

Memory Resident

Programming

on the IBM PC

Memory Resident
Programming
on the IBM PC

Thomas A. Wadlow

...
~

Addison- Wesley Publishing Company, Inc.
Reading, Massachusetts. Menlo Park, California. New York
Don Mills, Ontario. Wokingham, England. Amsterdam. Bonn. Sydney
Singapore. Tokyo. Madrid. Bogota. Santiago. San Juan

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and Addison-Wesley was
aware of a trademark claim, the designations have been printed in initial caps or all caps.

Library of Congress Cataloging-in-Publication Data

Wadlow, Thomas A.
Memory resident programming on the IBM PC.

Includes index.
1. IBM Personal Computer-Programming. I. Title.

QA76.8.12594W334 1987 005.265 87-3571
ISBN 0-201-18595-2

Copyright @ 1987 Thomas A. Wadlow

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,

or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or

otherwise, without the prior written permission of Addison-Wesley.

Printed in the United States of America. Published simultaneously in Canada.

Cover design by Doliber Skeffington Design.

Text set in 12 point Almost Computer Modern from 'lEX files.

ABCDEFGHIJ-HA-8987

Fir8t printing, August, 1987

This book is dedicated to all the people
who taught me to look under the hood,

especially my Dad.

I would like to acknowledge the contributions of several people who
helped with this book. First, to my family who put up with me
sitting in the basement over Christmas, typing like mad. Peggy Watt,
who dug up answers when I needed them. Karri Dubbleman and
John Bruner, who put up with my sometimes silly questions. Amy
Atkinson, Judy Weinstein, and Thia Kellner Hill, who listened to my
complaining. And of course, Steve Stansel, Ted Buswick, and the
folks at Addison-Wesley, who got me started on this project in the
first place.

-Tom Wadlow

Contents

1 Looking under the Hood 1

1.1 Getting Inside the Box 2

1.2 Solving Problems 3

1.3 The Nature of Good Design 4

1.4 Writing Debuggable Programs 5

2 Fundamental Arcana 9

2.1 The Basics 10

2.2 The 8086/8088 11

2.2.1 Registers 12

2.2.2 Addressing Modes 13

2.2.3 Flags 14

2.2.4 Jumping through Loops 16

2.2.5 Organization of Data within Memory 18

2.3 Details of the 8086 Architecture 22

Vlll CONTENTS

3 Interrupt Vectors 23

3.1 Interrupts Available on the IBM PC 24

3.2 The Keyboard Input Mechanism 26

3.3 Replacing Interrupt Vectors 27

3.3.1 Setting the Vector Directly 27

3.3.2 Using DOS to Set the Vector 28

3.4 Examining the Interrupt Vectors 30

3.5 IVEC. ASM - Listing Interrupt Vectors 32

4 A Basic Resident Program 39

4.1 A Simple Resident Application 40

4.2 A Basic . COM Program 41

4.3 A Minimum Resident Program 43

4.4 A Refined Resident Program 44

4.5 Elimination of Memory Overhead 46

4.6 Invoking the Resident Application 46

4.7 Chaining Interrupt Handlers 49

4.8 Detecting Our Resident Application 51

5 A Keystroke Expander 55

5.1 A Basic Expander 58

5.2 Expanding on Multiple Keys 62

5.3 MACRO.ASM - Single-Key Expander 66

5.4 MACTAB .ASM - General Keystroke Expander 68

6 Using the Timer 73

6.1 Reentrant Code 74

6.2 Building a Desk Clock 75

6.3 What Time Is It, Anyway? 81

6.4 Winding the Watch 84

6.5 CLOCK. ASM - A Resident Desk Clock 89

IX CONTENTS

7 Building a Front Panel 95

7.1 Peeking at the Instruction Pointer 96

7.2 Using a Stack-Frame Pointer 102

7.3 FPANEL. ASM - An Instruction Pointer Display 105

8 An Interrupt-vector Display 111

8.1 Listing the Vectors 115

8.2 BASIC. ASM - A Test Display 123

8.3 VECTORS. ASM - An Interrupt-vector Display 125

9 Controlling the Machine 135

9.1 Rewriting the Key Expander 136

9.2 The State of the Serial Ports 141

9.3 A Port Status Display 143

9.3.1 Displaying the Baud Rate 148

9.3.2 Displaying the Character Length 150

9.3.3 Displaying the Stop Bits and Parity 152

9.4 The Virtues of Consistency 154

9.5 SEEMODE. ASM - Show Communications Mode 155

10 Setting the Mode 167

10.1 Designing the Code 168

10.2 Setting up the Communications Ports 173

10.3 SETMODE. ASM - Set Serial Mode 178

11 Using the Disk 193

11.1 Safety First 194

11.2 The Disk Subsystem 196

11.2.1 Directories 198

11.3 Making a Useful Directory Display 204

11.4 LD. ASM - List a Directory 208

x CONTENTS

12 Strolling the Corridors 215

12.1 Browsing in the Stacks 217

12.2 Prototyping the Selector 221

12.3 Displaying the File 224

12.4 BROWSE. ASM - Examine File Contents 226

13 The Roads Not Taken 235

13.1 Emerging Standards 235

13.2 Compatibility 236

13.3 Video Modes 236

13.4 Disabling Interrupts 237

13.5 Rolling Your Own 238

13.6 Undocumented Functions 238

13.7 Designing Programs 239

Appendix A - IBM ROM BIOS Services 241

Appendix B - Hardware Interrupts 293

Appendix C - IBM DOS Services 309

Appendix D - Useful Books 403

Index 405

Chapter 1

Looking under the Hood

In a book about programming, it's often a temptation to leap right into the
code and hope that the reader will soak up the important points as the pro­
grams unfold. That approach does work sometimes, because the best way to
learn to program is to actually create programs. Reading code written by other
programmers is a good way to pick up new techniques, in exactly the same way
that a musician becomes a better composer by reading and playing works by
other composers. But musicians, or programmers, studying the works of others
in their field, have already developed a great deal of insight into how problems
are solved. They know that certain approaches to problems will probably work,
and others may not. They know why these techniques are successful or unsuc­
cessful. They may not know everything, but they know enough to get started.

Some people have learned to program, with moderate .success, simply by
repeating strings of incantations that they have memorized but don't really
understand. This is a fine approach, as long as you can be sure every detail you
need is written down somewhere or you can find someone who can answer your
questions. When you step across the boundary between what is well known and
what is not completely understood, memorization does not give you the skills
to look around and find the correct path to your destination.

Some people have learned to fix automobiles, with moderate success, simply
by tightening bolts, or replacing hoses, or doing other things they have learned
without really understanding. You might expect such a person to adjust a
carburetor, but you would not expect them to replace that carburetor with a
more efficient one of a different design. That step requires another level of
knowledge about cars. You need to know why carburetors work, not just how.

1

2 CHAPTER 1. LOOKING UNDER THE HOOD

This book is written for people that want to look under the hood of their
IBM Personal Computer. There are certain things you can do to soup up your
PC, to make it do more in the specific areas that will be of use to you. This
isn't an introductory book, it assumes that you have some basic knowledge of
assembly language programming. This book is not a cookbook approach to
programming. There are examples, and you may choose to assemble and run
them, but the way to get the most out of them is to take the examples apart
and put them back together again, slightly differently each time, and see what
happens.

The code in this book is written with two things in mind: clarity of design
and readability. The programs are not optimized for speed or size. You may read
through them and say: "I could have done that with five fewer instructions."
Please feel free to do so. This code is not necessarily robust. There is no
guarantee that everything works all the time. That isn't the purpose of this
software. You should look at everything here suspiciously, saying to yourself:
"What happens if.. .. ?" Look for reasons why alternate approaches were not
taken. If, after reading this book, you can figure out how to rewrite some of
the programs to be faster, cleaner, smaller, or more useful, then the book has
served its purpose.

1.1 Getting Inside the Box

If you look through an introductory book on computer programming, you are
sure to find a section on the difference between applications programming and
systems programming. Applications are programs people write to solve a more­
or-less well-defined problem. For example, you might want to sort a file of names
alphabetically, or calculate the value of 7r, or crack the Data Encryption Stan­
dard. Systems programming is somewhat different in nature and philosophy.
Your computer has a nucleus of programming which is always present. Those
programs provide a set of services to enable you to run the applications that
you choose. They also provide housekeeping functions that permit those appli­
cations to be written fairly easily and run on a variety of machines. In other
words, the systems programs manage resources and the application programs ex­
ploit those resources. Systems programs are permanent; applications programs
are transient. Systems programs take care of the resources of the computer;
applications programs actually use those resources.

The resource-managerjresource-exploiter view of computer programming is

1.2. SOLVING PROBLEMS 	 3

a fairly popular one, and has served well over the years. But it is only a model
of what the designers of a system had in mind, not an iron-clad law. Certainly
all computers have systems code, and they may run applications code, but on a
personal computer, why must there be such a sharp and inconvienient division
of the two? Why can't you have an application that is permanent, such as a
pop-up appointment calendar? You may want some kinds of applications to
be at your fingertips at all times. The conventional model of applications and
systems software does not permit you to do that on a machine such as the IBM
PC.

A personal computer differs from other kinds of computers by one major
point. It is personal. It is yours, and you are allowed to do what you can with
it. Buying a personal computer is like buying a tract house. When they are
built, all the houses in a development are of a set of similar designs. But when
you buy a house, it becomes your personal house, and you can furnish it as you
please. After a time you may find that you need to remodel a bit, adding a room
or removing a wall, so that it meets your needs better than the generic model
you originally purchased.

1.2 Solving Problems

The mere fact that you are capable of remodeling your house is not a good
reason to do so. You should think carefully before ripping out a wall; likewise,
you should apply equal care to adding features to your computer operating
system. A great new whizbang feature that you add in one area could have side
effects in other places you might not even suspect. It is very much like knocking
out a wall that you didn't suspect was load-bearing. You may regret it later.

The kinds of programs you want to add to an operating system are those
functions that will:

• 	 Be available no matter what else you may be doing. The changes to your
system do not come for free. Every feature you add will cost you something
in performance, or available memory, or disk space. New features should
be worth the price.

• 	 Cut down the work you do to solve a common problem. After all, there is no
point in adding a function that makes you work harder to solve a problem
that you could solve quicker and easier in a more conventional manner.

4 CHAPTER 1. LOOKING UNDER THE HOOD

Adding an operating system routine to calculate 7r might be an interesting
programming exercise, but it would not make you more productive, nor
would it be something you would be likely to use frequently. You want
to find those operations that you repeat, and reimplement them in a way
that helps your work flow more easily.

• 	 Allow you to do things that were difficult to do in any other way. Some­
times there is just no way to get the information that you need from a
conventional application. If you want to know how your telecommunica­
tions program has configured one of your serial ports, you'll have to figure
it out while the communications program is running. The act of leaving
the program destroys the information you need.

1.3 The Nature of Good Design

Quality is always a difficult thing to pin down and precisely define. Everyone
wants to write a "good" program, as opposed to a "bad" one, but the actual
definition of "goodness" in programs is hard to come by. Every time you think
you've gotten a handle on what makes a program "good," somebody comes up
with an example that contradicts your theory. Nevertheless, it should be possible
to come up with some guidelines for building good programs, while minimizing
the amount of philosophical tail-chasing and without actually turning this chap­
ter into "Zen and the Art of Computer Programming."

One attribute of a good program is that it does what it is supposed to do.
A program that does not work correctly is not a good program, no matter how
beautifully the code is written. In addition to doing what it is supposed to
do, a good program should do absolutely nothing else. A program that lists the
contents of directories correctly but writes random blocks of garbage on the disk
while it does so is less than useless; it is actively harmful.

One of the best ways to ensure that a program has the fewest possible side
effects is to clearly define a goal for that program. Make it do one and only
one thing, and do it perfectly. "Creeping featurism" is a common disease among
computer programmers. There is a powerful temptation to add just a little more
power to a program or to handle a special case just a little differently. Sometimes
"creative" programming is necessary, but it can almost always be avoided by
rethinking the problem. It might be possible to make your pliers do the work of
a screwdriver, but there is probably a better solution to the problem.

5 1.4. WRITING DEBUGGABLE PROGRAMS

Another aspect of a good tool is flexibility. The mark of a well-designed
tool is its ability to be useful in a situation the designer hadn't thought of. The
analogy between system software and tools is an important one. When you make
an addition to an operating system, you should think of it as getting another
tool for your toolkit. If you have the correct set of tools, the problems you want
to solve will become easier for you to solve. That is the whole point of getting
the tools in the first place. If you don't have enough tools, then you'll have to
approach your problems in a way appropriate for those tools you do have. In
other words, if you have only a hammer, then you tend to treat all problems as
nails. Sometimes this works; sometimes you just break what you are trying to
fix.

Having too many tools can be just as bad. One of the nice things about
using a computer to solve problems is that once you have an adequate solution
to a particular kind of problem, you can package your solution, and never worry
about it again. The machine now knows how to do what you want, and all you
have to do is remember to ask it to do so. Having a wide variety of tools with
overlapping functions may mean that you solve variations on the same problem
over and over without recognizing the areas they have in common. This is a
waste of your time and your computer's power.

1.4 Writing Debuggable Programs

An application program enjoys the benevolent protection of an operating system
during its entire life. When the application breaks or encounters a situation that
the applications programmer didn't think of, the system code is usually there
to pick up the pieces.

The life of a system program is more dangerous. Since it is the system code
that catches mistakes or prevents them, a system bug can be far more devastat­
ing than one in an application. In addition, even if the code works correctly, it
may be very difficult for the programmer to find out what is happening, since the
act of printing a debugging message may depend on the code being debugged.
For instance, if you are replacing the system code that gets a character from the
keyboard and it breaks, don't expect to type Control-C to make things work
again. You have broken the entire system and you'll have to reboot. If you are
changing the code that does I/O to the disk and it breaks, you may not be able
to reboot, because you've written over the bit of code on the disk that performs
that function.

6 CHAPTER 1. LOOKING UNDER THE HOOD

• 	 Don't get tricky. This is also known as "Don't reinvent the wheel." Once
you figure out a way to do something correctly, keep doing it that way.
Consistency is a good way to save time and energy. It may not be as
interesting to write a loop the same way each time, but it will certainly be
more likely to work.

• 	 Don't guess, measure. Many people make the mistake of optimizing code
for speed, or size, before they know whether or not it really works. If you
do something once, quite often it doesn't matter how fast it runs. If you
are sorting a list of twenty things, a simple sort algorithm will probably
work just about as fast as a fancy one. You are much more likely to make
the simple one work quickly. The time you save in the cases where it
doesn't matter will more than make up for the few cases in which you
must go back and optimize.

• 	 Don't get tricky. You may understand a piece of code perfectly now, but
will you be able to read it in two months, when you have to fix or extend it?
Doing things in the most obvious fashion possible will often be a blessing
months later or when you are trying to debug it. •

• 	 How do you get to Carnegie Hall? Practice. Rehearsal is a much bigger
part of a musician's life than the performances. Don't write programs
where everything needs to work at once. If you can debug a piece of code
as an application before you put it in your operating system, then do so.
If you are writing a pop-up text editor, for example, you might try writing
it as a text editor application first and worry about the pop-up part later.

• 	 Don't get tricky.

• 	 Write in modules. Approach the problem as if you were a diamond cutter.
If you hit the problem in just the right way, you'll find that it splits into
several clear-cut modules, and maybe just a bit of leftover dust. Hit it
wrong and you'll end up with a lot of dust and loose ends that you'd
probably rather not deal with. Don't duplicate your efforts if you can
possibly avoid it.

• 	 Don't get tricky. Sometimes you can "rough-code" an application as a
prototype by simplifying portions of your problem. You can simulate the
input or the output or the algorithm. Get things to work with known

7 1.4. WRITING DEBUGGABLE PROGRAMS

parameters, then write the code that lets you specify different parameters.
There is no need to write the program all at once. By writing it in chunks
and making each chunk work separately, you'll get to a working program
much faster. Besides saving time by prototyping, you are quite likely to
find things that you didn't think of in the first place .

• 	 Expect to do it twice. It's quite likely that you'll need to write a com­
plicated program at least two times before you get it entirely correct.
By making a completed, working prototype and then redesigning it from
scratch for the final version, you have a much better chance of really un­
derstanding all the issues involved. Your second design should be much
cleaner and much easier to write. If you don't go through this second
phase, you may find yourself stuck with the shortsighted mistakes of the
first.

• 	 Dare to be lazy. One of the most useful characteristics that a programmer
can develop is "creative laziness," the ability to spot repetitive tasks, and
come up with a way of automating them. Each task you can encapsulate
within a shell of programming leaves you with more time to move on
to other more creative or profitable pursuits. The danger here is one of
spending a hundred hours automating a task that cost you only one hour
per month. Jobs like that may be fun, but they are not really worth the
time. Repetitive things you do often are fair game, however.

Each person develops a style of solving problems when creating computer
programs. Like a style of writing or a style of painting, your programming style
will evolve. But facets of it will remain the same. Many veteran programmers
have had the odd experience of picking up an old program listing and recognizing
their own style without remembering that they had written the code. The
programs you write are fingerprinted with your thoughts and moods at the time
they are written. A good style is probably the most valuable tool a programmer
can develop.

A program can be a kind of "living poetry" if you take the time and trouble
to write it correctly. A good programmer writes beautiful code, and a great
programmer writes beautiful code quickly. Both write code that works.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Chapter 2

Fundamental Arcana

If you have never written any program for your IBM PC, and you are sensible
enough to avoid ever doing so, this is not the book for you.

If you have written some regular programs in Pascal, or C, or FORTRAN,
but have never heard of assembly language and are curious, give it a try. If you
get into trouble, don't get discouraged. Thrn to Appendix D, which lists the
books that were invaluable in writing this one. Try looking for answers in some
of the books mentioned there. Answers may be tough to dig up but the search
is usually worthwhile.

If you have written any sort of assembly-language program, even one that
just prints "Hello, world", dig in and have fun. You have the basics already, and
that ought to be enough.

This book is not Introduct£on to Assembly Language Programming on the
IBM Pc. That book has been written by several other people, under several
other titles. Some of those titles are listed in Appendix D. You'll need an
assembler and an assembly-language reference manual to try any of the code in
this book. You'll also need good typing skills or a few bucks to buy the disk that
goes with this book. And of course, you'll need an IBM PC, or its equivalent.

This book can be read in one of two ways. You can sit down, read through
the chapters, and when you are done, go off and play with the programs. Or
you can read and play at the same time. This book is as much about designing
and creating good programs as it is about writing memory resident programs.
You'll probably have a lot more fun if you can sit in front of the keyboard,
drink too much coffee, swear at the typos (yours and mine), and wonder why
your machine crashed this time. That is how the book was written, and I had a

9

10 CHAPTER 2. FUNDAMENTAL ARCANA

wonderful time.

2.1 The Basics

Even though this isn't a primer for assembly language programming, it can't hurt
to spend a little time on the basic concepts. Any computer has a fundamental
set of instructions that it understands. These basic operations are usually quite
simple, being along the lines of MOVE THE NUMBER 6 INTO THE AX REGISTER or
IF THE ZERO FLAG IS SET. CONTINUE EXECUTING AT ADDRESS 1234. Obvi­
ously,
the machine does not understand these sentences as fundamental operations.
Instead, each kind of operation is assigned a unique pattern of bits. The cir­
cuitry of the computer was designed to read successive bit patterns from memory,
and take some action based on these patterns. The actions themselves are quite
simple, but if you put enough of them together, you get a program that actually
does something.

By learning to think like the computer, you could actually learn to write
these bit patterns directly into the computer's memory and thus create programs
that way. It's not impossible. Tens of thousands of programmers have done it.
It's not even difficult, when compared to climbing mountains or understanding
quantum electrodynamics. But it does take a long time to learn, and it takes a
long time to write programs that way.

Long ago, some poor, overworked programmer who actually had learned
to write in bits decided to write a program so that others wouldn't have to
master that arcane skill. This program was called an assembler, and it took
such English-like commands as MOV AX. 6 and automatically turned them into
the correct set of bits. Early assemblers were often riddled with bugs and painful
to use. But even so, they were a great deal better than writing programs the
old way. And even a lousy assembler can be used to write a better one. Good
assemblers can be used to write even higher-level languages. Or assemblers for
new computers.

Why write in assembly at all, then? Wouldn't higher-level languages be
better? Well, yes and no. For many kinds of programs, assembly language is
a waste of time. But for others, it is essential. Why? The answer lies in the
trade-offs. Trade-offs are a big part of this book, and for good reason. They
are avery big part of the creation of any program. Programs don't just appear,
they are designed. Any program is the end product of hundreds, even thousands,

2.2. THE 8086/8088 11

of design decisions. A few of these are big, most are very small. Every time
a designer makes a choice, there is a trade-off, a compromise. Sometimes, the
choice is obvious, and the trade is a good one. But sometimes it is a matter of
choosing the lesser of two evils, or the greater of two goods. Or more than two.
Sometimes many more than two.

When a programming language is being designed, the choices made will affect
the kind of programming that can be done in that language. For example, a
designer who chooses to create a portable language (one that can run on a large
number of very different computers) may omit some features, such as direct
access to physical memory or linkages to interrupt handlers, that some special
programs (such as the ones in this book) might require. The designer may decide
that portability is more important than access to those features. This decision
means that some kinds of programs, such as memory resident programs, will not
be written in that language.

One way of thinking about computer programming languages is in layers.
There are many different types of languages, some very low level, some very
high. Many times, you'll find that one kind of language (a C compiler, for
example), turns its input into a program in another language (assembler, in this
case). The layers of languages draw upon each other for support and power.
As you ascend through each layer, writing some kinds of programs becomes
easier, others more difficult. The most flexible is the arcane language of the
bits. Slightly less flexible is a well-written assembler, and so on up the scale.
If you want to write a program and are having a hard time figuring out how
to trick the language you are using into letting you do what must be done, one
approach is to get closer to the raw bits by using a lower-level language.

Assembly language is the best choice for the kind of programming we will
be doing. It is flexible enough to allow us to use the machine to our advantage,
readable enough so that we need not make a career out of learning bit patterns,
and fast enough to permit us to get the job done without wasting too much
time. Sophisticated assembly programs can be m:;1de small enough to be left
resident without eating a major portion of our limited memory space.

2.2 The 8086/8088

The IBM PC is built around a microprocessor, the Intel 8088. This device is a
smaller version of the Intel 8086. From a programming point of view, the two
are virtually identical. The difference lies in their internal architecture. The

12 CHAPTER 2. FUNDAMENTAL ARCANA

8086 requires a 16-bit-wide channel to the rest of the world. Memory access is
done 16 bits at a time. Older 8-bit microprocessors required half the number of
paths, half the number of chips, and so on. They also had much less than half
the computing power. IBM chose the INTEL 8088 as a compromise, halfway
between 8-bit and 16-bit machines. The 8088 could be programmed as an 8086,
but it spoke to the world through an 8-bit-wide path. This compromise traded
speed of execution for hardware cost; 8088-based systems could be built with
fewer parts, but they took longer to run programs. IBM deemed this a wise
choice, and the PC was born. As hardware costs dropped, other systems with
real 8086s began to appear. Processor speed increases, but the software remains
the same.

2.2.1 Registers

The 8086/8088 architecture is fairly simple. The machine has a fair number of
general purpose 16-bit registers, in particular AX, BX, CX, DX, BP, SI, and DI. Of
these, AX,BX, CX, and DX can be used not only as word registers, but can also be
split into high and low byte registers: AH, AL, BH, BL, CH, CL, DH, DL. Registers BP,
SI, and DI are general purpose, but cannot be split into bytes. SP is available
for general use, but typically is used only as the stack pointer. There are also
four very important special registers called segment registers: CS, DS, SS, and
ES. And of course, there is an extremely special-purpose register called the IP or
instruction pointer. This register controls which instructions are being executed
by the microprocessor.

The 8086 was designed to be somewhat compatible with the Intel 8080 class
of 8-bit microprocessors. These machines had a maximum address space of 64
kilobytes, which is all two bytes, or 16 bits, can represent. Rather than have an
address size of 16 bits (a single word), which was what the 8-bit machines had,
or 32 bits (two single words), as some more expensive machines use, Intel chose
a different approach. Programs would run within a segment. Each segment
would be a maximum of 64 kilobytes, but there could be more than one segment
in memory. For example, the operating system could run in one segment, user
programs in another. Within these segments, it would be possible for programs
to treat the machine as though it had only 64 kilobytes of address space. This
would make the transport of programs from 8-bit machines easier. Furthermore,
segments might overlap, so that two different programs could share the same
space in memory. Intel chose the paragraph as a fundamental unit of segment

13 2.2. THE 8086/8088

space. Changing a segment pointer from 0700H to 0701H would advance that
segment by 16 bytes (one paragraph) in memory. In effect, the segment is a
16-bit address shifted 4 bits to the left (multiplied by 16, in other words) in a 20
bit field. Thus, the 8086 can directly address only 20 bits, or one megabyte of
memory. Of this megabyte, the top 320 kilobytes is reserved by IBM for things
like system ROM, cartridge ROM, and display memory. This makes the actual
amount of memory for programs 640 kilobytes.

There are four segments that the machine, and anyone writing programs for
it, has to worry about. First is the code segment, contained in CS. This segment
is the one in which the code is actually executing. Second is the data segment,
in DS. When a program tries to read something from memory as data and a
segment is not explicitly specified, the processor will look in the data segment.
Third is the stack segment, in SS. PUSH and POP stack operations will be done
with this segment. Last is the auxiliary segment, in ES. This is a sort of general
purpose segment register, for use at the programmer's discretion.

Many computers are designed so that all registers can be read and written in
exactly the same ways. Computer architects call these orthogonal designs. The
8086, however, was not designed this way. Access to some registers is restricted.
For example, one can move immediate values, such as numbers, to any of the
general-purpose registers but not to the segment registers. This means that
setting BX to 6 can be done in a single instruction:

mov bX,6

Setting DS to 6 requires two instructions, since segment registers can be set
only from general purpose registers, not constants or other segment registers:

mov bX,6

mov dS,bx

You'll see code similar to this in the examples in this book.

2.2.2 Addressing Modes

Addressing modes are the keys to many sophisticated operations on a computer.
The 8086 provides several: immediate, memory indirect, and register indirect.

Immediate. These are values that are represented directly, as numbers.
The 6 used in the previous example is an immediately addressed value.

Memory Indirect. These are values that are contained at some address in
the data segment. For example:

14 CHAPTER 2. FUNDAMENTAL ARCANA

mov bX,foo

foo dw 6

This would move the value 6, or whatever value the variable foo might be
set to, into the BX.

Register Indirect. There are two kinds of registers available for this: Base
and Index registers. Base registers are BX and BP. Index registers are SI and DI.
In this mode, the register contains the address in the data segment in which the
desired information is stored. For example:

mov ax,OFOOOH

mov eS,ax

mov si,OFFFEH

mov dl,byte ptr es: [si]

This code will read the machine ID at location FOOO: FFFE by using the
indirect mode through register SI. A register indirect reference can have at
most one Index and one Base register. This provides an easy means for indexing
in arrays, or data structures.

Addressing modes can be used in quite a few different combinations, many
more than shown here. For the most part, these are the modes used in the
programs in this book. See the IBM documentation for more information.

2.2.3 Flags

The 8086 has nine single-bit flags that indicate various conditions in the machine
state.

CF (carry flag). Set to 1 if the arithmetic operation exceeds the correct
length.

PF (parity flag). Set to 1 for even parity, 0 for odd parity.
AF (auxiliary carry flag). Same as the CF, except that it applies to the low­

order 4 bits of the result. This is typically for 20-bit address computation.
ZF (zero flag). Set to 1 if the result of an operation is zero, 0 if the result is

not zero.
SF (sign flag). Set to 1 if the high-order bit of the result of an operation is

aI, zero otherwise.
TF (trap flag). Puts the system into single-step mode. In this mode, the

completion of each instruction generates a special trap.

15 2.2. THE 8086/8088

IF (interrupt-enable flag). Set to 1 to enable recognition of external inter­
rupts, zero to disable.

DF (direction flag). Used with looping instructions such as MOVS, MOVSB,
MOVSW, CMPS, CMPSB, and CMPSW. If set to 1, these instructions will loop through
incremented addresses. If set to 0, these instructions will loop through decre­
mented addresses.

OF. (overflow flag). Set to 1 if a signed operation exceeds the correct word
length, 0 otherwise.

For the most part, ZF and CF are the two flags used by the code in this book.
(See the IBM documentation fOf a discussion of the others flags.)

All of the conditional branches used in this book are based on the ZF and CF
flags. The ZF-based branches are all tests for a condition of zero. This is all of
the typical logical operations done in a program, such as a test for equality or
a counter running out. The 8086 has several types of branches that check the
zero flag. Whenever possible the branches used here reflect the logical intent of
the instruction rather than the actual condition. For example:

cmp ax,6
jz foo

means exactly the same thing as:

cmp aX,6
je foo

The last example conveys more of the intent of the program, however. It lets
you know that control should be transferred when the AX register is equal to 6.

Another convention closely related to this one is the habitual use of compares,
even when not strictly necessary. Once again, this is for clarity and for generality.
The code

dec ax
cmp ax.O
je foo

could be replaced by the more compact

dec ax
jz foo

16 CHAPTER 2. FUNDAMENTALARCANA

In some cases the number that we are comparing against might be any num­
ber, not just zero. The first case, in which we explicitly compare for a number,
conveys that sense of generality. The second example does not. But that is a mi­
nor issue compared to readability. The first example is obviously decrementing
a counter of some kind and branching when that counter has reached a certain
value. The second example is a little more vague, so the code in this book tends
to avoid using branches of this kind. There is nothing wrong with them; if you
wish to rewrite portions of this code to take advantage of the saving in size, feel
free to do so.

The other type of branch used here is based on the carry flag. This is very
rare in the code in this book. Some DOS routines return a set or cleared CF as
a signal of success or failure. A JC (Jump if Carry Set) or a JNC (Jump if Carry
Not Set) does precisely what you might expect in that case.

2.2.4 Jumping Through Loops

Computers never get bored. That is one of the features that makes them so
useful. It is easy to program a machine to perform the same task over and
over again. In fact, it is vital that they do so. Looping is a basic control-flow
mechanism for all programming languages. The faster a particular computer
architecture can perform a loop, the better it is thought to be. Since looping is
so useful, many machines, including the 8086, have instructions that specialize
in loops.

All loop instructions use the CX register as a counter. A loop will continue
until the CX counter has reached a particular value. Thus, the code:

mov ax,D
mov cx,4

next:
add aX,6
loop next

done:

is a simple way of multiplying two numbers by repeated addition. In this case,
the LOOP decrements CX each time and then checks the value of CX. If CX becomes
zero, control will fall through to done. If not, then control passes back to next.

The same thing could be accomplished with this code:

mov ax,D

2.2. THE 8086/8088 17

mov eX,4
next:

add ax,6
dee ex
emp ex,O
jne next

done:

There is a palette of LOOP instructions to choose from, ones that branch when
the counter reaches zero, others that branch when the counter is not zero, and so
on. These instructions allow you to repeat an arbitrary sequence of instructions,
up to the local branching limit, over and over again. The local branching limit
is the maximum number of bytes away from the current instruction that a con­
ditional branch can transfer to. That limit is -127 to +128 bytes, which means
that you can branch as much as 127 bytes back into code before the current
instruction and up to 128 bytes forward into code after the current instruction.

The 8086 has a powerful looping instruction that permits you to repeat a
single instruction over and over again. One of the most common cases of looping
occurs while handling strings of bytes. For example, suppose that you wanted
to move the contents of one 60-byte array to another. With the normal LOOP
instruction you could do it using the code:

mov si,offset souree

mov di,offset dest

mov eX,60

mvloop:
mov ds:byte ptr [di] ,ds: [si]
ine di
ine si
loop mvloop

This is a fairly tight loop, but if this piece of code were critical, you would
want to make it tighter yet. The 8088 provides several string move instructions
that duplicate some of the pieces of this code. One way you could optimize the
loop would be to use the special instruction MOVSB, which reduces the code to:

mov si,offset souree

mov di,offset dest

mov ex,60

eld

mvloop:
movsb
loop mvloop

18 CHAPTER 2. FUNDAMENTAL ARCANA

The CLD instruction clears the direction flag, DF. The string instructions
change the values of the source and destination pointers in SI and Dr. The
direction flag determines how those pointers change. If the flag is cleared, via
the CLD instruction, the pointers will be incremented, and successive addresses
will move forward (low to high) through memory. Thus, CLD is the same as
saying SET DIRECTION TO FORWARD. If the direction flag is set, via the STD,
the pointers will be decremented and successive addresses will move backward
(high to low) in memory. Thus, STD is the same as saying SET DIRECTION TO
REVERSE.

On the 8086/8088, this tiny loop can be reduced even further. The 8086
provides a special repetition instruction that will reduce this loop to a single
instruction. There are only certain circumstances in which the REP instruction
can be used, and a special convention has been adopted for typing repeated
instructions. Using that convention, the move loop can be tighted to:

mov si,offset source
mov di,offset dest
mov eX,60
eld

rep movsb

2.2.5 Organization of Data within Memory

The 8088 is a byte-oriented machine with delusions of grandeur. The entire
machine is based on an 8-bit byte-oriented memory structure, but the processor
itself manipulates 16-bit words. Finding the right byte in memory can sometimes
be a little tricky.

The memory of any machine is a vast array of cells. On many machines,
those cells are a single byte wide. On others, they are 16 bits, or 32 bits. Some
larger machines have cell widths that are not based on powers of two, such as
a 36-bit word. But even though the size of the words may be different, these
machines can all be classed into some general categories. If your machine can
pick out a single byte from memory, without being forced to resort to loading an
entire word and trimming away the extraneous bytes (assuming that the word
size is different from the byte size, as it is on the 8088), that machine has a
byte-addressible architecture. If you must fetch an entire word just to examine
a single byte, your machine is said to have a word-addressible architecture.

The 8086/8088 is a byte-addressible machine. It is possible to directly ad­
dress an individual byte in memory. For example, we could fetch the contents

19 2.2. THE 8086/8088

of a given byte in this fashion:

mov si,1234H

mov al, [si]

This would copy the contents of the byte at the location in the S1 register
(in this case 1234H) into the AL register. If we wanted to set that byte to 6, we
might suspect that this code would do the trick:

mov si,1234H

mov [si] ,6

That code will generate an assembler error, because there is no way for the
assembler to deduce if you want to set the byte at 1234H to the byte OSH, or
the word at 1234H to the word OOOSH. The size of the source and destination
must be the same. In the previous example, the assembler knew that AL was
a byte register. Thus, the pointer in S1 must have been a pointer to a byte.
In this case, because there is insufficient information to determine the size, the
assembler will complain. The correct code would be

mov si ,1234H

mov byte ptr [si] ,6

If we had said WORD PTR instead, we would have set a 16-bit quantity rather
than an 8-bit quantity.

Suppose we had chosen to set the word at 1234H to be OOOSH. Obviously, one
byte in memory would be set to OOH and another would be set to OSH. But which
ones? You could dig through manuals to find out, or you might skip ahead to
see the answer, but if you do then you will have just simply read the answer.
The best way to find out is to check for yourself. After all, the manuals might
be wrong, eh? And if they are not wrong here, they might be wrong somewhere
else.

A simple program to determine the placement of bytes within a word in
memory would look like this:

cseg 	 segment para public 'CODE'
org 100H
assume cs:cseg,ds:cseg

start:
mov bx, cs

20 CHAPTER 2. FUNDAMENTAL ARCANA

mov 	 dS,bx

mov ah, 'H'

mov aI, 'L'

mov test,ax

mov si,offset test

mov aI, [si] First byte of test

call dchar

mov aI, [si+l] Second byte of test

call dchar

ret

Display the character contained in AL
dchar proc near

push 	 ax
push 	 bx
mov 	 bh,l
mov 	 ah,OEH
int 	 10H
pop 	 bx
pop 	 ax
ret

dchar endp

test 	 dw

cseg 	 ends
end start

DCHAR is a utility routine that prints a single character on the terminal. (We
will be seeing much more of that routine later; for now, simply treat it as a black
box that does the right thing.) We build a word in AX that has as its high-order
(bits 15-8) byte the ASCII character "H", and as its low-order (bits 7-0) byte
the ASCII character "L". Then we store this in the data word TEST. Printing
the individual bytes will determine their order.

The high-order byte is sometimes called the most significant byte, or MSB.
The low-order byte is correspondingly called the least significant byte or LSB
(You may also see the individual bits referred to with the terms most signifi­
cant or least significant bit, terms which unfortunately have exactly the same
acronyms.) Significance, in these cases, refers to numerical significance. The
most significant bit of a word is the bit that adds the most numerically to its
value. If you change the low-order bit, the magnitude of a word hardly changes

21 2.2. THE 8086/8088

at all. Changing the high-order bit results in the greatest possible magnitude
change for a single-bit fluctuation. On the 8086/8088, the most significant bit
is bit 15, or 2 to the fifteenth power. The least significant bit is bit 0, or 2 to
the zeroth power. Bit 15 is also known as the leftmost bit, bit 0 the rightmost.
Shifting a value to the right (without rotation) decreases the value by a factor
of two. Shifting to the left will increase a value by a factor of two.

Some machines follow the exact opposite in philosophy. Bit 0 on the 8086 is
the least significant bit. This makes the 8086 what is known as a Little-Endian
machine. On other machines, bit 0 is the most significant bit. They are known
as Big-Endian machines. These odd terms come from Gulliver's Travels, by
Jonathan Swift, in which two kingdoms fight a war over which end of an egg
should be cracked first, the big end or the little end.

Running this test program may surprise some people. Your intuition may tell
you that you should see the string "HL". But what you get is "LH". This means
that the 8086 stores the low-order byte first. We could recode the declaration
of TEST as

test 	 db ? Low byte of register
db ? High byte of register

This same pattern repeats itself in the storage of double words. A double
word would be a 32-bit quantity. If we were to have in memory a double­
word variable, containing perhaps the full address of some subroutine, we would
declare it like this:

subaddr 	dd ; A subroutine address

An equivalent representation might be

subaddr 	dw Low word of address
dw Hig~ word of address

Finally, in individual bytes, we would see this organized as

subaddr db ? Low byte of low word of address
db ? High byte of low word of address
db ? Low byte of high word of address
db ? High byte of high word of address

22 CHAPTER 2. FUNDAMENTALARCANA

Pushing words onto the stack will cause them to follow this same convention.
The code

mov ah, 'H'

mov aI, 'L'

push ax

will push the word in AX onto the stack. The PUSH operation means that the
stack pointer, in SP, is decremented by 2, and the specified register is then
stored at that location. Stacks grow toward low memory. You might suspect
that the byte ordering would be reversed, but it is not. Examining the stack
after execution of the previous example, you would find that the stack pointer
SP pointed at the low byte (containing "L") and that SP+1 pointed at the high
byte (containing "H").

2.3 Details of the 8086 Architecture

A good painter knows the feel of paint, the smell and the taste of it. By knowing
every detail of the materials with which they work, artists can create within the
bounds set by those materials. Sometimes, a great artist can transcend those
boundaries and create works that merely good artists thought impossible.

We have seen the basic details of the canvas on which we will paint and the
colors we have at our disposal. There is material for an entire book in the subtle
variations of these details. Some information can be found in the Microsoft
Macro Assembler manual. Other details can be found in the books mentioned
in Appendix D.

Chapter 3

Interrupt Vectors

In many ways, the idea of a memory resident program is tightly coupled with
the way the IBM PC handles interrupts. Hard and soft interrupts are the main
mechanism of communication and control between an application program and
the operating system. Thus, understanding how interrupts work on the IBM
PC is a vital part of learning to write memory resident applications.

Interrupts are one of the fundamental ideas that make modern computers
work. As the name implies, interrupts are short-term distractions to a computer
that is doing other work. The processor suspends the work in progress in such a
way that the job can be resumed later. Control is then transferred to a special
program called an interrupt handler. The handler does something useful such
as adding a character to the keyboard input queue or managing a disk I/O
operation. When the handler has finished its task, it returns control to the
interrupted program. The interrupted program is restarted in such a way that
it may not even be aware of the interruption.. When you run any application on
the IBM PC, it is interrupted dozens of times per second, yet it seems to you as
if the application has sole access to the processor.

Without interrupts, the processor in a computer system would have to ex­
amine the status of each and every device on the system over and over again.
This technique is called polling. Writing the system code that would permit con­
tinuous polling and still allow user programs to run would be quite a bit more
difficult than the code used on the interrupt-driven IBM PC. In addition to re­
ducing the complexity of the code, interrupts manage the flow of information to
and from the equipment connected to the IBM PC. In a polled system, the design
of those peripheral components would be considerably complicated. Additional

23

24 CHAPTER 3. INTERRUPT VECTORS

circuitry would be required to ensure that information is not lost between the
time the processor last polled a device and the next time it is scheduled to do
so. Because an interrupt-driven system can rely upon the central processor for
a great deal of data management, it can be simpler in design.

It is not impossible to build sophisticated computer systems without inter­
rupts, just more difficult and more costly. Many important systems have been
designed around polling systems, including some military systems and some used
in the space program. In the case of a desktop personal computer, however,
there are overwhelming reasons for choosing an interrupt-driven architecture.
Interrupt-based systems can be designed and built cheaper than polled systems.
Each component can depend on the central processor to manage the flow of data
rather than guarantee that data internally. Interrupt-driven systems are easier
to program than polled systems, at both the systems and the applications level.
Interrupt-driven systems are also more flexible than polled systems, especially
for interactive applieations.

If some unforeseen event hangs up a program running on a polled system
(with an accidental infinite loop, for example), there may be little choice but
to reboot, since the code that will reset the state of the system can never run.
On an interrupt-based system, you may be able to force the termination of that
program, perhaps by typing CONTROL-C, and recover without restarting from
seratch. This is possible is because the CONTROL-C keystroke was processed by
means of an interrupt handler, which suspended the execution of the infinite
loop long enough to kill the program.

(A note about checking for CONTROL-C on an IBM PC. The IBM PC checks
for CONTROL-C or CONTROL-BREAK in a somewhat unusual fashion. For reasons
of its own, IBM originally wrote DOS to eheck for CONTROL-C only during I/O
operations. Programs that did not perform I/O operations could not be in­
terrupted. Later versions of DOS fixed this problem to a certain degree but
for reasons of compatibility with older versions of DOS, some of the interrupt
checking is optional. Consult the manual for your version of DOS to determine
how far you can extend CONTROL-C checking.)

3.1 Interrupts Available on the IBM PC

The IBM PC has two basic kinds of interrupts. Hard interrupts are those gener­
ated by the devices physically connected to the microprocessor in the IBM PC,
such as the keyboard, disk drives, clock, and so on. These devices are connected

25 3.1. INTERRUPTS AVAILABLE ON THE IBM PC

by means of an interrupt controller that arranges these interrupts in order of
their importance and allows the IBM PC to manage these hardware signals ef­
fectively. Soft interrupts, sometimes called traps, are generated by programs
running on the IBM PC. Although they are handled in exactly the same way
as a hard interrupt, they are really requests for some operating system service
rather than an indication of some condition in the hardware.

These are the interrupts available on the IBM PC, by interrupt number and
vector address.

Number Address Function Number Address Function

OH 0OO-OO3H Divide by Zero l6H 05S-06BH Keyboard I/O Call

lH 004-007H Single Step l7H 05C-06FH Printer I/O Call

2H OOS-OOBH Non-Maskable lSH 060-063H ROM Basic Entry Code

3H OOC-OOFH Breakpoint 19H 064-067H Bootstrap Loader

4H 010-013H Overflow lAH 06S-06BH Time of Day Call

6H 014-0l7H Print Screen lBH 06C-06FH Get Control on BREAK

6H 01S-01BH Reserved lCH 070-073H Get Control on Timer

7H 01C-01FH Reserved lDH 074-077H Video Initialization Table

SH 020-023H Timer (18.2 per second) lEH 07S-07BH Diskette Parameter Table

9H 024-027H Keystroke lFH 07C-07FH Graphics Char Table

AH 02S-02BH Reserved 20H OSO-OS3H DOS Program Terminate

BH 02C-02FH RS-232 Port 1 21H OS4-0S7H DOS Universal Function

CH 030-033H RS-232 Port 0 22H OSS-OSBH DOS Terminate Address

DH 034-037H Hard Disk 23H OSC-OSFH DOS Control-Break

EH 03S-03BH Diskette 24H 090-093H DOS Fatal Error Vector

FH 03C-03FH Reserved 26H 094-097H DOS Absolute Disk Read

10H 040-043H Video I/O Call 26H 09S-09BH DOS Absolute Disk Write
11H 044-047H Equipment Check Call 27H 09C-09FH DOS Terminate/Stay Resident
12H 04S-04BH Memory Check Call 2S-3FH OAO-OFFH Reserved for DOS
13H 04C-04FH Diskette I/O Call 40-7FH 100-1FFH Not Used
l4H 060-063H Serial Port I/O Call SO-FOH 200-3C3H Reserved By BASIC
16H 064-057H Cassette I/O Call F1-FFH 3C4-3FFH Not Used

Hard interrupts are rarely touched directly by an IBM PC user or appli­
cations programmer, unless special hardware is being used, or tighter control
is required. The most commonly modified hard interrupt is the keystroke in­
terrupt. Text editing programs in particular often need a more flexible way of
dealing with the keyboard than that provided by IBM. For the most part, hard
interrupts are of concern only to component designers and system programmers;
several, in particular the keyboard and timer interrupts, are of use to a designer
of memory resident applications.

Soft interrupts, on the other hand, are vitally important to anyone writing
assembly-language programs, or even to programmers writing high-level code
for the IBM PC. These interrupts are the gateway from applications code into
the operating system of the IBM PC. It is through these doors that requests for

26 CHAPTER 3. INTERRUPT VECTORS

system services and operations are performed; thus, for programs that want to
do more than simply contemplate their binary navels, these operations are the
key.

First and foremost among the software interrupts that are be of use to an
assembly-language programmer is DOS INT 21H, the DOS Universal Function.
This interrupt is a general-purpose call into DOS that permits the programmer
to perform essentially any DOS operation directly.

The next most useful set of software interrupts are those provided by the
ROM-BIOS (Basic Input Output System). These functions provide a basic set
of operations for using the low-level services provided by the IBM PC, such as
keyboard input, display output, and raw disk I/O.

(A note on using ROM-BIOS services. IBM does not license IBM standard
BIOS ROMs for use by other manufacturers; in fact, it has actively prosecuted
those "clone" manufacturers foolish enough to include a byte-for-byte copy of
the IBM ROM in their products. Since the code in clone ROMs legally can­
not be exactly the same as the code in an IBM ROM, the small differences
may mean that code written to use the ROM-BIOS calls directly may not be
portable between IBM and IBM-like systems. This is not always the case for
DOS calls, as MS-DOS, which is very similar to PC-DOS, can be licensed by
other manufacturers. Thus, programs using only MS-DOS calls on one MS-DOS
machine are portable to practically all other MS-DOS machines, regardless of
ROM type.)

3.2 The Keyboard Input Mechanism

A good example of the way interrupts work can be seen in the mechanism the
IBM PC uses to read characters from the keyboard. Two different interrupts
are used, one hard and one soft interrupt. When a key is struck, a signal is
sent from the keyboard circuitry to the processor. This signal causes a hard
interrupt, which triggers the low-level keyboard interrupt handler. This handler
immediately reads the character from the keyboard hardware, and places it into
a queue. If the queue is full, the handler causes the IBM PC to beep. After the
character is queued or beeped, control returns to the interrupted program. When
a program wants to read a character from the keyboard, it issues a soft interrupt.
This routine examines the queue and returns the first character available on that
queue.

This approach is extremely common in interrupt-driven systems. In a way,

3.3. REPLACING INTERRUPT VECTORS 27

it is a shock absorber between the application that needs input and the actual
details of the gathering of that input. It is a decoupling mechanism that sep­
arates the handling of the keyboard from a request for information from the
keyboard. The same general approach can be used for any number of different
types of input and output devices.

3.3 Replacing Interrupt Vectors

Interrupt vectors are stored in the first 400H bytes of IBM PC memory. Each
vector is four bytes long and contains a pointer to the interrupt-handler code
that should be executed when the interrupt occurs. The first two bytes contain
the offset portion of the pointer, the last two contain the segment portion.

There are two ways to modify interrupt vectors. You can either set the
interrupt-vector locations directly, or call the DOS service designed to set them.

3.3.1 Setting the Vector Directly

Since an interrupt vector is just a location in memory, the obvious way of setting
an interrupt vector, for example, the keyboard vector, would look like this:

mov ax,O We can't move to ES directly
mov eS,ax ; Use AX to clear segment register

; Install offset of handler
mov word ptr es:24,offset keyboard

; Install segment of handler
mov word ptr es:26,seg keyboard

In many cases, this code would actually work. Suppose, however, a key
was typed exactly as this code was executing. Under the worst case, this would
happen after the first MOV but before the second. During that time, the keyboard
interrupt vector would be meaningless, and the keyboard interrupt could crash
the machine. One obvious fix would be to disable interrupts, such as

mov ax,O We can't move to ES directly
mov eS,ax Use AX to clear segment register
cli Disable interrupts

Install offset of handler

mov word ptr es:24,offset keyboard

; Install segment of handler

mov word ptr es:26,seg keyboard

sti ; Enable interrupts

28 CHAPTER 3. INTERRUPT VECTORS

This approach would work in almost all cases. However, the CLI instruction
does not suspend the NMI (non-maskable interrupt). So this approach is adequate
for every interrupt vector save that one. A slightly more complicated approach,
useful for every vector including the NMI vector, would be this:

; Make a correct vector address
containing interrupt vector

mov word ptr kbd-ptr[O] ,offset keyboard
mov word ptr kbd-ptr[2] ,seg keyboard
mov di,O Use D1 to set ES to zero
mov eS,di Set ES to destination segment
mov di,24 Set D1 to destination offset
mov si,offset kbdptr Set S1 to source offset
mov cx,2 Set word count to 2
cld Set direction to forward
cli Disable interrupts

rep movsw Copy the new vector
sti Enable interrupts

kbdptr dd

In this code, kbdptr is a double word containing a pointer to the keyboard
interrupt handler. The advantage of this somewhat more complicated approach
is that at no time is the interrupt vector ever invalid. The rep operation repeats
the movsw the number of times specified in CX, behaving as a single instruction.
The NMI cannot occur within an instruction, and since the entire move is con­
tained within a single instruction, it will be immune to any possible interrupt.

3.3.2 Using DOS to Set the Vector

Since safely setting an interrupt vector can be a somewhat tricky operation, DOS
provides a special service for setting the value of an interrupt vector securely. If
you limit yourself to using this service, you won't have to worry about the race
conditions described earlier. DOS also provides a service for reading the value
of an interrupt vector. Since this operation does not modify the state of the
system, there is no danger at all in this, and thus a direct read is just as safe.
A direct read, however, requires that you calculate the correct address for the
interrupt vector. Since DOS already has resident code to do this for you, there
is no sense in duplicating the effort.

29 3.3. REPLACING INTERRUPT VECTORS

To read the value of an interrupt vector (INT 16H (keyboard I/O) in this
example) under DOS requires the use of INT 21H function 35H (read interrupt
vector). This function performs the calculation to get a vector address from a
vector number and then returns the contents of that slot in the vector table.

; A double word to hold the value

mov al,16H The interrupt number to be read
mov ah,35H READ INTERRUPT VECTOR function
int 21H under DOS Universal Function

Offset of interrupt handler

Segment of interrupt handler

The old..keyboard_io variable is defined as a double word, since we need
both a segment and an offset to describe the correct location of the interrupt
handler at any location in memory. Note the order of segment and offset within
the four-byte range of old..keyboard_io. The offset must be placed in the first
two bytes, and the segment in the last two. There is great intuitive pressure
to reverse this ordering, but the architecture of the machine has a fixed idea as
to how addressing information should be ordered, and the machine is the final
judge of correctness in this case.

The following code sets the value of an interrupt vector (INT 16H (keyboard
I/O), in this example), under DOS:

proc far

iret
new_keyboard_io endp

mov bx,cs Make DS point to the segment
mov dS,bx That our code is in (i.e. CS)

DX holds offset to new code
mov dX,offset new_keyboard_io
mov al,16H The interrupt number to set
mov ah,25H The SET INTERRUPT VECTOR function
int 21H under the DOS Universal Function

The new interrupt handler, new..keyboard_io, replaces the previous interrupt
handler. DS:DX is a double word pointer to the new handler, with DS containing

30 CHAPTER 3. INTERRUPT VECTORS

the segment of the new routine and DX containing the offset within that segment.
Since this routine is located within the current code segment, we can simply
copy CS (by way of BX, due to the limited interregister move instructions on
the 8086/8088), into DS. Another possibility would have been to set DS to the
segment of new--.keyboard_io by use of the assembler SEG pseudooperation.

3.4 Examining the Interrupt Vectors

Since we are about to spend quite a bit of time poking about under the hood of
the IBM PC, jostling the spark plug wires, and generally getting greasy, perhaps
we should begin by acquiring a tool or two. One useful operation that we can
perform immediately is to write a small application program to read and display
the value of all the interesting interrupt vectors in the IBM PC.

Much ofthis book depends on your ability to create runnable programs from
source written in IBM Macro Assembler. Turning a piece of source code, the
human readable text representation of a program into an executable program
takes three, well, actually two-and-a-half steps.

If we have an assembly source program called GLOP. ASM, from which we want
to make an executable program called GLOP. COM, we must first run it through an
assembler. All the assembly code in this book was written for the IBM Macro
Assembler MASM, version 1.0. To assemble GLOP. ASM, at the DOS command
prompt enter:

MASM GLOP;

The semicolon causes MASM to use several defaults. The output file, GLOP. OBJ,
contains relocatable, unlinked machine code. MASM will not generate a listing file
or a cross reference file.

The second step is to turn GLOP. ASM into an executable program. To do
this, you must use the linker. All the programs in this book are linked with the
Microsoft Linker LINK, version 2.2, which is included with DOS. To link a single
object file, including no special libraries, at the DOS prompt, enter:

LINK GLOP;

31 3.4. EXAMINING THE INTERRUPT VECTORS

The semicolon causes LINK to use several defaults. The output file, GLOP. EXE,
is a general-format executable program. Link does not generate listing files, and
no libraries are included.

The last step, although not necessary for all programs, is required for the
assembly code shown in this book. The final step is to turn the general format
. EXE file into the faster-loading and smaller . COM file. This is done with the
EXE2BIN program. All assembly programs in this book are converted with the
EXE2BIN program that comes with DOS. To convert GLOP. EXE into GLOP. COM,
at the DOS prompt, enter:

EXE2BIN GLOP.EXE GLOP.COM

This creates a new file, GLOP. COM, which is much smaller than the original
. EXE and which loads and starts faster. The original file, GLOP. EXE, remains
untouched.

Developing a resident application takes some amount of trial and error. This
means that you may find yourself typing these last three DOS commands over
and over again. Since repetition is best left to a computer rather than fingers,
the same result can be achieved with a small .BAT file:

MASM GLOP;
LINK GLOP;
EXE2BIN GLOP.EXE GLOP.COM

Conceivably, you could create a MAKE. BAT for each and every program that
you care to develop. However, since the assembly language source in this book
can be compiled using this same basic template, and changing only the names,
the parameterization facility of .BAT files might be a bit more appropriate:

MASM %1;
LINK %1;
EXE2BIN %1.EXE %1.COM

DOS replaces %1 with the first argument of the command. Thus

MAKE GLOP

http:GLOP.COM
http:GLOP.COM

32 CHAPTER 3. INTERRUPT VECTORS

is an entirely adequate replacement for the previous special purpose MAKE file.
If you later want to create a MACRO. COM, then MAKE MACRO will work with no
changes.

With later versions of DOS, various error conditions can be detected and
execution of this .BAT file can be aborted, for example if the assembly fails.
This file should work under all versions of DOS. Ambitious programmers are
heartily encouraged to improve upon this foundation.

3.5 IVEC. ASM - Listing Interrupt Vectors

The IVEC. ASM program runs as a normal application and lists the current values
of the interrupt vectors in a form that fits on a single screen. On a generic IBM
PC with no resident applications installed, you'll notice that many of the vectors
appear to originate from the same set of segments. These are the ROM routines.
As you change handlers and rerun the program you'll see the changes appear in
the vector table.

cseg segment para public 'CODE'
org lOOH
assume cs:cseg,ds:cseg

start:
mov bx,cs Make Data Seg be the
mov dS,bx same as the Code Seg
call vectors
ret

Scan through display table, printing two vectors per line
If any record has an interrupt # = zero, this indicates
end of the table.

vectors proc near
mov di,offset disptab Pointer to start of table
mov dh,O Zero out top half of DX

vloop:
mov dl, [di] Get the interrupt number
cmp dl,O If it is zero, we are done
je vdone so exit loop
add di,l Advance pOinter 1 byte
mov si, [di] Get pOinter to description
call dvector Call the display routine
add di,2 Advance to the next record

3.5. IVEC.ASM - LISTING INTERRUPT VECTORS 	 33

mov
cmp
je
add
mov
call
add

call
jmp

vdone:
call
ret

vectors 	endp

dvector 	proc
call
call
call

mov
mov
int
mov
call
call
ret

dvector 	endp

dstring 	proc
push
push

dis:
mov
cmp
je

dl, [di] Get the interrupt number
dl,O If it is zero, we are done
vdone so exit loop
di,1 Advance pOinter 1 byte
si, [di] Get pOinter to description
dvector Call the display routine
di,2 Advance to the next record

dcrlf Print a carriage return
vloop

dcrlf 	 Print final CRLF

Displays an interrupt vector. Display is in the form of

<banner> <interrupt #> <seg>:<offset>

where <interrupt #>, <seg> and <offset>

are all 	hexadecimal numbers.

Call with
DX - interrupt number
DS:SI - pOinter to banner string

near
dstring Display the string in DS:SI
dbyte Display the byte in DL
dspace Display a space

al,dl Move the interrupt number to AL
ah,35H Function is GET INTERRUPT VECTOR
21H
dX,bx Move BX to DX so we can display
ddword double-word in ES:DX
dspace Display a space

DS:SI points to ASCIIZ string to be printed

near

si

ax

aI, [si] Fetch the next character

al,O If it is zero, we are done

disdone

34 CHAPTER 3. INTERRUPT VECTORS

call
inc
jmp

disdone:
pop
pop
ret

dstring 	endp

ddword proc
push
mov
call
call
pop
call
ret

ddword endp

dsword 	 proc
push
mov
call
pop
call
ret

dsword 	 endp

dbyte 	 proc
push
push
push

push
push
mov
shr
and
mov
mov
call
pop

dchar If not, print it
si Advance pointer to next char
dis

ax
si

ES:DX contains doubleword to be displayed
near
dx Save offset temporarily
dX,es Move Segment to DX
dsword Display segment

fl."dcolon Print a ,
dx Restore offset to DX
dsword Display offset

DX containes singleword to be displayed
near
dx Save low byte temporarily
dl,dh Move high byte to low byte
dbyte Display high byte
dx Restore low byte to DL
dbyte Display low byte

DL contains byte to be displayed
near
ax Save any registers used
dx
si

dx Save low nybble temporarily
cx Save ex
cl,4 Set shift count to 4
dX,cl Shift high nybble into low nybble
dX,OOOFH Mask out all but low nybble
si,dx Use low nybble as index into
al, hextab [si] ; hexadecimal character table
dchar Display character
cx Restore ex

35 3.5. IVEC. ASM . LISTING INTERRUPT VECTORS

dbyte

dcolon

dcolon

dspace

dspace

dcrlf

dcrlf

dchar

pop dx Restore low nybble

and dX,OOOFB Mask out all but low nybble
mov si,dx Use low nybble as an index into
mov al,hextab[si] ; hexadecimal character table
call dchar Display character
pop si Restore registers
pop dx
pop ax
ret
endp

Display a ":"
proc near
mov aI, I. I

call dchar
ret
endp

; Display a II. II

proc near
Imov aI, I

call dchar
ret
endp

; Display a Carriage Return/Line Feed
proc near
mov al,ODB
call dchar
mov al,OAB
call dchar
ret
endp

; Display the character contained in AL
proc near
push ax
push bx
mov bh,l
mov ah,OEB
int lOB
pop bx
pop ax
ret

36 CHAPTER 3. INTERRUPT VECTORS

dchar 	 endp

hextab 	 db

disptab 	db
dw
db
dw

db
dw
db
dw

db
dw
db
dw

db
dw
db
dw

db
dw
db
dw

db
dw
db
dw

db
dw
db
dw

db
dw
db
dw

db

'0123456789ABCOEF' ,0

05H
v05
19H
v19

08H
v08
1AH
v1A

09H
v09
1BH
v1B

OBH
vOB
1CH
v1C

OCH
vOC
1DH
v10

OOH
vOO
1EH
v1E

OEH
vOE
1FH
v1F

OFH
vOF
20H
v20

10H

Print screen

Bootstrap loader

Timer tick

Real-time clock

Keyboard input

CTRL-Break handler

Comm. port 1

Timer control

Comm. port 0

Pointer to video parameter table

Hard disk controller

Pointer to disk parameter table

Floppy disk controller

Pointer to graphics character table

Printer controller

Program terminate

Video driver

37 3.5. IVEC. ASM ~ LISTING INTERRUPT VECTORS

v05

dw v10
db 21H
dw v21

db 11H
dw v11
db 22H
dw v22

db 12H
dw v12
db 23H
dw v23

db 13H
dw v13
db 24H
dw v24

db 14H
dw v14
db 25H
dw v25

db 15H
dw v15
db 26H
dw v26

db 16H
dw v16
db 27H
dw v27

db 17H
dw v17
db 2FH
dw v2F

db 18H
dw v18
db 0
dw 0

db 'Print screen:

DOS universal function

Equipment check

Pointer to termination handler

Memory size check

Pointer to CTRL-C handler

Disk driver

Pointer to critical error handler

Communications driver

Absolute disk read

Cassette driver

Absolute disk write

Keyboard driver

Terminate and stay resident

Printer driver

Print spooler

ROM BASIC

, ,0

38 CHAPTER 3. INTERRUPT VECTORS

v08 db 'Timer tick controller:
vOg db 'Keyboard input:
vOB db 'Communication port i:
vOC db 'Communication port 0:
vOD db 'Hard disk controller:
vOE db 'Floppy disk controller:
vOF db 'Printer controller:
viO db 'Video driver:
v11 db 'Equipment check:
vi2 db 'Memory size check:
vi3 db 'Disk driver:
vi4 db 'Communication driver:
vi5 db 'Cassette driver:
vi6 db 'Keyboard driver:
vi7 db 'Printer driver:
vi8 db 'ROM BASIC:
vi9 db 'Bootstrap loader:
viA db 'Real-time clock:
viB db 'Ctrl-Break handler:
viC db 'Timer control:
viD db 'Video parameter table:
viE db 'Disk parameter table:
viF db 'Graphic character table:
v20 db 'Program terminate:
v2i db 'DOS universal function:
v22 db 'Terminate vector:
v23 db 'Ctrl-C vector:
v24 db 'Critical error vector:
v25 db 'Absolute disk read:
v26 db 'Absolute disk write:
v27 db 'Terminate/stay resident:
v2F db 'Print spooler:

cseg ends
end start

' ,0
' ,0
' ,0
' ,0
, ,0
, ,0 , ,0
' ,0
' ,0
, ,0
' ,0
, ,0
' ,0
' ,0
' ,0 , ,0
' ,0
' ,0
' ,0
' ,0 , ,0
, ,0
' ,0 , ,0
' ,0
' ,0 , ,0 , ,0
' ,0
' ,0
, ,0
' ,0

Chapter 4

A Basic Resident Program

A journey of a thousand miles begins with a single step. That phrase has
been used to refer to a lot of things, and assembly-language memory resident
programming is one of them. To understand how to write a complicated resident
application, you should begin, as they say, at the beginning.

In this chapter, we will write an extremely simple resident application, one
of no practical use whatsoever, but one that encapsulates the basic features of
more important and useful programs. The simplest possible resident application
would just install itself and do nothing. This is basically what we intend to write
here, but with an additional constraint. We want to be able to tell the difference
between a trivial program that works, meaning that it is installed correctly, and
a trivial program that fails quietly. To do this, we must complicate our simple
program in such a way that we can determine whether or not it is installed and
working.

Quite a number of trivial goals are available to us, if our only constraints are
simplicity and detect ability. The goals we choose depend on the kind of resident
application that we choose to write. One of the simplest and most useful resident
applications involves intercepting keyboard input and replacing the characters
that were typed with characters of our own choosing. This type of application
is easy to write and understand, yet the basic design can be extended to include
the vastly more useful functions found in keyboard macro expanders, or input
line editors.

Having decided on the basic structure, a keyboard input interceptor, we must
decide on the method of detectability. Since we plan to intercept characters from
the keyboard and to pass those characters, at our discretion, to DOS, one method

39

40 CHAPTER 4. A BASIC RESIDENT PROGRAM

of detecting the presence of our modifications would be to alter what the user
types in a predictable fashion. If the alterations show up, our application was
successfully installed. If they aren't present, something was wrong, either a flaw
in the design or the construction.

A simple way to alter the input would be to detect a character and do
something predictable when that character, and only that character, is typed.
For example, we could design our application to detect the typing of a "Y" and
replace it with a "#" when it is passed to DOS. An injudicious choice, however,
would break the machine while the application was installed. In the case of the
"Y" replaced by a "#", we would be unable to use the TYPE command while
the application is resident. We would be breaking DOS deliberately to detect
the presence of our resident application.

A better choice would be to alter something in a way that we could detect,
but that would not break the operating system. Case shifting is a good example.
Ifwe shift the case of the "Y", returning a "y" instead, we can detect the presence
of our application. DOS will not care if we use the "TyPE" command. Only a
few programs, those in which case is important (such as word processors) will
be affected. If we then add a few more lines of code, we can detect a "y" and
return a "Y". Thus, we will not prevent any character from being typed, we
simply complicate matters a little by reversing the sense of the SHIFT key for
the "Y". Nothing is made unusable, but we can detect our success or failure.

4.1 A Simple Resident Application

A program is more than just a series of instructions that a computer can execute.
It is a sort of frozen thought, a glimpse into the mind of the designer. A designer
of machinery captures types of actions and encapsulates them in steel and plastic
in such a way that the actions can be performed after the designer is no longer
present. A programmer can capture certain types of ideas into a program in
such a way that those captured thoughts can be systematically rethought after
the programmer is no longer present. The meaning of all this philosophizing is
a fact of writing programs: it's more important to worry about the way that
you, the programmer, think about your program than it is to worry about how
the computer thinks about it.

Books that discuss programming commonly present the source code for a
program in a line-by-line fashion. If you talk with experienced programmers,
however, you'll probably find that programs are never written line by line. Some

4.2. A BASIC . COM PROGRAM 41

programmers see their code as a tree of successively refined ideas, others as view
it as a woven tapestry of threads of thought or a network of interconnected ideas.
There are many different ways that you can model a problem in your mind, not
all of them easily articulated. Building a mental model of a program is the first
ninety percent of writing a program. Thrning a well-formed idea into code is
the next ninety percent.

The programs in this book were designed and written as a series of nested
boxes within boxes. The outermost box is the requirements of making a work­
ing .COM program. Within that are two boxes, the code that makes up the
application and the installation code that makes the application an extension
of the operating system. Within each of those are functions within functions
that make up the individual concepts of each segment of the program. When
possible, the listings discussed in this and subsequent chapters will be shown in
the perspective of the nested functions of the code.

4.2 A Basic .COM Program

The memory resident programs discussed in this book are all written to assemble
into. COM programs. These programs are one of the two types of executable files
that DOS understands. The . COM file is designed to load and begin execution
quickly. Like most design choices, the trade-off necessary to achieve this speed
of loading was in flexibility. The . COM format is limited in how the program can
use the full power of the IBM PC. The. COM file is small, less than 64 kilobytes,
and can load into only one segment. The more general, but slower loading form
of executable file is the . EXE. The . EXE format can load into multiple segments
and be larger than 64 kilobytes. It is possible to create resident applications
that load in .EXE format, but typically this is more trouble than it is worth.
Resident applications are usually much less than 64 kilobytes and usually need
to be loaded at exactly the portion in memory that . COM files are loaded into.
Thus, .COM-format executable files are the best choice for the envelope that
surrounds a resident application.

The code that will assemble into a legal, working, empty . COM file looks like
this:

section 1
cseg segment

assume cs:cseg,ds:cseg
org 100H

42 CHAPTER 4. A BASIC RESIDENT PROGRAM

; section 2
start:

ret
section 3

cseg ends
end start

This code can be broken down into three obvious parts. Section 1 defines the
segment that the code will be relative to. It defines the assumptions that the
assembler will make about the segment that the code resides in, and it defines
the starting point of the executable code.

Section 2 is the actual code itself, in this case, simply a return statement to
transfer control back to DOS. Execution begins at the start label.

Section 3 ends the segment and the program. The end statement contains a
label name that refers to the address at which execution should begin. In this
case, the start label is where we want the program to start.

If you assemble, link, and convert this minimum program, you might expect
it to be 257 bytes long,-256 bytes of program segment prefix and 1 byte for
the RET opcode. However, if you follow the sequence described above, you'll find
that the. COM file is only 1 byte long. The reason for this is quite simple: all . COM
files are loaded with identical program segment prefixes, and thus DOS does not
need to save a copy with each . COM file. DOS automatically generates. a correct
program segment prefix in memory when it loads a .COM file. If necessary,
a program can alter its program segment prefix during its run, but all .COM
programs start with the same basic program segment prefix. All .COM program
segment prefixes have the same format:

The Program Segment Prefix

Offset Meaning
OOOOH Termination Handler Address
0OO2H Segment, end of allocation block
0OO4H Reserved
OOOSH Long call to MS-DOS function dispatcher
OOOAH Previous termination handler vector
OOOEH Previous CONTROL-C vector
0012H Previous critical error handler vector
0016H Reserved
002CH Segment address of environment block
002EH Reserved
OOSCH Default File Control Block #1
006CH Default File Control Block #2
OOSOH Command tail and default Disk Transfer Area

43 4.3. A MINIMUM RESIDENT PROGRAM

4.3 A Minimum Resident Program

The minimum . COM file shown here is not yet a memory resident program. It is
simply a DOS program like most others. This program loads at the beginning
of available memory; when the program terminates, the memory this program
it consumed will be freed for use by subsequent programs.

A basic program that terminates, but remains resident, looks like this:

, section 1
cseg segment

assume cs:cseg,ds:cseg
org 100H

section 2
start:

nop
done:

section 3
mov <be, offset done
int 27H

section 4
cseg ends

end start

The first and last sections of this code are unchanged from our minimum
. COM program. The middle two sections are the interesting ones. Section 2 is
the code that actually remains resident. In this case we simply leave a NOP as an
empty resident application. In fact, any code that we put in between the start
and done labels remains resident.

Section 3 is the part of the code that terminates this program, leaving it
resident. In this case, we use INT 27H as the terminate and stay resident func­
tion. This function requires us to set a pointer to the first available location of
memory, in effect setting where the next . COM file will load. If we had wished to
do so, we could have used INT 21H function 31H (keep process), which requires
that we specify the amount of memory to reserve, rather than a pointer. That
function has the advantage of being able to send an exit code to DOS. No exit
code is generated by INT 27H.

INT 27H requires a pointer to the first available address for DOS to use to
load subsequent programs. DOS contains a pointer to a base address used for
IQading . COM and m0st .EXE files. INT 27H resets this pointer to the new value,
which makes all the memory between the old and new pointer values inaccessible

44 CHAPTER 4. A BASIC RESIDENT PROGRAM

to DOS for loading transient programs. It also makes this memory inaccessible
to transient programs that either allocate their own memory directly as buffers
or implicitly in their size. Thus, if you keep loading memory resident programs,
you'll whittle away at the amount of rnemory available for normal programs.

The pointer to the next available byte of memory is aFAR pointer, meaning
that it consists of an offset pointer, contained in DX, which points to a location
within a 64-kilobyte range, and a segment pointer, contained in DS, which points
to a paragraph-aligned segment within the 640-kilobyte address space of the IBM
PC. DS need not be set explicitly, since DS is set to the same value as CS when
the . COM file is loaded.

A common mistake in writing assembly language programs for the IBM PC
is to confuse the preloading of DS with the assume ds: cseg statement in the
assembler source. It is important to realize that the assume statements in assem­
bler source have absolutely no relation to the value of the DS register or any other
register. These statements produce no code whatsoever. Their function is to
tell the assembler to make certain assumptions necessary to correctly assemble
the code. For example:

cseg segment

assume ds:cseg
mov ah,radix

radix db 16

cseg ends

The type of move instruction generated when the assembler sees the mov

ah. radix is directly related to the assume ds: cseg statement. With the assume
pseudooperation, you tell the assembler to pretend that the data segment is in
the current code segment, a key issue for memory resident programs. If the
actual value of DS is not the same as the value of CS when this code is executed,
this code will fail, despite the assume statements.

4.4 A Refined Resident Program

The code for the minimum resident program does nothing but take up space in
memory. In fact, if you actually were to place useful code between start and
end, you'd quickly find that it would be executed only once, at the time you ran

45 4.4. A REFINED RESIDENT PROGRAM

the. COM initialization file. After that, the code would be permanently locked in
memory, but inaccessible except by direct far jump to the start address. The
actual value of the start address for this code is not fixed, but varies according
to the state of the machine when the program was loaded. At this point we have
created a small program that causes some code to be loaded into the appropriate
area and retained, but we have not actually created a resident application.

The next step is to create a . COM program that executes the installation code
at the time it is run, and install the resident code correctly without running it.
To achieve this, we must modify the previous program in this fashion:

, section 1
cseg segment

assume cs:cseg,ds:cseg
org 100H

section 2
start:

jmp initialize
section 3

app_start:
nop

initialize :
, section 4

mov dX,offset initialize
int 27H

, section 5
cseg ends

end start

The first thing that this program does upon being run as a . COM file is
to branch around the actual code of the resident application directly to the
initialization code that correctly installs the resident application. Note that
done has been changed to initialize and that the actual code of the resident
application falls between app_start and initialize.

You may wonder why initialize is not made the starting address. The
starting address of all . COM programs is 100H. In this program, start is located
at 100H, but initialize is not. If you specify initialize as the starting
address, which is done by putting it after the end statement (see the last line
of the previous example, where the starting address was set to start), EXE2BIN
tells you that the file cannot be converted. If you cannot make a . COM file, you
must handle the segmentation issues directly.

46 CHAPTER 4. A BASIC RESIDENT PROGRAM

4.5 Elimination of Memory Overhead

By now you may have noticed that nothing has been done about the program
segment prefix. Since we are basically advancing a pointer to the first available
byte of memory when we use INT 27H, anything below that pointer will be
retained including the program segment prefix of the .COM file used to start the
resident application. The last time the program segment prefix will be of any
use is while the . COM file is exiting, since INT 27H restores information from the
program segment prefix on exit. So we cannot get rid of the program segment
prefix until after the . COM file has exited.

This interesting fact requires us to make another design choice. If the pro­
gram segment prefix can be removed only after the .COM installation program
has exited, the program segment prefix must be removed by resident code. We
can do this by copying the entire resident application down in memory by 256
bytes. But how will this copying code be started? One way might be to set a flag
on loading that indicates whether or not the resident application has been run.
The first time the resident application is run, the copying code is invoked, and
the resident application relocated. However, what if the resident application is
not run for a long time after installation? What if a . COM file is running? What if
more resident applications have been loaded? These are important issues, which
may require some code to solve. If this code requires more than 256 bytes, it is
more cost-effective to waste the space taken up by the program segment prefix.
Some designers have implemented cost-effective solutions to this problem, but
they are usually quite subtle. For the most part, unless available memory is so
limited that 256 bytes becomes critical, you will probably make your programs
more readable and cleaner by simply ignoring the program segment prefix.

Another bit of overhead is the jmp initialize instruction. These few bytes
are retained along with the program segment prefix and the resident application.
Once again it is a small price to pay, but if you are sufficiently interested in
removing this overhead, it can be done.

4.6 Invoking the Resident Application

Now that we know how to load code in memory and retain it after the initial­
ization program has terminated, we must look at how our resident application
is to be called into service.

Each memory resident program is invoked in a way that is closely related

47 4.6. INVOKING THE RESIDENT APPLICATION

to what it is designed to do. A keyboard input interceptor is quite likely to be
linked via the keyboard input soft interrupt or possibly the keystroke interrupt.
Other programs may involve linking to a sophisticated combination of interrupts,
timers, and system calls. These linkages may be established at any time, but
at least one must be established at the time the installation .COM shell is run.
If this first link is not established, the code will never be invoked to establish
more. Typically, all the necessary linkages are established at initialization time,
with the program simply responding to the linked events.

What is meant by the term linkage? An IBM PC is driven by events such
as keystrokes, timer ticks, or soft interrupt system calls. These events can be
intercepted, and actions can be performed based on these events. By linkage,
we mean the mechanism that causes our code to be run rather than the code
that came with the system.

In the case of the trivial keyboard input interceptor that we are designing,
the linkage will be to the keyboard input ROM system call. When DOS or an
application wants a character from the keyboard, it calls INT i6H. If we can
arrange to have our code called instead, then we can place a layer of code that
we can control between the application and the generic operating system. It
is this interposition of layers that is the fundamental mechanism of all resident
applications.

To install the linkage, we use INT 21H function 25H (set interrupt vector) to
replace the interrupt vector for the ROM system call with a pointer to our own
code.

cseg segment
assume cs:cseg.ds:cseg
org 100H

start:
jmp initialize

Section 1
new_keyboard_io proc far

sti
nop
iret

new_keyboard_io endp
End Section 1

initialize:
Section 2

mov dx.offset new_keyboard_io
mov al.16H
mov ah.25H

48 CHAPTER 4. A BASIC RESIDENT PROGRAM

int 21H
End Section 2

mov dX,offset initialize
int 27H

cseg ends
end start

In this version of the code, several important changes have been made. These
changes are shown in Sections 1 and 2 of the listing.

In Section 1, we rewrote the portion of the code that makes up our resident
application as a Macro Assembler procedure. This was done to aid readability.
By making a procedure out of the special code that is to remain resident, it
becomes distinct from the rest of the code in the program. A simple label at
the beginning would have been just as effective, but not visually distinct.

Of greater practical importance, two instructions were added to our null
resident application. The first of these is the STI (set interrupt flag/enable
interrupts) instruction.

When an interrupt occurs, the hardware of the 8086/8088 turns off the flag
that permits any further interrupts from being serviced. In effect, the system
is giving its undivided attention to servicing the interrupt in progress. This
devotion to duty is commendable and important, but it comes with a price.
While interrupts are disabled, any hardware signals, such as keystrokes, timer
ticks, disk signals, and modem interrupts will be ignored. If interrupts remain
disabled, the system will lose valuable information, and things will begin to fail.
Thus, while there may be a valid reason for operating for a time with interrupts
disabled, this time is precious, and should not be squandered.

The second important instruction is the IRET (return from interrupt). As
RET is used to return from CALLed :subroutines, IRET is used to return from
interrupt handlers. IRET differs from RET only in that the CPU state flags are
restored from the stack after the return address has been popped off the stack.
These flags are pushed onto the stack by the interrupt mechanism built into
the hardware. By restoring the flags to their previous state, IRET restores the
interrupt enable flag to its previous state, thus reenabling interrupts. Strictly
speaking, for the null resident application in this example, using an STI and
an IRET is redundant. However, both instructions are crucial for real interrupt
handlers, so for the sake of clarity, they both are shown here.

49 4.7. CHAINING INTERRUPT HANDLERS

4.7 Chaining Interrupt Handlers

It is often more useful to replace part of an interrupt handler rather than re­
place the entire handler, as has been done in the previous example. If the code
shown in the previous example was used, keyboard input would not be possible.
Characters would continue to be read and queued by the hard interrupt handler
until the keyboard input queue was filled. With the null resident application
shown, no method of dequeuing characters is possible.

Suppose we want to install an interrupt handler that simply calls the original
keyboard interrupt handler. Once we are capable of doing this, modifying the
parameters or taking action basoo on the results of the existing code is easily
within our power. We can sucessfully insert a layer of code under our control.

cseg segment
assume cs:cseg,ds:cseg
org 100H

start:
jmp initialize

Section 1

End Section 1
new_keyboard_io proc far

sti
Section 2

pushf
assume ds:nothing
call old_keyboard_io

End Section 2
iret

new_keyboard_io endp

initialize:
assume cs:cseg,ds:cseg

Section 3
mov bx,cs
mov dS,bx

mov al,16H
mov ah,35H
int 21H
mov old_keyboard_io,bx
mov old_keyboard_io[2] ,es

End Section 3

50 CHAPTER 4. A BASIC RESIDENT PROGRAM

mov dX,offset new_keyboard_io

mov al,16H

mov ah,25H

int 21H

mov dX,offset initialize

int 27H

cseg 	 ends
end start

In Section 1, we created a place to store the value of the old vector. Since we
were constrained to operate within a single segment, the data statements had to
be in the same segment as the code. Of course, we should avoid inadvertently
transferring control to these bits of data mixed in with our code.

Since it was not likely that the original interrupt handler would be in the
same segment as our interrupt handler, we had to allocate a double word to
contain the segment and the offset of the target handler.

There is no reason that this double word could not have been allocated at
any convenient place in resident application memory. You may find it more
convenient, however, to locate the double word immediately after the jump to
the initialization code. By putting the address of the previous vector in a known
location (the four bytes preceding the start address of the new handler) you make
it easier to find with a debugger and, if necessary, by a program.

Section 2 is the body of the resident application, which consists of a simulated
interrupt call to the old interrupt handler. Since any interrupt handler that you
replace was designed to be called by an INT rather than a CALL, you must
simulate the actions of the INT by first pushing the flags onto the stack with a
PUSHF instruction.

The next line is an assembler directive, not an opcode. It tells the assembler
to assume nothing about the data segment flag when generating subsequent
machine code. This causes the assembler to generate the proper double-word
address in the next instruction.

The CALL instruction transfers control to the old keyboard interrupt handler
as if it were a subroutine. When this function is completed, it executes an
IRET instruction and control returns to this code, just as a normal subroutine
call would happen. By doing this, we can use the old function to do work for
us, without giving up control. If we chose to, we simply could have JMPed to
the old handler, without pushing the flags. Control would have left our code

4.8. DETECTING OUR RESIDENT APPLICATION 51

permanently, with the old handler actually returning from the interrupt for us.
Section 3 is the initialization code. Here, we determine the setting of the

interrupt vector we are about to replace and squirrel that value away in a place
that will remain resident, where the resident application can use it.

The first two lines of Section 3 actually copy the DS register from the CS
register. The 8086/8088 has no instruction to copy one segment register to
another, so this must be done through an intermediate register, in this case, BX.
When the. COM file terminates, these register changes will be flushed; thus, we
cannot count on them at the time our resident application is invoked.

We then use INT 21H function 35H (get interrupt vector) to determine the
value of the interrupt vector. This value is returned in two registers, with ES
containing the segment of the old vector and BX containing the offset. These
values are copied into the double word set aside for them. Please note that the
offset precedes the segment within the double word.

Running this program should have no apparent effect on the behavior of
DOS or any normal application. Keyboard input should behave normally.

INT 21H function 31H is somewhat more modern than INT 27H, but it per­
forms basically the same function. This function requires that you calculate the
number of paragraphs (16-byte chunks of memory) that you wish to reserve. In
addition, it also permits you to return an exit code. In the long run, you might
be better off using it instead of INT 27H. In this book we stick with INT 27H
simply because it is easier to use, is more obvious in function, and runs under a
wider range of DOS versions.

4.8 Detecting Our Resident Application

Now that we have successfully insinuated our code between applications and
what DOS does to read a character from the keyboard, we can begin to modify
the results. In this example, we will simply be reversing the case on a single let­
ter. Certainly it is trivial, but it also proves that modification can be performed
successfully.

One design issue that must be resolved is that of duplication of function.
Clearly, we are not interested in duplicating what DOS or the ROMs do to check
the status of the keyboard. In fact, we are not even interested in intercepting
that function. We are interested only in intercepting the read, INT 16H function
OH (read character). Since we can let the original handler manage functions

52 CHAPTER 4. A BASIC RESIDENT PROGRAM

other than the read, we must add a little code to let the ROMs (or whatever
other handler might be in place) handle the other functions.

cseg segment
assume cs:cseg,ds:cseg
org 100H

start:
jmp initialize

old_keyboard_io dd

new_keyboard_io proc far
assume cs:cseg,ds:cseg
sti

cmp ah,O
je kiO
assume ds:nothing
jmp old_keyboard_io

kiO:
pushf
assume ds:nothing
call old_keyboard_io

cmp aI, 'y'
jne ki1
mov aI, 'Y'
jmp kidone

ki1:
cmp aI, 'Y'
jne kidone
mov aI, 'y'

kidone:

iret
new_keyboard_io endp

initialize:
assume cs:cseg,ds:cseg
mov bx,cs
mov dS,bx

mov aI,16H

Section 1

End Section 1
Section 2

End Section 2

53 4.8. DETECTING OUR RESIDENT APPLICATION

mov ah,35H

int 21H

mov old_keyboard_io,bx

mov old_keyboard_io[2] ,es

mov dX,offset new_keyboard_io

mov al,16H

mov ah,25H

int 21H

mov dX,offset initialize

int 27H

cseg 	 ends
end start

Section 1 of this code detects whether the operation is function OH (read char­
acter). If it is not, control is transferred entirely to the old handler, which then
deals with the other functions function lH (read keyboard status), and function
2H (read keyboard flags). By doing a jump, rather than simulating an interrupt
with a subroutine call, we let the original handler return from the interrupt for
us.

Even though we have already reenabled interrupts, the original handler will
perform this operation again. STI is not a toggle; it always sets the interrupt
flag. Repeatedly setting the IF will have no unusual side-effects.

Section 2 of the code handles the case in which a read request has been
detected. Here we must simulate an interrupt to the old routine by pushing
the flags and then calling the old vector as a subroutine. In this case, we want
control to return to our code before it returns to the program that generated
the read request, function OH (Read Character) (which returns its results in AL).
The next few lines of code determine if it is the character we are interested in
(in this case the "Y" or the "y") and modify that character by returning it with
the opposite case.

This basic application could be called an existence proof. By running this
code, we prove that it is possible to place a controlled layer of code between the
operating system and the application. That layer can then selectively enforce
or replace DOS functions, modifying the results to suit us. From this basic
premise, we can move on to much more interesting applications and make deeper
explorations into the workings of DOS.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I

I
I
I
I

I
I

I
I
I
I

I
I
I
I
I
I

Chapter 5

A Keystroke Expander

We can now build quite a variety of applications using the foundation of our
basic resident application. The first few steps, which we have already taken,
are the hardest. From here, we can find out what these techniques of resident
programming are good for.

Given that we can construct a basic program that will replace one keystroke
with another, perhaps the next step is a program that will replace one keystroke
with a sequence of keystrokes. After all, how many times do you find yourself
typing the same commands over and over again? If you could do the same work
with fewer keystrokes, you could do something else with the time and effort you
save, if only put your feet up on the table and sip coffee while the machine does
the work. Dare to be creatively lazy.

Let's take another look at our minimal keyboard interrupt resident applica­
tion:

cseg segment
assume cs:cseg.ds:cseg
org 100H

start:
jmp initialize

new_keyboard_io proc far
assume cs:cseg.ds:cseg
sti
iret

new_keyboard_io endp

55

56 CHAPTER 5. A KEYSTROKE EXPANDER

initialize:
assume 	 cs:cseg,ds:cseg
mov 	 bx,cs
mov 	 dS,bx

mov 	 al,16H
mov 	 ah,35H
int 	 21H
mov 	 old_keyboard_io,bx
mov 	 old_keyboard_io[2] ,es
mov 	 dX,offset new_keyboard_io
mov 	 al,16H
mov 	 ah,25H
int 	 21H

mov dX,offset initialize

int 27H

cseg 	 ends
end start

By changing just the new~eyboard_io routine, we can modify this code into
a variety of keyboard applications. Since only new~eyboard_io will change,
we need to list only the code involved with that routine, since the envelope
of installation code remains the same. This will be the basis for our keystroke
expander. Before we write that program, however, we must examine the problem
and resolve several design issues.

First, of course, we must decide what kind of keystrokes to expand. Ex­
panding a printing character, such as a letter or number, would make typing
simple text quite an adventure. Expanding a control character ought to work,
but DOS already interprets some control characters (for example CONTROL-H)
as special operators. A set of characters that are used great deal with word
processing programs, but rarely outside them, are the extended characters. Ex­
tended characters are used for such things as the function keys, and the ALT­
keys. These characters are a good choice for expandable keystrokes. DOS iden­
tifies these characters by preceding them with a zero byte; thus, they are easily
identifiable. By using extended characters, we will have essentially no impact on
normal DOS programs and commands. By choosing carefully which extended
characters to expand we will have a minimal impact on programs that make use
of the extended character set.

57

The Extended Character Set

1 34 ALT-G 67 F9 100 CONTROL-F7
2 36 ALT-H 68 F10 101 CONTROL-F8
3 Pseudo-NULL 36 ALT-J 69 102 CONTROL-F9
4 37 ALT-K 70 103 CONTROL-F10
6 38 ALT-L 71 Home 104 ALT-F1
6 39 72 UpArrow 106 ALT-F2
7 40 73 PgUp 106 ALT-F3
8 41 74 107 ALT-F4
9 42 76 LeftArrow 108 ALT-F6
10 43 76 109 ALT-F6
11 44 ALT-Z 77 RightArrow 110 ALT-F7
12 46 ALT-X 78 111 ALT-F8
13 46 ALT-C 79 End 112 ALT-F9
14 47 ALT-V 80 DownArrow 113 ALT-F10
16 SHIFT-TAB 48 ALT-B 81 PgDn 114 CONTROL-PrtSc
16 ALT-Q 49 ALT-N 82 Insert 116 CONTROL-LeftArrow
17 ALT-W 60 ALT-M 83 Delete 116 CONTROL-R1ghtArrow
18 ALT-E 61 84 SHIFT-F1 117 CONTROL-End
19 ALT-R 62 86 SHIFT-F2 118 CONTROL-PgDn
20 ALT-T 63 86 SHIFT-F3 119 CONTROL-Home
21 ALT-Y 64 87 SHIFT-F4 120 ALT-1
22 ALT-U 66 88 SHIFT-F6 121 ALT-2
23 ALT-I 66 89 SHIFT-F6 122 ALT-3
24 ALT-O 67 90 SHIFT-F7 123 ALT-4
26 ALT-P 68 91 SHIFT-F8 124 ALT-6
26 69 F1 92 SHIFT-F9 126 ALT-6
27 60 F2 93 SHIF'f~r'10 126 ALT-7
28 61 F3 94 CONTROL-F1 127 ALT-8
29 62 F4 96 CONTROL-F2 128 ALT-9
30 ALT-A 63 F6 96 CONTROL-F3 129 ALT-O
31 ALT-S 64 F6 97 CONTROL-F4 130 ALT-Hyphen
32 ALT-D 66 F7 98 CONTROL-F6 131 ALT-=
33 ALT-F 66 F8 99 CONTROL-F6 132 CONTROL-PgUp

Second, we must examine the kind of strings we will expand a keystroke into.
For example, how do we terminate such a string, indicating the boundaries of the
expansion? One possible choice might be a carriage return (standard ASCII code
ODH). This would be a logical choice, since commands are normally terminated
with a carriage return. However, if we choose this as a termination character,
we cannot easily represent multiple line expansions. Another choice might be
the $ character. Unfortunately, some DOS system calls use the $ as a string
terminator. If we used the $ (or any other printing character) we could not
incorporate that character into our expansion strings.

The C programming language has the convention that strings are terminated
by a zero byte. This type of string is sometimes called an ASCIIZ (ASCII Zero­
terminated) string by assembly-language programmers. By zero-terminating
(sometimes called null-terminating) the strings, we can represent any printing

58 CHAPTER 5. A KEYSTROKE EXPANDER

character, as well as all the nonprinting ASCII characters. Since there is no way
to enter a zero byte from the keyboard, there will never be a conflict between
the stored representation and the actual keystrokes for ASCII.

For the purpose of this first example, we will redefine the meaning of the Fl
key (extended character 59), to have it generate a DIR<CR> command and list a
directory. Both choices are arbitrary. We could just as easily define Fl to mean

MASM MACRO;
LINK MACRO;
EXE2BIN MACRO.EXE MACRO. COM

where each line is ended with a carriage return (ODH). We could have chosen
another character to expand.

Third, how is the information to be passed back to DOS? DOS normally
expects one keystroke at a time from the keyboard input queue. Somehow, we
must contrive to fool DOS into accepting a stream of characters in the place of
our single character.

DOS determines when a character is available for input by checking the
status of the keyboard. A subfunction of the keyboard input ROM call returns
a set (1) ZF if no characters are waiting and a cleared (0) ZF if a character
is ready. Obviously, it would be unacceptable to require a separate keystroke,
a space perhaps, for each matching character in the expanded string. If we
assume control of this subfunction, we can feed any number of characters to
DOS by repeatedly deceiving DOS into believing that a character is ready at
the keyboard and then simply returning a character from our stored stream
when the corresponding read is requested.

5.1 A Basic Expander

We can replace the empty new.-keyboard_io routine with a new piece of code
that will intercept the functions that we require:

proc far
sti
cmp ah,O A READ request?
je ksread
cmp ah,l A STATUS request?
je ksstat
assume ds:nothing Let original routine

59 5.1. A BASIC EXPANDER

jmp old_keyboard_io do remaining subfunction.
ksread:

call keyread Get next char to return
iret

ksstat:
call keystat Get status.
ret 2 Important! ! !

new_keyboard_io endp

Using this routine, we place function OH (read character) and function lH
(get keyboard flags) under our control. The code is straightforward, but there
is one key portion that makes this entire application work. A keyboard status
check returns its results by setting or clearing ZF. We have already discussed how
the IRET instruction pops the flags, pushed by the interrupt, and thus restores
them. Properly setting the value of ZF and then following with an IRET would
be purposeless, since ZF would immediately be reset to the value it held before
the interrupt. Thus, we must return from the interrupt without altering the
value of ZF. This is done by using the optional parameter of the RET instruction.

The RET instruction has an optional argument that indicates the number of
bytes to pop off the stack. Usually this is done when a subroutine in a high-level
language has a number of parameters or variables that it wishes to flush off the
stack when it returns. In this case, we want to flush the original flags from the
stack so our altered set of flags can be returned instead. Any flags that have
been changed in our interrupt handler will return to the interrupted program in
their altered state, including the critical ZF flag.

assume ds:nothing

If expansion is in progress, return a fake status
of ZF=O, indicating that a character is ready to be
read. If expansion is not in progress, then
return the actual status from the keyboard.

keystat proc near
cmp cs:current,O
jne fakestat
pushf Let original routine
call old_keyboard_io get keyboard status.
ret

fakestat:
mov bX,l Fake a "char ready"
cmp bx,O by clearing ZF.
ret

60

keystat

keyread
cmp
jne

readchar:
mov
pushf
call
cmp
je

readdone:
ret

extended:
cmp
jne

mov
expandchar:

push
mov
mov
inc
pop
cmp
je
ret

keyread

current dw

string db

CHAPTER 5. A KEYSTROKE EXPANDER

endp

Read a character from the keyboard input queue,
if not expanding or the expansion string,
if expansion is in progress.

proc near
cs: current ,0
expandchar

cs:current,O Slightly peculiar
Let original routine

old_keyboard_io get keyboard status.
al,O
extended

ah,59 Is this character to expand?
readdone If ~ot, then return it normally.

If so, then start expanding
cs:current,offset string

si
si,cs:current
aI, cs: [si]
cs:current
si
al,O Is this end of string?
readchar If so, then read a real char?

endp

Pointer to where we are in the expansion string
0

String we will return when an F1 is typed.
OdH is ASCII Carriage Return

'OIR',OdH,O

We have a pointer, current, that points to the next character to be returned
to DOS. If that pointer is zero, we are not expanding anything. If it is not zero,
then the pointed-at character is to be returned, unless that character is a zero
byte. If the pointed-at character is a zero byte, we must turn expansion off and
get a character from the keyboard. Both keystat, the status checking routine,

61 5.1. A BASIC EXPANDER

and keyread, the character-input routine have two halves, one side for when
expansion is happening, (current is not 0), and one side for when it is not,
(current is 0).

If expansion is not happening, the status routine simply calls the old key­
board routine to determine the state of the keyboard input queue. If expansion
is happening, ZF is cleared, meaning that a character is available. ZF can be set
or cleared by performing an operation whose result is zero or not zero, respec­
tively. By setting BX to 1 and then comparing it to see if it is equal to zero,
we are performing an operation whose result is guaranteed to be not zero (not
equal/false). Thus, the zero flag is cleared. There are, of course, more clever,
less bulky ways of ensuring that ZF is cleared. This way was chosen for clarity.

The character-input routine is by far the most complicated part of the whole
program. This routine determines what the next character to be sent to DOS
will be. If expansion is off, the older keyboard input routine is called to fetch the
next character. When that ch.aracter has been acquired, it must be checked to
see if it is an expanded character. Normally, the character-input routine returns
its results in the low byte of AX. AL will contain the ASCII character that was
typed. If an extended character, such as a function key or an ALT key, is typed,
AL will be zero. In these cases, the extended character code (see the table earlier
in this chapter) will be contained in the high byte of AX.

If the character read is an extended character and that extended character
is the Fl key, we want to begin expansion. We do this by setting the current
pointer to the start of the expansion string. A frequent mistake is to do a
mov cs: current. string rather than a mov cs: current. offset string. The
difference here is that the first would fail, since we would be trying to move a
byte into a word, and the assembler would force us to make the types match for
the source and the destination of the move. The second is correct because what
we want is not the value of the string, but a pointer to the beginning of the
string.

If we are expanding, we will fetch the byte at the current pointer and stuff
it into AL. As long as AL is not zero, we need not worry about the value of AH;
nothing will examine it. If AL does become zero, we have reached the end of our
expansion string. This means that we should not return a zero, but instead call
old~eyboard_io once again to fetch another character from the keyboard.

In this bit of code there is one slightly peculiar line. You may have noticed
that, upon entry to this routine, and after checking to be sure that current was
zero, the very next thing we did in the case in which current was known to be

62 CHAPTER 5. A KEYSTROKE EXPANDER

zero was to set it to zero again. By itself, this is a harmless, if somewhat odd,
thing to do. It is useful, however, in the case we have just been discussing. When
we have reached the end of the expansion string, current will be non-zero but
will be pointing at a byte immediately following the one containing the zero that
indicated the end of the string, since we incremented current immediately after
fetching what it pointed to. We know that the expansion is completed, and thus
we need to turn it off. To do this in a straightforward fashion, we would jump to
an intermediate bit of code that sets current to zero and then unconditionally
jump toreadchar. By wasting one harmless instruction, we save a step, reduce
the code size a little, and make things just a little less convoluted.

In this code, it is important that each reference to memory include a segment
specification. When control enters our interceptor, we have no idea what is in
the OS register, but we can make two guesses about the value of OS. It is almost
certainly not a value that will do us any good, and its value is probably quite
important to the program that was interrupted. Therefore, we must take pains
to ensure that each reference we make to memory uses the correct segment,
which will always be the same value as CS. We must also be sure not to alter any
register without making provisions to restore its value before releasing control.

5.2 Expanding on Multiple Keys

The preceeding program expanded one special key into one string. Sometimes,
as they say, once is not enough. Suppose we want to paint in broader stripes,
expand a set of keys in some reasonable fashion. How might this be done?

One obvious way would be to modify our simple single-character program
to take its character and expansion string as arguments. That way we might
define a bunch of keys in the AUTOEXEC. BAT file like this:

MACRO F1 OIR
MACRO F2 OIR/W
MACRO F3 OIR *.ASM
MACRO F4 OIR *.COM
MACRO F5 OIR * .EXE

By doing this, we could stack each successive key expander on the next. The
values of individual macros would be defined in the AUTOEXEC . BAT file and could

63 5.2. EXPANDING ON MULTIPLE KEYS

be changed at each reboot. Some of the design choices for our key expander have
a positive impact on this approach. Since we concerned ourself only with the
expanded (zero-prefixed) character set and designated, in the C fashion, that
our expansion strings be terminated by a zero, our macro strings cannot contain
any expanded characters. This is quite a lucky break for us, because having
expanded characters in macro strings in this design could be disastrous. Each
time we run MACRO in AUTOEXEC. BAT, it will link a new copy of the program
to the previous keyboard handler. The first time we do so, we will add a layer
between the call and the original ROM handler. The second time, we will add a
layer above the first additional layer. The next time, we add a third layer, and
so on. Each character we type must filter through each and every layer. Each
expanded character must filter through any layers above the one at which it was
declared. As long as no two calls replace the same special character, there is
no need to impose any order on the invocations of MACRO. If any character is
declared twice, the last one to be called will be used. Imagine, however, if each
and every layer could alter the meaning of the expansion string as the character
filters upstream. You might get things to work, but chances are you would be
pulling your hair out over unexpected peculiarities.

For a very small number of characters, this layer-upon-Iayer method is ac­
ceptable. Since our expander is approximately a hundred bytes of resident code,
each layer will remove a hundred bytes or so from available memory. To add
new values for all 128 function keys would cost about 13 kilobytes of memory.
Surely, some less piecemeal approach would let us do this in less memory, with
less overhead per character.

As you may have guessed, that last statement was a bit of rhetoric. If we
can recognize one character in a small program, we can easily recognize more
than one. By using the expanded key to index into a table of strings, we can
bind any of the possible expanded characters to a string.

A character is a single byte. A pointer to a string is two bytes. For 128
expanded characters, this adds up to a total table size of 384 bytes. Estimating
the additional code necessary to be about 50 bytes gives us a total code size of
rcmghly half a kilobyte. Add to that the size of the total set of expansion strings
(say, 20 bytes each), and you can see that we need about 2.5 kilobytes to expand
all 128 keys, or about 10 kilobytes less than the piecemeal approach. Since we
have less overhead per character, this approach is clearly a winner.

It may be that we don't want to replace all the extended characters. For
example, we may want to leave the cursor keys and the page keys alone. We may

64 CHAPTER 5. A KEYSTROKE EXPANDER

not have useful things to bind to all the other keys either. For this reason, we
probably don't want to blindly use the key code as an index into a sparsely filled
table. Instead, we want to replace only the keys that we choose and have the rest
pass through unchanged. If we replace roughly half the keys, our total cost in
memory becomes something in the neighborhood of 1 kilobyte, with additional
memory costs that track exactly with the size of the expansion string, plus a
byte to indicate the character and a byte to terminate the string. By rethinking
the problem, we have dropped more than an order of magnitude in size, for the
typical case.

The only code that must change to go from a single-key expander to a
multiple-key expander is the keyread routine and the data area:

Read a character from the keyboard input queue,
if not expanding or the expansion string,
if expansion is in progress.

keyread proc near
push si
cmp cs:current,O
jne expandchar

readchar:
mov cs: current, 0 Slightly peculiar
pushf Let original routine
call old_keyboard_io get keyboard status.
cmp al,O
je extended
jmp readdone

extended:
mov si,offset keytab

nextext:
cmp byte ptr cs: [si] ,0 Is this end of table?
je readdone
cmp ah,cs: [si]
je startexpand
add si,3
jmp nextext

startexpand:
push bx
add si,i
mov bx,cs: [si]
mov cs: current ,bx If so, start expanding

expandchar:
mov si,cs:current
mov al, cs: [si]

65 5.2. EXPANDING ON MULTIPLE KEYS

inc
cmp
je

readdone:
pop
ret

keyread

current 	dw

keytab 	 db
dw
db
dw
db
dw
db
dw
db
dw
db
dw
db

dir_cmd
dir_wide
dir_asm
dir_com
dir_exe
make_macro

cs:current
al,O
readchar

si

endp

o

59
dir_cmd
60
dir_wide
61
dir_asm
62
dir_com
63
dir_exe
50
make_macro

End of string?

If so, read a char?

o ; This must be last in key table

db 'DIR' ,OdR,O
db 'DIR/W' ,OdR,O
db 'DIR *.ASM' ,OdR,O
db 'DIR *.COM' ,OdR,O
db 'DIR *.EXE' ,OdR,O
db 'MASM MACRO; , ,OdR,

'LINK MACRO; ',OdR,
'EXE2BIN MACRO.EXE MACRO. COM' ,OdR,O

Of course, as with any design choice, there are trade-off's. By choosing to
search an unordered table rather than indexing into a sorted table, we make the
time it takes the system to act on an expanded character dependent on that
character's position in the table. If this search time becomes excessive, we could
manually sort the table and then use one of the classic searching algorithms to
look for the correct entry. The search loop used in the above code, however, is
just six instructions long. The maximum table size is 128 entries. For a worst­
case match, the machine must execute approximately 768 (6 * 128) instructions.
On a generic IBM PC, 768 instructions would take on the order of a millisecond
to execute. We could make this a little faster at the cost of making the code a

66 CHAPTER 5. A KEYSTROKE EXPANDER

little larger, but it hardly seems worth it.
Compare this to the case in which we simply accumulated key expanders for

each "search", meaning the operation necessary to compare the current character
with the target character. We would require about eight to ten instructions, one
of which would be a subroutine call. Subroutine calls can be quite expensive on
some machines. On an 8086/8088, subroutines calls are time consuming, but
not vastly more so than other branching instructions (this is not the case for
subroutine calls in a high level language, however). Anyway, the worst case time
here is something around 1200 instructions. Not too bad, since the perceptible
time is roughly the same, but still less efficient.

So by rethinking the problem, we have saved a little time and a lot of impor­
tant memory. We also have made the human interface a little less convenient,
since we have moved the definition of the strings to the assembly source. There
is nothing preventing us from rewriting this program to load the strings from
a file at initialization time, however. This should not change the resident size
at all, since all the initialization code to load the file can be discarded, like the
first stage of a rocket, after it has done its job. The loader code need not take
up space in resident memory at all.

5.3 MACRO. ASM - Single-key Expander

The following program expands a single keystroke into a command string.

cseg segment
assume cs:cseg,ds:cseg
org 100H

start:
jmp initialize

assume ds:nothing
new_keyboard_io proc far

sti
cmp ah,O Is this call a READ request?
je ksread
cmp ah,l Is it a STATUS request?
je ksstat Let original routine
jmp old_keyboard_io handle remaining subfunction.

ksread:

67 5.3. MACRO. ASM - SINGLE-KEY EXPANDER

call
iret

ksstat:
call
ret

new_keyboard_io

keyread
cmp
jne

readchar:
mov
pushf
call
cmp
je

readdone:
ret

extended:
cmp
jne

mov
expandchar:

push
mov
mov
inc
pop
cmp
je
ret

keyread

keystat
cmp
jne
pushf
call
ret

fakestat;
mov
cmp
ret

keyread , Get next character to return

keystat Return appropriate status.
2 Important! ! !

endp

proc near
cs: current ,0
expandchar

cs: current ,0 Slightly peculiar
Let original routine

old_keyboard_io determine keyboard status.
al,O
extended

ah,59 Is this character to expand?
readdone If not, return it normally.

If so, start expanding
cs:current,offset string

si
si,cs:current
aI, cs: [si]
cs:current
si
al,O Is this end of string?
readchar If so, then read a real char?

endp

proc near
cs:current,O
fakestat

Let original routine
determine keyboard status.

bX,l Fake a "Character ready" by
bx,O clearing ZF.

68 	 CHAPTER 5. A KEYSTROKE EXPANDER

keystat 	 endp

current dw 	 o
string db 	 'masm macro; ',OdH,

'link macro; , ,OdH,
'exe2bin macro.exe macro.com',OdH,O

initialize:
assume cs:cseg,ds:cseg
mov bx,cs
mov dS,bx

mov al,16H

mov ah,35H

int 21H

mov old_keyboard_io,bx

mov old_kayboard_io[2] ,es

mov dx,offset new_keyboard_io

mov al,16H

mov ah,25H

int 21H

mov dx,offset initialize

int 27H

cseg 	 ends
end start

}

5.4 	 MACTAB . ASM - General Keystroke Expander

This program expands any number of extended keys into individual command
strings by means of a lookup table.

cseg 	 segment
assume cs:cseg,ds:cseg
org 100H

start:
jmp initialize

assume 	 ds:nothing

5.4. MACTAB. ASM - GENERAL KEYSTROKE EXPANDER 69

new_keyboard_io proc far
sti
cmp
je
cmp
je
jmp

ksread:
call
iret

ksstat:
call
ret

new_keyboard_io

keystat
cmp
jne
pushf
call
ret

fakestat:
mov
cmp
ret

keystat

ah,O
ksread
ah,l
ksstat
old_keyboard_io

keyread

keystat
2

endp

proc near
cs: current ,0
fakestat

bX,l
bx,O

endp

Is this call a READ request?

Is it a STATUS request?
Let original routine
do remaining subfunction.

Get next character to return

Return appropriate status.
Important! ! !

Let original routine
determine keyboard status.

Fake a "Character ready" by
clearing ZF.

keyread
push
cmp
jne

readchar:
mov
pushf
call
cmp
je
jmp

extended:
mov

nextext:

Read a character from the keyboard input queue,
if not expanding or expansion string,
if expansion is in progress.

proc near
si
cs:current,O
expandchar

cs: current ,0 Slightly peculiar
Let original routine

old_keyboard_io get keyboard status.
al,O
extended
readdone

si,offset keytab

70

cmp
je
cmp
je
add
jmp

startexpand :
add
push
mov
mov
pop

expandchar:
mov
mov
inc
cmp
je

readdone:
pop
ret

keyread

current 	dw

keytab 	 db
dw
db
dw
db
dw
db
dw
db
dw
db
dw
db

dir_cmd
dir_wide
dir_asm
dir_com
dir_exe
make_macro

CHAPTER 5. A KEYSTROKE EXPANDER

byte ptr cs: [si] ,0 ; End of table?
readdone
ah, cs: [si]
startexpand
si,3
nextext

si,1
bx
bx,cs: [si]
cs: current ,bx
bx

si,cs:current
aI, cs: [si]
cs:current
al,O End of string?
readchar then read a real char

si

endp

0

59
dir_cmd
60
dir_wide
61
dir_asm
62
dir_com
63
dir_exe
50
make_macro
o

db 'OIR' ,OdH,O
db 'OIR/W' ,OdH,O
db 'OIR *.ASM' ,OdH,O
db 'OIR *.CoM' ,OdH,O
db 'DIR *.EXE' ,OdH,O
db 'MASM MACRO; ',OdH,

71 5.4. MACTAB. ASM - GENERAL KEYSTROKE EXPANDER

'LINK MACRO; , ,OdH,

'EXE2BIN MACRO.EXE MACRO. COM' ,OdH,O

initialize :
assume cs:cseg,ds:cseg
mov bx,cs
mov dS,bx

mov aI,16H

mov ah,35H

int 21H

mov old_keyboard_io,bx

mov old_keyboard_io[2] ,es

mov dX,offset new_keyboard_io

mov aI,16H

mov ah,25H

int 21H

mov dX,offset initialize

int 27H

cseg 	 ends
end start

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I

Chapter 6

U sing the Timer

Up to this point, we have concentrated on linking to the keyboard interrupt of
the IBM PC. The keyboard is a good linkage for functions that should happen
"at the touch of a button"-in other words, applications that we run sporadically.
But sometimes we want to perform a small job continuously while still using the
IBM PC for its normal work.

Larger, more powerful computer systems have the ability to run several tasks
at what appears to be the same time. This is known as multi-tasking. The design
of the IBM PC does not permit us to run several large jobs at once. By being
slightly clever, however, we can manage to do one large job and a few very
small jobs at the same time. In the jargon of larger computer systems, such
small tasks would be known as a "lightweight processes." A good example of
a lightweight process is a clock display that appears somewhere on the screen,
always telling us the correct time of day. A pleasant, well-placed clock display is
a useful addition to a personal computer, especially a portable computer. The
one listed in this chapter kept the author from missing several airplanes.

One of the devices an IBM PC has built into it is a timer. This timer sends an
interrupt to the IBM PC exactly 18.2 times per second. DOS uses this interrupt
to manage its time-of-day clock. By linking to this timer interrupt, we can have
our "lightweight process" run 18.2 times per second as well.

The timer is a tricky interrupt to plug into. Since it occurs regularly while
other programs are running, there is no telling what function was interrupted.
If the function that was running is used within the body of the timer interrupt
hatldler and that function is not reentrant, there is a good chance that the
system will crash.

73

74 CHAPTER 6. USING THE TIMER

6.1 Reentrant code

Let's talk for a moment about what it means for a process or function to be
reentrant. This is a term used a great deal by designers of multi-tasking operating
systems. A reentrant routine is one that can be successfully interrupted by itself.
That definition may sound a little circular and confusing, so further explanation
is in order. Imagine that you are a designer of a multi-tasking operating system.
You will have several processes running at the same time, meaning each gets a
few processor cycles in turn, over and over again. Each of these processes may
wish to write characters to the console terminal, for example, status messages.

Your current job is to write the routine that prints characters on the console
terminal. Since there are many processes that need to do this exact operation,
you'd like to write your code so that each process can use the same print routine.
Since all of these processes will be running in the same memory space, you'd
rather they not have to make individual copies of each common routine, such as
the print routine. That would be a waste of space.

If you arrange things so that only one copy will be used, then how you write
that particular routine becomes very important. Let's say that this is a piece of
the assembly language for such a routine:

printchar proc far

mov temp.al Section 1
move char to temp storage

mov al.temp Section 2
retrieve the char

printchar endp

temp db 0

Suppose an interrupt occurred, causing control to shift (called a context
switch) to another running task that also happened to be printing. Worse yet,
suppose the context switch occurred after Section 1 and before Section 2 in the
interrupted code and allowed Section 1 of the interrupting code to run. The
next time the interrupted code was allowed to run, the value that should have
been in temp will be gone. It was overwritten by the interrupting routine.

Suppose we rewrote that routine to store values on the stack. Since each
task has its own program connter and stack pointer, switching contexts would

75 6.2. BUILDING A DESK CLOCK

allow the same code to run without interfering with itself.

printchar proc far

push ax Section 1
move char to temp storage

pop ax Section 2
retrieve the char

printchar endp

This is all fine for true multi-tasking systems. The IBM PC, however, has
no mechanism for doing a real context switch. A great many of the DOS and
ROM routines cannot be interrupted by themselves. By linking to the DOS
timer interrupt, we push the system in a direction it was not intended to go.
Extreme care is necessary when writing timer-based code.

The best way to avoid problems with non-reentrant routines is never to call
any from within a timer interrupt handler. This limits the kinds of problems
you can Tun into. Another thing to avoid is any lengthy I/O. This means input
or output to the disk, from the keyboard, and the communications ports. You
should be able to do output to the screen safely enough.

A timer interrupt has a "window" of about 55 milliseconds in which to oper­
ate, since it would be disastrous for the next timer interrupt to come in before
the last one has finished processing. But don't get the idea that your code can
use up all that time. Part of that time is taken up by what DOS must do to
handle its timer services. This must happen at all costs, or DOS will grind
to a halt. Any remaining milliseconds are used to run the current application.
Processor cycles that you consume by adding to the timer overhead reduce the
amount of processing time that the main application will have available. Thus,
it is important to be frugal with the amount of code you put in a timer interrupt
handler.

6.2 Building a Desk Clock

Even though there are many things that should not be done from within a timer
interrupt handler, there are still many useful things that can be done with one.

Probably the most familiar timer-based application is that of a desk clock.
This is a small resident application that continuously displays the time of day

76 CHAPTER 6. USING THE TIMER

somewhere on the screen. The sources for these programs are usually quite
popular on bulletin boards, so they are easily available. We will write one here,
one of a slightly different design, so as not to duplicate what others have done.
Perhaps we can also shed some light on the conventional design by looking at a
desk clock in a slightly different perspective.

A normal program can determine the system time in several ways. It can
read the current tick count, which is the internal counter DOS uses to keep
track of the time of day. This count is then used to compute the time. Another
approach uses the DOS function that performs this computation for you and
simply returns the time of day.

Within a timer interrupt handler, calling either of these functions is only
slightly more difficult.

For our desk clock, we'll take a somewhat different approach. We won't do
any calculations or make any DOS calls, save the minimum necessary display
calls. Instead, we will compute the time in an "open-loop" fashion. This method
makes for a very small, very fast program, one that gives considerably less
overhead for the timer than the other methods. The disadvantage here is that
we are computing the time forward from when the program was first installed.
If you change DOS time you must reboot and reinstall the clock before the desk
clock time will agree.

By "open loop" we mean a method by which we set the initial time and then
compute the current time incrementally, without ever rechecking with DOS. A
"closed loop" program would be one in which we continually asked DOS for
the time and then displayed the result. Either method is acceptable in the
short run. In the long run, the only difference is that of cumulative error. The
clock shown here has been measured to track within a few seconds of the real
clock over a period of some two days. The total error would be one of about a
minute per month. Since few IBM PC systems go for an entire month without
a reboot, this clock should be perfectly acceptable. By applying a somewhat
fancier initialization algorithm and tightening up the code (which was written
for clarity, not speed), the accuracy of this clock would approach that of the
DOS clock.

To start, we need to rewrite our basic resident application to replace the
timer vector. By modifying the interrupt number and the variable names, we
can get a good start on this code. The application shown here simply interposes
a layer between the normal timer interrupt handler, which we control.

cseg segment para public 'CODE'

77 6.2. BUILDING A DESK CLOCK

org 100H
assume cs:cseg,ds:cseg

start:
jmp initialize

old_timer dd

timer_int proc far
sti
pushf
assume ds:nothing
call old_timer
iret

timer_int endp

initialize:
mov bx,cs
mov dS,bx

mov al,08H
mov ah,35H
int 21H
mov old_timer,bx
mov old_timer [2] ,es

mov dX,offset initialize
int 27H

cseg ends
end start

Next, to construct a clock, we must modify our timeLint routine so that
it calls a routine of our own devising to handle the needs of our desk clock. In
the past, we have called the standard routine just after our custom code had
completed. In the case of the timer, we want to call the timer routine first. The
reason for this is simple: it is much more important that the system clock be
updated on the tick than our desk clock. Since both the system routine and our
routine take time to execute, and the system routine expects to be called directly
on the timer tick, we must permit it to run first. Our code, being less critical,
can run after the system routine without significant gain in error. In fact, since
the system routine runs more or less in a fixed length of time, there should be
very little cumulative error by running our code after the system code. If the
system code were to run last, the cumulative error would be greater, since this

78 CHAPTER 6. USING THE TIMER

routine does not run in constant time. Even worse, the error would be in the
master system clock, used for marking files and so on, and thus have a greater
impact on the system as a whole.

As a first pass, we modify timer_int to display an empty time string in
the upper right corner of the screen. This location was chosen as the least
obtrusive area of the display; the position is entirely up to the discretion of the
programmer. The clock can actually be positioned anywhere on the screen.

One design choice we must make is how the time is to be displayed. Most
civilians prefer the twelve-hour format, midnight to noon, and one to eleven,
rather than the twenty-four-hour format used by the armed services and the
IBM PC. Showing hours and minutes is quite adequate. A seconds display can
sometimes be useful, but it may make the screen too active, and distract from
normal work. For this example, we will display the hour and the minute, in
twelve.,.hour format. Another frill will be the absence of a leading zero on hours
between one and nine. The hour and the minute will be separated by a colon.

Since we want to display a maximum of five characters, we could either write
this into the program or use code already written to display an arbitrary string,
using the ROM display routines. Since we may want to modify this code to do
other things, the previous code we wrote to display a string and position the
cursor is probably the better choice.

timer_int proc far
sti
pushf
assume ds:nothing
call old_timer
call timer
iret

timer_int endp

timer proc near
assume cs:cseg,ds:cseg
push ds Save modified registers
push bx

mov bx,cs Set data segment to be same
mov dS,bx as code segment via BX
call dtime Else redisplay

pop bx Restore registers
pop ds

79 6.2. BUILDING A DESK CLOCK

ret
timer endp

dtime proc near
push si Save modified registers
push bx

call get_pos , Save previous cursor position
push bx on stack
mov bx,position Go to upper right corner
call set_pos
mov si,offset time Display current time string
call dstring
pop bx , Restore from stack
call set_pos old cursor position

pop bx
pop si
ret

dtime endp

dstring proc near
push si
push ax
cmp si,O Check for a null pOinter
je dsdone

dloop:
mov al, [si] Get a character from string
cmp al,O A NULL? (termination char)
je dsdone If so, quit
call dchar If not, display character
inc si move pointer to next char
jmp dloop and go around again

dsdone:
pop ax
pop si
ret

dstring endp

dchar proc near
push ax
push bx
mov bh,l
mov ah,OEH
int 10H

80 CHAPTER 6. USING THE TIMER

dchar

pop
pop
ret

bx
ax

endp

push
push
push
push

proc
ax
bx
cx
dx

near

mov
mov
int
mov

ah,03R
bh,O
lOR
bX,dx

Function is GET POSITION

get_pos

pop
pop
pop
pop
ret

dx
cx
bx
ax

endp

push
push
push

proc
ax
bx
dx

near

mov
mov
mov
int

dX,bx
ah,02R
bh,O
lOR

Function is SET POSITION

set_pos

pop
pop
pop
ret

dx
bx
ax

endp

position
time

dw
db

004BR
'12:00' ,0

This code should display a "12:00" in the upper right corner of the screen,
regardless of the screen activity of the system. If the characters are scrolled
off the screen, they will be refreshed 55 milliseconds later. Because the display

81 6.3. WHAT TIME IS IT, ANYWAY?

process happens on every timer tick, the clock will appear to be fairly stable but
you may notice a slight flicker around the base of the characters as the cursor
continually goes to that position to refresh the display. For this application,
18.2 times per second is somewhat faster than necessary for a refresh, and the
flickering is vaguely annoying. One way to reduce the number of times per second
is to introduce another counter loop within timer that reduces the number of
times dtime is called. For example:

timer proc near
assume cs:cseg,ds:cseg
push ds Save modified registers
push bx

mov bx,cs Set data segment to be same
mov dS,bx as code segment via BX
inc refresh 18.2 times per second causes
cmp refresh,3 flicker. Try 4.5/second
jl rdone If not a whole refresh, skip
call dtime Else redisplay
mov refresh,O and reset refresh counter.

rdone:

pop bx Restore registers
pop ds
ret

timer endp

You will see this delay technique used several times in this code. Another
use for this is to stagger the computational load on the interrupt handler. By
carefully selecting the loop number, we could perform a computation on one
cycle, a display on the next, and so on. By doing this, we can reduce the
maximum length of any given interrupt-handler call, and still do the same work.

6.3 What Time Is It, Anyway?

At this point, there are two remaining portions of the clock to be constructed.
We have the portion that will display a valid time string in the correct location
on the screen. What we need now is a module that will advance that time
correctly, from minute to minute, and a module that will determine the correct
time. The next step is to build the mechanism of the clock; we'll worry about
setting the time later.

82 CHAPTER 6. USING THE TIMER

Building a program is like capturing a thought. New ways of thinking about
a problem often provide new mechanisms for solving problems. Many people
would design a clock with a byte for the hour and a byte for the minute, and
write a conversion routine that takes a byte and makes it into an ASCII string.
But this is not the only way of thinking about a clock, and it may not be the
best way. As an exercise in alternatives, let's look at a different kind of clock.
We might look at the five characters as two numbers separated by a colon, with
the first going from 1 to 12, and the second going from 0 to 59. Or we might
look at them and see five separate characters. The first may be a space or a
1; the second, 0 through 9; the third, always a colon; the fourth 1 through 6;
and the last 0 through 9. We could imagine a small machine, clicking through
successive combinations of characters, always producing a valid time. After all,
this is how clock makers have seen mechanical digital clocks for years.

If you are given the time "11:48" and are asked to produce the next valid
time one minute later, you can do it without hesitation. For that example, it
may seem very much like adding a 1 to the number 48. If, however, you are
given the time "12:59", and are asked the same question, you would not use
simple addition at all. You have learned the rules for valid timekeeping and
apply them daily. Why not write your program to follow the rules you yourself
use, rather than transposing those rules into an unfamiliar domain?

As we all know, in a twelve-hour clock, one moves from each minute to its
successor using these rules, applied successively from top to bottom:

• 	If advancing the minutes column and the minutes column is a nine, the
minutes column becomes zero and the tens-of-minutes column advances
by one.

• 	If advancing the tens-of-minutes column and the tens-of-minutes column
is a five, the tens-of-minutes column becomes a zero, and the hours column
advances by one.

• 	If advancing the hours column and the hours column is a two, and the
tens-of-hours column is a one, the hours column becomes a one and the
the tens-of-hours column becomes empty.

Let's convert these rules into an assembly-language routine, sort of a minia­
ture expert system, that will correctly advance the time for us. In computer
science, the type of routine where the rules for moving from one state to the

83 6.3. WHAT TIME IS IT, ANYWAY?

next are defined and repeatedly applied is known as a finite-state machine, or
FSM.

The characters are located in the time string, with the tens-of-hours at
time [0], the hours at time [1], the colon at time [2], the tens-of-minutes at
time [3] , and the minutes at time [4] .

settime proc near
cmp byte ptr time [4] ,'9' ; Compute the one minutes
je tenthmin If minutes = "9", advance the ten
inc byte ptr time[4]
jmp setdone

tenthmin: ; Minutes must advance past 9.
mov byte ptr time [4] ,'0' Compute the ten minutes
cmp byte ptr time [3] , ' 5' ; If "59", then advance one hour
je nexthour
inc byte ptr time[3]
jmp setdone

nexthour: ; Total minutes must advance past 59
mov byte ptr time [3] ,'0' ; Compute the hours
cmp byte ptr time[1],'2' ; Might be" 2" or "12"
je twelvethhour ; Wrap around at 12?
cmp byte ptr time [1] ,'9' ; If " 9", to to "10"
je tenthhour
inc byte ptr time[l]
jmp setdone

twelvethhour: ; Advance from 12 or 03?
cmp byte ptr time [0] " , ; Is it " 2"
je thirdhour ; If so, then go to " 3"
mov byte ptr time [0] ," If not, it must be "12"
mov byte ptr time [1] , ' l' ; so go to " 1"
jmp setdone

thirdhour: Go from 03 to 04
inc byte ptr time[l]; Go to " 3"
jmp setdone

tenthhour: Go from 09 to 10
mov byte ptr time [0] , ' l' ; Go to "10"
mov byte ptr time [1] ,'0'

setdone:
ret

settime endp

Now that we have the settime routine, we can try it out by changing timer
slightly, adding a call to settime after the call to dtime. We want to add the

84 CHAPTER 6. USING THE TIMER

call after rather than before so that our displayed sequence will start with 12: 00,
rather than 12: 01.

timer proc near
assume cs:cseg,ds:cseg
push ds Save modified registers
push bx

mov bx,cs Set data segment to be same
mov dS,bx as code segment via BX
inc refresh 18.2 times per second causes
cmp refresh,3 flicker. Try 4.5/second
jl rdone If not a whole refresh, skip
call dtime Else redisplay
call settime Advance to next logical time
mov refresh,O and reset refresh counter.

rdone:

pop bx Restore registers
pop ds
ret

timer endp

By building an application with just the code shown here, we can cycle
through all the possible clock values in a short time. Because we are running
settime at the display rate, it will crank through all the possible time values at
very high speed. We can see if there are any incorrect times displayed, such as
12: 60 or 13: 00. By spending a few minutes watching the display, we can find
out if our finite-state machine is correct.

6.4 Winding the Watch

A wristwatch has four basic subsystems. Most familiar to us is the dial and
the hands. This portion of a watch actually displays the time in a form that
we can read. Underneath that is the gearing that turns the hands according
to some basic rules, such as the amount of arc that a second will sweep out
and what happens when the second, minute, or hour hand reaches the twelve.
Behind all that is sort of a metronome, a device that sends a pulse once per
second or minute to the turning mechanism. This is the heart of the watch, the
driving function that makes all the other pieces useful. The last piece is the

85 6.4. WINDING THE WATCH

overall control mechanism that lets us set the correct time from which all else
will proceed smoothly.

We have built the display, and the gears that turn the hands. What we need
now is the device that ticks, once per second, and the method for setting the
correct time.

Ticking is easy. We know that our routine will be called 18.2 times per
second. We know that there are usually 60 seconds per minute. By multiplying
these two, we get 1092 ticks per minute, a nice integer number. If we rewrite
timer one more time, we can arrange things so that settime is called once per
minute, while dtime is called 4.5 times per second, as before. In a concession
to digital watches, we can also add a nice little frill that blinks the semicolon
approximately once per second, just for fun.

timer proc near
assume cs:cseg,ds:cseg
push ds
push bx

mov bx,cs Set the data segment to be the same
mov dS,bx as the code segment via BX
inc tick Advance one tick
cmp tick,1092 There are 1092 ticks per minute
jl tdone If not a whole minute, just redisplay
call settime Else recompute the time
mov tick,O and reset the tick counter

tdone:
inc refresh Refreshing 18.2 times per second causes
cmp refresh,3 flicker. Try only 4.5 times per second
jl rdone If not a whole refresh period, do nothing
call dtime Else redisplay
mov refresh,O and reset the refresh counter.

rdone:
inc blinker
cmp blinker,9 Approximately,but not exactly,half a second
jl bdone
call blink
mov blinker,O

bdone:
pop bx
pop ds
ret

timer endp

86 CHAPTER 6. USING THE TIMER

blink proc near
cmp byte ptr time[2] ,':' ; Is the colon on
je bloff ; If so turn it off
mov byte ptr time [2] ,':'; If not, turn it on
jmp bldone

bloff :
mov byte ptr time[2],' '; Replace colon with space

bldone:
ret

blink endp

Of course, we have to add the new variables to the data area:

tick dw o
refresh dw o
blinker dw o

Now we have all of our clock built except the time-setting function. We have
made this an open-loop design, one that simply needs a tick to advance the time
correctly. If we place the correct time of day in the time string, we can just
let the clock run free from that point. Since we need only to set the time to
start, we can do this in the installation portion of our .COM program, the part
that will not remain resident. By doing this, only the bare minimum of clock
functions have to remain locked in memory.

To set the time, we will use the DOS function INT 21H function 2CH (get
system time). This function computes the system's idea of the correct time of
day and returns it to us, with the hour in CH and the minute in CL. The hour
ranges from 0 to 23, with 0 being midnight and 23 being 11 PM. The minute
ranges from 0 to 59.

The second is also returned to us, in DH, which can go from 0 to 59. DL
contains the hundredths of seconds, but we will ignore that value for this appli­
cation. Because the IBM PC provides us with a clock tick 18.2 times per second,
we cannot easily measure an exact second. We can either go for 18 clock ticks,
which is 0.98 seconds, or 19 clock ticks, which is 1.04 seconds. For the purposes
of a desk clock that displays only hours and minutes, we need not worry too
much about actual seconds. The nearest integer multiple of 18.2 is 91 (5 x 18.2).
If we can get the clock set correctly to within 91 ticks, it will have a maximum
error of 5 seconds, which is pretty good for a pocket watch.

We must modify the installation code just a bit for this application, by adding
the code that sets the time correctly. We want be sure that the very last thing

87 6.4. WINDING THE WATCH

we do is modify the timer interrupt. If we modified the interrupt first, and the
time-setting code took more than 55 milliseconds to run in the best case, or a
timer tick interrupt occurred before the time was correctly set in the worst case,
we would have two "processes" competing for the same five bytes of memory.
To ensure that everything occurs in the proper order, we simply do not reset
the timer interrupt until we are ready to exit.

Our modifications to the initialization code need not be optimized in any
way. The only impact optimization would have is to slightly reduce the start-up
time or slightly reduce the amount of space this application takes up on disk.
The initialization code is thrown away when the . COM file exits, so we can write
it to suit our fancy.

In this case, the initialization code is written in the same style as the res­
ident application. Another method might have been to apply a byte-printing
algorithm to the hour and minute bytes, simply printing them into the string
rather than to the screen or the printer.

By treating the hour byte as a key that determines how we set our clock
characters, just as we did in the clock algorithm for the resident application, we
can, except for midnight, use the same code for the afternoon that we use for
the morning. To explain further, if we have an algorithm for setting the clock
correctly in the hours from 1 to 12, we can use the same code for the afternoon
hours, from 13 to 23 on the IBM PC, by simply subtracting 12 and looping back
through the code. We needn't have another set of cases for the afternoon. The
only special case is midnight, the zeroth hour according to IBM.

Applying this same reducing principle, we can use the same algorithm for
the hours column, by determining if the hour is greater than or equal to ten. If
we start by putting a space in the tens-of-hours column, then we compute the
hour column. If the hour is less than ten, we simply convert the number to an
ASCII digit and put it in the hours column. If the hour is greater than ten, put
a one in the tens-of-hour column, subtract ten, and apply the algorithm for less
than ten.

Converting a byte in the range of 0 to 9 to an ASCII character in the range
"0" through "9" is easy. We know that the characters "0" through "9" fall
sequentially in the ASCII character set. If we simply add an ASCII zero to the
byte we want to convert, we will have the correct character. Incidentally, it is
exactly this reason that allows us to advance a digit by simply adding one to its
ASCII character code in the clock.

After we have the hours set, we can set the minutes by applying the division

88 CHAPTER 6. USING THE TIMER

method you learned in grade school: repeated subtraction. We could have done a
division in about the same number of instructions, but the repeated subtraction
method is easily understood, simple to use, and somewhat novel. It never hurts
to look for alternative ways to code a particular function.

initialize:
mov bx,cs
mov dS,bx

mov al,OSH
mov ah,35H
int 2iH
mov old_timer,bx
mov old_timer [2] ,es

mov ah,2CH Get the time of day from DOS
int 2iH

cmp ch,O Is it the witching hour?
jg hour If not, handle it normally
add ch,i2 Else convert to noon and handle that

hour:
cmp ch,i2 Is it after noon?
jle day If not, just compute normally
sub ch,i2 If so, subtract i2 and use same code
mov byte ptr time [0] " '; Set initial value of tens column

day: Set time for the twelve hour clock
cmp ch,iO Is it after iO?
jl early If not, just deal with the one hours
sub ch,iO Else subtract iO
mov byte ptr time [0] ,'i'; set tens column, and handle the ones

early: ; Set the time for the one hour column
add ch, '0' Convert number to digit.
mov byte ptr time[i] ,ch ; And set the ones hour column

minute: ; Set the tens of minutes
cmp cl,iO Determine how many tens of minutes
jl minset we need to set the clock to by
sub cl,iO means of repeated subtraction.
inc byte ptr time[3] Initialized to '0'
jmp minute

minset: ; Set the minutes, by simply converting the remainder
add cl, '0'
mov byte ptr time [4] ,cl

mov tick,O Clear the tick

89 6.5. CLOCK.ASM - A RESIDENT DESK CLOCK

second:
cmp dh,5 5 seconds is the smallest integer
jle clockstart granularity we can measure.
add tick,91 5 seconds is exactly 91 clock ticks.
sub dh,5 Get to the nearest 5 seconds by
jmp second repeated subtractions.

clockstart: ; Start the clock by installing the interrupt vector
mov dX,offset timer_int
mov al,OSH
mov ah,25H
int 21H

mov dX,offset initialize
int 27H

cseg 	 ends
end start

All the parts of the clock are in place. All that remains is to wind it and let
it run.

6.5 CLOCK. ASM - A Resident Desk Clock

This program displays the time of day, in twelve-hour format in the upper right
hand corner of the screen. Just for fun, it will also blink the colon about once
per second.

cseg 	 segment para public 'CODE'
org 100H
assume cs:cseg,ds:cseg

start:
jmp initialize

dd

timer_int proc far
sti
pushf
assume ds:nothing
call old_timer
call timer
iret

90 CHAPTER 6. USING THE TIMER

endp

timer proc near
assume cs:cseg,ds:cseg
push ds
push bx

mov bx,cs
mov dS,bx
inc tick
cmp tick,1092
jl tdone
call settime
mov tick,O

tdone:
inc refresh
cmp refresh,3
jl rdone
call dtime
mov refresh,O

rdone:
inc blinker
cmp blinker, 9
jl bdone
call blink
mov blinker ,0

bdone:
pop bx
pop ds
ret

timer endp

Set data segment to be same
as code segment via BX

Advance one tick
;There are 1092 ticks per minute

If not a whole minute, just redisplay
Else recompute time
and reset tick counter

Refreshing 18.2/second causes
flicker. Try only 4.5/second

If not a whole refresh, do nothing
Else redisplay

, and reset refresh counter.

blink proc near
cmp byte ptr time [2] , ' : '
je bloff
mov byte ptr time [2] ,':'
jmp bldone

bloff :
mov byte ptr time [2] .' ,

bldone:
ret

blink endp

settime proc near
cmp byte ptr time [4] ,'9'; Compute one minutes

91 6.5. CLOCK.ASM

je
inc
jmp

tenthmin:
mov
cmp
je
inc
jmp

nexthour:
mov
cmp
je
cmp
je
inc
jmp

twelvethhour:
cmp
je
mov
mov
jmp

thirdhour:
inc
jmp

tenthhour:
mov
mov

setdone:
ret

settime

dtime
push
push

call
push
mov
call
mov
call
pop
call

- A RESIDENT DESK CLOCK

tenthmin If "x9", advance to next ten

byte ptr time[4]

setdone

byte ptr time[4],'0'; Compute ten minutes

byte ptr time [3] ,'5'; If "59", then advance one hour

nexthour

byte ptr time[3]

setdone

byte ptr time[3],'0'; Compute hours

byte ptr time[1],'2'; Might be" 2" or "12"

twelvethhour ; See if we'll wrap around at 12

byte ptr time[l] , '9'; If " 9", to to "10"

tenthhour

byte ptr time[l]

setdone

byte ptr time[O],' '; Is it " 2"

thirdhour ; If so, then go to " 3"

byte ptr time [0] " '; If not. then it must be "12"

byte ptr time[l] , '1'; so go to " 1"

setdone

byte ptr time[l]; Go to " 3"

setdone

byte ptr time [0] • ' 1 '; Go to "10"

byte ptr time[l] , '0'

endp

proc near

si

dx

get_pos Save previous cursor position

dx on stack

dx,position Go to upper right corner

set_pos

si,offset time Display current time string

dstring

dx Restore from stack

set_pos old cursor position

92 CHAPTER 6. USING THE TIMER

pop dx

pop si

ret

dtime endp

dstring proc near
push si
push ax
cmp si,O
je dsdone

dloop:
mov aI, [si]
cmp aI,O
je dsdone
call dchar
inc si
jmp dloop

dsdone:
pop ax
pop si
ret

dstring endp

dchar proc near
push ax
push bx
mov bh,l
mov ah,OER
int lOR
pop bx
pop ax
ret

dchar endp

get_pos proc near
push ax
push bx
push cx
mov ah,03H
mov bh,O
int lOR
pop cx
pop bx
pop ax

93 6.5. CLOCK.ASM ~ A RESIDENT DESK CLOCK

ret
get_pos endp

set_pos proc
push ax
push bx
mov ah,02H
mov bh,O
int 10H
pop bx
pop ax
ret

set_pos endp

position dw
tick dw
refresh dw
blinker dw
time db

initialize:
mov bx,cs
mov dS,bx

mov al,OSH
mov ah,35H
int 21H

near

004BH
0
0
0
'12:00' ,0

mov old_timer,bx
mov old_timer[2] ,es

mov ah.2CH
int 21H

cmp ch.O
je midnight
cmp ch.12
jg afternoon

day:
cmp ch.l0
jge late

early:
add ch, '0'

Get time of day from DOS

Set correct hour
which will be in range 0-23

mov byte ptr time [0] .' ,

mov byte ptr time[t] ,ch
jmp minute

94 CHAPTER 6. USING THE TIMER

late:
sub ch,10
add ch, '0'
mov byte ptr time [0] ,'1'
mov byte ptr time [1] ,ch
jmp minute

afternoon:
sub ch,12
jmp day

midnight: ; Hour is 0 (midnight)
mov byte ptr time [0] ,'1'
mov byte ptr time [1] • '2'

minute:
cmp cl.10 Determine how many tens of minutes
jl minset we need to set clock to by
sub cl,10 means of repeated subtraction.
inc byte ptr time [3] ; Initialized to '0'
jmp minute

minset:
add cl, '0'
mov byte ptr time [4] ,cl

mov 	 tick,O
second:

cmp dh,5 5 seconds is smallest integer
jle clockstart granularity we can measure.
add tick,91 5 seconds is exactly 91 clock ticks.
sub dh.5 Get to nearest 5 seconds by
jmp second repeated subtractions.

clockstart:
mov dX,offset timer_int
mov al.OBH
mov ah.25H
int 21H

mov dX,offset initialize

int 27H

cseg 	 ends
end start

Chapter 7

Building a Front Panel

There are other uses for the timer interrupt besides a simple desk clock. By
making clever use of the timer, and understanding how the IBM PC really does
what it does, you can create some interesting and useful applications.

One problem with writing assembly-language programs is that it is sometimes
difficult to know what your machine is really doing. When a program does not
change the display, is not reading the disk, is not talking to the serial ports, it
may be either dead or simply thinking. With normal programs, there is no way
to tell what is happening. When debugging a complicated program, it would be
useful to peek into the brain of the machine, without disturbing its thinking.

In the early days of computing, a machine of roughly the same computational
capacity as an IBM PC would fill a reasonably large room. Early computers
must have caused a boom in the air conditioning industry, because the rooms
they filled were chilled by huge devices that would otherwise be suitable for
entire office buildings. A giant mainframe computer was a significant capital
outlay for even a large company, and time and money could not be wasted on a
leisurely repair of buggy programs. These giant electronic brains had panels full
of blinking lights, a wonderful public relations device that became synonymous
with the idea of giant computers, and that occasionally helped in debugging
programs, too. Typically, the replacement cost of just the light bulbs for the
front panel exceeded the cost of a modern, fully loaded IBM PC.

The information available to a mainframe programmer from a front panel
was quite detailed and often unavailable through any other means. First and
foremost in importance among the displays was the instruction pointer, or IP.
(Well, perhaps the most important was the HALT light, indicating that the

95

96 CHAPTER 7. BUILDING A FRONT PANEL

machine had stopped.) The IP indicated where the computer was finding the
instructions it was currently executing. Other information might be the contents
of various registers, the state of various flags within the system, and so on.

Reading the front panel of a mainframe was a high art, even among pro­
grammers. The displays were in binary, meaning that the lights were either on
or off. There were no digital displays. Either you learned to read binary or
you got another job. Nevertheless, people not only learned to read these dis­
plays, they excelled at it. Many system operators could read the state of the
system from across a crowded room, knowing when a tape should be mounted
or a disk changed simply by the pattern of lights on the display. Programmers
could know what part of the operating system was running simply by reading
the lights. The amount of information a skilled programmer could get from a
single glance at the front panel was astonishing.

An IBM PC does not have a front panel; for the most part, this is a blessing.
Computers no longer fill a room or keep a staff of engineers, programmers, and
operators busy. But there is still something to be said for being able to sneak a
peek into a machine and see what it is doing.

Because of the timer interrupt on the IBM PC, we can do a little peeking into
the guts of our machine. In this chapter, we will create a program that displays
and updates the program counter on the screen. With a little practice and a
little research, you can get a surprising amount of information from a simple
flickering display. Don't worry, though, we won't display the IP in binary. But
we could, if we wanted to.

7.1 Peeking at the Instruction Pointer

At first, it may seem unreasonable to talk of displaying the IP from an interrupt
handler. After all, won't the program counter always show that the computer
is executing the timer interrupt? Well, since we aren't interested in the address
of the timer routine, we may need to fudge our concepts a little. What we
are interested in displaying is the IP that was being used just as the interrupt
occurred. How can we get this information? Well, two things we know about
interrupt handlers might be expressed like this: First, if an interrupt handler
is running, an interrupt has occurred. Second, when the interrupt handler has
completed its work, it will return control to the interrupted program via an IRET
instruction.

If the interrupt handler has any hope of returning successfully, the stack

97 7.1. PEEKING AT THE INSTRUCTION POINTER

will contain two things on entry. At the top of the stack will be the program
counter that indicates where execution was interrupted. Below that will be the
old processor flags. We cannot modify these values, but we can examine them.
The stack pointer does not change when an interrupt routine is run. It is the
responsibility of the interrupt routine to manage the stack in such a fashion that
no garbage is left on the stack. Therefore, we can read and use the values of the
old PC and flags as we choose, so long as we don't change them.

In the previous chapter, we constructed a basic timer interrupt skeleton. We
can use that same code as a starting point for this application.

cseg 	 segment para public 'CODE'
org 100H
assume cs:cseg,ds:cseg

start:
jmp initialize

old_timer dd

timer_int proc far
sti
pushf
assume ds:nothing
call old_timer
call timer
iret

timer_int endp

timer proc near
assume cs:cseg,ds:cseg
ret

timer endp

initialize:
mov bx,cs
mov dS,bx

mov al,08H

mov ah,35H

int 21H

mov old_timer,bx

mov old_timer [2] ,es

mov dX,offset timer_int

mov al,08H

98 CHAPTER 7. BUILDING A FRONT PANEL

mov ah,25H
int 21H

mov dX,offset initialize
int 27H

•
cseg ends

end start

Now that we have the basic form, we must address some basic design issues.
First, where will the display be located? There is no "right" answer; it is again
at the discretion of the programmer. In order not to interfere with the clock
display that we have just written, we will place the IP in the upper right corner
of the screen, just to the left of the clock. Since this is a debugging tool and not
one you would care to run all the time, you may be better off putting the IP
display in the far right corner and not run the clock at all. This would reduce
the load on the timer interrupt and provide more cycles for your application
programs to run. Nevertheless, since the possibility exists that both will run
simultaneously, in this example we will position the display to compensate for
the clock.

Second, in what format will the IP be displayed? In both the resident and the
regular interrupt-vector display programs, we showed the addresses in hexadeci­
mal, with segment first, then a separator colon, and finally the offset. While the
possibilities of binary are tantalizing, hexadecimal is probably the most useful.

To some degree, this resident application will resemble the clock resident
application. We can use the same cursor read and positioning routines and the
same character-display function. We will also need the double word hexadecimal
conversion routine that we wrote for the interrupt-vector display. In the first
chapter, we discussed the importance of not getting tricky. This application is
a good example of why that is important. If we had cleverly optimized these
basic toolbox routines, we would not be able to steal them so easily for use in
other applications. As with everything, there are trade-offs. In this case, the
trade was portablility and speed of later development against speed and size of
the current project. But one of the great things about program development is
that nothing need ever be permanent. If you can whip up a prototype with the
components from your toolbox, you can tryout your basic idea. Later on, you
can pull the stock parts out and replace them with high-performance custom
components.

Now that we have some idea of the outline of this project, let's take a look

99 7.1. PEEKING AT THE INSTRUCTION POINTER

at the basic code we have acquired for it:

timer_int proc far
sti
pushf
assume ds:nothing
call old_timer
call timer
iret

timer_int endp

timer proc near
assume cs:cseg,ds:cseg
ret

timer endp

; Get the current cursor position and return it in BX
getpos proc near

push ax
push cx
push dx

mov ah,03R
mov bh,O Page zero
int lOR
mov bX,dx Return· the position in BX

pop dx
pop cx
pop ax
ret

getpos endp

; Set the current cursor position to the value in BX
setpos proc near

push ax
push bx
push dx

mov ah,02R
mov dX,bx
mov bh,O
int lOR

pop ax

100

setpos

ddword

ddword

dsword

dsword

dbyte

pop bx
pop dx
ret

endp

ES:DX contains
proc

push dx
mov dX,es
call dsword
call dcolon
pop dx
call dsword
ret

endp

CHAPTER 7. BUILDING A FRONT PANEL

doubleword to be displayed
near

Save offset temporarily
Move Segment to DX
Display segment
Print a colon
Restore offset to DX
Display offset

proc near
push dx
mov dl,dh
call dbyte
pop dx
call dbyte
ret

endp

DL contains byte to be displayed

push
push
push

push
push
mov
shr
and
mov
mov
call
pop
pop

and
mov

DX containes singleword to be displayed

Save low nybble temporarily
Save ex
Set shift count to 4
Move high nybble to low
Mask out all but low nybble
Use low nybble as index into

; hex char table
Display character
Restore ex
Restore low nybble

Mask out all but low nybble
Use low nybble as index into

Save low byte
Move high byte to low byte
Display high byte
Restore low byte to DL
Display low byte

proc near
ax ; Save any registers used
dx
si

dx
cx
cl,4
dX,cl
dx,OOOFH
si,dx
al,hextab[si]
dchar
cx
dx

dX,OOOFH
si,dx

101 7.1. PEEKING AT THE INSTRUCTION POINTER

mov aI, hextab [si] ; hexa char table

call dchar Display character

pop si Restore registers

pop dx

pop ax

ret

dbyte endp

; Display a colon
dcolon proc near

mov aI, ,. ,
call dchar
ret

dcolon endp

; Display the character contained in AL
dchar proc near

push ax
push bx
mov bh,l
mov ah,OER
int lOR
pop bx
pop ax
ret

dchar endp

location dw 0041R
hextab db '0123456789ABCDEF' ,0

From here, the first step we can take is to get the code to display a zero
double word in the correct location on the screen. We must change the timer
routine by adding the code to save the registers on the stack, save the old cursor
location, move to the new one, display the value, and restore the cursor position
and registers.

timer proc near
assume cs:cseg,ds:cseg
push ax
push bx
push cx
push dx
push si
push di

102 CHAPTER 7. BUILDING A FRONT PANEL

push es
push ds

mov bx,cs Set os to be same as CS
mov dS,bx by means of BX
call getpos Save current cursor loc
push bx on stack
mov bX,location Move to upper right corner,
call setpos just left of clock
mov dx,O Set SEG:OFS to zeros
mov eS,dx
call ddword Display 0000:0000
pop bx Move cursor back to old
call setpos saved location

pop ds Restore registers
pop es
pop di
pop si
pop dx
pop cx
pop bx
pop ax
ret

timer endp

The application should now display a zero segment and offset just to the left
of the clock display. If you install this code and then hit enough carriage returns
to scroll the screen, the zeros should appear to remain fixed on the screen. The
IP display should seem more "solid" than our clock display because the refresh
rate is faster.

7.2 Using a Stack-Frame Pointer

Armed with a timer-based program that writes zeros in the correct form to
the screen many times per second, we can now complete this application and
make it do something useful. We know that somewhere on the stack is the
information that we need, namely the return address for the interrupt routine.
Unfortunately, at the place we need it, in the middle of the timer routine, is
some number of bytes deep on the stack. One way to retrieve them would be
to count the number of push instructions we have used and then compute the

103 7.2. USING A STACK-FRAME POINTER

offset from the current location pointed to by SP. This technique will work, but
it will also make modification of the program somewhat difficult. Adding code
that uses the stack will mean that this number must be recomputed.

A better approach would be to use what is called a stack-frame pointer. This
is a common technique used in compilers for high-level languages. If a language
uses the stack to pass parameters to subroutines, it is important to know how
to find those parameters easily. This is done by using a register as a sort of
bookmarker. What you do is copy the value of the stack pointer as early as
possible in a subroutine, when you know that nothing has been added to the
stack. Then you can use that register as a surrogate stack pointer, since it
remembers where the top of the stack was and thus where the stack information
you need can be found.

On the IBM PC, the convention is to use the BP register as a stack-frame
pointer. Since there is no pressing reason to alter this convention, we will adopt
it. We don't want to lose the contents of BPevery time we reuse the stack-frame
pointer, however, so we must save it first on the stack.

There are three characteristics of 8086/8088 stack management that become
important at this point. First, only registers can be pushed onto the stack. Since
all registers are 16 bits (one word) long, only words, not bytes, can be pushed.
Second, the stack pointer always points to the last word pushed on the stack.
Third, the PUSH operation decreases the stack pointer, POP increases it. This
means that the stack starts at a high address and, as it. grows, moves toward
the lower addresses. To reach something pushed onto the stack, you must add
to the stack pointer.

Thus, if we modify the timer_int routine as shown here we will have saved
a stack-frame pointer from the start of the timer interrupt handler:

timer_int proc far
sti
push bp
mov bp,sp
pushf
assume ds:nothing
call old_timer
call timer
pop bp
iret

timer_int endp

Since the SP points to what was just pushed, we know that [BP] will point

104 CHAPTER 7. BUILDING A FRONT PANEL

to its own old value, which brings us to an interesting and important digression.
Since [BP] points to the previous value of BP, if we were writing a high-level
language, and made sure that each subroutine established a stack-frame pointer
using the method shown here and that every program started with BP = 0, we
would have a chain that could be followed back through all the calls made to
get to a point in a given subroutine. How? Well, since [BP] points to its last
value and that last value points to the value before it and that value to an even
earlier one, until one value finally points to the zero that was the original value,
there is a chain that can be followed. Between each successive value are the
contents of the stack, including any parameters passed. If enough information is
available about the code that was running, these parameters can be examined.
Why is this so important? It is this technique that is used very extensively in
many high-level language debuggers. If stack-frame chaining is used, and the
value of the stack-frame pointer at the time of a program crash is known, this
technique may help pinpoint, via a debugger, what went wrong.

We know that [BP] contains its old value. Since the stack grows toward low
memory, [BP+2] will contain the offset of the calling address, and [BP+4] will
contain the segment. [BP+6] contains a word that holds the system flags at
the time of interrupt. Conceivably, this information could be added to the front
panel display, but to keep things simple we will not do so here.

Now that we know how to find the return address, we can complete our
program by modifying timer to display the return segment and offset instead
of zeros:

timer proc near
assume cs:cseg,ds:cseg
push ax
push bx
push cx
push dx
push si
push di
push es
push ds

mov bx,cs Set DS to be same as CS
mov dS,bx by means of BX
call getpos Save current cursor loc
push bx on stack
mov bX,location Move to upper right
call setpos corner, left of clock

105 7.3. FPANEL.ASM - AN INSTRUCTION POINTER DISPLAY

The stack frame looks like this:
[BP] word Old value of BP
[BP+2] word Offset of calling address
[BP+4] word Segment of calling address
[BP+6] word Flags at interrupt

mov dX,word ptr ss: [bp+2] ; Offset of addr
mov eS,word ptr ss: [bp+4] ; seg of addr
call ddword Display 0000:0000
pop bx Move cursor back to its
call setpos saved location

pop ds
pop es
pop di
pop si
pop dx
pop cx
pop bx
pop ax
ret

timer endp

The front-panel resident application must be the last application to link
with the timer interrupt. If it is not, the address displayed will always be that
of the layer that was installed afterward, from which this would be called as a
subroutine.

7.3 	 FPANEL . ASM - An Instruction Pointer
Display

This program displays the program counter at frequent intervals in the upper
right corner of the screen.

cseg 	 segment para public 'CODE'
org 100H
assume cs:cseg,ds:cseg

start:
jmp initialize

dd

106 CHAPTER 7. BUILDING A FRONT PANEL

timer_int proc far
sti
pushf
assume ds:nothing
call old_timer
push bp
mov bp,sp
call timer
pop bp
iret

timer_int endp

timer proc near
assume cs:cseg,ds:cseg
push ax
push bx
push cx
push dx
push si
push di
push es
push ds

mov bx,cs

mov dS,bx

call getpos

push bx

mov bX,location

call setpos

The stack looks like this:
New stack since BP saved

[BP] word Old value of BP
[BP+2] word Offset of calling address
[BP+4] word Segment of calling address
[BP+6] word Flags at interrupt

mov dX,word ptr ss: [bp+2]
mov eS,word ptr ss: [bp+4]
call ddword
pop bx
call setpos

pop ds
pop es
pop di
pop si

Offset of addr
; Seg of addr

7.3. FPANEL.ASM - AN INSTRUCTION POINTER DISPLAY 107

pop dx

pop cx

pop bx

pop ax

ret

timer endp

; Get the current cursor position and return it in BX
getpos proc near

push ax
push cx
push dx

mov ah,03H

mov bh,O Page zero

int 10H

mov bX,dx Return the position in BX

pop dx

pop cx

pop ax

ret

getpos endp

; Set the current cursor position to the value in BX
setpos proc near

push ax
push bx
push dx

mov ah,02H

mov dx,bx

mov bh,O

int 108

pop ax

pop bx

pop dx

ret

setpos endp

ES:DX contains doubleword to be displayed
ddword proc near

push dx Save offset temporarily
mov dx,es Move Segment to DX

108 CHAPTER 7. BUILDING A FRONT PANEL

call dsword Display segment
call dcolon Print a colon
pop dx Restore offset to DX
call dsword Display offset
ret

ddword endp

DX containes singleword to be displayed
dsword proc near

push dx Save low byte temporarily
mov dl,dh Move high byte to low byte
call dbyte Display high byte
pop dx Restore low byte to DL
call dbyte Display low byte
ret

dsword endp

DL contains byte to be displayed
dbyte proc near

push ax ; Save any registers used
push dx
push si

push dx Save low nybble temporarily
push cx Save ex
mov cl,4 Set shift count to 4
shr dX,cl Move high nybble into low
and dX,OOOFH Mask out all but low nybble
mov si,dx Use low nybble as index into
mov aI, hextab [si] ; hex char table
call dchar Display character
pop cx Restore ex
pop dx Restore low nybble

and dX,OOOFH Mask out all but low nybble
mov si,dx Use low nybble as index into
mov al,hextab[si] ; hex char table
call dchar Display character
pop si Restore registers
pop dx
pop ax
ret

dbyte endp

; Display a colon

7.3. FPANEL.ASM - AN INSTRUCTION POINTER DISPLAY 109

dcolon proc near
mov aI,'·'
call dchar
ret

dcolon endp

, Display the character contained in AL
dchar proc near

push ax
push bx
mov bh,l
mov ah,OEH
int 10H
pop bx
pop ax
ret

dchar endp

location dw 0041H
hextab db '01234567S9ABCDEF' ,0

initialize:
mov bx,cs
mov dS,bx

mov al,OSH

mov ah,35H

int 21H

mov old_timer,bx

mov old_timer [2] ,es

mov dX,offset timer_int

mov al,OSH

mov ah,25H

int 21H

mov dX,offset initialize

int 27H

cseg 	 ends
end start

I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I

I
I
I

I
I

I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Chapter 8

An Interrupt-Vector Display

To write resident applications on an IBM PC, you must understand the interrupt
structure. This mechanism is the key to all the I/O and system operations under
DOS. We have already constructed some tools to help us examine the interrupt­
vector table. This tool is quite useful, but it runs only as an application at
the DOS level. Suppose a program changes an interrupt vector on entry and
restores it on exit. A vector-display application would not tell us a thing about
these transient vectors, since to examine them we must leave the program that
permits them to exist. Is there a way for us to examine the interrupt-vector
table without leaving the current application? The answer is, of course, yes. We
can modify our earlier program to make it memory resident.

A memory resident vector display program solves some problems, but it
raises other questions that we must think about before we can begin to write
code. First and foremost among these questions is that of linkage: if we use
this program to examine and debug memory resident applications and it is in
fact a memory resident application itself, won't it interfere with other resident
applications since it must be linked somehow into the interrupt-vector table?
One might find an analogy here to physics, where the act of measuring some
characteristic of a particle alters the behavior of that characteristic. How can we
install a vector display program so that its effect on the system will be minimal
while still permitting us to see the information we requre?

Obviously, binding it to a key on the keyboard is not the solution. The
keyboard interrupt is probably the most frequently replaced interrupt vector
under DOS. If we were to insert a linkage there, the next memory resident
application that came along might erase that link and replace it, rendering our

111

112 CHAPTER 8. AN INTERRUPT-VECTOR DISPLAY

code useless. However, there is no other generally accessible signaling mechanism
on the IBM PC. Well, almost no other

There are three key sets on the IBM PC that can bypass the normal key­
board interrupt mechanism. The most well known is CONTROL-ALT-DEL, which
generates an interrupt to the reboot vector The second is CONTROL-BREAK, which
generates an interrupt to the CONTROL-BREAK handler. The last is PrtSc. This
generates an INT 5H, which is supposed to call a routine to print a copy of the
screen on the printer. If we decide that, for a time, the display of interrupts
is more important than the printing of screens, we can use PrtSc as the link
for our vector display without interfering with other, more common vectors and
without significantly impairing the operation of the system.

Let's rewrite our basic resident program so that it will replace the PrtSc

interrupt rather than the communications interrupt.

cseg segment
assume cs:cseg,ds:cseg
org 100H

start:
jmp initialize

old_prtsc_io dd

new_prtsc_io proc far
assume cs:cseg,ds:cseg
sti
iret

new_prtsc_io endp

initialize:
assume cs:cseg,ds:cseg
mov bx,cs
mov dS,bx

mov al,05H
mov ah,35H
int 21H
mov old_prtsc_io,bx
mov old_prtsc_io[2] ,es
mov dX,offset new_prtsc_io
mov al,05H
mov ah,25H
int 21H

113

mov dx,offset initialize
int 27H

cseg 	 ends
end start

All we did was replace 16H with 05H and keyboard with prtsc. Nevertheless,
these small changes will cause this program to link to the PrtSc vector. By
adding to new_prtscio, we can bend the PrtSc function to our will.

The next question is one of display. How do we cause our vector listing to
appear on the screen? Will normal output calls work directly? Clearly, we are
asking for trouble if we try to use the file control block or handle-based I/O
functions, unless we take some pains to save the old file control block or handle
and use one of our own. It is possible to do so, but is it necessary? The ROM
screen output calls are the best bet here. They are low-level calls, unencumbered
by the idea of file control blocks or handles. We can modify our basic PrtSc
resident application to display a simple ASCIIZ string. Since we have already
written code to do that in our non-resident vector display, we will simply add
that code here.

new_prtsc_io proc far
assume 	 cs:cseg,ds:cseg
sti
push 	 ds
push 	 bx
push 	 si
mov 	 bx,cs
mov 	 dS,bx
mov 	 si,offset string
call 	 dstring
pop 	 si
pop 	 bx
pop 	 ds
iret

new_prtsc_io endp

DS:SI pOints to ASCIIZ string to be printed
dstring proc near

push si
push ax

dis:
mov aI, [si] Fetch the next character

114 CHAPTER 8. AN INTERRUPT-VECTOR DISPLAY

cmp al,O If it is zero, we are done
je disdone
call dchar If not, print it
inc si Advance to next char
jmp dis

disdone:
pop ax
pop si
ret

dstring endp

; Display the character contained in AL
dchar proc near

push ax
push bx
mov bh,l
mov ah,OEH
int lOH
pop bx
pop ax
ret

dchar endp

string db 'Hello world',OdH,OaH,O

Before you run the . COM file this program assembles into, run the IVEC
vector-display application. Note the value for the Print Screen vector. After
running the . COM file use IVEC again to see that the vector has changed. You
should notice that the new value is <segment>:0107H. The segment may change,
but for this program, (and many others in this book), the offset will always be
107H. The program segment prefix is 100H bytes long, the jmp initialize adds
another 3 bytes, and the double word that holds the old vector is 4 bytes. For
other programs, the offset may not be 107H, but it can be deduced from the
code. An offset that is vastly different from what you expect may indicate a
bug.

To invoke this code, hit the PrtSc key (actually, SHIFT-PrtSc on most ma­
chines). This should cause the "Hello world" message to appear. You'll notice
that the DOS prompt does not reappear until you hit a carriage return. This
odd behavior stems from the fact that DOS is unaware of the "Hello world"
message, and thus has no reason to generate a new prompt. The carriage return
is actually seen by DOS, and it behaves as it would normally. You could have
typed a command, followed by carriage return, and it would have been

8.1. LISTING THE VECTORS 115

interpreted properly. You have generated a display on the screen, behind DOS's
back.

This fact has one major implication. By doing output in this manner, it
is possible to mess up the screen, with the currently running program being
unaware of the changes. This has great bearing on the mannerisms of "well­
behaved" resident applications. In some cases, such as the debugging tool we are
writing now, one does not mind if a display of information trashes the contents
of the screen. In the case of "pop-up" programs such as notepads or calculators,
we demand better manners.

8.1 Listing the Vectors

Since we have successfully stolen the output routine from our vector display
application, and since this code does not use the interrupt we are replacing,
there is no reason we cannot try to steal the rest of the code.

new_prtsc_io proc far
sti
push bx
push ds
mov bx,cs
mov dS,bx
call vectors
pop ds
pop bx
iret

new_prtsc_io endp

Scans through the display table, printing two vectors per line.
If any record has an interrupt number of zero, this indicates the
end of the table.

vectors proc near
mov di,offset disptab; Pointer to start of table
mov dh,O Zero out top half of DX

vloop:
mov dl, [di] Get interrupt number
cmp dl,O If it is zero, we are done
je vdone so exit loop
add di,1 Advance pointer 1 byte
mov si, [di] Get pOinter to description string
call dvector Call display routine

116 CHAPTER 8. AN INTERRUPT- VECTOR DISPLAY

add di,2 	 Advance to next record

mov dl, [di] Get interrupt number
cmp dl,O 	 If it is zero, we are done
je vdone 	 so exit loop
add di,1 	 Advance pOinter 1 byte
mov si, [di] Get pOinter to description string
call dvector Call display routine
add di,2 	 Advance to next record

call dcrlf Print a carriage return
jmp vloop

vdone:
call dcrlf Print a final carriage return
ret

vectors endp

Displays an interrupt vector. Display is in the form of
<banner string> <interrupt number> <vector seg>:<vector offset>
where <interrupt number>, <vector seg> and <vector offset> are all
hexadecimal numbers.

Call with
DX - interrupt number
DS:SI - pOinter to banner string

dvector 	proc near
call dstring Display string in DS:SI
call dbyte Display byte in DL
call dspace Display a space

mov al,dl Move interrupt number to AL
mov ah,35H Function is GET INTERRUPT VECTOR
int 21H
mov dX,bx Move BX to DX so we can display the
call ddword double-word in ES:DX
call dspace Display a space
ret

dvector 	endp

DS:SI pOints to ASCIIZ string to be printed
dstring 	proc near

push si
push ax

dis:
mov aI, [si] Fetch next character

117 8.1. LISTING THE VECTORS

disdone:

dstring

ddword

ddword

dsword

dsword

dbyte

cmp al,O If it is zero, we are done
je disdone
call dchar If not, print it
inc si Advance pointer to next character
jmp dis

pop ax
pop si
ret
endp

ES:DX contains doubleword to be displayed
proc near
push dx Save offset temporarily
mov dX,es Move Segment to DX
call dsword Display segment

11.11call dcolon Print a
pop dx Restore offset to DX
call dsword Display offset
ret
endp

DX containes singleword to be displayed
proc near
push dx Save low byte temporarily
mov dl,dh Move high byte to low byte
call dbyte Display high byte
pop dx Restore low byte to DL
call dbyte Display low byte
ret
endp

DL contains byte to be displayed
proc near
push ax ; Save any registers used
push dx
push si

push dx Save low nybble temporarily
push cx Save ex
mov cl,4 Set shift count to 4
shr dX,cl Shift high nybble into low nybble
and dX,OOOFH Mask out all but low nybble
mov si,dx Use this low nybble as an index into the
mov al ,hextab [si] ; hexadecimal character table

118 CHAPTER 8. AN INTERRUPT-VECTOR DISPLAY

call dchar Display character
pop cx Restore CX
pop dx Restore low nybble

and 	 dX,OOOFH Mask out all but low nybble
mov 	 si,dx Use low nybble as an index into the
mov 	 al,hextab[si] ; hexadecimal character table
call 	 dchar Display character
pop 	 si ; Restore registers
pop 	 dx
pop 	 ax
ret

dbyte 	 endp

; Display a u:u

dcolon 	 proc near
mov aI, ,. ,
call dchar
ret

dcolon 	 endp

U; Display a U

dspace 	 proc near
mov aI, , ,

call dchar
ret

dspace 	 endp

; Display a Carriage Return/Line Feed
dcrlf 	 proc near

mov al,ODH
call dchar
mov al,OAH
call dchar
ret

dcrlf 	 endp

; Display character contained in AL
dchar 	 proc near

push ax
push bx
mov bh,l
mov ah,OEH
int lOH
pop bx

119 8.1. LISTING THE VECTORS

pop ax
ret

dchar endp

hextab db '0123456789ABCDEF' ,0

disptab db 05H
dw v05
db 19H
dw v19

db 08H
dw v08
db 1AH
dw v1A

db 09H
dw v09
db 1BH
dw v1B

db OBH
dw vOB
db 1CH
dw v1C

db OCH
dw vOC
db 1DH
dw vlD

db ODH
dw vOD
db 1EH
dw v1E

db OEH
dw vOE
db 1FH
dw v1F

db OFH
dw vOF
db 20H
dw v20

Print screen

Bootstrap loader

Timer tick

Real-time clock

Keyboard input

CTRL-Break handler

Comm. port 1

Timer control

Comm. port 0

Pointer to video parameter table

Hard disk controller

Pointer to disk parameter table

Floppy disk controller

Pointer to graphics character table

Printer controller

Program terminate

120 CHAPTER 8. AN INTERRUPT-VECTOR DISPLAY

db
dw
db
dw

db
dw
db
dw

db
dw
db
dw

db
dw
db
dw

db
dw
db
dw

db
dw
db
dw

db
dw
db
dw

db
dw
db
dw

db
dw
db
dw

10H
vl0
21H
v21

11H
v11
22H
v22

12H
v12
23H
v23

13H
v13
24H
v24

14H
v14
25H
v25

15H
v15
26H
v26

16H
v16
27H
v27

17H
v17
2FH
v2F

18H
v18
0
0

Video driver

DOS universal function

Equipment check

Pointer to termination handler

Memory size check

Pointer to CTRL-C handler

Disk driver

Pointer to critical error handler

Communications driver

Absolute disk read

Cassette driver

Absolute disk write

Keyboard driver

Terminate and stay resident

Printer driver

Print spooler

ROM BASIC

121 8.1. LISTING THE VECTORS

v05 db 'Print screen: ' ,0
vOS db 'Timer tick controller: ' ,0
v09 db 'Keyboard input: ' ,0
vOB db 'Communication port 1: ' ,0
vOC db 'Communication port 0: ' ,0
vOD db 'Hard disk controller: ' ,0
vOE db 'Floppy disk controller: ' ,0
vOF db 'Printer controller: ' ,0
v10 db 'Video driver: ' ,0
v11 db 'Equipment check: ' ,0
v12 db 'Memory size check: , ,0
v13 db 'Disk driver: ' ,0
v14 db 'Communication driver: ' ,0
v15 db 'Cassette driver: ' ,0
v16 db 'Keyboard driver: ' ,0
v17 db 'Printer driver: ' ,0
viS db 'ROM BASIC: ' ,0
v19 db 'Bootstrap loader: ' ,0
viA db 'Real-time clock: , ,0
viB db 'Ctrl-Break handler: , ,0
v1C db 'Timer control: ' ,0
v1D db 'Video parameter table: ' ,0
viE db 'Disk parameter table: , ,0
v1F db 'Graphic character table: , ,0
v20 db 'Program terminate: , ,0
v2i db 'DOS universal function: ' ,0
v22 db 'Terminate vector: , ,0
v23 db 'Ctrl-C vector: ' ,0
v24 db 'Critical error vector: ' ,0
v25 db 'Absolute disk read: ' ,0 ,v26 db 'Absolute disk write: ,0
v27 db 'Terminate/stay resident: ' ,0
v2F db 'Print spooler: , ,0

This code works, but it is somewhat unpleasant to use, since the column
position of the first line is dependent on where the cursor was located when
PrtSc was struck. To fix this, we must decide where the cursor should go
to perform this display. Typically, while in the DOS command processor, or
any non-screen-oriented program, the cursor will spend most of its time on the
bottom line of the screen, several characters to the right of the first column (due
to the prompt). For screen-oriented programs, the cursor can be anywhere.
Because of this wide variation, there is no "best" choice for the position, but
we can adopt a convention. Since we know that all the information in this

122 CHAPTER 8. AN INTERRUPT-VECTOR DISPLAY

display will fit on less than one full screen and that a good guess for the cursor
position under some circumstances is on the bottom line, why not always start
the display from the upper left corner. By doing this, the code will run faster,
since no scrolling is necessary. In addition, the columns will always line up, and
there is a good chance that we will not overwrite the current command prompt.

To do this, we must learn how to perform two operations. First, we must
be able to read the current cursor position, so that we can remember where the
cursor was when we started. Second, we must be able to set the cursor position,
so that we can move to the upper left corner to begin our display and return
to the old position when we have finished. The ROM calls provide us with two
routines to do just that, so we need do nothing too complicated.

We can add cursor control to this program at the topmost level, modifying
only new_prtsc_io, as shown here:

new_prtsc_io proc far
sti
push bx
push ds
mov bx,cs Make Data Seg be the same as
mov dS,bx the Code Seg

call getpos
push bx
mov bX,OOOOH Upper left corner position
call setpos
call vectors
pop bx
call setpos

pop ds
pop bx
iret

new_prtsc_io endp

; Get the current cursor position and return it in BX
getpos proc near

push ax
push cx ; Since this function modifies CX
push dx

mov ah,03H
mov bh,O Page zero
int 10H

123 8.2. BASIC.ASM - A TEST DISPLAY

mov bx.dx ; Return the position in BX

pop dx
pop cx
pop ax
ret

getpos endp

; Set the current cursor position to the value inBX
setpos proc near

push ax
push dx

mov ah.02H
mov dx.bx
mov bh.O
int 10H

pop ax
pop dx
ret

setpos endp

With the program now doing a little bit of display management, it becomes
much cleaner and easier to read. In addition, by always starting in the upper
left corner of the screen, you are guaranteed that the position of each vector on
the screen will be the same each time the program is called. By doing this, your
eye can learn where a vector display should be and can then find the vector of
interest without having to search the screen for the right label. In the human­
interface game, permitting users to form habits is highly regarded.

8.2 BASIC. ASM - A Test Display

This program makes an interrupt vector display with a dummy value, just to
see if we can successfully link to the PrtSc vector.

cseg segment
assume cs:cseg.ds:cseg
org 100H

start:
jmp initialize

124 CHAPTER 8. AN INTERRUPT-VECTOR DISPLAY

old_prtsc_io dd

new_prtsc_io proc far
assume cs:cseg,ds:cseg
sti
push ds
push bx
push si
mov bx,cs
mov dS,bx
mov si,offset string
call dstring
pop si
pop bx
pop ds
iret

new_prtsc_io endp

DS:SI points to ASCIIZ string to be printed
dstring proc near

push si
push ax

dis:
mov aI, [si] Fetch the next character
cmp al,O If it is zero, we are done
je disdone
call dchar If not, print it
inc si Advance pointer to characterthe next
jmp dis

disdone:
pop ax
pop si
ret

dstring endp

; Display the character contained in AL
dchar proc near

push ax
push bx
mov bh,l
mov ah,OEH
int lOH
pop bx
pop ax
ret

125 8.3. VECTORS.ASM ~ AN INTERRUPT VECTOR DISPLAY

dchar 	 endp

string 	 db 'Hello world' ,OdH,OaH,O

initialize:
assume cs:cseg,ds:cseg
mov bx,cs
mov dS,bx

mov al,05H
mov ah,35H
int 21H
mov old_prtsc_io,bx
mov old_prtsc_io[2] ,es
mov dX,offset new_prtsc_io
mov al,05H
mov ah,25H
int 21H

mov dX,offset initialize
int 27H

cseg 	 ends
end start

8.3 	 VECTORS. ASM - An Interrupt Vector Display

The following code will display the current values of the interrupt vector table
when a PrtSc command is entered at the keyboard.

cseg 	 segment para public 'CODE'
org 100H
assume cs:cseg,ds:cseg

start:
jmp initialize

dd

new_prtsc_io proc far
sti
push bx
push ds
mov bx,cs Make Data Seg be the same as

126

mov dS,bx

call getpos
push bx
mov bX,OOOOH
call setpos
call vectors
pop bx
call setpos

pop ds
pop bx
mov ax,O
iret

new_prtsc_io

CHAPTER 8. AN INTERRUPT-VECTOR DISPLAY

; the Code Seg

Upper left corner position

endp

; Get the current cursor position and. return it in BX
getpos

push ax
push cx
push dx

mov ah,03H
mov bh,O
int 10H
mov bX,dx

pop dx
pop cx
pop ax
ret

getpos

proc near

; Since this function modifies CX

Page zero

Return the position in BX

endp

; Set the current cursor position to the value in BX
setpos proc near

push ax
push dx

mov ah,02H
mov dX,bx
mov bh,O
int 10H

pop ax
pop dx

127 8.3. VECTORS. ASM - AN INTERRUPT VECTOR DISPLAY

ret
setpos endp

Scans through the display table. printing two vectors per line.
If any record has an interrupt number of zero. this indicates the

. end of the table.
vectors proc near

mov di .offset disptab; Pointer to the start of the table
mov dh.O Zero out the top half of DX

vloop:
mov dl. [di] Get the interrupt number
cmp dl.O If it is zero. we are done
je vdone so exit loop
add di.1 Advance pOinter 1 byte
mov si. [di] Get pointer to description string
call dvector Call the display routine
add di.2 Advance to the next record

mov dl. [di] Get the interrupt number
cmp dl,O If it is zero, we are done
je vdone so exit loop
add di.1 Advance pointer 1 byte
mov si. [di] Get pOinter to description string
call dvector Call the display routine
add di.2 Advance to the next record

call dcrlf Print a carriage return
jmp vloop

vdone:
call dcrlf Print a final carriage return
ret

vectors 	endp

Displays an interrupt vector. Display is in the form of
<banner string> <interrupt number> <vector seg>:<vector offset>
where <interrupt number>, <vector seg> and <vector offset> are all
hexadecimal numbers.

Call with

DX - interrupt number

DS:SI - pointer to banner string

dvector 	proc near
call dstring Display the string in DS:SI
call dbyte Display the byte in DL
call dspace Display a space

128

mov
mov
int
mov
call
call
ret

dvector endp

al,dl
ah,35H
21H
dX,bx
ddword
dspace

CHAPTER 8. AN INTERRUPT-VECTOR DISPLAY

Move the interrupt number to AL

Function is GET INTERRUPT VECTOR

Move BX to DX so we can display the

double-word in ES:DX

Display a space

DS:SI pOints to ASCIIZ string to be printed
dstring 	proc near

push si
push ax

dis:
mov aI, [si]
cmp al,O
je disdone
call dchar
inc si
jmp dis

disdone:
pop ax
pop si
ret

dstring 	endp

ES:DX contains
ddword 	 proc near

push dx
mov dX,es
call dsword
call dcolon
pop dx
call dsword
ret

ddword 	 endp

Fetch the next character

If it is zero, we are done

If not, print it
Advance pOinter to the next character

doubleword to be displayed

Save the offset temporarily

Move the Segment to DX

Display the segment

Print a ":"

Restore the offset to DX

Display the offset

DX containes singleword to be displayed
dsword proc near

push dx
mov dl,dh
call dbyte
pop dx
call dbyte

Save the low byte temporarily
Move the high byte to the low byte
Display the high byte
Restore the low byte to DL
Display the low byte

129 8.3. VECTORS.ASM - AN INTERRUPT VECTOR DISPLAY

ret
dsword endp

DL contains byte to be displayed
dbyte 	 proc near

push ax ; Save any registers used
push dx
push si

push dx Save the low nybble temporarily
push cx Save CX
mov cl,4 Set shift count to 4
shr dX,cl Shift the high nybble into the low nybble
and dx,OOOFH Mask out all but the low nybble
mov si,dx Use this low nybble as an index into the
mov al,hextab[si] ; hexadecimal character table
call dchar Display the character
pop cx Restore CX
pop dx Restore the low nybble

and dx,OOOFH Mask out all but the low nybble
mov si,dx Use the low nybble as an index into the
mov al,hextab[si] ,hexadecimal character table
call dchar Display the character
pop si ; Restore the registers
pop dx
pop ax
ret

dbyte 	 endp

; Display a n:n

dcolon 	 proc near
mov aI,':'
call dchar
ret

dcolon 	 endp

; Display a " "
dspace 	 proc near

mov aI,"
call dchar
ret

dspace 	 endp

; Display a Carriage Return/Line Feed

130 CHAPTER 8. AN INTERRUPT-VECTOR DISPLAY

dcrlf 	 proc near
mov al,ODH
call dchar
mov al,OAH
call dchar
ret

dcrlf 	 endp

; Display the character contained in AL
dchar 	 proc near

push ax
push bx
mov bh,l
mov ah,OEH
int 10H
pop bx
pop ax
ret

dchar 	 endp

hextab 	 db '0123456789ABCDEF' ,0

disptab db 05H
dw v05
db 19H
dw v19

db 08H
dw v08
db lAH
dw vlA

db 09H
dw v09
db lBH
dw vlB

db OBH
dw vOB
db lCH
dw vlC

db OCH
dw vOC
db lDH

Print screen

Bootstrap loader

Timer tick

Real-time clock

Keyboard input

CTRL-Break handler

Comm. port 1

Timer control

Comm. port 0

Pointer to video parameter table

131 8.3. VECTORS. ASM - AN INTERRUPT VECTOR DISPLAY

dw v1D

db ODH
dw vOD
db 1EH
dw v1E

db OEH
dw vOE
db lFH
dw vlF

db OFH
dw vOF
db 20H
dw v20

db lOH
dw v10
db 21H
dw v21

db l1H
dw vl1
db 22H
dw v22

db 12H
dw v12
db 23H
dw v23

db 13H
dw v13
db 24H
dw v24

db 14H
dw v14
db 25H
dw v25

db 15H
dw v15
db 26H

Hard disk controller

Pointer to disk parameter table

Floppy disk controller

Pointer to graphics character table

Printer controller

Program terminate

Video driver

DOS universal function

Equipment check

Pointer to termination handler

Memory size check

Pointer to CTRL-C handler

Disk driver

Pointer to critical error handler

Communications driver

Absolute disk read

Cassette driver

Absolute disk write

132 CHAPTER 8. AN INTERRUPT-VECTOR DISPLAY

dw v26

db i6H Keyboard driver

dw vi6

db 27H Terminate and stay resident

dw v27

db i7H Printer driver

dw vi7

db 2FH Print spooler

dw v2F

db i8H ROM BASIC

dw vi8

db 0

dw 0

v05 db 'Print screen: , ,0
v08 db 'Timer tick controller: ' ,0
v09 db 'Keyboard input: ' ,0
vOB db 'Communication port i: , ,0
vOC db 'Communication port 0: , ,0
vOD db 'Hard disk controller: ' ,0
vOE db 'Floppy disk controller: ' ,0
vOF db 'Printer controller: ' ,0
viO db 'Video driver: ' ,0
vii db 'Equipment check: ' ,0
vi2 db 'Memory size check: ' ,0
vi3 db 'Disk driver: ' ,0
vi4 db 'Communication driver: ' ,0
vi5 db 'Cassette driver: ' ,0
vi6 db 'Keyboard driver: ' ,0
vi7 db 'Printer driver: ' ,0
vi8 db 'ROM BASIC: ' ,0
vi9 db 'Bootstrap loader: , ,0
viA db 'Real-time clock: ' ,0
viB db 'Ctrl-Break handler: ' ,0
viC db 'Timer control: , ,0
viD db 'Video parameter table: , ,0
viE db 'Disk parameter table: ' ,0
viF db 'Graphic character table: ' ,0
v20 db 'Program terminate: ' ,0
v2i db 'DOS universal function: ' ,0
v22 db 'Terminate vector: ' ,0
v23 db 'Ctrl-C vector: ' ,0

133 8.3. VECTORS.ASM - AN INTERRUPT VECTOR DISPLAY

v24 db
v25 db
v26 db
v27 db
v2F db

initialize:
assume
mov
mov

mov
mov
int
mov
mov
mov
mov
mov
int

mov
int

cseg 	 ends
end

'Critical error vector: , ,0
'Absolute disk read: ' ,0
'Absolute disk write: ' ,0
'Terminate/stay resident: ' ,0
'Print spooler: ' ,0

cs:cseg,ds:cseg
bx,cs
dS,bx

al,05H
ah,35H
21H
old_prtsc_io,bx
old_prtsc_io[2] ,es
dX,oifset new_prtsc_io
al,05H
ah,25H
21H

dX,oifset initialize
27H

start

Chapter 9

Controlling the Machine

One problem with computers is that they are so damn finicky. Most programs
are designed to solve a certain set of problems in a certain way. If the set of
problems is big enough and the choice of methods clever enough, we call these
programs well designed. There are times, however, when it would be nice to do
things from within a program that the designers never considered. Quite often,
the action you choose is not possible from within the program you are executing.
This mayor may not be shortsightedness on the part of the designers. No two
people solve problems in the same way. Everyone has a style, an approach to
getting their work done. People like programs that are similar to their own style
or that have a style they agree with. People don't like programs that do things
in a way they would never consider reasonable.

We have already built a program that lets you tell DOS what to do by simu­
lating your typing at the keyboard. Sometimes, however, we want to perform an
action directly, without standing back and issuing a command to do so. Some­
times we want to look deep into the machine, see what bits are set, and change
them ourselves if we don't like the way things look. If there is a program to
make the changes we want, we can just run it - if we don't happen to be running
something else, that is.

One place in which this happens all the time is the communications ports.
There are a lot of programs for telecommunications that let you use the IBM PC
as a terminal or transfer files from one computer to another. You connect a mo­
dem to one of your serial ports and use that modem to talk across the telephone
to another computer. Those computers have communication programs, as well.
Each of those programs has a designer, and each designer has an opinion about

135

136 CHAPTER 9. CONTROLLING THE MACHINE

how telecommunications should be done. Few of those designers share the same
opinion. So you discover that, having connected to a computer, you are using
the wrong baud rate, or parity, or word length, or something.

If you've chosen your communication program well, you may be able to switch
gears and change the mode of your communications port on the fly. Suppose
you have a less powerful program, such as many of the public-domain telecom
programs. Or suppose you use several programs in the course of a day's work,
and can't find the particular manual that explains exactly how to go about doing
what you'd like to do. How do you solve the problem?

One way might be to use a resident application. Most programs that fiddle
with the communications port parameters don't keep an eye on them to make
sure they remain the same. If the mode changes when the communications
program isn't looking, everything should still work.

Here we begin to see some of the real dangers and the seductiveness of the
"dark side" of resident-application programming. When you can sneak in and
change anything in the machine, there is a real temptation to overdo it. This
program is an example of one that is on the borderline. There is no chance that
this program will work with every telecom program on the market. But it may
do some of the right things for some people, and thus it is worth understanding.

9.1 Rewriting the Key Expander

Let's define our goal a little better. What we want is a program that allows us to
examine and reset the state of the two serial ports COM1: and COM2:. We want
to see what the current settings, such as baud rate, number of stop bits, parity,
and bits per character have been set to, and we want to reset those parameters
at will.

What sort of control mechanism can we use for this? Well, one way might
be to write a resident version of the MODE command that would prompt us for
parameters in the system format, and then set them correctly. This is a clumsy
approach, however. To write a resident command that prompts for a parameter
string and then parses it is certainly possible, but it may be more work than
is necessary to solve the problem. Another consideration is that the DOS MODE
command, while it is one solution to this problem, is extremely cryptic and
difficult to use. The order of parameters is specific, and the correct form of
those parameters is obscure and hard to remember. Perhaps a better model for
the MODE command is in order.

137 9.1. REWRITING THE KEY EXPANDER

Another approach is along the same lines as the keystroke expander we have
already written. We know that we can easily detect expanded characters and
perform actions based on them. In the past, those actions have been similar,
namely to begin returning the value of a predefined string. There is no reason we
could not use the same sort of mechanism to execute our own specially written
code.

What will we need to do this? In a way, this is an easier problem to solve than
the general-purpose keystroke expander. Since we are not returning anything
via the returned character, as we did with the expanded keys, we need not take
control of the keyboard status function. So all the code related to that function
can be removed. In general, though, we can use a mechanism extremely similar
to that of the keystroke expander. In that program, we had a table of characters,
each of which was bound to a pointer to a string. A pointer to a string indicates
the location of some information in memory. A pointer to a subroutine does
exactly the same thing. We can build exactly the same type of table but simply
perform a different operation on the information contained within. In the case
of the string, we began returning it as data. In the case of a subroutine, we can
execute it.

cseg segment
assume cs:cseg,ds:cseg
org 100H

start:
jmp initialize

assume ds:nothing
new_keyboard_io proc far

sti
cmp ah,O Is this call a READ request?
je ksread
jmp old_keyboard_io Handle the remaining subfunction.

ksread:
call keyread Get the next character to return
iret

new_keyboard_io endp

; Read a character from the keyboard input queue, if not expanding
; or the expansion string, if expansion is in progress.
keyread proc near

138 CHAPTER 9. CONTROLLING THE MACHINE

push
readchar:

pushf
call
cmp
je
jmp

extended:
mov

nextext:
cmp
je
cmp
je
add
jmp

startexpand:
add
cmp
je
push
push
push
push
push
push
push
push
call
pop
pop
pop
pop
pop
pop
pop
pop

readdone:
pop

keyread
ret

keytab db
dw
db

si

old_keyboard_io
al,O
extended
readdone

si,offset keytab

byte ptr cs: [si] ,0
readdone
ah,cs: [si]
startexpand
si,3
nextext

si,l
word ptr cs: [si] ,0
readdone
ax
bx
cx
dx
si
di
bp
ds
word ptr cs: [si]
ds
bp
di
si
dx
cx
bx
ax

si

endp

120
test
0

Let the original routine
determine keyboard status.

Is this the end of the table?

139 9.1. REWRITING THE KEY EXPANDER

dw 0

assume cs:cseg,ds:cseg

teststring db 'This is a test' ,0

test proc near
mov bx, cs
mov dS,bx
mov si,offset teststring
call dstring
ret

test endp

, Displays the string pOinted to by DS:SI
dstring proc near

push si
push ax
cmp si,O
je dsdone

dloop:
mov aI, [si]
cmp al,O
je dsdone
call dchar
inc si
jmp dloop

dsdone:
pop ax
pop si
ret

dstring endp

; Display the character contained in AL
dchar proc near

push ax
push bx
mov bh,l
mov ah,OEH
int lOR
pop bx
pop ax
ret

dchar endp

140 CHAPTER 9. CONTROLLING THE MACHINE

initialize:
assume cs:cseg,ds:cseg
mov bx,cs
mov dS,bx

mov al,16H

mov ah,35H

int 21H

mov old_keyboard_io,bx

mov old_keyboard_io[2] ,es

mov dX,offset new_keyboard_io

mov al,16H

mov ah,25H

int 21H

mov dX,offset initialize

int 27H

cseg 	 ends
end start

The first part of this code is almost identical to the corresponding parts of
the keystroke expander. We intercept the read-character subfunction of INT
16H (keyboard I/O). If the character read is an expanded character, then we
scan through a table until we find a match. Up to this point, we are using the
same code we wrote for the keystroke expander. Here, however, things get a little
different. If we find a match in the table, we will have a word that is the starting
address of a subroutine. Given that, we save the state of the machine onto the
stack and then call the subroutine. The ability to treat pointers to code like data
is an important and powerful programming tool. Many sophisticated programs
keep tables of subroutines to simplify the coding structures. These tables, one
of which is shown in the current example, are known as dispatch tables, since
they perform a directive function similar to a dispatcher in a train station, or
a taxi company. Dispatch tables, and treating pointers to subroutines as data,
are a basic concept on which threaded languages, such as FORTH, are based. In
some cases, you can dramatically simplify the way a program is written by using
this technique. In other cases, of course, you can make a simple program, almost
impossible to read or debug with exactly the same set of tools.

The basic program we have built will detect one particular keystroke, ALT-1.
When that key is typed, the test subroutine will be run. For the purposes of
this experiment, test will simply cause a letter to appear on the screen. At

9.2. THE STATE OF THE SERIAL PORTS 141

first glance, this seems similar to the keystroke expander. This is misleading,
because the character, though it has appeared on the screen, can never be read
by DOS. We are not transmitting it back through the return mechanism as we
did for the keystroke expander. We are sending back the character that was
read and acted on, in this case, the ALT-1.

9.2 The State of the Serial Ports

One of the first steps toward correctly changing something is to understand it
as it is now. While DOS provides a ROM system call to set the state of the
serial ports, it does not provide a call to examine what that state is. But since
we are in the machine anyway, perhaps we can write one.

We now have a skeleton through which we can run little snippets of code, to
examine or change the state of the machine as we wish. To add functions, we
simply need add a character, a pointer, and a subroutine to this skeleton and
we can call the code with a single keystroke. Now we just need to figure out
what to put in that subroutine, and we are all set.

Several of the IBM PC peripheral devices are connected to I/O ports. Many
people quite understandably confuse these ports with communication ports, the
devices that speak to the modem or a serial line. The two are quite similar ideas
at different layers of complexity. A communications port is a high-level concept
for an IBM PC. It is a device that permits the communication of information
from your computer to another computer or device. It is a way to get information
in and out of the box. The low-level I/O ports we are speaking of here are
devices that allow one component of your IBM PC to communicate with other
components. They are ways of passing information back and forth within the
box. In fact, it takes quite a few low-level I/O ports to perform the higher-level
function of a single communications port.

One reads an I/O port by using the IN opcode. Writing to an I/O port is
done with the corresponding OUT opcode. The 8086/8088 permits a system to
have as many as sixty-four thousand I/O ports, as many as a 16-bit word can
address. To allow a sort of compatibility with programs from 8-bit machines,
the architecture provides for two kinds of I/O port addresses: those less than a
full byte and those that require a full word. To use a port whose number is less
than 256, you simply use the number directly:

in ax,80H Read a word from port 80H

in al,90H ; Read a byte from port 90H

142 CHAPTER 9. CONTROLLING THE MACHINE

All input and output calls must use the AX register. To read a word, use AX.
To read a byte, use AL. For ports whose number is greater than or equal to 256,
the DX register is used:

mov dx.180H
in ax.dx Read a word from port 180H
mov dx.190H
in al.dx Read a byte from port 190H

A single communications port requires seven I/O ports to operate. Full
details of the operations can be painfully extracted from the IBM Technical
Reference Manual. Luckily for us, full details are rarely necessary. One can
set the state of a communications port by using IN! 14H function OH (initialize
communications port). To read the state, one has to use just three of the seven
ports.

DOS permits the IBM PC to have up to four communications ports. Typ­
ically, IBM PCs have just two: COM1: and COM2:. Each communications port
requires seven I/O ports. The I/O port addresses are not random, but follow a
pattern. Each address is a full word. The low-order byte indicates which I/O
port of the seven to use. The available ports are: F8H, F9H, FAH, FBH, FCH, FDH,
and FEH. The ports we are interested in are F8H and F9H, which contain a value
that we can use to determine the baud rate, and FBH, which contains the line
control register (LCR). The LCR contains the rest of the information about line
status that we need.

The high-order byte of the I/O port address indicates the communications
port, with COM1: = 3 and COM2: = 2. Thus, if we wanted to read the LCR of
COMl : , we would use this code:

mov dx.3FBH Read Line Control Register for COM1:
in al.dx into AL

Baud rate is determined by a number that the communications hardware
uses as a divisor. The divisor is a single word, whose low byte can be found at
port F8H and whose high byte can be found at port F9H - sometimes. A special
bit, called the divisor latch access bit (DLAB) (bit 7) of the LCR determines
what can be found on ports F8H and F9H. If the DLAB is one, then the divisor
we want will be there. Other information will be present if the DLAB is zero.
We can get the divisor (in BX) with this code:

143 9.2. THE STATE OF THE SERIAL PORTS

mov dx.3FBH Read Line Control Register for COM1:
in al.dx into al
push ax Save old LCR on stack
or al.80H Set the DLAB to 1
out dx.al and set the new LCR
mov dx.3F8H Get the divisor low byte
in al.dx
mov bl.al Save it in BX
mov dx.3F9H Get the divisor high byte
in al.dx
mov bh.al Save it in BX
pop ax
mov dx.3FBH Restore Line Control Register for COM1:
out dx.al

The divisor is meaningless to us directly, but it can be translated into baud
rate information. Here are the most common baud rates and their corresponding
divisors:

Divisor Baud Rate
1047 110
384 300
96 1200
48 2400
24 4800
12 9600

Looking into the LCR, we can determine the other useful parameters of a
port.

Bits 1 and 0 are a two-bit number that represents the number of bits in a
character. The interesting values here are 2, which means 7 bits per character,
and 3, which means 8 bits per character.

Bit 2 represents the number of stop bits. If it is 0, only one stop bit will be
generated. If it is 1, two stop bits will be used.

Bits 4 and 3 represent a two-bit number that can be used to determine parity.
If the number is 0 or 2, no parity will be used. If the number is 1, odd parity
will be generated. If the number is 3, even parity will be generated.

With this information, we can find out what we want to know from any serial
port on the system. Now all that remains is to write some code that does so.

144 	 CHAPTER 9. CONTROLLING THE MACHINE

9.3 A Port Status Display

Once we have determined the information about the state of a communications
port, how should we display it, and where should we put it? The DOS MODE
command uses expressions of the form COM1 : 1200, N,8,1 to represent the infor­
mation that communications port 1 is to be set to 1200 baud, no parity, eight
bits per character, one stop bit. This is a compact form and has the advantage
that it can be typed directly to the MODE command; however, it has few other
positive aspects. A better representation might be the one that we used in the
second half of the descriptive sentence. That is the form we understand and the
form we mentally translate the cryptic expression into.

As for location, one possibility is simply to display the data at the current
cursor location. This is almost always wrong, however, since the cursor location
is where our attention is focused at the moment we issue the command. Also, it
is almost certainly where our telecommunications work is focused as well. Thus,
the current cursor location is probably the worst place to display status info. A
better choice might be the lower right corner, since it is a fixed location and out
of the way of most normal screen usage. However, many telecom programs use
the bottom line for status information, and so this display might interfere with
that. In addition, if we are to place any information on the bottom line, we must
take greater pains to restore the screen contents. If we leave any characters on
the screen, they will scroll upward as the rest of the screen does and thus will
remain on screen for quite a while.

Probably the least offensive place would be the upper right corner, but many
programs, desk clocks in particular, use that corner for precisely that reason.
The information we want to display is marginally transient. We want to see it
and we may want to keep it around for a little while, but when we go back to our
work via the telecom program, it can safely vanish. One solution is to put it in
the upper left corner of the screen, and let it disappear as the screen scrolls up.
This is essentially the same solution we used for the resident interrupt-vector
display.

We know that we will need the cursor functions written for the interrupt­
vector display and the same basic save-rep osition-restore algorithm for the dis­
play routine here. If we flush the test routine from our earlier skeleton program,
we can add some code that will rough out the basic shape of this application:

keytab 	 db 120 ; ALT-1
dw portlstatus

145 9.3. A PORT STATUS DISPLAY

db 121
dw port2status
db 0
dw 0

assume cs:cseg,ds:cseg

Display the status of COM1
port1status proc near

mov bx,cs
mov dS,bx

mov dh,3
call portstatus

ret
port1status endp

; Display the status of COM1

port2status proc near

mov bx,cs

mov dS,bx

mov dh,2
call portstatus

ret
port2status endp

Display the status of any comm port
Call with

ALT-2

Port offset for COM1

Port offset for COM2

DH contains the I/O port offset for the comm port
portstatus proc near

push bx
call getpos
push bx
mov bx,O
call setpos
call showcom
call showbaud
call showlen
call showstop
call showparity
pop bx
call setpos

Get the current cursor position
and save it on the stack.

Move to the upper left corner (0,0)

Show the current comm port name
Show the current baud rate
Show the bits per character
Show the number of stop bits
Show the parity
Retrieve the old cursor position

and restore the cursor to there.

146 CHAPTER 9. CONTROLLING THE MAQHINE

pop
ret

portstatus

com1
com2
comtab

; Call with
DH =

showcom
push
push
push
mov
mov
sub
shl
mov
call
pop
pop
pop
ret

showcom

showbaud
ret

showbaud

showparity
ret

showparity

showstop
ret

showstop

showlen
ret

showlen

bx

endp

db 'COM1: ' ,0
db 'COM2: ' ,0
dw com1
dw com2
dw 0

I/O port offset for the communications port
proc near
bx
dx
si
bh,O Zero the high byte of the index
bl,3 Compute the index = 3-port offset
bl,dh
bX,1 Multiply by two to get a word index
si, comtab [bx] And get the appropriate string
dstring Print the string
si
dx
bx

endp

proc near

endp

proc near

endp

proc near

endp

proc near

endp

; Get the current cursor position and return it in BX

147 9.3. A PORT STATUS DISPLAY

getpos proc near
push ax
push cx Since this function modifies ex
push dx

mov ah,03H
mov bh,O Page zero
int 10H
mov bX,dx Return the position in BX

pop dx
pop cx
pop ax
ret

getpos endp

, Set the current cursor position to the value in BX
setpos proc near

push ax
push bx
push dx

mov ah,02H
mov dX,bx
mov bh,O
int 10H

pop dx
pop bx
pop ax
ret

setpos endp

This basic skeleton should display the label for COM!: when ALT-! is pressed,
and the label for COM2: when ALT-2is pressed. We do this by indexing into a
table based on the port offset number. Another approach might be to pass some
direct representation of the communications port number, such as 1 for COM!:, 2
for COM2:, and so on. We don't really need to do that for two reasons. First, any
set of sequential numbers we might choose will contain the same information.
Many of the system calls use 0 for COM! : , 1 for COM2 : , and so on. Other programs
use the direct mapping as demonstrated earlier. These representations contain
essentially the same information. In the jargon of the field, they are isomorphic

148 CHAPTER 9. CONTROLLING THE MACHINE

representations. Second, since these numbers cannot be entered directly by users
of the program, they are purely internal representations. Once we get the code
working, they can never change and thus become invalid, because nobody can
type in an incorrect value. Therefore, we can choose a convenient set of numbers
just as easily as we could choose an inconvenient set.

The display routines for each of the various parameters have been left as
stubs. As we expand each one, we can replace the stub and tryout the program
to see if it works.

9.3.1 Displaying the Baud Rate

We have seen a table of divisors and corresponding baud rates. Given a divisor,
you can find the baud rate by looking it up in that table. There is no reason to
approach this programming problem in a different fashion. One slight modifi­
cation might be how you interpret the baud rate. You are given the divisor as
a number. Should you derive the baud rate as a number, also? Well, since the
goal of this routille is to print the baud rate on the screen, you'll need to write
a routine to convert numbers to the correct base-l0 string. This is not difficult,
but if you had the answer as a string, you would already have a routine to print
strings. There is another reason for using strings, which will be discussed later.

The code for our baud-display routine must do three things, then. First,
it should retrieve the baud-rate divisor from the correct communications port.
Second, it should use that divisor to select a string that contains the ASCII
description of the baud rate. Finally, it should print that string.

b110 db , 110 baud, ' ,0
b300 db ' 300 baud, ' ,0
b1200 db '1200 baud, ' ,0
b2400 db '2400 baud, ' ,0
M800 db '4800 baud, ' ,0
b~600 db '9600 baud, ' ,0

divtab dw 1047
dw 384
dw 96
dw 48
dw 24
dw 12
dw 0

149 9.3. A PORT STATUS DISPLAY

baudtab 	 dw bll0
dw b300
dw b1200
dw b2400
dw b4800
dw b9600
dw 0

showbaud proc near
push di
push si
push bx
call getbaud Get the baud rate divisor

baudloop:
cmp divtab[di] ,0 Scan through the divisor table
je bldone till you reach the end
cmp bx, divtab [di]
je dbaud or till you find the divisor
add di,2
jmp baudloop

dbaud:
mov si ,baudtab [di] Print the corresponding baud rate
call dstring

bldone:
pop bx
pop si
pop di
ret

showbaud endp

Call with
DH containing modem port offset (COMl 3, COM2 2)

Returns
BX baudrate divisor

getbaud proc near
push ax
push dx
mov dl,OFBH
in al,dx
push ax
or al,80H
out dX,al
mov dl,OF8H
in al,dx
mov bl,al

150 CHAPTER 9. CONTROLLING THE MACHINE

mov dl,OF9H
in al,dx
mov bh,al
pop ax
mov dl,OFBH
out dX,al
pop dx
pop ax
ret

getbaud endp

9.3.2 Displaying the Character Length

Next, we need to determine. how many bits make up a single character in the
current communications state. We already know how to do this, and we know
that the number will be less than or equal to 8. For numbers less than 10,
conversion to ASCII is easy. One approach would be simply to convert and
display the number of bits, followed by a label string. Nevertheless, we are
going to stick with the method of a string table used in the previous routine
with one slight difference. When your indices to a table can be any number
and you know that the table will be sparsely filled, you may not want to store
all the empty entries. In that case, you must explicitly include the index along
with the entry in a table. When your index is sequential, as are the numbers 7
and 8, you don't need to include an index. If you subtract the base value of the
table (in this case, 7), you can use your adjusted number to index directly into
a table of bytes. Since we want to index into a table of words, we must multiply
the index by two. This can be done in a single instruction simply by shifting
the number one bit to the left.

You may be curious as to why we are going to stick with the string rather
than the number representation of our display. Well, for two reasons. The first
is consistency. If there is no pressing reason to do something different each time,
then keeping your methodology the same has some advantages. In many cases
you can reduce the total amount of code by noticing duplication of code among
instances of the same types of operation. If you optimize each little case, you
can win in the short run, but lose in the long run. By being consistent in the first
pass, you can take advantage of these larger-scale optimizations in the second
pass and possibly save more space or speed up the code.

The second, and by far the more important, reason has to do with the ulti­
mate goal of this program. We are not interested in simply reading the state of

151 9.3. A PORT STATUS DISPLAY

communications ports, we want to be able to change that state. To do this, we
need some way of specifying the new state of a port, a simple application-specific
language for telling the machine what to do. As we discussed earlier, the MODE
command provides one example of how to do this, but it is unpleasant. We
chose to display the state in a pleasant, readable fashion. Surely we will want
to design our input to be just as pleasant to use. We know what all the possible
values of each parameter will be. If we have already declared string equivalents
of those values, we can put them to good use later when we are designing the
input section.

char7 db '7 bits/char, ' ,0
char8 db '8 bits/char, ' ,0
chartab dw char7

dw char8
dw 0

showlen proc near
push ax
push bx
push si
call getlen
shl bX,1 Multiply index by 2 for words
mov si, chartab [bx] Get the correct label string
call dstring and display it.
pop si
pop bx
pop ax
ret

showlen endp

Call with
DH = modem port offset (COM1 = 3, COM2 = 2)

Returns
BX = the number of bits - 7 (i.e. 0 = 7 bits, 1 = 8 bits)

getlen proc near
push ax
push dx
mov dl,OFBH
in al,dx
and al,03H
mov bh,O
mov bl,al
sub bX,2
pop dx

152 CHAPTER 9. CONTROLLING THE MACHINE

pop ax
ret

getlen endp

9.3.3 Displaying the Stop Bits and Parity

This code is similar to the bits-per-character code. You may have noticed two
things about our string tables thus far. First, all the entries in a given ta­
ble are exactly the same length. The reason for this is simple. Since we are
designing the program, we are allowed to choose exactly how things will be dis­
played. Some representations, for example "7 bits/char" and "seven bits
per character," are equal in information, despite quite different sizes. If we
can find a good representation that will cover all cases and still let us display the
information in a fixed-length field, we can avoid problems later. If values of a
given field were different lengths, the display string would expand and contract
as the values changed. Then we would have to worry about what happens at
the edge of the string.

In two cases, the parity and the baud rate, we cannot easily justify changing
the format just to even up the length. In the case of baud, we could demand
that 300 baud be represented as 0300 baud, but this is unsightly as well as
distracting. By judiciously padding with a single leading blank, the result is
better looking and still correct. For parity, we could represent "none", "even"
and "odd" with the single characters N, E and 0, but this would lose information,
in that the letters must be explained somewhere before they can be useful.
Instead, by placing this field last on the line and padding out the end of the
strings with blanks to be even, we ensure that the parity information is distinctly
separate from the rest of screen, and no flickering occurs.

stop1 db '1 stop, ' ,0
stop2 db '2 stop, ' ,0
stoptab dw stop1

dw stop2
dw 0

showstop proc near
push bx
push si
call getstop
dec bx
shl bX,l

153 9.3. A PORT STATUS DISPLAY

mov
call
pop
pop
ret

showstop

push
push
mov
mov
in
and
cmp
je
inc

gsdone:
pop
pop
ret

getstop

pnone
podd
peven
partab

showparity
push
push
call
shl
mov
call
pop
pop
ret

showparity

si , stoptab [bx]
dstring
si
bx

endp

One stop bit

Two stop bits

dx
ax

endp

db 'no parity , ,0
db 'odd parity , ,0
db 'even parity' ,0
dw pnone
dw podd
dw peven
dw 0

proc near
bx
si
getparity
bX,l
si ,partab [bx]
dstring
si
bx

endp

154 CHAPTER 9. CONTROLLING THE MACHINE

; Call with modem port offset (COMl = 3, COM2 = 2) in DH
; Returns parity in BX (0 means none, 1 means odd, 2 means even)
getparity proc near

push ax
push cx
push dx
mov bx,O
mov dl,OFBH
in al,d~

and aI,lSH
cmp al,OOH No parity (00)
je gpdone
cmp aI,10H No parity (10)
je gpdone
inc bx Odd parity (01)
cmp aI,lSH
jne gpdone
inc bx Even parity (11)

gpdone:
pop dx
pop cx
pop ax
ret

getparity endp

9.4 The Virtues of Consistency

You,may have noticed that all the string tables in this code are terminated with
a zero field. There is good reason for this, a reason that harkens back to the
earlier discussion of consistency. These tables are data structures. They take the
form they have because the designer has something in mind for them. A good
design should be robust and capable of extensions. Therefore, a good designer
should always take the long view in the design of code.

What information must be known to use a table such as stoptab from the
previous example? First, of course, is the location of that table in memory. Like
your car ignition key, if you can't find it, you can't use it. Second is the shape
of the elements. In the case of stoptab, the elements are single words, pointers
to strings. But they may have been double-precision floating-point numbers ­
there is no easy way to tell. Finally, the last characteristic we must know is the
length of the table. If we don't know how long it is, we cannot know whether an

9.5. SEEMODE. ASM - SHOW COMMUNICATIONS MODE 155

element is real data or simply random bytes pulled from the end of the array.
This is especially important in resident applications, where the code and data
must live in the same segment. Writing off the end of an array could imply
writing over the program segment prefix of the currently running application or,
worse, over your own code.

How can an arbitrary extension to this program know these facts about the
tables in this code? It can easily know the location of a table, at the time of
assembly, by defining a symbol for it. The shape of an element is a much harder
problem, because tables are shaped to match their use; for many shapes, there
is no simple representation. One approach might be to store, in the beginning
of a table, a count indicating the number of bytes per element. This is common
in some high-level languages. For this discussion and the code in this book, we
will simply beg the question and say that the knowledge of the shape of a table
must reside in the code that uses that table. Finally, as to the length, it cannot
be determined from a simple table, one not terminated with a zero field. It may
be implicit in some of the code that uses it. But it can be determined easily,
precisely, and simply, if we add that final zero. By doing that we can greatly
generalize the types of things we can do with an "arbitrary" table or structure
III memory.

You may have noticed that various structures in this book have been "reg­
ularized" by explicit termination. A good example of this is the table used to
convert bytes to ASCII hexadecimal strings. It looks like this:

hextab db '0123456789ABCDEF',O

The addition of the zero at the end lets a program determine how long that
table is. It also puts it in exactly the same form as a string that can be printed
by dstring. You may never want to print this string, but you could, and it
costs only one byte of memory for that potential.

Blind adherance to an arbitrary standard is silly. Diverging from a standard
for a good enough reason and realizing that certain structures are similar, even
if the uses they are put to are different, is good programming practice.

9.5 SEEMODE. ASM - Show Communications Mode

This program displays the state of a communications port in the upper left
corner of the screen.

156 CHAPTER 9. CONTROLLING THE MACHINE

cseg segment
assume cs:cseg,ds:cseg
org 100H

start:
jmp initialize

assume
new_keyboard_io

sti
cmp
je
jmp

ksread:
call
iret

new_keyboard_io

ds:nothing
proc

ah,O
ksread
old_keyboard_io

keyread

endp

far

Is this call a READ request?

handle remaining subfunction.

Get next character to return

; Read a character from keyboard input queue, if not expanding
; or expansion string. if expansion is in progress.
keyread

push
readchar:

pushf
call
cmp
je
jmp

extended:
mov

nextext:
cmp
je
cmp
je
add
jmp

startexpand:
add
cmp
je
push
push
push

proc near
si

old_keyboard_io
al,O
extended
readdone

si,offset keytab

byte ptr cs: [si] ,0
readdone
ah, cs: [si]
startexpand
si,3
nextext

si,i
word ptr cs: [si] ,0
readdone
ax
bx
cx

Let original routine
determine keyboard status.

Is this end of table?

157 9.5. SEEMODE. ASM - SHOW COMMUNICATIONS MODE

push dx
push si
push di
push bp
push ds
call word ptr cs: [si]
pop ds
pop bp
pop di
pop si
pop dx
pop cx
pop bx
pop ax

readdone:
pop si
ret

keyread endp

keytab db 120 ALT-1
dw port1status
db 121 ALT-2
dw port2status
db 0
dw 0

assume cs:cseg,ds:cseg

Display status of COM1
port1status proc near

moy bx,cs
mov dS,bx
moy dh,3 Port offset for COM1
call portstatus
ret

port1status endp

; Display status of COM!
port2status proc near

moy bx,cs
moy dS,bx

moy dh,2 Port offset for COM2
call portstatus

158 CHAPTER 9. CONTROLLING THE MACHINE

ret
port2status endp

Display status of any comm port
Call with

DR contains I/O port offset for comm port
portstatus

push
call
push
mov
call
call
call
call
call
call
pop
call
pop
ret

portstatus

com1
com2
comtab

; Call with

proc near
bx
getpos
bx
bx,O
setpos
showcom
showbaud
showlen
showstop
showparity
bx
setpos
bx

endp

db 'COM1: , ,0
db 'COM2: , ,0
dw com1
dw com2
dw 0

Get current cursor position
and save it on stack.

Move to upper left corner (0,0)

Show current comm port name
Show current baud rate
Show bits per character
Show number of stop bits
Show parity
Retrieve old cursor position

and restore cursor to there.

DR = I/O port offset for communications port
showcom proc near

push bx
push dx
push si
mov bh,O Zero high byte of index
mov bl,3 Compute index = 3-port offset
sub bl,dh
shl bX,1 Multiply by two to get a word index
mov si ,comtab [bx] ; And get appropriate string
call dstring ; Print string
pop si
pop dx
pop bx
ret

159 9.5. SEEMODE. ASM - SHOW COMMUNICATIONS MODE

showcom

b110
b300
b1200
b2400
b4800
b9600

divtab

baudtab

showbaud
push
push
push
call
mov

baudloop:
cmp
je
cmp
je
add
jmp

dbaud:
mov
call

bldone:
pop
pop
pop

endp

db
db
db
db
db
db

dw
dw
dw
dw
dw
dw
dw

dw
dw
dw
dw
dw
dw
dw

proc
di
si
bx
getbaud
di,O

, 110 baud,
' 300 baud,
'1200 baud,
'2400 baud,
'4800 baud,
'9600 baud,

1047
384
96
48
24
12
0

b110
b300
b1200
b2400
b4800
b9600
0

near

' ,0
' ,0
' ,0
' ,0
' ,0
' ,0

Get baud rate divisor

divtab[di] ,0; Scan through divisor table
bldone till you reach end
bX,divtab[di]
dbaud or till you find divisor
di,2
baudloop

si ,baudtab [di]
dstring

bx
si
di

Print corresponding baud rate

160 CHAPTER 9. CONTROLLING THE MACHINE

ret
showbaud endp

Call with
DH containing modem port offset (COM1 = 3, COM2 = 2)

Returns
BX = baudrate divisor

getbaud proc near
push ax
push dx \
mov dl,OFBH
in al,dx
push ax
or al,80H
out dX,al
mov dl,OF8H
in al,dx
mov bl,al
mov dl,OF9H
in al,dx
mov bh,al
pop ax
mov dl,OFBH
out dX,al
pop dx
pop ax
ret

getbaud endp

char7 db '7 bits/char, ',0
char8 db '8 bits/char, ',0
chartab dw char7

dw char8
dw 0

showlen proc near
push ax
push bx
push si
call getlen
shl bX,1 Multiply index by 2 for words
mov si , chartab [bx] Get correct label string
call dstring and display it.
pop si

9.5. SEEMODE. ASM - SHOW COMMUNICATIONS MODE 161

pop bx
pop ax
ret

showlen endp

Call with
DH = modem port offset (COM1 = 3, COM2 = 2)

Returns
BX = number of bits - 7 (i.e. 0 = 7 bits, 1 8 bits)

get len proc near
push ax
push dx
mov dl,OFBH
in al.dx
and al,03H
mov bh,O
mov bl,al
sub bX,2
pop dx
pop ax
ret

getlen endp

stop1 db '1 stop, ' ,0
stop2 db '2 stop, ' ,0
stoptab dw stop1

dw stop2
dw 0

showstop proc near
push bx
push si
call getstop
dec bx
shl bX,1
mov si , stoptab [bx]
call dstring
pop si
pop bx
ret

showstop endp

Call with modem port offset (COM1 = 3, COM2 2) in DH
Returns number of stop bits (lor 2) in BX

162

getstop
push
push
mov
mov
in
and
cmp
je
inc

gsdone:
pop
pop
ret

getstop

pnone
podd
peven
partab

showparity
push
push
call
shl
mov
call
pop
pop
ret

showparity

proc
ax
dx
bX,l
dl,OFBH
al,dx
al,04H
al,O
gsdone
bx

dx
ax

endp

db
db
db
dw
dw
dw
dw

proc
bx
si

CHAPTER 9. CONTROLLING THE MACHINE

near

One stop bit

Two stop bits

'no parity , ,0
'odd parity' ,0
'even parity' ,0
pnone
podd
peven
0

near

getparity
bX,l
si ,partab [bx]
dstring
si
bx

endp

; Call with modem port offset (COMl = 3, COM2 = 2) in DH
; Returns parity in BX (0 means none, 1 means odd, 2 means even)
getparity proc near

push ax

push cx

push dx

mov bx,O

mov dl,OFBH

in al,dx

163 9.5. SEEMODE. ASM -~ SHOW COMMUNICATIONS MODE

and al,18R
cmp al,OOR No parity (00)
je gpdone
cmp al,10R No parity (10)
je gpdone
inc bx Odd parity (01)
cmp al,18R
jne gpdone
inc bx Even parity (11)

gpdone:
pop dx
pop cx
pop ax
ret

getparity endp

; Get current cursor position and return it in BX
getpos proc near

push ax
push cx ; Since this function modifies ex
push dx

mov ah,03R
mov bh,O Page zero
int lOR
mov bX,dx Return position in BX

pop dx

pop cx

pop ax

ret

getpos endp

, Set current cursor position to value in BX
setpos proc near

push ax
push bx
push dx

mov ah,02R

mov dX,bx

mov bh,O

int lOR

pop dx

164 CHAPTER 9. CONTROLLING THE MACHINE

pop bx

pop ax

ret

setpos endp

, Displays string pointed to by DS:SI
dstring proc near

push si
push ax
cmp si,O
je dsdone

dloop:
mov aI, [si]
cmp al,O
je dsdone
call dchar
inc si
jmp dloop

dsdone:
pop ax
pop si
ret

dstring endp

, Display character contained in AL
dchar proc near

push ax
push bx
mov bh,1
mov ah,OEH
int 10H
pop bx
pop ax
ret

dchar endp

initialize :
assume cs:cseg,ds:cseg
mov bx,cs
mov dS,bx

mov al,16H

mov ah,35H

int 21H

165 9.5. SEEMODE. ASM - SHOW COMMUNICATIONS MODE

mov old_keyboard_io,bx
mov old_keyboard_io[2] ,es
mov dx,offset new_keyboard_io
mov al,16H
mov ah,25H
int 21H

mov dX,offset initialize
int 27H

cseg ends
end start

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Chapter 10

Setting the Mode

So far, we've built a program to look at the configuration of a given serial port.
The next step is to learn to modify that configuration. And we'll do that by
taking our display code and sort of rewriting it backward.

In chapter 9, we wrote code to find the value of each parameter of the
communications port configurations. First, we called a routine that translated
the arcane machine-state information into a number of some kind. Using that
number, we displayed a portion of the status string that reflected the correct
setting.

Here, we will add to that same program code that does exactly the reverse.
We will display a series of strings representing all the possible choices for a given
parameter. One of those strings will be selected. Based on that, we can come up
with a number that will be given to a routine that translates it into the arcane
procedure that must be used to set a given parameter.

There is a ROM system call to set the communications port configuration
INT 14H function OH (initialize communications port), which we won't use here.
We know how to read the values of the parameters for the ports and have built
a structure to do so. We should be able to reverse that structure to set those
values. This involves duplicating a function that is already built into the ROM.
Duplicating code is something that should normally be avoided, but from time
to time it can be useful.

The first question you should ask when faced with doing something as foolish
as rewriting operating system calls is: What don't I understand about this call?

For DOS, that may be difficult to determine. The inner workings of DOS are
sometimes mysterious beyond human ken. However, if you are willing to take

167

168 CHAPTER 10. SETTING THE MODE

a stab at it, there are some very good public-domain disassemblers available
from bulletin boards. A disassembler is a program that performs, as you might
guess, the opposite function of an assembler. It takes the binary code that the
machine can execute and writes an assembly-language source program that can
be assembled into that code.

This is not quite as wonderful as it sounds. A program is not just executable
code. It is a representation of a complex thought. Disassemblers can create a
program that will work correctly, but they cannot provide the thought that went
into creating the source. A disassembled program has no comments, no variable
names, no subroutine names, no segment names. It may work, but you'll have to
put the thought back into it before it becomes a readable program. It is possible
to deduce the inner workings of a disassembled program, but it ain't easy.

ROM calls are much easier. The DOS Technical Reference Manual provides
a full listing of the ROM sources. This makes them much more readable and
understandable than disassembled code, but they are still somewhat cryptic.
Nevertheless, there is a surprising amount of useful information buried in these
listings. By examining them, you can determine if your proposed changes will
conflict with the expectations of the operating system. Fortunately, setting the
communications-port parameters is straightforward and duplicating that code
should cause no real problems. Knowing that something is possible is a big step
toward being able to do it.

10.1 Designing the Code

First, to the matter of user interface. We have already defined a system for
displaying the state of a port. We should be able to use that same system to
set the state of a port. We have a series of tokens in an ordered list for each
parameter and we have routines to position the cursor. We should be able to
turn these ingredients into a pleasant concoction of some sort.

You may have noticed that this book stresses the design details of user inter­
face more than any other design issues. This is not accidental. One of the first
things you notice about people you've just met is they way they speak - in a
very crude sense, their "user interface." It is the same with computer programs.
A clumsy user interface is like a thick accent. No matter that the intentions are
good, if the presentation is poor, it is difficult to get the message across.

The details of an interface often take the lion's share of the code. Attention
to detail is an important facet of the design process, but an obsession with

169 10.1. DESIGNING THE CODE

those details can prevent a perfectly good program from seeing the light of day.
Designers should aim for a good balance. The programs in this book may not
have perfect interfaces, but they are usable, and the code is not too complex to
be understood.

For this program, we need to set four parameters for a given communications
port: baud rate, number of bits in a character, number of stop bits, and parity.
We also need some way to select which communications port we are setting.

One approach would be to print a menu for each parameter, perhaps with
numbers to select between individual values. This is a classical approach and
one that is used with great effect in other programs. It could take up a great
deal of screen real estate, however, and would require some sort of very simple
parser to determine if the number entered was valid and, if so, to cause the
appropriate action.

What are we looking for in an input mechanism? First, it should be clear
what is being selected. When we select a baud rate, we don't want to select
baud rate 4 or baud rate D - we want to select 9600 baud. That is the meaning
of the parameter, and the further our interface forces us to be removed from
that, the more difficult it will seem to be to use.

Second comes the question of illegal input. A maxim among those devoted
to the scientific method maintains that how you ask a question is sometimes
as important as the question itself. This issue raises one of those cases. If we
ask ourselves how to design a user interface that minimizes bad input, we may
come up with a parser, or a menu system, or something along those lines. If we
rephrase the question to be one of how to design a system that always produces
correct input, we may come up with something different.

One way to guarantee that your input is correct is to make all the choices
ahead of time. We already know every possible value of all the parameters. If
we write a routine that lets us select from only that set, we can take a good step
toward being foolproof. Typing an index to a menu item, on the other hand,
would still have a potential for bad input. After all, even if valid input goes
from 1 to 6, you still need to handle the case of a typed 8.

Look at the design of machinery. Some stereos have a selector knob that
allows you to switch among the phono, the tape, and the tuner inputs. With
those three selections, it is impossible to select an illegal input; it is only possible
to select an inappropriate one. There is no way to specify anything other than
phono/tape/tuner in the language of stereo controls. Surely, if a manufacturer
can build something so simple from a few bits of metal and plastic, we should

170 CHAPTER 10. SETTING THE MODE

be able to do something similar with our expensive personal computer.
We have a valid format for displaying port information. The name of the

port, followed by a baud rate, followed by the number of bits in a character, the
number of stop bits, and the parity, all displayed in the upper left corner of the
screen. If we start with the first field and write code to cycle through all the
possible variations, with a method for saying that the currently displayed field
should be used, and move to every field in turn, we will have an input system
that cannot be used to enter illegal information.

Since the mechanism for entering this information can be separated from
the mechanism for setting each parameter, we can build the input routines first.
Since these functions are an addition to the SEEMODE. ASM, we have to add an
entry to the key table, so that we can call our setup routine. Since we typically
want to reset the baud rate, we might use the ALT-B key to call the setup routine.

keytab db 120 ALT-1
dw port1status
db 121 ALT-2
dw port2status
db 48 ALT-B
dw setport
db 0
dw 0

The setport routine needs to do several things. It needs to set up the data
segment. It must save the old cursor position and then move the cursor to the
upper left corner. Then, each parameter must be set up in turn. Finally, the
cursor must be returned to its original position.

The selector routine, which we can call dmenu, since it displays all the possible
choices, should be general enough to accept a pointer to any array of strings. It
should then display the first string in the array and wait for a keystroke. If that
keystroke is anything but the selector character, the routine should cycle to the
next value in the list. When the end of the list is reached, we should start again
at the beginning. Since we are moving from right to left, a reasonable character
might be the Right Arrow, extended character code 77. In addition, to achieve
the cycling effect, we want to reposition the cursor to the beginning of the field
and redisplay on top of the previous value.

By building simple routines that just display the appropriate menus we can
try out the interface.

setport proc near

171 10.1. DESIGNING THE CODE

push
mov
mov
call
push
mov
call
call
call
call
call
call
pop
call
pop
ret

setport

; Returns
DH

setcom
push
mov
call
mov
sub
call
pop
ret

setcom

setbaud
push
mov
call
call
pop
ret

setbaud

setlen
push
mov
call
call

bx

bx,cs

dS,bx

getpos

bx

bx,O

setpos

setcom

setbaud

setlen

setstop

setparity

bx

setpos

bx

endp

I/O port offset
proc near
di
di,offset comtab
dmenu

Get the current cursor position
and save it on the stack.

Move to the upper left corner (0,0)

Set the current comm port name
Set the current baud rate
Set the bits per character
Set the number of stop bits
Set the parity
Retrieve the old cursor position

and restore the cursor to there.

dh,3 Convert the table index into port offset
dh,bl
showcom
di

endp

proc near
di
di,offset baudtab
dmenu
showbaud
di

endp

proc near
di
di,offset chartab
dmenu
showlen

172 CHAPTER 10. SETTING THE MODE

pop
ret

setlen

setstop
push
mov
call
call
pop
ret

setstop

setparity
push
mov
call
call
pop
ret

setparity

Call with
01 =

Returns
BX =

dmenu
push
push
push
push
push

mstart:
mov

mloop:
call
push
mov
call
pop
call
call
cmp
je
add

di

endp

proc near
di
di,offset stoptab
dmenu
showstop
di

endp

proc near
di
di,offset partab
dmenu
showparity
di

endp

pointer to the table to display

index into table divided by 2
proc near
ax
cx
dx
si
bp

bp,O

getpos ; Save the cursor position
bx on the stack
si,word ptr ds:[di+bpJ
dstring Display the current menu entry
bx Move the cursor back to the beginning
setpos of the field
cycle Get a command
cx,O If CX=O then use this entry
mdone
bp,2 If CX not 0 then go to nex entry

173 10.2. SETTING UP THE COMMUNICATIONS PORTS

cmp word ptr ds: [di+bp] ,0 , Unless we've reached end of table
je mstart
jmp mloop

mdone:
mov bX,bp
shr bX,l
pop bp
pop si
pop dx
pop cx
pop ax
ret

dmenu endp

cycle proc
mov cX,l
mov ah,O
pushf

, If at end, start at beginning

Move the index to BX
Divide the index by 2

near

assume cs:nothing
call old_keyboard_io
assume cs:cseg
cmp al,O
je cxchar

cdone:
ret

cxchar:
cmp ah,77 Right Arrow
jne cdone
mov cx,O
jmp cdone

cycle endp

10.2 Setting up the Communications Ports

With the user interface in place, we can flesh it out to set the parameters. First,
of course, must be the port itself. As with the display part of this program,
the most convenient choice for representing the port is by the high-order-byte
communication-port offset. The menu routine will return a 0 for COM1: and a
1 for COM2:. A little basic arithmetic and we can convert these values to offset
3 for COM1: and offset 2 for COM2:. Then we can pass that value along in DH
exactly as we did in the earlier portion of the program.

; Returns

174 CHAPTER 10. SETTING THE MODE

DH = I/O port offset
setcom proc near

push di
mov di,offset comtab
call dmenu
mov dh,3 ; Convert the table index into port offset
sub dh,bl
call showcom
pop di
ret

setcom endp

Next, we want to set up the baud rate. This is a bit more complicated. In
the display code, we separated the processes of divisor-information acquisition,
divisor-to-baud-rate conversion, and baud rate into separate routines. In fact,
all the parameter routines were divided into these three parts. The processes
here are similar to those three, but in reverse order. We want to display the
menu, convert the resulting number into a baud rate, and then set that baud
rate. These three parts once again apply to all the parameters, so there is no
reason that the structure of these input routines should not reflect the structure
of the display routines.

One minor point not mentioned thus far is the mechanism for moving from
one field to another. There are two approaches we could use for this. In the first,
we simply do not move the cursor to the beginning of the field until we know it is
necessary to do so, which would be when any character but the selector character
is typed. This is a perfectly reasonable thing to do, but there is another, better
alternative.

That alternative is to set each parameter as it is selected. This is a little
more work for the computer, but less for us. We could have chosen to build one
value and then set the line control register all at once. That would mean more
code to pass the value along, but fewer I/O port calls. In the long run, that
doesn't really matter. However, the fact that we have chosen this route lets us
do something interesting.

In the code, we leave the cursor at the beginning of the field. That means
when the right value has been selected and the value set, we need to move the
cursor to the end of the current field to be ready to display the next field. We
could calculate the next cursor position, or we could simply redisplay the string.
Rather than redisplay a string that we believe to be the value of the parameter
we can show the actual value of the parameter, by calling the display routine

175 10.2. SETTING UP THE COMMUNICATIONS PORTS

we wrote for the first part of this program. When we finish the setup line, what
we have left is exactly what we would have by doing a display command. We
don't have to accept that on faith. We know, because we have checked it.

, Call with
DH = I/O port offset

setbaud proc near
push di
mov di,offset baudtab
call dmenu
shl bX,1 ; Multiply by two to get word index
mov bX,divtab[bx]
call putbaud
call showbaud
pop di
ret

setbaud endp

;Call with
BX = baudrate divisor

putbaud proc near
push ax
push dx
mov dl,OFBH
in al,dx
push ax
or al,BOH
out dX,al
mov dl,OFBH
mov al,bl
out dX,al
mov dl.OF9H
mov al.bh
out dx.al
pop ax
mov dl.OFBH
out dx.al
pop dx
pop ax
ret

putbaud endp

; Call with
DH = I/O port offset

setlen proc near

176 CHAPTER 10. SETTING THE MODE..
push
mov
call
call
call
pop
ret

setlen

Call with
DH =
BX =

putlen
push
push
mov
in
and
or
cmp
jne
or

pldone:
out
pop
pop
ret

putlen

, Call with
DH =

setstop
push
mov
call
call
call
pop
ret

setstop

Call with

di
di,offset chartab
dmenu
putlen
showlen
di

endp

modem port offset (COMl = 3, COM2 = 2)
the number of bits - 7 (i.e. 0 = 7 bits, 1 8 bits)

proc near
ax
dx
dl,OFBH
al,dx
al,lllll100B; Mask out original value, leaving the rest
al,00000010B; Set to 7 bits (10)
bX,l ; Should it be 8 bits?
pIdone
al,OOOOOOOlB; Set it to 8 bits (11)

dX,al
dx
ax

endp

I/O port offset
proc near
di
di,offset stoptab
dmenu
putstop
showstop
di

endp

DH = modem port offset (COMl 3, COM2 = 2)
BX = the number of stop bits - 1 (0 = 1 stop or 1 = 2 stop)

putstop proc near

177 10.2. SETTING UP THE COMMUNICATIONS PORTS

push ax

push cx

push dx

mov dl,OFBH

in al,dx

and al,11111011B; Mask out bit 2

cmp bx,O

je psdone

or al,OOOOO100B; Set bit 2

psdone:
out dX,al
pop dx
pop cx
pop ax
ret

putstop endp

, Call with
DH = I/O port offset

setparity proc near
push di
mov di,offset partab
call dmenu
call putparity
call showparity
pop di
ret

setparity endp

Call with
DH = modem port offset (CoM1 = 3, CoM2 = 2)
BX = parity (0 means none, 1 means odd, 2 means even)

putparity proc near
push ax
push cx
push dx
mov dl,OFBH
in al,dx
and al,ll100111B; Mask out the parity bits
cmp bx,O ; No parity (00)
je ppdone
or al,00001000B; Set odd parity (01)
cmp bX,2 ; Check for even parity
jne ppdone
or al,00010000B; Set even parity (11)

178 CHAPTER 10. SETTING THE MODE

ppdone:

out dX,al
pop dx
pop cx
pop ax
ret

putparity endp

The advantage of designing a standard interface is that the components you
design can be hooked together in interesting ways. By selecting the correct set
of components, you can build some interesting applications.

We have written some useful and interesting functions here. There is no
reason we cannot do more with them.

10.3 SETMODE . ASM - Set Serial Mode

This program displays or sets the mode of either COM1: or COM2: .

cseg segment
assume cs:cseg,ds:cseg
org 100H

start:
jmp initialize

assume ds:nothing
new_keyboard_io proc far

sti
cmp ah,O Is this call a READ request?
je ksread
jmp old_keyboard_io handle remaining subfunction.

ksread:
call keyread Get next character to return
iret

new_keyboard_io endp

Read a character from keyboard input queue, if not expanding

179 10.3. SETMODE. ASM - SET SERIAL MODE

; or expansion string, if expansion is in progress.
keyread

push
readchar:

pushf
call
cmp
je
jmp

extended:
mov

nextext:
cmp
je
cmp
je
add
jmp

startexpand :
add
cmp
je
push
push
push
push
push
push
push
push
call
pop
pop
pop
pop
pop
pop
pop
pop

readdone:
pop
ret

keyread

keytab db

proc near
si

Let original routine
old_keyboard_io determine keyboard status.
al,O
extended
readdone

si,offset keytab

byte ptr cs: [si] ,0 Is this end of table?
readdone
ah, cs: [si]
startexpand
si,3
nextext

si,1
word ptr cs: [si] ,0
readdone
ax
bx
cx
dx
si
di
bp
ds
word ptr cs: [si]
ds
bp
di
si
dx
cx
bx
ax

si

endp

120 ALT-1

180 CHAPTER 10. SETTING THE MODE

dw port1status
db 121
dw port2status
db 48
dw setport
db 0
dw 0

assume c!3:cseg,ds:cseg

Display status of CoM1
port1status proc near

mov bX,clii
mov dS,bx
mov dh,3
call portstatus
ret

port1status endp

; Display status of CoM1
port2status proc near

mov bx,cs
mov dS,bx

mov dh,2
call portstatus

ret
port2status endp

Display status of any comm port
Call with

ALT-2

ALT-B

Port offset for CoM1

Port offset for CoM2

DH contains I/O port offset for comm port
portstatus proc near

push bx
call getpos
push bx
mov bx,O
call setpos
call showcom
call showbaud
call showlen
call showstop
call showparity
pop bx

Get current cursor position
and save it on stack.

Move to upper left corner (0,0)

Show current comm port name
Show current baud rate
Show bits per character
Show pumber of stop bits
Show parity
Retrieve old cursor position

181 10.3. SETMODE. ASM - SET SERIAL MODE

setpos and restore cursor to there.
bx

endp

db 'COM1: ' ,0
db 'COM2: ' ,0
dw coml
dw com2
dw 0

I/O port offset for communications port
proc near
bx
dx
si
bh,O Zero high byte of index
bl,3 Compute index = 3-port offset
bl,dh
bX,l Multiply by two to get a word index
si,comtab[bx] ; And get appropriate string
dstring , Print string
si
dx
bx

endp

db , 110 baud, ' ,0
db ' 300 baud, ' ,0
db '1200 baud, ' ,0
db '2400 baud, ' ,0
db '4800 baud, ' ,0
db '9600 baud, ' ,0

dw 1047
dw 384
dw 96
dw 48
dw 24
dw 12
dw 0

dw b110

call
pop
ret

portstatus

coml
com2
comtab

; Call with

showcom

showcom

bll0
b300
b1200
b2400
b480Q
b9600

divtab

baudtab

DH =

push
push
push
mov
mov
sub
shl
mov
call
pop
pop
pop
ret

182 CHAPTER 10. SETTING THE MODE

dw b300
dw b1200
dw b2400
dw b4800
dw b9600
dw o

showbaud proc near
push di
push si
push bx
call getbaud Get baud rate divisor
mov di,O

baudloop:
cmp divtab[di] ,0; Scan through divisor table
je bldone till you reach end
cmp bX,divtab[di]
je dbaud or till you find divisor
add di,2
jmp baudloop

dbaud:
mov si ,baudtab [di] Print corresponding baud rate
call dstring

bldone:
pop bx
pop si
pop di
ret

showbaud endp

Call with
DH containing modem port offset (COMl = 3, COM2 2)

Returns
BX = baudrate divisor

getbaud proc near
push ax
push dx
mov dl,OFBH
in al,dx
push ax
or al,80H
out dX,al
mov dl,OF8H
in al,dx
mov bl,al

183 10.3. SETMODE. ASM - SET SERIAL MODE

mov dl,OF9H
in al,dx
mov bh,al
pop ax
mov dl,OFBH
out dx,al
pop dx
pop ax
ret

getbaud endp

char7 db '7 bits/char, , ,0
char8 db '8 bits/char, ' ,0
chartab dw char7

dw char8
dw 0

showlen proc near
push ax
push bx
push si
call getlen
shl bX,l Multiply index by 2 for words
mov si , chartab [bx] Get correct label string
call dstring and display it.
pop si
pop bx
pop ax
ret

showlen endp

Call with
DH = modem port offset (COMl = 3, COM2 = 2)

Returns
BX number of bits - 7 (i.e. 0 = 7 bits, 1 8 bits)

getlen proc near
push ax
push dx
mov dl,OFBH
in al,dx
and al,03H
mov bh,O
mov bl,al
sub bX,2

184 CHAPTER 10. SETTING THE MODE

pop dx

pop ax

ret

getlen endp

stop1 db ' 1 stop, ' ,0
stop2 db '2 stop, ' ,0
stoptab dw stop1

dw stop2

dw 0

showstop proc near
push bx
push si
call getstop
shl bX,1
mov si , stoptab [bx]
call dstring
pop si
pop bx
ret

showstop endp

Call with
DR = modem port offset (COM1 = 3, COM2 = 2)

Returns
BX = number of stop bits - 1 (0 = 1 stop or 1 2 stop)

getstop proc near
push ax
push dx
mov bx,O
mov dl,OFBR
in al,dx
and al,04R
cmp al,O One stop bit
je gsdone
inc bx Two stop bits

gsdone:
pop dx
pop ax
ret

getstop endp

pnone db 'no parity , ,0
podd db 'odd parity , ,0

185 10.3. SETMODE. ASM - SET SERIAL MODE

peven
partab

showparity
push
push
call
shl
mov
call
pop
pop
ret

showparity

Call with
DH =

Returns

db
dw
dw
dw
dw

proc
bx
si

'even parity' ,0
pnone
podd
peven
0

near

getparity

bX,l

si ,partab [bx]

dstring

si

bx

endp

modem port offset (COMl = 3, COM2 = 2)

BX = parity (0 means none, 1 means odd, 2 means even)
getparity proc

push ax
push cx
push dx
mov bx,O
mov dl,OFBH
in al,dx
and aI,lSH
cmp al,OOH
je gpdone
cmp aI,10H
je gpdone
inc bx
cmp aI,lSH
jne gpdone
inc bx

gpdone:
pop dx
pop cx
pop ax
ret

getparity endp

near

No parity (00)

No parity (10)

Odd parity (01)

Even parity (11)

186

setport
push
mov
mov
call
push
mov
call
call
call
call
call
call
pop
call
pop
ret

setport

; Returns
DH =

setcom
push
mov
call
mov

. 'sub
call
pop
ret

setcom

; Call with
DH =

setbaud
push
mov
call
shl
mov
call
call
pop
ret

setbaud

CHAPTER 10. SETTING THE MODE

proc near
bx
bx,cs
dS,bx
getpos Get current cursor position
bx and save it on stack.
bx,O Move to upper left corner (0,0)
setpos
setcom Set current comm port name
setbaud Set current baud rate
setlen Set bits per character
setstop Set number of stop bits
setparity Set parity
bx Retrieve old cursor position
setpos and restore cursor to there.
bx

endp

I/O port offset
proc near
di
di,offset comtab
dmenu
dh,3 Convert table index into port offset
dh,bl
showcom
di

endp

I/O port offset
proc near
di
di,offset baudtab
dmenu
bX,l Multiply by two to get word index
bx , divtab [bx]
putbaud
showbaud
di

endp

187 10.3. SETMODE. ASM - SET SERIAL MODE

;Call with
BX = baudrate divisor

putbaud proc near
push ax
push dx
mov dl,OFBH
in al,dx
push ax
or al,80H
out dX,al
mov dl,OF8H
mov al,bl
out dx,al
mov dl,OF9H
mov al,bh
out dX,al
pop ax
mov dl,OFBH
out dX,al
pop dx
pop ax
ret

putbaud endp

; Call with
DH = I/O port offset

setlen proc near
push di
mov di,offset chartab
call dmenu
call putlen
call showlen
pop di
ret

setlen endp

Call with
DH modem port offset (COM! = 3, COM2 = 2)
BX = number of bits - 7 (i.e. 0 = 7 bits,! 8 bits)

putlen proc near
push ax
push dx
mov dl,OFBH
in al,dx

188 CHAPTER 10. SETTING THE MQDE

and al,11111100B; Mask out original value, leaving rest

or al,00000010B; Set to 7 bits (10)

cmp bX,1 ; Should it be 8 bits?

jne pldone

or al,00000001B; Set it to 8 bits (11)

pldone:
out dX,al
pop dx
pop ax
ret

putlen endp

; Call with
DH = I/O port offset

setstop proc near
push di
mov di,offset stoptab
call dmenu
call putstop
call showstop
pop di
ret

setstop endp

Call with

DH = modem port offset (COM1 = 3, COM2 = 2)

BX = number of stop bits - 1 (0 = 1 stop or 1 2 stop)

putstop proc near
push ax
push cx
push dx
mov dl,OFBH
in al,dx
and al,11111011B; Mask out bit 2
cmp bx,O
je psdone
or al,OOOOO100B; Set bit 2

psdone:
out dX,al
pop dx
pop cx
pop ax
ret

putstop endp

189 10.3. SETMODE. ASM - SET SERIAL MODE

; Call with
DR = I/O port offset

setparity proc near
push di
mov di, offset partab
call dmenu
call putparity
call showparity
pop di
ret

setparity endp

Call with
DR = modem port offset (CoMl = 3, CoM2 = 2)
BX = parity (0 means none, 1 means odd, 2 means even)

putparity proc near
push ax
push cx
push dx
mov dl,OFBR
in al,dx
and al,11100111B; Mask out parity bits
cmp bx,O ; No parity (00)
je ppdone
or al,00001000B; Set odd parity (01)
cmp bX,2 ; Check for even parity
jne ppdone
or al,00010000B; Set even parity (11)

ppdone:
out dX,al
pop dx
pop cx
pop ax
ret

putparity endp

Call with
DI = pointer to table to display

Returns
BX = index into table divided by 2

dmenu proc near
push ax
push cx
push dx
push si

190 CHAPTER 10. SETTING THE MODE

push
mstart:

mov
mloop:

call
push
mov
call
pop
call
call
cmp
je
add
cmp
je
jmp

mdone:
mov
shr
pop

. pop
pop
pop
pop
ret

dmenu

cycle
mov
mov
pushf
assume
call
assume
cmp
je

cdone:
ret

cxchar:
cmp
jne
mov
jmp

cycle

bp

bp,O

getpos ; Save cursor position
bx on stack
si,word ptr ds: [di+bpJ
dstring Display current menu entry
bx Move cursor back to beginning
setpos of field
cycle Get a command
cx,O If ex=o then use this entry
mdone
bp,2 If ex not 0 then go to nex entry
word ptr ds: [di+bpJ ,0 ; Unless we've reached end of table
mstart ; If at end, start at beginning
mloop

bX,bp Move index to BX
bX,l Divide index by 2
bp
si
dx
cx
ax

endp

proc near
cX,l
ah,O

cs:nothing
old_keyboard_io
cs:cseg
al,O
cxchar

ah,77 Right Arrow
cdone
cx,O
cdone
endp

191 10.3. SETMODE. ASM - SET SERIAL MODE

, Get current cursor position and return it in EX
getpos proc

push ax
push cx
push dx

mov ah,03R
mov bh,O
int lOR
mov bX,dx

pop dx
pop cx
pop ax
ret

getpos endp

near

, Since this function modifies ex

Page zero

Return position in EX

; Set current cursor position to value in EX
setpos proc near

push ax
push bx
push dx

mov ah,02R
mov dX,bx
mov bh,O
int lOR

pop dx
pop bx
pop ax
ret

setpos endp

; Displays string pointed to by DS:SI
dstring proc near

push si
push ax
cmp si,O
je dsdone

dloop:
mov aI, [si]
cmp al,O
je dsdone

192 CHAPTER 10. SETTING THE MODE

call dchar

inc si

jmp dloop

dsdone:
pop ax
pop si
ret

dstring endp

; Display character contained in AL
dchar proc near

push ax
push bx
mov bh,1
mov ah,OEH
int 10H
pop bx
pop ax
ret

dchar endp

initialize:
assume cs:cseg,ds:cseg
mov bx,cs
mov dS,bx

mov al,16H
mov ah,35H
int 21H
mov old_keyboard_io,bx
mov old_keyboard_io[2] ,es
mov dX,offset new_keyboard_io
mov al,16H
mov ah,25H
int 21H

mov dX,offset initialize
int 27H

cseg 	 ends
end start

Chapter 11

Using the Disk

There was a time when users of small computers entered their code by flipping
switches on the front panel of a computer. An experienced programmer could
enter almost an entire kilobyte of binary code in only ten or twenty minutes. Of
course, there was paper tape, but those readers and punches were expensive, and
the paper chaff made an awful mess on the carpet. Then came a tremendous
breakthrough in mass storage technology, the cassette tape interface. Once that
kilobyte had been entered and verified, it could be saved forever on a cassette
tape. The next time the software was needed, it could be reloaded from tape.
Perhaps it took two or three tries or a bit of tweaking with a screwdriver because
the audio filters in the interface had drifted off frequency, but eventually it
worked. It wasn't quite as intimate as toggling in code on the front panel, and
some programmers probably had mixed feelings the day they noticed that the
callouses on their fingers had vanished, but tape was clearly superior.

Then, the first floppy disks came on the scene, and none too soon. Of course,
they were very expensive, big (8 inches across), and somewhat fragile, but they
did store almost 80 kilobytes, and you could retrieve the contents of a file almost
every time. As technology advanced, the disks grew bigger and more reliable.
When the IBM PC first came onto the market, disks were in their adolescence.
The early PCs were equipped with a cassette interface that almost no one used.
Few people even considered buying a PC without at least a single disk, one of
the new 5 1over4-inch drives. They weren't as fast as the 8-inch drives, and
they weren't as reliable, but they were cheaper and easier to carry about. The
early PC disks could store 180 kilobytes on one side of a disk, a capacity that
was soon doubled when cheap double-sided disk drives came along. People soon

193

194 CHAPTER 11. USING THE DISK

found that a single drive just wasn't enough. Two drives became a necessity,
not just a luxury.

Floppies were fine, but there were still those times when the program you
wanted to use was on a disk that wasn't in either drive, and both drives were
needed for something else. Disk juggling was an unpleasant fact of life. Then,
Winchester hard disks began to appear on the market. Again, the first ones
were expensive, but they could store five entire megabytes! After a while, when
ten megabytes became more the order of business, you could boot off a hard
disk. Hard disks became a staple of computing, with floppies used for archival
and data transfer between computers.

When computer designers get together, they talk about the architecture of a
computer. To many people, this means the operations that the central processor
is capable of performing. But a computer architecture is much more than the
central processor. It encompasses all the details of how the computer will manage
its primary storage; the random access memory (RAM), from which programs
execute; and the secondary storage systems, such as disk drives, where programs
are kept for execution at a later time.

A great central processor with a lousy mass-storage system has few practical
uses. Certainly, there are those applications that require the machine to read
in a very small amount of information and produce a very small amount of
output, but that take vast amounts of computing power in between. These jobs,
which use computer time but very little I/O time, are called compute-bound
programs. On the other hand, a marginally adequate central processor with
a good disk subsystem is much more useful. The Apple II with a single disk
and a spreadsheet calculator program revolutionized the way the business world
operates. The IBM PC and the business products that run on it have continued
and accelerated this trend.

Disks are a key part of how a PC does what it does. As such a vital part
of the machine, we must address how disk I/O can be done from within the
context of a memory resident program.

11.1 Safety First

DOS was not designed for multi-tasking. In fact, many of the system operations
within DOS depend on the fact that there is only a single program executing at
any given time. Memory resident programs are, in a sense, a limited violation
of that trust. We find ways to safely bend the rules enough to do what must be

195 11.1. SAFETY FIRST

done, without destroying the system. That, as any revolutionary will tell you,
is a hard game to play.

The programs discussed thus far have read from the keyboard or written to
the screen. They have activated themselves during interrupts and modified or
displayed the contents of memory. These are all fairly harmless activities, and
yet we were forced to go to great pains to write that software to be as inoffensive
as possible to the programs running normally on the machine. Disk I/O is the
most complicated subsystem in the IBM PC. It is here that the decisions of
the early DOS designers have the most impact on us. We are trying to achieve
limited multi-tasking in a system that does not normally permit such activities.
If we succeed, we can expect only a limited victory. If we fail, the consequences
are potentially disastrous.

Interfering with DOS disk I/O is dangerous, not in the sense of physical
danger, but in the potential threat to the normal operation of the system. If
DOS is about to write a buffer to disk and your resident program changes that
buffer, you will lose the information you intended to write. If DOS is about to
write a buffer to disk and you change the location of that write, even accidentally,
you are likely to clobber something. If that something happens to be the file
that DOS uses to boot, or a copy-protected program, or an important data file
you haven't gotten around to backing up yet, you probably will not be amused
by the consequences.

For that reason, there are several guidelines you should keep in mind when
developing disk-based resident applications.

• 	 Never use a critical disk as your development disk. If you are writing a
program that may change the current disk, your current disk should be
an empty floppy, rather than the hard disk with your income tax or stock
portfolio information on it. By correctly setting the DOS PATH variable,
you can still execute normal programs, such as the editor or assembler from
your hard disk, but you will not be placing that disk in as much jeopardy.
Better still, if you are truly unsure of your code, spin down your hard disk
and use only floppies during the critical parts of your development .

• 	 Paranoids have enemies too. Be suspicious of your code. You can't pos­
sibly know everything that is going on in the system, so if you write your
code carefully, and test each part, you stand a much better chance of suc­
ceeding. Think up ways to make your code fail. You'd be amazed at the
number of programs that have failed because a programmer thought that

196 CHAPTER 11. USING THE DISK

nobody would be foolish enough to try something, and then somebody
did. A corollary of Murphy's law is: For every foolproof program, there
exists a determined fool capable of breaking it. A good programmer should
never be contemptuous of users, just suspicious of them.

• 	 Fences make good neighbors. Always try to limit the amount of damage
your program can cause. Firewall your code, test it as a normal application
rather than a resident one, limiting yourself to the current disk at first
rather than solving the general case immediately - you can save yourself
quite a lot of grief in testing. Make backup copies, in case the originals
are accidentally destroyed.

It is possible to write safe disk-based applications by being careful and always
cleaning up after yourself. Always save the contents of the registers on entry
to your code. Always restore them when you are done. And always restore
the contents to the registers you originally got them from. You may not fully
appreciate that last statement until the fourth or fifth time you get the order of
POPs almost, but not quite, the same as the order of PUSHs. One trick to getting
this ordering correct every time is simple but effective: assign the registers to
a sequence (such as the one shown in the MASM manual: AX, BX, ex, OX, BP, S1,
01), then always stick with that sequence for PUSHing and its reverse for POPing.
Even if you choose not to save particular registers, keeping the sequence with
the remaining set is a good tool for keeping the order correct. Of course, you
must POP as many registers as you PUSH. Many times when a program causes the
machine to halt abruptly, the reason is unbalanced stack operations. After all,
if you leave even a single word on the stack, the return address for the current
subroutine will never be reached. When the routine returns, it will pull the
return address off the top of the stack. If that value is wrong, the machine will
try to use it anyway, and crash.

11.2 The Disk Subsystem

There are many different kinds of disks that can be used with a IBM PC. From
the earliest single-sided, single-density 180-kilobyte floppy disks, to more mod­
ern 80-megabyte SCSI disks and beyond. If you had to know the intimate details
of each of these drives to write a program that used the disk, you would prob­
ably go into another line of work. Fortunately, DOS provides several layers of

197 11.2. THE DISK SUBSYSTEM

software that encompass all these disks and many yet to come. If an interface
can be created to mate a new disk to the the underside of the software layer,
all programs that behave correctly with the top side can be used with the new
equipment without modification.

Early versions of DOS saw each disk as a simple directory that contained
files. If the disk held fifty files, the directory had fifty entries. This type of file
system, known as a flat file system, is common because it is very easy to create
and understand.

Flat file systems can become unmanageable as the amount of available disk
space grows. When your disks hold just 180 kilobytes, the number of files you
can have is small. When you have a 20-megabyte disk, you can create thousands
of files. To force someone to sit through a directory listing of thousands of files
is cruel, to say nothing of boring. Of course, in the original versions of DOS, it
was impossible to create a single directory with thousands of files. The original
flat file systems in early DOS versions were capable of storing a few dozen files
at most.

N ewer versions of DOS solved the problem of overcrowding by adopting a
tree-structured file system, like those used in more advanced operating systems.
A directory can contain not only files, but subdirectories. A subdirectory looks
just like a directory and it can contain files and subdirectories as well. If you
imagine the files to be leaves on a tree, with the root directory being the trunk
and each subdirectory a branch, you can see where the analogy comes from. A
tree has one trunk, that trunk can have many branches, and those branches can
have branches. Leaves can grow anywhere.

The root directory is the trunk from which all branches grow. Each volume
has one root directory, no more, no less. Usually, a disk is a volume and a
volume a disk, but on hard disks you may have more than one volume on a
single disk. Volumes are referred to by a letter, followed by a colon, as in A:.
DOS permits up to 26 volumes, or A: -Z:. RAMDisks, which are chunks of RAM
with a program to simulate a disk, can be assigned a volume label also. The root
directory is named \. Thus, the root directory on volume A: would be named
A: \. Under that root directory a subdirectory called GLOP would have the full
name A: \ GLOP\. The file REAMDE. TXT under that subdirectory would have the
full name A: \GLOP\README. TXT.

In many books, this one included, you'll find the terms directory and subdi­
rectory used interchangeably. There is really only a slight difference, and it is
not a particularly important point for nonprogrammers. There is really only one

198 CHAPTER 11. USING THE DISK

directory per volume. That structure is the root directory. For compatibility
reasons, it can hold only a limited number of file entries. Subdirectories are
directories that are linked in a tree from the root directory. These directories
can hold any number of files.

Despite the time we have spent discussing how a tree-structured file system
resembles a natural tree, programmers typically picture a tree with the root at
the top and each subdirectory a branch descending from that root. Thus, it is
common, and very confusing, to find books that sing the virtues of ascending
trees, but show diagrams of descending ones. Don't worry too much about this.
There is no up or down on the disk. The important fact is the relationship
among directories, subdirectories, and files. Think of them as trees, or roots, or
file folders within file folders, or make up your own analogy. The analogy isn't
as important as the concept that it is intended to reflect.

11.2.1 Directories

The first step in learning to use files is learning to find them. It is often said
that a directory "contains" files, but what does that mean? Physically, files and
directories are magnetized spots on a spinning platter. They are also highly
organized ideas, thoughts given shape by software. The idea in this case is to
allow a program to wander through a world filled with files, in the same way
you might walk down the corridors of a library, browsing through the stacks,
occasionally selecting a book for further study. In that sense, an organized
collection of files is called a file system in the same way a library (an organized
collection of books) could be called a book system.

To permit a program to wander the corridors of our system of files, we must
have a data structure that tells it where the files are on disk, how big they are,
and what they are named. To permit a person to walk through the file system,
we must have programs capable of moving through the system and narrating
their progress in human terms. The DrR command, which lists the contents of
a directory or subdirectory, is just such a program.

orR displays information about the files in a particular directory or subdirec­
tory. Essentially, the orR command prints the contents of a machine-readable
directory data structure in a way that is people-readable. You can use orR to
find the names of files, their sizes, or the date they were created. The problem
with the orR command is that it is often unavailable when we need it. For
example, suppose you are using a telecommunications program and you want to

199 11.2. THE DISK SUBSYSTEM

know what files are available in the current directory. Unless the programmer
has specifically written a directory command or the equivalent, the only choice
is to exit from the telecom program, list the directory, and then try to regain
lost ground by restarting the communications program. What we need is the
ability to list the entries in the current directory at any time, regardless of the
design of the currently running application program. This seems like a good
niche for a resident application.

The most common thing to want to see in a directory listing is, of course,
the names of the files. For our purposes, that information alone will do for a
basic resident directory lister. As we have discussed before, the correct place
to display the information is not at the cursor location when the function is
invoked. A much better choice is to "overlay" a window at the top of the screen,
starting at the upper left corner.

We can build a directory lister from the basic structure of our keystroke­
dispatcher program. Using that skeleton, we can construct an empty application
that will be the framework for this application:

cseg segment
assume cs:cseg,ds:cseg
org tOOH

start:
jmp initialize

assume ds:nothing
new_keyboard_io proc far

sti
cmp ah,O Is this call a READ request?
je ksread
jmp old_keyboard_io handle the remaining subfunction.

ksread:
call keyread Get the next character to return
iret

new_keyboard_io endp

; Read a character from the keyboard input queue, if not expanding
; or the expansion string, if expansion is in progress.
keyread proc near

push si
readchar:

200

pushf
call
cmp
je
jmp

extended:
mov

nextext:
cmp
je
cmp
je
add
jmp

startexpand:
add
cmp
je
push
push
push
push
push
push
push
push
call
pop
pop
pop
pop
pop
pop
pop
pop

readdone:

keyread

pop
ret

keytab db
dw
db
dw

old_keyboard_io
al,O
extended
readdone

si,offset keytab

byte ptr cs: [si] ,0
readdone
ah,cs: [si]
startexpand
si,3
nextext

si,1
word ptr es: [si] ,0
readdone
ax
bx
cx
dx
si
di
bp
ds
word ptr cs: [si]
ds
bp
di
si
dx
ex
bx
ax

si

endp

32
dirlist
0
0

CHAPTER 11. USING THE DISK

Let the original routine
determine keyboard status.

Is this the end of the table?

201 11.2. THE DISK SUBSYSTEM

assume cs:cseg,ds:cseg

Keystroke routines go here

dirlist proc near
ret

dirlist endp

; Displays the string pOinted to by DS:SI
dstring proc near

push si
push ax
cmp si,O
je dsdone

dloop:
mov aI, [si]
cmp al,O
je dsdone
call dchar
inc si
jmp dloop

dsdone:
pop ax
pop si
ret

dstring endp

, Display the character contained in AL
dchar proc

push ax
push bx
mov bh,l
mov ab,OEH
int 10H
pop bx
pop ax
ret

dchar endp

initialize:

near

assume cs:cseg,ds:cseg
mov bx,cs
mov dS,bx

mov al,16H

202 CHAPTER 11. USING THE DISK

mov ah,35H

int 21H

mov old_keyboard_io,bx

mov old_keyboard_io[2] ,es

mov dX,offset new_keyboard_io

mov aI,16H

mov ah,25H

int 21H

mov dX,offset initialize

int 27H

cseg 	 ends
end start

With this skeleton, we can build a resident program that will display a list
of all the file names in the current directory when we type an ALT-D on the
keyboard.

Listing directories is built on two closely related DOS functions, INT 21H
function 4EH {search for first match} and INT 21H function 4FH {search for next
match}. These two functions search in the current directory for a file that
matches some criterion. That criterion is an ASCIIZ string that represents a
form of file name. For example, if we wanted to get the directory listing for a
particular file, say, "CMD. ASM", the match pattern would contain exactly that
string. If you wanted to list all the assembly-language source files, the match
pattern would be "*. ASM". If we wanted to match all the assembly language
source files that had three character names beginning with the letter C, our
match pattern would be "C?? ASM". And if we wanted to match all the files on
the disk, we would use the match pattern "*. *" .

The search for first match function also requires an attribute on which to
search. This attribute is carried over to all other matches. Possible attributes
are:

Attribute bit Meaning
76543210
xxxxxxxi Read-only files
xxxxxx1x Hidden files
xxxxx1xx System files
xxxx1xxx Volume label
xxx 1 xxxx Subdirectory
xx1xxxxx Archive

203 11.2. THE DISK SUBSYSTEM

Adding these attribute bits extends the search. If the attribute byte is zero,
only normal files are found. The search for first match function returns the file
information for the first file in the directory that matches the pattern. The search
for next match function returns successive matches after that. Both functions
return a set CF if they find a match, or a cleared CF if no match is found.

dirlist proc near
mov bx,cs
mov dS,bx

mov ah,2FH
int 21H
push es
push bx

mov dx,offset mydta
mov ah,1AH
int 21H
mov dX,offset pattern
mov cX,OH
mov ah,4EH
int 21H
jc dirdone
mov si ,offset crlf
call dstring

display:
mov si,offset mydta+30
call dstring
mov si,offset crlf
call dstring

nextfile:
mov ah,4FH
int 21H
jnc display

dirdone:
pop dx
pop ds
mov ah,1AH
int 21H
ret

dirlist endp

crH db OdH,OaH,O

Get the original OTA value

Save the OTA Segment on stack
Save the OTA Offset on stack

Set the OTA to our buffer

Set the search pattern
Search for only normal files
Find the first match

If no first match, return

Print the file name

followed by a newline

Search for the next match

If matched, print it

Get original DTA from stack
but in different registers

Reset the OTA to the old value

204 CHAPTER 11. USING THE DISK

pattern db '*. *' ,0
mydta db 64 dup (0)

This is a simple, yet useful function. By slightly changing the parameters,
we can cause it to find out many useful pieces of information about the current
directory.

One important concept used in this code is the idea of the disk transfer area
(DTA). The DTA is a buffer that is used by many disk-oriented system calis
as a staging area for disk information. In this case, it is where the information
for each file is kept after the file was matched. This program determined the
DTA location on entry, saved that location, and restored it before exiting. The
DTA was allocated explicitly in this code as a 64-byte buffer. The syntax of the
allocation should be explained. The assembler line

mydta db 64 dup (0)

results in two separate actions by the assembler. The first is to allocate 64 bytes
of memory at the current address, which will be referred to by the label mydta.
The second involves the peculiar expression "dup (0)". This tells the assembler
to fill those 64 bytes with zeros. We easily could have filled them with FFH, or
anything else. In addition, we could have specified a "dup (?)", which would
have allocated the space but not changed its contents at all.

It is not important where your DTA is located, except that it cannot be in
a portion of memory used for some other purpose. It is important that your
application create a DTA for itself, rather than use some existing DTA. It would
be almost impossible to avoid a conflict between the running application and
your resident application if they both used the same transfer area. By creating
your own DTA and carefully setting and restoring it every time control passes
to your resident application, you can avoid these types of conflicts.

11.3 Making a Useful Directory Display

Listing the contents of the current directory after the prompt is fine as a test,
but we should be able to turn this subroutine into something more useful. First,
of course, we should get it out of the way of the prompt. As in the past, we
will start the display at the upper left corner of the screen. Since we may be
displaying quite a few files, more than the number of lines on the screen, we
should have some way of using more than the first ten columns of the screen.

205 11.3. MAKING A USEFUL DIRECTORY DISPLAY

DOS has a wide mode for directory listings, which displays a columnar list of
files. Since we will be writing variable strings that will be less than or equal to
twelve characters in length, we should make provisions for erasing the underlying
screen contents.

It is likely that the screen will contain some information already. We would
prefer not to mix our directory listing with extraneous information already on the
screen. One way around this would be to cause the listing to pop up, blanking
part of the screen, and then, at some signal from the user, vanish, restoring
the original contents. Pop-up listings require you to remember information,
however, while simple displays require you simply to copy information. For our
purposes, we shall create a display that blanks each line it is about to touch, and
thus "disambiguate" our directory listing from the other information on display.

dirlist
mov
mov

call
push
mov
call
call

mov
int
push
push

mov
mov
int
mov
mov
mov
int
jc
mov

display:
mov
call
inc
cmp
jne

proc near
bx,cs
dS,bx

get_pos
dx
dx,O
set_pos
blankline

ah,2FH
21H
es
bx

dX,oifset mydta
ah,lAH
21H
dX,offset pattern
cX,OH
ah,4EH
21H
dirdone
bp,O

si,offset mydta+30
fillstring
bp
bp,4
nextfile

Get the original OTA value

Save the OTA Segment on stack
Save the OTA Offset on stack

Set the OTA to our buffer

Set the search pattern
Search for only normal files
Find the first match

If no first match, return

Print the file name

206 CHAPTER 11. USING THE DISK

mov
call

nextfile:
mov
int
jnc

dirdone:
pop
pop
mov
int

pop
call
ret

dirlist
tab db
crlf db
pattern db
mydta db

; Position in DX
get_pos

push
push
push
mov
mov
int
pop
pop
pop
ret

get_pos

, Position in DX
set_pos

push
push
mov
mov
int
pop
pop
ret

bp,O
blankline

ah,4FH
21H
display

Search for the next match

If matched, print it

dx
ds
ah,1AH
21H

Get original DTA from stack
but in different registers

Reset the DTA to the old value

dx
set_pos

endp
09H,O
OdH,OaH,O
'*. *' ,0
64 dup (0)

proc
ax
bx
cx
ah,03H
bh,O
10H
cx
bx
ax

near

endp

proc
ax
bx
ah,02H
bh,O
10H
bx
ax

near

207 11.3. MAKING A USEFUL DIRECTORY DISPLAY

set_pos endp

blankline proc near
push ax
push bx
push cx
mov ah,09H
mov aI, , ,

mov bh,O
mov bI,7
mov cx,80
int 10H
pop cx
pop bx
pop ax
ret

blankline endp

;D8:81 pOints to A8CIIZ string to print
fiIIstring proc near

push cx
call dstring

fillchar:
cmp cx,20
je filldone
mov aI, , ,

call dchar
inc cx
jmp fillchar

filldone:
pop ex
ret

fillstring endp

Organizing the display into columns is usually not difficult. There are many
ways to do this, and many work under different sets of circumstances. In this
case, we are exploiting a feature of the ROM character I/O calls. We know that
a file name will be a maximum of twelve characters long. Files can have up
to eight characters of name, followed by a period (.), followed by up to three
characters of extension. Thus, FILENAME. EXT is as long as any pathless filename
can be under DOS.

We know that there are two types of text displays on the IBM PC. Some
have 80 character lines, others have 40 character lines. Twelve does not divide

208 CHAPTER 11. USING THE DISK

cleanly into either of these numbers. Besides that, we must have some amount of
blank space between each file name as separation. By being just a little clever
and realizing that INT 10H function OEH (write character in TTY mode) will
wrap around when it reaches the last column of the screen, we can provide a
columnar directory listing by simply adding one small routine fillstring. This
routine displays each file name, left justified, in a 20-character fixed width field,
padded with blanks. Since 20 divides evenly into both 80 and 40, this display
will work correctly in both cases, simply by printing the characters in a single
line and letting the cursor wrap-around do the work for us. Since this function
is supported under all versions of the IBM ROM and is likely to be in any clone
ROMs, portability is not an issue.

11.4 LD . ASM - List a directory

After running this program, typing an ALT-D will cause a reasonably neat direc­
tory listing to be displayed in the upper part of the screen.

cseg segment
assume cs:cseg.ds:cseg
org 100H

start:
jmp initialize

assume ds:nothing
new_keyboard_io proc far

sti
cmp ah.O Is this call a READ request?
je ksread
jmp old_keyboard_io handle the remaining subfunction.

ksread:
call keyread Get the next character to return
iret

new_keyboard_io endp

; Read a character from the keyboard input queue. if not expanding
; or the expansion string. if expansion is in progress.
keyread proc near

push si

209 11.4. LD.ASM - LIST A DIRECTORY

readchar:
pushf
call old_keyboard_io
cmp al,O
je extended
jmp readdone

extended:
mov si,offset keytab

nextext:
cmp byte ptr cs: [si] ,0
je readdone
cmp ah,cs:[si]
je startexpand
add si,3
jmp nextext

startexpand:
add si,i
cmp word ptr cs: [si] ,0
je readdone
push ax
push bx
push cx
push dx
push si
push di
push bp
push ds
call word ptr cs: [si]
pop ds
pop bp
pop di
pop si
pop dx
pop cx
pop bx
pop ax

readdone:
pop si
ret

keyread endp

keytab db 32
dw dirlist
db 0
dw 0

Let the original routine
determine keyboard status.

Is this the end of the table?

210 CHAPTER 11. USING THE DISK

assume cs:cseg,ds:cseg

Keystroke routines go here

dirlist
mov
mov

call
push
mov
call
call

mov
int
push
push

mov
mov
int
mov
mov
mov
int
jc
mov

display:
mov
call
inc
cmp
jne
mov
call

nextfile:
mov
int
jnc

dirdone:
pop
pop
mov

proc near
bx,cs
dS,bx

get_pos
dx
dx,O
set_pos
blankline

ah,2FH
21H
es
bx

dx,offset mydta
ah,1AH
21H
dX,offset pattern
cX,OH
ah,4EH
21H
dirdone
bp,O

si,offset mydta+30
fillstring
bp
bp,4
nextfile
bp,O
blankline

ah,4FH
21H
display

dx
ds
ah,1AH

Get the original OTA value

Say~ the OTA Segment on stack
Save the OTA Offset on stack

Set the'OTA to our buffer

Set the search pattErn
Search for only normal files
Find the first match

If no first match, return

Print the file name

Search for the next match

If matched, print it

Get original OTA from stack
but in different registers

Reset the OTA to the old value

211 11.4. LD.ASM

int

pop
call
ret

dirlist

tab db
crlf db
pattern db
mydta db

; Position in DX
get~pos

push
push
push
mov
mov
int
pop
pop
pop
ret

get_pos

; Position in DX
set_pos

push
push
mov
mov
int
pop
pop
ret

set_pos

blankline
push
push
push
mov
mov
mov

LIST A DIRECTORY

21H

dx
set_pos

endp

09H,O
OdH,OaH,O
'*.*' ,0
64 dup (0)

proc near
ax
bx
cx
ah,03H
bh,O
10H
cx
bx
ax

endp

proc near
ax
bx
ah,02H
bh,O
10H
bx
ax

endp

proc near
ax
bx
cx
ah,09H
aI, ' ,

bh,O

212 CHAPTER 11. USING THE DISK

mov bl,7
mov cX,BO
int 10H
pop cx
pop bx
pop ax
ret

blankline endp

;DS:S1 pOints to ASCIIZ string to print
fillstring proc near

push cx
call dstring

fillchar:
cmp cx,20
je filldone

,mov aI, ,
call dchar
inc CX
jmp fillchar

filldone:
pop cx
ret

fillstring endp

, Displays the string pointed to by DS:S1
dstring proc near

push si
push ax
mov cX,O
cmp si,O
je dsdone

dloop:
mov aI, [si]
cmp al,O
je dsdone
call dchar
inc si
inc cx
jmp dloop

dsdone:
pop ax
pop si
ret

dstring endp

213 11.4. LD.ASM - LIST A DIRECTORY

, Display the character contained in AL
dchar proc near

push ax
push bx
mov bh,1
mov ah,OEH
int 10H
pop bx
pop ax
ret

dchar endp

initialize:
assume cs:cseg,ds:cseg
mov bx, cs
mov dS,bx

mov 	 al,16H
mov 	 ah,35H
int 	 21H
mov 	 old_keyboard_io,bx
mov 	 old_keyboard_io[2] ,es
mov 	 dX,offset new_keyboard_io
mov 	 al,16H
mov 	 ah,25H
int 	 21H

mov dX,offset initialize
int 27H

cseg 	 ends
end start

Chapter 12

Strolling the Corridors

The directory for a disk is something like a telephone directory. It tells you
whether certain files are present and, if so, where they are located on the disk.
But there is a big difference between finding the name of a restaurant in the
phonebook and going to that restaurant for dinner. The second part of using
the file system from within memory resident programs is knowing how to use
the files you have located in the directory.

DOS has two different types of functions for file I/O. The first type is the file
control block (FCB) operations. These are the file operations that were written
for the earliest versions of DOS. In many ways they are reminiscent of some file
operations from CP/M (an early disk operating system that was very popular
for 8-bit computers and the inspiration for much of MS-DOS). The FCB is a
structure in memory that contains many useful pieces of information about a
particular stream of file operations. You can have any number of file control
blocks and thus any number of file operations in progress at a given time.

The other type of file operations are handle operations, which are strongly
flavored by similar operations in the UNIX operating system. These routines
are more flexible and easier to use and require somewhat less memory in your
programs, because all the file state information is kept by DOS in memory
allocated by the operating system. They are called handle operations because
the first call one uses, "open file" or "create file", returns an integer that is a
token DOS uses to find the internal file status structure. Early versions of DOS
may be missing these functions.

For writing general applications, the handle functions are the better choice.
They are much more pleasant to use and require less work than the FCB func­

215

216 CHAPTER 12. STROLLING THE CORRIDORS

tions to accomplish the same task. Unfortunately, one of the ways they ac­
complish this flexibility limits them for use in an resident application. Handle
functions are easy to use because they abstract the file information into a single
token, and that token can be used to represent a particular file throughout the
life of a program. DOS keeps track of the details, and the file operations just
work right. Because DOS has internal tables for file state, a resident application
that uses handle operations is likely to become noticeable.

Suppose a normal application program wants to open several files at the
same time. DOS will allocate a handle for each file that is opened. The max­
imum number of files that can be open at once is set by the FILES command
in your CONFIG. SYS. Suppose the default value of eight files is being used. The
application has opened seven files and is about to open an eighth, when a resi­
dent application (a pop-up notepad, for example) is run. The notepad opens a
file and leaves it open, even after it has completed, and control returns to the
application. Because of that open file, the application will fail where it should
have succeeded.

There are two solutions to this problem. The first is administrative. Simply
set the value of FILES to be larger than eight. This doesn't really solve the
problem, though. It simply pushes it into the future. The second choice is to
fix the resident application to work without interfering. This is harder, but it
means that your code is more likely to work on a variety of machines. The
FeB calls are a little more useful to us, though they are more painful to use.
The file control block is a structure that is located somewhere in memory. We
can decide where it should go, so is no reason it cannot be located within the
memory space of a resident application. With no disk state to be managed by
the system, the resident application becomes less noticeable, but not entirely
invisible. Remember that the disk code will change the position of the disk
heads and the low-level state of the disk hardware.

The handle functions are not a complete loss, however. We would prefer
to use them, because they are simpler to use and thus make our resident code
that much smaller. One way to accomplish this involves the notion of a session.
An application program loads from disk, runs, and then exits. It has only one
session. A resident application loads from disk, installs itself, and then waits to
be called. It may be invoked many times and thus has any number of sessions. A
session is the time in which a given program has control over the machine. Once
a resident application is activated, its session begins. The resident application
can do whatever it likes and retains control over the machine until it chooses

217 12.1. BROWSING IN THE STACKS

to give it up. When the resident application gives up control, that particular
session has ended.

By guaranteeing that a set of disk operations (open file/use file/close file)
remains within a single session, you improve the likelihood of your resident
application working correctly. If you open a file, read or write it, and close it all
within the space of a single session, you stand a much better chance of keeping
everything working correctly. In addition, since the handle operation would
remain in a single session, they can be used from within a memory resident
program.

For devices such as the screen, the idea of a session is interesting and some­
times useful, but not critical. If a resident application writes to the screen, the
worst thing you might have is a messy screen. That will not crash the program
in progress, nor will it turn good results into bad. Disk operations have a much
greater potential for disaster and so should be taken very seriously in the design
of your code. Imagine the problems you would have when you realized that the
resident application you just ran accidentally changed a single byte somewhere
on the disk containing your income tax spreadsheet information. Then imagine
trying to explain that to your auditor.

12.1 Browsing in the Stacks

A good example of using disk I/O from within a resident application, and also
a fairly useful one, is a disk browsing program. How many times have you been
working within a program and realized that you needed to load a file. You know
the file is on your disk. You've displayed a directory listing, using that niHy little
directory lister we wrote in the last chapter. But you can't remember whether
the file you want is GLOP. ASM or PLOP. ASM. Ifyou could see the contents of either
file, you would know. What you need to be able to do is stroll around through
the file system at will, looking at the files you find there.

Once again, we will begin with the basic skeleton of our keystroke dispatcher.
It is probably worthwhile to mention that even though this skeleton has reap­
peared several times, it is not always necessary to duplicate the skeleton for each
function you want to dispatch. If you want to cut each function into a separate
program, by all means do so. But if you prefer to use one dispatcher and create
a single large program containing the routines for each keystroke, there is no
reason not to do so.

218 CHAPTER 12. STROLLING THE CORRIDORS

cseg 	 segment
assume
org

start:
jmp

assume
new_keyboard_io

sti
cmp
je
jmp

ksread:
call
iret

new_keyboard_io

cs:cseg,ds:cseg
100H

initialize

ds:nothing
proc far

ah,O
ksread
old_keyboard_io

keyread

endp

Is this call a READ request?

handle the remaining subfunction.

Get the next character to return

; Read a character from the keyboard input queue, if not expanding
; or the expansion string, if expansion is in progress.
keyread

push
readchar:

pushf
call
cmp
je
jmp

extended:
mov

nextext:
cmp
je
cmp
je
add
jmp

startexpand :
add
cmp
je
push
push

proc near
si

Let the original routine
old_keyboard_io determine keyboard status.
al,O
extended
readdone

si,offset keytab

byte ptr cs: [si] ,0 Is this the end of the table?
readdone
ah,cs: [si]
startexpand
si,3
nextext

si,1
word ptr cs: [si] ,0
readdone
ax
bx

219 12.1. BROWSING IN THE STACKS

push cx
push dx
push si
push di
push bp
push ds
call word ptr cs: [si]
pop ds
pop bp
pop di
pop si
pop dx
pop cx
pop bx
pop ax

readdone:
pop si
ret

keyread endp

keytab 	 db 48
dw browse
db 0
dw 0

ALT-B

assume cs:cseg.ds:cseg

Keystroke routines go here

browse proc near
ret

browse endp

. Displays the string pointed to by DS:SI
dstring proc near

push si
push ax
cmp si.O
je dsdone

dloop:
mov al. [si]
cmp al.O
je dsdone
call dchar
inc si

220 CHAPTER 12.

jmp 	 dloop
dsdone:

pop ax
pop si
ret

dstring endp

, Display the character contained in AL
dchar proc near

push ax
push bx
mov bh,l
mov ah,OEH
int 10H
pop bx
pop ax
ret

dchar endp

initialize:
assume cs:cseg,ds:cseg
mov bx,cs
mov dS,bx

mov 	 al,16H
mov 	 ah,35H
int 	 21H
mov 	 old_keyboard_io,bx
mov 	 old_keyboard_io[2] ,es
mov 	 dx,offset new_keyboard_io
mov 	 al,16H
mov 	 ah,25H
int 	 21H

mov dX,offset initialize
int 27H

cseg 	 ends
end start

STROLLING THE CORRIDORS

We have bound the browse function to the ALT-B key. Now, with the skeleton
built, we can begin to think about the user interface. In the resident application
we created for setting the mode on the communications port, we developed a
nice cyclic system for selecting a particular option from a known set of options.

221 12.2. PROTOTYPING THE SELECTOR

This case is similar to that. We know that there are a fixed number of files in
the current directory. We may not know how many there are, but we know that
INT 21H function 4EH (search for first match) will give us the name of the first,
and continued application of INT 21H function 4FH (search for next match) will
scan through all the files until we reach the last. Given these facts, there is
no reason not to use the same method of allowing the user to confirm selection
of the currently displayed file or pass to the next file. As with many of these
applications, the display should take place in the upper left corner of the screen
for the same reasons given elsewhere.

When ALT-B is typed, the cursor is moved to the upper left corner of the
screen and the first file name displayed. If the RightArrow key is hit, that file is
accepted and displayed. If the End key is hit, the browser will quit and control
will return to wherever it came from. If any other key is hit, the display will
cycle on to the next file in the directory. When the end of the list of files is
reached, the display starts again at the beginning. This is an extremely simple
interface, but it is also quite powerful. It can be applied to any situation where
all the choices are known. One addition, which was not done here to keep the
program as simple and clear as possible, would be to allow another key, the
UpArrow perhaps, to cycle the choices in the opposite direction. This would
permit you to recover quickly from hitting a key and realizing that you passed
the correct choice. It is important to note that this simple addition would add
a great deal of complexity to this application. We have, through DOS, an easy
means of scanning forward through the files in a directory. We do not have any
similar means of scanning backward. For the sake of adding a little polish, we
would increase the complexity of our application.

12.2 Prototyping the Selector

We know how we want to select files. Before we move on to the design of the
file-display mechanism, a reasonable thing to do would be to create a prototype
of the selection mechanism.

In chapter 11, we chose to blank an entire line before we wrote anything on
it. This serves two purposes. First, it draws attention to the display on that line,
and second, it prevents that display from seeming cluttered. This is important
when you consider that the display of a file name on top of what may have been
a directory listing could be very confusing indeed. By blanking the line, we can
be sure that what we seem to be reading is really what was meant to be read.

222 CHAPTER 12. STROLLING THE CORRIDORS

These same reasons apply here, for both selection and display. For that reason,
we will blank the background behind our file selector. To do this, we require the
blankline routine from chapter 11.

Since we intend to cycle through a series of file names, we need some method
of keeping them from overlapping. We could blank the entire line each time, but
we already have a routine that will print a string within a fixed-width string,
filled out by spaces. The execution time for each is quite small, so a choice
cannot be made on that basis. If we wanted to display a series of things, we
would need to make different arrangements other than blanking the entire line,
however. For that reason - upward mobility - we should choose the fillstring
routine.

Another routine we need is the dirlist function from chapter 11. This
routine was designed to scan through an entire directory, displaying fixed-width
file names. In this case, we don't want to scan through all at once. We want
to show one file at at time. When the end of the list is reached, we want to
start over again at the beginning. The dirlist routine could be modified to
be called nextfile, meaning "Display the next file in sequence." It would look
like this:

nextfile proc near
call get_pos
push dx

firstmatch:
cmp si,O
jne nextmatch
mov si,i
mov dX,offset pattern; Set the search pattern
mov cX,OH Search for normal files
mov ah,4EH Find the first match
int 2iH
jnc showmatch
mov si,O
jmp matchdone

nextmatch:
mov ah,4FH Search for next match
int 2iH
jnc showmatch Display match
mov si,O
jmp firstmatch

showmatch:
mov si,offset mydta+30 Print the file name
call fillstring

223 12.2. PROTOTYPING THE SELECTOR

matchdone:
pop dx
call set_pos
ret

nextfile endp

This routine takes in one state variable. The value in SI determines whether
the directory listing starts from the beginning (S1 is 0) or somewhere in the
middle (S1 not 0). Each time this routine is called it displays the next value in
the "circular" list of files - circular, because when the end of the directory is
reached, the next fi~e is the first file in the list.

By wrapping a little cursor-positioning code around this routine, we can
create the cyclic effect used in the modem program, SETMODE. ASM. We must also
take the same precautions as before, saving the old disk transfer area (DTA)
and setting our own.

browse proc near
mov bx,cs
mov dS,bx

call get_pos ;Save current position
push dx
mov dx,O ;Move to Upper Left Corner
call set_pos
call blankline ;Blank entire line

mov ah,2FH ;Get original DTA
int 218
push es ;Save DTA Segment
push bx ;Save DTA Offset

mov dX,offset mydta ;Set our DTA
mov ah,lAH
int 21H

mov si,O ;Set FIRST for nextfile
cycle:

call nextfile ;Display next file
call getchar ;Get a character
cmp al,O ;Is it extended?
jne cycle ;If so, loop
cmp ah,79 ;Is it an END
je bdone ;If so, quit

224 CHAPTER 12. STROLLING THE CORRIDORS

cmp ah,77 ;ls it a Right Arrow
jne cycle ;If not, loop
call showfile ;If so, display the file

bdone:
pop dx ;Get original DTA from stack
pop ds ; but in different registers
mov ah,1AH ;Reset DTA to old value
int 21H

pop dx ;Get old position
call set_pos ;And restore cursor position
ret

browse endp

showfile proc near
ret

showfile endp

12.3 Displaying the File

Once a file has been selected, it must be displayed. There are many ways to
accomplish this - we'll choose the easiest and most straightforward. Once the
file has been chosen, we want to move the cursor again to the upper left corner
and begin displaying the file. As with the directory display, we should never
mix old and new screen information. Once we choose to write anything on a
line, that entire line should be blanked first.

Displaying any part of the file is just as hard, from the resident application
point of view, as displaying the entire file. For the purposes of this book and for
many cases when simply browsing through files, we need display only the first
few lines of a file. For simplicity, we will display the first 512 bytes. Adding a
simple user interface to scan through the entire file is not difficult, but it adds
nothing to the theme of this book. The additional code is left (as they said.in
those books that you found so annoying in school) as an exercise for the reader.
One possibility for this interface would be to move along the same lines as the
rest of this program. Display a page of the file. The End key stops the display
and drops out of the browser. Any other key advances a page. A few frills might
be to allow the browser to move forward or backward through the files, binding
those functions to the PgDn and PgUp keys.

The simplest showfile routine, displaying only the first 512 bytes of the file,

225 12.3. DISPLAYING THE FILE

would look like this:

showfile proc near
call blankline ;Blank the first line
mov ah,30H ;Open the file
mov al,O ;Access is Read-Only

;File name is in OTA+30
mov dX,offset mydta+30
int 21H ;Handle returned in BX

mov si,offset mydta ;Clear the OTA to all zeros
mov cx,512

cleardta:
mov 	 byte ptr [si],O
inc 	 si
loop 	 cleardta

mov bX,ax ;Read a block from the file
mov ah,3FH
mov cx,512 ;First 512 bytes or less
mov dX,offset mydta
int 21H
mov si,offset mydta ;Print the block
call dstring

mov ah,3EH ;Close the file
int 21H
ret

showfile endp

mydta 	 db 512 dup (0)
db o

Because we have enclosed the file I/O within a single routine and thus within
a single session, we can use the handle functions. You should take note of two
parts of this function, one code, one data. The first operation this code performs
is to open the file. The file name is known to be thirty bytes from the beginning
of the disk transfer area used by the search operations. After the file is open, we
no longer need the file name; therefore, we can reuse the DTA as a staging area
for the block of data we want to read. We know that the data placed into the
DTA will be less than or equal to 512 bytes in length. If we want to print that
information, we must either be concerned with its length, or take steps to ensure

226 CHAPTER 12. STROLLING THE CORRIDORS

that the end of the data can be detected. After we open the file, the next step
we take here is to fill the DTA with zeroes. This means that a block of less than
512 bytes will be terminated by a zero byte. If we have read in a binary file,
it may have zero bytes in it. This means that the display will stop sooner, but
that is acceptable, since we will not be getting much information from looking
at the character representation of a binary file. For the case of a data block
that is exactly 512 bytes long, we have placed an extra zero byte immediately
after the DTA. This will never be overwritten by the disk routines, so the block
will be zero-terminated in that case as well. Since we know the starting length
and can detect the end of the block, we can simply use the dstring routine to
display the block as though it were an ASCIIZ string.

12.4 BROWSE. ASM - Examine File Contents

After this program is installed an ALT-B will display a filename in the upper left
corner of the screen. A RightArrow will select the displayed filename and print
the top of the file on the screen. An End will quit. Any other key will display
the next filename in the directory.

cseg segment
assume cs:cseg,ds:cseg
org 100H

start:
jmp initialize

assume ds:nothing
new_keyboard_io proc far

sti
cmp ah,O Is this call a READ request?
je ksread
jmp old_keyboard_io handle the remaining subfunction.

ksread:
call keyread Get the next character to return
iret

new_keyboard_io endp

Read a character from the keyboard input queue, if not expanding
or the expansion string, if expansion is in progress.

227 12.4. BROWSE. ASM - EXAMINE FILE CONTENTS

keyread
push

readchar:
pushf
call
cmp
je
jmp

extended:
mov

nextext:
cmp
je
cmp
je
add
jmp

startexpand:
add
cmp
je
push
push
push
push
push
push
push
push
call
pop
pop
pop
pop
pop
pop
pop
pop

readdone:
pop
ret

keyread

keytab 	 db
dw

proc near
si

old_keyboard_io
al,O
extended
readdone

si,offset keytab

byte ptr cs: [si] ,0
readdone
ah,cs: [si]
startexpand
si,3
nextext

si,1
word ptr cs: [si] ,0
readdone
ax
bx
cx
dx
si
di
bp
ds
word ptr cs: [si]
ds
bp
di
si
dx
cx
bx
ax

si

endp

48
browse

Let the original routine
determine keyboard status.

Is this 	the end of the table?

228 CHAPTER 12. STROLLING THE CORRIDORS

db 0
dw 0

assume cs:cseg,ds:cseg

Keystroke routines go here

browse

cycle:

bdone:

proc near
mov bx,cs
mov dS,bx

call get_pos
push dx
mov dx,O
call set_pos
call blankline

mov ah,19H
int 21H
push ax

mov ah,2FH
int 21H
push es
push bx

mov dx,offset mydta
mov ah,lAH
int 21H
mov si,O

call nextfile
call getchar
cmp al,O
jne cycle
cmp ah,79
je bdone
cmp ah,77
jne cycle
call showfile

moy ah.ODH
int 21H

pop dx

Get the original DTA value

Save the DTA Segment on stack
Save the DTA Offset on stack

Set the DTA to our buffer

Get a character
Is it extended?
If so, loop
Is it an END

Is it a Right Arrow

Get original DTA from stack

229 12.4. BRDWSE.ASM - EXAMINE FILE CONTENTS

pop
mov
int

mov
pop
int

pop
call
ret

browse

tab db
crlf db
pattern db
mydta db

db

showfile
call
mov
mov
mov
int
mov
mov

cleardta:
mov
inc
loop

mov
mov
mov
mov
int
mov
call

mov
int
ret

showfile

ds
ah,lAH
21H

ah,OEH
dx
21H

dx
set_pos

endp

09H,O
OdH,OaH,O
'* .*' ,0
512 dup (0)
0

proc near
blankline
ah,3DH
al,O
dX,offset mydta+30
21H
si ,offset mydta
cx,512

byte ptr [si] ,0
si
cleardta

bX,ax
ah,3FH
cx,512
dX,offset mydta
21H
si,offset mydta
dstring

ah,3EH
21H

endp

but in different registers
Reset the DTA to the old value

Open the file

230

nextfile
call
push

firstmatch:
cmp
jne
mov
mov
mov
mov
int
jnc
mov
jmp

nextmatch:
mov
int
jnc
mov
jmp

showmatch:
mov
call

matchdone:
pop
call
ret

nextfile

getchar 	proc
pushf
mov
assume
call
assume
ret

getchar 	endp

, Position in OX
get_pos

push
push
push
mov
mov

CHAPTER 12. STROLLING THE CORRIDORS

proc near
get_pos
dx

si,O
nextmatch
si,i
dX,offset pattern Set the search pattern
cX,OH Search for only normal files
ah,4EH Find the first match
2iH
showmatch
si,O
matchdone

ah,4FH Search for the next match
2iH
showmatch Display match
si,O
firstmatch

si,offset mydta+30 Print the file name
fillstring

dx
set_pos

endp

near

ah,O
cs:nothing
old_keyboard_io
cs:cseg

proc near
ax
bx
cx
ah,03H
bh,O

231 12.4. BROWSE.ASM ~ EXAMINE FILE CONTENTS

int 10B
pop ex
pop bx
pop ax
ret

get_pos endp

; Position in OX
set_pos proe

push ax
push bx
mov ah,02B
mov bh,O
int 10B
pop bx
pop ax
ret

set_pos endp

blankline proe
push ax
push bx
push ex
mov ah,09B
mov aI, , ,
mov bh.O
mov bI,7
mov ex.aO
int 10B
pop ex
pop bx
pop ax
ret

blankline endp

near

near

;08:81 pOints to A8CIIZ string to print
fillstring proe near

push ex
call dstring

fillehar:
emp ex.20
je filldone
mov al, , ,
call dehar
inc ex

232 CHAPTER 12. STROLLING THE CORRIDORS

jmp fillchar
filldone:

pop cx
ret

fillstring endp

, Displays the string pointed to by DS:SI
dstring proc near

push si
push ax
mov cx,O
cmp si,O
je dsdone

dloop:
mov aI, [si]
cmp aI,O
je dsdone
call dchar
cmp al,OAH
jne endloop
call blankline

endloop:
inc si
inc cx
jmp dloop

dsdone:
pop ax
pop si
ret

dstring endp

, Display the character contained in AL
dchar proc

push ax
push bx
mov bh,1
mov ah,OEH
int 10H
pop bx
pop ax
ret

dchar endp

initialize:

near

assume cs:cseg,ds:cseg

12.4. BROWSE. ASM - EXAMINE FILE CONTENTS 	 233

mov bx,cs

mov dS,bx

mov aI,16H
mov ah,35H
int 2iH
mov old_keyboard_io,bx
mov old_keyboard_io[2] ,es
mov dX,offset new_keyboard_io
mov aI,16H
mov ah,25H
int 2iH

mov dX,offset initialize
int 27H

cseg 	 ends
end start

Chapter 13

The Roads Not Taken

Design, as we have discussed before, is a matter of trade-offs. Each choice
you make leads you toward some other decisions and away from others. There is·
more than one path from start to finish, but each path stresses some aspects and
leaves some things undone. Knowing why a path was not taken is as important
as knowing which paths were chosen.

Writing memory resident programs is not always easy. Many people have
stayed up late, cursing their computers, trying to dig a little deeper into the
operating system and the reasons why things fail. By the nature of the task,
you are trying to make the machine do useful work in areas where the designers
of the operating system believed you'd never venture.

For any subject stressed in this book, there are others that were avoided
or only briefly touched. Some topics were inappropriate, others too risky to
recommend, still others could have been expanded indefinitely. Unfortunately,
books have deadlines and space constraints, and authors have to get some sleep,
now and again. Nevertheless, there are some topics that should have some
mention, even if only to explain their absence.

13.1 Emerging Standards

In 1986, proposals for a standardization of memory resident programs began to
emerge. As these words are being written, few facts are available on the stan­
dards, but they are firming and gathering support in some quarters. Standards,
someone once said, are wonderful because there are always so many to choose
from. The final words are far from spoken on the concept of a standard for

235

236 CHAPTER 13. THE ROADS NOT TAKEN

resident applications programming. Borland International, one of the first com­
panies with a commercial set of resident applications, has proposed a standard
that has been well received in some places. But as of this writing, no programs
have been marketed that conform to this standard.

If you plan to write commercial resident applications, following an existing
standard is vitally important. As the IBM PC architecture matures with the AT
and subsequent generations, the rules necessary to make a well-behaved resident
application will become less of a suggestion and more of a requirement. If your
memory resident program is a maverick and does not follow the standard, you
will simply be creating a market for a similar product that does adhere to the
standard.

13.2 Compatibility

In lieu of an existing, well-defined standard, there is an ad hoc standard of a
sort, used by many resident application programmers. This "standard" is quite
simple: will it run with Sidekick? Borland's resident desk accessory package
pushes a regular PC to its limits in some cases. If your program works correctly
with Sidekick also loaded and Sidekick works with your program loaded, there
is a good chance that your program is safe for distribution.

One point should be made about testing resident applications with Sidekick
or any other memory resident program. The order of installation is often im­
portant. It would be easy to write a program that can be loaded before Sidekick
and still work, but would not work when loaded after Sidekick. A program that
does not pass through the call on an interrupt vector to the previous vector will
not permit earlier programs on that same vector to work correctly.

Some programs will not work correctly if other resident applications are
loaded on top of them. One example is FPANEL (see Chapter 7). Because of
the design of the program, FPANEL must be the last application installed on the
timer interrupt. If another application is loaded, FPANEL will not crash, but it
will display a constant and fairly meaningless number.

13.3 Video Modes

For the sake of clarity and simplicity, the programs in this book have been
written to work in 80x25 monochrome text mode. This is a common mode

237 13.4. DISABLING INTERRUPTS

for the IBM PC and easy to use, since the largely irrelevant (for the theme of
this book) issues of color and display attributes can be ignored. Though these
programs may work correctly for other video modes, they have not been proven
to do so; thus, some displays may not be correct, especially for low-resolution
color modes.

13.4 Disabling Interrupts

One technique that is quite useful, but not covered elsewhere in this book,
is a method of disabling interrupts. Suppose you chose to redirect the timer
interrupt. The timer is occurring at approximately 18.2 times per second, which
gives each interrupt a maximum of about 55 milliseconds to execute. Under
some circumstances, you may want to use a routine that will take more than 55
milliseconds to execute. If the timer interrupt occurs during your timer-interrupt
service routine any number of things, all bad, can happen. But disabling the
interrupts is a poor solution to this problem.

A better solution is to have the timer-interrupt handler redirect the timer
interrupt to a null routine, one that looks like this:

nullint proc far
sti
iret

nullint endp

If this routine is used for the duration of the extended timer interrupt, a few
time ticks can occur and not be noticed. The interrupt handler should correctly
reset the timer vector before it exits, of course.

The trade-off in this case is in accuracy of the system clock. If a few timer
ticks are missed on a regular basis, the system clock will begin to drift, because
the system timer-interrupt handler is used to advance the clock tick counter. In
that case, a slightly better solution would be to have the long-duration timer
interrupt first call the old handler as a subroutine and then replace the vector
with the address of the old routine. That order of operations is important,
because simply replacing the handler with an older address would cause the
system to miss a tick. When the long handler has completed, it can reset the
vector with a pointer to itself.

When resetting interrupt vectors from within interrupt handlers, be sure to
disable interrupts (with eLI), modify the vector, and then reenable interrupts
(with STI).

238 CHAPTER 13. THE ROADS NOT TAKEN

13.5 Rolling Your Own

Throughout this book, there have been a set of useful subroutines that have
shown up again and again. Good examples of these would be the dchar routine,
which displays a character on the screen, and dstring, which displays an ASCIIZ
string on the screen. If you were to load all the programs in this book at once,·
there would be several duplicated copies of these routines scattered about in the
address space of your computer.

There are two basic solutions to that problem. One would be to write a mas­
ter resident application that encompassed all the functions in this book without
duplicating the low-level routines. There is nothing fundamentally wrong with

. this approach, except that it takes some time to assemble such a program, and
it does put all your eggs, as they say, in a single basket.

The other approach is the same one taken by DOS. Write all your utility
routines as soft interrupt handlers, and then write a single loader that will
load the interrupt handlers and install them. DOS permits up to 256 interrupt
vectors. Many of these are reserved, but many of the ones in the range of 40H­
7FH are available. Some of the vectors in the range of 40H-49H are used by the
IBM' PCjr. Vector 67H is used for the extended memory-management packages.

Using a soft interrupt as a vehicle for managing utilities is a good idea, but it
comes at a price. If your utilities are not installed, your resident applications will
fai1. immediately. If you make one change to the utility package, every resident
application that uses that package can be affected. If you intend to sell these
packages individually, you may prefer to keep them self-contained. For your own
use, though, commandeering a soft interrupt as a personal utility package is not
at all unreasonable.

13.6 Undocumented Functions

Many authors of memory resident programs make use of a special function, INT
21H function 34H (get pointer to INDOS flag), that returns a pointer in ES:BX.

This flag indicates whether a DOS function is currently operating at any given
time. Since many DOS functions are not reentrant, this can be an important
piece of information for running simple multi-tasking under the timer interrupt,
for example.

The INDOS function was found by taking apart PRINT. COM with a disassem­
bler. This program is a background print spooler included with many versions

239 13.7. DESIGNING PROGRAMS

of DOS. A print spooler is a resident application that accepts a print job from
the operating system and continues to print it on the printer, even though other
DOS operations are going on in the foreground. This program permits a person
to run DOS normally, executing commands while simultaneously printing. Since
this program works adequately and is available with DOS or on many computer
bulletin boards, it was not duplicated here.

None of the programs shown in this book use the INDOS call, and for good
reason. INDOS is "undocumented," a term that has two meanings. The first is,
of course, that you cannot look it up in the DOS manual. The second is that
Microsoft, the vendors of DOS, reserve the right to change or delete this function
from subsequent versions of DOS. In fact, the INDOS call as shown here is useful
only under DOS version 2.x (where x is any of the minor version numbers). In'
DOS version 3.x the call still exists, but has changed quite a bit from the older
versions. In DOS 4.0, this function does something quite different; thus, calls to
the INDOS function will fail miserably.

For that reason, use of the INDOS function call or any undocumented DOS
function is not recummended.

13.7 Designing Programs

You may have noticed, as we go about the business of building new programs,
that many of the programs in this book were not written in the traditional
"top-down" design style found in programming textbooks. Top-down design
would have us create a high-level plan and then work downward in a series of
refinements, until the last thing we do is write all the little low-level routines
that are combined to do the high-level task. Instead, we have been inclined to
plunk down a skeleton and some low-level utilities and then build, and sometimes
throwaway, code until it works.

There are several good reasons for programming as we have done in this
book. First, and most important, is that very few programmers actually use the
top-down style as it is written in the textbooks. All have learned it. Many claim
it to be a good and valid way of writing programs, but also sheepishly admit
that they don't do it that way. Many may also claim that they do design from
the top down, but if you watch them, they seem to be doing something quite
different.

In fact, what is happening is a sort of top-down design, but not the sort
that one finds in a textbook for introductory programming. It is a mixed mode,

240 CHAPTER 13. THE ROADS NOT TAKEN

where a programmer's experience and judgment allow the programming process
to be accelerated while still keeping the virtues of top-down design in mind.
A programmer thinks about a goal for a while and, from experience, sees a
pattern for an approach to that goal. This pattern determines roughly how the
program will be structured, and how it might be separated into subgoals. By
juggling these subgoals around a bit, some common characteristics might fall
out, such as the need to read characters from the console or set the position
of the cursor. Many times, these common low-level routines are the first ones
that a programmer will type in, apparently in violation of the rules of top-down
design.

Pure top-down design sees each problem with a fresh perspective. Yet all
good programmers will tell you that they reuse code like mad. This reflects two
schools of programming philosophy. Imagine, if you will, two car designers. One
chooses to design a car in which every part and indeed the arrangements of the
parts themselves are tuned to perfection. Every unnecessary part is eliminated.
Each and every part is optimized for the highest possible performance in this
car. The other designer chooses to build from standard parts. The fits may be
poor, the carburetor may not provide exactly the right mixture for high-power
combustion, but if the car breaks, it can be fixed easily.

Tuning for performance takes time and costs money. Hand-crafting of parts
takes time and costs money. The special-purpose car will be expensive, but for
some applications, like the Indianapolis 500, it will be the correct way to go.
Off-the-shelf parts cannot provide that level of performance, but they do provide
security and speed of development. By building general-purpose components or
reusing components designed for another application, you can build a car that
might not win the Indy 500, but it will be adequate for everyday use.

For many programmers, the lure of shaving just another millisecond or mak­
ing a program 10 bytes smaller has evaporated with the emergence of sufficient
memory and processors of reasonable power. When memory and cycles become
cheap, fewer and fewer people will be stingy with them. The coin of the realm
now is development time. The ability to create prototypes quickly and then turn
those prototypes into production code is far more valuable than a few cycles or
bytes.

In this book the code was written with the idea that it was to be modular.
The components of these programs should be thought of as tools, not hand­
crafted special-purpose parts. By reusing the concepts and modules in these
packages, you should be able to create many packages for your own purposes.

Appendix A

IBM ROM BIOS Services

The ROM services are extremely low-level services provided by a Read-Only
Memory device built into the PC. These services are intended to be extremely
basic and reliable, so they rarely change. Changing the ROM services would
require a disassembly of your machine and the replacement of a particular chip.
Several versions of ROMs have been included in different models and versions
of PCs. The date of a particular ROM can be found by examining the 8 bytes
at memory location FOOO: FFF5H to FOOO: FFFCH. These 8 bytes contain ASCII
characters describing the release date of the ROM. The release dates can be
interpreted as follows:

Release Date Machine Type
04/24/81 Original PC
10/19/81 Revised PC with some bugs fixed
08/16/82 Original XT
10/27/82 Upgrade for PC ROMs to XT level
11/08/82 Original Portable PC
06/01/83 Original PCjr
01/10/84 Original AT

The IBM Technical Reference Manual contains a listing of the entire contents
of the ROM and comments about the various ways in which each ROM service
operates.

241

242 APPENDIX A. IBM ROM BIOS SERVICES

INT 05H (5) Print screen
Prints the contents of the screen on the printer

Input
None

Output
None

Notes
The print screen service is a special-purpose routine that copies the contents

of the current video display to the printer port, in such a way that the screen is
reproduced on the printed page.

This service is typically invoked when the user types the keyboard sequence
CONTROL-PrtSc. Since it is a software interrupt service like any other, it can be
invoked from within a program, however.

243

INT 010H (16) Video
These services manage access to the video displays available on the PC. They

provide a set of routines to display text and/or graphics, manage scrolling on
the entire screen or in a region of the screen, position the cursor, and select the
current display mode.

U sing the video services from within a memory resident program is quite rea­
sonable. It is important to remember to clean up after yourself, however. Many
applications can become confused if the cursor changes position unexpectedly.
It is also possible that some applications actually read from display memory for
input. These programs are rare, but a memory resident program that does not
completely restore the contents of the screen is sure to confuse them.

Video Function Codes

AH Function
OOH (0) Set video IIlode
01H (1) Set cursor size
02H (2) Set cursor position
03H (3) Read cursor position
04H (4) Read light-pen position
06H (6) Scroll window up
07H (7) Scroll window down
08H (8) Read character and attribute
09H (9) Write character and attribute

OAR (10) Write character
OBH (11) Set color palette
OCH (12) Write pixel
ODH (13) Read pixel
OEH (14) Write character in TTY mode
OFH (15) Get current video mode

244 APPENDIX A. IBM ROM BIOS SERVICES

AH = OOH (0) Set video mode
INT 010H (16) Video

Select the current video display and mode

Input
AL = video mode

Output
None

Notes
Most IBM PCs have either a monochrome or color graphics display. The

monochrome display is fixed at a 25 line, 80 characters per line text-only display.
The color graphics adapter (CGA) has several modes for text and graphics.

Video Mode Meaning
DOH 40x25 monochrome text, color adapter
01H 40x25 color text
02H 80x25 monochrome text

.­
03H 80x25 color text
04H 320x200 four-color graphics
05H 320x200 four-color graphics (no color burst)
06H 64Ox200 two-color graphics
07H Monochrome Adapter text

245

AH = 01H (1)
INT 010H (16)

Set cursor S'lze
Video

Set the bounds of the blinking hardware cursor

Input
CH = starting scan line
CL = ending scan line

Output
None

Notes
The scan-line value must be less than 32, so that it occupies only the first

5 bits of the CH or CL register. Setting any bits other than the first 5 can have
strange and unpredictable effects.

246 APPENDIX A. IBM ROM BIOS SERVICES

AH = 02H (2) Set cursor position

INT 010H (16) Video

Move the cursor to a new position on the screen

Input
BH = display page number
DH = row (y-coordinate)
DL = column (x-coordinate)

Output
None

Notes
(0,0) is at the upper left corner of the screen.
In 80x25 text mode, (79,24) is at the lower right corner.
In 40x25 text mode, (39,24) is at the lower right corner.
You can turn off the cursor by moving to a location offscreen, such as (0,25).

Moving the cursor very far outside the limits of the screen can have unpredictable
results.

247

AH = 03H (3) Read cursor position
INT 010H (16) Video

Determine the cursor location on the screen

Input
BH = display page number

Output
CH = starting scan line
CL = ending scan line
OH = row (y-coordinate)
OL = column (x-coordinate)

Notes
The Color Graphics Adapter has eight display pages (for 40x25 mode) or

four display pages (40x25 mode). Use INT 10H function 5H (set active display
page) to switch between display pages.

248 APPENDIX A. IBM ROM BIOS SERVICES

AH = 04H (4) Read light-pen position
INT 010H (16) Video

Determine where the light pen is pointing on the screen

Input
None

Output
AH = pen trigger signal
BX = pixel column (x-coordinate)
CH = pixel row (y-coordinate)
DH = character row (y-coordinate)
DL = character column (x-coordinate)

249

AH = 05H (5) Set active display page

INT 010H (16) Video

Input
AL = page number

Output
None

Notes
This function is valid only for text modes on the Color Graphics Adapter

(CGA.) You can switch between pages without affecting the contents of the
starting or ending page. Text can be written via functions 02H, 09H, and 10H to
any page, regardless of which page is active.

Display mode Display type Valid Page Numbers
OOH eGA 0-7

01H eGA 0-7

02H eGA 0-3

03H eGA 0-3

02H EGA 0-7

03H EGA 0-7

OOH EGA 0-7

OEH EGA 0-3

OFH EGA 0-1

10H EGA 0-1

250 APPENDIX A. IBM ROM BIOS SERVICES

AH = 06H (6) Scroll window up
INT 010H (16) Video

Scroll a rectangular region up, inserting blank lines at the bottom

Input
AL = lines to scroll up
BH = filler attribute
CH = upper row (y-coordinate)
CL = left column (x-coordinate)
DH = lower row (y-coordinate)
DL = right column (x-coordinate)

Output
None

Notes
Text scrolled beyond the top of a window is lost. New lines appear at the

bottom of the window, filled with blanks that have the attributes specified in
BH.

By setting AL to zero, you can use this function to initialize a window. This
blanks the region specified by the coordinates. The blanks have the attribute
specified in BH.

251

AH = 07H (7) Scroll window down
INT 010H (16) Video

Scroll a rectangular region down, inserting blank lines at the top

Input
AL = lines to scroll down
BH = filler attribute
CH = upper row (y-coordinate)
CL = left column (x-coordinate)
DH = lower row (y-coordinate)
DL = right column (x-coordinate)

Output
None

Notes
Text scrolled beyond the bottom of a window is lost. New lines appear at

the top of the window, filled with blanks that have the attributes specified in
BH.

By setting AL to zero, you can use this function to initialize a window. This
blanks the region specified by the coordinates. The blanks have the attribute
specified in BH.

252 APPENDIX A. IBM ROM BIOS SERVICES

AH = 08H (8) Read character and attribute
INT 010H (16) Video

Read the character at the cursor location, along with the display character­
istics of that character

Input
BH = display page number

Output
AH = character
AL = attribute

Notes
By specifying the display page number, you can read a character from any

valid display page, not just the currently active one.

253

AH = 09H (9) Write character and attribute
INT 010H (16) Video

Write character at the cursor location, along with the display characteristics
of that character

Input
AL = character
BH = page number
BL = attribute
CX = number of characters to repeat

Output
None

Notes
This function does not reposition the cursor. When the function returns, the

cursor will be at the position it was at when the function was called.
The repetition code in CX should not be used to write past the end of a line.
In graphics mode, bit 7 (mask 80H) causes the character to be exclusive-ORed

with the background.
In graphics modes, the bitmaps used for ASCII characters 80H-FFH are lo­

cated in a table that starts at 0000: 007CH. This value is stored in the vector for
INT lFH. By resetting this vector, you can change the location of the bitmap
table.

254 APPENDIX A. IBM ROM BIOS SERVICES

AR = OAR (10) Write character
INT 010R (16) Video

Write a character at the cursor location

Input
AL = character
BH = page number
BL = color in graphics mode
CX = count of characters

Output
None

Notes
This function does not reposition the cursor. When the function returns, the

cursor will be at the position it was at when the function was called.
The repetition code in CX should not be used to write past the end of a line.
In graphics mode, bit 7 (mask 80H) causes the character to be exclusive-ORed

with the background.
In graphics modes, the bitmaps used for ASCII characters 80H-FFH are lo­

cated in a table that starts at 0000: 007CH. This value is stored in the vector for
INT 1FH. By resetting this vector, you can change the location of the bitmap
table.

255

AH = OBH (11)
INT 010H (16)

Make a range of colors available for display

Set color palette
Video

Input
BH = palette color id
BL = color to be used with palette

Output
None

Notes

Palette Value
BH BL
0 0
0 1
0 2
0 3
1 0
1 1
1 2
1 3

Color

Background
Green
Red
Brown
Background
Cyan
Magenta
White

If BH=OOH, BL should contain the background and border color for graphics
modes from the full color palette (0-15). In text modes, BL should contain the
border color selected from the full color palette (0-15). The background color of
text is determined by the high-order four bits (mask FOH) of the attribute byte
for each character.

256 APPENDIX A. IBM ROM BIOS SERVICES

AH = OCH (12)
INT 010H (16)

Write pixel
Video

Set the value of a single point on the graphics display

Input
AL = color
ex = pixel column (x-coordinate)
DL = pixel row (y-coordinate)

Output
None

Notes
In display modes 04H and 05H (four-color graphics modes), pixel values are

in the range (0-3). In mode 06H (two-color graphics mode), pixel values are in
the range (0-1).

If bit 7 of AL is set, the pixel value are exclusive-ORed with the background.

257

AH = ODH (13) Read pixel
INT 010H (16) Video

Read the value of a single point on the graphics display

Input
ex = pixel column (x-coordinate)
DL = pixel row (y-coordinate)

Output
AL = pixel color read

Notes

Display Mode Valid Pixel Values
04H 0-3
05H 0-3
06H 0-1

258 APPENDIX A. IBM ROM BIOS SERVICES

AH = OEH (14) Write char in TTY mode
INT 010H (16) Video

Write a character and then advance one cursor position

Input
AL = character
BL = color for graphics mode

Output
None

Notes
This function prints a character at the current cursor position, then advances

the cursor to the right. Moving the cursor past the end of a line wraps it around
to the next line. Moving the cursor past the lower right corner scrolls the screen
up one line.

This function is used by the DOS console driver to write operating system
text and messages to the screen.

259

AH = OFH (15) Get current video mode

INT 010H (16) Video

Get the display mode of the active display

Input
None

Output
AH = width in characters
AL = video mode
BH = page number

Notes

Video Mode Meaning
OOH 40x25 monochrome text, color adapter
01H 40x25 color text
02H 80x25 monochrome text
03H 80x25 color text
04H 320x200 four-color graphics
05H 320x200 four-color graphics (no color burst)
06H 640x200 two-color graphics
07H Monochrome Adapter text

This function can be used to determine the current screen width, since it can
be inferred from the video mode.

260 APPENDIX A. IBM ROM BIOS SERVICES

INT 011H (17) Equipment
Determines what equipment is available on the PC when it is turned on

Input
None

Output
AX = bit-coded equipment list

Notes

AX Equipment Present at Power On
FEDCBA9876543210
PPxxxxxxxxxxxxxx Number of printers (0-3)
xxSxxxxxxxxxxxxx Serial printer on PCjr (0-1)
xxxGxxxxxxxxxxxx Game adapter (0-1)
xxxxPPPxxxxxxxxx Number of serial ports (0-7)
xxxxxxxDxxxxxxxx DMA chip (0 means installed)
xxxxxxxxDDxxxxxx Number of diskette drives minus 1 (0-3)
xxxxxxxxxxWxxxx Initial video mode (01, 10, 11)
xxxxxxxxxxxxRRxx RAM on system board (11=64K)
xxxxxxxxxxxxxxxP Any disks present (0-1).

Initial Video Mode Display Used
01B 40x25 color
lOB 80x25 color
llB Monochrome

The value for the number of disks in the equipment list are one less than
the actual number of disks present on the system. If no disks are present, this
number will be zero, and the ANY-DISKS-PRESENT bit will also be zero. If one
disk is present, the ANY-DISKS-PRESENT bit are one, but the number of disks
will still be zero. Each additional disk increases the number of disks by one, so
it remains one less than the actual number (if the number of disks is not zero).

This list should only be read, never written.

261

INT 012H (18) Memory Size
This function returns the actual amount of memory that the PC has avail­

able. It does not return the value from the equipment list, which may be some­
what smaller than the normal value. It returns the correct size of memory in
kilobytes.

Input
None

Output
AX = memory size in kilobytes

262 APPENDIX A. IBM ROM BIOS SERVICES

INT 013H (19) Disk
These functions provide low-level access to the disk system. You should

avoid calling them and use the DOS functions whenever possible, to maintain
compatibility across versions of DOS and workalikes. The DOS functions also
provide a much more comprehensive set of routines for disk access.

Disk Function Codes

AH Function
OOH (0) Reset disk system
01H (1) Get disk status
02H (2) Read disk sectors
03H (3) Write disk sectors
04H (4) Verify disk sectors
05H (5) Format disk track

263

AH = OOH (0) Reset disk system
INT 013H (19) Disk

Send a RESET signal to the disk controller and prepare for disk I/O

Input
None

Output
None

264 APPENDIX A. IBM ROM BIOS SERVICES

AH = 01H (1) Get disk status
INT 013H (19) Disk

Determine the status of the disk controller

Input
None

Output
AL = status code

Notes

Status Code Meaning
01H Bad command
02H Disk is write-protected
04H Sector not found
08H DMA overrun
10H Data error on disk read
20H Controller error
40H Seek failure
80H Disk timed-out

265

AH = 02H (2) Read disk sectors
INT 013H (19) Disk

Read a physical sector from disk into a memory buffer

Input
AL = number of sectors

CH = track number

CL = sector number

DH = head number

DL = drive number

ES:BX = pointer to buffer

Output
CF = success/failure

AH = status code

AL = number of sectors read

Notes

Status Code Meaning
01H Bad command
02H Disk is write-protected
04H Sector not found
08H DMA overrun
10H Data error on disk read
20H Controller error
40H Seek failure
80H Disk timed-out

266 APPENDIX A. IBM ROM BIOS SERVICES

AH = 03H (3) Write disk sectors
INT 013H (19) Disk

Write a physical sector to disk from a memory buffer

Input
AL = number of sectors

CH = track number

CL = sector number

DH = head number

DL = drive number

ES:BX = pointer to buffer

Output
CF = success/failure

AH = status code

AL = number of sectors written

Notes

Status Code Meaning
01H Bad command
02H Disk is write-protected
04H Sector not found
08H DMA overrun
100 Data error on disk read
20H Controller error
40H Seek failure
80H Disk timed-out

267

AH = 04H (4) Verify disk sectors
INT 013H (19) Disk

Check the address fields of sectors on the disk

Input
AL = number of sectors

CH = track number

CL = sector number

DH = head number

DL = drive number

Output
CF = success/failure

AH = status code

AL = number of sectors verified

Notes
This function can be used as a test for a readable disk in the drive. It returns

successfully if a properly formatted disk is present and fails otherwise.

Status Code Meaning
01H Bad command
02H Disk is write-protected
04H Sector not found
08H DMA overrun
10H Data error on disk read
20H Controller error
40H Seek failure
80H Disk timed-out

268 APPENDIX A. IBM ROM BIOS SERVICES

AH = 05H (5) Format disk track

INT 013H (19) Disk

Input
AL = number of sectors
CH = track number
CL = sector number
DH = head number
DL = drive number
ES:BX = pointer to list of 4-byte address fields

Output
CF = success/failure
AH = status code

Notes
This is a hairy and dangerous function, well beyond the subject of this book.

See the DOS Technical Reference Manual for a barely readable explanation.

269

INT 014H (20) Communications
These routines manage the communications services. They control access

into and out of the PC for telecommunications and possibly printing services.
Although often referred to as ports, they should not be confused with the low­
level I/O ports available elsewhere in the PC. The services referred to in this
section are used to move information to and from other devices outside the
PC itself. The addressable ports are used within the PC to communicate with . .

various devices attached directly to the processor, such as the video display or
sound generators.

Serial ports are addressed by their port number. Typically there are no more
than two serial ports on a PC, though the PC architecture provides support for
up to four.

Serial Port Number DOS Device
0 COM1:
1 COM2:
2 COM3:
3 COM4:

Communications Function Codes

AH Function
OOH (0) Initialize serial port params
01H (1) Send one character
02H (2) Receive one character
03H (3) Get serial port status

270 APPENDIX A. IBM ROM BIOS SERVICES

AH OOH (0) Initialize serial port params
INT 014H (20) Communications

Set the speed, parity, word length, and stop bits of a particular communica­
tions port

Input
DX = serial port number

Output
AH = port status
AL = modem status

Notes

Port Status Meaning Modem Status Meaning
SOH Timeout SOH Receive line signal
40H XMIT shift register empty 40H Ring indicator
20H XMIT hold register empty 20H Data set ready
10H Break detected 10H Clear to send
oaH Framing error OSH RCV line signal changed
04H Parity error 04H Ring indicator
02H Overrun error 02H Data set ready changed
01H Data ready 01H Clear to send changed

AH Baud AH Parameter
76543210 76543210
OOOxxxxx 110 xxxOOxxx no parity
001xxxxx 150 xxxO1 xxx odd parity
010xxxxx 300 xxx 1 Oxxx no parity
011xxxxx 600 xxx11xxx even parity
100xxxxx 1200 xxxxxOxx 1 stop bit
101xxxxx 2400 xxxxx1xx 2 stop bits
110xxxxx 4800 xxxxxx10 7 bit words
111xxxxx 9600 xxxxxx11 8 bit words

271

AH = 01H (1) Send one character

INT 014H (20) Communications

Write a character to the specified communications line

Input
AL = character
DX = serial port number

Output
AH = success/failure status code
AL = port status

Notes

Modem Status Meaning
80H Timeout
40H XMIT shift register empty
20H XMIT hold register empty
lOH Break detected
08H Framing error
04H Parity error
02H Overrun error
OlH Data ready

272 APPENDIX A. IBM ROM BIOS SERVICES

AH = 02H (2) Receive one character
INT 014H (20) Communications

Read a character from the communications line

Input
DX = serial port number

Output
AH = success/failure status code

AL = port status

Notes

Modem Status Meaning
80H Timeout
40H XMIT shift register empty
20H XMIT hold register empty
10H Break detected
08H Framing error
04H Parity error
02H Overrun error
01H Data ready

273

AH 03H (3) Get serial port status

INT 014H (20) Communications

Determine the status of the communications line

Input
None

Output
AH = port status
AL = modem status

Notes

Port Status Meaning Modem Status Meaning
SOH Timeout SOH Receive line signal
40H XMIT shift register empty 40H Ring indicator
20H XMIT hold register empty 20H Data set ready
10H Break detected 10H Clear to send
OSH Framing error OSH RCV line signal changed
04H Parity error 04H Ring indicator
02H Overrun error 02H Data set ready changed
01H Data ready 01H Clear to send changed

274 APPENDIX A. IBM ROM BIOS SERVICES

INT 015H (21) Cassette
Due to the drop in disk-drive prices shortly after the IBM PC was introduced,

few people used the cassette services, which nevertheless remain in some of the
ROMs for compatibility reasons. In older PCs, the cassette hardware still exists
and can be used. The cassette logic and ROM services can be used to control a
relay within the machine. Some people have used that relay as a physical device
controller or signalling device. This relay is useful for low-voltage/low-current
applications only, however, and rewiring should be attempted only if you know
what you are doing.

Cassette Function Codes

AH Function
OOH (0) Turn on cassette motor
01H (1) Turn off cassette motor
02H (2) Read data block
03H (3) Write data block

275

AH = OOH (0) Turn on cassette motor
INT 015H (21) Cassette

Activate the relay in older PCs that turns on the cassette motor

Input
None

Output
None

Notes
To determine whether you have cassette hardware on your machine, call this

service. Ifyou have cassette ports on your machine, you'll hear a small click from
within the system unit. This is the relay engaging. It will not disengage until
you call cassette function 01H to turn it off, or until you turn off or reboot your
machine with CONTROL-ALT-DEL. A cheaper, easier, and quicker way, but not
nearly as much fun, would be to look on the back of your PC, near the keyboard
connector, for a cassette connector. Machines without cassette hardware lack
this feature.

276 APPENDIX A. IBM ROM BIOS SERVICES

AH = 01H (1) Turn off cassette motor
INT 015H (21) Cassette

Deactivate the relay in older pes that controls the cassette motor

Input
None

Output
None

Notes
Probably the only truly useful function in the cassette interface - the one

that stops the use of it.

277

AH = 02H (2) Read data block
INT 015H (21) Cassette

Read a block of data from the cassette interface

Input
CX = count of bytes

ES:BX = pointer to data area

Output
CF = error signal

DX = count of bytes read

ES:BX = pointer past last byte read

278 APPENDIX A. IBM ROM BIOS SERVICES

AH = 03H (3) Write data blocks

INT 015H (21) Cassette

Write a block of data to the cassette interface

Input
ex = count of bytes

ES:BX = pointer to data area

Output
ES:BX = pointer past last byte written

279

INT 016H (22) Keyboard
For quite a few memory resident applications, these routines are the key (pun

intended). A lot of useful things can be done by intercepting the keyboard in­
terrupts. The assembly-language sources for the keyboard services can be found
in the IBM Technical Reference Manual for your version of DOS. A familiarity
with the way the keyboard is handled is an invaluable tool for writing resident
applications.

A common term in memory resident programming is "hot key." This refers
to the ability of a memory resident program to be accessible at the touch of a
particular key, no matter what other applications the machine might be running
at the time.

Keyboard Function Codes

AH Function
OOH (0) Read next key board character
01H (1) Test for character ready
02H (2) Get shift status

280 APPENDIX A. IBM ROM BIOS SERVICES

AH = OOH (0) Read next keyboard character
INT 016H (22) Keyboard

Read a character from the keyboard input queue

Input
None

Output
AH = scan code (auxiliary byte)
AL = character code

Notes
This function is the one most likely to be subverted by a memory resident

program. Controlling this function is the key to writing "hot key" macro ex­
pansion programs.

281

AH = 01H (1) Test for character ready
INT 016H (22) Keyboard

Determine if the keyboard input queue is empty, or if a character is available
to be read

Input
None

Output
ZF = queue empty (set means empty/clear means char available
AH = scan code (auxiliary byte)
AL = character code

Notes
This function does not return via IRET, because it must pass back ZF as an

indicator. It uses the optional parameter of RET to specify the number of bytes
to flush from the stack. These bytes are additional information necessary for
IRET to return successfully.

282 APPENDIX A. IBM ROM BIOS SERVICES

AH = 02H (2) Get shift status

INT 016H (22) Keyboard

Find out which shift keys are depressed on the keyboard

Input
None

Output
AL = shift status bits

Notes
Several of these shift keys may be depressed simultaneously. The shift status

will be all bits for each active shift key, ORed together.

Shift Status Meaning
80H Insert on
40H Caps Lock on
20H Num Lock on
10H Scroll Lock on
08H ALT key down
04H CTRL key down
02H LEFT-SHIFT key down
01H RIGHT-SHIFT key down

283

INT 017H (23) Printer
Printer services provide a means of creating hardcopy output from the PC.

These services are simple and straightforward. You can initialize the printer,
send characters to the it, and get the status of the printer.

DOS typically assumes that you have only one printer device (PRN:) con­
nected to your system.

Printer Function Codes

AH Function
OOH (0) Send character to printer
01H (1) Ini tialize printer
02H (2) Get printer status

284 APPENDIX A. IBM ROM BIOS SERVICES

AH = OOH (0) Send character to printer

INT 017H (23) Printer

Write a character to the printer interface and return the status of the port

Input
AL = character

Output
AH = printer status

Notes

Printer Status Meaning
80H Printer not busy
40H Acknowledge
20H Out of paper
10H Printer selected
08H I/O error
Q4H Not used
021I Not used
01H Timeout

285

AH = 01H (1) Initialize printer
INT 017H (23) Printer

Initialize a printer port and return the status of the port

Input
None

Output
AH = printer status

Notes

Printer Status Meaning
80H Printer not busy
40H Acknowledge
20H Out of paper
10H Printer selected
08H I/O error
04H Not used
02H Not used
01H Timeout

286 APPENDIX A. IBM ROM BIOS SERVICES

AH = 02H (2)
INT 017H (23)

Get the status of the printer port

Input
'None

Output
AH = printer status

Notes

Printer Status
80H
40H
20H
10H
08H
04H
02H
01H

Get printer status
Printer

Meaning
Printer not busy
Acknowledge
Out of paper
Printer selected
I/O error
Not used
Not used
Timeout

287

INT 018H (24) BASIC
IBM PCs have a rudimentary BASIC interpreter in ROM that runs if the

machine is booted without a disk. It is designed to run in conjunction with the
cassette-storage device; as such it is seldom used directly. The ROM BASIC is
essential to running BASICA, the IBM Disk BASIC interpreter.

Calling this service is essentially equivalent to turning off the machine and
rebooting it without inserting a disk in the boot drive. You should have a good
reason for calling this function.

Input
None

Output
None

288 APPENDIX A. IBM ROM BIOS SERVICES

INT 019H (25) Reboot
This service causes the machine to be rebooted in a similar, but not iden­

tical, fashion to the reboot caused by typing CONTROL-ALT-DEL or by turning
the machine off and then on again. Power-cycling, however, causes the entire
state of the machine to be reset from scratch and a memory check performed.
CONTROL-ALT-DEL does not cause the memory test to run, but does reset the
state of the machine and the memory allocations. By using this service, you can
reset DOS without destroying the contents of memory.

Input
None

Output
None

289

INT 01AH (26) Clock
The ROM provides a very low level time-of-day service. The clock is based

on the number of system clock-ticks since midnight. These clock ticks occur
roughly 18.2 times per second. When the count exceeds 1,573,040 ticks, another
day has gone by. When you ask DOS to display the time, it reads this counter
and computes the time from the clock count. You can compute components of
the time of day by using the following formulas:

Hour = Clock / 65543
Hour-remainder = Clock MODULO 65543

Minute = Hour-remainder / 1092
Min-remainder Hour-remainder MODULO 1092

Second = Min-remainder / 18.21

If you know the time of day, you can compute the current tick count by using
this formula:

Clock = (Hour*65543.33)+(Minute*1092.38)+(Second*18.21)

Clock Function Codes

AH Function
OOH (0) Read current clock count
01H (1) Set current clock count

http:Hour*65543.33)+(Minute*1092.38)+(Second*18.21

290 APPENDIX A. IBM ROM BIOS SERVICES

AH = DOH (0) Read current clock count
INT 01AH (26) Clock

Get the current internal DOS tick count, from which the time can be com­
puted

Input
None

Output
AL = midnight signal
ex = tick count, high word
DX = tick count, low word

Notes
This function returns a double word containing the number of clock ticks

since midnight. It also returns a byte indicating whether the count has been
reset by DOS yet. If this byte is not zero, then the counter has counted out
more than 24 hours worth of clock ticks, but the counter has not yet been reset
to zero for the new day.

You can compute the time of day by using the following formulas:

Hour = Clock / 65543
Hour-remainder = Clock MODULO 65543

Minute = Hour-remainder / 1092
Min-remainder = Hour-remainder MODULO 1092

Second = Min-remainder / 18.21

291

AR = 01R (1) Set current clock count
INT 01AH (26) Clock

Set the current internal DOS tick count to a particular time of day

Input
ex = tick count, high word
DX = tick count, low word

Output
None

Notes
You can compute the current tick count by using this formula:

Clock = (Hour*65543.33)+(Minute*1092.38)+(Second*18.21)

http:Hour*65543.33)+(Minute*1092.38)+(Second*18.21

Appendix B

Hardware Interrupts

The IBM PC uses hardware interrupts to manage hardware and respond to error
conditions. They resemble the software interrupts used by DOS or in the ROM
as a system-call facility, but for the most part, these interrupts are not generated
by software. They are called as a result of some condition in the hardware. Some
of these vectors are not pointers to code, but pointers to a table of some kind.

There are 256 possible interrupt vectors in the IBM PC. Of these, some are
unused and thus available for programs to use as soft interrupts. The available
vectors are 40H-7FH and F1H-FFH.

293

294 APPENDIX B. HARDWARE INTERRUPTS

INT OOH (0) Divide by zero
An error interrupt generated when a division by zero is attempted

Notes
Dividing any number by zero is a mathematical mistake. This interrupt

allows you to detect that mistake and recover gracefully, if possible. Many
programs that work with numbers replace this interrupt, at least on a temporary
basis.

295

INT 01H (1) Single step
Called after each instruction when TF, the trap flag, is set

Notes
When debugging a program, you often want to execute a single instruction

and then stop the machine to observe the results. This involves a sort of a contra­
diction, since it is a running machine that lets you see the results. This interrupt
provides the magic for that operation. If the trap flag is set, an interrupt to this
routine is generated after each individual instruction has executed. Since an
interrupt first turns off the interrupt flag, the interrupt handler indicated here
can run unmolested.

Great care should be taken with the STI instruction during the execution of
this interrupt.

296 APPENDIX B. HARDWARE INTERRUPTS

INT 02H (2) Non-maskable (NMI)
Responds to a major hardware fault

Notes
Not of much use to an applications programmer, since any calls to this inter­

rupt usually signal a major system fault. It can be used to take some emergency
action just before a system crash.

297

INT 03H (3) Breakpoint
Used to set breakpoints for program debugging

Notes
When debugging, a programmer may want to let many instructions run, but

halt on a particular one. This interrupt permits that.

298 APPENDIX B. HARDWARE INTERRUPTS

INT 04H (4) Overflow
An error interrupt generated when an arithmetic overflow occurs

Notes
When an arithmetic operation results in an operation that is too big to be

contained in its destination, this interrupt signals the error condition.

299

INT 08H (8) Timer Tick
The system metronome; occurs 18.2 times per second

Notes
A very useful interrupt for the memory resident programmer. The system

uses this interrupt to advance the time-of-day counter. 18.2 ticks per second is
91 ticks every 5 seconds, or 1092 ticks per minute.

300 APPENDIX B. HARDWARE INTERRUPTS

INT 09H (9) Keystroke
Generated every time a key is pressed

Notes
This interrupt allows a certain amount of type-ahead, When a key is pressed,

this interrupt handler reads it and places the character on an input queue.
The keyboard interrupts in ROM actually examine that queue, rather than
the keyboard. This decoupling permits a much greater flexibility of interface
between the keyboard and the application.

301

INT OBH (11) Serial port 1
Used for control of communications port COM2:

Notes
It is common to replace this interrupt so that a telecommunications program

can run at a reasonable speed. Direct system calls reach their limit at about
1200 baud. By replacing the DOS serial I/O code with a more sophisticated
interrupt-management scheme, higher communications speeds can be used.

302 APPENDIX B. HARDWARE INTERRUPTS

INT OCH (12) Serial port 0
Used for control of communications port COM1:

Notes
It is common to replace this interrupt so that a telecommunications program

can run at a reasonable speed. Direct system calls reach their limit at about
1200 baud. By replacing the DOS serial I/O code with a more sophisticated
interrupt-management scheme, higher communications speeds can be used.

303

INT ODH (13) Fixed disk
Used by the hard-disk controller for disk management

Notes
This interrupt may not be available on older IBM pes.

required.
A newer ROM is

304 APPENDIX B. HARDWARE INTERRUPTS

INT OEH (14) Floppy disk
U sed by the floppy disk controller for diskette management

Notes
The diskette management software in the IBM PC uses this interrupt in

esoteric ways to detect various disk transfer completion conditions.

305

INT OFH (15) Printer
U sed by the printer controller for printer management

Notes
This low-level printer interrupt detects a printer error or completion condi­

tion.

306 APPENDIX B. HARDWARE INTERRUPTS

INT 01DH (29) Video init table
Points to a table of video-initialization parameters

Notes
This vector is a pointer to a data table used for the initialization of the video

controller for the displays. It should never be be executed as a pointer to code.

307

INT 01EH (30) Diskette parameter table
Points to a table of disk-initialization parameters

Notes
This vector points to a data table used for the initialization of the disk

controller. Some of this data may be changed to tune the performance of the
disk, but extreme care is advised. It should never be be executed as a pointer
to code.

308 APPENDIX B. HARDWARE INTERRUPTS

INT 01FH (31) Graphics table
Points to a bitmap table of characters for graphics display

Notes
This table contains bitmap representations of characters 128-255, as they

are displayed in graphics mode on the eGA. At powerup, the system sets this
pointer to zero, indicating that no such table is present. Altering that value will
permit custom tables to be used.

The table is 1 kilobyte long and contains 128 8-byte entries. Each entry
contains a "picture" of what the character will look like in an 8x8 bit matrix.

The vector should never be be executed as a pointer to code.

Appendix C

IBM DOS Services

The functions listed in this appendix are loaded when DOS boots on your ma­
chine. Each version of DOS may have slight or dramatic differences in the way
these functions work. The functions listed here are valid for DOS major version
2. If you are using an earlier version, many of these functions will not be avail­
able. If you are using a later version, you may have additional functions at your
disposal. The final arbiter of how these functions operate is the DOS Reference
Manual.

309

310 APPENDIX C. IBM DOS SERVICES

INT 020H (32) 	 Terminate program
Ends execution of a program and returns control to DOS

Input
None

Output
None

Notes
DOS terminates the program, releases the memory used by that program,

and then performs the following operations:

• Restores 	the termination-handler vector from OOOAH in the program seg­
ment prefix

• 	 Restores the CONTROL-C handler from OOOEH in the program segment prefix

• 	 Restores the critical-error handler from 0012H in the program segment
prefix

• Flushes all pending file buffers

Finally, control is transferred to the termination-handler address, which then
returns to DOS.

311

INT 021H (33) Universal function
DOS operating system service request

Input
AH = function number
Other parameters depend on individual functions

Output
Return values depend on individual functions

Notes
This is the portal between the operating system and the application pro­

grams. This function is used as a general-purpose dispatcher for different kinds
of system functions and I/O requests.

The desired function is invoked by placing a function number in the AH
register and setting the other registers to values appropriate for the function
being called. Then a soft-interrupt INT 21H is issued, and control transfers to
the operating system. When the system service routine has completed, it issues
an IRET and returns control to the application.

312 APPENDIX C. IBM DOS SERVICES

AH = OOH (0) 	 Terminate program
INT 021H (33) 	 Universal function

Complete execution of a program and return control to DOS

Input
CS = Segment address of program segment prefix

Output
None

Notes
DOS terminates the program, releases the memory used by that program,

and then performs the following operations:

• 	 Restores the termination-handler vector from OOOAH in the program seg­
ment prefix

• Restores the CONTROL-C handler from OOOEH in the program segment prefix

• 	 Restores the critical-error handler from 0012H in the program segment
prefix

• 	 Flushes all pending file buffers

Finally, control is transferred to the termination-handler address, which then
returns to DOS.

CS should contain the segment address of the program segment prefix. For
. COM files, this happens automatically, since .COM programs are, by definition,
contained within a single code segment. For. EXE files, care should be taken to
ensure that the correct value of CS is present. DOS needs to be able to find the
program segment prefix in order to correctly execute the Termination Handler.

313

AH = 01H (1) Character input with echo
INT 021H (33) Universal function

Read a character from the keyboard and echo it to the display

Input
None

Output
AL = character read in

Notes
If this function encounters a CONTROL-C, the CONTROL-C handler (located at

the INT 23H vector) is executed.
Extended characters, such as the function keys, or keys shifted with ALT.

require two calls to this function. The first call returns a zero byte, the second
returns the extended key code.

314 APPENDIX C. IBM DOS SERVICES

AH = 02H (2) Character output
INT 021H (33) Universal function

Write a character to the current video display

Input
DL = character to write

Output
None

Notes
If this function encounters a CONTROL-C, the CONTROL-C handler (located at

the INT 23H vector) is executed.
If this function encounters a CONTROL-H, the cursor moves left by one char­

acter position.

315

AH = 03H (3) Serial input
INT 021H (33) Universal function

Read a character from AUX:, the standard auxiliary device

Input
None

Output
AL = character read in

Notes
This function reads a character from the standard auxiliary device. Unless

redirected with the MODE command, this will be COM1:.
DOS serial I/O is not interrupt driven. This limits the speed at which serial

communications can take place.
DOS initializes COM1: to 2400 baud, no parity, 1 stop bit, 8 data bits at

boot. COM2: is not initialized.
DOS serial I/O calls cannot be used to determine the status of the serial

devices.

316 APPENDIX C. IBM DOS SERVICES

AH = 04H (4) S erial output
INT 021H (33) Universal function

Write a character to AUX:, the standard auxiliary device

Input
DL = character to write

Output
None

Notes
This function writes a character to the standard auxiliary device. Unless

redirected with the MODE command, this will be COM!:.
DOS serial I/O is not interrupt driven. This limits the speed at which serial

communications can take place.
DOS initializes COM!: to 2400 baud, no parity, 1 stop bit, 8 data bits at

boot. COM2: is not initialized.
DOS serial I/O calls cannot be used to determine the status of the serial

devices.

317

AH = 05H (5) Printer output
INT 021H (33) Universal function

Write a character to PRN:, the standard printer device

Input
DL = character to write

Output
None

Notes
This function writes a character to the standard printer device. Unless redi­

rected with the MODE command, this will be the parallel line printer port.
DOS does not provide a standard mechanism for determining printer status.
This function waits until the printer is ready before writing the character.

318 APPENDIX C. IBM DOS SERVICES

AH = 06H (6) Direct console I/O
INT 021H (33) Universal function

Raw character input or output

Notes
Raw I/O is used when you want to send byte data rather than just character

data to and from an I/O device. A good example of this would be with a text
editor. Text editors and word processing programs are often designed to use
control characters as commands. Under normal circumstances DOS would in­
terpret these control characters (such as CONTROL-H) as input editing commands
directly. Text editor applications want to read those characters and process them
on their own. Raw I/O permits this.

It is common to refer to the opposite case of raw I/O (where character
interpretation is done by DOS), as cooked I/O.

Subfunction Codes

DL Function
OOH (0) - OFEH (254) Raw console output

OFFH (255) Raw console input

319

DL = OOH-OFEH Raw console output
AH = 06H (6) Direct console 110
INT 021H (33) Universal function

Display character codes (0-254) on the standard output device

Input
None

Output
None

Notes
This function writes a character to the standard output device. Unless redi­

rected with the MODE command or from the command processor, this will be the
console device, CON:.

The character to be written is in DL. Obviously, this cannot be used to write
OFFH to the console.

320 APPENDIX C. IBM DOS SERVICES

DL = OFFH Raw console input
AH = 06H (6) Direct console IIO
INT 021H (33) Universal function

Read a character from the standard input device

Input
None

Output
AL = character read in
ZF = set if no character ready

Notes
This function reads a character from the standard input device. Unless

redirected with the MODE command or from the command processor, this will be
the console device, CON:.

This function does not r('act to CONTROL-C or CONTROL-BREAK.
If no character is queued for input, this function will return with ZF set.
If AL returns zero, this signals that the character read in is an extended ASCII

character. In this case, the next read will return the character code.

321

AH = 07H (7) Raw input (no echo)
INT 021H (33) Universal function

Read a character from the standard input device without echo

Input
None

Output
AL = character read in

Notes
This function reads a character from the standard input device. Unless

redirected with the MODE command or from the command processor, this will be
the console device, CON:.

This function does not react to CONTROL-C or CONTROL-BREAK.
If AL returns zero, this signals that the character read in is an extended

ASCII character. In this case, the next read will return the character code.

322 APPENDIX C. IBM DOS SERVICES

AH = 08H (8) Console input (no echo)
INT 021H (33) Universal function

Read a character from the standard input device without echo

Input
None

Output
AL = character read in

Notes
This function reads a character from the standard input device. Unless

redirected with the MODE command or from the command processor, this will be
the console device, CON:.

If CONTROL-C or CONTROL-BREAK is read, the CONTROL-C handler (located at
the INT 23H vector) is executed.

If AL returns zero, this signals that the character read in is an extended
ASCII character. In this case, the next read will return the character code.

323

AH = 09H (9) Display string
INT 021H (33) Universal function

Write a dollar-sign terminated string to standard output

Input
DS:DX = pointer to output string

Output
None

Notes
This function writes a string to the standard output device. Unless redirected

with the MODE command or from the command processor, this will be the console
device, CON: .

The string must be terminated with an ASCII "$" character (24H). The dollar
sign is not transmitted. Other ASCII control characters can be embedded in the
output string. To display a dollar sign, use one of the single character functions.

324 APPENDIX C. IBM DOS SERVICES

AH = OAH (10) Buffered keyboard input
INT 021H (33) Universal function

Read a line of characters from standard input

Input
DS:DX = pointer to input buffer

Output
None

Notes
This function reads a string from the standard input device. Unless redi­

rected with the MODE command or from the command processor, this will be the
console device, CON:.

If CONTROL-C or CONTROL-BREAK is read, the CONTROL-C handler (located at
the INT 23H vector) is executed.

Characters are read until an ASCII carriage return (ODH) is detected. The
length of the buffer is contained in the first byte. This limits the possible size
of input buffers to 255 characters (since a zero length buffer would be unrea­
sonable). The buffer fills to one less than the size (not counting the final <CR»;

subsequent input is ignored until the buffer begins to empty.
Extended ASCII codes occupy two bytes in the input buffer, with the first

byte being zero. This is an important point for using C string functions, since
language terminates strings with a zero byte.

325

AH = OBH (11) Get keyboard input status
INT 021H (33) Universal function

Determine if a character is available to be read from the standard input
device

Input
None

Output
AL = OFFH if available, OOH if not

Notes
This function will continue to return a CHARACTER-READY until the input

queue has been emptied by one of the character-input functions.
If CONTROL-C or CONTROL-BREAK is read, the CONTROL-C handler (located at

the INT 23H vector) is executed. If any other character is waiting, it remains in
the input queue until it is read by one of the character-input functions.

326 APPENDIX C. IBM DOS SERVICES

AH = OCH (12) Reset input/execute
INT 021H (33) Universal function

Clear the type-ahead buffer and invoke one of the keyboard input functions

Input
AL = INT 21H function number (OlH, 06H, 07H, 08H, OAH)
See the appropriate INT 21H function for other parameters.

Output
See the appropriate INT 21H function for output specifications.

Notes
If CONTROL-C or CONTROL-BREAK is read, the CONTROL-C handler (located at

the INT 23H vector) is executed.
All typed but unread characters are flushed. The DOS character-input func­

tion whose number is contained in AL is then called. This function then returns
exactly as that DOS input function would if it had been called separately.

327

AH = ODH (13) Reset disk I/O
INT 021H (33) Universal function

Flush all pending file buffers by writing outstanding data to the disk

Input
None

Output
None

Notes
A reset causes all pending, buffered disk I/O to be written to the disk. It

does not update the directory to reflect changes in the files. Directory updates
are done by the CLOSE operation.

328 APPENDIX C. IBM DOS SERVICES

AH = OEH (14) Select current drive
INT 021H (33) Universal function

Set the default drive and return the total number of logical drives available
on the system

Input
DL = drive ID

Output
AL = Number of available logical drives

Notes
Drive IDs are numeric, following the drive letters (drive A: has a drive ID of

0, drive B:=l, drive C:=2, and so on).
Be aware that some disk-related functions use drive ID 1 as drive A: with

drive ID 0 indicating the default drive.
Logical drives include all the disk-like devices, such as RAM Disks, floppy

disks, hard disks. For upward compatibility, new applications should not be
expected to be able to use more than 26 drives (A: - Z :) .

On a single floppy-disk system, the number of logical drives is returned as
2. A system with a single physical disk drive actually has two logical drives
present, A: and B:.

329

AH = OFH (15) Open file with FeB
INT 021H (33) Universal function

Open a file for subsequent read or write operations

Input
DS:DX = pointer to file control block

Output
AL = return code

Notes

Return Code Meaning
OOH Successful

OFFH Unsuccessful

Any changes from the default methods of reading or writing, such as changing
the size of block transfers, should be done after the file is opened, but before any
file I/O is done.

FCBs are used for file I/O operations. These functions are not as flexi­
ble as the later handle-based functions, and remain primarily for compatibility
with earlier versions of DOS. They are useful for extended memory resident file
operations.

Offset FCB Field Offset FCB Field
OOH Drive ID 10H File size
01H Filename l4H Date
09H Extension l6H Time
OCH Current block 20H Current record
OEH Record size 21H Random record

330 APPENDIX C. IBM DOS SERVICES

AH = 010H (16) Close file with FCB
INT 021H (33) Universal function

End access to a file and update disk and directory information

Input
DS:DX = pointer to file control block

Output
AL = return code

Notes

Return Code Meaning
OOH Successful

OFFH Unsuccessful

Any unwritten buffers are written to disk, and the directory information for
the file is updated to reflect the changes.

FCBs are used for file I/O operations. These functions are not as flexi­
ble as the later handle-based functions, and remain primarily for compatibility
with earlier versions of DOS. They are useful for extended memory resident file
operations.

Offset FCB Field Offset FCB Field
OOH Drive ID 10H File size
01H Filename i4H Date
09H Extension i6H Time
OCH Current block 20H Current record
OEH Record size 2iH Random record

331

AH = 011H (17) Search for first match

INT 021H (33) Universal function

Search for a matching filename with file control block in the current directory

Input
DS:DX = pointer to file control block

Output
AL = return code

Notes

Return Code Meaning
OOH Successful

OFFH Unsuccessful

The disk transfer area must be set before this function is called.
Question marks can be used as wildcard matches for filenames. The first

filename found that matches the search criterion will be returned.
FCBs are used for file I/O operations. These functions are not as flexi­

ble as the later handle-based functions, and remain primarily for compatibility
with earlier versions of DOS. They are useful for extended memory resident file
operations.

Offset FCB Field Offset FCB Field
OOH Drive ID 10H File size
01H Filename l4H Date
09H Extension l6H Time
OCH Current block 20H Current record
OEH Record size 21H Random record

332 APPENDIX C. IBM DOS SERVICES

AH = 012H (18) Search for next match
INT 021H (33) Universal function

Continue the search for the next matching filename with a valid file control
block

Input
DS:DX = pointer to file control block

Output
AL = return code

Notes

Return Code
OOH

OFFH

Meaning
Successful
Unsuccessful

IN! 21H function 11H (search for first match) must have been called with
the same file control block before this function can be called.

FCBs are used for file I/O operations. These functions are not as flexi­
ble as the later handle-based functions, and remain primarily for compatibility
with earlier versions of DOS. They are useful for extended memory resident file
operations.

Offset FCB Field Offset FCB Field
OOH Drive ID 10H File size
01H Filename 14H Date
09H Extension 16H Time
OCH Current block 20H Current record
OEH Record size 21H Random record

333

AH = 013H (19) Delete file with FeB
INT 021H (33) Universal function

Delete all matching files from the current directory

Input
DS:DX = pointer to file control block

Output
AL = return code

Notes

Return Code
OOH

OFFH

Meaning
Successful
Unsuccessful

Question marks can be used as wildcard matches in the filename. All match­
ing files are deleted.

A deleted file is not scrubbed from the disk. Deletion occurs by marking the
directory entry and the used blocks as free. It may be possible to recover all or
part of a deleted file if no subsequent disk activity has taken place.

This function permits the deletion of files only in the current working direc­
tory. For full access to the file system, use INT 21H function 41H.

FCBs are used for file I/O operations. These functions are not as flexi­
ble as the later handle-based functions, and remain primarily for compatibility
with earlier versions of DOS. They are useful for extended memory resident file
operations.

Offset FCB Field Offset FCB Field
OOH Drive ID 10H File size
01H Filename 14H Date
09H Extension 16H Time
OCH Current block 20H Current record
OEH Record size 21H Random record

334 APPENDIX C. IBM DOS SERVICES

AH = 014H (20) Sequential FeB read
INT 021H (33) Universal function

Read the next data block from a file, advancing the file pointer

Input
DS:DX = pointer to file control block

Output
AL = return code

Notes

Return Code Meaning
OOH Read was successful
01H End of file
02H Segment overflow or wraparound
03H Partial record was read at the end of file

The file control block (FCB) must have been prepared with a CREATE or an
OPEN call before this function can be used.

The record size for the read is set by modifying the record size field in the
file control block.

The location of the block within the file to be read is determined by the
current block field and the current record field of the file control block.

FCBs are used for file I/O operations. These functions are not as flexi­
ble as the later handle-based functions, and remain primarily for compatibility
with earlier versions of DOS. They are useful for extended memory resident file
operations.

Offset FCB Field Offset FeB Field
OOH Drive ID 10H File size
01H Filename l4H Date
09H Extension l6H Time
OCH Current block 20H Current record
OEH Record size 21H Random record

335

AH = 015H (21) Sequential FeB write
INT 021H (33) Universal function

Write the next data block to a file, advancing the file pointer

Input
DS:DX = pointer to file control block

Output
AL = return code

Notes

Return Code Meaning
OOH Write was successful
01H Disk is full
02H Segment overflow or wraparound

The file control block (FCB) must have been prepared with a CREATE or an
OPEN call before this function can be used.

The record size for the write is set by modifying the record size field in the
file control block.

The location of the block within the file to be written is determined by the
current block field and the current record field of the FCB.

Partial records are padded with zeros.
FCBs are used for file I/O operations. These functions are not as flexi­

ble as the later handle-based functions, and remain primarily for compatibility
with earlier versions of DOS. They are useful for extended memory resident file
operations.

Offset FCB Field Offset FCB Field
OOH Drive ID 10H File size
01R Filename l4R Date
09H Extension l6H Time
OCH Current block 20H Current record
OEH Record size 21H Random record

336 APPENDIX C. IBM DOS SERVICES

AH = 016H (22) Create file with FCB
INT 021H (33) Universal function

Create a new directory entry, or make an existing file zero bytes in length,
opening that file for access

Input
DS:DX = pointer to file control block

Output
AL = return code

Notes

Return Code Meaning
OOH File was created successfully

OFFH File was not created (no directory space available)

This function truncates an existing file to zero length. The disk blocks oc­
cupied by the file is not scrubbed, so it is sometimes possible to recover an
accidentally truncated file.

FCBs are used for file I/O operations. These functions are not as flexi­
ble as the later handle-based functions, and remain primarily for compatibility
with earlier versions of DOS. They are useful for extended memory resident file
operations.

Offset FeB Field Offset FCB Field
OOH Drive ID 10H File size
01H Filename 14H Date
09H Extension 16H Time
OCH Current block 20H Current record
OEH Record size 21H Random record

337

AH = 017H (23) Rename file with FeB
INT 021H (33) Universal function

Change the name of all matching files, using a special file control block

Input
DS:DX = pointer to special file control block

Output
AL = return code

Notes
The file control block (FCB) for this function should have a drive ID, a

filename, and an extension in the usual locations. The new filename is located
6 bytes after the first filename.

Question marks in the second file name cause the corresponding letters in
the first file name to remain unchanged.

AL Return Code
OOH File was renamed successfully

OFFH No match or the new name was already in use

The FCB used for the RENAME operation is different from a normal FCB. It
contains two filenames, with the second filename being the new name for the
file. Note that a drive for the second filename cannot be specified. Renaming
can be done only on the current disk.

Offset FCB Field Offset FCB Field
OOH Drive ID 10H File size
01H Filename 11H New Filename
09H Extension 19H New Extension
OCH Current block 20H Current record
OEH Record size 21H Random record

338 APPENDIX C. IBM DOS SERVICES

018H (24) Not Used
INT 021H (33) Universal function

339

AH = 019H
INT 021H (33)

Get the drive ID

(25)

of the current disk

Get current drive
Universal function

Input
None

Output
AL = drive ID

Notes
Drive IDs are numeric, following the drive letters (drive A: has a drive ID of

0, drive B: =1, drive c: =2, and so on).
Be aware that some disk-related functions use drive ID 1 as drive A: with

drive ID 0 indicating the default drive.
This function does not specify the path to the current directory. If subdi­

rectories are in use, this function must be used in conjunction with INT 21H
function 47H (get current directory). Since that function also returns the same
driye ID information, it may be more appropriate for general use.

340 APPENDIX C. IBM DOS SERVICES

AH = 01AH (26) Set disk transfer area

INT 021H (33) Universal function

Set the location of the disk transfer area

Input
DS:DX = pointer to disk transfer area

Output
None

Notes
The default disk transfer area is located at offset 0080H in the program

segment prefix. The default DTA size is 128 bytes.
A correct disk transfer area is vital to the operation of the file control block

(FeB) disk functions.

341

AH = D1BH (27) Get current drive info

INT 021H (33) Universal function

Return allocation and identification information about the current drive

Input
None

Output
AL = sectors per allocation unit
ex = bytes per sector
DX = number of allocation units
DS:BX = pointer to file allocation table ID byte

Notes
The first byte of the FAT contains a type identifier. These codes are valid:

Code Meaning
OF8H Fixed disk.
OF9H Floppy disk. Double-sided, 15 sectors per track
OFCH Floppy disk. Single-sided, 9 sectors per track
OFDH Floppy disk. Double-sided, 9 sectors per track
OFEH Floppy disk. Single-sided, 8 sectors per track
OFFH Floppy disk. Double-sided, 8 sectors per track

The pointer to the FAT ID byte points to a copy of that byte. It does not
necessarily point to a valid file allocation table.

342 APPENDIX C. IBM DOS SERVICES

AH = 01CH (28) Get drive info
INT 021H (33) Universal function

Return allocation and identification information about any drive

Input
DL = drive ID

Output
AL = sectors per allocation unit
ex = bytes per sector
DX = number of allocation units
DS:DX = pointer to file allocation table ID byte

Notes
The first byte of the FAT contains a type identifier. These codes are valid:

Code Meaning
OF8H Fixed disk.
OF9H Floppy disk. Double-sided, 15 sectors per track
OFCH Floppy disk. Single-sided, 9 sectors per track
OFDH Floppy disk. Double-sided, 9 sectors per track
OFEH Floppy disk. Single-sided, 8 sectors per track
OFFH Floppy disk. Double-sided, 8 sectors per track

The pointer to the FAT ID byte points to a copy of that byte. It does not
necessarily point to a valid file allocation table.

Drive IDs are numeric, following the drive letters (drive A: has a drive ID
of 1, drive B: =2, drive e: =3, and so on). A drive ID of zero indicates that the
default drive is to be used.

Be aware that some disk-related functions use drive ID 0 as drive A: in those
cases when the concept of a default drive is not supported.

343

01DH (29) Not Used
INT 021H (33) Universal function

01EH (30) Not Used
INT 021H (33) Universal function

01FH (31) Not Used
INT 021H (33) Universal function

020H (32) Not Used
INT 021H (33) Universal function

344 APPENDIX C. IBM DOS SERVICES

AH = 021H (33) Random read with FeB
INT 021H (33) Universal function

Read a data block from an arbitrary location in a file

Input
DS:DX = pointer to file control block

Output
AL = return code

Notes

Return Code Meaning
OOH Read was successful
01H End of file
02H Segment overflow or wraparound
03H Partial record was read at the end of file

The file control block (FCB) must have been prepared with a CREATE or an
OPEN call before this function can be used.

The location within the file to be read is determined by the random record
field and the record size field in the file control block.

The current file pointers are not modified by this function. This means that
repeated calls to the random read function read the same point within the file.

Partial records are padded with zeros.
FCBs are used for file I/O operations. These functions are not as flexi­

ble as the later handle-based functions, and remain primarily for compatibility
with earlier versions of DOS. They are useful for extended memory resident file
operations.

Offset FCB Field Offset FCB Field
OOH Drive ID 10H File size
01H Filename l4H -Date
09H Extension l6H Time
OCH Current block 20H Current record
OEH Record size 21H Random record

345

AH = 022H (34) Random write with FeB
INT 021H (33) Universal function

Write a data block to an arbitrary location in a file

Input
DS:DX = pointer to file control block

Output
AL = return code

Notes

Return Code
OOH
01H
02H

Meaning
Write was successful
Disk is full
Segment overflow or wraparound

The location of the write is specified in the random-record field of the file
control block (FCB). The size of the write is specified by the record-size field.

The FCB must have been prepared with a CREATE or an OPEN call before this
function can be used.

The current file pointers are not modified by this function. This means that
repeated calls to the random write function will write to the same location within
the file.

346 APPENDIX C. IBM DOS SERVICES

AH = 023H (35) Get file size
INT 021H (33) Universal function

Update the file control block with size information if a matching file is found

Input
DS:DX = pointer to file control block

Output
AL = return code

Notes

Return Code Meaning
OOH Match found; FCB offset 21H set to number of records

OFFH No match found

The file control block (FCB) must have been prepared with a CREATE or an
OPEN call before this function can be used.

FCBs are used for file I/O operations. These functions are not as fLexi­
ble as the later handle-based functions, and remain primarily for compatibility
with earlier versions of DOS. They are useful for extended memory resident file
operations.

Offset FCB Field Offset FCB Field
OOH Drive ID 10H File size
01H Filename l4H Date
09H Extension l6H Time
OCH Current block 20H Current record
OEH Record size 21H Random record

347

AH = 024H (36) Set random record field
INT 021H (33) Universal function

Switch from sequential to random (FCB) file I/O by converting the sequential
location to a random access file position

Input
DS:DX = pointer to file control block

Output
None

Notes
This function converts the current sequential I/O position to the correspond­

ing random-access position.
The file control block (FCB) must have been prepared with a CREATE or an

OPEN call before this function can be used.
FCBs are used for file I/O operations. These functions are not as flexi­

ble as the later handle-based functions, and remain primarily for compatibility
with earlier versions of DOS. They are useful for extended memory resident file
operations.

Offset FCB Field Offset FCB Field
OOH Drive ID 10H File size
01H Filename 14H Date
09H Extension 16H Time
OCH Current block 20H Current record
OEH Record size 21H Random record

348 APPENDIX C. IBM DOS SERVICES

AH = 025H (37) Set interrupt vector
INT 021H (33) Universal function

Set the handler location for a hard or a soft interrupt

Input
AL = interrupt number
DS:DX = pointer to interrupt handler

Output
None

Notes
This function takes all precautions to ensure that interrupts do not occur

when the vector is only partiaily changed. For that reason, it is the preferred
method of modifying interrupt vectors.

The current contents of an interrupt vector can be obtained with IN! 21H
function 35H (get interrupt vector). The register conventions used are incom­
patible between this function and that one.

In a normal application that changes an interrupt vector, the previous inter­
rupt vector should be obtained via IN! 21H function 35H and restored before the
application terminates. IN! 22H (termination handler), IN! 23H (CON!ROL-C
handler), and IN! 24H (critical error handler) are restored by DOS from the
program segment prefix when a program exits.

349

AH 026H (38) Create PSP
INT 021H (33) Universal function

Make a new program segment prefix by copying from the current one and
then updating it for a new program

Input
DX = segment address

Output
None

Notes
Information for the current program segment prefix is taken from the cur­

rently executing program (the program calling this function). Values for INT
22H (termination handler), INT 23H (CONTROL-C handler), and INT 24H (criti­
cal error handler) are copied from their current values.

This function simply prepares a program segment prefix; it neither loads nor
executes a program.

The Program Segment Prefix

Offset Meaning
OOOOH Termination Handler Address
0OO2H Segment, end of allocation block
0OO4H Reserved
0OO6H Long call to MS-DOS function dispatcher
OOOAH Previous termination handler vector
OOOEH Previous CONTROL-C vector
0012H Previous critical error handler vector
0016H Reserved
002CH Segment address of environment block
002EH Reserved
006CH Default File Control Block #1
006CH Default File Control Block #2
0080H Command tail and default Disk Transfer Area

350 APPENDIX C. IBM DOS SERVIGES

AH = 027H (39) Random block FeB read
INT 021H (33) Universal function

Read one or more sequential records from an arbitrary point in a file

Input
CX = record count
DS:DX = pointer to file control block

Output
AL = return code
CX = actual record count

Notes

Return Code Meaning
OaR Read was successful
01R End of file
02R Segment overflow or wraparound
03R Partial record was read at the end of file

The file control block (FCB) must have been prepared with a CREATE or an
OPEN call before this function can be used.

Partially read records are padded with zeros.
After the transfer has occurred, the file pointers in the FCB are advanced to

point to the next logical record.

351

AH = 028H (40) Random block FCB write

INT 021H (33) Universal function

Write one or more sequential records to an arbitrary point in a file

Input
CX = record count
DS:DX = pointer to file control block

Output
AL = return code
CX = actual record count

Notes

Return Code Meaning
OOH Write was successful
01H Disk is full
02H Segment overflow or wraparound

The file control block (FeB) must have been prepared with a CREATE or an
OPEN call before this function can be used.

If this function is called with CX=O, no data is written, but the file is length­
ened or shortened to match the length in the FeB.

After the transfer has occurred, the file pointers in the FeB are advanced to
point to the next logical record.

352 APPENDIX C. IBM DOS SERVICES

AH = 029H (41) Parse filename
INT 021H (33) Universal function

Crack a text string into the components of a file name

Input
AL = parsing control bits
DS:SI = pointer to command line
ES:DI = pointer to file control block

Output
AL = return code
DS:SI = pointer to following place in command line
ES:DI = pointer to file control block

Notes
If no valid filename can be derived from the information present, ES:DI+l

will point to an ASCII blank.
An asterisk (*) in a filename or extension causes all the remaining characters

in that component to be set to question marks (?).
A question mark (?) matches any single character.

Parsing control hits

76543210 Meaning
xxxxOxxx Extension field changed only if extension present
xxxx1xxx Extension field blanked if no extension entered
xxxxxOxx Filename field changed only if filename present
xxxxx1xx Filename field blanked if no filename entered
xxxxxxOx Drive field changed only if filename present
xxxxxx1x Drive field blanked if no drive entered
xxxxxxxO Leading separators will be ignored
xxxxxxx1 Leading separators will not be ignored

353

AH = 02AH (42) Get system date
INT 021H (33) Universal function

Ask the system what day it is

Input
None

Output
AL = day of week
ex = year (1980 to 2099)
DH = month
DL = day

Notes
The registers used for output in this function are assigned in the same manner

as those used in INT 21H function 2BH (set system date), with the exception of
AL, the day of the week.

354 APPENDIX C. IBM DOS SERVICES

AH = 02BH (43) Set system date
INT 021H (33) Universal function

Tell the system what day it is

Input
ex = year (1980 to 2099)
DH = month
DL = day

Output
AL = return code

Notes

Return Code Meaning
OOH Successful

OFFH Unsuccessful

The registers used for input in this function are assigned in the same manner
as those used in INT 21H function 2AH (get system date).

355

AH = 02CH (44) Get system time
INT 021H (33) Universal function

Ask the system what time it is

Input
None

Output
CH = hours
CL = minutes
DL = hundreds of seconds
DH = seconds

Notes
The registers used for output in this function are assigned in the same manner

as those used in INT 21H function 2DH (get system time).

356 APPENDIX C. IBM DOS SERVICES

AH = 02DH
INT 021H (33)

(45) Set system time
Universal function

Tell the system what time it is

Input
CH = hours
CL = minutes
DL = hundreds of seconds
DH = seconds

Output
AL = return code

Notes

Return Code Meaning
OOH Successful

OFFH Unsuccessful

The registers used for input in this function are assigned in the same manner
as those used in INT 21H function 2CH (get system time).

The system date is not affected by this function.

357

AH = 02EH (46) Disk write verification
INT 021H (33) Universal function

Enable or disable automatic read-after-write comparison of data written with
data read

Input
AL = 0 to disable, 1 to enable
DL = 0 (for compatibility with DOS 1 and 2)

Output
None

Notes
Verification happens by reading back the data just written and comparing

that result with t.he data that was supposed to have been written. Verification
slows down access to the file system, but may increase reliability.

Verification can be globally enabled or disabled with the DOS VERIFY com­
mand. VERIFY ON enables verification. VERIFY OFF disables verification.

358 APPENDIX C. IBM DOS SERVICES

AH = 02FH (47) Get DTA address
INT 021H (33) Universal function

Ask the system what disk transfer area is being used

Input
None

Output
ES:BX = pointer to disk transfer area

Notes
The disk transfer area can be set using INT 21H function 1AH (set disk trans­

fer area). The register conventions used by these two functions are not compat­
ible.

If not explicitly set, the default disk transfer area will be a 128-byte buffer
located in the program segment prefix at offset 80H.

359

AH = 030H (48) Get DOS version number
INT 021H (33) Universal function

Get the major and minor version numbers of the currently running DOS

Input
None

Output
AL = major version number
AH = minor version number

Notes
The minor version number is returned as a two-significant-digit number.

Thus, DOS version 2.1 will be returned as AL=02 AH=OAH (10), rather than
AH=Ol (which would represent the non-existent DOS version 2.01).

360 APPENDIX C. IBM DOS SERVICES

AH = 031H (49) Keep process
INT 021H (33) Universal function

Advanced terminate and stay resident

Input
AL = return code
DX = paragraphs of memory to reserve

Output
None

Notes
Memory is specified in paragraphs, or 16-byte chunks. Because of this, more

than 64 kilobytes can be reserved.
Take care in using this function in conjunction with the memory allocation

functions. Allocated memory is not included in the preserved code.
Open files are not automatically closed by this function.

361

032H (50) Not Used

INT 021H (33) Universal function

362 APPENDIX C. IBM DOS SERVICES

AH = 033H (51) CONTROL-C checking
INT 021H (33) Universal function

Determine or set checking for CONTROL-C or CONTROL-BREAK

Input
AL = 0 to read checking state; 1 to set checking state
DL = state to set (0 off, 1 on)

Output
DL = current state (0 off, 1 on)

Notes
CONTROL-C checking is performed during system I/O operations. On purely

compute-bound operations or operations involving no I/O, CONTROL-C does not
interrupt the operation.

CONTROL-C checking is a global setting. If checking is disabled in one appli­
cation and never reenabled before that program terminates, it remains disabled
through all subsequent programs.

363

AH = 034H ·(52) Unsupported
INT 021H (33) Universal function

364 APPENDIX C. IBM DOS SERVICES

AH = 035H (53) Get interrupt vector
INT 021H (33) Universal function

Determine the address of an interrupt handler

Input
AL = interrupt number

Output
ES:BX = interrupt vector

Notes
An interrupt vector can be modified with INT 21H function 25H (set interrupt

vector). The register conventions used are incompatible between this function
and that one.

365

AH = 036H (54) Get disk capacity
INT 021H (33) Universal function

Returns parameters from which the total storage capacity and remaining
capacity of a drive can be calculated

Input
DL = drive ID

Output
AX = sectors per cluster (SC)
BX = available cluster count (AC)
CX = bytes per sector (BS)
DX = total clusters (TC)

Notes
Drive IDs are numeric, following the drive letters (drive A: has a drive ID

of 1, drive B:=2, drive C:=3, and so on). A drive ID of zero indicates that the
default drive is to be used.

Be aware that some disk-related functions use drive ID 0 as drive A: in those
cases when the concept of a default drive is not supported.

AX is returned as OFFFFH if the drive specified in DL is invalid.
Total capacity (C) can be calculated with the formula

C=TC*SC*BS

Remaining capacity (R) can be calculated with the fonnula

R=AC*SC*BS

366 APPENDIX C. IBM DOS SERVICES

037H (55) Not Used
INT 021H (33) Universal function

367

AH 038H (56) Get country info
INT 021H (33) Universal function

Get national information such as currency symbol and time or date format

Input
AL = 0 for standard information
AL = country code or
AL = OFFH if country code greater than 255
BX = country code if AL == OFFH
DS:DX = pointer to 32-byte buffer

Output
AX = return code (if CF set)
BX = country code
DS:DX = information

Notes

Byte offset Meaning
0 Date format (O=(m d y), l=(d my), 2=(y m d))
2 ASCIIZ Currency. symbol string
7 ASCIIZ Thousands separator string
9 ASCIIZ Decimal separator string
11 ASCIIZ Date separator string
13 ASCIIZ Time separator string
15 Currency format
16 Number of digits after decimal
17 Time format (O=12-hour clock), 1=24-hour clock)
18 Address for case-mapping routine
22 ASCIIZ Data-list separator string
24 Reserved

Currency format Meaning
76543210
xxxxxxxO Currency symbol precedes value
xxxxxxOx No space between value and symbol
xxxxxx1x One space between value and symbol

368 APPENDIX C. IBM DOS SERVICES

AH 039H (57) Make subdirectory

INT 021H (33) Universal function

Create a subdirectory at a specified drive and path

Input
DS:DX = pointer to ASCIIZ string

Output
If function was successful:

CF = cleared

If function was unsuccessful:
CF = set
AX = error code

Notes
If the path string begins with a drive or a "\", the operation occurs relative

to the root directory; otherwise, the operation occurs relative to the current
directory.

Code Standard Error Code Standard Error
00 Successful 16 Removing current directory
01 Invalid function number 17 Not same device
02 File not found 18 No more files to be found
03 Path not found 19 Disk is write-protected
04 No more handles available 20 Unknown disk
05 Access denied 21 Drive is not ready
06 Invalid handle 22 Unknown command
07 Bad memory control blocks 23 Data error (CRC)
08 Insufficient memory 24 Bad request length
09 Invalid memory block address 25 Seek error
10 Invalid environment 26 Unknown media type
11 Invalid format 27 Sector not found
12 Invalid access code 28 Printer out of paper
13 Invalid data 29 Write fault
14 Not used 30 Read fault
15 Invalid drive specification 31 General failure

369

AH 03AH (58) Remove directory

INT 021H (33) Universal function

Delete an empty subdirectory at a specified drive and path

Input
DS:DX = pointer to ASCIIZ string

Output
If function was successful:

CF = cleared

If function was unsuccessful:

CF = set
AX = return code

Notes
The directory to be deleted must be empty, or this operation will fail.
If the path string begins with a drive or a "\", the operation occurs relative

to the root directory; otherwise, the operation occurs relative to the current
directory.

Code Standard Error Code Standard Error
()() Successful 16 Removing current directory
01 Invalid function number 17 Not same device
02 File not found 18 No more files to be found
03 Path not found 19 Disk is write-protected
04 No more handles available 20 Unknown disk
05 Access denied 21 Drive is not ready
06 Invalid handle 22 Unknown command
07 Bad memory control blocks 23 Data error (CRC)
08 Insufficient memory 24 Bad request length
09 Invalid memory block address 25 Seek error
10 Invalid environment 26 Unknown media type
11 Invalid format 27 Sector not found
12 Invalid access code 28 Printer out of paper
13 Invalid data 29 Write fault
14 Not used 30 Read fault
15 Invalid drive specification 31 General failure

370 APPENDIX C. IBM DOS SERVICES

AH 03BHo (59) Set current working dir
INT 021H (33) Universal function

Set the default directory using the specified path

Input
DS:DX = pointer to ASCIIZ string

Output
If function was successful:

CF = cleared

If function was unsuccessful:

CF = set
AX = return code

Notes
If the path string begins with a drive or a "\", the operation occurs relative

to the root directory; otherwise, the operation occurs relative to the current
directory.

Code Standard Error Code Standard Error
00 Successful 16 Removing current directory
01 Invalid function number 17 Not same device
02 File not found 18 No more files to be found
03 Path not found 19 Disk is write-protected
04 No more handles available 20 Unknown disk
05 Access denied 21 Drive is not ready
06 Invalid handle 22 Unknown command
07 Bad memory control blocks 23 Data error (CRC)
08 Insufficient memory 24 Bad request length
09 Invalid memory block address 25 Seek error
10 Invalid environment 26 Unknown media type
11 Invalid format 27 Sector not found
12 Invalid access code 28 Printer out of paper
13 Invalid data 29 Write fault
14 Not used 30 Read fault
15 Invalid drive specification 31 General failure

371

AH = 03CH (60) Create file with handle
INT 021H (33) Universal function

Create a new directory entry if one does not exist, or set the file length to
zero if the entry exists

Input
CX = file attribute
DS:DX = pointer to ASCIIZ string

Output
If function was successful:

CF = cleared
AX = file handle

If function was unsuccessful:

CF = set
AX = return code

Notes
A handle is a 16-bit token, which is used by the operating system to manage

the file state information.
If the path string begins with a drive or a "\", the operation occurs relative

to the root directory; otherwise, the operation occurs relative to the current
directory.

File Attribute Meaning
OOH Normal
01H Read-Only
02H Hidden
04H System

This function truncates an existing file to zero length. The disk blocks oc­
cupied by the file is not scrubbed, so it is sometimes possible to recover an
accidentally truncated file.

If this function fails, the return code is one of the standard error codes.

372 APPENDIX C. IBM DOS SERVICES

AH 03DH (61) Open file with handle
INT 021H (33) Universal function

Open a file for subsequent read or write access

Input
AL = access code
DS:DX = pointer to ASCIIZ string

Output
If function was successful:

CF = cleared
AX = file handle

If function was unsuccessful:
CF = set
AX = return code

Notes
A handle is a 16-bit token, which is used by the operating system to manage

the file state information.

Access code Meaning
76643210
xxxxxOOO Read access
xxxxxOOl Write access
xxxxx010 Read/write access
xxxxOxxx ReserVed (should be zero)
xOOOxxxx Compatibility mode (compatible with FCB method)
xOOlxxxx Read/Write access denied
xOl0xxxx Write access denied
xOl1xxxx Read access denied
xl00xxxx Full access 'permitted
Oxxxxxxx File inherited by child process
1xxxxxxx File private to current process

If the path string begins with a drive or a "\", the operation occurs relative
to the root directory; otherwise, the operation occurs relative to the current
directory.

If this function fails, the return code is one of the standard error codes.

373

AH = 03EH (62) Close file with handle
INT 021H (33) Universal function

End access to a file, flush all internal buffers, and update directory informa­
tion

Input
BX = file handle

Output
If function was successful:

CF = cleared

If function was unsuccessful:

CF = set
AX = return code

Notes
A handle is a 16~bit token, which is used by the operating system to manage

the file state information.
Handle 0 is the standard input device, normally the keyboard. Closing this

handle accidentally has the unfortunate result of terminating all access to the
keyboard until the next reboot.

All internal DOS buffers with pending output for this handle will be flushed
by writing that information to disk, before the close has occurred.

If this function fails, the return code is one of the standard error codes.

374 APPENDIX C. IBM DOS SERVICES

AH = 03FH (63) Read from file or device
INT 021H (33) Universal function

Read a stream of bytes from a file or device

Input
BX = file handle
CX = bytes to read
DS:DX = pointer to disk transfer area buffer

Output
If function was successful:

CF = cleared
AX = number of bytes read

If function was unsuccessful:

CF = set
AX = return code

Notes
A handle is a 16-bit token, which is used by the operating system to manage

the file state information.
This function requires that the handle be opened by INT 21H function 3CH

(create file) or INT 21H function 3DH (open file)
If CF returns clear but AX is zero, the file pointer is already at the end of file.
If CF returns clear but AX is less than CX, a partial record has been read.
If this function fails, the return code is one of the standard error codes.

375

AH = 040H (64) Write to file or device

INT 021H (33) Universal function

Write a stream of bytes to a file or device

Input
BX = file handle
CX = bytes to write
DS:DX = pointer to disk transfer area buffer

Output
If function was successful:

CF = cleared·
AX ;= number of bytes written

If function was unsuccessful:
CF = set
AX = return code

Notes
A handle is a 16-bit token, which is used by the operating system to manage

the file state information.
This function requires that the handle be opened by INT 21H function 3CH

(create Jile) or INT 21H function 3DH (open Jile)
If CF returns clear but AX is less than CX, a partial record has been read.
If this function fails, the return code is one of the standard error codes.

376 APPENDIX C. IBM DOS SERVICES

AH 041H (65) Delete file
INT 021H (33) Universal function

Remove a file entry from the specified disk and directory path

Input
DS:DX = pointer to ASCIIZ string

Output
If function was successful:

CF = cleared

If function was unsuccessful:

CF = set
AX = return code

Notes
A deleted file is not scrubbed from the disk. Deletion occurs by marking the

directory entry and the used blocks as free. It may be possible to recover all or
part of a deleted file if no subsequent disk activity has taken place.

Code Standard Error Code Standard Error
00 Successful 16 Removing current directory
01 InvaJid function number 17 Not same device
02 File not found 18 No more files to be found
03 Path not found 19 Disk is write-protected
04 No more handles available 20 Unknown disk
05 Access denied 21 Drive is not ready
06 Invalid handle 22 Unknown command
07 Bad memory control blocks 23 Data error (ORO)
08 Insufficient memory 24 Bad request length
09 Invalid memory block address 25 Seek error
10 Invalid environment 26 Unknown media type
11 Invalid format 27 Sector not found
12 Invalid access code 28 Printer out of paper
13 Invalid data 29 Write fault
14 Not used 30 Read fault
15 Invalid drive specification 31 General failure

377

AH = 042H (66) Position file pointer
INT 021H (33) Universal function

Set the position of subsequent file access within a file

Input
AL = method code
BX = file handle
CX = most significant word of offset
DX = least significant word of offset

Output
If function was successful:

CF = cleared
DX = most significant word of new pointer location
AX = least significant word of new pointer location

If function was unsuccessful:

CF = set
AX = return code

Notes

Method Meaning
0 Absolute byte offset from beginning of file
1 Relative byte offset from current position
2 Absolute byte offset from end of file

The next record written or read will be at the file position set by this function.
Methods 1 and 2 can be used to set a position before the beginning of the

file. Setting this position will not cause an error, but I/O operations on the file
will fail.

The returned offset is always an absolute byte offset from the start of the
file.

If this function fails, the return code is one of the standard error codes.

378 APPENDIX C. IBM DOS SERVICES

AH = 043H (67) Get/set file attributes
INT 021H (33) Universal function

Determine or modify the attribute of a file

Input
AL = (0, get attribute; 1, set attribute)
CX = new attribute
DS:DX = pointer to ASCIIZ string

Output
If function was successful:

CF = cleared

CX = old attribute if get

If function was unsuccessful:

CF = set

AX = return code

Notes

File Attribute Meaning
OOH Normal
01H Read-Only
02H Hidden
04H System

This function cannot be used to set a volume label; that must be done with
an extended file control block function.

If this function fails, the return code is one of the standard error codes.

379

AH = 044H (68) I/O control for devices
INT 021H (33) Universal function

Direct I/O management for device access

Input
AL = subfunction code
BL = drive number
BX = file handle
CX = number of bytes to read or write

Output
If function was successful:

CF = cleared

AX = number of bytes transferred

OX = device information

If function was unsuccessful:

CF = set

AX = return code

Notes

Subfunction Code Meaning
00 Get device information
01 Set device information
02 Read from control channel to buffer
03 Write from buffer to control channel
04 Read from block device to buffer
05 Write from buffer to block device
06 Get input status
07 Get output status

This function is used to manage general I/O to devices.
If performing ordinary file I/O rather than device I/O, only functions OOH~

06H, and 07H are valid. Reading and writing should be done by the appropriatE
handle functions.

If this function fails, the return code is one of the standard error codes.

380 APPENDIX C. IBM DOS SERVICES

AH 045H (69) Duplicate file handle
INT 021H (33) Universal function

Create a copy of a currently opened file handle

Input
BX = file handle

Output
If function was successful:

CF = cleared
AX = file handle

If function was unsuccessful:
CF = set
AX = return code

Notes
Moving the file position of one of the duplicated handles will cause the po­

sition of the other to be changed as well.
This function causes the file information in the directory to be updated. One

use might be to duplicate a file descriptor and then close the duplicate, forcing
an update to the directory without affecting the originally opened file.

Code Standard Error Code Standard Error
00 Successful 16 Removing current directory
01 Invalid function number 17 Not same device
02 File not found 18 No more files to be found
03 Path not found 19 Disk is write-protected
04 No more handles available 20 Unknown disk
05 Access denied 21 Drive is not ready
06 Invalid handle 22 Unknown command
07 Bad memory control blocks 23 Data error (CRC)
08 Insufficient memory 24 Bad request length
09 Invalid memory block address 25 Seek error
10 Invalid environment 26 Unknown media type
11 Invalid format 27 Sector not found
12 Invalid access code 28 Printer out of paper
13 Invalid data 29 Write fault
14 Not used 30 Read fault
15 Invalid drive specification 31 General failure

381

AH 046H (70) Overwrite handle

INT 021H (33) Universal function

Make two dissimilar file handles point to the same file and position

Input
BX = existing file handle
CX = second file handle

Output
If function was successful:

CF = cleared
BX = original file handle
CX = duplicate of original file handle

If function was unsuccessful:
CF = set
AX = return code

Notes
Moving the file position of one of the duplicated handles causes the position

of the other to be changed as well.
If the file handle in CX is already open, the file will be closed before dupJ ication

occurs.

Code Standard Error Code Standard Error
00 Successful 16 Removing current directory
01 Invalid function number 17 Not same device
02 Vile not found 18 No more files to be found
03 Path not found 19 Disk is write-protected
04 No more handles available 20 Unknown disk
05 Access denied 21 Drive· is not ready
06 Invalid handle 22 Unknown command
07 Bad memory control blocks 23 Data error (CRC)
08 InsuffiCient memory 24 Bad request length
09 Invalid memory block address 25 Seek error
10 Invalid environment 26 Unknown media type
11 Invalid format 27 Sector not found
12 Invalid access code 28 Printer out of paper
13 Invalid data 29 Write fault
14 Not used 30 Read fault
15 Invalid drive speCification 31 General failure

382 APPENDIX C. IBM DOS SERVICES

AH = 047H (71) Get current directory
INT 021H (33) Universal function

Determine the path to the current directory for a particular disk drive

Input
DL = drive ID
DS:SI = pointer to data area

Output
If function was successful:

CF = cleared
DS:SI = pointer to pathname string

If function was unsuccessful:

CF = set
AX = return code

Notes
Drive IDs are numeric, following the drive letters (drive A: has a drive ID

of 1, drive B: =2, drive C: =3, and so on). A drive ID of zero indicates that the
default drive is to be used.

Be aware that some disk-related functions use drive ID 0 as drive A: in those
cases when the concept of a default drive is not supported.

The returned pathname is relative to the root directory of the current disk.
It does not contain a leading "\". Thus, if the current directory is the root
directory, the pathname is zero length.

If this function fails, the return code is one of the standard error codes.

383

AH 048H (72) Allocate memory

INT 021H (33) Universal function

Allocate a block of memory and return a pointer to that block

Input
BX = meIliory requested in paragraphs

Output
If function was successful:

CF = cleared
AX = segment address

If function was unsuccessful:
CF = set
AX = return code
BX = largest block size available

Notes
The base address of the allocated memory IS OOOOH. Thus, the complete

address of the start of the buffer is AX: 0000.
If the memory allocation fails, BX contains the largest block of memory avail­

able for allocation.

Code Standard Error Code Standard Error
00 Successful 16 Removing current directory
01 Invalid function number 17 Not same device
02 File not found 18 No more files to be found
03 Path not found 19 Disk is write-protected
04 No more handles available 20 Unknown disk
05 Access denied 21 Drive is not ready
06 Invalid handle 22 Unknown command
07 Bad memory control blocks 23 Data error (CRC)
08 Insufficient memory 24 Bad request length
09 Invalid memory block address 25 Seek error
10 Invalid environment 26 Unknown media type
11 Invalid format 27 Sector not found
12 Invalid access code 28 Printer out of paper
13 Invalid data 29 Write fault
14 Not used 30 Read fault
15 Invalid drive specification 31 General failure

384 APPENDIX C. IBM DOS SERVICES

AH 049H (73) Free allocated memory
INT 021H (33) Universal function

Release a block of memory to the free memory pool

Input
ES = segment block to return

Output
If function was successful:

CF = cleared

If function was unsuccessful:

CF = set
AX = return code

Notes
The memory block released must have been allocated by INT 21H function

48H (allocate memory).

Code Standard Error Code Standard Error
r--06 Successful 16 Removing current directory

01 Invalid fUllction number 17 Not same device
02 File not found 18 No more files to be found
03 Path not found 19 Disk is write-protected
04 No more handles available 20 Unknown disk
05 Access denied 21 Drive is not ready
06 Invalid handle 22 Unknown command
07 Bad memory control blocks 23 Data error (CRC)
08 Insufficient memory 24 Bad request length
09 Invalid memory block address 25 Seek error
10 Invalid environment 26 Unknown media type
11 Invalid format 27 Sector not found
12 Invalid access code 28 Printer out of paper
13 Invalid data 29 Write fault
14 Not used 30 Read fault
15 Invalid drive specification 31 General failure

385

AH 04AH (74) Modify memory allocation

INT 021H (33) Universal function

Change the size of an allocated block

Input
BX = requested size in paragraphs
ES = segment address of block

Output
If function was successful:

CF = cleared

If function was unsuccessful:

CF = set
AX = return code
BX = maximum possible size

Notes
The memory block modified must have been allocated by IN! 21H function

48H (allocate memory).
If the memory reallocation fails, BX contains the largest block of memory

available for reallocation.

Code Standard Error Code Standard Error
00 Successful 16 Removing· current directory
01 Invalid function number 17 Not same device
02 File not found 18 No more files to be found
03 Path not found 19 Disk is write-protected
04 No more handles available 20 Unknown disk
05 Access denied 21 Drive is not ready
06 Invalid handle 22 Unknown command
07 Bad memory control blocks 23 Data error (ORC)
08 Insufficient memory 24 Bad request length
09 Invalid memory block address 25 Seek error
10 Invalid environment 26 Unknown media type
11 Invalid format 27 Sector not found
12 Invalid access code 28 Printer out of paper
13 Invalid data 29 Write fault
14 Not used 30 Read fault
15 Invalid drive specification 31 General failure

386 APPENDIX C. IBM DOS SERVICES

AH 04BH (75) Execute program
INT 021H (33) Universal function

Load and execute a secondary program, returning control when that program
ends

Input
AL = subfunction code
DS:DX = pointer to ASCIIZ string
ES:BX = pointer to parameter block

Output
If function was successful:

CF = cleared

If function was unsuccessful:
CF = set
AX = return code

Notes
This is an extremely powerful and complicated function. It is also one that

is extremely difficult and dangerous to use from within a resident application.
A complete explanation of this is beyond the scope of this summary. See the
IBM DOS Manual for full details.

Code Standard Error Code Standard Error
00 Successful 16 Removing current directory
01 Invalid function number 17 Not same device
02 File not found 18 No more files to be found
03 Path not found 19 Disk is write-protected
04 No more handles available 20 Unknown disk
05 Access denied 21 Drive is not ready
06 Invalid handle 22 Unknown command
07 Bad memory control blocks 23 Data error (CRC)
08 Insufficient memory 24 Bad request length
09 Invalid memory block address 25 Seek error
10 Invalid environment 26 Unknown media type
11 Invalid format 27 Sector not found
12 Invalid access code 28 Printer out of paper
13 Invalid data 29 Write fault
14 Not used 30 Read fault
15 Invalid drive specification 31 General failure

387

AH = 04CH (76) 	 Terminate program
INT 021H (33) 	 Universal function

Release control to DOS or a parent program, returning an exit code

Input
AL = return code

Output
None

Notes
This is the approved way for a DOS application to terminate. Advanced

versions of DOS prefer that an application return an exit code.
DOS terminates the program, releases the memory used by that program,

and then performs the following operations:

• 	 Restores the termination-handler vector from OOOAH in the program seg­
ment prefix

• Restores the CONTROL-C handler from OOOEH in the program segment prefix

• 	 Restores the critical-error handler from 0012H in the program segment
prefix

• 	 Flushes all pending file buffers

Finally, control is transferred to the termination-handler address, which then
returns to DOS.

If this function fails, the return code is one of the standard error codes.

388 APPENDIX C. IBM DOS SERVICES

AH 04DH (77) Get return code
INT 021H (33) Universal function

Determine the return code of a terminated child program

Input
None

Output
AX = return code

Notes
Use this function after an EXEC, to determine the return code of a subpro­

gram.
The function is destructive, in that the return code cannot be read repeatedly.

Code Standard Error Code Standard Error
00 Successful 16 Removing current directory
01 Invalid function number 17 Not same device
02 File not found 18 No more files to be found
03 Path not found 19 Disk is write-protected
04 No more handles available 20 Unknown disk
05 Access denied 21 Drive is not ready
06 Invalid handle 22 Unknown command
07 Bad memory control blocks 23 Data error (CRC)
08 Insufficient memory 24 Bad request length
09 Invalid memory block address 25 Seek error
10 Invalid environment 26 Unknown media type
11 Invalid format 27 Sector not found
12 Invalid access code 28 Printer out of paper
13 Invalid data 29 Write fault
14 Not used 30 Read fault
15 Invalid drive specification 31 General failure

389

AH 04EH (78) Search for first match

INT 021H (33) Universal function

Find a file matching a search pattern in the specified directory

Input
ex = attribute to search on
DS:DX = pointer to ASCIIZ string

Output
AX = return code

Notes

File Attribute Meaning
OOH Normal
01H Read-Only
02H Hidden
04H System

This function must be called with a valid disk transfer area.

Code Standard Error Code Standard Error
00 Successful 16 Removing current directory
01 Invalid function number 17 Not same device
02 File not found 18 No more files to be found
03 Path not found 19 Disk is write-protected
04 No more handles available 20 Unknown disk
05 Access denied 21 Drive is not ready
06 Invalid handle 22 Unknown command
07 Bad memory control blocks 23 Data error (CRC)
08 Insufficient memory 24 Bad request length
09 Invalid memory block address 25 Seek error
10 Invalid environment 26 Unknown media type
11 Invalid format 27 Sector not found
12 Invalid access code 28 Printer out of paper
13 Invalid data 29 Write fault
14 Not used 30 Read fault
15 Invalid drive specification 31 General failure

390 APPENDIX C. IBM DOS SERVICES

AH 04FH (79) Search for next match
INT 021H (33) Universal function

Find the next matching filename in the specified directory

Input
DS:DX = information from first FIND call

Output
AX = return code

Notes
This function assumes that a successful call to INT 21H function 4EH (search

for first match).

Code Standard Error Code Standard Error
00 Successful 16 Removing current directory
01 Invalid function number 17 Not same device
02 File not found 18 No more files to be found
03 Path not found 19 Disk is write-protected
04 No more handles available 20 Unknown disk
05 Access denied 21 Drive is not ready
06 Invalid handle 22 Unknown command
07 Bad memory control blocks 23 Data error (CRC)
08 Insufficient memory 24 Bad request length
09 Invalid memory block address 25 Seek error
10 Invalid environment 26 Unknown media type
11 Invalid format 27 Sector not found
12 Invalid access code 28 Printer out of paper
13 Invalid data 29 Write fault
14 Not used 30 Read fault
15 Invalid drive specification 31 General failure

391

050H (80) Not Used
INT 021H (33) Universal function

051H (81) Not Used
INT 021H (33) Universal function

052H (82) Not Used
INT 021H (33) Universal function

053H (83) Not Used
INT 021H (33) Universal function

392 APPENDIX C. IBM DOS SERVICES

AH = 054H (84) Get verify state
INT 021H (33) Universal function

Determine whether the system is performing read-after-write disk verification

Input
None

Output
AL = verify state (0 off; 1 on)

Notes
Verification happens by reading back the data just written, and comparing

that result with the data that was supposed to have been written. Verification
slows down access to the file system, but may increase reliability.

393

055H (85) Not Used

INT 021H (33) Universal function

394 APPENDIX C. IBM DOS SERVICES

AH 056H (86) Rename file
INT 021H (33) Universal function

Change the name of a file, changing its location on the current disk if neces­
sary

Input
DS:DX = pointer to ASCIIZ string (old name)
ES:DI = pointer to ASCIIZ string (new name)

Output
If function was successful:

CF = cleared

If function was unsuccessful:

CF = set
AX = return code

Notes
Wildcard specifiers cannot be used in the old or the new names.

Code Standard Error Code Standard Error
00 Successful 16 Removing current directory
01 Invalid function number 17 Not same device
02 File not found 18 No more files to be found
03 Path not found 19 Disk is write-protected
04 No more handles available 20 Unknown disk
05 Access denied 21 Drive is not ready
06 Invalid handle 22 Unknown command
07 Bad memory control blocks 23 Data error (CRC)
08 Insufficient memory 24 Bad request length
09 Invalid memory block address 25 Seek error
10 Invalid environment 26 Unknown media type
11 Invalid format 27 Sector not found
12 Invalid access code 28 Printer out of paper
13 Invalid data 29 Write fault
14 Not used 30 Read fault
15 Invalid drive specification 31 General failure

395

AH = 057H (87) File date and time
INT 021H (33) Universal function

Read or modify the timestamp on a file

Input
AL = 0 to get; 1 to set
BX = file handle if setting
CX = time
DX = date

Output
AX = return code
CX = time
DX = date

Notes
This function requires that the handle be opened by INT 21H function 3CH

(create file) or INT 21H function 3DH (open file)

Bit pattern in CX Meaning

FEDCBA9876543210

DDDDDxxxxxxxxxxx Hours (0-23)

xxxxxHHHHHHxxxxx Minutes (0-59)

xxxxxxxxxxxSSSSS 2-second increments (0-29)

Bit pattern in DX Meaning

FEDCBA9876543210

YYYYYYYxxxxxxxxx Year (relative to 1980)

xxxxxxxMMMMxxxxx Month (0-12)

xxxxxxxxxxxDDDDD Day (0-31)

396 APPENDIX C. IBM DOS SERVICES

INT 022H (34) Termination handler
Address of the code that handles program exit

Input
None

Output
None

Notes
N ever execute this interrupt directly.
The address stored here is copied to the program segment prefix of the cur­

rently executing program.
This code manages an orderly transition between the code that is currently

running and that has requested termination and DOS or the previously running
program that started the current program by the INT 21H function 4BH (execute
program) function.

397

INT 023H (35) CONTROL-C handler
Address of the code that handles a CONTROL-C interrupt

Input
None

Output
None

Notes
Never execute this interrupt directly.
The address stored here is copied to the program segment prefix of the cur­

rently executing program.
The code this vector points at manages the error condition that occurs when

a CONTROL-C or a CONTROL-BREAK is typed.

398 APPENDIX C. IBM DOS SERVICES

INT 024H (36) Critical error handler
Address of the code that handles hardware errors

Input
None

Output
None

Notes
Never execute this interrupt directly.
The address stored here is copied to the program segment prefix of the cur­

rently executing program.
This code manages the error condition that occurs because of a hardware

error, such as a not-ready disk, or no paper in the printer. Its purpose is to
provide a method for gracefully exiting or returning control to the program
after the error has been corrected.

399

INT 025H (37) Absolute disk read
Reads a logical disk sector into a buffer

Input
AL = drive ID
CX = number of sectors to read
DX = starting logical sector number
DS:BX = segment:offset of disk transfer area

Output
If function was successful:

CF = cleared

If function was unsuccessful:

CF = set
AX = return code

Notes
Drive IDs are numeric, following the drive letters (drive A: has a drive ID of

0, drive B: =1, drive C: =2, and so on).
Be aware that some disk-related functions use drive ID 1 as drive A: with

drive ID 0 indicating the default drive.

Error Code Meaning
01H Bad command
02H Bad address mark
03R Write-protect fault
04H Sector not found
08H DMA failure
10H CRC failure
20H Controller failure
40H Seek failure
80H Attachment failure

400 APPENDIX C. IBM DOS SERVICES

INT 025H (37) Absolute disk write
Write a buffer to a logical disk sector

Input
AL = drive ID
CX = number of sectors to write
DX = starting logical sector number
DS:BX = segment:offset of disk transfer area

Output
If function was successful:

CF = cleared

If function was unsuccessful:

CF = set
AX = error code

Notes
Drive IDs are numeric, following the drive letters (drive A: has a drive ID of

0, drive B: =1, drive C: =2, and so on).
Be aware that some disk-related functions use drive ID 1 as drive A: with

drive ID 0 indicating the default drive.

Error Code
01H
02H
03H
04H
OSH
10H
20H
40H
SOH

Meaning
Bad command
Bad address mark
Write-protect fault
Sector not found
DMA failure
CRC failure
Controller failure
Seek failure
Attachment failure

401

INT 027H (39) Terminate and stay resident
Terminates the current program, returning control to DOS without releasing

some or all of the memory allocated for that program

Input
DX = offset of last byte + 1 of memory to remain
CS = segment of memory to remain

Output
None

Notes
The heart of this book. It causes the current program to exit, without

returning all of the memory used to the system pool.
The maximum amount of memory that can be retained with this call is 64

kilobytes.
This interrupt should be called only from . COM files. The load allocation

of .EXE files must be explicitly managed by the programmer. . COM files are
automatically constructed to load correctly.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I

I
I
I
I
I

I
I

I

I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Appendix D

Useful Books

A book like this one is not written in a vacuum. There are many books about
DOS and IBM PCs on the market. This appendix lists the ones that were
referred to in the creation of this book.

Probably the singularly most useful book was Advanced MS-DOS by Ray
Duncan (Microsoft Press, 1986). This book contains many useful and interesting
pieces of information and was invaluable in decoding some of the more cryptic
aspects of the IBM PC. A must for every assembly-language programmer.

Another extremely useful book is the Programmer's Guide to the IBM PC,
by Peter Norton (Microsoft Press, 1985). This book covers some issues that
Advanced MS-DOS skips. Both books are more readable than the DOS manuals.

Sometimes, however, the DOS manuals are the only source of information.
The IBM-PC Technical Reference Manual is available from IBM dealers. It is
extremely cryptic and difficult to follow, but sometimes it is the only source of
information on some important issues.

Finally, the IBM Disk Operating System Manual and the IBM Macro As­
sembler Manual are sure to be your constant companions during any attempt at
writing assembly-language code. Both are included with their respective prod­
ucts.

403

Index
*, 352

$, 57, 323

7, 333, 352

Absolute disk read, 399

Absolute disk write, 400

Addressing modes, 13-14

Advanced MS-DOS, by Ray Duncan, 403

AF (auxiliary carry flag), 14

AH register, 61

Allocate memory, 383

AL register, 61, 142

Apple II computer, 194

Applications programming, vs. operating sys­

tems programming, 2-3

ASCIIZ strings, 57-58, 113-14, 202

Assembler, 10

Assembly language programming, 9-22

addressing modes, 13-14

basics of, 10-11

data organization within memory, 18-22

8086/8088 microprocessor, 11-12, 22

flags, 14-16

looping, 16-18

registers, 12-13

soft interrupts in, 25-26, 238

Attribute bit matching, 202-4

Auxiliary segment, 13

AX register, 142

Base registers, 14. See also BP register; BX
register

BASIC.ASM test display program, 123-25

BASIC interpreter, 287

.BAT files, 31

Baud rate, 142

corresponding divisor, 143

displaying, 148-50

setting, 169, 174, 175

Blanking display lines, 205, 207, 221-22

Borland International, 236

BP register, 14

as a stack-frame pointer, 103-4

Breakpoint, 297

BROWSE.ASM program to examine file con­

tents, 226-33

Buffered keyboard input, 324

BX register, 14

Byte(s),

high-order and low-order, 20-21

placement of, within a word in memory,

19-20

Byte-addressible architecture, 19

CALL instruction, 50

Carriage return, 57

Cassette tape storage, 193

function codes, 274-78

CF (carry flag), 14, 15, 16

Character input with echo, 313

Character length, displaying communications

mode, 150-52

Character output, 314

CLD instruction, 18

CLI instruction, to disable interrupts, 27, 28,

237

CLOCK.ASM resident desk clock program,

89-94

Clock function codes, 289-91

Close file with FCB, 330

Close file with handle, 373

Code segment, 13

COM!: and COM2: serial ports,

determining state of, 141-43

interrupts, 301, 302

setting, 173-78

SETMODE.ASM program, 178-92

using keystroke expander to examine/reset,

136-41

406

COM files,

converting from .EXE files, 31-32

developing a basic, 41-53

Communications function codes, 269-73

Communications mode, 135-36

data structure consistency, 154-55

determining serial port status, 141-43

displaying port status, 144-54

baud rate, 148-50

character length, 150-52

stop bits and parity, 152-54

SEEMODE.ASM program to show, 155-65

setting, 167-92

designing the code for, 168-73

SETMODE.ASM program for, 178-92

setting parameters, 173-78

using keystroke expander to examine/reset,

136-41

Compatibility and memory resident programs,

236

Compute-bound programs, 194

Console input (no echo), 322

Context switch, 74-75

CONTROL-ALT-DEL interrupt, 112

CONTROL-BREAK, 24, 112, 322, 324, 325,

326

CONTROL-C, 24, 313, 314, 322, 324, 325, 326

CONTROL-C checking, 362

CONTROL-C handler, 397

CONTROL-H, 56, 314

CP/M operating system, 215

C programming language, 57

Create file with FCB, 336

Create file with handle, 371

Create PSP, 349

"Creeping featurism," 4

Critical error handler, 398

es register, 13, 51

and keyboard expander, 62

Currency format, 367

current pointer, 60-62

Cursor function, 245-47

and disk browsing, 221, 223

and interrupt vector display, 121-23

and serial port display, 144, 170, 174

ex register, as a loop counter, 16-17

Data segment, 13

Data storage. See Disk usage

INDEX

Data structure, 198

consistency in, 154-55

dchar routine, 20, 238

Delete file, 376

Delete file with FCB, 333

Design,

nature of good, 4-5

orthogonal, 13

other options in, 235-40

writing debuggable programs, 5-7

Desk clock, 75-81

advancing/determining correct time, 81-84

setting the time, 84-89

Detectability, of program modifications, 39-40

DF (direction flag), 15, 18

DIR command, 198-99

Direct console I/O, 318-20

Directories, 197, 198-204

functions, 369-70, 382

listing, 199-204

making a useful display of, 204-8

dirlist function, 203-4, 205, 222

Disabling interrupts, 27-28, 237

Disassembler programs, 167-68

Diskette parameter table, 307

Disk function codes, 262-68

Disk transfer area (DTA), 204, 223, 225, 226,

340, 358

Disk usage, 193-213. See also File contents,

examining

disk browsing program, 217-21

disk subsystem, 196-204

formula for calculating capacity, 365

LD.ASM directory list program, 208-13

making a directory display, 204-8

safety guidelines, 194-96

Disk write verification, 357

Dispatch tables, 140

Display,

COM1: and COM2: serial port status, 144-54

directory, 204-8

disk browsing, 221

files, 224-26

instruction pointer, 98, 105-9

interrupt vector, 111-33

timer, 78-81

Display string, 323

Divide by zero, 294

Divisor latch access bit (DLAB), 142

407 INDEX

dmenu selector routine, 170

DOS,

disk I/O guidelines, 195-96

file I/O functions, 215

function codes, 309-401

keystroke information returned to, 58

setting communications port with, 167-68

setting interrupt vectors with, 28-30

universal function. See INT 021H (DOS

universal function)

version number, 359

DOS Technical Reference Manual, 168, 268,

309

Double words, storage of, 21-22

DS register, 13, 44, 51

and keyboard expander, 62

dstring routine, 113-14, 226, 238

dtime routine, 81, 83, 85

Duplicate file handle, 380

DX register, 44, 142

8086/8088 Intel microprocessor, 11-12, 22

looping in, 17

data organization within memory in, 18-22

Elements, shape of data, 154-55

Equipment, 260

ES register, 13

.EXE2BIN program, 31,45

Execute program, 386

.EXE files, converting into .COM files, 31-32

Extended characters, 56

character set, 57

FAR pointer, 44

FCB. See File control block (FCB) operations

File attributes, 378

File contents, examining, 215-33

BROWSE.ASM program for, 226-33

designing a disk browsing program, 217-21

displaying files, 224-26

prototyping a selection mechanism for, 221-24

File control block (FCB) operations, 215, 216

functions, 329-37, 344-47, 350-51

File date and time, 395

Filenames, 207

FILES command, 216

ftllstring, 208, 222

Finite-state machine (FSM), 83

Fixed disk, 303

Flags, 14-16

Flat file systems, 197

Flexibility in design, 5

Floppy disk interrupt, 304

Floppy disks, 193

Format disk track, 268

FORTH,140

FPANEL.ASM instruction pointer display pro­

gram, 105-9, 236

Free allocated memory, 384

Front panels, mainframe, 95-96

FSM. See Finite-state machine

Gct country info, 367

Get current directory, 382

Get current drive, 339

Get current drive info, 341

Get current video mode, 259

Get disk capacity, 365

Get disk status, 264

Get DOS version number, 359

Get drive info, 342

Get DTA address, 358

Get file size, 346

Get interrupt vector, 364

Get keyboard input status, 325

Get pointer to INDOS flag, 238

Get printer status, 286

Get return code, 388

Get serial port status, 273

Get/set file attributes, 378

Get shift status, 282

Get system date, 353

Get system time, 86, 355

Get verify state, 392

Graphics table, 308

Handle file operations, 215-16, 225, 371-75,

380-81, 397

Hard disk. See Disk usage

Hard disk interrupt, 303

Hard interrupts, 24-26

Hardware interrupts, 293-308. See also Equip­

ment

High-order byte (MSB), 20-21

Hot key, 279, 280

IBM Disk Operating System Manual, 403

408

IBM Macro Assembler Manual, 403

IBM Macro Assembler MASM, 30

IBM PC, 3

building a front panel for, 95-110

interrupts available on, 25

IBM Technical Reference Manual, 142, 241,

279, 403

IF (interrupt-enable flag), 15, 53

Index registers, 14

INDOS function, 238-39

initialize, 45

Initialize printer, 285

Initialize serial port parameters, 142, 167, 270

IN/OUT opcodes, 141-42

Input/output (I/O),

communications ports, vs. I/O ports, 141-42

illegal vs. correct input, 169

I/O control for devices, 379

raw vs. cooked, 318-21

Instruction pointer (IP), 12-13,95-96

displaying, 96-102, 105-9

INT OOH (Divide by zero), 294

INT OlH (Single step), 295

INT 02H (Non-maskable (NMI)), 296

INT 03H (Breakpoint), 297

INT 04H (Overflow), 298

INT OSH (Print screen), 242

INT OSH (Timer Tick), 299

INT 09H (Keystroke), 300

INT OBH (Serial port 1), 301

INT OCH (Serial port 0), 302

INT OOH (Fixed disk), 303

INT OEH (Floppy disk), 304

INT OFH (Printer), 305

INT OlOH (video), 243-59

function AH=OOH (Set video mode), 244

function AH=01H (Set cursor size), 245

function AH=02H (Set cursor position), 246

function AH=03H (Read cursor position),

247

function AH=04H (Read light-pen position),

248

function AH=05H (Set active display page),

249

function AH=06H (Scroll window up), 250

function AH=07H (Scroll window down), 251

function AH=08H (Read character and at­

tribute), 252

INDEX

function AH=09H (Write character and at­
tribute), 253

function AH=OAH (Write character), 254

function AH=OBH (Set color palette), 255

function AH=OCH (Write pixeij, 256

function AH=ODH (Read pixel), 257

function AH=OEH (Write character in TTY

mode), 208, 258

function AH=OFH (Get current video mode),

259

INT OllH (Equipment), 260

INT Ol2H (Memory size), 261

INT Ol3H (Disk), 262-68

function AH=OOH (Reset disk system), 263

function AH=OIH (Get disk status), 264

function AH=02H (Read disk sectors), 265

function AH=03H (Write disk sectors), 266

function AH=04H (Verify disk sectors), 267

function AH=05H (Format disk track), 268

INT Ol4H (Communications), 269-73

function AH=OOH (Initialize serial port

parameters), 142, 167, 270

function AH=01H (Send one character), 271

function AH=02H (Receive one character),

272

function AH=03H (Get serial port status),

273

INT Ol5H (Cassette), 274-78

function AH=OOH (Turn on cassette motor),

275

function AH=01H (Turn off cassette motor),

276

function AH=02H (Read data block), 277

function AH=03H (Write data blocks), 278

INT Ol6H (Keyboard 1/0),47, 279-82

function AH=OOH (Read next keyboard char­

acter), 51, 53, 59, 140, 280

function AH=01H (Test for character ready),

53, 59, 281

function AH=02H (Get shift status), 53,282

setting the value of, 29

INT Ol7H (Printer), 283-86

function AH=OOH (Send character to printer),

284

function AH=01H (Initialize printer), 285

function AH=02H (Get printer status), 286

INT OlSH (BASIC), 287

INT Ol9H (Reboot), 288

INT OlAH (Clock), 289-91

409 INDEX

function AH=OOH (Read current clock count),

290

function AH=OlH (Set current clock count),

291

INT OlDH (Video init table), 306

INT OlEH (Diskette parameter table), 307

INT OlFH (Graphics table), 308

INT 020H (Terminate program), 310

INT 021H (DOS universal function), 26,

311-95

function AH=OOH (Terminate program), 312

function AH=OlH (Character input with

echo), 313

function AH=02H (Character output), 314

function AH=03H (Serial input), 315

function AH=04H (Serial output), 316

function AH=05H (Printer output), 317

function AH=06H (Direct console I/O), 318-20

DL=OOH-OFEH (Raw console output), 319

DL=OFFH (Raw console input), 320

function AH=07H (Raw input (no echo)),

321

function AH=08H (Console input (no echo)),

322

function AH=09H (Display string), 323

function AH=OAH (Buffered keyboard input),

324

function AH=OBH (Get keyboard input sta­

tus), 325

function AH=OCH (Reset input/execute), 326

function AH=ODH (Reset disk I/O), 327

function AH=OEH (Select current drive), 328

function AH=OFH (Open file with FCB), 329

function AH=OlOH (Close file with FCB),

330

function AH=OllH (Search for first match),

331

function AH=012H (Search for next match),

332

function AH=013H (Delete file with FCB),

333

function AH=014H (Sequential FCB read),

334

function AH=015H (Sequential FCB write),

335

function AH=016H (Create file with FCB) ,

336

function AH=017H (Rename file with FCB),

337

function AH=018H, 338

function AH=019H, (Get current drive), 339

function AH=OlAH (Set disk transfer area),

340

function AH=OlBH (Get current drive info),

341

function AH=OICH (Get drive info), 342

function AH=OlDH/OIEH/OIFH/020H, 343

function AH=021H (Random read with FCB),

344

function AH=022H (Random write with

FCB) , 345

function AH=023H (Get file size), 346

function AH=024H (Set random record field),

347

function AH=025H (Set interrupt vector), 47,

348

function AH=026H (Create PSP), 349

function AH=027H (Random block FCB

read),350

function AH=028H (Random block FCB

write), 351

function AH=029H (Parse filename), 352

function AH=02AH (Get system date), 353

function AH=02BH (Set system date), 354

function AH=02CH (Get system time), 86,

355

function AH=02DH (Set system time), 356

function AH=02EH (Disk write verification),

357

function AH=02FH (Get DTA address), 358

function AH=030H (Get DOS version num­

ber), 359

function AH=031H (Keep process), 360

function AH=032H, 361

function AH=033H (CONTROL-C checking),

362

function AH=034H (Get pointer to INDOS

flag-Unsupported), 238, 363

function AH=035H (Get interrupt vector),

29,51,364

function AH=036H (Get disk capacity), 365

function AH=037H, 366

function AH=038H (Get country info), 367

function AH=039H (Make subdirectory), 368

function AH=03AH (Remove directory), 369

function AH=03BH (Set current working di­

rectory), 370

410

function AH=03CH (Create file with handle),

371

function AH=03DH (Open file with handle),

373

function AH=03EH (Close file with handle),

373

function AH=03FH (Read from file or de­

vice), 374

function AH=040H (Write to file or device),

375

function AH=041H (Delete file), 376

function AH=042H (Position file pointer),

377

function AH=043H (Get/set file attributes),

378

function AH=044H (I/O control for devices),

379

function AH=045H (Duplicate file handle),

380

function AH=046H (Overwrite handle), 381

function AH=047H (Get current directory),

382

function AH=048H (Allocate memory), 383

function AH=049H (Free allocated memory),

384

function AH=04AH (Modify memory alloca­

tion), 385

function AH=04BH (Execute program), 386

function AH=04CH (Terminate program),

387

function AH=04DH (Get return code), 388

function AH=04EH (Search for first match),

202-4, 221, 389

function AH=04FH (Search for next match),

202-4, 221, 390

function AH=050H/051H/052H/053H, 391

function AH=054H (Get verify state), 392

function AH=055H, 393

function AH=056H (Rename file), 394

function AH=057H (File date and time), 395

INT 022H (Termination handler), 396

INT 023H (CONTROL-C handler), 397

INT 024H (Critical error handler), 398

INT 025H (Absolute disk read), 399

INT 025H (Absolute disk write), 400

INT 027H (Terminate and stay resident),

43-44, 51, 401

Intermediate addressing modes, 13

Interrupt handler(s), 23

INDEX

chaining, 49-51

Interrupt vectors, 23-38

disabling interrupts, 27-28, 237

displaying, 111-33

examining, 30-32

hard and soft, on the IBM PC, 24-26

keyboard input mechanism, 26-27

listing, 32-38

replacing/modifying, 27-30

I/O. See Input/output (I/O)

IP. See Instruction pointer (IP)

IRET (Return from interrupt), 48, 50, 96, 281

Isomorphic representations, 147-48

IVEC.ASM program, 114

to list interrupt vector values, 32-38

jmp initialize, 114

removal of, 46

Keep process, 43, 51, 360

Keyboard function codes, 279-82

Keyboard input interceptor program. See Mem­

ory resident program(s), developing a

basic

Keyboard input mechanisms, 26-27

Keyboard 1/0,47
keyread routine, 61

expanding single to multiple keys, 64-65

keystat routine, 60-61

Keystroke expander, 55-71

basic expander, 58-62

design, 56-58

expanding on multiple keys, 62-66

MACRO.ASM single-key expander, 66-68

MACTAB.ASM general expander, 68-71

minimal resident application, 54-55

using to examine/reset communication ports,

136-41

Keystroke interrupt, 25, 300

LD.ASM program for listing a directory, 208-13

Lightweight processes, 73

Line control register (LCR), 142-43

Linkage,

and interrupt vector displays, 111-13

invoking resident applications using, 47-48

linking a single object file, 30-31

Looping, 16-18

411 INDEX

open vs. closed, 76

Low order byte (LSB), 20-21

MACRO.ASM single-key expander program,
66-68

Macro Assembler, 22

MACTAB.ASM general keystroke expander

program, 68-71

Mainframe computers, front panel information

on, 95-96

Make subdirectory, 368

Memory,

buffer, 265, 266

cost of keyboard expansion, 64,66

elimination of overhead, 46

functions, 261, 383-85

organization of data within, 18-22

Memory indirect addressing modes, 13-14

Memory resident program(s),

compatibility of, 236

data storage and (see Disk usage)

developing a basic, 39-53

basic .COM program, 41-42

chaining interrupt handlers, 49-51

detecting the resident application, 51-53

invoking resident applications, 46-48

memory overhead elimination, 46

minimum resident program, 43-44

program design, 40-41

refined resident program, 44-46

disabling interrupts, 237

examining files (see File contents, examin­

ing)

interrupt vector display (see Interrupt vec­

tors, displaying)
keystroke expander (see Keystroke expander)
performing actions directly with (see Com­

munications mode)

reusing subroutines, 238

standards for, 235-36

undocumented functions, 238-39

using the timer interrupt (see Timer)

video modes for, 236-37

Memory size, 261

Microsoft Linker LINK, 30

MODE command, 136, 151

Modify memory allocation, 385

Modular programming, 6, 239-40

MOVSB,17-18

MS-DOS, 26

Multi-tasking, 73

nextfile, 222-23

Non-maskable interrupt (NMI), 28, 296

OF (Overflow flag), 15

Open file with FOB, 329

Open file with handle, 372

Open looping, 76, 86

Operating systems,

types of functions to enhance, 3-4

Operating systems programming,

vs. applications programming, 2-3

good design in, 4-5

writing debuggable programs, 5-7

OverHow flag, 15

Overflow interrupt, 298

Overwrite handle, 381

Paragraph, 12-13

Parity,

displaying, 152-54

setting, 177-78

Parse filename, 352

PATH variable, 195

PC-DOS, 26

PF (parity flag), 14

PgUp/PgDn keys, 224

Polling, 23, 24

POP operations, 103

order of, 196

Popup listings, 205

Position file pointer, 377

Printer function codes, 283-86

Printer hardware interrupt, 305

Printer output function, 317

print screen vector, 114, 242

Print spooler, 238-39

Program counter, displaying and updating, 96

displaying the instruction pointer, 96-102,

105-9

Programmer's Guide to the IBM PO, by Peter

Norton, 403

Programming, 1-7,235-40. See also Assembly

language programming

adding features to the operating systems,

3-4

412

applications vs. systems, 2-3

good design in, 4-5

modular, 6, 239-40

style of, 7

writing debuggable programs, 5-7

Program segment prefix, 42

create, 349

removal of, 46

PrtSc interrupt, 112

linked to interrupt vector display, 123-33

replacing with basic resident program, 112-13

PUSH operation, 22, 50, 102, 103

order of, 196

Random access memory (RAM), 194

Random olock FeB read, 350

Random block FeB write, 351

Random read with FeB, 344

Random write with FeB, 345

Raw console input, 320

Raw console output, 319

Raw input (no echo), 321

Read character, 51, 53, 59, 140

Read character and attribute, 252

Read current clock count, 290

Read cursor position, 247

Read data block, 277

Read disk sectors, 265

Read from file or device, 374

Read interrupt vector, 29, 51

Read keyboard flags, 53

Read keyboard status, 53, 59

Read light-pen position, 248

Read next keyboard character, 280

Read pixel, 257

Reboot, 288

Receive one character, 272

Reentrant code, 74-75

Register indirect addressing mode, 14

Registers, 12-13

Remove directory, 369

Rename file, 394

Rename file with FCB, 337

REP instruction, 18

Reset disk I/O, 327

Reset disk system, 263

Reset input/execute, 326

Resident code, and removal of program seg­

ment prefix, 46

INDEX

RET instruction, 48, 59-60, 281

Return from interrupt, 48, 50, 96

ROM BIOS (Basic Input Output System),

241-91

interrupts, 26

release dates and machine type, 241

screen output calls, 113

set communications port configuration, 167

Root directories, 197-98

Scroll window down, 251

Scroll window up, 250

Search for first match, 202-4, 221, 331, 389

Search for next match, 202-4, 221, 332, 389

SEEMODE.ASM program, to show communi­

cations mode, 155-65

Segments, 12-13

program segment prefix, 42

Select current drive, 328

Send character to printer, 284

Send one character, 271

Sequential FeB read, 334

Sequential FCB write, 335

Serial input, 315

Serial output, 316

Serial port 0, 302

Serial port 1, 301

Sessions, using resident programs in comput­

ing, 216-17

Set active display page, 249

Set color palette, 255

Set current clock count, 291

Set current working directory, 370

Set cursor position, 246

Set cursor size, 245

Set disk transfer area, 340

Set interrupt flag/enable interrupts, 48,

53, 237

Set interrupt vectors, 47, 348

SETMODE.ASM program to set/display serial

ports, 178-92

setport routine, 170-73

Set random record field, 347

Set system date, 354

Set system time, 356

settime routine, 83, 84, 85

Set video mode, 244

SF (sign flag), 14

showfile routine, 224-25

413 INDEX

Sidekick, 236

Single step, 295

SI register, 223

Soft interrupts, 25-26, 238

SP pointer, 103

SS register, 13

Stack(s),

program counter at the top of, 97

pushing words onto, 22

stack-frame pointer, 102-5

using RET to pop bytes off the, 59-60

Stack segment, 13

Standards for memory resident programs,

235-36

start, 42, 45

STD instruction, 18

STI (set interrupt flag/enable interrupts), 48,

53,237,295

Stop bits,

displaying, 152-54

setting, 176

Storage. See Disk usage

Strings,

displaying baud rate with, 148-50

displaying character length with, 150-52

expanding a keystroke into, 57-58

multiple keys, 62-66, 68-71

one key, 58-62, 66-68

Subdirectories, 197-98, 368

Systems programming. See Operating systems

programming

Terminate and stay resident, 43-44, 51, 401

Terminate program, 310, 312, 387

Termination handler, 396

Test for character ready, 281

Text displays, types of, 207-8

TF (trap flag), 14, 295

Timer, 73-94

advancing/determining the time with, 81-84

building a desk clock, 75-81

CLOCK.ASM desk clock program, 89-94

disabling interrupts, 237

to display/update IP, 96-105

reentrant code and, 74-75

setting the, 84-89

timer-int routine, 77, 78,99, 103

Timer Tick, 299

Trap flag (TF), 14, 295

Traps. See Soft interrupts

Tree-structured directories, 197

Turn off cassette motor, 276

Turn on cassette motor, 275

Undocumented functions in memory resident

programs, 238-39

Universal function. See INT 021H (DOS uni­

versal function)

UNIX operating system, 215

User interface design, 168

VECTORS.ASM, interrupt vector display pro­
gram, 125-33

Verify disk sectors, 267

Video function codes, 243-59

Video initialization table interrupt, 306

Video modes, for memory resident programs,

236-37

Volume, 197

Word(s),

placement of bytes within a, 19-20

pushing onto stacks, 22

storage of double, 21-22

Word addressible architecture, 19

Write character, 254

Write character and attribute, 253

Write character in TTY mode, 208, 258

Write data blocks, 278

Write disk sectors, 266

Write pixel, 256

Write to file or device, 375

ZF (zero flag), 14, 15

in keyboard expansion, 59, 61

	Contents
	Chapter 1 -
Looking under the Hood
	Chapter 2 -
Fundamental Arcana
	Chapter 3 -
Interrupt Vectors
	Chapter 4 -
Basic Resident Program
	Chapter 5 -
Keystroke Expander
	Chapter 6 - Using the Timer
	Chapter 7 -
Building a Front Panel
	Chapter 8 -
An Interrupt-Vector Display
	Chapter 9 -
Controlling the Machine
	Chapter 10 -
Setting the Mode
	Chapter 11 -
Using the Disk
	Chapter 12 -
Strolling the Corridors
	Chapter 13 -
The Roads Not Taken
	Appendix A -
IBM ROM BIOS Services
	Appendix B -
Hardware Interrupts
	Appendix C -
IBM DOS Services
	Appendix D -
Useful Books
	Index

