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Chapter 1 

Looking under the Hood 

In a book about programming, it's often a temptation to leap right into the 
code and hope that the reader will soak up the important points as the pro­
grams unfold. That approach does work sometimes, because the best way to 
learn to program is to actually create programs. Reading code written by other 
programmers is a good way to pick up new techniques, in exactly the same way 
that a musician becomes a better composer by reading and playing works by 
other composers. But musicians, or programmers, studying the works of others 
in their field, have already developed a great deal of insight into how problems 
are solved. They know that certain approaches to problems will probably work, 
and others may not. They know why these techniques are successful or unsuc­
cessful. They may not know everything, but they know enough to get started. 

Some people have learned to program, with moderate .success, simply by 
repeating strings of incantations that they have memorized but don't really 
understand. This is a fine approach, as long as you can be sure every detail you 
need is written down somewhere or you can find someone who can answer your 
questions. When you step across the boundary between what is well known and 
what is not completely understood, memorization does not give you the skills 
to look around and find the correct path to your destination. 

Some people have learned to fix automobiles, with moderate success, simply 
by tightening bolts, or replacing hoses, or doing other things they have learned 
without really understanding. You might expect such a person to adjust a 
carburetor, but you would not expect them to replace that carburetor with a 
more efficient one of a different design. That step requires another level of 
knowledge about cars. You need to know why carburetors work, not just how. 

1 



2 CHAPTER 1. LOOKING UNDER THE HOOD 

This book is written for people that want to look under the hood of their 
IBM Personal Computer. There are certain things you can do to soup up your 
PC, to make it do more in the specific areas that will be of use to you. This 
isn't an introductory book, it assumes that you have some basic knowledge of 
assembly language programming. This book is not a cookbook approach to 
programming. There are examples, and you may choose to assemble and run 
them, but the way to get the most out of them is to take the examples apart 
and put them back together again, slightly differently each time, and see what 
happens. 

The code in this book is written with two things in mind: clarity of design 
and readability. The programs are not optimized for speed or size. You may read 
through them and say: "I could have done that with five fewer instructions." 
Please feel free to do so. This code is not necessarily robust. There is no 
guarantee that everything works all the time. That isn't the purpose of this 
software. You should look at everything here suspiciously, saying to yourself: 
"What happens if.. .. ?" Look for reasons why alternate approaches were not 
taken. If, after reading this book, you can figure out how to rewrite some of 
the programs to be faster, cleaner, smaller, or more useful, then the book has 
served its purpose. 

1.1 Getting Inside the Box 

If you look through an introductory book on computer programming, you are 
sure to find a section on the difference between applications programming and 
systems programming. Applications are programs people write to solve a more­
or-less well-defined problem. For example, you might want to sort a file of names 
alphabetically, or calculate the value of 7r, or crack the Data Encryption Stan­
dard. Systems programming is somewhat different in nature and philosophy. 
Your computer has a nucleus of programming which is always present. Those 
programs provide a set of services to enable you to run the applications that 
you choose. They also provide housekeeping functions that permit those appli­
cations to be written fairly easily and run on a variety of machines. In other 
words, the systems programs manage resources and the application programs ex­
ploit those resources. Systems programs are permanent; applications programs 
are transient. Systems programs take care of the resources of the computer; 
applications programs actually use those resources. 

The resource-managerjresource-exploiter view of computer programming is 
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a fairly popular one, and has served well over the years. But it is only a model 
of what the designers of a system had in mind, not an iron-clad law. Certainly 
all computers have systems code, and they may run applications code, but on a 
personal computer, why must there be such a sharp and inconvienient division 
of the two? Why can't you have an application that is permanent, such as a 
pop-up appointment calendar? You may want some kinds of applications to 
be at your fingertips at all times. The conventional model of applications and 
systems software does not permit you to do that on a machine such as the IBM 
PC. 

A personal computer differs from other kinds of computers by one major 
point. It is personal. It is yours, and you are allowed to do what you can with 
it. Buying a personal computer is like buying a tract house. When they are 
built, all the houses in a development are of a set of similar designs. But when 
you buy a house, it becomes your personal house, and you can furnish it as you 
please. After a time you may find that you need to remodel a bit, adding a room 
or removing a wall, so that it meets your needs better than the generic model 
you originally purchased. 

1.2 Solving Problems 

The mere fact that you are capable of remodeling your house is not a good 
reason to do so. You should think carefully before ripping out a wall; likewise, 
you should apply equal care to adding features to your computer operating 
system. A great new whizbang feature that you add in one area could have side 
effects in other places you might not even suspect. It is very much like knocking 
out a wall that you didn't suspect was load-bearing. You may regret it later. 

The kinds of programs you want to add to an operating system are those 
functions that will: 

• 	 Be available no matter what else you may be doing. The changes to your 
system do not come for free. Every feature you add will cost you something 
in performance, or available memory, or disk space. New features should 
be worth the price. 

• 	 Cut down the work you do to solve a common problem. After all, there is no 
point in adding a function that makes you work harder to solve a problem 
that you could solve quicker and easier in a more conventional manner. 
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Adding an operating system routine to calculate 7r might be an interesting 
programming exercise, but it would not make you more productive, nor 
would it be something you would be likely to use frequently. You want 
to find those operations that you repeat, and reimplement them in a way 
that helps your work flow more easily. 

• 	 Allow you to do things that were difficult to do in any other way. Some­
times there is just no way to get the information that you need from a 
conventional application. If you want to know how your telecommunica­
tions program has configured one of your serial ports, you'll have to figure 
it out while the communications program is running. The act of leaving 
the program destroys the information you need. 

1.3 The Nature of Good Design 

Quality is always a difficult thing to pin down and precisely define. Everyone 
wants to write a "good" program, as opposed to a "bad" one, but the actual 
definition of "goodness" in programs is hard to come by. Every time you think 
you've gotten a handle on what makes a program "good," somebody comes up 
with an example that contradicts your theory. Nevertheless, it should be possible 
to come up with some guidelines for building good programs, while minimizing 
the amount of philosophical tail-chasing and without actually turning this chap­
ter into "Zen and the Art of Computer Programming." 

One attribute of a good program is that it does what it is supposed to do. 
A program that does not work correctly is not a good program, no matter how 
beautifully the code is written. In addition to doing what it is supposed to 
do, a good program should do absolutely nothing else. A program that lists the 
contents of directories correctly but writes random blocks of garbage on the disk 
while it does so is less than useless; it is actively harmful. 

One of the best ways to ensure that a program has the fewest possible side 
effects is to clearly define a goal for that program. Make it do one and only 
one thing, and do it perfectly. "Creeping featurism" is a common disease among 
computer programmers. There is a powerful temptation to add just a little more 
power to a program or to handle a special case just a little differently. Sometimes 
"creative" programming is necessary, but it can almost always be avoided by 
rethinking the problem. It might be possible to make your pliers do the work of 
a screwdriver, but there is probably a better solution to the problem. 
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Another aspect of a good tool is flexibility. The mark of a well-designed 
tool is its ability to be useful in a situation the designer hadn't thought of. The 
analogy between system software and tools is an important one. When you make 
an addition to an operating system, you should think of it as getting another 
tool for your toolkit. If you have the correct set of tools, the problems you want 
to solve will become easier for you to solve. That is the whole point of getting 
the tools in the first place. If you don't have enough tools, then you'll have to 
approach your problems in a way appropriate for those tools you do have. In 
other words, if you have only a hammer, then you tend to treat all problems as 
nails. Sometimes this works; sometimes you just break what you are trying to 
fix. 

Having too many tools can be just as bad. One of the nice things about 
using a computer to solve problems is that once you have an adequate solution 
to a particular kind of problem, you can package your solution, and never worry 
about it again. The machine now knows how to do what you want, and all you 
have to do is remember to ask it to do so. Having a wide variety of tools with 
overlapping functions may mean that you solve variations on the same problem 
over and over without recognizing the areas they have in common. This is a 
waste of your time and your computer's power. 

1.4 Writing Debuggable Programs 

An application program enjoys the benevolent protection of an operating system 
during its entire life. When the application breaks or encounters a situation that 
the applications programmer didn't think of, the system code is usually there 
to pick up the pieces. 

The life of a system program is more dangerous. Since it is the system code 
that catches mistakes or prevents them, a system bug can be far more devastat­
ing than one in an application. In addition, even if the code works correctly, it 
may be very difficult for the programmer to find out what is happening, since the 
act of printing a debugging message may depend on the code being debugged. 
For instance, if you are replacing the system code that gets a character from the 
keyboard and it breaks, don't expect to type Control-C to make things work 
again. You have broken the entire system and you'll have to reboot. If you are 
changing the code that does I/O to the disk and it breaks, you may not be able 
to reboot, because you've written over the bit of code on the disk that performs 
that function. 
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• 	 Don't get tricky. This is also known as "Don't reinvent the wheel." Once 
you figure out a way to do something correctly, keep doing it that way. 
Consistency is a good way to save time and energy. It may not be as 
interesting to write a loop the same way each time, but it will certainly be 
more likely to work. 

• 	 Don't guess, measure. Many people make the mistake of optimizing code 
for speed, or size, before they know whether or not it really works. If you 
do something once, quite often it doesn't matter how fast it runs. If you 
are sorting a list of twenty things, a simple sort algorithm will probably 
work just about as fast as a fancy one. You are much more likely to make 
the simple one work quickly. The time you save in the cases where it 
doesn't matter will more than make up for the few cases in which you 
must go back and optimize. 

• 	 Don't get tricky. You may understand a piece of code perfectly now, but 
will you be able to read it in two months, when you have to fix or extend it? 
Doing things in the most obvious fashion possible will often be a blessing 
months later or when you are trying to debug it. • 

• 	 How do you get to Carnegie Hall? Practice. Rehearsal is a much bigger 
part of a musician's life than the performances. Don't write programs 
where everything needs to work at once. If you can debug a piece of code 
as an application before you put it in your operating system, then do so. 
If you are writing a pop-up text editor, for example, you might try writing 
it as a text editor application first and worry about the pop-up part later. 

• 	 Don't get tricky. 

• 	 Write in modules. Approach the problem as if you were a diamond cutter. 
If you hit the problem in just the right way, you'll find that it splits into 
several clear-cut modules, and maybe just a bit of leftover dust. Hit it 
wrong and you'll end up with a lot of dust and loose ends that you'd 
probably rather not deal with. Don't duplicate your efforts if you can 
possibly avoid it. 

• 	 Don't get tricky. Sometimes you can "rough-code" an application as a 
prototype by simplifying portions of your problem. You can simulate the 
input or the output or the algorithm. Get things to work with known 
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parameters, then write the code that lets you specify different parameters. 
There is no need to write the program all at once. By writing it in chunks 
and making each chunk work separately, you'll get to a working program 
much faster. Besides saving time by prototyping, you are quite likely to 
find things that you didn't think of in the first place . 

• 	 Expect to do it twice. It's quite likely that you'll need to write a com­
plicated program at least two times before you get it entirely correct. 
By making a completed, working prototype and then redesigning it from 
scratch for the final version, you have a much better chance of really un­
derstanding all the issues involved. Your second design should be much 
cleaner and much easier to write. If you don't go through this second 
phase, you may find yourself stuck with the shortsighted mistakes of the 
first. 

• 	 Dare to be lazy. One of the most useful characteristics that a programmer 
can develop is "creative laziness," the ability to spot repetitive tasks, and 
come up with a way of automating them. Each task you can encapsulate 
within a shell of programming leaves you with more time to move on 
to other more creative or profitable pursuits. The danger here is one of 
spending a hundred hours automating a task that cost you only one hour 
per month. Jobs like that may be fun, but they are not really worth the 
time. Repetitive things you do often are fair game, however. 

Each person develops a style of solving problems when creating computer 
programs. Like a style of writing or a style of painting, your programming style 
will evolve. But facets of it will remain the same. Many veteran programmers 
have had the odd experience of picking up an old program listing and recognizing 
their own style without remembering that they had written the code. The 
programs you write are fingerprinted with your thoughts and moods at the time 
they are written. A good style is probably the most valuable tool a programmer 
can develop. 

A program can be a kind of "living poetry" if you take the time and trouble 
to write it correctly. A good programmer writes beautiful code, and a great 
programmer writes beautiful code quickly. Both write code that works. 
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Chapter 2 

Fundamental Arcana 

If you have never written any program for your IBM PC, and you are sensible 
enough to avoid ever doing so, this is not the book for you. 

If you have written some regular programs in Pascal, or C, or FORTRAN, 
but have never heard of assembly language and are curious, give it a try. If you 
get into trouble, don't get discouraged. Thrn to Appendix D, which lists the 
books that were invaluable in writing this one. Try looking for answers in some 
of the books mentioned there. Answers may be tough to dig up but the search 
is usually worthwhile. 

If you have written any sort of assembly-language program, even one that 
just prints "Hello, world", dig in and have fun. You have the basics already, and 
that ought to be enough. 

This book is not Introduct£on to Assembly Language Programming on the 
IBM Pc. That book has been written by several other people, under several 
other titles. Some of those titles are listed in Appendix D. You'll need an 
assembler and an assembly-language reference manual to try any of the code in 
this book. You'll also need good typing skills or a few bucks to buy the disk that 
goes with this book. And of course, you'll need an IBM PC, or its equivalent. 

This book can be read in one of two ways. You can sit down, read through 
the chapters, and when you are done, go off and play with the programs. Or 
you can read and play at the same time. This book is as much about designing 
and creating good programs as it is about writing memory resident programs. 
You'll probably have a lot more fun if you can sit in front of the keyboard, 
drink too much coffee, swear at the typos (yours and mine), and wonder why 
your machine crashed this time. That is how the book was written, and I had a 

9 




10 CHAPTER 2. FUNDAMENTAL ARCANA 

wonderful time. 

2.1 The Basics 

Even though this isn't a primer for assembly language programming, it can't hurt 
to spend a little time on the basic concepts. Any computer has a fundamental 
set of instructions that it understands. These basic operations are usually quite 
simple, being along the lines of MOVE THE NUMBER 6 INTO THE AX REGISTER or 
IF THE ZERO FLAG IS SET. CONTINUE EXECUTING AT ADDRESS 1234. Obvi­
ously, 
the machine does not understand these sentences as fundamental operations. 
Instead, each kind of operation is assigned a unique pattern of bits. The cir­
cuitry of the computer was designed to read successive bit patterns from memory, 
and take some action based on these patterns. The actions themselves are quite 
simple, but if you put enough of them together, you get a program that actually 
does something. 

By learning to think like the computer, you could actually learn to write 
these bit patterns directly into the computer's memory and thus create programs 
that way. It's not impossible. Tens of thousands of programmers have done it. 
It's not even difficult, when compared to climbing mountains or understanding 
quantum electrodynamics. But it does take a long time to learn, and it takes a 
long time to write programs that way. 

Long ago, some poor, overworked programmer who actually had learned 
to write in bits decided to write a program so that others wouldn't have to 
master that arcane skill. This program was called an assembler, and it took 
such English-like commands as MOV AX. 6 and automatically turned them into 
the correct set of bits. Early assemblers were often riddled with bugs and painful 
to use. But even so, they were a great deal better than writing programs the 
old way. And even a lousy assembler can be used to write a better one. Good 
assemblers can be used to write even higher-level languages. Or assemblers for 
new computers. 

Why write in assembly at all, then? Wouldn't higher-level languages be 
better? Well, yes and no. For many kinds of programs, assembly language is 
a waste of time. But for others, it is essential. Why? The answer lies in the 
trade-offs. Trade-offs are a big part of this book, and for good reason. They 
are avery big part of the creation of any program. Programs don't just appear, 
they are designed. Any program is the end product of hundreds, even thousands, 
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of design decisions. A few of these are big, most are very small. Every time 
a designer makes a choice, there is a trade-off, a compromise. Sometimes, the 
choice is obvious, and the trade is a good one. But sometimes it is a matter of 
choosing the lesser of two evils, or the greater of two goods. Or more than two. 
Sometimes many more than two. 

When a programming language is being designed, the choices made will affect 
the kind of programming that can be done in that language. For example, a 
designer who chooses to create a portable language (one that can run on a large 
number of very different computers) may omit some features, such as direct 
access to physical memory or linkages to interrupt handlers, that some special 
programs (such as the ones in this book) might require. The designer may decide 
that portability is more important than access to those features. This decision 
means that some kinds of programs, such as memory resident programs, will not 
be written in that language. 

One way of thinking about computer programming languages is in layers. 
There are many different types of languages, some very low level, some very 
high. Many times, you'll find that one kind of language (a C compiler, for 
example), turns its input into a program in another language (assembler, in this 
case). The layers of languages draw upon each other for support and power. 
As you ascend through each layer, writing some kinds of programs becomes 
easier, others more difficult. The most flexible is the arcane language of the 
bits. Slightly less flexible is a well-written assembler, and so on up the scale. 
If you want to write a program and are having a hard time figuring out how 
to trick the language you are using into letting you do what must be done, one 
approach is to get closer to the raw bits by using a lower-level language. 

Assembly language is the best choice for the kind of programming we will 
be doing. It is flexible enough to allow us to use the machine to our advantage, 
readable enough so that we need not make a career out of learning bit patterns, 
and fast enough to permit us to get the job done without wasting too much 
time. Sophisticated assembly programs can be m:;1de small enough to be left 
resident without eating a major portion of our limited memory space. 

2.2 The 8086/8088 

The IBM PC is built around a microprocessor, the Intel 8088. This device is a 
smaller version of the Intel 8086. From a programming point of view, the two 
are virtually identical. The difference lies in their internal architecture. The 
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8086 requires a 16-bit-wide channel to the rest of the world. Memory access is 
done 16 bits at a time. Older 8-bit microprocessors required half the number of 
paths, half the number of chips, and so on. They also had much less than half 
the computing power. IBM chose the INTEL 8088 as a compromise, halfway 
between 8-bit and 16-bit machines. The 8088 could be programmed as an 8086, 
but it spoke to the world through an 8-bit-wide path. This compromise traded 
speed of execution for hardware cost; 8088-based systems could be built with 
fewer parts, but they took longer to run programs. IBM deemed this a wise 
choice, and the PC was born. As hardware costs dropped, other systems with 
real 8086s began to appear. Processor speed increases, but the software remains 
the same. 

2.2.1 Registers 

The 8086/8088 architecture is fairly simple. The machine has a fair number of 
general purpose 16-bit registers, in particular AX, BX, CX, DX, BP, SI, and DI. Of 
these, AX,BX, CX, and DX can be used not only as word registers, but can also be 
split into high and low byte registers: AH, AL, BH, BL, CH, CL, DH, DL. Registers BP, 
SI, and DI are general purpose, but cannot be split into bytes. SP is available 
for general use, but typically is used only as the stack pointer. There are also 
four very important special registers called segment registers: CS, DS, SS, and 
ES. And of course, there is an extremely special-purpose register called the IP or 
instruction pointer. This register controls which instructions are being executed 
by the microprocessor. 

The 8086 was designed to be somewhat compatible with the Intel 8080 class 
of 8-bit microprocessors. These machines had a maximum address space of 64 
kilobytes, which is all two bytes, or 16 bits, can represent. Rather than have an 
address size of 16 bits (a single word), which was what the 8-bit machines had, 
or 32 bits (two single words), as some more expensive machines use, Intel chose 
a different approach. Programs would run within a segment. Each segment 
would be a maximum of 64 kilobytes, but there could be more than one segment 
in memory. For example, the operating system could run in one segment, user 
programs in another. Within these segments, it would be possible for programs 
to treat the machine as though it had only 64 kilobytes of address space. This 
would make the transport of programs from 8-bit machines easier. Furthermore, 
segments might overlap, so that two different programs could share the same 
space in memory. Intel chose the paragraph as a fundamental unit of segment 
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space. Changing a segment pointer from 0700H to 0701H would advance that 
segment by 16 bytes (one paragraph) in memory. In effect, the segment is a 
16-bit address shifted 4 bits to the left (multiplied by 16, in other words) in a 20 
bit field. Thus, the 8086 can directly address only 20 bits, or one megabyte of 
memory. Of this megabyte, the top 320 kilobytes is reserved by IBM for things 
like system ROM, cartridge ROM, and display memory. This makes the actual 
amount of memory for programs 640 kilobytes. 

There are four segments that the machine, and anyone writing programs for 
it, has to worry about. First is the code segment, contained in CS. This segment 
is the one in which the code is actually executing. Second is the data segment, 
in DS. When a program tries to read something from memory as data and a 
segment is not explicitly specified, the processor will look in the data segment. 
Third is the stack segment, in SS. PUSH and POP stack operations will be done 
with this segment. Last is the auxiliary segment, in ES. This is a sort of general 
purpose segment register, for use at the programmer's discretion. 

Many computers are designed so that all registers can be read and written in 
exactly the same ways. Computer architects call these orthogonal designs. The 
8086, however, was not designed this way. Access to some registers is restricted. 
For example, one can move immediate values, such as numbers, to any of the 
general-purpose registers but not to the segment registers. This means that 
setting BX to 6 can be done in a single instruction: 

mov bX,6 

Setting DS to 6 requires two instructions, since segment registers can be set 
only from general purpose registers, not constants or other segment registers: 

mov bX,6 

mov dS,bx 


You'll see code similar to this in the examples in this book. 

2.2.2 Addressing Modes 

Addressing modes are the keys to many sophisticated operations on a computer. 
The 8086 provides several: immediate, memory indirect, and register indirect. 

Immediate. These are values that are represented directly, as numbers. 
The 6 used in the previous example is an immediately addressed value. 

Memory Indirect. These are values that are contained at some address in 
the data segment. For example: 
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mov bX,foo 

foo dw 6 

This would move the value 6, or whatever value the variable foo might be 
set to, into the BX. 

Register Indirect. There are two kinds of registers available for this: Base 
and Index registers. Base registers are BX and BP. Index registers are SI and DI. 
In this mode, the register contains the address in the data segment in which the 
desired information is stored. For example: 

mov ax,OFOOOH 

mov eS,ax 

mov si,OFFFEH 

mov dl,byte ptr es: [si] 


This code will read the machine ID at location FOOO: FFFE by using the 
indirect mode through register SI. A register indirect reference can have at 
most one Index and one Base register. This provides an easy means for indexing 
in arrays, or data structures. 

Addressing modes can be used in quite a few different combinations, many 
more than shown here. For the most part, these are the modes used in the 
programs in this book. See the IBM documentation for more information. 

2.2.3 Flags 

The 8086 has nine single-bit flags that indicate various conditions in the machine 
state. 

CF (carry flag). Set to 1 if the arithmetic operation exceeds the correct 
length. 

PF (parity flag). Set to 1 for even parity, 0 for odd parity. 
AF (auxiliary carry flag). Same as the CF, except that it applies to the low­

order 4 bits of the result. This is typically for 20-bit address computation. 
ZF (zero flag). Set to 1 if the result of an operation is zero, 0 if the result is 

not zero. 
SF (sign flag). Set to 1 if the high-order bit of the result of an operation is 

aI, zero otherwise. 
TF (trap flag). Puts the system into single-step mode. In this mode, the 

completion of each instruction generates a special trap. 
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IF (interrupt-enable flag). Set to 1 to enable recognition of external inter­
rupts, zero to disable. 

DF (direction flag). Used with looping instructions such as MOVS, MOVSB, 
MOVSW, CMPS, CMPSB, and CMPSW. If set to 1, these instructions will loop through 
incremented addresses. If set to 0, these instructions will loop through decre­
mented addresses. 

OF. (overflow flag). Set to 1 if a signed operation exceeds the correct word 
length, 0 otherwise. 

For the most part, ZF and CF are the two flags used by the code in this book. 
(See the IBM documentation fOf a discussion of the others flags.) 

All of the conditional branches used in this book are based on the ZF and CF 
flags. The ZF-based branches are all tests for a condition of zero. This is all of 
the typical logical operations done in a program, such as a test for equality or 
a counter running out. The 8086 has several types of branches that check the 
zero flag. Whenever possible the branches used here reflect the logical intent of 
the instruction rather than the actual condition. For example: 

cmp ax,6 
jz foo 

means exactly the same thing as: 

cmp aX,6 
je foo 

The last example conveys more of the intent of the program, however. It lets 
you know that control should be transferred when the AX register is equal to 6. 

Another convention closely related to this one is the habitual use of compares, 
even when not strictly necessary. Once again, this is for clarity and for generality. 
The code 

dec ax 
cmp ax.O 
je foo 

could be replaced by the more compact 

dec ax 
jz foo 
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In some cases the number that we are comparing against might be any num­
ber, not just zero. The first case, in which we explicitly compare for a number, 
conveys that sense of generality. The second example does not. But that is a mi­
nor issue compared to readability. The first example is obviously decrementing 
a counter of some kind and branching when that counter has reached a certain 
value. The second example is a little more vague, so the code in this book tends 
to avoid using branches of this kind. There is nothing wrong with them; if you 
wish to rewrite portions of this code to take advantage of the saving in size, feel 
free to do so. 

The other type of branch used here is based on the carry flag. This is very 
rare in the code in this book. Some DOS routines return a set or cleared CF as 
a signal of success or failure. A JC (Jump if Carry Set) or a JNC (Jump if Carry 
Not Set) does precisely what you might expect in that case. 

2.2.4 Jumping Through Loops 

Computers never get bored. That is one of the features that makes them so 
useful. It is easy to program a machine to perform the same task over and 
over again. In fact, it is vital that they do so. Looping is a basic control-flow 
mechanism for all programming languages. The faster a particular computer 
architecture can perform a loop, the better it is thought to be. Since looping is 
so useful, many machines, including the 8086, have instructions that specialize 
in loops. 

All loop instructions use the CX register as a counter. A loop will continue 
until the CX counter has reached a particular value. Thus, the code: 

mov ax,D 
mov cx,4 

next: 
add aX,6 
loop next 

done: 

is a simple way of multiplying two numbers by repeated addition. In this case, 
the LOOP decrements CX each time and then checks the value of CX. If CX becomes 
zero, control will fall through to done. If not, then control passes back to next. 

The same thing could be accomplished with this code: 

mov ax,D 
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mov eX,4 
next: 

add ax,6 
dee ex 
emp ex,O 
jne next 

done: 

There is a palette of LOOP instructions to choose from, ones that branch when 
the counter reaches zero, others that branch when the counter is not zero, and so 
on. These instructions allow you to repeat an arbitrary sequence of instructions, 
up to the local branching limit, over and over again. The local branching limit 
is the maximum number of bytes away from the current instruction that a con­
ditional branch can transfer to. That limit is -127 to +128 bytes, which means 
that you can branch as much as 127 bytes back into code before the current 
instruction and up to 128 bytes forward into code after the current instruction. 

The 8086 has a powerful looping instruction that permits you to repeat a 
single instruction over and over again. One of the most common cases of looping 
occurs while handling strings of bytes. For example, suppose that you wanted 
to move the contents of one 60-byte array to another. With the normal LOOP 
instruction you could do it using the code: 

mov si,offset souree 

mov di,offset dest 

mov eX,60 


mvloop: 
mov ds:byte ptr [di] ,ds: [si] 
ine di 
ine si 
loop mvloop 

This is a fairly tight loop, but if this piece of code were critical, you would 
want to make it tighter yet. The 8088 provides several string move instructions 
that duplicate some of the pieces of this code. One way you could optimize the 
loop would be to use the special instruction MOVSB, which reduces the code to: 

mov si,offset souree 

mov di,offset dest 

mov ex,60 

eld 


mvloop: 
movsb 
loop mvloop 
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The CLD instruction clears the direction flag, DF. The string instructions 
change the values of the source and destination pointers in SI and Dr. The 
direction flag determines how those pointers change. If the flag is cleared, via 
the CLD instruction, the pointers will be incremented, and successive addresses 
will move forward (low to high) through memory. Thus, CLD is the same as 
saying SET DIRECTION TO FORWARD. If the direction flag is set, via the STD, 
the pointers will be decremented and successive addresses will move backward 
(high to low) in memory. Thus, STD is the same as saying SET DIRECTION TO 
REVERSE. 

On the 8086/8088, this tiny loop can be reduced even further. The 8086 
provides a special repetition instruction that will reduce this loop to a single 
instruction. There are only certain circumstances in which the REP instruction 
can be used, and a special convention has been adopted for typing repeated 
instructions. Using that convention, the move loop can be tighted to: 

mov si,offset source 
mov di,offset dest 
mov eX,60 
eld 

rep movsb 

2.2.5 Organization of Data within Memory 

The 8088 is a byte-oriented machine with delusions of grandeur. The entire 
machine is based on an 8-bit byte-oriented memory structure, but the processor 
itself manipulates 16-bit words. Finding the right byte in memory can sometimes 
be a little tricky. 

The memory of any machine is a vast array of cells. On many machines, 
those cells are a single byte wide. On others, they are 16 bits, or 32 bits. Some 
larger machines have cell widths that are not based on powers of two, such as 
a 36-bit word. But even though the size of the words may be different, these 
machines can all be classed into some general categories. If your machine can 
pick out a single byte from memory, without being forced to resort to loading an 
entire word and trimming away the extraneous bytes (assuming that the word 
size is different from the byte size, as it is on the 8088), that machine has a 
byte-addressible architecture. If you must fetch an entire word just to examine 
a single byte, your machine is said to have a word-addressible architecture. 

The 8086/8088 is a byte-addressible machine. It is possible to directly ad­
dress an individual byte in memory. For example, we could fetch the contents 
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of a given byte in this fashion: 

mov si,1234H 

mov al, [si] 


This would copy the contents of the byte at the location in the S1 register 
(in this case 1234H) into the AL register. If we wanted to set that byte to 6, we 
might suspect that this code would do the trick: 

mov si,1234H 

mov [si] ,6 


That code will generate an assembler error, because there is no way for the 
assembler to deduce if you want to set the byte at 1234H to the byte OSH, or 
the word at 1234H to the word OOOSH. The size of the source and destination 
must be the same. In the previous example, the assembler knew that AL was 
a byte register. Thus, the pointer in S1 must have been a pointer to a byte. 
In this case, because there is insufficient information to determine the size, the 
assembler will complain. The correct code would be 

mov si ,1234H 

mov byte ptr [si] ,6 


If we had said WORD PTR instead, we would have set a 16-bit quantity rather 
than an 8-bit quantity. 

Suppose we had chosen to set the word at 1234H to be OOOSH. Obviously, one 
byte in memory would be set to OOH and another would be set to OSH. But which 
ones? You could dig through manuals to find out, or you might skip ahead to 
see the answer, but if you do then you will have just simply read the answer. 
The best way to find out is to check for yourself. After all, the manuals might 
be wrong, eh? And if they are not wrong here, they might be wrong somewhere 
else. 

A simple program to determine the placement of bytes within a word in 
memory would look like this: 

cseg 	 segment para public 'CODE' 
org 100H 
assume cs:cseg,ds:cseg 

start: 
mov bx, cs 
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mov 	 dS,bx 

mov ah, 'H' 

mov aI, 'L' 

mov test,ax 

mov si,offset test 

mov aI, [si] First byte of test 

call dchar 

mov aI, [si+l] Second byte of test 

call dchar 

ret 


Display the character contained in AL 
dchar proc near 

push 	 ax 
push 	 bx 
mov 	 bh,l 
mov 	 ah,OEH 
int 	 10H 
pop 	 bx 
pop 	 ax 
ret 

dchar endp 

test 	 dw 

cseg 	 ends 
end start 

DCHAR is a utility routine that prints a single character on the terminal. (We 
will be seeing much more of that routine later; for now, simply treat it as a black 
box that does the right thing.) We build a word in AX that has as its high-order 
(bits 15-8) byte the ASCII character "H", and as its low-order (bits 7-0) byte 
the ASCII character "L". Then we store this in the data word TEST. Printing 
the individual bytes will determine their order. 

The high-order byte is sometimes called the most significant byte, or MSB. 
The low-order byte is correspondingly called the least significant byte or LSB 
(You may also see the individual bits referred to with the terms most signifi­
cant or least significant bit, terms which unfortunately have exactly the same 
acronyms.) Significance, in these cases, refers to numerical significance. The 
most significant bit of a word is the bit that adds the most numerically to its 
value. If you change the low-order bit, the magnitude of a word hardly changes 
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at all. Changing the high-order bit results in the greatest possible magnitude 
change for a single-bit fluctuation. On the 8086/8088, the most significant bit 
is bit 15, or 2 to the fifteenth power. The least significant bit is bit 0, or 2 to 
the zeroth power. Bit 15 is also known as the leftmost bit, bit 0 the rightmost. 
Shifting a value to the right (without rotation) decreases the value by a factor 
of two. Shifting to the left will increase a value by a factor of two. 

Some machines follow the exact opposite in philosophy. Bit 0 on the 8086 is 
the least significant bit. This makes the 8086 what is known as a Little-Endian 
machine. On other machines, bit 0 is the most significant bit. They are known 
as Big-Endian machines. These odd terms come from Gulliver's Travels, by 
Jonathan Swift, in which two kingdoms fight a war over which end of an egg 
should be cracked first, the big end or the little end. 

Running this test program may surprise some people. Your intuition may tell 
you that you should see the string "HL". But what you get is "LH". This means 
that the 8086 stores the low-order byte first. We could recode the declaration 
of TEST as 

test 	 db ? Low byte of register 
db ? High byte of register 

This same pattern repeats itself in the storage of double words. A double 
word would be a 32-bit quantity. If we were to have in memory a double­
word variable, containing perhaps the full address of some subroutine, we would 
declare it like this: 

subaddr 	dd ; A subroutine address 

An equivalent representation might be 

subaddr 	dw Low word of address 
dw Hig~ word of address 

Finally, in individual bytes, we would see this organized as 

subaddr db ? Low byte of low word of address 
db ? High byte of low word of address 
db ? Low byte of high word of address 
db ? High byte of high word of address 
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Pushing words onto the stack will cause them to follow this same convention. 
The code 

mov ah, 'H' 

mov aI, 'L' 

push ax 


will push the word in AX onto the stack. The PUSH operation means that the 
stack pointer, in SP, is decremented by 2, and the specified register is then 
stored at that location. Stacks grow toward low memory. You might suspect 
that the byte ordering would be reversed, but it is not. Examining the stack 
after execution of the previous example, you would find that the stack pointer 
SP pointed at the low byte (containing "L") and that SP+1 pointed at the high 
byte (containing "H"). 

2.3 Details of the 8086 Architecture 

A good painter knows the feel of paint, the smell and the taste of it. By knowing 
every detail of the materials with which they work, artists can create within the 
bounds set by those materials. Sometimes, a great artist can transcend those 
boundaries and create works that merely good artists thought impossible. 

We have seen the basic details of the canvas on which we will paint and the 
colors we have at our disposal. There is material for an entire book in the subtle 
variations of these details. Some information can be found in the Microsoft 
Macro Assembler manual. Other details can be found in the books mentioned 
in Appendix D. 
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Interrupt Vectors 

In many ways, the idea of a memory resident program is tightly coupled with 
the way the IBM PC handles interrupts. Hard and soft interrupts are the main 
mechanism of communication and control between an application program and 
the operating system. Thus, understanding how interrupts work on the IBM 
PC is a vital part of learning to write memory resident applications. 

Interrupts are one of the fundamental ideas that make modern computers 
work. As the name implies, interrupts are short-term distractions to a computer 
that is doing other work. The processor suspends the work in progress in such a 
way that the job can be resumed later. Control is then transferred to a special 
program called an interrupt handler. The handler does something useful such 
as adding a character to the keyboard input queue or managing a disk I/O 
operation. When the handler has finished its task, it returns control to the 
interrupted program. The interrupted program is restarted in such a way that 
it may not even be aware of the interruption.. When you run any application on 
the IBM PC, it is interrupted dozens of times per second, yet it seems to you as 
if the application has sole access to the processor. 

Without interrupts, the processor in a computer system would have to ex­
amine the status of each and every device on the system over and over again. 
This technique is called polling. Writing the system code that would permit con­
tinuous polling and still allow user programs to run would be quite a bit more 
difficult than the code used on the interrupt-driven IBM PC. In addition to re­
ducing the complexity of the code, interrupts manage the flow of information to 
and from the equipment connected to the IBM PC. In a polled system, the design 
of those peripheral components would be considerably complicated. Additional 
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circuitry would be required to ensure that information is not lost between the 
time the processor last polled a device and the next time it is scheduled to do 
so. Because an interrupt-driven system can rely upon the central processor for 
a great deal of data management, it can be simpler in design. 

It is not impossible to build sophisticated computer systems without inter­
rupts, just more difficult and more costly. Many important systems have been 
designed around polling systems, including some military systems and some used 
in the space program. In the case of a desktop personal computer, however, 
there are overwhelming reasons for choosing an interrupt-driven architecture. 
Interrupt-based systems can be designed and built cheaper than polled systems. 
Each component can depend on the central processor to manage the flow of data 
rather than guarantee that data internally. Interrupt-driven systems are easier 
to program than polled systems, at both the systems and the applications level. 
Interrupt-driven systems are also more flexible than polled systems, especially 
for interactive applieations. 

If some unforeseen event hangs up a program running on a polled system 
(with an accidental infinite loop, for example), there may be little choice but 
to reboot, since the code that will reset the state of the system can never run. 
On an interrupt-based system, you may be able to force the termination of that 
program, perhaps by typing CONTROL-C, and recover without restarting from 
seratch. This is possible is because the CONTROL-C keystroke was processed by 
means of an interrupt handler, which suspended the execution of the infinite 
loop long enough to kill the program. 

(A note about checking for CONTROL-C on an IBM PC. The IBM PC checks 
for CONTROL-C or CONTROL-BREAK in a somewhat unusual fashion. For reasons 
of its own, IBM originally wrote DOS to eheck for CONTROL-C only during I/O 
operations. Programs that did not perform I/O operations could not be in­
terrupted. Later versions of DOS fixed this problem to a certain degree but 
for reasons of compatibility with older versions of DOS, some of the interrupt 
checking is optional. Consult the manual for your version of DOS to determine 
how far you can extend CONTROL-C checking.) 

3.1 Interrupts Available on the IBM PC 

The IBM PC has two basic kinds of interrupts. Hard interrupts are those gener­
ated by the devices physically connected to the microprocessor in the IBM PC, 
such as the keyboard, disk drives, clock, and so on. These devices are connected 
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by means of an interrupt controller that arranges these interrupts in order of 
their importance and allows the IBM PC to manage these hardware signals ef­
fectively. Soft interrupts, sometimes called traps, are generated by programs 
running on the IBM PC. Although they are handled in exactly the same way 
as a hard interrupt, they are really requests for some operating system service 
rather than an indication of some condition in the hardware. 

These are the interrupts available on the IBM PC, by interrupt number and 
vector address. 

Number Address Function Number Address Function 

OH 0OO-OO3H Divide by Zero l6H 05S-06BH Keyboard I/O Call 

lH 004-007H Single Step l7H 05C-06FH Printer I/O Call 

2H OOS-OOBH Non-Maskable lSH 060-063H ROM Basic Entry Code 

3H OOC-OOFH Breakpoint 19H 064-067H Bootstrap Loader 

4H 010-013H Overflow lAH 06S-06BH Time of Day Call 

6H 014-0l7H Print Screen lBH 06C-06FH Get Control on BREAK 

6H 01S-01BH Reserved lCH 070-073H Get Control on Timer 

7H 01C-01FH Reserved lDH 074-077H Video Initialization Table 

SH 020-023H Timer (18.2 per second) lEH 07S-07BH Diskette Parameter Table 

9H 024-027H Keystroke lFH 07C-07FH Graphics Char Table 

AH 02S-02BH Reserved 20H OSO-OS3H DOS Program Terminate 

BH 02C-02FH RS-232 Port 1 21H OS4-0S7H DOS Universal Function 

CH 030-033H RS-232 Port 0 22H OSS-OSBH DOS Terminate Address 

DH 034-037H Hard Disk 23H OSC-OSFH DOS Control-Break 

EH 03S-03BH Diskette 24H 090-093H DOS Fatal Error Vector 

FH 03C-03FH Reserved 26H 094-097H DOS Absolute Disk Read 

10H 040-043H Video I/O Call 26H 09S-09BH DOS Absolute Disk Write 
11H 044-047H Equipment Check Call 27H 09C-09FH DOS Terminate/Stay Resident 
12H 04S-04BH Memory Check Call 2S-3FH OAO-OFFH Reserved for DOS 
13H 04C-04FH Diskette I/O Call 40-7FH 100-1FFH Not Used 
l4H 060-063H Serial Port I/O Call SO-FOH 200-3C3H Reserved By BASIC 
16H 064-057H Cassette I/O Call F1-FFH 3C4-3FFH Not Used 

Hard interrupts are rarely touched directly by an IBM PC user or appli­
cations programmer, unless special hardware is being used, or tighter control 
is required. The most commonly modified hard interrupt is the keystroke in­
terrupt. Text editing programs in particular often need a more flexible way of 
dealing with the keyboard than that provided by IBM. For the most part, hard 
interrupts are of concern only to component designers and system programmers; 
several, in particular the keyboard and timer interrupts, are of use to a designer 
of memory resident applications. 

Soft interrupts, on the other hand, are vitally important to anyone writing 
assembly-language programs, or even to programmers writing high-level code 
for the IBM PC. These interrupts are the gateway from applications code into 
the operating system of the IBM PC. It is through these doors that requests for 
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system services and operations are performed; thus, for programs that want to 
do more than simply contemplate their binary navels, these operations are the 
key. 

First and foremost among the software interrupts that are be of use to an 
assembly-language programmer is DOS INT 21H, the DOS Universal Function. 
This interrupt is a general-purpose call into DOS that permits the programmer 
to perform essentially any DOS operation directly. 

The next most useful set of software interrupts are those provided by the 
ROM-BIOS (Basic Input Output System). These functions provide a basic set 
of operations for using the low-level services provided by the IBM PC, such as 
keyboard input, display output, and raw disk I/O. 

(A note on using ROM-BIOS services. IBM does not license IBM standard 
BIOS ROMs for use by other manufacturers; in fact, it has actively prosecuted 
those "clone" manufacturers foolish enough to include a byte-for-byte copy of 
the IBM ROM in their products. Since the code in clone ROMs legally can­
not be exactly the same as the code in an IBM ROM, the small differences 
may mean that code written to use the ROM-BIOS calls directly may not be 
portable between IBM and IBM-like systems. This is not always the case for 
DOS calls, as MS-DOS, which is very similar to PC-DOS, can be licensed by 
other manufacturers. Thus, programs using only MS-DOS calls on one MS-DOS 
machine are portable to practically all other MS-DOS machines, regardless of 
ROM type.) 

3.2 The Keyboard Input Mechanism 

A good example of the way interrupts work can be seen in the mechanism the 
IBM PC uses to read characters from the keyboard. Two different interrupts 
are used, one hard and one soft interrupt. When a key is struck, a signal is 
sent from the keyboard circuitry to the processor. This signal causes a hard 
interrupt, which triggers the low-level keyboard interrupt handler. This handler 
immediately reads the character from the keyboard hardware, and places it into 
a queue. If the queue is full, the handler causes the IBM PC to beep. After the 
character is queued or beeped, control returns to the interrupted program. When 
a program wants to read a character from the keyboard, it issues a soft interrupt. 
This routine examines the queue and returns the first character available on that 
queue. 

This approach is extremely common in interrupt-driven systems. In a way, 
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it is a shock absorber between the application that needs input and the actual 
details of the gathering of that input. It is a decoupling mechanism that sep­
arates the handling of the keyboard from a request for information from the 
keyboard. The same general approach can be used for any number of different 
types of input and output devices. 

3.3 Replacing Interrupt Vectors 

Interrupt vectors are stored in the first 400H bytes of IBM PC memory. Each 
vector is four bytes long and contains a pointer to the interrupt-handler code 
that should be executed when the interrupt occurs. The first two bytes contain 
the offset portion of the pointer, the last two contain the segment portion. 

There are two ways to modify interrupt vectors. You can either set the 
interrupt-vector locations directly, or call the DOS service designed to set them. 

3.3.1 Setting the Vector Directly 

Since an interrupt vector is just a location in memory, the obvious way of setting 
an interrupt vector, for example, the keyboard vector, would look like this: 

mov ax,O We can't move to ES directly 
mov eS,ax ; Use AX to clear segment register 

; Install offset of handler 
mov word ptr es:24,offset keyboard 

; Install segment of handler 
mov word ptr es:26,seg keyboard 

In many cases, this code would actually work. Suppose, however, a key 
was typed exactly as this code was executing. Under the worst case, this would 
happen after the first MOV but before the second. During that time, the keyboard 
interrupt vector would be meaningless, and the keyboard interrupt could crash 
the machine. One obvious fix would be to disable interrupts, such as 

mov ax,O We can't move to ES directly 
mov eS,ax Use AX to clear segment register 
cli Disable interrupts 

Install offset of handler 

mov word ptr es:24,offset keyboard 


; Install segment of handler 

mov word ptr es:26,seg keyboard 

sti ; Enable interrupts 
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This approach would work in almost all cases. However, the CLI instruction 
does not suspend the NMI (non-maskable interrupt). So this approach is adequate 
for every interrupt vector save that one. A slightly more complicated approach, 
useful for every vector including the NMI vector, would be this: 

; Make a correct vector address 
containing interrupt vector 

mov word ptr kbd-ptr[O] ,offset keyboard 
mov word ptr kbd-ptr[2] ,seg keyboard 
mov di,O Use D1 to set ES to zero 
mov eS,di Set ES to destination segment 
mov di,24 Set D1 to destination offset 
mov si,offset kbdptr Set S1 to source offset 
mov cx,2 Set word count to 2 
cld Set direction to forward 
cli Disable interrupts 

rep movsw Copy the new vector 
sti Enable interrupts 

kbdptr dd 

In this code, kbdptr is a double word containing a pointer to the keyboard 
interrupt handler. The advantage of this somewhat more complicated approach 
is that at no time is the interrupt vector ever invalid. The rep operation repeats 
the movsw the number of times specified in CX, behaving as a single instruction. 
The NMI cannot occur within an instruction, and since the entire move is con­
tained within a single instruction, it will be immune to any possible interrupt. 

3.3.2 Using DOS to Set the Vector 

Since safely setting an interrupt vector can be a somewhat tricky operation, DOS 
provides a special service for setting the value of an interrupt vector securely. If 
you limit yourself to using this service, you won't have to worry about the race 
conditions described earlier. DOS also provides a service for reading the value 
of an interrupt vector. Since this operation does not modify the state of the 
system, there is no danger at all in this, and thus a direct read is just as safe. 
A direct read, however, requires that you calculate the correct address for the 
interrupt vector. Since DOS already has resident code to do this for you, there 
is no sense in duplicating the effort. 
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To read the value of an interrupt vector (INT 16H (keyboard I/O) in this 
example) under DOS requires the use of INT 21H function 35H (read interrupt 
vector). This function performs the calculation to get a vector address from a 
vector number and then returns the contents of that slot in the vector table. 

; A double word to hold the value 

mov al,16H The interrupt number to be read 
mov ah,35H READ INTERRUPT VECTOR function 
int 21H under DOS Universal Function 

Offset of interrupt handler 

Segment of interrupt handler 

The old..keyboard_io variable is defined as a double word, since we need 
both a segment and an offset to describe the correct location of the interrupt 
handler at any location in memory. Note the order of segment and offset within 
the four-byte range of old..keyboard_io. The offset must be placed in the first 
two bytes, and the segment in the last two. There is great intuitive pressure 
to reverse this ordering, but the architecture of the machine has a fixed idea as 
to how addressing information should be ordered, and the machine is the final 
judge of correctness in this case. 

The following code sets the value of an interrupt vector (INT 16H (keyboard 
I/O), in this example), under DOS: 

proc far 

iret 
new_keyboard_io endp 

mov bx,cs Make DS point to the segment 
mov dS,bx That our code is in (i.e. CS) 

DX holds offset to new code 
mov dX,offset new_keyboard_io 
mov al,16H The interrupt number to set 
mov ah,25H The SET INTERRUPT VECTOR function 
int 21H under the DOS Universal Function 

The new interrupt handler, new..keyboard_io, replaces the previous interrupt 
handler. DS:DX is a double word pointer to the new handler, with DS containing 
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the segment of the new routine and DX containing the offset within that segment. 
Since this routine is located within the current code segment, we can simply 
copy CS (by way of BX, due to the limited interregister move instructions on 
the 8086/8088), into DS. Another possibility would have been to set DS to the 
segment of new--.keyboard_io by use of the assembler SEG pseudooperation. 

3.4 Examining the Interrupt Vectors 

Since we are about to spend quite a bit of time poking about under the hood of 
the IBM PC, jostling the spark plug wires, and generally getting greasy, perhaps 
we should begin by acquiring a tool or two. One useful operation that we can 
perform immediately is to write a small application program to read and display 
the value of all the interesting interrupt vectors in the IBM PC. 

Much ofthis book depends on your ability to create runnable programs from 
source written in IBM Macro Assembler. Turning a piece of source code, the 
human readable text representation of a program into an executable program 
takes three, well, actually two-and-a-half steps. 

If we have an assembly source program called GLOP. ASM, from which we want 
to make an executable program called GLOP. COM, we must first run it through an 
assembler. All the assembly code in this book was written for the IBM Macro 
Assembler MASM, version 1.0. To assemble GLOP. ASM, at the DOS command 
prompt enter: 

MASM GLOP; 

The semicolon causes MASM to use several defaults. The output file, GLOP. OBJ, 
contains relocatable, unlinked machine code. MASM will not generate a listing file 
or a cross reference file. 

The second step is to turn GLOP. ASM into an executable program. To do 
this, you must use the linker. All the programs in this book are linked with the 
Microsoft Linker LINK, version 2.2, which is included with DOS. To link a single 
object file, including no special libraries, at the DOS prompt, enter: 

LINK GLOP; 
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The semicolon causes LINK to use several defaults. The output file, GLOP. EXE, 
is a general-format executable program. Link does not generate listing files, and 
no libraries are included. 

The last step, although not necessary for all programs, is required for the 
assembly code shown in this book. The final step is to turn the general format 
. EXE file into the faster-loading and smaller . COM file. This is done with the 
EXE2BIN program. All assembly programs in this book are converted with the 
EXE2BIN program that comes with DOS. To convert GLOP. EXE into GLOP. COM, 
at the DOS prompt, enter: 

EXE2BIN GLOP.EXE GLOP.COM 

This creates a new file, GLOP. COM, which is much smaller than the original 
. EXE and which loads and starts faster. The original file, GLOP. EXE, remains 
untouched. 

Developing a resident application takes some amount of trial and error. This 
means that you may find yourself typing these last three DOS commands over 
and over again. Since repetition is best left to a computer rather than fingers, 
the same result can be achieved with a small .BAT file: 

MASM GLOP; 
LINK GLOP; 
EXE2BIN GLOP.EXE GLOP.COM 

Conceivably, you could create a MAKE. BAT for each and every program that 
you care to develop. However, since the assembly language source in this book 
can be compiled using this same basic template, and changing only the names, 
the parameterization facility of .BAT files might be a bit more appropriate: 

MASM %1; 
LINK %1; 
EXE2BIN %1.EXE %1.COM 

DOS replaces %1 with the first argument of the command. Thus 

MAKE GLOP 

http:GLOP.COM
http:GLOP.COM
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is an entirely adequate replacement for the previous special purpose MAKE file. 
If you later want to create a MACRO. COM, then MAKE MACRO will work with no 
changes. 

With later versions of DOS, various error conditions can be detected and 
execution of this .BAT file can be aborted, for example if the assembly fails. 
This file should work under all versions of DOS. Ambitious programmers are 
heartily encouraged to improve upon this foundation. 

3.5 IVEC. ASM - Listing Interrupt Vectors 

The IVEC. ASM program runs as a normal application and lists the current values 
of the interrupt vectors in a form that fits on a single screen. On a generic IBM 
PC with no resident applications installed, you'll notice that many of the vectors 
appear to originate from the same set of segments. These are the ROM routines. 
As you change handlers and rerun the program you'll see the changes appear in 
the vector table. 

cseg segment para public 'CODE' 
org lOOH 
assume cs:cseg,ds:cseg 

start: 
mov bx,cs Make Data Seg be the 
mov dS,bx same as the Code Seg 
call vectors 
ret 

Scan through display table, printing two vectors per line 
If any record has an interrupt # = zero, this indicates 
end of the table. 

vectors proc near 
mov di,offset disptab Pointer to start of table 
mov dh,O Zero out top half of DX 

vloop: 
mov dl, [di] Get the interrupt number 
cmp dl,O If it is zero, we are done 
je vdone so exit loop 
add di,l Advance pOinter 1 byte 
mov si, [di] Get pOinter to description 
call dvector Call the display routine 
add di,2 Advance to the next record 
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mov 
cmp 
je 
add 
mov 
call 
add 

call 
jmp 

vdone: 
call 
ret 

vectors 	endp 

dvector 	proc 
call 
call 
call 

mov 
mov 
int 
mov 
call 
call 
ret 

dvector 	endp 

dstring 	proc 
push 
push 

dis: 
mov 
cmp 
je 

dl, [di] Get the interrupt number 
dl,O If it is zero, we are done 
vdone so exit loop 
di,1 Advance pOinter 1 byte 
si, [di] Get pOinter to description 
dvector Call the display routine 
di,2 Advance to the next record 

dcrlf Print a carriage return 
vloop 

dcrlf 	 Print final CRLF 

Displays an interrupt vector. Display is in the form of 

<banner> <interrupt #> <seg>:<offset> 

where <interrupt #>, <seg> and <offset> 

are all 	hexadecimal numbers. 

Call with 
DX - interrupt number 
DS:SI - pOinter to banner string 

near 
dstring Display the string in DS:SI 
dbyte Display the byte in DL 
dspace Display a space 

al,dl Move the interrupt number to AL 
ah,35H Function is GET INTERRUPT VECTOR 
21H 
dX,bx Move BX to DX so we can display 
ddword double-word in ES:DX 
dspace Display a space 

DS:SI points to ASCIIZ string to be printed 

near 

si 

ax 


aI, [si] Fetch the next character 

al,O If it is zero, we are done 

disdone 
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call 
inc 
jmp 

disdone: 
pop 
pop 
ret 

dstring 	endp 

ddword proc 
push 
mov 
call 
call 
pop 
call 
ret 

ddword endp 

dsword 	 proc 
push 
mov 
call 
pop 
call 
ret 

dsword 	 endp 

dbyte 	 proc 
push 
push 
push 

push 
push 
mov 
shr 
and 
mov 
mov 
call 
pop 

dchar If not, print it 
si Advance pointer to next char 
dis 

ax 
si 

ES:DX contains doubleword to be displayed 
near 
dx Save offset temporarily 
dX,es Move Segment to DX 
dsword Display segment 

fl."dcolon Print a , 
dx Restore offset to DX 
dsword Display offset 

DX containes singleword to be displayed 
near 
dx Save low byte temporarily 
dl,dh Move high byte to low byte 
dbyte Display high byte 
dx Restore low byte to DL 
dbyte Display low byte 

DL contains byte to be displayed 
near 
ax Save any registers used 
dx 
si 

dx Save low nybble temporarily 
cx Save ex 
cl,4 Set shift count to 4 
dX,cl Shift high nybble into low nybble 
dX,OOOFH Mask out all but low nybble 
si,dx Use low nybble as index into 
al, hextab [si] ; hexadecimal character table 
dchar Display character 
cx Restore ex 
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dbyte 

dcolon 

dcolon 

dspace 

dspace 

dcrlf 

dcrlf 

dchar 

pop dx Restore low nybble 

and dX,OOOFB Mask out all but low nybble 
mov si,dx Use low nybble as an index into 
mov al,hextab[si] ; hexadecimal character table 
call dchar Display character 
pop si Restore registers 
pop dx 
pop ax 
ret 
endp 

Display a ":" 
proc near 
mov aI, I. I 

call dchar 
ret 
endp 

; Display a II. II 

proc near 
Imov aI, I 

call dchar 
ret 
endp 

; Display a Carriage Return/Line Feed 
proc near 
mov al,ODB 
call dchar 
mov al,OAB 
call dchar 
ret 
endp 

; Display the character contained in AL 
proc near 
push ax 
push bx 
mov bh,l 
mov ah,OEB 
int lOB 
pop bx 
pop ax 
ret 
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dchar 	 endp 

hextab 	 db 

disptab 	db 
dw 
db 
dw 

db 
dw 
db 
dw 

db 
dw 
db 
dw 

db 
dw 
db 
dw 

db 
dw 
db 
dw 

db 
dw 
db 
dw 

db 
dw 
db 
dw 

db 
dw 
db 
dw 

db 

'0123456789ABCOEF' ,0 


05H 
v05 
19H 
v19 

08H 
v08 
1AH 
v1A 

09H 
v09 
1BH 
v1B 

OBH 
vOB 
1CH 
v1C 

OCH 
vOC 
1DH 
v10 

OOH 
vOO 
1EH 
v1E 

OEH 
vOE 
1FH 
v1F 

OFH 
vOF 
20H 
v20 

10H 

Print screen 

Bootstrap loader 

Timer tick 

Real-time clock 

Keyboard input 

CTRL-Break handler 

Comm. port 1 

Timer control 

Comm. port 0 

Pointer to video parameter table 

Hard disk controller 

Pointer to disk parameter table 

Floppy disk controller 

Pointer to graphics character table 

Printer controller 

Program terminate 

Video driver 
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v05 

dw v10 
db 21H 
dw v21 

db 11H 
dw v11 
db 22H 
dw v22 

db 12H 
dw v12 
db 23H 
dw v23 

db 13H 
dw v13 
db 24H 
dw v24 

db 14H 
dw v14 
db 25H 
dw v25 

db 15H 
dw v15 
db 26H 
dw v26 

db 16H 
dw v16 
db 27H 
dw v27 

db 17H 
dw v17 
db 2FH 
dw v2F 

db 18H 
dw v18 
db 0 
dw 0 

db 'Print screen: 

DOS universal function 

Equipment check 

Pointer to termination handler 

Memory size check 

Pointer to CTRL-C handler 

Disk driver 

Pointer to critical error handler 

Communications driver 

Absolute disk read 

Cassette driver 

Absolute disk write 

Keyboard driver 

Terminate and stay resident 

Printer driver 

Print spooler 

ROM BASIC 

, ,0 



38 CHAPTER 3. INTERRUPT VECTORS 

v08 db 'Timer tick controller: 
vOg db 'Keyboard input: 
vOB db 'Communication port i: 
vOC db 'Communication port 0: 
vOD db 'Hard disk controller: 
vOE db 'Floppy disk controller: 
vOF db 'Printer controller: 
viO db 'Video driver: 
v11 db 'Equipment check: 
vi2 db 'Memory size check: 
vi3 db 'Disk driver: 
vi4 db 'Communication driver: 
vi5 db 'Cassette driver: 
vi6 db 'Keyboard driver: 
vi7 db 'Printer driver: 
vi8 db 'ROM BASIC: 
vi9 db 'Bootstrap loader: 
viA db 'Real-time clock: 
viB db 'Ctrl-Break handler: 
viC db 'Timer control: 
viD db 'Video parameter table: 
viE db 'Disk parameter table: 
viF db 'Graphic character table: 
v20 db 'Program terminate: 
v2i db 'DOS universal function: 
v22 db 'Terminate vector: 
v23 db 'Ctrl-C vector: 
v24 db 'Critical error vector: 
v25 db 'Absolute disk read: 
v26 db 'Absolute disk write: 
v27 db 'Terminate/stay resident: 
v2F db 'Print spooler: 

cseg ends 
end start 

' ,0 
' ,0 
' ,0 
' ,0 
, ,0 
, ,0 , ,0 
' ,0 
' ,0 
, ,0 
' ,0 
, ,0 
' ,0 
' ,0 
' ,0 , ,0 
' ,0 
' ,0 
' ,0 
' ,0 , ,0 
, ,0 
' ,0 , ,0 
' ,0 
' ,0 , ,0 , ,0 
' ,0 
' ,0 
, ,0 
' ,0 



Chapter 4 

A Basic Resident Program 

A journey of a thousand miles begins with a single step. That phrase has 
been used to refer to a lot of things, and assembly-language memory resident 
programming is one of them. To understand how to write a complicated resident 
application, you should begin, as they say, at the beginning. 

In this chapter, we will write an extremely simple resident application, one 
of no practical use whatsoever, but one that encapsulates the basic features of 
more important and useful programs. The simplest possible resident application 
would just install itself and do nothing. This is basically what we intend to write 
here, but with an additional constraint. We want to be able to tell the difference 
between a trivial program that works, meaning that it is installed correctly, and 
a trivial program that fails quietly. To do this, we must complicate our simple 
program in such a way that we can determine whether or not it is installed and 
working. 

Quite a number of trivial goals are available to us, if our only constraints are 
simplicity and detect ability. The goals we choose depend on the kind of resident 
application that we choose to write. One of the simplest and most useful resident 
applications involves intercepting keyboard input and replacing the characters 
that were typed with characters of our own choosing. This type of application 
is easy to write and understand, yet the basic design can be extended to include 
the vastly more useful functions found in keyboard macro expanders, or input 
line editors. 

Having decided on the basic structure, a keyboard input interceptor, we must 
decide on the method of detectability. Since we plan to intercept characters from 
the keyboard and to pass those characters, at our discretion, to DOS, one method 
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of detecting the presence of our modifications would be to alter what the user 
types in a predictable fashion. If the alterations show up, our application was 
successfully installed. If they aren't present, something was wrong, either a flaw 
in the design or the construction. 

A simple way to alter the input would be to detect a character and do 
something predictable when that character, and only that character, is typed. 
For example, we could design our application to detect the typing of a "Y" and 
replace it with a "#" when it is passed to DOS. An injudicious choice, however, 
would break the machine while the application was installed. In the case of the 
"Y" replaced by a "#", we would be unable to use the TYPE command while 
the application is resident. We would be breaking DOS deliberately to detect 
the presence of our resident application. 

A better choice would be to alter something in a way that we could detect, 
but that would not break the operating system. Case shifting is a good example. 
Ifwe shift the case of the "Y", returning a "y" instead, we can detect the presence 
of our application. DOS will not care if we use the "TyPE" command. Only a 
few programs, those in which case is important (such as word processors) will 
be affected. If we then add a few more lines of code, we can detect a "y" and 
return a "Y". Thus, we will not prevent any character from being typed, we 
simply complicate matters a little by reversing the sense of the SHIFT key for 
the "Y". Nothing is made unusable, but we can detect our success or failure. 

4.1 A Simple Resident Application 

A program is more than just a series of instructions that a computer can execute. 
It is a sort of frozen thought, a glimpse into the mind of the designer. A designer 
of machinery captures types of actions and encapsulates them in steel and plastic 
in such a way that the actions can be performed after the designer is no longer 
present. A programmer can capture certain types of ideas into a program in 
such a way that those captured thoughts can be systematically rethought after 
the programmer is no longer present. The meaning of all this philosophizing is 
a fact of writing programs: it's more important to worry about the way that 
you, the programmer, think about your program than it is to worry about how 
the computer thinks about it. 

Books that discuss programming commonly present the source code for a 
program in a line-by-line fashion. If you talk with experienced programmers, 
however, you'll probably find that programs are never written line by line. Some 
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programmers see their code as a tree of successively refined ideas, others as view 
it as a woven tapestry of threads of thought or a network of interconnected ideas. 
There are many different ways that you can model a problem in your mind, not 
all of them easily articulated. Building a mental model of a program is the first 
ninety percent of writing a program. Thrning a well-formed idea into code is 
the next ninety percent. 

The programs in this book were designed and written as a series of nested 
boxes within boxes. The outermost box is the requirements of making a work­
ing .COM program. Within that are two boxes, the code that makes up the 
application and the installation code that makes the application an extension 
of the operating system. Within each of those are functions within functions 
that make up the individual concepts of each segment of the program. When 
possible, the listings discussed in this and subsequent chapters will be shown in 
the perspective of the nested functions of the code. 

4.2 A Basic .COM Program 

The memory resident programs discussed in this book are all written to assemble 
into. COM programs. These programs are one of the two types of executable files 
that DOS understands. The . COM file is designed to load and begin execution 
quickly. Like most design choices, the trade-off necessary to achieve this speed 
of loading was in flexibility. The . COM format is limited in how the program can 
use the full power of the IBM PC. The. COM file is small, less than 64 kilobytes, 
and can load into only one segment. The more general, but slower loading form 
of executable file is the . EXE. The . EXE format can load into multiple segments 
and be larger than 64 kilobytes. It is possible to create resident applications 
that load in .EXE format, but typically this is more trouble than it is worth. 
Resident applications are usually much less than 64 kilobytes and usually need 
to be loaded at exactly the portion in memory that . COM files are loaded into. 
Thus, .COM-format executable files are the best choice for the envelope that 
surrounds a resident application. 

The code that will assemble into a legal, working, empty . COM file looks like 
this: 

section 1 
cseg segment 

assume cs:cseg,ds:cseg 
org 100H 
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; section 2 
start: 

ret 
section 3 

cseg ends 
end start 

This code can be broken down into three obvious parts. Section 1 defines the 
segment that the code will be relative to. It defines the assumptions that the 
assembler will make about the segment that the code resides in, and it defines 
the starting point of the executable code. 

Section 2 is the actual code itself, in this case, simply a return statement to 
transfer control back to DOS. Execution begins at the start label. 

Section 3 ends the segment and the program. The end statement contains a 
label name that refers to the address at which execution should begin. In this 
case, the start label is where we want the program to start. 

If you assemble, link, and convert this minimum program, you might expect 
it to be 257 bytes long,-256 bytes of program segment prefix and 1 byte for 
the RET opcode. However, if you follow the sequence described above, you'll find 
that the. COM file is only 1 byte long. The reason for this is quite simple: all . COM 
files are loaded with identical program segment prefixes, and thus DOS does not 
need to save a copy with each . COM file. DOS automatically generates. a correct 
program segment prefix in memory when it loads a .COM file. If necessary, 
a program can alter its program segment prefix during its run, but all .COM 
programs start with the same basic program segment prefix. All .COM program 
segment prefixes have the same format: 

The Program Segment Prefix 

Offset Meaning 
OOOOH Termination Handler Address 
0OO2H Segment, end of allocation block 
0OO4H Reserved 
OOOSH Long call to MS-DOS function dispatcher 
OOOAH Previous termination handler vector 
OOOEH Previous CONTROL-C vector 
0012H Previous critical error handler vector 
0016H Reserved 
002CH Segment address of environment block 
002EH Reserved 
OOSCH Default File Control Block #1 
006CH Default File Control Block #2 
OOSOH Command tail and default Disk Transfer Area 
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4.3 A Minimum Resident Program 

The minimum . COM file shown here is not yet a memory resident program. It is 
simply a DOS program like most others. This program loads at the beginning 
of available memory; when the program terminates, the memory this program 
it consumed will be freed for use by subsequent programs. 

A basic program that terminates, but remains resident, looks like this: 

, section 1 
cseg segment 

assume cs:cseg,ds:cseg 
org 100H 

section 2 
start: 

nop 
done: 

section 3 
mov <be, offset done 
int 27H 

section 4 
cseg ends 

end start 

The first and last sections of this code are unchanged from our minimum 
. COM program. The middle two sections are the interesting ones. Section 2 is 
the code that actually remains resident. In this case we simply leave a NOP as an 
empty resident application. In fact, any code that we put in between the start 
and done labels remains resident. 

Section 3 is the part of the code that terminates this program, leaving it 
resident. In this case, we use INT 27H as the terminate and stay resident func­
tion. This function requires us to set a pointer to the first available location of 
memory, in effect setting where the next . COM file will load. If we had wished to 
do so, we could have used INT 21H function 31H (keep process), which requires 
that we specify the amount of memory to reserve, rather than a pointer. That 
function has the advantage of being able to send an exit code to DOS. No exit 
code is generated by INT 27H. 

INT 27H requires a pointer to the first available address for DOS to use to 
load subsequent programs. DOS contains a pointer to a base address used for 
IQading . COM and m0st .EXE files. INT 27H resets this pointer to the new value, 
which makes all the memory between the old and new pointer values inaccessible 
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to DOS for loading transient programs. It also makes this memory inaccessible 
to transient programs that either allocate their own memory directly as buffers 
or implicitly in their size. Thus, if you keep loading memory resident programs, 
you'll whittle away at the amount of rnemory available for normal programs. 

The pointer to the next available byte of memory is aFAR pointer, meaning 
that it consists of an offset pointer, contained in DX, which points to a location 
within a 64-kilobyte range, and a segment pointer, contained in DS, which points 
to a paragraph-aligned segment within the 640-kilobyte address space of the IBM 
PC. DS need not be set explicitly, since DS is set to the same value as CS when 
the . COM file is loaded. 

A common mistake in writing assembly language programs for the IBM PC 
is to confuse the preloading of DS with the assume ds: cseg statement in the 
assembler source. It is important to realize that the assume statements in assem­
bler source have absolutely no relation to the value of the DS register or any other 
register. These statements produce no code whatsoever. Their function is to 
tell the assembler to make certain assumptions necessary to correctly assemble 
the code. For example: 

cseg segment 

assume ds:cseg 
mov ah,radix 

radix db 16 

cseg ends 

The type of move instruction generated when the assembler sees the mov 

ah. radix is directly related to the assume ds: cseg statement. With the assume 
pseudooperation, you tell the assembler to pretend that the data segment is in 
the current code segment, a key issue for memory resident programs. If the 
actual value of DS is not the same as the value of CS when this code is executed, 
this code will fail, despite the assume statements. 

4.4 A Refined Resident Program 

The code for the minimum resident program does nothing but take up space in 
memory. In fact, if you actually were to place useful code between start and 
end, you'd quickly find that it would be executed only once, at the time you ran 



45 4.4. A REFINED RESIDENT PROGRAM 

the. COM initialization file. After that, the code would be permanently locked in 
memory, but inaccessible except by direct far jump to the start address. The 
actual value of the start address for this code is not fixed, but varies according 
to the state of the machine when the program was loaded. At this point we have 
created a small program that causes some code to be loaded into the appropriate 
area and retained, but we have not actually created a resident application. 

The next step is to create a . COM program that executes the installation code 
at the time it is run, and install the resident code correctly without running it. 
To achieve this, we must modify the previous program in this fashion: 

, section 1 
cseg segment 

assume cs:cseg,ds:cseg 
org 100H 

section 2 
start: 

jmp initialize 
section 3 

app_start: 
nop 

initialize : 
, section 4 

mov dX,offset initialize 
int 27H 

, section 5 
cseg ends 

end start 

The first thing that this program does upon being run as a . COM file is 
to branch around the actual code of the resident application directly to the 
initialization code that correctly installs the resident application. Note that 
done has been changed to initialize and that the actual code of the resident 
application falls between app_start and initialize. 

You may wonder why initialize is not made the starting address. The 
starting address of all . COM programs is 100H. In this program, start is located 
at 100H, but initialize is not. If you specify initialize as the starting 
address, which is done by putting it after the end statement (see the last line 
of the previous example, where the starting address was set to start), EXE2BIN 
tells you that the file cannot be converted. If you cannot make a . COM file, you 
must handle the segmentation issues directly. 
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4.5 Elimination of Memory Overhead 

By now you may have noticed that nothing has been done about the program 
segment prefix. Since we are basically advancing a pointer to the first available 
byte of memory when we use INT 27H, anything below that pointer will be 
retained including the program segment prefix of the .COM file used to start the 
resident application. The last time the program segment prefix will be of any 
use is while the . COM file is exiting, since INT 27H restores information from the 
program segment prefix on exit. So we cannot get rid of the program segment 
prefix until after the . COM file has exited. 

This interesting fact requires us to make another design choice. If the pro­
gram segment prefix can be removed only after the .COM installation program 
has exited, the program segment prefix must be removed by resident code. We 
can do this by copying the entire resident application down in memory by 256 
bytes. But how will this copying code be started? One way might be to set a flag 
on loading that indicates whether or not the resident application has been run. 
The first time the resident application is run, the copying code is invoked, and 
the resident application relocated. However, what if the resident application is 
not run for a long time after installation? What if a . COM file is running? What if 
more resident applications have been loaded? These are important issues, which 
may require some code to solve. If this code requires more than 256 bytes, it is 
more cost-effective to waste the space taken up by the program segment prefix. 
Some designers have implemented cost-effective solutions to this problem, but 
they are usually quite subtle. For the most part, unless available memory is so 
limited that 256 bytes becomes critical, you will probably make your programs 
more readable and cleaner by simply ignoring the program segment prefix. 

Another bit of overhead is the jmp initialize instruction. These few bytes 
are retained along with the program segment prefix and the resident application. 
Once again it is a small price to pay, but if you are sufficiently interested in 
removing this overhead, it can be done. 

4.6 Invoking the Resident Application 

Now that we know how to load code in memory and retain it after the initial­
ization program has terminated, we must look at how our resident application 
is to be called into service. 

Each memory resident program is invoked in a way that is closely related 
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to what it is designed to do. A keyboard input interceptor is quite likely to be 
linked via the keyboard input soft interrupt or possibly the keystroke interrupt. 
Other programs may involve linking to a sophisticated combination of interrupts, 
timers, and system calls. These linkages may be established at any time, but 
at least one must be established at the time the installation .COM shell is run. 
If this first link is not established, the code will never be invoked to establish 
more. Typically, all the necessary linkages are established at initialization time, 
with the program simply responding to the linked events. 

What is meant by the term linkage? An IBM PC is driven by events such 
as keystrokes, timer ticks, or soft interrupt system calls. These events can be 
intercepted, and actions can be performed based on these events. By linkage, 
we mean the mechanism that causes our code to be run rather than the code 
that came with the system. 

In the case of the trivial keyboard input interceptor that we are designing, 
the linkage will be to the keyboard input ROM system call. When DOS or an 
application wants a character from the keyboard, it calls INT i6H. If we can 
arrange to have our code called instead, then we can place a layer of code that 
we can control between the application and the generic operating system. It 
is this interposition of layers that is the fundamental mechanism of all resident 
applications. 

To install the linkage, we use INT 21H function 25H (set interrupt vector) to 
replace the interrupt vector for the ROM system call with a pointer to our own 
code. 

cseg segment 
assume cs:cseg.ds:cseg 
org 100H 

start: 
jmp initialize 

Section 1 
new_keyboard_io proc far 

sti 
nop 
iret 

new_keyboard_io endp 
End Section 1 

initialize: 
Section 2 

mov dx.offset new_keyboard_io 
mov al.16H 
mov ah.25H 
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int 21H 
End Section 2 

mov dX,offset initialize 
int 27H 

cseg ends 
end start 

In this version of the code, several important changes have been made. These 
changes are shown in Sections 1 and 2 of the listing. 

In Section 1, we rewrote the portion of the code that makes up our resident 
application as a Macro Assembler procedure. This was done to aid readability. 
By making a procedure out of the special code that is to remain resident, it 
becomes distinct from the rest of the code in the program. A simple label at 
the beginning would have been just as effective, but not visually distinct. 

Of greater practical importance, two instructions were added to our null 
resident application. The first of these is the STI (set interrupt flag/enable 
interrupts) instruction. 

When an interrupt occurs, the hardware of the 8086/8088 turns off the flag 
that permits any further interrupts from being serviced. In effect, the system 
is giving its undivided attention to servicing the interrupt in progress. This 
devotion to duty is commendable and important, but it comes with a price. 
While interrupts are disabled, any hardware signals, such as keystrokes, timer 
ticks, disk signals, and modem interrupts will be ignored. If interrupts remain 
disabled, the system will lose valuable information, and things will begin to fail. 
Thus, while there may be a valid reason for operating for a time with interrupts 
disabled, this time is precious, and should not be squandered. 

The second important instruction is the IRET (return from interrupt). As 
RET is used to return from CALLed :subroutines, IRET is used to return from 
interrupt handlers. IRET differs from RET only in that the CPU state flags are 
restored from the stack after the return address has been popped off the stack. 
These flags are pushed onto the stack by the interrupt mechanism built into 
the hardware. By restoring the flags to their previous state, IRET restores the 
interrupt enable flag to its previous state, thus reenabling interrupts. Strictly 
speaking, for the null resident application in this example, using an STI and 
an IRET is redundant. However, both instructions are crucial for real interrupt 
handlers, so for the sake of clarity, they both are shown here. 
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4.7 Chaining Interrupt Handlers 

It is often more useful to replace part of an interrupt handler rather than re­
place the entire handler, as has been done in the previous example. If the code 
shown in the previous example was used, keyboard input would not be possible. 
Characters would continue to be read and queued by the hard interrupt handler 
until the keyboard input queue was filled. With the null resident application 
shown, no method of dequeuing characters is possible. 

Suppose we want to install an interrupt handler that simply calls the original 
keyboard interrupt handler. Once we are capable of doing this, modifying the 
parameters or taking action basoo on the results of the existing code is easily 
within our power. We can sucessfully insert a layer of code under our control. 

cseg segment 
assume cs:cseg,ds:cseg 
org 100H 

start: 
jmp initialize 

Section 1 

End Section 1 
new_keyboard_io proc far 

sti 
Section 2 

pushf 
assume ds:nothing 
call old_keyboard_io 

End Section 2 
iret 

new_keyboard_io endp 

initialize: 
assume cs:cseg,ds:cseg 

Section 3 
mov bx,cs 
mov dS,bx 

mov al,16H 
mov ah,35H 
int 21H 
mov old_keyboard_io,bx 
mov old_keyboard_io[2] ,es 

End Section 3 
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mov dX,offset new_keyboard_io 

mov al,16H 

mov ah,25H 

int 21H 


mov dX,offset initialize 

int 27H 


cseg 	 ends 
end start 

In Section 1, we created a place to store the value of the old vector. Since we 
were constrained to operate within a single segment, the data statements had to 
be in the same segment as the code. Of course, we should avoid inadvertently 
transferring control to these bits of data mixed in with our code. 

Since it was not likely that the original interrupt handler would be in the 
same segment as our interrupt handler, we had to allocate a double word to 
contain the segment and the offset of the target handler. 

There is no reason that this double word could not have been allocated at 
any convenient place in resident application memory. You may find it more 
convenient, however, to locate the double word immediately after the jump to 
the initialization code. By putting the address of the previous vector in a known 
location (the four bytes preceding the start address of the new handler) you make 
it easier to find with a debugger and, if necessary, by a program. 

Section 2 is the body of the resident application, which consists of a simulated 
interrupt call to the old interrupt handler. Since any interrupt handler that you 
replace was designed to be called by an INT rather than a CALL, you must 
simulate the actions of the INT by first pushing the flags onto the stack with a 
PUSHF instruction. 

The next line is an assembler directive, not an opcode. It tells the assembler 
to assume nothing about the data segment flag when generating subsequent 
machine code. This causes the assembler to generate the proper double-word 
address in the next instruction. 

The CALL instruction transfers control to the old keyboard interrupt handler 
as if it were a subroutine. When this function is completed, it executes an 
IRET instruction and control returns to this code, just as a normal subroutine 
call would happen. By doing this, we can use the old function to do work for 
us, without giving up control. If we chose to, we simply could have JMPed to 
the old handler, without pushing the flags. Control would have left our code 
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permanently, with the old handler actually returning from the interrupt for us. 
Section 3 is the initialization code. Here, we determine the setting of the 

interrupt vector we are about to replace and squirrel that value away in a place 
that will remain resident, where the resident application can use it. 

The first two lines of Section 3 actually copy the DS register from the CS 
register. The 8086/8088 has no instruction to copy one segment register to 
another, so this must be done through an intermediate register, in this case, BX. 
When the. COM file terminates, these register changes will be flushed; thus, we 
cannot count on them at the time our resident application is invoked. 

We then use INT 21H function 35H (get interrupt vector) to determine the 
value of the interrupt vector. This value is returned in two registers, with ES 
containing the segment of the old vector and BX containing the offset. These 
values are copied into the double word set aside for them. Please note that the 
offset precedes the segment within the double word. 

Running this program should have no apparent effect on the behavior of 
DOS or any normal application. Keyboard input should behave normally. 

INT 21H function 31H is somewhat more modern than INT 27H, but it per­
forms basically the same function. This function requires that you calculate the 
number of paragraphs (16-byte chunks of memory) that you wish to reserve. In 
addition, it also permits you to return an exit code. In the long run, you might 
be better off using it instead of INT 27H. In this book we stick with INT 27H 
simply because it is easier to use, is more obvious in function, and runs under a 
wider range of DOS versions. 

4.8 Detecting Our Resident Application 

Now that we have successfully insinuated our code between applications and 
what DOS does to read a character from the keyboard, we can begin to modify 
the results. In this example, we will simply be reversing the case on a single let­
ter. Certainly it is trivial, but it also proves that modification can be performed 
successfully. 

One design issue that must be resolved is that of duplication of function. 
Clearly, we are not interested in duplicating what DOS or the ROMs do to check 
the status of the keyboard. In fact, we are not even interested in intercepting 
that function. We are interested only in intercepting the read, INT 16H function 
OH (read character). Since we can let the original handler manage functions 
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other than the read, we must add a little code to let the ROMs (or whatever 
other handler might be in place) handle the other functions. 

cseg segment 
assume cs:cseg,ds:cseg 
org 100H 

start: 
jmp initialize 

old_keyboard_io dd 

new_keyboard_io proc far 
assume cs:cseg,ds:cseg 
sti 

cmp ah,O 
je kiO 
assume ds:nothing 
jmp old_keyboard_io 

kiO: 
pushf 
assume ds:nothing 
call old_keyboard_io 

cmp aI, 'y' 
jne ki1 
mov aI, 'Y' 
jmp kidone 

ki1: 
cmp aI, 'Y' 
jne kidone 
mov aI, 'y' 

kidone: 

iret 
new_keyboard_io endp 

initialize: 
assume cs:cseg,ds:cseg 
mov bx,cs 
mov dS,bx 

mov aI,16H 

Section 1 

End Section 1 
Section 2 

End Section 2 
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mov ah,35H 

int 21H 

mov old_keyboard_io,bx 

mov old_keyboard_io[2] ,es 

mov dX,offset new_keyboard_io 

mov al,16H 

mov ah,25H 

int 21H 


mov dX,offset initialize 

int 27H 


cseg 	 ends 
end start 

Section 1 of this code detects whether the operation is function OH (read char­
acter). If it is not, control is transferred entirely to the old handler, which then 
deals with the other functions function lH (read keyboard status), and function 
2H (read keyboard flags). By doing a jump, rather than simulating an interrupt 
with a subroutine call, we let the original handler return from the interrupt for 
us. 

Even though we have already reenabled interrupts, the original handler will 
perform this operation again. STI is not a toggle; it always sets the interrupt 
flag. Repeatedly setting the IF will have no unusual side-effects. 

Section 2 of the code handles the case in which a read request has been 
detected. Here we must simulate an interrupt to the old routine by pushing 
the flags and then calling the old vector as a subroutine. In this case, we want 
control to return to our code before it returns to the program that generated 
the read request, function OH (Read Character) (which returns its results in AL). 
The next few lines of code determine if it is the character we are interested in 
(in this case the "Y" or the "y") and modify that character by returning it with 
the opposite case. 

This basic application could be called an existence proof. By running this 
code, we prove that it is possible to place a controlled layer of code between the 
operating system and the application. That layer can then selectively enforce 
or replace DOS functions, modifying the results to suit us. From this basic 
premise, we can move on to much more interesting applications and make deeper 
explorations into the workings of DOS. 
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Chapter 5 


A Keystroke Expander 


We can now build quite a variety of applications using the foundation of our 
basic resident application. The first few steps, which we have already taken, 
are the hardest. From here, we can find out what these techniques of resident 
programming are good for. 

Given that we can construct a basic program that will replace one keystroke 
with another, perhaps the next step is a program that will replace one keystroke 
with a sequence of keystrokes. After all, how many times do you find yourself 
typing the same commands over and over again? If you could do the same work 
with fewer keystrokes, you could do something else with the time and effort you 
save, if only put your feet up on the table and sip coffee while the machine does 
the work. Dare to be creatively lazy. 

Let's take another look at our minimal keyboard interrupt resident applica­
tion: 

cseg segment 
assume cs:cseg.ds:cseg 
org 100H 

start: 
jmp initialize 

new_keyboard_io proc far 
assume cs:cseg.ds:cseg 
sti 
iret 

new_keyboard_io endp 

55 
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initialize: 
assume 	 cs:cseg,ds:cseg 
mov 	 bx,cs 
mov 	 dS,bx 

mov 	 al,16H 
mov 	 ah,35H 
int 	 21H 
mov 	 old_keyboard_io,bx 
mov 	 old_keyboard_io[2] ,es 
mov 	 dX,offset new_keyboard_io 
mov 	 al,16H 
mov 	 ah,25H 
int 	 21H 

mov dX,offset initialize 

int 27H 


cseg 	 ends 
end start 

By changing just the new~eyboard_io routine, we can modify this code into 
a variety of keyboard applications. Since only new~eyboard_io will change, 
we need to list only the code involved with that routine, since the envelope 
of installation code remains the same. This will be the basis for our keystroke 
expander. Before we write that program, however, we must examine the problem 
and resolve several design issues. 

First, of course, we must decide what kind of keystrokes to expand. Ex­
panding a printing character, such as a letter or number, would make typing 
simple text quite an adventure. Expanding a control character ought to work, 
but DOS already interprets some control characters (for example CONTROL-H) 
as special operators. A set of characters that are used great deal with word 
processing programs, but rarely outside them, are the extended characters. Ex­
tended characters are used for such things as the function keys, and the ALT­
keys. These characters are a good choice for expandable keystrokes. DOS iden­
tifies these characters by preceding them with a zero byte; thus, they are easily 
identifiable. By using extended characters, we will have essentially no impact on 
normal DOS programs and commands. By choosing carefully which extended 
characters to expand we will have a minimal impact on programs that make use 
of the extended character set. 
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The Extended Character Set 

1 34 ALT-G 67 F9 100 CONTROL-F7 
2 36 ALT-H 68 F10 101 CONTROL-F8 
3 Pseudo-NULL 36 ALT-J 69 102 CONTROL-F9 
4 37 ALT-K 70 103 CONTROL-F10 
6 38 ALT-L 71 Home 104 ALT-F1 
6 39 72 UpArrow 106 ALT-F2 
7 40 73 PgUp 106 ALT-F3 
8 41 74 107 ALT-F4 
9 42 76 LeftArrow 108 ALT-F6 
10 43 76 109 ALT-F6 
11 44 ALT-Z 77 RightArrow 110 ALT-F7 
12 46 ALT-X 78 111 ALT-F8 
13 46 ALT-C 79 End 112 ALT-F9 
14 47 ALT-V 80 DownArrow 113 ALT-F10 
16 SHIFT-TAB 48 ALT-B 81 PgDn 114 CONTROL-PrtSc 
16 ALT-Q 49 ALT-N 82 Insert 116 CONTROL-LeftArrow 
17 ALT-W 60 ALT-M 83 Delete 116 CONTROL-R1ghtArrow 
18 ALT-E 61 84 SHIFT-F1 117 CONTROL-End 
19 ALT-R 62 86 SHIFT-F2 118 CONTROL-PgDn 
20 ALT-T 63 86 SHIFT-F3 119 CONTROL-Home 
21 ALT-Y 64 87 SHIFT-F4 120 ALT-1 
22 ALT-U 66 88 SHIFT-F6 121 ALT-2 
23 ALT-I 66 89 SHIFT-F6 122 ALT-3 
24 ALT-O 67 90 SHIFT-F7 123 ALT-4 
26 ALT-P 68 91 SHIFT-F8 124 ALT-6 
26 69 F1 92 SHIFT-F9 126 ALT-6 
27 60 F2 93 SHIF'f~r'10 126 ALT-7 
28 61 F3 94 CONTROL-F1 127 ALT-8 
29 62 F4 96 CONTROL-F2 128 ALT-9 
30 ALT-A 63 F6 96 CONTROL-F3 129 ALT-O 
31 ALT-S 64 F6 97 CONTROL-F4 130 ALT-Hyphen 
32 ALT-D 66 F7 98 CONTROL-F6 131 ALT-= 
33 ALT-F 66 F8 99 CONTROL-F6 132 CONTROL-PgUp 

Second, we must examine the kind of strings we will expand a keystroke into. 
For example, how do we terminate such a string, indicating the boundaries of the 
expansion? One possible choice might be a carriage return (standard ASCII code 
ODH). This would be a logical choice, since commands are normally terminated 
with a carriage return. However, if we choose this as a termination character, 
we cannot easily represent multiple line expansions. Another choice might be 
the $ character. Unfortunately, some DOS system calls use the $ as a string 
terminator. If we used the $ (or any other printing character) we could not 
incorporate that character into our expansion strings. 

The C programming language has the convention that strings are terminated 
by a zero byte. This type of string is sometimes called an ASCIIZ (ASCII Zero­
terminated) string by assembly-language programmers. By zero-terminating 
(sometimes called null-terminating) the strings, we can represent any printing 
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character, as well as all the nonprinting ASCII characters. Since there is no way 
to enter a zero byte from the keyboard, there will never be a conflict between 
the stored representation and the actual keystrokes for ASCII. 

For the purpose of this first example, we will redefine the meaning of the Fl 
key (extended character 59), to have it generate a DIR<CR> command and list a 
directory. Both choices are arbitrary. We could just as easily define Fl to mean 

MASM MACRO; 
LINK MACRO; 
EXE2BIN MACRO.EXE MACRO. COM 

where each line is ended with a carriage return (ODH). We could have chosen 
another character to expand. 

Third, how is the information to be passed back to DOS? DOS normally 
expects one keystroke at a time from the keyboard input queue. Somehow, we 
must contrive to fool DOS into accepting a stream of characters in the place of 
our single character. 

DOS determines when a character is available for input by checking the 
status of the keyboard. A subfunction of the keyboard input ROM call returns 
a set (1) ZF if no characters are waiting and a cleared (0) ZF if a character 
is ready. Obviously, it would be unacceptable to require a separate keystroke, 
a space perhaps, for each matching character in the expanded string. If we 
assume control of this subfunction, we can feed any number of characters to 
DOS by repeatedly deceiving DOS into believing that a character is ready at 
the keyboard and then simply returning a character from our stored stream 
when the corresponding read is requested. 

5.1 A Basic Expander 

We can replace the empty new.-keyboard_io routine with a new piece of code 
that will intercept the functions that we require: 

proc far 
sti 
cmp ah,O A READ request? 
je ksread 
cmp ah,l A STATUS request? 
je ksstat 
assume ds:nothing Let original routine 
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jmp old_keyboard_io do remaining subfunction. 
ksread: 

call keyread Get next char to return 
iret 

ksstat: 
call keystat Get status. 
ret 2 Important! ! ! 

new_keyboard_io endp 

Using this routine, we place function OH (read character) and function lH 
(get keyboard flags) under our control. The code is straightforward, but there 
is one key portion that makes this entire application work. A keyboard status 
check returns its results by setting or clearing ZF. We have already discussed how 
the IRET instruction pops the flags, pushed by the interrupt, and thus restores 
them. Properly setting the value of ZF and then following with an IRET would 
be purposeless, since ZF would immediately be reset to the value it held before 
the interrupt. Thus, we must return from the interrupt without altering the 
value of ZF. This is done by using the optional parameter of the RET instruction. 

The RET instruction has an optional argument that indicates the number of 
bytes to pop off the stack. Usually this is done when a subroutine in a high-level 
language has a number of parameters or variables that it wishes to flush off the 
stack when it returns. In this case, we want to flush the original flags from the 
stack so our altered set of flags can be returned instead. Any flags that have 
been changed in our interrupt handler will return to the interrupted program in 
their altered state, including the critical ZF flag. 

assume ds:nothing 

If expansion is in progress, return a fake status 
of ZF=O, indicating that a character is ready to be 
read. If expansion is not in progress, then 
return the actual status from the keyboard. 

keystat proc near 
cmp cs:current,O 
jne fakestat 
pushf Let original routine 
call old_keyboard_io get keyboard status. 
ret 

fakestat: 
mov bX,l Fake a "char ready" 
cmp bx,O by clearing ZF. 
ret 
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keystat 

keyread 
cmp 
jne 

readchar: 
mov 
pushf 
call 
cmp 
je 

readdone: 
ret 

extended: 
cmp 
jne 

mov 
expandchar: 

push 
mov 
mov 
inc 
pop 
cmp 
je 
ret 

keyread 

current dw 

string db 
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endp 

Read a character from the keyboard input queue, 
if not expanding or the expansion string, 
if expansion is in progress. 

proc near 
cs: current ,0 
expandchar 

cs:current,O Slightly peculiar 
Let original routine 

old_keyboard_io get keyboard status. 
al,O 
extended 

ah,59 Is this character to expand? 
readdone If ~ot, then return it normally. 

If so, then start expanding 
cs:current,offset string 

si 
si,cs:current 
aI, cs: [si] 
cs:current 
si 
al,O Is this end of string? 
readchar If so, then read a real char? 

endp 

Pointer to where we are in the expansion string 
0 

String we will return when an F1 is typed. 
OdH is ASCII Carriage Return 

'OIR',OdH,O 

We have a pointer, current, that points to the next character to be returned 
to DOS. If that pointer is zero, we are not expanding anything. If it is not zero, 
then the pointed-at character is to be returned, unless that character is a zero 
byte. If the pointed-at character is a zero byte, we must turn expansion off and 
get a character from the keyboard. Both keystat, the status checking routine, 
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and keyread, the character-input routine have two halves, one side for when 
expansion is happening, (current is not 0), and one side for when it is not, 
(current is 0). 

If expansion is not happening, the status routine simply calls the old key­
board routine to determine the state of the keyboard input queue. If expansion 
is happening, ZF is cleared, meaning that a character is available. ZF can be set 
or cleared by performing an operation whose result is zero or not zero, respec­
tively. By setting BX to 1 and then comparing it to see if it is equal to zero, 
we are performing an operation whose result is guaranteed to be not zero (not 
equal/false). Thus, the zero flag is cleared. There are, of course, more clever, 
less bulky ways of ensuring that ZF is cleared. This way was chosen for clarity. 

The character-input routine is by far the most complicated part of the whole 
program. This routine determines what the next character to be sent to DOS 
will be. If expansion is off, the older keyboard input routine is called to fetch the 
next character. When that ch.aracter has been acquired, it must be checked to 
see if it is an expanded character. Normally, the character-input routine returns 
its results in the low byte of AX. AL will contain the ASCII character that was 
typed. If an extended character, such as a function key or an ALT key, is typed, 
AL will be zero. In these cases, the extended character code (see the table earlier 
in this chapter) will be contained in the high byte of AX. 

If the character read is an extended character and that extended character 
is the Fl key, we want to begin expansion. We do this by setting the current 
pointer to the start of the expansion string. A frequent mistake is to do a 
mov cs: current. string rather than a mov cs: current. offset string. The 
difference here is that the first would fail, since we would be trying to move a 
byte into a word, and the assembler would force us to make the types match for 
the source and the destination of the move. The second is correct because what 
we want is not the value of the string, but a pointer to the beginning of the 
string. 

If we are expanding, we will fetch the byte at the current pointer and stuff 
it into AL. As long as AL is not zero, we need not worry about the value of AH; 
nothing will examine it. If AL does become zero, we have reached the end of our 
expansion string. This means that we should not return a zero, but instead call 
old~eyboard_io once again to fetch another character from the keyboard. 

In this bit of code there is one slightly peculiar line. You may have noticed 
that, upon entry to this routine, and after checking to be sure that current was 
zero, the very next thing we did in the case in which current was known to be 
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zero was to set it to zero again. By itself, this is a harmless, if somewhat odd, 
thing to do. It is useful, however, in the case we have just been discussing. When 
we have reached the end of the expansion string, current will be non-zero but 
will be pointing at a byte immediately following the one containing the zero that 
indicated the end of the string, since we incremented current immediately after 
fetching what it pointed to. We know that the expansion is completed, and thus 
we need to turn it off. To do this in a straightforward fashion, we would jump to 
an intermediate bit of code that sets current to zero and then unconditionally 
jump toreadchar. By wasting one harmless instruction, we save a step, reduce 
the code size a little, and make things just a little less convoluted. 

In this code, it is important that each reference to memory include a segment 
specification. When control enters our interceptor, we have no idea what is in 
the OS register, but we can make two guesses about the value of OS. It is almost 
certainly not a value that will do us any good, and its value is probably quite 
important to the program that was interrupted. Therefore, we must take pains 
to ensure that each reference we make to memory uses the correct segment, 
which will always be the same value as CS. We must also be sure not to alter any 
register without making provisions to restore its value before releasing control. 

5.2 Expanding on Multiple Keys 

The preceeding program expanded one special key into one string. Sometimes, 
as they say, once is not enough. Suppose we want to paint in broader stripes, 
expand a set of keys in some reasonable fashion. How might this be done? 

One obvious way would be to modify our simple single-character program 
to take its character and expansion string as arguments. That way we might 
define a bunch of keys in the AUTOEXEC. BAT file like this: 

MACRO F1 OIR 
MACRO F2 OIR/W 
MACRO F3 OIR *.ASM 
MACRO F4 OIR *.COM 
MACRO F5 OIR * .EXE 

By doing this, we could stack each successive key expander on the next. The 
values of individual macros would be defined in the AUTOEXEC . BAT file and could 
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be changed at each reboot. Some of the design choices for our key expander have 
a positive impact on this approach. Since we concerned ourself only with the 
expanded (zero-prefixed) character set and designated, in the C fashion, that 
our expansion strings be terminated by a zero, our macro strings cannot contain 
any expanded characters. This is quite a lucky break for us, because having 
expanded characters in macro strings in this design could be disastrous. Each 
time we run MACRO in AUTOEXEC. BAT, it will link a new copy of the program 
to the previous keyboard handler. The first time we do so, we will add a layer 
between the call and the original ROM handler. The second time, we will add a 
layer above the first additional layer. The next time, we add a third layer, and 
so on. Each character we type must filter through each and every layer. Each 
expanded character must filter through any layers above the one at which it was 
declared. As long as no two calls replace the same special character, there is 
no need to impose any order on the invocations of MACRO. If any character is 
declared twice, the last one to be called will be used. Imagine, however, if each 
and every layer could alter the meaning of the expansion string as the character 
filters upstream. You might get things to work, but chances are you would be 
pulling your hair out over unexpected peculiarities. 

For a very small number of characters, this layer-upon-Iayer method is ac­
ceptable. Since our expander is approximately a hundred bytes of resident code, 
each layer will remove a hundred bytes or so from available memory. To add 
new values for all 128 function keys would cost about 13 kilobytes of memory. 
Surely, some less piecemeal approach would let us do this in less memory, with 
less overhead per character. 

As you may have guessed, that last statement was a bit of rhetoric. If we 
can recognize one character in a small program, we can easily recognize more 
than one. By using the expanded key to index into a table of strings, we can 
bind any of the possible expanded characters to a string. 

A character is a single byte. A pointer to a string is two bytes. For 128 
expanded characters, this adds up to a total table size of 384 bytes. Estimating 
the additional code necessary to be about 50 bytes gives us a total code size of 
rcmghly half a kilobyte. Add to that the size of the total set of expansion strings 
(say, 20 bytes each), and you can see that we need about 2.5 kilobytes to expand 
all 128 keys, or about 10 kilobytes less than the piecemeal approach. Since we 
have less overhead per character, this approach is clearly a winner. 

It may be that we don't want to replace all the extended characters. For 
example, we may want to leave the cursor keys and the page keys alone. We may 
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not have useful things to bind to all the other keys either. For this reason, we 
probably don't want to blindly use the key code as an index into a sparsely filled 
table. Instead, we want to replace only the keys that we choose and have the rest 
pass through unchanged. If we replace roughly half the keys, our total cost in 
memory becomes something in the neighborhood of 1 kilobyte, with additional 
memory costs that track exactly with the size of the expansion string, plus a 
byte to indicate the character and a byte to terminate the string. By rethinking 
the problem, we have dropped more than an order of magnitude in size, for the 
typical case. 

The only code that must change to go from a single-key expander to a 
multiple-key expander is the keyread routine and the data area: 

Read a character from the keyboard input queue, 
if not expanding or the expansion string, 
if expansion is in progress. 

keyread proc near 
push si 
cmp cs:current,O 
jne expandchar 

readchar: 
mov cs: current, 0 Slightly peculiar 
pushf Let original routine 
call old_keyboard_io get keyboard status. 
cmp al,O 
je extended 
jmp readdone 

extended: 
mov si,offset keytab 

nextext: 
cmp byte ptr cs: [si] ,0 Is this end of table? 
je readdone 
cmp ah,cs: [si] 
je startexpand 
add si,3 
jmp nextext 

startexpand: 
push bx 
add si,i 
mov bx,cs: [si] 
mov cs: current ,bx If so, start expanding 

expandchar: 
mov si,cs:current 
mov al, cs: [si] 
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inc 
cmp 
je 

readdone: 
pop 
ret 

keyread 

current 	dw 

keytab 	 db 
dw 
db 
dw 
db 
dw 
db 
dw 
db 
dw 
db 
dw 
db 

dir_cmd 
dir_wide 
dir_asm 
dir_com 
dir_exe 
make_macro 

cs:current 
al,O 
readchar 

si 

endp 

o 

59 
dir_cmd 
60 
dir_wide 
61 
dir_asm 
62 
dir_com 
63 
dir_exe 
50 
make_macro 

End of string? 

If so, read a char? 


o ; This must be last in key table 

db 'DIR' ,OdR,O 
db 'DIR/W' ,OdR,O 
db 'DIR *.ASM' ,OdR,O 
db 'DIR *.COM' ,OdR,O 
db 'DIR *.EXE' ,OdR,O 
db 'MASM MACRO; , ,OdR, 

'LINK MACRO; ',OdR, 
'EXE2BIN MACRO.EXE MACRO. COM' ,OdR,O 

Of course, as with any design choice, there are trade-off's. By choosing to 
search an unordered table rather than indexing into a sorted table, we make the 
time it takes the system to act on an expanded character dependent on that 
character's position in the table. If this search time becomes excessive, we could 
manually sort the table and then use one of the classic searching algorithms to 
look for the correct entry. The search loop used in the above code, however, is 
just six instructions long. The maximum table size is 128 entries. For a worst­
case match, the machine must execute approximately 768 (6 * 128) instructions. 
On a generic IBM PC, 768 instructions would take on the order of a millisecond 
to execute. We could make this a little faster at the cost of making the code a 
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little larger, but it hardly seems worth it. 
Compare this to the case in which we simply accumulated key expanders for 

each "search", meaning the operation necessary to compare the current character 
with the target character. We would require about eight to ten instructions, one 
of which would be a subroutine call. Subroutine calls can be quite expensive on 
some machines. On an 8086/8088, subroutines calls are time consuming, but 
not vastly more so than other branching instructions (this is not the case for 
subroutine calls in a high level language, however). Anyway, the worst case time 
here is something around 1200 instructions. Not too bad, since the perceptible 
time is roughly the same, but still less efficient. 

So by rethinking the problem, we have saved a little time and a lot of impor­
tant memory. We also have made the human interface a little less convenient, 
since we have moved the definition of the strings to the assembly source. There 
is nothing preventing us from rewriting this program to load the strings from 
a file at initialization time, however. This should not change the resident size 
at all, since all the initialization code to load the file can be discarded, like the 
first stage of a rocket, after it has done its job. The loader code need not take 
up space in resident memory at all. 

5.3 MACRO. ASM - Single-key Expander 

The following program expands a single keystroke into a command string. 

cseg segment 
assume cs:cseg,ds:cseg 
org 100H 

start: 
jmp initialize 

assume ds:nothing 
new_keyboard_io proc far 

sti 
cmp ah,O Is this call a READ request? 
je ksread 
cmp ah,l Is it a STATUS request? 
je ksstat Let original routine 
jmp old_keyboard_io handle remaining subfunction. 

ksread: 
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call 
iret 

ksstat: 
call 
ret 

new_keyboard_io 

keyread 
cmp 
jne 

readchar: 
mov 
pushf 
call 
cmp 
je 

readdone: 
ret 

extended: 
cmp 
jne 

mov 
expandchar: 

push 
mov 
mov 
inc 
pop 
cmp 
je 
ret 

keyread 

keystat 
cmp 
jne 
pushf 
call 
ret 

fakestat; 
mov 
cmp 
ret 

keyread , Get next character to return 

keystat Return appropriate status. 
2 Important! ! ! 

endp 

proc near 
cs: current ,0 
expandchar 

cs: current ,0 Slightly peculiar 
Let original routine 

old_keyboard_io determine keyboard status. 
al,O 
extended 

ah,59 Is this character to expand? 
readdone If not, return it normally. 

If so, start expanding 
cs:current,offset string 

si 
si,cs:current 
aI, cs: [si] 
cs:current 
si 
al,O Is this end of string? 
readchar If so, then read a real char? 

endp 

proc near 
cs:current,O 
fakestat 

Let original routine 
determine keyboard status. 

bX,l Fake a "Character ready" by 
bx,O clearing ZF. 
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keystat 	 endp 

current dw 	 o 
string db 	 'masm macro; ',OdH, 

'link macro; , ,OdH, 
'exe2bin macro.exe macro.com',OdH,O 

initialize: 
assume cs:cseg,ds:cseg 
mov bx,cs 
mov dS,bx 

mov al,16H 

mov ah,35H 

int 21H 

mov old_keyboard_io,bx 

mov old_kayboard_io[2] ,es 

mov dx,offset new_keyboard_io 

mov al,16H 

mov ah,25H 

int 21H 


mov dx,offset initialize 

int 27H 


cseg 	 ends 
end start 

} 

5.4 	 MACTAB . ASM - General Keystroke Expander 

This program expands any number of extended keys into individual command 
strings by means of a lookup table. 

cseg 	 segment 
assume cs:cseg,ds:cseg 
org 100H 

start: 
jmp initialize 

assume 	 ds:nothing 
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new_keyboard_io proc far 
sti 
cmp 
je 
cmp 
je 
jmp 

ksread: 
call 
iret 

ksstat: 
call 
ret 

new_keyboard_io 

keystat 
cmp 
jne 
pushf 
call 
ret 

fakestat: 
mov 
cmp 
ret 

keystat 

ah,O 
ksread 
ah,l 
ksstat 
old_keyboard_io 

keyread 

keystat 
2 

endp 

proc near 
cs: current ,0 
fakestat 

bX,l 
bx,O 

endp 

Is this call a READ request? 

Is it a STATUS request? 
Let original routine 
do remaining subfunction. 

Get next character to return 

Return appropriate status. 
Important! ! ! 

Let original routine 
determine keyboard status. 

Fake a "Character ready" by 
clearing ZF. 

keyread 
push 
cmp 
jne 

readchar: 
mov 
pushf 
call 
cmp 
je 
jmp 

extended: 
mov 

nextext: 

Read a character from the keyboard input queue, 
if not expanding or expansion string, 
if expansion is in progress. 

proc near 
si 
cs:current,O 
expandchar 

cs: current ,0 Slightly peculiar 
Let original routine 

old_keyboard_io get keyboard status. 
al,O 
extended 
readdone 

si,offset keytab 
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cmp 
je 
cmp 
je 
add 
jmp 

startexpand : 
add 
push 
mov 
mov 
pop 

expandchar: 
mov 
mov 
inc 
cmp 
je 

readdone: 
pop 
ret 

keyread 

current 	dw 

keytab 	 db 
dw 
db 
dw 
db 
dw 
db 
dw 
db 
dw 
db 
dw 
db 

dir_cmd 
dir_wide 
dir_asm 
dir_com 
dir_exe 
make_macro 
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byte ptr cs: [si] ,0 ; End of table? 
readdone 
ah, cs: [si] 
startexpand 
si,3 
nextext 

si,1 
bx 
bx,cs: [si] 
cs: current ,bx 
bx 

si,cs:current 
aI, cs: [si] 
cs:current 
al,O End of string? 
readchar then read a real char 

si 

endp 

0 

59 
dir_cmd 
60 
dir_wide 
61 
dir_asm 
62 
dir_com 
63 
dir_exe 
50 
make_macro 
o 

db 'OIR' ,OdH,O 
db 'OIR/W' ,OdH,O 
db 'OIR *.ASM' ,OdH,O 
db 'OIR *.CoM' ,OdH,O 
db 'DIR *.EXE' ,OdH,O 
db 'MASM MACRO; ',OdH, 
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'LINK MACRO; , ,OdH, 

'EXE2BIN MACRO.EXE MACRO. COM' ,OdH,O 


initialize : 
assume cs:cseg,ds:cseg 
mov bx,cs 
mov dS,bx 

mov aI,16H 

mov ah,35H 

int 21H 

mov old_keyboard_io,bx 

mov old_keyboard_io[2] ,es 

mov dX,offset new_keyboard_io 

mov aI,16H 

mov ah,25H 

int 21H 


mov dX,offset initialize 

int 27H 


cseg 	 ends 
end start 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 
I
I 
I
I 
I
I 
I 
I 
I 



Chapter 6 

U sing the Timer 

Up to this point, we have concentrated on linking to the keyboard interrupt of 
the IBM PC. The keyboard is a good linkage for functions that should happen 
"at the touch of a button"-in other words, applications that we run sporadically. 
But sometimes we want to perform a small job continuously while still using the 
IBM PC for its normal work. 

Larger, more powerful computer systems have the ability to run several tasks 
at what appears to be the same time. This is known as multi-tasking. The design 
of the IBM PC does not permit us to run several large jobs at once. By being 
slightly clever, however, we can manage to do one large job and a few very 
small jobs at the same time. In the jargon of larger computer systems, such 
small tasks would be known as a "lightweight processes." A good example of 
a lightweight process is a clock display that appears somewhere on the screen, 
always telling us the correct time of day. A pleasant, well-placed clock display is 
a useful addition to a personal computer, especially a portable computer. The 
one listed in this chapter kept the author from missing several airplanes. 

One of the devices an IBM PC has built into it is a timer. This timer sends an 
interrupt to the IBM PC exactly 18.2 times per second. DOS uses this interrupt 
to manage its time-of-day clock. By linking to this timer interrupt, we can have 
our "lightweight process" run 18.2 times per second as well. 

The timer is a tricky interrupt to plug into. Since it occurs regularly while 
other programs are running, there is no telling what function was interrupted. 
If the function that was running is used within the body of the timer interrupt 
hatldler and that function is not reentrant, there is a good chance that the 
system will crash. 

73 



74 CHAPTER 6. USING THE TIMER 

6.1 Reentrant code 

Let's talk for a moment about what it means for a process or function to be 
reentrant. This is a term used a great deal by designers of multi-tasking operating 
systems. A reentrant routine is one that can be successfully interrupted by itself. 
That definition may sound a little circular and confusing, so further explanation 
is in order. Imagine that you are a designer of a multi-tasking operating system. 
You will have several processes running at the same time, meaning each gets a 
few processor cycles in turn, over and over again. Each of these processes may 
wish to write characters to the console terminal, for example, status messages. 

Your current job is to write the routine that prints characters on the console 
terminal. Since there are many processes that need to do this exact operation, 
you'd like to write your code so that each process can use the same print routine. 
Since all of these processes will be running in the same memory space, you'd 
rather they not have to make individual copies of each common routine, such as 
the print routine. That would be a waste of space. 

If you arrange things so that only one copy will be used, then how you write 
that particular routine becomes very important. Let's say that this is a piece of 
the assembly language for such a routine: 

printchar proc far 

mov temp.al Section 1 
move char to temp storage 

mov al.temp Section 2 
retrieve the char 

printchar endp 

temp db 0 

Suppose an interrupt occurred, causing control to shift (called a context 
switch) to another running task that also happened to be printing. Worse yet, 
suppose the context switch occurred after Section 1 and before Section 2 in the 
interrupted code and allowed Section 1 of the interrupting code to run. The 
next time the interrupted code was allowed to run, the value that should have 
been in temp will be gone. It was overwritten by the interrupting routine. 

Suppose we rewrote that routine to store values on the stack. Since each 
task has its own program connter and stack pointer, switching contexts would 
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allow the same code to run without interfering with itself. 

printchar proc far 

push ax Section 1 
move char to temp storage 

pop ax Section 2 
retrieve the char 

printchar endp 

This is all fine for true multi-tasking systems. The IBM PC, however, has 
no mechanism for doing a real context switch. A great many of the DOS and 
ROM routines cannot be interrupted by themselves. By linking to the DOS 
timer interrupt, we push the system in a direction it was not intended to go. 
Extreme care is necessary when writing timer-based code. 

The best way to avoid problems with non-reentrant routines is never to call 
any from within a timer interrupt handler. This limits the kinds of problems 
you can Tun into. Another thing to avoid is any lengthy I/O. This means input 
or output to the disk, from the keyboard, and the communications ports. You 
should be able to do output to the screen safely enough. 

A timer interrupt has a "window" of about 55 milliseconds in which to oper­
ate, since it would be disastrous for the next timer interrupt to come in before 
the last one has finished processing. But don't get the idea that your code can 
use up all that time. Part of that time is taken up by what DOS must do to 
handle its timer services. This must happen at all costs, or DOS will grind 
to a halt. Any remaining milliseconds are used to run the current application. 
Processor cycles that you consume by adding to the timer overhead reduce the 
amount of processing time that the main application will have available. Thus, 
it is important to be frugal with the amount of code you put in a timer interrupt 
handler. 

6.2 Building a Desk Clock 

Even though there are many things that should not be done from within a timer 
interrupt handler, there are still many useful things that can be done with one. 

Probably the most familiar timer-based application is that of a desk clock. 
This is a small resident application that continuously displays the time of day 
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somewhere on the screen. The sources for these programs are usually quite 
popular on bulletin boards, so they are easily available. We will write one here, 
one of a slightly different design, so as not to duplicate what others have done. 
Perhaps we can also shed some light on the conventional design by looking at a 
desk clock in a slightly different perspective. 

A normal program can determine the system time in several ways. It can 
read the current tick count, which is the internal counter DOS uses to keep 
track of the time of day. This count is then used to compute the time. Another 
approach uses the DOS function that performs this computation for you and 
simply returns the time of day. 

Within a timer interrupt handler, calling either of these functions is only 
slightly more difficult. 

For our desk clock, we'll take a somewhat different approach. We won't do 
any calculations or make any DOS calls, save the minimum necessary display 
calls. Instead, we will compute the time in an "open-loop" fashion. This method 
makes for a very small, very fast program, one that gives considerably less 
overhead for the timer than the other methods. The disadvantage here is that 
we are computing the time forward from when the program was first installed. 
If you change DOS time you must reboot and reinstall the clock before the desk 
clock time will agree. 

By "open loop" we mean a method by which we set the initial time and then 
compute the current time incrementally, without ever rechecking with DOS. A 
"closed loop" program would be one in which we continually asked DOS for 
the time and then displayed the result. Either method is acceptable in the 
short run. In the long run, the only difference is that of cumulative error. The 
clock shown here has been measured to track within a few seconds of the real 
clock over a period of some two days. The total error would be one of about a 
minute per month. Since few IBM PC systems go for an entire month without 
a reboot, this clock should be perfectly acceptable. By applying a somewhat 
fancier initialization algorithm and tightening up the code (which was written 
for clarity, not speed), the accuracy of this clock would approach that of the 
DOS clock. 

To start, we need to rewrite our basic resident application to replace the 
timer vector. By modifying the interrupt number and the variable names, we 
can get a good start on this code. The application shown here simply interposes 
a layer between the normal timer interrupt handler, which we control. 

cseg segment para public 'CODE' 
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org 100H 
assume cs:cseg,ds:cseg 

start: 
jmp initialize 

old_timer dd 

timer_int proc far 
sti 
pushf 
assume ds:nothing 
call old_timer 
iret 

timer_int endp 

initialize: 
mov bx,cs 
mov dS,bx 

mov al,08H 
mov ah,35H 
int 21H 
mov old_timer,bx 
mov old_timer [2] ,es 

mov dX,offset initialize 
int 27H 

cseg ends 
end start 

Next, to construct a clock, we must modify our timeLint routine so that 
it calls a routine of our own devising to handle the needs of our desk clock. In 
the past, we have called the standard routine just after our custom code had 
completed. In the case of the timer, we want to call the timer routine first. The 
reason for this is simple: it is much more important that the system clock be 
updated on the tick than our desk clock. Since both the system routine and our 
routine take time to execute, and the system routine expects to be called directly 
on the timer tick, we must permit it to run first. Our code, being less critical, 
can run after the system routine without significant gain in error. In fact, since 
the system routine runs more or less in a fixed length of time, there should be 
very little cumulative error by running our code after the system code. If the 
system code were to run last, the cumulative error would be greater, since this 
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routine does not run in constant time. Even worse, the error would be in the 
master system clock, used for marking files and so on, and thus have a greater 
impact on the system as a whole. 

As a first pass, we modify timer_int to display an empty time string in 
the upper right corner of the screen. This location was chosen as the least 
obtrusive area of the display; the position is entirely up to the discretion of the 
programmer. The clock can actually be positioned anywhere on the screen. 

One design choice we must make is how the time is to be displayed. Most 
civilians prefer the twelve-hour format, midnight to noon, and one to eleven, 
rather than the twenty-four-hour format used by the armed services and the 
IBM PC. Showing hours and minutes is quite adequate. A seconds display can 
sometimes be useful, but it may make the screen too active, and distract from 
normal work. For this example, we will display the hour and the minute, in 
twelve.,.hour format. Another frill will be the absence of a leading zero on hours 
between one and nine. The hour and the minute will be separated by a colon. 

Since we want to display a maximum of five characters, we could either write 
this into the program or use code already written to display an arbitrary string, 
using the ROM display routines. Since we may want to modify this code to do 
other things, the previous code we wrote to display a string and position the 
cursor is probably the better choice. 

timer_int proc far 
sti 
pushf 
assume ds:nothing 
call old_timer 
call timer 
iret 

timer_int endp 

timer proc near 
assume cs:cseg,ds:cseg 
push ds Save modified registers 
push bx 

mov bx,cs Set data segment to be same 
mov dS,bx as code segment via BX 
call dtime Else redisplay 

pop bx Restore registers 
pop ds 
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ret 
timer endp 

dtime proc near 
push si Save modified registers 
push bx 

call get_pos , Save previous cursor position 
push bx on stack 
mov bx,position Go to upper right corner 
call set_pos 
mov si,offset time Display current time string 
call dstring 
pop bx , Restore from stack 
call set_pos old cursor position 

pop bx 
pop si 
ret 

dtime endp 

dstring proc near 
push si 
push ax 
cmp si,O Check for a null pOinter 
je dsdone 

dloop: 
mov al, [si] Get a character from string 
cmp al,O A NULL? (termination char) 
je dsdone If so, quit 
call dchar If not, display character 
inc si move pointer to next char 
jmp dloop and go around again 

dsdone: 
pop ax 
pop si 
ret 

dstring endp 

dchar proc near 
push ax 
push bx 
mov bh,l 
mov ah,OEH 
int 10H 
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dchar 

pop 
pop 
ret 

bx 
ax 

endp 

push 
push 
push 
push 

proc 
ax 
bx 
cx 
dx 

near 

mov 
mov 
int 
mov 

ah,03R 
bh,O 
lOR 
bX,dx 

Function is GET POSITION 

get_pos 

pop 
pop 
pop 
pop 
ret 

dx 
cx 
bx 
ax 

endp 

push 
push 
push 

proc 
ax 
bx 
dx 

near 

mov 
mov 
mov 
int 

dX,bx 
ah,02R 
bh,O 
lOR 

Function is SET POSITION 

set_pos 

pop 
pop 
pop 
ret 

dx 
bx 
ax 

endp 

position 
time 

dw 
db 

004BR 
'12:00' ,0 

This code should display a "12:00" in the upper right corner of the screen, 
regardless of the screen activity of the system. If the characters are scrolled 
off the screen, they will be refreshed 55 milliseconds later. Because the display 
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process happens on every timer tick, the clock will appear to be fairly stable but 
you may notice a slight flicker around the base of the characters as the cursor 
continually goes to that position to refresh the display. For this application, 
18.2 times per second is somewhat faster than necessary for a refresh, and the 
flickering is vaguely annoying. One way to reduce the number of times per second 
is to introduce another counter loop within timer that reduces the number of 
times dtime is called. For example: 

timer proc near 
assume cs:cseg,ds:cseg 
push ds Save modified registers 
push bx 

mov bx,cs Set data segment to be same 
mov dS,bx as code segment via BX 
inc refresh 18.2 times per second causes 
cmp refresh,3 flicker. Try 4.5/second 
jl rdone If not a whole refresh, skip 
call dtime Else redisplay 
mov refresh,O and reset refresh counter. 

rdone: 

pop bx Restore registers 
pop ds 
ret 

timer endp 

You will see this delay technique used several times in this code. Another 
use for this is to stagger the computational load on the interrupt handler. By 
carefully selecting the loop number, we could perform a computation on one 
cycle, a display on the next, and so on. By doing this, we can reduce the 
maximum length of any given interrupt-handler call, and still do the same work. 

6.3 What Time Is It, Anyway? 

At this point, there are two remaining portions of the clock to be constructed. 
We have the portion that will display a valid time string in the correct location 
on the screen. What we need now is a module that will advance that time 
correctly, from minute to minute, and a module that will determine the correct 
time. The next step is to build the mechanism of the clock; we'll worry about 
setting the time later. 
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Building a program is like capturing a thought. New ways of thinking about 
a problem often provide new mechanisms for solving problems. Many people 
would design a clock with a byte for the hour and a byte for the minute, and 
write a conversion routine that takes a byte and makes it into an ASCII string. 
But this is not the only way of thinking about a clock, and it may not be the 
best way. As an exercise in alternatives, let's look at a different kind of clock. 
We might look at the five characters as two numbers separated by a colon, with 
the first going from 1 to 12, and the second going from 0 to 59. Or we might 
look at them and see five separate characters. The first may be a space or a 
1; the second, 0 through 9; the third, always a colon; the fourth 1 through 6; 
and the last 0 through 9. We could imagine a small machine, clicking through 
successive combinations of characters, always producing a valid time. After all, 
this is how clock makers have seen mechanical digital clocks for years. 

If you are given the time "11:48" and are asked to produce the next valid 
time one minute later, you can do it without hesitation. For that example, it 
may seem very much like adding a 1 to the number 48. If, however, you are 
given the time "12:59", and are asked the same question, you would not use 
simple addition at all. You have learned the rules for valid timekeeping and 
apply them daily. Why not write your program to follow the rules you yourself 
use, rather than transposing those rules into an unfamiliar domain? 

As we all know, in a twelve-hour clock, one moves from each minute to its 
successor using these rules, applied successively from top to bottom: 

• 	If advancing the minutes column and the minutes column is a nine, the 
minutes column becomes zero and the tens-of-minutes column advances 
by one. 

• 	If advancing the tens-of-minutes column and the tens-of-minutes column 
is a five, the tens-of-minutes column becomes a zero, and the hours column 
advances by one. 

• 	If advancing the hours column and the hours column is a two, and the 
tens-of-hours column is a one, the hours column becomes a one and the 
the tens-of-hours column becomes empty. 

Let's convert these rules into an assembly-language routine, sort of a minia­
ture expert system, that will correctly advance the time for us. In computer 
science, the type of routine where the rules for moving from one state to the 
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next are defined and repeatedly applied is known as a finite-state machine, or 
FSM. 

The characters are located in the time string, with the tens-of-hours at 
time [0], the hours at time [1], the colon at time [2], the tens-of-minutes at 
time [3] , and the minutes at time [4] . 

settime proc near 
cmp byte ptr time [4] ,'9' ; Compute the one minutes 
je tenthmin If minutes = "9", advance the ten 
inc byte ptr time[4] 
jmp setdone 

tenthmin: ; Minutes must advance past 9. 
mov byte ptr time [4] ,'0' Compute the ten minutes 
cmp byte ptr time [3] , ' 5' ; If "59", then advance one hour 
je nexthour 
inc byte ptr time[3] 
jmp setdone 

nexthour: ; Total minutes must advance past 59 
mov byte ptr time [3] ,'0' ; Compute the hours 
cmp byte ptr time[1],'2' ; Might be" 2" or "12" 
je twelvethhour ; Wrap around at 12? 
cmp byte ptr time [1] ,'9' ; If " 9", to to "10" 
je tenthhour 
inc byte ptr time[l] 
jmp setdone 

twelvethhour: ; Advance from 12 or 03? 
cmp byte ptr time [0] " , ; Is it " 2" 
je thirdhour ; If so, then go to " 3" 
mov byte ptr time [0] ," If not, it must be "12" 
mov byte ptr time [1] , ' l' ; so go to " 1" 
jmp setdone 

thirdhour: Go from 03 to 04 
inc byte ptr time[l]; Go to " 3" 
jmp setdone 

tenthhour: Go from 09 to 10 
mov byte ptr time [0] , ' l' ; Go to "10" 
mov byte ptr time [1] ,'0' 

setdone: 
ret 

settime endp 

Now that we have the settime routine, we can try it out by changing timer 
slightly, adding a call to settime after the call to dtime. We want to add the 
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call after rather than before so that our displayed sequence will start with 12: 00, 
rather than 12: 01. 

timer proc near 
assume cs:cseg,ds:cseg 
push ds Save modified registers 
push bx 

mov bx,cs Set data segment to be same 
mov dS,bx as code segment via BX 
inc refresh 18.2 times per second causes 
cmp refresh,3 flicker. Try 4.5/second 
jl rdone If not a whole refresh, skip 
call dtime Else redisplay 
call settime Advance to next logical time 
mov refresh,O and reset refresh counter. 

rdone: 

pop bx Restore registers 
pop ds 
ret 

timer endp 

By building an application with just the code shown here, we can cycle 
through all the possible clock values in a short time. Because we are running 
settime at the display rate, it will crank through all the possible time values at 
very high speed. We can see if there are any incorrect times displayed, such as 
12: 60 or 13: 00. By spending a few minutes watching the display, we can find 
out if our finite-state machine is correct. 

6.4 Winding the Watch 

A wristwatch has four basic subsystems. Most familiar to us is the dial and 
the hands. This portion of a watch actually displays the time in a form that 
we can read. Underneath that is the gearing that turns the hands according 
to some basic rules, such as the amount of arc that a second will sweep out 
and what happens when the second, minute, or hour hand reaches the twelve. 
Behind all that is sort of a metronome, a device that sends a pulse once per 
second or minute to the turning mechanism. This is the heart of the watch, the 
driving function that makes all the other pieces useful. The last piece is the 
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overall control mechanism that lets us set the correct time from which all else 
will proceed smoothly. 

We have built the display, and the gears that turn the hands. What we need 
now is the device that ticks, once per second, and the method for setting the 
correct time. 

Ticking is easy. We know that our routine will be called 18.2 times per 
second. We know that there are usually 60 seconds per minute. By multiplying 
these two, we get 1092 ticks per minute, a nice integer number. If we rewrite 
timer one more time, we can arrange things so that settime is called once per 
minute, while dtime is called 4.5 times per second, as before. In a concession 
to digital watches, we can also add a nice little frill that blinks the semicolon 
approximately once per second, just for fun. 

timer proc near 
assume cs:cseg,ds:cseg 
push ds 
push bx 

mov bx,cs Set the data segment to be the same 
mov dS,bx as the code segment via BX 
inc tick Advance one tick 
cmp tick,1092 There are 1092 ticks per minute 
jl tdone If not a whole minute, just redisplay 
call settime Else recompute the time 
mov tick,O and reset the tick counter 

tdone: 
inc refresh Refreshing 18.2 times per second causes 
cmp refresh,3 flicker. Try only 4.5 times per second 
jl rdone If not a whole refresh period, do nothing 
call dtime Else redisplay 
mov refresh,O and reset the refresh counter. 

rdone: 
inc blinker 
cmp blinker,9 Approximately,but not exactly,half a second 
jl bdone 
call blink 
mov blinker,O 

bdone: 
pop bx 
pop ds 
ret 

timer endp 
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blink proc near 
cmp byte ptr time[2] ,':' ; Is the colon on 
je bloff ; If so turn it off 
mov byte ptr time [2] ,':'; If not, turn it on 
jmp bldone 

bloff : 
mov byte ptr time[2],' '; Replace colon with space 

bldone: 
ret 

blink endp 

Of course, we have to add the new variables to the data area: 

tick dw o 
refresh dw o 
blinker dw o 

Now we have all of our clock built except the time-setting function. We have 
made this an open-loop design, one that simply needs a tick to advance the time 
correctly. If we place the correct time of day in the time string, we can just 
let the clock run free from that point. Since we need only to set the time to 
start, we can do this in the installation portion of our .COM program, the part 
that will not remain resident. By doing this, only the bare minimum of clock 
functions have to remain locked in memory. 

To set the time, we will use the DOS function INT 21H function 2CH (get 
system time). This function computes the system's idea of the correct time of 
day and returns it to us, with the hour in CH and the minute in CL. The hour 
ranges from 0 to 23, with 0 being midnight and 23 being 11 PM. The minute 
ranges from 0 to 59. 

The second is also returned to us, in DH, which can go from 0 to 59. DL 
contains the hundredths of seconds, but we will ignore that value for this appli­
cation. Because the IBM PC provides us with a clock tick 18.2 times per second, 
we cannot easily measure an exact second. We can either go for 18 clock ticks, 
which is 0.98 seconds, or 19 clock ticks, which is 1.04 seconds. For the purposes 
of a desk clock that displays only hours and minutes, we need not worry too 
much about actual seconds. The nearest integer multiple of 18.2 is 91 (5 x 18.2). 
If we can get the clock set correctly to within 91 ticks, it will have a maximum 
error of 5 seconds, which is pretty good for a pocket watch. 

We must modify the installation code just a bit for this application, by adding 
the code that sets the time correctly. We want be sure that the very last thing 
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we do is modify the timer interrupt. If we modified the interrupt first, and the 
time-setting code took more than 55 milliseconds to run in the best case, or a 
timer tick interrupt occurred before the time was correctly set in the worst case, 
we would have two "processes" competing for the same five bytes of memory. 
To ensure that everything occurs in the proper order, we simply do not reset 
the timer interrupt until we are ready to exit. 

Our modifications to the initialization code need not be optimized in any 
way. The only impact optimization would have is to slightly reduce the start-up 
time or slightly reduce the amount of space this application takes up on disk. 
The initialization code is thrown away when the . COM file exits, so we can write 
it to suit our fancy. 

In this case, the initialization code is written in the same style as the res­
ident application. Another method might have been to apply a byte-printing 
algorithm to the hour and minute bytes, simply printing them into the string 
rather than to the screen or the printer. 

By treating the hour byte as a key that determines how we set our clock 
characters, just as we did in the clock algorithm for the resident application, we 
can, except for midnight, use the same code for the afternoon that we use for 
the morning. To explain further, if we have an algorithm for setting the clock 
correctly in the hours from 1 to 12, we can use the same code for the afternoon 
hours, from 13 to 23 on the IBM PC, by simply subtracting 12 and looping back 
through the code. We needn't have another set of cases for the afternoon. The 
only special case is midnight, the zeroth hour according to IBM. 

Applying this same reducing principle, we can use the same algorithm for 
the hours column, by determining if the hour is greater than or equal to ten. If 
we start by putting a space in the tens-of-hours column, then we compute the 
hour column. If the hour is less than ten, we simply convert the number to an 
ASCII digit and put it in the hours column. If the hour is greater than ten, put 
a one in the tens-of-hour column, subtract ten, and apply the algorithm for less 
than ten. 

Converting a byte in the range of 0 to 9 to an ASCII character in the range 
"0" through "9" is easy. We know that the characters "0" through "9" fall 
sequentially in the ASCII character set. If we simply add an ASCII zero to the 
byte we want to convert, we will have the correct character. Incidentally, it is 
exactly this reason that allows us to advance a digit by simply adding one to its 
ASCII character code in the clock. 

After we have the hours set, we can set the minutes by applying the division 
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method you learned in grade school: repeated subtraction. We could have done a 
division in about the same number of instructions, but the repeated subtraction 
method is easily understood, simple to use, and somewhat novel. It never hurts 
to look for alternative ways to code a particular function. 

initialize: 
mov bx,cs 
mov dS,bx 

mov al,OSH 
mov ah,35H 
int 2iH 
mov old_timer,bx 
mov old_timer [2] ,es 

mov ah,2CH Get the time of day from DOS 
int 2iH 

cmp ch,O Is it the witching hour? 
jg hour If not, handle it normally 
add ch,i2 Else convert to noon and handle that 

hour: 
cmp ch,i2 Is it after noon? 
jle day If not, just compute normally 
sub ch,i2 If so, subtract i2 and use same code 
mov byte ptr time [0] " '; Set initial value of tens column 

day: Set time for the twelve hour clock 
cmp ch,iO Is it after iO? 
jl early If not, just deal with the one hours 
sub ch,iO Else subtract iO 
mov byte ptr time [0] ,'i'; set tens column, and handle the ones 

early: ; Set the time for the one hour column 
add ch, '0' Convert number to digit. 
mov byte ptr time[i] ,ch ; And set the ones hour column 

minute: ; Set the tens of minutes 
cmp cl,iO Determine how many tens of minutes 
jl minset we need to set the clock to by 
sub cl,iO means of repeated subtraction. 
inc byte ptr time[3] Initialized to '0' 
jmp minute 

minset: ; Set the minutes, by simply converting the remainder 
add cl, '0' 
mov byte ptr time [4] ,cl 

mov tick,O Clear the tick 
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second: 
cmp dh,5 5 seconds is the smallest integer 
jle clockstart granularity we can measure. 
add tick,91 5 seconds is exactly 91 clock ticks. 
sub dh,5 Get to the nearest 5 seconds by 
jmp second repeated subtractions. 

clockstart: ; Start the clock by installing the interrupt vector 
mov dX,offset timer_int 
mov al,OSH 
mov ah,25H 
int 21H 

mov dX,offset initialize 
int 27H 

cseg 	 ends 
end start 

All the parts of the clock are in place. All that remains is to wind it and let 
it run. 

6.5 CLOCK. ASM - A Resident Desk Clock 

This program displays the time of day, in twelve-hour format in the upper right 
hand corner of the screen. Just for fun, it will also blink the colon about once 
per second. 

cseg 	 segment para public 'CODE' 
org 100H 
assume cs:cseg,ds:cseg 

start: 
jmp initialize 

dd 

timer_int proc far 
sti 
pushf 
assume ds:nothing 
call old_timer 
call timer 
iret 
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endp 

timer proc near 
assume cs:cseg,ds:cseg 
push ds 
push bx 

mov bx,cs 
mov dS,bx 
inc tick 
cmp tick,1092 
jl tdone 
call settime 
mov tick,O 

tdone: 
inc refresh 
cmp refresh,3 
jl rdone 
call dtime 
mov refresh,O 

rdone: 
inc blinker 
cmp blinker, 9 
jl bdone 
call blink 
mov blinker ,0 

bdone: 
pop bx 
pop ds 
ret 

timer endp 

Set data segment to be same 
as code segment via BX 

Advance one tick 
;There are 1092 ticks per minute 

If not a whole minute, just redisplay 
Else recompute time 
and reset tick counter 

Refreshing 18.2/second causes 
flicker. Try only 4.5/second 

If not a whole refresh, do nothing 
Else redisplay 

, and reset refresh counter. 

blink proc near 
cmp byte ptr time [2] , ' : ' 
je bloff 
mov byte ptr time [2] ,':' 
jmp bldone 

bloff : 
mov byte ptr time [2] .' , 

bldone: 
ret 

blink endp 

settime proc near 
cmp byte ptr time [4] ,'9'; Compute one minutes 
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je 
inc 
jmp 

tenthmin: 
mov 
cmp 
je 
inc 
jmp 

nexthour: 
mov 
cmp 
je 
cmp 
je 
inc 
jmp 

twelvethhour: 
cmp 
je 
mov 
mov 
jmp 

thirdhour: 
inc 
jmp 

tenthhour: 
mov 
mov 

setdone: 
ret 

settime 

dtime 
push 
push 

call 
push 
mov 
call 
mov 
call 
pop 
call 

- A RESIDENT DESK CLOCK 

tenthmin If "x9", advance to next ten 

byte ptr time[4] 

setdone 


byte ptr time[4],'0'; Compute ten minutes 

byte ptr time [3] ,'5'; If "59", then advance one hour 

nexthour 

byte ptr time[3] 

setdone 


byte ptr time[3],'0'; Compute hours 

byte ptr time[1],'2'; Might be" 2" or "12" 

twelvethhour ; See if we'll wrap around at 12 

byte ptr time[l] , '9'; If " 9", to to "10" 

tenthhour 

byte ptr time[l] 

setdone 


byte ptr time[O],' '; Is it " 2" 

thirdhour ; If so, then go to " 3" 

byte ptr time [0] " '; If not. then it must be "12" 

byte ptr time[l] , '1'; so go to " 1" 

setdone 


byte ptr time[l]; Go to " 3" 

setdone 


byte ptr time [0] • ' 1 '; Go to "10" 

byte ptr time[l] , '0' 


endp 


proc near 

si 

dx 


get_pos Save previous cursor position 

dx on stack 

dx,position Go to upper right corner 

set_pos 

si,offset time Display current time string 

dstring 

dx Restore from stack 

set_pos old cursor position 
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pop dx 

pop si 

ret 


dtime endp 

dstring proc near 
push si 
push ax 
cmp si,O 
je dsdone 

dloop: 
mov aI, [si] 
cmp aI,O 
je dsdone 
call dchar 
inc si 
jmp dloop 

dsdone: 
pop ax 
pop si 
ret 

dstring endp 

dchar proc near 
push ax 
push bx 
mov bh,l 
mov ah,OER 
int lOR 
pop bx 
pop ax 
ret 

dchar endp 

get_pos proc near 
push ax 
push bx 
push cx 
mov ah,03H 
mov bh,O 
int lOR 
pop cx 
pop bx 
pop ax 
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ret 
get_pos endp 

set_pos proc 
push ax 
push bx 
mov ah,02H 
mov bh,O 
int 10H 
pop bx 
pop ax 
ret 

set_pos endp 

position dw 
tick dw 
refresh dw 
blinker dw 
time db 

initialize: 
mov bx,cs 
mov dS,bx 

mov al,OSH 
mov ah,35H 
int 21H 

near 

004BH 
0 
0 
0 
'12:00' ,0 

mov old_timer,bx 
mov old_timer[2] ,es 

mov ah.2CH 
int 21H 

cmp ch.O 
je midnight 
cmp ch.12 
jg afternoon 

day: 
cmp ch.l0 
jge late 

early: 
add ch, '0' 

Get time of day from DOS 

Set correct hour 
which will be in range 0-23 

mov byte ptr time [0] .' , 

mov byte ptr time[t] ,ch 
jmp minute 
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late: 
sub ch,10 
add ch, '0' 
mov byte ptr time [0] ,'1' 
mov byte ptr time [1] ,ch 
jmp minute 

afternoon: 
sub ch,12 
jmp day 

midnight: ; Hour is 0 (midnight) 
mov byte ptr time [0] ,'1' 
mov byte ptr time [1] • '2' 

minute: 
cmp cl.10 Determine how many tens of minutes 
jl minset we need to set clock to by 
sub cl,10 means of repeated subtraction. 
inc byte ptr time [3] ; Initialized to '0' 
jmp minute 

minset: 
add cl, '0' 
mov byte ptr time [4] ,cl 

mov 	 tick,O 
second: 

cmp dh,5 5 seconds is smallest integer 
jle clockstart granularity we can measure. 
add tick,91 5 seconds is exactly 91 clock ticks. 
sub dh.5 Get to nearest 5 seconds by 
jmp second repeated subtractions. 

clockstart: 
mov dX,offset timer_int 
mov al.OBH 
mov ah.25H 
int 21H 

mov dX,offset initialize 

int 27H 


cseg 	 ends 
end start 



Chapter 7 

Building a Front Panel 

There are other uses for the timer interrupt besides a simple desk clock. By 
making clever use of the timer, and understanding how the IBM PC really does 
what it does, you can create some interesting and useful applications. 

One problem with writing assembly-language programs is that it is sometimes 
difficult to know what your machine is really doing. When a program does not 
change the display, is not reading the disk, is not talking to the serial ports, it 
may be either dead or simply thinking. With normal programs, there is no way 
to tell what is happening. When debugging a complicated program, it would be 
useful to peek into the brain of the machine, without disturbing its thinking. 

In the early days of computing, a machine of roughly the same computational 
capacity as an IBM PC would fill a reasonably large room. Early computers 
must have caused a boom in the air conditioning industry, because the rooms 
they filled were chilled by huge devices that would otherwise be suitable for 
entire office buildings. A giant mainframe computer was a significant capital 
outlay for even a large company, and time and money could not be wasted on a 
leisurely repair of buggy programs. These giant electronic brains had panels full 
of blinking lights, a wonderful public relations device that became synonymous 
with the idea of giant computers, and that occasionally helped in debugging 
programs, too. Typically, the replacement cost of just the light bulbs for the 
front panel exceeded the cost of a modern, fully loaded IBM PC. 

The information available to a mainframe programmer from a front panel 
was quite detailed and often unavailable through any other means. First and 
foremost in importance among the displays was the instruction pointer, or IP. 
(Well, perhaps the most important was the HALT light, indicating that the 
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machine had stopped.) The IP indicated where the computer was finding the 
instructions it was currently executing. Other information might be the contents 
of various registers, the state of various flags within the system, and so on. 

Reading the front panel of a mainframe was a high art, even among pro­
grammers. The displays were in binary, meaning that the lights were either on 
or off. There were no digital displays. Either you learned to read binary or 
you got another job. Nevertheless, people not only learned to read these dis­
plays, they excelled at it. Many system operators could read the state of the 
system from across a crowded room, knowing when a tape should be mounted 
or a disk changed simply by the pattern of lights on the display. Programmers 
could know what part of the operating system was running simply by reading 
the lights. The amount of information a skilled programmer could get from a 
single glance at the front panel was astonishing. 

An IBM PC does not have a front panel; for the most part, this is a blessing. 
Computers no longer fill a room or keep a staff of engineers, programmers, and 
operators busy. But there is still something to be said for being able to sneak a 
peek into a machine and see what it is doing. 

Because of the timer interrupt on the IBM PC, we can do a little peeking into 
the guts of our machine. In this chapter, we will create a program that displays 
and updates the program counter on the screen. With a little practice and a 
little research, you can get a surprising amount of information from a simple 
flickering display. Don't worry, though, we won't display the IP in binary. But 
we could, if we wanted to. 

7.1 Peeking at the Instruction Pointer 

At first, it may seem unreasonable to talk of displaying the IP from an interrupt 
handler. After all, won't the program counter always show that the computer 
is executing the timer interrupt? Well, since we aren't interested in the address 
of the timer routine, we may need to fudge our concepts a little. What we 
are interested in displaying is the IP that was being used just as the interrupt 
occurred. How can we get this information? Well, two things we know about 
interrupt handlers might be expressed like this: First, if an interrupt handler 
is running, an interrupt has occurred. Second, when the interrupt handler has 
completed its work, it will return control to the interrupted program via an IRET 
instruction. 

If the interrupt handler has any hope of returning successfully, the stack 
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will contain two things on entry. At the top of the stack will be the program 
counter that indicates where execution was interrupted. Below that will be the 
old processor flags. We cannot modify these values, but we can examine them. 
The stack pointer does not change when an interrupt routine is run. It is the 
responsibility of the interrupt routine to manage the stack in such a fashion that 
no garbage is left on the stack. Therefore, we can read and use the values of the 
old PC and flags as we choose, so long as we don't change them. 

In the previous chapter, we constructed a basic timer interrupt skeleton. We 
can use that same code as a starting point for this application. 

cseg 	 segment para public 'CODE' 
org 100H 
assume cs:cseg,ds:cseg 

start: 
jmp initialize 

old_timer dd 

timer_int proc far 
sti 
pushf 
assume ds:nothing 
call old_timer 
call timer 
iret 

timer_int endp 

timer proc near 
assume cs:cseg,ds:cseg 
ret 

timer endp 

initialize: 
mov bx,cs 
mov dS,bx 

mov al,08H 

mov ah,35H 

int 21H 

mov old_timer,bx 

mov old_timer [2] ,es 


mov dX,offset timer_int 

mov al,08H 
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mov ah,25H 
int 21H 

mov dX,offset initialize 
int 27H 

• 
cseg ends 

end start 

Now that we have the basic form, we must address some basic design issues. 
First, where will the display be located? There is no "right" answer; it is again 
at the discretion of the programmer. In order not to interfere with the clock 
display that we have just written, we will place the IP in the upper right corner 
of the screen, just to the left of the clock. Since this is a debugging tool and not 
one you would care to run all the time, you may be better off putting the IP 
display in the far right corner and not run the clock at all. This would reduce 
the load on the timer interrupt and provide more cycles for your application 
programs to run. Nevertheless, since the possibility exists that both will run 
simultaneously, in this example we will position the display to compensate for 
the clock. 

Second, in what format will the IP be displayed? In both the resident and the 
regular interrupt-vector display programs, we showed the addresses in hexadeci­
mal, with segment first, then a separator colon, and finally the offset. While the 
possibilities of binary are tantalizing, hexadecimal is probably the most useful. 

To some degree, this resident application will resemble the clock resident 
application. We can use the same cursor read and positioning routines and the 
same character-display function. We will also need the double word hexadecimal 
conversion routine that we wrote for the interrupt-vector display. In the first 
chapter, we discussed the importance of not getting tricky. This application is 
a good example of why that is important. If we had cleverly optimized these 
basic toolbox routines, we would not be able to steal them so easily for use in 
other applications. As with everything, there are trade-offs. In this case, the 
trade was portablility and speed of later development against speed and size of 
the current project. But one of the great things about program development is 
that nothing need ever be permanent. If you can whip up a prototype with the 
components from your toolbox, you can tryout your basic idea. Later on, you 
can pull the stock parts out and replace them with high-performance custom 
components. 

Now that we have some idea of the outline of this project, let's take a look 
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at the basic code we have acquired for it: 

timer_int proc far 
sti 
pushf 
assume ds:nothing 
call old_timer 
call timer 
iret 

timer_int endp 

timer proc near 
assume cs:cseg,ds:cseg 
ret 

timer endp 

; Get the current cursor position and return it in BX 
getpos proc near 

push ax 
push cx 
push dx 

mov ah,03R 
mov bh,O Page zero 
int lOR 
mov bX,dx Return· the position in BX 

pop dx 
pop cx 
pop ax 
ret 

getpos endp 

; Set the current cursor position to the value in BX 
setpos proc near 

push ax 
push bx 
push dx 

mov ah,02R 
mov dX,bx 
mov bh,O 
int lOR 

pop ax 
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setpos 

ddword 

ddword 

dsword 

dsword 

dbyte 

pop bx 
pop dx 
ret 

endp 

ES:DX contains 
proc 

push dx 
mov dX,es 
call dsword 
call dcolon 
pop dx 
call dsword 
ret 

endp 
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doubleword to be displayed 
near 

Save offset temporarily 
Move Segment to DX 
Display segment 
Print a colon 
Restore offset to DX 
Display offset 

proc near 
push dx 
mov dl,dh 
call dbyte 
pop dx 
call dbyte 
ret 

endp 

DL contains byte to be displayed 

push 
push 
push 

push 
push 
mov 
shr 
and 
mov 
mov 
call 
pop 
pop 

and 
mov 

DX containes singleword to be displayed 

Save low nybble temporarily 
Save ex 
Set shift count to 4 
Move high nybble to low 
Mask out all but low nybble 
Use low nybble as index into 

; hex char table 
Display character 
Restore ex 
Restore low nybble 

Mask out all but low nybble 
Use low nybble as index into 

Save low byte 
Move high byte to low byte 
Display high byte 
Restore low byte to DL 
Display low byte 

proc near 
ax ; Save any registers used 
dx 
si 

dx 
cx 
cl,4 
dX,cl 
dx,OOOFH 
si,dx 
al,hextab[si] 
dchar 
cx 
dx 

dX,OOOFH 
si,dx 
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mov aI, hextab [si] ; hexa char table 

call dchar Display character 

pop si Restore registers 

pop dx 

pop ax 

ret 


dbyte endp 

; Display a colon 
dcolon proc near 

mov aI, ,. , 
call dchar 
ret 

dcolon endp 

; Display the character contained in AL 
dchar proc near 

push ax 
push bx 
mov bh,l 
mov ah,OER 
int lOR 
pop bx 
pop ax 
ret 

dchar endp 

location dw 0041R 
hextab db '0123456789ABCDEF' ,0 

From here, the first step we can take is to get the code to display a zero 
double word in the correct location on the screen. We must change the timer 
routine by adding the code to save the registers on the stack, save the old cursor 
location, move to the new one, display the value, and restore the cursor position 
and registers. 

timer proc near 
assume cs:cseg,ds:cseg 
push ax 
push bx 
push cx 
push dx 
push si 
push di 
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push es 
push ds 

mov bx,cs Set os to be same as CS 
mov dS,bx by means of BX 
call getpos Save current cursor loc 
push bx on stack 
mov bX,location Move to upper right corner, 
call setpos just left of clock 
mov dx,O Set SEG:OFS to zeros 
mov eS,dx 
call ddword Display 0000:0000 
pop bx Move cursor back to old 
call setpos saved location 

pop ds Restore registers 
pop es 
pop di 
pop si 
pop dx 
pop cx 
pop bx 
pop ax 
ret 

timer endp 

The application should now display a zero segment and offset just to the left 
of the clock display. If you install this code and then hit enough carriage returns 
to scroll the screen, the zeros should appear to remain fixed on the screen. The 
IP display should seem more "solid" than our clock display because the refresh 
rate is faster. 

7.2 Using a Stack-Frame Pointer 

Armed with a timer-based program that writes zeros in the correct form to 
the screen many times per second, we can now complete this application and 
make it do something useful. We know that somewhere on the stack is the 
information that we need, namely the return address for the interrupt routine. 
Unfortunately, at the place we need it, in the middle of the timer routine, is 
some number of bytes deep on the stack. One way to retrieve them would be 
to count the number of push instructions we have used and then compute the 
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offset from the current location pointed to by SP. This technique will work, but 
it will also make modification of the program somewhat difficult. Adding code 
that uses the stack will mean that this number must be recomputed. 

A better approach would be to use what is called a stack-frame pointer. This 
is a common technique used in compilers for high-level languages. If a language 
uses the stack to pass parameters to subroutines, it is important to know how 
to find those parameters easily. This is done by using a register as a sort of 
bookmarker. What you do is copy the value of the stack pointer as early as 
possible in a subroutine, when you know that nothing has been added to the 
stack. Then you can use that register as a surrogate stack pointer, since it 
remembers where the top of the stack was and thus where the stack information 
you need can be found. 

On the IBM PC, the convention is to use the BP register as a stack-frame 
pointer. Since there is no pressing reason to alter this convention, we will adopt 
it. We don't want to lose the contents of BPevery time we reuse the stack-frame 
pointer, however, so we must save it first on the stack. 

There are three characteristics of 8086/8088 stack management that become 
important at this point. First, only registers can be pushed onto the stack. Since 
all registers are 16 bits (one word) long, only words, not bytes, can be pushed. 
Second, the stack pointer always points to the last word pushed on the stack. 
Third, the PUSH operation decreases the stack pointer, POP increases it. This 
means that the stack starts at a high address and, as it. grows, moves toward 
the lower addresses. To reach something pushed onto the stack, you must add 
to the stack pointer. 

Thus, if we modify the timer_int routine as shown here we will have saved 
a stack-frame pointer from the start of the timer interrupt handler: 

timer_int proc far 
sti 
push bp 
mov bp,sp 
pushf 
assume ds:nothing 
call old_timer 
call timer 
pop bp 
iret 

timer_int endp 

Since the SP points to what was just pushed, we know that [BP] will point 
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to its own old value, which brings us to an interesting and important digression. 
Since [BP] points to the previous value of BP, if we were writing a high-level 
language, and made sure that each subroutine established a stack-frame pointer 
using the method shown here and that every program started with BP = 0, we 
would have a chain that could be followed back through all the calls made to 
get to a point in a given subroutine. How? Well, since [BP] points to its last 
value and that last value points to the value before it and that value to an even 
earlier one, until one value finally points to the zero that was the original value, 
there is a chain that can be followed. Between each successive value are the 
contents of the stack, including any parameters passed. If enough information is 
available about the code that was running, these parameters can be examined. 
Why is this so important? It is this technique that is used very extensively in 
many high-level language debuggers. If stack-frame chaining is used, and the 
value of the stack-frame pointer at the time of a program crash is known, this 
technique may help pinpoint, via a debugger, what went wrong. 

We know that [BP] contains its old value. Since the stack grows toward low 
memory, [BP+2] will contain the offset of the calling address, and [BP+4] will 
contain the segment. [BP+6] contains a word that holds the system flags at 
the time of interrupt. Conceivably, this information could be added to the front 
panel display, but to keep things simple we will not do so here. 

Now that we know how to find the return address, we can complete our 
program by modifying timer to display the return segment and offset instead 
of zeros: 

timer proc near 
assume cs:cseg,ds:cseg 
push ax 
push bx 
push cx 
push dx 
push si 
push di 
push es 
push ds 

mov bx,cs Set DS to be same as CS 
mov dS,bx by means of BX 
call getpos Save current cursor loc 
push bx on stack 
mov bX,location Move to upper right 
call setpos corner, left of clock 
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The stack frame looks like this: 
[BP] word Old value of BP 
[BP+2] word Offset of calling address 
[BP+4] word Segment of calling address 
[BP+6] word Flags at interrupt 

mov dX,word ptr ss: [bp+2] ; Offset of addr 
mov eS,word ptr ss: [bp+4] ; seg of addr 
call ddword Display 0000:0000 
pop bx Move cursor back to its 
call setpos saved location 

pop ds 
pop es 
pop di 
pop si 
pop dx 
pop cx 
pop bx 
pop ax 
ret 

timer endp 

The front-panel resident application must be the last application to link 
with the timer interrupt. If it is not, the address displayed will always be that 
of the layer that was installed afterward, from which this would be called as a 
subroutine. 

7.3 	 FPANEL . ASM - An Instruction Pointer 
Display 

This program displays the program counter at frequent intervals in the upper 
right corner of the screen. 

cseg 	 segment para public 'CODE' 
org 100H 
assume cs:cseg,ds:cseg 

start: 
jmp initialize 

dd 
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timer_int proc far 
sti 
pushf 
assume ds:nothing 
call old_timer 
push bp 
mov bp,sp 
call timer 
pop bp 
iret 

timer_int endp 

timer proc near 
assume cs:cseg,ds:cseg 
push ax 
push bx 
push cx 
push dx 
push si 
push di 
push es 
push ds 

mov bx,cs 

mov dS,bx 

call getpos 

push bx 

mov bX,location 

call setpos 


The stack looks like this: 
New stack since BP saved 

[BP] word Old value of BP 
[BP+2] word Offset of calling address 
[BP+4] word Segment of calling address 
[BP+6] word Flags at interrupt 

mov dX,word ptr ss: [bp+2] 
mov eS,word ptr ss: [bp+4] 
call ddword 
pop bx 
call setpos 

pop ds 
pop es 
pop di 
pop si 

Offset of addr 
; Seg of addr 
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pop dx 

pop cx 

pop bx 

pop ax 

ret 


timer endp 

; Get the current cursor position and return it in BX 
getpos proc near 

push ax 
push cx 
push dx 

mov ah,03H 

mov bh,O Page zero 

int 10H 

mov bX,dx Return the position in BX 


pop dx 

pop cx 

pop ax 

ret 


getpos endp 

; Set the current cursor position to the value in BX 
setpos proc near 

push ax 
push bx 
push dx 

mov ah,02H 

mov dx,bx 

mov bh,O 

int 108 


pop ax 

pop bx 

pop dx 

ret 


setpos endp 

ES:DX contains doubleword to be displayed 
ddword proc near 

push dx Save offset temporarily 
mov dx,es Move Segment to DX 
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call dsword Display segment 
call dcolon Print a colon 
pop dx Restore offset to DX 
call dsword Display offset 
ret 

ddword endp 

DX containes singleword to be displayed 
dsword proc near 

push dx Save low byte temporarily 
mov dl,dh Move high byte to low byte 
call dbyte Display high byte 
pop dx Restore low byte to DL 
call dbyte Display low byte 
ret 

dsword endp 

DL contains byte to be displayed 
dbyte proc near 

push ax ; Save any registers used 
push dx 
push si 

push dx Save low nybble temporarily 
push cx Save ex 
mov cl,4 Set shift count to 4 
shr dX,cl Move high nybble into low 
and dX,OOOFH Mask out all but low nybble 
mov si,dx Use low nybble as index into 
mov aI, hextab [si] ; hex char table 
call dchar Display character 
pop cx Restore ex 
pop dx Restore low nybble 

and dX,OOOFH Mask out all but low nybble 
mov si,dx Use low nybble as index into 
mov al,hextab[si] ; hex char table 
call dchar Display character 
pop si Restore registers 
pop dx 
pop ax 
ret 

dbyte endp 

; Display a colon 
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dcolon proc near 
mov aI,'·' 
call dchar 
ret 

dcolon endp 

, Display the character contained in AL 
dchar proc near 

push ax 
push bx 
mov bh,l 
mov ah,OEH 
int 10H 
pop bx 
pop ax 
ret 

dchar endp 

location dw 0041H 
hextab db '01234567S9ABCDEF' ,0 

initialize: 
mov bx,cs 
mov dS,bx 

mov al,OSH 

mov ah,35H 

int 21H 

mov old_timer,bx 

mov old_timer [2] ,es 


mov dX,offset timer_int 

mov al,OSH 

mov ah,25H 

int 21H 


mov dX,offset initialize 

int 27H 


cseg 	 ends 
end start 
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Chapter 8 

An Interrupt-Vector Display 

To write resident applications on an IBM PC, you must understand the interrupt 
structure. This mechanism is the key to all the I/O and system operations under 
DOS. We have already constructed some tools to help us examine the interrupt­
vector table. This tool is quite useful, but it runs only as an application at 
the DOS level. Suppose a program changes an interrupt vector on entry and 
restores it on exit. A vector-display application would not tell us a thing about 
these transient vectors, since to examine them we must leave the program that 
permits them to exist. Is there a way for us to examine the interrupt-vector 
table without leaving the current application? The answer is, of course, yes. We 
can modify our earlier program to make it memory resident. 

A memory resident vector display program solves some problems, but it 
raises other questions that we must think about before we can begin to write 
code. First and foremost among these questions is that of linkage: if we use 
this program to examine and debug memory resident applications and it is in 
fact a memory resident application itself, won't it interfere with other resident 
applications since it must be linked somehow into the interrupt-vector table? 
One might find an analogy here to physics, where the act of measuring some 
characteristic of a particle alters the behavior of that characteristic. How can we 
install a vector display program so that its effect on the system will be minimal 
while still permitting us to see the information we requre? 

Obviously, binding it to a key on the keyboard is not the solution. The 
keyboard interrupt is probably the most frequently replaced interrupt vector 
under DOS. If we were to insert a linkage there, the next memory resident 
application that came along might erase that link and replace it, rendering our 
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code useless. However, there is no other generally accessible signaling mechanism 
on the IBM PC. Well, almost no other .... 

There are three key sets on the IBM PC that can bypass the normal key­
board interrupt mechanism. The most well known is CONTROL-ALT-DEL, which 
generates an interrupt to the reboot vector The second is CONTROL-BREAK, which 
generates an interrupt to the CONTROL-BREAK handler. The last is PrtSc. This 
generates an INT 5H, which is supposed to call a routine to print a copy of the 
screen on the printer. If we decide that, for a time, the display of interrupts 
is more important than the printing of screens, we can use PrtSc as the link 
for our vector display without interfering with other, more common vectors and 
without significantly impairing the operation of the system. 

Let's rewrite our basic resident program so that it will replace the PrtSc 

interrupt rather than the communications interrupt. 

cseg segment 
assume cs:cseg,ds:cseg 
org 100H 

start: 
jmp initialize 

old_prtsc_io dd 

new_prtsc_io proc far 
assume cs:cseg,ds:cseg 
sti 
iret 

new_prtsc_io endp 

initialize: 
assume cs:cseg,ds:cseg 
mov bx,cs 
mov dS,bx 

mov al,05H 
mov ah,35H 
int 21H 
mov old_prtsc_io,bx 
mov old_prtsc_io[2] ,es 
mov dX,offset new_prtsc_io 
mov al,05H 
mov ah,25H 
int 21H 
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mov dx,offset initialize 
int 27H 

cseg 	 ends 
end start 

All we did was replace 16H with 05H and keyboard with prtsc. Nevertheless, 
these small changes will cause this program to link to the PrtSc vector. By 
adding to new_prtscio, we can bend the PrtSc function to our will. 

The next question is one of display. How do we cause our vector listing to 
appear on the screen? Will normal output calls work directly? Clearly, we are 
asking for trouble if we try to use the file control block or handle-based I/O 
functions, unless we take some pains to save the old file control block or handle 
and use one of our own. It is possible to do so, but is it necessary? The ROM 
screen output calls are the best bet here. They are low-level calls, unencumbered 
by the idea of file control blocks or handles. We can modify our basic PrtSc 
resident application to display a simple ASCIIZ string. Since we have already 
written code to do that in our non-resident vector display, we will simply add 
that code here. 

new_prtsc_io proc far 
assume 	 cs:cseg,ds:cseg 
sti 
push 	 ds 
push 	 bx 
push 	 si 
mov 	 bx,cs 
mov 	 dS,bx 
mov 	 si,offset string 
call 	 dstring 
pop 	 si 
pop 	 bx 
pop 	 ds 
iret 

new_prtsc_io endp 

DS:SI pOints to ASCIIZ string to be printed 
dstring proc near 

push si 
push ax 

dis: 
mov aI, [si] Fetch the next character 
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cmp al,O If it is zero, we are done 
je disdone 
call dchar If not, print it 
inc si Advance to next char 
jmp dis 

disdone: 
pop ax 
pop si 
ret 

dstring endp 

; Display the character contained in AL 
dchar proc near 

push ax 
push bx 
mov bh,l 
mov ah,OEH 
int lOH 
pop bx 
pop ax 
ret 

dchar endp 

string db 'Hello world',OdH,OaH,O 

Before you run the . COM file this program assembles into, run the IVEC 
vector-display application. Note the value for the Print Screen vector. After 
running the . COM file use IVEC again to see that the vector has changed. You 
should notice that the new value is <segment>:0107H. The segment may change, 
but for this program, (and many others in this book), the offset will always be 
107H. The program segment prefix is 100H bytes long, the jmp initialize adds 
another 3 bytes, and the double word that holds the old vector is 4 bytes. For 
other programs, the offset may not be 107H, but it can be deduced from the 
code. An offset that is vastly different from what you expect may indicate a 
bug. 

To invoke this code, hit the PrtSc key (actually, SHIFT-PrtSc on most ma­
chines). This should cause the "Hello world" message to appear. You'll notice 
that the DOS prompt does not reappear until you hit a carriage return. This 
odd behavior stems from the fact that DOS is unaware of the "Hello world" 
message, and thus has no reason to generate a new prompt. The carriage return 
is actually seen by DOS, and it behaves as it would normally. You could have 
typed a command, followed by carriage return, and it would have been 
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interpreted properly. You have generated a display on the screen, behind DOS's 
back. 

This fact has one major implication. By doing output in this manner, it 
is possible to mess up the screen, with the currently running program being 
unaware of the changes. This has great bearing on the mannerisms of "well­
behaved" resident applications. In some cases, such as the debugging tool we are 
writing now, one does not mind if a display of information trashes the contents 
of the screen. In the case of "pop-up" programs such as notepads or calculators, 
we demand better manners. 

8.1 Listing the Vectors 

Since we have successfully stolen the output routine from our vector display 
application, and since this code does not use the interrupt we are replacing, 
there is no reason we cannot try to steal the rest of the code. 

new_prtsc_io proc far 
sti 
push bx 
push ds 
mov bx,cs 
mov dS,bx 
call vectors 
pop ds 
pop bx 
iret 

new_prtsc_io endp 

Scans through the display table, printing two vectors per line. 
If any record has an interrupt number of zero, this indicates the 
end of the table. 

vectors proc near 
mov di,offset disptab; Pointer to start of table 
mov dh,O Zero out top half of DX 

vloop: 
mov dl, [di] Get interrupt number 
cmp dl,O If it is zero, we are done 
je vdone so exit loop 
add di,1 Advance pointer 1 byte 
mov si, [di] Get pOinter to description string 
call dvector Call display routine 
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add di,2 	 Advance to next record 

mov dl, [di] Get interrupt number 
cmp dl,O 	 If it is zero, we are done 
je vdone 	 so exit loop 
add di,1 	 Advance pOinter 1 byte 
mov si, [di] Get pOinter to description string 
call dvector Call display routine 
add di,2 	 Advance to next record 

call dcrlf Print a carriage return 
jmp vloop 

vdone: 
call dcrlf Print a final carriage return 
ret 

vectors endp 

Displays an interrupt vector. Display is in the form of 
<banner string> <interrupt number> <vector seg>:<vector offset> 
where <interrupt number>, <vector seg> and <vector offset> are all 
hexadecimal numbers. 

Call with 
DX - interrupt number 
DS:SI - pOinter to banner string 

dvector 	proc near 
call dstring Display string in DS:SI 
call dbyte Display byte in DL 
call dspace Display a space 

mov al,dl Move interrupt number to AL 
mov ah,35H Function is GET INTERRUPT VECTOR 
int 21H 
mov dX,bx Move BX to DX so we can display the 
call ddword double-word in ES:DX 
call dspace Display a space 
ret 

dvector 	endp 

DS:SI pOints to ASCIIZ string to be printed 
dstring 	proc near 

push si 
push ax 

dis: 
mov aI, [si] Fetch next character 
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disdone: 

dstring 

ddword 

ddword 

dsword 

dsword 

dbyte 

cmp al,O If it is zero, we are done 
je disdone 
call dchar If not, print it 
inc si Advance pointer to next character 
jmp dis 

pop ax 
pop si 
ret 
endp 

ES:DX contains doubleword to be displayed 
proc near 
push dx Save offset temporarily 
mov dX,es Move Segment to DX 
call dsword Display segment 

11.11call dcolon Print a 
pop dx Restore offset to DX 
call dsword Display offset 
ret 
endp 

DX containes singleword to be displayed 
proc near 
push dx Save low byte temporarily 
mov dl,dh Move high byte to low byte 
call dbyte Display high byte 
pop dx Restore low byte to DL 
call dbyte Display low byte 
ret 
endp 

DL contains byte to be displayed 
proc near 
push ax ; Save any registers used 
push dx 
push si 

push dx Save low nybble temporarily 
push cx Save ex 
mov cl,4 Set shift count to 4 
shr dX,cl Shift high nybble into low nybble 
and dX,OOOFH Mask out all but low nybble 
mov si,dx Use this low nybble as an index into the 
mov al ,hextab [si] ; hexadecimal character table 
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call dchar Display character 
pop cx Restore CX 
pop dx Restore low nybble 

and 	 dX,OOOFH Mask out all but low nybble 
mov 	 si,dx Use low nybble as an index into the 
mov 	 al,hextab[si] ; hexadecimal character table 
call 	 dchar Display character 
pop 	 si ; Restore registers 
pop 	 dx 
pop 	 ax 
ret 

dbyte 	 endp 

; Display a u:u 

dcolon 	 proc near 
mov aI, ,. , 
call dchar 
ret 

dcolon 	 endp 

U; Display a U 

dspace 	 proc near 
mov aI, , , 

call dchar 
ret 

dspace 	 endp 

; Display a Carriage Return/Line Feed 
dcrlf 	 proc near 

mov al,ODH 
call dchar 
mov al,OAH 
call dchar 
ret 

dcrlf 	 endp 

; Display character contained in AL 
dchar 	 proc near 

push ax 
push bx 
mov bh,l 
mov ah,OEH 
int lOH 
pop bx 
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pop ax 
ret 

dchar endp 

hextab db '0123456789ABCDEF' ,0 

disptab db 05H 
dw v05 
db 19H 
dw v19 

db 08H 
dw v08 
db 1AH 
dw v1A 

db 09H 
dw v09 
db 1BH 
dw v1B 

db OBH 
dw vOB 
db 1CH 
dw v1C 

db OCH 
dw vOC 
db 1DH 
dw vlD 

db ODH 
dw vOD 
db 1EH 
dw v1E 

db OEH 
dw vOE 
db 1FH 
dw v1F 

db OFH 
dw vOF 
db 20H 
dw v20 

Print screen 

Bootstrap loader 

Timer tick 

Real-time clock 

Keyboard input 

CTRL-Break handler 

Comm. port 1 

Timer control 

Comm. port 0 

Pointer to video parameter table 

Hard disk controller 

Pointer to disk parameter table 

Floppy disk controller 

Pointer to graphics character table 

Printer controller 

Program terminate 
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db 
dw 
db 
dw 

db 
dw 
db 
dw 

db 
dw 
db 
dw 

db 
dw 
db 
dw 

db 
dw 
db 
dw 

db 
dw 
db 
dw 

db 
dw 
db 
dw 

db 
dw 
db 
dw 

db 
dw 
db 
dw 

10H 
vl0 
21H 
v21 

11H 
v11 
22H 
v22 

12H 
v12 
23H 
v23 

13H 
v13 
24H 
v24 

14H 
v14 
25H 
v25 

15H 
v15 
26H 
v26 

16H 
v16 
27H 
v27 

17H 
v17 
2FH 
v2F 

18H 
v18 
0 
0 

Video driver 

DOS universal function 

Equipment check 

Pointer to termination handler 

Memory size check 

Pointer to CTRL-C handler 

Disk driver 

Pointer to critical error handler 

Communications driver 

Absolute disk read 

Cassette driver 

Absolute disk write 

Keyboard driver 

Terminate and stay resident 

Printer driver 

Print spooler 

ROM BASIC 
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v05 db 'Print screen: ' ,0 
vOS db 'Timer tick controller: ' ,0 
v09 db 'Keyboard input: ' ,0 
vOB db 'Communication port 1: ' ,0 
vOC db 'Communication port 0: ' ,0 
vOD db 'Hard disk controller: ' ,0 
vOE db 'Floppy disk controller: ' ,0 
vOF db 'Printer controller: ' ,0 
v10 db 'Video driver: ' ,0 
v11 db 'Equipment check: ' ,0 
v12 db 'Memory size check: , ,0 
v13 db 'Disk driver: ' ,0 
v14 db 'Communication driver: ' ,0 
v15 db 'Cassette driver: ' ,0 
v16 db 'Keyboard driver: ' ,0 
v17 db 'Printer driver: ' ,0 
viS db 'ROM BASIC: ' ,0 
v19 db 'Bootstrap loader: ' ,0 
viA db 'Real-time clock: , ,0 
viB db 'Ctrl-Break handler: , ,0 
v1C db 'Timer control: ' ,0 
v1D db 'Video parameter table: ' ,0 
viE db 'Disk parameter table: , ,0 
v1F db 'Graphic character table: , ,0 
v20 db 'Program terminate: , ,0 
v2i db 'DOS universal function: ' ,0 
v22 db 'Terminate vector: , ,0 
v23 db 'Ctrl-C vector: ' ,0 
v24 db 'Critical error vector: ' ,0 
v25 db 'Absolute disk read: ' ,0 ,v26 db 'Absolute disk write: ,0 
v27 db 'Terminate/stay resident: ' ,0 
v2F db 'Print spooler: , ,0 

This code works, but it is somewhat unpleasant to use, since the column 
position of the first line is dependent on where the cursor was located when 
PrtSc was struck. To fix this, we must decide where the cursor should go 
to perform this display. Typically, while in the DOS command processor, or 
any non-screen-oriented program, the cursor will spend most of its time on the 
bottom line of the screen, several characters to the right of the first column (due 
to the prompt). For screen-oriented programs, the cursor can be anywhere. 
Because of this wide variation, there is no "best" choice for the position, but 
we can adopt a convention. Since we know that all the information in this 
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display will fit on less than one full screen and that a good guess for the cursor 
position under some circumstances is on the bottom line, why not always start 
the display from the upper left corner. By doing this, the code will run faster, 
since no scrolling is necessary. In addition, the columns will always line up, and 
there is a good chance that we will not overwrite the current command prompt. 

To do this, we must learn how to perform two operations. First, we must 
be able to read the current cursor position, so that we can remember where the 
cursor was when we started. Second, we must be able to set the cursor position, 
so that we can move to the upper left corner to begin our display and return 
to the old position when we have finished. The ROM calls provide us with two 
routines to do just that, so we need do nothing too complicated. 

We can add cursor control to this program at the topmost level, modifying 
only new_prtsc_io, as shown here: 

new_prtsc_io proc far 
sti 
push bx 
push ds 
mov bx,cs Make Data Seg be the same as 
mov dS,bx the Code Seg 

call getpos 
push bx 
mov bX,OOOOH Upper left corner position 
call setpos 
call vectors 
pop bx 
call setpos 

pop ds 
pop bx 
iret 

new_prtsc_io endp 

; Get the current cursor position and return it in BX 
getpos proc near 

push ax 
push cx ; Since this function modifies CX 
push dx 

mov ah,03H 
mov bh,O Page zero 
int 10H 
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mov bx.dx ; Return the position in BX 

pop dx 
pop cx 
pop ax 
ret 

getpos endp 

; Set the current cursor position to the value inBX 
setpos proc near 

push ax 
push dx 

mov ah.02H 
mov dx.bx 
mov bh.O 
int 10H 

pop ax 
pop dx 
ret 

setpos endp 

With the program now doing a little bit of display management, it becomes 
much cleaner and easier to read. In addition, by always starting in the upper 
left corner of the screen, you are guaranteed that the position of each vector on 
the screen will be the same each time the program is called. By doing this, your 
eye can learn where a vector display should be and can then find the vector of 
interest without having to search the screen for the right label. In the human­
interface game, permitting users to form habits is highly regarded. 

8.2 BASIC. ASM - A Test Display 

This program makes an interrupt vector display with a dummy value, just to 
see if we can successfully link to the PrtSc vector. 

cseg segment 
assume cs:cseg.ds:cseg 
org 100H 

start: 
jmp initialize 
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old_prtsc_io dd 

new_prtsc_io proc far 
assume cs:cseg,ds:cseg 
sti 
push ds 
push bx 
push si 
mov bx,cs 
mov dS,bx 
mov si,offset string 
call dstring 
pop si 
pop bx 
pop ds 
iret 

new_prtsc_io endp 

DS:SI points to ASCIIZ string to be printed 
dstring proc near 

push si 
push ax 

dis: 
mov aI, [si] Fetch the next character 
cmp al,O If it is zero, we are done 
je disdone 
call dchar If not, print it 
inc si Advance pointer to characterthe next 
jmp dis 

disdone: 
pop ax 
pop si 
ret 

dstring endp 

; Display the character contained in AL 
dchar proc near 

push ax 
push bx 
mov bh,l 
mov ah,OEH 
int lOH 
pop bx 
pop ax 
ret 
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dchar 	 endp 

string 	 db 'Hello world' ,OdH,OaH,O 

initialize: 
assume cs:cseg,ds:cseg 
mov bx,cs 
mov dS,bx 

mov al,05H 
mov ah,35H 
int 21H 
mov old_prtsc_io,bx 
mov old_prtsc_io[2] ,es 
mov dX,offset new_prtsc_io 
mov al,05H 
mov ah,25H 
int 21H 

mov dX,offset initialize 
int 27H 

cseg 	 ends 
end start 

8.3 	 VECTORS. ASM - An Interrupt Vector Display 

The following code will display the current values of the interrupt vector table 
when a PrtSc command is entered at the keyboard. 

cseg 	 segment para public 'CODE' 
org 100H 
assume cs:cseg,ds:cseg 

start: 
jmp initialize 

dd 

new_prtsc_io proc far 
sti 
push bx 
push ds 
mov bx,cs Make Data Seg be the same as 
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mov dS,bx 

call getpos 
push bx 
mov bX,OOOOH 
call setpos 
call vectors 
pop bx 
call setpos 

pop ds 
pop bx 
mov ax,O 
iret 

new_prtsc_io 
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; the Code Seg 

Upper left corner position 

endp 

; Get the current cursor position and. return it in BX 
getpos 

push ax 
push cx 
push dx 

mov ah,03H 
mov bh,O 
int 10H 
mov bX,dx 

pop dx 
pop cx 
pop ax 
ret 

getpos 

proc near 

; Since this function modifies CX 

Page zero 

Return the position in BX 

endp 

; Set the current cursor position to the value in BX 
setpos proc near 

push ax 
push dx 

mov ah,02H 
mov dX,bx 
mov bh,O 
int 10H 

pop ax 
pop dx 
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ret 
setpos endp 

Scans through the display table. printing two vectors per line. 
If any record has an interrupt number of zero. this indicates the 

. end of the table. 
vectors proc near 

mov di .offset disptab; Pointer to the start of the table 
mov dh.O Zero out the top half of DX 

vloop: 
mov dl. [di] Get the interrupt number 
cmp dl.O If it is zero. we are done 
je vdone so exit loop 
add di.1 Advance pOinter 1 byte 
mov si. [di] Get pointer to description string 
call dvector Call the display routine 
add di.2 Advance to the next record 

mov dl. [di] Get the interrupt number 
cmp dl,O If it is zero, we are done 
je vdone so exit loop 
add di.1 Advance pointer 1 byte 
mov si. [di] Get pOinter to description string 
call dvector Call the display routine 
add di.2 Advance to the next record 

call dcrlf Print a carriage return 
jmp vloop 

vdone: 
call dcrlf Print a final carriage return 
ret 

vectors 	endp 

Displays an interrupt vector. Display is in the form of 
<banner string> <interrupt number> <vector seg>:<vector offset> 
where <interrupt number>, <vector seg> and <vector offset> are all 
hexadecimal numbers. 

Call with 

DX - interrupt number 

DS:SI - pointer to banner string 


dvector 	proc near 
call dstring Display the string in DS:SI 
call dbyte Display the byte in DL 
call dspace Display a space 
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mov 
mov 
int 
mov 
call 
call 
ret 

dvector endp 

al,dl 
ah,35H 
21H 
dX,bx 
ddword 
dspace 
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Move the interrupt number to AL 

Function is GET INTERRUPT VECTOR 


Move BX to DX so we can display the 

double-word in ES:DX 

Display a space 


DS:SI pOints to ASCIIZ string to be printed 
dstring 	proc near 

push si 
push ax 

dis: 
mov aI, [si] 
cmp al,O 
je disdone 
call dchar 
inc si 
jmp dis 

disdone: 
pop ax 
pop si 
ret 

dstring 	endp 

ES:DX contains 
ddword 	 proc near 

push dx 
mov dX,es 
call dsword 
call dcolon 
pop dx 
call dsword 
ret 

ddword 	 endp 

Fetch the next character 

If it is zero, we are done 


If not, print it 
Advance pOinter to the next character 

doubleword to be displayed 

Save the offset temporarily 

Move the Segment to DX 

Display the segment 

Print a ":" 

Restore the offset to DX 

Display the offset 


DX containes singleword to be displayed 
dsword proc near 

push dx 
mov dl,dh 
call dbyte 
pop dx 
call dbyte 

Save the low byte temporarily 
Move the high byte to the low byte 
Display the high byte 
Restore the low byte to DL 
Display the low byte 
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ret 
dsword endp 

DL contains byte to be displayed 
dbyte 	 proc near 

push ax ; Save any registers used 
push dx 
push si 

push dx Save the low nybble temporarily 
push cx Save CX 
mov cl,4 Set shift count to 4 
shr dX,cl Shift the high nybble into the low nybble 
and dx,OOOFH Mask out all but the low nybble 
mov si,dx Use this low nybble as an index into the 
mov al,hextab[si] ; hexadecimal character table 
call dchar Display the character 
pop cx Restore CX 
pop dx Restore the low nybble 

and dx,OOOFH Mask out all but the low nybble 
mov si,dx Use the low nybble as an index into the 
mov al,hextab[si] ,hexadecimal character table 
call dchar Display the character 
pop si ; Restore the registers 
pop dx 
pop ax 
ret 

dbyte 	 endp 

; Display a n:n 

dcolon 	 proc near 
mov aI,':' 
call dchar 
ret 

dcolon 	 endp 

; Display a " " 
dspace 	 proc near 

mov aI," 
call dchar 
ret 

dspace 	 endp 

; Display a Carriage Return/Line Feed 
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dcrlf 	 proc near 
mov al,ODH 
call dchar 
mov al,OAH 
call dchar 
ret 

dcrlf 	 endp 

; Display the character contained in AL 
dchar 	 proc near 

push ax 
push bx 
mov bh,l 
mov ah,OEH 
int 10H 
pop bx 
pop ax 
ret 

dchar 	 endp 

hextab 	 db '0123456789ABCDEF' ,0 

disptab db 05H 
dw v05 
db 19H 
dw v19 

db 08H 
dw v08 
db lAH 
dw vlA 

db 09H 
dw v09 
db lBH 
dw vlB 

db OBH 
dw vOB 
db lCH 
dw vlC 

db OCH 
dw vOC 
db lDH 

Print screen 

Bootstrap loader 

Timer tick 

Real-time clock 

Keyboard input 

CTRL-Break handler 

Comm. port 1 

Timer control 

Comm. port 0 

Pointer to video parameter table 
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dw v1D 

db ODH 
dw vOD 
db 1EH 
dw v1E 

db OEH 
dw vOE 
db lFH 
dw vlF 

db OFH 
dw vOF 
db 20H 
dw v20 

db lOH 
dw v10 
db 21H 
dw v21 

db l1H 
dw vl1 
db 22H 
dw v22 

db 12H 
dw v12 
db 23H 
dw v23 

db 13H 
dw v13 
db 24H 
dw v24 

db 14H 
dw v14 
db 25H 
dw v25 

db 15H 
dw v15 
db 26H 

Hard disk controller 

Pointer to disk parameter table 

Floppy disk controller 

Pointer to graphics character table 

Printer controller 

Program terminate 

Video driver 

DOS universal function 

Equipment check 

Pointer to termination handler 

Memory size check 

Pointer to CTRL-C handler 

Disk driver 

Pointer to critical error handler 

Communications driver 

Absolute disk read 

Cassette driver 

Absolute disk write 
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dw v26 

db i6H Keyboard driver 

dw vi6 

db 27H Terminate and stay resident 

dw v27 


db i7H Printer driver 

dw vi7 

db 2FH Print spooler 

dw v2F 


db i8H ROM BASIC 

dw vi8 

db 0 

dw 0 


v05 db 'Print screen: , ,0 
v08 db 'Timer tick controller: ' ,0 
v09 db 'Keyboard input: ' ,0 
vOB db 'Communication port i: , ,0 
vOC db 'Communication port 0: , ,0 
vOD db 'Hard disk controller: ' ,0 
vOE db 'Floppy disk controller: ' ,0 
vOF db 'Printer controller: ' ,0 
viO db 'Video driver: ' ,0 
vii db 'Equipment check: ' ,0 
vi2 db 'Memory size check: ' ,0 
vi3 db 'Disk driver: ' ,0 
vi4 db 'Communication driver: ' ,0 
vi5 db 'Cassette driver: ' ,0 
vi6 db 'Keyboard driver: ' ,0 
vi7 db 'Printer driver: ' ,0 
vi8 db 'ROM BASIC: ' ,0 
vi9 db 'Bootstrap loader: , ,0 
viA db 'Real-time clock: ' ,0 
viB db 'Ctrl-Break handler: ' ,0 
viC db 'Timer control: , ,0 
viD db 'Video parameter table: , ,0 
viE db 'Disk parameter table: ' ,0 
viF db 'Graphic character table: ' ,0 
v20 db 'Program terminate: ' ,0 
v2i db 'DOS universal function: ' ,0 
v22 db 'Terminate vector: ' ,0 
v23 db 'Ctrl-C vector: ' ,0 
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v24 db 
v25 db 
v26 db 
v27 db 
v2F db 

initialize: 
assume 
mov 
mov 

mov 
mov 
int 
mov 
mov 
mov 
mov 
mov 
int 

mov 
int 

cseg 	 ends 
end 

'Critical error vector: , ,0 
'Absolute disk read: ' ,0 
'Absolute disk write: ' ,0 
'Terminate/stay resident: ' ,0 
'Print spooler: ' ,0 

cs:cseg,ds:cseg 
bx,cs 
dS,bx 

al,05H 
ah,35H 
21H 
old_prtsc_io,bx 
old_prtsc_io[2] ,es 
dX,oifset new_prtsc_io 
al,05H 
ah,25H 
21H 

dX,oifset initialize 
27H 

start 





Chapter 9 

Controlling the Machine 

One problem with computers is that they are so damn finicky. Most programs 
are designed to solve a certain set of problems in a certain way. If the set of 
problems is big enough and the choice of methods clever enough, we call these 
programs well designed. There are times, however, when it would be nice to do 
things from within a program that the designers never considered. Quite often, 
the action you choose is not possible from within the program you are executing. 
This mayor may not be shortsightedness on the part of the designers. No two 
people solve problems in the same way. Everyone has a style, an approach to 
getting their work done. People like programs that are similar to their own style 
or that have a style they agree with. People don't like programs that do things 
in a way they would never consider reasonable. 

We have already built a program that lets you tell DOS what to do by simu­
lating your typing at the keyboard. Sometimes, however, we want to perform an 
action directly, without standing back and issuing a command to do so. Some­
times we want to look deep into the machine, see what bits are set, and change 
them ourselves if we don't like the way things look. If there is a program to 
make the changes we want, we can just run it - if we don't happen to be running 
something else, that is. 

One place in which this happens all the time is the communications ports. 
There are a lot of programs for telecommunications that let you use the IBM PC 
as a terminal or transfer files from one computer to another. You connect a mo­
dem to one of your serial ports and use that modem to talk across the telephone 
to another computer. Those computers have communication programs, as well. 
Each of those programs has a designer, and each designer has an opinion about 
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how telecommunications should be done. Few of those designers share the same 
opinion. So you discover that, having connected to a computer, you are using 
the wrong baud rate, or parity, or word length, or something. 

If you've chosen your communication program well, you may be able to switch 
gears and change the mode of your communications port on the fly. Suppose 
you have a less powerful program, such as many of the public-domain telecom 
programs. Or suppose you use several programs in the course of a day's work, 
and can't find the particular manual that explains exactly how to go about doing 
what you'd like to do. How do you solve the problem? 

One way might be to use a resident application. Most programs that fiddle 
with the communications port parameters don't keep an eye on them to make 
sure they remain the same. If the mode changes when the communications 
program isn't looking, everything should still work. 

Here we begin to see some of the real dangers and the seductiveness of the 
"dark side" of resident-application programming. When you can sneak in and 
change anything in the machine, there is a real temptation to overdo it. This 
program is an example of one that is on the borderline. There is no chance that 
this program will work with every telecom program on the market. But it may 
do some of the right things for some people, and thus it is worth understanding. 

9.1 Rewriting the Key Expander 

Let's define our goal a little better. What we want is a program that allows us to 
examine and reset the state of the two serial ports COM1: and COM2:. We want 
to see what the current settings, such as baud rate, number of stop bits, parity, 
and bits per character have been set to, and we want to reset those parameters 
at will. 

What sort of control mechanism can we use for this? Well, one way might 
be to write a resident version of the MODE command that would prompt us for 
parameters in the system format, and then set them correctly. This is a clumsy 
approach, however. To write a resident command that prompts for a parameter 
string and then parses it is certainly possible, but it may be more work than 
is necessary to solve the problem. Another consideration is that the DOS MODE 
command, while it is one solution to this problem, is extremely cryptic and 
difficult to use. The order of parameters is specific, and the correct form of 
those parameters is obscure and hard to remember. Perhaps a better model for 
the MODE command is in order. 
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Another approach is along the same lines as the keystroke expander we have 
already written. We know that we can easily detect expanded characters and 
perform actions based on them. In the past, those actions have been similar, 
namely to begin returning the value of a predefined string. There is no reason we 
could not use the same sort of mechanism to execute our own specially written 
code. 

What will we need to do this? In a way, this is an easier problem to solve than 
the general-purpose keystroke expander. Since we are not returning anything 
via the returned character, as we did with the expanded keys, we need not take 
control of the keyboard status function. So all the code related to that function 
can be removed. In general, though, we can use a mechanism extremely similar 
to that of the keystroke expander. In that program, we had a table of characters, 
each of which was bound to a pointer to a string. A pointer to a string indicates 
the location of some information in memory. A pointer to a subroutine does 
exactly the same thing. We can build exactly the same type of table but simply 
perform a different operation on the information contained within. In the case 
of the string, we began returning it as data. In the case of a subroutine, we can 
execute it. 

cseg segment 
assume cs:cseg,ds:cseg 
org 100H 

start: 
jmp initialize 

assume ds:nothing 
new_keyboard_io proc far 

sti 
cmp ah,O Is this call a READ request? 
je ksread 
jmp old_keyboard_io Handle the remaining subfunction. 

ksread: 
call keyread Get the next character to return 
iret 

new_keyboard_io endp 

; Read a character from the keyboard input queue, if not expanding 
; or the expansion string, if expansion is in progress. 
keyread proc near 
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push 
readchar: 

pushf 
call 
cmp 
je 
jmp 

extended: 
mov 

nextext: 
cmp 
je 
cmp 
je 
add 
jmp 

startexpand: 
add 
cmp 
je 
push 
push 
push 
push 
push 
push 
push 
push 
call 
pop 
pop 
pop 
pop 
pop 
pop 
pop 
pop 

readdone: 
pop 

keyread 
ret 

keytab db 
dw 
db 

si 

old_keyboard_io 
al,O 
extended 
readdone 

si,offset keytab 

byte ptr cs: [si] ,0 
readdone 
ah,cs: [si] 
startexpand 
si,3 
nextext 

si,l 
word ptr cs: [si] ,0 
readdone 
ax 
bx 
cx 
dx 
si 
di 
bp 
ds 
word ptr cs: [si] 
ds 
bp 
di 
si 
dx 
cx 
bx 
ax 

si 

endp 

120 
test 
0 

Let the original routine 
determine keyboard status. 

Is this the end of the table? 
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dw 0 

assume cs:cseg,ds:cseg 

teststring db 'This is a test' ,0 

test proc near 
mov bx, cs 
mov dS,bx 
mov si,offset teststring 
call dstring 
ret 

test endp 

, Displays the string pOinted to by DS:SI 
dstring proc near 

push si 
push ax 
cmp si,O 
je dsdone 

dloop: 
mov aI, [si] 
cmp al,O 
je dsdone 
call dchar 
inc si 
jmp dloop 

dsdone: 
pop ax 
pop si 
ret 

dstring endp 

; Display the character contained in AL 
dchar proc near 

push ax 
push bx 
mov bh,l 
mov ah,OEH 
int lOR 
pop bx 
pop ax 
ret 

dchar endp 
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initialize: 
assume cs:cseg,ds:cseg 
mov bx,cs 
mov dS,bx 

mov al,16H 

mov ah,35H 

int 21H 

mov old_keyboard_io,bx 

mov old_keyboard_io[2] ,es 

mov dX,offset new_keyboard_io 

mov al,16H 

mov ah,25H 

int 21H 


mov dX,offset initialize 

int 27H 


cseg 	 ends 
end start 

The first part of this code is almost identical to the corresponding parts of 
the keystroke expander. We intercept the read-character subfunction of INT 
16H (keyboard I/O). If the character read is an expanded character, then we 
scan through a table until we find a match. Up to this point, we are using the 
same code we wrote for the keystroke expander. Here, however, things get a little 
different. If we find a match in the table, we will have a word that is the starting 
address of a subroutine. Given that, we save the state of the machine onto the 
stack and then call the subroutine. The ability to treat pointers to code like data 
is an important and powerful programming tool. Many sophisticated programs 
keep tables of subroutines to simplify the coding structures. These tables, one 
of which is shown in the current example, are known as dispatch tables, since 
they perform a directive function similar to a dispatcher in a train station, or 
a taxi company. Dispatch tables, and treating pointers to subroutines as data, 
are a basic concept on which threaded languages, such as FORTH, are based. In 
some cases, you can dramatically simplify the way a program is written by using 
this technique. In other cases, of course, you can make a simple program, almost 
impossible to read or debug with exactly the same set of tools. 

The basic program we have built will detect one particular keystroke, ALT-1. 
When that key is typed, the test subroutine will be run. For the purposes of 
this experiment, test will simply cause a letter to appear on the screen. At 
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first glance, this seems similar to the keystroke expander. This is misleading, 
because the character, though it has appeared on the screen, can never be read 
by DOS. We are not transmitting it back through the return mechanism as we 
did for the keystroke expander. We are sending back the character that was 
read and acted on, in this case, the ALT-1. 

9.2 The State of the Serial Ports 

One of the first steps toward correctly changing something is to understand it 
as it is now. While DOS provides a ROM system call to set the state of the 
serial ports, it does not provide a call to examine what that state is. But since 
we are in the machine anyway, perhaps we can write one. 

We now have a skeleton through which we can run little snippets of code, to 
examine or change the state of the machine as we wish. To add functions, we 
simply need add a character, a pointer, and a subroutine to this skeleton and 
we can call the code with a single keystroke. Now we just need to figure out 
what to put in that subroutine, and we are all set. 

Several of the IBM PC peripheral devices are connected to I/O ports. Many 
people quite understandably confuse these ports with communication ports, the 
devices that speak to the modem or a serial line. The two are quite similar ideas 
at different layers of complexity. A communications port is a high-level concept 
for an IBM PC. It is a device that permits the communication of information 
from your computer to another computer or device. It is a way to get information 
in and out of the box. The low-level I/O ports we are speaking of here are 
devices that allow one component of your IBM PC to communicate with other 
components. They are ways of passing information back and forth within the 
box. In fact, it takes quite a few low-level I/O ports to perform the higher-level 
function of a single communications port. 

One reads an I/O port by using the IN opcode. Writing to an I/O port is 
done with the corresponding OUT opcode. The 8086/8088 permits a system to 
have as many as sixty-four thousand I/O ports, as many as a 16-bit word can 
address. To allow a sort of compatibility with programs from 8-bit machines, 
the architecture provides for two kinds of I/O port addresses: those less than a 
full byte and those that require a full word. To use a port whose number is less 
than 256, you simply use the number directly: 

in ax,80H Read a word from port 80H 

in al,90H ; Read a byte from port 90H 
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All input and output calls must use the AX register. To read a word, use AX. 
To read a byte, use AL. For ports whose number is greater than or equal to 256, 
the DX register is used: 

mov dx.180H 
in ax.dx Read a word from port 180H 
mov dx.190H 
in al.dx Read a byte from port 190H 

A single communications port requires seven I/O ports to operate. Full 
details of the operations can be painfully extracted from the IBM Technical 
Reference Manual. Luckily for us, full details are rarely necessary. One can 
set the state of a communications port by using IN! 14H function OH (initialize 
communications port). To read the state, one has to use just three of the seven 
ports. 

DOS permits the IBM PC to have up to four communications ports. Typ­
ically, IBM PCs have just two: COM1: and COM2:. Each communications port 
requires seven I/O ports. The I/O port addresses are not random, but follow a 
pattern. Each address is a full word. The low-order byte indicates which I/O 
port of the seven to use. The available ports are: F8H, F9H, FAH, FBH, FCH, FDH, 
and FEH. The ports we are interested in are F8H and F9H, which contain a value 
that we can use to determine the baud rate, and FBH, which contains the line 
control register (LCR). The LCR contains the rest of the information about line 
status that we need. 

The high-order byte of the I/O port address indicates the communications 
port, with COM1: = 3 and COM2: = 2. Thus, if we wanted to read the LCR of 
COMl : , we would use this code: 

mov dx.3FBH Read Line Control Register for COM1: 
in al.dx into AL 

Baud rate is determined by a number that the communications hardware 
uses as a divisor. The divisor is a single word, whose low byte can be found at 
port F8H and whose high byte can be found at port F9H - sometimes. A special 
bit, called the divisor latch access bit (DLAB) (bit 7) of the LCR determines 
what can be found on ports F8H and F9H. If the DLAB is one, then the divisor 
we want will be there. Other information will be present if the DLAB is zero. 
We can get the divisor (in BX) with this code: 
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mov dx.3FBH Read Line Control Register for COM1: 
in al.dx into al 
push ax Save old LCR on stack 
or al.80H Set the DLAB to 1 
out dx.al and set the new LCR 
mov dx.3F8H Get the divisor low byte 
in al.dx 
mov bl.al Save it in BX 
mov dx.3F9H Get the divisor high byte 
in al.dx 
mov bh.al Save it in BX 
pop ax 
mov dx.3FBH Restore Line Control Register for COM1: 
out dx.al 

The divisor is meaningless to us directly, but it can be translated into baud 
rate information. Here are the most common baud rates and their corresponding 
divisors: 

Divisor Baud Rate 
1047 110 
384 300 
96 1200 
48 2400 
24 4800 
12 9600 

Looking into the LCR, we can determine the other useful parameters of a 
port. 

Bits 1 and 0 are a two-bit number that represents the number of bits in a 
character. The interesting values here are 2, which means 7 bits per character, 
and 3, which means 8 bits per character. 

Bit 2 represents the number of stop bits. If it is 0, only one stop bit will be 
generated. If it is 1, two stop bits will be used. 

Bits 4 and 3 represent a two-bit number that can be used to determine parity. 
If the number is 0 or 2, no parity will be used. If the number is 1, odd parity 
will be generated. If the number is 3, even parity will be generated. 

With this information, we can find out what we want to know from any serial 
port on the system. Now all that remains is to write some code that does so. 
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9.3 A Port Status Display 

Once we have determined the information about the state of a communications 
port, how should we display it, and where should we put it? The DOS MODE 
command uses expressions of the form COM1 : 1200, N,8,1 to represent the infor­
mation that communications port 1 is to be set to 1200 baud, no parity, eight 
bits per character, one stop bit. This is a compact form and has the advantage 
that it can be typed directly to the MODE command; however, it has few other 
positive aspects. A better representation might be the one that we used in the 
second half of the descriptive sentence. That is the form we understand and the 
form we mentally translate the cryptic expression into. 

As for location, one possibility is simply to display the data at the current 
cursor location. This is almost always wrong, however, since the cursor location 
is where our attention is focused at the moment we issue the command. Also, it 
is almost certainly where our telecommunications work is focused as well. Thus, 
the current cursor location is probably the worst place to display status info. A 
better choice might be the lower right corner, since it is a fixed location and out 
of the way of most normal screen usage. However, many telecom programs use 
the bottom line for status information, and so this display might interfere with 
that. In addition, if we are to place any information on the bottom line, we must 
take greater pains to restore the screen contents. If we leave any characters on 
the screen, they will scroll upward as the rest of the screen does and thus will 
remain on screen for quite a while. 

Probably the least offensive place would be the upper right corner, but many 
programs, desk clocks in particular, use that corner for precisely that reason. 
The information we want to display is marginally transient. We want to see it 
and we may want to keep it around for a little while, but when we go back to our 
work via the telecom program, it can safely vanish. One solution is to put it in 
the upper left corner of the screen, and let it disappear as the screen scrolls up. 
This is essentially the same solution we used for the resident interrupt-vector 
display. 

We know that we will need the cursor functions written for the interrupt­
vector display and the same basic save-rep osition-restore algorithm for the dis­
play routine here. If we flush the test routine from our earlier skeleton program, 
we can add some code that will rough out the basic shape of this application: 

keytab 	 db 120 ; ALT-1 
dw portlstatus 
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db 121 
dw port2status 
db 0 
dw 0 

assume cs:cseg,ds:cseg 

Display the status of COM1 
port1status proc near 

mov bx,cs 
mov dS,bx 

mov dh,3 
call portstatus 

ret 
port1status endp 

; Display the status of COM1 

port2status proc near 


mov bx,cs 

mov dS,bx 


mov dh,2 
call portstatus 

ret 
port2status endp 

Display the status of any comm port 
Call with 

ALT-2 

Port offset for COM1 

Port offset for COM2 

DH contains the I/O port offset for the comm port 
portstatus proc near 

push bx 
call getpos 
push bx 
mov bx,O 
call setpos 
call showcom 
call showbaud 
call showlen 
call showstop 
call showparity 
pop bx 
call setpos 

Get the current cursor position 
and save it on the stack. 

Move to the upper left corner (0,0) 

Show the current comm port name 
Show the current baud rate 
Show the bits per character 
Show the number of stop bits 
Show the parity 
Retrieve the old cursor position 

and restore the cursor to there. 
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pop 
ret 

portstatus 

com1 
com2 
comtab 

; Call with 
DH = 

showcom 
push 
push 
push 
mov 
mov 
sub 
shl 
mov 
call 
pop 
pop 
pop 
ret 

showcom 

showbaud 
ret 

showbaud 

showparity 
ret 

showparity 

showstop 
ret 

showstop 

showlen 
ret 

showlen 

bx 

endp 

db 'COM1: ' ,0 
db 'COM2: ' ,0 
dw com1 
dw com2 
dw 0 

I/O port offset for the communications port 
proc near 
bx 
dx 
si 
bh,O Zero the high byte of the index 
bl,3 Compute the index = 3-port offset 
bl,dh 
bX,1 Multiply by two to get a word index 
si, comtab [bx] And get the appropriate string 
dstring Print the string 
si 
dx 
bx 

endp 

proc near 

endp 

proc near 

endp 

proc near 

endp 

proc near 

endp 

; Get the current cursor position and return it in BX 
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getpos proc near 
push ax 
push cx Since this function modifies ex 
push dx 

mov ah,03H 
mov bh,O Page zero 
int 10H 
mov bX,dx Return the position in BX 

pop dx 
pop cx 
pop ax 
ret 

getpos endp 

, Set the current cursor position to the value in BX 
setpos proc near 

push ax 
push bx 
push dx 

mov ah,02H 
mov dX,bx 
mov bh,O 
int 10H 

pop dx 
pop bx 
pop ax 
ret 

setpos endp 

This basic skeleton should display the label for COM!: when ALT-! is pressed, 
and the label for COM2: when ALT-2is pressed. We do this by indexing into a 
table based on the port offset number. Another approach might be to pass some 
direct representation of the communications port number, such as 1 for COM!:, 2 
for COM2:, and so on. We don't really need to do that for two reasons. First, any 
set of sequential numbers we might choose will contain the same information. 
Many of the system calls use 0 for COM! : , 1 for COM2 : , and so on. Other programs 
use the direct mapping as demonstrated earlier. These representations contain 
essentially the same information. In the jargon of the field, they are isomorphic 
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representations. Second, since these numbers cannot be entered directly by users 
of the program, they are purely internal representations. Once we get the code 
working, they can never change and thus become invalid, because nobody can 
type in an incorrect value. Therefore, we can choose a convenient set of numbers 
just as easily as we could choose an inconvenient set. 

The display routines for each of the various parameters have been left as 
stubs. As we expand each one, we can replace the stub and tryout the program 
to see if it works. 

9.3.1 Displaying the Baud Rate 

We have seen a table of divisors and corresponding baud rates. Given a divisor, 
you can find the baud rate by looking it up in that table. There is no reason to 
approach this programming problem in a different fashion. One slight modifi­
cation might be how you interpret the baud rate. You are given the divisor as 
a number. Should you derive the baud rate as a number, also? Well, since the 
goal of this routille is to print the baud rate on the screen, you'll need to write 
a routine to convert numbers to the correct base-l0 string. This is not difficult, 
but if you had the answer as a string, you would already have a routine to print 
strings. There is another reason for using strings, which will be discussed later. 

The code for our baud-display routine must do three things, then. First, 
it should retrieve the baud-rate divisor from the correct communications port. 
Second, it should use that divisor to select a string that contains the ASCII 
description of the baud rate. Finally, it should print that string. 

b110 db , 110 baud, ' ,0 
b300 db ' 300 baud, ' ,0 
b1200 db '1200 baud, ' ,0 
b2400 db '2400 baud, ' ,0 
M800 db '4800 baud, ' ,0 
b~600 db '9600 baud, ' ,0 

divtab dw 1047 
dw 384 
dw 96 
dw 48 
dw 24 
dw 12 
dw 0 
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baudtab 	 dw bll0 
dw b300 
dw b1200 
dw b2400 
dw b4800 
dw b9600 
dw 0 

showbaud proc near 
push di 
push si 
push bx 
call getbaud Get the baud rate divisor 

baudloop: 
cmp divtab[di] ,0 Scan through the divisor table 
je bldone till you reach the end 
cmp bx, divtab [di] 
je dbaud or till you find the divisor 
add di,2 
jmp baudloop 

dbaud: 
mov si ,baudtab [di] Print the corresponding baud rate 
call dstring 

bldone: 
pop bx 
pop si 
pop di 
ret 

showbaud endp 

Call with 
DH containing modem port offset (COMl 3, COM2 2) 

Returns 
BX baudrate divisor 

getbaud proc near 
push ax 
push dx 
mov dl,OFBH 
in al,dx 
push ax 
or al,80H 
out dX,al 
mov dl,OF8H 
in al,dx 
mov bl,al 
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mov dl,OF9H 
in al,dx 
mov bh,al 
pop ax 
mov dl,OFBH 
out dX,al 
pop dx 
pop ax 
ret 

getbaud endp 

9.3.2 Displaying the Character Length 

Next, we need to determine. how many bits make up a single character in the 
current communications state. We already know how to do this, and we know 
that the number will be less than or equal to 8. For numbers less than 10, 
conversion to ASCII is easy. One approach would be simply to convert and 
display the number of bits, followed by a label string. Nevertheless, we are 
going to stick with the method of a string table used in the previous routine 
with one slight difference. When your indices to a table can be any number 
and you know that the table will be sparsely filled, you may not want to store 
all the empty entries. In that case, you must explicitly include the index along 
with the entry in a table. When your index is sequential, as are the numbers 7 
and 8, you don't need to include an index. If you subtract the base value of the 
table (in this case, 7), you can use your adjusted number to index directly into 
a table of bytes. Since we want to index into a table of words, we must multiply 
the index by two. This can be done in a single instruction simply by shifting 
the number one bit to the left. 

You may be curious as to why we are going to stick with the string rather 
than the number representation of our display. Well, for two reasons. The first 
is consistency. If there is no pressing reason to do something different each time, 
then keeping your methodology the same has some advantages. In many cases 
you can reduce the total amount of code by noticing duplication of code among 
instances of the same types of operation. If you optimize each little case, you 
can win in the short run, but lose in the long run. By being consistent in the first 
pass, you can take advantage of these larger-scale optimizations in the second 
pass and possibly save more space or speed up the code. 

The second, and by far the more important, reason has to do with the ulti­
mate goal of this program. We are not interested in simply reading the state of 
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communications ports, we want to be able to change that state. To do this, we 
need some way of specifying the new state of a port, a simple application-specific 
language for telling the machine what to do. As we discussed earlier, the MODE 
command provides one example of how to do this, but it is unpleasant. We 
chose to display the state in a pleasant, readable fashion. Surely we will want 
to design our input to be just as pleasant to use. We know what all the possible 
values of each parameter will be. If we have already declared string equivalents 
of those values, we can put them to good use later when we are designing the 
input section. 

char7 db '7 bits/char, ' ,0 
char8 db '8 bits/char, ' ,0 
chartab dw char7 

dw char8 
dw 0 

showlen proc near 
push ax 
push bx 
push si 
call getlen 
shl bX,1 Multiply index by 2 for words 
mov si, chartab [bx] Get the correct label string 
call dstring and display it. 
pop si 
pop bx 
pop ax 
ret 

showlen endp 

Call with 
DH = modem port offset (COM1 = 3, COM2 = 2) 

Returns 
BX = the number of bits - 7 (i.e. 0 = 7 bits, 1 = 8 bits) 

getlen proc near 
push ax 
push dx 
mov dl,OFBH 
in al,dx 
and al,03H 
mov bh,O 
mov bl,al 
sub bX,2 
pop dx 
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pop ax 
ret 

getlen endp 

9.3.3 Displaying the Stop Bits and Parity 

This code is similar to the bits-per-character code. You may have noticed two 
things about our string tables thus far. First, all the entries in a given ta­
ble are exactly the same length. The reason for this is simple. Since we are 
designing the program, we are allowed to choose exactly how things will be dis­
played. Some representations, for example "7 bits/char" and "seven bits 
per character," are equal in information, despite quite different sizes. If we 
can find a good representation that will cover all cases and still let us display the 
information in a fixed-length field, we can avoid problems later. If values of a 
given field were different lengths, the display string would expand and contract 
as the values changed. Then we would have to worry about what happens at 
the edge of the string. 

In two cases, the parity and the baud rate, we cannot easily justify changing 
the format just to even up the length. In the case of baud, we could demand 
that 300 baud be represented as 0300 baud, but this is unsightly as well as 
distracting. By judiciously padding with a single leading blank, the result is 
better looking and still correct. For parity, we could represent "none", "even" 
and "odd" with the single characters N, E and 0, but this would lose information, 
in that the letters must be explained somewhere before they can be useful. 
Instead, by placing this field last on the line and padding out the end of the 
strings with blanks to be even, we ensure that the parity information is distinctly 
separate from the rest of screen, and no flickering occurs. 

stop1 db '1 stop, ' ,0 
stop2 db '2 stop, ' ,0 
stoptab dw stop1 

dw stop2 
dw 0 

showstop proc near 
push bx 
push si 
call getstop 
dec bx 
shl bX,l 



153 9.3. A PORT STATUS DISPLAY 

mov 
call 
pop 
pop 
ret 

showstop 

push 
push 
mov 
mov 
in 
and 
cmp 
je 
inc 

gsdone: 
pop 
pop 
ret 

getstop 

pnone 
podd 
peven 
partab 

showparity 
push 
push 
call 
shl 
mov 
call 
pop 
pop 
ret 

showparity 

si , stoptab [bx] 
dstring 
si 
bx 

endp 

One stop bit 

Two stop bits 

dx 
ax 

endp 

db 'no parity , ,0 
db 'odd parity , ,0 
db 'even parity' ,0 
dw pnone 
dw podd 
dw peven 
dw 0 

proc near 
bx 
si 
getparity 
bX,l 
si ,partab [bx] 
dstring 
si 
bx 

endp 
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; Call with modem port offset (COMl = 3, COM2 = 2) in DH 
; Returns parity in BX (0 means none, 1 means odd, 2 means even) 
getparity proc near 

push ax 
push cx 
push dx 
mov bx,O 
mov dl,OFBH 
in al,d~ 

and aI,lSH 
cmp al,OOH No parity (00) 
je gpdone 
cmp aI,10H No parity (10) 
je gpdone 
inc bx Odd parity (01) 
cmp aI,lSH 
jne gpdone 
inc bx Even parity (11) 

gpdone: 
pop dx 
pop cx 
pop ax 
ret 

getparity endp 

9.4 The Virtues of Consistency 

You,may have noticed that all the string tables in this code are terminated with 
a zero field. There is good reason for this, a reason that harkens back to the 
earlier discussion of consistency. These tables are data structures. They take the 
form they have because the designer has something in mind for them. A good 
design should be robust and capable of extensions. Therefore, a good designer 
should always take the long view in the design of code. 

What information must be known to use a table such as stoptab from the 
previous example? First, of course, is the location of that table in memory. Like 
your car ignition key, if you can't find it, you can't use it. Second is the shape 
of the elements. In the case of stoptab, the elements are single words, pointers 
to strings. But they may have been double-precision floating-point numbers ­
there is no easy way to tell. Finally, the last characteristic we must know is the 
length of the table. If we don't know how long it is, we cannot know whether an 
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element is real data or simply random bytes pulled from the end of the array. 
This is especially important in resident applications, where the code and data 
must live in the same segment. Writing off the end of an array could imply 
writing over the program segment prefix of the currently running application or, 
worse, over your own code. 

How can an arbitrary extension to this program know these facts about the 
tables in this code? It can easily know the location of a table, at the time of 
assembly, by defining a symbol for it. The shape of an element is a much harder 
problem, because tables are shaped to match their use; for many shapes, there 
is no simple representation. One approach might be to store, in the beginning 
of a table, a count indicating the number of bytes per element. This is common 
in some high-level languages. For this discussion and the code in this book, we 
will simply beg the question and say that the knowledge of the shape of a table 
must reside in the code that uses that table. Finally, as to the length, it cannot 
be determined from a simple table, one not terminated with a zero field. It may 
be implicit in some of the code that uses it. But it can be determined easily, 
precisely, and simply, if we add that final zero. By doing that we can greatly 
generalize the types of things we can do with an "arbitrary" table or structure 
III memory. 

You may have noticed that various structures in this book have been "reg­
ularized" by explicit termination. A good example of this is the table used to 
convert bytes to ASCII hexadecimal strings. It looks like this: 

hextab db '0123456789ABCDEF',O 

The addition of the zero at the end lets a program determine how long that 
table is. It also puts it in exactly the same form as a string that can be printed 
by dstring. You may never want to print this string, but you could, and it 
costs only one byte of memory for that potential. 

Blind adherance to an arbitrary standard is silly. Diverging from a standard 
for a good enough reason and realizing that certain structures are similar, even 
if the uses they are put to are different, is good programming practice. 

9.5 SEEMODE. ASM - Show Communications Mode 

This program displays the state of a communications port in the upper left 
corner of the screen. 
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cseg segment 
assume cs:cseg,ds:cseg 
org 100H 

start: 
jmp initialize 

assume 
new_keyboard_io 

sti 
cmp 
je 
jmp 

ksread: 
call 
iret 

new_keyboard_io 

ds:nothing 
proc 

ah,O 
ksread 
old_keyboard_io 

keyread 

endp 

far 

Is this call a READ request? 

handle remaining subfunction. 

Get next character to return 

; Read a character from keyboard input queue, if not expanding 
; or expansion string. if expansion is in progress. 
keyread 

push 
readchar: 

pushf 
call 
cmp 
je 
jmp 

extended: 
mov 

nextext: 
cmp 
je 
cmp 
je 
add 
jmp 

startexpand: 
add 
cmp 
je 
push 
push 
push 

proc near 
si 

old_keyboard_io 
al,O 
extended 
readdone 

si,offset keytab 

byte ptr cs: [si] ,0 
readdone 
ah, cs: [si] 
startexpand 
si,3 
nextext 

si,i 
word ptr cs: [si] ,0 
readdone 
ax 
bx 
cx 

Let original routine 
determine keyboard status. 

Is this end of table? 
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push dx 
push si 
push di 
push bp 
push ds 
call word ptr cs: [si] 
pop ds 
pop bp 
pop di 
pop si 
pop dx 
pop cx 
pop bx 
pop ax 

readdone: 
pop si 
ret 

keyread endp 

keytab db 120 ALT-1 
dw port1status 
db 121 ALT-2 
dw port2status 
db 0 
dw 0 

assume cs:cseg,ds:cseg 

Display status of COM1 
port1status proc near 

moy bx,cs 
mov dS,bx 
moy dh,3 Port offset for COM1 
call portstatus 
ret 

port1status endp 

; Display status of COM! 
port2status proc near 

moy bx,cs 
moy dS,bx 

moy dh,2 Port offset for COM2 
call portstatus 
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ret 
port2status endp 

Display status of any comm port 
Call with 

DR contains I/O port offset for comm port 
portstatus 

push 
call 
push 
mov 
call 
call 
call 
call 
call 
call 
pop 
call 
pop 
ret 

portstatus 

com1 
com2 
comtab 

; Call with 

proc near 
bx 
getpos 
bx 
bx,O 
setpos 
showcom 
showbaud 
showlen 
showstop 
showparity 
bx 
setpos 
bx 

endp 

db 'COM1: , ,0 
db 'COM2: , ,0 
dw com1 
dw com2 
dw 0 

Get current cursor position 
and save it on stack. 

Move to upper left corner (0,0) 

Show current comm port name 
Show current baud rate 
Show bits per character 
Show number of stop bits 
Show parity 
Retrieve old cursor position 

and restore cursor to there. 

DR = I/O port offset for communications port 
showcom proc near 

push bx 
push dx 
push si 
mov bh,O Zero high byte of index 
mov bl,3 Compute index = 3-port offset 
sub bl,dh 
shl bX,1 Multiply by two to get a word index 
mov si ,comtab [bx] ; And get appropriate string 
call dstring ; Print string 
pop si 
pop dx 
pop bx 
ret 
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showcom 

b110 
b300 
b1200 
b2400 
b4800 
b9600 

divtab 

baudtab 

showbaud 
push 
push 
push 
call 
mov 

baudloop: 
cmp 
je 
cmp 
je 
add 
jmp 

dbaud: 
mov 
call 

bldone: 
pop 
pop 
pop 

endp 

db 
db 
db 
db 
db 
db 

dw 
dw 
dw 
dw 
dw 
dw 
dw 

dw 
dw 
dw 
dw 
dw 
dw 
dw 

proc 
di 
si 
bx 
getbaud 
di,O 

, 110 baud, 
' 300 baud, 
'1200 baud, 
'2400 baud, 
'4800 baud, 
'9600 baud, 

1047 
384 
96 
48 
24 
12 
0 

b110 
b300 
b1200 
b2400 
b4800 
b9600 
0 

near 

' ,0 
' ,0 
' ,0 
' ,0 
' ,0 
' ,0 

Get baud rate divisor 

divtab[di] ,0; Scan through divisor table 
bldone till you reach end 
bX,divtab[di] 
dbaud or till you find divisor 
di,2 
baudloop 

si ,baudtab [di] 
dstring 

bx 
si 
di 

Print corresponding baud rate 
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ret 
showbaud endp 

Call with 
DH containing modem port offset (COM1 = 3, COM2 = 2) 

Returns 
BX = baudrate divisor 

getbaud proc near 
push ax 
push dx \ 
mov dl,OFBH 
in al,dx 
push ax 
or al,80H 
out dX,al 
mov dl,OF8H 
in al,dx 
mov bl,al 
mov dl,OF9H 
in al,dx 
mov bh,al 
pop ax 
mov dl,OFBH 
out dX,al 
pop dx 
pop ax 
ret 

getbaud endp 

char7 db '7 bits/char, ',0 
char8 db '8 bits/char, ',0 
chartab dw char7 

dw char8 
dw 0 

showlen proc near 
push ax 
push bx 
push si 
call getlen 
shl bX,1 Multiply index by 2 for words 
mov si , chartab [bx] Get correct label string 
call dstring and display it. 
pop si 
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pop bx 
pop ax 
ret 

showlen endp 

Call with 
DH = modem port offset (COM1 = 3, COM2 = 2) 

Returns 
BX = number of bits - 7 (i.e. 0 = 7 bits, 1 8 bits) 

get len proc near 
push ax 
push dx 
mov dl,OFBH 
in al.dx 
and al,03H 
mov bh,O 
mov bl,al 
sub bX,2 
pop dx 
pop ax 
ret 

getlen endp 

stop1 db '1 stop, ' ,0 
stop2 db '2 stop, ' ,0 
stoptab dw stop1 

dw stop2 
dw 0 

showstop proc near 
push bx 
push si 
call getstop 
dec bx 
shl bX,1 
mov si , stoptab [bx] 
call dstring 
pop si 
pop bx 
ret 

showstop endp 

Call with modem port offset (COM1 = 3, COM2 2) in DH 
Returns number of stop bits (lor 2) in BX 
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getstop 
push 
push 
mov 
mov 
in 
and 
cmp 
je 
inc 

gsdone: 
pop 
pop 
ret 

getstop 

pnone 
podd 
peven 
partab 

showparity 
push 
push 
call 
shl 
mov 
call 
pop 
pop 
ret 

showparity 

proc 
ax 
dx 
bX,l 
dl,OFBH 
al,dx 
al,04H 
al,O 
gsdone 
bx 

dx 
ax 

endp 

db 
db 
db 
dw 
dw 
dw 
dw 

proc 
bx 
si 
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near 

One stop bit 

Two stop bits 

'no parity , ,0 
'odd parity' ,0 
'even parity' ,0 
pnone 
podd 
peven 
0 

near 

getparity 
bX,l 
si ,partab [bx] 
dstring 
si 
bx 

endp 

; Call with modem port offset (COMl = 3, COM2 = 2) in DH 
; Returns parity in BX (0 means none, 1 means odd, 2 means even) 
getparity proc near 

push ax 

push cx 

push dx 

mov bx,O 

mov dl,OFBH 

in al,dx 
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and al,18R 
cmp al,OOR No parity (00) 
je gpdone 
cmp al,10R No parity (10) 
je gpdone 
inc bx Odd parity (01) 
cmp al,18R 
jne gpdone 
inc bx Even parity (11) 

gpdone: 
pop dx 
pop cx 
pop ax 
ret 

getparity endp 

; Get current cursor position and return it in BX 
getpos proc near 

push ax 
push cx ; Since this function modifies ex 
push dx 

mov ah,03R 
mov bh,O Page zero 
int lOR 
mov bX,dx Return position in BX 

pop dx 

pop cx 

pop ax 

ret 


getpos endp 

, Set current cursor position to value in BX 
setpos proc near 

push ax 
push bx 
push dx 

mov ah,02R 

mov dX,bx 

mov bh,O 

int lOR 


pop dx 
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pop bx 

pop ax 

ret 


setpos endp 

, Displays string pointed to by DS:SI 
dstring proc near 

push si 
push ax 
cmp si,O 
je dsdone 

dloop: 
mov aI, [si] 
cmp al,O 
je dsdone 
call dchar 
inc si 
jmp dloop 

dsdone: 
pop ax 
pop si 
ret 

dstring endp 

, Display character contained in AL 
dchar proc near 

push ax 
push bx 
mov bh,1 
mov ah,OEH 
int 10H 
pop bx 
pop ax 
ret 

dchar endp 

initialize : 
assume cs:cseg,ds:cseg 
mov bx,cs 
mov dS,bx 

mov al,16H 

mov ah,35H 

int 21H 
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mov old_keyboard_io,bx 
mov old_keyboard_io[2] ,es 
mov dx,offset new_keyboard_io 
mov al,16H 
mov ah,25H 
int 21H 

mov dX,offset initialize 
int 27H 

cseg ends 
end start 
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Chapter 10 

Setting the Mode 

So far, we've built a program to look at the configuration of a given serial port. 
The next step is to learn to modify that configuration. And we'll do that by 
taking our display code and sort of rewriting it backward. 

In chapter 9, we wrote code to find the value of each parameter of the 
communications port configurations. First, we called a routine that translated 
the arcane machine-state information into a number of some kind. Using that 
number, we displayed a portion of the status string that reflected the correct 
setting. 

Here, we will add to that same program code that does exactly the reverse. 
We will display a series of strings representing all the possible choices for a given 
parameter. One of those strings will be selected. Based on that, we can come up 
with a number that will be given to a routine that translates it into the arcane 
procedure that must be used to set a given parameter. 

There is a ROM system call to set the communications port configuration 
INT 14H function OH (initialize communications port), which we won't use here. 
We know how to read the values of the parameters for the ports and have built 
a structure to do so. We should be able to reverse that structure to set those 
values. This involves duplicating a function that is already built into the ROM. 
Duplicating code is something that should normally be avoided, but from time 
to time it can be useful. 

The first question you should ask when faced with doing something as foolish 
as rewriting operating system calls is: What don't I understand about this call? 

For DOS, that may be difficult to determine. The inner workings of DOS are 
sometimes mysterious beyond human ken. However, if you are willing to take 
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a stab at it, there are some very good public-domain disassemblers available 
from bulletin boards. A disassembler is a program that performs, as you might 
guess, the opposite function of an assembler. It takes the binary code that the 
machine can execute and writes an assembly-language source program that can 
be assembled into that code. 

This is not quite as wonderful as it sounds. A program is not just executable 
code. It is a representation of a complex thought. Disassemblers can create a 
program that will work correctly, but they cannot provide the thought that went 
into creating the source. A disassembled program has no comments, no variable 
names, no subroutine names, no segment names. It may work, but you'll have to 
put the thought back into it before it becomes a readable program. It is possible 
to deduce the inner workings of a disassembled program, but it ain't easy. 

ROM calls are much easier. The DOS Technical Reference Manual provides 
a full listing of the ROM sources. This makes them much more readable and 
understandable than disassembled code, but they are still somewhat cryptic. 
Nevertheless, there is a surprising amount of useful information buried in these 
listings. By examining them, you can determine if your proposed changes will 
conflict with the expectations of the operating system. Fortunately, setting the 
communications-port parameters is straightforward and duplicating that code 
should cause no real problems. Knowing that something is possible is a big step 
toward being able to do it. 

10.1 Designing the Code 

First, to the matter of user interface. We have already defined a system for 
displaying the state of a port. We should be able to use that same system to 
set the state of a port. We have a series of tokens in an ordered list for each 
parameter and we have routines to position the cursor. We should be able to 
turn these ingredients into a pleasant concoction of some sort. 

You may have noticed that this book stresses the design details of user inter­
face more than any other design issues. This is not accidental. One of the first 
things you notice about people you've just met is they way they speak - in a 
very crude sense, their "user interface." It is the same with computer programs. 
A clumsy user interface is like a thick accent. No matter that the intentions are 
good, if the presentation is poor, it is difficult to get the message across. 

The details of an interface often take the lion's share of the code. Attention 
to detail is an important facet of the design process, but an obsession with 



169 10.1. DESIGNING THE CODE 

those details can prevent a perfectly good program from seeing the light of day. 
Designers should aim for a good balance. The programs in this book may not 
have perfect interfaces, but they are usable, and the code is not too complex to 
be understood. 

For this program, we need to set four parameters for a given communications 
port: baud rate, number of bits in a character, number of stop bits, and parity. 
We also need some way to select which communications port we are setting. 

One approach would be to print a menu for each parameter, perhaps with 
numbers to select between individual values. This is a classical approach and 
one that is used with great effect in other programs. It could take up a great 
deal of screen real estate, however, and would require some sort of very simple 
parser to determine if the number entered was valid and, if so, to cause the 
appropriate action. 

What are we looking for in an input mechanism? First, it should be clear 
what is being selected. When we select a baud rate, we don't want to select 
baud rate 4 or baud rate D - we want to select 9600 baud. That is the meaning 
of the parameter, and the further our interface forces us to be removed from 
that, the more difficult it will seem to be to use. 

Second comes the question of illegal input. A maxim among those devoted 
to the scientific method maintains that how you ask a question is sometimes 
as important as the question itself. This issue raises one of those cases. If we 
ask ourselves how to design a user interface that minimizes bad input, we may 
come up with a parser, or a menu system, or something along those lines. If we 
rephrase the question to be one of how to design a system that always produces 
correct input, we may come up with something different. 

One way to guarantee that your input is correct is to make all the choices 
ahead of time. We already know every possible value of all the parameters. If 
we write a routine that lets us select from only that set, we can take a good step 
toward being foolproof. Typing an index to a menu item, on the other hand, 
would still have a potential for bad input. After all, even if valid input goes 
from 1 to 6, you still need to handle the case of a typed 8. 

Look at the design of machinery. Some stereos have a selector knob that 
allows you to switch among the phono, the tape, and the tuner inputs. With 
those three selections, it is impossible to select an illegal input; it is only possible 
to select an inappropriate one. There is no way to specify anything other than 
phono/tape/tuner in the language of stereo controls. Surely, if a manufacturer 
can build something so simple from a few bits of metal and plastic, we should 
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be able to do something similar with our expensive personal computer. 
We have a valid format for displaying port information. The name of the 

port, followed by a baud rate, followed by the number of bits in a character, the 
number of stop bits, and the parity, all displayed in the upper left corner of the 
screen. If we start with the first field and write code to cycle through all the 
possible variations, with a method for saying that the currently displayed field 
should be used, and move to every field in turn, we will have an input system 
that cannot be used to enter illegal information. 

Since the mechanism for entering this information can be separated from 
the mechanism for setting each parameter, we can build the input routines first. 
Since these functions are an addition to the SEEMODE. ASM, we have to add an 
entry to the key table, so that we can call our setup routine. Since we typically 
want to reset the baud rate, we might use the ALT-B key to call the setup routine. 

keytab db 120 ALT-1 
dw port1status 
db 121 ALT-2 
dw port2status 
db 48 ALT-B 
dw setport 
db 0 
dw 0 

The setport routine needs to do several things. It needs to set up the data 
segment. It must save the old cursor position and then move the cursor to the 
upper left corner. Then, each parameter must be set up in turn. Finally, the 
cursor must be returned to its original position. 

The selector routine, which we can call dmenu, since it displays all the possible 
choices, should be general enough to accept a pointer to any array of strings. It 
should then display the first string in the array and wait for a keystroke. If that 
keystroke is anything but the selector character, the routine should cycle to the 
next value in the list. When the end of the list is reached, we should start again 
at the beginning. Since we are moving from right to left, a reasonable character 
might be the Right Arrow, extended character code 77. In addition, to achieve 
the cycling effect, we want to reposition the cursor to the beginning of the field 
and redisplay on top of the previous value. 

By building simple routines that just display the appropriate menus we can 
try out the interface. 

setport proc near 
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push 
mov 
mov 
call 
push 
mov 
call 
call 
call 
call 
call 
call 
pop 
call 
pop 
ret 

setport 

; Returns 
DH 

setcom 
push 
mov 
call 
mov 
sub 
call 
pop 
ret 

setcom 

setbaud 
push 
mov 
call 
call 
pop 
ret 

setbaud 

setlen 
push 
mov 
call 
call 

bx 

bx,cs 

dS,bx 

getpos 

bx 

bx,O 

setpos 

setcom 

setbaud 

setlen 

setstop 

setparity 

bx 

setpos 

bx 


endp 

I/O port offset 
proc near 
di 
di,offset comtab 
dmenu 

Get the current cursor position 
and save it on the stack. 

Move to the upper left corner (0,0) 

Set the current comm port name 
Set the current baud rate 
Set the bits per character 
Set the number of stop bits 
Set the parity 
Retrieve the old cursor position 

and restore the cursor to there. 

dh,3 Convert the table index into port offset 
dh,bl 
showcom 
di 

endp 

proc near 
di 
di,offset baudtab 
dmenu 
showbaud 
di 

endp 

proc near 
di 
di,offset chartab 
dmenu 
showlen 
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pop 
ret 

setlen 

setstop 
push 
mov 
call 
call 
pop 
ret 

setstop 

setparity 
push 
mov 
call 
call 
pop 
ret 

setparity 

Call with 
01 = 

Returns 
BX = 

dmenu 
push 
push 
push 
push 
push 

mstart: 
mov 

mloop: 
call 
push 
mov 
call 
pop 
call 
call 
cmp 
je 
add 

di 

endp 

proc near 
di 
di,offset stoptab 
dmenu 
showstop 
di 

endp 

proc near 
di 
di,offset partab 
dmenu 
showparity 
di 

endp 

pointer to the table to display 

index into table divided by 2 
proc near 
ax 
cx 
dx 
si 
bp 

bp,O 

getpos ; Save the cursor position 
bx on the stack 
si,word ptr ds:[di+bpJ 
dstring Display the current menu entry 
bx Move the cursor back to the beginning 
setpos of the field 
cycle Get a command 
cx,O If CX=O then use this entry 
mdone 
bp,2 If CX not 0 then go to nex entry 



173 10.2. SETTING UP THE COMMUNICATIONS PORTS 

cmp word ptr ds: [di+bp] ,0 , Unless we've reached end of table 
je mstart 
jmp mloop 

mdone: 
mov bX,bp 
shr bX,l 
pop bp 
pop si 
pop dx 
pop cx 
pop ax 
ret 

dmenu endp 

cycle proc 
mov cX,l 
mov ah,O 
pushf 

, If at end, start at beginning 

Move the index to BX 
Divide the index by 2 

near 

assume cs:nothing 
call old_keyboard_io 
assume cs:cseg 
cmp al,O 
je cxchar 

cdone: 
ret 

cxchar: 
cmp ah,77 Right Arrow 
jne cdone 
mov cx,O 
jmp cdone 

cycle endp 

10.2 Setting up the Communications Ports 

With the user interface in place, we can flesh it out to set the parameters. First, 
of course, must be the port itself. As with the display part of this program, 
the most convenient choice for representing the port is by the high-order-byte 
communication-port offset. The menu routine will return a 0 for COM1: and a 
1 for COM2:. A little basic arithmetic and we can convert these values to offset 
3 for COM1: and offset 2 for COM2:. Then we can pass that value along in DH 
exactly as we did in the earlier portion of the program. 

; Returns 
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DH = I/O port offset 
setcom proc near 

push di 
mov di,offset comtab 
call dmenu 
mov dh,3 ; Convert the table index into port offset 
sub dh,bl 
call showcom 
pop di 
ret 

setcom endp 

Next, we want to set up the baud rate. This is a bit more complicated. In 
the display code, we separated the processes of divisor-information acquisition, 
divisor-to-baud-rate conversion, and baud rate into separate routines. In fact, 
all the parameter routines were divided into these three parts. The processes 
here are similar to those three, but in reverse order. We want to display the 
menu, convert the resulting number into a baud rate, and then set that baud 
rate. These three parts once again apply to all the parameters, so there is no 
reason that the structure of these input routines should not reflect the structure 
of the display routines. 

One minor point not mentioned thus far is the mechanism for moving from 
one field to another. There are two approaches we could use for this. In the first, 
we simply do not move the cursor to the beginning of the field until we know it is 
necessary to do so, which would be when any character but the selector character 
is typed. This is a perfectly reasonable thing to do, but there is another, better 
alternative. 

That alternative is to set each parameter as it is selected. This is a little 
more work for the computer, but less for us. We could have chosen to build one 
value and then set the line control register all at once. That would mean more 
code to pass the value along, but fewer I/O port calls. In the long run, that 
doesn't really matter. However, the fact that we have chosen this route lets us 
do something interesting. 

In the code, we leave the cursor at the beginning of the field. That means 
when the right value has been selected and the value set, we need to move the 
cursor to the end of the current field to be ready to display the next field. We 
could calculate the next cursor position, or we could simply redisplay the string. 
Rather than redisplay a string that we believe to be the value of the parameter 
we can show the actual value of the parameter, by calling the display routine 
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we wrote for the first part of this program. When we finish the setup line, what 
we have left is exactly what we would have by doing a display command. We 
don't have to accept that on faith. We know, because we have checked it. 

, Call with 
DH = I/O port offset 

setbaud proc near 
push di 
mov di,offset baudtab 
call dmenu 
shl bX,1 ; Multiply by two to get word index 
mov bX,divtab[bx] 
call putbaud 
call showbaud 
pop di 
ret 

setbaud endp 

;Call with 
BX = baudrate divisor 

putbaud proc near 
push ax 
push dx 
mov dl,OFBH 
in al,dx 
push ax 
or al,BOH 
out dX,al 
mov dl,OFBH 
mov al,bl 
out dX,al 
mov dl.OF9H 
mov al.bh 
out dx.al 
pop ax 
mov dl.OFBH 
out dx.al 
pop dx 
pop ax 
ret 

putbaud endp 

; Call with 
DH = I/O port offset 

setlen proc near 
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push 
mov 
call 
call 
call 
pop 
ret 

setlen 

Call with 
DH = 
BX = 

putlen 
push 
push 
mov 
in 
and 
or 
cmp 
jne 
or 

pldone: 
out 
pop 
pop 
ret 

putlen 

, Call with 
DH = 

setstop 
push 
mov 
call 
call 
call 
pop 
ret 

setstop 

Call with 

di 
di,offset chartab 
dmenu 
putlen 
showlen 
di 

endp 

modem port offset (COMl = 3, COM2 = 2) 
the number of bits - 7 (i.e. 0 = 7 bits, 1 8 bits) 

proc near 
ax 
dx 
dl,OFBH 
al,dx 
al,lllll100B; Mask out original value, leaving the rest 
al,00000010B; Set to 7 bits (10) 
bX,l ; Should it be 8 bits? 
pIdone 
al,OOOOOOOlB; Set it to 8 bits (11) 

dX,al 
dx 
ax 

endp 

I/O port offset 
proc near 
di 
di,offset stoptab 
dmenu 
putstop 
showstop 
di 

endp 

DH = modem port offset (COMl 3, COM2 = 2) 
BX = the number of stop bits - 1 (0 = 1 stop or 1 = 2 stop) 

putstop proc near 
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push ax 

push cx 

push dx 

mov dl,OFBH 

in al,dx 

and al,11111011B; Mask out bit 2 

cmp bx,O 

je psdone 

or al,OOOOO100B; Set bit 2 


psdone: 
out dX,al 
pop dx 
pop cx 
pop ax 
ret 

putstop endp 

, Call with 
DH = I/O port offset 

setparity proc near 
push di 
mov di,offset partab 
call dmenu 
call putparity 
call showparity 
pop di 
ret 

setparity endp 

Call with 
DH = modem port offset (CoM1 = 3, CoM2 = 2) 
BX = parity (0 means none, 1 means odd, 2 means even) 

putparity proc near 
push ax 
push cx 
push dx 
mov dl,OFBH 
in al,dx 
and al,ll100111B; Mask out the parity bits 
cmp bx,O ; No parity (00) 
je ppdone 
or al,00001000B; Set odd parity (01) 
cmp bX,2 ; Check for even parity 
jne ppdone 
or al,00010000B; Set even parity (11) 
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ppdone: 

out dX,al 
pop dx 
pop cx 
pop ax 
ret 

putparity endp 

The advantage of designing a standard interface is that the components you 
design can be hooked together in interesting ways. By selecting the correct set 
of components, you can build some interesting applications. 

We have written some useful and interesting functions here. There is no 
reason we cannot do more with them. 

10.3 SETMODE . ASM - Set Serial Mode 

This program displays or sets the mode of either COM1: or COM2: . 

cseg segment 
assume cs:cseg,ds:cseg 
org 100H 

start: 
jmp initialize 

assume ds:nothing 
new_keyboard_io proc far 

sti 
cmp ah,O Is this call a READ request? 
je ksread 
jmp old_keyboard_io handle remaining subfunction. 

ksread: 
call keyread Get next character to return 
iret 

new_keyboard_io endp 

Read a character from keyboard input queue, if not expanding 
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; or expansion string, if expansion is in progress. 
keyread 

push 
readchar: 

pushf 
call 
cmp 
je 
jmp 

extended: 
mov 

nextext: 
cmp 
je 
cmp 
je 
add 
jmp 

startexpand : 
add 
cmp 
je 
push 
push 
push 
push 
push 
push 
push 
push 
call 
pop 
pop 
pop 
pop 
pop 
pop 
pop 
pop 

readdone: 
pop 
ret 

keyread 

keytab db 

proc near 
si 

Let original routine 
old_keyboard_io determine keyboard status. 
al,O 
extended 
readdone 

si,offset keytab 

byte ptr cs: [si] ,0 Is this end of table? 
readdone 
ah, cs: [si] 
startexpand 
si,3 
nextext 

si,1 
word ptr cs: [si] ,0 
readdone 
ax 
bx 
cx 
dx 
si 
di 
bp 
ds 
word ptr cs: [si] 
ds 
bp 
di 
si 
dx 
cx 
bx 
ax 

si 

endp 

120 ALT-1 
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dw port1status 
db 121 
dw port2status 
db 48 
dw setport 
db 0 
dw 0 

assume c!3:cseg,ds:cseg 

Display status of CoM1 
port1status proc near 

mov bX,clii 
mov dS,bx 
mov dh,3 
call portstatus 
ret 

port1status endp 

; Display status of CoM1 
port2status proc near 

mov bx,cs 
mov dS,bx 

mov dh,2 
call portstatus 

ret 
port2status endp 

Display status of any comm port 
Call with 

ALT-2 


ALT-B 


Port offset for CoM1 

Port offset for CoM2 

DH contains I/O port offset for comm port 
portstatus proc near 

push bx 
call getpos 
push bx 
mov bx,O 
call setpos 
call showcom 
call showbaud 
call showlen 
call showstop 
call showparity 
pop bx 

Get current cursor position 
and save it on stack. 

Move to upper left corner (0,0) 

Show current comm port name 
Show current baud rate 
Show bits per character 
Show pumber of stop bits 
Show parity 
Retrieve old cursor position 
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setpos and restore cursor to there. 
bx 

endp 

db 'COM1: ' ,0 
db 'COM2: ' ,0 
dw coml 
dw com2 
dw 0 

I/O port offset for communications port 
proc near 
bx 
dx 
si 
bh,O Zero high byte of index 
bl,3 Compute index = 3-port offset 
bl,dh 
bX,l Multiply by two to get a word index 
si,comtab[bx] ; And get appropriate string 
dstring , Print string 
si 
dx 
bx 

endp 

db , 110 baud, ' ,0 
db ' 300 baud, ' ,0 
db '1200 baud, ' ,0 
db '2400 baud, ' ,0 
db '4800 baud, ' ,0 
db '9600 baud, ' ,0 

dw 1047 
dw 384 
dw 96 
dw 48 
dw 24 
dw 12 
dw 0 

dw b110 

call 
pop 
ret 

portstatus 

coml 
com2 
comtab 

; Call with 

showcom 

showcom 

bll0 
b300 
b1200 
b2400 
b480Q 
b9600 

divtab 

baudtab 

DH = 

push 
push 
push 
mov 
mov 
sub 
shl 
mov 
call 
pop 
pop 
pop 
ret 
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dw b300 
dw b1200 
dw b2400 
dw b4800 
dw b9600 
dw o 

showbaud proc near 
push di 
push si 
push bx 
call getbaud Get baud rate divisor 
mov di,O 

baudloop: 
cmp divtab[di] ,0; Scan through divisor table 
je bldone till you reach end 
cmp bX,divtab[di] 
je dbaud or till you find divisor 
add di,2 
jmp baudloop 

dbaud: 
mov si ,baudtab [di] Print corresponding baud rate 
call dstring 

bldone: 
pop bx 
pop si 
pop di 
ret 

showbaud endp 

Call with 
DH containing modem port offset (COMl = 3, COM2 2) 

Returns 
BX = baudrate divisor 

getbaud proc near 
push ax 
push dx 
mov dl,OFBH 
in al,dx 
push ax 
or al,80H 
out dX,al 
mov dl,OF8H 
in al,dx 
mov bl,al 
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mov dl,OF9H 
in al,dx 
mov bh,al 
pop ax 
mov dl,OFBH 
out dx,al 
pop dx 
pop ax 
ret 

getbaud endp 

char7 db '7 bits/char, , ,0 
char8 db '8 bits/char, ' ,0 
chartab dw char7 

dw char8 
dw 0 

showlen proc near 
push ax 
push bx 
push si 
call getlen 
shl bX,l Multiply index by 2 for words 
mov si , chartab [bx] Get correct label string 
call dstring and display it. 
pop si 
pop bx 
pop ax 
ret 

showlen endp 

Call with 
DH = modem port offset (COMl = 3, COM2 = 2) 

Returns 
BX number of bits - 7 (i.e. 0 = 7 bits, 1 8 bits) 

getlen proc near 
push ax 
push dx 
mov dl,OFBH 
in al,dx 
and al,03H 
mov bh,O 
mov bl,al 
sub bX,2 
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pop dx 

pop ax 

ret 


getlen endp 

stop1 db ' 1 stop, ' ,0 
stop2 db '2 stop, ' ,0 
stoptab dw stop1 

dw stop2 

dw 0 


showstop proc near 
push bx 
push si 
call getstop 
shl bX,1 
mov si , stoptab [bx] 
call dstring 
pop si 
pop bx 
ret 

showstop endp 

Call with 
DR = modem port offset (COM1 = 3, COM2 = 2) 

Returns 
BX = number of stop bits - 1 (0 = 1 stop or 1 2 stop) 

getstop proc near 
push ax 
push dx 
mov bx,O 
mov dl,OFBR 
in al,dx 
and al,04R 
cmp al,O One stop bit 
je gsdone 
inc bx Two stop bits 

gsdone: 
pop dx 
pop ax 
ret 

getstop endp 

pnone db 'no parity , ,0 
podd db 'odd parity , ,0 
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peven 
partab 

showparity 
push 
push 
call 
shl 
mov 
call 
pop 
pop 
ret 

showparity 

Call with 
DH = 

Returns 

db 
dw 
dw 
dw 
dw 

proc 
bx 
si 

'even parity' ,0 
pnone 
podd 
peven 
0 

near 

getparity 

bX,l 

si ,partab [bx] 

dstring 

si 

bx 


endp 

modem port offset (COMl = 3, COM2 = 2) 

BX = parity (0 means none, 1 means odd, 2 means even) 
getparity proc 

push ax 
push cx 
push dx 
mov bx,O 
mov dl,OFBH 
in al,dx 
and aI,lSH 
cmp al,OOH 
je gpdone 
cmp aI,10H 
je gpdone 
inc bx 
cmp aI,lSH 
jne gpdone 
inc bx 

gpdone: 
pop dx 
pop cx 
pop ax 
ret 

getparity endp 

near 

No parity (00) 

No parity (10) 

Odd parity (01) 

Even parity (11) 
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setport 
push 
mov 
mov 
call 
push 
mov 
call 
call 
call 
call 
call 
call 
pop 
call 
pop 
ret 

setport 

; Returns 
DH = 

setcom 
push 
mov 
call 
mov 

. 'sub 
call 
pop 
ret 

setcom 

; Call with 
DH = 

setbaud 
push 
mov 
call 
shl 
mov 
call 
call 
pop 
ret 

setbaud 

CHAPTER 10. SETTING THE MODE 


proc near 
bx 
bx,cs 
dS,bx 
getpos Get current cursor position 
bx and save it on stack. 
bx,O Move to upper left corner (0,0) 
setpos 
setcom Set current comm port name 
setbaud Set current baud rate 
setlen Set bits per character 
setstop Set number of stop bits 
setparity Set parity 
bx Retrieve old cursor position 
setpos and restore cursor to there. 
bx 

endp 

I/O port offset 
proc near 
di 
di,offset comtab 
dmenu 
dh,3 Convert table index into port offset 
dh,bl 
showcom 
di 

endp 

I/O port offset 
proc near 
di 
di,offset baudtab 
dmenu 
bX,l Multiply by two to get word index 
bx , divtab [bx] 
putbaud 
showbaud 
di 

endp 
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;Call with 
BX = baudrate divisor 

putbaud proc near 
push ax 
push dx 
mov dl,OFBH 
in al,dx 
push ax 
or al,80H 
out dX,al 
mov dl,OF8H 
mov al,bl 
out dx,al 
mov dl,OF9H 
mov al,bh 
out dX,al 
pop ax 
mov dl,OFBH 
out dX,al 
pop dx 
pop ax 
ret 

putbaud endp 

; Call with 
DH = I/O port offset 

setlen proc near 
push di 
mov di,offset chartab 
call dmenu 
call putlen 
call showlen 
pop di 
ret 

setlen endp 

Call with 
DH modem port offset (COM! = 3, COM2 = 2) 
BX = number of bits - 7 (i.e. 0 = 7 bits,! 8 bits) 

putlen proc near 
push ax 
push dx 
mov dl,OFBH 
in al,dx 
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and al,11111100B; Mask out original value, leaving rest 

or al,00000010B; Set to 7 bits (10) 

cmp bX,1 ; Should it be 8 bits? 

jne pldone 

or al,00000001B; Set it to 8 bits (11) 


pldone: 
out dX,al 
pop dx 
pop ax 
ret 

putlen endp 

; Call with 
DH = I/O port offset 

setstop proc near 
push di 
mov di,offset stoptab 
call dmenu 
call putstop 
call showstop 
pop di 
ret 

setstop endp 

Call with 

DH = modem port offset (COM1 = 3, COM2 = 2) 

BX = number of stop bits - 1 (0 = 1 stop or 1 2 stop) 


putstop proc near 
push ax 
push cx 
push dx 
mov dl,OFBH 
in al,dx 
and al,11111011B; Mask out bit 2 
cmp bx,O 
je psdone 
or al,OOOOO100B; Set bit 2 

psdone: 
out dX,al 
pop dx 
pop cx 
pop ax 
ret 

putstop endp 
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; Call with 
DR = I/O port offset 

setparity proc near 
push di 
mov di, offset partab 
call dmenu 
call putparity 
call showparity 
pop di 
ret 

setparity endp 

Call with 
DR = modem port offset (CoMl = 3, CoM2 = 2) 
BX = parity (0 means none, 1 means odd, 2 means even) 

putparity proc near 
push ax 
push cx 
push dx 
mov dl,OFBR 
in al,dx 
and al,11100111B; Mask out parity bits 
cmp bx,O ; No parity (00) 
je ppdone 
or al,00001000B; Set odd parity (01) 
cmp bX,2 ; Check for even parity 
jne ppdone 
or al,00010000B; Set even parity (11) 

ppdone: 
out dX,al 
pop dx 
pop cx 
pop ax 
ret 

putparity endp 

Call with 
DI = pointer to table to display 

Returns 
BX = index into table divided by 2 

dmenu proc near 
push ax 
push cx 
push dx 
push si 
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push 
mstart: 

mov 
mloop: 

call 
push 
mov 
call 
pop 
call 
call 
cmp 
je 
add 
cmp 
je 
jmp 

mdone: 
mov 
shr 
pop 

. pop 
pop 
pop 
pop 
ret 

dmenu 

cycle 
mov 
mov 
pushf 
assume 
call 
assume 
cmp 
je 

cdone: 
ret 

cxchar: 
cmp 
jne 
mov 
jmp 

cycle 

bp 

bp,O 

getpos ; Save cursor position 
bx on stack 
si,word ptr ds: [di+bpJ 
dstring Display current menu entry 
bx Move cursor back to beginning 
setpos of field 
cycle Get a command 
cx,O If ex=o then use this entry 
mdone 
bp,2 If ex not 0 then go to nex entry 
word ptr ds: [di+bpJ ,0 ; Unless we've reached end of table 
mstart ; If at end, start at beginning 
mloop 

bX,bp Move index to BX 
bX,l Divide index by 2 
bp 
si 
dx 
cx 
ax 

endp 

proc near 
cX,l 
ah,O 

cs:nothing 
old_keyboard_io 
cs:cseg 
al,O 
cxchar 

ah,77 Right Arrow 
cdone 
cx,O 
cdone 
endp 
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, Get current cursor position and return it in EX 
getpos proc 

push ax 
push cx 
push dx 

mov ah,03R 
mov bh,O 
int lOR 
mov bX,dx 

pop dx 
pop cx 
pop ax 
ret 

getpos endp 

near 

, Since this function modifies ex 

Page zero 

Return position in EX 

; Set current cursor position to value in EX 
setpos proc near 

push ax 
push bx 
push dx 

mov ah,02R 
mov dX,bx 
mov bh,O 
int lOR 

pop dx 
pop bx 
pop ax 
ret 

setpos endp 

; Displays string pointed to by DS:SI 
dstring proc near 

push si 
push ax 
cmp si,O 
je dsdone 

dloop: 
mov aI, [si] 
cmp al,O 
je dsdone 
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call dchar 

inc si 

jmp dloop 


dsdone: 
pop ax 
pop si 
ret 

dstring endp 

; Display character contained in AL 
dchar proc near 

push ax 
push bx 
mov bh,1 
mov ah,OEH 
int 10H 
pop bx 
pop ax 
ret 

dchar endp 

initialize: 
assume cs:cseg,ds:cseg 
mov bx,cs 
mov dS,bx 

mov al,16H 
mov ah,35H 
int 21H 
mov old_keyboard_io,bx 
mov old_keyboard_io[2] ,es 
mov dX,offset new_keyboard_io 
mov al,16H 
mov ah,25H 
int 21H 

mov dX,offset initialize 
int 27H 

cseg 	 ends 
end start 



Chapter 11 

Using the Disk 

There was a time when users of small computers entered their code by flipping 
switches on the front panel of a computer. An experienced programmer could 
enter almost an entire kilobyte of binary code in only ten or twenty minutes. Of 
course, there was paper tape, but those readers and punches were expensive, and 
the paper chaff made an awful mess on the carpet. Then came a tremendous 
breakthrough in mass storage technology, the cassette tape interface. Once that 
kilobyte had been entered and verified, it could be saved forever on a cassette 
tape. The next time the software was needed, it could be reloaded from tape. 
Perhaps it took two or three tries or a bit of tweaking with a screwdriver because 
the audio filters in the interface had drifted off frequency, but eventually it 
worked. It wasn't quite as intimate as toggling in code on the front panel, and 
some programmers probably had mixed feelings the day they noticed that the 
callouses on their fingers had vanished, but tape was clearly superior. 

Then, the first floppy disks came on the scene, and none too soon. Of course, 
they were very expensive, big (8 inches across), and somewhat fragile, but they 
did store almost 80 kilobytes, and you could retrieve the contents of a file almost 
every time. As technology advanced, the disks grew bigger and more reliable. 
When the IBM PC first came onto the market, disks were in their adolescence. 
The early PCs were equipped with a cassette interface that almost no one used. 
Few people even considered buying a PC without at least a single disk, one of 
the new 5 1over4-inch drives. They weren't as fast as the 8-inch drives, and 
they weren't as reliable, but they were cheaper and easier to carry about. The 
early PC disks could store 180 kilobytes on one side of a disk, a capacity that 
was soon doubled when cheap double-sided disk drives came along. People soon 
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found that a single drive just wasn't enough. Two drives became a necessity, 
not just a luxury. 

Floppies were fine, but there were still those times when the program you 
wanted to use was on a disk that wasn't in either drive, and both drives were 
needed for something else. Disk juggling was an unpleasant fact of life. Then, 
Winchester hard disks began to appear on the market. Again, the first ones 
were expensive, but they could store five entire megabytes! After a while, when 
ten megabytes became more the order of business, you could boot off a hard 
disk. Hard disks became a staple of computing, with floppies used for archival 
and data transfer between computers. 

When computer designers get together, they talk about the architecture of a 
computer. To many people, this means the operations that the central processor 
is capable of performing. But a computer architecture is much more than the 
central processor. It encompasses all the details of how the computer will manage 
its primary storage; the random access memory (RAM), from which programs 
execute; and the secondary storage systems, such as disk drives, where programs 
are kept for execution at a later time. 

A great central processor with a lousy mass-storage system has few practical 
uses. Certainly, there are those applications that require the machine to read 
in a very small amount of information and produce a very small amount of 
output, but that take vast amounts of computing power in between. These jobs, 
which use computer time but very little I/O time, are called compute-bound 
programs. On the other hand, a marginally adequate central processor with 
a good disk subsystem is much more useful. The Apple II with a single disk 
and a spreadsheet calculator program revolutionized the way the business world 
operates. The IBM PC and the business products that run on it have continued 
and accelerated this trend. 

Disks are a key part of how a PC does what it does. As such a vital part 
of the machine, we must address how disk I/O can be done from within the 
context of a memory resident program. 

11.1 Safety First 

DOS was not designed for multi-tasking. In fact, many of the system operations 
within DOS depend on the fact that there is only a single program executing at 
any given time. Memory resident programs are, in a sense, a limited violation 
of that trust. We find ways to safely bend the rules enough to do what must be 
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done, without destroying the system. That, as any revolutionary will tell you, 
is a hard game to play. 

The programs discussed thus far have read from the keyboard or written to 
the screen. They have activated themselves during interrupts and modified or 
displayed the contents of memory. These are all fairly harmless activities, and 
yet we were forced to go to great pains to write that software to be as inoffensive 
as possible to the programs running normally on the machine. Disk I/O is the 
most complicated subsystem in the IBM PC. It is here that the decisions of 
the early DOS designers have the most impact on us. We are trying to achieve 
limited multi-tasking in a system that does not normally permit such activities. 
If we succeed, we can expect only a limited victory. If we fail, the consequences 
are potentially disastrous. 

Interfering with DOS disk I/O is dangerous, not in the sense of physical 
danger, but in the potential threat to the normal operation of the system. If 
DOS is about to write a buffer to disk and your resident program changes that 
buffer, you will lose the information you intended to write. If DOS is about to 
write a buffer to disk and you change the location of that write, even accidentally, 
you are likely to clobber something. If that something happens to be the file 
that DOS uses to boot, or a copy-protected program, or an important data file 
you haven't gotten around to backing up yet, you probably will not be amused 
by the consequences. 

For that reason, there are several guidelines you should keep in mind when 
developing disk-based resident applications. 

• 	 Never use a critical disk as your development disk. If you are writing a 
program that may change the current disk, your current disk should be 
an empty floppy, rather than the hard disk with your income tax or stock 
portfolio information on it. By correctly setting the DOS PATH variable, 
you can still execute normal programs, such as the editor or assembler from 
your hard disk, but you will not be placing that disk in as much jeopardy. 
Better still, if you are truly unsure of your code, spin down your hard disk 
and use only floppies during the critical parts of your development . 

• 	 Paranoids have enemies too. Be suspicious of your code. You can't pos­
sibly know everything that is going on in the system, so if you write your 
code carefully, and test each part, you stand a much better chance of suc­
ceeding. Think up ways to make your code fail. You'd be amazed at the 
number of programs that have failed because a programmer thought that 
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nobody would be foolish enough to try something, and then somebody 
did. A corollary of Murphy's law is: For every foolproof program, there 
exists a determined fool capable of breaking it. A good programmer should 
never be contemptuous of users, just suspicious of them. 

• 	 Fences make good neighbors. Always try to limit the amount of damage 
your program can cause. Firewall your code, test it as a normal application 
rather than a resident one, limiting yourself to the current disk at first 
rather than solving the general case immediately - you can save yourself 
quite a lot of grief in testing. Make backup copies, in case the originals 
are accidentally destroyed. 

It is possible to write safe disk-based applications by being careful and always 
cleaning up after yourself. Always save the contents of the registers on entry 
to your code. Always restore them when you are done. And always restore 
the contents to the registers you originally got them from. You may not fully 
appreciate that last statement until the fourth or fifth time you get the order of 
POPs almost, but not quite, the same as the order of PUSHs. One trick to getting 
this ordering correct every time is simple but effective: assign the registers to 
a sequence (such as the one shown in the MASM manual: AX, BX, ex, OX, BP, S1, 
01), then always stick with that sequence for PUSHing and its reverse for POPing. 
Even if you choose not to save particular registers, keeping the sequence with 
the remaining set is a good tool for keeping the order correct. Of course, you 
must POP as many registers as you PUSH. Many times when a program causes the 
machine to halt abruptly, the reason is unbalanced stack operations. After all, 
if you leave even a single word on the stack, the return address for the current 
subroutine will never be reached. When the routine returns, it will pull the 
return address off the top of the stack. If that value is wrong, the machine will 
try to use it anyway, and crash. 

11.2 The Disk Subsystem 

There are many different kinds of disks that can be used with a IBM PC. From 
the earliest single-sided, single-density 180-kilobyte floppy disks, to more mod­
ern 80-megabyte SCSI disks and beyond. If you had to know the intimate details 
of each of these drives to write a program that used the disk, you would prob­
ably go into another line of work. Fortunately, DOS provides several layers of 
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software that encompass all these disks and many yet to come. If an interface 
can be created to mate a new disk to the the underside of the software layer, 
all programs that behave correctly with the top side can be used with the new 
equipment without modification. 

Early versions of DOS saw each disk as a simple directory that contained 
files. If the disk held fifty files, the directory had fifty entries. This type of file 
system, known as a flat file system, is common because it is very easy to create 
and understand. 

Flat file systems can become unmanageable as the amount of available disk 
space grows. When your disks hold just 180 kilobytes, the number of files you 
can have is small. When you have a 20-megabyte disk, you can create thousands 
of files. To force someone to sit through a directory listing of thousands of files 
is cruel, to say nothing of boring. Of course, in the original versions of DOS, it 
was impossible to create a single directory with thousands of files. The original 
flat file systems in early DOS versions were capable of storing a few dozen files 
at most. 

N ewer versions of DOS solved the problem of overcrowding by adopting a 
tree-structured file system, like those used in more advanced operating systems. 
A directory can contain not only files, but subdirectories. A subdirectory looks 
just like a directory and it can contain files and subdirectories as well. If you 
imagine the files to be leaves on a tree, with the root directory being the trunk 
and each subdirectory a branch, you can see where the analogy comes from. A 
tree has one trunk, that trunk can have many branches, and those branches can 
have branches. Leaves can grow anywhere. 

The root directory is the trunk from which all branches grow. Each volume 
has one root directory, no more, no less. Usually, a disk is a volume and a 
volume a disk, but on hard disks you may have more than one volume on a 
single disk. Volumes are referred to by a letter, followed by a colon, as in A:. 
DOS permits up to 26 volumes, or A: -Z:. RAMDisks, which are chunks of RAM 
with a program to simulate a disk, can be assigned a volume label also. The root 
directory is named \. Thus, the root directory on volume A: would be named 
A: \. Under that root directory a subdirectory called GLOP would have the full 
name A: \ GLOP\. The file REAMDE. TXT under that subdirectory would have the 
full name A: \GLOP\README. TXT. 

In many books, this one included, you'll find the terms directory and subdi­
rectory used interchangeably. There is really only a slight difference, and it is 
not a particularly important point for nonprogrammers. There is really only one 
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directory per volume. That structure is the root directory. For compatibility 
reasons, it can hold only a limited number of file entries. Subdirectories are 
directories that are linked in a tree from the root directory. These directories 
can hold any number of files. 

Despite the time we have spent discussing how a tree-structured file system 
resembles a natural tree, programmers typically picture a tree with the root at 
the top and each subdirectory a branch descending from that root. Thus, it is 
common, and very confusing, to find books that sing the virtues of ascending 
trees, but show diagrams of descending ones. Don't worry too much about this. 
There is no up or down on the disk. The important fact is the relationship 
among directories, subdirectories, and files. Think of them as trees, or roots, or 
file folders within file folders, or make up your own analogy. The analogy isn't 
as important as the concept that it is intended to reflect. 

11.2.1 Directories 

The first step in learning to use files is learning to find them. It is often said 
that a directory "contains" files, but what does that mean? Physically, files and 
directories are magnetized spots on a spinning platter. They are also highly 
organized ideas, thoughts given shape by software. The idea in this case is to 
allow a program to wander through a world filled with files, in the same way 
you might walk down the corridors of a library, browsing through the stacks, 
occasionally selecting a book for further study. In that sense, an organized 
collection of files is called a file system in the same way a library (an organized 
collection of books) could be called a book system. 

To permit a program to wander the corridors of our system of files, we must 
have a data structure that tells it where the files are on disk, how big they are, 
and what they are named. To permit a person to walk through the file system, 
we must have programs capable of moving through the system and narrating 
their progress in human terms. The DrR command, which lists the contents of 
a directory or subdirectory, is just such a program. 

orR displays information about the files in a particular directory or subdirec­
tory. Essentially, the orR command prints the contents of a machine-readable 
directory data structure in a way that is people-readable. You can use orR to 
find the names of files, their sizes, or the date they were created. The problem 
with the orR command is that it is often unavailable when we need it. For 
example, suppose you are using a telecommunications program and you want to 
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know what files are available in the current directory. Unless the programmer 
has specifically written a directory command or the equivalent, the only choice 
is to exit from the telecom program, list the directory, and then try to regain 
lost ground by restarting the communications program. What we need is the 
ability to list the entries in the current directory at any time, regardless of the 
design of the currently running application program. This seems like a good 
niche for a resident application. 

The most common thing to want to see in a directory listing is, of course, 
the names of the files. For our purposes, that information alone will do for a 
basic resident directory lister. As we have discussed before, the correct place 
to display the information is not at the cursor location when the function is 
invoked. A much better choice is to "overlay" a window at the top of the screen, 
starting at the upper left corner. 

We can build a directory lister from the basic structure of our keystroke­
dispatcher program. Using that skeleton, we can construct an empty application 
that will be the framework for this application: 

cseg segment 
assume cs:cseg,ds:cseg 
org tOOH 

start: 
jmp initialize 

assume ds:nothing 
new_keyboard_io proc far 

sti 
cmp ah,O Is this call a READ request? 
je ksread 
jmp old_keyboard_io handle the remaining subfunction. 

ksread: 
call keyread Get the next character to return 
iret 

new_keyboard_io endp 

; Read a character from the keyboard input queue, if not expanding 
; or the expansion string, if expansion is in progress. 
keyread proc near 

push si 
readchar: 
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pushf 
call 
cmp 
je 
jmp 

extended: 
mov 

nextext: 
cmp 
je 
cmp 
je 
add 
jmp 

startexpand: 
add 
cmp 
je 
push 
push 
push 
push 
push 
push 
push 
push 
call 
pop 
pop 
pop 
pop 
pop 
pop 
pop 
pop 

readdone: 

keyread 

pop 
ret 

keytab db 
dw 
db 
dw 

old_keyboard_io 
al,O 
extended 
readdone 

si,offset keytab 

byte ptr cs: [si] ,0 
readdone 
ah,cs: [si] 
startexpand 
si,3 
nextext 

si,1 
word ptr es: [si] ,0 
readdone 
ax 
bx 
cx 
dx 
si 
di 
bp 
ds 
word ptr cs: [si] 
ds 
bp 
di 
si 
dx 
ex 
bx 
ax 

si 

endp 

32 
dirlist 
0 
0 
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Let the original routine 
determine keyboard status. 

Is this the end of the table? 
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assume cs:cseg,ds:cseg 

Keystroke routines go here 

dirlist proc near 
ret 

dirlist endp 

; Displays the string pOinted to by DS:SI 
dstring proc near 

push si 
push ax 
cmp si,O 
je dsdone 

dloop: 
mov aI, [si] 
cmp al,O 
je dsdone 
call dchar 
inc si 
jmp dloop 

dsdone: 
pop ax 
pop si 
ret 

dstring endp 

, Display the character contained in AL 
dchar proc 

push ax 
push bx 
mov bh,l 
mov ab,OEH 
int 10H 
pop bx 
pop ax 
ret 

dchar endp 

initialize: 

near 

assume cs:cseg,ds:cseg 
mov bx,cs 
mov dS,bx 

mov al,16H 
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mov ah,35H 

int 21H 

mov old_keyboard_io,bx 

mov old_keyboard_io[2] ,es 

mov dX,offset new_keyboard_io 

mov aI,16H 

mov ah,25H 

int 21H 


mov dX,offset initialize 

int 27H 


cseg 	 ends 
end start 

With this skeleton, we can build a resident program that will display a list 
of all the file names in the current directory when we type an ALT-D on the 
keyboard. 

Listing directories is built on two closely related DOS functions, INT 21H 
function 4EH {search for first match} and INT 21H function 4FH {search for next 
match}. These two functions search in the current directory for a file that 
matches some criterion. That criterion is an ASCIIZ string that represents a 
form of file name. For example, if we wanted to get the directory listing for a 
particular file, say, "CMD. ASM", the match pattern would contain exactly that 
string. If you wanted to list all the assembly-language source files, the match 
pattern would be "*. ASM". If we wanted to match all the assembly language 
source files that had three character names beginning with the letter C, our 
match pattern would be "C?? ASM". And if we wanted to match all the files on 
the disk, we would use the match pattern "*. *" . 

The search for first match function also requires an attribute on which to 
search. This attribute is carried over to all other matches. Possible attributes 
are: 

Attribute bit Meaning 
76543210 
xxxxxxxi Read-only files 
xxxxxx1x Hidden files 
xxxxx1xx System files 
xxxx1xxx Volume label 
xxx 1 xxxx Subdirectory 
xx1xxxxx Archive 
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Adding these attribute bits extends the search. If the attribute byte is zero, 
only normal files are found. The search for first match function returns the file 
information for the first file in the directory that matches the pattern. The search 
for next match function returns successive matches after that. Both functions 
return a set CF if they find a match, or a cleared CF if no match is found. 

dirlist proc near 
mov bx,cs 
mov dS,bx 

mov ah,2FH 
int 21H 
push es 
push bx 

mov dx,offset mydta 
mov ah,1AH 
int 21H 
mov dX,offset pattern 
mov cX,OH 
mov ah,4EH 
int 21H 
jc dirdone 
mov si ,offset crlf 
call dstring 

display: 
mov si,offset mydta+30 
call dstring 
mov si,offset crlf 
call dstring 

nextfile: 
mov ah,4FH 
int 21H 
jnc display 

dirdone: 
pop dx 
pop ds 
mov ah,1AH 
int 21H 
ret 

dirlist endp 

crH db OdH,OaH,O 

Get the original OTA value 

Save the OTA Segment on stack 
Save the OTA Offset on stack 

Set the OTA to our buffer 

Set the search pattern 
Search for only normal files 
Find the first match 

If no first match, return 

Print the file name 

followed by a newline 

Search for the next match 

If matched, print it 

Get original DTA from stack 
but in different registers 

Reset the OTA to the old value 



204 CHAPTER 11. USING THE DISK 

pattern db '*. *' ,0 
mydta db 64 dup (0) 

This is a simple, yet useful function. By slightly changing the parameters, 
we can cause it to find out many useful pieces of information about the current 
directory. 

One important concept used in this code is the idea of the disk transfer area 
(DTA). The DTA is a buffer that is used by many disk-oriented system calis 
as a staging area for disk information. In this case, it is where the information 
for each file is kept after the file was matched. This program determined the 
DTA location on entry, saved that location, and restored it before exiting. The 
DTA was allocated explicitly in this code as a 64-byte buffer. The syntax of the 
allocation should be explained. The assembler line 

mydta db 64 dup (0) 

results in two separate actions by the assembler. The first is to allocate 64 bytes 
of memory at the current address, which will be referred to by the label mydta. 
The second involves the peculiar expression "dup (0)". This tells the assembler 
to fill those 64 bytes with zeros. We easily could have filled them with FFH, or 
anything else. In addition, we could have specified a "dup (?)", which would 
have allocated the space but not changed its contents at all. 

It is not important where your DTA is located, except that it cannot be in 
a portion of memory used for some other purpose. It is important that your 
application create a DTA for itself, rather than use some existing DTA. It would 
be almost impossible to avoid a conflict between the running application and 
your resident application if they both used the same transfer area. By creating 
your own DTA and carefully setting and restoring it every time control passes 
to your resident application, you can avoid these types of conflicts. 

11.3 Making a Useful Directory Display 

Listing the contents of the current directory after the prompt is fine as a test, 
but we should be able to turn this subroutine into something more useful. First, 
of course, we should get it out of the way of the prompt. As in the past, we 
will start the display at the upper left corner of the screen. Since we may be 
displaying quite a few files, more than the number of lines on the screen, we 
should have some way of using more than the first ten columns of the screen. 
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DOS has a wide mode for directory listings, which displays a columnar list of 
files. Since we will be writing variable strings that will be less than or equal to 
twelve characters in length, we should make provisions for erasing the underlying 
screen contents. 

It is likely that the screen will contain some information already. We would 
prefer not to mix our directory listing with extraneous information already on the 
screen. One way around this would be to cause the listing to pop up, blanking 
part of the screen, and then, at some signal from the user, vanish, restoring 
the original contents. Pop-up listings require you to remember information, 
however, while simple displays require you simply to copy information. For our 
purposes, we shall create a display that blanks each line it is about to touch, and 
thus "disambiguate" our directory listing from the other information on display. 

dirlist 
mov 
mov 

call 
push 
mov 
call 
call 

mov 
int 
push 
push 

mov 
mov 
int 
mov 
mov 
mov 
int 
jc 
mov 

display: 
mov 
call 
inc 
cmp 
jne 

proc near 
bx,cs 
dS,bx 

get_pos 
dx 
dx,O 
set_pos 
blankline 

ah,2FH 
21H 
es 
bx 

dX,oifset mydta 
ah,lAH 
21H 
dX,offset pattern 
cX,OH 
ah,4EH 
21H 
dirdone 
bp,O 

si,offset mydta+30 
fillstring 
bp 
bp,4 
nextfile 

Get the original OTA value 

Save the OTA Segment on stack 
Save the OTA Offset on stack 

Set the OTA to our buffer 

Set the search pattern 
Search for only normal files 
Find the first match 

If no first match, return 

Print the file name 
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mov 
call 

nextfile: 
mov 
int 
jnc 

dirdone: 
pop 
pop 
mov 
int 

pop 
call 
ret 

dirlist 
tab db 
crlf db 
pattern db 
mydta db 

; Position in DX 
get_pos 

push 
push 
push 
mov 
mov 
int 
pop 
pop 
pop 
ret 

get_pos 

, Position in DX 
set_pos 

push 
push 
mov 
mov 
int 
pop 
pop 
ret 

bp,O 
blankline 

ah,4FH 
21H 
display 

Search for the next match 

If matched, print it 

dx 
ds 
ah,1AH 
21H 

Get original DTA from stack 
but in different registers 

Reset the DTA to the old value 

dx 
set_pos 

endp 
09H,O 
OdH,OaH,O 
'*. *' ,0 
64 dup (0) 

proc 
ax 
bx 
cx 
ah,03H 
bh,O 
10H 
cx 
bx 
ax 

near 

endp 

proc 
ax 
bx 
ah,02H 
bh,O 
10H 
bx 
ax 

near 
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set_pos endp 

blankline proc near 
push ax 
push bx 
push cx 
mov ah,09H 
mov aI, , , 

mov bh,O 
mov bI,7 
mov cx,80 
int 10H 
pop cx 
pop bx 
pop ax 
ret 

blankline endp 

;D8:81 pOints to A8CIIZ string to print 
fiIIstring proc near 

push cx 
call dstring 

fillchar: 
cmp cx,20 
je filldone 
mov aI, , , 

call dchar 
inc cx 
jmp fillchar 

filldone: 
pop ex 
ret 

fillstring endp 

Organizing the display into columns is usually not difficult. There are many 
ways to do this, and many work under different sets of circumstances. In this 
case, we are exploiting a feature of the ROM character I/O calls. We know that 
a file name will be a maximum of twelve characters long. Files can have up 
to eight characters of name, followed by a period (.), followed by up to three 
characters of extension. Thus, FILENAME. EXT is as long as any pathless filename 
can be under DOS. 

We know that there are two types of text displays on the IBM PC. Some 
have 80 character lines, others have 40 character lines. Twelve does not divide 
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cleanly into either of these numbers. Besides that, we must have some amount of 
blank space between each file name as separation. By being just a little clever 
and realizing that INT 10H function OEH (write character in TTY mode) will 
wrap around when it reaches the last column of the screen, we can provide a 
columnar directory listing by simply adding one small routine fillstring. This 
routine displays each file name, left justified, in a 20-character fixed width field, 
padded with blanks. Since 20 divides evenly into both 80 and 40, this display 
will work correctly in both cases, simply by printing the characters in a single 
line and letting the cursor wrap-around do the work for us. Since this function 
is supported under all versions of the IBM ROM and is likely to be in any clone 
ROMs, portability is not an issue. 

11.4 LD . ASM - List a directory 

After running this program, typing an ALT-D will cause a reasonably neat direc­
tory listing to be displayed in the upper part of the screen. 

cseg segment 
assume cs:cseg.ds:cseg 
org 100H 

start: 
jmp initialize 

assume ds:nothing 
new_keyboard_io proc far 

sti 
cmp ah.O Is this call a READ request? 
je ksread 
jmp old_keyboard_io handle the remaining subfunction. 

ksread: 
call keyread Get the next character to return 
iret 

new_keyboard_io endp 

; Read a character from the keyboard input queue. if not expanding 
; or the expansion string. if expansion is in progress. 
keyread proc near 

push si 
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readchar: 
pushf 
call old_keyboard_io 
cmp al,O 
je extended 
jmp readdone 

extended: 
mov si,offset keytab 

nextext: 
cmp byte ptr cs: [si] ,0 
je readdone 
cmp ah,cs:[si] 
je startexpand 
add si,3 
jmp nextext 

startexpand: 
add si,i 
cmp word ptr cs: [si] ,0 
je readdone 
push ax 
push bx 
push cx 
push dx 
push si 
push di 
push bp 
push ds 
call word ptr cs: [si] 
pop ds 
pop bp 
pop di 
pop si 
pop dx 
pop cx 
pop bx 
pop ax 

readdone: 
pop si 
ret 

keyread endp 

keytab db 32 
dw dirlist 
db 0 
dw 0 

Let the original routine 
determine keyboard status. 

Is this the end of the table? 
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assume cs:cseg,ds:cseg 


Keystroke routines go here 


dirlist 
mov 
mov 

call 
push 
mov 
call 
call 

mov 
int 
push 
push 

mov 
mov 
int 
mov 
mov 
mov 
int 
jc 
mov 

display: 
mov 
call 
inc 
cmp 
jne 
mov 
call 

nextfile: 
mov 
int 
jnc 

dirdone: 
pop 
pop 
mov 

proc near 
bx,cs 
dS,bx 

get_pos 
dx 
dx,O 
set_pos 
blankline 

ah,2FH 
21H 
es 
bx 

dx,offset mydta 
ah,1AH 
21H 
dX,offset pattern 
cX,OH 
ah,4EH 
21H 
dirdone 
bp,O 

si,offset mydta+30 
fillstring 
bp 
bp,4 
nextfile 
bp,O 
blankline 

ah,4FH 
21H 
display 

dx 
ds 
ah,1AH 

Get the original OTA value 

Say~ the OTA Segment on stack 
Save the OTA Offset on stack 

Set the'OTA to our buffer 

Set the search pattErn 
Search for only normal files 
Find the first match 

If no first match, return 

Print the file name 

Search for the next match 

If matched, print it 

Get original OTA from stack 
but in different registers 

Reset the OTA to the old value 
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int 

pop 
call 
ret 

dirlist 

tab db 
crlf db 
pattern db 
mydta db 

; Position in DX 
get~pos 

push 
push 
push 
mov 
mov 
int 
pop 
pop 
pop 
ret 

get_pos 

; Position in DX 
set_pos 

push 
push 
mov 
mov 
int 
pop 
pop 
ret 

set_pos 

blankline 
push 
push 
push 
mov 
mov 
mov 

LIST A DIRECTORY 

21H 

dx 
set_pos 

endp 

09H,O 
OdH,OaH,O 
'*.*' ,0 
64 dup (0) 

proc near 
ax 
bx 
cx 
ah,03H 
bh,O 
10H 
cx 
bx 
ax 

endp 

proc near 
ax 
bx 
ah,02H 
bh,O 
10H 
bx 
ax 

endp 

proc near 
ax 
bx 
cx 
ah,09H 
aI, ' , 

bh,O 
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mov bl,7 
mov cX,BO 
int 10H 
pop cx 
pop bx 
pop ax 
ret 

blankline endp 

;DS:S1 pOints to ASCIIZ string to print 
fillstring proc near 

push cx 
call dstring 

fillchar: 
cmp cx,20 
je filldone 

,mov aI, , 
call dchar 
inc CX 
jmp fillchar 

filldone: 
pop cx 
ret 

fillstring endp 

, Displays the string pointed to by DS:S1 
dstring proc near 

push si 
push ax 
mov cX,O 
cmp si,O 
je dsdone 

dloop: 
mov aI, [si] 
cmp al,O 
je dsdone 
call dchar 
inc si 
inc cx 
jmp dloop 

dsdone: 
pop ax 
pop si 
ret 

dstring endp 
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, Display the character contained in AL 
dchar proc near 

push ax 
push bx 
mov bh,1 
mov ah,OEH 
int 10H 
pop bx 
pop ax 
ret 

dchar endp 

initialize: 
assume cs:cseg,ds:cseg 
mov bx, cs 
mov dS,bx 

mov 	 al,16H 
mov 	 ah,35H 
int 	 21H 
mov 	 old_keyboard_io,bx 
mov 	 old_keyboard_io[2] ,es 
mov 	 dX,offset new_keyboard_io 
mov 	 al,16H 
mov 	 ah,25H 
int 	 21H 

mov dX,offset initialize 
int 27H 

cseg 	 ends 
end start 





Chapter 12 

Strolling the Corridors 

The directory for a disk is something like a telephone directory. It tells you 
whether certain files are present and, if so, where they are located on the disk. 
But there is a big difference between finding the name of a restaurant in the 
phonebook and going to that restaurant for dinner. The second part of using 
the file system from within memory resident programs is knowing how to use 
the files you have located in the directory. 

DOS has two different types of functions for file I/O. The first type is the file 
control block (FCB) operations. These are the file operations that were written 
for the earliest versions of DOS. In many ways they are reminiscent of some file 
operations from CP/M (an early disk operating system that was very popular 
for 8-bit computers and the inspiration for much of MS-DOS). The FCB is a 
structure in memory that contains many useful pieces of information about a 
particular stream of file operations. You can have any number of file control 
blocks and thus any number of file operations in progress at a given time. 

The other type of file operations are handle operations, which are strongly 
flavored by similar operations in the UNIX operating system. These routines 
are more flexible and easier to use and require somewhat less memory in your 
programs, because all the file state information is kept by DOS in memory 
allocated by the operating system. They are called handle operations because 
the first call one uses, "open file" or "create file", returns an integer that is a 
token DOS uses to find the internal file status structure. Early versions of DOS 
may be missing these functions. 

For writing general applications, the handle functions are the better choice. 
They are much more pleasant to use and require less work than the FCB func­

215 
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tions to accomplish the same task. Unfortunately, one of the ways they ac­
complish this flexibility limits them for use in an resident application. Handle 
functions are easy to use because they abstract the file information into a single 
token, and that token can be used to represent a particular file throughout the 
life of a program. DOS keeps track of the details, and the file operations just 
work right. Because DOS has internal tables for file state, a resident application 
that uses handle operations is likely to become noticeable. 

Suppose a normal application program wants to open several files at the 
same time. DOS will allocate a handle for each file that is opened. The max­
imum number of files that can be open at once is set by the FILES command 
in your CONFIG. SYS. Suppose the default value of eight files is being used. The 
application has opened seven files and is about to open an eighth, when a resi­
dent application (a pop-up notepad, for example) is run. The notepad opens a 
file and leaves it open, even after it has completed, and control returns to the 
application. Because of that open file, the application will fail where it should 
have succeeded. 

There are two solutions to this problem. The first is administrative. Simply 
set the value of FILES to be larger than eight. This doesn't really solve the 
problem, though. It simply pushes it into the future. The second choice is to 
fix the resident application to work without interfering. This is harder, but it 
means that your code is more likely to work on a variety of machines. The 
FeB calls are a little more useful to us, though they are more painful to use. 
The file control block is a structure that is located somewhere in memory. We 
can decide where it should go, so is no reason it cannot be located within the 
memory space of a resident application. With no disk state to be managed by 
the system, the resident application becomes less noticeable, but not entirely 
invisible. Remember that the disk code will change the position of the disk 
heads and the low-level state of the disk hardware. 

The handle functions are not a complete loss, however. We would prefer 
to use them, because they are simpler to use and thus make our resident code 
that much smaller. One way to accomplish this involves the notion of a session. 
An application program loads from disk, runs, and then exits. It has only one 
session. A resident application loads from disk, installs itself, and then waits to 
be called. It may be invoked many times and thus has any number of sessions. A 
session is the time in which a given program has control over the machine. Once 
a resident application is activated, its session begins. The resident application 
can do whatever it likes and retains control over the machine until it chooses 
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to give it up. When the resident application gives up control, that particular 
session has ended. 

By guaranteeing that a set of disk operations (open file/use file/close file) 
remains within a single session, you improve the likelihood of your resident 
application working correctly. If you open a file, read or write it, and close it all 
within the space of a single session, you stand a much better chance of keeping 
everything working correctly. In addition, since the handle operation would 
remain in a single session, they can be used from within a memory resident 
program. 

For devices such as the screen, the idea of a session is interesting and some­
times useful, but not critical. If a resident application writes to the screen, the 
worst thing you might have is a messy screen. That will not crash the program 
in progress, nor will it turn good results into bad. Disk operations have a much 
greater potential for disaster and so should be taken very seriously in the design 
of your code. Imagine the problems you would have when you realized that the 
resident application you just ran accidentally changed a single byte somewhere 
on the disk containing your income tax spreadsheet information. Then imagine 
trying to explain that to your auditor. 

12.1 Browsing in the Stacks 

A good example of using disk I/O from within a resident application, and also 
a fairly useful one, is a disk browsing program. How many times have you been 
working within a program and realized that you needed to load a file. You know 
the file is on your disk. You've displayed a directory listing, using that niHy little 
directory lister we wrote in the last chapter. But you can't remember whether 
the file you want is GLOP. ASM or PLOP. ASM. Ifyou could see the contents of either 
file, you would know. What you need to be able to do is stroll around through 
the file system at will, looking at the files you find there. 

Once again, we will begin with the basic skeleton of our keystroke dispatcher. 
It is probably worthwhile to mention that even though this skeleton has reap­
peared several times, it is not always necessary to duplicate the skeleton for each 
function you want to dispatch. If you want to cut each function into a separate 
program, by all means do so. But if you prefer to use one dispatcher and create 
a single large program containing the routines for each keystroke, there is no 
reason not to do so. 
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cseg 	 segment 
assume 
org 

start: 
jmp 

assume 
new_keyboard_io 

sti 
cmp 
je 
jmp 

ksread: 
call 
iret 

new_keyboard_io 

cs:cseg,ds:cseg 
100H 

initialize 

ds:nothing 
proc far 

ah,O 
ksread 
old_keyboard_io 

keyread 

endp 

Is this call a READ request? 

handle the remaining subfunction. 

Get the next character to return 

; Read a character from the keyboard input queue, if not expanding 
; or the expansion string, if expansion is in progress. 
keyread 

push 
readchar: 

pushf 
call 
cmp 
je 
jmp 

extended: 
mov 

nextext: 
cmp 
je 
cmp 
je 
add 
jmp 

startexpand : 
add 
cmp 
je 
push 
push 

proc near 
si 

Let the original routine 
old_keyboard_io determine keyboard status. 
al,O 
extended 
readdone 

si,offset keytab 

byte ptr cs: [si] ,0 Is this the end of the table? 
readdone 
ah,cs: [si] 
startexpand 
si,3 
nextext 

si,1 
word ptr cs: [si] ,0 
readdone 
ax 
bx 
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push cx 
push dx 
push si 
push di 
push bp 
push ds 
call word ptr cs: [si] 
pop ds 
pop bp 
pop di 
pop si 
pop dx 
pop cx 
pop bx 
pop ax 

readdone: 
pop si 
ret 

keyread endp 

keytab 	 db 48 
dw browse 
db 0 
dw 0 

ALT-B 


assume cs:cseg.ds:cseg 

Keystroke routines go here 

browse proc near 
ret 

browse endp 

. Displays the string pointed to by DS:SI 
dstring proc near 

push si 
push ax 
cmp si.O 
je dsdone 

dloop: 
mov al. [si] 
cmp al.O 
je dsdone 
call dchar 
inc si 
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jmp 	 dloop 
dsdone: 

pop ax 
pop si 
ret 

dstring endp 

, Display the character contained in AL 
dchar proc near 

push ax 
push bx 
mov bh,l 
mov ah,OEH 
int 10H 
pop bx 
pop ax 
ret 

dchar endp 

initialize: 
assume cs:cseg,ds:cseg 
mov bx,cs 
mov dS,bx 

mov 	 al,16H 
mov 	 ah,35H 
int 	 21H 
mov 	 old_keyboard_io,bx 
mov 	 old_keyboard_io[2] ,es 
mov 	 dx,offset new_keyboard_io 
mov 	 al,16H 
mov 	 ah,25H 
int 	 21H 

mov dX,offset initialize 
int 27H 

cseg 	 ends 
end start 

STROLLING THE CORRIDORS 


We have bound the browse function to the ALT-B key. Now, with the skeleton 
built, we can begin to think about the user interface. In the resident application 
we created for setting the mode on the communications port, we developed a 
nice cyclic system for selecting a particular option from a known set of options. 
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This case is similar to that. We know that there are a fixed number of files in 
the current directory. We may not know how many there are, but we know that 
INT 21H function 4EH (search for first match) will give us the name of the first, 
and continued application of INT 21H function 4FH (search for next match) will 
scan through all the files until we reach the last. Given these facts, there is 
no reason not to use the same method of allowing the user to confirm selection 
of the currently displayed file or pass to the next file. As with many of these 
applications, the display should take place in the upper left corner of the screen 
for the same reasons given elsewhere. 

When ALT-B is typed, the cursor is moved to the upper left corner of the 
screen and the first file name displayed. If the RightArrow key is hit, that file is 
accepted and displayed. If the End key is hit, the browser will quit and control 
will return to wherever it came from. If any other key is hit, the display will 
cycle on to the next file in the directory. When the end of the list of files is 
reached, the display starts again at the beginning. This is an extremely simple 
interface, but it is also quite powerful. It can be applied to any situation where 
all the choices are known. One addition, which was not done here to keep the 
program as simple and clear as possible, would be to allow another key, the 
UpArrow perhaps, to cycle the choices in the opposite direction. This would 
permit you to recover quickly from hitting a key and realizing that you passed 
the correct choice. It is important to note that this simple addition would add 
a great deal of complexity to this application. We have, through DOS, an easy 
means of scanning forward through the files in a directory. We do not have any 
similar means of scanning backward. For the sake of adding a little polish, we 
would increase the complexity of our application. 

12.2 Prototyping the Selector 

We know how we want to select files. Before we move on to the design of the 
file-display mechanism, a reasonable thing to do would be to create a prototype 
of the selection mechanism. 

In chapter 11, we chose to blank an entire line before we wrote anything on 
it. This serves two purposes. First, it draws attention to the display on that line, 
and second, it prevents that display from seeming cluttered. This is important 
when you consider that the display of a file name on top of what may have been 
a directory listing could be very confusing indeed. By blanking the line, we can 
be sure that what we seem to be reading is really what was meant to be read. 
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These same reasons apply here, for both selection and display. For that reason, 
we will blank the background behind our file selector. To do this, we require the 
blankline routine from chapter 11. 

Since we intend to cycle through a series of file names, we need some method 
of keeping them from overlapping. We could blank the entire line each time, but 
we already have a routine that will print a string within a fixed-width string, 
filled out by spaces. The execution time for each is quite small, so a choice 
cannot be made on that basis. If we wanted to display a series of things, we 
would need to make different arrangements other than blanking the entire line, 
however. For that reason - upward mobility - we should choose the fillstring 
routine. 

Another routine we need is the dirlist function from chapter 11. This 
routine was designed to scan through an entire directory, displaying fixed-width 
file names. In this case, we don't want to scan through all at once. We want 
to show one file at at time. When the end of the list is reached, we want to 
start over again at the beginning. The dirlist routine could be modified to 
be called nextfile, meaning "Display the next file in sequence." It would look 
like this: 

nextfile proc near 
call get_pos 
push dx 

firstmatch: 
cmp si,O 
jne nextmatch 
mov si,i 
mov dX,offset pattern; Set the search pattern 
mov cX,OH Search for normal files 
mov ah,4EH Find the first match 
int 2iH 
jnc showmatch 
mov si,O 
jmp matchdone 

nextmatch: 
mov ah,4FH Search for next match 
int 2iH 
jnc showmatch Display match 
mov si,O 
jmp firstmatch 

showmatch: 
mov si,offset mydta+30 Print the file name 
call fillstring 
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matchdone: 
pop dx 
call set_pos 
ret 

nextfile endp 

This routine takes in one state variable. The value in SI determines whether 
the directory listing starts from the beginning (S1 is 0) or somewhere in the 
middle (S1 not 0). Each time this routine is called it displays the next value in 
the "circular" list of files - circular, because when the end of the directory is 
reached, the next fi~e is the first file in the list. 

By wrapping a little cursor-positioning code around this routine, we can 
create the cyclic effect used in the modem program, SETMODE. ASM. We must also 
take the same precautions as before, saving the old disk transfer area (DTA) 
and setting our own. 

browse proc near 
mov bx,cs 
mov dS,bx 

call get_pos ;Save current position 
push dx 
mov dx,O ;Move to Upper Left Corner 
call set_pos 
call blankline ;Blank entire line 

mov ah,2FH ;Get original DTA 
int 218 
push es ;Save DTA Segment 
push bx ;Save DTA Offset 

mov dX,offset mydta ;Set our DTA 
mov ah,lAH 
int 21H 

mov si,O ;Set FIRST for nextfile 
cycle: 

call nextfile ;Display next file 
call getchar ;Get a character 
cmp al,O ;Is it extended? 
jne cycle ;If so, loop 
cmp ah,79 ;Is it an END 
je bdone ;If so, quit 
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cmp ah,77 ;ls it a Right Arrow 
jne cycle ;If not, loop 
call showfile ;If so, display the file 

bdone: 
pop dx ;Get original DTA from stack 
pop ds ; but in different registers 
mov ah,1AH ;Reset DTA to old value 
int 21H 

pop dx ;Get old position 
call set_pos ;And restore cursor position 
ret 

browse endp 

showfile proc near 
ret 

showfile endp 

12.3 Displaying the File 

Once a file has been selected, it must be displayed. There are many ways to 
accomplish this - we'll choose the easiest and most straightforward. Once the 
file has been chosen, we want to move the cursor again to the upper left corner 
and begin displaying the file. As with the directory display, we should never 
mix old and new screen information. Once we choose to write anything on a 
line, that entire line should be blanked first. 

Displaying any part of the file is just as hard, from the resident application 
point of view, as displaying the entire file. For the purposes of this book and for 
many cases when simply browsing through files, we need display only the first 
few lines of a file. For simplicity, we will display the first 512 bytes. Adding a 
simple user interface to scan through the entire file is not difficult, but it adds 
nothing to the theme of this book. The additional code is left (as they said.in 
those books that you found so annoying in school) as an exercise for the reader. 
One possibility for this interface would be to move along the same lines as the 
rest of this program. Display a page of the file. The End key stops the display 
and drops out of the browser. Any other key advances a page. A few frills might 
be to allow the browser to move forward or backward through the files, binding 
those functions to the PgDn and PgUp keys. 

The simplest showfile routine, displaying only the first 512 bytes of the file, 
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would look like this: 

showfile proc near 
call blankline ;Blank the first line 
mov ah,30H ;Open the file 
mov al,O ;Access is Read-Only 

;File name is in OTA+30 
mov dX,offset mydta+30 
int 21H ;Handle returned in BX 

mov si,offset mydta ;Clear the OTA to all zeros 
mov cx,512 

cleardta: 
mov 	 byte ptr [si],O 
inc 	 si 
loop 	 cleardta 

mov bX,ax ;Read a block from the file 
mov ah,3FH 
mov cx,512 ;First 512 bytes or less 
mov dX,offset mydta 
int 21H 
mov si,offset mydta ;Print the block 
call dstring 

mov ah,3EH ;Close the file 
int 21H 
ret 

showfile endp 

mydta 	 db 512 dup (0) 
db o 

Because we have enclosed the file I/O within a single routine and thus within 
a single session, we can use the handle functions. You should take note of two 
parts of this function, one code, one data. The first operation this code performs 
is to open the file. The file name is known to be thirty bytes from the beginning 
of the disk transfer area used by the search operations. After the file is open, we 
no longer need the file name; therefore, we can reuse the DTA as a staging area 
for the block of data we want to read. We know that the data placed into the 
DTA will be less than or equal to 512 bytes in length. If we want to print that 
information, we must either be concerned with its length, or take steps to ensure 
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that the end of the data can be detected. After we open the file, the next step 
we take here is to fill the DTA with zeroes. This means that a block of less than 
512 bytes will be terminated by a zero byte. If we have read in a binary file, 
it may have zero bytes in it. This means that the display will stop sooner, but 
that is acceptable, since we will not be getting much information from looking 
at the character representation of a binary file. For the case of a data block 
that is exactly 512 bytes long, we have placed an extra zero byte immediately 
after the DTA. This will never be overwritten by the disk routines, so the block 
will be zero-terminated in that case as well. Since we know the starting length 
and can detect the end of the block, we can simply use the dstring routine to 
display the block as though it were an ASCIIZ string. 

12.4 BROWSE. ASM - Examine File Contents 

After this program is installed an ALT-B will display a filename in the upper left 
corner of the screen. A RightArrow will select the displayed filename and print 
the top of the file on the screen. An End will quit. Any other key will display 
the next filename in the directory. 

cseg segment 
assume cs:cseg,ds:cseg 
org 100H 

start: 
jmp initialize 

assume ds:nothing 
new_keyboard_io proc far 

sti 
cmp ah,O Is this call a READ request? 
je ksread 
jmp old_keyboard_io handle the remaining subfunction. 

ksread: 
call keyread Get the next character to return 
iret 

new_keyboard_io endp 

Read a character from the keyboard input queue, if not expanding 
or the expansion string, if expansion is in progress. 
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keyread 
push 

readchar: 
pushf 
call 
cmp 
je 
jmp 

extended: 
mov 

nextext: 
cmp 
je 
cmp 
je 
add 
jmp 

startexpand: 
add 
cmp 
je 
push 
push 
push 
push 
push 
push 
push 
push 
call 
pop 
pop 
pop 
pop 
pop 
pop 
pop 
pop 

readdone: 
pop 
ret 

keyread 

keytab 	 db 
dw 

proc near 
si 

old_keyboard_io 
al,O 
extended 
readdone 

si,offset keytab 

byte ptr cs: [si] ,0 
readdone 
ah,cs: [si] 
startexpand 
si,3 
nextext 

si,1 
word ptr cs: [si] ,0 
readdone 
ax 
bx 
cx 
dx 
si 
di 
bp 
ds 
word ptr cs: [si] 
ds 
bp 
di 
si 
dx 
cx 
bx 
ax 

si 

endp 

48 
browse 

Let the original routine 
determine keyboard status. 

Is this 	the end of the table? 
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db 0 
dw 0 

assume cs:cseg,ds:cseg 

Keystroke routines go here 

browse 

cycle: 

bdone: 

proc near 
mov bx,cs 
mov dS,bx 

call get_pos 
push dx 
mov dx,O 
call set_pos 
call blankline 

mov ah,19H 
int 21H 
push ax 

mov ah,2FH 
int 21H 
push es 
push bx 

mov dx,offset mydta 
mov ah,lAH 
int 21H 
mov si,O 

call nextfile 
call getchar 
cmp al,O 
jne cycle 
cmp ah,79 
je bdone 
cmp ah,77 
jne cycle 
call showfile 

moy ah.ODH 
int 21H 

pop dx 

Get the original DTA value 

Save the DTA Segment on stack 
Save the DTA Offset on stack 

Set the DTA to our buffer 

Get a character 
Is it extended? 
If so, loop 
Is it an END 

Is it a Right Arrow 

Get original DTA from stack 
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pop 
mov 
int 

mov 
pop 
int 

pop 
call 
ret 

browse 

tab db 
crlf db 
pattern db 
mydta db 

db 

showfile 
call 
mov 
mov 
mov 
int 
mov 
mov 

cleardta: 
mov 
inc 
loop 

mov 
mov 
mov 
mov 
int 
mov 
call 

mov 
int 
ret 

showfile 

ds 
ah,lAH 
21H 

ah,OEH 
dx 
21H 

dx 
set_pos 

endp 

09H,O 
OdH,OaH,O 
'* .*' ,0 
512 dup (0) 
0 

proc near 
blankline 
ah,3DH 
al,O 
dX,offset mydta+30 
21H 
si ,offset mydta 
cx,512 

byte ptr [si] ,0 
si 
cleardta 

bX,ax 
ah,3FH 
cx,512 
dX,offset mydta 
21H 
si,offset mydta 
dstring 

ah,3EH 
21H 

endp 

but in different registers 
Reset the DTA to the old value 

Open the file 
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nextfile 
call 
push 

firstmatch: 
cmp 
jne 
mov 
mov 
mov 
mov 
int 
jnc 
mov 
jmp 

nextmatch: 
mov 
int 
jnc 
mov 
jmp 

showmatch: 
mov 
call 

matchdone: 
pop 
call 
ret 

nextfile 

getchar 	proc 
pushf 
mov 
assume 
call 
assume 
ret 

getchar 	endp 

, Position in OX 
get_pos 

push 
push 
push 
mov 
mov 

CHAPTER 12. STROLLING THE CORRIDORS 

proc near 
get_pos 
dx 

si,O 
nextmatch 
si,i 
dX,offset pattern Set the search pattern 
cX,OH Search for only normal files 
ah,4EH Find the first match 
2iH 
showmatch 
si,O 
matchdone 

ah,4FH Search for the next match 
2iH 
showmatch Display match 
si,O 
firstmatch 

si,offset mydta+30 Print the file name 
fillstring 

dx 
set_pos 

endp 

near 

ah,O 
cs:nothing 
old_keyboard_io 
cs:cseg 

proc near 
ax 
bx 
cx 
ah,03H 
bh,O 
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int 10B 
pop ex 
pop bx 
pop ax 
ret 

get_pos endp 

; Position in OX 
set_pos proe 

push ax 
push bx 
mov ah,02B 
mov bh,O 
int 10B 
pop bx 
pop ax 
ret 

set_pos endp 

blankline proe 
push ax 
push bx 
push ex 
mov ah,09B 
mov aI, , , 
mov bh.O 
mov bI,7 
mov ex.aO 
int 10B 
pop ex 
pop bx 
pop ax 
ret 

blankline endp 

near 

near 

;08:81 pOints to A8CIIZ string to print 
fillstring proe near 

push ex 
call dstring 

fillehar: 
emp ex.20 
je filldone 
mov al, , , 
call dehar 
inc ex 
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jmp fillchar 
filldone: 

pop cx 
ret 

fillstring endp 

, Displays the string pointed to by DS:SI 
dstring proc near 

push si 
push ax 
mov cx,O 
cmp si,O 
je dsdone 

dloop: 
mov aI, [si] 
cmp aI,O 
je dsdone 
call dchar 
cmp al,OAH 
jne endloop 
call blankline 

endloop: 
inc si 
inc cx 
jmp dloop 

dsdone: 
pop ax 
pop si 
ret 

dstring endp 

, Display the character contained in AL 
dchar proc 

push ax 
push bx 
mov bh,1 
mov ah,OEH 
int 10H 
pop bx 
pop ax 
ret 

dchar endp 

initialize: 

near 

assume cs:cseg,ds:cseg 
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mov bx,cs 

mov dS,bx 


mov aI,16H 
mov ah,35H 
int 2iH 
mov old_keyboard_io,bx 
mov old_keyboard_io[2] ,es 
mov dX,offset new_keyboard_io 
mov aI,16H 
mov ah,25H 
int 2iH 

mov dX,offset initialize 
int 27H 

cseg 	 ends 
end start 





Chapter 13 

The Roads Not Taken 

Design, as we have discussed before, is a matter of trade-offs. Each choice 
you make leads you toward some other decisions and away from others. There is· 
more than one path from start to finish, but each path stresses some aspects and 
leaves some things undone. Knowing why a path was not taken is as important 
as knowing which paths were chosen. 

Writing memory resident programs is not always easy. Many people have 
stayed up late, cursing their computers, trying to dig a little deeper into the 
operating system and the reasons why things fail. By the nature of the task, 
you are trying to make the machine do useful work in areas where the designers 
of the operating system believed you'd never venture. 

For any subject stressed in this book, there are others that were avoided 
or only briefly touched. Some topics were inappropriate, others too risky to 
recommend, still others could have been expanded indefinitely. Unfortunately, 
books have deadlines and space constraints, and authors have to get some sleep, 
now and again. Nevertheless, there are some topics that should have some 
mention, even if only to explain their absence. 

13.1 Emerging Standards 

In 1986, proposals for a standardization of memory resident programs began to 
emerge. As these words are being written, few facts are available on the stan­
dards, but they are firming and gathering support in some quarters. Standards, 
someone once said, are wonderful because there are always so many to choose 
from. The final words are far from spoken on the concept of a standard for 

235 
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resident applications programming. Borland International, one of the first com­
panies with a commercial set of resident applications, has proposed a standard 
that has been well received in some places. But as of this writing, no programs 
have been marketed that conform to this standard. 

If you plan to write commercial resident applications, following an existing 
standard is vitally important. As the IBM PC architecture matures with the AT 
and subsequent generations, the rules necessary to make a well-behaved resident 
application will become less of a suggestion and more of a requirement. If your 
memory resident program is a maverick and does not follow the standard, you 
will simply be creating a market for a similar product that does adhere to the 
standard. 

13.2 Compatibility 

In lieu of an existing, well-defined standard, there is an ad hoc standard of a 
sort, used by many resident application programmers. This "standard" is quite 
simple: will it run with Sidekick? Borland's resident desk accessory package 
pushes a regular PC to its limits in some cases. If your program works correctly 
with Sidekick also loaded and Sidekick works with your program loaded, there 
is a good chance that your program is safe for distribution. 

One point should be made about testing resident applications with Sidekick 
or any other memory resident program. The order of installation is often im­
portant. It would be easy to write a program that can be loaded before Sidekick 
and still work, but would not work when loaded after Sidekick. A program that 
does not pass through the call on an interrupt vector to the previous vector will 
not permit earlier programs on that same vector to work correctly. 

Some programs will not work correctly if other resident applications are 
loaded on top of them. One example is FPANEL (see Chapter 7). Because of 
the design of the program, FPANEL must be the last application installed on the 
timer interrupt. If another application is loaded, FPANEL will not crash, but it 
will display a constant and fairly meaningless number. 

13.3 Video Modes 

For the sake of clarity and simplicity, the programs in this book have been 
written to work in 80x25 monochrome text mode. This is a common mode 
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for the IBM PC and easy to use, since the largely irrelevant (for the theme of 
this book) issues of color and display attributes can be ignored. Though these 
programs may work correctly for other video modes, they have not been proven 
to do so; thus, some displays may not be correct, especially for low-resolution 
color modes. 

13.4 Disabling Interrupts 

One technique that is quite useful, but not covered elsewhere in this book, 
is a method of disabling interrupts. Suppose you chose to redirect the timer 
interrupt. The timer is occurring at approximately 18.2 times per second, which 
gives each interrupt a maximum of about 55 milliseconds to execute. Under 
some circumstances, you may want to use a routine that will take more than 55 
milliseconds to execute. If the timer interrupt occurs during your timer-interrupt 
service routine any number of things, all bad, can happen. But disabling the 
interrupts is a poor solution to this problem. 

A better solution is to have the timer-interrupt handler redirect the timer 
interrupt to a null routine, one that looks like this: 

nullint proc far 
sti 
iret 

nullint endp 

If this routine is used for the duration of the extended timer interrupt, a few 
time ticks can occur and not be noticed. The interrupt handler should correctly 
reset the timer vector before it exits, of course. 

The trade-off in this case is in accuracy of the system clock. If a few timer 
ticks are missed on a regular basis, the system clock will begin to drift, because 
the system timer-interrupt handler is used to advance the clock tick counter. In 
that case, a slightly better solution would be to have the long-duration timer 
interrupt first call the old handler as a subroutine and then replace the vector 
with the address of the old routine. That order of operations is important, 
because simply replacing the handler with an older address would cause the 
system to miss a tick. When the long handler has completed, it can reset the 
vector with a pointer to itself. 

When resetting interrupt vectors from within interrupt handlers, be sure to 
disable interrupts (with eLI), modify the vector, and then reenable interrupts 
(with STI). 
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13.5 Rolling Your Own 

Throughout this book, there have been a set of useful subroutines that have 
shown up again and again. Good examples of these would be the dchar routine, 
which displays a character on the screen, and dstring, which displays an ASCIIZ 
string on the screen. If you were to load all the programs in this book at once,· 
there would be several duplicated copies of these routines scattered about in the 
address space of your computer. 

There are two basic solutions to that problem. One would be to write a mas­
ter resident application that encompassed all the functions in this book without 
duplicating the low-level routines. There is nothing fundamentally wrong with 

. this approach, except that it takes some time to assemble such a program, and 
it does put all your eggs, as they say, in a single basket. 

The other approach is the same one taken by DOS. Write all your utility 
routines as soft interrupt handlers, and then write a single loader that will 
load the interrupt handlers and install them. DOS permits up to 256 interrupt 
vectors. Many of these are reserved, but many of the ones in the range of 40H­
7FH are available. Some of the vectors in the range of 40H-49H are used by the 
IBM' PCjr. Vector 67H is used for the extended memory-management packages. 

Using a soft interrupt as a vehicle for managing utilities is a good idea, but it 
comes at a price. If your utilities are not installed, your resident applications will 
fai1. immediately. If you make one change to the utility package, every resident 
application that uses that package can be affected. If you intend to sell these 
packages individually, you may prefer to keep them self-contained. For your own 
use, though, commandeering a soft interrupt as a personal utility package is not 
at all unreasonable. 

13.6 Undocumented Functions 

Many authors of memory resident programs make use of a special function, INT 
21H function 34H (get pointer to INDOS flag), that returns a pointer in ES:BX. 

This flag indicates whether a DOS function is currently operating at any given 
time. Since many DOS functions are not reentrant, this can be an important 
piece of information for running simple multi-tasking under the timer interrupt, 
for example. 

The INDOS function was found by taking apart PRINT. COM with a disassem­
bler. This program is a background print spooler included with many versions 
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of DOS. A print spooler is a resident application that accepts a print job from 
the operating system and continues to print it on the printer, even though other 
DOS operations are going on in the foreground. This program permits a person 
to run DOS normally, executing commands while simultaneously printing. Since 
this program works adequately and is available with DOS or on many computer 
bulletin boards, it was not duplicated here. 

None of the programs shown in this book use the INDOS call, and for good 
reason. INDOS is "undocumented," a term that has two meanings. The first is, 
of course, that you cannot look it up in the DOS manual. The second is that 
Microsoft, the vendors of DOS, reserve the right to change or delete this function 
from subsequent versions of DOS. In fact, the INDOS call as shown here is useful 
only under DOS version 2.x (where x is any of the minor version numbers). In' 
DOS version 3.x the call still exists, but has changed quite a bit from the older 
versions. In DOS 4.0, this function does something quite different; thus, calls to 
the INDOS function will fail miserably. 

For that reason, use of the INDOS function call or any undocumented DOS 
function is not recummended. 

13.7 Designing Programs 

You may have noticed, as we go about the business of building new programs, 
that many of the programs in this book were not written in the traditional 
"top-down" design style found in programming textbooks. Top-down design 
would have us create a high-level plan and then work downward in a series of 
refinements, until the last thing we do is write all the little low-level routines 
that are combined to do the high-level task. Instead, we have been inclined to 
plunk down a skeleton and some low-level utilities and then build, and sometimes 
throwaway, code until it works. 

There are several good reasons for programming as we have done in this 
book. First, and most important, is that very few programmers actually use the 
top-down style as it is written in the textbooks. All have learned it. Many claim 
it to be a good and valid way of writing programs, but also sheepishly admit 
that they don't do it that way. Many may also claim that they do design from 
the top down, but if you watch them, they seem to be doing something quite 
different. 

In fact, what is happening is a sort of top-down design, but not the sort 
that one finds in a textbook for introductory programming. It is a mixed mode, 
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where a programmer's experience and judgment allow the programming process 
to be accelerated while still keeping the virtues of top-down design in mind. 
A programmer thinks about a goal for a while and, from experience, sees a 
pattern for an approach to that goal. This pattern determines roughly how the 
program will be structured, and how it might be separated into subgoals. By 
juggling these subgoals around a bit, some common characteristics might fall 
out, such as the need to read characters from the console or set the position 
of the cursor. Many times, these common low-level routines are the first ones 
that a programmer will type in, apparently in violation of the rules of top-down 
design. 

Pure top-down design sees each problem with a fresh perspective. Yet all 
good programmers will tell you that they reuse code like mad. This reflects two 
schools of programming philosophy. Imagine, if you will, two car designers. One 
chooses to design a car in which every part and indeed the arrangements of the 
parts themselves are tuned to perfection. Every unnecessary part is eliminated. 
Each and every part is optimized for the highest possible performance in this 
car. The other designer chooses to build from standard parts. The fits may be 
poor, the carburetor may not provide exactly the right mixture for high-power 
combustion, but if the car breaks, it can be fixed easily. 

Tuning for performance takes time and costs money. Hand-crafting of parts 
takes time and costs money. The special-purpose car will be expensive, but for 
some applications, like the Indianapolis 500, it will be the correct way to go. 
Off-the-shelf parts cannot provide that level of performance, but they do provide 
security and speed of development. By building general-purpose components or 
reusing components designed for another application, you can build a car that 
might not win the Indy 500, but it will be adequate for everyday use. 

For many programmers, the lure of shaving just another millisecond or mak­
ing a program 10 bytes smaller has evaporated with the emergence of sufficient 
memory and processors of reasonable power. When memory and cycles become 
cheap, fewer and fewer people will be stingy with them. The coin of the realm 
now is development time. The ability to create prototypes quickly and then turn 
those prototypes into production code is far more valuable than a few cycles or 
bytes. 

In this book the code was written with the idea that it was to be modular. 
The components of these programs should be thought of as tools, not hand­
crafted special-purpose parts. By reusing the concepts and modules in these 
packages, you should be able to create many packages for your own purposes. 



Appendix A 

IBM ROM BIOS Services 

The ROM services are extremely low-level services provided by a Read-Only 
Memory device built into the PC. These services are intended to be extremely 
basic and reliable, so they rarely change. Changing the ROM services would 
require a disassembly of your machine and the replacement of a particular chip. 
Several versions of ROMs have been included in different models and versions 
of PCs. The date of a particular ROM can be found by examining the 8 bytes 
at memory location FOOO: FFF5H to FOOO: FFFCH. These 8 bytes contain ASCII 
characters describing the release date of the ROM. The release dates can be 
interpreted as follows: 

Release Date Machine Type 
04/24/81 Original PC 
10/19/81 Revised PC with some bugs fixed 
08/16/82 Original XT 
10/27/82 Upgrade for PC ROMs to XT level 
11/08/82 Original Portable PC 
06/01/83 Original PCjr 
01/10/84 Original AT 

The IBM Technical Reference Manual contains a listing of the entire contents 
of the ROM and comments about the various ways in which each ROM service 
operates. 
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INT 05H (5) Print screen 
Prints the contents of the screen on the printer 

Input 
None 

Output 
None 

Notes 
The print screen service is a special-purpose routine that copies the contents 

of the current video display to the printer port, in such a way that the screen is 
reproduced on the printed page. 

This service is typically invoked when the user types the keyboard sequence 
CONTROL-PrtSc. Since it is a software interrupt service like any other, it can be 
invoked from within a program, however. 
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INT 010H (16) Video 
These services manage access to the video displays available on the PC. They 

provide a set of routines to display text and/or graphics, manage scrolling on 
the entire screen or in a region of the screen, position the cursor, and select the 
current display mode. 

U sing the video services from within a memory resident program is quite rea­
sonable. It is important to remember to clean up after yourself, however. Many 
applications can become confused if the cursor changes position unexpectedly. 
It is also possible that some applications actually read from display memory for 
input. These programs are rare, but a memory resident program that does not 
completely restore the contents of the screen is sure to confuse them. 

Video Function Codes 

AH Function 
OOH (0) Set video IIlode 
01H (1) Set cursor size 
02H (2) Set cursor position 
03H (3) Read cursor position 
04H (4) Read light-pen position 
06H (6) Scroll window up 
07H (7) Scroll window down 
08H (8) Read character and attribute 
09H (9) Write character and attribute 

OAR (10) Write character 
OBH (11) Set color palette 
OCH (12) Write pixel 
ODH (13) Read pixel 
OEH (14) Write character in TTY mode 
OFH (15) Get current video mode 
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AH = OOH (0) Set video mode 
INT 010H (16) Video 

Select the current video display and mode 

Input 
AL = video mode 

Output 
None 

Notes 
Most IBM PCs have either a monochrome or color graphics display. The 

monochrome display is fixed at a 25 line, 80 characters per line text-only display. 
The color graphics adapter (CGA) has several modes for text and graphics. 

Video Mode Meaning 
DOH 40x25 monochrome text, color adapter 
01H 40x25 color text 
02H 80x25 monochrome text 

.­
03H 80x25 color text 
04H 320x200 four-color graphics 
05H 320x200 four-color graphics (no color burst) 
06H 64Ox200 two-color graphics 
07H Monochrome Adapter text 
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AH = 01H (1) 
INT 010H (16) 

Set cursor S'lze 
Video 

Set the bounds of the blinking hardware cursor 

Input 
CH = starting scan line 
CL = ending scan line 

Output 
None 

Notes 
The scan-line value must be less than 32, so that it occupies only the first 

5 bits of the CH or CL register. Setting any bits other than the first 5 can have 
strange and unpredictable effects. 
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AH = 02H (2) Set cursor position 

INT 010H (16) Video 


Move the cursor to a new position on the screen 

Input 
BH = display page number 
DH = row (y-coordinate) 
DL = column (x-coordinate) 

Output 
None 

Notes 
(0,0) is at the upper left corner of the screen. 
In 80x25 text mode, (79,24) is at the lower right corner. 
In 40x25 text mode, (39,24) is at the lower right corner. 
You can turn off the cursor by moving to a location offscreen, such as (0,25). 

Moving the cursor very far outside the limits of the screen can have unpredictable 
results. 
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AH = 03H (3) Read cursor position 
INT 010H (16) Video 

Determine the cursor location on the screen 

Input 
BH = display page number 

Output 
CH = starting scan line 
CL = ending scan line 
OH = row (y-coordinate) 
OL = column (x-coordinate) 

Notes 
The Color Graphics Adapter has eight display pages (for 40x25 mode) or 

four display pages (40x25 mode). Use INT 10H function 5H (set active display 
page) to switch between display pages. 



248 APPENDIX A. IBM ROM BIOS SERVICES 

AH = 04H (4) Read light-pen position 
INT 010H (16) Video 

Determine where the light pen is pointing on the screen 

Input 
None 

Output 
AH = pen trigger signal 
BX = pixel column (x-coordinate) 
CH = pixel row (y-coordinate) 
DH = character row (y-coordinate) 
DL = character column (x-coordinate) 
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AH = 05H (5) Set active display page 

INT 010H (16) Video 


Input 
AL = page number 

Output 
None 

Notes 
This function is valid only for text modes on the Color Graphics Adapter 

(CGA.) You can switch between pages without affecting the contents of the 
starting or ending page. Text can be written via functions 02H, 09H, and 10H to 
any page, regardless of which page is active. 

Display mode Display type Valid Page Numbers 
OOH eGA 0-7 

01H eGA 0-7 

02H eGA 0-3 

03H eGA 0-3 

02H EGA 0-7 

03H EGA 0-7 

OOH EGA 0-7 

OEH EGA 0-3 

OFH EGA 0-1 

10H EGA 0-1 
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AH = 06H (6) Scroll window up 
INT 010H (16) Video 

Scroll a rectangular region up, inserting blank lines at the bottom 

Input 
AL = lines to scroll up 
BH = filler attribute 
CH = upper row (y-coordinate) 
CL = left column (x-coordinate) 
DH = lower row (y-coordinate) 
DL = right column (x-coordinate) 

Output 
None 

Notes 
Text scrolled beyond the top of a window is lost. New lines appear at the 

bottom of the window, filled with blanks that have the attributes specified in 
BH. 

By setting AL to zero, you can use this function to initialize a window. This 
blanks the region specified by the coordinates. The blanks have the attribute 
specified in BH. 
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AH = 07H (7) Scroll window down 
INT 010H (16) Video 

Scroll a rectangular region down, inserting blank lines at the top 

Input 
AL = lines to scroll down 
BH = filler attribute 
CH = upper row (y-coordinate) 
CL = left column (x-coordinate) 
DH = lower row (y-coordinate) 
DL = right column (x-coordinate) 

Output 
None 

Notes 
Text scrolled beyond the bottom of a window is lost. New lines appear at 

the top of the window, filled with blanks that have the attributes specified in 
BH. 

By setting AL to zero, you can use this function to initialize a window. This 
blanks the region specified by the coordinates. The blanks have the attribute 
specified in BH. 
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AH = 08H (8) Read character and attribute 
INT 010H (16) Video 

Read the character at the cursor location, along with the display character­
istics of that character 

Input 
BH = display page number 

Output 
AH = character 
AL = attribute 

Notes 
By specifying the display page number, you can read a character from any 

valid display page, not just the currently active one. 
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AH = 09H (9) Write character and attribute 
INT 010H (16) Video 

Write character at the cursor location, along with the display characteristics 
of that character 

Input 
AL = character 
BH = page number 
BL = attribute 
CX = number of characters to repeat 

Output 
None 

Notes 
This function does not reposition the cursor. When the function returns, the 

cursor will be at the position it was at when the function was called. 
The repetition code in CX should not be used to write past the end of a line. 
In graphics mode, bit 7 (mask 80H) causes the character to be exclusive-ORed 

with the background. 
In graphics modes, the bitmaps used for ASCII characters 80H-FFH are lo­

cated in a table that starts at 0000: 007CH. This value is stored in the vector for 
INT lFH. By resetting this vector, you can change the location of the bitmap 
table. 
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AR = OAR (10) Write character 
INT 010R (16) Video 

Write a character at the cursor location 

Input 
AL = character 
BH = page number 
BL = color in graphics mode 
CX = count of characters 

Output 
None 

Notes 
This function does not reposition the cursor. When the function returns, the 

cursor will be at the position it was at when the function was called. 
The repetition code in CX should not be used to write past the end of a line. 
In graphics mode, bit 7 (mask 80H) causes the character to be exclusive-ORed 

with the background. 
In graphics modes, the bitmaps used for ASCII characters 80H-FFH are lo­

cated in a table that starts at 0000: 007CH. This value is stored in the vector for 
INT 1FH. By resetting this vector, you can change the location of the bitmap 
table. 
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AH = OBH (11) 
INT 010H (16) 

Make a range of colors available for display 

Set color palette 
Video 

Input 
BH = palette color id 
BL = color to be used with palette 

Output 
None 

Notes 

Palette Value 
BH BL 
0 0 
0 1 
0 2 
0 3 
1 0 
1 1 
1 2 
1 3 

Color 

Background 
Green 
Red 
Brown 
Background 
Cyan 
Magenta 
White 

If BH=OOH, BL should contain the background and border color for graphics 
modes from the full color palette (0-15). In text modes, BL should contain the 
border color selected from the full color palette (0-15). The background color of 
text is determined by the high-order four bits (mask FOH) of the attribute byte 
for each character. 
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AH = OCH (12) 
INT 010H (16) 

Write pixel 
Video 

Set the value of a single point on the graphics display 

Input 
AL = color 
ex = pixel column (x-coordinate) 
DL = pixel row (y-coordinate) 

Output 
None 

Notes 
In display modes 04H and 05H (four-color graphics modes), pixel values are 

in the range (0-3). In mode 06H (two-color graphics mode), pixel values are in 
the range (0-1). 

If bit 7 of AL is set, the pixel value are exclusive-ORed with the background. 
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AH = ODH (13) Read pixel 
INT 010H (16) Video 

Read the value of a single point on the graphics display 

Input 
ex = pixel column (x-coordinate) 
DL = pixel row (y-coordinate) 

Output 
AL = pixel color read 

Notes 

Display Mode Valid Pixel Values 
04H 0-3 
05H 0-3 
06H 0-1 
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AH = OEH (14) Write char in TTY mode 
INT 010H (16) Video 

Write a character and then advance one cursor position 

Input 
AL = character 
BL = color for graphics mode 

Output 
None 

Notes 
This function prints a character at the current cursor position, then advances 

the cursor to the right. Moving the cursor past the end of a line wraps it around 
to the next line. Moving the cursor past the lower right corner scrolls the screen 
up one line. 

This function is used by the DOS console driver to write operating system 
text and messages to the screen. 
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AH = OFH (15) Get current video mode 

INT 010H (16) Video 


Get the display mode of the active display 

Input 
None 

Output 
AH = width in characters 
AL = video mode 
BH = page number 

Notes 

Video Mode Meaning 
OOH 40x25 monochrome text, color adapter 
01H 40x25 color text 
02H 80x25 monochrome text 
03H 80x25 color text 
04H 320x200 four-color graphics 
05H 320x200 four-color graphics (no color burst) 
06H 640x200 two-color graphics 
07H Monochrome Adapter text 

This function can be used to determine the current screen width, since it can 
be inferred from the video mode. 
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INT 011H (17) Equipment 
Determines what equipment is available on the PC when it is turned on 

Input 
None 

Output 
AX = bit-coded equipment list 

Notes 

AX Equipment Present at Power On 
FEDCBA9876543210 
PPxxxxxxxxxxxxxx Number of printers (0-3) 
xxSxxxxxxxxxxxxx Serial printer on PCjr (0-1) 
xxxGxxxxxxxxxxxx Game adapter (0-1) 
xxxxPPPxxxxxxxxx Number of serial ports (0-7) 
xxxxxxxDxxxxxxxx DMA chip (0 means installed) 
xxxxxxxxDDxxxxxx Number of diskette drives minus 1 (0-3) 
xxxxxxxxxxWxxxx Initial video mode (01, 10, 11) 
xxxxxxxxxxxxRRxx RAM on system board (11=64K) 
xxxxxxxxxxxxxxxP Any disks present (0-1). 

Initial Video Mode Display Used 
01B 40x25 color 
lOB 80x25 color 
llB Monochrome 

The value for the number of disks in the equipment list are one less than 
the actual number of disks present on the system. If no disks are present, this 
number will be zero, and the ANY-DISKS-PRESENT bit will also be zero. If one 
disk is present, the ANY-DISKS-PRESENT bit are one, but the number of disks 
will still be zero. Each additional disk increases the number of disks by one, so 
it remains one less than the actual number (if the number of disks is not zero). 

This list should only be read, never written. 
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INT 012H (18) Memory Size 
This function returns the actual amount of memory that the PC has avail­

able. It does not return the value from the equipment list, which may be some­
what smaller than the normal value. It returns the correct size of memory in 
kilobytes. 

Input 
None 

Output 
AX = memory size in kilobytes 
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INT 013H (19) Disk 
These functions provide low-level access to the disk system. You should 

avoid calling them and use the DOS functions whenever possible, to maintain 
compatibility across versions of DOS and workalikes. The DOS functions also 
provide a much more comprehensive set of routines for disk access. 

Disk Function Codes 

AH Function 
OOH (0) Reset disk system 
01H (1) Get disk status 
02H (2) Read disk sectors 
03H (3) Write disk sectors 
04H (4) Verify disk sectors 
05H (5) Format disk track 
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AH = OOH (0) Reset disk system 
INT 013H (19) Disk 

Send a RESET signal to the disk controller and prepare for disk I/O 

Input 
None 

Output 
None 
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AH = 01H (1) Get disk status 
INT 013H (19) Disk 

Determine the status of the disk controller 

Input 
None 

Output 
AL = status code 

Notes 

Status Code Meaning 
01H Bad command 
02H Disk is write-protected 
04H Sector not found 
08H DMA overrun 
10H Data error on disk read 
20H Controller error 
40H Seek failure 
80H Disk timed-out 
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AH = 02H (2) Read disk sectors 
INT 013H (19) Disk 

Read a physical sector from disk into a memory buffer 

Input 
AL = number of sectors 

CH = track number 

CL = sector number 

DH = head number 

DL = drive number 

ES:BX = pointer to buffer 


Output 
CF = success/failure 

AH = status code 

AL = number of sectors read 


Notes 

Status Code Meaning 
01H Bad command 
02H Disk is write-protected 
04H Sector not found 
08H DMA overrun 
10H Data error on disk read 
20H Controller error 
40H Seek failure 
80H Disk timed-out 
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AH = 03H (3) Write disk sectors 
INT 013H (19) Disk 

Write a physical sector to disk from a memory buffer 

Input 
AL = number of sectors 

CH = track number 

CL = sector number 

DH = head number 

DL = drive number 

ES:BX = pointer to buffer 


Output 
CF = success/failure 

AH = status code 

AL = number of sectors written 


Notes 

Status Code Meaning 
01H Bad command 
02H Disk is write-protected 
04H Sector not found 
08H DMA overrun 
100 Data error on disk read 
20H Controller error 
40H Seek failure 
80H Disk timed-out 
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AH = 04H (4) Verify disk sectors 
INT 013H (19) Disk 

Check the address fields of sectors on the disk 

Input 
AL = number of sectors 

CH = track number 

CL = sector number 

DH = head number 

DL = drive number 


Output 
CF = success/failure 

AH = status code 

AL = number of sectors verified 


Notes 
This function can be used as a test for a readable disk in the drive. It returns 

successfully if a properly formatted disk is present and fails otherwise. 

Status Code Meaning 
01H Bad command 
02H Disk is write-protected 
04H Sector not found 
08H DMA overrun 
10H Data error on disk read 
20H Controller error 
40H Seek failure 
80H Disk timed-out 
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AH = 05H (5) Format disk track 

INT 013H (19) Disk 


Input 
AL = number of sectors 
CH = track number 
CL = sector number 
DH = head number 
DL = drive number 
ES:BX = pointer to list of 4-byte address fields 

Output 
CF = success/failure 
AH = status code 

Notes 
This is a hairy and dangerous function, well beyond the subject of this book. 

See the DOS Technical Reference Manual for a barely readable explanation. 
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INT 014H (20) Communications 
These routines manage the communications services. They control access 

into and out of the PC for telecommunications and possibly printing services. 
Although often referred to as ports, they should not be confused with the low­
level I/O ports available elsewhere in the PC. The services referred to in this 
section are used to move information to and from other devices outside the 
PC itself. The addressable ports are used within the PC to communicate with . . 

various devices attached directly to the processor, such as the video display or 
sound generators. 

Serial ports are addressed by their port number. Typically there are no more 
than two serial ports on a PC, though the PC architecture provides support for 
up to four. 

Serial Port Number DOS Device 
0 COM1: 
1 COM2: 
2 COM3: 
3 COM4: 

Communications Function Codes 

AH Function 
OOH (0) Initialize serial port params 
01H (1) Send one character 
02H (2) Receive one character 
03H (3) Get serial port status 
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AH OOH (0) Initialize serial port params 
INT 014H (20) Communications 

Set the speed, parity, word length, and stop bits of a particular communica­
tions port 

Input 
DX = serial port number 

Output 
AH = port status 
AL = modem status 

Notes 

Port Status Meaning Modem Status Meaning 
SOH Timeout SOH Receive line signal 
40H XMIT shift register empty 40H Ring indicator 
20H XMIT hold register empty 20H Data set ready 
10H Break detected 10H Clear to send 
oaH Framing error OSH RCV line signal changed 
04H Parity error 04H Ring indicator 
02H Overrun error 02H Data set ready changed 
01H Data ready 01H Clear to send changed 

AH Baud AH Parameter 
76543210 76543210 
OOOxxxxx 110 xxxOOxxx no parity 
001xxxxx 150 xxxO1 xxx odd parity 
010xxxxx 300 xxx 1 Oxxx no parity 
011xxxxx 600 xxx11xxx even parity 
100xxxxx 1200 xxxxxOxx 1 stop bit 
101xxxxx 2400 xxxxx1xx 2 stop bits 
110xxxxx 4800 xxxxxx10 7 bit words 
111xxxxx 9600 xxxxxx11 8 bit words 



271 

AH = 01H (1) Send one character 

INT 014H (20) Communications 


Write a character to the specified communications line 

Input 
AL = character 
DX = serial port number 

Output 
AH = success/failure status code 
AL = port status 

Notes 

Modem Status Meaning 
80H Timeout 
40H XMIT shift register empty 
20H XMIT hold register empty 
lOH Break detected 
08H Framing error 
04H Parity error 
02H Overrun error 
OlH Data ready 
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AH = 02H (2) Receive one character 
INT 014H (20) Communications 

Read a character from the communications line 

Input 
DX = serial port number 

Output 
AH = success/failure status code 

AL = port status 


Notes 

Modem Status Meaning 
80H Timeout 
40H XMIT shift register empty 
20H XMIT hold register empty 
10H Break detected 
08H Framing error 
04H Parity error 
02H Overrun error 
01H Data ready 
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AH 03H (3) Get serial port status 

INT 014H (20) Communications 

Determine the status of the communications line 

Input 
None 

Output 
AH = port status 
AL = modem status 

Notes 

Port Status Meaning Modem Status Meaning 
SOH Timeout SOH Receive line signal 
40H XMIT shift register empty 40H Ring indicator 
20H XMIT hold register empty 20H Data set ready 
10H Break detected 10H Clear to send 
OSH Framing error OSH RCV line signal changed 
04H Parity error 04H Ring indicator 
02H Overrun error 02H Data set ready changed 
01H Data ready 01H Clear to send changed 
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INT 015H (21) Cassette 
Due to the drop in disk-drive prices shortly after the IBM PC was introduced, 

few people used the cassette services, which nevertheless remain in some of the 
ROMs for compatibility reasons. In older PCs, the cassette hardware still exists 
and can be used. The cassette logic and ROM services can be used to control a 
relay within the machine. Some people have used that relay as a physical device 
controller or signalling device. This relay is useful for low-voltage/low-current 
applications only, however, and rewiring should be attempted only if you know 
what you are doing. 

Cassette Function Codes 

AH Function 
OOH (0) Turn on cassette motor 
01H (1) Turn off cassette motor 
02H (2) Read data block 
03H (3) Write data block 
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AH = OOH (0) Turn on cassette motor 
INT 015H (21) Cassette 

Activate the relay in older PCs that turns on the cassette motor 

Input 
None 

Output 
None 

Notes 
To determine whether you have cassette hardware on your machine, call this 

service. Ifyou have cassette ports on your machine, you'll hear a small click from 
within the system unit. This is the relay engaging. It will not disengage until 
you call cassette function 01H to turn it off, or until you turn off or reboot your 
machine with CONTROL-ALT-DEL. A cheaper, easier, and quicker way, but not 
nearly as much fun, would be to look on the back of your PC, near the keyboard 
connector, for a cassette connector. Machines without cassette hardware lack 
this feature. 



276 APPENDIX A. IBM ROM BIOS SERVICES 

AH = 01H (1) Turn off cassette motor 
INT 015H (21) Cassette 

Deactivate the relay in older pes that controls the cassette motor 

Input 
None 

Output 
None 

Notes 
Probably the only truly useful function in the cassette interface - the one 

that stops the use of it. 
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AH = 02H (2) Read data block 
INT 015H (21) Cassette 

Read a block of data from the cassette interface 

Input 
CX = count of bytes 

ES:BX = pointer to data area 


Output 
CF = error signal 

DX = count of bytes read 

ES:BX = pointer past last byte read 
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AH = 03H (3) Write data blocks 

INT 015H (21) Cassette 


Write a block of data to the cassette interface 

Input 
ex = count of bytes 

ES:BX = pointer to data area 


Output 
ES:BX = pointer past last byte written 
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INT 016H (22) Keyboard 
For quite a few memory resident applications, these routines are the key (pun 

intended). A lot of useful things can be done by intercepting the keyboard in­
terrupts. The assembly-language sources for the keyboard services can be found 
in the IBM Technical Reference Manual for your version of DOS. A familiarity 
with the way the keyboard is handled is an invaluable tool for writing resident 
applications. 

A common term in memory resident programming is "hot key." This refers 
to the ability of a memory resident program to be accessible at the touch of a 
particular key, no matter what other applications the machine might be running 
at the time. 

Keyboard Function Codes 

AH Function 
OOH (0) Read next key board character 
01H (1) Test for character ready 
02H (2) Get shift status 
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AH = OOH (0) Read next keyboard character 
INT 016H (22) Keyboard 

Read a character from the keyboard input queue 

Input 
None 

Output 
AH = scan code (auxiliary byte) 
AL = character code 

Notes 
This function is the one most likely to be subverted by a memory resident 

program. Controlling this function is the key to writing "hot key" macro ex­
pansion programs. 
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AH = 01H (1) Test for character ready 
INT 016H (22) Keyboard 

Determine if the keyboard input queue is empty, or if a character is available 
to be read 

Input 
None 

Output 
ZF = queue empty (set means empty/clear means char available 
AH = scan code (auxiliary byte) 
AL = character code 

Notes 
This function does not return via IRET, because it must pass back ZF as an 

indicator. It uses the optional parameter of RET to specify the number of bytes 
to flush from the stack. These bytes are additional information necessary for 
IRET to return successfully. 
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AH = 02H (2) Get shift status 

INT 016H (22) Keyboard 


Find out which shift keys are depressed on the keyboard 

Input 
None 

Output 
AL = shift status bits 

Notes 
Several of these shift keys may be depressed simultaneously. The shift status 

will be all bits for each active shift key, ORed together. 

Shift Status Meaning 
80H Insert on 
40H Caps Lock on 
20H Num Lock on 
10H Scroll Lock on 
08H ALT key down 
04H CTRL key down 
02H LEFT-SHIFT key down 
01H RIGHT-SHIFT key down 
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INT 017H (23) Printer 
Printer services provide a means of creating hardcopy output from the PC. 

These services are simple and straightforward. You can initialize the printer, 
send characters to the it, and get the status of the printer. 

DOS typically assumes that you have only one printer device (PRN:) con­
nected to your system. 

Printer Function Codes 

AH Function 
OOH (0) Send character to printer 
01H (1) Ini tialize printer 
02H (2) Get printer status 
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AH = OOH (0) Send character to printer 

INT 017H (23) Printer 


Write a character to the printer interface and return the status of the port 

Input 
AL = character 

Output 
AH = printer status 

Notes 

Printer Status Meaning 
80H Printer not busy 
40H Acknowledge 
20H Out of paper 
10H Printer selected 
08H I/O error 
Q4H Not used 
021I Not used 
01H Timeout 
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AH = 01H (1) Initialize printer 
INT 017H (23) Printer 

Initialize a printer port and return the status of the port 

Input 
None 

Output 
AH = printer status 

Notes 

Printer Status Meaning 
80H Printer not busy 
40H Acknowledge 
20H Out of paper 
10H Printer selected 
08H I/O error 
04H Not used 
02H Not used 
01H Timeout 
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AH = 02H (2) 
INT 017H (23) 

Get the status of the printer port 

Input 
'None 

Output 
AH = printer status 

Notes 

Printer Status 
80H 
40H 
20H 
10H 
08H 
04H 
02H 
01H 

Get printer status 
Printer 

Meaning 
Printer not busy 
Acknowledge 
Out of paper 
Printer selected 
I/O error 
Not used 
Not used 
Timeout 
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INT 018H (24) BASIC 
IBM PCs have a rudimentary BASIC interpreter in ROM that runs if the 

machine is booted without a disk. It is designed to run in conjunction with the 
cassette-storage device; as such it is seldom used directly. The ROM BASIC is 
essential to running BASICA, the IBM Disk BASIC interpreter. 

Calling this service is essentially equivalent to turning off the machine and 
rebooting it without inserting a disk in the boot drive. You should have a good 
reason for calling this function. 

Input 
None 

Output 
None 
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INT 019H (25) Reboot 
This service causes the machine to be rebooted in a similar, but not iden­

tical, fashion to the reboot caused by typing CONTROL-ALT-DEL or by turning 
the machine off and then on again. Power-cycling, however, causes the entire 
state of the machine to be reset from scratch and a memory check performed. 
CONTROL-ALT-DEL does not cause the memory test to run, but does reset the 
state of the machine and the memory allocations. By using this service, you can 
reset DOS without destroying the contents of memory. 

Input 
None 

Output 
None 
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INT 01AH (26) Clock 
The ROM provides a very low level time-of-day service. The clock is based 

on the number of system clock-ticks since midnight. These clock ticks occur 
roughly 18.2 times per second. When the count exceeds 1,573,040 ticks, another 
day has gone by. When you ask DOS to display the time, it reads this counter 
and computes the time from the clock count. You can compute components of 
the time of day by using the following formulas: 

Hour = Clock / 65543 
Hour-remainder = Clock MODULO 65543 

Minute = Hour-remainder / 1092 
Min-remainder Hour-remainder MODULO 1092 

Second = Min-remainder / 18.21 

If you know the time of day, you can compute the current tick count by using 
this formula: 

Clock = (Hour*65543.33)+(Minute*1092.38)+(Second*18.21) 

Clock Function Codes 

AH Function 
OOH (0) Read current clock count 
01H (1) Set current clock count 

http:Hour*65543.33)+(Minute*1092.38)+(Second*18.21


290 APPENDIX A. IBM ROM BIOS SERVICES 

AH = DOH (0) Read current clock count 
INT 01AH (26) Clock 

Get the current internal DOS tick count, from which the time can be com­
puted 

Input 
None 

Output 
AL = midnight signal 
ex = tick count, high word 
DX = tick count, low word 

Notes 
This function returns a double word containing the number of clock ticks 

since midnight. It also returns a byte indicating whether the count has been 
reset by DOS yet. If this byte is not zero, then the counter has counted out 
more than 24 hours worth of clock ticks, but the counter has not yet been reset 
to zero for the new day. 

You can compute the time of day by using the following formulas: 

Hour = Clock / 65543 
Hour-remainder = Clock MODULO 65543 

Minute = Hour-remainder / 1092 
Min-remainder = Hour-remainder MODULO 1092 

Second = Min-remainder / 18.21 
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AR = 01R (1) Set current clock count 
INT 01AH (26) Clock 

Set the current internal DOS tick count to a particular time of day 

Input 
ex = tick count, high word 
DX = tick count, low word 

Output 
None 

Notes 
You can compute the current tick count by using this formula: 

Clock = (Hour*65543.33)+(Minute*1092.38)+(Second*18.21) 

http:Hour*65543.33)+(Minute*1092.38)+(Second*18.21




Appendix B 

Hardware Interrupts 

The IBM PC uses hardware interrupts to manage hardware and respond to error 
conditions. They resemble the software interrupts used by DOS or in the ROM 
as a system-call facility, but for the most part, these interrupts are not generated 
by software. They are called as a result of some condition in the hardware. Some 
of these vectors are not pointers to code, but pointers to a table of some kind. 

There are 256 possible interrupt vectors in the IBM PC. Of these, some are 
unused and thus available for programs to use as soft interrupts. The available 
vectors are 40H-7FH and F1H-FFH. 
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INT OOH (0) Divide by zero 
An error interrupt generated when a division by zero is attempted 

Notes 
Dividing any number by zero is a mathematical mistake. This interrupt 

allows you to detect that mistake and recover gracefully, if possible. Many 
programs that work with numbers replace this interrupt, at least on a temporary 
basis. 
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INT 01H (1) Single step 
Called after each instruction when TF, the trap flag, is set 

Notes 
When debugging a program, you often want to execute a single instruction 

and then stop the machine to observe the results. This involves a sort of a contra­
diction, since it is a running machine that lets you see the results. This interrupt 
provides the magic for that operation. If the trap flag is set, an interrupt to this 
routine is generated after each individual instruction has executed. Since an 
interrupt first turns off the interrupt flag, the interrupt handler indicated here 
can run unmolested. 

Great care should be taken with the STI instruction during the execution of 
this interrupt. 
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INT 02H (2) Non-maskable (NMI) 
Responds to a major hardware fault 

Notes 
Not of much use to an applications programmer, since any calls to this inter­

rupt usually signal a major system fault. It can be used to take some emergency 
action just before a system crash. 
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INT 03H (3) Breakpoint 
Used to set breakpoints for program debugging 

Notes 
When debugging, a programmer may want to let many instructions run, but 

halt on a particular one. This interrupt permits that. 
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INT 04H (4) Overflow 
An error interrupt generated when an arithmetic overflow occurs 

Notes 
When an arithmetic operation results in an operation that is too big to be 

contained in its destination, this interrupt signals the error condition. 
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INT 08H (8) Timer Tick 
The system metronome; occurs 18.2 times per second 

Notes 
A very useful interrupt for the memory resident programmer. The system 

uses this interrupt to advance the time-of-day counter. 18.2 ticks per second is 
91 ticks every 5 seconds, or 1092 ticks per minute. 
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INT 09H (9) Keystroke 
Generated every time a key is pressed 

Notes 
This interrupt allows a certain amount of type-ahead, When a key is pressed, 

this interrupt handler reads it and places the character on an input queue. 
The keyboard interrupts in ROM actually examine that queue, rather than 
the keyboard. This decoupling permits a much greater flexibility of interface 
between the keyboard and the application. 
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INT OBH (11) Serial port 1 
Used for control of communications port COM2: 

Notes 
It is common to replace this interrupt so that a telecommunications program 

can run at a reasonable speed. Direct system calls reach their limit at about 
1200 baud. By replacing the DOS serial I/O code with a more sophisticated 
interrupt-management scheme, higher communications speeds can be used. 
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INT OCH (12) Serial port 0 
Used for control of communications port COM1: 

Notes 
It is common to replace this interrupt so that a telecommunications program 

can run at a reasonable speed. Direct system calls reach their limit at about 
1200 baud. By replacing the DOS serial I/O code with a more sophisticated 
interrupt-management scheme, higher communications speeds can be used. 
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INT ODH (13) Fixed disk 
Used by the hard-disk controller for disk management 

Notes 
This interrupt may not be available on older IBM pes. 

required. 
A newer ROM is 
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INT OEH (14) Floppy disk 
U sed by the floppy disk controller for diskette management 

Notes 
The diskette management software in the IBM PC uses this interrupt in 

esoteric ways to detect various disk transfer completion conditions. 
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INT OFH (15) Printer 
U sed by the printer controller for printer management 

Notes 
This low-level printer interrupt detects a printer error or completion condi­

tion. 
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INT 01DH (29) Video init table 
Points to a table of video-initialization parameters 

Notes 
This vector is a pointer to a data table used for the initialization of the video 

controller for the displays. It should never be be executed as a pointer to code. 
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INT 01EH (30) Diskette parameter table 
Points to a table of disk-initialization parameters 

Notes 
This vector points to a data table used for the initialization of the disk 

controller. Some of this data may be changed to tune the performance of the 
disk, but extreme care is advised. It should never be be executed as a pointer 
to code. 
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INT 01FH (31) Graphics table 
Points to a bitmap table of characters for graphics display 

Notes 
This table contains bitmap representations of characters 128-255, as they 

are displayed in graphics mode on the eGA. At powerup, the system sets this 
pointer to zero, indicating that no such table is present. Altering that value will 
permit custom tables to be used. 

The table is 1 kilobyte long and contains 128 8-byte entries. Each entry 
contains a "picture" of what the character will look like in an 8x8 bit matrix. 

The vector should never be be executed as a pointer to code. 



Appendix C 

IBM DOS Services 

The functions listed in this appendix are loaded when DOS boots on your ma­
chine. Each version of DOS may have slight or dramatic differences in the way 
these functions work. The functions listed here are valid for DOS major version 
2. If you are using an earlier version, many of these functions will not be avail­
able. If you are using a later version, you may have additional functions at your 
disposal. The final arbiter of how these functions operate is the DOS Reference 
Manual. 
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INT 020H (32) 	 Terminate program 
Ends execution of a program and returns control to DOS 

Input 
None 

Output 
None 

Notes 
DOS terminates the program, releases the memory used by that program, 

and then performs the following operations: 

• Restores 	the termination-handler vector from OOOAH in the program seg­
ment prefix 

• 	 Restores the CONTROL-C handler from OOOEH in the program segment prefix 

• 	 Restores the critical-error handler from 0012H in the program segment 
prefix 

• Flushes all pending file buffers 

Finally, control is transferred to the termination-handler address, which then 
returns to DOS. 
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INT 021H (33) Universal function 
DOS operating system service request 

Input 
AH = function number 
Other parameters depend on individual functions 

Output 
Return values depend on individual functions 

Notes 
This is the portal between the operating system and the application pro­

grams. This function is used as a general-purpose dispatcher for different kinds 
of system functions and I/O requests. 

The desired function is invoked by placing a function number in the AH 
register and setting the other registers to values appropriate for the function 
being called. Then a soft-interrupt INT 21H is issued, and control transfers to 
the operating system. When the system service routine has completed, it issues 
an IRET and returns control to the application. 
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AH = OOH (0) 	 Terminate program 
INT 021H (33) 	 Universal function 

Complete execution of a program and return control to DOS 

Input 
CS = Segment address of program segment prefix 

Output 
None 

Notes 
DOS terminates the program, releases the memory used by that program, 

and then performs the following operations: 

• 	 Restores the termination-handler vector from OOOAH in the program seg­
ment prefix 

• Restores the CONTROL-C handler from OOOEH in the program segment prefix 

• 	 Restores the critical-error handler from 0012H in the program segment 
prefix 

• 	 Flushes all pending file buffers 

Finally, control is transferred to the termination-handler address, which then 
returns to DOS. 

CS should contain the segment address of the program segment prefix. For 
. COM files, this happens automatically, since .COM programs are, by definition, 
contained within a single code segment. For. EXE files, care should be taken to 
ensure that the correct value of CS is present. DOS needs to be able to find the 
program segment prefix in order to correctly execute the Termination Handler. 
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AH = 01H (1) Character input with echo 
INT 021H (33) Universal function 

Read a character from the keyboard and echo it to the display 

Input 
None 

Output 
AL = character read in 

Notes 
If this function encounters a CONTROL-C, the CONTROL-C handler (located at 

the INT 23H vector) is executed. 
Extended characters, such as the function keys, or keys shifted with ALT. 

require two calls to this function. The first call returns a zero byte, the second 
returns the extended key code. 
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AH = 02H (2) Character output 
INT 021H (33) Universal function 

Write a character to the current video display 

Input 
DL = character to write 

Output 
None 

Notes 
If this function encounters a CONTROL-C, the CONTROL-C handler (located at 

the INT 23H vector) is executed. 
If this function encounters a CONTROL-H, the cursor moves left by one char­

acter position. 
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AH = 03H (3) Serial input 
INT 021H (33) Universal function 

Read a character from AUX:, the standard auxiliary device 

Input 
None 

Output 
AL = character read in 

Notes 
This function reads a character from the standard auxiliary device. Unless 

redirected with the MODE command, this will be COM1:. 
DOS serial I/O is not interrupt driven. This limits the speed at which serial 

communications can take place. 
DOS initializes COM1: to 2400 baud, no parity, 1 stop bit, 8 data bits at 

boot. COM2: is not initialized. 
DOS serial I/O calls cannot be used to determine the status of the serial 

devices. 
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AH = 04H (4) S erial output 
INT 021H (33) Universal function 

Write a character to AUX:, the standard auxiliary device 

Input 
DL = character to write 

Output 
None 

Notes 
This function writes a character to the standard auxiliary device. Unless 

redirected with the MODE command, this will be COM!:. 
DOS serial I/O is not interrupt driven. This limits the speed at which serial 

communications can take place. 
DOS initializes COM!: to 2400 baud, no parity, 1 stop bit, 8 data bits at 

boot. COM2: is not initialized. 
DOS serial I/O calls cannot be used to determine the status of the serial 

devices. 
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AH = 05H (5) Printer output 
INT 021H (33) Universal function 

Write a character to PRN:, the standard printer device 

Input 
DL = character to write 

Output 
None 

Notes 
This function writes a character to the standard printer device. Unless redi­

rected with the MODE command, this will be the parallel line printer port. 
DOS does not provide a standard mechanism for determining printer status. 
This function waits until the printer is ready before writing the character. 
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AH = 06H (6) Direct console I/O 
INT 021H (33) Universal function 

Raw character input or output 

Notes 
Raw I/O is used when you want to send byte data rather than just character 

data to and from an I/O device. A good example of this would be with a text 
editor. Text editors and word processing programs are often designed to use 
control characters as commands. Under normal circumstances DOS would in­
terpret these control characters (such as CONTROL-H) as input editing commands 
directly. Text editor applications want to read those characters and process them 
on their own. Raw I/O permits this. 

It is common to refer to the opposite case of raw I/O (where character 
interpretation is done by DOS), as cooked I/O. 

Subfunction Codes 

DL Function 
OOH (0) - OFEH (254) Raw console output 

OFFH (255) Raw console input 
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DL = OOH-OFEH Raw console output 
AH = 06H (6) Direct console 110 
INT 021H (33) Universal function 

Display character codes (0-254) on the standard output device 

Input 
None 

Output 
None 

Notes 
This function writes a character to the standard output device. Unless redi­

rected with the MODE command or from the command processor, this will be the 
console device, CON:. 

The character to be written is in DL. Obviously, this cannot be used to write 
OFFH to the console. 
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DL = OFFH Raw console input 
AH = 06H (6) Direct console IIO 
INT 021H (33) Universal function 

Read a character from the standard input device 

Input 
None 

Output 
AL = character read in 
ZF = set if no character ready 

Notes 
This function reads a character from the standard input device. Unless 

redirected with the MODE command or from the command processor, this will be 
the console device, CON:. 

This function does not r('act to CONTROL-C or CONTROL-BREAK. 
If no character is queued for input, this function will return with ZF set. 
If AL returns zero, this signals that the character read in is an extended ASCII 

character. In this case, the next read will return the character code. 
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AH = 07H (7) Raw input (no echo) 
INT 021H (33) Universal function 

Read a character from the standard input device without echo 

Input 
None 

Output 
AL = character read in 

Notes 
This function reads a character from the standard input device. Unless 

redirected with the MODE command or from the command processor, this will be 
the console device, CON:. 

This function does not react to CONTROL-C or CONTROL-BREAK. 
If AL returns zero, this signals that the character read in is an extended 

ASCII character. In this case, the next read will return the character code. 
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AH = 08H (8) Console input (no echo) 
INT 021H (33) Universal function 

Read a character from the standard input device without echo 

Input 
None 

Output 
AL = character read in 

Notes 
This function reads a character from the standard input device. Unless 

redirected with the MODE command or from the command processor, this will be 
the console device, CON:. 

If CONTROL-C or CONTROL-BREAK is read, the CONTROL-C handler (located at 
the INT 23H vector) is executed. 

If AL returns zero, this signals that the character read in is an extended 
ASCII character. In this case, the next read will return the character code. 
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AH = 09H (9) Display string 
INT 021H (33) Universal function 

Write a dollar-sign terminated string to standard output 

Input 
DS:DX = pointer to output string 

Output 
None 

Notes 
This function writes a string to the standard output device. Unless redirected 

with the MODE command or from the command processor, this will be the console 
device, CON: . 

The string must be terminated with an ASCII "$" character (24H). The dollar 
sign is not transmitted. Other ASCII control characters can be embedded in the 
output string. To display a dollar sign, use one of the single character functions. 
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AH = OAH (10) Buffered keyboard input 
INT 021H (33) Universal function 

Read a line of characters from standard input 

Input 
DS:DX = pointer to input buffer 

Output 
None 

Notes 
This function reads a string from the standard input device. Unless redi­

rected with the MODE command or from the command processor, this will be the 
console device, CON:. 

If CONTROL-C or CONTROL-BREAK is read, the CONTROL-C handler (located at 
the INT 23H vector) is executed. 

Characters are read until an ASCII carriage return (ODH) is detected. The 
length of the buffer is contained in the first byte. This limits the possible size 
of input buffers to 255 characters (since a zero length buffer would be unrea­
sonable). The buffer fills to one less than the size (not counting the final <CR»; 

subsequent input is ignored until the buffer begins to empty. 
Extended ASCII codes occupy two bytes in the input buffer, with the first 

byte being zero. This is an important point for using C string functions, since 
language terminates strings with a zero byte. 
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AH = OBH (11) Get keyboard input status 
INT 021H (33) Universal function 

Determine if a character is available to be read from the standard input 
device 

Input 
None 

Output 
AL = OFFH if available, OOH if not 

Notes 
This function will continue to return a CHARACTER-READY until the input 

queue has been emptied by one of the character-input functions. 
If CONTROL-C or CONTROL-BREAK is read, the CONTROL-C handler (located at 

the INT 23H vector) is executed. If any other character is waiting, it remains in 
the input queue until it is read by one of the character-input functions. 
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AH = OCH (12) Reset input/execute 
INT 021H (33) Universal function 

Clear the type-ahead buffer and invoke one of the keyboard input functions 

Input 
AL = INT 21H function number (OlH, 06H, 07H, 08H, OAH) 
See the appropriate INT 21H function for other parameters. 

Output 
See the appropriate INT 21H function for output specifications. 

Notes 
If CONTROL-C or CONTROL-BREAK is read, the CONTROL-C handler (located at 

the INT 23H vector) is executed. 
All typed but unread characters are flushed. The DOS character-input func­

tion whose number is contained in AL is then called. This function then returns 
exactly as that DOS input function would if it had been called separately. 
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AH = ODH (13) Reset disk I/O 
INT 021H (33) Universal function 

Flush all pending file buffers by writing outstanding data to the disk 

Input 
None 

Output 
None 

Notes 
A reset causes all pending, buffered disk I/O to be written to the disk. It 

does not update the directory to reflect changes in the files. Directory updates 
are done by the CLOSE operation. 
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AH = OEH (14) Select current drive 
INT 021H (33) Universal function 

Set the default drive and return the total number of logical drives available 
on the system 

Input 
DL = drive ID 

Output 
AL = Number of available logical drives 

Notes 
Drive IDs are numeric, following the drive letters (drive A: has a drive ID of 

0, drive B:=l, drive C:=2, and so on). 
Be aware that some disk-related functions use drive ID 1 as drive A: with 

drive ID 0 indicating the default drive. 
Logical drives include all the disk-like devices, such as RAM Disks, floppy 

disks, hard disks. For upward compatibility, new applications should not be 
expected to be able to use more than 26 drives (A: - Z : ) . 

On a single floppy-disk system, the number of logical drives is returned as 
2. A system with a single physical disk drive actually has two logical drives 
present, A: and B:. 
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AH = OFH (15) Open file with FeB 
INT 021H (33) Universal function 

Open a file for subsequent read or write operations 

Input 
DS:DX = pointer to file control block 

Output 
AL = return code 

Notes 

Return Code Meaning 
OOH Successful 

OFFH Unsuccessful 

Any changes from the default methods of reading or writing, such as changing 
the size of block transfers, should be done after the file is opened, but before any 
file I/O is done. 

FCBs are used for file I/O operations. These functions are not as flexi­
ble as the later handle-based functions, and remain primarily for compatibility 
with earlier versions of DOS. They are useful for extended memory resident file 
operations. 

Offset FCB Field Offset FCB Field 
OOH Drive ID 10H File size 
01H Filename l4H Date 
09H Extension l6H Time 
OCH Current block 20H Current record 
OEH Record size 21H Random record 
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AH = 010H (16) Close file with FCB 
INT 021H (33) Universal function 

End access to a file and update disk and directory information 

Input 
DS:DX = pointer to file control block 

Output 
AL = return code 

Notes 

Return Code Meaning 
OOH Successful 

OFFH Unsuccessful 

Any unwritten buffers are written to disk, and the directory information for 
the file is updated to reflect the changes. 

FCBs are used for file I/O operations. These functions are not as flexi­
ble as the later handle-based functions, and remain primarily for compatibility 
with earlier versions of DOS. They are useful for extended memory resident file 
operations. 

Offset FCB Field Offset FCB Field 
OOH Drive ID 10H File size 
01H Filename i4H Date 
09H Extension i6H Time 
OCH Current block 20H Current record 
OEH Record size 2iH Random record 
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AH = 011H (17) Search for first match 

INT 021H (33) Universal function 


Search for a matching filename with file control block in the current directory 

Input 
DS:DX = pointer to file control block 

Output 
AL = return code 

Notes 

Return Code Meaning 
OOH Successful 

OFFH Unsuccessful 

The disk transfer area must be set before this function is called. 
Question marks can be used as wildcard matches for filenames. The first 

filename found that matches the search criterion will be returned. 
FCBs are used for file I/O operations. These functions are not as flexi­

ble as the later handle-based functions, and remain primarily for compatibility 
with earlier versions of DOS. They are useful for extended memory resident file 
operations. 

Offset FCB Field Offset FCB Field 
OOH Drive ID 10H File size 
01H Filename l4H Date 
09H Extension l6H Time 
OCH Current block 20H Current record 
OEH Record size 21H Random record 
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AH = 012H (18) Search for next match 
INT 021H (33) Universal function 

Continue the search for the next matching filename with a valid file control 
block 

Input 
DS:DX = pointer to file control block 

Output 
AL = return code 

Notes 

Return Code 
OOH 

OFFH 

Meaning 
Successful 
Unsuccessful 

IN! 21H function 11H (search for first match) must have been called with 
the same file control block before this function can be called. 

FCBs are used for file I/O operations. These functions are not as flexi­
ble as the later handle-based functions, and remain primarily for compatibility 
with earlier versions of DOS. They are useful for extended memory resident file 
operations. 

Offset FCB Field Offset FCB Field 
OOH Drive ID 10H File size 
01H Filename 14H Date 
09H Extension 16H Time 
OCH Current block 20H Current record 
OEH Record size 21H Random record 
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AH = 013H (19) Delete file with FeB 
INT 021H (33) Universal function 

Delete all matching files from the current directory 

Input 
DS:DX = pointer to file control block 

Output 
AL = return code 

Notes 

Return Code 
OOH 

OFFH 

Meaning 
Successful 
Unsuccessful 

Question marks can be used as wildcard matches in the filename. All match­
ing files are deleted. 

A deleted file is not scrubbed from the disk. Deletion occurs by marking the 
directory entry and the used blocks as free. It may be possible to recover all or 
part of a deleted file if no subsequent disk activity has taken place. 

This function permits the deletion of files only in the current working direc­
tory. For full access to the file system, use INT 21H function 41H. 

FCBs are used for file I/O operations. These functions are not as flexi­
ble as the later handle-based functions, and remain primarily for compatibility 
with earlier versions of DOS. They are useful for extended memory resident file 
operations. 

Offset FCB Field Offset FCB Field 
OOH Drive ID 10H File size 
01H Filename 14H Date 
09H Extension 16H Time 
OCH Current block 20H Current record 
OEH Record size 21H Random record 
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AH = 014H (20) Sequential FeB read 
INT 021H (33) Universal function 

Read the next data block from a file, advancing the file pointer 

Input 
DS:DX = pointer to file control block 

Output 
AL = return code 

Notes 

Return Code Meaning 
OOH Read was successful 
01H End of file 
02H Segment overflow or wraparound 
03H Partial record was read at the end of file 

The file control block (FCB) must have been prepared with a CREATE or an 
OPEN call before this function can be used. 

The record size for the read is set by modifying the record size field in the 
file control block. 

The location of the block within the file to be read is determined by the 
current block field and the current record field of the file control block. 

FCBs are used for file I/O operations. These functions are not as flexi­
ble as the later handle-based functions, and remain primarily for compatibility 
with earlier versions of DOS. They are useful for extended memory resident file 
operations. 

Offset FCB Field Offset FeB Field 
OOH Drive ID 10H File size 
01H Filename l4H Date 
09H Extension l6H Time 
OCH Current block 20H Current record 
OEH Record size 21H Random record 
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AH = 015H (21) Sequential FeB write 
INT 021H (33) Universal function 

Write the next data block to a file, advancing the file pointer 

Input 
DS:DX = pointer to file control block 

Output 
AL = return code 

Notes 

Return Code Meaning 
OOH Write was successful 
01H Disk is full 
02H Segment overflow or wraparound 

The file control block (FCB) must have been prepared with a CREATE or an 
OPEN call before this function can be used. 

The record size for the write is set by modifying the record size field in the 
file control block. 

The location of the block within the file to be written is determined by the 
current block field and the current record field of the FCB. 

Partial records are padded with zeros. 
FCBs are used for file I/O operations. These functions are not as flexi­

ble as the later handle-based functions, and remain primarily for compatibility 
with earlier versions of DOS. They are useful for extended memory resident file 
operations. 

Offset FCB Field Offset FCB Field 
OOH Drive ID 10H File size 
01R Filename l4R Date 
09H Extension l6H Time 
OCH Current block 20H Current record 
OEH Record size 21H Random record 
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AH = 016H (22) Create file with FCB 
INT 021H (33) Universal function 

Create a new directory entry, or make an existing file zero bytes in length, 
opening that file for access 

Input 
DS:DX = pointer to file control block 

Output 
AL = return code 

Notes 

Return Code Meaning 
OOH File was created successfully 

OFFH File was not created (no directory space available) 

This function truncates an existing file to zero length. The disk blocks oc­
cupied by the file is not scrubbed, so it is sometimes possible to recover an 
accidentally truncated file. 

FCBs are used for file I/O operations. These functions are not as flexi­
ble as the later handle-based functions, and remain primarily for compatibility 
with earlier versions of DOS. They are useful for extended memory resident file 
operations. 

Offset FeB Field Offset FCB Field 
OOH Drive ID 10H File size 
01H Filename 14H Date 
09H Extension 16H Time 
OCH Current block 20H Current record 
OEH Record size 21H Random record 
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AH = 017H (23) Rename file with FeB 
INT 021H (33) Universal function 

Change the name of all matching files, using a special file control block 

Input 
DS:DX = pointer to special file control block 

Output 
AL = return code 

Notes 
The file control block (FCB) for this function should have a drive ID, a 

filename, and an extension in the usual locations. The new filename is located 
6 bytes after the first filename. 

Question marks in the second file name cause the corresponding letters in 
the first file name to remain unchanged. 

AL Return Code 
OOH File was renamed successfully 

OFFH No match or the new name was already in use 

The FCB used for the RENAME operation is different from a normal FCB. It 
contains two filenames, with the second filename being the new name for the 
file. Note that a drive for the second filename cannot be specified. Renaming 
can be done only on the current disk. 

Offset FCB Field Offset FCB Field 
OOH Drive ID 10H File size 
01H Filename 11H New Filename 
09H Extension 19H New Extension 
OCH Current block 20H Current record 
OEH Record size 21H Random record 
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018H (24) Not Used 
INT 021H (33) Universal function 
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AH = 019H 
INT 021H (33) 

Get the drive ID 

(25) 

of the current disk 

Get current drive 
Universal function 

Input 
None 

Output 
AL = drive ID 

Notes 
Drive IDs are numeric, following the drive letters (drive A: has a drive ID of 

0, drive B: =1, drive c: =2, and so on). 
Be aware that some disk-related functions use drive ID 1 as drive A: with 

drive ID 0 indicating the default drive. 
This function does not specify the path to the current directory. If subdi­

rectories are in use, this function must be used in conjunction with INT 21H 
function 47H (get current directory). Since that function also returns the same 
driye ID information, it may be more appropriate for general use. 
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AH = 01AH (26) Set disk transfer area 

INT 021H (33) Universal function 


Set the location of the disk transfer area 

Input 
DS:DX = pointer to disk transfer area 

Output 
None 

Notes 
The default disk transfer area is located at offset 0080H in the program 

segment prefix. The default DTA size is 128 bytes. 
A correct disk transfer area is vital to the operation of the file control block 

(FeB) disk functions. 
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AH = D1BH (27) Get current drive info 

INT 021H (33) Universal function 


Return allocation and identification information about the current drive 

Input 
None 

Output 
AL = sectors per allocation unit 
ex = bytes per sector 
DX = number of allocation units 
DS:BX = pointer to file allocation table ID byte 

Notes 
The first byte of the FAT contains a type identifier. These codes are valid: 

Code Meaning 
OF8H Fixed disk. 
OF9H Floppy disk. Double-sided, 15 sectors per track 
OFCH Floppy disk. Single-sided, 9 sectors per track 
OFDH Floppy disk. Double-sided, 9 sectors per track 
OFEH Floppy disk. Single-sided, 8 sectors per track 
OFFH Floppy disk. Double-sided, 8 sectors per track 

The pointer to the FAT ID byte points to a copy of that byte. It does not 
necessarily point to a valid file allocation table. 
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AH = 01CH (28) Get drive info 
INT 021H (33) Universal function 

Return allocation and identification information about any drive 

Input 
DL = drive ID 

Output 
AL = sectors per allocation unit 
ex = bytes per sector 
DX = number of allocation units 
DS:DX = pointer to file allocation table ID byte 

Notes 
The first byte of the FAT contains a type identifier. These codes are valid: 

Code Meaning 
OF8H Fixed disk. 
OF9H Floppy disk. Double-sided, 15 sectors per track 
OFCH Floppy disk. Single-sided, 9 sectors per track 
OFDH Floppy disk. Double-sided, 9 sectors per track 
OFEH Floppy disk. Single-sided, 8 sectors per track 
OFFH Floppy disk. Double-sided, 8 sectors per track 

The pointer to the FAT ID byte points to a copy of that byte. It does not 
necessarily point to a valid file allocation table. 

Drive IDs are numeric, following the drive letters (drive A: has a drive ID 
of 1, drive B: =2, drive e: =3, and so on). A drive ID of zero indicates that the 
default drive is to be used. 

Be aware that some disk-related functions use drive ID 0 as drive A: in those 
cases when the concept of a default drive is not supported. 
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01DH (29) Not Used 
INT 021H (33) Universal function 

01EH (30) Not Used 
INT 021H (33) Universal function 

01FH (31) Not Used 
INT 021H (33) Universal function 

020H (32) Not Used 
INT 021H (33) Universal function 
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AH = 021H (33) Random read with FeB 
INT 021H (33) Universal function 

Read a data block from an arbitrary location in a file 

Input 
DS:DX = pointer to file control block 

Output 
AL = return code 

Notes 

Return Code Meaning 
OOH Read was successful 
01H End of file 
02H Segment overflow or wraparound 
03H Partial record was read at the end of file 

The file control block (FCB) must have been prepared with a CREATE or an 
OPEN call before this function can be used. 

The location within the file to be read is determined by the random record 
field and the record size field in the file control block. 

The current file pointers are not modified by this function. This means that 
repeated calls to the random read function read the same point within the file. 

Partial records are padded with zeros. 
FCBs are used for file I/O operations. These functions are not as flexi­

ble as the later handle-based functions, and remain primarily for compatibility 
with earlier versions of DOS. They are useful for extended memory resident file 
operations. 

Offset FCB Field Offset FCB Field 
OOH Drive ID 10H File size 
01H Filename l4H -Date 
09H Extension l6H Time 
OCH Current block 20H Current record 
OEH Record size 21H Random record 
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AH = 022H (34) Random write with FeB 
INT 021H (33) Universal function 

Write a data block to an arbitrary location in a file 

Input 
DS:DX = pointer to file control block 

Output 
AL = return code 

Notes 

Return Code 
OOH 
01H 
02H 

Meaning 
Write was successful 
Disk is full 
Segment overflow or wraparound 

The location of the write is specified in the random-record field of the file 
control block (FCB). The size of the write is specified by the record-size field. 

The FCB must have been prepared with a CREATE or an OPEN call before this 
function can be used. 

The current file pointers are not modified by this function. This means that 
repeated calls to the random write function will write to the same location within 
the file. 
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AH = 023H (35) Get file size 
INT 021H (33) Universal function 

Update the file control block with size information if a matching file is found 

Input 
DS:DX = pointer to file control block 

Output 
AL = return code 

Notes 

Return Code Meaning 
OOH Match found; FCB offset 21H set to number of records 

OFFH No match found 

The file control block (FCB) must have been prepared with a CREATE or an 
OPEN call before this function can be used. 

FCBs are used for file I/O operations. These functions are not as fLexi­
ble as the later handle-based functions, and remain primarily for compatibility 
with earlier versions of DOS. They are useful for extended memory resident file 
operations. 

Offset FCB Field Offset FCB Field 
OOH Drive ID 10H File size 
01H Filename l4H Date 
09H Extension l6H Time 
OCH Current block 20H Current record 
OEH Record size 21H Random record 
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AH = 024H (36) Set random record field 
INT 021H (33) Universal function 

Switch from sequential to random (FCB) file I/O by converting the sequential 
location to a random access file position 

Input 
DS:DX = pointer to file control block 

Output 
None 

Notes 
This function converts the current sequential I/O position to the correspond­

ing random-access position. 
The file control block (FCB) must have been prepared with a CREATE or an 

OPEN call before this function can be used. 
FCBs are used for file I/O operations. These functions are not as flexi­

ble as the later handle-based functions, and remain primarily for compatibility 
with earlier versions of DOS. They are useful for extended memory resident file 
operations. 

Offset FCB Field Offset FCB Field 
OOH Drive ID 10H File size 
01H Filename 14H Date 
09H Extension 16H Time 
OCH Current block 20H Current record 
OEH Record size 21H Random record 
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AH = 025H (37) Set interrupt vector 
INT 021H (33) Universal function 

Set the handler location for a hard or a soft interrupt 

Input 
AL = interrupt number 
DS:DX = pointer to interrupt handler 

Output 
None 

Notes 
This function takes all precautions to ensure that interrupts do not occur 

when the vector is only partiaily changed. For that reason, it is the preferred 
method of modifying interrupt vectors. 

The current contents of an interrupt vector can be obtained with IN! 21H 
function 35H (get interrupt vector). The register conventions used are incom­
patible between this function and that one. 

In a normal application that changes an interrupt vector, the previous inter­
rupt vector should be obtained via IN! 21H function 35H and restored before the 
application terminates. IN! 22H (termination handler), IN! 23H (CON!ROL-C 
handler), and IN! 24H (critical error handler) are restored by DOS from the 
program segment prefix when a program exits. 
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AH 026H (38) Create PSP 
INT 021H (33) Universal function 

Make a new program segment prefix by copying from the current one and 
then updating it for a new program 

Input 
DX = segment address 

Output 
None 

Notes 
Information for the current program segment prefix is taken from the cur­

rently executing program (the program calling this function). Values for INT 
22H (termination handler), INT 23H (CONTROL-C handler), and INT 24H (criti­
cal error handler) are copied from their current values. 

This function simply prepares a program segment prefix; it neither loads nor 
executes a program. 

The Program Segment Prefix 

Offset Meaning 
OOOOH Termination Handler Address 
0OO2H Segment, end of allocation block 
0OO4H Reserved 
0OO6H Long call to MS-DOS function dispatcher 
OOOAH Previous termination handler vector 
OOOEH Previous CONTROL-C vector 
0012H Previous critical error handler vector 
0016H Reserved 
002CH Segment address of environment block 
002EH Reserved 
006CH Default File Control Block #1 
006CH Default File Control Block #2 
0080H Command tail and default Disk Transfer Area 
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AH = 027H (39) Random block FeB read 
INT 021H (33) Universal function 

Read one or more sequential records from an arbitrary point in a file 

Input 
CX = record count 
DS:DX = pointer to file control block 

Output 
AL = return code 
CX = actual record count 

Notes 

Return Code Meaning 
OaR Read was successful 
01R End of file 
02R Segment overflow or wraparound 
03R Partial record was read at the end of file 

The file control block (FCB) must have been prepared with a CREATE or an 
OPEN call before this function can be used. 

Partially read records are padded with zeros. 
After the transfer has occurred, the file pointers in the FCB are advanced to 

point to the next logical record. 
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AH = 028H (40) Random block FCB write 

INT 021H (33) Universal function 


Write one or more sequential records to an arbitrary point in a file 

Input 
CX = record count 
DS:DX = pointer to file control block 

Output 
AL = return code 
CX = actual record count 

Notes 

Return Code Meaning 
OOH Write was successful 
01H Disk is full 
02H Segment overflow or wraparound 

The file control block (FeB) must have been prepared with a CREATE or an 
OPEN call before this function can be used. 

If this function is called with CX=O, no data is written, but the file is length­
ened or shortened to match the length in the FeB. 

After the transfer has occurred, the file pointers in the FeB are advanced to 
point to the next logical record. 
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AH = 029H (41) Parse filename 
INT 021H (33) Universal function 

Crack a text string into the components of a file name 

Input 
AL = parsing control bits 
DS:SI = pointer to command line 
ES:DI = pointer to file control block 

Output 
AL = return code 
DS:SI = pointer to following place in command line 
ES:DI = pointer to file control block 

Notes 
If no valid filename can be derived from the information present, ES:DI+l 

will point to an ASCII blank. 
An asterisk (*) in a filename or extension causes all the remaining characters 

in that component to be set to question marks (?). 
A question mark (?) matches any single character. 

Parsing control hits 

76543210 Meaning 
xxxxOxxx Extension field changed only if extension present 
xxxx1xxx Extension field blanked if no extension entered 
xxxxxOxx Filename field changed only if filename present 
xxxxx1xx Filename field blanked if no filename entered 
xxxxxxOx Drive field changed only if filename present 
xxxxxx1x Drive field blanked if no drive entered 
xxxxxxxO Leading separators will be ignored 
xxxxxxx1 Leading separators will not be ignored 
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AH = 02AH (42) Get system date 
INT 021H (33) Universal function 

Ask the system what day it is 

Input 
None 

Output 
AL = day of week 
ex = year (1980 to 2099) 
DH = month 
DL = day 

Notes 
The registers used for output in this function are assigned in the same manner 

as those used in INT 21H function 2BH (set system date), with the exception of 
AL, the day of the week. 
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AH = 02BH (43) Set system date 
INT 021H (33) Universal function 

Tell the system what day it is 

Input 
ex = year (1980 to 2099) 
DH = month 
DL = day 

Output 
AL = return code 

Notes 

Return Code Meaning 
OOH Successful 

OFFH Unsuccessful 

The registers used for input in this function are assigned in the same manner 
as those used in INT 21H function 2AH (get system date). 
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AH = 02CH (44) Get system time 
INT 021H (33) Universal function 

Ask the system what time it is 

Input 
None 

Output 
CH = hours 
CL = minutes 
DL = hundreds of seconds 
DH = seconds 

Notes 
The registers used for output in this function are assigned in the same manner 

as those used in INT 21H function 2DH (get system time). 
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AH = 02DH 
INT 021H (33) 

(45) Set system time 
Universal function 

Tell the system what time it is 

Input 
CH = hours 
CL = minutes 
DL = hundreds of seconds 
DH = seconds 

Output 
AL = return code 

Notes 

Return Code Meaning 
OOH Successful 

OFFH Unsuccessful 

The registers used for input in this function are assigned in the same manner 
as those used in INT 21H function 2CH (get system time). 

The system date is not affected by this function. 



357 

AH = 02EH (46) Disk write verification 
INT 021H (33) Universal function 

Enable or disable automatic read-after-write comparison of data written with 
data read 

Input 
AL = 0 to disable, 1 to enable 
DL = 0 (for compatibility with DOS 1 and 2) 

Output 
None 

Notes 
Verification happens by reading back the data just written and comparing 

that result with t.he data that was supposed to have been written. Verification 
slows down access to the file system, but may increase reliability. 

Verification can be globally enabled or disabled with the DOS VERIFY com­
mand. VERIFY ON enables verification. VERIFY OFF disables verification. 
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AH = 02FH (47) Get DTA address 
INT 021H (33) Universal function 

Ask the system what disk transfer area is being used 

Input 
None 

Output 
ES:BX = pointer to disk transfer area 

Notes 
The disk transfer area can be set using INT 21H function 1AH (set disk trans­

fer area). The register conventions used by these two functions are not compat­
ible. 

If not explicitly set, the default disk transfer area will be a 128-byte buffer 
located in the program segment prefix at offset 80H. 
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AH = 030H (48) Get DOS version number 
INT 021H (33) Universal function 

Get the major and minor version numbers of the currently running DOS 

Input 
None 

Output 
AL = major version number 
AH = minor version number 

Notes 
The minor version number is returned as a two-significant-digit number. 

Thus, DOS version 2.1 will be returned as AL=02 AH=OAH (10), rather than 
AH=Ol (which would represent the non-existent DOS version 2.01). 
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AH = 031H (49) Keep process 
INT 021H (33) Universal function 

Advanced terminate and stay resident 

Input 
AL = return code 
DX = paragraphs of memory to reserve 

Output 
None 

Notes 
Memory is specified in paragraphs, or 16-byte chunks. Because of this, more 

than 64 kilobytes can be reserved. 
Take care in using this function in conjunction with the memory allocation 

functions. Allocated memory is not included in the preserved code. 
Open files are not automatically closed by this function. 
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032H (50) Not Used 

INT 021H (33) Universal function 
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AH = 033H (51) CONTROL-C checking 
INT 021H (33) Universal function 

Determine or set checking for CONTROL-C or CONTROL-BREAK 

Input 
AL = 0 to read checking state; 1 to set checking state 
DL = state to set (0 off, 1 on) 

Output 
DL = current state (0 off, 1 on) 

Notes 
CONTROL-C checking is performed during system I/O operations. On purely 

compute-bound operations or operations involving no I/O, CONTROL-C does not 
interrupt the operation. 

CONTROL-C checking is a global setting. If checking is disabled in one appli­
cation and never reenabled before that program terminates, it remains disabled 
through all subsequent programs. 
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AH = 034H ·(52) Unsupported 
INT 021H (33) Universal function 
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AH = 035H (53) Get interrupt vector 
INT 021H (33) Universal function 

Determine the address of an interrupt handler 

Input 
AL = interrupt number 

Output 
ES:BX = interrupt vector 

Notes 
An interrupt vector can be modified with INT 21H function 25H (set interrupt 

vector). The register conventions used are incompatible between this function 
and that one. 
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AH = 036H (54) Get disk capacity 
INT 021H (33) Universal function 

Returns parameters from which the total storage capacity and remaining 
capacity of a drive can be calculated 

Input 
DL = drive ID 

Output 
AX = sectors per cluster (SC) 
BX = available cluster count (AC) 
CX = bytes per sector (BS) 
DX = total clusters (TC) 

Notes 
Drive IDs are numeric, following the drive letters (drive A: has a drive ID 

of 1, drive B:=2, drive C:=3, and so on). A drive ID of zero indicates that the 
default drive is to be used. 

Be aware that some disk-related functions use drive ID 0 as drive A: in those 
cases when the concept of a default drive is not supported. 

AX is returned as OFFFFH if the drive specified in DL is invalid. 
Total capacity (C) can be calculated with the formula 

C=TC*SC*BS 

Remaining capacity (R) can be calculated with the fonnula 

R=AC*SC*BS 



366 APPENDIX C. IBM DOS SERVICES 

037H (55) Not Used 
INT 021H (33) Universal function 
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AH 038H (56) Get country info 
INT 021H (33) Universal function 

Get national information such as currency symbol and time or date format 

Input 
AL = 0 for standard information 
AL = country code or 
AL = OFFH if country code greater than 255 
BX = country code if AL == OFFH 
DS:DX = pointer to 32-byte buffer 

Output 
AX = return code (if CF set) 
BX = country code 
DS:DX = information 

Notes 

Byte offset Meaning 
0 Date format (O=(m d y), l=(d my), 2=(y m d)) 
2 ASCIIZ Currency. symbol string 
7 ASCIIZ Thousands separator string 
9 ASCIIZ Decimal separator string 
11 ASCIIZ Date separator string 
13 ASCIIZ Time separator string 
15 Currency format 
16 Number of digits after decimal 
17 Time format (O=12-hour clock), 1=24-hour clock) 
18 Address for case-mapping routine 
22 ASCIIZ Data-list separator string 
24 Reserved 

Currency format Meaning 
76543210 
xxxxxxxO Currency symbol precedes value 
xxxxxxOx No space between value and symbol 
xxxxxx1x One space between value and symbol 
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AH 039H (57) Make subdirectory 

INT 021H (33) Universal function 


Create a subdirectory at a specified drive and path 

Input 
DS:DX = pointer to ASCIIZ string 

Output 
If function was successful: 

CF = cleared 

If function was unsuccessful: 
CF = set 
AX = error code 

Notes 
If the path string begins with a drive or a "\", the operation occurs relative 

to the root directory; otherwise, the operation occurs relative to the current 
directory. 

Code Standard Error Code Standard Error 
00 Successful 16 Removing current directory 
01 Invalid function number 17 Not same device 
02 File not found 18 No more files to be found 
03 Path not found 19 Disk is write-protected 
04 No more handles available 20 Unknown disk 
05 Access denied 21 Drive is not ready 
06 Invalid handle 22 Unknown command 
07 Bad memory control blocks 23 Data error (CRC) 
08 Insufficient memory 24 Bad request length 
09 Invalid memory block address 25 Seek error 
10 Invalid environment 26 Unknown media type 
11 Invalid format 27 Sector not found 
12 Invalid access code 28 Printer out of paper 
13 Invalid data 29 Write fault 
14 Not used 30 Read fault 
15 Invalid drive specification 31 General failure 
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AH 03AH (58) Remove directory 

INT 021H (33) Universal function 


Delete an empty subdirectory at a specified drive and path 

Input 
DS:DX = pointer to ASCIIZ string 

Output 
If function was successful: 

CF = cleared 

If function was unsuccessful: 

CF = set 
AX = return code 

Notes 
The directory to be deleted must be empty, or this operation will fail. 
If the path string begins with a drive or a "\", the operation occurs relative 

to the root directory; otherwise, the operation occurs relative to the current 
directory. 

Code Standard Error Code Standard Error 
()() Successful 16 Removing current directory 
01 Invalid function number 17 Not same device 
02 File not found 18 No more files to be found 
03 Path not found 19 Disk is write-protected 
04 No more handles available 20 Unknown disk 
05 Access denied 21 Drive is not ready 
06 Invalid handle 22 Unknown command 
07 Bad memory control blocks 23 Data error (CRC) 
08 Insufficient memory 24 Bad request length 
09 Invalid memory block address 25 Seek error 
10 Invalid environment 26 Unknown media type 
11 Invalid format 27 Sector not found 
12 Invalid access code 28 Printer out of paper 
13 Invalid data 29 Write fault 
14 Not used 30 Read fault 
15 Invalid drive specification 31 General failure 
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AH 03BHo (59) Set current working dir 
INT 021H (33) Universal function 

Set the default directory using the specified path 

Input 
DS:DX = pointer to ASCIIZ string 

Output 
If function was successful: 

CF = cleared 

If function was unsuccessful: 

CF = set 
AX = return code 

Notes 
If the path string begins with a drive or a "\", the operation occurs relative 

to the root directory; otherwise, the operation occurs relative to the current 
directory. 

Code Standard Error Code Standard Error 
00 Successful 16 Removing current directory 
01 Invalid function number 17 Not same device 
02 File not found 18 No more files to be found 
03 Path not found 19 Disk is write-protected 
04 No more handles available 20 Unknown disk 
05 Access denied 21 Drive is not ready 
06 Invalid handle 22 Unknown command 
07 Bad memory control blocks 23 Data error (CRC) 
08 Insufficient memory 24 Bad request length 
09 Invalid memory block address 25 Seek error 
10 Invalid environment 26 Unknown media type 
11 Invalid format 27 Sector not found 
12 Invalid access code 28 Printer out of paper 
13 Invalid data 29 Write fault 
14 Not used 30 Read fault 
15 Invalid drive specification 31 General failure 
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AH = 03CH (60) Create file with handle 
INT 021H (33) Universal function 

Create a new directory entry if one does not exist, or set the file length to 
zero if the entry exists 

Input 
CX = file attribute 
DS:DX = pointer to ASCIIZ string 

Output 
If function was successful: 

CF = cleared 
AX = file handle 

If function was unsuccessful: 

CF = set 
AX = return code 

Notes 
A handle is a 16-bit token, which is used by the operating system to manage 

the file state information. 
If the path string begins with a drive or a "\", the operation occurs relative 

to the root directory; otherwise, the operation occurs relative to the current 
directory. 

File Attribute Meaning 
OOH Normal 
01H Read-Only 
02H Hidden 
04H System 

This function truncates an existing file to zero length. The disk blocks oc­
cupied by the file is not scrubbed, so it is sometimes possible to recover an 
accidentally truncated file. 

If this function fails, the return code is one of the standard error codes. 
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AH 03DH (61) Open file with handle 
INT 021H (33) Universal function 

Open a file for subsequent read or write access 

Input 
AL = access code 
DS:DX = pointer to ASCIIZ string 

Output 
If function was successful: 

CF = cleared 
AX = file handle 

If function was unsuccessful: 
CF = set 
AX = return code 

Notes 
A handle is a 16-bit token, which is used by the operating system to manage 

the file state information. 

Access code Meaning 
76643210 
xxxxxOOO Read access 
xxxxxOOl Write access 
xxxxx010 Read/write access 
xxxxOxxx ReserVed (should be zero) 
xOOOxxxx Compatibility mode (compatible with FCB method) 
xOOlxxxx Read/Write access denied 
xOl0xxxx Write access denied 
xOl1xxxx Read access denied 
xl00xxxx Full access 'permitted 
Oxxxxxxx File inherited by child process 
1xxxxxxx File private to current process 

If the path string begins with a drive or a "\", the operation occurs relative 
to the root directory; otherwise, the operation occurs relative to the current 
directory. 

If this function fails, the return code is one of the standard error codes. 
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AH = 03EH (62) Close file with handle 
INT 021H (33) Universal function 

End access to a file, flush all internal buffers, and update directory informa­
tion 

Input 
BX = file handle 

Output 
If function was successful: 

CF = cleared 

If function was unsuccessful: 

CF = set 
AX = return code 

Notes 
A handle is a 16~bit token, which is used by the operating system to manage 

the file state information. 
Handle 0 is the standard input device, normally the keyboard. Closing this 

handle accidentally has the unfortunate result of terminating all access to the 
keyboard until the next reboot. 

All internal DOS buffers with pending output for this handle will be flushed 
by writing that information to disk, before the close has occurred. 

If this function fails, the return code is one of the standard error codes. 
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AH = 03FH (63) Read from file or device 
INT 021H (33) Universal function 

Read a stream of bytes from a file or device 

Input 
BX = file handle 
CX = bytes to read 
DS:DX = pointer to disk transfer area buffer 

Output 
If function was successful: 

CF = cleared 
AX = number of bytes read 

If function was unsuccessful: 

CF = set 
AX = return code 

Notes 
A handle is a 16-bit token, which is used by the operating system to manage 

the file state information. 
This function requires that the handle be opened by INT 21H function 3CH 

(create file) or INT 21H function 3DH (open file) 
If CF returns clear but AX is zero, the file pointer is already at the end of file. 
If CF returns clear but AX is less than CX, a partial record has been read. 
If this function fails, the return code is one of the standard error codes. 
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AH = 040H (64) Write to file or device 

INT 021H (33) Universal function 


Write a stream of bytes to a file or device 

Input 
BX = file handle 
CX = bytes to write 
DS:DX = pointer to disk transfer area buffer 

Output 
If function was successful: 

CF = cleared· 
AX ;= number of bytes written 

If function was unsuccessful: 
CF = set 
AX = return code 

Notes 
A handle is a 16-bit token, which is used by the operating system to manage 

the file state information. 
This function requires that the handle be opened by INT 21H function 3CH 

(create Jile) or INT 21H function 3DH (open Jile) 
If CF returns clear but AX is less than CX, a partial record has been read. 
If this function fails, the return code is one of the standard error codes. 



376 APPENDIX C. IBM DOS SERVICES 

AH 041H (65) Delete file 
INT 021H (33) Universal function 

Remove a file entry from the specified disk and directory path 

Input 
DS:DX = pointer to ASCIIZ string 

Output 
If function was successful: 

CF = cleared 

If function was unsuccessful: 

CF = set 
AX = return code 

Notes 
A deleted file is not scrubbed from the disk. Deletion occurs by marking the 

directory entry and the used blocks as free. It may be possible to recover all or 
part of a deleted file if no subsequent disk activity has taken place. 

Code Standard Error Code Standard Error 
00 Successful 16 Removing current directory 
01 InvaJid function number 17 Not same device 
02 File not found 18 No more files to be found 
03 Path not found 19 Disk is write-protected 
04 No more handles available 20 Unknown disk 
05 Access denied 21 Drive is not ready 
06 Invalid handle 22 Unknown command 
07 Bad memory control blocks 23 Data error (ORO) 
08 Insufficient memory 24 Bad request length 
09 Invalid memory block address 25 Seek error 
10 Invalid environment 26 Unknown media type 
11 Invalid format 27 Sector not found 
12 Invalid access code 28 Printer out of paper 
13 Invalid data 29 Write fault 
14 Not used 30 Read fault 
15 Invalid drive specification 31 General failure 



377 

AH = 042H (66) Position file pointer 
INT 021H (33) Universal function 

Set the position of subsequent file access within a file 

Input 
AL = method code 
BX = file handle 
CX = most significant word of offset 
DX = least significant word of offset 

Output 
If function was successful: 

CF = cleared 
DX = most significant word of new pointer location 
AX = least significant word of new pointer location 

If function was unsuccessful: 

CF = set 
AX = return code 

Notes 

Method Meaning 
0 Absolute byte offset from beginning of file 
1 Relative byte offset from current position 
2 Absolute byte offset from end of file 

The next record written or read will be at the file position set by this function. 
Methods 1 and 2 can be used to set a position before the beginning of the 

file. Setting this position will not cause an error, but I/O operations on the file 
will fail. 

The returned offset is always an absolute byte offset from the start of the 
file. 

If this function fails, the return code is one of the standard error codes. 
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AH = 043H (67) Get/set file attributes 
INT 021H (33) Universal function 

Determine or modify the attribute of a file 

Input 
AL = (0, get attribute; 1, set attribute) 
CX = new attribute 
DS:DX = pointer to ASCIIZ string 

Output 
If function was successful: 

CF = cleared 

CX = old attribute if get 


If function was unsuccessful: 

CF = set 

AX = return code 


Notes 

File Attribute Meaning 
OOH Normal 
01H Read-Only 
02H Hidden 
04H System 

This function cannot be used to set a volume label; that must be done with 
an extended file control block function. 

If this function fails, the return code is one of the standard error codes. 
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AH = 044H (68) I/O control for devices 
INT 021H (33) Universal function 

Direct I/O management for device access 

Input 
AL = subfunction code 
BL = drive number 
BX = file handle 
CX = number of bytes to read or write 

Output 
If function was successful: 

CF = cleared 

AX = number of bytes transferred 

OX = device information 


If function was unsuccessful: 

CF = set 

AX = return code 


Notes 

Subfunction Code Meaning 
00 Get device information 
01 Set device information 
02 Read from control channel to buffer 
03 Write from buffer to control channel 
04 Read from block device to buffer 
05 Write from buffer to block device 
06 Get input status 
07 Get output status 

This function is used to manage general I/O to devices. 
If performing ordinary file I/O rather than device I/O, only functions OOH~ 

06H, and 07H are valid. Reading and writing should be done by the appropriatE 
handle functions. 

If this function fails, the return code is one of the standard error codes. 
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AH 045H (69) Duplicate file handle 
INT 021H (33) Universal function 

Create a copy of a currently opened file handle 

Input 
BX = file handle 

Output 
If function was successful: 

CF = cleared 
AX = file handle 

If function was unsuccessful: 
CF = set 
AX = return code 

Notes 
Moving the file position of one of the duplicated handles will cause the po­

sition of the other to be changed as well. 
This function causes the file information in the directory to be updated. One 

use might be to duplicate a file descriptor and then close the duplicate, forcing 
an update to the directory without affecting the originally opened file. 

Code Standard Error Code Standard Error 
00 Successful 16 Removing current directory 
01 Invalid function number 17 Not same device 
02 File not found 18 No more files to be found 
03 Path not found 19 Disk is write-protected 
04 No more handles available 20 Unknown disk 
05 Access denied 21 Drive is not ready 
06 Invalid handle 22 Unknown command 
07 Bad memory control blocks 23 Data error (CRC) 
08 Insufficient memory 24 Bad request length 
09 Invalid memory block address 25 Seek error 
10 Invalid environment 26 Unknown media type 
11 Invalid format 27 Sector not found 
12 Invalid access code 28 Printer out of paper 
13 Invalid data 29 Write fault 
14 Not used 30 Read fault 
15 Invalid drive specification 31 General failure 
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AH 046H (70) Overwrite handle 

INT 021H (33) Universal function 


Make two dissimilar file handles point to the same file and position 

Input 
BX = existing file handle 
CX = second file handle 

Output 
If function was successful: 

CF = cleared 
BX = original file handle 
CX = duplicate of original file handle 

If function was unsuccessful: 
CF = set 
AX = return code 

Notes 
Moving the file position of one of the duplicated handles causes the position 

of the other to be changed as well. 
If the file handle in CX is already open, the file will be closed before dupJ ication 

occurs. 

Code Standard Error Code Standard Error 
00 Successful 16 Removing current directory 
01 Invalid function number 17 Not same device 
02 Vile not found 18 No more files to be found 
03 Path not found 19 Disk is write-protected 
04 No more handles available 20 Unknown disk 
05 Access denied 21 Drive· is not ready 
06 Invalid handle 22 Unknown command 
07 Bad memory control blocks 23 Data error (CRC) 
08 InsuffiCient memory 24 Bad request length 
09 Invalid memory block address 25 Seek error 
10 Invalid environment 26 Unknown media type 
11 Invalid format 27 Sector not found 
12 Invalid access code 28 Printer out of paper 
13 Invalid data 29 Write fault 
14 Not used 30 Read fault 
15 Invalid drive speCification 31 General failure 
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AH = 047H (71) Get current directory 
INT 021H (33) Universal function 

Determine the path to the current directory for a particular disk drive 

Input 
DL = drive ID 
DS:SI = pointer to data area 

Output 
If function was successful: 

CF = cleared 
DS:SI = pointer to pathname string 

If function was unsuccessful: 

CF = set 
AX = return code 

Notes 
Drive IDs are numeric, following the drive letters (drive A: has a drive ID 

of 1, drive B: =2, drive C: =3, and so on). A drive ID of zero indicates that the 
default drive is to be used. 

Be aware that some disk-related functions use drive ID 0 as drive A: in those 
cases when the concept of a default drive is not supported. 

The returned pathname is relative to the root directory of the current disk. 
It does not contain a leading "\". Thus, if the current directory is the root 
directory, the pathname is zero length. 

If this function fails, the return code is one of the standard error codes. 
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AH 048H (72) Allocate memory 

INT 021H (33) Universal function 


Allocate a block of memory and return a pointer to that block 

Input 
BX = meIliory requested in paragraphs 

Output 
If function was successful: 

CF = cleared 
AX = segment address 

If function was unsuccessful: 
CF = set 
AX = return code 
BX = largest block size available 

Notes 
The base address of the allocated memory IS OOOOH. Thus, the complete 

address of the start of the buffer is AX: 0000. 
If the memory allocation fails, BX contains the largest block of memory avail­

able for allocation. 

Code Standard Error Code Standard Error 
00 Successful 16 Removing current directory 
01 Invalid function number 17 Not same device 
02 File not found 18 No more files to be found 
03 Path not found 19 Disk is write-protected 
04 No more handles available 20 Unknown disk 
05 Access denied 21 Drive is not ready 
06 Invalid handle 22 Unknown command 
07 Bad memory control blocks 23 Data error (CRC) 
08 Insufficient memory 24 Bad request length 
09 Invalid memory block address 25 Seek error 
10 Invalid environment 26 Unknown media type 
11 Invalid format 27 Sector not found 
12 Invalid access code 28 Printer out of paper 
13 Invalid data 29 Write fault 
14 Not used 30 Read fault 
15 Invalid drive specification 31 General failure 
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AH 049H (73) Free allocated memory 
INT 021H (33) Universal function 

Release a block of memory to the free memory pool 

Input 
ES = segment block to return 

Output 
If function was successful: 

CF = cleared 

If function was unsuccessful: 

CF = set 
AX = return code 

Notes 
The memory block released must have been allocated by INT 21H function 

48H (allocate memory). 

Code Standard Error Code Standard Error 
r--06 Successful 16 Removing current directory 

01 Invalid fUllction number 17 Not same device 
02 File not found 18 No more files to be found 
03 Path not found 19 Disk is write-protected 
04 No more handles available 20 Unknown disk 
05 Access denied 21 Drive is not ready 
06 Invalid handle 22 Unknown command 
07 Bad memory control blocks 23 Data error (CRC) 
08 Insufficient memory 24 Bad request length 
09 Invalid memory block address 25 Seek error 
10 Invalid environment 26 Unknown media type 
11 Invalid format 27 Sector not found 
12 Invalid access code 28 Printer out of paper 
13 Invalid data 29 Write fault 
14 Not used 30 Read fault 
15 Invalid drive specification 31 General failure 
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AH 04AH (74) Modify memory allocation 

INT 021H (33) Universal function 

Change the size of an allocated block 

Input 
BX = requested size in paragraphs 
ES = segment address of block 

Output 
If function was successful: 

CF = cleared 

If function was unsuccessful: 

CF = set 
AX = return code 
BX = maximum possible size 

Notes 
The memory block modified must have been allocated by IN! 21H function 

48H (allocate memory). 
If the memory reallocation fails, BX contains the largest block of memory 

available for reallocation. 

Code Standard Error Code Standard Error 
00 Successful 16 Removing· current directory 
01 Invalid function number 17 Not same device 
02 File not found 18 No more files to be found 
03 Path not found 19 Disk is write-protected 
04 No more handles available 20 Unknown disk 
05 Access denied 21 Drive is not ready 
06 Invalid handle 22 Unknown command 
07 Bad memory control blocks 23 Data error (ORC) 
08 Insufficient memory 24 Bad request length 
09 Invalid memory block address 25 Seek error 
10 Invalid environment 26 Unknown media type 
11 Invalid format 27 Sector not found 
12 Invalid access code 28 Printer out of paper 
13 Invalid data 29 Write fault 
14 Not used 30 Read fault 
15 Invalid drive specification 31 General failure 
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AH 04BH (75) Execute program 
INT 021H (33) Universal function 

Load and execute a secondary program, returning control when that program 
ends 

Input 
AL = subfunction code 
DS:DX = pointer to ASCIIZ string 
ES:BX = pointer to parameter block 

Output 
If function was successful: 

CF = cleared 

If function was unsuccessful: 
CF = set 
AX = return code 

Notes 
This is an extremely powerful and complicated function. It is also one that 

is extremely difficult and dangerous to use from within a resident application. 
A complete explanation of this is beyond the scope of this summary. See the 
IBM DOS Manual for full details. 

Code Standard Error Code Standard Error 
00 Successful 16 Removing current directory 
01 Invalid function number 17 Not same device 
02 File not found 18 No more files to be found 
03 Path not found 19 Disk is write-protected 
04 No more handles available 20 Unknown disk 
05 Access denied 21 Drive is not ready 
06 Invalid handle 22 Unknown command 
07 Bad memory control blocks 23 Data error (CRC) 
08 Insufficient memory 24 Bad request length 
09 Invalid memory block address 25 Seek error 
10 Invalid environment 26 Unknown media type 
11 Invalid format 27 Sector not found 
12 Invalid access code 28 Printer out of paper 
13 Invalid data 29 Write fault 
14 Not used 30 Read fault 
15 Invalid drive specification 31 General failure 
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AH = 04CH (76) 	 Terminate program 
INT 021H (33) 	 Universal function 

Release control to DOS or a parent program, returning an exit code 

Input 
AL = return code 

Output 
None 

Notes 
This is the approved way for a DOS application to terminate. Advanced 

versions of DOS prefer that an application return an exit code. 
DOS terminates the program, releases the memory used by that program, 

and then performs the following operations: 

• 	 Restores the termination-handler vector from OOOAH in the program seg­
ment prefix 

• Restores the CONTROL-C handler from OOOEH in the program segment prefix 

• 	 Restores the critical-error handler from 0012H in the program segment 
prefix 

• 	 Flushes all pending file buffers 

Finally, control is transferred to the termination-handler address, which then 
returns to DOS. 

If this function fails, the return code is one of the standard error codes. 
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AH 04DH (77) Get return code 
INT 021H (33) Universal function 

Determine the return code of a terminated child program 

Input 
None 

Output 
AX = return code 

Notes 
Use this function after an EXEC, to determine the return code of a subpro­

gram. 
The function is destructive, in that the return code cannot be read repeatedly. 

Code Standard Error Code Standard Error 
00 Successful 16 Removing current directory 
01 Invalid function number 17 Not same device 
02 File not found 18 No more files to be found 
03 Path not found 19 Disk is write-protected 
04 No more handles available 20 Unknown disk 
05 Access denied 21 Drive is not ready 
06 Invalid handle 22 Unknown command 
07 Bad memory control blocks 23 Data error (CRC) 
08 Insufficient memory 24 Bad request length 
09 Invalid memory block address 25 Seek error 
10 Invalid environment 26 Unknown media type 
11 Invalid format 27 Sector not found 
12 Invalid access code 28 Printer out of paper 
13 Invalid data 29 Write fault 
14 Not used 30 Read fault 
15 Invalid drive specification 31 General failure 
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AH 04EH (78) Search for first match 

INT 021H (33) Universal function 


Find a file matching a search pattern in the specified directory 

Input 
ex = attribute to search on 
DS:DX = pointer to ASCIIZ string 

Output 
AX = return code 

Notes 

File Attribute Meaning 
OOH Normal 
01H Read-Only 
02H Hidden 
04H System 

This function must be called with a valid disk transfer area. 

Code Standard Error Code Standard Error 
00 Successful 16 Removing current directory 
01 Invalid function number 17 Not same device 
02 File not found 18 No more files to be found 
03 Path not found 19 Disk is write-protected 
04 No more handles available 20 Unknown disk 
05 Access denied 21 Drive is not ready 
06 Invalid handle 22 Unknown command 
07 Bad memory control blocks 23 Data error (CRC) 
08 Insufficient memory 24 Bad request length 
09 Invalid memory block address 25 Seek error 
10 Invalid environment 26 Unknown media type 
11 Invalid format 27 Sector not found 
12 Invalid access code 28 Printer out of paper 
13 Invalid data 29 Write fault 
14 Not used 30 Read fault 
15 Invalid drive specification 31 General failure 
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AH 04FH (79) Search for next match 
INT 021H (33) Universal function 

Find the next matching filename in the specified directory 

Input 
DS:DX = information from first FIND call 

Output 
AX = return code 

Notes 
This function assumes that a successful call to INT 21H function 4EH (search 

for first match). 

Code Standard Error Code Standard Error 
00 Successful 16 Removing current directory 
01 Invalid function number 17 Not same device 
02 File not found 18 No more files to be found 
03 Path not found 19 Disk is write-protected 
04 No more handles available 20 Unknown disk 
05 Access denied 21 Drive is not ready 
06 Invalid handle 22 Unknown command 
07 Bad memory control blocks 23 Data error (CRC) 
08 Insufficient memory 24 Bad request length 
09 Invalid memory block address 25 Seek error 
10 Invalid environment 26 Unknown media type 
11 Invalid format 27 Sector not found 
12 Invalid access code 28 Printer out of paper 
13 Invalid data 29 Write fault 
14 Not used 30 Read fault 
15 Invalid drive specification 31 General failure 
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050H (80) Not Used 
INT 021H (33) Universal function 

051H (81) Not Used 
INT 021H (33) Universal function 

052H (82) Not Used 
INT 021H (33) Universal function 

053H (83) Not Used 
INT 021H (33) Universal function 
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AH = 054H (84) Get verify state 
INT 021H (33) Universal function 

Determine whether the system is performing read-after-write disk verification 

Input 
None 

Output 
AL = verify state (0 off; 1 on) 

Notes 
Verification happens by reading back the data just written, and comparing 

that result with the data that was supposed to have been written. Verification 
slows down access to the file system, but may increase reliability. 
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055H (85) Not Used 

INT 021H (33) Universal function 
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AH 056H (86) Rename file 
INT 021H (33) Universal function 

Change the name of a file, changing its location on the current disk if neces­
sary 

Input 
DS:DX = pointer to ASCIIZ string (old name) 
ES:DI = pointer to ASCIIZ string (new name) 

Output 
If function was successful: 

CF = cleared 

If function was unsuccessful: 

CF = set 
AX = return code 

Notes 
Wildcard specifiers cannot be used in the old or the new names. 

Code Standard Error Code Standard Error 
00 Successful 16 Removing current directory 
01 Invalid function number 17 Not same device 
02 File not found 18 No more files to be found 
03 Path not found 19 Disk is write-protected 
04 No more handles available 20 Unknown disk 
05 Access denied 21 Drive is not ready 
06 Invalid handle 22 Unknown command 
07 Bad memory control blocks 23 Data error (CRC) 
08 Insufficient memory 24 Bad request length 
09 Invalid memory block address 25 Seek error 
10 Invalid environment 26 Unknown media type 
11 Invalid format 27 Sector not found 
12 Invalid access code 28 Printer out of paper 
13 Invalid data 29 Write fault 
14 Not used 30 Read fault 
15 Invalid drive specification 31 General failure 
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AH = 057H (87) File date and time 
INT 021H (33) Universal function 

Read or modify the timestamp on a file 

Input 
AL = 0 to get; 1 to set 
BX = file handle if setting 
CX = time 
DX = date 

Output 
AX = return code 
CX = time 
DX = date 

Notes 
This function requires that the handle be opened by INT 21H function 3CH 

(create file) or INT 21H function 3DH (open file) 

Bit pattern in CX Meaning 

FEDCBA9876543210 

DDDDDxxxxxxxxxxx Hours (0-23) 

xxxxxHHHHHHxxxxx Minutes (0-59) 

xxxxxxxxxxxSSSSS 2-second increments (0-29) 


Bit pattern in DX Meaning 

FEDCBA9876543210 

YYYYYYYxxxxxxxxx Year (relative to 1980) 

xxxxxxxMMMMxxxxx Month (0-12) 

xxxxxxxxxxxDDDDD Day (0-31) 
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INT 022H (34) Termination handler 
Address of the code that handles program exit 

Input 
None 

Output 
None 

Notes 
N ever execute this interrupt directly. 
The address stored here is copied to the program segment prefix of the cur­

rently executing program. 
This code manages an orderly transition between the code that is currently 

running and that has requested termination and DOS or the previously running 
program that started the current program by the INT 21H function 4BH (execute 
program) function. 
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INT 023H (35) CONTROL-C handler 
Address of the code that handles a CONTROL-C interrupt 

Input 
None 

Output 
None 

Notes 
Never execute this interrupt directly. 
The address stored here is copied to the program segment prefix of the cur­

rently executing program. 
The code this vector points at manages the error condition that occurs when 

a CONTROL-C or a CONTROL-BREAK is typed. 
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INT 024H (36) Critical error handler 
Address of the code that handles hardware errors 

Input 
None 

Output 
None 

Notes 
Never execute this interrupt directly. 
The address stored here is copied to the program segment prefix of the cur­

rently executing program. 
This code manages the error condition that occurs because of a hardware 

error, such as a not-ready disk, or no paper in the printer. Its purpose is to 
provide a method for gracefully exiting or returning control to the program 
after the error has been corrected. 
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INT 025H (37) Absolute disk read 
Reads a logical disk sector into a buffer 

Input 
AL = drive ID 
CX = number of sectors to read 
DX = starting logical sector number 
DS:BX = segment:offset of disk transfer area 

Output 
If function was successful: 

CF = cleared 

If function was unsuccessful: 

CF = set 
AX = return code 

Notes 
Drive IDs are numeric, following the drive letters (drive A: has a drive ID of 

0, drive B: =1, drive C: =2, and so on). 
Be aware that some disk-related functions use drive ID 1 as drive A: with 

drive ID 0 indicating the default drive. 

Error Code Meaning 
01H Bad command 
02H Bad address mark 
03R Write-protect fault 
04H Sector not found 
08H DMA failure 
10H CRC failure 
20H Controller failure 
40H Seek failure 
80H Attachment failure 
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INT 025H (37) Absolute disk write 
Write a buffer to a logical disk sector 

Input 
AL = drive ID 
CX = number of sectors to write 
DX = starting logical sector number 
DS:BX = segment:offset of disk transfer area 

Output 
If function was successful: 

CF = cleared 

If function was unsuccessful: 

CF = set 
AX = error code 

Notes 
Drive IDs are numeric, following the drive letters (drive A: has a drive ID of 

0, drive B: =1, drive C: =2, and so on). 
Be aware that some disk-related functions use drive ID 1 as drive A: with 

drive ID 0 indicating the default drive. 

Error Code 
01H 
02H 
03H 
04H 
OSH 
10H 
20H 
40H 
SOH 

Meaning 
Bad command 
Bad address mark 
Write-protect fault 
Sector not found 
DMA failure 
CRC failure 
Controller failure 
Seek failure 
Attachment failure 
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INT 027H (39) Terminate and stay resident 
Terminates the current program, returning control to DOS without releasing 

some or all of the memory allocated for that program 

Input 
DX = offset of last byte + 1 of memory to remain 
CS = segment of memory to remain 

Output 
None 

Notes 
The heart of this book. It causes the current program to exit, without 

returning all of the memory used to the system pool. 
The maximum amount of memory that can be retained with this call is 64 

kilobytes. 
This interrupt should be called only from . COM files. The load allocation 

of .EXE files must be explicitly managed by the programmer. . COM files are 
automatically constructed to load correctly. 
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Appendix D 

Useful Books 

A book like this one is not written in a vacuum. There are many books about 
DOS and IBM PCs on the market. This appendix lists the ones that were 
referred to in the creation of this book. 

Probably the singularly most useful book was Advanced MS-DOS by Ray 
Duncan (Microsoft Press, 1986). This book contains many useful and interesting 
pieces of information and was invaluable in decoding some of the more cryptic 
aspects of the IBM PC. A must for every assembly-language programmer. 

Another extremely useful book is the Programmer's Guide to the IBM PC, 
by Peter Norton (Microsoft Press, 1985). This book covers some issues that 
Advanced MS-DOS skips. Both books are more readable than the DOS manuals. 

Sometimes, however, the DOS manuals are the only source of information. 
The IBM-PC Technical Reference Manual is available from IBM dealers. It is 
extremely cryptic and difficult to follow, but sometimes it is the only source of 
information on some important issues. 

Finally, the IBM Disk Operating System Manual and the IBM Macro As­
sembler Manual are sure to be your constant companions during any attempt at 
writing assembly-language code. Both are included with their respective prod­
ucts. 
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registers, 12-13 

soft interrupts in, 25-26, 238 


Attribute bit matching, 202-4 
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AX register, 142 
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BASIC.ASM test display program, 123-25 

BASIC interpreter, 287 

.BAT files, 31 

Baud rate, 142 


corresponding divisor, 143 

displaying, 148-50 

setting, 169, 174, 175 


Blanking display lines, 205, 207, 221-22 

Borland International, 236 

BP register, 14 
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Breakpoint, 297 

BROWSE.ASM program to examine file con­

tents, 226-33 

Buffered keyboard input, 324 

BX register, 14 

Byte(s), 


high-order and low-order, 20-21 

placement of, within a word in memory, 


19-20 

Byte-addressible architecture, 19 


CALL instruction, 50 

Carriage return, 57 

Cassette tape storage, 193 


function codes, 274-78 

CF (carry flag), 14, 15, 16 

Character input with echo, 313 

Character length, displaying communications 


mode, 150-52 

Character output, 314 

CLD instruction, 18 

CLI instruction, to disable interrupts, 27, 28, 


237 

CLOCK.ASM resident desk clock program, 


89-94 

Clock function codes, 289-91 

Close file with FCB, 330 

Close file with handle, 373 

Code segment, 13 

COM!: and COM2: serial ports, 


determining state of, 141-43 

interrupts, 301, 302 

setting, 173-78 


SETMODE.ASM program, 178-92 

using keystroke expander to examine/reset, 


136-41 
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COM files, 

converting from .EXE files, 31-32 

developing a basic, 41-53 


Communications function codes, 269-73 

Communications mode, 135-36 


data structure consistency, 154-55 

determining serial port status, 141-43 

displaying port status, 144-54 


baud rate, 148-50 

character length, 150-52 

stop bits and parity, 152-54 


SEEMODE.ASM program to show, 155-65 

setting, 167-92 


designing the code for, 168-73 

SETMODE.ASM program for, 178-92 

setting parameters, 173-78 


using keystroke expander to examine/reset, 

136-41 


Compatibility and memory resident programs, 

236 


Compute-bound programs, 194 

Console input (no echo), 322 

Context switch, 74-75 

CONTROL-ALT-DEL interrupt, 112 

CONTROL-BREAK, 24, 112, 322, 324, 325, 


326 

CONTROL-C, 24, 313, 314, 322, 324, 325, 326 


CONTROL-C checking, 362 

CONTROL-C handler, 397 


CONTROL-H, 56, 314 

CP/M operating system, 215 

C programming language, 57 

Create file with FCB, 336 

Create file with handle, 371 

Create PSP, 349 

"Creeping featurism," 4 

Critical error handler, 398 

es register, 13, 51 


and keyboard expander, 62 

Currency format, 367 

current pointer, 60-62 

Cursor function, 245-47 


and disk browsing, 221, 223 

and interrupt vector display, 121-23 

and serial port display, 144, 170, 174 


ex register, as a loop counter, 16-17 


Data segment, 13 

Data storage. See Disk usage 


INDEX 


Data structure, 198 

consistency in, 154-55 


dchar routine, 20, 238 

Delete file, 376 

Delete file with FCB, 333 

Design, 


nature of good, 4-5 

orthogonal, 13 

other options in, 235-40 

writing debuggable programs, 5-7 


Desk clock, 75-81 

advancing/determining correct time, 81-84 

setting the time, 84-89 


Detectability, of program modifications, 39-40 

DF (direction flag), 15, 18 

DIR command, 198-99 

Direct console I/O, 318-20 

Directories, 197, 198-204 


functions, 369-70, 382 

listing, 199-204 

making a useful display of, 204-8 


dirlist function, 203-4, 205, 222 

Disabling interrupts, 27-28, 237 

Disassembler programs, 167-68 

Diskette parameter table, 307 

Disk function codes, 262-68 

Disk transfer area (DTA), 204, 223, 225, 226, 


340, 358 

Disk usage, 193-213. See also File contents, 


examining 

disk browsing program, 217-21 

disk subsystem, 196-204 

formula for calculating capacity, 365 

LD.ASM directory list program, 208-13 

making a directory display, 204-8 

safety guidelines, 194-96 


Disk write verification, 357 

Dispatch tables, 140 

Display, 


COM1: and COM2: serial port status, 144-54 

directory, 204-8 

disk browsing, 221 

files, 224-26 

instruction pointer, 98, 105-9 

interrupt vector, 111-33 

timer, 78-81 


Display string, 323 

Divide by zero, 294 

Divisor latch access bit (DLAB), 142 
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dmenu selector routine, 170 

DOS, 


disk I/O guidelines, 195-96 

file I/O functions, 215 

function codes, 309-401 

keystroke information returned to, 58 

setting communications port with, 167-68 

setting interrupt vectors with, 28-30 

universal function. See INT 021H (DOS 


universal function) 

version number, 359 


DOS Technical Reference Manual, 168, 268, 

309 


Double words, storage of, 21-22 

DS register, 13, 44, 51 


and keyboard expander, 62 

dstring routine, 113-14, 226, 238 

dtime routine, 81, 83, 85 

Duplicate file handle, 380 

DX register, 44, 142 


8086/8088 Intel microprocessor, 11-12, 22 

looping in, 17 

data organization within memory in, 18-22 


Elements, shape of data, 154-55 

Equipment, 260 

ES register, 13 

.EXE2BIN program, 31,45 

Execute program, 386 

.EXE files, converting into .COM files, 31-32 

Extended characters, 56 


character set, 57 


FAR pointer, 44 

FCB. See File control block (FCB) operations 

File attributes, 378 

File contents, examining, 215-33 


BROWSE.ASM program for, 226-33 

designing a disk browsing program, 217-21 

displaying files, 224-26 

prototyping a selection mechanism for, 221-24 


File control block (FCB) operations, 215, 216 

functions, 329-37, 344-47, 350-51 


File date and time, 395 

Filenames, 207 

FILES command, 216 

ftllstring, 208, 222 

Finite-state machine (FSM), 83 

Fixed disk, 303 


Flags, 14-16 

Flat file systems, 197 

Flexibility in design, 5 

Floppy disk interrupt, 304 

Floppy disks, 193 

Format disk track, 268 

FORTH,140 

FPANEL.ASM instruction pointer display pro­

gram, 105-9, 236 

Free allocated memory, 384 

Front panels, mainframe, 95-96 

FSM. See Finite-state machine 


Gct country info, 367 

Get current directory, 382 

Get current drive, 339 

Get current drive info, 341 

Get current video mode, 259 

Get disk capacity, 365 

Get disk status, 264 

Get DOS version number, 359 

Get drive info, 342 

Get DTA address, 358 

Get file size, 346 

Get interrupt vector, 364 

Get keyboard input status, 325 

Get pointer to INDOS flag, 238 

Get printer status, 286 

Get return code, 388 

Get serial port status, 273 

Get/set file attributes, 378 

Get shift status, 282 

Get system date, 353 

Get system time, 86, 355 

Get verify state, 392 

Graphics table, 308 


Handle file operations, 215-16, 225, 371-75, 

380-81, 397 


Hard disk. See Disk usage 

Hard disk interrupt, 303 

Hard interrupts, 24-26 

Hardware interrupts, 293-308. See also Equip­


ment 

High-order byte (MSB), 20-21 

Hot key, 279, 280 


IBM Disk Operating System Manual, 403 
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IBM Macro Assembler Manual, 403 

IBM Macro Assembler MASM, 30 

IBM PC, 3 


building a front panel for, 95-110 

interrupts available on, 25 


IBM Technical Reference Manual, 142, 241, 

279, 403 


IF (interrupt-enable flag), 15, 53 

Index registers, 14 

INDOS function, 238-39 

initialize, 45 

Initialize printer, 285 

Initialize serial port parameters, 142, 167, 270 

IN/OUT opcodes, 141-42 

Input/output (I/O), 


communications ports, vs. I/O ports, 141-42 

illegal vs. correct input, 169 

I/O control for devices, 379 

raw vs. cooked, 318-21 


Instruction pointer (IP), 12-13,95-96 

displaying, 96-102, 105-9 


INT OOH (Divide by zero), 294 

INT OlH (Single step), 295 

INT 02H (Non-maskable (NMI)), 296 

INT 03H (Breakpoint), 297 

INT 04H (Overflow), 298 

INT OSH (Print screen), 242 

INT OSH (Timer Tick), 299 

INT 09H (Keystroke), 300 

INT OBH (Serial port 1), 301 

INT OCH (Serial port 0), 302 


INT OOH (Fixed disk), 303 

INT OEH (Floppy disk), 304 

INT OFH (Printer), 305 


INT OlOH (video), 243-59 


function AH=OOH (Set video mode), 244 

function AH=01H (Set cursor size), 245 

function AH=02H (Set cursor position), 246 

function AH=03H (Read cursor position), 


247 

function AH=04H (Read light-pen position), 


248 

function AH=05H (Set active display page), 


249 

function AH=06H (Scroll window up), 250 

function AH=07H (Scroll window down), 251 

function AH=08H (Read character and at­

tribute), 252 


INDEX 

function AH=09H (Write character and at­
tribute), 253 


function AH=OAH (Write character), 254 

function AH=OBH (Set color palette), 255 

function AH=OCH (Write pixeij, 256 

function AH=ODH (Read pixel), 257 

function AH=OEH (Write character in TTY 


mode), 208, 258 

function AH=OFH (Get current video mode), 


259 

INT OllH (Equipment), 260 

INT Ol2H (Memory size), 261 

INT Ol3H (Disk), 262-68 


function AH=OOH (Reset disk system), 263 

function AH=OIH (Get disk status), 264 

function AH=02H (Read disk sectors), 265 

function AH=03H (Write disk sectors), 266 

function AH=04H (Verify disk sectors), 267 

function AH=05H (Format disk track), 268 


INT Ol4H (Communications), 269-73 

function AH=OOH (Initialize serial port 


parameters), 142, 167, 270 

function AH=01H (Send one character), 271 

function AH=02H (Receive one character), 


272 

function AH=03H (Get serial port status), 


273 

INT Ol5H (Cassette), 274-78 


function AH=OOH (Turn on cassette motor), 

275 


function AH=01H (Turn off cassette motor), 

276 


function AH=02H (Read data block), 277 

function AH=03H (Write data blocks), 278 


INT Ol6H (Keyboard 1/0),47, 279-82 

function AH=OOH (Read next keyboard char­


acter), 51, 53, 59, 140, 280 

function AH=01H (Test for character ready), 


53, 59, 281 

function AH=02H (Get shift status), 53,282 

setting the value of, 29 


INT Ol7H (Printer), 283-86 

function AH=OOH (Send character to printer), 


284 

function AH=01H (Initialize printer), 285 

function AH=02H (Get printer status), 286 


INT OlSH (BASIC), 287 

INT Ol9H (Reboot), 288 

INT OlAH (Clock), 289-91 
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function AH=OOH (Read current clock count), 

290 


function AH=OlH (Set current clock count), 

291 


INT OlDH (Video init table), 306 

INT OlEH (Diskette parameter table), 307 

INT OlFH (Graphics table), 308 

INT 020H (Terminate program), 310 

INT 021H (DOS universal function), 26, 


311-95 

function AH=OOH (Terminate program), 312 

function AH=OlH (Character input with 


echo), 313 

function AH=02H (Character output), 314 

function AH=03H (Serial input), 315 

function AH=04H (Serial output), 316 

function AH=05H (Printer output), 317 

function AH=06H (Direct console I/O), 318-20 


DL=OOH-OFEH (Raw console output), 319 

DL=OFFH (Raw console input), 320 


function AH=07H (Raw input (no echo)), 

321 


function AH=08H (Console input (no echo)), 

322 


function AH=09H (Display string), 323 

function AH=OAH (Buffered keyboard input), 


324 

function AH=OBH (Get keyboard input sta­

tus), 325 

function AH=OCH (Reset input/execute), 326 

function AH=ODH (Reset disk I/O), 327 

function AH=OEH (Select current drive), 328 

function AH=OFH (Open file with FCB), 329 

function AH=OlOH (Close file with FCB), 


330 

function AH=OllH (Search for first match), 


331 

function AH=012H (Search for next match), 


332 

function AH=013H (Delete file with FCB), 


333 

function AH=014H (Sequential FCB read), 


334 

function AH=015H (Sequential FCB write), 


335 

function AH=016H (Create file with FCB) , 


336 

function AH=017H (Rename file with FCB), 


337 


function AH=018H, 338 

function AH=019H, (Get current drive), 339 

function AH=OlAH (Set disk transfer area), 


340 

function AH=OlBH (Get current drive info), 


341 

function AH=OICH (Get drive info), 342 

function AH=OlDH/OIEH/OIFH/020H, 343 

function AH=021H (Random read with FCB), 


344 

function AH=022H (Random write with 


FCB) , 345 

function AH=023H (Get file size), 346 

function AH=024H (Set random record field), 


347 

function AH=025H (Set interrupt vector), 47, 


348 

function AH=026H (Create PSP), 349 

function AH=027H (Random block FCB 


read),350 

function AH=028H (Random block FCB 


write), 351 

function AH=029H (Parse filename), 352 

function AH=02AH (Get system date), 353 

function AH=02BH (Set system date), 354 

function AH=02CH (Get system time), 86, 


355 


function AH=02DH (Set system time), 356 

function AH=02EH (Disk write verification), 


357 


function AH=02FH (Get DTA address), 358 

function AH=030H (Get DOS version num­

ber), 359 

function AH=031H (Keep process), 360 

function AH=032H, 361 

function AH=033H (CONTROL-C checking), 


362 

function AH=034H (Get pointer to INDOS 


flag-Unsupported), 238, 363 

function AH=035H (Get interrupt vector), 


29,51,364 

function AH=036H (Get disk capacity), 365 

function AH=037H, 366 

function AH=038H (Get country info), 367 

function AH=039H (Make subdirectory), 368 

function AH=03AH (Remove directory), 369 

function AH=03BH (Set current working di­

rectory), 370 
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function AH=03CH (Create file with handle), 

371 


function AH=03DH (Open file with handle), 

373 


function AH=03EH (Close file with handle), 

373 


function AH=03FH (Read from file or de­

vice), 374 


function AH=040H (Write to file or device), 

375 


function AH=041H (Delete file), 376 

function AH=042H (Position file pointer), 


377 

function AH=043H (Get/set file attributes), 


378 

function AH=044H (I/O control for devices), 


379 

function AH=045H (Duplicate file handle), 


380 

function AH=046H (Overwrite handle), 381 

function AH=047H (Get current directory), 


382 

function AH=048H (Allocate memory), 383 

function AH=049H (Free allocated memory), 


384 

function AH=04AH (Modify memory alloca­


tion), 385 

function AH=04BH (Execute program), 386 

function AH=04CH (Terminate program), 


387 

function AH=04DH (Get return code), 388 

function AH=04EH (Search for first match), 


202-4, 221, 389 

function AH=04FH (Search for next match), 


202-4, 221, 390 

function AH=050H/051H/052H/053H, 391 

function AH=054H (Get verify state), 392 

function AH=055H, 393 

function AH=056H (Rename file), 394 

function AH=057H (File date and time), 395 


INT 022H (Termination handler), 396 

INT 023H (CONTROL-C handler), 397 

INT 024H (Critical error handler), 398 

INT 025H (Absolute disk read), 399 

INT 025H (Absolute disk write), 400 

INT 027H (Terminate and stay resident), 


43-44, 51, 401 

Intermediate addressing modes, 13 

Interrupt handler(s), 23 


INDEX 

chaining, 49-51 

Interrupt vectors, 23-38 


disabling interrupts, 27-28, 237 

displaying, 111-33 

examining, 30-32 

hard and soft, on the IBM PC, 24-26 

keyboard input mechanism, 26-27 

listing, 32-38 

replacing/modifying, 27-30 


I/O. See Input/output (I/O) 

IP. See Instruction pointer (IP) 

IRET (Return from interrupt), 48, 50, 96, 281 

Isomorphic representations, 147-48 

IVEC.ASM program, 114 


to list interrupt vector values, 32-38 


jmp initialize, 114 

removal of, 46 


Keep process, 43, 51, 360 

Keyboard function codes, 279-82 

Keyboard input interceptor program. See Mem­


ory resident program(s), developing a 

basic 


Keyboard input mechanisms, 26-27 

Keyboard 1/0,47 
keyread routine, 61 


expanding single to multiple keys, 64-65 

keystat routine, 60-61 

Keystroke expander, 55-71 


basic expander, 58-62 

design, 56-58 

expanding on multiple keys, 62-66 

MACRO.ASM single-key expander, 66-68 

MACTAB.ASM general expander, 68-71 

minimal resident application, 54-55 

using to examine/reset communication ports, 


136-41 

Keystroke interrupt, 25, 300 


LD.ASM program for listing a directory, 208-13 

Lightweight processes, 73 

Line control register (LCR), 142-43 

Linkage, 


and interrupt vector displays, 111-13 

invoking resident applications using, 47-48 

linking a single object file, 30-31 


Looping, 16-18 
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open vs. closed, 76 

Low order byte (LSB), 20-21 


MACRO.ASM single-key expander program, 
66-68 


Macro Assembler, 22 

MACTAB.ASM general keystroke expander 


program, 68-71 

Mainframe computers, front panel information 


on, 95-96 

Make subdirectory, 368 

Memory, 


buffer, 265, 266 

cost of keyboard expansion, 64,66 

elimination of overhead, 46 

functions, 261, 383-85 

organization of data within, 18-22 


Memory indirect addressing modes, 13-14 

Memory resident program(s), 


compatibility of, 236 

data storage and (see Disk usage) 

developing a basic, 39-53 


basic .COM program, 41-42 

chaining interrupt handlers, 49-51 

detecting the resident application, 51-53 

invoking resident applications, 46-48 

memory overhead elimination, 46 

minimum resident program, 43-44 

program design, 40-41 

refined resident program, 44-46 


disabling interrupts, 237 

examining files (see File contents, examin­


ing) 

interrupt vector display (see Interrupt vec­


tors, displaying) 
keystroke expander (see Keystroke expander) 
performing actions directly with (see Com­

munications mode) 

reusing subroutines, 238 

standards for, 235-36 

undocumented functions, 238-39 

using the timer interrupt (see Timer) 

video modes for, 236-37 


Memory size, 261 

Microsoft Linker LINK, 30 

MODE command, 136, 151 

Modify memory allocation, 385 

Modular programming, 6, 239-40 

MOVSB,17-18 


MS-DOS, 26 

Multi-tasking, 73 


nextfile, 222-23 

Non-maskable interrupt (NMI), 28, 296 


OF (Overflow flag), 15 

Open file with FOB, 329 

Open file with handle, 372 

Open looping, 76, 86 

Operating systems, 


types of functions to enhance, 3-4 

Operating systems programming, 


vs. applications programming, 2-3 

good design in, 4-5 

writing debuggable programs, 5-7 


OverHow flag, 15 

Overflow interrupt, 298 

Overwrite handle, 381 


Paragraph, 12-13 

Parity, 


displaying, 152-54 

setting, 177-78 


Parse filename, 352 

PATH variable, 195 

PC-DOS, 26 

PF (parity flag), 14 

PgUp/PgDn keys, 224 

Polling, 23, 24 

POP operations, 103 


order of, 196 

Popup listings, 205 

Position file pointer, 377 

Printer function codes, 283-86 

Printer hardware interrupt, 305 

Printer output function, 317 

print screen vector, 114, 242 

Print spooler, 238-39 

Program counter, displaying and updating, 96 


displaying the instruction pointer, 96-102, 

105-9 


Programmer's Guide to the IBM PO, by Peter 

Norton, 403 


Programming, 1-7,235-40. See also Assembly 

language programming 


adding features to the operating systems, 

3-4 
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applications vs. systems, 2-3 

good design in, 4-5 

modular, 6, 239-40 

style of, 7 

writing debuggable programs, 5-7 


Program segment prefix, 42 

create, 349 

removal of, 46 


PrtSc interrupt, 112 

linked to interrupt vector display, 123-33 

replacing with basic resident program, 112-13 


PUSH operation, 22, 50, 102, 103 

order of, 196 


Random access memory (RAM), 194 

Random olock FeB read, 350 

Random block FeB write, 351 

Random read with FeB, 344 

Random write with FeB, 345 

Raw console input, 320 

Raw console output, 319 

Raw input (no echo), 321 

Read character, 51, 53, 59, 140 

Read character and attribute, 252 

Read current clock count, 290 

Read cursor position, 247 

Read data block, 277 

Read disk sectors, 265 

Read from file or device, 374 

Read interrupt vector, 29, 51 

Read keyboard flags, 53 

Read keyboard status, 53, 59 

Read light-pen position, 248 

Read next keyboard character, 280 

Read pixel, 257 

Reboot, 288 

Receive one character, 272 

Reentrant code, 74-75 

Register indirect addressing mode, 14 

Registers, 12-13 

Remove directory, 369 

Rename file, 394 

Rename file with FCB, 337 

REP instruction, 18 

Reset disk I/O, 327 

Reset disk system, 263 

Reset input/execute, 326 

Resident code, and removal of program seg­


ment prefix, 46 


INDEX 


RET instruction, 48, 59-60, 281 

Return from interrupt, 48, 50, 96 

ROM BIOS (Basic Input Output System), 


241-91 

interrupts, 26 

release dates and machine type, 241 

screen output calls, 113 

set communications port configuration, 167 


Root directories, 197-98 


Scroll window down, 251 

Scroll window up, 250 

Search for first match, 202-4, 221, 331, 389 

Search for next match, 202-4, 221, 332, 389 

SEEMODE.ASM program, to show communi­

cations mode, 155-65 

Segments, 12-13 


program segment prefix, 42 

Select current drive, 328 

Send character to printer, 284 

Send one character, 271 

Sequential FeB read, 334 

Sequential FCB write, 335 

Serial input, 315 

Serial output, 316 

Serial port 0, 302 

Serial port 1, 301 

Sessions, using resident programs in comput­

ing, 216-17 

Set active display page, 249 

Set color palette, 255 

Set current clock count, 291 

Set current working directory, 370 

Set cursor position, 246 

Set cursor size, 245 

Set disk transfer area, 340 

Set interrupt flag/enable interrupts, 48, 


53, 237 

Set interrupt vectors, 47, 348 

SETMODE.ASM program to set/display serial 


ports, 178-92 

setport routine, 170-73 

Set random record field, 347 

Set system date, 354 

Set system time, 356 

settime routine, 83, 84, 85 

Set video mode, 244 

SF (sign flag), 14 

showfile routine, 224-25 
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Sidekick, 236 

Single step, 295 

SI register, 223 

Soft interrupts, 25-26, 238 

SP pointer, 103 

SS register, 13 

Stack(s), 


program counter at the top of, 97 

pushing words onto, 22 

stack-frame pointer, 102-5 

using RET to pop bytes off the, 59-60 


Stack segment, 13 

Standards for memory resident programs, 


235-36 

start, 42, 45 

STD instruction, 18 

STI (set interrupt flag/enable interrupts), 48, 


53,237,295 

Stop bits, 


displaying, 152-54 

setting, 176 


Storage. See Disk usage 

Strings, 


displaying baud rate with, 148-50 

displaying character length with, 150-52 

expanding a keystroke into, 57-58 


multiple keys, 62-66, 68-71 

one key, 58-62, 66-68 


Subdirectories, 197-98, 368 

Systems programming. See Operating systems 


programming 


Terminate and stay resident, 43-44, 51, 401 

Terminate program, 310, 312, 387 

Termination handler, 396 

Test for character ready, 281 

Text displays, types of, 207-8 

TF (trap flag), 14, 295 

Timer, 73-94 


advancing/determining the time with, 81-84 

building a desk clock, 75-81 

CLOCK.ASM desk clock program, 89-94 

disabling interrupts, 237 


to display/update IP, 96-105 

reentrant code and, 74-75 

setting the, 84-89 


timer-int routine, 77, 78,99, 103 

Timer Tick, 299 

Trap flag (TF), 14, 295 

Traps. See Soft interrupts 

Tree-structured directories, 197 

Turn off cassette motor, 276 

Turn on cassette motor, 275 


Undocumented functions in memory resident 

programs, 238-39 


Universal function. See INT 021H (DOS uni­

versal function) 


UNIX operating system, 215 

User interface design, 168 


VECTORS.ASM, interrupt vector display pro­
gram, 125-33 


Verify disk sectors, 267 

Video function codes, 243-59 

Video initialization table interrupt, 306 

Video modes, for memory resident programs, 


236-37 

Volume, 197 


Word(s), 

placement of bytes within a, 19-20 

pushing onto stacks, 22 

storage of double, 21-22 


Word addressible architecture, 19 

Write character, 254 

Write character and attribute, 253 

Write character in TTY mode, 208, 258 

Write data blocks, 278 

Write disk sectors, 266 

Write pixel, 256 

Write to file or device, 375 


ZF (zero flag), 14, 15 

in keyboard expansion, 59, 61 
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