

f
u
n
c
t
i
o
n

m
o
 V

d
x
 ,
 8
 1
 h

j
s
t
a
r
t

o
f

s
t
r
i
n
g

(
D
S
:
D
X
)

c
m
p

b
y
t
e

p
t
r

d
s
:
[
8
1
h
l
, '

'

;
c
h
e
c
k

f
o
r

l
e
a
d
i
n
g

s
p
a

j
n
e

s
k
i
p

5
 n
o

s
p
a
c
e
,

D
X

=

8
1
 h

1
n
 c

d
x

;
 s
p
a
c
e
 ,

s
o

D
X

=

8
2
h

s
k
i
p
:

m
o
 V

b
 1

 ,
 u
p
a

:
 1
e
 t

B
X

=
 [
8
0
h
l

m
o
 V

b
h
 ,
 0

m
o
 V

u
p
a
-
)
-
1

[
 b
x
]
 ,
 0

i
c
o
n
v
e
 r
 t

t
o

A
S
C
I
 1
Z

f

m
o
 V

b
x
,
o
f
f
s
e
t

p
_
b
l
o
c
k

I
I

X
CD

OC
UJ

p
a
r
 a
m
e
 t
 e
 r

b
l
o
c
k

m
o
v

a
 1

 ,
o
v
e
 r
 1

 a
y

{
S
p
e
c
i
f
y

l
o
a
d
-
d
o
n
'
t
-
e
x
e
c

m
o
 V

a
h
,
e
x
e
c

{
l
o
a
d

p
r
o
g
r
a
m

f
u
n
c
t
i
o
n

o
f

i
n
 t

b
 d
o
 s

f

r
e
t

{
f
a
r

R
E
T
u
 r
 n

t
o

D
E
B
U
G

e
x
e
1
o
a
d

e
n
d
p

{
e
n
d

o
f

p
r
o
c
e
d
u
r
e

c
 s
 e
g

e
n
d
s

{
e
n
d

o
f

s
 e
 g
m
e
 n
 t

e
n
d

e
x
e
1
o
a
d

{
e
n
d

o
f

s
o
u
r
c
e

c
o
d
e

o
p
t
 i
o
n

D
O
S

a T
O S CO n D
-

5
*

O
)

c C
O

O
Q a
> r
r

C
d

> C
A
)

n

1
 I

I
I

)

□

1

I
D

)) t I y I I LJ 1

Program 10-3. SCROLL.ASM

page ,96
title Scrol l text screen r ight or ieft.

I

; SCROLL.ASM

I

; cal l this routine with two integer parameters:

<

; CALL SCROLL (SHIFT%,ATTRI BUTE*)

I

: SHIFT* gives the distance to shift the screen (pos. or neg.)
I ATTRIBUTE* is the new attribute to use on the blanked area
I

video equ lOh
get_vid equ 15

j

dseg segment

i

ss_store

s p_s tore

s

s c r een_s i ze

r ow_w i d t h

shift

attribute

i

sizes

: V i deo i/O interrupt

; get video status

'DATA'

dw ? :store BASIC'S SS here

dw 7 ;store BASIC'S SP here

dw 7 ;size of current screen (chars)

dw 7 ;length of one row (bytes)
dw 7 ;-1 or 1 for di rect ion

db 7 sattr ibute for blank l ine

dw 1024,2048 ;size of WiOTH 40, WIDTH 80

3
OQ

P
O

:r

3'
m

r-

^ !(JQ ^
C
A)

(JQ
a

sr

Cd

>
CA)

n

00

o

widths

I

d s e g

>

8 s e g

s t k

s 8 e g

:

cseg

8 c r o I I

dw 80,160

ends

segment stack 'STACK'

dw 64 dup(?)
ends

;byte row width (as SIZES)

:stack area used only dur ing
; program execut ion

s egme n t 'CODE'

assume cs:cseg

p r oc far

ss:sseg,ds:dseg

mov ax,dseg

mov ds.ax

push bp

mov bp,sp

mov s i , [bp-i-6]

mov ax,es:[si]

mov attribute,al

mov si ,[bp + 8]

mov di ,es:(si]

cmp d i ,0

jnz re_stack

push es

pop

pop

ret

d s

bp
4

ini t ial ize DS

: i n i t i a I i ze

;get second

istore attr

: ge t first

;ge t shi ft

; check for

s not zero

;se t DS to

: (BASIC'S

; recover BP

{ abor t back

BP for stack

par ame t e r

in our data area

par ame t e r

reques t into DI

no movement

skip abort

ES via the stack

DS = ES)

to BASIC

P
OQ

S
P
n

5'
fl)

CO

13
(TQ

C

OQ
fb

p-

Cd

>
CO

O

1) I □ » I 1 n

I ; I ! I I (\ I J I

adjust stack segment

re_s tack

moV s s_s t o r e,s s

moV s p_s t o r e,s p

mov ax.sseg

mov ss,ax

mov sp.size stk

;r e-make stack

:s t o r e SS in DSEQ

: and SP

;reset SS to our SSEG

;and SP to the top of STK

I

using BIOS, set up some registers:
ES points to start of video area

ini tial ize ROW_WIDTH and SCREEN_SIZE

process:

P 1

p2

mov dx,ObSOOh ;defaul t start of video

mov ah,ge t_v i d ;get video mode into AL
i n t video

cmp a i . 7 ;test for monochrome mode
j ne P 1 : no

mov dx,ObOOOh ; yes, set video to BOOOO
mov a 1 .2 ; now pretend i t's mode 2
cmp a 1 , 4 ;test for a graphics mode

jb P2 ; no, so begin execut ion

jmp done ; yes, so skip to end

and ax , 2 ;AX = 0,2 for 40-,80-co1umns

mov s i , ax ;move into an index register

3
OQ

S
n

5T
5'
a»

r"
^ .

OQ '
C
w
OQ
n)

rr

Cd

>
CO
h—1

n

00
K>

mov ax,wi dths [si]

mov row_w i d t h,ax

mov ax,s i zes [s i 1

mov screen_s i ze,ax

mov cl ,4

sh r ax, c 1

mu 1 bh

shI ax, 1

add dx . ax

mov es , dx

mov sh1 f t a 1

cmp d i , 0

j ns p3
neg shift

neg d i

mov bx , d i

of a row on screen

p3:

t

; here we prepare
! initial ize DX

I

Shi f t_l oop:

mov dx,25

fflov d i , 0

mov s i ,2

c I d

cmp sh i f t. 0

to hand Ie the

(l ine counter)

ty)

:get width
; store it

;get size of total screen
; store it (as a word quant
;convert from words ...

: to segment paragraphs / 2
:multiply by page number
;re8tore to paragraphs
;add to base of video memory
:point our extra segment at it

default sign of shift-count
test 01 (shift-count) for +,-
i t is positive: go shift
reset to negative (-1)
make 01 positive (ABS(OI))
BX is our count-down register

actuai scrol l ing each time
and OI/SI/OF (for MOVS)

: c I ear 25 r ows

:shift left (default)

;and go up for string ops
;te8t for right or left

D
(TQ

O

5'
a»

P
OQ
c
tl)
OQ
n>

Cd

>
C/D

O

1 I I 1 1 1 1 1 1

I I I I I i I I □ CJ I

j 3 I i ne_l oop
moV ax,r ow_w i d t h
mov cI ,25
mu I c I
sub ax . 2
mov d i ,ax
lea sl ,[di-2]
3 t d

left is correct
length of one l ine
numbe r of l ines

size of screen

last location on screen
put in index register
end of screen minus 1 char
and go down for str ing ops

j Now we run through 25 l ines wi th MOVS and STOS
:

I i ne_loop:
mov c X,r ow_w i d t h sget length of l

cx , 1
c X

00
w

s h r
dec

r ep_1: cI i
rep movs word
jcxz rep_2
dec cx

jmp rep_1
r ep_2: s t i

mov a I , ' '
mov ah.attr ibute
s t osw

I od sw
dec dx
j nz I i ne_l oop

ine
{Convert to wor ds
; don ' t move al l of i t
{disable interrupts briefly

ptr [di] , word ptr esitsi l
{al l REPs done
{auto-decrement CX
{and res ume
{turn interrupts back on
{Clear to a space value
(wi th specified attribute
{put at end of l ine (move DI)
{moVe SI as wel l as DI
{Check for more l ines
{yes, so loop back

p
OQ

S
P
o
:r

5'
n>

t-

P
OQ ^
C
P

QTQ
n>

:r

cd
>
C/D

n

00 dec bx

j n z shift.
;check for more shifts

; yes , so Ioop back.loop

POP the segments, restore BASIC'S stack, POP BP, and RETurn
;

I

I

done

I

sc r o I I

cseg

mov s s

mov sp

mov es

mov ds

pop bp

ret 4

endp

ends

end

s s_s tore

8P_9 tore
8 s_s tore

s s_s tore

;get values from DSEG
(BASIC'S SP:SS}

(and ES = SS)

(note BASIC'S DS = SS)

restore BP

and return to BASIC

Program 10-4. SCROLL-1.BAS

100 DEF SEG = &H17e0

110 BLOAD "SCROLL.BSV",0

120 SCROLL=0: SHIFT=1: AT%=0: FACT0R=1.12: LIM

I T = 30

130 AT%=:(AT%+16) MOD 256: SHIFT%=SHIFT

140 CALL SCROLL (SHIFT*,AT%)

150 SHIFT=SHIFT*FACTOR: SHIFT%=SHIFT

3
cro

S
»
n

3-

3"
n

t-

§
TO o
c
M
TO
ft

3^

Cd

>
(Z)

n

□ 1) 1 1 1 I) □

I I I I I I I I a I

160 IF SHIFT>LIMIT OR SHIFK.S THEN FACT0R=1/F

ACTOR

170 GOTO 130

Program 10-5. SCROLL-2.BAS

100 DBF SEG=&H1700: BLOAD "SCROLL.BSV",0

110 SCREEN 0,0,0: CLS: KEY OFF: DEFINT A-Z: RA

NDOMIZE TIMER

120 SCROLL=0: SHIFT=1: ATTRIBUTE=7: HEIGHT=10:

D I R= 1

130 LOCATE HEIGHT,1: IF DIR=1 THEN PRINT

ELSE PRINT "\"j

140 CALL SCROLL (SHI FT,ATTRI BUTE)

150 IF RNDt'lX.IS THEN DIR = -DIR: GOTO 130
160 IF HE IGHT + DIR>25 OR HE IGHT + DIR<10 THEN DIR

=-DIR: GOTO 130

170 HE IGHT = HEIGHT + DIR: GOTO 130

00
01

P
TO

P
n

p-

P"
ni

r

p ̂
TO O
c
K
TO
n>

P'

W

>
I—(

n

n

n

n

n

n

SECTION

3
Interrupts

CHAPTER

11
Overview of Interrupts
In this chapter we'll examine the use of interrupts on the 8088
microprocessor. You have used interrupts in earlier chapters in
a cookbook fashion: the DOS function call, INT 21H, for ex
ample. Here we'll discuss how interrupts work and how the
8088 and MS-DOS make use of them, (There is an excellent, if
technical, discussion of interrupt structure on pages 8-30
through 8-42 of Rector's and Alexy's The 8086 Book, published
by Osborne/McGraw-Hill,) In the next two chapters, we'll
continue with the subject of interrupts, focusing on the PC,

Why Interrupts?
First of all, let's discuss what an interrupt is. We all are well-
acquainted with many types of interruptions: the telephone
ringing, the smoke alarm going off, a young child wanting our
attention. However, in a computer system, interrupts are pos
itively advantageous.

The computer is always connected to a variety of other
devices. Some of them are clearly separate—disk drives,
modems, other microprocessors—and some less so—internal
clocks and timers, for example. For a computer to handle input
and output properly, it has to be prepared for information
from all of these devices at any time. There are only two ways
for the 8088 to find out what's happening with these external
devices,

1, The computer can routinely take time off from its various
tasks to poll all the attached devices. In other words, the
8088 checks the appropriate input/output ports to see if
anything is happening,

2, The devices let the computer know when something
happens.

As you can imagine, this second alternative makes more
sense. That way, the computer is spared having to spend a
substantial amount of time checking all the attached
peripherals. This second method is the interrupt technique. In

189

11

Overview of Interrupts

short, whenever some external device has something to tell
the microprocessor, it interrupts it. The keyboard, for example,
interrupts the microprocessor whenever a key is struck.

The 8088 has a much more powerful system of interrupts
than most eight-bit microprocessors. Each interrupt on the
8088 has a priority level, from interrupt 0 (the highest) to 255
(the lowest). Whenever the 8088 gets two interrupts at the ^
same time, the lower-numbered interrupt is handled first. '

Software Interrupts
In general, external interrupts (interrupts from peripherals)
won't concern you. Software interrupts (interrupts requested
by your own program as part of the normal program flow) are
of more concern to the programmer. The interrupt number
then becomes not a measure of an interrupt's priority, since
you can call only one interrupt at a time, but rather a conven
ient index with which to access specific interrupt routines.
These software interrupts are designed to give the programmer
access to all the power of DOS and BIOS.

Basically, using software interrupts is similar to CALLing
the system routines. However, using the INT command lets
you call a routine without knowing where it is. You simply use
the INT command in your program and let the computer fig
ure out where the requested routine is located.

The idea of something interrupting itself is most peculiar.
In fact, as you can imagine, the rationale behind these soft
ware interrupts is entirely different from the reason for the
hardware interrupts discussed above. Why not simply have
your program CALL any DOS or BIOS routines it needs to
use? There are a few convincing reasons for using interrupts:

1. Simplicity. Putting INT lOH in your program is obviously ^
preferable to, for example, CALL FOOOrODOB: It takes fewer
bytes of program memory (two versus five), and it is
considerably easier to remember.

2. Portability. A portable program is one that will run without
modification on a variety of different machines. For ex
ample, most machine language programs written on the
IBM PC will run on the PCjr, even though the crucial
routines in DOS and BIOS are in different places. A CALL
FOOO:ODOB on one machine, for example, is a CALL
F000:F065 on another. Portable programs thus always use

190

11

Overview of Interrupts

the system INTerrupts and let the computer figure out
where the appropriate routines are located.

How Interrupts Work
No matter whether an interrupt is a software interrupt or a
hardware interrupt, the basic mechanism used to handle them
is the same. There are three ways for the computer to know
which interrupt you want. The number can be specified by an
external device requesting an interrupt, by the program itself
(as in INT 21H), or the number can be implicit in the software
command.

Once the computer knows which interrupt number is be
ing requested, it locates the interrupt-handling routine (also
know as the interrupt service routine). The first 1024 bytes of
memory (OOOOOH to 003FFH) are given over to storing the
starting addresses of each interrupt routine in segmentoffset
form. (Thus, 256 interrupt vectors, each four bytes long, add
up to 1024 or one K.) It is possible to modify these vectors so
that they point to your routines rather than the computer's,
but doing so is a rather advanced technique.

Now the computer knows where the subroutine is located.
It pushes three words onto the stack: the 16-bit flags register,
the current code segment (CS), and the current instruction
pointer (IP). Next it loads the appropriate segment:offset value
from the interrupt vector area. At this point the interrupt rou
tine is given control. As you can see, this is much like a far
CALL (such as the CALL FOOO:ODOB mentioned above). The
only difference is that the flags register is also saved on the
stack. We'll discuss why in a moment.

At this point, CS:IP holds the start address of the inter
rupt routine; the routine begins to execute. When the interrupt
routine is finished, it executes an IRET instruction (Interrupt
RETurn). This instruction is like the standard far RETum, but
it also pops the flags register off the stack. Now, CS:IP points
back into the main program at the point where the interrupt
was called, and the main program continues from where it left
off.

Why save the flags register? Saving and then restoring the
flags register allows a program to be stopped in the middle of
execution by an external interrupt and then to resume exactly
where it left off. For example, the clock-updating routine.

191

11

Overview of Interrupts

which is called 18.2 times each second by one of the PC's
timers, saves and then restores all the registers that it modi
fies. (Imagine the registers in your program changing 18.2
times a second!)

For those interrupt routines that are called only with soft
ware interrupts (and that covers most routines), certain reg
isters are not saved. These are the registers that are used to
pass parameters. For example, the AX register is very rarely
saved by any of the common interrupts; some interrupts, like
the absolute disk read and write routines (INT 25H and 26H),
alter all but the segment registers. Since these routines are al
ways called predictably from within program code, you don't
have to worry about registers changing randomly. If you need
to save registers, simply place PUSH instructions before the
interrupt call, and POP instructions after it.

Interrupt Control Opcodes
We've already discussed the primary interrupt commands, INT
and IRET. INT allows you to call any of the 256 interrupt
routines simply by specifying
INT number

where number ranges from 0 to 255. IRET (Interrupt RETurn)
is the instruction used to return from an interrupt. You'll have
no need to use IRET yourself until you're an advanced pro
grammer, but you'll need to be able to recognize it to under
stand interrupt routine program listings, such as those in
BIOS.

There are, as we've briefly mentioned, two other interrupt
generating opcodes. The first of these is INT 3. In appearance
this is the same as the INT number form above, but in fact the
INT 3 command is only one byte, as opposed to the standard
two-byte INT instruction. INT 3 is used by DEBUG to set
breakpoints, and will be discussed in more detail below.

The second specialized interrupt command is INTO. This
command (INTerrupt on Overflow) is a conditional interrupt.
Normally, a program that deals with signed math needs to
have a way to handle overflow. If INTO is placed after a math
operation, it will execute an INT 4 if the overflow flag is set.
This interrupt opcode, like INT 3, is only one byte. As a rule,
you won't be needing to use this interrupt. Generating an
interrupt on overflow is a slight case of overkill for the begin-

192

11

Overview of Interrupts

ning to intermediate programmer. Normally, a JO Gump on
Overflow) will serve your purpose just as well.

There are two other interrupt control commands, CLI and
STL The CLI command (CLear Interrupt flag) disables (pre
vents) the microprocessor from responding to external inter
rupts (such as the clock interrupt mentioned above).
Conversely, the STI command (SeT Interrupt flag) enables
interrupts. (6502 programmers, beware! The SEl and CLI com
mands on the 6502 are exactly the reverse of the seemingly
equivalent 8088 commands, STI and CLI. SEl, on the 6502,
SEts the Interrupt disable flag; STI, on the 8088, SeTs the
Interrupt enable flag.) Bear in mind, though, that when an
interrupt is actually executed, the computer executes an auto
matic CLI and also clears the trap flag (discussed below). This
insures that the interrupt itself will not be interrupted. How
ever, the interrupt (and trap) flags are reset when the IRET is
executed, since the flags register, including these two flags, is
popped from the stack.

Software interrupts and non-maskable interrupts are both
exempt from the setting of the interrupt flag. Non-maskable
interrupts are external interrupts, generally of some urgency,
and can't wait for the interrupt flag to be cleared. We'll discuss
the 8088's non-maskable interrupt, INT 2, below.

The Fixed 8088 Interrupts
A certain number of 8088 interrupts are preset for all 8088
systems, regardless of whether they run PC-DOS, MS-DOS, or
scientific or business systems. These are the first five inter
rupts, numbers 0 through 4. Each of these interrupts is non
maskable and therefore will ignore any CLI or STI commands.

Interrupt 0, Divide Overflow. When specifying a DIV or
IDIV instruction, it's possible to create a result that is too
large. For example, requesting
MOV AX,1234H ;dividend in AX (a word)
MOV BL,2 ;divisor in BL (a byte)
DIV BL ;quotient to be in AL (a byte)

will cause a Divide Overflow interrupt. As you can see, the re
sult (91 AH) is too large to fit into AL. An even more extreme
case occurs when you put 0 into BL, then execute a DIV BL.
When a Divide Overflow condition occurs, the divide logic
automatically calls interrupt 0. In PC-DOS, this interrupt calls
a routine which prints:

193

11

Overview of Interrupts

Divide Overflow

and drops out of your program back to the command level of
DOS (the A> prompt). (DOS 2.00 users should note that the
DOS routine responsible for this will cause the computer to
crash. DOS 1.10 and 2.10 divide overflow routines work cor
rectly.) You can, if you wish, revector this interrupt to point to
your own divide overflow routine (an advanced technique).
This interrupt is the only runtime error message you can get in
machine language.

Interrupt 1, Single Step. This interrupt is used only by
DEBUG. It is triggered after every instruction when the trap
flag (mentioned above) is set. When the trap flag is set, the
computer calls interrupt 1 after every program instruction.
Normally, the trap flag is clear, so the INT I's are not gen
erated. Furthermore, the INT 1 vector normally points directly
to an IRET in DOS. This effectively cancels any INT I's, since
nothing happens and the flags, CS, and IP are immediately re
stored.

The trap flag can't be set by a single program instruction.
Instead, you must follow this procedure:
PUSHF ;AX holds the flags as follows (bit 15 first)
POP AX ; 0,0,0,0,OF,DF,IF,TF,SF,ZF,0,AF,0,PF,0,CF
OR AX,100H ;now we set bit 8 (IF) to 1
PUSH AX ;finally, we return the changed flags register
POPF ; via the stack

The interrupts will become enabled after the next instruction.
The entire 16-bit flags register is moved into the AX register,
then the appropriate bit (bit 8) is set with the OR instruction.
Then the modified flags word is transferred back to the flags
register, again via the stack. Starting with the instruction after
the POPF instruction, each instruction will be followed by an
interrupt 1. To turn off single-stepping, you must transfer the
flags to AX (via the stack), AND AX,OFEFFH, then return the
flags to the flags register.

DEBUG uses the Single Step interrupt to handle its Trace
function. Though you will rarely find a use for this interrupt
within your programs, you will no doubt be using the DEBUG
Trace function. A warning about the Trace function: It occa
sionally appears to drop opcodes during the trace.

Interrupts are automatically disabled whenever a segment
register is loaded (with MOV or POP). This exception to the

194

11

Overview of Interrupts

normal rules of interrupt execution was designed explicitly to
protect a sequence such as the following:
MOV SS,AX ;assuming AX has the new stack segment
MOV SP,100H ;100H or whatever SP value you wish

Without this exception, an external interrupt could be triggered
between the two stack-setting commands, creating havoc by
storing information in some area not meant to be a stack at all
(remember, INT pushes the flags, CS, and IP at the current
SS:SP). We can see the interrupts being disabled when DE
BUG occasionally drops opcodes from its trace list. These
opcodes have been executed; they're just not displayed, since
loading a segment register turns off all interrupts, including
Single Step.

Interrupt 2, NMI (Non-Maskable Interrupt). This is the
highest priority hardware interrupt (the previous two are
invariably software interrupts). Furthermore, this is the only
external interrupt that can override the CLI command. For
most non-MS-DOS systems, the NMI is used to signal some
traumatic event within the system: an imminent power failure,
for example. However, the IBM PC uses the NMI solely to
handle keyboard input. It's usually a good thing for the user,
too, since the keyboard Ctrl-Alt-Del sequence must be non
maskable if it's to work when interrupts have been disabled
by CLI.

As a programmer, you will have little need to involve
yourself with INT 2 directly. The interrupt handler for inter
rupt 2 is responsible solely for converting the keyboard data
into scan codes. We'll discuss the most useful keyboard inter
rupt, INT 16H, in the next chapter.

Interrupt 3, Breakpoint. This interrupt, like the Single
Step interrupt above, is used almost exclusively by and with
DEBUG. Whenever you specify the Go command with extra
parameters, like
G 37,4B

DEBUG puts the one-byte INT 3 instruction at the specified
breakpoints (37 and 4B here) and saves their previous con
tents. Since INT 3 is a one-byte instruction, it can replace any
one 8088 opcode without interfering with the next. When the
program hits the breakpoint, DEBUG stops the program's
execution and restores the old contents of the breakpoint
byte(s).

195

11

Overview of Interrupts

INT 3 can also be used, with DEBUG, to replace the ini
tial PUSH/PUSH sequence and final RETF. INT 3, if used
explicitly to end your program, will simply return you to the
DEBUG command level without restoring DS and the other
registers to their initial values (as happens when you use
RETF).

When you're not using DEBUG, the interrupt number 3
points directly to an IRET instruction, like INT 1 above.

Interrupt 4, Overflow. This interrupt has been described
above in connection with the INTO command. In short, this
interrupt will execute if INTO is specified and the overflow
flag is set. INT 4 normally doesn't handle overflow; it defaults
to an IRET just like INT 1 and INT 3.

We suggest that you not write any of your own interrupt
handlers unfll you are quite advanced. Now that we've examined
the technical details of interrupts and have begun to under
stand their structure and general use, we can proceed to dis
cuss the details of the most useful BIOS and DOS interrupts in
the next two chapters.

196

CHAPTER

12
BIOS Interrupts

Now that we've discussed the technical side of the inter

rupts—the interrupt mechanism and structure, the interrupt
commands, and the predefined 8088 interrupts—we can dis
cuss the PC-DOS interrupts in more detail. In the next two
chapters, we'll turn from the technical aspects of interrupts to
a discussion of the interrupt routines that make up the Disk
Operating System (DOS) and the Basic Input/Output System
(BIOS).

As we discussed in earlier chapters (when you used DOS
interrupt 21H), one interrupt can often perform more than one
particular function. For several of the BIOS interrupts, a vari
ety of functions are available with one interrupt call: interrupt
lOH, for example, has 17 functions. For all the BIOS routines,
you select a function by placing the number of the function in
AH prior to calling the routine. So, to call function 8 of inter
rupt lOH, you would write
MOV AH,8 ;select function number 8
INT lOH ;call interrupt 10 hex

Other parameters also must be specified for many of these
functions. For example, to output a character with INT lOH,
you have to put the character in AL as well as the function
number in AH. Conversely, many functions return values; the
read keyboard function, for example, returns in AX the value
of the last key pressed. Registers that are not used for return
ing values are always preserved by BIOS routines. (AX, how
ever, is never preserved, and can be any value when the
routine returns to your program.)

The Video Handler Interrupt, INT lOH
This interrupt is very powerful. You will probably be using
this routine more frequently as your programs begin to use the
power of the screen for advanced text handling and machine
language high-resolution graphics.

197

12

BIOS Interrupts

Luckily, the functions provided with this interrupt are
grouped together fairly logically, but there are some excep
tions. The table at the end of this section outlines the INT lOH

functions (in terms of their input and output).
PC users must make special note of the color/graphics

functions. Much of the video handler is devoted to the

color/graphics board, and so the monochrome board can
make only limited use of this function. When you're using the
monochrome board, functions 5, 11, 12, and 13 shouldn't be
used. However, if your PC has both monochrome and
color/graphics boards, you can switch from one to the other
with the DOS 2.00 MODE command (MODE COL for
color/graphics and MODE MONO for monochrome). PCjr
owners can use all of these functions as they wish. Note also
that the PCjr BIOS has increased the power of functions 5 and
11, as well as added an entirely new function, number 16.

Display Handling Functions (AH = 0, 5, 14
Decimal)

Set Video Mode (AH = 0). The first function available
with INT lOH is very similar to the BASIC SCREEN com
mand. However, the video modes are numbered differently,
which can be confusing if you're not careful. To use this func
tion place the function number, 0, in AH, and the desired
mode number in AL. Table 12-1 is a list of mode numbers,
along with the BASIC commands that create the same effect.
Bear in mind that the set video mode function always clears
the screen and homes the cursor when called, whereas the
BASIC SCREEN command won't if the requested mode is the
same as the current mode. (The set video function also sets
the active page to 0.)

The extended graphics modes are available only on the
PCjr. Also note that the PCjr BASIC command SCREEN for
SCREENS 3 through 6 is available only with Cartridge BASIC.
For more detailed information on the graphics modes, see the
IBM Technical Reference Manual.

Here's a brief example of how to use this function, setting
the computer to graphics mode 4 (320 X 200, 4 colors).
MOV AH,0 ;function 0, set mode
MOV AL,4 ;mode 4, 320 X 200, 4 colors
INT lOH ;call the video I/O routine

This is the equivalent of the BASIC command SCREEN 1,1,0.

198

12

BIOS Interrupts

Table 12-1. Video Interrupt Function 0 Mode Settings

Mode # Name of Mode BASIC Equivalent
Text Modes

0 40 X 25, black/white SCREEN 0,0,0: WIDTH 40
1 40 X 25, color SCREEN 0,1,0: WIDTH 40
2 80 X 25, b/w SCREEN 0,0,0: WIDTH 80
3 80 X 25, color SCREEN 0,1,0: WIDTH 80

Graphics Modes
4 320 X 200, 4 colors SCREEN 1,1,0
5 320 X 200, b/w, 4 shades SCREEN 1,0,0
6 640 X 200, black & white SCREEN 2,0,0
7 can't set mode 7 (refers to PC's monochrome board)

Extended Graphics Modes

8 160 X 200, 16 colors SCREEN 3,1,0
9 320 X 200, 16 colors SCREEN 5,1,0
10 640 X 200, 4 colors SCREEN 6,1,0

Select Active Display Page (AH = 5). This function al
lows you to choose which of the text pages to display on the
screen. If you're a fairly advanced BASIC user, you may be
familiar with this concept. For text modes, the PC family has
the ability to make more than one screen (or page) available to
the programmer at one time. Obviously, only one page of
information can be displayed on the screen. However, you can
be working on another page at the same time, which you dis
play only when it's complete. Using multiple pages and page
flipping eliminates the annoying flicker of putting new infor
mation directly onto the screen.

To use this function, AH holds 5, and AL holds the page
requested. The range for AL is 0 to 7 for 40 columns, and 0 to
3 for 80 columns. (The video memory area is 16K long, and
each 40-column screen takes 2K while an 80-column screen

takes 4K.) The monochrome board does not support this
function.

An additional use for this function has been added on the

PCjr, one which allows you to select which 16K block of
memory of system RAM to use for display. On the PC, the
memory used for the color/graphics screen is invariably stored
at B8000H.

On the PCjr, however, the video memory is simply a
piece of the main system RAM. Normally the 16K at the top

199

12

BIOS Interrupts

end of memory is allocated for screen memory. But, with this
video function, a 128K PCjr can support eight different I6K
screen-memory blocks. This becomes useful when you need to
use one of the computer's extended graphics modes, modes 9
and 10. Since these modes require 32K, you clearly can't get
by with just the 16K at the top end of memory. So the PCjr's
block of screen memory must be moved down one unit (16K),
to leave a total of 32K available at the top of memory. You
will also need to move the 16K screen-memory area around
for graphics page flipping, since the standard graphics modes
use 16K for one page.

BASIC also makes use of this function to access the two
extended 32K modes. Normally, BASIC leaves the screen-
memory area at the top of memory. However, since the two
32K modes need more than the default 16K, you have to allo
cate more memory to the screen area with the BASIC com
mand CLEAR ,,,32768. To use these modes from machine
language, you have to do exactly the same thing: make 32K
available for the screen. Furthermore, BASIC can do page flip
ping when in graphics mode, if enough memory is allocated to
it. BASIC moves the 16K screen memory area around to do
this just as machine language does.

There are two separate registers controlling this 16K area.
You can select which 16K block contains the screen you're
displaying, as well as which 16K block will mirror the B8000
area of memory. As we mentioned above, the PC's graphics
screen is at B8000H, while the PCjr's screen can move around.
For compatibility, the PCjr has a provision to send any MOVes
in the B8000 area (which is empty memory in the PCjr) to the
real 16K of screen memory in the system RAM. The register
controlling which block to display is called CRTREG. The reg
ister controlling which block to vector B8000 requests to is
called CPUREG. Normally, both of these registers are changed
at the same time. To set and read these registers separately or
in conjunction, pass the following values in AL:

80H to read CRTREG into BH and CPUREG into BE

81H to set CPUREG to the value in BE

82H to set CRTREG to the value in BH

83H to set CPUREG to BE and CRTREG to BH

You will almost always be setting CRTREG and CPUREG to
gether (option 83H). For example, to set both CRTREG and

200 n

12

BIOS Interrupts

CPUREG down one block, to allow for one of the 32K graph
ics modes, do the following:

MOV AH,5 function 5, select active page
MOV AL,80H ;read CRTREG/CPUREG to BH/BL
INT lOH

DEC BH ;set CRTREG and CPUREG to...
DEC BL one block lower in memory
MOV AH,5 ,-function 5 again
MOV AL,83H ;set CRTREG/CPUREG to BH/BL
INT lOH

And don't forget to repeat this process in reverse (replacing
DEC with INC) before you exit. The results otherwise are in
teresting, but not desirable.

Read Video State (AH = 15). This routine returns the
information set by functions 0 and 5. You don't need to set
any parameters except AH = 15. To call this function, use
MOV AH,15 ;function 15, current video state
INT lOH ;call video I/O routine

This routine returns the following information:

• AL holds the mode currently set. This is the same number
that you specify when using function 0 (see Table 12-1).

• AH holds the number of character columns on the screen.

This value is returned according to the mode:

decimal 80 for modes 2, 3, 6, and A
40 for modes 0, I, 4, 5, and 9
20 for mode 8

• BH holds the number of the current active display page
(which page is being displayed on the screen). BH ranges
from 0 to 7 in 40-column text modes, 0 to 3 for 80-column
text, and is always 0 for all graphics modes.

Some of the video functions require you to specify
which page you want to work with; calling function 15
beforehand tells you what page is being displayed. Thus, for
simple applications, you'll usually continue to use the page
you started on; function 15 tells you the number of that
page-

Cursor-Handling Routines (AH = 1, 2, 3)
The video handler interrupt, INT lOH, can also be used to
control the cursor. This is done by placing the proper value in

201

12

BIOS Interrupts

AH for the function you want. (See Table 12-3 for a complete
list of the INT lOH functions.)

Set Cursor Type (AH = 1). This rarely used routine al
lows you to set the size of the cursor. The line to start the
block shape is placed in CH, and the line it should end is in
CL. The color/graphics cursor, for example, starts on line 6
and ends on line 7 (the first line is line 0). To turn off the
cursor altogether, call this routine with 20H in CH. Note that
the LOCATE command, in BASIC, can be used to change the
size of the cursor (see the BASIC manual). To return the cursor
to its normal shape, call function 0 (set mode). You can, of
course, also use this function to return the cursor to its original
shape.

Set Cursor Position (AH = 2). This routine can place the
cursor anywhere on a specified display page. DH holds the
new row for the cursor (from 0 to 24), and DL the column.
The column can be 0 to 79 in 80-column mode, 0 to 39 in 40
columns, or 0 to 19 in 20 columns (video mode 8). Since the
PC keeps separate cursor positions for each of the possible dis
play pages (up to eight pages in 40-column mode), you also
have to specify, in BH, the page number of the cursor that
you're moving.

For simpler applications, a call to the set cursor routine is
often preceded by a call to the read video state routine, num
ber 15. Thus, for example, to set the cursor on the current
page to the center of the screen:
MOV AH,15 ;read the current video state
INT lOH ;video I/O call

;now AL holds mode, AH holds columns, and BH
;holds display page

SHR AH,1 ;divide width (columns) by 2
MOV DL,AH ;and place in columns register
MOV DH,12 ;put half of 25 in rows register

;DL holds half width, DH holds half height, BH
;holds page

MOV AH,2 ;function 2, set cursor position
INT lOH ;video I/O call

Read Cursor Position (AH = 3). This routine returns the
current settings of the last two routines, 1 and 2. To read the
cursor position, AH holds 3 and BH holds the page number
(BH must be 0 for graphics modes). On return from the inter
rupt call, DH, DL will hold the row and column of the cursor

202

¥ ¥

12

BIOS Interrupts

on the specified page. Additionally, CH, CL will hold the
cursor type (from function 1 above). This routine can, for ex
ample, be used to move the cursor to a specific position on the
current line (equivalent to the BASIC'S TAB). If you are unsure
what screen line the cursor is on, but want to set the column
to 60, you can use the following code fragment to change only
the column, on the current page:
MOV AH,15 ;get current video state
INT lOH ;... we need the page number in BH
MOV AH,3 ;read cursor position (page in BH)
INT lOH

MOV DL,60 ;set DL to 60, leave DH (row) alone
MOV AH,2 ;set cursor position (page in fe)
INT lOH

This would be equivalent to the BASIC statement
PRINT TAB(60);

Read Light Pen Position (AH = 4)
This one is very rarely used, so we'll summarize. Call INT
lOH with AH = 4, and AH will return 1 if the light pen was
triggered; otherwise, it will return 0. If AH = 1, DH, DL will
also hold the row, column being pointed at, and BX, CH will
hold the graphics mode pixel x,y coordinates.

Scroll Active Page Up or Down (AH = 6, 7)
INT lOH can also be used to scroll the active page. These two
functions can be quite useful. The two have almost the same
format, so we'll treat them as one command. They allow any
part of the current active page (a window) to be scrolled up or

^ down any number of lines. In addition, you set the attribute to
be used on the blank line (see the "Flash" program in Chapter
5 for a description of the attribute byte). Here are the input
parameters for the two routines:

(CH,CL) = row, column of the upper left corner of the
window

(DH,DL) = row, column of the lower right corner of the
window

(AL) = number of lines to scroll the window up or down
!*•» (BH) = attribute to be used on blank line(s)

203

12

BIOS Interrupts

One convenient feature of this routine is that you can use
it to blank any area of the screen simply by specifying 0 for
AL. If you use 0 for AL, functions 6 and 7 produce identical
results, and the entire window is set to the attribute in BH.
Otherwise, function 6 (scroll up) will give you (AL) blank lines
of attribute (BH) at the bottom of the window, while function
7 (scroll down) produces blank lines at the top of the window.

The most common use of the scroll routines is simply to
blank the entire screen. Here's how to blank the screen:

MOV CX,0 ;CH=0, CL=0 for top left of screen
MOV DL,79 ;for 80 columns; use 39 for 40 columns
MOV DH,24 ;bottom line of screen
MOV AL,0 ;select clear whole screen option
MOV BH,7 ;set to standard white-on-black
MOV AH,6 ;(scroll up)
INT lOH

Character Handling Routines (AH = 8, 9, 10, 14
Decimal)
There are four useful character handling routines that can be
accessed using INT lOH. Three of the routines allow you to
write to any page display.

Multi-Page Character Handling Routines (AH = 8, 9,
10). Each of these routines will allow you to write characters to
any display page depending on which page is specified in BH.
(However, if you're reading or writing characters in a graphics
mode, you don't have to specify BH, since there's only one
graphics page.) These are the only routines that allow placing
text on a screen other than the current active page, so you will
no doubt grow quite familiar with them when you start using
multiple screens in machine language. The thing to remember
with these routines is that the cursor (on whichever page) is
not automatically moved when the character is written. If you
use the character-output routine in this group (AH = 10), and
try to print a string of characters, they'll all be written to the
same position, each on top of the last.

The first of these routines, AH = 8, is the routine to read
the attribute and character at the current cursor position
(remember, each text screen has its own cursor position). To
use this routine, AH holds 8 and BH holds the display page
before calling INT lOH. On return, AL holds the character and
AH holds the attribute. Note that characters on graphics
screens don't have attributes.

204

12

BIOS Interrupts

The other two routines control the writing of characters to
any page, with the option to write the attribute as well (AH =
10 for character only, AH = 9 for attribute and character). To
use these routines, AH holds 9 or 10, BH has the page num
ber, and the character to write must be in AL. For function 9
(write attribute/character) in text modes, BL must hold the
new attribute byte. For function 10 in text modes, BL doesn't
have to be specified. For either function in graphics modes, BL
holds the color of the character to be written. (For a discussion
of the color, as opposed to the attribute, of a character, see the
write dot function, number 12. Note that setting the high bit
in BL for graphics causes the character to be XORed onto the
screen, as in function 12.) The use of BL and BH is outlined in
Table 12-2.

Table 12-2. Use of BL and BH with Functions 9 and 10

Text Modes Graphics Modes

function 9 BL attribute BL color
BH display page BH —

function 10 BL — BL color
BH display page BH —

One other register, CX, must be set to use these two
routines—it holds the number of characters to write. This lets
you repeat the character in AL along the same row several
times. However, you can't wrap around to a new line. Here's
an example of a routine that puts a string of 80 horizontal
double-line characters, in light blue on dark blue, at the bot
tom of 80-column page 2. (This applies, of course, only to the
color/graphics board; for monochrome, you would use some
other value in BL, and make sure BH was 0, since only one
page is provided for monochrome.)
MOV BH,2 ;page 2
MOV DH,24 ;bottom row
MOV DL,0 ;first column
MOV AH,2 ;function 2, set cursor
INT lOH

MOV AL,205 ;doubIe horizontal line character
MOV BL,l*16-f-9 ;light blue (9) on dark blue (1)
MOV BH,2 ;page 2
MOV CX,80 ;repeat 80 times (a full row)
MOV AH,9 ;function 9, write attribute/character
INT lOH

205

12

BIOS Interrupts

The Write Teletype Routine (AH = 14). This is a some
what more useful routine for most single-page applications—it
handles moving the cursor as well as writing the characters.
(Don't worry about IBM's peculiar name for this function.)
However, it allows writing only to the current active page.

This routine is similar to the DOS function character out

put routine you've seen used in other programs ("Primes," for
example). However, there are differences between this routine
and the equivalent DOS function routine (the display output
function, AH = 2). This function is significantly faster than
the equivalent DOS functions, in part because it does not echo
to the printer when Shift-PrtSc (Fn-Echo on the PCjr) is
pressed, nor does it support the DOS 2.00 "piping" feature
(see Chapter 13 for a discussion of DOS 2.00 piping). Note
that this routine is an exception to the usual rule that the con
tents of AX are destroyed. The teletype function preserves AL.

The routine itself is simple. It outputs the character in AL
directly to the active page. For graphics modes, BL must hold
the color to plot the character in. So, to output an exclamation
point to the current (text) screen, simply code:

MOV AL,'!'
MOV AH,14
INT lOH

Several characters are handled specially by this BIOS routine:

7 ring the bell (beep!)
8 backspace (go back one space, but don't delete)
10 linefeed (go down to the next line, same column)
13 carriage return (go back to the beginning of this line)

You'll notice that there are some differences from the way
BASIC handles its special characters: Both the backspace and
the carriage return are handled differently. BASIC doesn't use
CHR$(8) for backspace (it prints a graphics character), but
BIOS does. More significantly, the carriage return character,
CHR$(13), tells BASIC to go to the beginning of the next line,
whereas the carriage return makes BIOS go to the beginning
of the current line. To go to the start of the next line in BIOS,
you must first print an ASCII 13, and then an ASCII 10
(linefeed) to go down to the start of the next line. The 13-10
sequence is often seen in machine language programs.

206 n

12

BIOS Interrupts

Graphics Interface Functions (AH = 12, 13
Decimal)
These routines are both exceedingly simple, yet quite power
ful. To use the write dot routine, AH = 12, CX, DX must hold
the x,y coordinates of the pixel to be plotted and AL must
hold the color to use. The color (technically, the palette reg
ister) can be any of the legal colors for the graphics mode
you're in:
0 or 1 mode number 6

0 to 3 mode numbers 4, 5, and A
0 to 15 mode numbers 8 and 9

One useful capability of the write dot routine is that you
can XOR the dot onto the graphics screen by setting the high
bit (bit 7) in AL. This is equivalent to adding BOH to the color
value you've selected. Usually, this XORing mode is used for
moving shapes around. Advanced BASIC users may be famil
iar with this idea from the XOR option of the graphics PUT
command. In brief, the XOR feature of the write dot function
allows you to plot a shape directly over the background. Then,
to erase it, simply XOR the shape again. Since two successive
XORs return a dot to its original state, the XORed shape has
now disappeared, and you can plot it at some other location.
See Chapter 8 for more details on XOR. Here's an example of
plotting a dot of color 2 at 67,31, with XOR mode:
MOV CX,67 ;x coordinate is 67
MOV DX,31 ;y coordinate is 31
MOV BL,2-I-80H ;color (palette register) is 2, with XOR bit set
MOV AH,12 ;function 12, write dot
INT lOH

A line-drawing procedure using this function is included
at the end of the chapter.

The counterpart of this routine is the read dot function,
AH = 13. For this, too, you specify CX, DX as the x,y co
ordinates. The INT lOH call returns with the dot color in AL

(recall that an off dot will always return with AL = 0).

Palette Interface Routines (AH = 11, 16 Decimal)
These INT lOH functions are used to change the screen dis
play colors. There are differences here between the various
IBM machines.

Set Color Palette (AH = 11). This call allows you to se
lect the colors to be used on the screen. First we'll discuss how

207

12

BIOS Interrupts

this function is used on the PC. PC and PC/XT owners have ^
distinctly less powerful graphics, as we have seen when
discussing the set video mode function, and this is reflected in
this function as well.

To choose one of the two different subfunctions available

with the set palette function, set BH to 0 or 1. When BH is 0,
function 11 will set the border/background color to the value
in BL. BL should be a number from 0 to 15. In graphics modes
4 and 5 (320 X 200 four-color) this function sets the border
and background colors (the background color is equivalent to
color 0). In BASIC, the COLOR command can be used to the
same effect. In the text modes (0 through 3), this call sets the
border color. The background color in text mode, by contrast,
is set by the attribute byte of each character.

The other subfunction, for which BH = 1, allows you to
choose one of two palettes to use with the 320 X 200 four-
color mode (modes 4 and 5). Two palettes of colors are avail
able. The palette determines the colors of the pixels on the
screen. One palette consists of the colors white, magenta, and
cyan. This palette, number 1, is selected by BIOS when you
enter mode 4 or 5 with BIOS. The other palette, number 0,
contains the colors brown, red, and green. To select a palette,
BH must hold 1, and AL must hold the palette number. The
available palette colors are summarized below:

palette 0: green, red, brown for colors 1, 2, 3
palette 1: cyan, magenta, white for colors 1, 2, 3

This switchable palette allows you to have either the colors
green, red, and brown or the colors cyan, magenta, and white,
on the screen at one time, as well as the background color (set
by the BH = 0 subfunction). Switching between the palettes .m
immediately changes the colors of all the pixels on the screen.

The PCjr has extended the power of these two functions
considerably. On the PC, the first function, BH = 0, is able to
set the graphics background color only for 320 X 200 four-
color mode. On the PCjr, we can set the background color for
any graphics mode (all seven). If you call the set color palette
function with BH = 0 in a graphics mode, the color specified
in AL becomes the new background color, color 0, as well as
the border color.

The second function, BH = 1, is limited on the PC to
choosing palette 0 or 1 for graphics modes 4 and 5. The PCjr

208 n

12

BIOS Interrupts

can use the BH = 1 function to set palette 0 or palette 1 in ex
tended graphics mode 10. In addition, the PCjr can set a pal
ette for the 640 X 200 two-color mode. Normally, on the
PCjr, mode 6 has white characters on whatever background
color you select. However, you can select black characters on
the background also. The white foreground is palette 0 (the
default), while the black foreground is palette 1. But you prob
ably won't need to concern yourself with palettes if you have
a PCjr, since the next function allows you to set each palette
register independently to whatever color you wish.

Set Palette Registers (AH = 16). This palette control
function is only for the PCjr. It allows you to select which col
ors are to be used with which palette registers, for both text
and graphics modes. When you enter one of the two 16-color
modes (numbers 8 and 9), or one of the alphanumeric modes
(numbers 0 through 3), the PCjr makes a one-to-one match
between the 16 palette registers and the 16 colors. Palette reg
ister 0 corresponds to color 0 (black), 1 corresponds to 1
(blue), 2 to 2 (green), and so forth. The four-color modes de
fault to black, cyan, magenta, white (palette 1) and the two-
color mode to white-on-black (palette 0).

However, it is possible to select any combination of colors
to be used with any of the palette registers. They could all be
set to black (thus making a picture invisible while, perhaps,
it's being drawn or loaded), or they could be set to change
appropriately during a game to show the passage of time,
strength, points, or whatever. To change one palette register
independently of the others, you call INT lOH with AH = 16
and AL = 0. Then palette number (BL) is set to color (BH),
which you have specified. These commands are similar to the
BASIC command PALETTE. Eor example, to duplicate the
BASIC command PALETTE 4,15, which sets palette register 4
to bright white, code:
MOV AL,0 ;select subfunction to set palette register
MOV BL,4 ;set palette register 4...
MOV BH,15 ;... to color 15 (bright white)
MOV AH,16 ;select function 16, set palette registers
INT lOH

There is a similar function to change the border color. Call the
set palette register function with AL = 1, and put the border
color in BH.

209

12

BIOS Interrupts

There is one other, more specialized option with this
function. This option allows you to set all 16 of the palette
registers, as well as the background, just as PALETTE USING
does in BASIC. To use this option, set AL to 2 (and AH to 16);
DS:DX should point to a list of colors. The first 16 bytes (num
bers 0 through 15) are the colors to be assigned to palette reg
isters 0 through 15. The seventeenth byte, at offset 16 within
the table, sets the color of the border.

Table 12-3. Functions Available with INT I OH

(AH) function name

0 set mode

input
1 set cursor type

input

(AL)

(CH)

= new mode number

= start line for cursor, (CL) =

2 set cursor position
input (BH)

3 read cursor position
input (BH)
output (DH,DL)

4 read light pen position
output (AH)

(AH)

(DH,DL)

5 select active page
input (AL)
or (for PCjr):

(AL)

end line

= display page, (DH,DL) = new
row, column

= display page
= row, column, (CH,CL) =
cursor mode

= 0 if light pen switch not
down/not triggered
= I if valid light pen values in
registers
= row, column, (BX,CH) = pixel
x,y

= page value (valid 0-3 or 0-7)

= 80H, read CRT/CPU registers
(see output)

(AL) = 8IH, (BL) = new CPU page
register

(AL) = 82H, (BH) = new CRT page
register

(AL) = 83H, (BL) = CPU register,
(BH) = CRT register

if bit 7 (80H) of AL is set, then
output (BL) = CPU register, (BH) = CRT

register

210

12

BIOS Interrupts

6 scroll active page up, lines blanked at bottom
input (AL) = number of lines, or (AL) = 0

to blank window

(CH,CL) = upper left corner of window
(row,column)

(DH,DL) = lower right corner of window
(row,column)

(BH) = attribute to use on blank line(s)
7 scroll active page down, lines blanked at top

input as above for function 6
8 read attribute/character at current cursor position

input (BH) = display page (for text modes)
output (AL) = character read, (AH) =

attribute (text only)
9 write attribute/character at cursor position

input (BH) = display page (for text modes)
(AL) = character, (BL) = attribute or

color

(CX) = count of characters to write
10 write character only at cursor position

input as above, but (BL) used only in graphics modes
11 set color palette

input (BH) = 0 for background, (BL) =
background color

(BH) = 1 to select palette, (BL) =
palette number

12 write dot

input (CX,DX) = pixel x,y, (AL) = palette
register

13 read dot

input (CX,DX) = pixel x,y
output (AL) = dot read

14 write teletype to active page
input (AL) = character, (BL) = color (graph

ics modes only)
15 return current video state

output (AL) = display mode, (AH) =
columns, (BH) = page

16 set palette registers (PCjr only)
input (AL) = 0, (BL) = palette register, (BH)

= color

(AL) = 1, (BH) = border color
(AL) = 2, (DSiDX) points to a 17-byte

color buffer holding 16 register
colors + border color

211

12

BIOS Interrupts

Keyboard I/O, INT 16H
This interrupt allows communications with the keyboard with
a minimum of difficulty and a maximum of control. However,
before we get into the details of how to use this interrupt, it is
necessary to discuss how the PC reads the keyboard.

Scan Codes and ASCII Codes
Many computers have a separate chip that controls the key
board. This chip converts keypresses to standard ASCII codes,
taking into account the status of other keys, such as the Caps
Lock or Ctrl keys. For example, if the keyboard chip sensed
key number 25 being pushed (scan code 25) while the Shift
key was down, it might send ASCII code 80 (an uppercase P)
to the system microprocessor.

The PC, on the other hand, does all the translating from
scan codes to ASCII under software control. This allows a pro
gram to get much more information from the keyboard than
would be possible if the system had access only to the ASCII
codes. Using INT 16H, the program can sense when the Ins,
Caps Lock, Num Lock, or Scroll Lock key is pushed, as well as
the toggled (on or off) state of each one. Additionally, it can
sense whether the Right Shift, Left Shift, Ctrl, or Alt key is be
ing depressed.

The keyboard function that reads a key always returns
two values. One of these values is the ASCII code for the key
pressed, taking into account the Shift, Ctrl, or Alt key concur
rently pressed. This value is usually most useful. The other
value is the scan code. This code reflects, in most cases, the
key that was pressed, and not the Shift, Ctrl, or Alt key
simultaneously pressed. Sometimes, the ASCII code is re
turned as 0, and you have to use the scan code to identify the
actual key. IBM refers to these ASCII zero codes as extended
codes. BASIC users may be familiar with extended codes.
When the INKEY$ statement returns an ASCII zero as the first
byte, the zero marks an extended code, and the second byte,
the scan code, is used to identify the key.

Table 12-4 shows the scan code for each key on the key
board, as well as the ASCII code and character associated with
it. In the three columns following are listed the ASCII codes
you get by pressing Shift, Ctrl, or Alt with the listed key; the
scan code usually stays the same no matter what Shift key you
press. For most keys, we've given the character in quotes, and

212 n

12

BIOS Interrupts

the ASCII code in parentheses. Some keys (like Enter) don't
produce a printable character; therefore, just the ASCII code is
given. You may also notice that some combinations of keys
(like Alt-Esc) are listed with a long dash (—). This means that

— this combination doesn't return anything with INT 16H.
There is one exception. Normally, as we mentioned above,

the scan code stays the same no matter what Shift keys you
press. However, the PC keyboard identifies certain combina
tions of keys as representing "new keys." These are always ex
tended codes, as mentioned above. For example, the 5 key on
the top row of the keyboard is normally scan code 6. But
when you press Alt-5, the keyboard creates a new scan code
for the key, 124, and gives it an ASCII code of zero. When an
extended code with a new scan code is generated, the notation
<0,n> is used to identify the new scan code: n is the value of
the new scan code, and the 0 refers to the ASCII code of zero.

Some keys and combinations of keys normally return an
ASCII code of zero (and are thus extended codes), but the scan
code remains the standard scan code given in the leftmost col
umn. These are indicated simply by placing a 0 in the appro
priate column. The standard A to Z keys, for example,
normally return an ASCII code. But when you use the Alt key
with one of these keys, they return an ASCII code of zero, al
though the scan code stays the same.

All key names given are those for the PC's 83-key key
board; PCjr owners see the PCjr Conversions Table (Table 12-
5) following. Keys not directly available on the PCjr keyboard
are marked with a star.

Certain keys change the values listed in Table 12-4. The
Caps Lock key reverses the base and uppercase values listed
for the A to Z keys each time it is pressed. The Num Lock key
reverses the base and uppercase values for the numeric pad
keys (scan codes 71 through 83) each time it is pressed. On
the PCjr, Num Lock mode also makes the top row of numeric
keys look like the PC's numeric pad.

One other feature is available through the keyboard rou-
tine. If you hold down the Alt key and enter a decimal num
ber, you can enter any character code from 0 to 255. To enter
character 234, you would hold down the Alt key, enter 234,
then release the Alt key. The keyboard routine treats this as
ASCII 234 but scan code 0. On the PC, you use the numeric
keypad; on the PCjr, you use Alt-Fn-N and the top row of nu-
meric keys.

213

12

BIOS Interrupts

Table 12-4. Key Codes on the 83-key Keyboard

All codes given in decimal

Scan CodeBase CaseUppercaseCtrl-Alt-

1 Esc272727
—

2 top row 1"1"(49)
//J//

(33)
—

<0,120>
3 top row 2(50)(64)<0,3><0,121>
4 top row 3"3"(51)(35)—

<0,122>
5 top row 4(52)(36)—

<0423>
6 top row 5"5"(53)(37)—

<0,124>
7 top row 6"6"(54)

//A//

(94)30<0,125>
8 top row 7

nrjt!
(55)(38)

—
<0,126>

9 top row 8"8"(56)
//#//

(42)—
<0,127>

10 top row 9(57)//^Z/(40)—
<0,128>

11 top row 0"0"(48)Z/^ZZ(41)—
<0,129>

12 top row -
// //

(45)
zz zz

(95)31<0,130>
13 =

// //

(61)
ZZ _|_ zz

(43)
—

<0,131>
14 Backspace88127—

15 Tab9<0,15>
—

16 Q"q"(113)"Q"(81)170
17 W"w"(119)"W"(87)230

18 E"e"(101)"E"(69)50

19 R"j,"(114)"R"(82)180

20 T
//^//

(116)
ZZrpZZ

(84)200

21 Y"y"(121)zzy"
(89)250

22 U"u"(117)"U"(85)210

23 I(105)
ZZJZZ

(73)90

24 0"o"(111)"O"(79)150

25 P"p"(112)
zzpzz

(80)160

26 [//^//(91)zz ̂zz(123)27
—

27]//j//(93)zz j^zz(125)29—

28 Enter131310
—

30 A"a"(97)"A"(65)10
31 S"s"(115)

zzgzz
(83)190

32 D"d"(100)"D"(68)40

33 F
//£//

(102)
zzpzz

(70)60

34 G"g"(103)"G"(71)70

35 H"h"(104)"H"(72)80

36 J"j"(106)
ZZJZZ

(74)100

37 K"k"(107)"K"(75)110

38 L
//J/Z

(108)"L"(76)120
39;

//,//

/(59)
zz.zz

(58)
——

40 '
/////

(39)(34)——

41 > *
tun

(96)
zz zz

(126)
——

43 *
// ̂//

(92)1(124)28—

44 Z"z"(122)"Z"(90)260

214

12

BIOS Interrupts

Scan Code Base Case Uppercase Ctrl- Alt-

45 X "x" (120) "X" (88) 24 0
46 C "c" (99) "C" (67) 3 0
47 V "v" (118) "V" (86) 22 0
48 B "b" (98) "B" (66) 2 0
49 N "n" (110) "N" (78) 14 0
50 M "m' (109) "M" (77) 13 0

51 , / (44) "<" (60) — —

52 .
// //

(46) ">" (62) — —

53 / (47) "?" (63) — —

55 PrtSc *
nian (42) — <0,114> —

57 (space bar) // // (32) "" (32) " " (32) " " (32)
59 Fl* 0 <0,84> <0,94> <0,104>
60 F2* 0 <0,85> <0,95> <0,105>
61 F3* 0 <0,86> <0,96> <0,106>
62 F4* 0 <0,87> <0,97> <0,107>
63 F5* 0 <0,88> <0,98> <0,108>
64 F6* 0 <0,89> <0,99> <0,109>
65 F7* 0 <0,90> <0,100> <0,110>
66 F8* 0 <0,91> <0,101> <0,111>
67 F9» 0 <0,92> <0,102> <0,112>
68 FIO* 0 <0,93> <0,103> <0,113>
71 Home* 0 "7" (55) <0,119> see text

72 (cursor up) 0 "8" (56) — see text

73 Pg Up* 0 "9" (57) <0,132> see text

74 numeric pad -* (45) (45) — —

75 (cursor left) 0 "4" (52) <0,115> see text

76 numeric pad 5* — "5" (53) — see text

77 (cursor right) 0 "6" (54) <0,116> see text

78 numeric pad + * (43) "+" (43) — —

79 End* 0 "1" (49) <0,117> see text

80 (cursor down) 0 "2" (50) — see text

81 Pg Dn* 0 "3" (51) <0,118> see text

82 Ins 0 "0" (48) — see text

83 Del 0 (46) — —

Table 12-5 lists all of the conversions for the PCjr's 62-
key cordless keyboard. The cordless keyboard can access every
key on the 83-key PC keyboard, although some of the conver
sions are rather odd.

215

12 n
BIOS Interrupts

Table 12-5. PCjr Conversions —•

F1 through FIO Fn-1, 2, 3, 4, 5, 6, 7, 8, 9, 0
Ctrl-Break Fn-B (Break), or, Ctrl-Fn-S
Ctrl-PrtSc Fn-E (Echo), or, Ctrl-Fn-P
Shift-PrtSc Fn-P (PrtSc) ' '
Ctrl-Num Lock Fn-Q (Pause)
Scroll Lock Fn-S (Sc Lock)
Num Lock Alt-Fn-N ' *
Pg Up Fn-cursor left (Pg Up)
Pg Dn Fn-cursor right (Pg Dn)
Home Fn-cursor up (Home)
End En-cursor down (End)
numeric keypad — En-minus
numeric keypad + Fn-equals ("=/ + " key)
numeric keypad . Shift-Del
numeric keypad numbers top row numbers in Num Lock mode
backslash (\) Alt-slash (/)
open quote (') Alt-single quote (')
vertical bar (I) Alt-open bracket ([)
tilde (z^) Alt-close bracket (])
asterisk (*) from PrtSc Alt-period

The Keyboard Interrupt Functions (INT
16H)
Now that we have run through the scan codes available on
the PC and PCjr, let us turn our attention to the interrupt it
self. To use this interrupt, as always, place the function num
ber in AH, then issue INT 16H.

Read Keyboard (AH = 0)
This is the workhorse of the keyboard interrupt routine. When
you call this routine, the computer checks to see if a key has
been pressed; if not, it waits for one. Then, the computer re
turns the scan code in AH and the standard ASCII code in AL.

However, if the ASCII code (AL) holds 0, AH will hold the ex-
tended code for the key that was pressed. For example, if we
want to write a routine that waits until Alt-Q is pressed, we
write it as follows:

NO_ALT_Q: MOV AH,0 ;read keyboard function
INT 16H ;keyboard I/O
CMP AL,0 ;test for an extended code
JNE NO_ALT_Q ;not Alt-Q
CMP AH,10 ;test for Q's scan code

216 JNE NO_ALT_Q p

12

BIOS Interrupts

Get Keyboard Status (AH =1)
This function sets the zero flag depending on whether the key
board buffer is empty or not. If the keyboard buffer is empty,
the zero flag indicates 0; if the flag is not 0, then a code is
waiting to be read. The key waiting to be read is echoed into
the AX register (ASCII in AL, scan code in AH). However, the
key still has to be read to clear the buffer. This fragment of
code calls a keyboard-handling routine whenever a key is
pressed:

MOV AH,1 ;get status function
INT 16H ;keyboard I/O
JZ NO_CODE ;ZF is set, so buffer empty
CALL READ—KBD ;character ready: go process

NO_CODE: ;continue with program

Get Current Shift Status (AH = 2)
This function allows you to check the status of the keyboard.
The status byte is returned in AL. Each bit relates the status of
a "shift key." Some of the bits are set only when the key is ac
tually being held down. Some are set to 0 or 1 depending on
whether the function selected by that key is on or off (for ex
ample, normally the bit that tests for Caps Lock on is 0; when
you push Caps Lock once the bit becomes 1, then 0 when you
push it again).

Here is the status byte returned in AL:

bit 0 Right Shift key depressed
bit 1 Left Shift key depressed
bit 2 Ctrl key depressed
bit 3 Alt key depressed
bit 4 Scroll Lock is on

bit 5 Num Lock is on

bit 6 Caps Lock is on
bit 7 Insert mode is on

An additional byte contains more status flags. This byte,
called KB_FLAG_1, is at the same location on the PC, PC/XT,
and PCjr. One can hope that it will not be moved in later
members of the PC family. Regardless, it is inadvisable to use
this byte in a program meant for public use, since IBM gives
us no guarantee that it will remain in the same place in later
PC generations. In any event, the byte is at location 0040:0018
(or 00418 absolute). You can read it with the following
sequence:

217

12

BIOS Interrupts

MOV AX,40H ;set segment DS to 0040
MOV DS,AX
MOV AL,BYTE PTR DS:[18H] ;get byte from offset 0018

This byte returns the following:
bit 0 (unused)
bit 1 Ctrl-Alt-Caps Lock is depressed (PCjr only)
bit 2 audio feedback (click) is on (PCjr only)
bit 3 (used internally by BIOS, always 0)
bit 4 Scroll Lock key is depressed
bit 5 Num Lock key is depressed
bit 6 Caps Lock key is depressed
bit 7 Insert key is depressed

A third keyboard byte exists on the PCjr, holding the status of
the Fn key and keypress repeat rate, at 0040:0088. This byte is
of little use.

The data obtained through BIOS, as well as from
KB_FLAG_1 (if necessary), may be used to give you a greater
degree of control over the keyboard, should one of your pro
grams need it.

Set Key Repeat Rate (AH = 3)
This function is valid only for the PCjr. The key repeat rate is
the rate at which the keys repeat when you hold them down,
as well as the initial delay before they begin to repeat. The
INT 16H interrupt function can set them as follows:
AL = 0 restore rate to normal

AL = 1 increase initial delay
AL = 2 slow repeat speed by one-half
AL = 3 combine effects of AL = 1 and AL = 2
AL = 4 turn off repeat

Set Keyboard Click (AH=4)
This function is also new to the PCjr. The keyboard click can
be controlled with Alt-Ctrl-Caps Lock, or it can be controlled
from software as follows:

AL = 0 turn off keyboard click
AL = 1 turn on keyboard click

DOS provides a variety of keyboard input routines which
are good for some purposes, as we shall discuss in the next
chapter. INT 16H, however, gives you finer control over key
board input, and for that reason is often used in preference to
the DOS functions.

218

(0^

12

BIOS Interrupts

Table 12-6. Functions Available with INT 16H

(AH) Function name

0 read character from keyboard
output (AL) = ASCII, (AH) = scan code

1 get keyboard status
output (ZF) = 0 if buffer empty, = 1 if key ready

if key ready, a copy is placed in (AX)
2 get shift status

output (AL) = shift status
bit 0 Right Shift key depressed
bit 1 Left Shift key depressed
bit 2 Ctrl key depressed
bit 3 Alt key depressed
bit 4 Scroll Lock is on

bit 5 Num Lock is on

bit 6 Caps Lock is on
bit 7 Insert Mode is on

3 set key repeat rates
input (AL) = new setting for repeat

0 restore default rate
1 increase initial delay
2 slow repeat speed by one-half
3 combine effects of AL = 1 and AL = 2
4 turn off repeat

4 set keyboard click
input (AL) = 0 for off, (AL) = 1 for on

Other BIOS Interrupts
We'll take up where we left off in the last chapter, and briefly
run through the interrupts from 5 to PH.

Low-Level Interrupts
Interrupt 5—Print Screen is called whenever you push Ctrl-
PrtSc (Fn-PrtSc on the junior). As you no doubt know, this
routine dumps the contents of the screen to the printer. If you
need to dump the screen from within a program, you can call
this routine by simply inserting
INT 5

in your program. No registers are affected, but the routine re
turns its status in a byte at segment 50, offset 0 (50:0, absolute
00500):

219

12

BIOS Interrupts

50:0 = 0 successful print screen
= 1 print screen in progress (during operation)
= OFFH error encountered during printing

Interrupts 6 and 7 are unused in the PC, PCjr, and
PC/XT.

The 8259A Interrupts, 8 through OFH, are all handled by
the 8259A chip. Interrupt 8 is the clock tick interrupt that trig
gers about 18.2 times per second. This interrupt updates the
clock and then calls INT ICH, which normally points to an
IRET (see the discussion of INT ICH in this chapter).

There are two other interrupts in this group, INT 9 and
INT OEH. The first is one of the low-level keyboard decoding
routines, the second, a routine which is triggered by disk er
rors. The rest of the routines in this group (A through D, and
F) are unused and reserved in the PC, PC/XT, and PCjr.

The Equipment Determination Routines
(INT IIH and 12H)
These two routines are useful for writing programs meant to
run on a variety of PC models. The first interrupt, INT IIH,
returns a word in AX which describes attached equipment bit
by bit. Note that where two bits select an option, the bit pairs
are given as binary numbers (that is, OOj, Olj, lOj, and llj).
bits description
0 1 = disk drive(s) are attached (see bits 6, 7)
1 (unused)
2, 3 system board RAM size (not including added memory):

OO2 = 16K, OI2 = 32K, IO2 = 48K, II2 = 64K
4, 5 initial video mode:

OO2 (unused)
OI2 = 40 X 25 b/w, color/graphics (PCjr default)
IO2 = 80 X 25 b/w, color/graphics
II2 = 80 X 25 b/w, using b/w card (PC default)

6, 7 number of disk drives, if bit 0 = 1:
002=1, 012=2, 102=3, 112=4

8 0 = the system allows direct memory access (DMA)
9-11 number of RS-232 cards (0-7)
12 1 = game I/O (joysticks, etc.) is attached
13 1 = a serial printer is attached (PCjr only)
14,15 number of printers attached (0-3)

The other interrupt, INT 12H, returns the amount of memory

220

12

BIOS Interrupts

available on the system board. The value is returned in in
crements of one K byte in AX. However, this value only repre
sents the amount of memory on the system board, and doesn't
take into account any add-on memory. So, for most purposes,
this interrupt is useless. The word at segment 40H, offset 15H
(absolute address 00415H), holds the actual size of memory in
K bytes on the PC, XT, and PCjr.

Disk I/O (INT 13H)
This interrupt is the lowest level of disk access available
through the operating system. Rather than dealing with files,
or with relative sectors, this routine deals directly with the
track, sector, and head of the sector you want to load or save.
It's unlikely that you'd want to use this interrupt, unless you
were writing your own personal DOS, or writing a disk-repair
utility. However, the available functions are summarized in
Table 12-7.

Table 12-7. Functions Available with INT 13H

(AH) Name of function and input/output parameters

0 reset disk system (do this for errors, then try again)
1 read the status of the disk system into AL (see below)

OOH = operation successful
OIH = bad command given to disk I/O
02H = address mark not found

03H = write attempted on write-protected disk
04H = requested sector not found
08H = DMA overrun on operation
09H = attempt to DMA across 64K boundary
lOH = bad CRC (checksum) on disk read
20H = controller has failed

40H = seek operation failed
80H = attachment failed to respond (time-out error)

2 read the desired sectors into memory
input (DL) = drive number (0 to 3)

(DH) = head number (0 or 1)
(CH) = track number (0 to 39)
(CL) = sector number (1 to 8, or 1 to 9)
(AL) = number of sectors (1 to 8, or 1 to 9)
(ES:BX) = address of buffer for data

output (AH) = error number (as above)
carry flag set if (AH) does not equal zero

(AL) = number of sectors read (PCjr only)

221

12

BIOS Interrupts

3 write the desired sectors from memory
input and output parameters identical to function 2

4 verify the desired sectors (check CRC and so forth)
parameters identical, but ES:BX is not required

5 format the desired track

input the same, but (CL) and (AL) are not needed
ES:BX must point to a format-information buffer.

This format-information buffer holds a series of fields of

data, one for each sector on the track. Each field is four bytes
long, holding track number, head number, and sector number,
followed by a byte indicating how long the sector is (0 = 128
bytes, 1 = 256 bytes, 2 = 512 bytes, 3 = 1024 bytes). There
must be one field for each sector on the track.

RS-232 I/O, INT 14H
Should you need to use this interrupt (to write a modem-
handling program, for example), we recommend that you refer
to the Technical Reference Manual.

Cassette I/O, INT 15H
Since cassette drives are becoming less popular (and since you
must have a disk drive for your assembler disk if you're read
ing this), we'll skim briefly through this topic. For the in
terested, however. Table 12-8 contains a brief summary of the
cassette I/O functions.

Table 12-8. Cassette I/O Functions

(AH) Function name and input/output

0 turn cassette motor on

1 turn cassette motor off

2 read data from the cassette

input (CX) = number of bytes to read
(ES:BX) = pointer to data buffer

output (DX) = number of bytes actually read
(AH) = error condition if carry is set;
01 = CRC (checksum) error detected
02 = data transitions are lost

04 = no data was found

3 write data to cassette

input as above; on output, no error returns

222

12

BIOS Interrupts

Printer I/O—INT 17H
This function is useful for controlling any printers attached to
your system. The available options, summarized in Table 12-9,
are largely self-explanatory.

Table 12-9. Printer I/O Functions

(AH) Function name and input/output

0 print character
input (AL) = character to be printed

(DX) = number of printer to be used (0, 1, or 2)
output (AH) = status byte (below)
(bit 0 set indicates character not printed)

1 initialize the printer port
input (DX) = printer to be initialized (0-2)
output (AH) = status byte

2 read the printer status byte into AH
input (DX) = printer number (0-2)
output (AH) = status byte:

bit 0 time-out

bits 1, 2 (unused)
bit 3 I/O error
bit 4 printer selected (on-line)
bit 5 out of paper
bit 6 acknowledge
bit 7 not busy

BASIC Start, System Warm Boot, and Time-of-Day
Routines (INT 18H, 19H, lAH)
INT 18H will start up BASIC; INT 19H will reboot from disk.
It's unlikely that you'll ever need either of these.

INT lAH, on the other hand, is convenient for timing
applications. The time-of-day clock in the PC family is in
cremented 18.2 times per second by the 8253 timer. This inter
rupt provides a way to read and set this counter. The counter
is in two words, and all the time-of-day functions use DX as
the low word, and CX as the high word. The functions avail
able are listed in Table 12-10.

223

12

BIOS Interrupts

Table 12-10. Functions for the Time-of-Day Routine

(AH) Function name and input/output

0 read the current clock setting
output (DX,CX) = low word, high word of counter

(AL) = 0 if less than 24 hours since timer read
1 set the clock

input (DX,CX) = low word, high word of new setting
80H set the sound source on the PCjr (beeper, sound chip, etc.)

input (AL) = 00 to 03

To insert a specific delay into your program, you might write a
procedure like the following:

pass in BX the number of I8.2's you wish to wait
AX, BX, CX, and DX are destroyed by this routine

WAIT PROG NEAR

MOV AH,0 ;read the clock setting
INT lAH ;time-of-day interrupt
ADD BX,DX ;find out when time is up

W_LOOP: MOV AH,0 ;read the clock again
INT lAH

CMP DX,BX ;is time up yet?
JNE W_LOOP ; no, so loop back
RET ; yes, so return

WAIT ENDP

Generally, it's wise to avoid using the set clock option, since
the clock used by this interrupt is the same clock that you set
when you start up your PC. Setting the clock to 0 with this
interrupt will reset the system clock to 12:00 a.m.

There is another way to read the time clock. This ap
proach goes through DOS, and returns to you the year,
month, day and date, as well as the time in hours, minutes,
seconds, and hundredths of seconds. We'll discuss this in the
next chapter.

The User Interrupts—INT IBH and INT ICH
We touched lightly on the subject of revectoring interrupts in
the last chapter. These two interrupts are made expressly to be
revectored, but this technique is best left to advanced pro
grammers. Both interrupts normally point to an IRET instruc
tion (one in DOS, one in BIOS). INT IBH is called whenever
the Break key is struck. INT ICH is called 18.2 times a second

224

12

BIOS Interrupts

by the routine which updates the clock. By revectoring these
interrupts, you can divert the computer to your own routine
whenever the Break key is struck, or every time the clock is
updated; but such methods go beyond the scope of this book.

The Parameter Table Interrupts, IDH and lEH
These, too, we'll only touch on. These two interrupt locations
do not contain genuine interrupt vector addresses. Instead,
they point to data. The vector at interrupt location IDH points
to a table of parameters fof the video display. The vector for
lEH points to a table of parameters for the disk drive. Both
tables should be left alone, along with their vector pointers.
Modifying these tables requires extremely advanced techniques.

The Upper 128 Character Display Data, INT IFH
This interrupt location also contains a pointer to data. The
data pointed to is the character generator graphics that allow
the PC to put characters on the screen when in graphics
modes, simply by plotting the appropriate pixels on the
screen. Advanced programmers can revector this to point to
their own tables (in RAM) and thus redefine characters
80H-0FFH. Thus, you could replace character 128 with an
alien, character 129 with a spaceship, and so forth. Or you
could replace the standard characters with foreign language
characters or special scientific symbols relevant to your pro
grams. However, you must be in a graphics mode to use these
new symbols; and the use of redefined character sets is a com
plex subject, better suited to a book devoted to games and
graphics or an advanced programmer's manual.

BIOS Interrupt Vectors—Summary Table
In these pages we have covered the most useful BIOS inter
rupts. You will find that INT lOH and INT 16H are the two
most frequently used routines in BIOS (and thus we have dis
cussed them at some length). The other routines are generally
of less use. Enough has been said about them here, however,
to allow you to understand what is available to you. Further
information can, in many cases, be obtained from the com
mented BIOS listing in the Technical Reference Manual. Serious
machine language programmers would do well to acquire a
copy of this manual. Separate versions exist for the PC, the
PC/XT, and the PCjr.

225

12

BIOS Interrupts

Table 12-11. BIOS Interrupt Vectors

Interrupt vectors listed where identical in PC/XT/jr

Int Num Name of Routine DOS or BIOS

8088 predefined interrupts
0 divide overflow DOS (IRET)
1 single-step DOS (IRET)
2 non-maskable BIOS

3 breakpoint DOS (IRET)
4 overflow DOS (IRET)

BIOS interrupts
5 print screen BIOS (F000:FF54)
6-7 reserved BIOS

External 8259A interrupts
8 8253 clock tick BIOS (F000:FEA5)
9 keyboard interrupt BIOS
A-D reserved BIOS

E disk error BIOS (F000:EF57)

Standard BIOS interrupts
10 video handler BIOS

11 equipment determination BIOS (F000:F84D)
12 memory size determination BIOS (F000:F841)
13 disk I/O BIOS (F000:EC59)
14 RS-232 I/O (serial port) BIOS (F000:E739)
15 cassette I/O BIOS (FOOO:F859)
16 keyboard I/O BIOS

17 printer I/O BIOS (F000:EFD2)
18 BASIC start vector BIOS (F600:0000)
19 boot-strap loader BIOS

lA time-of-day BIOS

IB user keyboard break DOS (IRET)
IC user clock interrupt BIOS (IRET)
ID video parameters table BIOS (F000:F0A4)
IE disk parameters table DOS (data)
IF characters 80H-0FFH BIOS (data)

Interrupt vectors for the unlisted entries can be found by using
DEBUG and examining 0000:0000 through 0000:03FF, but IBM
discourages using ROM addresses directly in your programs.
Note that the BASIC start vector for the PCjr refers to the Cas
sette BASIC; INT 18H for the Junior's Cartridge BASIC points
to F800:0177.

226

I
 I

I
I

I
I

 I

I
I
J

Pr
og

ra
m
12
-1
.
Li

ne
 D
r
a
w
 P
ro

ce
du

re

V

j
d
e
o

d

w
r

i
t
e

e
 q
 u

e
 q
 u

1
O
h

1
2

;
v
i
d
e
o

I
/
O

I
n
t
e
r
r
u
p
t

;
w
r

i
t
e

d
o
t

f
u
n
c
t
i
o
n

L
i
n
e

d
r
a
w

p
r
o
c
e
d
u
r
e

I
n
p
u
t

-
-

C
X
,
B
L

h
o
l
d
s

X
,
Y

f
o
r

s
t
a
r
t

o
f

l
i
n
e

D
X
.
B
H

h
o
l
d
s

X
,
Y

f
o
r

e
n
d

o
f

l
i
n
e

A
L

h
o
l
d
s

p
a
l
e
t
t
e

r
e
g
i
s
t
e
r

t
o

d
r
a
w

l
i
n
e

In

0

o
r

1
f
o
r

2
-
c
o
l
o
r

m
o
d
e
s

0
-

3

f
o
r

4
-
c
o
l
o
r

m
o
d
e
s

0
-

1
5

f
o
r

1
6
-
c
o
l
o
r

m
o
d
e
s

I
f

h
i
g
h

bi

t
o
f

A
L

s
e
t

(
8
0
H
5
,

l
i
n
e

w
l

l
O
u
t
p
u
t

-
-

a
l

l
r
e
g
i
s
t
e
r
s

p
r
e
s
e
r
v
e
d

(
f
l
a
g
s

a
l
t
e
r
e
d
)

s
a
v
e

a
l

l
r
e
g
i
s
t
e
r
s

K
J

N
J
V
I

l
i
n
e

p
r
o
c

n
e
a
r

p
u
s
h

a
x

p
u
s
h

b
 X

p
u
s
h

c
 X

p
u
s
h

d
 X

p
u
s
h

s
i

p
u
s
h

d
 I

p
u
s
h

b
p

e
s
t
a
b
l
i
s
h

t
h
e

p
a
r
a
m
e
t
e
r
s

n
e
c
e
s
s
a
r
y

t
o

d
r
a
w

t
h
e

l
i
n
e

A
L

=

c
o
l
o
r

o
f

d
o
t

(
u
n
c
h
a
n
g
e
d

s
i
n
c
e

p
r
o
g
r
a
m

e
n
t
r
y
)

X
O
R

w O C
O

c T
!

K)
NJ

00

CX = current dot's x-posi t ion Cas for wr i te dot funct ionJ
DX = current dot's y-posi t ion
BP = the longer of del ta-x, del ta-y (for x-, y - I n c r erne n t I n g)
SI = holder for x - i n c r erne n t i n g (ini t . = BP/2), count-up reg.
Dl = holder for y-Incrernent ing (ini t. = BP/2)
BX = loop counter (ini t ial ize to BP + 1)

x_po s

y_pos:

s e t_bp

push c x

push b X

mo V cs:x_inc+2,-1

sub CX , dx

j ae x_po s

neg C X

n eg c s:x_ i n c + 2

mo V c s:x_add + 2,cx

mo V cs:y_inc+2,-1

sub b 1 , bh

j a e y_pos

neg b 1

neg cs:y_i nc + 2

mo V bh , 0

mo V cs:y_add+2,bx

cmp CX , bx

ja set_bp

mo V c X , b X

mo V b p , c X

pop b X

save start posi t ion

(t empo r a r i Iy)
defaul t : sub 1 from x-posi t ion
put x-length in CX

if CX>=DX, CX is posi t ive
else let CX = abs(CX)

and let x-posi t ion add = 1

save x-length at ADD CX.nnnn

defaul t: sub 1 from y-posi t ion
put y-length in BX

i f BL>=BH, BL is posi t ive
else let BL = abs(BL)

and let y-posi t ion add = 1

let BX = BL

save y-length at ADD DX.nnnn

longer in CX, shorter in BX

i f CX is above, f ine

else put BX into CX for BP

BP holds longer length
CX,DX holds pixel X,Y

Cd

o
CAI

a [
re
i-t

i-t

c

I 1]] 1 1 1 1 1

1
)

1
1

1
1

1
1
]

p
o
p

c
x

m
o
 V

d
I
 ,
b
 I

m
o
v

d
h
 ,
 0

m
o
v

b
x
,
b
p

i
n
c

b
x

s
h
r

b
p
 ,
 1

m
o
v

s
 i

 ,
b
p

m
o
v

d
 i

 ,
b
p

C
X

a
l
r
e
a
d
y

I
n
i

t
.

c
o
r
r
e
c
t
l
y

.
.
.
 n
o
w

l
e
t

D
X

=

B
L

(
z
e
r
o

h
i
g
h

b
y
t
e
)

B
X

h
o
l
d
s

i
t
e
r
a
t
i
o
n
s

c
o
u
n
t
e
r

(
 I
e
t

B
X

=

B
P

+

1
)

i
n
i

t
.

S
I

a
n
d

D
I

t
o

B
P
/
2

S
I

h
o
l
d
s

X

i
n
c
r
e
m
e
n
t

c
o
u
n
t

D
l

h
o
l
d
s

y

i
n
c
r
e
m
e
n
t

c
o
u
n
t

h
a
n
d
l
e

d
r
a
w
i
n
g

t
h
e

l
i
n
e

w
r

i
t
e

d
o
t

f
u
n
c
t
i
o
n

n
e
e
d
s

C
C
X
,
D
X
)

=

d
o
t

X
,
Y

a
n
d

(
A
L
)

=

c
o
l
o
r

h
o

v
£
)

d
 r
 a
w
_
l
 i

 n
e
_
l
 O
O
P
:

m
o
v

a
h
 r

 d
_
w
r
 i

t
e

i
n
 t

v
i
d
e
o

x
_
a
d
d

l
a
b
e
l

w
o
 r
 d

a
d
d

s
i
,
O
f
f
f
f
h

c
m
p

s
 i

 ,
b
p

j
b

n
e
a
r

p
t
r

y
_
a
d
d

s
u
b

s
 i

 ,
b
p

x
.
_
i
 n
 c

l
a
b
e
l

w
o
 r
 d

a
d
d

c
x
,
O
f
f
f
f
h

y
_
a
d
d

l
a
b
e
l

w
o
r
d

a
d
d

d
i
 ,
0
f
f
f
f
h

c
m
p

d
 i

 ,
b
p

j
b

e
n
d
_
c
k

s
u
b

d
 i

 ,
b
p

;
w
r

i
t
 e

d
o
t

;
 (
n
o
t
e

A
L

f
 u
n
c
 t
 i
o
n

i
s

p
r
e
s
e
r
v
e
d
)

s
e
l
f
-
m
o
d
 i
f
y
i
n
g

O
f
f
f
f
h

t
e
s
t

f
o
r

o
v
e
r
f
l
o
w

n
o

y
e
s
-

b
a
c
k

u
p

x

c
o
u
n
t
e
r

(
s
e
l
f
-
m
o
d
 i
f
y
i
n
g

c
o
d
e
)

-
 c
h
a
n
g
e

x
-
p
o
s
i

t
i
o
n

d
d

C
/
D

c n

a
l
s
o

t
e
s
t

n
o

y
e
s
-

b
a
c
k

s
e
l
f
-
m
o
d
 i
f
y
i
n
g

f
o
r

o
v
e
r
f
l
o
w

u
p

y

c
o
u
n
t
e
r

(
j
J
O

y
_
i
n
c

l
a
b
e
l

w
o
r
d

a
d
d

d
x
.
O
f
f
f
f
h

e
n
d
_
c
k
 :

d
e
c

b
x

j
n
z

d
r
a
w
_
l
 i
n
e
_
l
o
o
p

(
s
e
I
f
-
m
o
d
i
f
y
I
n
g

c
o
d
e
)

-
 c
h
a
n
g
e

y
-
p
o
s
i

t
i
o
n

n
e
x
t

I
o
o
p

j
u
m
p

b
a
c
k

I
f

n
o
t

d
o
n
e

l
i
n
e

p
o
p

b
p

p
o
p

d
 I

p
o
p

s
 I

p
o
p

d
x

p
o
p

c
x

p
o
p

b
x

p
o
p

a
x

r
e
t

e
n
d
p

;
r
e
s
t
o
r
e

a
l

l
a
l
t
e
r
e
d

r
e
g
i
s
t
e
r
s

;
 r
 e
 t
 u
 r
 n

;
 e
n
d

o
f

t
o

c
a
l
l
e
r

L
I
N
E

p
r
o
c
e
d
u
r
e

D
d

H
—
I

o h
-
H

rt
-

I
O
)

•
-
t

-
t

c n

]
 1

]

]

1
]

 1
1

]

1

CHAPTER

13
The DOS Function

Interrupt

In the last chapter we discussed the entire range of BIOS inter
rupts. In this chapter, by contrast, we will focus our attention
entirely on one interrupt: the DOS function interrupt, 21H.
This single interrupt routine adds enormously to the power of
your programs, allowing advanced file-handling, directory
control, memory management, and an enormous variety of
other functions. There are a variety of other DOS interrupts,
summarized in Table 13-1. Most of these, however, will not be
discussed here; we'll concentrate our discussion on INT 21H,
the DOS function interrupt.

Table 13-1. DOS Interrupts

INT 20H terminate program
INT 21H the DOS function call

INT 22H address for program termination
INT 23H Ctrl-Break exit address

INT 24H critical error handler

INT 25H absolute disk read

INT 26H absolute disk write

INT 27H terminate but stay resident

Those curious about the other DOS interrupts can consult
DOS 2.00's DOS manual or DOS 2.10's Technical Reference
Manual (in this chapter, when we refer to the DOS manual,
DOS 2.10 users should substitute the DOS Technical Reference
Manual).

Like BIOS, each function is selected by placing its number
in AH. The DOS manual groups these functions into seven
broad categories, each including a wide variety of functions.
Table 13-2 outlines these categories. Since we will be referring
to the DOS functions by their hexadecimal number throughout
this chapter, the table below lists the interrupt numbers in hex.

231

13

The DOS Function Interrupt
n

DOS 1.10 users should note that only function numbers OH "*
through 2EH are available; the others are new to DOS 2.00.

Table 13-2. DOS Breakdown of Functions (in Hex) 0m
W 1

0-C traditional character device I/O
D-24, 27-29 traditional file management group
25-26, 2A-2E traditional nondevice functions
2F-38, 4C-57 extended function group
39-3B, 47 directory group
3C-46 extended file management group
48-4B extended memory management group

A list of the DOS functions discussed in this book can be

found at the end of this chapter.
Note that all DOS function calls, like BIOS interrupt calls,

preserve the registers, unless information is returned in them.
AX is sometimes preserved, and sometimes not, depending on
the particular function.

Character Device I/O Functions
These functions provide support for those devices which op
erate on a character-by-character basis, like the screen, the
keyboard, or the printer. Most of these functions are carried
over to MS-DOS from CP/M. The main group in this category
is those functions which deal with the screen and keyboard
(together, the console). Also included in this group are the
Asynchronous Communications Adapter (modem) support
functions, which we won't discuss, and the printer function,
which we will.

Redirection of Input and Output with DOS 2.00
and Above
In DOS 2.00 and 2.10, every reference to the keyboard ac
tually means the standard input device, and every reference to
the screen means the standard output device. These names are
used because DOS 2.00 has the ability to redirect the normal
input and output to disk files instead of to the keyboard and
screen. So you can write a DOS-standard file containing all
your replies to a program that normally accepts keyboard in
put. Here we'll use DEBUG as an example:

A>DEBUG < INPUT.FIL

232 n

13

The DOS Function Interrupt

This would pipe the contents of INPUT.FIL to DEBUG in lieu
of normal keyboard input. The parallel ability to send all of
DEBUG's output to OUTPUT.FIL (continuing our example) is
also allowed:

A>DEBUG > OUTPUT.FIL

Both can be used at once:

A>DEBUG < INPUT.FIL > OUTPUT.FIL

Furthermore, one program's output can serve as another pro
gram's input, using the vertical bar character:

A>PROGRAMl I PROGRAM2

In this case, all of PROGRAMTs output would become PRO-
GRAMZ's input. For more information, see the DOS 2.00
manual; but, for the moment, bear in mind that all these DOS
functions can be piped—and remember that BIOS functions
can't be. DOS 1.10 users need not concern themselves with
piping, since DOS 1.10 doesn't allow for it.

The other unique feature supported by DOS is the printer
echo feature. The Echo key (Ctrl-PrtSc on the PC and PC/XT,
and Fn-Echo on the Junior) is used to turn this feature on and
off. When printer echo is turned on, all output to the screen
(for DOS 2.00, the standard output device) will be echoed to
the printer. This can be a very useful feature for keeping
documented copies of a program's output. For example, you
could copy a DEBUG Unassembly to printer simply by typing
Ctrl-PrtSc, followed by the U command.

Keyboard Input Functions
In the last chapter we discussed the BIOS keyboard Input
command, which allows a key to be read from the keyboard
(as ASCII and a scan code). The DOS keyboard input func
tions add a variety of additional features to this simple BIOS
Input command. However, the DOS functions don't handle ex
tended codes well. (Extended codes were discussed in the last
chapter.) If the user presses an extended key (such as cursor
left), the DOS input routines return 0, and you must call the
routine again to get the distinguishing scan code.

Keyboard Input (AH = 1). This DOS command works
somewhat like the BIOS Input command; it waits for a key to
be pressed and then returns its ASCII code to AL. However,
this function also echoes keys to the screen as they are

233

13

The DOS Function Interrupt

pressed, thus simplifying the programmer's job. Furthermore, >
function 1 handles Ctrl Break and Ctrl-PrtSc apart from usual
keys. If your program uses this function, the user can press
Ctrl-Break to return directly to the DOS prompt (aborting from ^
your program), and Ctrl-PrtSc to turn the DOS printer echo
feature on and off.

One problem with function 1 is that any extended codes i—>
will be printed on the screen, which can be very awkward. As
a rule, this function should be avoided if extended codes are to
be used.

Console Input Without Echo (AH = 8). Identical to
function 1 above, except that this function does not echo back
to the screen. This can be useful for "Hit any key" messages,
where you don't want random characters to be echoed to the
screen. It can also be useful for input routines that are meant
to handle extended codes, since DOS doesn't automatically
echo the key to the screen.

Direct Console Input (AH = 7). This function is like
function 8 above. However, not only does it not echo the
character to the screen, it also doesn't handle Ctrl-Break or
Ctrl-PrtSc separately. Consequently, the user can't abort back
to DOS with this function, nor can he or she turn printer echo
on (or off).

Direct Console I/O (AH = 6). A bit more complex, this
function neither echoes input back to the screen, nor does it
check for Ctrl-Break or Ctrl-PrtSc. Furthermore, this function
can handle both input and output. To use it for input, DL
must hold FFH (255 decimal). However, rather than waiting
for a key to be pressed, this function always returns to the
calling program immediately. If a key has been struck, the zero
flag will indicate "not zero" and AL will hold the input f—^
character's ASCII code. If no key has been struck, the zero flag
will return reading 0.

This function can be useful for games in which the key- i—^
board must be checked each turn to see whether a key has
been struck. Rather than using BIOS once to check the key
board status, then again to read the character, you can simply ,
call this function.

If DL holds any value other than FFH, the contents of DL
are printed to the screen. We'll discuss the output routines (—i
below.

234

13

The DOS Function Interrupt

Check Keyboard Status (AH = B hex). This routine
checks to see if a character is available from the keyboard. If
one is, AL will hold FFH on return. If not, AL will hold 0.
Note that this function, like functions 1 and 8 above, makes
special checks for Ctrl-Break and Ctrl-PrtSc.

Buffered Keyboard Input (AH = A hex). Similar to BA
SIC'S INPUT statement, this function, rather than returning
one character at a time, reads in a whole string of edited
characters from the keyboard. To call this function, DS:DX
must point to a special input buffer. Then, when INT 21H is
called, DOS reads characters from the keyboard into the
buffer. A final Enter (ASCII 13) from the keyboard marks the
end of the input. Here's how the buffer is set up:

Byte 0 This byte contains the maximum number of characters
the buffer can hold (including the final Enter). Byte 0
obviously can't hold zero.

Byte 1 On return from the function, DOS loads this byte with
the number of characters entered. DOS, inconsistent as
always, sets this byte to the number of characters read,
excluding the ASCII 13 (Enter).

Byte 2 Starting with this byte, you must have a buffer of the
length specified in byte 0.

When the buffer fills to one less than the maximum num

ber of characters (in byte 0), further characters are ignored,
and DOS sounds the bell each time a new key is struck. The
only character that can be read into the last byte is an Enter.
You can, of course, input fewer characters than requested; this
will be reflected in byte 1 on return. Here's a program frag
ment that reads data into a buffer, then loads AL with the first
byte of the string. (Note the use of the DUP command below.
This command DUPlicates what's inside the parentheses how
ever many times requested. See Chapter 14 for a discussion of
DUP.)

... in the current data segment
BUFFER DB 10,?,10 DUPC ') ;the DOS input buffer

... in the code segment
MOV DX,OFFSET BUFFER ;set DS:DX to buffer address
MOV AH,OAH ;DOS function: input string
INT 21H ;call DOS function interrupt
MOV AL,BUFFER-l-2 ;get first byte of text

235

13

The DOS Function Interrupt

This function often proves useful for entering filenames,
for entering data for a data base program, for entering numeric
values (which must be converted to binary), and the like.

Clear Buffer and Call Function (AH = C). This routine
first clears the keyboard buffer, then calls one of the other
routines described above. To use this option, place OCH in
AH, and one of the other function numbers in AL (only 1, 6,
7, 8, and A allowed). Usually this function is used in conjunc
tion with some message that must be read and acknowledged.
Since this routine clears the buffer of any previously typed
characters, the user is forced to read any messages previously
printed before.pressing a key and going on.

Screen Output Functions
We continue our discussion of the use of INT 21H with func

tions that allow printing to the screen.
Display Output (AH = 2). The counterpart of function 1

above, this function prints the character in DL (not AL) on the
screen. It also checks for Break and Echo.

There is one subtle difference between this function and

the BIOS teletype function, which we discussed in the last
chapter. With BIOS, you can't use the Tab character, ASCII 9;
all you get is a graphics character. The DOS function handles
the Tab character specially by advancing the cursor to the next
tab-column (tabs are set every eight characters).

Direct Console I/O (AH = 6). We discussed this function
above. As you may recall, neither Break nor Echo is checked
when this function is called. Furthermore, direct console I/O
does not perform any Tab expansion, nor does it echo to the
printer. However, it will pipe characters to a disk file, under
DOS 2.00 and above. To use this function, place the desired
character in DL (any character except 255).

Print String (AH = 9). One of the more useful of the
DOS console functions. Print String, unlike the previous func
tions (which print one character at a time), will print an entire
string with one function call. To use the function, DS:DX must
hold the address of the character string. Oddly (a relic from
CP/M), the string must be terminated with a dollar sign ($).
Below is an example of how to use this function; there are
more examples in the sample DOS program, "DUMP.ASM,"
in "Sample Programs," Chapter 16. Notice that we use the

236

13

The DOS Function Interrupt

assembler's OFFSET command to get the address of the start
of the string, rather than the contents of the string's first byte.
... in the current data segment
HIT—KEY DB 'Hit any key to begin the program.',13,10,'$'
GET—DISK DB 'Please put your disk in drive A.',13,10,'$'

... in the code segment
MOV DX,OFFSET HIT—KEY ;string's address in DS:DX
MOV AH,9 ;the print-string function
INT 21H

MOV AH,C ;clear buffer and...
MOV AL,8 ;wait for a key to be struck
INT 21H

MOV DX,OFFSET GET—DISK ;another string's address
MOV AH,9 ;the print-string function
INT 21H

As you can see, we used the Clear Buffer function, so that
the user can't press a key before the program asks him to.
Also, note that we used DOS function 8 above (MOV AL,8),
not function 1, since we didn't want whatever character was
struck to be echoed.

The Printer Function (AH = 5)
This function simply outputs the character in DL to the stan
dard printer device (printer number 0, if you have more than
one). As a rule, however, you should use the BIOS printer
interrupt (INT 17H) rather than DOS. Function 5 is included
in DOS for CP/M compatibility; the printer interrupt, INT
17H, is much more powerful, allowing for multiple printers as
well as printer error-checking.

DOS 2.00 File Handling
In this section, we will discuss how to handle files with INT
21H and the newer versions of DOS (2.00 and 2.10). Many of
the functions have counterparts in the older DOS 1.10 disk file
functions. However, the new functions are, as a rule, simpler
and more powerful. Of course, if you're writing a program that
must be used both with DOS 2.00 and DOS 1.10, you'll have
to use the older file-handling functions.

DOS 2.00 File-Handling Conventions
Handles. DOS 2.00 uses a system of file handles to keep

track of all the files that are open. Whenever you open an

237

13

The DOS Function Interrupt

existing file or create a new file, DOS assigns a unique handle,
from 0 to 65,535, to the file. Once this is done, you can read
or write to a particular file just by specifying its handle. DOS
takes care of the rest. DOS predefines a few handles for your n
use; these handles are always set up, and no special files have
to be opened.

0 standard input device (input can be redirected) | n
1 standard output device (output can be redirected)
2 standard error output device (always goes to screen)
3 standard auxiliary device (the serial port/modem)
4 standard printer device (printer number 0)

Thus, the first file that your program opens will most
likely have a handle of 5, and subsequent files will have
higher numbers.

ASCIIZ. You'll find that several of the new DOS func

tions accept a simple string as a filename. The older version
of DOS requires a specific format for the filename. DOS 2.00
accepts a filename just as you would type it at the keyboard,
including a drive specifier (such as B:), a directory path (such
as\LEVELl\LEVEL2\), and, of course, a filename (such as
FILEl.MSS). The only condition DOS puts on this name is
that it must end with an ASCII 0. So, to open, create, delete,
or rename a file (for example), you might specify a name like
this:

FILE_NAME DB 'B: WORD WP EST.MSS',0

DOS refers to this sort of string as an ASCIIZ string (the Z for
the zero byte at the end). Remember, only the filename itself
is required; the drive number, the path, and the extension
need not be specified if they don't apply.

Errors. Many of the functions can return an error code. ^
On return from these functions, the carry flag will indicate
whether or not an error occurred. If the carry flag is clear, the
operation was successful. If the carry flag is set, however,
there was an error, and AX holds the error code. Only the ex
tended functions return specific error numbers in this fashion.
As we discuss each function below, we will note which errors
it can potentially return to the calling program. Table 13-3
contains a complete list of the possible error numbers.

238 n

13

The DOS Function Interrupt

Table 13-3. Error Numbers for Extended Functions

1 invalid function number

2 file not found

3 path not found
4 too many open files (no handles left)
5 access denied (general error)
6 invalid handle

7 memory control blocks destroyed
8 insufficient memory
9 invalid memory block address
10 invalid environment

11 invalid format

12 invalid access code

13 invalid data

15 invalid drive was specified
16 attempted to remove the current directory
17 not same device

18 no more files

As a rule, you won't have to worry about errors 7 through
13, which refer to the advanced, extended memory manage
ment functions.

DOS 2.00 File-Handling Functions
Open a File (AH = 3D). This call is used to open an al

ready existing file. The name (an ASCIIZ string) must be
pointed to by DS:DX, and AL must contain the access code:

AL = 0 file is opened for reading
AL = 1 file is opened for writing
AL = 2 file is opened for both reading and writing

When DOS returns, AX will hold the new handle for the file.
This handle should be saved and used for all subsequent read
ing and writing to the file. If the carry flag is set on retum, AX
will hold the error number (2, 4, 5, or 12). This function can
open any normal or hidden file (like IBMB10.COM on system
disks). It's also possible to open a file to a device (printer 2,
for example), a technique best left to advanced programmers.

Create a File (AH = 3C). This call will create a new file
in the appropriate directory, or truncate an existing file to zero
length, in preparation for writing data to it. To create a file,
DS:DX should point to its ASCllZ name, and CX should hold

239

13

The DOS Function Interrupt

the file attribute, which is bitwise significant (each bit handles
a different function). Normally you will set CX to 0.

bit 0 mark file as read only
bit 1 mark file as hidden

bit 2 mark file as system

Bits 3 and 4 are used by the system to mark the volume name
and a subdirectory, respectively.

On return from this function, AX holds the handle for the
file, or the error code (3, 4, or 5), depending on the carry flag.
Note that error 5, Access Denied, means that you are either
trying to truncate a read-only file, or that the directory is full.
If the routine is successful, the file is created with a read/write
access code (see the Open File function, above).

Close a File (AH = 3E). To close a file, put the file's
handle in BX, and call this function. The only possible error
you can get (in AX) is number 6, Invalid Handle. It's necessary
to close an output file when you're finished so that all the
data is written to disk. It's also a good idea to close input files,
both for readability and to avoid overloading DOS.

Read from a File (AH = 3F). Use this function to read
data from a file that you've opened or created. BX must con
tain the handle, DS:DX must point to a buffer to hold the data
being read, and CX must hold the number of bytes to read.
On return, if there was no error, AX holds the number of
bytes actually read. If AX is 0, you tried to read past the end
of the file. Possible error returns are 5 and 6. This call can also
read from devices like the keyboard. If you set BX to 0 (the
handle for the standard input device), calling this function will
read characters from the keyboard, somewhat like the input
function (number A).

Write to a File (AH = 40H). The parameters for writing
are the same as for reading. BX holds the handle, DS:DX
points to the data to write, and CX holds the number of bytes
to write. On return, AX will hold the number of bytes actually
written. Note that if AX does not equal CX on return, some er
ror has occurred (the usual cause is a full disk). Possible error
returns in AX are 5 and 6. Remember, you can use this call to
write to a device, such as the screen or a printer, by using a
predefined handle.

Delete a File (AH = 41H). On entry, DS:DX holds the
address of the ASCIIZ name of the file to be deleted. The

240

13

The DOS Function Interrupt

name must not have any global filename characters in it, the
asterisk (*) or question mark (?). Error returns from this func
tion are 2 and 5. Note that DOS 1.10 traditional file handling
is capable of deleting more than one file at a time, using
global filename characters, so you may find that DOS 1.10 can
be more useful sometimes.

Rename a File (AH = 56H). To use this function, DS:DX
points to the current name of the file; ES:DI points to the file's
new name. Both names, of course, are ASCIIZ. The drives
specified must be the same, but you can specify different
directory paths, allowing the file to be moved from one direc
tory to another and renamed in the process. Error returns are
3, 5, and 17. Again, note that DOS 1.10 can handle multiple
file renaming.

Get Disk Free Space (AH = 36H). To use this call, DL
must hold the drive: 0 = default, 1 = A:, 2 = B:, and so
forth. On return, AX holds FFFFH if the specified drive num
ber was invalid. Otherwise, the registers will be set as follows:

BX the number of available clusters

DX the total number of clusters on the disk

CX the number of bytes per sector (usually 512)
AX the number of sectors per cluster (one or two)

To get the number of bytes remaining on the disk, you have to
multiply BX by AX, and then again by CX.

Other DOS Functions
There are a wide variety of other new DOS 2.00 disk functions
that we'll just summarize here.

• When dealing with files, you can change your position
within the file with function 42H, and can change the file
attribute with function 43H. DOS also allows you to scan
through a directory searching for filenames that match a
global filename (with * and ?). The calls to do this are 4E
and 4F for DOS 2.00, and IIH and 12H for DOS 1.10. It's
also possible to set and retrieve a file's date and time with
function 57.

• Functions 39H through 3BH allow you to handle
subdirectories just as do the DOS commands MKDIR (make
directory), RMDIR (remove directory), and CHDIR (change
directory). You can also have DOS create an ASCIIZ string

241

13

The DOS Function Interrupt

containing the full path name of the current directory, using
function 47H.

• One very powerful DOS function, 44H, allows you to read
and write data, get and set information, and get various sta
tus flags for any file or device.

Complete descriptions of all these commands are in the
DOS manual. For most normal file-handling uses, however,
the functions described in the text will be more than sufficient.

DOS 1.10 File Handling
DOS 1.10's handling of files is more complex and harder to
understand than DOS 2.00's. This is understandable, since
DOS 1.10 was designed in part for compatibility with the
much older CP/M-based systems. Thus, the DOS designers
were constrained to use conventions already growing cumber
some at the time DOS 1.10 was written. However, even DOS
2.00 users may find DOS 1.10 useful from time to time (es
pecially for deleting or renaming files).

DOS 1.10 File Control Blocks
Standard FCBs. All file handling is done not with simple

ASCllZ names, but rather with the more complex file control
blocks (usually referred to as FCBs) that are traditional from
CP/M. Each file control block represents one file, and all the
data necessary to handle the file is stored with the 37 bytes of
the FCB. DOS sets up the file control blocks as shown in Table
13-4.

Table 13-4. FCB Organization

Description

drive number (0 = default, 1 = A:, 2= B:, etc.)
filename (padded on the left with spaces)
filename extension (also padded with spaces) ' ̂
current block number (a block is 128 records)
size of one record (normally 128 bytes)
file size, in bytes
date of file, holding year, month, and date
<reserved for system use>
current record (0-127) within block
random file's record number (random files only)

Offset Size

0 1 byte
1 8 bytes
9 3 bytes
12 1 word

14 1 word

16 2 words

20 1 word

22 10 bytes
32 1 byte
33 2 words

242 n

13

The DOS Function Interrupt

The only information that usually need concern you is the
filename (the first 12 bytes), as well as the size of one record
(at offset 16 from the start of the FCB), and the current record
number (at offset 32). The rest is filled in by DOS.

DOS Initialization of the Program Segment Prefix
Although using this file control block may sound extremely
cumbersome, in fact there are a few aspects of DOS that make
using it easier than you might expect. One of these aspects, a
function call to convert a standard human-readable filename
to FCB form, is discussed below (the Parse Filename function).
The other aspect necessitates a slight diversion into the pro
gram loading and initializing techniques of DOS.

The Program Segment Prefix. When any program is
loaded, a new segment is assigned to it (the Program Seg
ment). However, the program doesn't start at the beginning of
this segment; the first lOOH bytes are used by DOS for a vari
ety of purposes. These first 256 bytes are called the Program
Segment Prefix, or PSP for short. To accommodate this prefix,
.EXE files start off with their code segment lOOH above the
Program Segment. The data and extra segments, however,
point to the Program Segment when your program begins. A
large variety of DOS information is placed in the PSP, some
important, some advanced and technical. Of particular interest
are the following areas within the PSP:

offset 0 The location of an INT 20H command, which is
used to end the program,

offset 5CH An ECB area, set up by DOS (filename 1).
offset 6CH Another FCB area set up by DOS (filename 2).
offset 80H The "unformatted parameter area" and default

disk transfer area (to be explained).

DOS Default FCBs. Notice that DOS automatically cre
ates an FCB at offset 5CH. This FCB contains the drive, name,
and extension of any filename specified after the program
name itself. For example, when we invoke DEBUG with
PROGRAM.EXE:

A>DEBUG PROGRAM.EXE

DOS creates an FCB at DS:5CH with the name
PROGRAM.EXE. In this case, the drive number byte is set to 0
(default). DEBUG can now open the file without any further

243

13

The DOS Function Interrupt

difficulty. The second FCB area, starting at 6CH, holds the
name of the second file that was specified on the initial com
mand line (in the example above we specified only one file).
However, since this second FCB area is in the middle of the
first one, if you open FCB 1 you'll obliterate FCB 2. It's nec
essary to move FCB 2 (the formatted name and drive number
in particular) somewhere safe before opening FCB 1.

The unformatted parameter area. Yet another area holds
the actual characters specified on the command line after the
program name. This area, the unformatted parameter area, is
located at 80H in the Program Segment Prefix. DOS places
anything that you typed after the filename itself in this area.

offset 80H The number of characters specified, not including
the final Enter (ASCII 13).

offset 81H The characters themselves, terminated with ASCII
13.

So, if you typed
A>MASM TEST.ASM,,;

the 13 characters (space) TEST.ASM,,; and Enter (ASCII 13)
would appear, starting at 81H, and 80H would hold the num
ber 12. DOS 2.00 users should note that piping is transparent
to your program, so you'll never see any of the piping charac
ters, <, >, or 1, nor the filenames that accompany them.

Remember, even programs that don't use disk files at all
can read parameters from the unformatted parameter area.

The disk transfer area. The 128 bytes at offset 80H have
an additional use. DOS normally uses this area as the disk
transfer area, or DTA, for DOS 1.10 file handling. In DOS 2.00,
you specify the area you wish to read and write disk data to in
DS:DX. With DOS 1.10 function calls, by contrast, you must
set the address of the disk buffer area (the DTA) with a sepa
rate function call. Of course, you can also use the initial DOS
DTA default, which is the 128-byte buffer at offset 80H rel
ative to the current DS.

If you use the default FCB at 5CH and the default DTA at
BOH, the last byte of the FCB will be overwritten by disk data.
However, this is only of significance for random file handling.

We'll discuss the function calls to set the DTA's address
below, as well as the technique to set its length. Note that the
same DTA is used for all your files, unless you explicitly

244

13

The DOS Function Interrupt

change it—which you must do if you want to read two files at
the same time.

The DOS 1.10 File-Handling Functions
Parse Filename (AH = 29H). This command is very use

ful if filenames are to be entered from the keyboard. Filenames
in an FCB must appear without the usual period between
filename and extension, and they must be padded with spaces.
Since most people don't enter filenames that way, the parse
filename routine allows a filename to be parsed, or translated,
into the format used in an FCB. However, since DOS 1.10
does not allow subdirectories, the parse function does not
allow any path names.

To use this command, DS;SI must point to the human-
readable version of the filename, and ES;DI must point to the
FCB to be filled in. AL is a command byte, bitwise significant:

bit 0 (01) ignore leading separators (see below)
bit 1 (02) don't change drive number if drive not specified
bit 2 (04) don't change filename if filename not specified
bit 3 (08) don't change extension if extension not specified
bits 4-7 (unused)

The filename separators are (space) (Tab) : . ;, = and -F.
Filename terminators include all the separators plus < > I /
" [] and control characters, including Enter.

Normally, you'll be setting AL = 1, to make the parse
routine ignore any initial spaces and so forth. Bits 1-3 are
more specialized and normally less useful; they allow parts of
the filename (drive, filename, extension) to be already speci
fied at ES:DI, and only have certain parts of it changed. Note
that the parse function handles changing the * characters into
a string of ? characters.
AL is returned with one of the following:
01 if the ? or * appeared in the filename extension
FF if the drive specifier is invalid
00 drive number valid, no global characters

DS:SI returns pointing to the first character after the filename
and ES:DI points to the first byte of the formatted FCB. If no
filename was specified, ES:DI + 1 will contain a space.

Remember, if filename(s) were specified on the command
line, the FCBs at 5C and 6C in the PSP are already formatted.

245

13

The DOS Function Interrupt

and only need to be opened (though one of the FCBs would
have to be moved if you were going to use both of them).

Open File (AH = F). On entry, DS:DX points to an FCB.
If the specified file is found, AL will hold 0 on return; other- ^
wise, AL will hold FFH. If the file is found, the FCB will be
filled in with the special system data. If no drive was specified
(the default drive assumed), DOS replaces it with the actual pw,
drive used. However, for some reason DOS does not initialize
the current record (the byte at offset 32). It is the pro
grammer's responsibility to set it to 0 before doing any read
ing or writing.

Create File (AH = 16H). This call works just like the
open file call. AL returns 0 if the file was created successfully
(either a new file created or an old one set to zero length). If
AL returns FFH, there wasn't enough room in the directory.

Close File (AH = lOH). On entry, DS:DX points to the
FCB of an already opened file. On exit, AL holds 0 if the file
has been properly closed; if the disk has been changed (and
thus the file can't be closed), AL returns FFH.

Set Disk Transfer Address (AH = lA). This call simply
puts the DTA at the address in DS:DX. Remember, for mul
tiple files you will have to change the DTA for each file. Use
this call to select the appropriate DTA before reading or writ
ing the file's data. This function call takes the place of the
(DS:DX) parameter required for DOS 2.00 reads and writes.

To change the size of the DTA from the initial DOS de
fault of 80H, you have to write the appropriate size, as a word
value, into offset 14 in the FCB. This is the equivalent of the
(CX) parameter for DOS 2.00 reads and writes. Note that you
must always set the size after opening the file. Remember that
you must set the record size in each FCB that uses a given
DTA. To set the DTA size to 512 bytes in an example FCB,
named FCB_1, do the following:

MOV FCB_1-|-14, 512 ;address of record size in FCB

The new size of the DTA cannot be larger than the space
remaining in its segment. Furthermore, we recommend that
you keep the DTA to 512 bytes or less, or DOS may have
difficulty reading the file.

Read Sequential Data (AH = 14H). DS:DX must point to
the FCB on entry. This call reads the next record from the file ^
and puts it in the DTA. All the FCB variables are updated to
point to the next record in the file. AL returns the status:

246

13

The DOS Function Interrupt

0 the transfer was completed successfully
1 no more data in the record (end of file)
2 not enough room in the DTA segment to read one record
3 only a partial record read (end of file)

Write Sequential Data (AH = 15H). DS:DX points to the
FCB. The information in the DTA is written out to disk. AL re

turns the status of the operation as follows:

0 transfer completed successfully
1 diskette is full

2 specified DTA size larger than room left in segment

Delete Files (AH = 13H). DS:DX points to an FCB con
taining the name of the file to be deleted. Multiple entries can
be deleted by using global filename characters. If no files are
deleted, AL returns FFH; otherwise, it returns 0. Deleting mul
tiple files is not allowed with the DOS 2.00 file-handling func
tions, so DOS 2.00 users may wish to use this function call on
certain occasions.

Rename Files (AH = 17H). For this function, DSiDX
points to a modified FCB. The first 12 bytes of the FCB con
tain the original name, with or without global filename charac
ters. The new name appears at offset 17 within the FCB. Every
filename in the directory that matches the first name in the
FCB is changed to the second. If ?'s appear in the second
name, DOS doesn't change the corresponding character in the
filename. AL returns FFH if no match is found, or if the new
filename already exists in the current directory; otherwise, AL
returns 0.

Get File Size (AH = 23H). One further call can be of
some use for DOS 1.10 file handling. To find the file size of a
file, set up an FCB, and as usual, point to it with DSiDX. If the
specified file isn't found, this function returns FFH in AL;
otherwise, 0 is returned. The size of the file is returned in the
two words at offset 33-36, in terms of the FCB's record size.
You can set the record size (at offset 14) to one byte (MOV
FCB_H-14,1) to get the length in bytes, or to the length of
your DTA to get the number of records (rounded up).

There are a number of other DOS 1.10 disk functions

(which can, of course, be used with all versions of DOS).
Some of the more useful ones allow you to select or retrieve
the current default drive number (functions E and 19H). Also
included for DOS 1.10 file handling are routines to read and
write random records to a file, or to write and read an entire

247

13

The DOS Function Interrupt

block of records. You can also retrieve the allocation table
information from any disk (including the disk identification
byte, the number of clusters, the number of sectors per cluster,
and the number of bytes per sector). This parallels the DOS
2.00 Disk Size function.

More DOS Functions Using INT 21H
In the last chapter we discussed the time-of-day interrupt, INT
lAH. We said that there is a method which is often superior
for reading the time, and we will describe it here.

Time and Date Handling
Get/Set Date (AH = 2A, 2B). The Get Date function, AH

= 2AH, returns information on the year, month, and day. On
return from this function, CX and DX are set as follows:

CX holds the year (as a binary number from 1980 to 2099)
DH has the month (1 to 12, January to December)
DL holds the date (1 to 31)

If the time-of-day clock goes past 24 hours, DOS adjusts the
date, taking into account the number of days per month and
leap years.

The counterpart to this function, for which AH = 2BH,
allows you to set the date from within your programs. CX and
DX must hold the date, as above. On return, if the date you
specified was valid, AL = 0; otherwise, AL = FFH.

Get/Set Time (AH = 2C, 2D). The Get Time function,
AH = 2CH, returns the time of day in CX and DX, and the
day of the week in AL. Here are the parameters returned:
AL day of the week (0 = Sun, 1 = Men, etc.) PC DOS 2.10 only
CH hour (0-23)
CL minute (0-59)
DH second (0-59)
DL hundredths of a second (0-99)

Since the time-of-day clock is updated only 18.2 times per sec
ond, DL is not, in fact, accurate to within 1/100 second.

The counterpart of this operation is the Set Time function,
AH = 2D. To set the time, load CX and DX appropriately. The
Set Time function, like the Set Date function, returns AL hold
ing 0 for a valid time or FFH for an invalid time.

248 n

13

The DOS Function Interrupt

Memory-Allocation Functions
A variety of other DOS functions are available. Some of the
most powerful DOS functions allow for reallocating portions of
memory for various purposes. When your program begins to
run, it is allocated all of memory, but there are some DOS
functions to change the size of a currently allocated block of
memory, to allocate a new block of memory, and to free al
ready allocated memory.

In addition, the very powerful EXEC function call (4BH)
allows for loading overlays or for loading and executing an
other program. (The EXEC function is used in Chapter 10 to
load files into BASIC'S memory prior to BSAVEing them.) The
memory-allocation functions are very useful for advanced
programming.

The DOS function interrupt is unquestionably the most
powerful single interrupt routine of MS-DOS. The DOS
character device I/O functions (keyboard input, screen output,
and so forth) are often useful, though the BIOS functions
themselves are sometimes best for a job. However, interrupt
21H is useful primarily for its disk- and memory-management
functions.

Table 13-5. DOS Functions

(AH) Function Name and Description

Character Device I/O

1 keyboard input (echo, Break/Echo checking)
output (AL) = character typed

2 display output, with Break/Echo checking
input (DL) = character to print

5 printer output
input (DL) = character to print

6 direct console I/O (no echo, no wait, no Break/Echo checking)
input (DL) = FFH
output (ZF) = 1 if no key was struck

(ZF) = 0 and (AL) = character if a key was hit
input (DL) = anything but FFH, character to print

7 direct keyboard input without echo (no echo, no checking)
output (AL) = character typed

8 console input without echo (no echo, Break/Echo checking)
output (AL) = character typed

249

13

The DOS Function Interrupt

9 print string
input (DS:DX) = address of string (terminated with $)

A buffered keyboard input
input (DS:DX) = address of DOS input buffer
output buffer is filled with input line

B check standard input status
output (AL) = 0, no character available

(AL) = FF, character waiting
C clear buffer and invoke a function

input (AL) = 1, 6, 7, 8, A
in addition to other parameters as appropriate

DOS 2.00 File Handling
36 get disk free space

input (DL) = disk number (0 = default, 1 = A, 2 = B)
output (AX) = FFFF if disk number invalid

(AX) = number of sectors per cluster
(BX) = number of clusters available
(CX) = number of bytes per sector
(DX) = number of clusters on drive

3C create a file

input (DS:DX) = address of ASCIIZ name of file
(CX) = file's attribute

output (AX) = handle or error (if CF = 1, AX = error)
3D open a file

input (DS:DX) = address of ASCIIZ name of file
(AL) = file access code (0, 1, 2)

output (AX) = handle or error
3E close a file

input (BX) = handle
output (AX) = error if CF = 1

3F read from a ifile or device

input (DS:DX) = address of buffer area
(BX) = handle number

. (CX) = number of bytes to read
output (AX) = number of bytes read or error

40 write to a file or device

input (DS:DX) = address of buffer area
(BX) = handle number
(CX) = number of bytes to write

output (AX) = number of bytes written or error

41 delete a file

input (DS:DX) = address of ASCIIZ name of file
output (AX) = error number if CF = 1

250

13

The DOS Function Interrupt

56 rename a file

input (DS:DX) = address of old ASCllZ filename
(ES:D1) = address of new ASCllZ filename

output (AX) = error if CF = 1

DOS 1.10 File Handling
F open file

input (DS:DX) = starting address of FCB area
output (AL) = 0 if file found, FF if not

10 close file

input (DS:DX) = FCB address
output (AL) = 0 if file closed, FF if not on disk

13 delete file

input (DS:DX) = FCB address
output (AL) = FF if no files deleted, 0 otherwise

14 sequential read
input (DS:DX) = FCB address
output (AL) = 0, 1, 2, 3 depending on read status

15 sequential write
input (DS:DX) = FCB address
output (AL) = 0, 1, 2, 3 depending on write status

16 create file

input (DS:DX) = FCB address
output (AL) = 0 if file created, FF if directory full

17 rename file

input (DS:DX) = modified FCB address
lA set disk transfer address (DTA)

input (DS:DX) = new DTA address
23 get file size

input (DS:DX) = FCB address
output (AL) = 0 if file found, FF otherwise
random record field = number of records in file

29 parse filename
input (DS:S1) = address of command line to parse

(ES:DX) = starting address of area for a new FCB

251

13

The DOS Function Interrupt

Time and Date Handling
2A get date

output (CX) = year (1980-2099)
(DH) = month (1-12)
(DL) = day (1-31)

2B set date

input parameters as above for get date
output (AL) = 0 for valid date, FF otherwise

2C get time
output (CH) = hours (0-23)

(CL) = minutes (0-59)
(DH) = seconds (0-59)
(DL) = hundredths of seconds (0-99)
(AL) = day of the week (0 = Sun), PC DOS 2.10

only
2D set time

input parameters as above for get time
output (AL) = 0 for valid time, FF otherwise

252

SECTION

4
Using the
Assembler

CHAPTER

14
Basic Assembler

Control

This chapter is the first of two introducing the assembly lan
guage programmer to the IBM Macro Assembler. In previous
chapters, you have been introduced to some of the commands,
or pseudo-ops, used by the assembler. In this section, we will
examine the entire range of pseudo-ops used by the assem
bler, and you will encounter a variety of new commands as
well as learning more about the ones you already know.

This chapter was written to describe the features (and
flaws) of IBM's Macro Assembler Version 1.00. Certain pseudo-
ops are defective in this implementation. Version 2.00, re
leased in the fall of 1984, has fixed certain errors (the XOR,
SHL, and SHR pseudo-ops work in Version 2.00, for example),
and has increased the speed of assembly by a factor of four
or five.

We recommend that you read the material in each chapter
first, and then use the Assembler Reference Manual to review
what you have learned. In many cases the manual will tell
you more than you want to know; just skip over material that
doesn't immediately make sense. Occasionally, we've made a
note of an assembler manual error; more often, however, we
have simply documented the actual behavior of the assembler,
and not made a note of the manual's error.

In this chapter we will discuss the more often used com
mands of the Macro Assembler. The chapter is divided into
four sections: program structure commands, arithmetic op
erators and numeric format, assembler operators, and listing
control pseudo-ops. For reference, the pseudo-ops appearing
in this chapter are listed in Table 14-1.

255

14
Basic Assembler Control

Table 14-1. Pseudo-ops

SEGMENT ENDS ASSUME

PROC END? END

EQU = DB
DW DT DQ
.RADIX PAGE TITLE

SUBTTL

In addition, we will be discussing in this chapter most of
the assembler operators, given below in Table 14-2.

Table 14-2. Assembler Operators

DUP -|-,-,*,/,MOD SHL,SHR
relational operators OFFSET
SEG TYPE SIZE

LENGTH seg. override PTR

Program Structure Pseudo-ops
We'll begin by reviewing the pseudo-ops used for structuring
programs and data. All of these have been discussed earlier,
but here we'll discuss them in a little more detail.

The SEGMENT and ENDS Pseudo-ops
In the sample programs presented in this book, SEGMENT
and ENDS have been used primarily for three purposes: set
ting up an area for data, for code (the actual program), or for
the stack. These separate areas are addressed by the DS reg
ister, the CS register, and the SS register, respectively. When
using string commands, or addressing the screen directly,
you've set the ES register to point to the appropriate segment
as well.

The SEGMENT command precedes each segment that you
set up, and the ENDS pseudo-op serves to mark its end. The
format of the SEGMENT command is as follows:

segnante SEGMENT [align type][combine type]['class']

(Note that the brackets, here and later, are meant to show that
the item is optional. Don't actually put brackets in your
program.)

The segname (CSEG, DSEG, or what have you) simply
identifies the segment you've defined. Each segment must
have a legal assembler name. The name serves to identify the

256

14
Basic Assembler Control

segment for the ASSUME statement or for any segment over
rides. Both the ASSUME statement and the use of segment
overrides will be discussed further in this chapter.

The items following SEGMENT are optional; none, all, or
any of them can be specified. The align type is usually used
only when linking object modules together, so we won't dis
cuss it here. In our sample programs, the align type is left un
specified.

The combine type is also optional. For most segments you
will be working with, it too is left out. The combine type in
dicates in what fashion the segment can combine with other
segments of the same name (in other object modules, typi
cally). Leaving this option out means the segment won't be
combined with other segments of the same name in other
modules. For single modules such as the ones we are working
with, it doesn't matter how the segments can be combined, so
generally we leave this option out.

However, there are two common and useful combine
types. The combine type STACK serves to define a segment as
the program stack area. Only one stack segment per program
should be defined. Another useful SEGMENT combine type is
AT expression, which functions somewhat like the DEE SEG
command in BASIC. This combine type tells the assembler to
place the segment at the address specified by an expression (a
segment value, not an absolute address). This option is nor
mally used to locate variables in the interrupt vector area, the
BIOS ROM, the DOS data area, or the screen. You can't ac
tually place data or code in a segment defined with AT ex
pression. The following definition sets up a segment at the
color/graphics screen on the PC series:
SCREEN SEGMENT AT 0B800H

SCREEN ENDS

This is equivalent to the BASIC statement
DEF SEG = &HB800

Finally, the SEGMENT 'class' name (also optional), speci
fied with single quotes, is used to group segments together
when the program is LINKed. For our purposes, the class
name is useful as a note to the purpose of the segment; thus a
segment named CSEG might be put in the class 'CODE'.

The ENDS pseudo-op is placed at the end of each seg
ment. Its format is simply:

257

14
Basic Assembler Control

segname ENDS

The segname, of course, must be the same name as the one
specified for the matching SEGMENT command. If a SEG
MENT and the following ENDS have different segnames, the
assembler will return

0:BIock nesting error

Note that one of the more complex data storage pseudo-ops,
STRUG, also uses the ENDS command as a terminator, so
don't always assume ENDS marks the end of a segment.

The ASSUME Pseudo-op
The ASSUME pseudo-op can, in some ways, be difficult to
understand. The usual format for the ASSUME command is

ASSUME segment register:segment name,segreg:segname ,etc

This tells the assembler what to expect from each segment ref
erence. A typical ASSUME command might be
ASSUME CS:CSEG,DS:DSEG,SS:SSEG

where CSEG, DSEG, and SSEG had already been defined by
the SEGMENT command.

Without the ASSUME command (or if ASSUME NOTH
ING has been specified), the computer doesn't know which
segment register to use (CS, DS, SS, or ES) when it needs to
make a reference to a segment in your program. For the
assembler to assemble a MOV from some data in DSEG, it has
to know which segment register should be used for DSEG.
Normally, DS is used for data, but if ES is the only segment
register pointing to DSEG, the assembler has to be informed
(with ASSUME ES:DSEG), so it can insert the appropriate seg
ment register override. Similarly, it has to know which seg
ment is being used for the current program area. In other
words, whenever you reference a location in a segment, the
assembler has to know what segment register to use for that
segment.

If you don't tell the assembler what to ASSUME, you
have to use a segment override every time you address mem
ory. Often the assembler errors 62 (No or unreachable CS) and
68 (Can't reach with segment reg) indicate some problem with
your use of the ASSUME statement (and it's easy to forget the
ASSUME command altogether).

258

14
Basic Assembler Control

However, one irritating problem for programmers is that
telling the assembler what to ASSUME doesn't mean that the
segment registers will automatically point to the correct seg
ments. When your program begins, DS and ES always point to
the Program Segment Prefix (discussed in the DOS Interrupts
chapter). So, even if you've told the assembler to ASSUME
that DS is to be used for DSEG, your program still has to be
responsible for putting the location of DSEG into DS:
MOV AX,DSEG ;note: MOV DS,DSEG is illegal
MOV DS,AX

The PROC and ENDP Pseudo-ops
PROC (PROCedure) and ENDP surround a section of code in
much the same way that SEGMENT and ENDS surround a
segment. The PROC command establishes whether a routine
is NEAR or FAR for CALLs, JMPs, and RETurns. The format
for PROC is

procedure-name PROC [NEAR]

or

procedure-name PROC FAR

The NEAR attribute is the default for a procedure, so it
doesn't need to be specified (as the brackets above indicate).
The attribute of the procedure (NEAR or FAR) determines if a
RET encountered in the code is a far RETum (inter segment)
or a near RETurn (intra segment). It also sets the type (NEAR
or FAR) of the PROC label.

As with SEGMENT, PROC requires an END pseudo-op to
mark the end of the procedure. Simply place the ENDP com
mand at the end of the procedure, with the following format:
procedure-name ENDP

DOS requires a far RETum, so the main program is de
fined as a FAR procedure and the appropriate far return ad
dress is pushed onto the stack at the beginning of the
program. Therefore, most assembly programs have the follow
ing stmcture:

segname SEGMENT
ASSUME CSxsegname, etc.

program PROC FAR
PUSH DS ;set up far return for CS
MOV AX,0

259

14
Basic Assembler Control

PUSH AX ;set up IP = 0 for return

... program code...
RET ;pop CS:IP as a far return

program END?
segname ENDS

END program

Note that we push DS, not CS, since only DS and ES are
guaranteed to point to the Program Segment Prefix, which
contains the INT 20H command (discussed in the chapter on
MS-DOS interrupts) at location DS:0000. You could simply
place an INT 20H at the end of your program, but the far
RETurn is standard for the assembler.

By contrast, procedures called from the main program
(subroutines) are declared NEAR. Since these subroutines are
in the same segment as the main program, the PROC should
be NEAR. Sometimes object module subroutines are defined
as FAR PROCs in different segments, but as a rule, your sub
routines should be NEAR PROCs.

The END Pseudo-op
This command is required at the end of the source program.
An optional expression can follow the command:
END [expression]

The expression tells the assembler where the computer should
begin executing your program. A typical example is END BE
GIN. If you don't use the expression, your program will begin
at the beginning of the code segment. But sometimes it's use
ful to start your program at some other address than the start
of the code segment. (For example, if your program has a
lengthy section of initialization code, and you need as much
data storage space as possible, you can put the initialization
code at the end of the program and then overwrite it during
the course of the main program.)

Symbok
A label is a name that marks a location in your program code.
You have already encountered and used labels many times in
your programs. A label is limited to code (you can't define a
label with data, for example), and a label is usually used only
as the operand of a jump or CALL.

All of the labels must end with a colon. This tells the

260

14
Basic Assembler Control

assembler that the label should always be used with NEAR
commands, thus JMPs and CALLs to those labels will be intra-
segment. The exception to the colon rule is the PROG pseudo-
op, in which the NEAR or FAR attribute is explicitly stated,
and thus using a colon is prohibited.

A FAR attribute means that JMPs and CALLs to that label
will specify the segment as well as the offset value. In other
words, they will be inter-segment. A label can be FAR only if
it is the name of a FAR procedure, or if it has been defined
with the LABEL pseudo-op, discussed in the next chapter. FAR
labels, however, are not particularly useful for most small
assembly language tasks.

Variables are the counterpart to labels. Rather than defin
ing a location in code, they define a location in data. The type
of a label is always NEAR or FAR; a variable, by contrast, can
have a type of WORD, BYTE, DWORD, or one of the less
common types. A variable gets its type from the data pseudo-
op it's associated with; for example, a variable with a DB
pseudo-op is a BYTE variable. We will discuss the data
pseudo-ops in a moment.

SMALL DB 13,14,15,16 ;SMALL is a BYTE variable
LARGE DW 1314,1516 ;LARGE is a WORD variable

Remember that a label is defined as a symbol with NEAR
or FAR type, whereas a variable is a symbol with type BYTE,
WORD, and the like.

A constant is a number without any attribute or type;
usually it's just a value. Constants are typically used to replace
hard to remember values, such as interrupt function numbers.
They're also used for the sake of clarity and documentation. A
constant can be defined either with the EQU (equate) pseudo-
op, or with the = (equal sign) pseudo-op. Normally, constants
are defined with the EQU pseudo-op; the = pseudo-op is or
dinarily used for macros and conditionals (advanced program
ming techniques found in the next chapter). The format for the
EQU pseudo-op is
name EQU expression

The expression can be one of five things—a number (a
signed or unsigned word), an EQU symbol (if your expression
is some other symbol, plus or minus some quantity), an alias
(another name for some other symbol), an opcode (thus allow
ing you to rename 8088 instructions), or text of any kind. The

261

14
Basic Assembler Control

constant name can then be used anywhere the expression is
valid. But once defined with EQU, it cannot then be redefined.
The following are all legitimate uses of the EQU pseudo-op:

VIDEO EQU lOH ;a constant numeric value
BNE EQU JNZ ;an opcode
STACK2 EQU [BP+6] ;an index reference (text)
LOCATN EQU ES:[DI] ;a segment prefix and operand

(text)
ALIAS_1 EQU LABEL_1 ;an alias for a symbol
LABEL_2 EQULABEL_l-l-5 ;an EQU symbol
TEXT_1 EQU WORD FIR [BX] ;simple text

Now, having defined BNE as EQUal to JNZ, we could legally
write:

BNE LABEL_2 ;this would assemble to a JNZ

However, by far the most common use of EQU is for constant
numeric values, such as VIDEO above.

Data Storage Commands
In this section we turn to the structure of data. Most of the

commands discussed here should be familiar to you from earlier
chapters.

Data storage pseudo-ops. The DB (Define Byte) and DW
(Define Word) pseudo-ops are the most commonly used data
storage commands. The DB command allows you to store byte
values. (As you will recall, a byte is any value from 0 to 255
unsigned, including character data, or —128 to 127 signed.)
The DW command stores words (values from 0 to 65535 un
signed or —32768 to 32767 signed). The DW command can
also be used to store the offset of a variable or label. Most DB
and DW areas are used as variables, as we discussed above.
The DB pseudo-op gives its associated variable the type BYTE;
DW, the type WORD.

There are three other, less common types of data storage
pseudo-ops. These include DD, Define Doubleword (type
DWORD), which can store values from 0 to almost 4.3 billion.
Additionally, DD can store variables and labels in
segmentioffset four-byte form (refer to Chapter 5). The DQ
command. Define Quadword, is used for storing quad words
(type QWORD), 64 bits long (if you ever need to store values
of up to 18 billion billion . . .). The DT pseudo-op. Define
Tenbytes, is used for storing 10-byte, 18-digit BCD numbers,

262

14
Basic Assembler Control

type TBYTE (see Chapter 8). Note that with the Small Assem
bler, DD can store only symbol segmentoffset values, not num
bers, and DQ and DT can't be used.

An entry after a data storage pseudo-op can take many
forms;

• a simple number or a constant, signed or unsigned. The
range of the number depends, of course, on the particular
pseudo-op.

• a variable or label. For DW, the symbol's offset is stored; for
DD, the full segment-.offset form. DB, DQ, and DT cannot be
used to store variable or symbol addresses.

• a string of ASCII characters, with the DB pseudo-op only.
These characters must be enclosed with single or double
quotes.

• a question mark, ?, meaning that the assembler places no
value there, but reserves that location for use by the
program.

All of the following are valid expressions:
NUM_BASE DB 16

FILLER DB ? initialize with in

determinate value
NAMES DB 'STEVE JOHN MARY'
LARGE_NMS DW 3498,-4590,20000,0,-32767,10
OFFSETS DW FILLER,NAMES,LARGE_NMS ;2-byte offsets here
SEG_OFFS DD FILLER,NAMES,LARGE_NMS ;4-byte

segment:offset form
PI_BCD DT -314159265357989324 ,TO-byte BCD format

(MASM)
HUGE_NUM DQ 18446744073709551615 ;max. number with

DQ (MASM)

Any combination of these forms is legal:

BUFFER DB 10,?,'

The DUP command. One very useful command for all of
the above storage pseudo-ops is the DUP command. In a
situation where you would like to initialize a 1000-byte table
with the value 73, it's clearly not very practical to type out
1000 DB entries of value 73. Instead, using the DUP com
mand, you can simply specify
DB 1000 DUP(73)

and the assembler will create the appropriate table. The DUP
command can be used with any of the data pseudo-ops, and
with more than one operand:

263

14
Basic Assembler Control

DW 512 DUP(-5467,993) ;creates 1024 words
DT 2 DUP(764851298612348971) ;2 10-byte BCD numbers (MASM)
DO 5 DUP(ADDRESS1,ADDRESS2,ADDRESS3)

;creates 5 copies of three 4-byte
addresses

The DUP command can be nested:

TABLEl DB 2 DUP(4,2 DUP(2,3),12)
;i.e., 4,2,3,2,3,12,4,2,3,2,3,12

TABLE2 DB 10 DUP(16,?,16 DUPC '))
;10 copies of a 16-byte DOS input buffer

Two assembler operators are used with DUP: SIZE and
LENGTH. These will be discussed later. For some of the more

esoteric uses of the DUP command (for example, creating an
uninitialized block of data), see your assembler manual.

Arithmetic Operators and Numeric
Format
In this section we will discuss the arithmetic operators, such as
+ , —, /, and *, as well as all the different ways of entering
numeric quantities: decimal, hexadecimal, characters, and
others.

Arithmetic Operators
The most common of these operators, and the easiest to use
and understand, are the standard arithmetic operators, +, —,
*, and /. Of these, the addition operator is the most com
monly used. So if, using MASM, you had a two-word variable
in the data segment:

LONG-WORD DD 12345678H

you could get the first word with a MOV AX,LONG_WORD
and the second word with a MOV DX,LONG_WORD + 2.
Similarly, elements in a table are often accessed with the +
operator:

BYTABLE DB 67,68,77

To get the second element, you specify BYTABLE +1.
The subtraction operator is also frequently used: some

times to make a negative offset (LONG_WORD-2, perhaps),
and sometimes to find the offset difference between two vari

ables. For example, if we had these messages in the data area:

264

14
Basic Assembler Control

MESSAGE_1 DB Tlace disk in drive.

MESSAGE_2 DB 'Thank you!'

the command

MOV CX,MESSAGE_2-MESSAGE_1

would subtract the offset of MESSAGE_1 from that of
MESSAGE_2, returning the value into CX; that difference
would be the length of MESSAGE_1.

The multiplication (*) and integer division (/) operators
are used for a variety of reasons: sometimes to access an ele
ment in a table, sometimes simply to create an entry for a con
stant or data item. One example mentioned above gives the
idea:

INCHES_PER_MILE DW 5280»12

What is crucial to bear in mind when using arithmetic op
erators is that they are calculated when the program is assem
bled, not when it is executed. So, specifying
MOV AX,TIME/60

would not return the value of TIME divided by 60. In fact, the
assembler would return error 42 (Constant expected).

Only in one situation is an arithmetic operator calculated
when the program executes: when you use positive or neg
ative offsets to an address, such as MOV AX,[Dl+2]. The off
set is calculated when the program is executed. See Chapter 6
for a full description of these offsets.

A number of other arithmetic operators are available.
Most of these are not used very frequently, so we'll just skim
through them. The first of these is MOD. This returns the
remainder of an integer division, much as the / operator re
turns the quotient. The following, example should help to
make the use of MOD clearer:

PI_QUOT DW 31416 / 10000 ;this equals 3
PI_REM DW 31416 MOD 10000 ;this equals 1416

There is another class of arithmetic operators, the logical
operators, which consist of the Boolean AND, OR, NOT, and
XOR functions. These are used in precisely the same way as
the other operators. For example:
COMMAND-BYTE EQU LOW_NYBBLE OR HIGH_NYBBLE

This sets COMMAND—BYTE to the logical OR of LOW—
NYBBLE and HIGH—NYBBLE. The NOT operator, however,

265

14
Basic Assembler Control

takes the format NOT value. It's the only arithmetic operator
that takes only one operand:
BIT_5_MASK EQU NOT 20H

Remember that these arithmetic operators are quite different
from the 8088 opcodes of the same name. These operators are
ail calculated at the time of assembly; the opcodes are exe
cuted at runtime. (Assembler Version 1.00 owners note that
the XOR operator doesn't work properly.)

Several other operators do exist. There are the two shift
operators, SHL and SHR, but these are defective in Version
1.00 of the assembler, so we won't discuss them here. The fi
nal class of operators is the relational operators. These are,
however, fairly complex, and not often used. In brief, they are
used to compare two operands for greater than, less than,
equal, and the like. They return only true (0) or false
(OFFFFH). These operators are so obscure that the IBM manual
doesn't even discuss them, and we shall follow its lead.

Operator Precedence
One question that users of BASIC and Pascal may ask con
cerns operator precedence. Operator precedence refers to the
order in which the computer performs the operators. The con
cept of precedence should be familiar to users of high-level
languages. It means simply that the computer selects the most
important operators and calculates them first, rather than
performing each operation in left to right order. For example,
the expression
14 4- 2 * 3

evaluates out to 14 + (2 * 3) = 14 4- 6 = 20, since * has a
higher precedence than 4-, not simply tol44-2*3 = 16*3
= 48. However, also like BASIC and Pascal, it is possible to
use both parentheses (like this) and square brackets [like this]
to establish precedence. For example, to force the expression
above to be equal to 48 instead of 20, you would specify
(14 4- 2) * 3

The IBM Assembler Manual has an extensive precedence
list, some of which concerns terms we have not yet discussed.
A simplified order of precedence is given below in Table 14-3;
the complete table is given on pages 4-20 and 4-21 of the
assembler manual.

266

14
Basic Assembler Control

Table 14-3. Operator Precedence

1. entries within parentheses and square brackets
2. the assembler operators (to be discussed)
3. multiplication and division: *, /, MOD; SHL, SHR
4. addition and subtraction: +, —
5. relational operators
6. logical NOT
7. logical AND
8. logical OR, XOR

Entries at the same level are calculated left to right, but always
before lower-level entries. However, for the most under
standable code, it's always best to use parentheses to indicate
explicitly the desired order of precedence.

Alternate Forms of Numeric Entry
At different points in the book we have put numbers in hex or
binary directly into the program. Now, let us look systemati
cally at the different forms of entering numeric values with the
Macro Assembler. Any of these can be either positive or neg
ative (you can even have negative characters).

• Decimal is usually the default for entering numbers, but
when necessary (see the .RADIX command below), the suffix
D is used to identify the number as decimal. For example, 65
and 65D are both legitimate decimal numbers.

• Hexadecimal is frequently used. The hexadecimal number
must begin with one of the digits 0-9 and end with the letter
H for hex (thus OH, 45H, 9AH, OAIH, and OFFH are legal;
FF, OFF, and FFH are not).

• Binary is also used, primarily for I/O and graphics purposes.
A valid binary number consists of a sequence of I's and O's
followed by the letter B, as in OIIOIOOIB.

• Character entries are also legal; they are enclosed within
single or double quotes. More than two characters are legal
for DB only. "$", 'Testing . . .', and "It's time" are all legal. If
you wish to put single quotes in your string, surround the
string with double quotes; the reverse is true for double
quotes. However, you cannot use both in one string.

Other options are available from the assembler, but are
infrequently used. Octal can be entered with a suffix of O or
Q. Decimal Scientific Real numbers, used with the DD
pseudo-op, can be entered as floating-point decimal digits

267

14
Basic Assembler Control

(2.997E + 8), which are stored in four-byte format, like IBM's
BASIC. Hexadecimal Real numbers, which are identical to
standard hexadecimal, can be entered with a suffix of R. The
last two types above are available only with MASM and are
intended to support the 8087 numeric coprocessor. Some
information on all of these types is available in the Assembler
Reference Manual, pages 4-4 and 4-5.

We mentioned above that decimal is usually the default
base for entering numbers. It's possible to use the .RADIX
command to change the default to another number base. (.RA
DIX never affects DD, DQ, or DT, which always default to
decimal.) For example, to use hexadecimal as your default base
(perhaps to practice thinking in hex), you would begin your
program with

•RADIX 16

(the operand of .RADIX is always in decimal). Once you have
done this, all numbers without a suffix would be interpreted
by the assembler as hexadecimal (base 16). If you were writing
an I/O-intensive program, you might use

•RADIX 2

for binary (base 2).
Any radix between 2 and 16 is allowed.
You can change the default base back to decimal at any

point in your program by inserting the .RADIX 10 command
in your program. However, if you change the base to some
thing other than decimal, remember to use the D suffix when
you want base 10.

Assembler Operators
At this point we begin to look at the more detailed and com
plex assembler commands. First let us recall how the IBM
assembler keeps track of all its variables and labels (collec
tively called symbols) in a source program. Each symbol is
associated with a segment, an offset (how many bytes it is
from the beginning of the segment), and a type. For a label,
the type refers to whether the label was specified as NEAR or
FAR, and for a variable, whether the variable addresses DB,
DW, DD, DQ, or DT data, or one of the advanced data
pseudo-ops. All assembler symbols are defined by segment,
offset, and type.

268

14
Basic Assembler Control

Value-Returning Operators
The value-returning operators can be very useful. You have al
ready encountered and used one of them: the OFFSET com
mand. In this section we will discuss the OFFSET command,
as well as the two commands that are its counterparts, SEG
and TYPE, and two commands useful with variables defined
with DUP: LENGTH and SIZE.

The OFFSET command. IBM allows the access to each of

the defined characteristics of a symbol separately. The OFFSET
command returns the offset of a variable within its segment.
Normally, when you specify the name of a variable (for ex
ample, as an operand of the MOV command), the assembler
assumes you want the contents of the variable. However, if
you want to reference the variable indirectly, it is necessary
that you know its offset. For example,
DSEG SEGMENT

VAR_1 DW 303

VAR_2 DW 450

DSEG ENDS

CSEG SEGMENT

ASSUME CS:CSEG,DS;DSEG
BEGIN: MOV DI,VAR_2

MOV SI,OFFSET VAR_2

When this program fragment is executed, DI will hold 450 (the
value stored at VAR_2), but SI will hold 2, the location (or off
set) of the variable VAR_2 within the DSEG segment.

For more information about, and examples of, the OFF
SET command, see Chapters 9 and 13.

The SEG operator. The next operator, SEG, is used less
often. It returns the segment value of the symbol (variable or
label). Thus, in the above example, MOV AX,SEG VAR_1
would put the segment register value for DSEG into AX. Like
wise, MOV BX,SEG BEGIN would put the value for CSEG into
BX. However, these same operations can be done with MOV
BX,CSEG and MOV AX,DSEG. The SEG operator is used
mainly for self-documenting code (as below):

269

14
Basic Assembler Control

MOV AX,SEG VAR_2 ;equivalent to MOV AX,DSEG
MOV ES,AX
MOV DI,OFFSET VAR_2

The TYPE operator. The last operator, TYPE, is useful for ^
making code more easily modified (as we shall see in a mo
ment), as well as more self-documenting. The TYPE operator
returns different values for variables and for labels. For vari- |
ables, TYPE returns a value equal to the number of bytes in
the variable's type (1 for BYTE, 2 for WORD, 4 for DWORD,
and so forth). The possible values are given in Table 14-4. For
labels, TYPE returns NEAR or FAR as appropriate; this is not
usually very useful.

Table 14-4. Values Returned with TYPE

BYTE = 1 (with DB) WORD = 2 (with DW)
DWORD = 4 (with DD) QWORD = 8 (with DQ)
TBYTES = 10 (with DT)

Advanced data ops return TYPE as appropriate to their defi
nition. Constants and segment names always return 0.

A common use of TYPE is to access elements in a table

without explicitly using the number of bytes per entry. If we
declare a table of numbers as below:

TABLE DB 0,1,8,27,64,125,216

containing the cubes of numbers from 0 to 6, we can access,
for example, the cube of 3 with
MOV ACTABLE + 3

But if we wanted to extend the table to include the cubes

of 7 to 10, we would have a problem; the values 343, 512,
729, and 1000 don't fit into bytes. The solution is to redeclare
TABLE as a WORD table, then double all the offset references
within it (for example, to get the cube of 3, we now need
MOV AX,TABLE -f 6). If we had specified the instruction as

MOV ACTABLE -b 3 * TYPE TABLE

changing the type of TABLE from DB to DW would automati- ^
cally change the offset from 3 to 6 above. It is thus easier to i ^
change from byte entries to word entries.

The other reason to use TYPE for variables is that it

greatly improves the readability of the program. If you saw,
for example,

r-*

270 ' ■

14
Basic Assembler Control

INC TABLE+4

you could have no way of knowing whether it referred to the
third word entry, the fifth byte entry, or the second double-
word entry, without going back to the definition of TABLE it
self. Using the form

INC TABLE 4-4*7YPE TABLE

however, makes it clear that what is referred to is the fifth en
try in the table, regardless of the actual type.

The SIZE and LENGTH operators. The SIZE and
LENGTH operators can also prove useful in a program. They
return values for variables defined with the DUP command.

The LENGTH operator returns the length of a DUP table is,
that is, how many Duplicates were made. If the variable
wasn't created with the DUP command, LENGTH returns one.
Thus, for this entry, LENGTH returns 16:
TABLE_16 DW 16 DUP(DUMMY_RETURN)
;16 of DUMMY-RETURN'S offset

SIZE tells you how long the table is in bytes. So, for the
above entry, SIZE returns 32. For this entry, TYPE returns 2
(for a WORD); and, as a rule, the assembler always uses
LENGTH * TYPE to calculate SIZE. This means that the SIZE

and LENGTH operators are useful when there's only one en
try for DUP. Entries such as
DB 10 DUP(16,?,16 DUPC '))

will not return the correct SIZE value; since LENGTH is 10
and TYPE is 1, SIZE will be 10 * 1, or only 10.

Attribute Operators
The counterpart of the variable-returning operators is the
attribute operators. Instead of returning the segment, offset, or
type identification of a symbol, they allow you to override the
segment or type of the symbol.

Segment override. The segment identification of a vari
able can be overridden by use of a segment prefix. As well as
overriding a variable or label, the segment override operator
can also be used to override an address expression, such as
ES:[BX-t-SI]. Bear in mind that the ASSUMEd segment prefix
can be overridden not only by the segment registers (CS, DS,
ES, and SS), but also by the names of the segments (CSEG,

271

14
Basic Assembler Control

DSEG, or whatever). Remember, if you don't tell the assem
bler what to ASSUME, you must use a segment override op
erator for each variable.

The PTR command. The type identification of a variable
or label can also be overridden with PTR. Its format is

type PTR expression

The expression is a variable or label, and the type should be
BYTE, WORD, or DWORD for variables; for labels, NEAR or
FAR. If, for example, you want to jump to a procedure that has
been defined as FAR, but you're in the same segment, you can
say:

JMP NEAR PTR procedure-name

Or, if you should wish to access a WORD array in memory by
BYTE (for example), you could use the form
MOV AL,BYTE PTR table_name 4- 4

to get the fifth byte of the table. (See the next chapter, LABEL
and THIS, for another way to do this.)

Sometimes PTR is required. When you reference some in
direct memory address, you must tell the assembler whether
you are dealing with a byte or a word. For example,
MOV [DH-BX],100

In this expression, [DI+BX] could be pointing to a byte or a
word with equal ease. The assembler has no way of knowing
(so you get an error message, 35:Operand must have size). For
this sort of expression you must specify the type explicitly:
MOV WORD PTR [DI-bBX],100

The offset cannot be overridden (a strange idea that
would be), but a few more attribute operators exist (SHORT,
THIS, HIGH, and LOW). THIS will be discussed in the next
chapter along with the LABEL command; the other attribute
operators are abstruse, and unnecessary for most programming.

Common Listing Pseudo'Ops
A few of the assembler pseudo-ops give the assembler instruc
tions about the format of the list file. Three of these in particu
lar are quite useful and will be discussed below.

272

14
Basic Assembler Control

The PAGE Pseudo-op
This pseudo-op is used to control the length and width of a
logical page in the assembler .LSI file. In addition, the com
mand can be used to force a new page. The first command in
a file will often be

PAGE [operand 1][,operand 2]

The first operand is the number of lines per page. Normally,
this is 66 (the default for six lines per inch for 11-inch paper).
However, if you have especially long or short paper, this op
erand can take any value from 10 to 255. Usually it's not
specified, and left to default to 66 lines per page.

The second operand is used more often. It controls the
width of the page. The assembler defaults to the normal 80-
column width of most printers, but any number from 60 to
132 can be specified. Wide, 132-column printers should set the
page width to 132 with
PAGE ,132

Typically, 80-column dot-matrix printers can set character
widths to 10 cpi (characters per inch), 12 cpi, or about 17 cpi.
For our work, we use the

PAGE ,96

command, and set the printer to print in 12 cpi. If you need
more room for comments, however, PAGE ,132 and 17 cpi
may be better.

The PAGE command can also be used without any oper
ands, in which case the printer advances to the next page and
the listing continues from there. If you use the format PAGE
4- , the chapter number is incremented and the page number
is reset to one.

The TITLE and SUBTTL Pseudo-ops
The TITLE pseudo-op is often specified immediately after the
PAGE ,width command. It takes the format

TITLE text

and the specified text (up to 60 characters) becomes the title,
going at the top of each page in the listing, below the assem
bler title and page number. This command can be used only
once in the source file.

273

14
Basic Assembler Control

The SUBTIL command is similar to TITLE, but defines a
subtitle, which appears below the title. The format is SUBTTL
text. As many subtitles as you wish can be defined in a single
file. The new subtitle takes effect on the following page, so the
SUBTTL command is often used in conjunction with the
PAGE command:

SUBTTL (whatever subtitle you wish goes here)
PAGE ;make subtitle immediately effective

Once you understand these commands, you can write
quite complex assembly language programs. In the next chap
ter, you will be introduced to some even more powerful
assembler commands, including macros, conditionals, and
cross-referencing.

274

CHAPTER

15
^ Advanced Assembler
~ Control

In this chapter we will discuss the more advanced commands
available with IBM's assembler. Most of our discussion will be
centered on the use of macros, as well as on the use of the
conditional assembly pseudo-ops. At the end of this chapter,
we will discuss the use of the cross-referencing facility CREF,
which comes with the assembler, as well as the assembler
pseudo-ops that control it.

Not all of the remaining assembler commands will be dis
cussed in this chapter. Some of the commands are very ob
scure; some of them are powerful but useful only at the most
advanced level. In this latter category, for the curious, fall the
advanced data-structuring commands, STRUC and RECORD,
as well as the very powerful external assembly pseudo-ops. A
brief description of the excluded material appears at the end of
the chapter.

In Table 15-1 below is a list of those commands discussed
in this chapter. Appendix C has a table briefly describing all
the assembler pseudo-ops discussed in this book.

Table 15-1. Assembler Commands

MACRO ENDM LOCAL

&,o/o,;; INCLUDE KEPT
IRP IRPC .XALL

.LALL .SALE IF<condition>
ELSE ENDIF SHORT
THIS LABEL ORG

.CREF .XCREF

MACROS
One of the most versatile commands available on the Macro
Assembler is the MACRO command (not available with the

275

15
Advanced Assembler Control

Small Assembler). A macro, generally speaking, is any utility
that allows you to execute a series of standard commands with
only one macro command. Users of some of the newer word
processors may be familiar with this concept; WordPerfect, for
example, allows the user to key in a single macro command,
such as Alt-L, that signals the program to execute a series of
predefined commands.

For those who know DOS well, the DOS batch files are
also similar to assembler macros. First, you set up a file
containing all the commands you want to have executed.
Then, to execute them, you simply type the name of the batch
file. Macros work the same way: Specify the commands that
make up the macro, then to use those commands in your pro
gram, just specify the name of the macro.

Thus, the Macro Assembler allows you to define a single
command (with a name of your choosing) in terms of other
Macro Assembler commands and opcodes. One simple macro
might be used to print an often used message in your pro
gram. The code to print this message might be as follows:
MOV DX,OFFSET MSG_1 ;address of message start
MOV AH,9 ;DOS print string command
INT 21H ;invoke the DOS function interrupt

This fragment of code could be defined, by the MACRO
statement, to be the PRINT—MESSAGE command. Defining a
macro is really quite simple: The name of the command-to-be,
followed by the MACRO pseudo-op, is placed before the code
(the code is the body of the macro). The ENDM command (for
END Macro) is placed at the end of the code. To define
PRINT—MESSAGE, then, we would place the following in our
source code:

PRINT-MESSAGE MACRO

MOV DX,OFFSET MSG-1
MOV AH,9
INT 21H

ENDM

(Note that, unlike ENDS and ENDP, you don't specify the
name of the macro with ENDM.) Once the macro command
has been defined in this way, it can be used later at any point
in the program, and as often as you wish, simply by specify
ing PRINT-MESSAGE.

276

15

Advanced Assembler Control

However, a macro does not function in the same way as a
subroutine. It is critical to understand the difference. The code
of a subroutine appears in the final object code in only one
location. Whenever you need to use the subroutine, you CALL
it, then RETurn from it. A macro, by contrast, is not called by
the main program when it is used. Instead, every time the
name of the macro appears in the program, the code constitut
ing the macro is substituted directly for the name.

As an example, if PR1NT_MESSAGE_2 were a sub
routine, the assembler statements

CALL PRINT_MESSAGE_2

CALL PRINT_MESSAGE_2

would appear in a DEBUG list as, perhaps,

091C:0200 E84201 CALL 0345

091C:0203 E83F01 CALL 0345

However, the parallel macro statements

PRINT-MESSAGE

PRINT-MESSAGE

(assuming the macro PRINT—MESSAGE had been defined as
above) would appear in DEBUG as

091C:0200 BAIOOO MOV DX,0010 (offset of MSG-1)
091C:0203 B409 MOV AH,09 (print function)
091C:0205 CD21 INT 21 (DOS call)
091C:0207 BAIOOO MOV DX,0010 (and again)
091C:020A B409 MOV AH,09
091C:020C CD21 INT 21

Macros are not, however, limited to repeating the same
sequence of instructions each time they're invoked. A macro
can be given a list of operands, much as regular 8088 opcodes
are given operands. These operands are then substituted into
the expansion of the macro according to its initial definition.

To allow a macro to have operands, the first line of the
macro definition must be enlarged to include a list of so-called
dummy parameters. These dummy parameters appear immedi
ately following the MACRO statement, separated by commas.
There can be as many of them as fit on one line. For example;
SAMPLE-MACRO MACRO P1,P2,P3,P4

You might invoke SAMPLE—MACRO with
SAMPLE-MACRO AX,BX,ADD,SUM

277

15

Advanced Assembler Control

Now, when the macro is expanded by the assembler, the
operands (AX, BX, ADD, and SUM in this case) will be sub
stituted for the dummy parameters (PI, P2, P3, and P4):

PI is replaced with AX
P2 is replaced with BX
P3 is replaced with ADD
P4 is replaced with SUM

So, if we code SAMPLE—MACRO like this:

SAMPLE-MACRO MACRO P1,P2,P3,P4
P3 P1,P2
MOV P4,P1
ENDM

and called it with

SAMPLE-MACRO AX,BX,ADD,SUM

the assembler would expand it as follows:
ADD AX,BX
MOV SUM,AX

As you can see, each of SAMPLE—MACRO'S operands has
been substituted for the corresponding dummy parameter. If
SAMPLE—MACRO were invoked elsewhere in the program,
with, perhaps,

SAMPLE-MACRO DX,DSEG,MOV,DS

the assembler would expand it as
MOV DX,DSEG
MOV DS,DX

Dummy parameters have to follow the usual rules for
variables; they don't have to be named PI, P2, P3, and so
forth, but can take more descriptive names if your macro has a
more specific purpose than the one above. Also, as you have
seen, the dummy parameters can play any role in the macro
definition, from variables, labels, and registers to opcodes and
pseudo-ops.

Another macro might use these dummy parameters more
usefully—for example, to handle the multiply operation. This
macro would be defined in terms of moving data to the AX
register, multiplying it by some other data, then placing the
answer in a specified register or variable.

MULTIPLY MACRO VAR-1,VAR_2,TARGET_REG

278

15
Advanced Assembler Control

PUSH DX ;DX is changed by word
;multiply

MOV AX,VAR_2 ;AX = VAR_1 * VAR_2
MUL VAR_1

MOV TARGET_REG,AX ;TARGET_REG can be
;register or variable

POP DX

ENDM

This could be called with any of the following:
MULTIPLY BX,3,CX ;this gives CX = BX * 3
MULTIPLY TRACKS,SECT0RS_PER_TRACK,BL0CKS_PER_DISK

;this might be only variables, no
,-registers or constants

MULTIPLY SEG_SIZE,17,DS ;DS = 17 * SEG_SIZE

There is an additional feature involved in macro param
eter passing that makes the process even more flexible. Al
though a certain number of parameters are defined on the first
line of the macro definition, it is possible, in fact, to pass the
macro as few or as many parameters as you like. If fewer
parameters are specified than there are dummy parameters,
the remaining parameters are simply made blank (see the IFB
conditional below). If more parameters are specified than are
defined in the macro, the extra ones are simply ignored. Thus,
you can have a multipurpose macro which accepts a different
number of parameters, depending upon (let's say) the value of
the first parameter. (See the sample macro program at the end
of this chapter.) How to change the expansion of the macro,
however, is a subject we shall cover later, in the section on
Conditionals.

Now let us look over some of the reasons for you to use
macros in your programs. Generally, macros are not useful for
making object code as efficient as possible. Instead, they are
used because:

• Macros are dynamic. As we have seen, parameters can be
passed to a macro in a much more all-encompassing fashion
then parameters passed via the stack or registers to a
subroutine.

• Macros usually help to streamline and simplify the program
source code by making it more understandable both for the
initial programmer and for later readers.

279

15

Advanced Assembler Control

• Macros, as we shall see, can be entered into a macro library
that can be stored on disk and easily accessed.

• Macros are, in general, faster. Since the subroutine is placed
directly in the object code by a macro expansion, the com
puter is not delayed by CALL and RETurn. Typically, the de
lay is all of 35 clock cycles, or well over 0.000007 seconds.

The LOCAL Special Macro Operator
One problem with invoking the same macro in several places
occurs when there is a label in the macro. You might, for ex
ample, define a short macro that incremented a double word.
INC_DWORD MACRO DWORD_VAR

INC DWORD_VAR

JNZ NO_INC
INC DWORD_VAR-l-2

NO_INC:

ENDM

The macro as written will serve to increment a double word.

(There are simpler methods, but the above example illustrates
the point at hand.) However, consider what happens when we
use this macro command twice in the same program:

INC_DWORD DWORD_l

INC_DWORD DWORD_2

This will result in the following macro expansion by the
assembler:

INC DWORD_l

JNZ NO_INC
INC DWORD_l-l-2

NO_INC:

NO_INC:

INC DWORD_2

JNZ NO_INC
INC DWORD_2-b2

As you can see, the same label name is being used in two
places. When the assembler tries to assemble this code, quite a
few errors will be generated:

Error 4:Redefimtion of symbol
Error 26:Reference to multidefined

Error 5:SymboI is multidefined

However, there is a macro command that allows this
problem to be circumvented: the LOCAL pseudo-op. This

280

15

Advanced Assembler Control

command tells the assembler which labels would be
multidefined (like NO_lNC above), and the assembler re
names them to avoid the problem. The format of the com
mand is

LOCAL label_l,labeL-2,label_3, etc.

You can specify as many label names as can fit on one 132-
column assembler line. But one warning about this command:
The LOCAL command must be the very first command after
the MACRO command, preceding even any comments.

In our example above (lNC_DWORD), the LOCAL
pseudo-op would be used as follows:

INC_DWORD MACRO DWORD_VAR

LOCAL NO_INC

INC DWORD_VAR

JNZ NO_INC
INC DWORD_VAR-t-2

NO_INC:

ENDM

Now, each time lNC_DWORD is invoked and expanded by
the assembler, the assembler will assign a new name to
NO_INC. The assembler's naming system is simply to create
label names of the format ??0000 to ??FFFF. This gives us over
65,000 possible labels for use with LOCAL macro labels. Note
that the manual erroneously states that LOCAL labels start
with ??0001.

Program 15-1 is a listing from the Macro Assembler of the
appropriate sections of a program which uses INC_DWORD.

Notice that expanded macro code has a plus sign (-b) on
column 31 of the listing to help you tell it apart from normal
code. Also, there is an additional entry in the SYMBOLS sec
tion of the assembler. This entry. Macros, lists each defined
macro in alphabetical order.

The Ampersand (&.) Macro Special Operator
A variety of further operators are provided for use with the
MACRO command. The ampersand (&) operator allows you to
concatenate symbols together with text or with other symbols.
(More technically, it serves as a flag to warn the assembler
that the following name is a dummy parameter where there
wouldn't normally be a parameter.)

281

15
Advanced Assembler Control

For example, we can make a macro which allows us to
conditionally CALL a subroutine:
BAD_COND MACRO COND,ROUTINE

LOCAL DO_CALL,SKIP
JCOND DO_CALL
JMP SKIP

DO_CALL: CALL ROUTINE
SKIP: ENDM

Unfortunately, the COND parameter in the macro above won't
be replaced by our macro parameter when the macro is ex
panded. The assembler sees the expression JCOND as entirely
different from the dummy parameter COND (and, in fact, a
syntax error). The ampersand operator allows you to concat
enate the COND operand onto the J:
CALL_COND MACRO COND,ROUTINE

LOCAL DO_CALL,SKIP
J&COND DO_CALL
JMP SKIP

DO_CALL: CALL ROUTINE
SKIP:

ENDM

Now, the assembler will recognize the COND in the macro as
the dummy parameter. When CALL_COND is invoked,
CALL-COND NZ,READ_KEYBOARD

it will be expanded by the assembler to
JNZ ??0000
JMP ??0001

??0000: CALL READ-KEYBOARD
??0001:

The ampersand operator is also needed with some of the
conditionals, since the parameters that conditionals use are
sometimes embedded in other text.

The Percent (%) Operator
There is another useful macro special operator, the percent op
erator. Until now all of the parameters we have passed to
macros have been simply names. It is also possible to pass the
value of a constant to a macro. For example, if we had the
following code:

282

15

Advanced Assembler Control

BDOS EQU 21H

'make_msg macro MSG_NUM
DB This is interrupt number &MSG_NUM'
ENDM

we could invoke the macro with MAKE—MSG BDOS. How
ever, that would expand to

DB This is interrupt number BDOS'

This is not what we intended. To make the macro create a
message with the actual number (21H in this case), it is nec
essary to use the percent operator. Invoking the macro with
MAKE-MSG »/oBDOS

gives us

DB 'This is interrupt number 33'

Note that the percent operator returns the number in the
current radix (see the .RADIX command), no matter whether
the number was defined as decimal, hexadecimal, binary, or
anything else.

The INCLUDE Pseudo-op
When dealing with a large number of macros, it is often
convenient to keep them separate from the main program. The
macros can then be included in the file at assembly time by
the INCLUDE pseudo-op. This command takes the format
INCLUDE filename.ext

where the filename.ext is the DOS filename of the file in which
the macros are stored. Thus if you have a file containing noth
ing but six or eight of your favorite macros (a macro library),
you can use them in another program. For example, you can
put an INCLUDE at the beginning of your program, using the
traditional name for a macro library, MACRO.LIB:
INCLUDE MACRO.LIB

(Usually the INCLUDE pseudo-op is used with the IFl-ENDIF
construction that we'll be discussing shortly.) Note, by the
way, that this is only one use for the INCLUDE command. It
can be used to include anything into your source file, and the
included file will be assembled at the point that the INCLUDE
statement appeared.

283

15

Advanced Assembler Control

Listing of Macros in the Assembler's List File
Normally, when a macro is invoked within a program, all that
appears in the assembler list output is the lines that create ac
tual 8088 code. Thus, assembler directives, equates, and the
like will not appear except in the original definition of the
macro. Separate comment lines will likewise not appear, al
though comments appended to the ends of lines will appear as
usual.

However, this can be changed with some of the macro
listing pseudo-ops, .XALL, .LALL, and .BALL. .XALL is the
default state of the assembler for macro listing: list only lines
that create valid code (discussed above). When a .LALL com
mand is encountered, all the macro expansions following the
command appear in full: all comments, assembler directives,
and so forth, appear in the list file each time the macro is in
voked and expanded.

Even in .LALL mode, however, it is possible to suppress
the listing of certain comments with the use of the "two semi
colons" operator. If you use two semicolons (;;) instead of one
(;) for a comment in a macro, the comment will not appear in
the expanded macro in the assembler list file. Use two semi
colons when the comment is meant to appear only in the defi
nition of the macro or when it contains extra descriptive detail
not needed in the usual macro expansion.

The other macro list mode is .BALL (Buppress ALL). This
has the effect of suppressing the listing of the entire macro
expansion. All that appears in the assembler list file is the in
vocation of the macro, not the expansion. This can be useful
when large macros are involved, or when you want to shorten
the listing.

Bear in mind that these three commands don't affect the

object file at all, only the list file. Also note that these com
mands can be sprinkled as you wish throughout the source
file; each affects only the macros following it.

With all of these commands (plus a few others that are
very obscure), you can control powerful functions very simply
with the macro operator. One fairly powerful macro, for ex
ample, appears in the sample listing at the end of this chapter.
Our treatment of macros has stopped short of some of the
more esoteric aspects of the macros. For example, macros can
be nested one within the other if you so desire. Or (even

284

15

Advanced Assembler Control

worse) a macro can redefine itself during the course of its
expansion (for an example of this confusing technique, see
page 5-52 in the assembler manual). But without going to
these extremes, macros can be easy to use and good for your
programming style. Now we'll turn from macros to a related
set of commands, the repeat commands.

The Repeat Commands
The Macro Assembler includes three additional macro com
mands. These commands appear directly in the source code
and serve to repeat the given expression.

The REPT (REPeaT) pseudo-op is the most straight
forward. To use it, simply put

REPT expression

before the statements to be repeated, and ENDM after them.
Thus,

REPT 4

SHE AL,1
ENDM

repeats the shift left command four times, generating
SHE AE,1
SHE AE,1
SHE AE,1
SHE AE,1

The repeat commands need not be within a macro. It was
evidently in the interests of conciseness (as well as of confus
ing the programmer) that IBM chose to use the ENDM com
mand to end both macros and the repeat commands.

The second repeat command is IRP, for Indefinite Repeat.
This command is closer in spirit to a macro than REPT. The
format is

IRP dummy,<argument list>

The dummy plays the same role as the dummy parameters
in a MACRO, but the IRP dummy takes its values from the
IRP command's argument list. An example will serve to make
this clear:

IRPREGISTER,<AX,BX,CX,DX,DI,SI,BP,ES,DS>
PUSH REGISTER

ENDM

285

15

Advanced Assembler Control

REGISTER takes on the values AX, BX, CX, etc., repeating un
til the last argument is used. Note that the argument list must
be enclosed in the so-called angle brackets, known to most of
us as the less than (<) and greater than (>) signs. The ex
ample above will generate the following object code:

PUSH AX

PUSH BX

PUSH CX

PUSH DX

PUSH DI

PUSH SI

PUSH BP

PUSH ES

PUSH DS

This, as you can see, can prove useful when you have to make
quite sure that no registers are changed by a subroutine.

The final repeat command is IRPC. This is similar to the
IRP command, but instead of a list of arguments within angle
brackets, the format is simply

IRPC dummy,string

The string is a string of characters, not enclosed in quotes,
although you may, if you wish, enclose it in angle brackets.
The repeat loop begins by assigning the first character of the
string to the dummy, then the second on the next pass, until
the entire string is finished. This is, perhaps, the least useful of
the repeat commands. One example of its use might be:

IRPC X,0123456789
DW X*X*X

ENDM

This would create a WORD table of the cubes of 0 to 9.

The EXITM Pseudo-op
One final macro command exists, EXITM. This command al
lows you to exit from a macro or repeat structure early, abort
ing the macro expansion. The EXITM command cannot,
however, take the place of ENDM. Every macro must have
one and only one ENDM. EXITM can occur anywhere within
the macro, as often as necessary. However, we will put off its
discussion until we have mastered the concept of conditionals,
without which EXITM has very little use.

286

15

Advanced Assembler Control

Conditionals
Conditional pseudo-ops can, in many respects, be considered
an extension of the macro commands (most conditionals ap
pear within macros). Conditional pseudo-ops allow for dif
ferent paths to be taken at assembly time by the assembler.
They are similar to the conditional jumps, which control what
part of the program to execute under what conditions. The
conditional pseudo-ops, however, control what part of the pro
gram to assemble. As you may imagine, this is primarily use
ful with macros: different sections of one macro can be
expanded depending on one (or more) of the parameters of
the macro. However, a few uses exist outside of macros, and
these will be described in due course. Small Assembler users
should note that most of the conditional pseudo-ops can be
used both with Small Assembler and the Macro Assembler.

The Structure of a Conditional
First let's discuss the structure of a conditional pseudo-op. All
conditionals begin with the IF statement or some variation of
it (for example, IFl, IFDEF, IFIDN, etc.). Furthermore, all
conditionals must end with the ENDIF statement. An optional
ELSE statement can also be included.

The syntax is similar to BASIC, but with some differences.
For example, the IF statemerit does not, with the assembler, go
at the beginning of a line of commands. Instead, the IF state
ment, with any operands, goes separately on the first line of
the conditional structure. The body of the IF-clause (state
ments to be executed should the IF be true) follows. Then, if
desired, comes the ELSE statement, on a line by itself, fol
lowed by the body of statements in the event the IF is false.
Finally, on yet another line comes the (required) ENDIF state
ment to mark the end of the conditional. So, where BASIC re
quires that the IF clause be held entirely on one line, the
assembler insists that every statement be on a separate line.
The format is therefore:

IF<condition>

;body of statements IF true

ELSE ;(optional)

;(optional statements IF false)

287

15

Advanced Assembler Control

ENDIF ;required terminator

It's often necessary to insure that two or more conditions
be true before taking one path or another in the assembly. For
this reason, nested conditionals are allowed to any depth. You'll
see some examples of nested conditionals in Program 15-2
below.

The Conditional Pseudo'Ops
The first and most elementary IF command is simply the word
IF itself:

IF expression

The IF is true if the expression, is not 0. This, incidentally,
corresponds with the relational operators, discussed briefly in
the last chapter, for which true is OFFFFFl and false is 0. There
is an example of the IF command in Program 15-2.

The counterpart to the IF pseudo-op is the IFF command,
which is true if the expression is 0 (IF Equal). In effect, this
statement reverses the logic of the IF command.

Two other IF statements are used to control conditional
assembly on pass 1 and pass 2. These statements are IFl and
1F2, and are true on, respectively, pass 1 and pass 2. The IFl
statement often occurs with the INCLUDE statement, de
scribed above. The statements

IFl

INCLUDE MACRO.LI6 ;or whatever name
ENDIF

will read in the library on the first pass only, thus saving time
(the disk drive is accessed only once) and list file space (since
source code is printed only on pass 2). The INCLUDE state
ment is usually seen in this format.

There are four IF statements of roughly similar use which
we will summarize briefly. These fall into pairs. First is the
IFDEF/IFNDEF pair: These take one operand (a symbol) and
are true if, respectively, the symbol is DEFined (IFDEF) or Not
DEFined (IFNDEF).
IFDEF symbol

or

IFNDEF symbol

288

15

Advanced Assembler Control

Second is the IFB/IFNB pair. The operand for these
conditionals is an argument enclosed in angle brackets;

IFB <symbol>

or

IFNB <symbol>

These commands return true if the argument is Blank (IFB) or
Not Blank (IFNB), respectively. Their primary use is to detect
the blank parameters that occur when a parameter is not speci
fied in a macro expansion. If a macro is designed to accept a
variable number of parameters, an IFB <dummy_parameter>
test can be made to assemble different sections of code. These
four conditionals are the only ones not supported by the Small
Assembler.

In general, the most useful IF commands are the IFIDN
(IF IDeNtical) and IFDIF (IF DIFferent) commands. These take
two operands and compare them:
IFIDN <argument l>,<argument 2>

or

IFDIF <argument l>,<argument 2>

As with the IFB/IFNB conditionals, the arguments for IFIDN
and IFDIF must be enclosed in angle brackets. As you have no
doubt guessed, these commands return true if (for IFIDN) the
arguments are identical or if (for IFDIF) they are different.
These commands are almost always used within a macro.
Typically, one of the arguments is a parameter for the macro,
and the other is a constant to compare the parameter with.
There are examples of both of these conditionals in Program
15-2.

The Equal Sign (=) Pseudo-op
The equal sign pseudo-op is often useful in conjunction with
the IF and IFF conditionals. A constant may be defined with
the = command much as with the EQU command, but only
numeric values may be used with the = command (the EQU
command, you may recall, accepted almost anything as an op
erand). The flexibility and usefulness of the = command lies
in the fact that a constant can be defined and then redefined,
and what's more, redefined in terms of its previous value.
(The use of the word constant to refer to a changeable quantity

289

15
Advanced Assembler Control

is amusing, but follows assembler naming conventions.) The
following, therefore, are all valid uses of the = pseudo-op:
CONST = -3

CONST = 0

CONST = CONST -I- 1

FALSE = 0

TRUE = NOT FALSE ;this is a logical NOT
DE_BUG = TRUE

If you need to define constants for use with a macro, it's
convenient to define them with the = pseudo-op, rather than
EQU. That way, you can avoid the assembler Redefinition of
symbol error each time the macro is expanded.

One of the possible uses for the = pseudo-op outside a
macro is to choose whether or not debugging sections of the
program are to be included. For example, you might write a
subroutine that displays the values of the registers, and call it
periodically during the course of the program. Naturally, this
would be less than desirable during actual trial runs of the
program, so it should operate only when you were attempting
to debug the program.

Here is one way to execute a routine only part of the
time. We would write the debugging subroutine as follows:

DUMP-REGISTERS PROC NEAR ,procedure
IFE DE—BUG ;true if debug is 0 (false)
RET ;don't dump the registers
ELSE ;else, if debug is true

;execute the main body
;to dump the registers

RET ;then return
ENDIF ;end of condition
DUMP—REGISTERS ENDP ;end of procedure

When you want to assemble the program with a register
dump, you would set DE_BUG = 1 (or TRUE above); to dis
able register dump, you would reset it to 0, or FALSE. Other
uses of the = pseudo-op exist for use with conditionals, but
these are rather obscure.

EXITM, Again
Before we plunge into the sample program, let's review the
EXITM command. Normally the EXITM command occurs only

290

15
Advanced Assembler Control

with conditionals, and serves as a way to abort the macro
quickly if the parameters are misspecified. For example, if a
macro with several parameters was invoked with none, you
might wish to abort the macro expansion early. To do so, you
might code;
IFB <parameter—l>
EXITM

ENDIF

If parameter 1 is blank (not specified), the macro would abort.
Unfortunately, as far as the assembler is concerned, the IF
statement opened with IFB was never closed with an ENDIF.
We aborted out of the middle .of a conditional. There's no way
around this problem, however, so when a macro aborts con
ditionally from a macro expansion, you will be stuck with an
Open conditionals message from the assembler. Uowever, the
Open conditionals message is usually not important (unless
you didn't use the EXITM command, in which case some of
your conditionals really are open). Bearing all this in mind,
examine Program 15-2, the sample macro program.

More Commands
A few more operators are of use to the advanced assembler
user. We will discuss first the SHORT operator, and then LA
BEL and THIS, which are logically connected.

The SHORT Operator
The SHORT operator is used to instruct the assembler that the
label of a forward JMP command is within 127 bytes:
JMP SHORT label

This may appear at first as rather confusing, since we know
that the assembler is responsible for making jumps short or
near. However, the assembler has to make assumptions about
the labels and variables it encounters on its first pass through
the source code. For example:

JMP LABEL_1

intermediate code

LABEL_1:

291

15
Advanced Assembler Control

The assembler has no way of knowing whether a jump ahead
(like the JMP to LABEL_1 above) is going to need a two-byte
offset (if it's further than 127 bytes), or whether one byte will
do. So it simply sets up two bytes for the offset. When it
makes its second, code-generating pass, it gives the JMP a
one-byte offset if possible, and then puts a NOP in the other,
unused byte. (NOP is one of the 8088's simpler instructions:
It's a do-nothing command. No OPeration.) You can see the
NOP in the DEBUG unassembly, as well as in hex form in the
assembler list file (90H).

Using the SHORT prefix merely tells the assembler that
the JMP will need only one byte as an offset. If the jump is
more than 128 bytes, you get an assembler error message.
This operator need never occur in your own programs, unless
for some reason one program must be particularly short; how
ever, many DOS and BIOS routines use this command, so it is
useful to be familiar with it.

The LABEL and THIS Operators
These two assembler commands play virtually identical roles.
They are, however, different types of instructions. The com
mand THIS falls under the category of Attribute Operators,
along with PTR, segment overrides, and the SHORT command
above. LABEL, however, is a pseudo-op in its own right.

Normally, the assembler knows the type of a symbol:
Variables are defined with DB, DW, DD, and the like, while la
bels are either NEAR or FAR. LABEL and THIS provide a
method of declaring a variable without a data pseudo-op, or a
label without PROC or a colon. You can therefore put a sym
bol wherever you please, then instruct the assembler what its
type should be. Although their formats are different
name LABEL type
name EQU THIS type

both set name equal to the type specified, at the current seg
ment and offset. The LABEL pseudo-op creates a standard la
bel or variable; the THIS operator creates a symbol marked
with an E (an EQU symbol) in the symbol table. The type can
be any of the standard label or variable types (NEAR, FAR,
BYTE, WORD, DWORD, QWORD, or TBYTE).

A few uses for these commands are given below:
BYTE-TABLE EQU THIS BYTE
WORD-TABLE DW 5678,4321,50000,123,0

292

15
Advanced Assembler Control

Here the table can be accessed either as words (with
WORD—TABLE) or as bytes (with BYTE—TABLE). This elimi
nates the need for the rather clumsy form:

MOV AH,BYTE PTR WORD-TABLE-1-4

For those adventuresome enough to write self-modifying
programs, the ability to set a symbol to a different type comes
in very handy:
MOV CMP_VALUE-t-l,AL ;modify the 0 in CMP AL,0

CMP-VALUE EQU THIS BYTE
CMP AL,0 ;this 0 is modified above

The LABEL command is often used to make locations in
program code FAR so they can be JMPed to from other object
modules (this is another advanced technique).

CrosS'Referencing
One feature of the assembler can prove very useful when you
begin to write long pfograms. You will no doubt find that
remembering where each of your labels and variables is ref
erenced can be a hassle. As a solution to that problem, the
assembler comes with a cross-reference utility. When you start
MASM, the prompt comes up for Cross-reference; until now
you have always hit Return. To create the cross-ref file, enter
the name for the file and hit Return. Below, we have included
a sample from the "Switch" program from the first program
ming chapter.
A>MASM [or ASM depending on which assembler you are using]
The IBM Personal Computer MACRO Assembler
Version 1.00 (C)Copyright IBM Corp 1981

Source filename [.ASM]: SWITCH [name of the source file]
Object filename [SWITCH.OBJ]: [Enter if you want object code]
Source listing [NUL.LST]: SWITCH if you want a source listing
Cross-reference [NUL.CRF]: SWITCH for the cross-reference

Note that whenever you select the cross-reference option, the
assembler will automatically include line numbers in the .LST
file.

One would not generally make a cross-reference of a pro
gram this short, but we will, just so you can see how it's done.

293

15

Advanced Assembler Control

The cross-reference file (with .CRF extension) produced by the
assembler is not in human-readable form. We must run a

translation program on the .CRF file. This utility is named
CREF and is discussed in Chapter 3 of the Assembler Reference
Manual. Type CREF from the DOS prompt and answer the
questions as shown below, assuming that the name of the
.CRF file is SWITCH.CRF:

A>CREF

Cref filename [.CRF]: SWITCH [The name of the .CRF file]
List filename [SWITCH.REF]: [Enter/ default to SWITCH.REF]

When CREF is done, the DOS prompt will return. You can
examine the cross-reference file by entering the command:
A>TYFE SWITCH.REF

A cross-reference file which looks like the one printed as Table
15-2 should scroll up your screen. As you know, you can use
Ctrl PrtSc to get a hard copy of the cross-reference; or you can
specify PRN at the "List filename" prompt.

Table 15-2. Cross-Reference of SWITCH

Symbol Cross-reference (# is definition) Cref-1
CODE 26# 28 50

DATA 12# 17 28 34

DEBT 15#

MOVE_BYTES 39# 45

SOURCE 13#

STACK 19# 24 28

SWITCH 27 49

A cross-reference for a program this short is not terribly
useful; however, with longer programs, you may find it in
dispensable. The cross-reference tells you where each symbol
is used, and where it is defined. The names of the symbols are
along the left, in alphabetical order. The line numbers are in
ascending order from left to right and refer to the source list
ing produced by the assembler. The line numbers with the
number signs (#) after them are the lines in which the symbol
is defined (remember, with = pseudo-op a constant can be re
defined as often as you like). For example, SOURCE was first
defined in line 13 of the source file.

The assembler provides pseudo-ops to turn the output to

294

15
Advanced Assembler Control

the .CRF file on and off. If your program is in two almost
separate halves, for example, with few references between
them, you might want to get a cross-reference only of the first
half. To do so, put the .CREF command (enable .CRF output)
at the beginning of the program, and the .XCREF command
(disable .CRF output) at the appropriate midpoint. The assem
bler defaults to .CREF unless specifically overridden.

With the contents of this chapter under your belt, you will
be able to program for a long time without recourse to any of
the further capabilities of the IBM Macro Assembler. This ma
terial is ample to provide a full understanding of almost all
source code, as well as to allow you to utilize much of the
power of the assembler.

However, the assembler has much more to it than what
we have gone through in the last two chapters. Many power
ful and useful commands still remain to master (as well as a
scattering of less important commands). A brief outline will
suffice to give you an idea of what else remains:

• The ability to link together two or more assembly files, as
well as optionally combining two or more logical segments
together into a GROUP. Normally, one program is contained
in one source file, but if you have some general-purpose sub
routines, or if parts of your program are error-free, you can
assemble them separately and combine them only at LINK
time, in object-module form. A master program might call an
external subroutine by specifying

EXTRN subroutine:NEAR

while the subroutine specified PUBLIC subroutine. At LINK
time you would simply respond master-f subroutine.

• The ability to link not only to other machine language pro
grams, but to high-level languages like Pascal and Compiled
BASIC. Linking to high-level languages allows you to com
bine the breadth of a high-level language with the speed and
compactness of machine language.

• The possibility of compacting your data (bit packing). The
RECORD pseudo-op allows you to define, for example, three
variables in a single word. To access one of these variables,
you load the appropriate word, mask off unwanted bits with
the MASK operator, and shift it right shift count times, leav
ing the data ready to be used.

295

15

Advanced Assembler Control

• The use of structured data. The STRUG command allows you
to specify a variable in terms of subvariables; for example, a
STRUG variable named TEMPERATURE might have a
subvariable named HIGH, and the assembler allows you to
access the subvariables with TEMPERATURE.HIGH. This
feature is very much like the powerful Pascal REGORD
command.

All these commands are enough to provide continuing
pleasure as you master them and put them to use. The di
versity and power of the assembler, however, are such that it
will be a long time before using it becomes a chore.

296

1 1 1 I >] I J

Program 15-1. BITS.LST

;sample l ist ing 15-1

page ,96

title This program counts the on and off bi ts in DS

;

; BITS.ASM

?

inc_dword macro dword_var

local no_inc ;let Assembler generate ??nnnn

; this macro increments a doubleword

n o_In c:

i nc dwor d_va r

j n z n o_ i n c
i nc dwo r d_va r +2

endm

i ncremen t Iow word

no overf low wraparound, end

if zero, increment high word

0000

0000

0004

0008

0000

0000

00 00 00 00

00 00 00 00

10 [

53 54 41 43

48 20 20 20

dseg segment para 'DATA'
offbi ts dd 0

onb i t s dd 0

dseg ends

sseg segment para stack
db 16 dupC'STACK

fhere we store the number or Is

;and here the number of Os

•STACK*

•) ;16 copies of 'STACK

K)
v£)

0080

0000

0000

ends

segment para 'CODE'

assume cs : cseg , ds:dseg,ss:sseg

sseg

cseg

;

counter proc far

K)
v£)

0000 IE push ds ;set up far RETurn to DS:0000

0001 B8 0000 mo V ax t 0

0004 50 push ax

0005 B8 ----- R mov ax,dseg ;1oad DSEG into DS

0008 8E 08 mov ds , ax

OOOA initial i ze :

OOOA BB 0000 mov

o

X

;BXwi l l be the indirect reg.

0000 ma i n_l oop:

OOOD 8A 07 mov aU (bxl ;get a byte from segment

OOOF B9 0008 mov ox , 8 ;we wi l l loop through 8 bits

0012 b i t_l oop:

0012 00 E8 s h r a 1. 1 ;push low bit into Carry flag

0014 73 00 j no off ;if no carry* low bit was zero

0016 on : i nc_.dwo r d onb i t s ;use macro to increment count

0016 FF 06 0004 R + i n c onb i t s ;increment low word

001A 75 04 + jnz ??0000 ;no overf low wraparound* end

001C FF 06 0006 R i no onb i t S'»'2 ;if zero* increment high word

0020 + ??0000:

0020 EB OB 90 jmp end_l OOP

0023 off : i nc_.dword offbi ts ;increment count of off bits

0023 FF 06 0000 R + i no offb i ts { increment low word
0027 75 04 + jnz ??0001 ;no overflow wraparound* end
0029 FF 06 0002 R •f i n c offbi ts+2 { if zero* increment high word
0020 + ??0001 :

0020 and_l oop:
0020 E2 E3 1 oop1 b i t_l oop {Complete 8 SHRs
002F 43 i no bx {go to next byte
0030 75 OB jnz ma i n_l oop { if BX is non-zero* keep going

{Otherwise* BX gone past OFFFFh
0032 CB ret {back to DEBUG* leaving values

0033 counter endp {end of procedure

1) 1) 1 1 1]

) 1 1 1 I 1 I 1 1

0033 cseg ends

end coun t e r

The IBM Personal Computer MACRO Assembler 01-01-80
This program counts the on and off bi ts In DS

PAGE

;end of segment

{end of program

SymboIs-1

Mac r OS :

INC_DWORD.

K>
vO
VO

Name

Segments and groups*.

Name

CSEG

DSEG

SSEG

SymboIs:

Name

Length

0005

BIT_LOOP . . .

COUNTER. . . .

END_LOOP - . .

INITIALIZE . .

MAIN_LOOP. . .

OFF

OFFBITS. . . .

ON

ONBITS

??0000

??0001

Warning Severe

Errors Errors

0 0

Size al ign comb i ne class

0033 PARA NONE 'CODE*

0008 PARA NONE 'DATA'

0080 PARA STACK 'STACK

Type Value At t r

L NEAR 0012 CSEG

F PROC 0000 CSEG Length

L NEAR 002D CSEG

L NEAR OOOA CSEG

L NEAR OOOD CSEG

L NEAR 0023 CSEG

L DWORD 0000 DSEG

L NEAR 0016 CSEG

L DWORD 0004 DSEG

L NEAR 0020 CSEG

L NEAR 002D CSEG

o
o

Program 15-2. INPUT.LST

page ,96

title This macro simpl if ies your console input requests

; INPUT.ASM

input macro str ing_mode,string,string_len
local query,skip

Two formats are avai lable with this macro:

C1) input s t r i ng__mode , s t r I ng

o r

C2) input str ing_mode,str ing,string_len

STRING wi l l be interpreted in l ight of STRING_MODE. If
STRING_MODE is 'immediate' the STRING must be a quoted str ing
(ei ther "string" or 'string'). If STRING_MODE is 'indirect'
then STRING must be a val id variable name In the current data

segment. In ei ther case, the str ing must end wi th '$'.

The first format above ut i l izes DOS function cal l 1 to

read a single character. Input: string. Output: AL. holding
the character read. AH, DX destroyed, al l else preserved.

The second format al lows for a ful l l ine of input to be
returned to the cal l ing program via DOS funct

The program is requi red to speci fy the
needed (not including the final

of STRING_LEN must not be zero. For this format only, an

area in the current data segment must be set
INPUTJUFFER. Input: STRING, STRING_LEN.
points to string text; AL holds length; DX

on cal l OAh.

I eng t h of the strin

up, named

Output: DS:SI

destroyed.

g

carr iage return). The value

1 1 1 1 > 1) 1]

I ! 1 1 I ' l l

CO
o

; Now W

bdos

con__l n

p r I n t_8

Inpu t_8

;

; F i r 8 t

;

) define our conetante (wi th = to avoid redefine)
= 21h ;DOS function interrupt
= 1 ; get one character from CON:
= 9 ; pr int 8tring funct ion

= 10 ; input a 8tr ing from CON:

we teat to 8ee i f parametera were paaaed at al l .

i fb < 8 t r i ng_mode >

. lal I

no parametera apec
.xal I

ex i tm

end i f

;no parametera paaaed

: al low ua to return a comment:

i fied for INPUT macro! Macro aborted

; reaume atandard Mat atate

j abort from macro wi th EXITM

Now we teat for 'immediate' or 'indirect' and aet up OS:DX
according to reaul ta. If STRING_MODE ia neither, we abort.
If indirect we check to aee if STRING ia def ined: elae abort.

Final ly, we pr int ei ther STRING or QUERY. The amperaanda
below are needed ao the Aaaembler can recognize a parameter.

ifidn <&atring_mode>,< indirect>
i fndef string : make sure STRING Is def ined
. lal I

STRING must be a def ined var iable for indi rect model

.sai l

ex i tm

endif : i f i t la def ined, then ...

mov dx,offset string ; set up DS:DX for STRING
elae

i fdif <&atr Ing_mode>,<immedI ate>

.lal l ; pass this message to program

Must speci fy "immediate" or "indi rect" as parm. #1!
.xal l ; reaume atandard Mat mode

exi tm ; abort macro

OJ
o
K)

else

jmp skip

query db str ing

skip: push ds
push cs

pop ds

mov dx,offset query
end I f

end 1 f

mov ah , p r In t__s

i n t bdos

Ifldn <&str 1ng_mode> ,

pop ds

e n d 1 f

ELSE STRING_MODE Is

skip over DB area

Imme dia t e

str ing Is in mem,- save DS
transfer CS to DS ...

... via the stack!

set up DS:DX for QUERY

end the IFDIF

end the IFIDN

DOS funct ion 9 = pr int str ing
DOS funct ion cal l Int .

< ImmedI a t e >

; l f we pushed I t, pop I t back

Test here for STRING_LEN. I f I t's blank, we do format one.

Ifb <&s t r Ing_len >

mov ah,con_i n

i n t bdos

i f STRING_LEN blank: format #1

get a character Into AL

and that's that

I f It's not blank, and STRING_LEN > 0, we do format two.

else

I fe str lng_len
. I a I I

query str ing printed; can

.xal I

ex I tm

end I f

mov dx,offset lnput_buffer

STRING_LEN nonblank: format #2

If STRING_LEN Is zero ...

al low a comment to program:

't Input a string of length 0!
resume normal l ist mode

abort from macro

STRING_LEN val Id, > 0

;DS:DX addr.s INPUT_BUFFER
mov Input_buffer,str Ing_len+1 ;set byte 0 to # of chars
mov ah,lnput_s ; DOS function to Input string
Int bdos ; go lnput l t
mov a I , I n p u t_b u f f e r 1 ; get length of Input

>

s
pu

I

O
o

s
O

1 1 1 1 } }] 1 1 1

1 1 1 1 } I 1 I 1 1

mov si ,offset I npu t_bu f f e r-*■2 ;get address of text
endif ;end of IFB <&STRING.LEN>
endm ;end of INPUT macro

0000

CO
o
CO

dseg segment para 'DATA'
;note for INPUT_BUFFER no need to set t longer than necessary

0000 ?? 19 [
? ?

]

i npu t__bu f f e r db ?,?.25 dupC?) ;our

001B ?? name_len db ?

001C ? ? f am i 1y_s i ze db ?

0010 48 6F 77 20 6F 6C age db 'How old are you CO
64 20 61 72 65 20

79 6F 75 20 28 30

20 74 6F 20 39 39

39 29 3F 20 24

003A ? ? age_d i g i t s db ?

003B 54 79 70 65 20 74 height db 'Type the digit for
68 65 20 64 69 67
69 74 20 66 6F 72

20 79 6F 75 72 20

68 65 69 67 68 74

20 69 6E 20 66 65

65 74 3A 20 24

0064 ?? heigh t_an swe r db ?

0065 dseg ends

0000 sseg segment para stack 'STACK'
0000 10 [db 16 dupC'STACK ')

53 54 41 43

your height in feet: S'

4B 20 20 20

w 0080

0000

0000

0000

000 1

0004

0005

0008

s seg

c s e g

ends

IE

B8 0000

50

B8

8E 08

segment para 'CODE'

assume cs:cseg,ds:dseg,ss:sseg

i n pu t_t est proc far

push ds iset up return address

mov ax , 0

push ax

mov ax.dseg ;and DSEG into OS

mov d s , a X

subtt i Actual test ing of macro occupies rest of program

page

>
Cl

D
n
re

a.

input

. I a I I

test error for no parameters

al low us to return a comment ;

no parameters speci f ied for INPUT macro! Macro aborted

OOOA EB 15 90

OOOD 57 68 61 74 20 69

0021 IE

0022 OE

0023 IF

0024 BA OOOD R

0027 B4 09

0029 CD 21

002B IF

002C BA 0000 R

002F C6 06 0000 R 15

0034 B4 OA

0036 CD 21

input immediate , ' What is

jmp ??0003

??0002 db 'What is your name? t

??0003: push ds
push cs

pop d s

dx,offset ??0002

a h,p r i n t_s

bdos

d s

mov

mov

i n t

pop

mo V

mo V

mov

i n t

your name? $',20 j imm./buffer

skip over DB area

str ing is in mem; save DS
transfer CS to DS ...

... via the stack!

set up DS:DX for QUERY

DOS funct ion 9 = pr int str ing
DOS funct ion cal l int.

i f we pushed i t , pop i t back
dx,offset input_buffer :DS:DX addr.s INPUT_BUFFER

input_buffer,20+1 :set byte 0 to # of chars

ah,input_s : DOS funct ion to input str ing
bdos r go input i t

n
o
3

I I I I I I I I I I

]]])]) 1

0038 AO 0001 R

003B BE 0002 R

003E A2 001B R

0041 EB IB 90

0044 48 6F 77 20 6D

005E IE

005F OE

0060 IF

0061 BA 0044 R

0064 B4 09

0066 CD 21

0068 IF

0069 B4 01

006B CD 21

006D A2 001C R

0070 BA 001D R

0073 B4 09

0075 CD 21

0077 BA 0000 R

007A C6 06 0000 R 04

007F B4 OA

0081 CD 21

0083 AO 0001 R

0086 BE 0002 R

0089 A2 003A R

008C BA 003B R

008F B4 09

0091 CD 21

0093 B4 01

??0004

??0005:

mov a I ,Input_buffer + 1 ; get length of Input
mo V si ,offset Inpu t_b uffer+2 ;get address of text
mov name_,len,al ;use length returned in AL
Input ImmedI ate,'How many In your fami ly: S' isingle
jmp ??0005 ; skip over DB area
db 'How many In your fami ly: S'
push ds
push cs
pop ds

??0004

; string Is In mem; save DS
; transfer CS to DS ...
; ... via the stack!

: set up DS:DX for QUERY
;DOS function 9 = print string
iDOS function cal l Int.

;lf we pushed it, pop I t back
; get a character Into AL
; and that's that

;save ASCI I input character
; I ndIrect/buf fered

; set up DS:DX for STRING
;DOS function 9 = print string

;DOS function cal l int.

dx,offset lnput_buffer ;DS:DX addr.s INPUT_BUFFER
I npu t__bu f f e r , 3+1 ;set byte 0 to # of chars
ah,lnput_s ; DOS function to Input string
bdos ; go Inpu t It
a I . Input_buffer + 1 ; get length of input
si, off set I npu t_bu f f e r-•-2 :get address of text

mov dx,offset

mov ah , p r I n t__s

Int bdos

pop ds
mov ah , con_l n

Int bdos

mo V f amI Iy_s Iz e,a I

input Indirect, age,3
mov dx , of f se t age

mov ah,p r1n t_s

In t bdos

mov

mov

mov

I n t

mov

mov

mov age_d IgI t s,a I
Input Indi rect , he Ight
mov dx,offset height

mov ah,p rIn t_s

Int bdos

mov ah,con_ln

;use length returned In AL
; Indirect/single
; set up DS:DX for STRING
; DOS function 9 = print string

;DOS function cal l int.

; get a character into AL

>
D-
<

s
o-

I"

n
o
13

w
o
CJl

o
On

0095 CD 21

0097 A2 0064 R

009A EB 08 90

009D 54 68 61 6E 68 20

00A7 IE

00A8 OE

00A9 IF

OOAA 8A 0090 R

OOAD 84 09

OOAF CD 21

0081 IF

int bdos ; and that's that

mov height.answer,a I ;save ASCI I
input Immediate Thank you.',0 ;test err. for length 0
jmp ??0008

??000A db 'Thank you.'
??0008: push ds

push cs

pop ds

mov dx,offset ??000A

mov ah,p rIn t_s

int bdos

pop ds

. I a I I

{ skip over 08 area

string is in memt save 08

transfer CS to OS ...

... via the stack!

set up OS:OX for QUERY

s

;

;

i

; DOS function 9 = pr int string
;DOS function cal l int.

;if we pushed it, pop it back
; a I Iow a comment to program:

query str ing printed; can't input a string of length 0!

input 'Thank you'
. lal I

;test for wrong STRINQ_MOOE
; pass this message to program

Must specify "immediate" or "indirect" as parm. #1!

input indi rect , question ;test for undefined indi rect
. lal I

STRING must be a defined variable for indirect mode!

>

S
o
n>

D-

fi>

t"
fT

n
o

0082

0083

0083

C8

Open condi tionals: 7

ret

input_test endp
cseg ends

end i npu t_t es t

; done

1 1 1]]]]]]]

)] 1 I]

The IBM Personal Computer MACRO Assembler 01-01-80
This macro simpl ifies your console input requests

PAGE SymboIs-1

Mac r OS:

Name

INPUT.

Length

0073

Segments and groups:

o
VI

Name Size al ign comb i ne class

CSEG . . . 00B3 PARA NONE •CODE'

DSEG . . . 0065 PARA NONE •DATA'

SSEG . . . 0080 PARA STACK •STACK'

Symbo1s:

Name Type Va 1 ue Attr

AGE . . . L BYTE 001D DSEG

AGE_DIGITS . . . L BYTE 003A DSEG

BOOS . . . Number 0021

CON_IN . . . Number 0001

FAMILY_SIZE . . . L BYTE 001C DSEG

HEIGHT . . . L BYTE 003B DSEG

HEIGHT_ANSWER . . . L BYTE 0064 DSEG

INPUT JUFFER . . . L BYTE 0000 DSEG

INPUT_S . . . Number OOOA

INPUT__TEST . . . F PROC 0000 CSEG Length =00B3

NAME_LEN . . . L BYTE 001B DSEG

PRINT_S 0009

??0002 . . . L BYTE OOOD CSEG

CO
o
00

??0003

??0004

??0005

??000A

??000B

Warning Severe
Er ror8 Errors

0 0

L NEAR 0021 CSEG

L BYTE 0044 CSEQ
L NEAR 005E CSEG

L BYTE 009D CSEG

L NEAR 00A7 CSEG

>

CO

o
(T)

Q-

§

E
rT
•-t

n
o
!3
rt

•-t

o

]]]] J 1 1 1] 1

SECTION

5
Sample Programs

CHAPTER

16
Sample Programs

The first sample program, "DUMP.ASM" (Program 16-1) is a
utility that allows you to examine a file as a hexadecimal list
ing (like DEBUG's D command). It's a good example of simple
disk input/output handling with DOS 2.00 (DOS 1.10 pro
grammers should convert it to DOS 1.10 file handling; it will
be good practice). To use this program once it's assembled,
simply type "DUMP filename.ext" and the file will be dis
played in hexadecimal. Any errors that occur will be dis
played, with the appropriate error number, and the program
will stop.

The second sample program, "REBOUND.ASM" (Pro
gram 16-2), uses only BIOS functions to control the screen, so
it should be usable on any PC-DOS computer. Note that, as
printed, the program will work best in a PC with
color/graphics board. One set of modifications should be
made if you're using a PCjr. Another set should be made if
you're using a PC with a monochrome board. Any version
will work in any computer, but speed or color use varies.

To use the program, simply type "REBOUND" from the
DOS prompt. The game will prompt you to hit the Enter key;
when you do, the game begins. Use the Shift keys to move
the paddle back and forth; the goal is to knock down all the
bricks forming the wall. However, you have a limited number
of balls. A few convenience features were added to the game;
the space bar will pause the game until another key is hit, and
the Esc key will reset to the initial message. You can add a
variety of improvements to the game. For example, you can
allow the player to pick a level of difficulty, or to select the
number of balls or the number of rows of bricks.

The third sample program, called "LIFE.ASM" (Program
16-3), is a BIOS version of the game of Life. It uses many
macros (see Chapter 15) and provides some examples of how
macros can be used in the normal course of programming. The
game of Life allows you to watch the generations of a one-

311

16 n
Sample Programs

celled life form pass across the screen. Each cell on the screen
can, in each turn, die, remain stable, or give rise to new cells.
The changing patterns formed by the successive generations
can be an intriguing sight if the initial pattern of cells is cho
sen carefully.

To begin the game, type "LIFE" from the DOS prompt.
To enter the initial pattern of cells, hit any key wherever you
want a cell to be. The space bar is used to erase mistaken en
tries, the cursor keys to maneuver the cursor around the
screen, and the Enter key to end the entry of cells.

n

312 n

J : 1 1 ; 1

Program 16-1» DUMP^ASM

page ,96

t i t le .This program dumps the contents of a f i le in hex and chr

DUMP.ASM

segment para publ ic 'DATA'

dw ? ;how many bytes in block
dw ? {handle number for input

db cr, l f,'The f i le could not be opened.$'

db cr. I f, 'Error whi le reading a data sector.$'

db cr,lf,'BDOS code on exi t: $'

db 64 dup ('BUFFER ')

dseg

numbe r

handle

noopen

no r ead

done

buf fer

buff len equ $-buffer

dseg ends

t

psp segment at 0

upa

psp

o r g 80h

label byte

ends

;used for program pref ix

fT

75:

OJ

sseg segment para stack

db 16 dup ('STACK
sseg ends

f

page

STACK'

')

1-^
c s e g segment para publ ic • CODE '

t

bdos equ 2 1 h ; interrupt n umb e r

pr ints e q u 9 :pr int a str ing t0 console

open equ 3dh ;0p e n f i le n ame d at DS:DX

close equ 3eh ;c10 s e f i le

read equ 3 f h ;read next sequen t i a 1 block

t

video equ 1 Oh ;video interrupt

s e t c r s equ 2 ;set cursor posi t i on

readers equ 3 ;read cursor posi t i 0 n

0u t c ha r equ 1 4 ;wr i te character , advance

r eadV i d equ 1 5 ;read video state

t

1 f equ 1 0 ; l ine feed charac t e r

c r equ 1 3 :carr iage return character

1

ass ume c s :cseg,ss:sseg

program p r 0 c far

push d s :set up for a ret urn to DOS

mo V a X , 0

push a X

?

ass ume d s :psp

mo V b 1 , u p a ;convert to ASCI I Z

mo V bh , 0

mo V u p a + 1 [bx] , 0

C/5

"S-

75;
0
OQ

1

l i l t :i :i I i n

I I I E 1 I I) i

w
I—»

ai

mov dx,offset upa + 2

mov ah , open

mov a I , 0

i n t bdos

ass ume d s:d s e g

mov dx.dseg

mo V d s,d X

j n c i n i t

mov dx,offset noopen

c a i I pr int

j mp e n d p r g

f

ini t : mov handle,ax

mov number ,buff I en

mov c X,0

mov bx,buff len

t

main: cmp b x,n umb e r

jne moredat

cal l readnx

jo error

j z I a s t c h r

mo V n umb e r ,a x

mo V b X,0

moredat r test bx,000fh

j n z inl ine

cal l n ewI i n

open f i le

open the f i le

(set DS to DSEG)

;n o error

;no f i le, so pr int and RET

jstore handle

; ini t count and buffer pointer

;any more data?

no, so get mo r e

c-1 indicates error

z=1 indicates end of f i le

; reset buffer-pointer

;at start of l ine?

;yes, so cr i f and output cx

C/3
p

5^:

3
3

inl ine: mov al ,

cal l chrout

mov al ,buffer fbx]

cal l hexou t

i n c c X

i n c b X

test bx . 000 f h

j n z ma I n

cal l chars

jmp main

error: mov dx,offset noread

cal l pr int

jmp endp r g

lastchr:test bx,000fh

j z e n d p r g

push ax

cal l chars

pop ax

t

endprg: mov dx,offset done

cal l pr int

cal l hexout

mov bx,handle

mov ah,close

i n t bdos

r e t

;ouput a separator

pr int the n umb e r

Increment the count

increment pointer for buffer
at end of l ine?

no, so repeat Ioop

display characters

; indicate data read error

;no chrpr int i f al ready done!

;do last chars and fal l through

;print "f inal BDOS code:"

;pr int error

:cIo s e fi le

iback to DOS or DEBUG

CO

"2-
cT

o
OQ
--t

D I I I S 1 1 i nn

I 1 1 Y I I I I I

p r og r am

subs

:

e n d p

p r oc near

; read next sector,

; i f 0=1 , AL holds

; otherwise return

return z=0 i f no more data

the error number and z=?

number of bytes in new sector i n AX

readnx: push cx

push bx

mov ah,read

mov bx,handle

mov cx,buff len

mov dx,offset buffer

i n t bdos

pop bx

pop cX

jc readend

cmp ax , 0

ret

r eadok :

readend

jget next sector

w

VI

;

> print

!

chars:

c h r I p :

i f error

set z=0

Cc=1D return

i f no mo re data

the character values for the numbers

cal l tab

dec bx

and bx,Of f fOh

mov al ,buffer [bxl

{posi t ion at col.55
;go back to start of

;g e t value

l ine

on

75:
o
OQ

3

OJ
I—i

00

per I od:

p r i n t c :

e n d c h r

;

tab

cmp a 1 , 32

j b per iod ; if less than 32

cmp a 1 , 128 or greater than 127

j b p r i n t c

mo V a 1 . ' . ' ;set character to a per iod

cal l ch r ou t ; o u t p u t i t

1 n c bx

cmp bx,n umbe r ;test for ear ly end

j e endch r

t ee t bx.OOOfh ;test for 16 bytes output

j nz c h r 1 p

ret

1 1 umrt = 55, preserve BX,

X
o

push bx ;save reg.s

push C X

mo V ah , r eadv1d ;get act ive page

1 n t video

mo V ah, readers ;get cursor r,c in DH,DL

1 n t video

mov d 1 , 55 5 3 e t column = 5 5

mo V ah,setcrs ;set cursor

1 n t video

pop C X

pop bx

ret

C/3
P

3
H-

•t

o
OQ

ON

) 1 1 D) I] 3

1 1) 1 1] I

w

VO

; do a or-1 f sequence and print CX (fi le byte count)

V

newl i n: mov a 1 , c r :end of l ine: return

ca 1 1 chrout

mov al . 1 f

cal l chrout

mov a 1 , ch sprint the count

cal l hexou t

mov a 1 , c 1

cal l hexou t

mov al , ' • sextra separator

cal l chrout

ret

output byte in AL in
preserve BX and CX

<

!

I

hexou t:

hex

push ax
shr a t , 1

;print high nybble

nybou t

shr

shr

shr

cal l

pop

and

add

cmp

j be

a I , 1

a I , 1

a I , 1

nybou t
ax

al ,0fh

al , '0'

al,'9'

chrout

;get low nybble, fal l through

;ad j us t to ASCI I

(fal l through

CD
P

3

ft"

3
3

CO
K3
O

add al ,'A'-'Q'-I

do a safe CONOUT from AL

chrout: push bx
push cx

push ax

mov ah,readvid

i n t video

pop ax

mov bI ,15

mov ah.outchar

i n t video

pop cx

pop b X

ret

;adjust to A-F, fal l through

isave CX,BX

;get act ive page into BH

;pr int in br ight whi te

;restore CX,BX

; pr int the string at DS:DX, and save AX

pr int

;

subs

cseg

end

push ax

mov ah,pr ints

int bdos

pop ax

ret

endp

ends

program

) 1 1 j 1 1] 1 1

) j) 1 r) 1

Program 16-2. REBOUND.ASM

page ,96
ti t le REBOUND.ASM monochrome and coIor/graphics

REBOUND.ASM

interrupts and funct ions used in the program

U)
K)

;

video

se tmode

se 11 ype

se tpos

r eadpos

sc roI up

scroIdn

r eadch r

wr i teac

t type

5

key bd

Key r ead

status

shift

;

t imeday

r ead t i m

equ

equ

equ

equ

equ

equ

equ

equ

equ

equ

equ

equ

equ

equ

equ

equ

lOh

0

1

2

3

6

7

8

9

1 4

16h

0

1

2

1 ah

0

video I/O interrupt number

set current video mode

set cursor size

set cursor posi t ion

read cursor posi tion

scrol l act ive page up

scrol l act ive page down

read attr ibute/character

wr i te attr ibute/character

wr i te teletype to page

keyboard I/O Interrupt

wai t and read next key

check i f any keys pressed

read shi ft status into AL

t ime of day cIock

read the current t i me

OJ
NJ
N) other constants used in the program

br ie k_1 equ 2 1 9 f i l led bloeks

br ie k_2 e q u 2 1 9 (note: monoehrome board

b r i ek_3 equ 2 1 9 has di fferent bloek values)

br ie k_4 equ 219

t

at t_1 equ 1 attr ibute for br ick_1: blue
at t_2 equ 2 for br ie k_2: green

at t_3 equ 4 for br io k_3: red

a t t_4 equ 6 for br ick_4: brown

baekgnd equ 7 for background: l ight grey
f r ame equ 1 5 for game frame: whi te
bal ls_r equ 12 for "Bal ls remaining": pink
break equ 1 5 for "REBOUND: wh i te

paddle equ 9 for paddle: l ight blue
ba 1 1 at t equ 3 for bal l : cyan

t

de1ay_1 equ 4000 delay LOOP to slow game down
de1ay_2 equ 10 mul t iply factor for di ff.

f

l_ma r equ 3 left margin of f ield
r_ma r equ 76 r ight ma r g i n
t_ma r equ 3 top ma r g i n
t op_r ow equ t_ma r + 3 row of top of br icks
r ows equ 5 number of rows of br icks

C/D
fid

3
'2-

T)"
•-1

o
OQ

fid

3

On

] 1 1 I { 1 1 1 13

I I I 1 I I I I I I

p r o g r am data

dseg segmen t

baI l_po8

0 Id_baI l_po8

direction

baI l_wa i t_coun t

speed

move_y_fIag

pIot_baI I_fIag
paddIe_po 8

br i ok8_number

h i t_key_fIag

:

; l ists of the

para

dw ?

dw

db

db

db

db

db

db

db

db

'DATA•

icolumn, row of bal l (low byte/high byte)
;la8t col , row at which bal l was plotted
;direction of bal l : 0=NW, 1=NE, 2=SW, 3=SE

»BALL delay before move (overf low counter)
;general game speed (127-255)
;flag to move bal l up/down not
;toggle for draw/erase bal l vs move bal l
;posi t ion of player's paddle
;number of br icks remaining on f ield
;0 = do HIT_KEY query before game

objects the bal l can hi t

CO

a'

7 On
O

(TQ
i-l
W

br icks db br ick_1 ,br ick_2,br ick_3,br ick_4 ; l ist for SCASB
v_obst db 179,218,191 ;vert ical objects
h_obst db 196,205,218,191 ,213,184 {hor izontal objects
f

) each str ing starts wi th row,column & ends wi th a zero

OJ
K)
OJ

header db l_mar + 1 ,1 ,'BaI Is remaining: '
bal ls db ?,39 dup(' •),'R E B O U N D',0
mvict db 27 , 2, 'CongratuI at ionsI You win!
mdefeat db 25 , 2,'Tr iumphI Nothing can stop

note

,0

me I '

BALLS var

CO
K)

mhi tkey db 31,16,'Hit Enter to Begin',0

each l ine is composed of fields of three bytes each:
+0: the number of times to repeat the character (CX)
+1: the attribute to use when printing the character
■•■2: the actual character to be printed (AL)

each string is terminated wi th a zero-byte

(BL)

ch r s_1
c h r s_2
t op_a 11
pad_ch r

pad_cIr
h i t_c I r
:

dseg

db 4 , a11_1 ,b r i ck_1 ,4,a 11_2,b r i ck_2 ,0
db 2,a 11_3,br i ck_3,4,a 11_4,b r i ck_4 ,2,
db 36,bal ls_r, ' ' ,36,break, ' ' ,0
db 1 ,paddle, ' ' ,1,paddIe , 2 1 3
db 6,paddle,205, 1,paddle, 184, 1 ,paddle,
db 79,paddIe, ' ' ,0
db r_mar-l_mar- 1,backgnd, ' ' ,0

ends

a 11_3,b r i ck_3,0

,0

Crt

"S.
fT

s seg

s seg

f

cseg

rebound

segment para stack
db 16 dupC'STACK
ends

'STACK'
') ; s t a c k

segment para 'CODE'
assume cs : cseg,ds:dseg,es:dseg
proc far

128 bytes deep

ss : sseg

push ds ;set up far RETurn

1 1)) ! 1 1 J 1 1

J 1 J)

CO
K3
Cn

mo V ax . 0

push ax

mo V ax , dseg 5 ini t ial ize DS,ES to DSEG

mov ds , ax

mov es , ax

f

init ial i ze :

mov aU3 t set CO 1 or/graphics to 80 col

mov ah,se tmode 1... and act ive page to zero

i n t video

mov cx , 0 clear screen to backgnd attr

mov dh ,24

mov d 1 , 79

mov a 1 , 0

mov bhtbackgnd

mov ah,so ro 1 up

i n t video

mov oh,20h ? disable cursor

mov ah,settype f by cal l ing set cursor type

i n t video f wi th CH = 20H

; d r aw top 1 ine of pi ay f ield area

mov dh,t_ma r f row (fourth row)

mov d1 ,1_ma r « column (f i fth column)

mov bh ,0 f page zero

cal l set_cursor ; set cursor pos i t i on

C/D

B
"2-

3
3

w
K)
ON

d r aw

d r aw_

mov a 1 ,218 ;right angle single l ine
mo V b1 ,f r ame ;get frame attr ibute

ca 1 1 wr i te_1_ac swr i te attr ibute/character

mov d1 ,l_ma r + 1 ;CO 1umn four

cal l se t_cu r so r

mov a 1 , 196 ; hor i z . single l ine

mov cx,r_ma r-l_ma r-1 ;wr i te 72 copies

cal l wr it e_ac

mov d 1 , r_ma r ; 1 as t column

cal l se t_cu r so r

mov a 1 ,191 ;r ight angle
ca 1 1 wr i t e_1_ac

sides of pi ay field out i i n e

mov dh r t_ma r + 1 5 f i f t h r ow

des :

mov d 1 , l_ma r :second column

ca 1 1 se t_cu r so r

mov a 1 , 179 ;vert ical l ine

ca 1 1 wr i t e_1_ac ;wr i t e one copy
mov d1 ,r_ma r ;jump to r ight-hand side
cal l se t_cu r so r

mov al ,179 ;another vert ical l ine

cal l wr i t e_1_ac ; ou t pu t i t

1 nc dh ; go to next row

cmp dh ,24 ; check i f on last row

c/^
p

3

rT

O
(JQ

3

1 1))] 1 1 j])

I l l I I I I I I

j b d r aw_3 ides

draw header

Ini t ial I z e

C b a I Is

BALLS,

; lf not, go repeat

remaIn i ng/REBOUND

BRICKS_NUMBER, SPEED, PLOT_BALL_FLAG

mov dI , l_ma r + 1

mov dh,1

mov si ,offset top_att

cal l pr lnt_f lelds

mov baI Is, '5 '

mov si ,offset header

cal l p r i n t_s t r i n g

mov br icks_number ,92

mov speed , 128

mov pIot_ba I I_f I ag,0

ini tial ize top row to correct
attr ibutes (held in T0P_2D

for header

ini t ial ize number of bal ls

;pr int the header

:92 br icks in 5 r ows o f

;paddle moves 2 x bal l
jbegin by drawing bal l

18/19

d r aw in the rows of br icks using di fferent block characters
data for the rows of br icks is stored in CHRS_1 and CHRS_2

once a f ield is read into CX,BL,AL the WRITE_AC rout ine

is cal led and we advance the cursor by CCX)

at the end of each l ine, we scrol l the

when 01 is zero, al l rows have been

characters

w i n dow and DEC DI

p r i n t e d

OJ
K)

mo V d i ,r ows

br ick s_r ow_loop:

mo V d h,t op_r ow-1

mov dI , l_ma r + 1

;DI holds 5

: d o al l

o n» • • -

work on seventh

f i fth column

r ow

c«

1
"S-
fT

o
OQ

OJ
KJ
00

mo V b h , 0

mov si ,offset chrs_1

test d 1 , 1

j n z b rI_1

mov si ,offset chrs_2

b rI_1: mo V c x,9

br l_2: cal l pr int_f ields

loop b r I_2

cal l scrol l_w i n d ow

dec d i

jnz bricks_row_Ioop

cmp hi t_key_f I ag , 0

j n z n ew_b a I I

mov h i t_key_f Iag,1

cal l hi t_key

n e w_b a I I

... and on screen zero

defaul t to CHRS_1 (f i rst row)

check i f even or odd row

i f odd, defaul t is correct

otherwise, use CHRS_2 Crow 2)

9 copies of each pattern

pr int pattern once

loop back and pr int i t again
scrol l window one l ine down

decrement rows-count

i f not zero, loop back

test for display message

no, so skip to NEW_BALL

yes, so set f lag

and wai t for go-ahead

here begins the game proper ;

we come here whenever we lose a ba

nb_1 :

d e c b a I I s

cmp baI Is,'0'

jae nb_1

jmp defeat_handIer

mov si ,offset header

cal l p r i n t_s t r i n g

mov dh , 24

;we're start ing one bal l now

;check i f any bal ls st i l l left

;0 or more bal ls wai t ing

;otherwise, player loses

;p r i n t bal ls/REBOUND

; (thus updat ing BALLS display)

;clear bottom row so we can

CA)
S

rT

75;
o
OQ

:i I ») I 1 :i) 1 3

I I } I t y 1 I 1

c I r

moV d i , 0

mov si ,offset pad.

cal l pr lnt_f lelds

mov paddIe_pos,35

mov ah.readt im

In t tImeday

mo V a X,d X

and ax.Offfh

mo V d I , 2 0

d i V d I

add ah, l_ma r + 1

test a h , 1

jz nb_2

add ah,r_mar- I_mar-21

n b_2: mov dI ,ah

mov dh,top_r0W+rows

mov baI l_pos,dx

mov di rect ion,2

cmp a h,3 9

j a ma In_loop

mov di rect ion,3

; start wi th paddle In center

; (blank to background attr lb.)

;cen t e r padd t e

;get t ime (as a random number)

;take low word and ...

;... put In AX for DIV op-code

;str lp high four bi ts

;get t ime MOD 20 In AH

ma r g I n

r ight margin

correct to left

hal f chance for

no, skip

yes, put at r ight margin

put In DL so we can store DX

bal l starts under bottom row

store col ,row In BALL_POS

assume bal l 's at r ight (go SW)
test ass ump t 1o n

yes, keep defaul t

no, reverse di rect ion (go SE)

beginning of main loop for one bal l-round

here we handle moving the paddle back and forth

w
ro

ma In_loop:

mov ah,shi ft check shi ft status of keyboard

CAl

'S-

75:
o
OQ
i-i

w
w
o

m I

do_d r aw:

i n t k e y b d

and a I , 3

jz do_draw

cmp a I ,3

je do_draw

cmp a I , 1

j e mI_1

moV a I ,- 1

add al .paddle_pos

cmp a I , I_ma r- 1

j I do_d r aw

cmp a I , r_ma r + 1-9

jg do_draw
mov paddIe_po3,a I

cal l d r aw_paddIe

mask off al l but shi ft keys

I f nei ther key pressed no move

both keys pressed?

yes, so don't move

1 = move one r ight

i f so, 1 = move r ight
2 = move one left

get new posi t ion in AL
test i f beyond left edge

i f so, no mo v eme n t

test i f at r ight edge

i f so, no movemen t

AL is val id, so put in PADDLE_POS

;redraw paddle every turn

handle the movement of the bal l

f i rst we wai t (wi th L00P3 for a delay (from SPEED)
to slow the game down so i t can be played

we also check BALL WAIT COUNT to see i f we move bal l

move_baI l_t es t:

mo V a I ,s p a e d

sub a I , 1 2 7

mov c I ,deIay_2

calculate loop from SPEED:

AX = 4000 - 10 * (AL - 127)

DELAY_2 is a constant (10)

e

o
(TQ

I D I 3 1 » 1 3

1 » > 1 I » }) I

mu I c I

neg ax

add ax,deIay_1

moV cx,ax

mb_1: loop mb_1

mov a I ,bal l_waI t_count

add a I ,speed

mov bal l_waI t_count ,ai

j c move_baI I

jmp check_keyboard

at min speed, delay 4000
at max, delay 2720

DELAY_1 Is a constant C4000)
set up for LOOP
17 machine cycles per loop

test for overf low

wi th BALL_WAIT_COUNT

;ove r f Iow, so move

here we f ind the bal l

loop back here unt i l

s next posi t ion Into DL,DH

no obstacles ahead of bal l

w
w

move_baI I :

mov dx,bal l_pos

mov al ,di rect ion

and a I , 1

s h I a I , 1

sub a I , 1

add d I , a I

mov al ,di rect ion

and a I , 2

sub a I , 1

Xo r mo V e_y_f I ag,1

j n z of f_c heck

mov a I , 0

DL = old column, DH = old row

get di rect ion byte

get hor izontal component

mul t iply by two

convert 0,1 to -1 ,+1

DL holds new column

di rect ion byte

get vert ical component

convert 0,2 to -1 ,+1

only move y every other

I f MOVE_Y_FLAG was zero

... else don't move y

turn

mo V e

(n
p

T1

w
w
K) check i f bal l Is off-screen C lost the bal l)

I f not, check spaces or br icks

off..check:

add d h , a I

cmp d h,2 4

j a of f_s c r een

mov bh , 0

cal l s e t_c u r s o r

mov ah.readchr

I n t video

cmp a I ,' '

j e n o_ob s t a cIe s

mov dl ,offset br icks

mov cx , 4

c I d

repne scasb

jne vert leal_obstacles

cal l r emoV e_b r ick

xor di rection,2

mov move_y_f Iag,0

jmp move_baI I

f inal Iy,

check I f

DH > 24,

set page

we adjust DH

off-screen

so bal l Is lost

zero

set cursor to next posi t ion

funct ion 8, read character

get character ahead of bal l
I f next spot Is emp t y ,

skip over obstacle checking

start at start of BRICKS

check four br icks

scan upwards through BRICKS

check for AL In BRICKS

I f CZF)=0, AL not In BRICKS

handle erasing the br ick

reverse y-dl rect lon

make bal l bounce next turn

go back and try to move I t

C/5
¥

13

O
TO

execute this code If the bal l has gone off the screen

off_screen:

mo V d X , o I d_b al l..p o s ; the bal l could be at old pos

t > t I ») I)

1 * i \) I I) I >

cal l eras e_b a I I

mov dx,bal l_pos

cal l eras e_b a I I

cal l d r aw_paddIe

mov ah.ttype

mov a I , 7

I n t video

jmp new_baI I

(so erase i t there)

or at new pos CBALL_POS)

(so erase i t there too)

in case we erased part of i t

set up for teletype output

beep when you miss

go do beep

loop back, check for no bal ls

the bal l has something in front of i t

i t's not a space or a br ick, so bounce off i t

OJ
w
w

vert ical_obstacles:

mov di ,offset v_obst

mo V c X , 3

repne scasb

jne hor izontal_obstac

xor di rect ion,!

hor izontal_obstacles:

mov di ,offset h_obst

mov cX , 6

repne scasb

je ho_1

jmp move_baI I

ho_1: xor di rect ion,2

j mp mo V e_b a I I

;check i f i t's a vert, obstacle

;corners & vert ical side bar

;scan table

es : i f not a vert ical obstacle

j i f i t is, f l ip hor iz component

scan hor izontal obstacles

corners, top bar , paddle

scan table

i f equal , then hor iz. obstacle

i f vert ical , skip ahead
otherwise, f l ip vert component
and skip ahead

c/i

s

T!

O
(TQ

w
w

go to no_obstacles i f only a space in front of the

here we al ternately draw/erase the bal l , and move

ba I I

i t wi thout

n o_o b s t a cIe 8:

xor plot_bal l_f lag, 1

inz no_8how

pIo t_b al l :

push d X

mo V d X,oId_b a I I_p o s

cal l eras e_b a I I

pop dx

cal l d r aw_b a I I

mov baI l_pos,dx

jmp check_keyboard
no_s how:

X c h g d X

mo V old

b a

.b a

I _p o s

I _p o s d X

come here on space

test for plot bal l /move bal l
i f NZ, then move, else plot

erase and re-plot the bal l

save new col ,row on stack

get old bal l 's posi t ion

and erase there

recover new posi t ion

and draw there

now save new posi t ion

and skip to keyboard check

don't plot bal l , just move i t
get POS = new pos, DX = old

store old pos in OLD_BALL_POS

check i f anything requested at keyboard

Esc restarts. Space pauses, Ctr l-Break terminates

check_keyboard:

mov ah,status

i n t keybd

j z check_w i n

mov ah,keyread

i n t keybd

cmp ah , 1

;check buffer status

;skip checks i f buffer empty

jotherwise get character

icheck for ESCape scan code

u

a>

75:

f-f

□I) \
t ») I I rj :i

I rj i I : 1 :)

jne sp_chk

mov h i t_key_f i ag,0
jmp ini tial ize

sp_chk : cmp a I ,' '

jne brk_ck

mov ah,keyread
i n t keybd

jmp check_wi n

b r k_ck : o r a I t ah

j ne check_wi n

abor t: mov a I ,3

mov ah,setmode

i n t video

ret

no, skip over Esc handler
restart wi th "Hi t Key" message

go back and start over
test ASCI I for space

not space, keep checking
get any key

and con t i nue on

test for AL=0,AH=0, Ctr l-Break

no, skip keyboard checking

yes: set 80 x 26 b/w ...

and drop out into DOS

CA)

3

fT

75:

check to see if we've won the game yet

check__w i n :

cmp br i cks_number,0
j z victor y_handIe r
jmp ma i n_loop

;check if no br icks left

sbrick subroutine BRICKS^NUMBER

; if BRICKS_NUMBER zero, victory
; otherwise, loop back ...

these two rout ines handle defeat and victory

victor y_handIe r:
mov si ,of f se t

S end_game:

mvict ;get victory message, fal l to.
;.. handle end of game

w
OS

cal l p r In t_s t r i ng
mov

ca I I

mov

ca I I

ca I I

cal l

jmp

def eat^handIer :

mov si ,of f se t

jmp end-game

dx,oId_ba I l_pos

erase.baI I

d X,b a I I _p o s

erase_baI I

d r aw_paddIe

h I t_key

Ini tial i ze

mde f ea t

:pr int whichever message
;erase the bal l at old posi t ion

;erase the bal l at new posi tion

then redraw the paddle
cal l "Hit Key" message

... and go play again

in case

get defeat

and go

message,

handle end of game

and that's i trebound endp

5

; this routine draws a paddle at PADDLE_POS
; (incidental ly erasing fragments to the sides)

CO
V)

(D

75;

d r aw_padd I e

mov

mov

mov

cal l

ret

draw_padd I e

;

; the fol lowing routines handle drawing and
; bal l 's position is taken from current DL

proc near

dh.24

dI ,p a d dIe_p o s
si.offset pad_chr
p r i n t_f i eId s

endp

ipaddle always on bottom l ine

;PADDLE_POS holds row position
:data for paddle printing
;print i t where requested
sand back to main routine

erasing

DH

the bal l

1 1 > t J 1 } 1 1 }

} I)

AX and BX are destroyed on output

baI l_routines proc near

d r aw_ba I I :

push dx
mov bh,0

cal l se t_cu r so r

mov a I ,9

mov bI .baI I a 11

cal l wri te_1_ac

pop dx
ret

eras e_b al l:

push dx

mov bh,0

cal l se t_cu r so r

mov a I , ' '

mov bl.backgnd
cal l write_1_ac

pop dx

ret

bal l_routines endp

note two sub.s in one proc.

draw bal I at BALL_POS

save DL,DH (col,row)

set page zero

set cursor to X, Y

print a circle ...

... wi th attribute BALLATT

cal l function 9, write att/chr

restore DL.DH

and back to main program

write space at BALL_POS
save OL.OH (col,row)

set page zero
sset the cursor

; bIank with space

;use background attr ibute
:wri te att/character

:restore DL,DH

:back to main program

<J3
U>

this routine erases the brick the bal l is touching

input: (DL,DH) is row,col wi thin the brick to be removed

output: brick erased, AX destroyed, SPEED set as necessary

w
OJ
00

remove_brick proc near

dec br Icks_number

push bx

push ex

push dx

;one less br ick

save used registers

mov bh,dh

sub dh,top_row

and dh,1

Shi dh,1

sub dI , l_ma r + 1

sub dI ,dh

and dI , 1 1 1 1 1 100b

add dI ,dh

mov cx,4

jns rb_1

mov dI ,0

mov cx,2

rb_1: add dl ,l_mar+1

mov dh,bh

cmp dI ,r_ma r-2

j b r b_2
mov cx,2

rb_2: mov bh,0

cal l se t_cu r so r

mov a I , ' '

mov bI ,backgnd

save actual br ick row

top row = 0

even row = 0, odd = 1

even 0, odd 2

left column = 0

adjust to even br ick

go to start of br ick

re-adjust to real br icks

assume a whole br ick

i f posi t ive a good value, else
i t's a left hal f-br ick

so assume only a hal f-br ick

re-adjust to real columns

and real rows

check for r ight hal f-br ick

no, so skip

only delete hal f a br ick

page zero

put cursor at start of br ick

blank br ick to a space ...

.. wi th BACKGND attr ibute

c/^

7!
&

1 I) I 1)

I U i]

cal l wr i t e_ac ;wr i te as many blanks as CCXD

sub dh , t op_r ow

mov 0 I ,6

sh I dh,0 I

not dh

cmp dh , speed

j b r b_3

mov speed r dh

get row number again
shi ft value (mul t, by 32)

get 32 ^ br ick number
DH = 266 - 32 * row

test current speed value

al ready faster

no, set a higher speed

CO
CO
vo

rb_3: pop dx

pop cx

pop bx

ret

remove_brick endp

scrol l the area wi thin

AX, BX, CX destroyed

scroI l_window proc near

push dx

mov a I , 1

mov ch,top_row-1

mov cI , l_ma r + 1

mov dh,23

mov dI ,r_mar- 1

mov bh , backgnd

restore al tered registers

;and back to program

the out l ine down one row

;save cursor row,column

;scrol l window one l ine

;top l ine = row 6

;don't scrol l left border

;scrol l al l the way to bottom

; don't scrol l r ight border

;clear to standard bakgnd

C/D
P

"2-

O

mo V

i n t

pop

ret

scroI i_w indow endp

ah , scroIdn

video

dx

; pr int the str ing at DS:8I

; al l strings are pr inted at

I

pr int_str ing proc near
push bx

I odsw

mov dx,ax

mov bh r 0

cal l s e t_cu r so r

p r i n t_l oop:

I odsb

cmp a I ,0

j z p r i n t_done

mov ah,ttype
i n t

jmp

p r i n t_done:

pop

ret

p r i n t_s t r i ng

video

p r i n t_l oop

bx

endp

{funct ion 7, scrol l window down

{restore cursor posi t ion

terminated wi th a zero-byte
the col ,row in thei r f i rst 2 bytes

{save al tered register

{get row,column in AL,AH

{Copy to cursor register
{page zero

{and put cursor there

get a message ASCI I byte
is i t the end f lag?
yes, so go POP/RET

no, so pr int i t

{and I oop back aga i n

{restore altered reg.
{and RET urn

1)])) } 1)]

1 ! 1 ' } I I !)

this rout ine pr ints the num,att,chr -f ield str ing pointed to
by DS:8I start ing at cursor posi t ion (DL,DH)
on return, AX and BX destroyed, DL updated

p r i n t_f

pf-1

elds proc near

push ox

push si

mov bh , 0

caI I set_cursor

I odsb

cmp a I ,0

jz pf^2
mov cI ,a I

mov ch,0

I odsb

mov b1 ,a I

I odsb

cal l wri te_ac

add dI ,cI

jmp pf«.1

P f—2: pop s i
pop cx

ret

p r i n t.f i eIds endp

save useful registers

use act ive page (page zero)

set cursor to DL,DH

get fi rst byte of f ield
if length=0, str ing ended
so jump to the RETurn

set CX = byte 1 (coun t)
set high byte = zero

get second byte of f ield
set BL = byte 2 (attr ibute)
set AL = byte 3 (character)
wr i te (CX) copies of (AL,BL)
move cursor over (CX) t imes

loop back for more data
restore useful registers

w
4^

this subrout i ne

then wai ts for

displays

a key to

the str ing

be struck

at MHITKEY

^ i
4^ •

h I t__key

hk_0

hk_1

h i t_key

p r oc

cal l

mo V

ca I I

mo V

i n t

cmp

j ne

mo V

mov

mov

ca I I

ret

endp

near

hk_l

si ,offset mhl tkey

p r In t_s t r i ng

ah,key read

keybd

ah ,28

hk_0

dx,word pt r mhI tkey

dI ,I_ma r + 1

si ,offset hi t_c I r

p r i n t_f i eIds

;cal l set-attr ib subrout ine

;pr int "Hi t Key" message

;read a key from keyboard

scan code of Enter

not, so go wai t some more

get col ,row of "Hi t Key"

set row to start of area

point at blanking field

and pr int i t

RET- to HIT_KEY or main program

the subrout ines wi thin this procedure al low the

use the video funct ions somewhat more easi ly,
simply by CALLing them, rather than specifying

program to

AH and INT

;

vide o_p rocs proc near

set_cursor:

push ax

mov

I n t

pop

ret

ah,se t pos
video

ax

; pu t

; no

cursor at

registers

DL ,DH

a I tared

c/^

fT

o

1 1 1) } 1) 1

I I I I I > } I I ! > I

wr i t e_1_a c:

mov cx , 1

wr i t e_ac:

mov ah.wr i teac

1 n t video

ret

V i deo_p rocs endp

t

cseg ends

end rebound

wr i te att/chr , only once

(repeat counter = 1J

wr i te att/chr (CX) t imes

w

to

(73
CD

ft

7a:

l-t
p

^ Program 16-2A. REBOUND Monochrome Modifications
4^

t

; other constants used In the program

t

b r i 0 k_1 equ 176 1 /4-f 1 1 1ed block

br io k_2 equ 177 1 /2-f 1 1 1e d block

br ie k_3 equ 178 3/4-f 1 1 1e d block

br io k_4 equ 2 1 9 f i l led block

f

at t_1 equ 1 5 a t t r 1 b u t e for b r 1c k_1: whi te

a t t_2 equ 7 for b r 1c k_2: l ight grey
a t t_3 equ 1 5 for b r 1c k_3: wh 1 t e

a t t_4 equ 7 for b r 1 c k_4: l ight grey
backgnd equ 7 f 0 r background: l ight grey
f r ame equ 1 5 for game f r ame: whi te
bal ls_r equ 7 for "Bal ls remaining": grey
break equ 1 5 for "REBOUND whi te

paddle equ 7 for paddle: l ight grey
b a 1 1 a t t equ 1 5 for bal l : whi te

Program 16-2B. REBOUND PCjr Modifications

delay_1 equ 2500

deIay_2 equ 6
;delay LOOP to slow game down
;mul tlply factor for diff.

CO

1
'E-

75:
o
CFQ

3
3

1 I I 1 > 1 I > 1

I I I I : » I I) I

Program 16-3. LIFE.ASM

L I FE

page ,96
.sai l

This program plays the game of l i fe
The user sets up the screen as he would l ike
then presses RETURN and the program goes
unti l he presses a key.

i t to start

w

U1

UP_scan

DOWN_scan

LEFT_scan

RIGHT_s ca n

SPACE_s can

RET_s can

:

cel l

space

no rmaI

;

video

DOS_f un c

equ

equ

equ

equ

equ

equ

equ

equ

equ

equ

equ

48H

50H

4BH

4DH

39H

1CH

15

1 OH

2 1H

: up

i down

; I ef t

: r i gh t

i space

; r e t u r n

icei i character (large star)
iblank character

inormal attr ibute

VIDEO I/O int number

: DOS function cal l

c«
P

3

fT

w
4:^
On

locate macro row,column

moV a h,2

dh , row

dI ,CO Iumn

bh , 0

video

mo V

mo V

mov

j n t

;3et cursor posit ion

endm

check macro coord,vaIue,offset

local no_change

cmp coord,value

je no_change
add coo r d,o f f se t

no_change :

ret

endm

;special macro for setup

!

output macro character,attrIbute

mov ah , 1 0

bh , 0

cx , 1

al ,character

video

mov

mov

mov

i n t

iput character on screen

e n dm

place macro matr ix,xpos,ypos,character
mov bx,ypos

;put char in matrix

'E-
rT

75;
O
OQ

3
3

I I I I) 1 I I I

I I I I I I I I I I

shI bx,1

mov bx,row_addr[bx]

mov s I , xpos

mov &matr I X[bx + si 1 ,character

e n dm

peek

clear

macro matr ix,xpos,ypos

mov bx,ypos

shI bx,1

mov bx,row_addrtbx]

mov s I ,xpos

mov a I ,&matrix[bx + si]

e n dm

ma c r o matr ix

mov cx , 2000

mov a I .space

lea di ,es:matr lx

rep stos matr ix

e n dm

look into matr ix

;clear matr ix

CO

s

' ON
o
TO

data

ma t r i X.

matr ix.

segmen t

db 2000 dup C?)

db 2000 dup C?)

w
populat ion dw?

generat ion dw ?

;numbe r of cel ls

;number of generat ions

'

00 row_byte

r ow_pos

COl_by t e

CO I_P0 3

equ this byte

dw ?

equ this byte

dw ?

;r ow counter

;CO Iumn counter

Iegal_keys

k ey_r ou t i ne s

tI tIe_me s

«

game

c r

author

date

k e y_me s
I n s_me s

g e n_me s

aga1n_mes

spaces

{Command keys
db UP_s ca n,DOWN_s can,LEFT_s ca n,RIGHT_s can

db SPACE_scan,RET_scan

{matching rout ines
dw do_up,do_down,do_left,do_r ight
dw era_ceI I , do_r et

{t i t le messages

dw game,cr,cr,author,cr,date,cr.cr,key_mes,OH

db 'The game of LIFE.$' {name of game
db 13,10,'$* {cr-l f

db 'Implemented by Marc SugiyamaS' {author
db 'September 12, 1984$' {date

'Press any key to cont inue:$'
'Press any key to create a cel l {'

db " erase wi th space{ start wi th return.$" { instructions
db 'Generat ion: '

db ' Popu I at ion:$ ' { info

db 'Play l ife again (y/n)? $' {play again?

db 79 dupC ' '),'$'

db

db

03
CO

3

?r

75;

•-t

3

1 I I I I I I I I

I I I I I J 1 I I 1

row_addr dw 0 ;table of 80s to f ind row address

i rp row,<1,2,3,4,5,6>

dw &row«80

e n dm

i rp row,<7,8,9,10,11 ,12>
dw &row*80

e n dm

i rp row,<13,14,15,16,17,18>

dw &row*80

endm ^
i rp row,<19,20,21,22,23,24> |
dw &row*80 "E.

endm

;offsets for 8 di rect ions

di rect ion dw -81,-80,-79,-1 , 1 ,79,80,81 3
data ends

f

stack segment stack ;set up the stack segment
db 1024 dup C?)

stack ends

*

code segment :our code segment

program proc far

assume es:data,ds:data,cs:code,ss:stack

push ds ;for FAR return
v£>

rt»

o
(na
•-»

w
U1
o

mov ax,0

push ax

mov ax,data

mo V d s,a X

mov es,ax

cal l do_t 1 t Ie

r unagaIn

done :

p r og r am

clear ma t r 1x_1

clear ma t r i x_2

mov populat lon.O

mov generation.1

cal l do_se tup

j c done

cal l play

cal l again

jc runagain

cal l c I s

ret

endp

:set up our data segs

;pr int the t i t le page

;put spaces in matr ices

zero populat ion

set generation to one

set up screen

i f CF=1 then leave program

play the scenar io

ask to play again

i f CF=1 then play again
clear screen

ireturn to DOS

Aga in asks if the

Otherwise, CF=0

Al l registers should

player wants to play again,

be considered destroyed.

i f so, OF set

again proc near

"E-

o
CTQ
"-t

] I I .1 1 } I 1 :3

I I I I I I I I I

locate 0,39 ;put cursor top l ine

mov dx,offset agaln_mes ;set DS:DX to message

cal l print

c h e c k_k e y_a gain:

cal l p r e s s_k e y

and a I ,ODFH

cmp a I ,'Y'

je playagain

cmp a I ,'N'

jne check_key_aga1n

no t_agaIn:

c I c

ret

playagain:

s t c

ret

again endp

;pr int message

;get key press

;AND out lower case bi t

;pI ay again

;don't play again

:CF=0 means return to DOS

;CF=1 means play again

CAI

'H-

eg

; Ti t le clears the screen and pr ints the name of the program
; Consider al l registers destroyed.

w
Ul

do_t i t ie proc near

cal l cis ;clear screen

locate 1 ,0 :set cursor to pr int message
mov si ,offset t i t le_mes ;pr int messages one by one

p r i n t_t i tIe:

mov dx,Csi] ;set DS:DX to message

w
U1

cmp dx,0

j e wa i t_f o r_k e y

add s i , 2

cal l print

jmp p rIn t_t 1 tIe

«

waI t_for_key:

cal l p r e 8 8_k e y

r e t

do_t 1 tIe endp

; if message offset Is zero, then done

spoint to next message

;pr lnt message

;get next message to pr int

iwai t for key press

sreturn to cal ler

Set up the cel ls on the screen using user input.
Consider al l registers destroyed.

do_setup proc near

cal l c I s

locate 0,0

mov dx,offset ins_mes

cal l pr int

?

mov r ow_po s, 12

mov COl_pos,39

;clear screen

;home cursor

;pr int instruct ions

sput cursor at center screen

posers: locate row_byte,col_byte ;set to center of screen
mov ah,0 ;get a key stroke

int 16H

cmp ax,0 ;program interrupted

CAI

fD

:?c^
o
QTQ

1 I □ J 1 1 1 1

1 1) 1 :i :) I ,1 .]

w
yi
OJ

jne check_key8

s t c

ret

;return wi th error

check_key8:

mov bx , 0

check I cop :

cmp ah,Iegal_key8[bx]

je do_key

I nc bx

cmp byte ptr Iegal_key8[bx),0
jne check I cop

cal l 8 e t_c eI I

jmp po8 c r 8

jcheck for which key

s if legal key, execute rout ine

s laet poseible key?

;po88ible al ternat ive

do_key: eh I bx,1

cal l key_rout inee[bx1
jmp poecre

2X for word table

cal l routine

do the next key

do_up: check row_po8,1,-1

do_down: check row_po8,24,1

do_left: check col_po8,0,-1

do_right: check col_p08,79,1

sprocess up

; down

! I e f t

; r i gh t

;pu t new cel l down

8et_cel l : peek matr ix_2,col_po8,row_po8 ;check i f cel l there
cmp a I ,ceI I

j e noee t

CA)

"2-
rT

75;
eg

w
oi
4:^

output cel l ,normal ; lf new cel l , put on screen

place matrix_2,CO I_po3,row_pos,ceI I ;add to matrix

nose t :

I nc

ret

popu I a t i on

era_cel l : peek matr1x_2,col_pos

cmp a I , space

j e noe r a

output space,norma I

;se t popu I a t Ion

;return to process next key
;remove cel l from matr ix

row_pos jcheck i f cel l there

noe r a :

do_r e t

do_8e tup

;put space in spot
place matrix_2,CO I_pos,row_pos,space ;clear matr ix spot
dec population ;reduce populat ion
ret jreturn to process next key
pop ax ;pop up one level

cic {Cont inue wi th main program
ret {return to main level

endp

Play, does the actual game, pr int ing the
top of the screen, as wel l as the number

Consider al l registers destroyed.

generat ion at the

of cel ls l iving.

play proc near

locate 0,0

mov dx,offset spaces
cal l pr int

locate 0,0

mov dx,offset gen_mes

{Clear the fi rst r ow

{pr int counters at top

CA)

3
'S-
rT

75:
o
OQ

1 1) 1 □ □ 1 1 n

1 I I L) I I 1 I I J

cal l pr int

t

c I d

«

pIay_loop:

mov ah , 1

I n t 16H

j z con t

s t oppI ay:

ret

con t :

cal l p r i n t_da t a

cmp populat lon.O

je stopplay

;pr int Info messages

;work up (str ing ops}

;pressing key interrupts play

; if key pressed, stop

;pr int gen and pop

; i f no l iving cel ls, exi t game

mov c X,2000

lea si ,ds:matr i x_2

lea d i ,es:ma t r i x_1

rep movs matr ix_1,matr ix_2

:move matr ix two to one

OJ
yi
<ji

I oop 1

I oop2

clear ma t r i x_2

mov r ow_p o s,1

mov COl_pos,1

iCiear matr ix two

istart wi th r ow one

;and column one

peek matr ix_1,COl_pos,row_pos

(y:
W

3
'S-
rT

75;
o
QTQ

w
U1

ON

cal l I 0 0 k_a round

cmp a I ,ce I I

j ne noceI I

cmp cI ,2

j e survive

cmp cI ,3

j e survive

locate row_byte,col

output space,normal

place matr ix_2,COl_

dec popu I a t I on

jmp next

_

;look around

;check for cel l (peek op)
; j ump i f no cel l

;cel ls survives i f surrounded by
; two or three other cel ls

byte ;set cursor pos

;kl l l on screen

pos,row_pos,space ;kl l l In matr ix

:reduce populat ion by one

survive:

place ma t r I x_2 , co I.

j mp next

f

noceI I: cmp cI ,3

j n e next

Inc popuI a t I on

locate row_byte,col

output cel l .normal

place matrIx_2,COl_

.po s , r ow_po s , c e I I ;put In matrix

iglve bi rth of new cel l

;new cel l born

_byte ;set cursor pos

;make I t bright

.po s , r ow_po s , c e I I ;put In matrix

en

3

75;
o

(TO
-I

3

next: Inc col_pos

cmp col_pos,79

j n b s k I p 1

; do next column

: done al l?

icondl tlonal jump too far

I I I) :i n » I D

ll I I I I U .I I I J

Imp 1 oop2

s k i P 1 : i n c r ow_p 0 s

cmp r ow_pos,2 3

j nb sk i p2

jmp 1 oop 1

sk i p2 : i n c generat ion

jmp p1ay_loop

P lay endp

;do next row

; done al l?

{Short jump problem again

{have f inished next generat ion
{do again

look around checks to see how many cel ls are around a space
only BX.CX.DI .SI are used

w
Ul

look_around proc near

mov bx,r ow_pos

sh I bx , 1

mov bx,row_addr[bx)

add bx,col_pos

add bx,offset matr ix

mov d i ,14

mov cI , 8

I00k_lOOP:

mov si .direct iontdi]

cmp byte ptr [bxltsi

j e Iook_n e x t

dec c i

Iook_nex t:

sub d i , 2

{f ind r ow

{get address from table of 80s

add column to i t

add offset into data seg

set Dl to last di r offset

set CL to al l cel ls

{get di rection offset
l .cel l {see i f cel l

{ i f not cel l , reduce CL by one

{get next di rect ion offset

CO

I
a>

75;

CO
cn
cx

j n s 1ook_loop ; don e t hem al l?

ret ;return to cal ler

look_around endp

5

; pr int data outputs the populat ion and the generat ion
; consider al l registers lost.

«

pr int_data proc near

locate 0,11 ; pos i t ion for generat ion

mov ax,general ion ; pas s generat ion to DECIMAL

cal l dec i mal_ou t

locate 0,30 ; pos i t ion for populat ion
mov ax,populat ion ; p a s 3 populat ion to DECIMAL

cal l dec i mal_ou t

r e t ! r e t u r n to cal ler

p r i n t_da t a e ndp

s

; Output a hex word in decimal

! AX, DX, BP destroyed

«

decout proc near

;constant3 for binary to ASCI I conv
tens dw 1 ,10,100,1000,10000

leading_zero db 0 ;leading zero f lag

3
"2-
fT

o
QTQ
-I
SO

3

dec i mal_ou t:

mov Iead i ng_ze r o,1 ;set leading zero f lag

I 1 I I) I 1 ~1

I) I I I J I 1 □

mov bp,8

decou t 1
mov

d i V

add

push

d X , 0
t en s[bp]
a I , • 0 '

dx

cmp a I , '0'
j n e sen d_c ha r
cmp b p,0
j e sen d_c h a r
cmp Ie a d i n g_z e r o, 1
j e send_space

char:
leading zero.O

c h r o u t

n e X t_dIg1 t

OJ
oi
so

send

mov

cal l

jmp
sen d_s pace:

mov

cal l
n e X t_dIgI t :

pop

sub

j n s
ret

e n d pdecou t

a I , ■ '
c h r o u t

a X

bp . 2
decou t 1

;set BP to end of ten table

prepare to divide
divide by power of ten
convert to ASCI I
store r ema i n d e r

is byte a zero?
no, so pr int i t
is is the last character?
yes, so pr int i t
is i t a Iead i ng zero?
yes, so don ' t pr int i t

: p r i n t i t

pad wi th spaces

get r ema inder back
point to next lower ten
i f st i l l in table, do again

CO

"2^

o
OQ

w ch rou t
ON

ch r ou t

proc near

mov ah, 1 4

i n t video

r e t

endp

;funct ion cal l to output

;pr lnt character

routines proc near ;mlsc routines

; Print message pointed to by DS:DX

print: push ax

mov ah , 9

i n t DOS_f unc

pop ex

ret

I

{ wai t for key to be pressed

!save AX

;set funct ion cal l nine

;pr int the message
:restore AX

OD
P

3

o
OQ
i-t

P

3

p r e s s_key:

mov ah,OCH

mov a I , 7

i n t DOS_f unc

ret

;function OCH (clear buffer}

;set to no echo, wait for key

! e X e c u t e

clear the screen

c I s : mov ah,0

mov a I ,2

:set 80x25 (clears page)

1) 1) 3 13 I 1 3

I \] I I I I J □

i n t

mo V

mov

i n t

ret

video

ah , 5
a I , 0
video

{Select page zero

{return to cal ler

routines endp
code ends

end

OJ
ON

"S-

75;
o

(TQ
•-I

n

n

n

n

APPENDIX A

The 8088 Instruction
Set

We will discuss two aspects of the 8088 instruction set here.
First we will present a table of the execution times for each
instruction to execute, then a table of what flags each instruc
tion sets when it executes.

Execution Time

If you are trying to write a time-efficient program, it can be
very helpful to know how long each instruction takes to exe
cute. The time is given in clock cycles. The microprocessor
paces itself with clock pulses at a rate of 4.77 million per sec
ond (or 4.77 megahertz, 4.77 MHz). However, on some
computers, such as the PCjr, the computer's RAM is shared
with the video controller, so it takes extra clock cycles to read
the program from memory, thus slowing everything down.

There are a few strange notations in Table A-2. Every
time the 8088 reads data from memory, it takes an additional
quantity of time depending on the addressing mode. This extra
time is called EA, for Effective Address, and adds the number
of clock cycles to memory addressing, as shown in Table A-1.

Notice that it takes longer to use [BP] with [SI] or [Dl]
than it does to use [BX]. Also, you must add yet another two
clock cycles if your operand takes a segment override.

On the 8088, words often take a different length of time
to handle than bytes. This is shown below by putting the time
for a word in parentheses after the time for a byte. Notice also
that for string commands, the time to execute once is followed
by the time to execute using the REP prefix. Additionally, no
tice that when rotating or shifting a value by CL, it takes four
cycles per bit (as shown in the table).

For example, if you program

MOV AX, CS:TABLE [BP]

you must first find the time to move memory into a register.
Table A-2 gives the time for MOV register, memory as
8(12)-I-EA. Since AX is a word register, we take the 12-cycle

363

Appendix A

value. The addressing mode is base with displacement, so the
Effective Address calculation time is 9 clock cycles. To this we
add 2 clock cycles for the segment override, to get 12 + 9 + 2,
or 23 clock cycles in all.

Table A-1. Effective Address Calculation Time

Addressing Mode Operands Clock Cy,
displacement addressing label 6

base/index addressing [BX] 5

[BP]
[DI]
[SI]

base/index with displacement [BX] + disp 9

[BP]+disp
[DI]+disp
[SI] + disp

base and index [BX][SI] 7

[BX][DI]
[BP][SI] 8

[BP][DI]
base, index, displacement [BX][SI]+disp 11

[BX][DI]+disp
[BP][SI]+disp 12

[BP][DI] + disp

Table A-2. Execution Time for 8088 Instructions

Instruction Clock Cycles

AAA 4

AAD 63

AAM 80

AAS 4

ADC, ADD accumulator,data 4

register,data 4

register,register 3

register,memory 9(13)+EA
memory,data 17(25)+EA
memory,register 16(24)+EA

CALL near 23

far 36

indirect register near 24
indirect memory near 29+EA
indirect memory far 57 + EA

CBW 2

n

n

f -

n

364 n

Appendix A

Instruction

CLC

CLD

CLI

CMC

CMP

CMPS

CWD

DAA

DAS

DEC

DIV

BSC

HLT

IDIV

IMUL

IN

INC

INT

INT

INTO

IRET

JCXZ
Jcond
JMP

LAHF

LDS

LEA

EES

LOCK

LODS

accumulator,data
register,data
register,register
register,memory
memory,data
memory,register

register
memory

register
memory

number,register
number,memory

register
memory

register
memory

accumulator,port
accumulator,DX
register
memory

number

3

short label

short label

direct

indirect register near
indirect memory near
indirect memory far

register,dword memory
register,word memory
register,dword memory

Clock Cycles

2

2

2

2

4

4

3

9(13)+EA
10(14)+EA
9(13)+EA
22(30) / 9 + 22(30) per rep
5

4

4

3(2)
15(23)+EA
80 to 90 (144 to 162)
86 to 96 (154 to 172)+EA
2

8(12)+EA
2

101 to 112 (165 to 184)
107 to 118 (175 to 194)+EA
80 to 98 (128 to 154)
86 to 104 (138 to 164)+EA
10(14)
8(12)
3(2)
15(23)+EA
51

52

53 or 4

32

18 or 6

16 or 4

15

11

18+EA

24+EA

4

24+EA

2+EA

24+EA

2

12(16) / 9 + 13(16) per rep

365

Appendix A

Instruction Clock Cycles

LOOP short 17 or 5

LOOPZ short 18 or 6

LOOPNZ short 19 or 5

MOV accumulator,memory 10(14)
memory,accumuIator 10(14)
register,data 4

register,register 2

register,memory 8(12)+EA
memory,data 10(14)+EA
memory,register 9(13)+EA
segment,word register 2

segment,word memory 12+EA

word register,segment 2

word memory,segment 13 + EA

MOVS 18(26) / 9 + 17(25) per rep
MUL register 70 to 77 (118 to 133)

memory 76 to 83 (128 to 143)+EA
NEC register 3

memory 16(24)+EA
NOP 3

NOT register 3

memory 16(24)+EA
OR accumulator,data 4

register,data 4

register,register 3

register,memory 9(13)+EA
memory,data 17(25)+EA
memory,register 16(24)+EA

OUT port,accumulator 10(14)
DX,accumulator 8(12)

POP register 12

segment 12

memory 25+EA

POPE 12

PUSH register 12

segment 12

memory 24 + EA

PUSHF 14

RCL, RCR register, 12
register,CL 8 + 4 per bit
memory,! 15(23)+EA
memory, CL 20(28)+EA + 4 per bit

REP 2

REPE 2

REPNE 2

366

^ -I

n

n
9 *

Appendix A

RET

ROL, ROR

SAHF

SAL, SAR

SBB, SUB

SCAS

SHL, SHR

SIC

SID

STI

STOS

SUB

TEST

WAIT

XCHG

XLAT

XOR

(near)
(far)
pop (near)
pop (far)

register,CL
memory,!
memory,CL

register,CL
memory,!
memory,CL

register,data
register,register
register,memory
memory,data
memory,register

register,CL
memory,!
memory,CL

accumulator,data
register,data
register,register
register,memory
memory,data

AX,register
register,memory
register,register

accumulator,data
register,data
register,register
register,memory
memory,data
memory,register

20

32

24

3!

register,! 2
8 + 4 per bit
!5(23)+EA
20(28)+EA + 4 per bit
4

register,! 2
8 + 4 per bit
!5(23)+EA
20(28)+EA + 4 per bit
accumulator,data 4
4

3

9(!3)+EA
!7(25)+EA
!6(24)+EA
!5(!9)/9+!5(!9) per rep
register,! 2
8 + 4 per bit
!5(23)+EA
20(28)+EA + 4 per bit
2

2

2

!!(!5) /9+!0(!4) per rep
(see SBB)
4

5

3

9(!3)+EA
!!+EA

3 + wait period
3

!7(25)+EA
4

!!

4

4

3

9(!3)+EA
!7(25)+EA
!6(24)+EA

367

Appendix A

Opcodes and Flags
As a rule, most instructions either set all of the arithmetic
flags, or else don't set any of them. The following instructions
set all the arithmetic flags:

ADD, ADC, SUB, SBB, NEC, CMP, CMPS, SCAB

All of the flags are set in accordance with the result of the op
eration (remember, the comparisons—CMP, CMPS, and
SCAB—are really subtractions). For a discussion of how the
flags are set, see the discussion of conditional jumps in Chap
ter 5.

Some instructions don't set any of the flags. Basically
these instructions fall into two categories: move instructions
and jump instructions. Neither of these alters any flags.

Move instructions:

MOV, LEA, LODS, BIOS, MOVS, PUSH, POP, IN, OUT,
XCHG, XLAT, LDS, LES

Jump instructions:
JMP, jump-on-condition, LOOP, CALL, RET

There are also a handful of other opcodes that are very
specialized and don't have any effect on the flags:

CBW, CWD, ESC, HLT, LAKE, PUSHF, LOCK, NOP, NOT,
REP, WAIT

Take special note of CBW, CWD, and NOT, since these
instructions might well be expected to set flags, but in fact do
not.

Several instructions affect the flags in a self-apparent
fashion. The CLC, STC, and CMC instructions, for example,
clearly affect only the carry flag; likewise for CLI and STI, and
CLD and STD.

The following table lists other opcodes that affect the flags
in different ways. The asterisk (*) means that the flag is
changed purposefully by the instruction, the question mark (?)
means the flag is randomly changed, and the dash (-) means
not changed. Where there's a zero (0), the instruction always
clears the flag.

ZF = zero flag, result is 0
SF = sign flag, result is negative (high bit is 1)
CF = carry flag, unsigned result too large
OF = overflow flag, signed result too large

368

Appendix A

AF = auxiliary carry flag
PF = parity flag
DF = direction flag, clear = increment string pointer
IF = interrupt flag, enable external interrupts
TF = trap flag, enable interrupt 1 after each instruction

Bit-Positions of Flags in Flags Register
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

- - - - OF DF IF TF SF ZF - AF - PF -

0

CF

Table A'3. Flag Setting

Instruction

ADC, ADD, CMP, CMPS, NEC,
SBB, SCAS, SUB

CALL, CBW, CWD, ESC, HLT, IN,
JMP, jump-on-condition, LAHF
LDS, LEA, LES, LOCK, LCDS,
LOOP, LOOPE, LOOPNE,
MOV, MOVS, NOP, NOT,
OUT, POP, PUSH, PUSHF,
REP, REPE, REPNE, RET,
STOS, WAIT, XCHG, XLAT

DEC and INC

AND, OR, XOR, TEST
SHR, SHL, SAL, SAR
ROL, ROR, RCL, RCR
DIV and IDIV

MUL and IMUL t
AAA and AAS

AAD and AAM

DAA and DAS

INT and INTO t
IRET

POPE

SAHF

CLC, STC, CMC, STD, CLD,
STI, CLI

ZF SF CF OF AF PF DF IF TF

* ♦ _ * ♦ *
_ _ _

* 0 0 7 *
- - -

* * * * 7 *
_ _ _

_ « *

7 7 7 7 7 7 _ _ _

7 7 « * 7 7 _ — _

7 7 * ? * 7 _ _ _

* ♦ ? ? 7 _ _ _

* * * ? * *
- - -

0 0

restores all nine flags from stack
restores all nine flags from stack
restores ZF, SF, CF, AF, PF from AH

affects one flag, as appropriate

t The MUL instruction sets CF and OF if the result of the multiplication is larger than
a byte (for byte multiplication) or a word (for word multiplication).

t INT and INTO clear the trap and interrupt flags so that interrupts won't interrupt
each other. However, the IRET instruction at the end of the interrupt routine restores
IF and TF.

369

APPENDIX B

Addressing Modes
and Possible Register

Arrangements
¥ ̂

f ̂

Addressing Mode Name

Direct mode

Possible Arrangements

(label)
displacement
[BX]
[BP]
[SI]
[Dl]
[BX+m]
[BP+n]
[Sl+tJ]
[Dl+«]
[BX+Sl]
[BX+Dl]
[BP+ 81]
[BP+Dl]

Based Indexed mode with Displacement [BX+Sl + n]
[BX+Dl + n]
[BP+Sl + n]
[BP+Dl+n]

where n represents a signed 8- or 16-bit displacement.

Register Indirect mode

Based mode

Indexed mode

Based Indexed mode

Table of Registersr n.egisters

The 8088 has 14 word-sized registers. There are four general-
purpose accumulators, four index registers, four segment reg
isters, one program counter, and one status register. The four
general-purpose accumulators are named as follows:

Primary accumulator : AX
Base register
Counter

Data register

BX

CX

DX

n

) <

370 n

Appendix B

Each of these word-sized accumulators can be referred to

as two separate byte-sized accumulators:

AX = AH,AL
BX = BH,BL
CX = CH,CL
DX = DH,DL

BX is the only general-purpose register that can be used in
register indirect addressing. The AX:DX pair is frequently used
to store double words. CX, the counter, is used to hold the
number of iterations for the LOOP command, the number of
times to repeat a string command. CL is also used to hold the
number of times to perform a shift or rotate command.

The four word-sized index registers are as follows:

Stack Pointer

Base Pointer

Source Index

Destination Index

SP

BP

SI

D1

The four segment registers are as follows:

Code Segment : CS
Data Segment : DS
Stack Segment : SS
Extra Segment : ES

The instruction pointer (IP) and the status registers are the
remaining two registers. The IP points to the current instruc
tion in the machine language program. It is an offset value
from the CS register.

The status register can be broken down into the following
bits:

IM,
bit use bit use

OOH carry flag 08H interrupt
OIH parity flag 09H flag

mm 02H unused OAH direction

03H auxiliary carry flag OBH overflow

04H unused OCH unused

05H zero flag OOH unused
4 06H sign flag OEH unused

07H trap mode (single-step) OFH unused

flag unused

371

APPENDIX C

MASM Pseudo-ops

Brief Descriptions of MASM Pseudo-ops
Pseudo-ops marked with a star (*) can't be used with ASM.

use value of constant, not name
force assembler to recognize next word as parameter
turn on Cross REFerence output at this point
list complete macro/repeat expansions
set default base to decimal number following .RADIX
suppress all output of macro/repeat expansions
only output code-producing lines of macros/repeat
blocks

comment line: the assembler ignores everything
following
macro comment, never expanded into the list fUe
dynamic assignment pseudo-op for constants
which segment registers are pointing at which
segments
define a byte value
define a double word value (four bytes)
define a quad word value (eight bytes)
define a ten-byte value for packed decimal format
duplicate the operand the specified number of times
define a word (two bytes)
precedes a block of code to be executed if an IF is
false

marks the end of the source file; can specify start
marks the end of a conditional block of statements
marks the end of a macro (don't precede with macro
name)
marks the end of a procedure (preceded with PROC
name)
marks the end of a segment (preceded with SEG
MENT name)
equate a symbol to a value, a symbol, an alias, or text
abort a macro early
assemble following statements if operand <> 0
assemble following statements if assembler on pass 1
assemble following statements if assembler on pass 2
assemble following statements if operand is blank
assemble following statements if operand is defined

*%
*&

.CREF

.LALL

.RADIX

.SALE

.XALL

//

ASSUME

DB

DO

*DQ
*DT

DUP

DW

ELSE

END

ENDIF

*ENDM

ENDP

ENDS

EQU
♦EXITM
IF
IFl
IF2

*IFB
♦IFDEF

372 n

Appendix C

IFDIF assemble following statements if operand 1 <>
operand 2

IFE assemble following statements if operand = 0
IFIDN assemble following statements if operand 1 =

operand 2
*IFNB assemble following statements if operand is not blank
*IFNDEF assemble following statements if operand is not

defined

INCLUDE include the "filename.ext" file in the assembly process
*IRP repeat loop once for each parameter specified
*IRPC repeat loop once for each character in specified string
LABEL define the symbol preceding LABEL as the type

following it
LENGTH return the length in units (bytes, words, etc.) of the

operand
*LOCAL macro operator to make assembler rename operand

labels

*MACRO define a macro with specified name and operands
OFFSET return the offset of the symbol from the start of its

segment
PAGE define the length and width of a page, or force a new

page

PROC begin a procedure with the specified name and type
PTR override the type of the expression with the specified

type
*REPT repeat the specified block of codes "operand" times
SEG return the segment address of the specified segment
SEGMENT define the start of a segment with the specified name
SHORT make the jump statement assume a forward jump is

short

SIZE return the size in bytes of a DUPlicated entry
SUBTTL specify a new subtitle for the list file
THIS used with EQU to define a symbol with specified type
TITLE specify the title of the list file
TYPE return the type (that is, length in bytes) of the

operand

373

APPENDIX D

Binary Information

Hex Binary Decimal

Number Number XCOO 0X00 00X0 ooox

0 0000 0 0 0 0

1 0001 4096 256 16 1

2 0010 8192 512 32 2

3 0011 12288 768 48 3
4 0100 16384 1024 64 4

5 0101 20480 1280 80 5

6 0110 24576 1536 96 6

7 0111 28672 1792 112 7

8 1000 32768 2048 128 8
9 1001 36864 2304 144 9

A 1010 40960 2560 160 10
B 1011 45056 2816 176 11

C 1100 49152 3072 192 12

D 1101 53248 3328 208 13

E 1110 57344 3584 224 14

F 1111 61440 3840 240 15

X is the hex digit

374

r

n

APPENDIX E

ASCII Values

Hex ASCII Character Hex ASCII a

0 000 (null) 20 032 (si
!1 001 Q ■ 21 033

2 002 22 034 "

3 003 V 23 035 #

4 004 ♦ 24 036 $
5 005 * 25 037 %
6 006 # 26 038 &

7 007 (beep) 27 039 '

8 008 B 28 040 (
9 009 (tab) 29 041)
A 010 (linefeed) 2A 042 *

B Oil (home) 2B 043 +

C 012 (form feed) 2C 044 /

D 013 (carriage return) 2D 045 -

E 014 2E 046

F 015 ■ft 2F 047 /
10 016 ► 30 048 0
11 017 A 31 049 1
12 018 \ 32 050 2
13 019 !! 33 051 3
14 020 <r 34 052 4
15 021 § 35 053 5
16 022 36 054 6
17 023 r 37 055 7
18 024 38 056 8
19 025 39 057 9
lA 026 f 3A 058
IB 027 i 3B 059 /

IC 028 (cursor right) 3C 060 <

ID 029 (cursor left) 3D 061 =

IE 030 (cursor up) 3E 062 >

IF 031 (cursor down) 3F 063 7

375

Appendix E

Hex ASCII Character Hex ASCII Character

40 064 @ 60 096

41 065 A 61 097 a

42 066 B 62 098 b

43 067 C 63 099 c

44 068 D 64 100 d

45 069 E 65 101 e

46 070 F 66 102 f

47 071 G 67 103 g
48 072 H 68 104 h

49 073 I 69 105 i

4A 074 J 6A 106 j
4B 075 K 6B 107 k

4C 076 L 6C 108 1

4D 077 M 6D 109 m

4E 078 N 6E 110 n

4F 079 O 6F 111 o

50 080 P 70 112 P
51 081 Q 71 113 q
52 082 R 72 114 r

53 083 •s 73 115 s

54 084 T 74 116 t

55 085 U 75 117 u

56 086 V 76 118 V

57 087 W 77 119 w

58 088 X 78 120 X

59 089 Y 79 121 y
5A 090 Z 7A 122 z

5B 091 [7B 123 {
1

15C 092 \ 7C 124

5D 093] 7D 125 }
5E 094 A 7E 126

5F 095 7F 127 O

376 n

Appendix E

Hex ASCII Character Hex ASCII Character

80 128 c AO 160 a

81 129 ii A1 161 r

82 130 e A2 162 6

83 131 a A3 163 u

84 132 a A4 164 n

85 133 a A5 165 N

86 134 a A6 166 a

87 135 C A7 167 o

88 136 e A8 168 2.

89 137 e A9 169 1—

8A 138 e AA 170 —1

8B 139 i AB 171 %

8C 140 1 AC 172 %
8D 141 i AD 173 1

8E 142 A AE 174

8F 143 A AF 175 »

90 . 144 E BO 176

91 145 SB B1 177 m

92 146 /£ B2 178 mt

93 147 o B3 179 1

94 148 o B4 180 H

95 149 6 B5 181 H

96 150 u B6 182 dl

97 151 u B7 183 —n

98 152 y B8 184 =1

99 153 6 B9 185 =11

9A 154 u BA 186 II
9B 155 4 BB 187 =il

9C 156 £ BC 188

9D 157 ¥ BD 189

9E 158 Pt BE 190

9F 159 f BE 191 —1

377

Appendix E

Hex ASCII Character Hex ASCII Character

CO 192 L EO 224 a

C1 193 _L El 225 a
C2 194 -r E2 226 r

C3 195 1- E3 227 TT

C4 196 - E4 228 I

C5 197 + E5 229 cr

C6 198 E6 230

C7 199 Ih E7 231 T

CS 200 Ik E8 232 0

C9 201 F E9 233 -e-

CA 202 JL EA 234 n

CB 203 EB 235 6

CC 204 Ih EC 236 00

CD 205 = ED 237 0

CE 206 JL
ir EE 238 f

CF 207 EF 239 n
DO 208 Ji- FO 240

D1 209 =T= F1 241 ±

D2 210 -n- F2 242 >

D3 211 IJ_ F3 243 <

D4 212 F4 244 r

D5 213 F F5 245 j

D6 214 rr F6 246

D7 215 + F7 247

D8 216 + F8 248 0

D9 217 _i F9 249 •

DA 218 r FA 250

DB 219 ■ FB 251

DC 220 FC 252 n

DD 221 1 FD 253 2

DE 222 1 FE 254 ■

DF 223 — FF 255 (blank)

378

APPENDIX F

Linking Pascal to
Machine Language

If you are a Pascal programmer, you may often wish that you
could write part of your program in Pascal and another part in
machine language. IBM's implementation of Pascal is very
powerful and quite complete; however, it lacks some desirable
machine-specific commands, especially where the screen is in
volved. For example, there is no way to clear the screen or do
graphics in Pascal. In this appendix, you will learn how to
combine Pascal and machine language programs.

The LINK Program
Up to now, you have used the "L1NK.EXE" program to con
vert .OBJ files into .EXE files. The abilities of the LINK pro
gram go far beyond this. It can also join different object
modules (your .OBJ files) together into a large program. The
.OBJ files can come from any source, from the assembler, the
Pascal compiler, even the FORTRAN compiler; the LINK pro
gram doesn't care where the object files come from. In this
appendix, we will use the LINK program to combine Pascal
and machine language programs.

The Rules of Pascal
There are a number of rules that must be followed to combine

machine language with Pascal. You must follow these rules to
the letter when you write your machine language routines if
you hope to make Pascal and machine language work together
in harmony. The rules pertain to parameter passing and af
fected registers (if you haven't already done so, we suggest
that you read through Chapter 6 before continuing).

To begin with, Pascal treats all machine language object
modules as procedures or functions. When you write your Pas
cal program, you must use the EXTERN command to tell the
Pascal compiler that the procedure or function will be added to
the program when it is linked. Let's consider a simple proce
dure which we will call a machine language routine:

PROCEDURE SAMPLE(VAR PARAM:INTEGER); EXTERN;

379

Appendix F

Notice how the EXTERN command is used. The name of the

example procedure is sample. Sample takes one value, an
integer.

When your Pascal program uses this procedure, the value
of the parameter must be passed to the routine SAMPLE. This
is done via the stack in what is referred to as a FRAME. Pascal
uses the BP register as a Frame Pointer to access data in the
frame. The frame constructed when SAMPLE is used takes the
following format:

Address of the parameter (relative to DS)
RET address (to return to the caller)

The RET at the end of the routine must remove any param
eters put onto the stack by the calling program. The routine
can modify any of the registers except BP and DS. In other
words, it is free to change AX, BX, CX, DX, SI, DI, and ES; but
BP and DS must be preserved.

When a function is used, the rules are a little different.
For example, consider the following function declaration:

FUNCTION TEST(VAR PARAM:INTEGER):WORD; EXTERN;

The function's name is TEST. As with SAMPLE, our ex
ample procedure, TEST takes one value. TEST, however, must
also return a word to the calling program. This word must be
stored in AX on return from the function.

The rules for returning values from a function can be
summarized as follows:

• If the function returns a 16-bit quantity (an INTEGER,
WORD, or ADR value), the number must be in AX when on
return from the subroutine.

• If the function returns a two-word quantity (a four-byte
INTEGER or an ADS value), the number must be stored in
the register pair AX:DX, where AX holds the less significant
word.

However, returning other values is more complicated:
• If the function returns anything else (a four-byte REAL, an
eight-byte REAL, an ARRAY, a RECORD, a SET, or a pointer
to a SUPER ARRAY type), then the value/values are ex
pected in a temporary variable set up by the calling routine.
The address of the temporary variable is the last value
pushed onto the stack before the function is called.* On re
turn from the function, AX must point to the temporary
variable.

380

Appendix F

This rule slightly changes the format of the frame. Now there
is another word pushed onto the stack before the function is
called. The frame now looks like

Address of the parameter (relative to DS)
Address of temporary variable (relative to DS)
RET address (to return to the caller)

Note that the RET at the end of functions must still remove all
of the parameters pushed onto the stack by the calling routine.
Remember that, as with functions, only BP and DS need to be
preserved.

In general, unlike routines written to be used by BASIC,
there are no restrictions on the amount of stack space you
can use.

Writing the Machine Language Routine
Now that you have Pascal's rules at hand, we can examine the
general structure of a machine language procedure and func
tion. The segment declarations are slightly different when you
are writing machine language programs to be linked with Pas
cal. If your object module needs a data segment, you must de
fine it like this. The segment MUST be named DATA.
DATA SEGMENT PUBLIC 'DATA'

[put any needed data here]
DATA ENDS

DGROUP GROUP DATA

When the Pascal program calls your routine, the DS register
will already be pointing at this data segment, so there is no
need to change DS. You define the code segment as you al
ways have:

segment name SEGMENT

The PROCedure declaration is also the same:

proc name PROG FAR

— But you must add the command
^ ̂ PUBLIC proc name

after the procedure declaration. The name of the procedure
here must be the same as the name of the function or proce-
dure you declare in your Pascal program (see the example pro
grams at the end of this appendix).

381

Appendix F

Your ASSUME statement must also be a little different. It

should look something like
ASSUME DS:DGROUP,SS:DGROUP,CS:segmeHf name

Note that DGROUP is used as the name of the DS and SS

segments, not DATA.
Now you must write your machine language routine. The

first two instructions are generally
PUSH BP

PUSH DS

Remember that BP and DS must be preserved by the routine;
all other registers can be changed as required.

Generally, the next step is to access the parameters that
are stored on the stack. The simplest method is to use BP as
an offset register into the stack. For procedures, the last
parameter pushed onto the stack will be at SP + 8 (after you
push BP and DS onto the stack). If there is more than one
parameter passed, they will be stored on the stack at SP + 10,
SP + 12, etc. Remember that the calling program passes the
addresses (relative to DS) of the data, not the data itself. For
our example procedure SAMPLE, the beginning of the code
might look something like

PUSH BP

PUSH DS

MOV BP,SP
MOV BX,[BP+8]
MOV AX,[BX]

AX now holds the parameter passed by the calling program.
At the end of this example procedure, we must remember to
POP BP and DS from the stack, and we must use the RET 2
command. This will remove the one parameter passed by the
calling program.

Functions are slightly different. If the function returns a
byte, word, or double-word value, that value must be stored in
AL, AX, or the AX;DX pair on return from the subroutine.
Remember that for more complex data structures, the last
parameter passed by the calling program is the address of a
temporary variable set up to hold the value(s) returned by the
function. On return, AX must hold the address of the tem
porary variable. The beginning of the code for our sample
function, TEST, might look something like

382

Appendix F

PUSH BP

PUSH DS

MOV BP,SP
MOV DI,[BP+8] ;get the address of the return variable
MOV BX,[BP+10] ;get the passed parameter
MOV AX,[BX]

As with procedures, remember to POP BP and DS from the
stack before returning to the calling program. Also, remember
that you must remove any passed parameters before returning;
this means that the function TEST must end with the RET 4

command.

In general, machine language subroutines written to be
linked to Pascal will take the following format:
;Comment Header

DATA SEGMENT PUBLIC TJATA'

[put any needed data/variables here]
DATA ENDS

DGROUP GROUP DATA

cseg SEGMENT
program PROG FAR

PUBLIC program
ASSUME DSrDGROUP, SS:DGROUP, CS:cseg
PUSH BP

PUSH DS

MOV BP,SP
[access the passed parameters and perform the
procedure/function]
[For functions only: set AL/AX/AX:DX to value to
return to calling program, or set AX to address of
temporary variable (for procedures, AX and DX can
hold any value)]
POP DS

POP BP

RETn

You can substitute your own segment and program names for
cseg and program. The value of n for the RET n command de
pends on two things: whether you are writing a procedure or a
function, and how many parameters are passed to the machine
language routine. Generally, n will be

(number of parameters passed) * 2

383

Appendix F

for procedures, and

(number of parameters passed) *2 + 2

for functions.

n
An Example Procedure
There are two sample routines included here. The first is a
procedure that changes the screen attribute of the entire
screen. Notice that this sample procedure requires some vari
ables, so the data segment is used. Also notice that the name
of the procedure defined in the machine language program is
SCREEN (Program F-1). This is the name we must use when
we declare the procedure in Pascal. Notice that we use the
code

MOV BP,SP
MOV SI,[BP+8]
MOV AL,[SI]
MOV ATTRIB,AL

to get the value of the passed parameter (a byte in this case)
into the machine language variable ATTRIB. The rest of the
machine routine is fairly easy to understand, and it is well-
commented.

Now turn to the Pascal program called "USESCRN.PAS"
(Program F-2). The line
PROCEDURE SAMPLE(VAR PARAM:BYTE); EXTERN;

declares the procedure for the Pascal compiler. The name of
the variable (the PARAM) is arbitrary; we could have used
anything. The name of the procedure, however, must be the
same as the name of the procedure you declare in your ma
chine language program. The rest of the Pascal program is
straightforward. It inputs a value from the keyboard, and uses
this value as the parameter for the machine language program.
If you enter 255 for the attribute, that attribute will fill the
screen, and the program will be terminated.

Now that you understand how these programs work, en
ter and run the Pascal compiler on the Pascal program, and
the assembler on the machine language program. Do not link
either program. Now that you have the two object files, run
the LINK program. We must now tell LINK the names of the
object modules we want to link together. r

From the Object Modules [.OBJ]; prompt, enter:

384 P.

Appendix F

USESCRN+SCREEN

LINK will automatically add the .OBJ extensions to the
filenames. Enter the desired names for the .EXE, .MAP, and
.LIB files as always. LINK will now join the Pascal object
module (with its associated routines from the Pascal library
file) with the machine language routine SCREEN. If all goes
well, you should have a working version of USESCRN.

An Example Function
The second example program for this appendix is a function
which gives you easy access to the BIOS video input/output
interrupt (lOH). The name of the function is V1DE0_10. It
passes a record which holds the values to be used in the AX,
BX, CX, and DX registers. The function returns an identical
record which holds the values of the registers returned by the
BIOS function which was called.

For ease of use, the record was defined as the byte reg
isters (using AH, AL, BH, BL, etc., not AX, BX, etc.). The ma
chine language routine VIDEOIO accepts a record defined this
way, and returns a record like that. Thus, video functions
which return parameters can also be used. Notice how the
routine places the contents in the temporary variable. This
variable is addressed with D1 (of course, you can use any base
or index register). There are some example procedures and
functions using VIDEOIO in the sample Pascal program
"VIDEO.PAS."

You link the object module for the program
VIDEO—IO.ASM and VIDEO.PAS just as you linked the ex
ample procedure. Answer the link program's first question
with VIDEO + VIDE0_10. When the linking is complete, exe
cute the "VlDEO.EXE" program.

It is important to keep two things in mind when you link
files. First, there is no limit to the number of object files you
can link together. Second, when linking a Pascal file to ma
chine language routines, the Pascal file must be the first one
named.

This appendix has explained only one method of joining
Pascal with machine language. This is one of the simplest. The
manual from Pascal Version 2.00 has a complete discussion of
this process (See Chapter 11, "Interface of Pascal with Assem
bler and FORTRAN," in the Pascal Compiler, Fundamentals
book).

385

I Program F-1. SCREEN.ASM
SCREEN.ASM

sample procedure

stack set up as:

offset descr iption
8 -- address of attr ibute

4 -- far return address

2 -- saved BP

0 -- saved DS

data

a t t r i b

ma x_coI

CO Iumn

r ow

dpage

0 I d_r ow

0 I d_co I

data

dg r oup

3 e gme n t,

db ?

?

?

?

9

?

9

dw

db

db

db

db

db

p u b I i c

ends

group

• DATA•

;new attr ibute

;number of columns on screen

scolumn we are changing

;row we are changing

;which display page to use

;where the cursor was when we

>
T)
T!
CO

3
Q.

R-

31

started

data

c s e g s e gme n t

screen proc far

ass ume c s : c s e g

publ ic screen

ds:dgroup,ss:dgroup

) 1 1 I n 3 I 1 I

I I I I > I 1 1 J

push bp

push ds

1 1

00

mo V a h , 1 5 ;how many columns on screen?

i n t lOh

mo V a 1 , a h ;make number of columns a word

c bw

mo V max_co1 ,ax ;8tore number of columns

mo V dpage , bh

mo V ah , 3 ;get row/col and page

mo V bh , dpage

i n t lOh

mo V 01d_r ow,d h :save current cursor pos

mo V 01d_co1 ,d1

mo V bp , sp jget the new attr ibute

mo V s i , [bp-i-8]

mo V a 1 , [s i]

mo V a 11 r i b , a 1 ;store In attrib

mo V r ow, 0 ;zero row counter

mo V c X , 2 4 ;numb e r of r ows

push C X

mo V cx,max_co1 ;n umb e r of column s

mo V CO 1umn,0 :2ero column counter

>
n

m

3
Cu

R-
Ti

U) 12-
oo ' ̂ •
00

push

mo V

mo V

mo V

mo V

i n t

mo V

i n t

mo V

mo V

mo V

i n t

pop

i n c

loop

cx

ah , 2

dh,r ow

dI ,CO Iumn

bh , dpage

lOh

a h , 8

lOh

ah , 9

cx , 1

b I , a 11 r i b

1 Oh

c X

CO Iumn

I 2

pop cx

i nc row

loop M

mov ah,2

mov dh,oId_r ow

mov dI ,oId_coI

mov bh,dpage

I n t 1 Oh

;set cursor posi t ion

j r ow/CO I

; page

:read character at cursor

;wr i te new char and attr ib

;only one character

;new attr ibute

jdo next column

:do next row

{restore cursor pos

>
T3
■O
ft
3
Cu
R-
31

pop ds

1 1 1 ;i 1 TJ 13 1 j □

I I ! I I > I I I J

pop bp

ret 2

screen endp

c 3 e g ends

end

Program F-2. USESCRN.PAS

program usescrn(input , output) ;

procedure screenCvar attribibyte); extern;

va r n umbe r:by t e :

begin

repeat

wr I teC'Input a new attr ibute:');
r eadIn(n umbe r)

screenCn umb e r)

unt i l n umb e r = 2 5 5

for number := 1 to 25 do wr i tein

end.

>
T!
T!
IT)

3
a-

S-

U)
00

VO

g Program F'3. VIDEO_IO.ASM
VIDEO.ASM

accesses VIDEO I/O interrupt

page ,96

the FRAME wi l l be set up as fol lows:

offset descr ipt ion

10 -- Address of argument record
8 -- Address of return record

4 -- Address for FAR return to cal ler

2 -- Saved BP

0 -- Saved DS

The record must be def ined in Pascal as:

TYPE Registers = RECORD

AL,

AH,

BL,

BH,

CL,

OH,

DL ,

DH:ByTE;

END ;

>
TJ
n
n>

P
D-

1] j] }] j I 1)

I 1 1 1 I J I I I

c s e g s e gme n t

vide o_ io proc far

publ ic V i deo_i o

ass ume c s:c s e g

push bp

push d s

mo V bp , sp ;set up BP to address stack

mo V s1 ,[bp+10] ;record passed to rout ine

mo V d1 ,[bp+8] jrecord rout ine passes back

mo V a X , [s 1] ;get the passed r eg ii s t e r s

mo V bx,[s1+2]

mo V c X , t s 1 + 4 1

mo V dx,[s1+6]

1 n t 1 OH !cal l the inter r u p t f u n c t ion

mo V [d1],ax ;store register s to pass back

mo V [d i +2] , bx

mo V [d 1 + 4 1 , c X

mo V [d1+6] , dx

mo V ax , d 1 ;give AX address of t emp V a r

>

T!
0)

3
O-

U)

VO

pop d s

pop bp

ret 4

vldeo_lo er\dp
cseg ends

end

j return to cal ler

g Program F^4-VIDEO.PAS
p r og r am v j deo^t estC input,output);

type

register = record
a I ,

ah ,

bl ,

bh ,

c I ,

oh ,

d I , ;g
dh : by t e; g

end; Sr
R
Tl

va r

par ame ters:reglster;
r ow,CO Iumn:by t e;

function video_io Cvar input:register): register; extern;

procedure set_mode (mode:byte);

begin

par ame ters.ah := 0;

parameters.a I := mode;

parameters := video_io(parameters)

end ;

]) 1 1 1 1 1 1 1 1

1 I 1 1]

procedure pos^cursor (page, column, row:byte);

begin

par ame t e r s.ah

par ame t e r s.bh

parameters.dh

par ame t e r s.dI

par ame t e r s : =

end ;

= 2;

= page?

= r ow;

= column;

vldeo_io (parameters)

funct ion cursor_row (page:byte):byte;
begin

par ame ters.ah 3;

parameters.bh page;
parameters := video_io (parameters);
cursor_row := parameters.dh

end ;

funct ion cur so r_coIumn (page:byte):byte;
begin

par ame ters.ah 3;

parameters.bh := page;

parameters := video_io (parameters);

cursor_coIumn := parameters.dI
end ;

procedure wr i te_dot (xpos,ypos:word; coloribyte);

v£> begin
Oj

par ame ters.ah := 12;

OJ
vO parameters.a I := color;

parameters.dI := ypos mod 256

parameter8.dh := ypos div 256
parameter8.cI := xpos mod 256

parameters.oh := xpos div 256

parameters := vldeo_io (parameters)
end ;

f u n c t ion r ead_do t (xpos,ypos:word):byte
begin

pa r ame ters.ah := 13;

parameters.dI := ypos mod 256
parameters.dh := ypos div 256
parameters.cI := xpos mod 256
parameters.oh := xpos div 256
par ame t e r s

r ead_dot

end ;

= video_io (parameters)
= par ame t e r s.a I

>

n
n>

P
Ou

begin

se t_mode(2);

pos_cu r sor(0,10,20);

wr i teIn('ThIs is at column

row := cursor_row(0);

column := cursor_coIumn(0);

wr i teln('The current cursor

end.

10. and l ine 20')

posi t ion is r ow: 1 CO Iumn:1)

] 1] 1 j]]]] 1

GLOSSARY

Glossary
Absolute addressing: In absolute addressing, the desired

memory location is loaded directly into the appropriate
addressing register. It is not a displacement value, but a
true position in memory.

Addressing mode: A method of obtaining an effective
address.

Assembler: A program which converts your assembly source
code into machine executable object code.

Assembly time: When something happens at assembly time,
it happens while the program is being assembled. Certain
calculations are performed only during assembly and not
while the program is executed.

Auxiliary carry flag: This flag indicates a carry out of the
third bit into the fourth. It is provided on the 8088
primarily for compatibility with the 8080 microprocessor.

Backspace key: On the PC keyboard, the Backspace key is the
gray key above the Enter key. On it is an arrow pointing
to the left. Do not confuse this key with the Delete key.

Based addressing: Addressing in which the offset is the sum
of a base register (BX or BP) and a displacement stored
with the instruction. This is nearly identical to indexed
addressing and is similar to register indirect addressing.

Based indexed addressing: Addressing in which the offset is
the sum of a base register (BX or BP) and an index reg
ister (SI or DI). This is similar to based indexed address
ing with displacement.

Based indexed addressing with displacement: Addressing in
which the offset is the sum of a base register (BX or BP),
an index register (51 or Dl), and a displacement stored
with the instruction. This is similar to based indexed

addressing.
Base register: Either BX (base register) or BP (Base Pointer

register).
BASIC: Beginner's All-purpose Symbolic Instruction Code.

This is probably the most used computer language in the
personal computer field. BASIC was designed as a simple
language which people could use to learn to program. It
is generally an interpreted language, although there are
many BASIC compilers available for the IBM PC.

395

Glossary

Batch files: These files are executed by the DOS command
program. DOS reads the file and executes the commands
in it as if they were typed from the keyboard. Batch files
make using the computer easier since one instruction is
sued to DOS can mean a long chain of commands.

Binary: The system of base 2 numbering. It is the numbering
system used internally by all digital computers.

Binary Coded Decimal (BCD): Refers to a method of storing
numbers in which four bits are used to hold one decimal

digit. See Chapter 8 for a complete explanation.
BIOS: Basic Input Output System. BIOS handles the simpler

tasks of running the computer, such as printing to the
screen and reading the keyboard. This is the lowest level
at which you can access the computer without actually
managing the hardware yourself.

Bit: Binary Digit. This is the smallest representable piece of
information available on a digital computer. A bit can exist
in one of two possible states (hold a 1 or a 0 value).

Buffer: A First In, First Out, or FIFO, storage system. Buffers
are frequently used during data transmission, particularly
when one of the devices is slower than the other. The

buffer holds the data which is about to be sent or was

just received. DOS uses buffers to hold data coming from
the disk drive.

Byte: A chain of eight bits, representing a binary number to
the computer. It is a standard unit of information, large
enough to hold the numbers 0 to 255 (unsigned). A single
typewritten character can be contained in a byte. The
terms characters and bytes are often used interchangeably
when referring to memory or disk storage size.

Carry flag: Used to indicate a carry out of the highest bit after
addition or a borrow into the highest bit after subtraction.
If the flag is set, there was a carry or borrow; otherwise,
the flag is clear.

Central Processing Unit (CPU): Often referred to as the brain
of the computer. The CPU is the part of the computer
which runs all of the programs. The CPU in the IBM PC
is an 8088, designed hy Intel. There is another CPU in
the keyboard, and probably one in your printer as well.

Clear: When a flag is clear, it has the value of 0.
Clock cycle: The microprocessor paces itself with clock pulses

at a rate of 4.77 MHz. One pulse is the same as one clock
cycle.

396

Glossary

Color Graphics Adapter: This printed circuit board gives IBM
PCs and compatibles the ability to drive an RGB or
composite monitor. This card supports color and graphics.
The PCjr has a built-in display driver which is compatible
with the PC's Color Graphics Adapter.

Compatibility: The ability of one kind of computer to execute
programs intended for another. There are many IBM PC
compatibles which claim the ability to run most, if not all,
of the software intended for IBM Personal Computers.

Compiler: A program which translates a high-level computer
language source file into a machine language object file.
Compiled languages include Pascal, FORTRAN, and
COBOL.

Default: The assumed value, or state which exists if you do
not make any changes.

Delete key: On the PC's keyboard, the Delete key is on the
bottom row of the keyboard. It has a decimal point on it.
Do not confuse this with the Backspace key.

Device driver: A program which DOS loads to handle (drive)
some special peripheral (or device) installed in your com
puter. DOS calls this program whenever a program re
quests the device. The DOS 2.00 manual gives an
example of a device driver which creates a RAM disk (a
floppy disk emulated in RAM). The RAM disk is only one
example of a device driver.

Direct addressing: Addressing in which only a displacement,
stored with the instruction, is used as the offset to locate
the data.

Direction flag: This flag indicates whether string operations
should be performed up in memory or down in memory
(whether the pointer registers should be incremented or
decremented).

Displacement: A byte or word which is stored with an
instruction. It can act as an address or is added to the

contents of other registers to find the address of data. A
displacement can represent a positive or negative number.

Documentation: The material which accompanies a program.
It tells you what the program does and how it should be
run. The term documentation also refers to notes within

the program source code. There has been a push in recent
years for program self-documentation. Essentially, this
means that the labels and symbols used in the program

397

Glossary

should have clear and significant names. A well-
documented program should be clear enough so that any
person familiar with the language can read and under
stand the source code. This applies to all languages, not
just machine language.

DOS: The Disk Operating System, a set of programs which
allow the computer to communicate with the disk drives.
DOS has many features and subroutines available to the
machine language programmer through the DOS function
call.

DOS-compatible files: Files which have no special control
codes (such as those added by many word processors for
formatting purposes) and are terminated by a Ctrl-Z.
Only DOS-compatible files (often called pure ASCII files)
can be assembled using the IBM Macro Assembler.

Editors: Programs which allow you to manipulate program
source files. They are often thought of as simple word
processors.

Effective address: The effective address is the calculated

memory location of a piece of data. It has two compo
nents, a segment, and an offset.

Extension: Refers to the three letters which appear after the
filename. For example, in the filename SAMPLE.EXP,
EXP is the extension.

Far: Refers to certain kinds of JMPs and CALLs. Far JMPs or
CALLs are inter segment.

Flags: These are bits within the status register of the
microprocessor which indicate the result of an operation.

Floating-point numbers: These are numbers which have deci
mal points and a fractional portion.

General register: Any register in the 8088 except a segment
register (CS, DS, ES, or SS) or the flags. It generally refers
to a word register, but not always.

Hexadecimal: The preferred number system for machine lan
guage. It refers to a base 16 system. It is convenient be
cause each hexadecimal digit corresponds to four binary
digits.

High-level computer languages: COBOL, FORTRAN and
Pascal, BASIC, Logo, and APL are all examples of high-
level languages. They are separate from the machine in
which they operate. The user of a high-level computer
language writes programs with wordlike instructions such

398

Glossary

as PRINT or GOTO. These high-level instructions must
then be interpreted or compiled into machine language
instructions which the microprocessor can execute di
rectly. High-level languages are often defined by national
or international organizations.

Immediate value: A value which is stored with the machine

language instruction.
Indexed addressing: Addressing in which the offset is the

sum of an index register (SI or Dl) and a displacement
stored with the instruction. It is nearly identical to based
addressing and is similar to register indirect addressing.

Indexing: Refers to the use of a subscript variable in an array.
Index register: Refers to either 51 (Source Index register) or Dl

(Destination Index register).
Indirect addressing: In indirect addressing, the location of the

data is stored in memory, not with the instruction itself.
Interpreter: An interpreter is a program which translates high-

level source code into machine code for the microproc
essor. For example, BASIC interprets as it executes a
BASIC program.

Interrupt: A way of stopping the microprocessor so that it can
check for some event (such as a keypress) in the system.

Interrupt enable flag: When this flag is set, the micro
processor accepts all software- and hardware-generated
interrupts. If this flag is clear, all hardware-generated
interrupts, except the NMl (Non-Maskable Interrupt), are
ignored. Software-generated interrupts (those called with
the INT command) are always processed.

Inter segment: Between two segments; this refers to a jump or
call to a label in a different code segment. Jumps or calls
of this kind load new values into the IP and CS registers.

Intra segment: Within a segment; this refers to a jump or call
to a label within the same code segment. Jumps or calls
of this kind change only the IP register. The CS is not
changed.

Labels: Used to identify locations within a program for jumps
or calls.

LIFO: The storage method used by a stack. It stands for Last
In, First Out. See Stack for more details.

Long: Another term for FAR or Inter segment.
Loop: A structure for repeating a set of commands. In BASIC,

a loop is often performed with the FOR-NEXT commands.

399

Glossary

Machine language: The native (binary) language of the com
puter; the instructions which the microprocessor can exe
cute directly.

Macro: A shorthand way of referring to a larger piece of code.
Main loop: See Main routine.
Main routine: The uppermost level in a program. It is the part

of the program which calls other subroutines.
Microprocessor: See Central Processing Unit.
ML: An abbreviation for machine language.
Mnemonic: A symbol used to help the programmer remember

something. For example, DIV is the three-letter mnemonic
for the machine language divide instruction.

Modems: Devices which allow two computers to communicate
with one another over a phone line. There are many
modems on the market. Some plug directly into the IBM
PC (using up one of the expansion slots), while others
plug into an RS-232 serial port. IBM offers an internal
modem for the PCjr.

Monochrome Screen Adapter: This printed circuit board can
be installed in an IBM PC or hardware-compatible com
puter. It drives the IBM monochrome display. It does not
support graphics, but has the ability to display normal,
flashing, underlined, and high-intensity text. The adapter
board includes a parallel printer interface. This product
cannot be used in the PCjr.

Near: Refers to intra segment jumping or calling.
Nybble: Half a byte. In other words, a nybble is one hexa

decimal digit, or a chain of four bits. It can represent the
numbers from 0 to 15.

Object code: The program which the LINK program will con
vert into an executable file. It's basically the machine lan
guage version of your source file.

Octal: Similar to hexadecimal, except that octal is base 8
numbering. There are three bits per digit rather than four.

Operand: The part of the instruction which is operated upon.
In the example ADD AX,3, the operands are AX and 3.

Operation: The instruction itself. In the instruction DIV BL,
DIV is the operation.

Overflow flag: This flag is set when an addition or subtrac
tion unintentionally changes the sign of the result. This is
often the case when two large positive numbers are
added together. This flag is also used to indicate the size

400

Glossary

of a product after multiplication. If the flag is set, then
both the lower and upper halves of the product are rele
vant. The flag is clear if the upper half is only a sign
extension of the number.

Parameter passing: Refers to transferring values from a calling
program to a routine (or vice versa).

Parameters: The values that are passed between a calling pro
gram and a routine.

Parity flag: The parity flag (PF) is set to one if the result of an
operation has an even number of 1 bits in the lower byte;
otherwise, this flag is cleared. The parity flag's primary
use is in communications software.

Pascal: A highly structured and standardized language, created
by N. Wirth and named in honor of Pascal, a French
mathematician.

Pass 1 and 2: The assembler assembles your source file in two
passes, once to locate all of the variables, and again to
produce the actual code.

Path names: Refers to the names of the subdirectories where a
file can be found. Since you can have subdirectories
within subdirectories, DOS needs some way of finding
files. A path name describes to DOS how to find the file
by naming the different directories it must trace through
to find the directory with the file in it.

Program Segment Prefix: This is set up by DOS each time a
file is loaded and executed. It contains information DOS

needs to run the program.
Pseudo-operations: Commands in the source code which are

interpreted by the assembler, but don't actually produce
any machine language instructions.

Real numbers: See Floating-point numbers.
Recursive routines: Routines which call themselves.
Register indirect addressing: Addressing in which the offset

is the quantity stored in a base register (BX or BP) or an
index register (SI or DI).

Registers: Special locations within the microprocessor which
can hold word-sized data. There are a number of special
registers which are used to address the program, data,
and the stack. See also General register.

Relative addressing: In relative addressing the location of the
address is not stored directly, but a displacement value
(added to some register) is used.

401

Glossary

Runtime: Refers to the execution of the program. If something
happens during runtime, it happens while the program is
executing.

Segment registers: Used to define memory segments, these
are CS (code segment), DS (data segment), ES (extra seg
ment), and SS (stack segment).

Segments: 64K blocks of RAM pointed to by one of the seg
ment registers.

Set: When a flag is set, it has the value of 1.
Short: A SHORT JMP uses one byte as an offset for IP. Short

JMPs are limited to 127 bytes forward and 128 bytes
backward. All conditional jumps and LOOP commands
use short jumps.

Sign bit: The highest bit of a number. For an eight-bit num
ber, it is the bit with the value of 128. It is also used to
indicate the sign of a binary number; if the highest bit is
1, the number is negative; otherwise, the number is
positive.

Sign extended: A number which has been expanded or ex
tended into a higher byte or word. If the number is neg
ative the extension is all binary I's. If the number is
positive, the extension is 0.

Sign flag: This flag indicates the resulting sign of the last op
eration. It reflects the status of the sign bit of the result. If
this flag is set, the last result was negative. If this flag is
clear, the last result was positive.

Source code: The file that you type into the computer. It is the
human-readable form of your program. The process of
assembly converts this into actual machine language
instructions.

Stack: The stack is a Last In, First Out (LIFO) storage system.
Values are PUSHed onto the stack, and POPped off
when needed again. The stack is used to store return ad
dresses during subroutine calls, and can be used by the
programmer to temporarily store registers or pass param
eters to subroutines.

Stack-oriented computer: Computers of this type use a stack
much like the 8088 uses its registers. The stack is used to
hold and manipulate data. The Forth computer language
and all HP calculators are stack-oriented.

402

Glossary

Subroutine levels: Refers to how many times subroutines call
other subroutines. In other words, if a program calls a
subroutine, which in turn calls another routine, which in
turn calls another, you are three levels down in
subroutines.

Subroutines: Called with the GOSUB command in BASIC.
They are similar to PROCedures and FUNCtions in Pas
cal. In machine language, subroutines are activated with
the CALL command.

Symbols: A generic term for labels and variables.
Trap flag: When this flag is set, the microprocessor enters its

trap or single-stepping mode. An INT 1 is automatically
performed after every instruction (with the exception of
instructions which affect the segment registers). DEBUG
uses this mode of the microprocessor to perform the
TRACE operation.

Word processors: Programs which let you enter, edit, and
print text.

Words: A word is a 16-bit number (there are two bytes per
word). In some circumstances, however, word can refer to
any number larger than a byte.

Zero flag: This flag is set when the result of an operation is 0.
It is used to indicate equality after a CMP command. This
flag is sometimes confusing because it is set (has a value
of 1) when the result is 0, and is clear (has a value of 0)
when the result is nonzero.

^ 403

jp^

n

n

n

n

n

n

Index

AAA (ASCII Adjust for Addition) instruc
tion 129-31

AAD (ASCII Adjust for Division) instruc
tion 132-33

AAM (ASCII Adjust for Multiplication)
instruction 131-32

AAS (ASCII Adjust for Subtraction)
instruction 131

absolute addressing 395
absolute disk read interrupt (INT 25H)
231

absolute disk write interrupt (INT 26H)
231

active page display, selecting 199-200
ADC (ADd with Carry) instruction
123-24

ADD Instruction 49-51, 67, 69, 123-24,
129, 133

addition 8-9

address for program interrupt (INT 22H)
231

addressing 11-12, 36
addressing modes 103-19, 395

based indexed mode with displacement
107-9

based mode 105-7

direct mode 103-5

indexed mode 105-7

register indirect mode 22-23, 104
table 116, 273

AH register 15, 197-219, 231-36
ampersand (&) macro special operator
281-82

AND instruction 135-37, 144, 265

arithmetic 48-62, 123-45

arithmetic operators 264-68
ASCII 127-33, 212-16, 263

table 377-80

ASCIIZ strings 238-42
assembler 2-3, 395

assembler operators 268-72
assembling M-39
assembly time 395
ASSUME pseudo-op 112, 258-59,
271-72, 382

attribute byte, color 73
auxiliary carry flag 16, 67, 395
AX register (accumulator) 14, 15, 26,
49-52, 91, 94, 126, 192

Backspace key 395
based indexed mode with displacement

addressing 107-9, 395
based mode addressing 105-7, 395
BASIC computer language v, 1, 3, 395
machine language and 164-75

Basic Input/Output System. See BIOS
BASIC start interrupt (INT 18H) 223
batch file, DOS 276, 396
binary coded decimal 126-45, 396
BCD math 129-45

binary numbering 5-8, 376, 396
BIOS 396

BIOS interrupts 173, 197-230, 311
INT lOH 197-211, 210-11, 385
INT IIH and 12H 220-21

INT 16H 212-19

BIOS interrupt vectors—summary table
225-26

bit 11, 396
rotating 139-45
shifting 139-45

"BITS.LST" program 297-300
BLOAD BASIC command 165, 169
Boolean arithmetic 135-39

BP register 23, 105, 382
branching 63-77
Break key interrupt (INT IBH) 224
breakpoint interrupt 195-96
BSAVE BASIC command 165, 169
buffer 396

buffered keyboard input, DOS 235-36
BX register (base register) 14, 21, 23, 74,
105

byte 11, 396
byte registers 15
calculator, hexadecimal 10
CALL BASIC statement 164, 170
CALL instruction 89-91, 102, 171, 261,
277

carry flag 16, 66, 96, 123-25, 396
cassette I/O (INT 15H) 222
CBW (Convert Byte to Word) instruction
126

central processing unit (CPU) 396
character handling routines 204-5
check keyboard status, DOS 235
CLEAR BASIC command 167

clear buffer and call function, DOS 236
CLI (Clear Interrupt Flag) instruction 193
clock 191-92, 365-66, 396
clock interrupt (INT ICH) 224-25
close file (DOS 1.10) 246
close file (DOS 2.00) 240
CL register 140
CMP instruction 63-70, 109, 135

CMPS (Compare Strings) instruction
153-54

CMPSB instruction 153-54

CMPSW instruction 153-54

colon 24

405

color palette 207-9
COMMAND.COM DOS program 4
commenting 23-24
conditional jumps 64-70, 75-77
conditional pseudo-ops 287-89
console input without echo, DOS 234
CP/M 242
create a file (DOS 1.10) 246
create a file (DOS 2.00) 239-40
critical error handler interrupt (INT 24H)
231

cross-referencing 293-96
CS (Code Segment) register 15, 21, 90,
110, 152, 173, 191

CTRL-BREAK exit address interrupt (INT
23H) 231

cursor handling 201-3
cursor position 203
CWD (Convert Word to Double word)

instruction 126

CX register (Count Register) 14, 69, 72,
146, 205

DAA (Decimal Adjust for Addition)
instruction 133-34

DAS (Decimal Adjust for Subtraction)
instruction 134

data storage commands 262-64
data storage pseudo-ops 262-64
DB (Define Byte) pseudo-op 262
DD (Define Doubleword) pseudo-op
262-63

DD pseudo-op 110
DEBUG DOS program 4, 23, 168, 194-97
debug flag status names 38-39
decimal numbering 5-6, 267
decrement instruction 51, 67
default 397

DEF SEC BASIC command 27, 166, 257
delete file (DOS 1.10) 247
delete file (DOS 2.00) 240-41
DF index register 151-52
DI index register 15, 23, 27, 105, 151-52
direct console input, DOS 234
direct console I/O, DOS 236
direction flag 16, 146, 397
direct mode addressing 103-5, 397
directory functions (DOS 2.00) 241-42
disk I/O 311
disk I/O (INT 13H) 221-22
displacement 397
display output, DOS 236
divide overflow interrupt 193-94
DIV instruction 53-55, 132, 193
division 10

DOS 1, 2, 26, 398
batch file 276

buffered keyboard input 235-36
check keyboard status 235
clear buffer and call function 236

console input without echo 234
direct console input 234
direct console I/O 236
display output 236
files, standard 2, 27
function call interrupt (INT 21H) 231
function calls 56

function table 249-52

printer function 237
print string 236-37
returning to 92

DOS interrupts 173, 231-51
INT 20H, terminate program 231
INT 21H, DOS function call 231
INT 22H, address for program ter
mination 231

INT 23H, CTRL-BREAK exit address
231

INT 24H, critical error handler 231
INT 25H, absolute disk read 231
INT 26H, absolute disk write 231
INT 27H, terminate but stay resident
231

INT instruction 192

time and date handling 248
DOS 1.00

close file 246

create file 247

delete file 247

file control blocks 242-43

file handling 242-48
get file size 247-48
open file 246
parse filename 245-46
read sequential 246-47
rename file 247

write sequential 247
DOS 2.00 2, 72

close a file 240

create a file 239-40

delete file 240-41

directory functions 241-42
file handling 237-41
get disk free space 241
open file 239
read from file 240

rename file 241

write to file 240

DOS 2.10 2

DQ (Define Quadword) pseudo-op 124,
262-63

DS (Data Segment) register 15, 26, 91,
152, 173

406

dummy parameters 177-7S
"DUMRASM" program 311, 313-20
DUMP DEBUG command 36-37

DUP command 263-64

DW (Define Word) pseudo-op 128, 262
DX register (data register) 14, 52, 72, 74,
94

editors 398

EDLIN DOS program 2, 4, 27-31
effective address 103, 105, 107, 398
8088 microprocessor v-vi, 5
8086 Book, The 189
ENDM pseudo-op 276
ENDP pseudo-op 259-60, 276
END pseudo-op 27, 260
ENDS pseudo-op 256-58, 276
entering source code 31
equal sign (=) pseudo-op 289-90
equipment determination routines (INT
IIH AND 12H) 220-21

EQU pseudo-op 72, 261-62, 291, 292
ES (Extra Segment) register 15, 21, 152,
173

execution times 363-67

EXITM macro command 286, 290-91
extension 398

far call 90, 191
far jumps 71, 90, 398
far procedures 170
programs as 91-92
file buffer 165-66

file handles 237-38

file handling, DOS 1.10 242-48
file handling, DOS 2.00 237-41
fixed interrupts 193-96
flags 1, 95-96, 369, 398
flags register 16, 94-95, 191
"Flash" program 71-85
FOR-NEXT structure 68

function table, DOS 249-52
general-purpose registers 14, 398
get disk free space (DOS 2.00) 241
get file size (DOS 1.10) 247-48
GO DEBUG command 37

graphics interface functions 207
hardware requirements 1-2
hexadecimal numbering 6-10, 267, 398
IBM Macro Assembler 2-3, 255-96
IDIV instruction 55, 193
IF-THEN-ELSE 65-66

IMUL instruction 53

INCLUDE pseudo-op 283
INCREMENT instruction 51, 67
indexed mode addressing 105-7, 399
index registers, defined 15
indirect call 91

indirect jumps 71, 91
"INPUT.LST" program 300-308
instruction field 24

instruction lines 24-25

instruction set, 8088 363-69
interpreter 399
interrupt enable flag 16, 399
interrupt priority 190
interrupts

Break key (INT IBH) 224
breakpoint 195-96
cassette I/O (INT 15H) 222
clock (INT ICH) 224-25
disk I/O (INT 13H) 221-22
divide overflow 193-94

equipment determination (INT llh and
12H) 220-21
fixed 193-96

overflow 197

printer I/O (INT 17H) 223
RS-232 I/O (INT 14H) 222
single step 194-95
system warm start (INT 19H) 223
time-of-day (INT lAH) 223-24
video handler (INT lOH) 197-211

interrupt service routine 191
INTO (INTerrupt on Overflow) instruc

tion 192

IP (Instruction Pointer) register 15-16,
90, 191

IRET (Interrupt RETum) instruction 192
IRP instruction 285-86

IRPC instruction 286

JA instruction 76
JAE instruction 76
JB instruction 76
JBE instruction 76
JC instruction 67, 76
JCXZ instruction 70, 76
JE instruction 76
JG instruction 76
JGE instruction 76
JL instruction 76
JLE instruction 76
JMP instruction 65, 66, 70-77, 261, 291
JNA instruction 76
JNAE instruction 76
JNB instruction 76
JNBE instruction 76
JNC instruction 67, 69, 76
JNE instruction 36, 76
JNG instruction 76
JNGE instruction 76
JNL instruction 76
JNLE instruction 76
JNO instruction 67, 76

407

JNP instruction 76
JNP/JPO instruction 67
JNS instruction 67, 76
JNZ instruction 36, 67, 69, 76
JO instruction 67, 76
JP instruction 76
JP/JPE instruction 67
JPE instruction 76
JPO instruction 76
JS instruction 67, 76
jump, unconditional 70-71
JZ instruction 67, 76
keyboard click 218
keyboard input (DOS) 233-36
keyboard interrupt functions 216-19
keyboard I/O interrupt (INT 16H)
212-19

key repeat rate 218
key shift status 21-18
label 24, 260-62, 401
label operator 292
LDS (Load Data Segment) instruction
110

LEA (Load Effective Address) instruction
113-14

least significant 11
length operator 271
LES (Load Extra Segment) instruction
110

'XIFE.ASM" program 311-12, 345-61
light pen 203
"Une Draw Procedure" program 227-30
LINK DOS program 3, 4, 34-35, 379
listing pseudo-ops 272-74
loading ML programs 168-69
LOCAL special macro operator 280-81
LOCATE BASIC command 202

LODS (Load String) instruction 146,
147-48

LODSB instruction 147

LODSW instruction 147

LOOP instruction 69-70

LOOPE instruction 69

looping 63, 68-70, 401
LOOPNE instruction 69

LOOPNZ instruction. See LOOPNE

LOOPZ instruction. See LOOPE

Macro Assembler, special features of
275-96

MACRO command 275-87

macros v, 275-91, 311, 400
defined 276

different from subroutines 277

memory locations, parameters and 96
Microsoft Corp. 2
mnemonic 21

408

monochrome 71-72

most significant 11
moving data between registers 22
MOV Instruction 21-23, 26-27, 49,
53-55, 104, 105-8, 113

MOVS (Move String) instruction 151-53
MOVSB instruction 151-53

MOVSW instruction 151-53

MUL (MULtipIy) instruction 51-53,
278-79

multi-page character handling 204-5
multiplication 9-10
multiword numbers 123-26

adding 123-24
comparing 125-26
subtracting 124-25

near jumps 70, 400
near RET instruction 91

NEG (NEGate) instruction 49, 50-51
NMI (Non-Maskable Interrupt) 195
NOT instruction 139, 265
numeric entry 267-68
nybble 11, 400
object file 2, 400
octal numbering 8, 267, 400
offset 13, 103, 110, 272
OFFSET command 269

open file (DOS 1.10) 246
open file (DOS 2.00) 239
operand 24, 400
operation 24
operator precedence 266-67
OR operation 137-38, 265
overflow flag 16, 400
overflow interrupt 197
packed numbers 127-28, 139-45
PAGE pseudo-op 2, 273
palette interface routines 207-10
palette registers 209-10
parameters 95-100, 169-75, 401

Pascal and 379-81

types of 172
parity flag 16, 67, 401
parse filename (DOS 1.10) 245-46
Pascal computer language v, 1, 2, 3, 165,
403

machine language and 379-85
PEEK BASIC function 11-12

percent (%) macro special operator
282-83

Personal Editor program 2
POKE BASIC statement 11-12

POPF instruction 94

POP operation 86-87, 93-94, 101, 113
prime numbers 55
"Primes" program 55-62, 100-101

printer echo 33
printer function, DOS 237
printer I/O interrupt (INT 17H) 223
print screen 219
print string, DOS 236-37
PROC FAR 92, 259
PROC NEAR 92

PROC pseudo-op 259-60
Professional Editor program 2
program flow 63-85
program segment prefix 243, 401
program template 46-47
pseudo-op 24, 25-26, 255-62, 401
MASM table 372-73

Table 256

PTR instruction 109-10, 272
pure ASCn files. See standard DOS files
PUSHF instruction 94

PUSH instruction 26, 86-87, 93-94, 101,
113, 171, 382

.RADIX command 268

RCL (Rotate through Carry, Left) instruc
tion 142-45

RCR (Rotate through Carry, Right)
instruction 142-45

read from file (DOS 2.00) 240
reading the keyboard 212, 216
read sequential (DOS 1.10) 246-47
"REBOUND.ASM" program 311, 321-44
recursive routines 100

redirection of I/O 232-33
register 13, 14, 15-17, 21, 23, 26, 27,
49-52, 69, 70, 72, 74, 86, 90, 91,
94-95, 104, 105, 110, 113-15, 126,
146, 151-52, 173, 191, 192, 205,
209-10, 380

REGISTER DEBUG command 38

register indirect mode addressing 22-23,
104, 401

rename file (DOS 1.10) 247
rename file (DOS 2.00) 241
REP prefix 146-49, 153
REPT (REPeaT) pseudo-op 285
reserving space for stack 87-88
RET (RETum) instruction 27, 36, 89-92,

102, 277
RETF instruction 36

returning to DOS 92
ROL (Rotate Left) instruction 142-45
ROR (Rotate Right) instruction 142-45
RS-232 I/O interrupt (INT 14H) 222
running an ML program 34-35
safe locations for ML programs 165-68
SAR (Shift Arithmetic Right) instruction
140-45

SBB (SuBtract with Borrow) instruction 125

scan codes, keyboard 212-16
SCAS (SCAn String) instruction 150-51
SCASB instruction 150-51

SCASW instruction 150-51

screen 15, 318
screen memory 72
screen output functions, DOS 236-37
"SCREEN.ASM" program 386-88
"SCROLL. ASM" program 175-85
scrolling 203-4
segment 12-13, 103
SEGMENT command 72

segment override 110-13, 271-72
SEGMENT pseudo-op 25-26, 256-58
segment registers 15, 113-15, 173, 402
SEG operator 269-70
SHL (SHift arithmetic Left) instruction

140-45, 255
short jumps 70-71, 402
SHORT operator 291
SHR (SHift Right) instruction 140-45,
255

sign flag 16, 402
signs, numeric 48
SI index register 15, 23, 27, 105, 151-52
single step interrupt 194-95
SIZE operator 271
software requirements 2
"SORT.ASM" program 154-63
source code 27-31, 402
source file 2

SS (Stack Segment) register 15, 21, 86
152, 173

stack k, 86-102, 171, 256, 402
stack segment 88
STl (SeT Interrupt flag) instruction 193
STOS (STOre String) instruction 146,
149-50

STOSB instruction 149

STOSW instruction 149

string instructions 146-63
SUB instruction 49-51, 67, 69, 104, 125,

131, 134
subroutines 86-102, 403

different from macros 277

locating 166
subtraction 9

SUBTTL pseudo-op 274
"Switch" program 23-41
"SWITCH.ASM" program listing 40-41
"SWITCH.BAS" program listing 42-43
"SWITCH.LST" program listing 44-46
symbol 24, 403
symbol table 33
system warm start interrupt (INT 19H)
223

409

T (Trace) DEBUG command 39
terminate but stay resident interrupt (INT
27H) 231

terminate program interrupt (INT 20H)
231

terminology, of numbering systems 1-11
TEST instruction 137

text editor 2

text pages 199-200
THIS operator 292
time and date handling (DOS) 248
time-of-day interrupt (INT lAH) 223-24
TITLE pseudo-op 273
trap flag 16, 194, 403
twos complement 48-49
TYPE operator 270-71
U (Unassemble) DEBUG command 35
"USESCRN.PAS'' program 391
using the assembler 255-73

USR BASIC statement 164

variables 24, 261-62
VARPTR BASIC function 166

video handler interrupt (INT lOH)
197-211

video mode, setting 198-99
video state, reading 201
"VIDEO-IO.ASM" program 392-96
word 11, 13, 55, 87, 403
word strings 146
WordPerfect word processor 2
WordStar word processor 2, 4
write sequential (DOS 1.10) 247
write teletype routine 206
write to file (DOS 2.00) 240
XCHG instruction 114

XLAT (translate) instruction 114-19
XOR operation 138-39, 255, 265
zero flag 16, 66, 69, 403

410

8088 Machine Language
Machine language (ML) is your computer's native language.
ML instructions given to your personal computer directly
communicate to the machine—there's no need for time-

consuming interpretation. 8088 machine language, the lan
guage for all IBM and IBM-compatible personal computers,
creates programs which are both fast and powerful.

If you're:= a BASIC programmer, you've probably looked at
ML programs with envy. You wanted to write ML routines
and programs, but you just didn't know where to begin. COM-
PUTEI's Beginner's Guide to Machine Language on the IBM PC
and PCjr shows you. With this book as guide and constant ref
erence, you'll quickly be using the speed and power of ML.

Written in the clear, easy-to-understand manner that's be
come the trademark of COMPUTE! Publications, this book
teaches you everything you need to know to begin writing ML
programs on your IBM or IBM-compatible personal computer.
And even after you've mastered 8088 machine language,
you'll find COMPUTEI's Beginner's Guide to Machine Language
for the IBM PC and PCjr a valuable resource. Its discussions
and explanations will be available for quick reference as you
delve deeper into machine language programming.

Here's just some of what COMPUTEI's Beginner's Guide to
Machine Language on the IBM PC and PC/r includes:

• Instructions for the use of EDLIN, DEBUG, LINK, and
MASM.

• How to use machine language with BASIC.
• A section explaining how to merge Pascal and machine lan
guage programs.

• Many extensively commented source code listings to study
and learn from.

• A complete glossary.
• How to use BIOS and DOS function interrupts.
• Explanations of the use of the stack and subroutines.
• Clearly written discussions of the instruction set and address
ing modes.

Whether you're new to machine language or have been
using it for years, you'll find COMPUTEI's Beginner's Guide to
Machine Language for the IBM PC and PCjr a superior addition' i
to your library:?

ISBN 0-942386-83-3

