
. ---- -~- - ------ - - - - - -

The Insider's Guide to Developing Applications
in JavaScript using the Palm Mojo™ Framework

O'REILLY® Mitch Allen

Palm® webOS™

Palm® webOS™

Mitch Allen

O'REILLY®
Beijing • Cambridge • Farnham • Kiiln • Sebastopol • Taipei • Tokyo

Palm® webOS™
by Mitch Allen

Copyright © 2009 Palm, Inc. All rights reserved.
Printed in the United States of America.

Published by O'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Steven Weiss
Developmental Editor: Jeff Riley
Production Editor: Sumita Mukherji
Copyeditor: Amy Thomson
Proofreader: Teresa Barensfeld

Printing History:
August 2009: First Edition.

Production Services: Molly Sharp
Indexer: Seth Maislin
Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Robert Romano

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of
O'Reilly Media, Inc. The image of a luna moth and related trade dress are trademarks of O'Reilly Media,
Inc.

Palm, Palm Pre, Palm webOS, Synergy, and Mojo are among the trademarks or registered trademarks
owned by or licensed to Palm, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O'Reilly Media, Inc., was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con
tained herein.

~Kover™
~ This book uses RepKover™, a durable and flexible lay-flat binding.

ISBN: 978-0-596-15525-4

[M]

1248712173

"That it all matters." He draws off his cigar and
lets it dribble out all over his face. "You know

every game starts with one pitch, and that pitch
determines everything else in the game. The first
pitch sets up the second, second the third. If Reyes
gets in a 2-0 hole he throws the pitch that Young
hits for a single. With a runner on first, he'll throw
differently to German. And German will swing

differently with a runner on first."

"And then the next time that Reyes sees Young,
he'll choose his pitches based on the previous

at-bat, and the scouting report, and every at-bat
Young has ever had against Reyes. It all counts."

"But as much as everything counts,"] ack says. "Is
that you can have the right pitch, and have it

knocked out. You can have the right swing and still
screw up. That's the thing that makes this game
great, is that everything counts so much, that the

factors involved in that one pitch are almost
infinite. So anything can happen."

-From the short story "Delay," Parker Zane Allen

Table of Contents

Foreword . xiii

Preface .. xvii

1. Overview of webOS .. 1
Application Model 2
Application Framework and OS 3
User Interface 3

Navigation
Launcher
Card View
Notifications and the Dashboard
User Interface Principles

Mojo Application Framework
Anatomy of a webOS Application
UI Widgets
Services

Palm webOS Architecture
Application Environment
Core OS

Software Developer Kit
Development Tools
Mojo Framework and Sample Code
webOSdev

Summary

4
4
5
7

10
12
13
16
18
19
20
21
21
22
22
22
23

2. Application Basics .. 25
Getting Started 26

Creating Your Application 26
Testing and Debugging 30

News 30
News Wireframes 31

vii

Creating the News Application
Customizing the Launcher Icon and Application ID
Adding the First Scene
Base Styles
Application Launch Lifecycle
Adding a Second Scene

Controllers
Controllers and Assistants
Scene Stack

Summary

33
34
35
40
43
44
51
51
52
53

3. Widgets .. 55
All About Widgets 55

Declaring Widgets 56
Setting Up a Widget 56
Updating a Widget's Data Model 57
Widget Event Handling 58

Using Widgets 58
Buttons and Selectors 59

Buttons
Selectors

Lists
List Widgets
More About Lists

Text Fields
Adding Text Fields to News
Password Field
Filter Field
Rich Text Edit

Events
Framework Event Types
Listening
stopListening
Using Events with Widgets

Summary

59
61
64
65
84
86
87
91
91
92
92
92
93
94
95
95

4. Dialogs and Menus ... 97
Dialogs 97

Error Dialog 98
Alert Dialog 99
Custom Dialogs 100

MrnITT 1~

Menu Widgets 107

viii I Ta hie ofContents

Submenus
Commander Chain
Summary

123
126
129

5. Advanced Widgets .. 131
Indicators 131

Spinners
Progress Indicators

Scrollers
Back to the News: Adding a featured feed Scroller

Pickers
Simple Pickers
File Picker

Advanced Lists
Formatters
Dividers
Filter Lists

Viewers
Web View
Other Viewers

Summary

132
136
138
139
144
145
147
148
149
150
150
156
156
159
161

6. Data .. 163
Working with Cookies

Back to the News: Adding a Cookie
Working with the Depot

Back to the News: Adding a Depot
HTML 5 Storage
Ajax

Ajax Request
Ajax Response
More Ajax

Summary

164
164
166
167
170
172
173
174
175
176

7. Advanced Styles . 177
Typography 178

Fonts 178
Truncation
Capitalization
Vertical Alignment

Images
Standard Image
Multistate Image

180
181
181
183
183
184

Table ofContents I ix

9-Tile Image
Touch

Maximize Your Touch Targets
Optimizing Touch Feedback
Passing Touches to the Target

Light and Dark Styles
Summary

184
187
187
188
189
189
191

8. Application Services . 193
Using Services 193

Service Overview 194
Application Manager 196
Cross-App Launch 197

Core Application Services 198
\\Teb 198
Phone
Camera
Photos
Maps

Palm Synergy Services
Account Manager
Contacts and Calendar
People Picker
Email and Messaging

Viewers and Players
View File
Audio
Video

Other Applications
Summary

199
200
200
201
201
201
203
204
205
209
209
209
210
210
211

9. System and Cloud Services 213
System Services 214

Accelerometer 215
Alarms 218
Connection Manager
Location Services
Power Management
System Properties
System Services
System Sounds

Cloud Services
Summary

x I Table ofContents

220
221
223
224
225
225
226
227

10. Background Applications ... 229
Stages 229

Creating New Stages 230
Using Existing Stages 231
Working with Stages 231

Notifications 232
Banner Notifications
Minimized Applications
Pop-up Notifications

Dashboards
Back to the News: Adding a Dashboard Stage
Handling Minimize, Maximize, and Tap Events

Advanced Applications
Back to the News: App Assistant
Handling Launch Requests
Sending and Considering Notifications
Back to the News: Creating Secondary Cards

Background Applications
Summary

233
235
235
240
241
245
247
247
251
253
254
256
260

11. Localization and Internationalization 261
Locales 261

Character Sets and Fonts
Keyboards

Localization
Localized Application Structure
appinfo.json
JavaScript Text Strings
Localizable HTML

Internationalization
Back to the News: Multilingual Formatting

Summary

263
263
264
265
266
266
270
273
273
274

A. Palm webOS Developer Program .. 275

B. Quick Reference-Developer Guide 279

C. Quick Reference-Style Guide .. 341

D. News Application Source Code . 359

Index ... 417

Table of Contents I xi

Foreword

Many of us remember that special sense of accomplishment, even excitement, as we
got our very first program to run or web page to display. It was probably something
very simple like a classic "Hello, World!" program, or a simple (often gaudy) web page
using different styles and sizes of text. Steadily we learned and experimented more. In
a short time, we soon had something actually useful. It was probably something like a
tip calculator or a personal web page, or even a tip calculator on a web page. It was
exciting because we realized the huge potential for doing much more with our new
found knowledge.

That first moment for me was more than 30 years ago. Like many others at that time,
it was the start of a hobby that soon became a career. Programming and web develop
ment can be one of the most exciting and one of the most frustrating careers one can
have. It is immensely rewarding to create something that benefits hundreds, thousands,
even millions of people. At the same time, the pace at which things change can really
wear one down. I've now seen, used, and discarded so many cool technologies it is rare
for any of them to get me really excited. Prior to Palm's announcement of webOS, I can
only think of two times a new technology generated a similar visceral excitement as I
had when I first learned to program. (Forth and Delphi, if you are curious. Search for
those terms and my name to see what made them special.) webOS has rekindled those
feelings all over again.

I, like many other smartphone users and developers, was very curious to see what Palm
would show on January 8th, 2009, at the Consumer Electronics Show (CES) in Las
Vegas. Truthfully, I was not expecting much. I just wanted to give Palm one more
chance before switching from my Treo to another smartphone. However, that day the
Palm Pre became the star of CES. Nothing else introduced that week came close to
generating the buzz of the Pre. But while the Pre was nice, there were other smartphones
that looked cool, had a great UI, and even did multitasking. Even after the great demos,
for me the Pre was just a "take it or leave it" proposition. What got my interest was
webOS, the underlying technology that made those great demos possible. I had to learn
more, and the more I learned, the more excited I got.

For me, the best way to force myself to learn is to teach. About 15 years ago, when I
last got this excited, I started a user group for Delphi months before I actually had a

xiii

copy of it (I was tight on funds at the time). Continuing the tradition, I started a Meetup
for webOS and the Pre on February 18th. I volunteered to be an organizer for
preDevCamp, a world-wide day for developers to share and learn about webOS. I also
volunteered to talk about webOS development at a regional CodeCamp. At the same
time, I started developing for webOS. All this was happening long before the webOS
software development kit (SDK) was even announced. Granted, there was little public
information, but everything I gleaned confirmed my initial feeling that webOS was
something to master.

How could I develop or talk about webOS when there wasn't even an SDK? That is the
beauty of webOS. It is a very unique blend of existing technologies with some special
Mojo provided by Palm. It allows one to develop native-style applications like you
would find running on a traditional computer using web-based technologies such as
HTML, JavaScript, and CSS. My group started working on the JavaScript parts of our
applications that seemed be the most portable and incorporated new knowledge as it
became available. When you think about it, the Internet is so pervasive that most de
velopers today already have considerable experience with these web-based technolo
gies. Native webOS applications are launched via index.html. Sound familiar? Most
developers seem to come up to speed on webOS quickly. It helps that webOS does a
lot of the tricky stuff for you automatically.

Not long after I started my journey on the road to webOS, O'Reilly announced that a
Rough Cuts version of this webOS book was available. Rough Cuts is a great program
that allows you to read chapters of a book as it is being written. I immediately got
"copies" of the book for myself and my developers. As chapters became available, I
would print them out and study them. This period also saw the appearance of websites,
forums, and IRC channels that were dedicated to webOS. preDevCamp also had or
ganizers in about 75 cities with close to 1,000 developers signed up to attend. I was by
no means alone in my desire for the webOS SDK and a Palm Pre to test my applications.
When Palm finally announced they were taking applications for the SDK beta, I re
member Palm posting that they got about a gazillion applications in just a couple
of days.

Of course, I also applied and was fortunate enough to get accepted into the program
sooner than many. It was like getting a new bike for Christmas, only you couldn't ride
it in public or tell anyone else about it. Fortunately, this book, the webOS SDK, and
Pre phones are all now readily available-you don't have to wait. Since the SDK runs
on Linux, Mac OS X, and Windows, this means you can probably even use your existing
development environment for webOS development as well. There are also several plug
ins to automate webOS development in popular IDEs.

So, what did I find so special about webOS? It is the almost elegant way in which it
solves a lot of issues surrounding the current direction of application development in
general-and mobile application development in particular-with its unique integra
tion of native and web-based computing. Chapter 1, Overview of web OS, has a lot more
specifics. As I stated earlier, it smoothly leverages the latest in open technologies and

xiv I Foreword

standards like Linux, the WebKit engine, HTML 5, Javascript, and CSS3, to bring
mobile device development to all programmers. It has the potential to have the same
impact for mobile applications as Visual Basic and Delphi did for win32 applications.
The rapid appearance of home brew applications shortly after the Palm Pre was released
demonstrates the relative ease of development. The richness of some the applications
in Palm's Application Catalog demonstrates that webOS is fully capable of supporting
sophisticated software.

Another thing I like about webOS is that it tends to encapsulate best practices, such as
using the Model-View-Controller pattern as a natural part of webOS development. By
carefully exposing services and APis, developers have ready access to powerful features
and yet still allow each application to play nicely with others. Although I expect more
low-level access in the future, the design of webOS is such that low level features can
easily be wrapped and exposed through webOS's Mojo framework.

Developing applications is pointless if nobody wants to use them. The Mojo framework
provides a smart and polished user interface with lots of useful widgets. The card met
aphor for switching between applications and the notification system is currently with
out peer in the realm of smartphones. There is another advantage that webOS provides
users: the ability for applications to dynamically interact with each other and with
network services in a clean and consistent fashion. For example, contact information
is available to other applications, not just the contact application. Using Palm's Syn
ergy, Contact information can be automatically updated from a variety of sources over
the network just like web mashups are able to do. However, as a native application,
the latest information is still available, even if the network is not. Regardless of the
circumstances, webOS lets applications "just work" as the user expects.

Since webOS is a new platform, it has lots of room to grow. Palm emphases that the
Pre is/was just the first of many devices on which webOS can run. This means more
devices, more services, and more APls are planned for the future. Each iteration will
spawn a need for new applications to exploit new features. webOS has the potential
for keeping developers very busy for many, many years.

I could go on, but Mitch already gives a fine introduction to webOS in the first chapter
of his book. Mitch is uniquely qualified to be the author of the first book on the topic.
He has been doing software development for a long time, especially on mobile plat
forms. As software CTO at Palm, he has been the driving force for webOS. In writing
this book, he realizes that developers want more than an assortment of simple "Hello
World" examples-they want to be able to develop real working applications.

Mitch gradually introduces the reader to webOS while building a fully functional RSS
news reader. Each step of the development process is fully explained in tutorial fashion.
The reader also learns best practices for webOS development along the way. This book
does not try to pad itself with reference information readily available in the SDK. I also
like the fact that Mitch points out current limitations in webOS so developers can work
around them to provide a positive user experience.

Foreword I xv

Lastly, I would like to share how committed Palm is to developers. There have been
rough spots. The majority of my posts in the developer forums have been and will be
regarding issues I have with Palm and webOS. Even so, I'm actually amazed at how
open, helpful, and accessible Palm has been. Palm's webOS team frequents the forums
and answers questions directly. They totally get that their success is intimately tied to
an active, prolific community of webOS developers.

That said, get this book, get the SDK, and start writing webOS applications. I hope you
enjoy it as much as my team and I do.

xvi I Foreword

-Greg Stevenson
Sierra Blanco Systems

preDevCamp Global Organizer

Preface

It would be difficult to miss the revolution in computing that is happening around us.
While the Internet has been a viable commercial environment for almost two decades
and mobile phones commonplace for years beyond that, the last two years have seen
incredible developments as these two movements have converged and begun to accel
erate together forming the next generation of computing. Since the introduction of the
Apple iPhone, our expectations of what we should be able to do with a phone has grown
by magnitudes. There has been a rush to provide applications and services, operating
systems, and hardware in an attempt to fulfill these expectations.

The world of application development is in transition with web-based applications and
services becoming the dominant development model:

• Increasingly powerful web applications are now providing solutions previously
addressed only with embedded or desktop applications.

• Web developers have assumed the leadership in software application innovation.

• Mobile users have strong preferences toward web brands and aren't willing to
accept equivalent solutions-only the authentic experience provided by the pre
ferred brands will do.

• Web services are providing easy-to-use building blocks and tools to allow devel
opers to leverage those web services through mash ups and specialized applications.

• Web applications can be built faster and easier than embedded applications; they
are easier to deploy, update, and maintain, resulting in a lower development cost.

Where once the client operating systems provided the complete platform that appli
cation developers leveraged to deliver their solutions, the Web itself is emerging as the
platform, and client operating systems are becoming a means to access the web plat
form. Those who can deliver a superior user interface (UI) on highly optimized hard
ware while leveraging web services and applications stand to gain.

xvii

Mobile Web Challenges
The challenge for client OS providers is far greater than simply delivering a fast, fully
featured web browser on a phone. The classic web browser navigation model works
poorly on a phone (in fact, some would argue that it's poor even on a desktop
computer).

Mobile users are, well, mobile. They are usually in motion, walking, driving, or occu
pied with something other than their phones. Launching a browser each time you want
something on the Web-----wading through multiple pages to get to the right spot-is
tedious, distracting, and slow.

Web pages have their own UI models, with navigation and controls separate from and
frequently inferior to those of the device they are displayed on. Often, the only option
is to walk links. Menus, selectors, text editors, and other UI tools that enable rapid user
interaction in native applications on the same device can't be used within the web
browser. Launching web pages from bookmarks or moving between web pages usually
involves a completely separate UI model from that used to launch native applications
and generally requires invoking the browser before anything else, adding at least one
extra step to most actions.

In addition, web users are forced to initiate all interactions. They must make a request
and wait for it to be fulfilled. It is clearly more effective for applications to monitor
external events and prompt the user only when something of interest occurs. Ajax and
web applications have made a big improvement by handling user input on the client
and providing some level of dynamic user interface, but even these applications can't
employ commonly used techniques such as background execution, user alerts, and
notifications.

The truth is that despite the hype, a phone with just a fast web browser is still not a
truly smart phone.

To fully realize the mobile Web, a new application model is needed, one that retains
the strengths of web development, but with the type of access and power that has been
available to native, mobile applications for years.

PalmwebOS
Palm addresses these challenges with its next generation operating system,
Palm webOS. Palm webOS is based upon an innovative design that integrates a win
dow-based modern operating system with a web technology runtime that allows you
to build applications using common web languages and tools, without the restriction
of working within a web browser. The application model is based on an integrated web
runtime and the Mojo framework, a JavaScript framework with powerful UI services,
local storage, and methods to access application, cloud, and system services.

xviii I Preface

Applications are built using JavaScript, HTML, and CSS, and while similar to web
applications, webOS applications are actually native applications. This application
model allows you to use the same languages and tools to build powerful mobile appli
cations that you use to build web content.

While Palm webOS is the first to provide this integrated model in a broadly available
computing platform, it's not likely to be the last. There is growing interest in supporting
standard APis within web platforms, such as those in the proposed HTML 5 standard.
It seems likely that in time there will be broad support for this development paradigm
across all types of hardware and systems.

The Mobile Web Is the Web
We are still in the early stages of application development on mobile devices. Until very
recently all mobile applications were designed to work alongside the PC. Some mobile
applications, like Palm's classic PDA applications, were specifically created with the
PC in mind, and today's most popular media solutions continue to rely on the PC for
content delivery and storage. Other applications are essentially desktop applications
ported to a phone, like many of the wireless email solutions. We are just beginning to
see applications that are completely designed and optimized for the wireless mobile
user.

Phones are far more personal than PCs; they are almost always with the user, even if
they're not being engaged by the user. With phones, an event-driven model is more
appropriate, and mobile applications can best leverage web and device services in useful
mashups. Applications that notify users of upcoming calendar events or incoming
emails are common, but webOS applications can notify users of traffic on the route to
their next appointment, or monitors social network feeds. A movie guide allows users
to find movies within the immediate vicinity, purchase tickets, get directions, and set
a reminder for the movie time.

Applications designed for the mobile Web are different than applications built before
now, and they require a different type of platform. This book explores how Palm webOS
is providing that type of platform and shows you how to build those next generation
applications and with them, the new Web-the mobile Web.

About This Book
The book was conceived after the architecture and core design of Palm webOS and the
Mojo framework had been completed, but while the team was fully engaged with im
plementation of the application runtime, the Mojo framework, and while many of the
core applications were still in prototype form. As a result, the book has been written
at the same time as the software, which makes it fresh but raw information.

Preface I xix

The project changed dramatically soon after it began. Originally, I saw my role more
as that of an editor. I expected to pull together the engineering and developer docu
mentation and write a heavily annotated reference book that would provide a guided
tutorial to webOS and Mojo. After the first chapter, though, it became clear that I would
have to write a specific application that would use a significant portion of the API and
document my experience. I scaled back the outline from a reference book to more of
an application-centered guidebook focused on an RSS reader application called News.

This book is not a comprehensive reference, but more of a guided tutorial. It covers all
the basics for creating and building an application and for using UI widgets, storage,
and services. It includes specific chapters on building background applications, a huge
topic of its own, and on specialty topics of building localized applications and on styl
ing. You will want to augment this book with SDK documentation or other reference
material as it becomes available.

You don't need to be an expert, but you will need some basic knowledge of JavaScript,
HTML, and CSS to follow the examples presented here. This book is intended to pro
vide an introduction to webOS and building webOS applications, but should not be
used as a guide to writing JavaScript code. In fact, I have to warn you that I wrote my
first JavaScript code as part of writing this book and it's very likely that you will see
several examples of not-so-good JavaScript in here.

So please read this book to learn how to write great webOS applications, but look for
your JavaScript guidance in other sources such as Douglas Crockford's outstanding
JavaScript: The Good Parts (O'Reilly) or the comprehensive JavaScript: The Definitive
Guide by David Flanagan (O'Reilly).

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, properties, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter
mined by context.

xx I Preface

"'"· This icon signifies a tip, suggestion, or general note .
• ..

">,'

This icon signifies a warning or caution.

Using Code Examples
The code in this book was written by an employee of Palm, Inc. and is Palm's intellectual
property. If you are interested in using this code, it is important for you to review Palm's
software development kit (SDK) license, which can be found at http://developer.palm
. com/termsofservice. html.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O'Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http:l/oreilly.com/catalog/9780596155254

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the
O'Reilly Network, see our website at:

http://oreilly.com

Preface I xxi

Safari® Books Online
S f .. ,. When you see a Safari® Books Online icon on the cover of your favorite

a .. !.r.!· technology book, that means the book is available online through the
O'Reilly Network Safari Bookshelf.

Safari offers a solution that's better thane-books. It's a virtual library that lets you easily
search thousands of top tech books, cut and paste code samples, download chapters,
and find quick answers when you need the most accurate, current information. Try it
for free at http://my.safaribooksonline.com/.

Acknowledgments
Many people contributed to the subject of this book, and in several cases contributed
directly to the material that you are about to read. Projects like this are built upon a
foundation created by dozens if not hundreds of people; it is impossible to properly
acknowledge everyone's contribution.

To start with: the entire webOS product team, particularly the Apps SW & Services,
System Software, and Product Engineering teams, have accomplished an incredible feat
with the release of the Palm Pre and webOS. This is the finest and most committed
group of people that I have ever worked with. The past year was one in which it seemed
there was a new development everyday that would leave me amazed, and over time it
was clear that the team was on the verge of something truly special.

Despite the incredible workload that everyone was under, everyone on the team gave
generously of his or her time. I am particularly grateful to Rob Tsuk, a principal webOS
architect and developer of critical parts of the Mojo framework, for all of his help
throughout this book project. Rob spent hours at some very inconvenient times, pa
tiently answering questions and educating me on many aspects of web technology and
details of Palm webOS and the Mojo framework. And if that weren't enough, Rob
reviewed every chapter in the book and did his best to keep me on track throughout.

Special thanks to Justin Tulloss, whose candid comments had a huge impact on the
structure and shape of the book and for keeping me honest with his very critical eye.
Without Daniel Shiplacoff there would not have been a Chapter 7 (nor would we have
a considerable part of the webOS UI); Daniel's tutoring on styling and CSS was in
valuable. Thanks also to Steven Feaster, who along with Justin and Rob, read every
page of the book and diligently corrected my all too frequent coding errors and technical
mistakes. And thanks to Craig Upson, for providing the original News prototype and
some valuable SDK and tools feedback very early on.

Many, many other people at Palm reviewed different parts of the book and made direct
contributions in big and small ways. It's hard to acknowledge everyone, but among
those who provided direct assistance are Greg Simon, Matias Duarte, Michael Abbott,

xxii I Preface

Jesse Donaldson, Renchi Raju, Jon Rubinstein, Mike Bell, Paul Cousineau, Gray
Norton, Andy Grignon, Geoff Schuller, Rich Dellinger, Wesley Yun, Joe Paley, Rik
Sagar, Mindy Pereira, Charlie Won, Kiran Prasad, Mike Rizkalla, Jeremy Lyon, Neeta
Srivastava, Peter Conrad, Ed Wei, Doug Luftman, Mark Kahn, Susan Juhola, Melissa
Cha, Aaron Hyde and Edwin Hoogerbeets.

We had several early and passionate developers, but none more so than the team at
Pivotal Labs. Pivotal's CTO, Ian McFarland, is the book's technical reviewer and pro
vided countless insightful and critical suggestions. I feel very fortunate to have had his
guidance and support. Also, a shout out to Christian Sepulveda, Davis Frank, Rajan
Agaskar, and the rest of the Pivots whose relentless encouragement and high expecta
tions have made the Mojo SDK a far better product than it would have been otherwise.

The O'Reilly team has made me feel as if none of my demands or any of the numerous
schedule and scope changes caused them any trouble at all. I know that behind the
scenes they scrambled and adapted like mad to maintain that illusion for me and still
meet their obligations. Thanks in particular to Molly Sharp and Steve Weiss for
consistently going above and beyond, and to Sumita Mukherji, Jeff Riley, Amy
Thomson, and Rachel Monaghan for their support.

If there's a failing here, it's all mine. The material that I had to work with, and the
quality of the team and the support that they gave, is more than anyone could expect.

Preface I xxiii

CHAPTER 1

Overview of webOS

Palm webOS is Palm's next generation operating system. Designed around an incred
ibly fast and beautiful user experience and optimized for the multitasking user, webOS
integrates the power of a window-based operating system with the simplicity of a
browser. Applications are built using standard web technologies and languages, but
have access to device-based services and data.

Palm webOS is designed to run on a variety of hardware with different screen sizes,
resolutions, and orientations, with or without keyboards, and works best with a touch
panel, though it doesn't require one. Because the user interface (UI) and application
model are built on a web browser runtime, the range of suitable hardware platforms is
quite wide, requiring only a CPU, some memory, a wireless data connection, a display,
and a means for interacting with the UI and entering text.

You can think of webOS applications as native applications, but built from the same
standard HTML (Hypertext Markup Language), CSS (Cascading Style Sheets), and
JavaScript that you'd use to develop web applications. Palm has extended the standard
web development environment through a JavaScript framework that provides a toolkit
of UI widgets and access to selected device hardware and services.

The user experience is optimized for launching and managing multiple applications at
once. Palm webOS is designed around multitasking and makes it utterly simple to run
background applications, to switch between applications in a single step, and to easily
handle interruptions and events without losing context.

You will build webOS applications with common web development tools following
typical design and implementation practices for Ajax applications, but your webOS
applications will be installed and run directly on the device, just as you are used to
doing with native applications.

Application Model
As shown in Figure 1-1, the original Palm OS has a typical native application model,
as do many of the popular mobile operating systems. Under this model the application's
data, logic, and UI are integrated within an executable installed on the native operating
system, with direct access to the operating system's services and data.

Native
Application Model

Classic
Web Application Model

Figure 1-1. Native and web application models

HTTP i t DHTML/JavaScript

Classic
Web Application Model

Classic web applications are basic HTML-based applications that submit an HTTP
(Hypertext Transfer Protocol) request to a web server after every user action and wait
for a response before displaying an updated HTML page. More common in recent years
are Ajax applications, which handle many user interactions directly and make web
server requests asynchronously. Ajax applications are able to deliver a richer and more
responsive user experience. Some of the best examples of this richer experience are map
applications, which allow users to pan and zoom while asynchronously retrieving
needed tiles from the web server.

Web applications have some significant advantages over embedded applications. They
are easier to deploy and update using the same search and access techniques as web
pages use. Developing web applications is far easier, too: the simplicity of the languages
and tools, particularly for building connected applications, allows developers and de
signers to be more productive. Connected applications, or applications that leverage
dynamic data or web services, are becoming the predominant form for modern
applications.

2 I Chapter 1: Overview of webOS

The webOS application model combines the ease of development and maintenance
of a web application with the deep integration available to native applications,
significantly advancing the mobile user experience while keeping application develop
ment simple.

Application Framework and OS
Through Palm's application framework, applications can embed UI widgets with so
phisticated editing, navigation, and display features, enabling more sophisticated ap
plication UL The framework also includes event handling, notification services, and a
multitasking model. Applications can run in the background, managing data, events,
and services behind the scenes while engaging the user when needed.

You can create and manage your own persistent data using HTML 5 storage functions
and you can access data from some of the webOS core applications, such as Contacts
and Calendar. You also have access to some basic system services, most of which are
device-resident, such as Location services and Accelerometer data, along with some
web services, such as Publish and Subscribe.

Architecturally, Palm webOS is an embedded Linux operating system that hosts a cus
tom UI System Manager anchored by the open source W ebKit core. The System Man
ager provides a full range of system UI features including navigation, application
launching and lifecycle management, event management and notifications, system sta
tus, local and web searches, and renders application HTML/CSS/JavaScript code.

You don't need to build a webOS application to make your web content accessible to
web OS devices. Palm web OS maintains a separate instance of WebKit, which supports
a browser application to handle standard web pages and browser-based web applica
tions. While it's expected that more and more web content and services will be delivered
as webOS applications, there are millions of legacy websites and other information
sources that will continue to be presented in ways best viewed with a classic web
browser. Palm webOS supports traditional web content very competitively.

Beyond the operating system, webOS includes a number of core applications: Contacts,
Calendar, Tasks, Memos, Phone, Web, Email, and Messaging. Other applications are
included in the initial release, such as a Camera, Photos, Music, Videos, and Maps, but
the full application suite for a given webOS device will vary depending on the model
and carrier configuration.

User Interface
Palm webOS is designed for mobile, battery-operated devices with limited but variable
screen sizes, and a touch-driven UL User interaction is centered on one application at
a time, though applications, once launched, continue to run until closed even when

User Interface I 3

moved out of the foreground view. There is a rich notification system enabling appli
cations to subtly inform or directly engage the user at the application's discretion.

Navigation
Navigation is based on a few simple gestures with optional extensions that create a rich
vocabulary of commands to drive powerful navigation and editing features. To start
with, though, all you need to know is:

tap (act on the indicated object)
Commonly in a view that contains clusters or lists of items, tapping reveals infor
mation contained in an item. This can be thought of as an open function, which
changes the nature or context of the view to be about the selected item exclusively.
Alternately, a tap will change an object's state such as setting a check box or se
lecting an object.

back (the inverse of open)
This feature looks like the opposite of a tap: the item compresses down to its sum
mary in the containing context where it belongs. Typically, it reverses a view tran
sition, as going from a child view to a parent view.

scroll (flick and quick drags)
Used to quickly navigate lists and other views.

Beyond this, you can learn to pan, zoom, drag and drop, switch applications, switch
views, search, filter lists, and launch applications. But to begin with, only these three
gestures are needed to use a webOS device.

Launcher
When a user turns on a webOS device, the screen displays the selected wallpaper image
with the status bar across the top of the screen and, hovering near the bottom, the
Quick Launch bar. The Quick Launch bar is used to start up favorite applications or to
bring up the Launcher for access to all applications on the device. From this view, users
can initiate a search simply by typing the search string; searches can be performed on
contacts, installed applications, or to start a web search. Figure 1-2 shows both the
Quick Launch bar and the Launcher.

The launched application takes over the available screen becoming the foreground ap
plication; the application's view replaces the wallpaper image and the Quick Launch
bar is dismissed. The status bar remains and is always visible except in full screen mode,
which is available to applications such as the video player or others that request it. The
application launch sequence is fluid and smooth, as you will see with all webOS
transitions.

4 I Chapter 1: Overview of webOS

Figure 1-2. Quick Launch bar and Launcher

Card View
Figure 1-3 shows an application's main view, in this case the Email application's folder
view. The main view includes Ul elements that make up the basic email application.
The inbox view displays specific folders, which users can select to open a new card with
a detail view of the messages contained within the selected folder. At the bottom, float
ing icons represent menu items. A tap to a menu icon will typically reveal another view
associated with that menu action, a submenu, or a dialog box.

Running one application at a time, or performing one activity at a time, can be terribly
restrictive and inefficient. Palm webOS makes it easy to work on more than one thing
at a time. Swiping up, from the bottom of the display, brings up a new view, the Card
view, an example of which is shown in Figure 1-4. From the Card view, users can switch
to another activity simply by scrolling to and tapping the card representing that activity.
Users can also launch another application from the Quick Launch bar.

User Interface I S

Figure 1-3. Email application

The Card view was inspired by the way people handle a deck of cards. You can fan the
cards out to see which card is where, and within the deck of cards, you can select or
remove any single card with a simple gesture, or move it to a new location by slipping
it between adjacent cards. Users can manipulate the webOS Card view in similar ways
by scrolling through the cards, selecting and flicking cards off the top to remove them,
or selecting and dragging a card to a new location.

The term activity needs further explanation. In most applications, users will, by design,
work on one activity at a time. However, with some applications, it is more natural to
work on several activities in parallel. A common email activity is writing a new email
message, but in the middle of writing that message, the user may want to return to the
inbox to look up some information in another message or perhaps read an urgent mes
sage that has just arrived.

6 I Chapter 1: Overview of webOS

Figure 1-4. Card view with email and other applications

With a webOS device, the draft email message has its own card, separate from the email
inbox card. In fact, users can have as many draft email messages as they need, each in
their own cards; each is considered a separate activity and is independently accessible.
Switching between email messages is as simple as switching between applications, and
the data is safe, as it is saved automatically by the Email application. Figure 1-5 shows
the Card view with the email application's inbox card and a draft email compose card.

Notifications and the Dashboard
What happens to the foreground application when the user switches to a new appli
cation? The previous application is not closed, but continues to run as a background

application. Background applications can get events, read and write data, access serv
ices, repaint themselves, and are generally not restricted other than to run at a lower
priority than the foreground application.

User Interface I 7

Figure 1-5. Card view with email application and new email message draft

To allow background applications to communicate with the user, Palm provides a
notification system with two types of notifications:

Pop-up
Nonmodal dialog boxes that have a fixed height and include at least one button to
dismiss the dialog box. Pop-up notifications interrupt the user and are appropriate
for incoming phone calls, calendar alarms, navigation notifications, and other
time-sensitive or urgent messages. Users are forced to take action with pop-ups or
explicitly clear them, but since they are not modal, users are not required to respond
immediately.

Banner
A nonmodal icon and single unstyled string of text. Banner notifications are dis
played along the bottom of the screen within the Notification bar, which sits just
below the application window in what is called negative space since it is outside of
the card's window. After being displayed, banner notifications can leave a summary
icon in the Notification bar as a reminder to the user. Figure 1-6 shows an example
nf ::i h::innt>r nntific::itinn ::ind the summary icons are shown in Figure 1-7, indicating
that the music player is active and that there is an upcoming calendar event and
new messages.

8 I Chapter 1: Overview of webOS

.iGf•· FAVORITES -·----~
lnbox

lnbox

Figure 1-6. Banner notification

At any time, the user can tap the Notification bar, which brings up the Dashboard
view, shown in Figure 1-8. Notifications that are not cleared should display their current
statuses within a dashboard summary.

A dashboard summary is more than just a history of a notification-it is a dynamic
view that allows any background application to display ambient information or status.
For example, the Calendar application always displays the next event on the calendar
even before the event notification has been issued. In Figure 1-8, the Music application
shows the current song along with playback controls that you can manipulate to pause
the music or change the selection.

Dashboard applications are those that can be completely served through the dashboard,
as their entire purpose is to monitor and present information. For example, a weather
application could display the current weather for a targeted location in a dashboard
without having a Card view at all.

The Notification bar and Dashboard view manage messages and events, keeping users
abreast of changes in information without interrupting their current activities. It may
help to think of the Dashboard view as an event-driven model, while the Card view

User Interface I 9

Figure 1-7. Summary icons

provides the user with task-oriented navigation tools. The combination enables the
user to quickly track and access the information he needs when he needs it.

User Interface Principles
There are some foundational principles or values that support the overall webOS user
experience. You can exploit these principles to more deeply integrate your application
into the overall user experience. You can rely on the framework to provide most of what
is required at an implementation level, but you should keep in mind these key principles
when designing your application:

• Physical metaphors are reinforced through direct interaction with application ob
jects and features, instant response to actions, and smooth display and object tran
sitions with physics-based scrolling and other movement. For example, users delete
objects by flicking them off the screen and they can edit in place without auxiliary
dialog boxes or scenes.

• Maintain a sense of place with repeatable actions, reversible actions, stable object
nbrPmPnt ::inrl vi<;1rnl tr::in<;itinn<; th::it t::ikP thP llSf'r frnm nnf' nbcf' to the next. r------------] ------ -- ----- ------------ - - --- ---- - - - - - i.

10 I Chapter 1: Overview of webOS

Figure 1-8. Dashboard

• Always display up-to-date data, which requires both pushing and pulling the latest
data to and from the device so that the user is never looking at stale data when
more recent data is available. This also means managing on-device caches so that
when the device is out of coverage or otherwise offline, the user has access to the
last data received.

• Palm webOS is fast and simple to use. All features should be designed for instant
response, easy for novices to learn and efficient for experienced users.

• Minimize the steps for all common functions. Put frequently executed commands
on the screen and less frequently executed commands in the menus. Avoid pref
erences and settings where possible. If you must use them, keep them minimal.

• Don't block the user. Don't use a modal control when the same function can be
carried out nonmodally.

• Be consistent. Help users learn new tasks and features by leveraging what they have
already learned.

Palm applications have always been built around a direct interaction model, where the
user touches the screen to select, navigate, and edit. Palm webOS applications have a
significantly expanded vocabulary for interaction, but they start at the same place. Your

User Interface I 11

application design should be centered on direct interaction, with clear and distinguish
able targets. The platform will provide physical metaphors through display and navi
gation, but applications need to extend the metaphor with instantaneous response to

user actions, as well as smoothly transitioning display changes and object transitions.

You can find a lot more on the UI guidelines and design information in the Palm Mojo
SDK. We'll touch on the principles and reference standard style guidelines in the next
few chapters, but will not be covering this topic in depth.

Mojo Application Framework
A webOS application is based on standard HTML, CSS, and JavaScript, but the appli
cation model is not like the web application model. Applications are run within the UI
System Manager. The UI System Manager is an application runtime built on WebKit,
an open source web browser engine, to render the display, assist with events, and handle
JavaScript.

The webOS APis (application programming interfaces) are delivered as a JavaScript
framework, called the Mojo framework. Mojo includes common application-level
functions, a suite of powerful UI widgets, access to local storage and various applica
tion, and cloud and system services. To build full-featured webOS applications, many
developers will also leverage HTML 5 features such as video/audio tagging and data
base functions. Although not formally part of the framework, the Prototype JavaScript
framework is bundled with Mojo to assist with event and DOM (Document Object
Model) handling among many other great features.

The framework provides a specific structure for applications that is based on the Model
View-Controller (MVC) architectural pattern. This allows for better separation of busi
ness logic, data, and presentation. Following the conventions reduces complexity; each
component of an application has a defined format and location that the framework
knows how to handle by default.

You will get a more extensive overview of Mojo in Chapter 2, and you'll get details on
widgets, services, and styles starting in Chapter 3. For now, you should know that the
framework includes:

• Application structure, such as controllers, views, models, events, storage, notifica
tions, and logging

• UI widgets, including simple single-function widgets, complex multifunction widg
ets, and integrated media viewers

• Services, including access to application data and cross-app launching, location
services, cloud services, and accelerometer data

12 I Chapter 1: Overview of webOS

Anatomy of a webOS Application
Outside of the built-in applications, webOS applications are deployed over the Web.
They are located in Palm's App Catalog, an application distribution service that is built
into all webOS devices and is available to all registered developers. The basic lifecycle
stages are illustrated in Figure 1-9.

Background
App

App Catalog

Figure 1-9. Application lifecycle stages

App Removed

Minimize

When you download an application to the device, it will be installed, provided it has
been validly signed. After installation the application will appear in the Launcher.

Users can launch other applications from the Launcher into the foreground and switch
them between the foreground and background. Each of these state changes (launch,
deactivate, activate, close) is indicated by one or more events. Applications are able to
post notifications and optionally maintain a dashboard while in the background.

If it is a dashboard application, a card is not required; the application uses a dashboard
and notifications to communicate with the user. Dashboard applications typically in
clude a simple card-based preferences scene to initiate the application and configure
its settings. Every application requires at least one visible window at all times (either a
card or dashboard).

Mojo Application Framework I 13

Applications are updated periodically by the system. If running, the application is
closed, then the new version is installed and then launched. There isn't an update event,
so the application needs to reconcile changes after installation, including data migration
or other compatibility needs.

The user can remove an application and its data from the device. When the user at
tempts to delete an application, the system will stop the application if needed and
remove its components from the device. This includes removing it from the launcher
and any local application data, plus any data added to the Palm application databases
such as Contacts or Calendar data.

Stages and scenes

Palm's user experience architecture provides for a greater degree of application scope
than is normally considered in a web application. To support this and specific functions
of the framework, Palm has introduced a structure for webOS applications built around
stages and scenes.

A stage is similar to a conventional HTML window or browser tab. Applications can
have one or more stages, but typically the primary stage will correspond to the appli
cation's card. Other stages might include a dashboard, a pop-up notification, or sec
ondary cards for handling specific activities within the application. Refer to email as
an example of a multistage application, where the main card holds the account lists
and inbox, and displays the email contents, but new email messages are composed in
a separate card to allow for switching between compose and other email activities. Each
card is a separate stage but still part of a single application.

Scenes are mutually exclusive views of the application within a stage. Most applications
will provide a number of different kinds of scenes within the same stage, but some very
simple applications (such as the Calculator) will have just a single scene. An application
must have at least one scene, supported by a controller, a JavaScript object referred to
as a scene assistant, and a scene view, which is a segment of HTML representing the
layout of the scene.

Most applications will have multiple scenes. You will need to specifically activate (or
push) the current scene into the view and pop a scene when it's no longer needed.
Typically, a new scene is pushed after a user action, such as a tap on a UI widget and
an old scene is popped when the user gestures back.

As the terms imply, scenes are managed like a stack with new scenes pushed onto and
off of the stack with the last scene on the stack visible in the view. Mojo manages the
scene stack, but you will need to direct the action through provided functions and
respond to UI events that trigger scene transitions. Mojo has a number of stage con
troller functions specifically designed to assist you, and are described in Chapter 2,
Application Basics, and Chapter 3, WidRets.

14 I Chapterl: OverviewofwebOS

Application lifecycle

Palm webOS applications are required to use directory and file structure conventions
to enable the framework to run the applications without complex configuration files.
At the top level the application must have an appinfo.json object, providing the frame
work with the essential information needed to install and load the application. In ad
dition, all applications will have an index.html file, an icon.png for the application's
Launcher icon, and an app folder, which provides a directory structure for assistants
and views.

By convention, all of an application's images, other JavaScript, and application-specific
CSS should be contained in folders named images,javascripts, and stylesheets, respec
tively. This is not required, but makes it simpler to understand the application's
structure.

Launching a webOS application starts with loading the index.html file and any refer
enced stylesheets and JavaScript files, as would be done with any web application or
web page. However, the framework intervenes after the loading operations and invokes
the application, stage, and scene assistants to perform the application's setup functions
and to activate the first scene. From this point, the application is driven either by user
actions or dynamic data.

Significantly, this organizational model makes it possible for you to build an application
that will manage multiple activities that will be in different states (active, monitoring,
and background) at the same time.

Applications can range from the simple to the complex:

• Single-scene applications, such as a Calculator, which the user can launch, interact
with, and then set aside or close.

• Dashboard applications, such as traffic alert application that only prompts with
notifications when there is a traffic event and whose settings are controlled by its
dashboard.

• Connected applications like a social networking application, which provides a card
for interaction or viewing and a dashboard to provide status.

• Complex multistage applications like email, which can have an inbox card, one or
more compose cards, and a dashboard showing email status. When all the cards
are closed, the email application will run in the background to continue to sync
email messages and post notifications as new messages arrive.

Events

Palm webOS supports the standard DOM Level 2 event model. For DOM events, you
can use conventional techniques to set up listeners for any of the supported events and
assign event handlers in your JavaScript code.

Mojo Application Framework I 15

There are a number of custom events for UI widgets. These are covered in more detail
in Chapter 3. For these events, you will need to use custom event functions provided
within the framework. Mojo events work within the DOM event model, but include
support for listening to and generating custom Mojo event types and are stricter with
parameters.

The webOS Services work a bit differently, with registered callbacks instead of DOM
style events, and are covered starting in Chapter 8. The event-driven model isn't con
ventional to web development, but has been part of modern OS application design and
derives from that.

Storage

Mojo supports the HTML 5 database APis directly and provides high-level functions
to support simple create, read, update, or delete (CRUD) operations on local databases.
Through these Cookie and Depot functions, you can use local storage for application
preferences or cache data for faster access on application launch or for use when the
device is disconnected.

UI Widgets
Supporting webOS's UI are UI widgets and a set of standard styles for use with the
widgets and within your scenes. Mojo defines default styles for scenes and for each of
the widgets. You get the styles simply by declaring and using the widgets, and you can
also override the styles either collectively or individually with custom CSS.

The List is the most important widget in the framework. The webOS user experience
was designed around a fast and powerful list widget, binding lists to dynamic data
sources with instantaneous filtering and embedding objects within lists including im
ages, icons and other widgets.

There are some basic widgets, including buttons, selectors, and indicators. The Text
Field widget includes text entry and editing functions, including selection, cut/copy/
paste, and text filtering. A Text Field widget can be used singly, in groups, or in con
junction with a list widget.

Menu widgets can be used within specified areas on the screen; at the top and bottom
are the View and Command menus, which are completely under your control. The
App menu is handled by the system, but you can provide functions to service the Help
and Preferences items or add custom items to the menu. Some view and command
menu types are shown in Figure 1-10.

16 I Chapter 1: Overview of webOS

Use these buttons to see various
features:

Figure 1-10. View and command menu types

Pickers and viewers are more complex widgets. Pickers are for browsing and filtering
files or for selecting numbers, dates, or times. If you want users to play or view content
within your application, such as audio, video, or web content, then you need to include
the appropriate viewer.

Using widgets

You must declare widgets within your HTML as an empty div with an
x-mojo-element attribute. For example, the following declares a Toggle Button widget:

<div x-mojo-element="ToggleButton" id="my-toggle"></div>

The x-mojo-element attribute specifies the widget class used to fill out the div when the
HTML is added to the page. The id attribute must be unique and is required to reference
the widget from your JavaScript.

Mojo Application Framework I 17

Typically, you would declare the widget within a scene's view file, then direct Mojo to
instantiate the widget during the corresponding scene assistant setup method using the
scene controller's setupWidget() method:

II Setup toggle widget and an observer for when it is changed.
II this.toggle attributes for the toggle widget, specifying the 'value'
II property to be set to the toggle's boolean value
II this.togglemodel model for toggle; includes 'value' property, and sets
II 'disabled' to false meaning the toggle is selectable
II
II togglePressed Event handler for any changes to 'value' property

this.controller.setupWidget('my-toggle',
this.toggle = { modelProperty : 'value' },
this.toggleModel = { value : true, disabled : false });

this.controller.listen('my-toggle', Mojo.Event.propertyChange,
this.togglePressed.bindAsEventlistener(this));

This code directs the scene controller to set up my-toggle, which passes a set of attrib
utes called this. toggle and a data model called this. toggleModel to use when instan
tiating the widget and to register the togglePressed function for the widget's
propertyChange event. The widget will be instantiated whenever this scene is pushed
onto the scene stack.

To override the default style for this widget, select #my-toggle in your CSS and apply
the desired styling (or use . sliding-toggle-container to override the styling for all
toggle buttons in your application). For example, the following will override the default
positioning of the toggle button to the right of its label so that it appears to the left of
the label:

#my-toggle { float:left;
}

There's a lot more to come, so you shouldn't expect to be able to use this to start
working with any of these widgets yet. Chapters 3, 4, and 5 describe each of the widgets
and styles in complete detail.

Services
Even if you limited yourself to just using the webOS System UI, application model, and
UI widgets, you would have some unique opportunities for building web applications,
particularly with notifications and the dashboard. But you'd be missing the access and
integration that comes with a native OS platform. The services functions complete the
webOS platform, fulfilling its mission to bridge the web and native app worlds.

Through the services APls, you can access hardware features on webOS devices (such
as location services, the phone, and the camera) and you can leverage the core appli
cation data and services that have always been a key pan of a Palm OS device. Almosr

18 I Chapter 1: Overview of webOS

all of the core applications can be launched from within your application, and there
are CRUD functions for the calendar and contacts databases.

A service is an on-device server for any resource, data, or configuration that is exposed
through the framework for use within an application. The service can be performed by
the native OS (in the case of device services), an application, or by a server in the cloud.
The model is very powerful, as evidenced by the initial set of offered services.

The services differ from the rest of the framework because they are called through a
single function, Maj o. Service. Request ().The request passes aJSON 0 avaScript Object
Notation) object specific to the called service, and specifies callbacks for success and
failure of the service request.

Starting with Chapter 8, you'll find a full description of the general model and handling
techniques, as well as enumeration of all the services and the details for using each one.

Palm webOS Architecture
Palm webOS is based on the Linux 2.6 kernel, with a combination of open source and
Palm components providing user space services, referred to as the Core OS.

You won't have any direct interaction with the Core OS, nor will the end users. Instead
your access is through Mojo and the various services. Users interact with applications
and the UI System Manager, which is responsible for the System UI. Collectively, this
is known as the application environment. Figure 1-11 shows a simplified view of the
webOS architecture.

Figure 1-11. Simplified webOS architecture

This overview is included as background to give you an idea of how webOS works
this information is not needed to build applications, so you can skip it if you aren't
interested.

Palm webOS Architecture I 19

Application Environment
The application runtime environment is managed by the UI System Manager, which
also presents the System UI that is manipulated by the user. The framework provides
access to the UI widgets and the Palm webOS services. Supporting this environment is
the Core OS environment, an embedded Linux OS with some custom subsystems han
dling telephony, touch and keyboard input, power management, storage, and audio
routing. All these Core OS capabilities are managed by the application environment
and exposed to the end user as System UI and to the developer through Mojo APis.

Taking a deeper look at the webOS architecture, Figure 1-12 shows the major compo
nents within the application environment and the Core OS.

! ... :! :'-' .. *.
. .

...!'._
f

Wireless Media ~ .. ,4·····._ ___ ,,,.

~ OS Services OS Middleware
r·····

Kernel/User Space Boundary
r---.,-..-----i ..

Linux kernel :: l Filesystem 11 l TCP/IP

[Booti.e i[Drivers

Figure 1-12. webOS system architecture

The application environment refers to the system user experience and the feature set
that is exposed to the application developer, as represented by the Mojo framework
and the Palm services. The Core OS covers everything else: from the Linux kernel and
drivers, up through the OS services, middleware, wireless, and media subsystems. Let's
take a brief look at how this all works together.

The UI System Manager is responsible for almost everything in the system that is visible
to the user. The application runtime is provided by the application manager, built on

20 I Chapter 1: Overview of webOS

top of an instance of W ebKit, which loads the individual applications and hosts the
built-in framework and some special system applications, the status bar, and the
Launcher. The Application Manager runs in a single process, schedules and manages
each of the running applications, handles all rendering through interfaces to the graph
ics subsystem, and handles on-device storage through interfaces to the database engine.

Applications rely on the framework for their UI feature sets and for access to services.
The UI features are built into the framework and handled by the Application Manager
directly, but the service requests are routed over the Palm bus to the appropriate service
handler.

Core OS
The Core OS is based on a version of the Linux 2.6 kernel with the standard driver
architecture managed by udev with a proprietary boot loader. It supports an ext3 file
system for the internal (private) file partitions and FA T32 for the media file partition,
which can be externally mounted via USB (Universal Serial Bus) for transferring media
files to and from the device.

The Wireless Comms system at the highest level provides connection management that
automatically attaches to WAN (wide area network) and WiFi networks when availa
ble, and switches connections dynamically, prioritizing WiFi connections when both
are available. EVDO or UMTS telephony and WAN data are supported depending
upon the particular device model. Palm webOS also supports most standard Bluetooth
profiles and provides simple pairing services. The Bluetooth subsystem is tightly inte
grated with audio routing to dynamically handle audio paths based upon user prefer
ences and peripheral availability.

The media server is based on gstreamer and includes support for numerous audio and
video codecs and all mainstream image formats, and supports image capture through
the built-in camera. Video and audio capture is not supported in the initial webOS
products, but is inherently supported by the architecture. Video and audio playback
supports both file- and stream-based playback.

Software Developer Kit
Of course, the best way to get started writing webOS applications is to continue reading
this book, but you should also go to Palm's developer site, http://developer.palm.com,
and download the Mojo Software Developer Kit (SDK). The SDK includes the devel
opment tools, sample code, and the Mojo Framework, along with access to tutorial
and reference documentation. Palm also hosts a webOS discussion forum for registered
developers, where they can share ideas and ask questions in an environment that is
monitored by Palm staff.

Software Developer Kit I 21

Development Tools
Palm makes the Mojo SDK and tools available for Linux, Windows (XP/Vista), and
Mac OS X. The tools allow you to create a new webOS application project using sample
code and framework defaults, search reference documentation, debug your application
in the emulator or an attached Palm device, and publish an application. Chapter 2
includes more details about the tools in the SDK and third-party tools, but you'll find
a brief summary in Table 1-1.

Table 1-1. Palm developer tools

SDK installer Installs all webOS tools & SDK

Emulator Desktop-hosted device emulator

Command-line tools Create new project

Install and launch in desktop emulator or device

--··------~~~e and sign application ____ _

The tools can be installed and accessed as command-line tools on every platform. They
include a plug-in to Eclipse as well as Aptana Studio, a popular JavaScript/HTML/CSS
editor for Eclipse.

Mojo Framework and Sample Code
The Mojo SDK includes the Mojo framework and sample code to help you design and
implement your application. Unlike most JavaScript frameworks, you won't need to
include the Mojo framework with your application code, since Palm includes the
framework in every webOS device. The framework code included in the SDK is for
reference purposes to help you debug your applications.

The sample code is also for reference. There are samples for most of the significant
framework functions, including application lifecycle functions, UI widgets, and each
of the services. Simple applications are included to get you started. You can review and
leverage these applications as you choose.

webOSdev
Your main entry point to Palm's developer program is http://developer.palm.com/,
which is where Palm hosts webOSdev, the developer web community. This site provides
everything that you might need to build webOS applications, including access to the
SDK, all development tools, and documentation and training materials, as well as de
veloper forums and a blog specifically for the developer audience.

22 I Chapter 1: Overview of webOS

webOSdev is also the source for your application signing services and access to the
Application Catalog. This is an application store that is published and promoted with
every webOS device through a built-in Application Catalog application. Applications
need to be signed for installation on a webOS device, and at webOSdev, you can get
all the information you need to use the signing tools and to upload your application to

the catalog, once they are made available.

You can find more information on the Palm developer program in Appendix A of this
book and online at http://developer.palm.com.

Summary
In this introductory chapter, you were introduced to webOS, Palm's next generation
operating system. You should now have a basic understanding of the webOS architec
ture and application model along with the basic services available in the SDK.

You'll find that it's pretty easy to get started writing webOS applications. After all,
you're simply building web applications using conventional web languages and tools.
You can port a very simple Ajax application by creating an appinfo.json file for your
application at the same level as your application's index.html file. With as little as that,
your application can be published and made available for download to any webOS
device.

From there you can invest more deeply by building in the Mojo UI widgets to take
advantage of the fluid physics engine, gesture navigation, beautiful visual features, text
editing, and the powerful notification system.You can move beyond simple foreground
applications that rely on active user interaction, and adapt your application to run in
the background or even as a dashboard application. You can also create an application
that can open new windows for each new activity, allowing users to multitask within
a single application. There's a whole new generation of applications possible on the
webOS platform, just waiting to be built.

Summary I 23

CHAPTER2

Application Basics

Palm webOS provides a great environment for building applications. The use of
standard web development languages and tools, combined with access to native serv
ices and local data gives you a powerful and productive platform. Even Java and
CIC++ developers will find that building applications using dynamic languages on
webOS is fun and exciting. And despite what you might have heard, you can build real
applications, not just web gadgets and spinners.

A browser-based web application is really just a set of complex web pages. They are
downloaded from a web server and present their Uls as HTML, often with JavaScript
as a client-side language to validate input, animate page elements, and make back
ground Ajax calls back to the web server for additional interactivity.

If you are a developer writing these web applications, the Palm webOS development
environment will feel familiar. JavaScript library code generates the HTML UI, interacts
with page elements, and issues Ajax calls to web servers. You can style the UI with CSS,
either to make your application look and feel consistent with Palm's style guidelines or
to make your own unique look.

The programming model is a little different. Since the HTML is not generated on a
server (say, using Java, PHP, or Ruby), there is no request/response lifecycle. Instead,
all of your application code is in JavaScript-even interactions with key webOS systems
(UI widgets, location services, and other applications) are made with JavaScript.

If you are a developer writing desktop or other native mobile phone applications in
Java or C++, the Palm webOS development environment will feel familiar as well. There
is a robust API for creating UI elements, accessing local storage, and making system
calls. There is an application framework that makes it simple to do common tasks.

What is different for you is that the programming language is JavaScript and the UI is
generated using HTML and styled using CSS. If you're new to JavaScript, HTML, or
CSS, you may want to familiarize yourself with their fundamentals before tackling the
next few chapters. Even so, the material presented here is fairly basic, and you don't
need to be a web development expert to build applications for webOS.

25

In this chapter, you'll learn how to build a basic webOS application, starting with the
installation of the SDK. You'll create a new application project, customize the critical
application components, and develop the first parts of the News application, which
will be used throughout the book as our sample application. We will also go into detail
on how to use the framework and apply the different APis, widgets, and styles.

Getting Started
You'll find everything you need to get started in developing Palm webOS applications
at webOSdev, the Palm developer site (http://developer.palm.com). You'll need to sign
up as a Palm developer and download the SDK. There are options for Mac OS X,
Windows XP/Vista, and Linux, so download the SDK package that matches your de
velopment platform and run the installer.

The installation will put a copy of the SDK, including the Palm Mojo framework and
Palm development tools, into one of the project directories listed in Table 2-1.

Table 2-1. SDK installation directories

Mac OS X /opt/PalmSDK/Current/

Windows XP/Vista (:\Program Fi/es\Palm\SDK

__ L!~~~ ___ __ _ __ [~pt{~a!l1!5-Pf(!~~~~e.~t. ____ _

The installer will give you the option of installing different tool bundles. The tools
package includes a collection of command-line tools which can be run on all platforms.
In addition, the tools have been integrated into some popular IDEs and web develop
ment editors. Check the developer portal for an up-to-date list of bundles and suppor
ted editors.

The application samples in this book were all developed on a Mac with TextMate and
the command-line tools. The command-line option for the tools will be shown in the
examples and is the same on every platform. If you are using Eclipse/ Aptana or another
tool bundle, there should generally be direct menu options for the commands used in
the book. In some cases, several commands may be combined into one menu option.

Creating Your Application
Palm webOS applications have a standard directory structure with naming conventions
and some required files. To help you get started quickly, the SDK includes palm
generate, a command-line tool that takes an application or scene name as arguments
and creates the required directories and files. You can run this from the command line
1.1 "' • .1 1 1 · . 1 1 1 1 . l . . .1 r .1 . . .1\
~Lllt; .j) l:S Ult; \.:UllllllaUU-Ullt; pruu1pL auu :SllUUlU IlUL Ut; t:Illt:rt:u a:; pal L Ul Ult: \.:UllllllaUU);

$ palm-generate AppName

26 I Chapter 2: Application Basics

. •' The command-line tools all work off of the current directory. You
II• should change the directory to a projects directory (or wherever your
\•~,1 ..

~-__..,..~,· workspace is located) before running the tools.

The tool creates a functional application within a conventional webOS directory struc
ture. Every webOS application should have a directory structure similar to the follow
ing, and some parts of the structure are required:

AppName
-> app

-> assistants
-> first-assistant.js
-> second-assistant.js
-> •••

-> views
-> first

-> first-scene.html
-> second

-> second-scene.html
-> .••

-> appinfo.json
-> icon.png
-> images

-> image_1.png
-> image_2.jpg
-> •••

-> index.html
-> sources.json
-> stylesheets

-> AppName.css
-> ••.

You are free to choose any project directory name, but AppName should correspond to
the value of the id property in appinfo.json, discussed later in this section. An applica
tion's logic and presentation files reside in the app directory, which provides a directory
structure loosely based on the MVC pattern.

There are scene assistants in the assistants directory of your application. As discussed
earlier, a scene is a particular interactive screen in an application. Scene assistants are
delegates implemented in your application, and are used by the framework's controllers
to customize an application's behavior.

All layout files are located in the views directory of your application. A scene assistant
has one main HTML view file, which provides the structure and content of its presen
tation page. It also includes optional HTML template view files that may be used to
display dynamic data, such as JavaScript object properties for UI controls. These files
are fragments of the UI that are combined together by the framework to produce the
final presentation of the scene.

Getting Started I 27

An application's images are located in the images directory and the CSS files are placed
in the stylesheets directory. As with web applications, webOS applications use HTML
to structure the layout of a page and CSS to style the presentation. CSS files are used
to style your custom HTML, and you can also use CSS to override Mojo' s default styles.

The appinfo.json object gives the system the information it needs to load and launch
your application. Within a pp info. j son there are both required and optional properties,
which are described in Table 2-2.

The palm-generate tool creates an appinfo.json file with a common set of properties set
to default values. The most important property is the id, which must be unique for
each application; it's used in service calls to identify the caller and serves as a unique
application identifier.

Table 2-2. appinfo.json properties and values

title

type

main

id

version

vendor

vendorurl

noWindow

icon

any Yes Name of application as it appears in Launcher and in application window

web Yes Conventional application

any Yes Application entry point

any Yes Must be unique for each application

x.y.z Yes Application version number

any Yes A string representing the maker of the application; it is used in launcher and
deviceinfo dialogs

any No A string representing a URL that turns the vendor portion in deviceinfo dialogs to
hyperlinks

true/false No Background application; defaults to false

file path No Application's launcher icon; defaults to icon.png

A warning about syntax:

• Don't include any comments in appinfo.json files(/* or//).

• Must use double quotes around properties-no single quotes!

• Strict]SON parser; this file must follow all the rules for correct
]SON.

The Application Manager is responsible for putting the application in the Launcher
using the icon.png as the icon for your application. Application icons should be 64 x

64 pixels, encoded as a PNG with 24 bit/pixel RGB and 8 bits alpha. The icon's image
should be about 56 x 56 pixels within the PNG bounds.

28 I Chapter 2: Application Basics

Refer to the webOS style guidelines found in the SDK documentation
for more information about icon design.

Following web standards, index.html is the first page loaded when a webOS application
is launched. There are no restrictions on what you put into the index.html, but you do
need to load the Mojo framework here. Include the following in the header section:

<script src="/usr/palm/frameworks/mojo/mojo.js"
type="text/javascript" x-mojo-version="1"></script>

This code loads the framework indicated by the x-mojo-version attribute; in this case
version 1. You should always specify the latest version of the framework that you know
is compatible with your application. If needed, Palm will include old versions of the
framework in webOS releases, so you don't need to worry about your application
breaking when Palm updates the framework.

You can load your JavaScript using the sources tag in index.html, but this will load all
the JavaScript at application launch. To improve launch performance, it is recommen
ded that you use sources.json to provide lazy loading of the JavaScript. The
palm-generate tool will create a template, and you can add the application specific files
as they are created.

The generated file includes only your stage assistant, but a typical sources.json includes
some scene assistants and perhaps an app assistant:

11 source 11
: "app/assistants/app-assistant.js"

},
{

11 source": "app/assistants/stage-assistant.js"
},
{

11 source": "app/assistants/first-assistant.js",
"scenes": "first"

},
{

11 source 11
: "app/models/data.js",

"scenes": ["first", "second 11
]

},
{

11 source 11
: "app/assistants/second-assistant.js",

"scenes 11
: "second"

Getting Started I 29

The app-assistant file path comes first, followed by the stage-assistant and the
scenes file paths after that. The scene file paths can be in any order, but must include
both the source and scenes properties. Note the example where both the first and
second scenes with a dependency on the same file. HTML files are not included.

Applications can add other directories to the structure above. For example, you might
put common JavaScript libraries under a javascripts or library directory, or put test
libraries under tests. The required elements are:

• The app directory and everything within it

• appinfo.json

The rest of the structure and naming is recommended but not required.

Testing and Debugging
Most web applications can simply be loaded into a browser to run and debug them,
and webOS apps can also be tested and debugged that way. However, you'll run into
difficulty if your application is using Mojo widgets or webOS services. And it's difficult
to fully test your application without seeing it working within the webOS System UI
and other applications.

For this reason, you'll want to use the webOS Emulator with integrated JavaScript
debugger and DOM inspector. Unlike the other development tools, the emulator is a
full native application on every platform and will be found in the Applications directory
on MacOS X and Linux or in the Programs directory on Windows XP /Vista. First, you
can launch the emulator directly; it will bring up a window that looks like a Palm Pre.
Or, you can use command-line tools; use palm-package to package your application and
use palm-install to run it on the emulator.

You'll also use the debugger for testing your applications after connecting any Palm
webOS device to your system using a USB cable. From the command line you can run
palm-package and palm-install to run your application on the device as well.

News
After the core webOS applications, one of the first applications built for webOS was
the News application. In August 2008, the webOS platform was far enough along that
the webOS Engineering team wanted to have someone completely unfamiliar with
webOS write a web OS application. An experienced JavaScript developer built a prim
itive version of the News application and gave us feedback on the tools and documen
tation. After a month, we ended the experiment, put the prototype into Subversion and
went on with the project.

Over a recent holiday, I started poking around at the application thinking that it would
be fun to get it updated to the latest framework and see what could be done with it.

30 I Chapter 2: Application Basics

Within a few days, I had rewritten the application and had something useful; a week
or so later it was ready to post on the internal website. I was amazed at how much fun
I was having with it and felt guilty for continuing to work on it; it was addictive.

An RSS (Really Simple Syndication) reader is a useful application and although simple
to write, it uses a lot of the features of the framework, so it seemed like a good choice
for a sample application in this book. We're going to build the application up bit by
bit throughout the book to explore how to write a webOS application and how to use
the different APis, widgets, and styles. We won't use every API or every widget or every
style, but there'll be enough from each part of the framework that you can see how to
apply the examples to things that are not covered.

The News application manages a list of newsfeeds, periodically updating the feeds with
new stories. It has the following major features:

• Users can monitor the newsfeeds for unread stories, scroll through the stories
within a feed, and display individual stories.

• Feeds and stories are cached on the device for offline viewing.

• The original and full story can be viewed in the browser.

• Keyword searches are carried out over the entire feed database.

• Stories are shared through email or messaging.

• Feeds are updated in the background with optional notifications and a dashboard
summary.

• The application was localized for the Spanish language.

News Wireframes
It's useful to block out the design for an application before you begin any coding or
detail design.A wireframe shows the layout of an application view and the UI flow from
one view to the next. A set of the News wireframes is shown in Figure 2-1.

This shows the main scene of the News application with a featured story in the top
third of the screen. This is a text scroller widget encapsulated with a base div style called
palm-group-title. Below the feature story area is the feed list widget, which serves as an
index of the selected feeds. At the top of the scene is a search field built with a filter
list widget, which is hidden until some text is keyed, at which point the entered text
will be used in a keyword search of the entire feed database.

',' None of the style or widget names will make much sense right now, so
II• don't worry about that, but note that the wireframe calls out these base
.,.,~,'

~-_,•..,.,~· styles and the widgets that will be used.

News I 31

Figure 2-1. Part of the News wireframes

.Hi~den Field untilt11X(entry
Keyword search of~rt fe~\ls

The News application supports other scenes, which users can bring into view by tap
ping different elements. Tapping a feed list entry will bring up a new scene called
storylist, which is a list of the stories in the feed. A scene of a specific story is viewed
by tapping the story in the list. You can also get to the storyView scene by tapping the
featured story. Tapping a story from story View will go to the original story URL in yet
another scene, the webView scene.

A complete set of wireframes would include a diagram for each scene and for each
dialog box, such as the dialog box in this scene that adds new feeds to the list.

Chapter 1 includes an overview on style guidelines, and it's at this wireframe design
stage that the guidelines are best applied. The News application uses physical meta
phors of showing the feeds and stories in lists that can be tapped (to view), scrolled,
deleted, or rearranged. Users add new feeds by tapping on the end of the list. No menus
are needed; all the actions are directly applied to the elements on the screen.

The SDK includes a comprehensive set of style guidelines that you may find helpful. It
covers broad user-experience guidelines for designing webOS applications, and in
cludes technical details that are essential for visual and interaction designers. The style
guidelines will help you design for the platform and not just a single device.

32 I Chapter 2: Application Basics

Designing for Palm webOS
Palm webOS is initially available on the Palm Pre, but it is a platform that will be used
on other devices with different screen sizes and resolutions. Design your application so
that it works well on different devices by following these key guidelines:

• Total usable screen real estate will be at least 320 pixels wide in primary use mode,
but will often be larger. An application should gracefully handle different window
sizes, usually by having at least one section of the screen that can expand or
contract.

• The minimum hit target is 48 pixels.

• The minimum font size is 16 pixels for lowercase text and 14 pixels for all caps.

• Use Mojo.Environment.Devicelnfo to retrieve device specific property values.

You should refer to the style guidelines in the SDK for the complete and most up-to
date information.

Creating the News Application
We'll start by repeating the steps covered in the previous section to create a new ap
plication project. Using palm-generate, create a new application named News. You'll see
an initial application structure (shown in Figure 2-2):

$ palm-generate News

assistants
stage-assistant.JS JavaSc.. .. script 4 KB

views Folder
[J app.lnfo.json TextM ... ment 4 KB

Images Folder
Index .. html HTML, .. ument 4KB

sources.json TextM ... ment 4 KB

style sheets Folder
:~ News.css css st.. sheet 4 KB

Figure 2-2. Creating a new Palm webOS application

News I 33

Running this app simply displays some text, which isn't very interesting. We'll add the
first scene and some actual application content, but first there's some basic house
keeping to do.

Start by cleaning up the index.html file. Remove all of the HTML code between the
<body> and </body> tags, and update the application title. In the following sample, the
application title has been left as News, but it has been formatted into title case:

<?xml version="1.o" encoding="UTF-8"?>
< ! DOCTYPE html PUBLIC "-/ /W3C//DTD XHTML 1.1/ /EN"

"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head>

<title>News</title>
<script src="/usr/lib/mojo/framework/mojo.js" type="text/javascript"

x-mojo-version="1"></script>

<!-- application stylesheet come in after the one loaded by the framework -->
<link href="stylesheets/News.css" media="screen" rel="stylesheet"

type="text/css" />
</head>
<body>
</body>
</html>

Customizing the Launcher Icon and Application ID
While not strictly necessary, each application should have a unique launcher icon. To
implement this, you will create a custom graphic and replace the generic icon.png in
the News directory. If you don't want to draw a custom graphic you can repurpose
other graphics as long as they have close to a 1:1 aspect ratio (square, in other words)
by using resampling tools like the Preview application on the Macintosh. See the sidebar
"Designing for Palm webOS" on page 33 for more information on creating application
icons.

Next, we'll open the appinfo.json file and update the id property. You should at least
replace the yourdomain string with your actual domain name (in this case we'll use
palm) or some other unique string and add the vendor name. We'll also modify the title
to put the application name in title case:

"title": "News",
"type": "web",
"main": "index. html",
"id": "com.palm.app.news",
''version'': 1'1.0.0'',
"vendor": "Palm",
''icon'': ''icon.png'1

34 I Chapter 2: Application Basics

The application doesn't yet do anything more than before, but now it is uniquely the
News application. It's time to add the first newsfeed features.

Adding the First Scene
The first scene will just display a story from one newsfeed, which will be hardcoded to
start with. This scene will use several of Mojo's scene styles, including palm-page
header, palm-page-header-wrapper, and title.

The scene view

As you learned earlier in the chapter, a scene is defined by an HTML view file and
controlled by a JavaScript assistant. Again, use palm-generate, this time to create a
scene:

$ palm-generate -t new_scene -p "name=storyView" News

This command creates a directory with the scene name, and within that directory, an
empty HTML file with the scene name followed by -scene. html. In this case, the file
name will be views/story View/story View-scene.html. It also creates a JavaScript assis
tant, assistantslstoryView-assistant.js, with the same base scene name. The JavaScript
assistant will be discussed in the next section. The file structure is shown in Figure 2-3.

views

story\fiew
Iii storyView-scene.htm!

applnfo.json

fcon.png

im~es

index.html

sources.json
styjesheets

[£1 News.css

Figure 2-3. A new scene view file

JavaSc ... script

javaSc ...• script

Folder

Folder

ITTML..ument

Textf!.L.ment

Porta . ., lmage

Folder
HTML..umem

Text.M ... ment

Custom Application Structures

4 KB

4KB

4 KB
4KI!

SKB

4 KB

4 KB

4KB

If you find the conventional structure too constraining, you can customize it for your
application. Place your scene's .html file where you want it under the app directory. For

News I 35

example, you can group several scenes into a separate directory called main within the
views directory, such as this scene, named front:

applviews/main/frontlfront-scene. html

In this case, we've added another directory between the views directory and the scene
directory. When pushing example-scene-one you will do it like so:

Moj o. Controller. stageController. pushScene({name: "front",
sceneTemplate:"main/front/front-scene"});

The call to push the scene tells the framework explicitly where to find the scene's tem
plate. This is useful for code organization purposes; particularly with large applications
or in cases when you might want to reuse code in different applications. It's also a
technique that you can use to work around the naming convention between the scene's
view file name and assistant. You can find some examples of this in the SDK
sample code.

Within the scene's view file, you need to specify the complete HTML required by the
scene. The title and text will be inserted dynamically, so there are just div tags for the
title with an id storyViewTi tle, and the story item with the id storyViewSummary, with
some template strings between the div tags for the dynamic data:

<div id='storyViewScene'>
<div class="palm-page-header multi-line">

<div class="palm-page-header-wrapper">
<div id="storyViewTitle" class="title left">
</div>

</div>
</div>
<div class="palm-text-wrapper">

<div id="storyViewSummary" class="palm-body-text">
</div>

</div>
</div>

You'll notice that the storyViewTitle div is wrapped by two div tags, which each have
class names corresponding to Mojo scene styles. Scene styles are covered later in this
chapter, but for this example you should note that the scene styles are defined through
empty divs with class names corresponding to the scene style selected. Where multiple
elements can be included in the style, there will be an inner wrapper style for each
element. Occasionally, the styles will have modifiers; in the example above, the base
style is modified with multi - line, signifying some behavior to accommodate titles that
are longer than a single line.

In Mojo, CSS class names belong to the designers and are used for styling, whereas the
element IDs belong to the developer. This rule allowed the Mojo design and develop
ment teams to work somewhat independently without conflicting. You always invoke
a Mojo style by assigning the appropriate style class name to the div. For scene styles,
the element will usually be an empty div, sometimes with some required nested div(s).

36 I Chapter 2: Application Basics

The scene assistant

Mojo requires that the scene assistant's name match the view name, so you should
notice that palm-generate created a scene assistant called storyView-assistant.js in the
Newslapplassistants directory. The assistant includes a function definition along with
the four standard methods:

• setup

• activate

• deactivate

• cleanup

The function naming is important; the assistant's name should be the same as the
filename, with the removal of any delimiters and beginning with a capital letter, as in
this example:

I* StoryViewAssistant - NEWS

Copyright 2009 Palm, Inc. All rights reserved.

Passed a story element, displays that element in a full scene view.

Major components:
- StoryView; display story in main scene

*I

function StoryViewAssistant() {

II setup
StoryViewAssistant.prototype.setup = function() {

II Update story title in header and summary
var storyViewTitleElement = this.controller.get("storyViewTitle");
var storyViewSummaryElement = this.controller.get("storyViewSummary");
storyViewTitleElement.innerHTML =

"Green Inc.: Cities Target Lending to Speed Energy Projects";
storyViewSummaryElement.innerHTML =

"A number of municipalities across the country are getting creative and
experimenting with incremental, neighborhood- or district-based lending
programs that help homeowners pay the up-front capital costs for efficiency
or renewable energy projects.";

} ;

II activate - called each time the scene is revealed
StoryViewAssistant.prototype.activate = function(event)

};

II deactivate - called each time the scene is replaced by another scene
StoryViewAssistant.prototype.deactivate = function(event) {

News I 37

};

II cleanup - called once, after deactivate when scene is popped
StoryViewAssistant.prototype.cleanup = function(event)

};

The setup method is invoked, and the story's title and text are put into the div tags and
into the scene before the scene is activated. We use the Mojo controller method,
get(), to retrieve the storyViewTitle and storyViewSummary DOM elements from the
scene, and then insert the title and text items into the respective element's innerHTML.

The get() method is functionally equivalent to the conventional getElement() or Pro
totype's $() functions, but is required when developing multistage and background
applications (see Chapter 10). It's good practice to use it in even simple applications
like this.

The code sample shows empty activate, deactivate, and cleanup methods, which are
created by palm-generate when generating a new scene. Empty methods are okay, but
can be omitted. If any of the standard methods are omitted, the framework will just
skip over the call to that method.

Pushing the scene

To push the scene, modify stage-assistant.js to push the storyView scene:

function StageAssistant () {
}

StageAssistant.prototype.setup = function()
this.controller.pushScene("storyView");

};

Notice that only the scene name is used here. You can see why the naming convention
is important; the framework uses the scene name to access the assistant, view directory,
and view file. Finally, add a reference into sources.json to load storyView-assistant.js:

{

},
{

"source": "app/assistantslstage-assistant.js"

"source": "applassistantslstoryView-assistant. j s",
"scenes": "storyView"

Now run the application by packaging and installing the application. You'll need to

first launch the emulator or attach a device to your desktop over USB. In either case,
first run palm-package and then palm-install:

38 I Chapter 2: Application Basics

$ palm-package News
Creating package in /Users/Mitch/Documents/workspace/com.palm.app.news_1.o.o_all.ipk
$ palm-install --install com.palm.app.news_l.O.O_all.ipk

Figure 2-4 shows the first scene.

Figure 2-4. story View scene

Styling the scene

The first scene was styled using standard framework styles. The story title is styled with
palm-page-header, palm-page-header-wrapper, title, and left, while the story text uses
palm-text-wrapper and palm-body-text. In many cases, the framework styles will be all
you need, but you can use the application's stylesheet to override those styles or add
your own application-specific styles.

For example, we could override the palm-body-text style if we wanted to change the
text body style to enlarge text so that it's easier to read. Add a rule to the News.css file,
and you will see a new version of the scene, as shown in Figure 2-5:

/* News CSS
App overrides of palm scene and widget styles.

*/

News I 39

.palm-body-text {
font-size: 16pt;

The style override is applied to the base style class palm-body-text, but this change will
affect every use of that style within your application. If you are just trying to change
this one instance of this style, you should add another class to the element you wish to
style and apply the rule to that class instead. Here we create a rule with a new class
name, news-large:

/* News CSS
App overrides of palm scene and widget styles.

*/

.news-large {
font-size: 16pt;

Then add this class name to the text element in view/storyView/storyView
scene. html and you'll again see the results shown in Figure 2-5:

<div class="palm-text-wrapper">
<div id="storyViewSummary" class="palm-body-text news-large">
</div>

</div>

With the base styles, it's the class names that must be kept intact in order to retain the
base styling, but you can freely create custom styles to augment the base styles.

',' It may be necessary to override the base styles to get the right appearance
If• for your application, so don't be afraid to dive into the CSS. Palm's
...... ~,' ill

~-~•.,.~.· development tools help you see the styling rules applied to any given
• element to help you make the desired adjustments.

Base Styles
Applying styles is an important topic, so we'll return to it again later. Chapter 7 is
devoted entirely to advanced styles, covering some general styling tips and techniques.
A lot of time can be spent getting the right pixels in the right places.

Mojo includes a sophisticated suite of base styles that are used heavily by the framework
and the core webOS applications. You should leverage them within your applications
where the base styles will make your application feel like a native webOS application,
and users will learn how to use your application more quickly, based on their experience
with other applications. That said, you have ultimate flexibility to change the appear
ance of your application as needed, and you can override individual properties within
the styles to tailor them to your needs.
--rt...~,...-.. ~, .. ~11 ~ "",.,,1-.. ... ~,..,..C ,,...,.,, ... ~,..,. .. T.,. ,......c .. i,.,.... ,....hnc i.,.,..,,,...o,,..l,:'.).,. ,....,.....;I ,.....-r,..,."lr;.-:la. ""ma. 1-v"'C';,...

J.. _l_l_l_.:I .:')\,.,\.,ll.V.ll VV _LJ_J_ 51 V \,., Cl. l..J_l_ l\.,,.l V V \.,.L V .l\,., VV VJ. L.l_l_\,., VV \,.,LJ'-./J L.JCl.J\.,, .JL J .11-...J U..LJ.""-l- t'.L \JV .l\...l'-' J\J.l.L.Ll..- lJUUJ...,_

techniques that you can use. It's beyond the scope of this book to describe the base

40 I Chapter 2: Application Basics

Anumber ofmonidpalities
across. the.country .are.g•ettiog
creative and experimenting With
ino-.ementetl, .neighbo.rhe>od" Cir
dlstri(t·base~··.1en~ing pr9g~rns
that hefph9fT'1e<J1Nners·.pay the
up-front ca!Jitalcostsfor
efficiency·. or ren•wal:?lee~ergy
projects.

Figure 2-5. Modified story View scene

styles in detail. It's a big topic and, given the central nature of the UI design to Palm
webOS, it's also changing frequently. If you're interested in an in-depth description of
webOS styling, you should check out the "Human Interface Guidelines," and the
"Styles and CSS Reference" in the Palm SDK. In addition, Appendix C includes a ref
erence to the base styles with more detail on the options for applying those styles.

Elements

Mojo defines base styling for key textual elements such as body, paragraph, input,
button, and others. If you want your application to have the look and feel of a webOS
application, you shouldn't override these styles. These style definitions can be found
in the Mojo framework in stylesheets/global-base.css.

Scene styles

The most basic style elements are those used to present a scene template. These include
page headers, groups, labels, spacers, and dividers, along with background images.
Some of the styles that you will find are shown in Table 2-3; most of these styles are
found in the Mojo framework in stylesheetslglobal-lists.css and are described in more
detail in Appendix C.

News I 41

Table 2-3. Scene styles

palm-page-header

palm-header

palm-header-spacer

palm-group

palm-group-title

palm-group unlabeled

palm-divider labeled

palm-divider collapsible

Scene style with header that adjusts to text dimension; can be single line or multi-line

Scene style with pill at top; single line only

Keeps other scene elements from folding under the header

Container for lists, text fields, and/or widgets; internal to scene

Title for palm-group

Internal to scene; no title

Labeled divider

You can use each of these styles as-is or adjust the style properties in your CSS. These
are just a few of the scene styles available through the framework; the SDK includes a
much more extensive discussion of the styles available to you.

Widget styles

Each widget is designed with a base style. In the next three chapters, we'll cover widgets
in detail, including the base styles and properties. Generally speaking, however, you
will be able to override the widget style in your application CSS, and you can refer to
the style definitions in the framework's CSS files for guidance. Be careful though; the
widgets are tuned around the provided styles and you can easily break the widget's
behavior by overriding the widget's style. Table 2-4 cross-references the widget styles
with the framework's CSS files.

Table 2-4. Widget style definitions and corresponding CSS files

Buttons

Dialogs

Drawers

Indicators

Lists

Menus

Notifications

TextFields

Pickers

globa/-buttons.css, global-buttons-dark.css

globa/.css, globa/-dark.css

global-lists.css, global-lists-dark.css

g/oba/.css, globa/-dark.css

g/obal-lists.css, global-lists-dark.css

global-menus.css, globat-menus-dark.css

global-notifications.css

globa/-textfields.css, global-textfie/ds-dark.css

. 9/obal~menu~:Ess,g/oba .1 .. -... m e .. n us .-.... d a ~ ... k c ss...

42 I Chapter 2: Application Basics

Application Launch Lifecycle
It's helpful to understand what's happening when an application is launched and the
first scene is pushed. When News is launched, the Mojo framework will first look for
an App Assistant, an optional controller class. The AppAssistant is used to handle launch
arguments from the system and to set up stages if the application requires more than
the main Card view or has multiple stages, but it isn't a required element. If the system
finds the AppAssistant, it will be called. Otherwise this step will be skipped.

In this minimal form, News doesn't have an AppAssistant; many simple single stage
applications don't. But as you'll see in Chapter 10, the AppAssistant is important for
background applications and to applications with multiple stages.

In Chapter 10 we'll add the AppAssistant to News and explore its use
in detail.

The StageAssistant contains code that applies to all scenes in a stage and is used to push
the first scene onto the stage, which will create the initial view for the application. The
terms push and pop are used to refer to scenes being made visible in a window (push)
or removed from the window (pop), reinforcing the concept that scene navigation is
like managing a stack. The user opens new scenes with a tap and then uses the back
gesture to return to the previous scene (as if tracking along a stack of scenes).

The framework always creates a stage controller and if the application includes a de
fined Stage Assistant, its constructor function is used to create a Stage Assistant and its
setup method is called.

If there isn't a Stage Assistant, or if there is one but it doesn't push an initial scene, the
framework will look for a scene named main to push as the first scene. If you provide
a Stage Assistant and push the first scene directly, you may call the scene whatever
you choose; otherwise, the first scene assistant must be named main, and
main-assistant.js must be included in your assistant's directory.

Most of what happens within a webOS application occurs within a scene. Once the
initial scene is pushed, the framework will load the scene's view file, then invoke first
the setup and then the activate methods of the Scene Assistant. The setup method sets
up widgets and event listeners, and performs other setup functions that persist across
the life of the scene. activate is always called before the scene is put into the view,
either because of a push or because a later scene was popped. setup is only called when
the scene is pushed.

When a scene is popped or covered up by the push of a new scene, the framework
invokes the deactivate method for the old scene before activating the new scene. The
naming conventions allow the framework to manage both the view and assistant meth
ods of the scene without explicit configuration files. It may seem a little cumbersome

News I 43

at first, but it's a simple and self-documenting technique. cleanup is called only when
the scene is popped.

All Palm applications will have at least one stage, with each stage supporting one or
more scenes. Applications can have multiple stages and the means to transition between
these stages. When creating applications that can support multiple activities, such as
an email application that supports both viewing a message list and composing multiple
email messages, you should structure the application stages around activities.

Adding a Second Scene
At this point, the application displays a single story within a single scene, which is very
limited. We can display more stories by adding some additional scenes, but first
we'll create the core data model to store the newsfeeds and stories. Under Newslappl
models, create feeds.js, an object that will include the global array of newsfeed objects,
each of which in turn includes an array of stories. Later we'll add methods to the object
to perform common functions, such as updating and backing up the data. The following
code sample includes a breakdown of these data objects and expands the definition of
our sample newsfeed with four sample stories:

I* Feeds - the primary data model for the News app. Feeds includes the primary
data structure for the newsfeeds, which are structured as a list of lists:

*I

Feeds.list entry is:
list[x]. title
list[x].url
list[x].type
list[x].numUnRead
list[x].newStoryCount
list[x].stories

list.stories entry is:
stories[y].title
stories[y].text
stories[y].summary
stories[y].unreadStyle
stories[y].url

Methods:

String
String
String
Integer
Integer
Array

String
String
String
String
String

Title entered by user
Feed source URL in unescaped form
Feed type: either rdf, rss or atom
How many stories are still unread
For each update, how many new stories
Each entry is a complete story

Story title or headline
Story text
Story text, stripped of markup
Null when Read
Story url

initialize(test) - create default and test feed lists
getDefaultlist() - returns the default feed list as an array

var Feeds = Class.create ({
II Default Feeds.list
default List: [

{
title:"New York Times",
url:"http:l/www.nytimes.com/services/xml/rss/nyt/HomePage.xml",
Lype; "r~~",
numUnRead:4,

44 I Chapter 2: Application Basics

}],

stories:[
{

},
{

},
{

},
{

title: "Obama Warns of Prospect for Trillion-Dollar Deficits",
text: "Barack Obama delivered a stark assessment of the

economy, saying that his administration would be forced
to impose tighter discipline on government.",

unReadStyle: "unReadStyle",
url: "http:llwww.nytimes.coml2009lo1lo1lworldlasial

07india.html?_r=1&partner=rss&emc=rss"

title: "Hundreds of Coal Ash Dumps Lack Regulation",
text: "Most of the coal byproduct dumps across the United

States are unregulated, although they contain chemicals
considered as threats to human health.",

unReadStyle: "unReadStyle",
url: "http:llwww.nytimes.com12009lo1lo6lworldlasial

06iqbal.html?partner=rss&emc=rss"

title: "Gazprom Dispute Entangles Europe",
text: "Russia's gas price dispute with Ukraine escalated,

disrupting deliveries to the European Union in the midst
of a bitter cold spell.",

unReadStyle: "unReadStyle",
url: "http:llwww.nytimes.coml2009lo1lo1lworldleuropel

07gazprom.html?partner=rss&emc=rss"

title: "Green Inc.: Cities Target Lending to Speed Energy
Projects",

text: "A number of municipalities across the country are
getting creative and experimenting with incremental,
neighborhood- or district-based lending programs that help
homeowners pay the up-front capital costs for efficiency or
renewable energy projects.",

unReadStyle: "unReadStyle",
url: "http:llgreeninc.blogs.nytimes.coml2009lo1lo6lcities-use

creative-targeted-lending-to-speed-energy-projectsl
?partner=rss&emc=rss"

II initialize - Assign default data to the feedlist
initialize: function() {

this.list = this.getDefaultlist();
},

II getDefaultlist - returns the default feed list as an array
getDefaultlist: function() {

var returnlist = [];
for (var i=O; i<this.defaultlist.length; i++)

returnlist[i] = this.defaultlist[i];

News I 45

return returnList;
}

});

The Feeds object is defined using Prototype's Class.create() function, a convenient
way to build an object with class-like behavior. If you're not familiar with this notation,
refer to http:llwww.prototypejs.orglapi for more information about Prototype functions.

Feeds includes a single feed entry for the New York Times RSS feed and four stories.
Each feed entry includes a title, a URL, the feed type, and some other properties that
we'll be using in the upcoming chapters. The stories array contains the individual sto
ries, each of which has a title, the text body, a read/unread flag, and a stripped version
of the text.

The stage assistant is modified to create an instance of the Feeds object and then push
the storyView scene as before, but this time with some arguments identifying the source
feed (this. feeds. list [o]) and the index of the first story:

I* StageAssistant - NEWS
Responsible for app startup.
Major components:
- setup; app startup and initial load of feed data

from the Depot and setting alarms for periodic feed updates

Data structures:
- feeds; feed object used for main feedlist in feedList-assistant
- globals; set of persistant data used throughout app

*I
II ---
11 GLOBALS
II ---

II News namespace
News = {};

II Constants
News.unreadStory = "unReadStyle";

function StageAssistant () {
}

StageAssistant.prototype.setup = function() {

};

this.feeds = new Feeds(); II initialize the feeds model
II start with the first feed and the first story in the feed
this.controller.pushScene("storyView", this.feeds.list[o], o);

In the StageAssistant setup method, arguments have been added to the pushScene
mPtlinrl r"ll Anv n11mhPr nf <ln:r11mPnt<; r<ln hP nrnvir1Pcl ,,frer the first reouired areu--------- -- -----· ----; -------·--- -- ---o--- - -- ---- - - r - 1- LJ

ment, which is the scene name.

46 I Chapter 2: Application Basics

Globals
Global variables can be problematic when writing client-side JavaScript, and it's gen
erally a good idea to avoid them.

Each webOS application is its own document, so no application globals are visible to
any other application. Mojo uses only three globals itself, the Mojo prefix, $L, and
$LL, which are used for localization encapsulation.

You can use global variables more freely in webOS, though you may still want to avoid
them for other reasons (such as code portability and maintenance). If you do use them,
creating a global namespace for your application is a good practice.

The StoryViewAssistant is updated to handle the input arguments and the new data
structures. In the function invocation, the arguments are assigned to properties of the
scene assistant, making them available to each scene method. This is a common tech
nique when handling input arguments to a scene so that the arguments can be used
throughout the scene assistant's scope:

/* StoryViewAssistant - NEWS

*/

Passed a story element, displays that element in a full scene view and
offers options for next story (right command menu button) and previous
story (left command menu button) Major components:
- StoryView; display story in main scene
- Next/Previous; command menu options to go to next or previous story

Arguments:
- storyFeed; Selected feed from which the stories are being viewed
- storyindex; Index of selected story to be put into the view

function StoryViewAssistant(storyFeed, storyindex) {

}

II Save the passed arguments for use in the scene.
this.storyFeed = storyFeed;
this.storyindex = storyindex;

StoryViewAssistant.prototype.setup = function()

if (this.storyindex === o) {
this.controller.get("previousStory").hide();

if (this.storyindex == this.storyFeed.stories.length-1)
this.controller.get("nextStory").hide();

}

this.nextStoryHandler = this.nextStory.bindAsEventlistener(this);
this.previousStoryHandler = this.previousStory.bindAsEventlistener(this);
this.controller.listen("nextStory", Mojo.Event.tap, this.nextStoryHandler);
this.controller.listen("previousStory", Mojo.Event.tap,

News I 47

} ;

this.previousStoryHandler);

var storyViewTitleElement = this.controller.get("storyViewTitle");
var storyViewSummaryElement = this.controller.get("storyViewSummary");
storyViewTitleElement.innerHTML = this.storyFeed.stories[this.storyindex].title;
storyViewSummaryElement.innerHTML = this.storyFeed.stories[this.storyindex].text;

II activate - display selected story
StoryViewAssistant.prototype.activate = function(event)

};

if (this.storyFeed.stories[this.storyindex].unreadStyle == News.unreadStory) {
this.storyFeed.numUnRead--;
this.storyFeed.stories[this.storyindex].unreadStyle = "";

StoryViewAssistant.prototype.deactivate = function(event) {

} ;

StoryViewAssistant.prototype.cleanup = function(event) {
this.controller.stoplistening("nextStory", Mojo.Event.tap,

this.nextStoryHandler);
this.controller.stoplistening("previousStory", Mojo.Event.tap,

this.previousStoryHandler);
};

StoryViewAssistant.prototype.previousStory = function(event) {
this.controller.stageController.pushScene("storyView", this.storyFeed,

this.storyindex-1);
} ;

StoryViewAssistant.prototype.nextStory = function(event) {
this.controller.stageController.pushScene("storyView", this.storyFeed,

this.storyindex+1);
} ;

In the setup method, listeners are set up for previousStory and nextStory. These are
button elements that, when tapped, will cause a new scene to be pushed with the ap
propriate story. Notice that the listeners are removed in the cleanup method.

Remove all event listeners in the scene's cleanup method. Failing to do
so is a common cause of memory leaks in webOS applications.

The nextStory and previousStory methods push a new scene with the new story. The
scene that is pushed is this same storyView scene, showing some of the flexibility of the
scene model.

48 I Chapter 2: Application Basics

ii"'
• You may have noticed that we created properties of the scene assistant

for data used within the assistant scope. It's a useful way to manage data
~· that is limited to a particular instance of the assistant. To access the
' assistant object and its properties in your event listeners, you need to

bind the assistant's controller instance to the event listeners. The code
examples throughout the book use Prototype's bindAsEventlistener,
but you aren't required to use that method.

The button elements are added to the end of story View-scene.html:

<div id="previousStory" class="palm-button">Previous</div>
<div id="nextStory" class="palm-button">Next</div>

Although Mojo has button widgets, the framework does support all standard HTML
elements and has included a palm-button class for the button element that provides a
style for HTML buttons that is consistent with the widget styles.

Run this version of the application and push the buttons to go from one story to the
next and back again. You should see views similar to those shown in Figure 2-6.

Figure 2-6. Additional scenes

News I 49

But there's a problem with this solution. Since scenes are stacked when pushed, each
button press (whether next or previous) adds another scene to the stack-to no real
advantage. Try tapping next and previous a few times, then start using the back gesture.
You just unwind all the stories that you pushed on the stack.

pushScene is just is one of the StageController methods provided to help you manage
the scene stack efficiently. In our example, it would be better to use the swapScene
method. As its name implies, swapScene swaps the new scene for the old and doesn't
increase the stack depth. It's an easy change because swapScene uses the same syntax
as pushScene:

StoryViewAssistant.prototype.previousStory = function(event) {
this.controller.stageController.swapScene("storyView", this.storyFeed,

this.storyindex-1);
};

StoryViewAssistant.prototype.nextStory = function(event) {
this.controller.stageController.swapScene("storyView", this.storyFeed,

this.storyindex+1);
};

Now when you tap through the stories, you are just swapping one story for another on
the stack. So when you swipe back you'll find that you are already at the top of the
stack. It's hard to see how important this is given that this is currently such a simple
application, but it will become more obvious as we go forward.

Both examples using pushScene() and swapScene() use the default transition animation
when changing scenes, which is zooming style. This is the recommended style for
moving up or down the scene stack, but not for a lateral transition. You can override
the default animations and in this case, we specify a cross-fade transition. The
swapScene() method calls below use a sceneArguments object, with name and
transition properties; you'll use the sceneArguments object anytime you need to over
ride the default arguments of a scene method:

StoryViewAssistant.prototype.previousStory = function(event) {
this.controller.stageController.swapScene(

};

{

} ,

transition: Mojo.Transition.crossFade,
name: "storyView"

this.storyFeed, this.storyindex-1);

StoryViewAssistant.prototype.nextStory = function(event) {
this.controller.stageController.swapScene(

};

{

},

transition: Mojo.Transition.crossFade,
name: "storyView"

thi ~ . ~tnrvl'PPn. thi ~ ~tnn1TnnPY+1)' -··-------,,· ---,, -··-------,,-··--·· -,,,

SO I Chapter 2: Application Basics

This is as much as we're going to do with News in this chapter, so if you're eager for
more hands-on information, you can skip to the next chapter at this point. The
remaining section of this chapter covers more advanced topics that will help you un
derstand the underlying framework design, but they aren't strictly needed to write
webOS applications. You can always come back to this topic later if you are interested
in learning more about it.

Controllers
So far we've used two controller classes (StageController and SceneController) and
referred to a third (AppController). All three classes are part of Mojo.Controller name
space. The assistants that we've created are associated with their respective controller
classes and rely heavily on the methods in those classes.

AppController and the use of stages within an application will be covered in depth in
Chapter 10, when we cover notifications and background applications.

#1', 0 It is worth noting that an application has just one application controller
object and may optionally have a single application assistant to create

" ~,' and manage stages.

Controllers and Assistants
An application can have multiple stage controller objects, and each stage controller can
have a stage assistant. A stage assistant is not an instance of StageController, but is
actually a delegate of the controller. The assistant has a controller property set to a
reference to the associated controller, which is used to directly call the controller's
methods. The assistant defines its own methods as well.

Each stage controller has a stack of scene controllers. When a scene is pushed, a new
scene controller is created and pushed onto the stack. As with the stage, each scene
controller has a scene assistant delegate that, after initialization, will have its controller
property set to a reference of the scene controller it belongs to.

To illustrate this, let's go back to our News application. Although it's quite simple now
with only one stage and two scenes, it will, over time, grow to having multiple stages
to handle the dashboard along with the card stage that we are currently working in,
and there will be at least five scenes. The controller/assistant hierarchy is shown in
Figure 2-7.

Controllers I 51

Figure 2-7. The News application controller/assistant hierarchy

Scene Stack
We've already looked at pushScene and popScene, but there are other methods that you
will use to manage the scene stack. Refer to the SDK documentation for a complete
and up-to-date list of available methods. Some of the more commonly used methods
include:

pushScene (sceneArguments)
Pushes a new scene, passing in the optional sceneArguments.

popScene(returnValue)
Removes a scene from the scene stack, passing the returnValue to the newly re
vealed scene's activate method.

popScenesTo (targetScene, returnValue)
Removes scenes from the scene stack until the targetScene is reached or there are
no scenes remaining on the stack, passing the returnValue to the new scene's
activate method.

swapScene (sceneArguments)
Pops the current scene and simultaneously pushes a new scene without activating
or deactivating any underlying scenes, passing in the optional sceneArguments.

52 I Chapter 2: Application Basics

topScene()
Returns the topmost scene from this stage.

getScenes()
Returns an array of scene controllers currently on the stack.

activeScene()
Returns the currently active scene from this stage, if any.

sceneArguments and returnValue can be any number of arguments of any type. They
are simply passed through to the target scene.

Summary
We built the first version of News, the sample application we'll be building throughout
the book. So far, News can display multiple stories from a hardcoded test feed, using
one scene recursively. We started with SDK installation and used the webOS toolset to
create a new project, and stepped through all the application basics to build the News
card and a couple of scenes. From these basics you should be able to build simple web
applications and style them.

With the webOS SDK and a handful of Mojo APis, you can build a conventional web
application that can be downloaded, installed, and run on any webOS device. In the
next chapter, you'll learn how to add widgets to your application and leverage the rich
UI built into Palm webOS.

Summary I 53

CHAPTER 3

Widgets

The heart of the Mojo framework is the UI feature set, delivered in a collection of
dynamic widgets. Mojo widgets are configured with scene controller methods and cus
tom CSS styles, and are managed through Mojo events, briefly introduced to you in
Chapter 1.

Widgets let you build static and dynamic lists or employ various button controls, se
lectors, and text fields. You can choose from several kinds of menus and dialog boxes,
and employ sophisticated pickers and viewers, each of which specialize in handling
different types of data. There's a common model for declaring, instantiating, and man
aging your widgets, which makes it easy to learn and simple to code for your
applications.

A widget is declared within your HTML as an empty div with an x-mojo-element at
tribute declaring the type of widget to display. Typically, you declare the widget within
a scene's view file, then configure and set up the widget in the corresponding scene
assistant's setup method. You listen for events associated with the widget to take ac
tions dictated by the user through the widget or to update data associated with the
widget. The framework applies default styles to the widget; you can override those
styles in your CSS, but in many cases the default styles will work perfectly.

In this chapter, we will start with a design overview of Mojo widgets, then walk through
some basic widgets: buttons and selectors, lists, and text fields. We'll use a number of
these widgets in the News application; at least one from each category to show you
how to apply them in your applications.

All About Widgets
Widgets are dynamic UI controls that can be integrated within any application. They
can be tailored to the application, yet provide reusable, stylistically consistent UI func
tions. The term "widgets" is widely used within web development, but Mojo widgets
are different than other widgets. Mojo widgets have a defined behavior and have many
options; they generate complex HTML and are easily styled with CSS.

SS

It helps to understand the HTML that the widget generates. This is especially true for
widgets like List and Dialog, for which the application specifies HTML templates that
largely define the widget's appearance.

Declaring Widgets
Widgets are declared in HTML as empty div tags:

<div id="my-toggle" x-mojo-element="ToggleButton"></div>

The x-mojo-element attribute specifies the widget type used to fill out the div when the
HTML is added to the page. This can happen in either of the following circumstances:

• When a scene is pushed and the scene's view HTML includes widgets.

• When a widget is specified in an HTML template used by another widget.

• When the application inserts HTML which includes widgets, and makes a call to
explicitly instantiate them.

In the second case, for example, if your scene includes a List widget whose list items
include other widgets, a new set of the list item's widgets are instantiated each time a
new item is added to the list.

Setting Up a Widget
Before a widget is inserted into the scene, it must be set up. You should do this
in the scene assistant's setup method by calling the scene controller method,
setupWidget().You need to provide three arguments to this call (shown in Table 3-1).

Table 3-1. setup Widget arguments

Widget ID The ID or name of the div element in which the widget was declared

Attributes Object containing the widget's static properties, normally options or attributes of the widget

Model Object containing the widget's dynamic properties, usually data associated with the widget, but occasionally
including dynamic attributes

For example, a Toggle Button would be set up this way:

var toggleAttr = {trueValue: "on", truelabel: "On",
falseValue: "off", false label: "Off"};

this.toggleModel = { value: "on", disabled: false };
this.controller.setupWidget("my-toggle", toggleAttr, this.toggleModel);

The my-toggle argument specifies the widget being set up. The argument can be either
the id or name of the widget's div element. It's usually fine to use id, but it won't be
unique if your widget is instantiated more than once. This can happen if the widget is
declared in a template for a list item, or if your scene might be pushed multiple times
(without being popped). In these cases, use the name attribute instead.

56 I Chapter 3: Widgets

The second argument specifies the attributes for the widget. These are properties that
affect the behavior and display of the widget, but are not tied to the actual data being
displayed or edited. Widget attributes cannot be changed after the widget is instanti
ated. A toggle button is a simple binary selector; its attributes include trueValue, true
Label, falseValue, and false Label, among others. The values allow you to toggle be
tween on/off, left/right, up/down, in/out, and so on, while the labels can either track
those values or offer different terms for the user.

The last argument specifies the widget's data model object. This is the actual user data
displayed by the widget. The contents of the model object will often change, each time
requiring the widget to be updated. In our example, the model includes the toggle's
value and a disabled property, set to false.

The split between attributes and model objects was designed to allow you to use widgets
within list entries. The attributes represent the setup shared between list items, and the
model provides the per-item data. This will make more sense when you get to the
section "Lists" on page 64.

Updating a Widget's Data Model
When a widget model is changed outside of the widget, the widget will not automati
cally update and reflect those changes. The application (usually the scene assistant) is
required to call the modelChanged() method on the widget's scene controller, passing
the model object that changed. The scene controller will then notify all widgets using
that model, so they can properly display the current model data. For example, suppose
you disabled the toggle button in our example:

this.toggleModel.disabled =true;
this.controller.modelChanged(this.toggleModel, this);

The first argument to the modelChanged () method is the model object that has changed.
Model change notification uses the identity of the model object to determine which
widgets are using that model object and then notify them to update.

The second argument identifies which object has changed the model. This ensures that
objects are not notified of their own changes to the model.

Scene assistants (and widget assistants, where applicable) will usually simply pass the
keyword this. The argument is optional if called from something other than a widget
controller.

The modelChanged () method notifies widgets of changes to a model object; if you
need to directly change the model, you should use setWidgetModel() instead. While
setupWidget() applies to all widgets with the given HTML name attribute,
setWidgetModel() only ever applies to a single widget instance. So you must pass the
widget's ID or the actual widget DOM element.

All About Widgets I 57

Calling modelChanged() with an entirely new model object will not up
date the model. Instead, there will be no change, since the specified
model will not be used by any existing widget; no notifications will be
generated or received. A common bug occurs when assigning a model
to another object then calling modelChanged() using that new object.
This will not work; you need to use the original model object for model
Changed() or use setWidgetModel() with the new object.

The following will change the model in our toggle button example:

II Use a new model object in place of the old one:
this.newToggleModel = {value: "off"};

II Set the widget to use the new model:
this.controller.setWidgetModel("my-toggle", this.newToggleModel);

Widget Event Handling
Each widget is supported by events. Where possible, the widget will use common
events, such as Mojo.Event.tap or Mojo.Event.propertyChange. Where that's not
possible, widget-specific events are defined, such as Mojo.Event.listDelete or
Mojo. Event. list Reorder for List widgets, or Mojo. Event. scrollStarting for the Scroller
widget.

You should set up event listeners in the scene assistant's setup method when you set
up the widget, by adding the listeners to the div element that declares the widget. For
example, the toggle button sends a Mojo. Event. propertyChange when the widget is tog
gled, meaning that the toggle button's model changes value.

Using the example toggle button that we've been building on, you would set up a
listener with code like this:

This.controller.listen("my-toggle", Mojo.Event.propertyChange
this.handleSelectorChange.bindAsEventlistener(this));

For more details on this, look at the section "Events" on page 15, which covers the
entire event model for more information, or consult the Mojo.Event API reference in
the Palm SDK.

Using Widgets
Now we're going to start using and discussing the individual widgets in depth. Ta
ble 3-2 summarizes the widgets included in Mojo version 1, though keep in mind that
new widgets will be added to the platform periodically. You should check the Palm
Developer site for the latest information.

58 I Chapter 3: Widgets

Table 3-2. Mojo widgets

cotlectio11 Widgets

Buttons & Selectors Button, Check Box, Radio Button, Toggle Button, List Selector, Slider

Lists List, Filter List

Dialogs & Containers Custom Dialog, Alert Dialog, Error Dialog, Drawer, Scroller

Text Fields Text Field, Filter Field, Password Field, Rich Text Edit

Menus App Menu, Command Menu, View Menu, SubMenu

Pickers Date Picker, File Picker, Integer Picker, Time Picker

Viewers Image View, Web View, Audio & Video Objects

Indicators ~r~9~~~s ~~r, ~r~9ressPill! Pr~.9r~~s.S.lid~r,.~pi~n~~····· ..

We'll add various widgets to the News application, and through those examples you'll
learn how to use the Mojo widgets in your application.

Widgets are declared in the HTML scene. You set them up and instantiate them from
within the JavaScript assistant, and you can style them through CSS. You've seen that
all widgets have an attribute object that contains static properties applied at the time
the widget is instantiated, and a model object, which holds the dynamic values asso
ciated with the widget.

In the remainder of this chapter and the two that follow, you'll see how to use each of
the widgets in concrete examples. They each have their own unique capabilities and
there are some tips for using them that you might find helpful.

Buttons and Selectors
Buttons and selectors are the simplest Mojo widgets. Earlier in the chapter, you saw
how to use a toggle button; all the other buttons and selectors work in a very similar
way. In this section, we'll work directly with the Button widget, adding one to the News
application, and we'll touch on the other widgets in this group: Toggle Button, Check
Box, Radio Button, List Selector, and Slider.

Buttons
You can use simple HTML divs styled as button widgets; these will work quite well in
many cases. Button widgets, can behave dynamically, for example, displaying a spinner
to show activity. Figure 3-1 shows an example of the Button widget.

Buttons are the most basic UI element, bounding an action to a region. When a user
pushes a button, the button can change state and then gracefully return to the previous
state, much like a doorbell. You can create unstyled buttons, or you can style them as
objects, and you can label them in some way with text or images. You can disable Mojo
buttons, and you can configure them to show activity indicators.

Buttons and Selectors I 59

Figure 3-1. A Button widget example

Use an HTML button for initiating actions, but use a Button widget when you are
combining an action initiation with an indicator, or for any asynchronous actions. As
we did in Chapter 2 for switching scenes, declare HTML buttons in your view file using
conventional HTML notation.

Assigning the button div's class to palm-button means the button will display like a
Mojo Button widget. The framework applies the same style to HTML buttons of class
palm-button as it does to Mojo Button widgets.

If desired, you can override the style for either type of button in your CSS. The most
typical style modification is to adjust the button width, which, by default, is centered
across the width of the card's window. There are additional styles when a button is
used as the primary or secondary choice, or to indicate dismissal, affirmative, or neg
ative actions. Include any of these styles in your declaration, and the framework will
apply default styling.

Adding a button to News

At the end of Chapter 2, we added a scene to the News application using HTML buttons
and the back gesture. While it's not really visible in the UI, we're going to replace the
HTML buttons with Button widgets so you can see how to add a simple widget. If you
think you are already clear on how this works, you can skip ahead to the section on Lists.

The first change is simple: replace the button tags in story View-scene.html with widget
declarations:

<div id="storyViewScene">
<div class="palm-page-header multi-line">

<div class="palm-page-header-wrapper">
<div id="storyViewTitle" class="title left">
</div>

</div>
</div>
<div class="palm-text-wrapper">

<div id="storyViewSummary" class="palm-body-text">
</div>

</div>

<div x-moio-element="Button" id="previousStorv"></div>
<div x-mo]o-element="Button" id="nextStory"></div>

</div>

60 I Chapter 3: Widgets

The next change is to the storyView-assistant.js; add the widget setup in front of the
listeners for the button taps. We're not changing the button id in either case, so we
don't have to change the listener setup functions at all:

StoryViewAssistant.prototype.setup = function()
this.nextModel = {disabled: false};
this.previousModel = {disabled: false};

} ;

if (this.storyindex === o)
this.previousModel.disabled = true;

if (this.storyindex == this.storyFeed.stories.length-1)
this.nextModel.disabled = true;

this.controller.setupWidget("previousStory", {label: "Previous"},
this.previousModel);
this.controller.setupWidget("nextStory", {label: "Next"}, this.nextModel);

this.nextStoryHandler = this.nextStory.bindAsEventlistener(this);
this.previousStoryHandler = this.previousStory.bindAsEventlistener(this);
this.controller.listen("nextStory", Mojo.Event.tap,

this.nextStoryHandler);
this.controller.listen("previousStory", Mojo.Event.tap,

this.previousStoryHandler);

II Update story title in header and summary
var storyViewTitleElement = this.controller.get("storyViewTitle");
var storyViewSummaryElement = this.controller.get("storyViewSummary");
storyViewTitleElement.innerHTML = this.storyFeed.stories[this.storyindex].title;
storyViewSummaryElement.innerHTML = this.storyFeed.stories[this.storyindex].text;

The rest of the code stays the same. When you run this version of the application, it
behaves the same as the previous version even though it uses Button widgets instead
of the HTML button.

Selectors
The simple selectors will be used in other parts of the News application, shown in later
examples. For now, let's look briefly at each of the selectors and how you can use them
in your application.

Check Box

A Check Box widget (Figure 3-2) controls and indicates a binary state value in one
element.

Buttons and Selectors I 61

Figure 3-2. A Check Box widget example

Tapping a check box on the screen will toggle its state, presenting or removing a check
mark, depending on the previous state. The framework handles the display changes
and will manage the widget's data model for you, toggling between two states that you
defined at setup time.

Toggle Button

The Toggle Button is another widget for displaying and controlling a binary state value.
As with a check box, a toggle button (Figure 3-3) will switch between two states each
time it is tapped.

Figure 3-3. A Toggle Button widget example

Radio Button

If you need a single widget to select from among multiple choices while also showing
selection status, then a Radio Button (Figure 3-4) is a good choice. Mojo provides a
classic radio button, which presents each button as a labeled selection option in a
horizontal array, where only one option can be selected at a time.

The number of options is variable, constrained only by the width of the display and the
minimum button size that can be pleasingly presented or selected. You can expect to
handle between two and five states, given the typical screen size for a webOS device,
but the framework won't limit you.

Figure 3-4. A Radio Button widget example

62 I Chapter 3: Widgets

List Selector

Even though you might expect to find the List Selector as one of the List widgets, it
behaves and is managed as a selector. It enables the selection of one of many options,
presented in a pop-up list in which there is no practical limit to the number of options
presented. It is similar to the Submenu widget's behavior. Figure 3-5 shows an example
of the List Selector widget.

Figure 3-5. A List Selector widget example

The selection options are defined in a required choices array, which defines each se
lection's displayed label and a corresponding value. If the choices are static, meaning
they never change over the life of the scene, you define the array as a property in the
widget's attributes. If the choices are subject to change, attach them as a model property
instead.

List Selectors in Forms
To group List Selectors as you might do in a form, use a div with the palm-group
unlabeled class followed by a div with the palm-list class, then individual selector divs
containing List Selector widgets with using the various palm-row classes. For example:

<div class="palm-group unlabeled">
<div class="palm-list">

<div class="palm-row first">
<div id="trainSelector" x-mojo-element="ListSelector"></div>

</div>
<div class="palm-row">

<div id="departureSelector" x-mojo-element="ListSelector"></div>
</div>
<div class="palm-row">

<div id="destinationSelector" x-mojo-element="ListSelector"></div>
</div>
<div class="palm-row last">

<div id="timeSelector" x-mojo-element="ListSelector"></div>
</div>

</div>
</div>

Buttons and Selectors I 63

A related tip with forms: you can combine the various models into single object, with
different properties for each widget, by specifying the modelProperty to a property name
in a shared object. Having one object simplifies the processing of the forms.

The List Selector is like the List widget in its styling. To have the webOS look and feel,
you'll need to wrap your widget declaration with styling divs like those used with the
List widget, and you may need to style those List classes with your own CSS. See the
below section "Lists" for more information.

Slider

The last widget in this group of selectors is the Slider, which presents a range of selection
options in the form of a horizontal slider with a control knob that users can drag to the
desired location. You must specify minimum (leftmost) and maximum (rightmost)
values for the slider. Figure 3-6 shows an example of the Slider widget.

Figure 3-6. A Slider widget example

Lists
The design for Mojo began with the List. To validate the webOS architecture and the
concept of Mojo, the principle webOS architects were challenged to design a list widget
that would pull dynamic data from the Contacts database as the user flicked through
the list, without any perceptible delay or loss of data (on a low-end CPU, no less).
Needless to say, this was not a trivial challenge. However, the challenge was met and
the rest of the framework took shape around the resulting design.

The webOS user experience makes extensive use of lists in many applications. Given
the form factor and the navigation model, most applications will incorporate a List
widget in one way or another. To get the most out of Mojo you need to fully understand
the List widget.

same features as the List widget, but is designed around a more specialized use case.
Our sample application will make use of Filter List in Chapter 5.

64 I Chapter 3: Widgets

List Widgets
Lists are rendered by inserting objects into the DOM using provided HTML templates
for both the list container and the individual list rows. Lists can be variable height and
include single and multi-line text, images, or other widgets. Some Lists are static,
meaning the list items are provided to the widget directly as an array. Other Lists are
dynamic, meaning the application provides items as needed for display. Lists can be
manipulated in place, with the framework handling deletion, reordering, and add item
functions for the application.

There are examples of the list in the core applications, including the Email inbox, the
Message chat view, the Contacts list, the Music library, and more. You can see that lists
are flexible, yet fast and very efficient.

Back to the News: Adding a Story List

We're going to use a List widget in a few places in News. First, we're going to convert
the sample newsfeed to a list, then hook it up to an Ajax call to get the live newsfeed
into the application. That should give us a basic news reader for one feed, but to handle
multiple feeds we'll add another List widget as a list of feeds. The application will start
to take its basic shape in this section.

We'll create a list to hold the sample list that we've been working with. Using the
palm-generate tool, create a new scene for a list view, called story List:

$ palm-generate -t new_scene -p "name=storylist"

In the view file, views/storyList/storyList-scene.html, declares a List widget under a
palm-header that includes some text to which we'll later assign the list's title. The
storylistWgt div is the List widget declaration:

<div id="feedTitle" class="palm-header center">
Feed Title

</div>
<div class="palm-header-spacer"></div>
<div id="storylistScene" class="storylistScene">

<div x-mojo-element="List" id="storylistWgt" ></div>
</div>

Next, create the list templates. These are two HTML files that you put into the views/
story List directory; the container template story ListT em plate. html and the row template
story RowTemplate.html.

All List widgets are all built using HTML templates to lay out and format the list con
tainer and the individual rows. You normally include these templates as separate HTML
files in your scene's view folder (where your scene view file is located), but you can also
specify each template's pathname, which allows you to share templates between scenes
or organize them in other ways. Pathnames are specified with relative notation
scene-dir/template-file, where scene-dir is the directory for the current scene's view
file. Within the template, you will reference properties from the list.

Lists I 65

....
. •' ...

.__.~,, ..
~-__..,..~,:

In Mojo, pathnames are relative to the 'app' directory, not the location
of index.html.

The listTemplate is optional; it defines the path to an HTML template for the list's
container, which, if missing, will simply put the list items into the scene enclosed in
div with the palm-list classname. If present, the listTemplate can have only one top
level element.

The itemTemplate is required; it is set to the path of an HTML template for the list
items. Use the notation #{property} to identify specific items properties for insertion
into the template.

The storyListTemplate includes a single line using the palm-list class to format the list
and a template entry for #{-listElements}:

<div class="palm-list">#{-listElements}</div>

. ·' By default, Mojo will escape any HTML that is inserted into a template
II•, to limit the risk ofJavaScript insertion into views. You can add a leading
... ~~· .. ~-~•..,.."•' hyphen to any property reference to prevent HTML from being escaped

' on that property. This is required in list container templates for the list
widget to render properly.

The storyRowTemplate is a little more involved, using an outer div with the class
palm-row to format the row, then each list row has both a title entry and a text entry:

<div class="palm-row" x-mojo-touch-feedback="delayed">
<div class="palm-row-wrapper">

<div id="storyTitle" class="title truncating-text #{unreadStyle}">
#{title}

</div>
<div id="storySummary" class="news-subtitle truncating-text">

#{text}
</div>

</div>
</div>

Each entry uses the truncating-text class, which will cause the entry to be automati
cally truncated at the list boundaries with ellipsis to indicate truncation. The templates
#{title} and #{text} refer to the list items properties of those names that are substi
tuted into the template.

The #{unreadStyle} template references another list items property that indirectly
forces some styling specifically for the story titles that are not read. This demonstrates
that property substitution can be used with any HTML content. Further on, we will
apply some CSS styling to the classname used in the unreadStyle property.

66 I Chapter 3: Widgets

Taken together, the scene's view or HTML files wrap the List widget with some specific
styles to get the visual appearance shown in Figure 3-6. You should review the SD K's
"User Interface Guidelines" for a complete discussion of Mojo styling, but to summa
rize briefly, there are three levels of styles at work in the storylist scene:

palm-list
ls used in the listTemplate to drive spacing and the light separator rule that divides
the list entries.

palm-row
Wraps the div tag containing the list entry template to handle background styles
and styling for highlight, selection, swipes, and other dynamic behavior. It can be
modified with additional styles for first, last, single, and others (a complete list
is provided in Appendix C).

palm-row-wrapper
Also wraps the div tag containing the list entry template and adjusts spacing within
palm-row.

Back to the example, to implement the feed list handling, add the storyList-assistant.js:

I* StoryListAssistant - NEWS

*I

Copyright 2009 Palm, Inc. All rights reserved.

Displays the feed's stories in a list, user taps display the
selected story in the storyView scene. Major components:
- Story View; push story scene when a story is tapped

Arguments:
- feedlist; Feeds.list array of all feeds
- selectedFeedindex; Feed to be displayed

function StorylistAssistant(feedlist, selectedFeedindex)
this.feedlist = feedlist;
this.feed = feedlist[selectedFeedindex];
this.feedlndex = selectedFeedindex;
Mojo.Log.info("Storylist entry = ", this.feedindex);
Mojo.Log.info("Storylist feed = ", Object.toJSON(this.feed));

StoryListAssistant.prototype.setup = function() {

II Setup story list with standard news list templates.
this.controller.setupWidget("storylistWgt",

{

},

itemTemplate: "storylistlstoryRowTemplate",
listTemplate: "storylistlstorylistTemplate",
swipeToDelete: false,
renderlimit: 40,
reorderable: false

Lists I 67

};

this.storyModel = {
items: this.feed.stories

);

this.readStoryHandler = this.readStory.bindAsEventListener(this);
this.controller.listen("storyListWgt", Mojo.Event.listTap,

this.readStoryHandler);

II Set title into header
$("feedTitle").innerHTML=this.feed.title;

StoryListAssistant.prototype.activate = function() {
II Update list models

};

this.storyModel.items = this.feed.stories;
this.controller.modelChanged(this.storyModel);

StoryListAssistant.prototype.cleanup = function() {

};

II Remove event listeners
this.controller.stopListening("storyListWgt", Mojo.Event.listTap,

this.readStoryHandler);

II readStory - when user taps on displayed story, push storyView scene
StoryListAssistant.prototype.readStory = function(event) {

};

Mojo. Log. info("Display selected story = '', event. item. title,
"; Story index= ", event.index);

Mojo.Controller.stageController.pushScene("storyView", this.feed,
event.index);

When the scene is instantiated with a call to the StorylistAssistant function, the
passed feed index assigns the selected feed to this. feed. The setup method is called
before the scene is pushed and sets up the List widget: the templates are assigned and
renderlimit is set to 40. You should use the default for your lists, but adjust it if nec
essary after testing.

renderlimit
The number of list elements that the List widget will render into the DOM at any one
time is defined by renderlimit. You usually won't need to specify this, but if your list
items are very short, the default of 20 might not be enough, as scrolling might overrun
the framework's ability to fill the display list items.

For efficiency, the framework needs to limit the number of rendered list items to some
thing reasonable. It can't just render all items, or there will be an impact on both mem
ory and system performance. On the other hand, there must be enough items rendered
to avoid having the list scroiling overrun the display list.

68 I Chapter 3: Widgets

The list's model items are set to the input feed's stories array for display in the list,
and setupWidget is called to instantiate the list. A listener is added for any taps on the
list, and the handler, readStory, will push the storyView scene with that selected story
entry.

In the setup() method, the list title is assigned to display in the header. You'll notice
that we use the Prototype function$() to retrieve the header's element ID. This is safe
to use in this context, but as you'll see in Chapter 10, it's not safe in multistage
applications.

In the activate() method, we provisionally update the list's model in case reading the
selected story changed the story's unreadStyle to read; we want to reflect changes in
status immediately.

Next we have to change the stage-assistant.js to push the storylist scene instead of the
storyView scene:

StageAssistant.prototype.setup = function() {

};

II initialize the feeds model and update the feeds
this.feeds = new Feeds();

II Push the first scene
this.controller.pushScene("storylist", this.feeds.list, o);

For arguments, the storylist scene takes the feed list and an index value for the cur
rently selected list. We're still using a single default list for now, so the index is set to 0.

Finally, add the new assistant to sources.json, then launch the application. The new
scene with all the stories from the sample feed is shown in Figure 3-7.

Back to the News: Ajax requests

Chapter 6 covers Ajax requests more completely, but we'll look briefly at it here to
enable dynamic feed lists. Now that we have a list, we're going to add the capability to
load the list and update it through Ajax requests to the feed source.

Ajax requests are a common way of referring to use of the XMLHttpRequest object to
make asynchronous HTTP transactions. The Prototype library built into Mojo provides
an Ajax.Request object, which simplifies the XMLHttpRequest handling for many
transactions.

These transactions provide a key part of building webOS applications by providing the
core data services needed to build connected applications. You don't need to use the
Prototype Ajax functions if you'd prefer to use XMLHttpRequest directly.

Lists I 69

Figure 3-7. A story List scene

Dynamic data is a very powerful and important capability that should be exploited by
most applications. With the capability to update your application's data set, you are
enabling the user with the most current and accurate information. Without this, the
application loses value, as the degree of change is considerable over the course of hours,
or even minutes in some cases.

You can write your own Ajax interfaces, but one reason that webOS includes the Pro
totype library is for its simple, powerful Ajax functions. We'll add the Ajax request to
the feeds.js model, which will request feed data for our default New York Times feed.
While the Ajax request is fairly simple, we need to process the RSS and Atom data that
the application receives, and that's a bit more complicated.

We just need to add a URL for the Ajax request and set up some callback functions.
See Chapter 6 for a full explanation of the arguments and properties used in
Ajax.Request. Add a new method to feeds.js:

II updateFeedRequest - function called to setup and make a feed request
updateFeedRequest: function(currentFeed) {

},

this.currentFeed = currentFeed;
Mojo.Log.info("URL Request: ", this.currentFeed.url);

var request = new Ajax.Request(currentFeed.url, {
method: "get",

});

evalJSON: "false",
onSuccess: this.updateFeedSuccess.bind(this),
onFailure: this.updateFeedFailure.bind(this)

70 I Chapter 3: Widgets

Ajax requests are asynchronous operations, with both success and error cases, and
you'll need to create callback functions for each of these cases. The handler for the error
case simply logs the error. Ajax requests return an HTTP status message, which we will
convert to a readable format with Prototype's Template function, and then log the
results:

II updateFeedFailure - Callback routine from a failed AJAX feed request;
II post a simple failure error message with the http status code.
updateFeedFailure: function(transport) {

},

II Prototype template to generate a string from the return status.xs
var t =new Template("Status #{status} returned from newsfeed request.");
var m = t.evaluate(transport);

II Post error alert and log error
Mojo.Log.info("Invalid feed - http failure, check feed: ", m);

The handler for the successful case needs to process the feed before it can be used. In
this case, we confirm the successful load by logging the returned status message, again
using the Template function. Next, there's some code to handle when the feed data is
returned as text-encoded XML; we can convert it to XML to enable processing.

The global function Process Feed is called to determine the feed format and extract the
components that we need for our feed list. We'll cover this in a moment, but for now,
note that it is called and returns with an explicit error status that, if equal to error
None, means that the feed was processed successfully. We push the storylist scene
with the processed feed in that case:

II updateFeedSuccess - Successful AJAX feed request (feedRequest);
II uses this.feedindex and this.list
updateFeedSuccess: function(transport) {

var t = new Template({key: "newsfeed.status",
value: "Status #{status} returned from newsfeed request."});

Mojo. Log. info(" Feed Request Success: ", t. evaluate(transport));

II Work around due to occasional XML errors
if (transport.responseXML === null && transport.responseText !== null) {

Mojo.Log.info("Request not in XML format - manually converting");

II** These next two lines are wrapped for book formatting only**
transport.responseXML = new DOMParser().

parseFromString(transport.responseText, "textlxml");

II Process the feed, passing in transport holding the updated feed data
var feedError = this.processFeed(transport, this.feedlndex);

II If successful processFeed returns News.errorNone,
if (feedError !== News.errorNone) {

II There was a feed process error; unlikely, but could happen if the
II feed was changed by the feed service. Log the error.
if (feedError == News.invalidFeedError) {

Lists I 71

Mojo.Log.info("Feed ", this.nameModel.value,
"is not a supported feed type.");

}

News.feedlistChanged = true;

II If NOT the last feed then update the feedsource and request next feed
this.feedlndex++;
if(this.feedlndex < this.list.length) {

this.currentFeed = this.list[this.feedlndex];
this.updateFeedRequest(this.currentFeed);

} else {
II Otherwise, this update is done. Reset index too for next update
this.feedlndex = o;
News.feedlistUpdatelnProgress = false;

this. process Feed() is included in Appendix D if you're interested in how it works, but
it's not shown here, since it doesn't directly affect the Mojo functions being presented.
To summarize, this .processFeed() is passed an XML object and an index into the feed
list, where it will put the processed feed. If there's no index argument, this. process
Feed() will add the new feed to the end of the list.

For each of the supported formats, the title, text, and URL are extracted for each of the
stories and the feed list is updated with the new feed data, the stories, and the unread
Count. If the feed isn't a well-formed Atom, RSS 1 (RDF), or RSS 2 format, it will return
with an error, News.invalidFeedError.

We've added some logic to the end of updateFeedSuccess () to handle multiple feeds
and to flag that the feed list has been changed. We'll come back to these in the next
section as we expand News to handle multiple feeds.

Initiate the update with a call from within the stage assistant's setup method and add
the global definitions needed for feed updates:

II ---
11 GLOBALS
II ---

II News namespace
News = {};

II Constants
News.unreadStory = "unReadStyle";
News.versionString = "1.0";
News.errorNone = "o";
News.invalidFeedError = "1";

II No error, success
II Not RSS2, RDF (RSSl), or ATOM

II r~--..!-·~ ri_L_i_ ·---'----··-...I------------ 1------1---
// .:>e::::.::>.iUll U.lUUd.1::> - llUL ::>dVt:U GIL.LU::>::> dJJJJ .1.dUllLllt::t

News.feedlistChanged = false; II Triggers update to db
News.feedlistUpdatelnProgress =false; II Feed update is in progress

72 I Chapter 3: Widgets

StageAssistant.prototype.setup = function() {

};

II initialize the feeds model and update the feeds
this.feeds = new Feeds();

II Update the news feed list
this.feeds.updateFeedRequest(this.feeds.list[o]);

II Push the first scene
this.controller.pushScene("storylist", this.feeds.list, o);

When the application is launched, it displays the default data in the top-level scene. If
you tap a story to go to the story view, you'll see new stories, though. Popping the story
view with a back gesture restores the story list view, but now with the updated stories.
What's happening here?

Since Ajax requests are asynchronous, the initial story list view is pushed before the
feed update is completed, but subsequent views are displayed after receiving the data.
The right way to fix this is to update the storyListWgt model after the feed update is
complete. You'll learn one technique for that in the next section, and a better one in
Chapter 10, when we adapt the feed update process to a background application. The
new story List scene, when updated with a longer list of stories, is shown in Figure 3-8.

Obama Oftlmm Deaho RuHla In See ..
M- has ro!Mf>O!l<:IW tolhe~lh!IJ!Wi!S rum ...

Figure 3-8. A storyList scene with updated stories

Lists I 73

Back to the News: Adding a feed list

A News reader that handles one newsfeed isn't much use, so we're going to expand
News to handle multiple feeds with another List widget. This one will present a list of
newsfeeds for the user to select from before pushing the storylist scene with the se
lected list. We will also take advantage of the List widget's capability to reorder and
delete list entries to enable some management of the newsfeeds.

We're still working from a default set of newsfeeds, but let's expand our feeds model
by adding some popular news, sports, and technology feeds:

II Default Feeds.list
defaul tlist: [

{

}, {

}, {

},{

},{

},{

}, {

},{

},{

},{

},{

74 I Chapter 3: Widgets

title: "Huffington Post'',
url:"http://feeds.huffingtonpost.com/huffingtonpost/raw_feed",
type:"atom", numUnRead:o, newStoryCount:o, stories:[]

title:"Google",
url:"http://news.google.com/?output=atom",
type:"atom", numUnRead:o, newStoryCount:o, stories:[]

title: "New York Times'',
url:"http://www.nytimes.com/services/xml/rss/nyt/HomePage.xml",
type:"rss", numUnRead:o, newStoryCount:o, stories:[]

title: "MSNBC",
url:"http://rss.msnbc.msn.com/id/3032091/device/rss/rss.xml",
type: "rss '', numUnRead: O, newStoryCount :o, stories: []

title: "National Public Radio'',
url: "http:I/www.npr.org/rss/rss. php?id=1004",
type: "rss '', numUnRead :o, newStoryCount: o, stories: []

title:"Slashdot",
url:"http://rss.slashdot.org/Slashdot/slashdot",
type: "rdf'', numUnRead :o, newStoryCount :o, stories: []

title:"Engadget",
url:"http://www.engadget.com/rss.xml",
type:"rss", numUnRead:o, newStoryCount:o, stories:[]

title: "The Daily Dish'',
url:"http://feeds.feedburner.com/andrewsullivan/rApM?format=xml",
type:"rss'', numUnRead:o, newStoryCount:o, stories:[]

title: "Guardian UK'',
url:"http://feeds.guardian.eo.uk/theguardian/rss",
type: "rss '', numUnRead: o, newStoryCount :o, stories: []

title: "Yahoo Sports",
url:"http://sports.yahoo.com/top/rss.xml",
..L. ··- - • II •• - - II .•.. -.11.-n--I.,... ·- -· .(".L--•· .r- .. -..1....,... -.1-- •• .! -- • r 1 Lypt:: . .L::>::. ' llUlllUlll\.t:au.v, llCW.JLU.LJ\..UUllL.v, :>LU.L.J.C.::>oLJ

title: "ESPN",

}, {

url:"http://sports-ak.espn.go.com/espn/rss/news",
type:"rss", numUnRead:o, newStoryCount:o, stories:[]

title:"Ars Technica",
url:"http://feeds.arstechnica.com/arstechnica/index?format=xml",
type:"rss", numUnRead:o, newStoryCount:o, stories:[]

],

We have to adjust the Ajax requests to make requests serially for each feed. We'll add
a new function, updateFeedlist to the feeds model:

II updateFeedList(index) - called to cycle through feeds. This is called
II once per update cycle.
updateFeedList: function(index) {

},

Mojo.Log.info("Feed Update Start");
News.feedListUpdateinProgress = true;

II request fresh copies of all stories
this.currentFeed = this.list[this.feedindex];
this.updateFeedRequest(this.currentFeed);

Next, we'll create the feed list scene, which will display the list of feeds. Use
palm-generate to create the scene and in the feedList-scene.html file, add a header titled
'Latest News' and the List widget declaration for feedlistWgt:

<div id="feedListScene">
<div id="feedListMain">

<div id="feedList view header" class="palm-header left">
Latest News

</div>
<div class="palm-header-spacer"></div>

<!-- Feed List -->
<div class="palm-list">

<div x-mojo-element="List" id="feedlistWgt"></div>
</div>

</div>
</div>

To format the list, we need the list templates, which in this case are put into the views/
feedList directory. First the container template,feedListTemplate.html:

<div class="palm-list">#{-listElements}</div>

and thenfeedRowTemplate.html to format the individual list entries:

<div class="palm-row" x-mojo-touch-feedback="delayed">
<div class="palm-row-wrapper textfield-group">

<div class="title">

<div class="palm-dashboard-icon-container feedlist-icon-container">
<div class="dashboard-newitem feedlist-newitem">

#{numUnRead}

lists I 75

</div>
<div id="dashboard-icon" class="palm-dashboard-icon feedlist-icon">
</div>

</div>

<div class="feedlist-title truncating-text">#{title}</div>
<div class="feedlist-url truncating-text">#{-url}</div>

</div>
</div>

</div>

Create the feed list assistant (feedList-assistant.js), which primarily completes the
widget setup and adds event listeners in the file before calling the new updateFeed
List method. All this is done within the assistant's setup method:

/* FeedlistAssistant - NEWS

*/

Copyright 2009 Palm, Inc. All rights reserved.

Main scene for News app. Includes AddDialog-assistant for handling
feed entry and then feedlist-assistant and supporting functions.

Major components:
- FeedlistAssistant; manages feedlists
- List Handlers - delete, reorder and add feeds

Arguments:
- feeds; Feeds object

II---
//
II FeedlistAssistant - main scene handler for news feedlists
II
function FeedlistAssistant(feeds) {

this.feeds = feeds;

FeedlistAssistant.prototype.setup = function()

II Setup the feed list, but it's empty
this.controller.setupWidget("feedlistWgt",

{

},

itemTemplate:"feedlist/feedRowTemplate",
listTemplate: "feedlist/feedlistTemplate",
swipeToDelete:true,
renderlimit: 40,
reorderable:true

this.feedWgtModel = {items: this.feeds.list});

//Setup event handlers: list selection, add, delete and reorder feed entry
this.showFeedHandler = this.showFeed.bindAsEventlistener(this);

76 I Chapter 3: Widgets

this.controller.listen("feedListWgt", Mojo.Event.listTap,
this.showFeedHandler);

this.listDeleteFeedHandler = this.listDeleteFeed.bindAsEventListener(this);
this.controller.listen("feedListWgt", Mojo.Event.listDelete,

this.listDeleteFeedHandler);
this.listReorderFeedHandler = this.listReorderFeed.bindAsEventListener(this);
this.controller.listen("feedListWgt", Mojo.Event.listReorder,

this.listReorderFeedHandler);

};

II Update the feed list
this.feeds.updateFeedList();

II cleanup - always remove event listeners
FeedListAssistant.prototype.cleanup = function()

Mojo. Log. info(" Feed List cleaning up");

};

II Remove event listeners
this.controller.stoplistening("feedlistWgt",

Mojo.Event.listTap, this.showFeedHandler);
this.controller.stopListening("feedListWgt",

Mojo.Event.listDelete, this.listDeleteFeedHandler);
this.controller.stopListening("feedListWgt",

Mojo.Event.listReorder, this.listReorderFeedHandler);

You'll see that we added both the reorderable and swipeToDelete properties to the
feedlistWgt list widget. A tap-and-hold on a list item will allow the user to move it to
a new position in the list. A Mojo.Event.listReorder event is fired on the widget div,
which includes the item being moved, as well as the old and new indexes. The indexes
are passed as properties of the event object, event. tolndex and event. fromindex.

Dragging items horizontally will invoke a special delete UI, allowing the user to confirm
or cancel the operation. If confirmed, a Mojo.Event.listDelete event is fired on the
widget div, which includes the item being removed, event.item, and its index,
event. index.

We added event listeners for the Mojo.Event.listDelete and Mojo.Event.listReorder,
and need to provide handlers for these events:

II--
11 List functions for Delete, Reorder and Add
II
II listDeleteFeed - triggered by deleting a feed from the list and updates
II the feedlist to reflect the deletion
II
FeedListAssistant.prototype.listDeleteFeed = function(event) {

Mojo.Log.info("News deleting", event.item.title, ".");

} j

var deletelndex = this.feeds.list.indexOf(event.item);
this.feeds.list.splice(deletelndex, 1);
News.feedListChanged = true;

Lists I 77

II listReorderFeed - triggered re-ordering feed list and updates the
II feedlist to reflect the changed order
FeedlistAssistant.prototype.listReorderFeed = function(event) {

};

Mojo.Log.info("com.palm.app.news - News moving", event.item.title, ".");

var fromindex = this.feeds.list.indexOf(event.item);
var toindex = event.toindex;
this.feeds.list.splice(fromlndex, 1);
this.feeds.list.splice(tolndex, o, event.item);
News.feedlistChanged = true;

In both cases, the framework handles the on-screen changes, but you will need to reflect
those changes in the feed model itself. Add listeners to receive the delete and reorder
events, and you will receive the indexes for the changes through the event object. You
then use these indexes to make the corresponding changes in the feed model.

The lists we set up for News are not using them, but there are other list manipulation
options:

• If the addltemlabel property is specified, an additional item is appended to the list.
Tapping it will cause a Mojo.Event.listAdd event to be fired on the widget div.

• Deleted items that are unconfirmed have a deleted property set in the model. You
can specify the name of this property using the deletedProperty property, and
Mojo. Event. propertyChange events will be sent when it is updated. If unspecified,
the property deleted will be used. For dynamic lists, it is important for the appli
cation implementation to persist this value in a database. Otherwise, swiped items
will be automatically undone when they are removed from the cache of loaded
items.

• A better option than persisting the deleted property is using the
uniqueness Property. This is the name of an item model property that can be used
to uniquely identify items. If specified, List will maintain a hash of swiped items
instead of setting a deleted property, preventing the app from having to persist the
deleted property.

• If the dragDatatype property is specified, users will be able to drag items to other
lists with the same dragDatatype value. When this happens, the item's old list
will receive a Mojo.Event.listDelete event, and the new list will get a
Mojo. Event.listAdd event. In this case, the Mojo. Event. listAdd event will have the
item and index properties specified, indicating that a specific item should be added
at a specific location.

The other event handler, showFeed(), pushes the storylist scene when a
Mojo.Event.listTap event is received, meaning that a feed has been tapped:

II--
11 ci.,..._, ..c ,..,,.-1 i...11,...
II .JllVVV 11.:.1...U llOllU,.1..1.....L

II
II showFeed - triggered by tapping a feed in the this.feeds.list.

78 I Chapter 3: Widgets

FeedlistAssistant.prototype.showFeed = function(event) {
Mojo.Controller.stageController.pushScene("storylist", this.feeds.list, event.index);

};

Before running the application, change the stage assistant to push the feed List scene:

II Push the first scene
this.controller.pushScene("feedList", this.feeds);

Change the stage controller to push the feed List scene, and when you run the appli
cation now, you'll see that it's starting to take the basic structure of the envisioned
application. It has an initial scene that is a list of available feeds with a count of unread
messages, which users can tap to view individual feeds and messages. We've made a
lot of changes in this section, as the List widget has really opened up the application's
feature set.

You'll notice that the list entry style is not complete, but we'll fix that with some CSS
in stylesheets/News.css:

I* feedlist styles *I

.feedlist-title {
line-height: 2.oem;

.feedlist-url
font-size: 14px;
color: gray;
margin-top: -20px;
margin-bottom: -20px;
line-height: 16px;

.feedlist-icon-container
height: 54px;
margin-top: Spx;

.feedlist-icon {
background: url(.. limagesllist-icon-rssfeed.png) center no-repeat;

.feedlist-newitem
line-height: 20px;
height: 26px;
min-width: 26px;
-webkit-border-image: url(.. limageslfeedlist-newitem.png) 4 10 4 10

stretch stretch;
-webkit-box-sizing: border-box;
border-width: 4px lOpx 4px lOpx;

lists I 79

A few of these styles (feedlist-icon-container, feedlist-icon, and feedlist-newi
tern) are modified versions of the framework's standard dashboard styles. Those styles
set up the icon and new items badge to the left of each feed. The other styles refine the
positioning and appearance of the feed title and URL.

Now when you run the application the styling should look complete, but there is still
a problem. As we saw with the storylist scene in the last section, the feed updates
aren't reflected in the displayed list view until you tap a feed then return to the feed
List scene.

We need to be able to update the list widget's model as each feed is updated. First, add
activate and deactivate methods to the feed List scene:

11 activate
FeedlistAssistant.prototype.activate = function()

this.feeds.registerlistModel(this);

} ;

if (News.feedlistChanged === true) {
this.feedWgtModel.items = this.feeds.list;
this.controller.modelChanged(this.feedWgtModel, this);

II deactivate
FeedlistAssistant.prototype.deactivate = function()

Mojo.Log.info("Feedlist deactivating");
this.feeds.removelistModel(this.feedWgtModel);

};

In the activate() method, call to register this assistant with the feeds object so that it
will update this. feedWgtModel when changes are made to the feed. Also add an update
to the model for any activation of this scene. In this way, unread count changes are
reflected whenever new stories are viewed in the storyView scene. In the
deactivate() method, remove the registration whenever the feed List scene is replaced
by another scene.

Then add these new methods to feeds.js, along with an updatelistModel() method that
will be called from within the feed update loop in updateFeedSuccess ():

II registerListModel(sceneAssistant) - called to register the list model for updates
II as the underlying data changes.
registerListModel: function(sceneAssistant)

},

Mojo.Log.info("Model Registered");
this.listAssistant = sceneAssistant;

II removelistModel() - called to remove the list model from updates
II as the underlying data changes.
removelistModel: function() {

},

Mojo.Log.info("Model Removed");
this.listAssistant = undefined;

80 I Chapter 3: Widgets

II updateListModel() - called to update the list.
updateListModel: function() {

Mojo.Log.info("Model Updated");
if (this.listAssistant !== undefined) {

this.listAssistant.feedWgtModel.items = this.list;
this.listAssistant.controller.modelChanged(this.listAssistant.feedWgtModel,

this); ·
}

},

Now when you run the application, the feed list widget is updated as the feed data is
updated by the feeds object. You'll see the unread count (shown in the white badge on
each feed) change to reflect the number of stories read in each feed and when fully
loaded a view like the one in Figure 3-9.

',• Note that modelChanged() causes a full rendering of the widget.
II• For small changes, it's better to use noticeAddeditems() or
\f.~,, •

__ __.,,..~,' noticeUpdateditems() to render only the changed elements.

Figure 3-9. The feedList scene

Lists I s1

We'll make one more change. The application updates the feed when launched, but it
would be nicer to have the feeds update periodically. We'll set up an alarm during the
stage assistant's setup method to fire after 15 minutes has elapsed, using the JavaScript
setTimeout() method. We created a setWakeup() method to set the alarm and a handle
Wakeup() method as the callback when the alarm fires. The handleWakeup() method sets
the next alarm and calls this. feeds. updateFeedlist () to refresh all of the feeds:

II ---
11 setup - all startup actions:
II - Setup globals
II - Initiate alarm for first feed update

StageAssistant.prototype.setup = function() {

};

II initialize the feeds model and update the feeds
this.feeds = new Feeds();

II Set up first timeout alarm
this.setWakeup();

II Push the first scene
this.controller.pushScene("feedlist", this.feeds);

II--
11 handleWakeup - called when wakeup timer fires; sets a new timer and calls
II for a feed update cycle
StageAssistant.prototype.handleWakeup = function()

};

II Set next wakeup alarm
this.setWakeup();

II Update the feed list
Mojo.Log.info("Update Feedlist");
this.feeds.updateFeedlist();

II--
11 setWakeup - called to setup the wakeup alarm for background feed updates
II if preferences are not set for a manual update (value of o)
StageAssistant.prototype.setWakeup = function() {

};

if (News.feedUpdateinterval !== o)
var interval = News.feedUpdateinterval;
News.wakeupTaskid =

this.controller.window.setTimeout(this.handleWakeup.bind(this),
interval);

Mojo.Log.info("Set Interval Timer: ", interval);

82 I Chapter 3: Widgets

II --
11 cleanup - clear the wakeup alarm for background feed updates if set
StageAssistant.prototype.cleanup = function() {

if (News.wakeupTaskid !== o) {
News.wakeupTaskid = this.controller.window.clearTimeout(News.wakeupTaskid);
Mojo.Log.info("clear Interval Timer");

};

Define the global News. feedUpdateinterval at the beginning of the stage assistant; we'll
use it later when we add a preferences option to change the update interval. Don't forget
to clear the timeout when the stage is closed, which in this case happens when the
application is closed.

Using Widgets in Lists
You can define list entries to include other widgets, including other lists. The list's
model is an object that includes an array of items, and each item entry may have prop
erties that are referenced in the list's itemTemplate. You can declare widgets within the
list's itemTemplate, using a name attribute to identify the widgets. In your setup method,
you set up the list with a model object containing an array of objects for the list items.
Each of these objects is used as the model for the widgets in the corresponding list item.
After setting up the List widget itself, you should call setupWidget() once for each
widget declaration in the item template. However, it's not necessary to specify the
model when doing this, since it comes from the list items array.

For example, to create a list in which each list item or row has a text label and a toggle
button, you define your list's i temTemplate with a template for the text and a declaration
for the toggle button:

<div class="palm-row">
<div class="palm-row-wrapper">

#{text}
<div name="listToggle" x-mojo-element="ToggleButton"></div>

</div>
</div>

In the setup method, you define your list's model to include the toggle models:

this.firstModel = {text: "First", value: true};
this.secondModel = {text: "Second", value: true};
this. thirdModel = {text: "Third", value: true};
this. fourthModel = {text: "Fourth", value: true;

this.listModel = {items:[this.firstModel, this.secondModel, this.thirdModel,
this.fourthModel]};

this.controller.setupWidget("myList", this.listAttr, this.listModel);

Then set up the toggle once with only an attributes object, as the model will be pulled
from the list items above:

this. toggleAttr = { true Label: "On", falselabel: "Off"};
this.controller.setupWidget("listToggle", this.toggleAttr);

Lists I 83

Note that the widgets declared in the itemTemplate use a name attribute not an ID,
because the same name can be used for each instantiation of the widget and an ID must
be unique.

You can't set up a listener to the toggle, but you can listen to Mojo.Event.property
Change on the list and have the model passed as an event property. For example:

this.controller.listen("mylist", Mojo.Event.propertyChange,
this.toggleChange.bindAsEventlistener(this));

In your event listener, you would reference the toggle model this way:

MyAssistant.prototype.ToggleChange = function(event)
if (event.model.value === true) {

} else {

}
};

In cases like this, multiple widgets must share the same model. All widgets allow you
to specify modelProperty in their attributes to make it easier to use a shared model. For
example, Toggle Button and List Selector both have a modelProperty property in their
attributes.

The event handling is more complicated when the list items contain multiple subitems,
including widgets. To deal with this, List supports Mojo. Event. listTap and
Mojo.Event.listChange events. You can add event listeners to the widget div to listen
to these list events, then analyze the event to determine which element in the List item
is targeted by tracing the reference to the model object used for the particular list item
that was clicked/changed, or examine the event. target property to see which element
in the list item was affected. Also, you can add a propertyChange listener on the List div
to get all propertyChange events from any widget in the list; check the "property" in the
event to figure out what triggered it. The event also contains the model for the widget
that sent the event.

More About Lists
There are several major features included with lists that aren't used with News lists,
and there is another list widget: Filter List. We'll use Filter List in Chapter 5 to add a
search list to News, but the other features will be briefly touched on here.

Dynamic lists

The List attributes can optionally include a callback function for supplying list items
dynamically. You do not need to provide the items array objects at setup time; whenever
the framework needs to load items (speculatively or for display), it will call the callback
function itemsCallback (listWidget, offset, limit), with the arguments described
m Table 3-3.

84 I Chapter 3: Widgets

Table 3-3. ItemsCallback arguments

Argument Type Description

listWidget Object The DOM node for the list widget requesting the items

offset Integer Index in the list of the first desired item model object (zero-based)

limit .. ln_t~~ T~e_n~m_lierofite111model objects requested

It is understood that the requested data may not be immediately available. Once the
data is available, the given widget's noticeUpdateditems () method should be called to
update the list. It's acceptable to call the noticeUpdateditems () immediately, if desired,
or any amount of time later. Lengthy delays may cause various scrolling artifacts, how
ever. It should be called as listWidget. moj o. noticeUpdatedltems (offset, i terns), using
the arguments shown in Table 3-4.

Table 3-4. noticeUpdatedltems arguments

Argument Type Description

offset Integer Index inthe listofthefirstobject in i terns; usuallythesameas offset passed to the i temsCallback

i terns ~rray.. An~rr~yof!~eHstitem model objects that have been loaded for the list

Formatters and dividers

The formatters property is a simple hash of property names to formatter functions,
like this:

{timeValue: this.myTimeFormatter, dayOfWeek: this.dayindexToString, ... }

Before rendering the relevant HTML templates, the formatters are applied to the objects
used for property substitution. The keys within the formatters hash are property names
to which the formatter functions should be applied. The original objects are not modi
fied, and the formatted properties are given new modified names so that the unfor
matted value is still accessible from inside the HTML template.

The divider function works similar to a data formatter function. It is called with the
item model as the sole argument during list rendering, and it returns a label string for
the divider. For example, the function dividerAlpha generates list dividers based on the
first letter of each item:

dividerAlpha = function(itemModel) {
return itemModel.data.toString()[O];

};

If you're defining your own template, you should insert the property #{dividerlabel}
where you would want to have the label string inserted.

Lists I 85

Text Fields
There is a legacy of great text-centric applications on Palm devices. The original Palm
OS included a whole new writing system, Graffiti, to provide simple, effective tools for
entering and editing text, and one of the Treo's hallmarks was a terrific "thumbable"
keyboard and a system optimized for messaging and email applications. So naturally,
Palm webOS has some powerful text features, including a simple text widget, to embed
text in your applications.

This section will start with the Text Field (shown in Figure 3-10), the base text widget
that supports all general text requirements: single-line or multi-line text entry, with
common styles for labels, titles, headings, body text, line items, and item details. The
editing tools include basic entry and deletion, symbol and alternate character sets, cur
sor movement, selection, cut/copy/paste, and auto text correction.

Figure 3-10. A Text Field widget example

In most cases, TextField will address your text needs, but there are three specialized
widgets:

Password Field
Handles passwords or other confidential text input.

FilterField
Supports type-down filters of an off-screen list or similar searchable data.

RichTextEdit
A multi-line text field that supports simple text styles (bold, italic, and underline).

In all of the text widgets, the framework will handle all user interactions with the text
field, returning the entered string when the field loses focus or the user keys Enter
(where enabled). Mojo text fields are smart text fields by default. Autocapitalization
and correction for common typing mistakes are performed on all fields unless explicitly
disabled.

Smart Text Features
The Smart Text Engine (STE) refers to the automatic modification of user-entered text
to allow quicker text input. When typing on the small keyboards that are usually

86 I Chapter 3: Widgets

characteristic of mobile devices, users are more likely to make certain spelling mistakes.
Furthermore, because text input for things like text messaging, notes, and contact in
formation is often done in a hurry, users are more likely to forgo punctuation, forgo
capitalization, and/or use common slang abbreviations (such as using "r" instead of
"are" and "u" instead of "you").

The STE performs autocapitalization and autoreplacement. Auto capitalization
will, by default, assert a Shift key state when it detects a punctuation character
followed by a space during text entry, or can be set to force all caps or all lowercase.
Autoreplacement works by checking each word against a file of substitution pairs, and,
if found, a substitution is made.

Smart text is automatically enabled in all text fields except for password fields. If you
want to disable smart text, you can set the autoReplace property to false, or you can
set the textCase property to one of the following options:

Mojo. Widget. steModeSentenceCase (default)
Mojo.Widget.steModeTitleCase
Mojo.Widget.steModelowerCase

Emoticons is another property, which will direct the STE to substitute bitmap images
in place of common emoticon text strings, such as© for:) among many others.

There are a number of ways to style text fields, depending on whether you are grouping
fields together as you would for a form or using them singly or within other widgets.
Chapter 7 has more information on styling text fields as well as other advanced styling
topics.

Adding Text Fields to News
We only have one example of a text field in the News application: adding a newsfeed
requires text fields to enter the feed URL and name. The Text Fields will be put below
the list of feeds within the feed list scene and a Drawer widget will hide the Text Fields
until triggered by the Add Feed action on the feedlistWgt widget.

Drawers are container widgets that can be open, allowing child content to be displayed
normally, or closed, keeping it out of view. The state of the drawer depends on a single
model property, although there are also exposed widget functions (toggleState, getO
penState, and setOpenState) available for opening and closing a drawer.

Add the Text Field declarations within a styled palm-group into the
feedList-scene.html file. We're going to wrap the Text Fields with the Drawer and several
layers of styling div tags:

<div id='feedDrawer' x-mojo-element="Drawer">
<div id="add-feed-title" class="palm-dialog-title">

Add Feed
</div>

<div class="palm-list">

Text Fields I 87

<div class="palm-row first">
<div class="palm-row-wrapper textfield-group"

x-mojo-focus-highlight="true">
<div class="title">

<div x-mojo-element="TextField" id="newFeedURL"></div>
</div>

</div>
</div>
<div class='palm-row last'>

<div class="palm-row-wrapper textfield-group"
x-mojo-focus-highlight="true">

<div class="title">
<div x-mojo-element="TextField" id="newFeedName"></div>

</div>
</div>

</div>
</div>
<div x-mojo-element="Button" id="okButton"></div>
<div x-mojo-element="Button" id="cancelButton"></div>

</div>

At the beginning of the file there is a style class to create the "Add Feed" title. The next
style class, palm-list, creates a list-style group with row dividers into which we'll put
our text fields. We wrap each of the fields with palm-row and palm-row-wrapper classes
and add a div with the title class to complete the styling. The text field widgets are
declared within all those layers of styling classes. Button widgets are declared at the
bottom to approve the feed entry and submit it for addition to the list, or to cancel
the action and close the drawer.

Next, set up the Drawer, Text Fields, and Buttons in the setup method of the
feedList-assistant.js:

II Setup Drawer for add Feed; closed to start
this.controller.setupWidget('feedDrawer', {}, this.addDrawerModel={open: false});

II Set the add feed drawer title to Add Feed
var addFeedTi tleElement = this. controller. get("add-feed-title");
addFeedTitleElement.innerHTML = "Add News Feed Source";

//Setup text field for the add new feed's URL
this.controller.setupWidget(

"newFeedURL",
{

},

hintText: "RSS or ATOM feed URL",
autoFocus: true,
autoReplace: false,
textCase: Mojo.Widget.steModeLowerCase,
enterSubmits: false

this.urlModel = {value : ""});

II <;ptup tPxt field for the new feed's name
this.controller.setupWidget(

"newFeedName",

88 I Chapter 3: Widgets

{

},

hintText: "Title (Optional)",
autoReplace: false,
textCase: Mojo.Widget.steModeTitleCase,
enterSubmits: false

this.nameModel = {value : ""});

II Setup OK & Cancel buttons
II OK button is an activity button which will be active
II while processing and adding feed. Cancel will just cancel the
II action and close the scene
this.okButtonModel ={label: "OK", disabled: false};
this.controller.setupWidget("okButton", {type: Mojo.Widget.activityButton},

this.okButtonModel);
this.okButtonActive = false;
this.okButton = this.controller.get("okButton");
this.checkFeedHandler = this.checkFeed.bindAsEventlistener(this);
this.controller.listen("okButton", Mojo.Event.tap,

this.checkFeedHandler);

this.cancelButtonModel = {label: "Cancel", disabled: false};
this.controller.setupWidget("cancelButton", {type: Mojo.Widget.defaultButton},

this.cancelButtonModel);
this.closeAddFeedHandler = this.closeAddFeed.bindAsEventlistener(this);
this.controller.listen("cancelButton", Mojo.Event.tap,

this.closeAddFeedHandler);

The first setupWidget call creates the Drawer, which is initially closed. The next setup
Widget creates the URL field with some hint text and setting focus to the field. The
name field is set up with the hint text indicating that the field is optional-if not entered,
we'll use the name provided in the feed after it's loaded.

The first button is set up with an OK label and declared as an activity button, which
will be used to show activity while we are checking and loading the feed. A second
button is set up to cancel the operation.

We still need a selector to open the Drawer. The List widget has an ideal feature to use
for that selector, the Add Item option, which generates a Mojo.Event.listAdd event
when tapped. Insert the additemlabel property to the feedlistWgt setup to enable a
selector to add a new feed. You will see that new property added to our previous setup
function, just below the renderlimit property:

this.controller.setupWidget("feedlistWgt",
this.feedWgtAttr = {

},

itemTemplate: "feedlistlfeedRowTemplate",
listTemplate: "feedlistlfeedlistTemplate",
swipeToDelete: true,
renderlimit: 40,
addltemlabel: "Add ••• ",
reorderable: true

this.feedWgtModel = {items: feedlist});

Text Fields I 89

Add a listener for the Moj o. Event. listAdd event and specify a handler to open the
Drawer:

II addNewFeed - triggered by "Add .•. " item in feed list
FeedlistAssistant.prototype.addNewFeed = function() {

this.addDrawerModel.open = true;
this.controller.modelChanged(this.addDrawerModel);

} ;

When the user taps the Add item at the end of the list, the listAdd event causes the
addNewFeed handler to open the Drawer. From there, the feed' s URL is entered, the Add
Feed button tapped to generate a tap event on the button, and the checkit handler
called to process the feed. The drawer will stay open until a feed is completely added
or the user taps the Cancel button.

Since we're demonstrating the Text Field widget, we haven't included all the code for
this.checkit, but you can refer to Appendix D, where the News application source is
reproduced in it's entirety. Just know that the version of this. checkit in Appendix D
is built for use within a dialog, which is eventually where this Add Feed function will
be handled. If you try to use it in this drawer case, you'll need to remove the
sceneAssistant references for all the scene controller method calls.

The handlers will submit an Ajax request for the entered feed. If it's a valid feed,
ProcessFeed will be called with the result and will add the processed feed to the end of
the feed list. The Drawer is closed at the end if the feed is added successfully. Fig
ure 3-11 shows the new feed List scene with the Drawer in the open position and the
text fields.

Figure 3-11. A feedList scene with a text field

90 I Chapter 3: Widgets

Password Field
If you need a text field that will be used for passwords or some other type of confidential
information, the Password Field provides many of the Text Field features, but masks
the display. Any entered text is displayed as a bullet (•) character. As with the Text
Field, the framework handles all of the editing logic within the field and generates a
Mojo. Event .propertyChange event when the field has been updated. Figure 3-12 shows
an example of a Password Field widget.

Figure 3-12. A Password Field widget example

Palm webOS Editing
The Palm Pre phone has a "slideout" keyboard, which was an incentive to include some
powerful editing features with webOS. In addition to the advantages of keyboarding
on thumbable keyboards, all text fields support trackball mode cursoring, smart dele
tion, and text selection.

Trackball mode (which users access by holding the Alt or Orange key while swiping)
lets users use swipes to move the cursor across the text to the desired location, while
text selection (holding the Shift key while swiping), will highlight selected text for de
letion, replacement, or cut/copy/paste operations.

Smart deletion (holding the Shift key while deleting) will delete whole words at a time
rather than one character at a time.

All this support comes with using Mojo's text fields, along with the Smart Text features
discussed in this section.

Filter Field
If you require a text field to filter down the contents of an offline list, you can use the
Filter Field. It can be applied to any case where you want to process the field contents
and update on-screen elements based on the entered string.

Filter Field is hidden until displayed by the framework in response to the user entering
text when there isn't focus on any text field. In other words, the filter field is given focus
for any text input on scene where it is present and another text field hasn't been ex
plicitly been given focus.

Text Fields I 91

Along with displaying the field, the framework will call a provided filter function to
handle the entered text after a specified delay. It's up to you to respond appropriately,
but the framework will continue to display new text input and to call the filter function
until the field is closed.

Rich Text Edit
There is a simple Rich Text Edit widget (see Figure 3-13), which is similar to a multi
line text field, but also supports applying bold, italic, and underline styles to arbitrary
runs of text within the field.

Figure 3-13. A Rich Text Edit widget example

To create support for this styling, enable the RichTextEdititems property in the Appli
cation menu (see Chapter 4 for information on the Application menu). The user will
then be able to apply bold, italic, and underline style to the current text selection.

Events
The World Wide Web Consortium (W3C) HTML event model provides a way to re
spond to user actions. In the model, which is part of the HTML DOM, user actions
can be associated with a DOM element. When an action occurs on the DOM element,
the browser generates an event and invokes the JavaScript code subscribed to the ele
ment, for a particular event type. The W3C HTML event model defines standard event
types, such as load, mouseover, click, and resize, corresponding to user actions.

The framework implements an event model very similar to the W3C HTML event
model. One difference is that the framework defines event types at a higher level of
abstraction, representing actions meaningful to the UI model and framework widgets.

Framework Event Types
Mojo defines unique event types supporting different parts of the UI system:

• System UI events, such as drag, fiick, and hold

• Widget events, including listTap, propertyChange, and more

92 I Chapter 3: Widgets

• Application UI events, such as scrollStarting, stageActivate, and
stageDeactivate

You should refer to the API documentation, specifically Mojo.Event, for a complete
list with descriptions and references to the event object properties and related infor
mation. For the System and Application UI event types, the meaning of the event de
pends on the context in which the event occurs, and you need to handle the event
accordingly.

The framework also provides a way to define custom events and propagate events to
an event handler through Mojo.Event .make and Mojo. Event.send.

Listening
When an event occurs, all code that is subscribed to handle the event is notified. You
can subscribe to events on any DOM element by calling one of the following methods:

• Mojo. Event. listen() or this. controller. listen()

• <DOM Element ID>.addEventlistener()

• observe()

These methods are roughly equivalent, differing only in call semantics.
Mojo.Event.listen was created as a contingency for issues with either
addEventlistener or Prototype's observe method, but at this point, all work equally
well with Mojo.

There is an issue with referencing elements by DOM ID. The Prototype $ and
getElementByid won't work across Stage boundaries, so if you have a multistage appli
cation, you will need to use this.controller .listen() if you pass an element by DOM
ID, or this.controller .get() when you want to retrieve an element by DOM ID.

As in the standard HTML model, events bubble up the DOM tree and the parent DOM
element receives the events that occur on any child elements. For controls, this implies
that you should observe events on the enclosing div element instead of on an element
that is part of the control implementation.

The following code snippets show how to subscribe to events using
this.controller.listen:

1. Define the HTML DOM element associated with an event and assign an ID to the
element:

<div id="thanksButton">Thank you</div>

2. Provide a JavaScript method to handle the event:

MySceneAssistant.prototype.handleThanks = function() {
this.sceneAssistant.outputDisplay.innerHTML = "Thanks";}

Events I 93

This is the handler specified when the user subscribes to the event. The method is
invoked by the browser when the event occurs. You should provide the event han
dling logic appropriate for the event and application context.

3. Subscribe to the event, using the element ID and specifying the event handler
method:

.. '

this.controller.listen("thanksButton", Mojo.Event.tap,
this.handleThanks.bindAsEventlistener(this));

You will typically need to use bind or bindAsEventListener on your event
""' listeners. The JavaScript this keyword will be set to either the window ~,'

~-~•,,.:,' or the DOM element when your event listener is called. You will want
' to use bind or bindAsEventlistener to make sure that the this keyword

will point to the same scene assistant instance that registered the
handler.

stoplistening
Use one of the following methods to remove your listener from events:

• Mojo. Event. stop Listening() or this. controller. stop Listening()

• <DOM Element ID>.removeEventlistener()

• stopObserving()

You should use the method that corresponds to the method used to set up listening for
the event; in other words, use the same Mojo method to stop listening that you used
to initiate listening.

With any of these methods, you must use the exact handler reference used in the listen
method call. In the above example, the handler was specified as this. handle
Thanks.bindAsEventListener(this), which won't work in the stoplistening method.
Try this instead:

this.eventHandler = this.handleThanks.bindAsEventListener(this);
this.controller.listen("thanksButton", Mojo.Event.tap, this.eventHandler);

this.controller.stoplistening("thanksButton", Meja.Event.tap, this.eventHandler);

Note that if you include the useCapture argument when setting up your listener, you
must also include it with the stop Listening call in exactly the same way.

94 I Chapter 3: Widgets

There are two ways to leak memory in JavaScript. The first is to have a
circular reference between the closure of an event handler and the node
that you call addEventlistener on. Since the event won't be unregistered
until the node is destroyed, and the node won't be destroyed until the
JavaScript reference goes away, it causes a memory leak.

The second form of leaking is more straightforward, which is to have a
persistent reference to a closure (like setinterval or a Mojo service sub
scription) that has a direct or indirect reference to a DOM node. Those
objects and nodes will also live forever.

Using Events with Widgets
Many widgets dispatch events. Applications can use these to better leverage the func
tionality built into the controls. Events are generally dispatched to the widget's element,
the div defined in the scene's view HTML that has the x-mojo-element attribute. Ap
pendix B enumerates all the specific events propagated by each widget in options tables
accompanying each widget's description.

Summary
Widgets are signature components provided by Mojo that enable your applications
with a powerful UI that has the look and feel of webOS. Using common techniques,
you can customize widget behavior and appearance around your specific needs by ma
nipulating widget settings along with their corresponding events and styles.

In this chapter, we've looked at the widget design and covered the general methodology
for declaring, instantiating, rendering, and updating widgets. The News application
has been extended to include buttons, lists, and text fields, and we've covered each of
those widget types in detail. We've also covered event handling and style overrides,
and by now you should have a good idea how to use a widget within your application.

With these basic widgets, you can write some simple applications. But you will also
need menus and dialog boxes, which we'll cover in the next chapter, to write mean
ingful, Ul-complete applications. With what you've learned so far, however, it wouldn't
hurt to write some sample applications to familiarize yourself with stages, scenes,
widgets, and event handling. These basics will be used throughout any webOS
application.

Summary I 95

CHAPTER4

Dialogs and Menus

Familiar components in every UI framework, dialog boxes and menus are used by
almost all applications. Mojo' s Dialog and Menu widgets provide the expected features,
but have some unique additions. With custom dialogs, you can include any web content
in a dialog box. Additionally, you can customize menus by scene and present them as
either conventional drop-down lists or floating elements.

Dialogs and menus are both fundamental widgets, though more complex than the basic
widgets covered in Chapter 3, and they are accessed and managed differently than other
widgets. Dialogs are instantiated through controller functions rather than through
setupWidget, and showDialog requires an assistant as one of its components.

Menus are instantiated by setupWidget, but use the Commander Chain to propagate
menu commands between stage assistants and scene assistants. The Commander Chain
is a model for propagating commands through the application, stage, and scene con
trollers, and is described in detail near the end of this chapter.

As in Chapter 3, we'll explore these widgets in the context of adding them into the
News application. This will be accompanied by a general description and some
screenshots.

Dialogs
You can use a Dialog widget to create a modal view for almost any purpose. A custom
dialog is a conventional dialog, but it requires a widget assistant and an HTML template
file. The Dialog widget is dynamically instantiated within a scene assistant, so there is
a bit of overhead in using it both for you as a developer and at runtime. For errors, you
should use the Error dialog. For presenting some simple options, use an Alert dialog.
The simple built-in dialogs will be presented first, followed by a discussion of how to
build custom dialogs with showDialog.

97

Error Dialog
You can post error messages in a modal dialog box with a fixed title of "Error," a

customizable message, and a confirmation button. The Error dialog must be used only

with errors, since you can't change the title; an example is shown in Figure 4-1.

You can post an Error dialog box with a single call:

Mojo.Controller.errorDialog("Invalid Feed", this.controller.window);

Figure 4-1. An Error dialog box

Logging Methods
Mojo includes logging methods to give you an efficient way to generate console output
without degrading the performance of your application or the system. There are three
log levels:

Mojo.Log.info();
Mojo.Log.warn();
Maj o. Log. error();

II Mojo.Log.LOG_LEVEL_INFO = 20
II Mojo.Log.LOG_LEVEL_WARNING = 10
II Mojo.Log.LOG_LEVEL_ERROR = o

Only ruessages al ur Leluw Llie cu1Ttf1L logging level are generated. The current logging
level is set as a configuration option in a new file, framework_config.json. To allow all
log levels, set the loglevel property to 99:

98 J Chapter 4: Dialogs and Menus

{
"loglevel": 99
}

For shipping code, do not set the limit above 0, as logging overhead will contribute to
slow performance on the application and the system.

Unlike console. log, the arguments to Mojo. Log are passed individually to the log func
tions and only turned into strings if the message is actually printed to the console. Take
the following code, for example:

Mojo.Log.info("I have", 3, "eggs.");

This would output:

I have 3 eggs.

There is also support for a limited number of formatting characters and for adding log
methods to individual objects. Look at the following code:

var favoriteColor = 'blue';
Mojo.Log.info("My favorite color is %s.", favoriteColor);

The output would be:

My favorite color is blue.

You can use %s, %d, %f, %i, %0, and %j. The first four produce the same result; coercing
the appropriate parameter to a string for logging. %0 converts the parameter to a string
using Prototype's Object. inspect(), while %j converts it using Object. toJSON().

Alert Dialog
You can display a short message using an Alert dialog, with one or more HTML buttons
presenting the selection options. This is the best option if you have either a message
for the user, other than an error message, or want to present options that can be selected
in the form of button selections:

this.controller.showAlertDialog({
onChoose: function(value) {

this.outputDisplay.innerHTML = "Alert result = " + value;

} '
title: "Filet Mignon",
message: "How would you like your steak done?",
choices:[

{label: "Rare", value: "rare", type: "affirmative"},
{label: "Medium", value: "medium"},
{label: "Overcooked", value: "overcooked", type: "negative"},
{label: "Nevermind'', value: "cancel", type: "dismiss"}

]});

This example presents four choices, as shown in Figure 4-2. Each button is labeled,
with an optional button type corresponding to a palm-button class, and returns a value
string.

Dialogs I 99

Figure 4-2. An Alert dialog box

Custom Dialogs
If the two simple dialogs don't meet your needs, you can use the showDialog function,
which can display any type of content to the user in the form of a modal dialog box.
You can put anything into a custom dialog that you'd put into a scene, meaning almost
any web content or Mojo UI content.

Back to the News: Adding an Add Feed dialog

In the previous chapter, we added a Drawer in the FeedlistAssistant to support the
Add Feed feature. It would be better to put this type of feature in a dialog; we will create
an Add Feed dialog with the showDialog function and move the code used in the Drawer
into the dialog.

Begin by replacing the addNewFeed method in feedlist-assistant.js with a call to
showDialog():

II ~rlrlNPwFPPd - triggpred by "Add ... " item in feed list
FeedlistAssistant.prototype.addNewFeed = function()

this.controller.showDialog({

100 I Chapter4: DialogsandMenus

} ;

template: 'feedlist/addFeed-dialog',
assistant: new AddDialogAssistant(this, this.feeds)

});

The arguments specify the dialog template and a reference to the assistant that handles
the dialog. We create a new instance of the AddDialogAssistant, passing a reference to
the Feed ListAssistant and this. feeds, the feed object, and pass that in along with a
reference to our add Feed-dialog. html template. The dialog template is simply an HTML
template, but you should make use of some of the standard dialog box styles such as
palm-dialog-content, palm-dialog-title, palm-dialog-separator, and palm-dialog
buttons to format and style your dialog boxes to fit in with webOS UI guidelines.

Create the HTML for the addFeed-dialog template by moving the code used
in the previous chapter fromfeedList-scene.html to a new file, viewslfeedListladdFeed
dialog.html:

<div id="palm-dialog-content" class="palm-dialog-content">
<div id="add-feed-title" class="palm-dialog-title">

Add Feed
</div>
<div class="palm-dialog-separator"></div>
<div class="textfield-group" x-mojo-focus-highlight="true">

<div class="title">
<div x-mojo-element="TextField" id="newFeedURL"></div>

</div>
</div>
<div class="textfield-group" x-mojo-focus-highlight="true">

<div class="title">
<div x-mojo-element="TextField" id="newFeedName"></div>

</div>
</div>

<div class="palm-dialog-buttons">
<div x-mojo-element="Button" id="okButton"></div>
<div x-mojo-element="Button" id="cancelButton"></div>

</div>
</div>

The changes from the HTML used previously include the removal of the Drawer and
the addition of the various palm-dialog styles and replacing the palm-list styling with
the textfield-group.

The dialog assistant should be defined like a scene assistant with a creator function and
the standard scene methods: setup, activate, deactivate, and cleanup.

Within a dialog assistant, you can set up widgets, push scenes, and generally do any
thing that you can do within a scene assistant. There is one major difference: the dialog
assistant's controller is a widget controller so it doesn't have direct access to scene
controller methods; instead the dialog assistant must use the calling scene assistant's
scene controller methods such as setupWidget. To facilitate this, the assistant property

Dialogs I 101

in the showDialog argument object passes the keyword this as an argument when calling
the dialog's creator function.

To create the AddDialogAssistant, we'll move the code we used in the last chapter to
generate the small form in the Drawer widget. Here that code is presented with some
modifications in the AddDialogAssistant:

II--
11 AddDialogAssistant - simple controller for adding new feeds to the list
II when the "Add .•. " is selected on the feedlist. The dialog will
II allow the user to enter the feed's url and optionally a name. When
II the "Ok" button is tapped, the new feed will be loaded. If no errors
II are encountered, the dialog will close otherwise the error will be
II posted and the user encouraged to try again.
II
function AddDialogAssistant(sceneAssistant, feeds) {

this.feeds = feeds;

}

this.sceneAssistant = sceneAssistant;

this.title = "";
this.url = "";

this.feedlndex = null;
this.dialogTitle = "Add News Feed Source";

AddDialogAssistant.prototype.setup = function(widget)
this.widget = widget;

II Set the dialog title to either Edit or Add Feed
II** These next two lines are wrapped for book formatting only**

var addFeedTitleElement =
this.sceneAssistant.controller.get("add-feed-title");

addFeedTitleElement.innerHTML = this.dialogTitle;

II Setup text field for the new feed's URL
this.sceneAssistant.controller.setupWidget(

"newFeedURL",
{

},

hintText: "RSS or ATOM feed URL",
autoFocus: true,
autoReplace: false,
textCase: Mojo.Widget.steModeLowerCase,
enterSubmits: false

this.urlModel = {value : this.url});

II Setup text field for the new feed's name
this.sceneAssistant.controller.setupWidget(

"newFeedName",
{

},

hintText: "Title (Optional)",
autoReplace: false,
textcase: MoJo.11J1Clget.steModelitleCase,
enterSubmits: false

102 I Chapter 4: Dialogs and Menus

} ;

this.nameModel ={value : this.title});

II Setup OK & Cancel buttons
// OK button is an activity button which will be active
II while processing and adding feed. Cancel will just
II close the scene
this.okButtonModel = {label: "OK", disabled: false};
this.sceneAssistant.controller.setupWidget("okButton",

{type: Mojo.Widget.activityButton},
this.okButtonModel);

this.okButtonActive = false;
this.okButton = this.sceneAssistant.controller.get("okButton");
this.checkFeedHandler = this.checkFeed.bindAsEventListener(this);
this.sceneAssistant.controller.listen("okButton", Mojo.Event.tap,

this.checkFeedHandler);

this. cancelButtonModel = {label: "Cancel", disabled: false};
this.sceneAssistant.controller.setupWidget("cancelButton",

{type: Mojo.Widget.defaultButton},
this.cancelButtonModel);

this.sceneAssistant.controller.listen("cancelButton", Mojo.Event.tap,
this.widget.mojo.close);

II checkFeed - called when OK button is clicked
AddDialogAssistant.prototype.checkFeed = function()

if (this.okButtonActive === true) {

}

//Shouldn't happen, but log event if it does and exit
Mojo.Log.info("Multiple Check Feed requests");
return;

//Check entered URL and name to confirm that it is a valid feedlist
Mojo.Log.info("New Feed URL Request: ", this.urlModel.value);

II Check for "http://" on front or other legal prefix; any string of
II 1 to 5 alpha characters followed by ":" is ok, else

prepend "http://"
var url = this.urlModel.value;
if (/A(a-z]{1,s}:/.test(url) === false)

II Strip any leading slashes
url = url.replace(/A\/{1,2}/,"");
url = "http://"+url;

II Update the entered URL & model
this.urlModel.value = url;
this.sceneAssistant.controller.modelChanged(this.urlModel);

this.okButton.mojo.activate();
this.okButtonActive = true;
this. okButtonModel. label = "Updating Feed";
this.okButtonModel.disabled = true;
this.sceneAssistant.controller.modelChanged(this.okButtonModel);

Dialogs I 103

} ;

var request = new Ajax.Request(url,
method: "get",

});

evalJSON: "false",
onSuccess: this.checkSuccess.bind(this),
onFailure: this.checkFailure.bind(this)

II checkSuccess - Ajax request failure
AddDialogAssistant.prototype.checkSuccess = function(transport) {

Mojo.Log.info("Valid URL - HTTP Status", transport.status);

II DEBUG - Work around due occasion Ajax XML error in response.
if (transport.responseXML === null && transport.responseText !== null) {

Mojo.Log.info("Request not in XML format - manually converting");
II** These next two lines are wrapped for book formatting only**

transport.responseXML = new DOMParser().
parseFromString(transport.responseText, "textlxml");

}

var feedError = News.errorNone;

II If a new feed, push the entered feed data on to the feedlist and
II call processFeed to evaluate it.
if (this.feedindex === null) {

this.feeds.list.push({title:this.nameModel.value,
url:this.urlModel.value, type:"", value:false, numUnRead:o,
stories: []});

II processFeed - index defaults to last entry
feedError = this.feeds.processFeed(transport);

else {

}

this.feeds.list[this.feedindex] = {title:this.nameModel.value,
url:this.urlModel.value, type:"", value:false, numUnRead:o,
stories:[]};

feedError = this.feeds.processFeed(transport, this.feedindex);

II If successful processFeed returns errorNone
if (feedError === News.errorNone) {

II update the widget, save the DB and exit
this.sceneAssistant.feedWgtModel.items = this.feeds.list;

II** These next two lines are wrapped for book formatting only**
this.sceneAssistant.controller.modelChanged(

this.sceneAssistant.feedWgtModel);
this.widget.mojo.close();

}
else {

II Feed can't be processed - remove it but keep the dialog open
this.feeds.list.pop();
if (feed Error == Ne~!s o inv~lidFeedError) {

Mojo. Log.warn("Feed ",
this.urlModel.value, " isn't a supported feed type.");

104 I Chapter 4: Dialogs and Menus

} ;

var addFeedTitleElement = this.controller.get("add-feed-title");
addFeedTitleElement.innerHTML = "Invalid Feed Type - Please Retry";

this.okButton.mojo.deactivate();
this.okButtonActive = false;
this. okButtonModel. label = "OK";
this.okButtonModel.disabled = false;
this.sceneAssistant.controller.modelChanged(this.okButtonModel);

II checkFailure - Ajax request failure
AddDialogAssistant.prototype.checkFailure = function(transport)

II Log error and put message in status area
Mojo.Log.info("Invalid URL - HTTP Status", transport.status);
var addFeedTi tleElement = this. controller. get("add-feed-title");
addFeedTitleElement.innerHTML = "Invalid Feed Type - Please Retry";

} ;

II cleanup - close Dialog
AddDialogAssistant.prototype.cleanup = function() {

} ;

II TODO - Cancel Ajax request or Feed operation if in progress
this.sceneAssistant.controller.stopListening("okButton",

Mojo.Event.tap, this.checkFeedHandler);
this.sceneAssistant.controller.stopListening("cancelButton",

Mojo.Event.tap, this.widget.mojo.close);

There were several changes made to the previous version with the Drawer widget to
create this version in a dialog:

Scene Assistant Methods
Change this. controller.* references to this. sceneAssistant. controller.* refer
ences, because the AddDialogAssistant must use the passed reference to the scene
assistant for any scene controller methods.

Close
Add this.widget.mojo.close() after successfully adding the feed in checkOk. You
will have to directly close the dialog by calling the close() method on the dialog
widget. Notice that the widget element is passed as an argument to the dialog
assistant's setup method.

T extField Cleanup
Remove the code that explicitly cleared the text fields on exit; it isn't needed, as
the dialog scene is removed from the DOM entirely.

Swiping back in a default dialog box will close the dialog box, but a Cancel button is
recommended for most dialog boxes to help novice users who may be confused by its
absence. You can set the optional preventCancel to true in the showDialog call
arguments to stop the back gesture from canceling the dialog box; by default,

Dialogs I 1 OS

preventCancel is set to false. Figure 4-3 shows the results of these changes and the Add
Feed dialog.

Figure 4-3. An Add Feed dialog box

Menus
Mojo supports four types of menu widgets. Each is fairly unique, but they share some
common design elements and can be used in similar ways. You should review the User
Interface Guidelines to see how best to apply each menu type and for general informa
tion on designing menus for your application.

Application menu
A conventional desktop-style menu that drops down from the top-left corner of
the screen when the user taps in that area.

View menu
Menus used across the top of the screen. They can be used as display headers or
action buttons, to pop up submenus, or to toggle settings.

106 I Chapter 4: Dialogs and Menus

Command menu
Used to set menus or (more typically) buttons across the bottom of the screen for
actions, to pop up submenus, or to toggle settings.

Submenu
Can be used in conjunction with the other menu types to provide more options,
or can be attached to any element in the page.

Application, View, and Command menus are technically very similar: they use a single
model definition with a menu items array, and are configured through setupWidget().
Menu selections generate commands, which are propagated to registered command
ers through the Commander Chain. We'll cover these three widgets in the next section
on Menu widgets.

The Submenu shares many of the model properties with Menu widgets, but is instan
tiated through a direct function call and is handled differently. The Submenu widget
will be addressed fully in its own section later in the chapter.

The System UI includes another menu, called the Connection menu, which is similar to
the Application menu in appearance and is anchored to the top-right of the screen. It
is restricted for system use and is not available to applications.

Menu Widgets
Unlike all other widgets, Menu widgets are not declared in your scene view file, but are
simply instantiated and handled from within your assistant. From a design perspective,
Menu widgets float above other scene elements, attached to the scene's window rather
than a point in the scene. Because of this, it wouldn't work for their positions to be
determined within the HTML. They are in the DOM, so you can use CSS to style them,
but the framework determines their positions according to predefined constraints and
the individual menu's attributes and model properties.

A Menu widget is instantiated by a call to setupWidget(), specifying the menu type,
attributes, and model. The menu types take the form Mojo.Menu. type, where type can
be one of appMenu, viewMenu, or commandMenu.

Menus have just a few attribute properties that differ between the Application menu
and the CommandNiew menus; they'll be described in the following sections. The
model is primarily made up of the items array, which includes an object for each menu
item and optional properties. Other than the items array there is simply a visible
property to set the entire menu to invisible (false) or visible (true). If not present, the
menu defaults to visible.

The major options are in the items array. You can include selectable items and groups
at the top level of any menu, where groups allow you to specify a second level of se
lectable items. Items can have a label and an icon. Icons can specify either an appli
cation-supplied icon image (found at iconPath) or one of the framework's icons (using
the icon property).

Menus I 107

Each item includes a command value, which is propagated through the Commander
Chain when the item is selected. This is a rather significant topic, which we'll touch on
briefly here, but you should review the section "Commander Chain" on page 126 to
get a full description.

Application menu

The Application menu appears in the upper-left corner of the screen when the user taps
the left side of the status bar. It includes some system-defined and some application
defined actions, and is intended to have an application-wide scope for the most part.
Figure 4-4 shows an example of an Application menu.

Figure 4-4. An Application menu

The Application menu contains a few required items: Edit (an item group including
Cut, Copy, and Paste), Preferences, and Help; the latter items are disabled by default.
You are free to add any other items to the menu, and to enable Preferences and/ or Help
by including command handlers to take the appropriate actions within your
application.

Back to the News: Adding an Application menu

Now let's add an Application menu to News, with an "About News" item. Unlike our
earlier example, we'll declare the Application menu attributes and model as global

108 I Chapter4: Dialogs and Menus

variables, and add the handleCommand() method to the News stage assistant. This makes
the Application menu available to all of the News scene assistants:

II Setup App Menu for all scenes; all menu actions handled in
II StageAssistant.handleCommand()
News.MenuAttr = {omitDefaultitems: true};

News.MenuModel = {
visible: true,
items: [

};

{label: "About News ..• ", command: "do-aboutNews"},
Mojo.Menu.edititem,
Mojo.Menu.prefs!tem,
Mojo.Menu.helpitem

II ---
11 handleCommand - called to handle app menu selections
II
StageAssistant.prototype.handleCommand = function(event) {

if(event.type == Mojo.Event.command) {
switch(event.command) {

case "do-aboutNews":
var currentScene = this.controller.activeScene();
currentScene.showAlertDialog({

onChoose: function(value) {},
II **These next two lines are wrapped for book formatting only**

title: "News - v#{version}".interpolate({
version: News.versionString}),

break;

}
};

message: "Copyright 2009, Palm Inc.",
choices:[

{label: "OK", value:""}
l

});

The following menu properties are unique to the Application menu:

richTextEdititems
Can be set to true when you include a Rich Text Edit widget in your scene, and it
will add the bold, italic, and underline styling items to the Edit menu.

omitDefaultitems
Must be set to true when you want to remove or reorder the default items: Edit,
Preferences, or Help.

By choosing omitDefaultitems, we must manually add back any of the default items in
the model definition if they are to be displayed in the menu. If you want to change some
but not all items, you can use system constants to replace the items that aren't changing.
In the News.MenuModel, the default items Mojo.Menu.edititem, Mojo.Menu. prefsitem, and

Menus I 109

Mojo.Menu.helpltem are all added back into the model to allow us to change the order
of the items.

The News.MenuAttr declares that this menu will override the default items. The
News.MenuModel puts the About News item at the top of the menu and by referencing
the default items keeps them in the menu with the framework still handling them.
Within the handleCommand method, the do-aboutNews command handler puts up an Alert
Dialog with the About News information.

When the Application menu commands are propagated, they are handled by the stage
assistant, but the handlers need to be aware of the current scene. The local variable
currentScene is set to the active scene controller at the beginning of handleCommand.

From there, currentScene applies scene assistant functions, such as showAlertDialog,

to whichever scene is currently displayed.

All this work has been done in stage-assistant.js, but the Application menu is actually
displayed within the scenes. To configure and display the Menu widget, each scene
assistant's setup method will include this setupWidget() call:

II Setup Application Menu
this.controller.setupWidget(Mojo.Menu.appMenu, News.MenuAttr, News.MenuModel};

You can override the application-wide behavior for a specific scene by defining scene
specific application menu attributes or model before setting up the Application menu,
and including a handleCommand method in that scene to handle the Application menu
commands there. Don't forget to call Mojo. Event. stop Propagation() if you use any of
the same commands used in your global Application menu. Figure 4-5 shows the Ap
plication menu and the resulting About box.

Figure 4-5. The News Application menu and About box

110 I Chapter 4: Dialogs and Menus

Be sure that you do not call Mojo.Event.stopPropagation() or
event.stop() on events you do not handle. This is a common pitfall:
stopping all events in handleCommand. This breaks a parts of the system
UI such as back gestures and character picker.

By consolidating the Application menu declaration and handler in the stage assistant,
it's easy to provide a common set of menu options across all of the scenes. As an ex
ample, let's add a Preferences scene to News.

RIO,

By default, the Application Menu disables Preferences and Help. If you
simply want to enable one or both commands, you can include a handler

" '*.' for Mojo.Event.commandEnable in the handleCommand method and call
• Moj o. Event. stopPropagation () for the command that you want to ena

ble.

Back to the News: Adding preferences to News

In the previous chapter, we implemented the Ajax requests in feedlist-assistant.js, which
retrieves the initial feed data. Let's extend that feature to periodically update the feeds,
and we'll set the interval, the period between feed updates, in a preferences scene.

Create a Preferences scene using palm-generate:

palm-generate -t new_scene -p "name=preferences" com.palm.app.news

The scene's view file, preferences-scene.html, would look like this:

<div class="palm-page-header">
<div class="palm-page-header-wrapper">

<div class="icon news-mini-icon"></div>
<div class="title">News Preferences</div>

</div>
</div>

<div class="palm-group">
<div class="palm-group-title">Feed Updates</div>
<div class="palm-list">

<div class="palm-row">
<div class="palm-row-wrapper">

<div x-mojo-element="ListSelector" id="feedCheckintervalList">
</div>

</div>
</div>

</div>
</div>

</div>

Menus I 111

The header is one of the framework style classes, palm-page-header, used on most pref
erences scenes. You'll also note the icon and the news-mini-icon styles, which allow us
to add some CSS to insert a small news icon in the header. The icon must be added to

the images directory at the News application's root level:

I* Header Styles *I
.icon.news-mini-icon {

}

background: url(.. limageslheader-icon-news.png) no-repeat;
margin-top: 13px;
margin-left: 17px;

After the header styling, you can see some list style classes followed by a List Selector
widget declaration to pick the interval setting. The preferences-assistant.js will set up
the List Selector and add a listener for selections using that List Selector. The handler,
feedintervalHandler, updates the global variable, feedUpdatelnterval, after a selection
is made:

I* Preferences - NEWS

*I

Copyright 2009 Palm, Inc. All rights reserved.
Preferences - Handles preferences scene, where the user can:

- select the interval for feed updates

App Menu is disabled in this scene.

function PreferencesAssistant() {

}

PreferencesAssistant.prototype.setup = function()

II Setup list selector for UPDATE INTERVAL
this.controller.setupWidget("feedCheckintervallist",

{

} '

label: "Interval",
choices: [

{label: "Manual Updates",
{label: "5 Minutes",
{label: "15 Minutes",
{label: "1 Hour",
{label: "4 Hours",
{label: "1 Day",

this.feedintervalModel = {
value : News.feedUpdateinterval

});

112 I Chapter 4: Dialogs and Menus

value: o},
value: 300000},
value: 900000},
value: 3600000},
value: 14400000},
value: 86400000}

this.changeFeedlntervalHandler = this.changeFeedlnterval.bindAsEventlistener(this);
this.controller.listen("feedChecklntervallist",

Mojo.Event.propertyChange, this.changeFeedlntervalHandler);

};

II Cleanup - remove listeners
PreferencesAssistant.prototype.cleanup = function() {

this.controller.stoplistening("feedChecklntervallist",
Mojo.Event.propertyChange, this.changeFeedlntervalHandler);

};

II changeFeedinterval - Handle changes to the feed update interval
PreferencesAssistant.prototype.changeFeedlnterval = function(event) {

Mojo.Log.info("Preferences Feed Interval Handler; value = "

this.feedintervalModel.value);
News.feedUpdateinterval = this.feedlntervalModel.value;

} ;

The feedUpdatelnterval is used by the stage assistant's setWakup() method to set the
timer for the updates.

With the Preferences scene coded, we can hook it up by returning to the stage assistant
and changing the News.MenuModel to override the default Preferences command:

News.MenuModel = {

visible: true,
items: [

};

{label: "About News ..• ", command: "do-aboutNews"},
Mojo.Menu.editltem,
{label: "Preferences .•. ", command: "do-newsPrefs"},
Mojo.Menu.helpitem

Next, we'll add a handler for do-newsPrefs in the handleCommand method to push the
Preferences scene:

case "do-newsPrefs":
this.controller.pushScene("preferences");

break;

When you run the application now, you'll see that the Preferences item is enabled and
when selected brings up the new scene. Figure 4-6 shows the Application menu and
the resulting Preferences scene.

Menus I 113

Figure 4-6. The News Application menu with a Preferences scene

You should also notice that we didn't have to modify any of the scene assistants, yet
the Preferences option is available in every scene. This approach makes it simple to
consolidate common Application menu handling throughout your application.

Our final Application menu example will demonstrate the command enable feature of
the Commander Chain. We'll add a manual feed update feature to the Application
menu by adding a new item to the News.MenuModel called "Update All Feeds":

News.MenuModel = {

visible: true,
items: [

};

{label: "About News ... ", command: "do-aboutNews"},
Mojo.Menu.edititem,
{label: "Update All Feeds'', checkEnabled: true, command: "do-feedUpdate"},
{label: "Preferences ... ", command: "do-newsPrefs"},
Mojo.Menu.helpitem

Because this command should be disabled whenever a feed update is in progress, a new
property, checkEnabled, is set to true. This property will instruct the framework to
nrnrvlO-::ltP ':l Mrdn l=\/.on+ rnmm::inrll=n::ihl P. P"UPnt thrn11ah thP c·nmm~nr1Pr c-h~in ~nvtimP .t".._'-".t" b _._ J""·-·-·· , ___ _... _...._..__.._.._....., b.._.._ ---- ---------------- ----·--- -·--; ------

the menu is displayed. If any recipient calls event.preventDefault() in response, then
the menu item is disabled.

114 I Chapter4: Dialogs and Menus

Here's how this is handled in the stage assistant's handleCommand() method:

II ---
11 handleCommand - called to handle app menu selections
II
StageAssistant.prototype.handleCommand = function(event)

if (event.type== Mojo.Event.commandEnable) {
if (News.feedlistUpdateinProgress && (event.command == "do-feedUpdate")) {

event.preventDefault();

else

if(event.type == Mojo.Event.command)
switch(event.command) {

case "do-aboutNews":
var currentScene = this.controller.activeScene();
currentScene.showAlertDialog({

onChoose: function(value) {},
II **These next two lines are wrapped for book formatting only **

title: "News - v#{version}".interpolate({
version: News.versionString}),

} ;

break;

message: "Copyright 2009, Palm Inc. ",
choices:[

{label:"OK", value:""}
l

});

case "do-newsPrefs":
this.controller.pushScene("preferences");

break;

case "do-feedUpdate":
this.feeds.updateFeedlist();

break;

At the top, we check for the Mojo. Event. commandEnable event, and if it is tied to a
do-feedUpdate command and an update is in progress, we'll inhibit the menu item by
calling event. preventDefault (). You can learn more about this in the section
"Commander Chain" on page 126.

View menu

The View menu presents items as variable-sized buttons, either singly or in groups
across the top of the scene. The items are rendered in a horizontal sequence starting
from the left of the screen to the right. The button widths can be adjusted using the
items width property, and the framework adjusts the space between the buttons

Menus I 115

automatically. Use dividers or empty list items to influence the spacing to get specific
layouts.

Typically, you would use the View menu for actionable buttons, buttons with an at
tached submenu, or header displays. You can group buttons together or combine ac
tionable buttons with header information, as in the example shown in Figure 4-7.

Figure 4-7. A View menu with buttons

Back to the News: Adding View menus

View menus allow us to style the storylist scene headers and to provide a simple way
to switch between story feeds. We're going to change storyList-assistant.js to include a
View menu with both Next Feed and Previous Feed menu buttons, and methods to
push the new scene for either the next feed or previous feed when selected.

First, let's add the View menu. In this next code sample, the this. feedMenuModel is set
up with three menu items that are all based on the feed that is displayed in this instance
of the storylist scene:

• FeedMenuPrev, a local variable set to either the Previous menu item or an empty item
if the feed is the first feed in the feedlist, meaning that the selectedFeedindex is zero

• FeedMenuNext, a local variable set to either the Next menu item or an empty item if
the feed is the last feed in the feedlist, meaning that the selectedFeedindex is one
less than the length of the f eedlist

• A literal that displays the feed's title

The setup method starts with some conditional assignments to feedMenuPrev and
feedMenuNext to deal with the boundary cases of the first and last feeds, then the View
Menu widget is setup in a setupWidget() call.

Items that do not specify any visible attributes (such as label and icon), and are not
groups, are treated as dividers. During layout of the menu buttons, all extra space is
equally distributed to each of the dividers. If there are no dividers, any extra space is
placed between the menu items, with the first and last menu items always aligned to
the left and right of the scene. The boundary cases of the first feed and last feed will
create dividers in feedMenuPrev and feedMenuNext to maintain the header's visual style
and format.

116 I Chapter 4: Dialogs and Menus

Menu Icons
The Mojo framework includes a number of default icons that you can use on your View
and Command menu buttons, or you can provide your own. Look at the standard styles
prefixed with palm-menu-icon, which you can reference with the icon property, or define
your own in your images folder, referencing them with the icon Path property. The News
example uses one of each reference for illustration so you can see the two techniques.

Here are some guidelines for designing your own icons:

• Use PNG-24, which supports 8-bit alpha transparency.

• Menu icons are currently two frames in a 32 x 64 PNG, with the top frame as the
normal state and the bottom frame as the pressed state.

• Each icon is approximately 24 x 24 pixels within the 32 x 32 frame.

• You can start with a monochrome glyph and style it with some Photoshop layer
effects, although plain white would work.

You can look at the PNG files in the framework's images directory to see some examples
of these icons.

/* StoryListAssistant - NEWS

*/

Copyright 2009 Palm, Inc. All rights reserved.

Displays the feed's stories in a list, user taps display the
selected story in the storyView scene. Major components:
- Setup view menu to move to next or previous feed
- Story View; push story scene when a story is tapped

Arguments:
- feedlist; Feeds.list array of all feeds
- selectedFeedindex; Feed to be displayed

function StoryListAssistant(feedlist, selectedFeedindex)
this.feedlist = feedlist;
this.feed = feedlist[selectedFeedindex];
this.feedlndex = selectedFeedindex;
Mojo.Log.info("Storylist entry = ", this.feedindex);
Mojo.Log.info("Storylist feed = " + Object.toJSON(this.feed));

StorylistAssistant.prototype.setup = function() {
II Setup scene header with feed title and next/previous feed buttons. If
II this is the first feed, suppress Previous menu; if last, suppress Next menu
var feedMenuPrev = {};
var feedMenuNext = {};

if (this.feedindex > o) {
feedMenuPrev = {

icon: "back",

Menus I 117

};

command: "do-feed Previous"
};

} else {
II Push empty menu to force menu bar to draw on left (label is the force)
feedMenuPrev = {icon: "", command: "'', label: " "};

if (this.feedindex < this.feedlist.length-1)
feedMenuNext = {

iconPath: "imageslmenu-icon-forward.png",
command: "do-feedNext"

};
} else

II Push empty menu to force menu bar to draw on right (label is the force)
feedMenuNext = {icon: "'', command: "'', label: " "};

this.feedMenuModel =
visible: true,

};

items: [{

}]

items: [
feedMenuPrev,
{ label: this.feed.title, width: 200 },
feedMenuNext

this.controller.setupWidget(Mojo.Menu.viewMenu,
{ spacerHeight: o, menuClass:"no-fade" }, this.feedMenuModel);

II Setup App Menu
this.controller.setupWidget(Mojo.Menu.appMenu, News.MenuAttr, News.MenuModel);

II Setup story list with standard news list templates.
this.controller.setupWidget("storylistWgt",

) ;

{

},

itemTemplate: "storylistlstoryRowTemplate",
listTemplate: "storylistlstorylistTemplate",
swipeToDelete: false,
renderlimit: 40,
reorderable: false

this.storyModel = {
items: this.feed.stories

this.readStoryHandler = this.readStory.bindAsEventlistener(this);
this.controller.listen("storylistWgt", Mojo.Event.listTap,

this.readStoryHandler);

Continuing on with our example, we'll add the handleCommand() method after the
activate() and readStory() methods, which are unchanged:

118 I Chapter 4: Dialogs and Menus

II handleCommand - handle next and previous commands
StoryListAssistant.prototype.handleCommand = function(event)

if(event.type == Mojo.Event.command) {
switch(event.command) {

} ;

case "do-feedNext":
this.nextFeed();
break;

case "do-feedPrevious":
this.previousFeed();
break;

II nextFeed - Called when the user taps the next menu item
StoryListAssistant.prototype.nextFeed = function(event) {

Mojo.Controller.stageController.swapScene(

} ;

{

},

transition: Mojo.Transition.crossFade,
name: "story list"

this.feedlist,
this.feedindex+1);

II previousFeed - Called when the user taps the previous menu item
StorylistAssistant.prototype.previousFeed = function(event) {

Mojo.Controller.stageController.swapScene(

};

{

},

transition: Mojo.Transition.crossFade,
name: "storylist"

this.feedlist,
this.feedindex-1);

The handleCommand method is called for the Next and Previous commands and results
in a swapScene() call to push the next scene. We discussed in Chapter 2 that
swapScene() is similar to pushScene(), but rather than leaving the old scene on the scene
stack, swapScene() pops it as part of the operation.

Figure 4-8 shows the News application's storylist with these changes.

Command menu

The Command menu items are presented at the bottom of the screen, but are similar
to the View menu in most other ways. Items will include variable-sized buttons that
you can combine into groups and in a horizontal layout from left to right. You can
override the default positioning by including dividers to force an item to the right or
the middle of the screen, or by including an item's entry with the disable property set
to true. Typically, you would use the Command menu for actionable buttons, buttons
with dynamic behavior, or for attaching a submenu to a button to give further options.

Menus I 119

Figure 4-8. The News View menu and storyList scene

As with the View menu, you can adjust button widths from within the item's property
width, and the framework adjusts the space between the buttons automatically (as
shown in Figure 4-9).

Figure 4-9. A Command menu with buttons

You can also define toggle buttons or include buttons with other dynamic behavior
re;~ .. -~ /I 1 n\
\J. 15uJ.\ .. ,, 1-i.v;.

120 I Chapter 4: Dialogs and Menus

Figure 4-10. A Command menu with toggles

If you'd like to group several items together, include an items array and the
toggleCmd, which will be set by the framework to the command of the currently selected
items in the nested items array. You can group buttons together or combine actionable
buttons into a toggle group, as shown in Figure 4-11.

Figure 4-11. A Command menu with groups

Back to the News: Adding Command menus

We've been using buttons within the Story view to go back and forth between stories
within a feed, but here we'll replace those buttons with Command menus. It's really
straightforward now that we've covered the basics with the Application and View
menus.

Change the story View-assistant.js to include a command menu. Similar to the View
menu, the Next and Previous buttons normally are assigned to generate do-viewNext
or do-viewPrevious commands, except when the current story is the first or last story
in the feed. The first part of the setup method will create the items array with the correct
entries, then call setupWidget() to instantiate the menu. Since we're replacing the but
tons that were in the scene, remove the listeners from the setup method (and the button
declarations from the scene's view file).

Notice that the items are put into a menu group so that they are styled together. We
use dividers on either side of the group to force the group to be centered in the scene.
Notice the visual difference from the Application menu's grouping, where subitems are
combined into an expanding item. With View and Command menus, the button groups
are presented as an integrated view element:

/* StoryViewAssistant - NEWS

Copyright 2009 Palm, Inc. All rights reserved.

Menus I 121

*/

Passed a story element, displays that element in a full scene view and offers
options for next story (right command menu button), and previous
story (left command menu button)
Major components:
- StoryView; display story in main scene
- Next/Previous; command menu options to go to next or previous story

Arguments:
- storyFeed; Selected feed from which the stories are being viewed
- storyindex; Index of selected story to be put into the view

function StoryViewAssistant(storyFeed, storyindex) {
this.storyFeed = storyFeed;
this.storyindex = storyindex;

// setup - set up menus
StoryViewAssistant.prototype.setup function() {

this.storyMenuModel = {
items: [

{},

]};

{items: []},
{}

if (this.storyindex > 0) {
this.storyMenuModel.items[l].items.push({

icon: "back",
command: "do-viewPrevious"

});
} else {

this.storyMenuModel.items[l].items.push({
icon: "", command:
label: "

});
}

if (this.storyindex < this.storyFeed.stories.length-1)
this.storyMenuModel.items[l].items.push({

icon: "forward",
command: "do-viewNext"

});
} else {

this.storyMenuModel.items[l].items.push({
icon: "", command:
label: "

});
}

this.controller.setupWidget(Mojo.Menu.commandMenu,
undefined, this.storyMenuModel);

II Setup App Menu
this.controller.setupWidget(Mojo.Menu.appMenu, News.MenuAttr, News.MenuModel);

122 I Chapter 4: Dialogs and Menus

II Update story title in header and summary
var storyViewTitleElement = this.controller.get("storyViewTitle");
var storyViewSummaryElement = this.controller.get("storyViewSummary");
storyViewTitleElement.innerHTML = this.storyFeed.stories[this.storyindex].title;
storyViewSummaryElement.innerHTML = this.storyFeed.stories[this.storyindex].text;

};

The activate method is unchanged, but we replace the button handlers with command
handlers, as shown in this next code sample:

II---
11 Handlers to go to next and previous stories, display web view
II or share via messaging or email.
StoryViewAssistant.prototype.handleCommand = function(event) {

};

if(event.type == Mojo.Event.command) {
switch(event.command) {

case "do-viewNext":
Mojo.Controller.stageController.swapScene(

{

},

transition: Mojo.Transition.crossFade,
name: "storyView"

this.storyFeed, this.storyindex+1);
break;

case "do-viewPrevious":
Mojo.Controller.stageController.swapScene(

{

},

transition: Mojo.Transition.crossFade,
name: "storyView"

this.storyFeed, this.storyindex-1);
break;

That's it. Run the application and tap a feed and then a story to see the results (shown
in Figure 4-12).

Submenus
Pop-up submenus can offer a transient textual list of choices to the user, typically off
of another menu type or from a DOM element in the scene. Submenus accept standard
menu models and some unique properties, but unlike the other menu types, Submenu
does not use the Commander Chain for propagating selections. Instead, a callback is
used to handle selections.

A modal list will appear with the label choices presented. When the user taps one, the
onChoose callback function will be called (in the scope of the scene assistant) with the

Menus I 123

Figure 4-12. A News Command menu and story View scene

command property of the chosen item as an argument. If the user taps outside the pop
up menu, it's still dismissed and the onChoose function is called with undefined instead.

Back to the News: Adding a submenu

We will use a submenu to present options when the users taps the info button on the
News feed list. For each feed, you can choose between Mark Read, Mark Unread, or
Edit Feed. The first two options mark all the stories as either read or unread based on
the selection, while the last option brings up the Add Feed dialog.

To bring up the submenu, we'll add an icon called info, to each list entry in the feed
list, as shown in the feed List scene, to serve as an access point. The change is made in
feedRowTemplate.html just before the entries for the feedlist-title and feedlist
url. The custom class will be used in News.css to load the icon's image while the
framework classes will fix the position of the icon properly within the list row and align
it to the right:

<div class="feedlist-info icon right" id="info"></div>
<div class="feedlist-title truncating-text">#{title}</div>

• • .. ",.. , .. • . .. , , • , , n. ,, r , ' . I J_• _, <a1v ciass= Teea11si:-ur1 i:runcaL.u1g-LexL ltt\-Ul.LJ~/u.Lv,

124 I Chapter 4: Dialogs and Menus

Next, we'll modify the showFeed() method of feedlist-assistant.js to detect taps on the
info icon. If it's a tap anywhere else, the storylist scene will be pushed as before.

Otherwise, the Submenu will be created, with an arguments list starting with
onChoose, which specifies popupHandler to handle the user's menu selection. The other
arguments include the placeNear property to locate the submenu near the tapped icon
and the array of menu items. You'll notice that we save the event. index value by as
signing it to this. popuplndex for use later in popupHandler. We'll need to reference the
tapped list entry when it comes time to apply the action indicated by the Submenu
selection:

II --
11 Show feed and popup menu handler
II
II showFeed - triggered by tapping a feed in the this.feeds.list.
II Detects taps on the unReadCount icon; anywhere else,
II the scene for the list view is pushed. If the icon is tapped,
II put up a submenu for the feedlist options
FeedlistAssistant.prototype.showFeed = function(event) {

};

var target= event.originalEvent.target.id;
if (target !== "info") {

}

Moj o. Controller. stageController. pushScene ("storylist",
this.feeds.list, event.index);

else {
var myEvent = event;
var findPlace = myEvent.originalEvent.target;
this.popuplndex = event.index;
this.controller.popupSubmenu({

onChoose: this.popupHandler,
placeNear: findPlace,
items: [

{label: "All Unread", command: "feed-unread"},
{label: "All Read", command: "feed-read"},
{label: "Edit Feed", command: "feed-edit"}
l

});

The handler, popupHandler, uses a switch statement to invoke the appropriate command
handler. The command handlers for "All Unread" and "All Read" handle the actions
for marking all stories in the selected feed as unread or read, updating the feed's
numUnRead, and calling modelChanged to update the scene's displayed view. Once the
actions are complete, the handler exits and the framework cleans up the display by
removing the Submenu.

Targeting the submenu can sometimes be a little tricky. The framework will automat
ically place the submenu in the center of the window, but you can override it by setting
placeNear to a specific DOM element. In our example, it's placed near the info icon,
which was defined as the tap target for this submenu. It's a good idea to use fixed targets
for menu placement:

Menus I 125

II popupHandler - choose function for feedPopup
FeedlistAssistant.prototype.popupHandler = function(command) {

var popupFeed=this.feeds.list[this.popupindex];
switch(command) {

};

case "feed-unread":
Mojo.Log.info("Popup - unread for feed:",

popupFeed.title);

for (var i=O; i<popupFeed.stories.length; i++) {
popupFeed.stories[i].unreadStyle = News.unreadStory;

}
popupFeed.numUnRead = popupFeed.stories.length;
this.controller.modelChanged(this.feedWgtModel);
break;

case "feed-read":
Mojo.Log.info("Popup - read for feed:",

popupFeed.title);
for (var j=O; j<popupFeed.stories.length; j++) {

popupFeed.stories[j].unreadStyle = "";
}
popupFeed.numUnRead = o;
this.controller.modelChanged(this.feedWgtModel);
break;

case "feed-edit":
Mojo.Log.info("Popup edit for feed:",

popupFeed.title);
this.controller.showDialog({

});

template: "feedlistladdFeed-dialog",
assistant: new AddDialogAssistant(this,

this.feeds, this.popupindex)

break;

For the "Edit Feed" choice, the handler uses the AddDialogAssistant to display the
selected feed's URL and name so that they can be changed. A new argument,
this. popupindex, is added to the AddDialogAssistant call to enable the AddDialogAs
sistant and its methods, check!t and checkOk, to look for an edit case. These changes
are not shown here because they are not directly related to the Submenu, but you can
look at the full News source in Appendix D to see where the changes were made.

Figure 4-13 shows a Submenu with these changes within the feedlist scene.

Commander Chain
Mojo provides a model for propagating commands through the application, stage, and
scene controllers called the Commander Chain. The chain is an array of handlers,

126 I Chapter 4: Dialogs and Menus

Figure 4-13. A News Submenu in a feedList scene

ordered like a stack. The handlers, or commanders, are put onto the chain in the order
that they register themselves, and commands are propagated according to this order.

Commanders are registered implicitly by declaring a handleCommand method as a stage
assistant or scene-assistant method, or for dialogs, when instantiated. The framework
always adds the App-Assistants to the end of the Stage-Controller chain at instantiation.

Commanders can register explicitly by calling the pushCommander method from either
the stage controller or scene controller. The commander will be removed when the
scene assistant is popped or the application is closed.

The chain is really a tree of chains (see Figure 4-14). There is a chain for each stage
controller, and within each stage there is a chain for each scene controller. Commands
are propagated starting with the most recent commander registered in the active scene
controller's chain. After all commanders in the scene have been called, propagation
continues with the most recent commander in the active stage controller chain through
the rest of the chain. There are chains for each of the inactive stage controllers and scene
controllers, but commands are not propagated to any inactive chains.

At any time, any commander can stop propagation by calling
event.stopPropagation(). For example, a scene puts up a modal dialog box, so it's

CommanderChain I 127

.......................

Figure 4-14. A Commander Chain propagation example

implicitly added to the chain. It will have the opportunity to handle a back event and
stop propagation before it gets back to the scene that pushed the dialog. If not, the
stage controller would see the back gesture and pop the scene, which is not the desired
user expenence.

Commanders can always remove themselves from the chain by calling the
removeCommander method of either StageController or SceneController. For example:

this.controller.removeCommander(this);

There are four types of events that propagate through the chain:

Mojo.Event.back
Indicates a back gesture.

Mojo.Event.forward
Indicates a forward gesture.

Mojo.Event.command
Is used for all menu commands.

Mojo.Event.commandEnable
Is used to enable a menu item dynamically.

128 I Chapter 4: Dialogs and Menus

Command and Command Enable events are both discussed in the section "Menu
Widgets" on page 107. The former is used when a menu command is selected, and the
latter when a menu is created for any menu item that includes the property
commandEnable set to true. If any commander wants to inhibit the menu command, it
can call event.preventDefault() to do so. The framework uses this to inhibit the Edit
functions in the Application menu when anything other than a text field is in focus.

A common application of the Commander Chain is the consolidation of the setup and
handling of the Application menu into the stage controller. An example of this con
solidation using the News application is shown in the section "Application
menu" on page 108.

Summary
Dialogs and menus round out the basic widgets that most applications require, and
with what you've learned so far, you should be able to write a meaningful application.
In this chapter we covered the three dialog functions and the four types of menus, and
used almost all of them in the News application as sample code.

The next chapter will cover the remainder of the widgets, but it would be good at this
point to build some sample code using widgets and the UI model. With just what's
been covered so far, you can build full-featured applications, but more importantly,
the concepts learned here will be used throughout the rest of the book.

Summary I 129

CHAPTERS

Advanced Widgets

This chapter completes the review of the Mojo widgets with a look at indicators, pickers
and viewers, the Filter List, and the Scroller. Not all applications will use these widgets,
because they are each designed for specific uses, but the widgets are just as simple to
work with as the widgets discussed in Chapters 3 and 4.

As with the two preceding chapters, each group will be reviewed in a summary form,
then a specific case will be used as an example with the News application. Where a
widget isn't used in an example, there will be a description and references to where you
can find more information.

Indicators
Indicators are used to show that activity is taking place, even it it's not visible, and in
some cases, to show some measure of the progress of the activity. Mojo has four indi
cator widgets, but they belong to two types:

• Activity indicator, or Spinner, which spins without showing progress

• Progress indicator, which shows both activity and progress

The spinner is the only activity indicator, but there are three progress indicator widgets:

• Progress Pill, a wide pill that is styled to match the View menu and the palm
header scene style

• Progress Bar, a narrow horizontal bar with a blue progress indicator

• Progress Slider, which is intended for streaming media playback applications

The Spinner widget is most appropriate when there isn't much space in the layout for
an indicator or when the duration of the activity is hard to estimate. In other cases you
should use a progress indicator; it's preferable because it gives the user a bounded sense
of duration.

131

Spinners
Use a spinner to show that an activity is taking place. The framework uses a spinner as
part of any activity button, and you'll see it used in the core applications. There are two
sizes; the large spinner is 128 x 128 pixels, and the small spinner is 32 x 32 pixels. These
sizes are optimized for the Palm Pre screen and may vary on other devices, but the
spatial and visual characteristics will be maintained on other devices.

Back to the News: Adding a spinner for feed updates

There aren't any long operations in News other than the feed updates, which are asyn
chronous. We'll add a spinner to the feed list whenever an update is in progress, dem
onstrating a simple application of an indicator.

This will also demonstrate the technique for including widgets within a list entry, a
powerful Mojo feature introduced in Chapter 3. You already know that you can use
widgets to display dynamic data; by combining them into lists you can create complex
UI controls with the widgets as building blocks. You may want to review Chapter 3 if
you have questions after reading these next few paragraphs.

You can design list entries to include other widgets, including other lists, in almost the
same way that you use widgets outside of lists. The differences are that the list's model
includes the widgets' models, and that you declare widgets within the list's
itemTemplate, using a name attribute to identify each widget.

In this example, a Spinner widget is included in each feedlistWgt entry, which will be
activated when the corresponding news feed is updated through an Ajax request. Start
by adding the spinner declaration into the feedlistWgt's row template, viewslfeedList/
f eedRowTemplate.html:

<div class="feedlist-info icon right" id="info"></div>
<div x-mojo-element="Spinner" class="right" name="feedSpinner"</div>
<div class="feedlist-title truncating-text">#{title}</div>
<div class="feedlist-url truncating-text">#{-url}</div>

The new line is the div with the name feedSpinner and is simply a declaration of the
Spinner widget. The syntax should start to seem familiar by now.

By including it into the feedlistWgt list item's template, we have implicitly directed the
List widget to insert a new spinner element in the DOM whenever it creates a new entry.
It's the same as creating a spinner outside of a list, except in one major way: the spinner's
model property must be part of the feedlistWgt's items array.

We still have to set up the Spinner widget, which we do in the setup method of feedList
assistant.js, but we don't include a model in the call to setupWidget(), as that is assumed
to be part of the feedlistWgt's items array:

// Setup the feed list, but it's empty
this.controller.setupWidget("feedListWgt",

{
itemTemplate:"feedList/feedRowTemplate",

132 I Chapter 5: Advanced Widgets

},

listTemplate:"feedlistlfeedlistTemplate",
addrtemlabel: "Add ... ",
swipeToDelete:true,
renderlimit: 40,
reorderable:true

this.feedWgtModel = {items: this.feeds.list});

II Setup event handlers: list selection, add, delete and reorder feed entry
this.showFeedHandler = this.showFeed.bindAsEventlistener(this);
this.controller.listen("feedlistWgt", Mojo.Event.listTap,

this.showFeedHandler);
this.addNewFeedHandler = this.addNewFeed.bindAsEventListener(this);
this.controller.listen("feedlistWgt", Mojo.Event.listAdd,

this.addNewFeedHandler);
this.listDeleteFeedHandler = this.listDeleteFeed.bindAsEventlistener(this);
this.controller.listen("feedlistWgt", Mojo.Event.listDelete,

this.listDeleteFeedHandler);
this.listReorderFeedHandler = this.listReorderFeed.bindAsEventlistener(this);
this.controller.listen("feedlistWgt", Mojo.Event.listReorder,

this.listReorderFeedHandler);

II Setup spinner for feedlist updates
this.controller.setupWidget("feedSpinner", {property: "value"});

Most of the feed List assistant's setup method is shown in this code sample; the only
addition is the last line of code (and preceding comment). It sets up the spinner, naming
the model property as value, but the model is not in the arguments list; the list's model,
this. feedWgtModel, is used implicitly as the spinner's model.

The feed List default data is defined at the beginning of the stage-assistant.js. Add the
value property to each default list entry, and set it to false. This is the spinner's model,
and will start as false since there is no activity. You need to include this for every
feedlist entry, as in this example:

},

title:"New York Times",
url:"http:llwww.nytimes.comlserviceslxmllrsslnytlHomePage.xml",
type:"rss", value:false, numUnRead:o, newStoryCount:o, stories:[]

There's one other place where a new feed list entry is created; in the checkOk method
of addDialog-assistant.js:

II If a new feed, push the entered feed data on to the feedlist and
II call processFeed to evaluate it.
if (this.feedindex === null) {

}

this.feeds.list.push({title:this.nameModel.value,
url:this.urlModel.value, type:"", value:false, numUnRead:o,
stories:[]});

II processFeed - index defaults to last entry
feedError = this.feeds.processFeed(transport);

else {
this.feeds.list[this.feedindex] = {title:this.nameModel.value,

Indicators I 133

}

url:this.urlModel.value, type:"", value:false, numUnRead:O,
stories: []};

feedError = this.feeds.processFeed(transport, this.feed!ndex);

The spinner is set up and integrated into the list's template and model. All that remains
is to activate and deactivate the spinner at the right times. Those times are just before
the Ajax request is made (spinner activated) and after the response is received (spinner
deactivated) whether the request was successful or not.

There are four changes to make, all in the feeds model:

updateFeedRequest
Activate before Ajax request

updateFeedFailure
Deactivate

updateFeedSuccess
Deactivate after processing new feed data, and activate before another feed update
request is made

The sample below shows the changes to updateFeedSuccess(), which includes both an
activate and a deactivate call:

II Process the feed, passing in transport holding the updated feed data
var feedError = this.processFeed(transport, this.feed!ndex);

II If successful processFeed returns News.errorNone,
if (feedError !== News.errorNone) {

II There was a feed process error; unlikely, but could happen if the
II feed was changed by the feed service. Log the error.
if (feedError == News.invalidFeedError) {

Mojo. Log. info("Feed ", this. nameModel. value,
"is not a supported feed type.");

News.feedListChanged = true;
II Change feed update indicator & update widget
var spinnerModel = this.list[this.feedindex];
spinnerModel.value = false;
this.updateListModel();

II If NOT the last feed then update the feedsource and request next feed
this.feed!ndex++;
if(this.feed!ndex < this.list.length) {

this.currentFeed = this.list[this.feed!ndex];

II Request an update for the next feed but first
II change the feed update indicator & update widget
spinnerModel = this.list[this.feed!ndex];
.-; ..,,...,,...,,..Mrlo 1 "~ 1 Ht'.'.>. - +v11.o, •
,Jt".Lllll'-.Ll"IV\.11'-.L• YVl..L""'- ._~...,..._,

this.updateListModel();

134 I Chapter 5: Advanced Widgets

this.updateFeedRequest(this.currentFeed);
} else {

II Otherwise, this update is done. Reset index too for next update
this.feedindex = o;
News.feedlistUpdateinProgress = false;

In each case, we set the spinnerModel. value and call this. updatelistModel() to update
the model changing the state of the spinner. The spinner's model is accessed by refer
encing the this. feed Index, the array index for the feed that is being updated, then
setting that entry's value property to change just the spinner in that list entry.

Run the application, and the feeds will update one after another. If you wait for the
feed interval to pass, they will update again. You will see a spinner appear between the
feed title and the unread count badge on the left side, as shown in Figure 5-1, with
the spinner on the BBC News feed item.

Figure 5-1. Spinner on News feed updates

Indicators I 135

Spinners only take up space when they're active. In some cases, if the feed title is long
enough, you'll see the title truncated to accommodate the spinner, then resize to fill
the vacated space after the spinner is deactivated. Elegant integration of indicators is
the type of polish that makes an application appealing and easy to do with Mojo's
widgets.

Progress Indicators
The progress pill is the most common progress indicator, and is styled to match the
Mojo button and header styles. The other two indicators, progress bars and progress
sliders, are more specialized, but are functionally derived from progress pills; you'll
manage them in the same way.

Progress Pill

Use a Progress Pill widget (Figure 5-2) to show download progress when loading from
a database, or anytime you initiate a long-running operation and have a sense of the
duration.

Figure 5-2. A Progress Pill widget example

The indicator is designed to show a pill image that corresponds to the model's value
property, where a value of 0 has no pill exposed and a value of 1 has the pill completely
filling the container. Initialize the indicator's model value to 0, then progressively up
date the model property until it has a value of 1.

It's best to use an interval timer. At each interval callback, increase the progress indi
cator's value property and call the updateModel function. For example, start with the
progress pill's value property set to 0 and set an interval timer for 600 ms. Assuming
the planned operation will take about 3 seconds, you would increase the value property
from 0 to 0.2 at the first update and again by 0.2 at each update thereafter:

if (this.progressCounter > 1) {

}

II This operation is complete!
this.completeProgress();

else {
this.pillModel.progress = this.pillModel.progress + 0.2;
..LL~- ---~--11-- --~-lr~-~~"~(~~~r ~~llMn~nl'•
LI 1..1.::> •LUI 1 LJ. V.L..Lt::J. • 111vuic..Lt...11a115t::u \ 1..11.i..;J • p.,1..-1-..Lnvv.'-..L I'

136 I Chapter 5: Advanced Widgets

Progress Bar

The Progress Bar widget is exactly the same as the progress pill, except that you use x
mojo-element="ProgressBar" in your scene file. Otherwise, you code it and manage it
just as you do the progress pill. Figure 5-3 shows a progress bar.

Figure 5-3. A Progress Bar widget example

In the default style, there isn't room on the bar for a title or image, but the properties
are supported nonetheless.

Progress Slider

For media or other applications where you want to show progress as part of a tracking
slider, the Progress Slider widget is an ideal choice. Combining the Slider widget with
the progress pill, the behavior is fully integrated, but not all of the configuration options
are represented. Figure 5-4 shows a progress slider.

Figure 5-4. A Progress Slider widget example

All of the slider properties are represented, and you configure the progress slider just
as you would a Slider widget. You have a model property of value, which can be re
named through the attributes property. You manage it exactly as you would the pro
gress pill, by progressively increasing the value property from 0 to 1.

Dynamic Widgets
All of our examples start with declaring a widget within an HTML scene and doing
almost everything else in JavaScript. It is also possible to eliminate even the HTML
declaration and create widgets dynamically from within JavaScript.

For example, you can use the following:

this.controller.setupWidget("my-widget", Attr, this.widgetModel);

Later, the element is added to the DOM:

this.target= this.controller.get("an-element");
this.target.innerHTML = "<div id='my-widget' x-mojo-element='List'></div>";

Then you have to call this. controller. instantiateChildWidgets to parse and apply
the setup. Mojo provides a function that does this automatically, so you could instead
write this to instantiate the widget:

Indicators I 137

this.controller.update($("an-element"), "<div id='my-id' x-mojo-element='List'></div>")

You can even be completely dynamic and generate everything at runtime. Call setup
Widget() before generating the ID and injecting the widget's node into the DOM.

Widgets inside of lists are a little tricky, since they are automatically instantiated with
the list. You can still create them dynamically by using the widget's name attribute and
accommodating for their model as part of the list's model.

Scrollers
The Scroller widget provides the scrolling behavior in Mojo. A scroller is installed au
tomatically in every scene, and you can have any number of additional scrollers any
where in the DOM.

-...
You can disable the scroller in a scene by setting the disableSceneSc
roller property to true in the scene arguments to pushScene.

:.
,'

In the current release of Mojo, you can select one of six scrolling modes, specified in
the mode property of the widget's attributes:

free
Allow scrolling along both the horizontal and vertical axes.

horizontal
Allow scrolling only along the horizontal axis.

vertical
Allow scrolling only along the vertical axis.

dominant
Allow scrolling along the horizontal or vertical axis, but not both at once. The
direction of the initial drag will determine the scrolling axis.

horizontal-snap
In this mode, scrolling is locked to the horizontal axis, but snaps to points deter
mined by the position of the block elements found in the model's snapElements
property. As the scroller scrolls from snap point to snap point it will send a
propertyChange event.

vertical-snap
This mode locks scrolling to the vertical axis, and snaps to points determined by
the elements in the snapElements property array.

Upon ren.dering, the ;vidget targets its single child elemerrt for scrolling. If it ha_s more
than one child element, it will create a single div to wrap the child elements. It will
never update this element, so if you replace the contents of a Scroller widget after it is

138 I Chapter 5: Advanced Widgets

instantiated, scrolling might not work. Instead, put another block element inside the
scroller and update its contents as needed.

#fl;a1 0 The size of the scroller's target div, the child element, must be set in
CSS. By default, the div will expand to the size of the contents. You must

:,. constrain the width, on a horizontal scroller, or the height, on a vertical
• scroller, within your CSS or the scroller will not function.

A Scroller widget will ignore any drag start event that doesn't indicate a valid scroll
start for its mode setting, so you can nest scrollers if they don't conflict. For example,
you can put a small horizontal scroller inside the default scene vertical scroller. This
configuration will pass horizontal swipes to the horizontal scroller, but vertical swipes
on the horizontal scroller, or any kinds of swipes outside the horizontal scroller, will
be passed to the scene scroller.

Back to the News: Adding a featured feed Scroller
In this example, a rotating feature story will be added to the News application. This
will present a title and story from the feed list for 5 seconds, after which time it will be
replaced by another story. This rotating feature story will be displayed in a fixed-size
area above the feedlistWgt to allow for a stable view, but we'll attach a vertical scroller
to allow users to read the full story if it is longer than the view, and we'll enclose it all
in a drawer so that users can selectively enable or disable this view.

Start by modifying the feed List scene (jeedList-scene.html) to add an icon to the palm
header to serve as a tap target to open and close the drawer. We're going to change the
image to match the state of the drawer by using two different classes, featureFeed
close and featureFeed-open. We'll start with the drawer closed.

The Scroller is declared and encloses featureStoryDiv, which will be fixed to a specific
height through CSS and filled by the story title and text. This is all placed above the
feed List widget in the scene's layout.

Within the featureStoryDiv, define the splashScreen div to fill the space for the initial
launch case where there are no stories to display. The update- image style will insert the
News icon alongside a copyright notice for the application. We'll hide this div when
there are stories to display; each story title and text will be inserted in the following
divs, identified as featureStoryTi tle and featureStory:

<div id="feedlistScene">
<div id="feedlistMain">

<!-- Rotating Feature Story -->
<div id="feedlist_view_header" class="palm-header left">

Latest News
<div id="featureDrawer" class="featureFeed-close"></div>

</div>

Scrollers I 139

<div class="palm-header-spacer"></div>
<div x-mojo-element="Drawer" id="featureFeedDrawer">

<div x-mojo-element="Scroller" id="featureScroller" >
<div id="featureStoryDiv" class="featureScroller">

<div id="splashScreen" class="splashScreen">
<div class="update-image"></div>
<div class="title">News v0.8#{version}

<div class="palm-body-text">
Copyright 2009, Palm®

</div>
</div>

</div>
<div id="featureStoryTitle" class="palm-body-title">
</div>
<div id="featureStory" class="palm-body-text">
</div>

</div>
</div>

</div>

<!-- Feed List -->
<div class="palm-list">

<div x-mojo-element="List" id="feedListWgt"></div>
</div>

</div>
</div>

Set up the Drawer and the Scroller in the feedList-assistant.js. Set up a listener for taps
to the new tap target in the header and then the Drawer widget with the state defined
by a new global, News. featureFeedEnable. In Chapter 6, we'll add saved preferences
and we will retain the drawer's state at that time.

The featureScrollerModel defines a single property, the scroller mode, in this case set
to vertical, and the Scroller is set up with just its ID and model as arguments. The
scroller simply responds to vertical swipes to scroll the content, and will generate
scrolling events if you want to receive them, although you don't normally need to:

//Setup header, drawer, scroller and handler for feature feeds

this.featureDrawerHandler = this.toggleFeatureDrawer.bindAsEventlistener(this);
this.controller.listen("featureDrawer", Mojo.Event.tap,

this.featureDrawerHandler);

this.controller.setupWidget("featureFeedDrawer", {},
this.featureFeedDrawer = {open: News.featureFeedEnable});

this.featureScrollerModel = {
mode: "vertical"
};

this.controller.setupWidget("featureScroller", this.featureScrollerModel);
this.readFeatureStoryHandler = this.readFeatureStory.bindAsEventlistener(this);
this.controller.listen("featureStoryDiv", Mojo.Event.tap,

this.readFeatureStoryHandler);

140 I Chapter 5: Advanced Widgets

II If feature story is enabled, then set the icon to open
if (this.featureFeedDrawer.open === true) {

this.controller.get("featureDrawer").className = "featureFeed-open";
} else {

this.controller.get("featureDrawer").className = "featureFeed-close";

A listener is set up to handle taps in the feature story div, but it is unrelated to the
Scroller. If users see a story they want to read further, they can scroll the story or tap it
to go to the storyView scene with that story. And we'll finish by setting the feature
Drawer element's className to match the state of the drawer; this is also a future pro
vision for using saved preferences when the scene could be activated with the drawer
in the open state.

The CSS completes the implementation by fixing the size of the Scroller div and for
matting the contents. The first two rules support the tap target, either open or closed,
and the drawer background. You'll have to add the appropriate images to the images
folder of your application to reproduce this:

I* Feedlist Header styles for feature drawer and selection *I

.featureFeed-close {
float:right;
margin: 8px -12px Opx Opx;
height:3Spx;
width: 3Spx;
background: url(.. limagesldetails-open-arrow.png) no-repeat;

.featureFeed-open
float:right;
margin: 8px -12px opx opx;
height:3Spx;
width: 3Spx;
background: url(.. limagesldetails-closed-arrow.png) no-repeat;

.palm-drawer-container {
border-width: 20px 1px 20px 1px;
-webkit-border-image: url(.. limageslpalm-drawer-background-2.png)

20 1 20 1 repeat repeat;
-webkit-box-sizing: border-box;
overflow: visible;

.featureScroller {
height: 100px;
width: 280px;
margin-left: 20px;

The palm-drawer-container selector sets the drawer container's dimensions and
applies a white background to contrast with the scene's main background. The

Scrollers I 141

featureScroller style bounds the scroller's height because we have a vertical scroller;
in the case of a horizontal scroller, we'd bound the width. If you aren't careful with
your CSS, the scroller will not behave as expected.

The rest of the sample is related to handling the feature story. Create a new method,
toggleFeatureDrawer(), to open or close the drawer. If the drawer is open, the method
will close it by setting the drawer's model to false, and setting the div class to feature
Feed-close. If the drawer is closed, the actions are reversed to open the drawer and
we'll start the story rotation if it's not already running. The controller's
modelChanged() method is called to signal the model changes to the drawer widget:

II toggleFeatureDrawer - handles taps to the featureFeed drawer. Toggle
II drawer and icon class to reflect drawer state.
FeedlistAssistant.prototype.toggleFeatureDrawer = function(event)

};

var featureDrawer = this. controller. get ("featureDrawer");
if (this.featureFeedDrawer.open ===true) {

this.featureFeedDrawer.open =false;
News.featureFeedEnable = false;
featureDrawer.className = "featureFeed-close";

} else {

}

this.featureFeedDrawer.open =true;
News.featureFeedEnable = true;
featureDrawer.className = "featureFeed-open";

II If there's some stories in the feedlist, then start
II the story rotation even if the featureFeed is disabled as we'll use
II the rotation timer to update the DB
if(this.feeds.list[this.featureindexFeed].stories.length > o) {

var splashScreenElement = this.controller.get("splashScreen");
splashScreenElement.hide();
this.showFeatureStory();

this.controller.modelChanged(this.featureFeedDrawer);

Create the showFeed() method to present the feature story and set up the timer
for the next story. We set the timer default to 5 seconds (5000 milliseconds) in
News. featureStoryinterval, another new global variable, added to stage-assistant.js. If
the timer has been set, rotate the story by taking the next story in the current feed or
the first story in the next feed if it's at the end of the current feed. We will also add
some logic to strip URLs and other HTML from the title and text:

II---
11 Feature story functions
II
II showFeatureStory - simply rotate the stories within the
II featured feed, which the user can set in their preferences.
FeedListAssistant.prototype.showFeatureStory = function() {

// If tiiiiei- is null, either iiiitial stvry er rcsturting. st~:rt ~-~ith
II previous story ..
if (News.featureStoryTimer === null) {

142 I Chapter 5: Advanced Widgets

};

II** These next two lines are wrapped for book formatting only**
News.featureStoryTimer = this.controller.window.setinterval(

this.showFeatureStory.bind(this), News.featureStoryinterval);

else {
this.featureindexStory = this.featureindexStory+1;
II** These next two lines are wrapped for book formatting only**
if(this.featureindexStory >=

this.feeds.list[this.featureindexFeed].stories.length)
this.featureindexStory = o;
this.featureindexFeed = this.featureindexFeed+1;
if (this.featureindexFeed >=this.feeds.list.length)

this.featureindexFeed = o;

var summary= this.feeds.list[this.featureindexFeed].stories[
this.featureindexStory].text.replace(l(<([A>]+)>)lig,"");

summary= summary.replace(/http:\S+lig,"");
var featureStoryTitleElement = this.controller.get("featureStoryTitle");
II** These next two lines are wrapped for book formatting only**
featureStoryElement.innerHTML =

unescape(this.feeds.list[this.featureindexFeed].stories[
this.featureindexStory].title);

var featureStoryElement = this. controller. get("featureStory");
featureStoryElement.innerHTML = summary;

II Because this is periodic and not tied to a screen transition, use
II this to update the db when changes have been made

if (News.feedlistChanged === true)
News.feedListChanged = false;

this.feedWgtModel.items = this.feeds.list;
this.controller.modelChanged(this.feedWgtModel, this);

II readFeatureStory - handler when user taps on feature story;
II will push storyView with the current feature story.
FeedlistAssistant.prototype.readFeatureStory = function() {

};

Mojo.Controller.stageController.pushScene("storyView",
this.feeds.list[this.featureindexFeed],
this.featureindexStory);

Following showFeatureStory() is readFeatureStory(), which simply pushes the story
View scene with the current feature story.

When you run the application, you'll see a different look, with the feature story now
filling the top third of the feed list scene, as shown in Figure 5-5.

Scrollers I 143

Figure 5-5. News with scrolling feature feed

There's still some cleanup needed. We must maintain this. featureindexFeed during
list reordering, and delete. You can see the changes made to the listDeleteHandler()
and listReorderHandler() in the feedList-assistant.js in the News source listing in Ap
pendix D.

Pickers
Pickers are used to present a common UI for selecting inputs in a variety of application
scenarios. Mojo offers pickers for common objects such as a date, time, or number, or
to select files.

The next section covers the first three pickers, since they are conventional widgets and
are very similar to each other. After that, we will look at the File picker. It's accessed
through function calls, and is actually implemented as a separate application wrapped
with a framework interface.

144 I Chapter 5: Advanced Widgets

Simple Pickers
The models for the date, time, and integer pickers are very similar. The pickers are
declared within your scene's view file and wrapped with styling divs as shown here:

<div class="palm-group unlabeled">
<div class="palm-list">

<div id="DatePkrid" x-mojo-element="DatePicker"></div>
</div>

</div>

This creates a picker that spans the width of the screen and is enclosed with an unlabeled
group frame (as shown in Figure 5-6).

Figure 5-6. A Date Picker widget example

These pickers present choices as a linear sequence of values that wraps around; when
you scroll to the end of the sequence, they simply continue back at the beginning.
There's no way to override this behavior.

Date pickers

As shown in Figure 5-6, a date picker allows selection of month, day, and year values.
The Date picker's model has a single property, named date by default, which should
be assigned a JavaScript Date object. You can change the model property's name
through the attributes modelProperty, and can assign an optional label that's displayed
to the left of the picker. You can use the JavaScript functions GetMonth (), GetDate (), or
GetYear() to extract those parts of the Date object that you need.

Time pickers

A Time picker is similar to a date picker, focusing on the time fields of the Date object
and with an optional attributes property, minuteinterval, which defaults to the integer
5. As shown in Figure 5-7, a time picker allows selection of hours, minutes, and either
A.M. or P.M. for time selection. The picker will suppress the AM/PM capsule if the 24-
hour time format is selected in the user preferences or by the locale.

Figure 5-7. A Time picker widget example

Pickers I 145

You can use the JavaScript functions GetHours(), GetMinutes(), and GetSeconds() to
extract what you need from the Date object.

Integer pickers

A simple number picker is included as the integer picker. Shown in Figure 5-8, the
integer picker offers a selection between minimum and maximum integer values, both
of which are specified by required min and max widget properties.

Figure 5-8. An Integer picker widget example

The integer picker is similar to the date and time pickers in all ways, except that its
default model property is named value.

Back to the News: Adding an integer picker

News doesn't have many opportunities to use a picker, but we can add a picker to the
Preferences scene to set the feed rotation period. There are arguably better options for
handling this UI, so this isn't intended as a good UI design example, but as a way of
demonstrating the coding for a Picker widget. By default, the interval is set to 5 seconds,
but with this picker, the user can customize to any period between 1 and 60 seconds.

The Integer picker declaration is added to preferences-scene.html in front of the list
selector widget for the update interval. Wrap it in a couple of divs with palm-group and
palm-list styles:

<div class="palmcgroup">
<div class="palm-group-title">Feature Feed</div>

<div class="palm-list">
<div x-mojo-element="IntegerPicker" id="featureFeedDelay">
</div>

</div>
</div>

</div>

The widget setup is included in the setup method of preferences-assistant.js, as shown
next. The widget is set up with a range from 1 to 20 seconds and initialized to the
current global interval, News. featureStoryinterval, which is in milliseconds. A listener
is added for Mojo. Event. propertyChange events:

//Setup Integer Picker to pick feature feed rotation interval
this.controller.setupWidget("featureFeedDelay",

{ ~

label: "Rotation (in seconds)",
model Property: "value•,

146 I Chapter 5: Advanced Widgets

},

min: 1,
max: 20

this.featureDelayModel = {
value : News.featureStoryintervall1000

});

this.changeFeatureDelayHandler = this.changeFeatureDelay.bindAsEventlistener(this);
this.controller.listen("featureFeedDelay", Mojo.Event.propertyChange,

this.changeFeatureDelayHandler)

The handler is added to the bottom of the preferences assistant, updating the global
interval with the selected value, in milliseconds, and restarts the interval timer with the
new value. The interval timer would be set by the FeedlistAssistant upon activation
or when the feed list is first updated:

II changeFeatureDelay - Handle changes to the feature feed interval
PreferencesAssistant.prototype.changeFeatureDelay = function(event) {

Mojo.Log.info("Preferences Feature Delay Handler; value = ",

this.featureDelayModel.value);

};

II Interval is in milliseconds
News.featureStoryinterval = this.featureDelayModel.value*1000;

II If timer is active, restart with new value
if(News.featureStoryTimer !== null) {

this.controller.window.clearinterval(News.featureStoryTimer);
News.featureStoryTimer = null;

Figure 5-9 shows the new Preferences scene with the integer picker in place.

File Picker
WebOS devices have a media partition, a FA T32 file partition that is available to ap
plications and is accessible to desktop operating systems, whether PC, Mac, or Linux,
when the device is attached through a USB cable. This access mechanism is called
USB mode.

The file picker presents a file browser that users can use to navigate the directory struc
ture and optionally select a file. The file picker presents a flat listing of all files on disk,
regardless of directory structure, and allows filtering by file type (such as file, image,
audio, or video) Depending on the options provided by the calling application, the
selected file will either be opened in an appropriate viewer or have its reference returned.

The file picker behaves like a full-screen widget, but isn't technically a widget. It is
actually an application that is pushed into the current scene, similar to a viewer, main
taining the calling application's context.

Pickers I 147

Figure 5-9. News with an integer picker

The presentation of the files will differ by file type. For example:

• Files: Name and icon

• Images: Thumbnail grid

• Audio and Video: Name and thumbnail

Figure 5-10 shows the file view, with the other view options presented as Command
menu items across the bottom of the scene.

Advanced Lists
Lists were introduced in Chapter 3 with several extensive examples. Even so, some
major list features weren't touched on. We'll take a look at some more advanced fea
tures here.

With all list widgets, you can intervene in the middle of the list rendering to provide
some intermediate formatting to list items or to insert dividers between rows. After a
brief review of those features, we wiil add a Filter List widget to News to implement a

148 I Chapter 5: Advanced Widgets

Figure 5-10. A file picker example

search feature. This is a good example of a dynamic list, something you can use in many
different types of applications.

Formatters
The formatters property is a hash of property names to formatter functions, like this:

{timeValue: this.myTimeFormatter, dayOfWeek: this.dayindexToString, ... }

Before rendering the relevant HTML templates, the formatter functions are applied to
the objects used for property substitution. The keys within the formatters hash are
property names to which the formatter functions should be applied.

The original objects are not modified, and the formatted properties are given modified
new names so that the unformatted value is still accessible from inside the HTML
template. Formatted values have the text "Formatted" appended to their names. In the
example above, the HTML template could refer to #{timeValueFormatted} in order to
render the output from the myTimeFormatter() function. Formatter functions receive
the relevant property value as the first argument, and the appropriate model object or
items element as the second.

Advanced Lists I 149

Dividers
You can add dividers to your lists; they are particularly useful for long lists. You will
specify the function name to the dividerFunction property and a template to divider
Template. If no template is specified, the framework will use the default, a single-letter
alpha divider (list-divider.html, styled with the palm-alpha-divider class).

The divider function works similar to a data formatter function. It is called with the
item model as the sole argument during list rendering, and it returns a label string for
the divider.

Filter Lists
Use a Filter List widget when your list is best navigated with a search field, particularly
one where you would like to instantly filter the list as each character is typed into the
field. It is intended to display a variable length list of objects, built by a special callback
function.

The widget includes a text field displayed above a list, where the list is the result of
applying the contents of the text field through an application-specific callback function
against some off-screen data source. The text field is hidden when empty, but it is given
focus as soon as any key input is received. At the first keystroke, the field is displayed
with the key input (after a delay; specified via the delay attribute-default is 300ms),
and the framework calls the function specified by filterFunction.

The framework calls the fil terFunction, which is similar to the i temsCallback function,
in the base List widget (see Chapter 3) when data is needed for displaying list entries.
You provide the fil terFunction, with arguments for the list widget element, offset, and
count, similar to itemsCallback, plus an additional argument, filterString.

It is understood that the requested data may not be immediately available. Once the
data is available, the given widget's noticeUpdateditems() method should be called to
update the list. It's acceptable to call the noticeUpdatedltems() immediately if desired,
or any amount of time later. Lengthy delays may cause various scrolling artifacts,
however.

The filter list will display a spinner in the text field while the list is being built, and it
is replaced with an entry count when done. To set the count properly, call the widget's
set Count (totalSubsetSize), where totalSubsetSize is the number of entries in the list.
To set the list length, call setlength (totalSubsetSize); the length is a dependency of
some internal widget functions and needs to be set accurately.

Back to the News: Adding a search field

Search is one of the best applications for the Filter List widget. You can start typing on
the feed List scene and quickly search all feeds for a keyword, viewing the results in the
same list format used for the individual feed lists. It's simple to access and powerful.

150 I Chapter 5: Advanced Widgets

The Filter List is declared and set up conventionally, but requires a filter function called
to process the keyword entries and returns a list for display. In the News design, we're
going to put the search results into a temporary list that is structured like the feed list.
We will display it using the story List assistant.

Because the Filter List search field is going into the feed List view, it will be necessary
to hide the feed list and feature story when in search mode. Start by adding the Filter
List declaration at the top of feedList-scene.html and wrap the rest of the scene in a div
with feedlistMain as its ID. This will be used later to hide the rest of the scene:

<!-- Search Field -->
<div id="searchFieldContainer">

<div x-mojo-element="Filterlist" id="startSearchField"></div>
</div>

<div id="feedlistMain">
<!-- Rotating Feature Story -->

Now set up the widget in feedList-assistant.js, reusing the storylist templates, pre
paring to format the search results in a storylist scene. Identify the filter function as
this.searchlist, and use a standard delay of 300 milliseconds. This is the default, so
this step can be omitted, but you may need to tune the behavior, so it's not a bad idea
to add it at the beginning:

II Setup the search filterlist and handlers;
this.controller.setupWidget("startSearchField",

{

},

itemTemplate: "storylist/storyRowTemplate",
listTemplate: "storylist/storylistTemplate",
filterFunction: this.searchlist.bind(this),
renderlimit: 70,
delay: 300

this.searchFieldModel = {
disabled: false

});

this.viewSearchStoryHandler = this.viewSearchStory.bindAsEventlistener(this);
this.controller.listen("startSearchField", Mojo.Event.listTap,

this.viewSearchStoryHandler);
this.searchFilterHandler = this.searchFilter.bindAsEventlistener(this);
this.controller.listen("startSearchField", Mojo.Event.filter,

this.searchFilterHandler, true);

Add two listeners, one for the tap event and the other for a filter event. The filter event
is used on Filter Field and Filter List only. It is sent after the defined delay once the filter
field is activated, on the first character entry, and immediately when the field is cleared.
Listening for this event allows you to do some pre- and postprocessing with the widget
or the scene.

Advanced Lists I 151

With News, we want to hide the rest of the scene when the first character is typed, and
restore it when the field is cleared. To do this, add this new method in the feedlist
assistant; it simply calls the Prototype methods hide() and show() of the div element,
feedlistMain, in feedlist-scene.html:

II searchFilter - triggered by entry into search field. First entry will
II hide the main feedlist scene - clearing the entry will restore the scene.
II
FeedlistAssistant.prototype.searchFilter = function(event)

Mojo. Log. info("Got search filter: ", event. filterString);
var feedlistMainElement = this.controller.get("feedlistMain");
if (event. fil terString ! == '"') {

II Hide rest of feedlist scene to make room for search results
feedlistMainElement.hide();
else {

II Restore scene when search string is null
feedlistMainElement.show();

};

After the filter event is sent, the framework calls the function assigned to the filter
Function property in the Filter List widget's attributes; in this case,
this. search List(), which is added also to feedList-assistant.js and shown here:

II searchlist - filter function called from search field widget to update the
II results list. This function will build results list by matching the
II filterstring to the story titles and text content, and then return the
II subset of the list based on offset and size requested by the widget.
II
FeedListAssistant.prototype.searchlist = function(filterString,

listWidget, offset, count) {

var subset = [];
var totalSubsetSize = o;

this.filter = filterString;

II If search string is null, return empty list, otherwise build results list
if (filterString !== "") {

II Search database for stories with the search string; push matches
var items = [];

II Comparison function for matching strings in next for loop
var hasString = function(query, s) {

if(s.text.toUpperCase().indexOf(query.toUpperCase())>=O) {
return true;

};

}
if(s.title.toUpperCase().indexOf(query.toUpperCase())>=O)

return true;
}
return false;

152 I Chapter 5: Advanced Widgets

} ;

for (var i=o; i<this.feeds.list.length; i++) {
for (var j=o; j<this.feeds.list[i].stories.length; j++) {

if(hasString(filterString, this.feeds.list[i].stories[j]))
var sty= this.feeds.list[i].stories[j];
items.push(sty);

this.entirelist = items;
Mojo.Log.info("Search list asked for items: filter=",

filterString, " offset=", offset, " limit=", count);

II Cut down list results to just the window asked for by the widget
var cursor = o;
while (true) {

if (cursor >= this.entirelist.length)
break;

}

if (subset.length < count && totalSubsetSize >= offset)
subset.push(this.entirelist[cursor]);

totalSubsetSize++;
cursor++;

11 Update List
listWidget.mojo.noticeUpdateditems(offset, subset);

II Update filter field count of items found
listWidget.mojo.setlength(totalSubsetSize);
listWidget.mojo.setCount(totalSubsetSize);

The function definition is filterFunction (filterString, listWidget, offset,
limit), using the arguments shown in Table 5-1.

Table 5-1. FilterFunction arguments

Argument

filterString

listWidget

off set

limit

Type

String

Object

Integer

l~te9er

Description

The contents of the filter field or the search string to be used

The DOM node for the list widget requesting the items

Index in the list of the first desired item model object (zero-based)

Count of the number of item model ~~jects requested

Assuming the filterString isn't empty, which it shouldn't be, the first part of the
method will do a primitive match against all the story titles and text content across all
feeds. The results are pushed into the items array and assigned to this. entirelist when
complete.

Advanced lists I 153

The list is cut down to just the portion of the list that was requested by the offset and
the count, and is assigned to subset, which is returned with the offset by calling
listWidget. moj o. noticeUpdatedltems (offset, i terns), using the arguments shown in
Table 5-2. This is a method of listWidget, an argument passed by the framework.

Table 5-2. NoticeUpdateditems arguments

offset

items

Integer Index in the list of the first object in i terns; usually the same as the offset passed to the i temsCall
back

Array An array of th~ listitem model objects that have been loaded for the list

Finish up with calls to listWidget. mojo. setlength (totalSubsetSize) and list
Widget.mojo.setCount(totalSubsetSize) to set the list length and the results count for
the counter displayed in the filter field.

With these changes, users can type at any time into the feed List scene to see the filter
field display and the results presented in list form below, similar to what is shown in
Figure 5-11.

Figure 5-11. News with a search filter list

154 I Chapter 5: Advanced Widgets

Figure 5-12. News with a search story view

After the list is built, the tap event indicates a user selection of a list entry, just as it does
for a conventional list. Since the search list is built as a stories array, News responds to
a tap by creating a temporary feed and pushing the storyView scene with that feed.
Here's the viewSearchStory () method:

II viewSearchStory - triggered by tapping on an entry in the search
II results list will push the storyView scene with the tapped story.
II
FeedlistAssistant.prototype.viewSearchStory = function(event) {

};

var searchlist = {

title: "Search for: "+this.filter, stories: this.entirelist
};
var storyindex = this.entirelist.indexOf(event.item);

Mojo.Log.info("Search display selected story with title = "

searchlist.title, "; Story index - ", storyindex);
Mojo.Controller.stageController.pushScene("storyView",

searchlist, storyindex);

As shown in Figure 5-12, as well as viewing the selected story, users can tap Next and
Previous to view each story in the results list.

Advanced lists I 155

Viewers
With Mojo, you can embed rich media objects within your scenes. There are widgets
for a web object, a full screen image scroller, and partial support for HTML 5 audio
and video tags for inclusion of audio and video objects.

Web View
To embed a contained web object, declare and instantiate a WebView widget. You can
use it to render local markup or to load an external URL; as long as you can define the
source as a reachable URL, you can use a WebView to render that resource.

Back to the News: Adding a web view

Tapping on a story will push a web view scene and load the original story's URL in that
scene. This example is a simple use of Web view, where we create a new scene for the
web page, but it's still within the News application's context.

Create a new scene, called web View, using palm-generate, then declare the widget in
your scene view and configure it in your scene assistant before calling setupWidget ().
The story Web-scene.html is just one line:

<div id="storyWeb" x-mojo-element="WebView"></div>

And there's not much more to the storyWeb-assistant.js to configure and set up the
Web View widget:

I* StoryWebAssistant - NEWS

*I

Copyright 2009 Palm, Inc. All rights reserved.

Passed a story URL, displays that element in a full scene webview with
a load indicator and reload button. Handles link selections within the
view. User swipes back to return to the calling view.

Major components:

Arguments:
- storyURL; Selected feed from which the stories are being viewed

function StoryWebAssistant(storyURL) {
II Save the passed URL for inclusion in the webView setup
this.storyURL = storyURL;

StoryWebAssistant.prototype.setup = function()

II Setup up the webView widget

156 I Chapter 5: Advanced Widgets

this.controller.setupWidget("storyWeb", {url: this.storyURL},
this.storyViewModel = {});

II Setup handlers for any links selected.
this.linkClickedHandler = this.linkClicked.bindAsEventListener(this);
this.controller.listen("storyWeb", Mojo.Event.webViewlinkClicked,

this.linkClickedHandler);

II Setup App Menu
this.controller.setupWidget(Mojo.Menu.appMenu, News.MenuAttr, News.MenuModel);

} ;

StoryWebAssistant.prototype.cleanup = function(event)
this.controller.stoplistening("storyWeb", Mojo.Event.webViewlinkClicked,

this.linkClickedHandler);

} ;

II linkClicked - handler for selected links, requesting new links to be opened
II in same view
StoryWebAssistant.prototype.linkClicked = function(event) {

Mojo.Log.info("Story Web linkClicked; event.url = ", event.url);
var link = this.controller.get("storyWeb");
link.mojo.openURL(event.url);

} ;

There are more options than what's shown here. You can set the virtual page used to
render through the attributes properties virtualpageheight and virtualpagewidth and
set the minFontSize. You can add listeners for many Mojo web events, including
webViewloadProgress, webViewloadStarted, webViewloadStopped, and webViewload
Failed to intervene during any web page load. There are even more events than that;
you can find a complete list of events and descriptions in the webOS SDK.

To get to the webView, storyView will be modified to add another command menu, this
time to present a button on the lower-left of the scene to launch the webView scene:

this.storyMenuModel = {

items: [

]};

{iconPath: "images/url-icon.png", command: "do-webStory"},
{},
{items: []},
{},
{}

if (this.storylndex > o) {
this.storyMenuModel.items[2].items.push({

icon: "back'',
command: "do-viewPrevious"

});
else {

this.storyMenuModel.items[2].items.push({
icon: "", command:

Viewers I 157

}

label:
});

if (this.storyindex < this.storyFeed.stories.length-1)
this.storyMenuModel.items[2].items.push({

icon: "forward",
command: "do-viewNext"

});
} else {

this.storyMenuModel.items[2].items.push({
icon: "", command:
label:

});

this.controller.setupWidget(Mojo.Menu.commandMenu, undefined,
this.storyMenuModel);

Next, push the storyWeb scene in storyView-assistant.js by adding another command
handler in handleCommand() after those for do-viewNext and do-viewPrevious:

case "do-webStory":
Mojo.Log.info("View Story as a Web View Menu; url = ",

this.storyFeed.stories[this.storyindex].url);
Mojo.Controller.stageController.pushScene("storyWeb",

this.storyFeed.stories[this.storyindex].url);
break;

Load Indicator
Whether you're using a full-screen web view or adding to the end of your scene, you
may want to use a loading indicator similar to the webOS browser. Even with a fast
browser, many pages take a few seconds to load, and it's helpful to have some type of
indication for the user.

There is a detailed sample in the Palm SDK, but here's a brief description of the design:

• Set up Command menu buttons for your indicator and Reload button; only one
will be displayed at a time, but you'll switch them back and forth, so you need to
set up both of them.

• Add listeners for the loadStarted and loadStopped events to switch the menu but
tons and update the Command menu model.

• The body of the indicator handling is in a listener for load Progress, which calcu
lates the percent complete, using the loadProgress event. progress value, and in
vokes an update function to select the appropriate image based on the percent
complete.

• That image is inserted into the DOM to act as the indicator.

As shown in Figure 5-13, the Web View widget is put into its own scene. It can also be
declared within a scene so that a URL can be passed to it after it has been set up and

158 I Chapter 5: Advanced Widgets

the scene is active. For example, an application such as Email, which might have to
present HTML content, can declare and set up a widget without the ur 1 property
defined:

this. controller. setupWidget("storyWeb", {}, this. storyViewModel = {});

And when the URL is available, call the widget's openURL method:

var webview = this.controller.get("storyWeb");
webview.mojo.openURL(URL);

The web content will be displayed wherever the widget is declared within your scene;
you can use another property, topMargin, to automatically scroll part of the scene to
expose the top of the web view if that's useful.

News • Ns ";" .• 11 I
ll4G NEWS; Bmr-Mildeff I FlMrn:IJ>ICr!Si\> I La~ml.

Nut: The Obama Bmmce?

~Ml Mom: l:WllC:ll Obama, s-
Mllri:llt, G11111t O~lon, Holl!li ng Bubble, Hot19ln11
Cr1$1$, Kl" 500, Stock~. l!t!$111t111a ~

s-.H,,,_

Figure 5-13. A Web View widget example

Other Viewers
There are other viewers that you can add to your application: image view, audio players,
and video players. ImageView is very similar to WebView, but the audio and video players
are quite different. None of these other viewers is presented in depth here, but each is
briefly described. There is a lot more information available in the webOS SDK.

Viewers I 159

Image view

Designed to view an image in full screen, with support for zooming and panning while
optionally paging between additional images, the ImageView widget is configured
much like the WebView widget. You can use an ImageView for displaying single im
ages, but it is intended as a scrolling viewer, flicking left and right through a series of
images. The example in Figure 5-14 shows an implementation of the ImageView
widget, partially paged to the right.

Figure 5-14. An Image View widget example

Audio and video objects

There are application services supporting playback through the core audio and video
applications, but for playback within your application, you can include audio and video
objects that are based on the HTML 5 media extensions. You should use these objects
when you want to maintain your application's context or play content directly within
your scene. The application services, which are discussed in Chapter 8, are the best
options when you just want to play a music track or some video.

160 I Chapter 5: Advanced Widgets

The Audio object provides playback of audio based on the HTML 5 audio element
definition. However, you must create the object using JavaScript in one of your
assistants, as Mojo doesn't currently support creating objects directly through tags in
HTML.

Audio objects are created from the Audio constructor in your assistant's setup method,
and to play the audio, you set the source and event handlers before calling the object's
play method. You can set up multiple audio objects to minimize delays when playing
successive audio tracks.

Similarly, a Video object based on the HTML 5 video element definition provides video
playback. As with the Audio object, you will play video after creating the Video object,
setting the source and setting up event handlers.

Unlike audio, video playback requires coordination of the video sink through helper
functions to freezeVideo and activateVideo. When an application is not in the fore
ground, it must release the video sink in case another active application needs to display
video.

The media objects support multiple sources; both file-based and streaming sources are
supported. You can learn more about the extent of the features and events supported
by reviewing the HTML 5 spec at www.whatwg.org/specs/web-apps!current-work/.

Summary
With this discussion of advanced widgets, you've now learned all about Mojo's UI
features and how to build a range of applications from simple to complex. This chapter
covered indicators, widgets for showing activity and measuring progress; pickers and
viewers; specialized widgets providing sophisticated interaction with specific data
types; and a few advanced widgets, filter lists, and scrollers.

It's time to move on to storage and services that can extend your applications beyond
UI and other functional areas that are more like native applications than web applica
tions. Even without going further, you can build some very compelling and unique
applications using Mojo's web development model, but the services will give your ap
plication some new and powerful options.

Summary I 161

CHAPTER 6

Data

Access to local data storage is a signature feature of native application models. Web
applications do not have access to local data storage other than browser cookies. Re
cently, there has been an effort to address these needs, particularly with the proposed
HTML S APis for structured client storage.

Palm webOS supports the HTML S Database APis and provides two specific APis for
simple data creation and access:

Depot
A wrapper on the HTML S APis for simple object storage and retrieval.

Cookie
A simplified interface to browser cookies, this is a single object store for small
amounts of data.

You will have to evaluate your needs to determine which solution is the best.

• Cookies are best used for synchronous access to small amounts of data, such as
preferences, version numbers, and other state information.

• Both HTML S databases and Depot are intended to support caches for offline
access and to help with performance issues while accessing online data.

• Depot is recommended for storing simple objects without a schema design or
manual transaction and query handling; otherwise, use an HTML S database.

• For disconnected applications that require a data store, an HTML S database is
the best solution.

Whichever solution you select, it is critical that you provide some local caching for
offline use, as stale data is better than no data for most applications. Conversely, you
should provide a dynamic source for your data, as it's best to update the source data
when the device is connected. Applications that can refresh their data or use online
storage instead of the device storage will be more flexible in the long run.

163

In this chapter, both depot- and cookie-based storage will be covered in depth, with
examples shown using the sample News application. The HTML 5 APis will also be
summarized with guidelines on using these APis and where to find more information.
Finally, we will revisit Prototype's Ajax functions. Chapter 3 included an example using
the Ajax.Request method to update the news feeds. In this chapter, you will get some
information on each of the Ajax methods and response handling.

Working with Cookies
The cookie is a well-known browser feature, created early on to store state or session
information. Mojo cookies have a similar purpose, and are technically related to
browser cookies, but with an object interface to simplify use by webOS applications.
Mojo cookies typically store small amounts of data that will preserve application state
and related information, such as preference settings.

Palm webOS creates a fake domain for running applications, based on each application
ID. Cookies created by the application code are associated with that domain, so unlike
browser cookies, they'll never be present as part of web requests to other services; they
are strictly for local storage.

You should limit cookies to less than 4kB, but can have multiple cookies within an
application if needed. You can remove cookies if they are no longer needed and the
framework will delete an application's cookies if the application is removed from the
device.

Mojo.Model.Cookie(id) opens the cookie that matches the ID argument or, if there is
no match, creates a new cookie with that ID. There are three methods:

get()
Retrieves the object stored in the cookie (if it exists) or returns undefined.

put()
Updates the value of the named cookie with an optional date/time after which the
object is deleted.

remove()
Removes the named cookie and deletes the associated data.

The Cookie function and all of its methods are synchronous, unlike Depot and the
database functions, making for a simpler calling interface and return handling.

Back to the News: Adding a Cookie
We'll use a cookie object to save the News preferences. Beyond the basics of creating
the cookie and retrieving it on launch, we'll also add code to update the cookie when
•h~ ~~~·~~~~~~~ ~i.~~~~
L.lJ.L. J:-'.l\,...J..Ll.l......LL\..-L-~ \,..,.l.lGL.l.lt)\,,.,•

164 I Chapter 6: Data

Since the preferences are used in a few different places in the News application, we'll
create the specific News cookie functions in models!cookie.js. The News .Cookie will have
an initialize() function, which opens and gets the News cookie if it exists already, or
creates the News cookie if not. The cookie's identifier doesn't need to be unique outside
of this application:

I* Cookie - NEWS

*I

Copyright 2009 Palm, Inc. All rights reserved.

Handler for cookieData, a stored version of News preferences.
Will load or create cookieData, migrate preferences and update cookieData
when called.

Functions:
initialize - loads or creates newsCookie; updates preferences with contents

of stored cookieData and migrates any preferences due version changes
store - updates stored cookieData with current global preferences

News.Cookie = ({

initialize: function() {

},

II Update globals with preferences or create it.
this. cookieData = new Mojo.Model. Cookie("NewsPrefs");
var oldNewsPrefs = this.cookieData.get();
if (oldNewsPrefs) {

II If current version, just update globals & prefs
if (oldNewsPrefs.newsVersionString == News.versionString)

News.featureindexFeed = oldNewsPrefs.featureindexFeed;
News.featureFeedEnable = oldNewsPrefs.featureFeedEnable;
News.featureStoryinterval = oldNewsPrefs.featureStoryinterval;
News.feedUpdateinterval = oldNewsPrefs.feedUpdateinterval;
News.versionString = oldNewsPrefs.newsVersionString;
News.notificationEnable = oldNewsPrefs.notificationEnable;
News.feedUpdateBackgroundEnable = oldNewsPrefs.feedUpdateBackgroundEnable;

} else {
II migrate old preferences here on updates of News app

this.storeCookie();

II store - function to update stored cookie with global values
storeCookie: function() {

this.cookieData.put(
featureindexFeed: News.featureindexFeed,
featureFeedEnable: News.featureFeedEnable,
feedUpdateinterval: News.feedUpdateinterval,
featureStoryinterval: News.featureStoryinterval,
newsVersionString: News.versionString,
notificationEnable: News.notificationEnable,

Working with Cookies I 165

});

feedUpdateBackgroundEnable: News.feedUpdateBackgroundEnable
});

After creating the cookie in our sample, this. cookie. get () is called to retrieve it. If the
cookie exists, the global preferences are updated with the stored values.

The second function will update the stored cookie with the current values in the global
preferences. It's called from the initialize() method in the case where the cookie was
first created and also as a future provision when preferences need to be migrated when
a new version of the application changes the preferences.

The cookie should be first retrieved at application launch:

StageAssistant.prototype.setup = function()

};

II initialize the feeds model
this.feeds = new Feeds();
this.feeds.loadFeedDb();

II load preferences and globals from saved cookie
News.Cookie.initialize();

II Set up first timeout alarm
this.setWakeup();

this.controller.pushScene("feedlist", this.feeds);

The storeCookie() method is called anytime the preferences change. For example, the
deactivate() method in preferences-assistant.js will update the cookie when the Pref
erences scene is popped:

II Deactivate - save News preferences and globals
PreferencesAssistant.prototype.deactivate = function() {

News.Cookie.storeCookie();
} ;

The cookie.remove() method is straightforward, but you may not have any reason to
use it at all. With News, the preferences are always retained unless the application is
deleted from the device, in which case the storage is recovered by the system. If you are
using cookies for temporary storage, you should remove them when they are no longer
needed.

Working with the Depot
If you are only interested in a simple object store without any database queries or
structure, Depot will likely meet your needs. You can store up to 1 MB of data in a

166 I Chapter 6: Data

depot by default. Mojo provides a few simple functions that wrap the HTML 5 APis to
create, read, update, or delete a database.

Mojo.Depot() opens the depot that matches the name argument. If there is no match,
it creates a new depot with that name. There are four methods:

get()
Calls the provided onSuccess handler with the retrieved object (or null if nothing
matches the key). onFailure is called if an error occurs in accessing the database.

discard()
Removes the data associated with the key from the database.

add()
Updates the value of the named object.

removeAll()
Removes all data in the database by dropping the tables.

The Depot is simple to use. As with Cookie, you call Depot's constructor with a unique
name to create a new store or open an existing one. Unlike Cookie, Depot calls are
asynchronous, so you will do most of your handling in callback functions. Once
opened, you can save and retrieve any JavaScript object. To simplify your data handling,
the Depot function will flatten the object so that it can be stored using SQL.

You do need to keep this to simple objects, as Depot is not very efficient, and if you
extend it to complex objects it can impact application performance and memory.]SON
objects are recommended as the best-performing. Beyond that you'll have to experi
ment to see how the Depot performs with your application. Deep hierarchy, multiple
object layers, array and object datatypes, and large strings are all characteristics of
complex objects that may push the limits of the Depot capabilities.

Back to the News: Adding a Depot
The Depot will be used by News to store the feedlist for offline access of the stored
feeds, to retain the user's feed choices, and to maintain the stories' unread state. Storing
this state information will let us provide a better user experience at launch time and
allow us to present the stored feeds quickly, without having to wait for a full sync from
the various servers.

The Depot functions will be added to the Feeds data model through two new methods:

loadFeedDb()
Loads the feed database depot or creates one using the default feed list if there isn't
an existing depot.

storeFeedDb()
Writes the contents of Feeds.list array to the database depot.

Working with the Depot I 167

The database will be loaded once, when the application is first launched, so the stage
assistant is modified:

StageAssistant.prototype.setup = function()

II initialize the feeds model
this.feeds = new Feeds();
this. feeds. loadFeedDb();

The load method simply opens the depot or creates one if it doesn't exist:

II loadFeedDb - loads feed db depot, or creates it with default list
II if depot doesn't already exist
loadFeedDb: function() {

},

II Open the database to get the most recent feed list
II DEBUG - replace is true to recreate db every time; false for release

this.db = new Mojo.Depot(

);

{name:"feedDB", version:1, estimatedSize: 100000, replace: false},
this.loadFeedDbOpenOk.bind(this),
function(result) {

Mojo. Log .warn("Can't open feed database: ", result);

Depot's constructor first takes an object, which must include a name. This is a required
property that must be unique for this depot. The version indicates the desired database
version, but any version can be returned. The estimatedSize advises the system on the
potential size of the database in bytes, and the replace property indicates that if a depot
exists with this name, it should be opened. Should the replace property be set to true,
an existing depot will be replaced. The replace property is optional; if missing, it de
faults to false.

The loadFeedDbOpenOk callback will handle both the case where the feedlist had been
previously saved and the case when a new database is created. The function literal is
used if there is a database error. The cause of such a failure could be either that the
database exists but failed to open, or that it didn't exist and failed to be created.

In loadFeedDbOpenOk, attempt to retrieve the data with a call to the get() method. The
first argument is a key, which must match the key used when the data was saved. The
other two arguments are the success and failure callbacks.

If the request was successful, the callback function receives a single argument, an object
with the returned data. In the following example, the success callback is
loadFeedDbGetSuccess, which first tests the returned object, fl, for null. If fl is a valid
object, it is assigned to feedlist and the update cycle is started to refresh the feeds:

II loadFeedDbOpenOk - Callback for successful db request in setup. Get stored
II db or fallback to using default list
loadFeedDbOpenOk: function() {

Mojo.Log.ir.fo(11 Database opened 0!< 11
);

this.db.simpleGet("feedlist", this.loadFeedDbGetSuccess.bind(this),
this.loadFeedDbUseDefault.bind(this));

168 I Chapter 6: Data

},

II loadFeedDbGetSuccess - successful retrieval of db. Call
II loadFeedDbUseDefault if the feedlist empty or null or initiate an update
II to the list by calling updateFeedlist.
loadFeedDbGetSuccess: function(fl) {

},

if (fl === null) {
Mojo.Log.warn("Retrieved empty or null list from DB");
this.loadFeedDbUseDefault();

} else {
Mojo.Log.info("Retrieved feedlist from DB");
this.list = fl;

II If update, then convert from older versions

this.updateFeedlist();

Should get() fail to retrieve any data, the sample code assumes that this is because
we're creating a new database rather than opening an existing one, so we pass
loadFeedDbUseDefault as the second (failure case) callback. The default feedlist is as
signed and, again, the feed update cycle is started with a call to this. update Feed List ():

II loadFeedDbUseDefault() - Callback for failed DB retrieval meaning no list
loadFeedDbUseDefault: function() {

},

II Couldn't get the list of feeds. Maybe its never been set up, so
II initialize it here to the default list and then initiate an update
II with this feed list

Mojo. Log.warn("Database has no feed list. Will use default.");
this.list = this.getDefaultList();
this.updateFeedlist();

If the call to open the database fails, there is a database error and the failure callback
is used. In this sample, a function literal is used to log the error. There should be some
proper error handling added to notify the user and advise on recovery actions, but that's
not shown here.

The storeFeedDb() method is much less involved, but it is critical to keep the data
updated. The webOS application model and user experience rely on saving data as it
is entered or received, without explicit actions by the user. The News application has
several points at which the data needs to be saved, and each time, calling this method
will do it:

II storeFeedDb() - writes contents of Feeds.list array to feed database depot
storeFeedDb: function() {

},

Mojo.Log.info("Feedlist save started");
this.db.add("feedlist", this.list,

function() {Mojo.Log.info("Feedlist saved OK");},
this.storeFeedDbFailure);

Working with the Depot I 169

II storeFeedDbFailure(transaction, result) - handles save failure, usually an
II out of memory error
storeFeedDbFailure: function(result) {

Mojo. Log.warn("Database save error: ", result);
},

The add() method accepts the "feedlist" string as the depot key and writes
this. list as the stored object. The success callback is a function literal that logs the
transaction, but the failure callback is another method. This is where you'd want to
put recovery logic for memory full conditions, for example.

These calls can be implemented at these points in the FeedListAssistant:

AddDialogAssistant
A new feed has been added, so clearly an update is required to save that new feed
and its contents.

showFeatureStory()
This might seem odd, but since this is a periodic updater, a flag can be set indicating
that the data has changed (for example, from a feed update, or perhaps the unread
status has changed); performing the update here implements a lazy update of the
depot.

cleanup()
As a precaution, save the most recent version in case something has slipped through
during execution.

News never deletes its Depot object, but you can use the discard() method to remove
objects if needed. To be safe, you should only use this method after a successful open
or create transaction, and you may want to include success and failure callbacks as a
further precaution. The framework will remove an application's Depot objects when
the application is deleted from the device.

HTML 5 Storage
Clearly, the Cookie and Depot objects are simplistic, and while attractive for casual
data storage and caching, they won't fulfill the need for formal database support. To
address that need, Palm webOS includes support for the HTML 5 Database object to
create, update, and query an SQL database. Like the Depot, the HTML 5 database
interfaces are asynchronous, requiring you to use callbacks for much of your database
handling.

Creating Large Databases
By default, Palm webOS stores databases within a size-constrained local file store,
~vhich is the reason that HTlv!L 5 databases are restricted to a lMB maximum. Tht:"
bulk of the storage on the Palm Pre is in the mass storage partition or USB accessible
storage, reserved for media use.

170 I Chapter 6: Data

You can store your HTML 5 database or Depot in the mass storage partition, where it
is not subject to a maximum size other than by the amount of available memory. To
do that, specify the database name with a prefix, as in:

openDatabase("ext :mydbname", ...) ;

The "ext:" will be mapped by the system to the mass media partition on the Palm Pre
and an appropriate mapping on future devices.

The HTML 5 specification includes extensions for structured client-side storage, in
cluding support for the Storage and Database objects. Palm webOS does not support
the Storage object, a list of name/value pairs that grew out of Firefox's DOM Storage
object, but it does support the Database object.

The openDatabase() method will create a new database or open an existing database,
returning a Database object:

this.db = openDatabase("myDB", 1, "My DB", 10000);

The arguments are as follows (see Table 6-1).

Table 6-1. openDatabase arguments

Name

version

Description

Database name

Target version, or undefined if any version is acceptable

Application defined, not used by webOS displayName

estimatedSize

Requit~d

Required

Optional

Optional

Optional Informs webOS ofintended size to prompt for any system constraints at creation rather
than use

The database version property is meant to represent the schema version, enabling
smooth migration of the database forward through schema changes. If the application
specifies a database name and a version number, both need to match an existing data
base for the database open to succeed; otherwise, a new database will be created.

Once the database is open, you can execute transactions against it, using either
transaction() for read/write transactions or readTransaction() for read-only transac
tions. The transaction methods will specify one to three callbacks:

• Transaction callback

• Error callback

• Success callback

The transaction callback is the most important; it includes the transaction steps that
you wish to execute using an executeSQL () method, which accepts an SQL query string
as an argument along with success and error callbacks.

HTML 5 Storage I 171

For example, the following code segment calls the transaction method with a literal
function that includes two executeSQL() methods, the last of which specifies a success
callback, this. successHandler(), and an error callback, this. errorHandler():

MyAssistant.prototype.activate = function()

this.db.transaction((function (transaction) {
transaction.executeSql('A BUNCH OF SQL', []);
transaction.executeSql('MORE SQL', [], this.successHandler.bind(this),

this.errorHandler.bind(this));
}).bind(this);

MyAssistant.prototype.successHandler = function(transaction, SQLResultSet) {
II Post processing with results

} ;

MyAssistant.prototype.errorHandler = function(transaction, error) {
Mojo.Log.Error('An error occurred',error.message);

II Handle errors here
};

The success handler is passed the transaction object plus an SQLResultSet object as an
argument. The attributes of the results object are described in Table 6-2.

Table 6-2. SQLResultSet object

insert ID Row ID of the row that was inserted into the database, or the last of multiple rows, if any rows
were inserted

RowsAffected Number of rows affected by the SQL statement

SQLResul tSetRowlist Rows returned from

We've only touched on the basics of the HTML S database capabilities in this section.
As a draft standard, HTML S will continue to evolve. You should review the
formal SQL reference at http://dev.w3.org/html5/webstoragel#databases for more in
depth information. There's also a basic demo application at http://webkit.org/demos/
sticky-notes/index. html.

Ajax
In Chapter 3, we added an Ajax request to the News application, transforming the
appiication from a static data reader to a dynamic application serving up new srories
from multiple feeds in the background. There is a huge difference in user experience

172 I Chapter 6: Data

when your application can let the user know that something new exists and present it
to her immediately.

You aren't required to use the Prototype functions. You can use the
XMLHttpRequest object directly, and you will be required to if your data protocols are
SOAP-based or if they are anything other than simple XML, JSON, or text-based web
services. There are many references for XMLHttpRequest if you'd like to explore this
more directly. Any fundamental]avaScript reference will give you an overview, but for
more in-depth information, look for Ajax-specific references such as Anthony
Holdener's Ajax: The Definitive Guide (O'Reilly). For a more basic introduction, you
can review the tutorial at https:lldeveloper.mozilla.orglenlXMLHttpRequest, which,
while focused on Firefox, is nonetheless a good introduction to XMLHttpRequest.

The Ajax class functions, which are a basic feature of the Prototype JavaScript library,
are included with web OS because they encapsulate the lifecycle of an XMLHttpRequest
object and handlers into a few simple functions. The next few pages will explore these
functions to show you how Prototype can help you integrate dynamic data into your
application.

R-.,
· ·' Palm web OS applications are run from file:// URLs and thus aren't re-
11• stricted by the single-origin policy that makes mixing services from dif-
\e.~,1

~-~•..,,.;:' ferent websites difficult.

Ajax Request
Back in Chapter 3, we added an Ajax. Request object to News to sync the web feeds to
the device, but didn't describe the object or the return handling in any detail.
Ajax. Request manages the complete Ajax lifecycle, with support for callbacks at various
points to allow you to insert processing within the lifecycle where you need to. In
Chapter 3, we used updateFeedRequest to initiate the Ajax request:

II updateFeedRequest - function called to setup and make a feed request
updateFeedRequest: function(currentFeed) {

},

Mojo.Log.info("URL Request: ", currentFeed.url);

var request = new Ajax.Request(currentFeed.url, {
method: "get",

});

evalJSON: "false",
onSuccess: this.updateFeedSuccess.bind(this),
onFailure: this.updateFeedFailure.bind(this)

An Ajax.Request is created using the new operator, the only way that a request can be
generated, and initiates an XMLHttpRequest as soon as it is created. In this case, a
get request is initiated on the URL defined in currentFeed. ur 1, and two callbacks are

Ajax I 173

defined for success or failure of the request. You can also make post requests and define
other callbacks, which map to the request lifecycle shown in Table 6-3.

Table 6-3. Ajax.Request callbacks by lifecycle stage

onCreate Created

onUnini tialized Created

on Loading Initialized

on Loaded Request Sent

on Interactive Response being received (per packet)

on###, onSuccess, on Failure Response Received

Received

To clarify:

onCreate
Is available only to responders and is not available as a property of Ajax.Request.

on###
When specified (where### is an HTTP status code, such as on 403), it is invoked
in place of onSuccess in the case of a success status, or onFailure in the case of a
failure status.

onComplete
Is called only after the previous potential callback-either onSuccess or
on Failure (if specified)-is called.

Ajax requests are asynchronous by default, one of the virtues of Ajax. While
Ajax. Request supports an override, the synchronous XMLHttpRequest has been disabled
in webOS. Since the UI and applications run as part of a common process, this is
necessary to preserve UI responsiveness. It may be supported in a later release when
there is concurrency support.

There are more Ajax. Request options available. Ajax. Request is covered thoroughly in
most Prototype references, including the Prototype 1.6 API reference available at http:
/lwww.prototypejs.org/api.

Ajax Response
An Ajax. Response object is passed as the first argument to any callback. In our sample,
we have used the HTTP status codes under the status property and the responseText
and responseXML properties. Table 6-4 provides a summary of the full list of properties.

174 I Chapter 6: Data

Table 6-4. Ajax.Response properties

Property

readyState

status

status Text

response Text

responseXML

responseJSON

headerJSON

request

tra~sport

Type

Integer

Integer

String

String

XML or Document

Object

Object

Object

Object

Description

Current lifecycle state:

0 =Uninitialized

1 =Initialized

2 =Request Sent

3 = Interactive

4 =Complete

HTTP status code for the request

HTTP status text corresponding to the code

Text body of the response

If content type is application/xml, then XML body of the response; null otherwise

If content type is application/json, then JSON body of the response; null otherwise

Sometimes JSON is returned in the X-JSON header instead of response text; if not,
this property is null

Original request object

Actual XML_HttpRequestobject

We haven't discussed JSON specifically, but it is an increasingly important tool for
developers. Prototype includes some powerful]SON tools in Ajax. Request, which sup
ports automatic conversion of]SON data and headers. If you're handling structured
data, you should look at JSON, particularly for data interchange.

More Ajax
Prototype includes some additional functions for consolidating listeners for Ajax call
backs, called responders, and for updating DOM elements directly from an Ajax
request.

Ajax responders

If you're doing multiple Ajax requests, you might find it useful to set up responders for
common callbacks rather than setting callbacks with each request. This is particularly
applicable to error handlers or activity indicators. The following example shows the
use of setup responders to manage a spinner during feed updates and to handle Ajax
request failures:

Ajax.Responders.register({
onCreate: function() {

spinnerModel.value = true;
this.controller.modelChanged(spinnerModel, this);

}.bind(this),

Ajax I 175

});

onSuccess: function(response) {
spinnerModel.value = false;
this.controller.modelChanged(spinnerModel, this);
this.process.Update(response);

}.bind(this),

onFailure: function(response) {
this.spinnerModel.value = false;
this.controller.modelChanged(spinnerModel, this);
var status = response.status;
Mojo. Log. info(" Invalid URL - Status returned: ", status);
Mojo. Controller. errorDialog("Invalid feed - http failure: "+status);

}.bind(this)

In this sample code, each responder is defined using the callback property and a func
tion literal. The first, onCreate, is available only to responders and not in an
Ajax.Request object. It starts the spinner, while the other two, onSuccess and
onFailure, stop it while performing some appropriate postprocessing.

Responders can be unregistered, but you would need to avoid using function literals
when you register them, as the previous example did. The responders would need to
be defined first, then registered and unregistered with a reference to that definition.

Ajax.Updater and Ajax.PeriodicalUpdater

Ajax.Updater and Ajax.PeriodicalUpdater each make an Ajax request and update the
contents of a DOM container or element with the response text. Ajax.Updater will
perform an update request once, while Ajax. PeriodicalUpdater will perform the re
quests repeatedly, with a delay option to extend the interval between updates when
responses are unchanged. Note that Ajax. Periodica lUpdater uses JavaScript timers and
won't wake the device.

Summary
Dynamic data is an important part of any Palm webOS application to keep the user
connected and in touch, while local data is critical for offline access and a responsive
user experience. In this chapter, we've looked at both topics and used the Depot and
Cookie objects, along with Prototype's Ajax functions and the HTML 5 database APis.
Managing your data in an efficient way is as fundamental to a great user experience as
the powerful UI functions.

176 I Chapter 6: Data

CHAPTER 7

Advanced Styles

Most of this book has been concerned with developing code, with some design topics
added in. That isn't due to a lack of design sophistication in the platform or any limit
to the opportunity to design beautiful, effective applications, but is mostly a matter of
focus.

This chapter is all about styling your applications, a broad design topic. You will learn
advanced type-styling techniques, with additional background on the use of type and
text within your applications. Images will be deconstructed so that you can learn how
to position and size them within a scene's layout, and integrate them with other content.
A well-designed application will integrate touches and gestures reliably; you'll learn
how to optimize your application to handle touches elegantly within your visual design.

This is just a very small sample of the range of the design capabilities of webOS and
the opportunities it presents. There are extensive resources available to learn more
about styling or various visual and interaction design topics included in the SDK:

Human Interface guidelines
The SDK includes an extended set of guidelines for application designers on ev
erything from designing a great webOS application to technical guidelines for
graphic designers.

Palm webOS Visual Style Guide
A thorough review of the webOS design philosophy and how to design visual ele
ments for your applications.

Style Matters
An interactive sample application available in the SDK for learning and applying
styles on webOS.

In addition, there is the Quick Reference Style Guide (included as Appendix C in this
book). This guide will give you more detail on the topics in this chapter as well as
additional styling information.

177

Typography
You read about text widgets in Chapter 3, including the available styling options. Some
of these options are also available with any text element that you include in your scene's
HTML. Plus, you can use Mojo's standard text styles or override those styles within
your CSS. In this section, you'll see how to apply type styles as truncation and capital
ization functions, as well as some basic alignment techniques.

Fonts
Prelude is the primary font family for webOS. Its warm and welcoming appearance
belies its underlying strength and readability. Prelude's designer, David Berlow of the
Font Bureau, says of the typeface, "We wanted something that just disappears on the
device, becoming such an integral part of the Palm webOS design, you don't notice."

You have a choice of typestyles, as shown in Figure 7-1, which are built into the frame
work so that you get them by default.

Figure 7-1. Prelude font family styles

178 I Chapter 7: Advanced Styles

Use the optional classes condensed or oblique with most text classes to modify the base
class with a condensed or oblique font style.

Table 7-1 summarizes the available typestyles.

Table 7-1. Prelude typestyles

.. Typestyle Technique

Prelude Medium Provided with all text elements and classes by default

Prelude Medium Oblique Add oblique class to any text element or class

Prelude Medium Condensed Add condensed class to any text element or class

Prelude Medium Bold ~d~(~ol~) 9r ~st:r-ong>t~9s aroun~ a~y~tri~9 ~~~l~rrien!

Body text can be styled with a few basic text classes; some examples are shown in
Figure 7-2.

Figure 7-2. Text styles

This scene is created with HTML using the classes described in Table 7-2. The following
excerpt shows the HTML for the title and text styles:

<div class="palm-text-wrapper">
<div class="palm-body-title">

Typography I 179

Example Marketing Copy
</div>

<div class="palm-body-text">
The new Palm Pre phone is always thinking ahead to make your life easier.
Pre pulls your different online calendars into one view, bringing you the
information you want without having to search for it.

</div>
</div>

Table 7-2. Text style classes

palm-text-wrapper Use this wrapper to contain multiple divs of styled text for proper padding

palm-body-title Title text

palm-body-text Body text

___ e~!~=~~:f'~:_!_~~! -----~~P!i~~!~~;~~!!!'!1~~1¥~~~~~it~ 9E~u_e~~~~~-

Truncation
Text truncation is a standard feature of the Text Field widget, and an option for any
HTML text element. You can add the truncating-text class to a conventional div ele
ment that contains a text string, and the string will be constrained to a single line and
properly terminated with ellipses, as shown in Figure 7-3.

Figure 7-3. Text truncation

180 I Chapter 7: Advanced Styles

The leftmost example truncates a text string within a conventional div:

<div class="palm-list">
<div class="palm-row first" x-mojo-touch-feedback="delayed">

<div class="palm-row-wrapper">
<div class="label">Truncating text</div>
<div class="title truncating-text">

An example of text
which is so long you
could not possibly fit
it on a single line.

</div>
</div>

</div>
</div>

In the righthand example, there are two text fields, each using single-line truncation,
but within differently styled elements. The Text Field widget is composed of several
elements, which have the truncating-text class assigned to them. You don't need to
specify the class within your HTML; it's provided by default. If instead you want your
text to wrap and your text field to grow vertically, set the mulitline property to true.

Capitalization
Some widgets and styles shift text strings to uppercase or apply capitalization. Specific
framework styles will be capitalized by default. See Table 7-3 for a list of those styles.

Table 7-3. Classes with default capitalization

Class

capitalize

palm-page-header

palm-dialog-title

p~lm-button

Description
Use to apply title-case capitalization to any text element

Page header text element

Error and alert dialog boxes by default, or when used in HTML

Button label

Use the un-capitalize class to override autocapitalization in those styles.

The Text Field widget also performs capitalization by default, but it is controlled by the
textCase property in the widget's attributes rather than through HTML class
assignments. By default, textCase is set to Mojo.Widget.steModeSentenceCase,
but you can set it to Mojo.Widget.steModeTitleCase for all caps, or to
Mojo.Widget. steModelowerCase to disable autocapitalization.

Vertical Alignment
There are a few techniques for vertically aligning text or elements within a div that you
might find useful. For single lines of truncating text, set the text line-height equal to
the div's height:

Typography I 181

.single-line {
margin: 15px o;
padding: o 15px;
height: sopx;
background: grey;
line-height: sopx;

}

For multiple lines of text, specify equal amounts of padding to the div:

.multi-line {
margin: 15px o;
padding: 15px;
background: grey;

}

These two examples are shown in Figure 7-4; the top shaded box demonstrates the
single-line alignment and the lower shaded box shows the multi-line alignment.

Figure 7-4. Vertical alignment examples

To align images or blocks oflayoutvertically, use display: inline-block and vertical
align: middle with your CSS rules for the specific div.

182 I Chapter 7: Advanced Styles

Images
This section will show you how to use images within your application, whether you
want to reuse images provided with Mojo or create your own. There is a summary of
the types of images provided with Mojo, and general guidelines on how to incorporate
them into your application. You will need to refer to the SDK to see the individual
images referenced here; there are too many to include here, and new ones are added
with each SDK release.

You will also find design and technical guidelines here that will help you create your
own custom images.

There are dozens of images provided with the Mojo framework. Look in the framework/
images directory and you'll see a long list of PNG images, which are used as back
grounds, widget components, icons, and in various parts of the System UI. You are free
to use any of the images in your application, but you should use them in a manner that
is consistent with their use in the System UI or Palm applications.

',• A key UI principle is that consistency enhances ease of use. If your ap-
111 •, plication uses visual images differently than what the user expects, your ~. ..

~-__._,...~··' application will be perceived as harder to use.

Images are structured according to the intended use case:

Standard image
A single image within a single file for conventional image use with img tags or similar
cases.

Multistate image
Multiple images within a single file used to combine multiple button states (e.g.,
pressed and unpressed states) or in a filmstrip animation sequence for activity in
dicators or similar cases.

9-tile image
Using webkit-border- image, you can specify an image as the border of a div to create
visually rich containers, buttons, dividers, and other dynamic images.

Standard Image
For any image, you should use a 24-bit per pixel RGB png with 8-bit transparency and
1-bit alpha channel whenever possible. Size the images according to how they will be
rendered in the application. Image scaling is always a performance risk and will impact
the user experience; avoid scaling images if you can.

Images I 183

Multistate Image
When displaying an animation or multistate button as the background of a div, com
bine your multiple states into a single image and change the background position to
display the appropriate frame as desired. This negates the need to preload, eliminates
flicker between the states, and conveniently keeps the assets together. Some examples
of multistate images are shown in Figure 7-5.

Figure 7-5. Multistate image examples

Multistate images are used for Push buttons, Menu buttons, Indicators, Toggle buttons,
and Check Boxes, among other elements. It will be used anywhere you have a single
image that needs to reflect state changes (e.g., unselected/highlighted/selected) or is
part of an animation sequence.

9-Tile Image
Create single styles (with small, optimized images) that can accommodate variable
length content and stretch horizontally to support any orientation or screen width using
webkit-border-image. You would use this selector to divide an image into nine com
ponents (as shown in Figure 7-6) and use these components to render the border of the
box. You can stretch or repeat the images to fill the space required with your image.

There are numerous examples of 9-tile images in the Mojo framework, including head
ers, borders, dividers, buttons, gradients, indicators, backgrounds, and icons. In the
example shown in Figure 7-7, the palm-group is enclosed with a 9-tile image.

This particular image is handled within the framework with the following CSS:

.palm-group {

}

margin: 7px 7px o 7px;
border-width: 40px 18px 18px 18px;
-webkit-border-image: url(•. /images/palm-group.png) 40 18 18 18 repeat repeat;

184 I Chapter 7: Advanced Styles

Figure 7-6. Parts of a 9-tile image

The image bounds are set as top (40px), right (18px), bottom (18px) and left (18px),
followed by x- and y-transforms, usually repeat or stretch. It's important to set the
border-width and the webkit-border-image bounds the same so that the image draws
within the div bounds instead of outside them. webkit-border-image is based on the
CSS 3 border-image standard, and you can find many resources for further information
on this standard on the Web, but you can start with www.css3.info/preview/border
image/.

3-tileimage

A 3-tile image is a 9-tile image with a zero border in one vector. You use a 3-tile image
when you need an image that scales in one dimension only. Some examples are: radio
button strips, dashboard containers, view menus, and page headers.

Create a 3-tile image by creating a 9-tile image and setting one dimension to 0, as shown
below with the palm-slider-background:

.palm-slider-background {
width: 250px;
height: 7px;
border-width: Opx 4px Opx 4px;

/** These next two lines are wrapped for book formatting only **/
-webkit-border-image:

url(•• /images/slider-background-3tile.png) O 4 O 4 repeat repeat;
margin: 6px opx opx 2opx;

Images I 185

Figure 7-7. 9-tile image examples

Negative Margin
A div that functions as a container with a border image cannot use the space allocated
to the border image for any content. The framework uses a technique called negative
margin to reclaim that space so you can place content within the full width and height
of the container.

The basic technique is to define a second div and place the content there instead of in
the parent div that includes the border image. The child div has a wrapper class with a
negative margin equal to the border width used in the parent div.

The framework uses this technique in numerous ways. One example is the submenu
or list selector pop-up, where the container is defined using a webki t-border-image with
a 24-pixel border:

.palm-popup-container {
min-width: 180px;
margin: Spx o o o;
padding: o;
z-index: 199500;
position: fixed;
top: 80px;
left: 20px;

186 I Chapter 7: Advanced Styles

}

border-width: 24px;
-webkit-box-sizing: border-box;
-webkit-border-image: url(.• /images/palm-popup-background.png) 24 24

24 24 stretch stretch;

The border's width is reclaimed in the wrapper class to allow you to use the full width
and height of the parent for content:

.palm-popup-wrapper {
margin: -24px;

You use these styles in your HTML in this way:

<div class='palm-popup-container'>
<div class='palm-popup-wrapper'>

<!----- content is placed here -------->
</div>

</div>

Unsupported CSS properties

There are some properties common to Webkit that are not supported by Mojo, but
there are some ways that you can work around those exclusions.

webkit-border-radius
Instead of generating rounded corners dynamically, use webkit-border-image and
specify an image with rounded corners.

webkit-gradient
Instead of generating a gradient dynamically, create an image gradient and set it as
the background of your body or div.

Touch
Since touch is the primary indicator of action, it is critical to style scenes optimally for
touchability. Here are some strategies that you should consider for creating large,
gapless hit targets.

Maximize Your Touch Targets
The elements in your scene may appear to be small and separate from each other, but
their touch targets should be as large as possible. Touch targets in rows should be as
tall as the row itself. You should maximize the size of the touch targets and there should
be no gaps between targets.

Touch I 187

Visual elements can be smaller than touch elements, so you might wrap the image div
with a touch div. An example is the camera button, where the image is 80 x 60, but the
div's width is set 20 pixels wider:

.capture-button {
width: 80px;
height: 80px;
background: url(.• /images/menu-capture.png) top left no-repeat;
position: absolute;
left: 120px;

You can see in Figure 7-8 that there is no visible indication of the larger touch target.

Figure 7-8. Camera button and touch target

Optimizing Touch Feedback
Use the x-mojo-touch-feedback attribute to make all touch targets reflect touches (in
lieu of HTMT. focus attrihutes). Using conventional focus would result in highlights
while dragging or scrolling items on the screen, while x-mojo-touch-feedback adds a
delay on focus so that incidental touches won't cause a highlight. For example, in

188 I Chapter 7: Advanced Styles

the News application, we used a momentary tap highlight in viewslfeedListlfeedRow
Template.html:

<div class="palm-row" x-mojo-touch-feedback="delayed">
<div class="palm-row-wrapper">

<div class="icon right"><div class="unReadCount">#{numUnRead}</div></div>
<div x-mojo-element="Spinner" class='feedSpinner' name='feedSpinner'</div>
<div class="title truncating-text">#{title}</div>

</div>
</div>

For items within scrollable content, as in the News feedlist, use delayed feedback. For
fixed elements that don't scroll, immediate feedback is an option. Only use
immediatePersistent or delayedPersistent if you require exacting control of when
feedback is removed. To summarize, the values supported by x-mojo-touch-feedback
are:

immediate
Shows feedback immediately, stops showing it on finger up; for use with static
items.

delayed
Shows feedback after a short delay unless another gesture comes in to cancel the
feedback; for use with scrollable items.

immediatePersistent
Shows feedback immediately; feedback is not automatically cleared unless the user
taps another item with x-mojo-touch-feedback; for use with static items.

delayed Persistent
Shows feedback after a short delay unless another gesture comes in to cancel the
feedback; feedback is not automatically cleared unless the user taps another item
with x-mojo-touch-feedback; for use with scrollable items.

Passing Touches to the Target
In some cases, you might want to include an element that ignores touches, passing them
through to a lower-level (in z-order) element. Mojo includes a custom CSS property:

-webkit-palm-target: ignore

This property will prevent an element from capturing touch events, allowing them to
pass through to underlying elements.

Light and Dark Styles
If your application uses a light-colored background with dark text and controls, the
default controls and text colors should work very well for you. If your application uses
a dark-colored background with light text and controls, use the palm-dark controls and

Light and Dark Styles I 189

text. Some of the applications that Palm ships on the phone use the palm-dark controls
(e.g., Music and Videos). Figure 7-9 shows an example of palm-light and palm-dark.

Figure 7-9. Light and dark styles

You can add the palm-dark class to your body element using JavaScript or add the
palm-dark class to specific elements on the page (e.g., a Drawer widget). To change the
body element, add the following within the main scene of your card stage:

var appController = Mojo.Controller.getAppController();
var stageController = appController.getStageController(MainStageName);
var bodyElement = stageController.document.getElementsByTagName('body');

bodyElement[o].addClassName('my-dark-backdrop');
bodyElement[o].addClassName('palm-dark');
bodyElement[o].removeClassName('palm-default');

To constrain the style change to an individual scene, you can define an encompassing
div with both palm-scene and palm-dark classes. You need to define the scene or body
element with the class because submenus, dialog boxes, and other z-stacked elements
will inherit the style from the scene.

If you don't use the dark styles, you can reduce your application load time by declaring
that your application will 11st> jnst tht> light styles. Do this by setting the theme property
in your appinfo.json file:

"theme": "light"

190 I Chapter 7: Advanced Styles

Summary
This chapter highlights some of the widget and scene styles, and presents more infor
mation on using and creating images for use within custom styles or to override frame
work styles. Palm offers light and dark styles to distinguish the media applications from
the productivity applications.

The Palm Mojo framework includes numerous styling options that you can use within
your application. Many of these styles are provided automatically when you instantiate
widgets or choose named palm style classes within your scenes. Refer to Appendix C
for a complete list of available style classes and selectors, and for guidelines on how to
apply them when working with widgets and scenes.

Summary I 191

CHAPTER 8

Application Services

So far we've looked at UI elements and web service requests, but very little of what
we've done is anything you couldn't do in a sufficiently capable web browser. What
makes Mojo particularly powerful is its access to services that encapsulate both low
level hardware capabilities and higher-level data services that provide access to Palm
webOS Synergy features, cloud services, and more. It is this access to the device and its
services that lets developers build applications with the capabilities of a native
application.

Most intriguing are the cloud-based services-emerging web services from many pro
viders, including Palm-that provide limitless potential for added capability.

The Web as expressed through cloud service APis is a platform in itself, and the webOS
service architecture enables access to Palm cloud services. You can also access third
party cloud services or your own services through Ajax calls or other direct service
interfaces, and build applications that integrate or mash up these services in unique
ways.

In this chapter and the next, we'll explore a number of the available Mojo services. This
chapter introduces the service architecture and presents the calling conventions that
all Mojo services share. We will extend the News application to launch the web browser
and to allow users to share stories over email or text messaging.

In Chapter 9, we conclude our discussion of the service layer by delving into cloud
services and lower-level system services like Location services.

Using Services
All service calls are asynchronous operations. Each application service has a distinct
service name, and exposes one or more named methods. Most application services will
launch an application in its own card and will not return to the calling application.
Device and cloud services will typically return some data or result to the calling appli
cation through a callback function defined by the calling application. Some services,

193

such as Location tracking, will return data in a series of calls to the callback function.
You need to design your applications with this asynchronous interface in mind.

There are additional constraints when you are using services in background applica
tions; these will be covered in Chapter 10. Background applications must moderate
service use to conserve CPU and battery resources, plus with limited to no user inter
action, the background application must handle service responses directly and use no
tifications and the dashboard to communicate with the user.

In many cases, the application should limit or stop service requests when minimized
or in the background. For example, a game that takes accelerometer input should stop
tracking the accelerometer when minimized. Without any visible display, there is no
value in expending resources to collect that data.

Service Overview
Most services are Linux servers registered on the Palm bus, wrapped and accessed
through the Moj o. Service. Request object. Application services are all accessed through
a single service method, provided by the Application Manager, which routes the re
quests either implicitly based on resource or file type, or explicitly using the passed
application ID. All other services are individually handled by the named service.

Use a Mojo. Service. Request() object for all service calls. For convenience, the service
Request() method is attached as a property to the scene controller, so a commonly used
alternative is this. controller. serviceRequest ().The basic call includes a service name
and method, with a method-specific parameters object:

this.controller.serviceRequest("palm://com.palm.serviceName",
method: "methodname"

);

parameters: {},
onSuccess: this.successHandler,
onFailure: this.failureHandler
}

Palm webOS uses the URI (Uniform Resource Identifier) scheme for identifying
services, similar to the way a standard web URI is used. The service name is typically
a string that begins with palm:/ !com.palm, followed by a specific service name. The
method defines the service method to use for this specific call, and parameters is a
method-specific JSON object for passing arguments. For example, to get a GPS fix,
make the following request in a scene assistant:

this.controller.serviceRequest("palm://com.palm.location", {
method: "getCurrentPosition",

});

parameters: {},
onSuccess: this.onSuccessHandler,
onFailure: this.onFailureHandler

194 I Chapter 8: Application Services

The string palm: I I com. palm. location is the service name and getCurrentPosi ti on is the
service method. There are optional parameters defined for this method, but this ex
ample is simply using the default settings. In general, parameters will vary from service
method to service method.

Most service requests require callback functions to return results to the calling appli
cation. The onSuccess function is called if the service call is successful and may be called
multiple times for service requests that result in a series of results, such as a request for
Location tracking data instead of just a single fix. The on Failure function is called if
the service call results in an error. Both callbacks include a single response object whose
properties are service method dependent.

There are some conventions for response handling. All callbacks will be passed a single
]SON object, and that will include some or all of the conventional properties described
in Table 8-1, plus method-specific properties where appropriate.

Table 8-1. Response properties

Name Description Required

returnValue true on success or false on failure of this request Required

errorCode The error code from the service when returnValue is false Required

error Text Description of the failure when returnValue is false Required

subscribed Set to true if a subscriptionrequestwas successful Optional

Mojo.Service.Request()
You can use this. controller. serviceRequest () within scenes where you would make
most service requests. However, if you need to make a service request within your
application assistant, you'll need to create a service request object.

A common case is a call to the Alarm service to wake up the application after an interval:

this.alarm~ new Mojo.Service.Request("palm://com.palm.power/timeout",

}) ;

method: "set",
parameters: {

},

key: "com. palm. app. news. update",
in: feedUpdateinterval,
uri: "palm://com.palm.applicationManager/open",
params: {

id: "com.palm.app.news",
params: {action: "updateFeed"}

onSuccess: this.onSuccessHandler,
onFailure: this.onFailureHandler

In this example, the new request object is created and a service request issued, with the
object stored as this. alarm.

Using Services I 195

The request references are managed by the scene when creating a service request using
this. controller. serviceRequest (), and are removed upon completion of the request,
unless the request has subscribe: true, in which case the requests are cleaned up when
the scene is popped.

All requests made with this. controller. serviceRequest () are cleaned up when the
scene is popped, meaning they are garbage collected and destroyed. If the subscription
request needs to be retained beyond the lifetime of the scene, you will also need to use
Mojo.Service.Request() to save the request object and manage the request yourself.

Remember that service requests are asynchronous, so they don't complete when you
make the call; if there's a chance they will not be completed by the time the scene is
popped, use Mojo.Service.Request().

Application Manager
The Application Manager is a specific service that provides functions related to finding
and launching applications. Applications launched through the Application Manager
will open and maximize a new window for the targeted application while minimizing
the current application window.

The Application Manager, through one or both of its service methods, provides access
to most of the application services:

open
Accepts a single argument, a formatted URI for a document you wish to display.
The mime type of the referenced document is used to identify the appropriate
application to handle the content indicated.

launch
Launches the application indicated by the application ID argument passing any
included parameters.

Open

Generally, the open method is used when you intend to display or process some targeted
content, but you don't know the specific type of content or the best application avail
able in the system to handle it. The Application Manager will use the content type to
find the appropriate application to use for that content:

this.controller.serviceRequest("palm://com.palm.applicationManager",
method: "open'',
parameters: {

target: "http://www.irs.gov/pub/irs-pdf/fw4.pdf"
},
onFailure: this.onFailureHandler

});

196 I Chapter 8: Application Services

The target includes a command, the string up to and including the colon and forward
slashes (://), and the resource. In this example, the command is http: I I, but before
launching the browser, the Application Manager will retrieve the HTTP header and
attempt to extract the resource type. Since the URI specifies a file target, the Application
Manager will try to match the file type to the resource list and find a match with
com. palm.app.pdfviewer. The file will be downloaded to /media/internal and the PDF
View application will be launched with a file reference to the downloaded file.

If there's no header, the Application Manager will download the file anyway and try to
match the file extension in the resource list. If there is a match, the associated applica
tion will be launched with the file reference as a launch parameter. If there's no match
at this point, the Application Manager will exit and return an error code to the failure
callback.

The same process is used when streaming audio or video formats, but instead of down
loading the content and then launching the application, the launch is done first and
the content URI is passed as an argument. The audio or video player handles the con
nection and data streaming in these cases; the data is never actually stored on device.

If the command is file://, it's a local file reference and the Application Manager will
use the file extension to launch the associated application (if there is one).

Launch

There are many cases in which you already know which application you'd like to handle
the request, and it's inconvenient to force the parameters into a URI format. In these
cases, you'd want a command to launch a specific application and pass in parameters
in the form that the application has specified. Here is an example oflaunching the Maps
application to show a street address:

this.controller.serviceRequest("palm://com.palm.applicationManager",

});

method: "launch",
parameters: {

id: "com.palm.app.maps",
params: {

query: "950 W. Maude Ave, Sunnyvale,CA"}

The Command and Resource Table in Appendix B includes the full list of all supported
content types and the application resource handlers. This list is very likely to change,
so refer to the Palm Developer site for the most current information.

Cross-App Launch
In some cases, a Cross-App launch is used to keep the context of the calling application,
but with a faster transition. The target application's scene is pushed directly in the
current application's card stage, and when the target application is popped, it returns

Using Services I 197

results as arguments to the calling application's activate() method. You can learn more
about the Cross-App launch by referring to the Camera and People Pickers, both of
which use this technique and are covered later in this chapter.

Core Application Services
This first group of application services includes a core set of applications that provide
basic functions for web browsing, phone calls, maps, camera, and photos. The browser
will be used first, with an example using the News application, followed by brief de
scriptions of the other applications and how you call them from within your
application.

Web
Earlier, a Web View widget was used to display the source URL for the News story, but
launching the web browser application in a new card gives more flexibility to News.
The browser application can be launched to its default launch view or to a specific URL.

Back to the News: Launching the browser

News will launch the browser to load a specified URL as a simple example of an ap
plication service. The Web View widget in News is replaced with a call to the Applica
tion Manager to launch the browser into a separate card. The command handler for
do-webStory in the story View-assistant.js is replaced with a new version that includes a
single call to this. controller. serviceRequest, with the service name set to the Appli
cation Manager, or palm://com.palm.applicationManager. All Application Manager
calls will start this way.

The second argument is an object literal that includes an open method and a
parameters object that includes the application id property set to
com.palm.app.browser, the browser's application ID, and a params object. The params
object includes just the target URL retrieved from the story array entry. This is typical
of an Application Manager open call and is used with most applications that can accept
a URL parameter:

case "do-webStory":
this.controller.serviceRequest("palm://com.palm.applicationManager",

method: "open",
parameters: {

id: "com.palm.app.browser",
params: {

target: this.storyFeed.stories[this.storyindex].url
}

198 I Chapter 8: Application Services

This change means that when the user taps a new Command menu button in the
storyView scene, the browser will launch in a separate card with the contents of the
story's originating URL displayed. You can find the code sample for the Command
menu button changes in the section "Email and Messaging" on page 205.

This also eliminates the storyWeb scene, so you can remove the assistant and views from
the News project and from sources.json.

Phone
The user must tap the dial button to approve any phone call that is placed. Your ap
plication can initiate the phone call by opening the Phone application, providing a dial
string (as shown in Figure 8-1). The phone will be launched to the dial scene, with or
without the dial string included:

this.controller.serviceRequest("palm://com.palm.applicationManager",
method: "open",

});

parameters: {
target: "tel://4085556666"
}

Figure 8-1. Phone application launched with prepopulated number

Core Application Services I 199

Camera
From within your application, you can turn on the camera and present a simple inter
face to take pictures, with an option to save or delete the picture after it is captured.
When called from within another application, the camera application will only take a
single picture and will return a file reference to the calling application if the picture was
saved.

You must use a Cross-App launch to call the Camera from your application. This re
quires that you call the pushScene() method just as with any scene push, but include
scene arguments that indicate an application launch is required:

this.someAssistant.stageController.pushScene(

) ;

{ appid : "com.palm.app.camera", name: "capture" },
{ sublaunch : true }

When the picture is taken or canceled, control will be returned back to your scene with
a call to the scene's activate() method, just as with any scene pop. However, unlike
the typical scene lifecycle, there will be a response object passed as an argument to the
activate() method:

CameraAssistant.prototype.activate = function(response){
if (response) {

};

Photos

if (response.returnValue) {
this.showDialogBox("Picture Taken", response.filename);

} else {
this.showDialogBox("No Picture", "");

}
} else {

Mojo.Log.info("Picture not requested");
}

The Photos application is limited to launching the application to the default view, where
the user can choose between various albums and photos. All images stored on the device
will be indexed and viewed this way:

this.controller.serviceRequest("palm://com.palm.applicationManager",
method: "launch",
parameters: {

id:"com.palm.app.photos",
pa rams: {}
}

}) ;

200 I Chapter 8: Application Services

Maps
You can use the Maps application to display maps around specific locations defined
by street address, latitude/longitude, or through a location query. The map can op
tionally include driving directions or additional local or business search results, and
there is a choice of map type and zoom level:

this.controller.serviceRequest("palm://com.palm.applicationManager", {
method: "launch",
parameters: {
id: "com.palm.app.maps",
params: {

location: {lat: 37.759568992305134, lng: -122.39842414855957, ace: 1},
query: "Pizza",
}

});

This example launches the Map application to show the pizza options around a section
of San Francisco with an accuracy of a meter. This is very powerful when used with the
Location service, which will be covered in the next chapter.

Palm Synergy Services
Palm Synergy integrates personal information from various sources on the Web and
presents it in a single view so that users can see all in one place. Yet the information is
maintained in such a way that users can keep things separate when they have to. The
integration is at the visual or presentation layer, while the separation is maintained at
the data layer.

The core Synergy applications are Contacts, Calendar, Email, and Messaging, but the
concept is general enough that you can expect other applications to be supported over
time. All Synergy applications can be launched through the Application Manager
service, and Email and Messaging can be used to send messages with the user's appro
val, similar to the way the Phone application is used.

The Contacts and Calendar application service interfaces can do a bit more, allowing
applications to add contacts or calendar events, distinguished by their own data
sources. These features are designed for occasional use, serving the needs of applica
tions that want to add single records rather than fully scaled sync solutions.

Account Manager
All Synergy applications require an established account before any other operations
can take place. There is an implicit "Palm" account that all information created and
stored on the device belongs to, but any other information must be provided by an
application with an explicit account ID. The account determines all access permissions;

Palm Synergy Services I 201

data belonging to an account can only be accessed by the application that owns that
account.

The Account Manager includes methods to create, update, delete, or read accounts, as
well as a method to list accounts. Here is an account create example:

this.controller.serviceRequest("palm://com.palm.accounts/crud",

}) ;

method: "createAccount",
parameters: {

},

account: {
username: "myusername",
domain: "mydomain",
displayName: "My Name",
icons: {

},

"32x32": Mojo.appPath + "images/accountlcon.png",
"48x48": Mojo.appPath + "images/stamplcon.png"

data Types: ["CONTACTS'', "CALENDAR"],
isDataReadOnly: false

onSuccess: this.accountCreated.bind(this);
onFailure: function(response) {

Mojo.Log.info("Account create failed; ", response.errorText}
}

This method uses the service name palm: //com. palm.accounts/crud, and has parame
ters that specify account properties. The data Types object declares the Synergy data sets
used by the account: CONTACTS and/or CALENDAR. The domain property allows a single
account to have different data sources within it. Domains are useful in limited cases,
such as when a single application wants to maintain multiple sync sources.

Accounts may be a lot of overhead if your application has only an occasional need to
add a contact or calendar event. In that case, you might choose to simply launch Con
tacts or Calendar and have the user enter the data directly. Plus both Contacts and
Calendar support launch points to add or update individual records without creating
a new account.

The accountld is used for subsequent Account Manager methods, and for access meth
ods in Contacts and Calendar. It's also used in the other Account Manager methods.

" ... 0 The listAccounts method will list only accounts that belong to your
application. It cannot retrieve information about accounts belonging to ..

~·· other applications.

202 I Chapter 8: Application Services

Contacts and Calendar
Both Contacts and Calendar will allow applications to add information that will be
merged into an integrated view. They don't allow applications to read, delete, or update
any data that wasn't created by the same application.

The Contacts application has methods to create, read, update, and delete contacts,
along with listing all contacts. In addition, there are methods to track changes to con
tacts to support applications that wish to optimize updating their data sources with
changes made by the user on the device.

The following is an example of creating a contact entry:

this.controller.serviceRequest("palm://com.palm.contacts/crud",
method: "createContact",

});

parameters: {

},

accountid: this.accountid,
contact: {

firstName: "Harry",
lastName: "Truman",
companyName: "US Government",
nickname: "POTUS 33"

onSuccess: this.successEvent.bind(this),
onFailure: this.failureHandler.bind(this)

Notice the use of this. accountld. This is returned when you create the account and is
used for most of these Contacts or Calendar functions. The contact object defines the
contents of the contact entry, and has many more property options than the few that
are shown in the example.

Calendar requires that a new calendar is first created, and then entries for that calendar
are created within it. This example creates a calendar in the first function and then, on
success, creates an entry using the current date and time:

CalendarAssistant.prototype.createCalendar = function() {

} ;

this.currentMethod = "Calendar - Create";
this.controller.serviceRequest('palm://com.palm.calendar/crud',

method: 'createCalendar',

});

parameters: {

},

accountid: this.accountid,
calendar: {

calendar Id: '"',
name: "My Events"

onSuccess: this.createEvent.bind(this),
onFailure: this.failureHandler.bind(this)

Palm Synergy Services I 203

CalendarAssistant.prototype.createEvent = function(response) {
if (response) {

} ;

Mojo.Log.info("Calendar Create ", Object.toJSON(response));
this.calendarld = response.calendarld;

this.currentMethod = "Event - Create";
var currentTime = new Date();
var startTime = currentTime.getTime();
this.controller.serviceRequest('palm://com.palm.calendar/crud', {

}) ;

method: 'createEvent',
parameters: {

},

calendarld: this.calendarld,
event: {

}

calendarld: this.calendarld,
subject: "Forecast",
startTimestamp: startTime,
endTimestamp: startTime + 3600000,
allDay: false,
note: "Cliff Notes",
location: "Bluff",
attendees: [],
alarm: "none"

onSuccess: this.successEvent.bind(this),
onFailure: this.failureHandler.bind(this)

As with Contacts, there are methods to track changes to calendar events or event
deletions.

People Picker
The People Picker is a special Contacts function that lets applications retrieve infor
mation from any Contacts entry. It won't allow direct access, but it will allow the user
to select a specific contact and approve the transfer of that contact's details to the
requesting application.

The People Picker is called through a Cross-App launch. As mentioned earlier, this
technique pushes a scene from another application on your application's scene stack.
This keeps your application context, meaning that the user won't see any card switch.
To call the People Picker, use pushScene():

PeoplePickerAssistant.prototype.getContact = function(event){
this.contactRequest ~ true;
this.controller.stageController.pushScene(

'-fJ

);

{ appld : "com.palm.app.contacts", name: "list" },
{ mode: "picker", message: "headerMessage" }

204 I Chapter 8: Application Services

People Picker presents the Contacts list scene with the filter field activated. Just as in
the Contact's details scene, typing will filter down the list and eventually the user would
either select a contact or cancel with a back gesture. After the user selects a contact, the
details are returned as an argument to calling the scene's activate method:

PeoplePickerAssistant.prototype.activate = function(response){
if (response) {

if (response.personid) {
this.showDialogBox("Contact Received", response.personid);

} else {
this. showDialogBox("Contact Request Failed", "");

}
} else {

Mojo.Log.info("No Contact Requested");
}

};

An application might use this to get a contact's address for use in planning a trip, for
example, or an IM address, or some other personal information; contact details are
returned in response.details. You can optionally exclude contacts from the list by
enumerating their contact IDs.

Email and Messaging
You can launch the Email and Messaging applications to their main views using the
Application Manager launch method, but most applications will generally use these
applications to send a message. For that, you will use the launch method to launch
either of these applications to a Compose view and optionally populate some or all of
the compose fields.

Back to the News: Sharing stories through email or messaging

News will be extended to share a story by either email or messaging to illustrate these
service calls. This is best hooked into the storyView scene, but we'll start with the service
calls before looking at how they are integrated into the scene.

Email is called with a prepopulated subject field using the params. summary property,
and the shared URL in the message body, using params. text. You can also include one
or more email addresses for any of the address fields (To, CC, and BCC), but in this
example, the user would need to address the mail using the addressing widget in the
email application:

II shareHandler - choose function for share submenu
StoryViewAssistant.prototype.shareHandler = function(command)

switch(command) {
case "do-emailStory":

this.controller.serviceRequest("palm://com.palm.applicationManager",
method: "open",
parameters: {

id: "com.palm.app.email",

Palm Synergy Services I 205

});
break;

params: {
summary: "Check out this News story •.• ",
text: this.storyFeed.stories[this.storyindex].url

Messaging is very similar; for this example, the entire message is provided m
params.messageText:

case "do-messageStory":
this.controller.serviceRequest("palm:llcom.palm.applicationManager",

method : "open",

}
} ;

parameters: {
id: "com.palm.app.messaging",
params: {

II **These next two lines are wrapped for book formatting only **
messageText: "Check this out: "

+this.storyFeed.stories[this.storyindex].url
}

}
});
break;

As with email, you can specify the recipient(s) as part of the call. See Appendix B for a
complete list of the calling arguments.

To hook these calls into the scene, add a Command menu button to the bottom of the
storyView scene, which creates a scene like that shown in Figure 8-2.

This sample code is used to generate the view shown in Figure 8-2:

II setup - set up menus
StoryViewAssistant.prototype.setup = function() {

this.storyMenuModel = {

items: [

]};

{iconPath: "imageslurl-icon.png", command: "do-webStory"},
{},
{items: []},
{},
{icon: "send", command: "do-shareStory"}

if (this.storyindex > o) {
this.storyMenuModel.items[2].items.push({

icon: "back",
command: "do-viewPrevious"

});
} else {

this.storyMenuModel.items(2].items.push({
lLon; 1111

, LUl!lllldrl<l; 1111

label: " "
}) ;

206 I Chapter 8: Application Services

if (this.storyindex < this.storyFeed.stories.length-1)
this.storyMenuModel.items[2].items.push({

icon: "forward",
command: "do-viewNext"

});
else {

this.storyMenuModel.items[2].items.push({
icon: 1111

,

command: "", label: " "
});

this.controller.setupWidget(Mojo.Menu.commandMenu, undefined, this.storyMenuModel);

Figure 8-2. Story View with menu buttons for browser view and sharing

The Share button is the rightmost button and will present a pop-up when tapped. The
Next/Previous button group in the center was covered in Chapter 4; they are used to
navigate to the next and previous stories.

Palm Synergy Services I 207

There is already a command handler included in this scene, so just add handlers for
the new button and add a submenu to present the email and messaging options:

II---
11 Handlers to go to next and previous stories, display web view
II or share via messaging or email.
StoryViewAssistant.prototype.handleCommand = function(event) {

};

if(event.type == Mojo.Event.command) {
switch(event.command) {

}

case "do-viewNext":
Mojo.Controller.stageController.swapScene(

{

},

transition: Mojo.Transition.crossFade,
name: "storyView"

this.storyFeed, this.storyindex+1);
break;

case "do-viewPrevious":
Mojo.Controller.stageController.swapScene(

{

},

transition: Mojo.Transition.crossFade,
name: "storyView"

this.storyFeed, this.storyindex-1);
break;

case "do-shareStory":
var myEvent = event;
var findPlace = myEvent.originalEvent.target;
this.controller.popupSubmenu({

onChoose: this.shareHandler,
placeNear: findPlace,
items: [

}) ;
break;

{label: "Email", command: "do-emailStory"},
{label: "SMSIIM", command: "do-messageStory"}
l

case "do-webStory":
this.controller.serviceRequest("palm:l/com.palm.applicationManager", {

method: "open",

});
break;

parameters: {

}

id: "com.palm.app.browser",
params: {

scene: "page",
target: this.storyFeed.stories[this.storyindex].url

}

208 I Chapter 8: Application Services

The browser launch is handled directly in the command handler above. The service
calls for email and messaging are in shareHandler, the submenu's callback, which is
where this section started.

Viewers and Players
The media applications can be used to play streaming or file-based audio or video
content. You can use the Application Manager's open method to handle common file
types.

View File
There is no specific view file service; it's just the general case of using the Application
Manager's open method, where the content target is unknown. As shown in the section
"Application Manager" on page 196, simply call the Application Manager with a target
value that refers to either web-based or file-based content:

this.controller.serviceRequest("palm://com.palm.applicationManager",
method: "open",
parameters: {

target: "http://crypto.stanford.edu/DRM2002/darknets.doc"
},
onFailure: this.onFailureHandler

});

Any supported file type will be passed to the appropriate application for viewing, ed
iting, or other supported handling.

Audio
The Music player is used to play or stream a file or other web-based content encoded
in any supported audio format. Launch the Music player with the Application Man
ager's open method and a target property in the form rtsp: //audio-file, where audio
file is a well-formed URI targeting a file encoded in a supported audio format. The
target property can also point to a locally stored file, as shown in this example:

this.controller.serviceRequest("palm://com.palm.applicationManager",
method: "open",
parameters: {

target: "file:///media/internal/World.mp3"

});

Refer to the Command and Resource Handler table in Appendix B, which has a com
plete list of all supported audio file and mime types.

Viewers and Players I 209

Video
The Video player is used to play or stream video content. Like the audio player, it can
just be invoked through the Application Manager's open method and a target property
in the form rtsp://video-file, where video-file is a well-formed URI targeting a file
encoded in a supported video format.

There are some additional features when using the launch method, where you can
specify a title or a thumbnail that is displayed while the video is loading:

this.controller.serviceRequest("palm://com.palm.applicationManager", {
method: "launch",

});

parameters: {

}

id: "com. palm.app. videoplayer",
params:{

target: "file: ///media/internal/Guitar.mp4",
videoTitle: "Old Guitar"

Refer to the Command and Resource Handler table in Appendix B, which has a com
plete list of all supported video file and mime types.

Other Applications
The Application Manager service can launch any application, not just the core appli
cations described in this chapter. However, it's limited at this time; to launch another
application, you will need to know the application ID and the available parameters.
Currently, webOS does not include dynamic registration for resource handlers or any
broadcast services to allow you to determine which applications are available and which
services they offer at runtime.

You can launch News in its current form with this call:

this.controller.serviceRequest("palm://com.palm.applicationManager", {
method: "open",

});

parameters: {

}

id: "com.palm.app.news",
params: {}

News is launched as if from the Launcher to the feed List scene. If it is already launched,
it will be maximized and put into the foreground view.

With the addition of an application assistant, an application is able to accept launch
arguments through an explicit entry point, the handlelaunch method. Chapter 10 covers
these topics in detail and explores the general use of launch requests.

210 I Chapter 8: Application Services

Summary
Services extend the framework with access to the core applications, hardware-enabled
features, and cloud services. In this chapter, the application services were described,
including core applications, the Synergy applications, and the media players. Applica
tion services are mostly accessed through the Application Manager, a general command
and resource handling service. System and cloud services will be covered in the next
chapter.

The service architecture is accessed through Maj o. Service. Request (), which accepts a
service name and a method name to route the request; service requests are always
asynchronous operations.

Summary I 211

CHAPTER 9

System and Cloud Services

System services are those that are enabled by hardware features or provided by the
Linux OS. Hardware-enabled services include access to accelerometer data, location
services, and connection status. The OS provides alarms, sounds, power management,
properties, and time services.

As described in Chapter 8, the Mojo framework provides access to the system services,
routing requests to the specified services and calling the application's callback functions
with the service response. As shown in Figure 9-1, all system services are actually man
aged by Linux-resident server processes. The servers receive service requests from the
application and send messages back. The messages are routed to the application
through the specified callback functions, whether fulfilling the request or providing a
failure indication.

App App

Framework

Figure 9-1. High-level service architecture

Server

Device
Library

213

Cloud services are a form of web services. The initial cloud service is Mojo Messaging,
an Extensible Messaging and Presence Prototocol (XMPP)-based messaging service for
publish/subscribe notifications. It allows applications to send or receive notifications
through the cloud to other collaborating clients and services. Over time there will be
other cloud services that applications can leverage, extending the webOS platform fur
ther into the cloud.

System Services
This section describes each of the system services. Very few of the services apply to the
News application, so most of the code samples in this section are simple ones to illus
trate the service calls and handlers.

The system services are accessed through Mojo.Service.Request(), or the equivalent
scene controller method this. controller. serviceRequest ():

Mojo.Service.Request("palm://serviceName", options, requestOptions);

The arguments are described in Chapter 8, but briefly:

serviceName
Is a URI-formatted string that uniquely specifies the service name.

options
Includes the designated method, parameters, and callback functions.

requestOptions
Is either set to true, requesting automatic subscription renewal on error, or an
object with a resubscribe property and/or a useNativeParser property.

Be careful to prevent garbage collection of your service requests. Recall
from Chapter 8 that requests made with this. controller. serviceRe
quest() are garbage-collected and destroyed when the scene is popped.
You should use Mojo.Service.Request() to save the request object and
handle termination of the request yourself to prevent garbage collection.

Service requests do not complete when you make the call; they are
all asynchronous. If it's possible that the life of your request will
outlast the life of the assistant when the call is made, you must use
Mojo.Service.Request().

Service Subscriptions
Most system services offer subscriptions, which provide the option of receiving service
notifications each time there is an update. Set the subscribe property to true to register
for subscription notification. For each update, subscribed requests will return to the
specifie<l on5ucc.:e~~ callLack wilh a subscribed propeity set to true. For example:

this.controller.serviceRequest("palm://com.palm.connectionmanager",
method: "getStatus",

214 I Chapter 9: System and Cloud Services

});

parameters: {
subscribe: true

},
onSuccess: this.handleResponse

Subscriptions are typically used for:

• Registering for changes in status, such as with the Connection Manager, where a
change from WiFi connection active to inactive would trigger a notification to any
subscribed application.

• Receiving successive responses, such as with Location tracking, where each track-
ing fix is provided in a separate notification.

Be aware that all services will respond with an immediate callback to acknowledge the
subscription registration request. In some cases, it will be the second callback that
includes a response to the service request.

You can also request to have a subscription automatically renewed in the event the
service is restarted or some other type of error occurs. Set the argument
requestOptions to true to enable this renewal feature.

If the requested service fails (e.g., the location service is unavailable), the onFailure
handler will be called. Periodically (at random intervals), the framework will attempt
to reissue the command until the service comes back up. The onSuccess will be called
only after the service has been restored.

Accelerometer
Applications can respond to high-level orientation, and shake events or elect to receive
raw accelerometer data through acceleration events. You will use framework controller
functions or event listeners to receive accelerometer events.

You can use the orientation events to rotate your application to track the orientation
of the device between portrait and landscape modes. Shake events can be applied in
creative ways as alternatives for user input, such as start/stop indicators. The raw ac
celeration data is useful for games or other applications that can integrate device move
ment directly into the application's interaction with the user.

Orientation changes

It's extremely simple to have your application respond to changes in screen orientation.
Within your stage assistant or main scene assistant, set your application's card stage
window to a free orientation through the stage controller's setWindowOrientation()
method:

if (this.controller.stageController.setWindowOrientation) {
this.controller.stageController.setWindowOrientation("free");

}

System Services I 215

The system will rotate the stage window, following the orientation of the device be
tween up (normal portrait), right (clockwise rotation from up), down (portrait, but the
reverse of up), or left (counter-clockwise from up). You can use the same method to
force an orientation with any of up, down, left, or right passed as the argument string.

There is a corresponding getWindowOrientation () method to retrieve the current stage
window orientation.

If you want to take a specific action in response to a window's orientation change, you
can add a listener to the stage window for the orientationchange event, and then re
spond to the change:

this.controller.listen(document, "orientationchange",
this.handleOrientation.bindAsEventListener(this));

MyAssistant.prototype.handleOrientation(event)

};

Mojo. Log. info("Orientation change position: " event. position, " pitch: "
event.pitch, " roll: ", event.roll);

The new orientation data are passed as properties to the event object described in
Table 9-1.

Table 9-1. Orientation change event properties

position Integer Numeric value from 0 to 5, where:

0 =face up

1 =face down

2 = up, or normal portrait

3 = down, or reverse portrait

4 =left, or landscape, left side down

S =right, or landscape, right side down

roll Float Righthanded rotation about the x-axis (in degrees)

pitch Float Righthanded rotation about the y-axis (in degrees)

Pitch and roll are absolute values with respect to the device being face up and flat on a
table (in this position, they're guaranteed to be within [-90 degrees, 90 degrees]). Start
with the device flat on the table in portrait mode with the bottom of the device facing
you; pitch and roll in this position are both 0.

As you tilt the device toward you, pitch changes from 0 to -90 (when the device is
completely vertical). Start again with the device flat· tilting tlw nf'vin~ ::iw::iy from you;
the pitch increases from 0 to 90. Tilting to the right increases the roll from 0 to 90.
Tilting left changes roll from 0 to -90.

216 I Chapter9: System and Cloud Services

When the device is face up and completely vertical the pitch is -90 degrees. As you
continue to tilt the device toward you, the pitch goes to 0 (face down). The same is true
of the roll. When you tilt the right side perpendicular with the ground, the roll will be
90. As you continue rotating (so that the device is face down), the roll decreases to 0.

With these definitions, you can see that there are two orientations where you'll get the
same angles (one when face up and one when face down). You can use the z-axis to
distinguish the two cases.

Shake

There are three events: shakestart, shaking, and shakeend. As you would expect, the
start and end events are sent as soon as a shaking motion starts or stops. Shaking events
are sent regularly while shaking continues, at the same rate as raw events, or 4Hz. The
events include a magnitude property (in units of gravitational acceleration or g's), where
a large value indicates more vigorous shaking:

this.controller.listen(document, "shaking",
this.handleShaking.bindAsEventlistener(this));

MyAssistant.prototype.shaking(event) {
Mojo.Log.info("Shaking with magnitude: ·, event.magnitude);

) ;

In practice, you may not need to listen to the shake start and end events unless you
have some specific actions for those events. The shaking events will be sent as soon as
the shaking motion commences, and will cease when the motion stops.

Raw acceleration

Detailed acceleration data is provided with each acceleration event, which are sent
regularly whenever the device is in motion. While this information is accurate enough
for games and similar dynamic applications, it won't be sufficient to allow inertial
position tracking applications. Note that acceleration events are targeted at the window
and do not bubble up to the containing context:

this.controller.listen(document, "acceleration",
this.handleAcceleration.bindAsEventlistener(this));

MyAssistant.prototype.acceleration(event)
Mojo.Log.info("X: ·, event.accelX, "; Y:", event.accelY,

"; Z:", event.accelZ, "; time: ", event.time);

Acceleration events contain additional properties, listed in Table 9-2.

System Services I 217

Table 9-2. Acceleration event properties

accelX Float Acceleration along the x-axis (in g's)

accel Y Float Acceleration along the y-axis (in g's)

accelZ __ F~~cceleration_along the z-axis (in g's)

Alarms
You should use the JavaScript window methods setinterval() or setTimeout() to re
turn to your application after a delay:

var wakeupFunction = function() {
Mojo.Log.info("It's a wakeup call!");

};
window.setTimeout(wakeupFunction, 20000);

This is a lightweight delay timer, which executes a function after a specified period. In
this example code, wakeupFunction is executed after a delay of 20 seconds. This type of
alarm will work as long as the device is awake and where some imprecision is
acceptable.

In all other situations, you will want to use the Alarm service, which is based on the
device's real-time clock (RTC). Alarms are intended to wake applications while mini
mized or maximized, or to drive polling for dashboard applications. Alarms will:

• Accurately account for time changes; timeouts are accurately tracked across device
sleep states, timezone changes, manual changes to time settings, or other changes
that affect the displayed or perceived time on the device.

• Wake the device up from sleep; if needed, timers will wake up the device when the
alarm fires.

• Fire after a specified delay or at a specified date and time.

• Make a specific service request when the alarm fires; commonly it will be an
applicationManager service request to call the originating application's handle
Launch method, but can be any service call.

A good example of an alarm at work is using the Alarm service to wake an application
up periodically:

this.controller.serviceRequest("palm://com.palm.power/timeout",
method: "set",
parameters: {

key: "com. palm. app. news. update",
in: News.feedUpdateinterval,
wakeup: "true",
uri: "palm://com.palm.applicationManager/open",
n:::ir:::imc::.• .(r-·--····- - ...

id: "com.palm.app.news",
params: {action: "updateFeed"}

218 I Chapter9: System and Cloud Services

}) ;

},
onSuccess: this.onSuccessHandler,
onFailure: this.onFailureHandler

This example from News sets a relative alarm according to the requested
News. feedUpdateinterval and requests that it wake up the device if it is asleep. When
the alarm fires, it will use the Application Manager to launch News (even if News isn't
running at the time) with a launch parameter indicating that this is an alarm for feed
updates. You will learn more about handling launch events and using alarms with
background applications in Chapter 10.

Another option is to set an alarm at a specific date and time:

this.controller.serviceRequest("palm://com.palm.power/timeout",
method: "set",

});

parameters: {

},

key: "com.palm.app.news.daily",
at: "04-23-2009 03: 30: oo",
wakeup: "true",
uri: "palm://com.palm.applicationManager/open",
params: {

id: "com.palm.app.news",
pa rams: {action: "updateFeed"}

onSuccess: this.onSuccessHandler,
onFailure: this.onFailureHandler

In this example, News could be set to update the news feeds at 3:30 A.M. GMT. This
calendar alarm uses the at property (in place of the in property for a relative alarm) to

set the date and time for the alarm. By definition, you must set calendar alarms for each
occurrence; there isn't a provision at this time for periodic or recurring alarms.

To clear the alarm, use the clear method:

this.controller.serviceRequest("palm://com.palm.power/timeout",
method: "clear",

});

parameters: {
key: "com.palm.app.news.daily",

},
onSuccess: this.onSuccessHandler,
onFailure: this.onFailureHandler

The alarm's key property is used to clear the periodic alarm that was set with that
property.

Some additional notes about alarms:

• Setting a relative alarm causes the device to wake and fire the alarm at a fixed time
in the future. This is independent of time changes on the device by either the user

System Services I 219

or an external source (such as network time or timezone changes). The maximum
period for relative alarms is 24 hours and the minimum is 5 minutes, but calendar
alarms do not have a 24-hour time limit.

• Alarms are preserved across reboots. If an alarm expires while the device is shut
down, the alarm will fire when the device starts up again.

• If the alarm service call fails, one retry attempt will be made 30 seconds later.

• These alarms are coarse-grained alarms, so don't expect millisecond or even one
second resolution. At worst, an alarm may fire a few seconds from the intended
time.

Because the Alarm service can wake up your application even while the device is asleep,
the service is integral to running an application in the background. We'll use alarms to
turn News into a background application in Chapter 10.

Connection Manager
Use the Connection Manager's getStatus method to get updates on the device con
nection status. Some applications need to manage data access based on the connection
state or type of connection available:

this.controller.serviceRequest("palm://com.palm.connectionmanager",
method: "getStatus",
parameters: {subscribe:true},
onSuccess: this.onSuccessHandler,
onFailure: this.onFailureHandler

});

The response will provide the connection status at the time of the call. Use the sub
scription option to register for updates each time the connection status changes. In
every case, the onSuccess callback is made with a single response argument, an object
describing the connection status. The return value is set to true and the connection
properties are provided as described in Table 9-3.

Table 9-3. Response properties for connection status

isinternetConnectionAvailable Set to true when a connection is present

wi fi Object describing the WiFi connection status, with properties for state (connected
or disconnected), ipAddress, ssid, and bssid

wan Object describing the WAN connection status, with properties for state, ipAddress,
and type (unknown, unusable, gprs, edge, umts, hsdpa, 1x, and evdo)

btpan Object describing the Bluetooth Personal Area Network connection status, with
... prope~i~s. forst~te, ~P~~dr~ss,a~~.P~n~.~~E

220 I Chapter 9: System and Cloud Services

Location Services
Palm webOS provides basic location services to get one or more location fixes. You can
specify fixes by mode. In automatic mode, the system picks the most appropriate mode
based upon your accuracy and response time requirements. Specific fix types include
assisted GPS and Cell ID with or without WiFi ID.

Get current position

You can get the current position from the built-in GPS or through Cell ID or WiFi ID,
depending on what's available. The simplest call uses all default settings:

this.controller.serviceRequest("palm://com.palm.location",
method: "getCurrentPosition",

});

parameters: {},
onSuccess: this.locationSuccess.bind(this),
onFailure: this.locationFailure.bind(this)

The default settings will provide a new (not cached), medium accuracy (within 350
meters) fix within 5 to 20 seconds. Through different property settings, you can force
greater or less accuracy, faster or slower response times, and agree to accept a cached
fix. Typically, greater accuracy means a slower response to the request.

The Location service tries to get a fix with the requested accuracy. If it is not able to
get a fix within the maximum allowed time, it returns the best match from the cache.
If there is no entry in the cache, the service returns a timeout error.

If the Location service can get a fix, the onSuccess function will be called with a response
object with the properties described in Table 9-4.

Table 9-4. Response properties for Location service position fix

•• ~r9pet1y · Description

errorCode Set to zero ifthe request is successful; a nonzero value otherwise (see Table 9-5 for a complete list of error
codes)

times tamp The time (in milliseconds) when the location fix was created

latitude A number representing the latitude in degrees of the location; valid range is -90.0, 90.0

longitude A number representing the longitude in degrees of the location; valid range is -180.0, 180.0

horizAccuracy Horizontal accuracy of the location in meters; if unknown, value is -1

heading A number representing the compass azimuth in degrees; valid range isO.O, 360.0; if unknown, value is-1

velocity A number representing velocity in meters per second; if unknown, value is -1

11ert~~c~racy .. yertic~laccuracyof the location in meters; ifunkno\IVn, valu~is---1

If there's an error, the on Failure function is called with a nonzero errorCode. A list of
possible errors is provided in Table 9-5.

System Services I 221

Table 9-5. Location service error codes

0 Success

Timeout

2 Position Unavailable

3 Unknown

4 GPS Permanent Error

5 Location Service Off

6 Permission denied: user hasn't

Tracking

Use the startTracking method to get a series of fixes. Tracking is effective for navigation
applications or anywhere you want to update the device location over a period of time.
A new tracking fix is provided about once a second:

this.trackingHandle = this.controller.serviceRequest("palm://com.palm.location", {
method: "startTracking",

});

parameters:{subscribe: true},
onSuccess: this.trackingSuccess.bind(this),
onFailure: this.trackingFailure.bind(this)

You need to subscribe to this service and save the request object so that you can cancel
the tracking request when you are done with it:

this.trackingHandle.cancel();

The onSuccess function will be called with a response object that has the same prop
erties provided with the getCurrentPosition method; they are described in Table 9-4.
As with getCurrentPosition, you can get tracking fixes even without GPS, although at
a reduced level of accuracy (Cell ID or WiFi ID are less accurate than GPS).

If there's an error, the on Failure function is called. You will continue to receive tracking
fixes even after an error, since most errors are transient. In one case though, GPS Per
manent Error, the error will persist, but you can still receive tracking data from Cell ID
orWiFi ID.

"'~. [fil If you receive a GPS Permanent Error, you can still receive location
services through Cell ID and WiFi ID. In this case, the error will be

~' reported with a callback to the specified onFailure function, but there
' after you will receive ongoing tracking fixes through the onSuccess

callback.

222 I Chapter 9: System and Cloud Services

Reverse location

An additional Location service provides you with a physical address when provided
with a location described with latitude/longitude values:

this.controller.serviceRequest("palm://com.palm.location",
method: "getReverseLocation",

});

parameters: {

},

latitude: "37. 7779",
longitude: "-122. 414"

onSuccess: this.reverseSuccess.bind(this),
onFailure: this.reverseFailure.bind(this)

If successful, the onSuccess callback is passed a response object with a single address
property. The address is two or three lines, each delimited by semicolons, where the
street address is optional:

street address;
locality (eg. in the US, city, state, zipcode);
country

For example, this code sample would return the following string:

98th 8th St ;San Francisco, CA 94103 ;USA

Power Management
The device will automatically go to sleep after a period of inactivity, where inactivity is
primarily defined as the absence of user interaction: gestures, touches, or keyboard
input. The user can set a preference to trigger sleep after a minimum of 30 seconds or
a maximum of 3 minutes. Some system services, such as audio or video playback will
defer sleep, but if you need to keep the device awake, you can use the
activityStart() and activityEnd() methods in the Power Management service.

You would use these service methods if your application performs an extended oper
ation, such as syncing or downloading a lot of data, or if your application includes a
passive viewing feature like a slide show. You will also use this in background appli
cations where you need more than the few seconds allotted during an alarm wakeup.

Alert the Power Management service that you are starting an activity that will require
the device to stay awake:

this.controller.serviceRequest("palm://com.palm.power/com/palm/power",
method: "activityStart",

});

parameters: {

},

id: "com.palm.app.news.update-1",
duration ms: '120000'

onSuccess: this.activitySuccess.bind(this),
onFailure: this.activityFailure.bind(this)

System Services I 223

Provide a unique ID, which should be your application ID with an activity name and
an occurrence count. This recommended format will allow you to distinguish between
requests and manage multiple requests if needed, but the only requirement is that the
ID string be unique. The activity's expected duration is provided in milliseconds and
cannot exceed 900,000 milliseconds (15 minutes).

The power management service will automatically terminate your activity request at
the end of its duration or 15 minutes, whichever is shorter. You should notify the service
when your activity completes, as every bit of power efficiency is important:

this.controller.serviceRequest("palm://com.palm.power/com/palm/power",
method: "activityEnd",

});

parameters: {
id: "com.palm.app.news.update-1"

},
onSuccess: this.activitySuccess.bind(this),
onFailure: this.activityFailure.bind(this)

The only parameter is the id provided to the activityStart() method. Activities are
not canceled when an application is closed, so you should use activityEnd() in your
cleanup() method when there are any outstanding activity requests.

System Properties
Applications can request a named system property, which is currently limited to re
trieving the unique device ID. Generally, the requested system property is named as a
string to parameter. key; in this case, the device ID is named com. palm. properties. nduid:

this.controller.serviceRequest("palm://com.palm.preferences/systemProperties",
method: "getSysProperty" ,

});

parameters: {"key": "com. palm. properties. nduid" } ,
onSuccess: this.onSuccessHandler
}

The nduid is a hardware-encoded device ID that is guaranteed to be unique. An example
device ID is a6669ob3632bb592b29c6a15416717b9eeo72b3f.

On a successful callback, you will find the device ID as the value assigned to the key,
com.palm.properties.nduid. In this example:

this.onSuccessHandler = function() {
Mojo.Log.info("Success; nduid = ", response["com.palm.properties.nduid"]);

};

The device ID is the recommended way to uniquely identify the user or their device.
The device ID is better than the phone number or device serial number because it is
guaranteed to be unique to a specific device, yet it is difficult for others to use it to
identify ;i specific user. The phone number is considered private user information and
should never be used or transmitted with any user data. The serial number is printed
on the device, making it easier to associate a device to a specific user.

224 I Chapter 9: System and Cloud Services

System Services
The system is designed to expose a set of services enabling applications to access some
general system settings. Currently, the only exposed service is one that provides the
system time.

Make the request to the getSystemTime method, and optionally subscribe to notifica
tions of changes to the time or timezone:

this.controller.serviceRequest("palm://com.palm.systemservice/time", {
method: "getSystemTime",
parameters: {subscribe: true},
onSuccess: this.timeSuccess.bind(this),
onFailure: this.timeFailure.bind(this)

});

Whether the subscribe property is set or not, the onSuccess function will be called
initially with the response object as an argument. The properties are described in Ta
ble 9-6.

Table 9-6. Response properties for system time

local Time The time for the current timezone in seconds

offset Offset from UTC in minutes

timezone Current timezone in the "TZ" environment variable format

'•' In most cases, you can use the JavaScript Date object to get the current
date and time. The getSystemTime service method gives you the timezone

.::• and allows you to subscribe to time changes, which may be important
~-__.,,.._

• to your application. In most other cases, the Date object is a lightweight
and more versatile source of date and time information.

System Sounds
The System Sounds service is used to create audio feedback for direct user actions. This
might include button or keypad clicks, transition sounds, action audio, or any audible
response to a user action. It's not intended for sustained audio, such as background
audio or any lengthy playback. The call is limited to a static list of sounds and is not
customizable.

The specified sounds will be played as soon as the call is received, with low latency.
Call System Sounds using the playFeedback method, with the requested sound name
as a string assigned to the name property:

this.controller.serviceRequest("palm://com.palm.audio/systemsounds", {
method: "playFeedback",
parameters:{name: "shutter",

onSuccess: this.onSuccessHandler,

System Services I 225

onFailure: this.onFailureHandler
}

});

The callbacks will receive the response object with returnValue set to true if the sound
played successfully; otherwise, it will be set to false. If false is returned, the errorText
property will include an indication of the type of error encountered.

The available sounds are enumerated in Appendix B, and you can find them on the
Palm developer site.

Cloud Services
Palm webOS is designed around the needs of connected applications, including the
deep integration of web or cloud services into the platform. The intention is to create
a platform supporting not just client application Uls and services, but web services as
well. This extends the platform beyond the boundaries of the device to the Web itself.

The initial webOS cloud service offering is Mojo Messaging, an XMPP-based messaging
service supporting notifications from web services to the device and eventually between
device applications and services. Push notifications are much more power-efficient and
extend battery life. Applications will be notified when there is a service update, elimi
nating the need to poll. In addition, the Mojo Messaging architecture extends the mes
saging model to enable client applications and services to communicate with each
other.

You will typically use Mojo Messaging following these basic steps:

1. Create an endpoint, to which a key is returned.

2. Share the key with the cloud service from which you need updates.

3. Subscribe to the endpoint with a callback to receive messages.

4. Wake when a message arrives from the cloud on the defined callback.

Start by creating a notification endpoint. This registers the receiving application with
the messaging service and establishes a publishing key for notifications:

this.controller.serviceRequest("palm://com.palm.pubsubservice", {

});

method: "createEndpoint",
parameters: {

endpoint: "com.palm.app.news.newstories",
description: "When new stories are published, notify the News application"

},
onSuccess: this.createSuccess.bind(this),
onFailure: this.createFailure.bind(this)

Share the publishing key with any service that would send notifications to the appli
cations; iypi1,;ally Lhis is done with an I ITTI' I'OST icqucst.

226 I Chapter 9: System and Cloud Services

You will retrieve the publishing key from the response object returned m the
onSuccess case, as outlined in Table 9-7.

Table 9-7. Response properties for createEndpoint method

Property Description

endpoint Endpoint that was passed on the createEndpoint method

publishKey The key to beusedto publish tot~is endpoint

Subscribe for notifications published to the endpoint and renew the subscription after
each notification:

this.controller.serviceRequest("palm://com.palm.pubsubservice",
method: "subscribe",

});

parameters: {

},

endpoint: "com. palm. app. news. newstories",
subscribe: true

onSuccess: this.notificationHandler.bind(this),
onFailure: this.subscribeFailure.bind(this)

Whenever a notification comes into the device from the endpoint, it is dispatched to
the application through a callback to the function defined as the onSuccess handler.

The Cloud services are in beta release at this time, so we aren't going to look at them
in detail here. If you're interested in this class of service or the Messaging service in
particular, you should view the latest information at http://developer.palm.com.

Summary
This chapter wraps up the presentation of the Services available on Palm webOS. There
are a number of System services available. The accelerometer receives and responds to
device orientation, shaking events, and raw acceleration data. Alarms wake up devices
or make specified service requests after a delay or at a specified time. The Connection
Manager checks connection status. Location services retrieve a device's current posi
tion and provide tracking capabilities. The Power Management service lets you override
the device's sleep function in order to carry out long operations. System Properties
allows you to request a device ID, and System Services provides the system time. Finally,
System Sounds lets you associate audio feedback in direct response to user actions,
such as typing. While few of these System services are used in the News application,
specific code samples were given for most of the service calls.

Another type of service is the Cloud service, specifically Mojo Messaging, which is an
XMPP messaging service. This service is essential for background applications that
require notifications from a web service or applications that want to share information
and events across a community.

Summary I 227

CHAPTER 10

Background Applications

Until now, mobile and web applications have generally been limited to a single window,
within which the user moves from view to view, reading content, performing tasks, and
providing input in a serial fashion. With Palm webOS, mobile applications can antic
ipate the user's needs by using notifications while running in the background, and they
can put common tasks into separate windows for quick access when needed.

Mojo includes a sophisticated notification system that supports banners and pop-ups,
which allow you to display information subtly or get the user's attention with
more urgent messages. In this chapter, you'll be introduced to notifications and dash
board summaries, with code examples of each to show you how to use them in your
application.

Advanced applications are built around an application assistant, which coordinates the
application's stages, handles background tasks and launch requests, and provides gen
eral command handling for the application. This structure lets you build multistage
applications with secondary cards or dynamic dashboard stages, and run your appli
cation in the background, waking the device from sleep or across reboots of the device.

Even applications that don't wake the device will want to adapt their behavior when
running in the background. There's no need to waste CPU cycles or battery to update
the display or to frequently update data while the user is looking or working elsewhere.
This chapter will give you the basic techniques for managing minimized card and dash
board stages, and will provide guidelines and best practices.

Stages
In Chapter 1, you were introduced to stages:

A stage is similar to a conventional HTML window or browser tab. Applications can have
one or more stages, but typically the primary stage will correspond to the application's
card. Other stages might include a dashboard, a pop-up notification, or secondary cards
for handling specific activities within the application. Refer to email as an example of a
multistage application, where the main card holds the account lists, inbox and displays
the email contents, but new emails are composed in a separate card to allow for switching

229

between compose and other email activities. Each card is a separate stage, but still part
of a single application.

We haven't worked much with stages so far, but they are an essential part of the features
discussed in this chapter. Each secondary card, dashboard summary, or pop-up noti
fication is a separate window, and each window corresponds to a stage, with a stage
controller that manages that window. Recall that each stage controller has a stack of
scene controllers, with the topmost scene activated and in view within the stage's
window.

Before we build each feature into the News application, we'll start with some general
information about using stages.

Creating New Stages
All stages are created the same way, with a call to createStageWithCallback(), an ap
plication controller method, and a callback function, which at a minimum will push
the first scene using the newly created stage controller:

var stageArguments = {name: "main", lightweight: true};
var pushMainScene = function(stageController) {

stageController.pushScene("main");
};
this.controller.createStageWithCallback(stageArguments, pushMainScene, "card");

You can refer to the API documentation for the specifics of this call, but you should
always do the following:

• Name the stage; the name identifies the stage and you will use the name later to
determine whether the stage exists.

• Set the lightweight property to true (early on, Mojo included heavyweight and
lightweight stages, but only lightweight stages are supported now).

• Specify the callback function.

The last argument, the stage type, defaults to card, so it is optional for this example.
The complete set of stage types are:

Mojo.Controller.StageType = {

popupAlert: "popupalert",
bannerAlert: "banneralert",
dashboard: "dashboard",
card: "card"

};

You can specify a stage assistant in stageArguments; otherwise, the stage will be created
without a stage assistant.

230 I Chapter 10: Background Applications

Using Existing Stages
Often, you will want to create a stage only when it doesn't already exist. If the stage
exists, you will likely want to put focus on the stage or update its contents. Use
getStageController () to get the stage controller; a return value of undefined means that
the stage doesn't exist, so you must create one. Otherwise, use the returned value as
the stage controller to focus or update the existing stage:

II Look for an existing main stage by name.
var stageController = this.controller.getStageController("main");

if (stageController) {
stageController.window.focus();

} else {

}

var pushMainScene = function(stageController)
stageController.pushScene("main");

};
var stageArguments = {name: "main", lightweight: true};
Mojo.Controller.AppController.createStageWithCallback(stageArguments,

pushMainScene, "card");

The getStageController() method will also return undefined when the stage controller
has been created but is not available at the time of the call. Use getStageProxy() when
ever you may be trying to access the stage close to where it is being created. The
getStageProxy() method will still return undefined if the stage does not exist or hasn't
been created at the time of the call. However, you can't use the returned object as a
stage controller; the returned object simplify verifies the existence of the stage controller
and can only be used with the delegateToSceneAssistant() method, which you'll learn
about later in this chapter.

""· It can take as long as one second to create a stage in some instances. If
your get request for the stage controller could occur within a second of ..

~·· the create request, you should use getStageProxy().

Working with Stages
The News application uses a single card stage, which is created automatically when the
user launches the application. For most of the advanced features, we will be creating
and accessing stages directly and turning News into a multistage application. When
working with multistage applications you should follow these guidelines:

• JavaScript must be loaded through sources.json. JavaScript cannot be loaded
through script tags (other than the required script tag for mojo.js), so multistage
applications will fail unless the source files are specified in sources.json.

Stages I 231

• Specify noWindow:true in appinfo.json; applications with an app-assistant and mul
tiple stages need to indicate that they will initially launch as a no window or back
ground app, creating their own stages, or windows, explicitly.

• There is no support for Prototype's$() function; get elements with methods from
the scene or widget controller .

....
Be careful about nested functions. With single stage applications,
you could use the global$() function in a nested function, but now ..

~·· you must use:

var controller = this. controller

to put the appropriate scene controller in a local variable so it is
visible to the nested function.

• The Mojo.Controller. stageController global is not supported; replace it with the
stage controller property of the scene or widget controller.

• Do not use the window global; instead, use the window property of the stage, scene,
or widget controller. You can still use the window global in the application
assistant.

• Do not use the document global; instead, use the document property from the stage,
scene, or widget controller, or the ownerDocument property of an element if all you
have is an element reference.

• Don't use document.viewport; instead, use:

Mojo.View.getViewportDimensions(targetDocument);

You can follow these practices even when working with single-stage applications,
though the convenience of using the framework to manage stage creation and the con
venience of the prototype$() function are worth considering.

Notifications
You can post a banner notification, which appears subtly in the notification bar below
the main window and is typically followed by a dashboard panel to allow for deferred
action on the notification. For more urgent actions, you can use a pop-up notification,
which slides up out of the notification bar and reduces the window size of the Card
view or foreground card. All notifications and dashboards are nonmodal, meaning users
can continue to interact with whatever is in the foreground view until they are ready
to address the notifications or interact with the dashboard.

232 I Chapter 10: Background Applications

Banner Notifications
A banner includes an icon and a short message accompanied by an audible alert sig
naling the user to the presence of the banner. After a few seconds, the banner is
removed. The banner is usually accompanied by a dashboard summary, which serves
as a reminder of the notification and can provide additional details about the
notification.

Back to the News: Banner notifications

Each time new stories are added during an update cycle, News will post a banner
notification with the name of the feed and number of new stories, as shown in
Figure 10-1. We'll add the code to actually post the notification in the
feedRequestSuccess() method, but we'll add an initial condition that will inhibit noti
fications when they are turned off in the application's preferences scene. The code for
the preferences scene change isn't shown, but you can see it in Appendix D:

II If successful processFeed returns News.errorNone,
if (feedError == News.errorNone) {

var appController = Mojo.Controller.getAppController();

II Post a notification if new stories and application is minimized
if (this.list[this.feedindex].newStoryCount > o) {

Mojo.Log.info("New Stories: ", this.list[this.feedindex].title,"
this.list[this.feedindex].newStoryCount, " New Items");

}
} else

if (News.notificationEnable) {
var bannerParams = {

II **These next two lines are wrapped for book formatting only **
message Text: this. list[this. feedindex]. title+": "

+this.list[this.feedindex].newStoryCount+" New Items"

}

};

appController.showBanner(bannerParams, {},
this.list[this.feedindex].url);

II There was a feed process error; unlikely, but could happen if the
II feed was changed by the feed service. Log the error.
if (feedError == News.invalidFeedError) {

Mojo. Log. info(" Feed ", this. nameModel. value, " is not a supported
feed type.");

}
}

Get the application controller, then call its showBanner () method. This will post a single
line of text, truncated to fit the screen width, and a scaled version of the calling appli
cation's icon, shown immediately to the left of the message. The argument,
bannerParams, includes the message string. It isn't necessary for News, but you can add

Notifications I 233

a soundClass property for an audible alert; currently, the only supported value for
soundClass is alerts.

Figure 10-1. A banner notification

If the user taps on the banner as it is displayed in the notification bar, the framework
will relaunch your application. This will be described in more detail in the following
section on Advanced Applications, where you'll see how to use an explicit
handlelaunch() method in the application assistant to receive these and other launch
requests. In this simple form, the framework will activate the scene at the top of the
News scene stack when the user taps the banner. The second argument to
showBanner() is an empty object representing the launch parameters.

',' Even when there are no launch parameters, you still need to provide an
II• object for them (in this case, an empty object). If no object is passed at
\6.~11 Ji

~-~•.,.~·· all, tapping the notification will not launch your application.

You can include the option3l third argument, category, to distirrguish banner notifi-
cations within your application. Since banners are displayed for a fixed length of time
(five seconds as of this writing), they can back up if multiple requests are made before

234 I Chapter 10: Background Applications

they can be displayed. If there is more than one banner notification within a named
category, the framework will discard all but the last of them. If you are using banner
notifications from different sources, you may want to identify them through a category.

Any notification that doesn't include a specific category belongs by default to the
banner category.

Banners from separate applications are always distinct. Category is only
needed when there are multiple banner categories within an application.

Minimized Applications
Generally, you should avoid using notifications when your application is maximized,
meaning it is the current foreground card. Use banner notifications when not in focus,
either minimized (with a card view but not the foreground card) or in the background
(without a card stage). When maximized, your application should use on screen rep
resentations that show visible changes to dynamic data or dialog boxes for critical alerts
or events.

You can receive events for maximize/minimize transitions by adding listeners to your
stage controller's document for the Mojo.Event.stageActivate and Mojo.Event.stage
Deactivate events. However, in this case, we'll use a stage controller method,
isActi veAndHasScenes (),which returns true when the stage controller is the active stage
controller and there are scenes displayed within the stage:

if (!Mojo.Controller.stageController.isActiveAndHasScenes()
&& News.notificationEnable) {

var bannerParams = {

II **These next two lines are wrapped for book formatting only **
messageText: this.list[this.feedindex].title+":

"+this.list[this.feedindex].newStoryCount+" New Items"
} ;

appController.showBanner(bannerParams, {action: "notification",
index: this.feedlndex}, this.list[this.feedlndex].url);

With these changes, News will only post banner notifications when minimized. This
is the recommended behavior for most applications.

Pop-up Notifications
Use a pop-up notification when you need to get the user's attention urgently. These
notifications slide up from the Notification bar with a message and one or more selec
tion options. For example, calendar events and incoming phone calls use pop-up

Notifications I 235

notifications; you can see a phone pop-up notification when you connect your phone
to a computer using USB.

You shouldn't use pop-up notifications very often, as they are disruptive by design,
taking up as much as half the screen. You can generate a pop-up by creating a stage
and pushing a pop-up scene onto it:

var appController = Mojo.Controller.getAppController();
var pushPopup = function(stageController) {

stageController. pushScene('my Pop up', "Hot off the presses!");
};
appController.createStageWithCallback({name: "popupStage",

lightweight: true, height: 200}, pushPopup, 'popupalert');

Pop-up stages take the same stage arguments as the card and dashboard stage examples,
with an optional height property. Indicate that this is a pop-up stage by using 'popupa
lert' as the final argument. Typically, you specify the stage name and lightweight
properties, and include the callback function as the second argument.

Specific to pop-ups is the option to set the height property. The default pop-up height
is 200 pixels on the Palm Pre, but you can override it to a maximum of 400 pixels. It's
recommended that you use the default at all times, but the flexibility is there if you have
an unusual requirement that needs a different height.

Customize the pop-up notification in the scene assistant and views. As an example,
you can generate the notification shown in Figure 10-2 by first creating a main pop-up
scene in viewslpopup/popup-scene.html:

<div class="notification-panel">
<div class="notification-container" x-palm-popup-content="">

<div id="notification-icon" class="notification-icon"></div>
<div id="info"></div>

</div>

<div class="popupdiv">

<div class="palm-button affirmative popupbutton" id="addButton">
Ok

</div>
<div class="palm-button negative popupbutton" id="closeButton">

Close
</div>

</div>
</div>

The attribute x-palm-popup-content="" is used within the pop-up scene div, which
contains the main content for the pop-up. The System UI will use this special attribute
to draw only the main content area of the pop-up in the lock screen when the display
is turned on from sleep. The pop-up's buttons should be kept outside of this div, as
they are not actionable when the device is locked.

236 I Chapter 10: Background Applications

Add a template named popuplitem-info.html, for rendering the variable content into
the info div above:

<div id='notification-title' class="notification-title">
#{subject}

</div>
<div id='notification-subtitle' class="notification-subtitle">

#{eventSubtitle}
</div>

Figure 10-2. A pop-up notification

You can see that we're using a lot of specific notification style classes to lay out the pop
up scene to follow the System UI conventions and to style the title and subtitle text.
The framework doesn't load some of the common styles used with cards with dash
board or pop-up stages, so you may have to create your own in those cases. The styles
in this example are from the Calendar application and are not provided by the frame
work. In this example, you would add these CSS rules to your application's CSS file:

/* Pop-up notifications */

.notification-panel {
background: #ooo;
color: #fff;
overflow: hidden;
padding: 15px;
top: o;

Notifications I 237

width: 320px;
}

.notification-container
width: 290px;
height: 48px;
padding: o;
position: fixed;
top: 10px;

}

display: table-cell;
vertical-align: middle;

.notification-container .notification-icon {
width: 48px;
height: 48px;
margin-right: Spx;
float: left;
background: url(.. /images/dashboard-icon-news.png) top left no-repeat;

.notification-container .notification-title
width: 230px;
height: 18px;
margin-top: spx;
margin-bottom: 3px;
padding-bottom:spx;
overflow: hidden;
text-overflow: ellipsis;
white-space: nowrap;
color: #fff;
font-size: 16px;
font-weight: bold;

.notification-container .notification-subtitle
margin-top:-spx;
width: 230px;
height: 18px;
overflow: hidden;
text-overflow: ellipsis;
color: #fff;
font-size: 14px;
white-space: nowrap;

}

.notification-container .notification-title span,

.notification-container .notification-subtitle span
font-weight: normal;

A pop-up's scene assistant is a conventional scene assistant. In this case, we've created
popup-assistant.js in. the assistants directory. Tl-w >issist::rnt ;iccepts a message string as
an argument and inserts that message into the popup/item-info.html template:

238 I Chapter 1 O: Background Applications

function PopupAssistant(message)
this.message = message;

PopupAssistant.prototype.setup = function()
this.update(this.message);

this.okButton = this.controller.get("okButton");
this.okHandler = this.handleOk.bindAsEventlistener(this);
Mojo.Event.listen(this.okButton, Mojo.Event.tap, this.okHandler);

this.closeButton = this.controller.get("closeButton");
this.closeHandler = this.handleClose.bindAsEventListener(this);
Mojo.Event.listen(this.closeButton, Mojo.Event.tap, this.closeHandler);

};

PopupAssistant.prototype.update = function(message) {
this.info = {eventSubtitle: message, subject: "News"};
Mojo.Log.info("Popup Update");

};

II Use render to convert the object and its properties
II along with a view file into a string containing HTML
var renderedinfo = Mojo.View.render({

});

object: this.info,
template: 'popuplitem-info'

var infoElement = this.controller.get('info');
infoElement.innerHTML = renderedinfo;

PopupAssistant.prototype.handleOk = function(){
Mojo.Log.info("Ok received");

} ;

PopupAssistant.prototype.handleClose = function(){
this.controller.window.close();

};
PopupAssistant.prototype.cleanup = function(){

Mojo.Event.stopListening(this.okButton, Mojo.Event.tap, this.okHandler);
Mojo.Event.stoplistening(this.closeButton Mojo.Event.tap, this.closeHandler);

} ;

You can do almost anything within a pop-up scene that you can do in any other scene,
but you should limit your actions to simple messages and selections. Your pop-up
assistant must close the window on exit to close the stage and remove it from the
display. Don't forget to clean up any event listeners when the stage is closed.

Updating Pop Ups and Dashboard Panels
Pop-up notifications and dashboard panels are persistent; they aren't removed from
the display until the user closes them. In some cases, they are displayed long enough
that you may want to update the contents. For example, a calendar pop-up notification
shows the next event on the calendar, but if that event passes while the notification is
on the screen, a new calendar event should replace it.

Notifications I 239

You should prepare for updates by structuring your pop-up assistant with a method to
refresh the content. Review the sample code under the section "Pop-up Notifica
tions" on page 235 for an example using the update() method, noting that you can
name.the method whatever you'd like.

Before creating the pop-up stage, check to see whether the stage already exists and call
the update method instead of creating a new stage:

var appController = Mojo.Controller.getAppController();
var message = this.bannerTextModel.value;

var popupStage = appController.getStageProxy("popup");
if(popupStage) {

popupStage.delegateToSceneAssistant("update", message);
}
else {

var pushPopup = function(stageController){
stageController.pushScene("popup", message);

} ;

appController.createStageWithCallback({name: "popup",
lightweight: true, height: 200}, pushPopup, "popupalert");

Use getStageProxy(" pop up"), which returns a proxy to the stage controller if the stage
exists or is in the process of being created. Invoke the scene's method using delegate
ToSceneAssistant (), naming the method in the first argument. All other arguments are
passed as arguments to the named method. It's safer to use getStageProxy() to avoid
a condition in which the stage is being created before the stage controller exists.

Stage proxies are not general substitutes for the stage controller; the only valid use of a
stage proxy is as an existence test and a call to the proxy's delegateToSceneAssist
ant () method. You can't reliably use it to call other stage controller methods.

Dashboards
You will usually create a dashboard panel following a banner notification posting as a
reminder of the notification. Dashboards can also display ambient information or pro
vide a dynamic window for background applications when you don't need a full card
stage. Although constrained by size and UI convention, dashboard summaries are fully
functional stages, within which you can push scenes and employ any part of the Mojo
API, though not all of the Mojo styles are available outside of card stages .

... , [fil The full framework CSS is not automatically loaded when creating pop
up or dashboard stages. Currently, some of the styles that you can use

:.• in a card stage or main application window are not available within
' noncard stages. This will be addressed in time, but for now you may

have to copy some style properties and selectors to your application CSS
from the framework CSS.

240 I Chapter 10: Background Applications

Dashboards are constrained windows that span the full screen width and about 10%
of the screen height in portrait mode; on the Palm Pre, that's 320 pixels wide and 48
pixels high. But just as with card windows, you should lay out your dashboard windows
to handle different widths for landscape modes or different screen sizes on future Palm
webOS devices.

Back to the News: Adding a Dashboard Stage
You can create a dashboard stage similar to the general stage example shown earlier in
this chapter, but you will declare it as a dashboard stage type. We'll add a dashboard
stage to News in updateFeedSuccess() by following the banner notification with a
call to createStageWithCallback(), passing a callback function that pushes dashboard
assistant.js with the feedlist and the current feed index to post the feed's title and
the most recent new story headline. We'll also pass a global constant,
News.DashboardStageName, which defines the dashboard stage name, set the light
weight property to true, and specify this as a dashboard stage:

if (feedError == News.errorNone) {
var appController = Mojo.Controller.getAppController();
var stageController = appController.getStageController(News.MainStageName);
var dashboardStageController =

appController.getStageProxy(News.DashboardStageName);
II Post a notification if new stories and application is minimized
if (this.list[this.feedindex].newStoryCount > o) {

Mojo.Log.info("New Stories: ", this.list[this.feedindex].title,
" : ", this.list[this.feedindex].newStoryCount, "New Items");

if (!Mojo.Controller.stageController.isActiveAndHasScenes()
&& News.notificationEnable) {

var bannerParams = {

II** These next two lines are wrapped for book formatting only**
messageText: this.list[this.feedlndex].title+":

"+this.list[this.feedindex].newStoryCount+" New Items"
};

appController.showBanner(bannerParams,
{action: "notification", index: this.feedindex},
this.list[this.feedindex].url);

II Create or update dashboard
var feedlist = this.list;
var selectedFeedindex = this.feedindex;

if(!dashboardStageController) {
Mojo.Log.info("New Dashboard Stage");
var pushDashboard = function(stageController){

stageController.pushScene("dashboard", feedlist,
selectedFeedindex);

};
appController.createStageWithCallback({

name: News.DashboardStageName,
lightweight: true

}, pushDashboard, "dashboard");

Dashboards I 241

else {

}

Mojo.Log.info("Existing Dashboard Stage");
dashboardStageController.delegateToSceneAssistant("updateDashboard",

selectedFeedindex);

}
} else

II There was a feed process error; unlikely, but could happen if the
II feed was changed by the feed service. Log the error.
if (feedError == News.invalidFeedError) {

Mojo.Log.info("Feed ", this.nameModel.value,
" is not a supported feed type.");

Before creating the stage, call getStageProxy(News. DashboardStageName). If the stage
exists, the proxy will be defined. Call the dashboard assistant's updateDashboard ()
method with just the current feed index to use the existing dashboard and update its
contents with information about the latest feed update.

Dashboard scenes have scene assistants and view templates since they are often dealing
with dynamic data but are working within a restricted view. Use the same techniques
described in the section "Pop-up Notifications" on page 235 to render scenes and han
dle updates:

I* Dashboard Assistant - NEWS

*I

Copyright 2009 Palm, Inc. All rights reserved.

Responsible for posting that last feed with new stories,
including the new story count and the latest story headline.

Arguments:
- feedlist; News feed list
- selectedFeedindex; target feed

Other than posting the new story, the dashboard will call the
News apps handlelaunch with a "notification" action when the
dashboard is tapped, and the dashboard window will be closed.

function DashboardAssistant(feedlist, selectedFeedindex) {
this.list = feedlist;
this.index = selectedFeedindex;
this.title = this.list[this.index].title;
this.message= this.list[this.index].stories[o].title;
this.count= this.list[this.index].newStoryCount;

DashboardAssistant.prototype.setup = function() {
this.displayDashboard(this.title, this.message, this.count);

242 I Chapter 1 O: Background Applications

};

this.switchHandler = this.launchMain.bindAsEventListener(this);
this.controller.listen("dashboardinfo", Mojo.Event.tap, this.switchHandler);

this.stageDocument = this.controller.stageController.document;
this.activateStageHandler = this.activateStage.bindAsEventlistener(this);
Mojo.Event.listen(this.stageDocument, Mojo.Event.stageActivate,

this.activateStageHandler);
this.deactivateStageHandler = this.deactivateStage.bindAsEventListener(this);
Mojo.Event.listen(this.stageDocument, Mojo.Event.stageDeactivate,

this.deactivateStageHandler);

DashboardAssistant.prototype.cleanup = function()
II Release event listeners
this.controller.stoplistening("dashboardinfo", Mojo.Event.tap,

this.switchHandler);

};

Mojo.Event.stoplistening(this.stageDocument, Mojo.Event.stageActivate,
this.activateStageHandler);

Mojo.Event.stoplistening(this.stageDocument, Mojo.Event.stageDeactivate,
this.deactivateStageHandler);

//Update scene contents, using render to insert the object into an HTML template
DashboardAssistant.prototype.displayDashboard = function(title, message, count) {

var info = {title: title, message: message, count: count};

};

var renderedinfo = Mojo.View.render({object: info,
template: "dashboard/item-info"});

var infoElement = this. controller.get ("dashboardinfo");
infoElement.innerHTML = renderedinfo;

II Update dashboard scene contents - external method
DashboardAssistant.prototype.updateDashboard = function(selectedFeedindex)

this.index = selectedFeedindex;

};

this.title= this.list[this.index].title;
this.message= this.list[this.index].stories[o].title;
this.count= this.list[this.index].newStoryCount;
this.displayDashboard(this.title, this.message, this.count);

A conventional reminder dashboard is shown in Figure 10-3 with an icon on the left,
a badge indicating the number of new stories, and the title and new story headline on
the right.

All of the presentation for this dashboard is in the template, so the scene's view file is
minimal. Included in views/dashboard/dashboard-scene.html:

<div id="dashboardinfo" class="dashboardinfo"></div>

A template is defined in views/dashboard/item-info.html with the icon container
(palm-dashboard-icon-container), the badge (dashboard-new-item and the custom
class dashboard-icon-news), the title area (dashboard-title), and the message area
(dashboard-text):

Dashboards I 243

<div class="dashboard-notification-module">
<div class="palm-dashboard-icon-container">

<div class="dashboard-newitem">
#{ count}</ span>

</div>
<div id="dashboard-icon" class="palm-dashboard-icon dashboard-icon-news">
</div>

</div>
<div class="palm-dashboard-text-container">

<div class="dashboard-title">
#{title}

</div>
<div id='dashboard-text' class="palm-dashboard-text">#{message}</div>

</div>
</div

John f,1rr: For llKl@PiH'lcil11mCG1

Ten Movl!l!l:~ Thl!lt Saelillm America

Figure 10-3. A dashboard summary

These are all supported framework styles (most dashboard named styles are loaded by
the framework), but we'll add the dashboard-icon-news in News.css to show the News
icon, which is located in the News application's images directory:

.dashboard-icon-news {
background: url(.. /images/dashboard-icon-news.png);

}

244 I Chapter 1 O: Background Applications

This is a simple notification reminder, but dashboard summaries can be fully dynamic
application views. You can provide ambient information that is accessed intermittently,
like weather, stocks, baseball scores, or any information that a user wants to track and
occasionally will tap to get more details. Dashboard summaries can be more sophisti
cated, like traffic monitors that not only provide tracking information, but also generate
notifications to warn of traffic problems on routes of interest.

You can use dashboard summaries specifically to provide the display window for a
background application, such as a location-based service or other applications that
provide status and an occasional notification when an event occurs. This is a particular
type of background application called a Dashboard Application and is covered more
fully in the section "Background Applications" on page 256.

Handling Minimize, Maximize, and Tap Events
Like card stages, you can add a listener to the dashboard stage controller's document
window for Moj o. Event. stageActi vate and Mojo. Event. stageDeactivate events. When
the user taps the notification bar, the Dashboard view is opened and all dashboard
stages become maximized. When the user taps away or gestures back, the Dashboard
view is closed and all dashboard stages are minimized.

Add event listeners to the dashboard scene assistant's setup method:

this.stageDocument = this.controller.stageController.document;
this.activateStageHandler = this.activateStage.bindAsEventListener(this);
Mojo.Event.listen(this.stageDocument, Mojo.Event.stageActivate,

this.activateStageHandler);
this.deactivateStageHandler = this.deactivateStage.bindAsEventlistener(this);
Mojo.Event.listen(this.stageDocument, Mojo.Event.stageDeactivate,

this.deactivateStageHandler);

Next, add handlers that will add a new feature to the dashboard. When the stage is
activated, display the most recent story in the feed and start a three-second timer that,
upon expiry, invokes the showStory() method to update the dashboard summary with
a new story. The timer is reset so that the stories will rotate as long as the dashboard
is activated. On deactivate, clear the timer:

DashboardAssistant.prototype.activateStage = function()
Mojo.Log.info("Dashboard stage Activation");
this.storyindex = o;
this.showStory();

};

DashboardAssistant.prototype.deactivateStage = function()
Mojo.Log.info("Dashboard stage Deactivation");
this.stopShowStory();

};

II Tap to Dashboard should relaunch applications
DashboardAssistant.prototype.launchMain = function()

Mojo.Log.info("Tap to Dashboard");

Dashboards I 245

};

this.controller.serviceRequest('palm:llcom.palm.applicationManager',
{

}
);

method: "open",
parameters: {

}

id: "com.palm.app.news",
params: {}

this.controller.window.close();

II showStory - rotates stories shown in dashboard panel, every 3 seconds.
II Only displays unread stories
DashboardAssistant.prototype.showStory = function() {

} ;

Mojo.Log.info("Dashboard Story Rotation", this.timer, this.storylndex);

this.interval = 3000;
II If timer is null, just restart the timer and use the most recent story
II or the last one displayed;
if (!this.timer) {

}

this.timer= this.controller.window.setlnterval(this.showStory.bind(this),
this.interval);

II Else, get next story in list and update the story in the dashboard display.
else {

}

II replace with test for unread story
this.storyindex = this.storyindex+1;
if(this.storyindex >= this.list[this.index].stories.length)

this.storylndex = o;

this.message= this.list[this.index].stories[this.storyindex].title;
this.displayDashboard(this.title, this.message, this.count);

DashboardAssistant.prototype.stopShowStory = function() {
if (this.timer) {

this.controller.window.clearinterval(this.timer);
this.timer = undefined;

};

You will also want to handle taps to the Dashboard panel by calling your application's
main entry point and closing the dashboard window, which closes the stage. In the
code above, a listener is added to the dashboardinfo div for any tap events. The handler
uses the Application Manager to call the News entry point.

In the next section, we'll cover handling launch requests in the application assistant.
In those cases, you won't use the Application Manager service; instead, you will call
the handlelaunch () method of the application controller.

246 I Chapter 10: Background Applications

Advanced Applications
We've pushed the simple model of single application stage far enough to incorporate
services, notifications, and even dashboard stages, but we need to move to a more
advanced model to access the rest of the features. An advanced application will have
some or all of these characteristics:

• Use an application assistant as the main application entry point and for handling
application initialization and coordination.

• Create a primary card stage when launched.

• Handle relaunch or remote launch requests through a defined handlelaunch
method.

• Post banner notifications and maintain a dashboard panel for events while not in
focus or in the background.

• Schedule wakeup requests through the Alarm service and handle the alarm call
backs in the background.

If you aren't clear on the application lifecycle or the role of the application assistant,
you may want to review Chapter 2 before reading the rest of this chapter.

Back to the News: App Assistant
This chapter began with a list of guidelines for developing multistage applications.
News needs to be cleaned up to conform to those guidelines, so before creating the app
assistant, we'll make these changes to News:

1. Remove use of the global window object; change window. setlnterval() to
this.controller.window.setlnterval().

2. Use the local controller's stageController methods; instead of Mojo.Control
ler. stageController methods for pushScene, we'll use swapScene, as in this example
in storyView-assistant.js in the handleCommand method:

case "do-viewNext":
Mojo.Controller.stageController.swapScene(

break;

{

},

transition: Mojo.Transition.crossFade,
name: "storyView"

this.storyFeed, this.storyindex+1);

3. Add the noWindow property to appinfo.json:

11 title 11
:

11 News 11
,

"type": "web",
"main": "index.html",
"id": "com. palm. app. news",

Advanced Applications I 247

11 version 11
:

11 1.0.0 11
,

11 vendor 11
: "Palm",

11 n0Window 11
:

11 true 11
,

11 icon": 11 icon.png",
"theme": "light"

4. And add the app assistant to sources.json; remember that it must be the first entry:

{

},
{

},

"source": "applassistantslapp-assistant.js"

"source": "applassistantslstage-assistant.js"

We'll create a minimal application assistant first, and then flesh it out step by step so
that you can see each part clearly. Initially, we'll simply move all the code from the
stage assistant to app-assistant.js, removing the call to this. controller. push Scene()
and adding the handle Launch method to create the card stage and push the first scene:

I* AppAssistant - NEWS

*/

Copyright 2009 Palm, Inc. All rights reserved.

Responsible for app startup, handling launch points and updating news feeds.
Major components:
- setup; app startup including preferences, initial load of feed data

from the Depot and setting alarms for periodic feed updates
- handlelaunch; launch entry point for initial launch, feed update

alarm, dashboard or banner tap
- handleCommand; handles app menu selections

Data structures:
- globals; set of persistant data used throughout app
- Feeds Model; handles all feedlist updates, db handling and default data
- Cookies Model; handles saving and restoring preferences

App architecture:
AppAssistant; handles startup, feed list management and app menu management
FeedlistAssistant; handles feedlist navigation, search, feature feed
StorylistAssistant; handles single feed navigation
StoryViewAssistant; handles single story navigation
PreferencesAssistant; handles preferences display and changes
DashboardAssistant; displays latest new story and new story count

II ---

248 I Chapter 10: Background Applications

II GLOBALS
II ---

II News namespace
News = {};

II Constants
News.unreadStory = "unReadStyle";
News.versionString = "1.o";
News.MainStageName = "newsStage";
News.DashboardStageName = "newsDashboard";
News.errorNone = "o";
News.invalidFeedError = "1";

II Global Data Structures

II No error, success
II Not RSS2, RDF (RSS1), or ATOM

across app launches II Persistent Globals - will be saved
News.featureFeedEnable = false;
News.featureStoryinterval = 5000;
News.notificationEnable = true;
News.feedUpdateBackgroundEnable = false;
News.feedUpdateinterval = 900000;

II Enables feed rotation
II Feature Interval (in ms)
II Enables notifcations
II Enable device wakeup
II Feed update interval

II Session Globals - not saved across app
News.feedListChanged =false;
News.feedListUpdateinProgress = false;
News.featureStoryTimer = null;
News.dbUpdate = "";

launches
II Triggers update to Depot db
II Feed update is in progress
II Timer for story rotations
II Default is no update

News.wakeupTaskid = undefined; II Id for wakeup tasks

II Setup App Menu for all scenes; all menu actions handled in
II AppAssistant.handleCommand()
News.MenuAttr = {omitDefaultitems: true};

News.MenuModel = {
visible: true,
items: [

{label: "About News ... ", command: "do-aboutNews"},
Mojo.Menu.edititem,
{label: "Update All Feeds", checkEnabled: true, command: "do-feedUpdate"},
{label: "Preferences ... ", command: "do-newsPrefs"},
Mojo.Menu.helpitem

};

function AppAssistant (appController) {

II ---
11
II
II
II
II

setup - all startup actions:
- Setup globals with preferences
- Set up application menu; used in every scene
- Open Depot and use contents for feedList
- Initiate alarm for first feed update

Advance~ Applications I 249

AppAssistant.prototype.setup = function()

} j

II initialize the feeds model
this.feeds = new Feeds();
this.feeds.loadFeedDb();

II load preferences and globals from saved cookie
News.Cookie.initialize();

II Set up first timeout alarm
this.setWakeup();

II ---
11 handlelaunch - called by the framework when the application is asked to launch
II - First launch; create card stage and first first scene
II - Update; after alarm fires to update feeds
II - Notification; after user taps banner or dashboard
II
AppAssistant.prototype.handlelaunch = function (launchParams)

Mojo.Log.info("Relaunch");

};

var cardStageController = this.controller.getStageController(News.MainStageName);
var appController = Mojo.Controller.getAppController();

if (!launchParams) {
II FIRST LAUNCH

}

II Look for an existing main stage by name.
if (cardStageController) {

II If it exists, just bring it to the front by focusing its window.
Mojo.Log.info("Main Stage Exists");
cardStageController.popScenesTo("feedlist");
cardStageController.activate();

} else {

}

II Create a callback function to set up the new main stage
II once it is done loading. It is passed the new stage controller
II as the first parameter.
var pushMainScene = function(stageController) {

stageController.pushScene("feedlist", this.feeds);
};
Mojo.Log.info("Create Main Stage");
var stageArguments = {name: News.MainStageName, lightweight: true};
this.controller.createStageWithCallback(stageArguments,

pushMainScene. bind(this), "card");

II---
11 handleCommand - called to handle app menu selections
II
II

250 I Chapter 10: Background Applications

} ;

Handling Launch Requests
The framework calls the application assistant's handlelaunch method after the setup
method on initial launch, and whenever a launch request is made to the application. If
you don't define one, the framework attaches a default handlelaunch method, which
calls your application assistant's setup method. Launch requests are made implicitly
through the following:

• Taps to your application's banner notifications.

• Calls from other applications through an Application Manager service request.

• Alarms that wake up the application after a timeout.

By convention, you should also use this entry point for your own launch requests. For
example, instead of using the Application Manager service request, launch your appli
cation after a tap to the Dashboard stage by calling the entry point directly from within
the handleTap method in the Dashboard, passing an action property in the
launchParams object:

DashboardAssistant.prototype.launchMain = function() {
Mojo.Log.info("Tap to Dashboard");

};

var appController = Mojo.Controller.getAppController();
appController.assistant.handleLaunch({action: "notification",

index: this.index});
this.controller.window.close();

And we'll add a specific case in handlelaunch for this notification action following the
conditional set up to handle the first launch. We use a case statement because we'll
build on this to handle other launch actions:

II ---
11
II
II
II
II

handleLaunch - called by the framework when the application is asked to launch
- First launch; create card stage and first first scene
- Update; after alarm fires to update feeds
- Notification; after user taps banner or dashboard

AppAssistant.prototype.handleLaunch = function (launchParams)
Mojo.Log.info("ReLaunch");

var cardStageController = this.controller.getStageController(News.MainStageName);
var appController = Mojo.Controller.getAppController();

if (!launchParams) {
II FIRST LAUNCH
II Look for an existing main stage by name.
if (cardStageController) {

II If it exists, just bring it to the front by focusing its window.
Mojo.Log.info("Main Stage Exists");

Advanced Applications I 251

};

cardStageController.popScenesTo("feedlist");
cardStageController.activate();

} else {
II Create a callback function to set up the new main stage
II once it is done loading. It is passed the new stage controller
II as the first parameter.
var pushMainScene = function(stageController) {

stageController.pushScene("feedlist", this.feeds);
};
Mojo.Log.info("Create Main Stage");
var stageArguments = {name: News.MainStageName, lightweight: true};
this.controller.createStageWithCallback(stageArguments,

pushMainScene.bind(this), "card");

else {

}

Mojo.Log.info("com.palm.app.news -- Wakeup Call", launchParams.action);
switch (launchParams.action) {

II NOTIFICATION
case "notification"

Mojo.Log.info("com.palm.app.news -- Notification Tap");
if (cardStageController) {

break;

II If it exists, find the appropriate story list and activate it.
Mojo.Log.info("Main Stage Exists");
cardStageController.popScenesTo("feedList");
cardStageController.pushScene("storylist", this.feeds.list,

launchParams.index);
cardStageController.activate();

else {

II Create a callback function to set up a new main stage,
II push the feedlist scene and then the appropriate story list
var pushMainScene2 = function(stageController) {

};

stageController.pushScene("feedlist", this.feeds);
stageController.pushScene("storylist", this.feeds.list,

launchParams.index);

Mojo. Log.info("Create Main Stage");
var stageArguments2 = {name: News.MainStageName,

lightweight: true};
this.controller.createStageWithCallback(stageArguments2,

pushMainScene2.bind(this), "card");

The notification launch case is added to activate the News main stage with the story
List scene pushed to the selected feed. If the stage doesn't exist, it \vill be created before
pushing the storylist scene. This type of launch request will launch the application if
it's not already launched.

252 I Chapter 10: Background Applications

Looking at this a little more closely, if the stage exists, the News application's main
stage is in the card view, so the scene stack is popped back to the feed List scene, which
is always at the base of the scene stack for this application. The storylist scene is
pushed with the feed that was displayed by the dashboard summary. If the main card
stage does not exist (just the dashboard is running), the stage is created before pushing
both the feed List and storylist scenes. It's important to set up the scene stack when
launching to a scene that is normally not at the base of the stack.

This launch action is initiated by tapping either the dashboard summary (from the code
sample shown immediately prior to this application assistant sample) and the banner
notification. If you look at the feed.js method for updateFeedSuccess (), you'll see that
the launch argument's action property is set to "notification":

appController.showBanner(bannerParams, {action: "notification",
index: this.feedindex},
this.list[this.feedindex].url);

Sending and Considering Notifications
To facilitate communication between assistants, the Mojo framework supports an ap
plication specific notification chain. Any application assistant can pass a notification
through the chain through a call to SendToNotificationChain() with a single hash pa
rameter. The current stage and scene assistants have the opportunity to handle these
notifications by including a considerForNoti fication () method.

To illustrate this, we'll send an update notification (type: "update") through the
chain, identifying that an update is in progress (update true) or just
completed (update false), as well as the index of the affected feed
(feed Index : this. feedlndex). This is done in several places in feeds.js, wherever we
were updating the spinnerModel and calling this. updatelistModel ().Replace this code:

II Change feed update indicator & update widget
var spinnerModel = this.list[this.feedindex];
spinnerModel.value = true;
this.updatelistModel();

With this code:

II Notify the chain that there is an update in progress
Mojo.Controller.getAppController().sendToNotificationChain({

type: "update",
update: true,
feedindex: this.feedindex

});

That code is used in three other places. The update property should be set to true
wherever you were previously setting the spinnerModel. value to true, and false in the
other cases. You can remove the registerlistModel(), removelistModel(), and
updatelistModel() methods infeeds.js and remove the calls to those methods from the
feedList-assistant.js activate () and deactivate () methods.

Advanced Applications I 253

Scenes can receive notifications if you add a considerForNoti fication () method to the
scene assistant. In the News example, we'll add this to the feedList-assistant.js:

II---
11 considerForNotification - called by the framework when a notification
II is issued; look for notifications of feed updates and update the
II feedWgtModel to reflect changes, update the feed's spinner model
FeedlistAssistant.prototype.considerForNotification = function(params){

if (params && (params.type == "update")) {
this.feedWgtModel.items = this.feeds.list;
this.feeds.list[params.feedindex].value = params.update;
this.controller.modelChanged(this.feedWgtModel);

II If stories exist in the this.featureindexFeed, then start the rotation
II if not already started

II** These next two lines are wrapped for book formatting only**

};

if ((this.feeds.list[this.featureindexFeed).stories.length > o) &&
(News.featureStoryTimer === null)) {

var splashScreenElement = this.controller.get("splashScreen");
splashScreenElement.hide();
this.showFeatureStory();

return undefined;

This method is called on any notification, but on update notifications it will set the
affected feed's spinner value to reflect whether an update is in progress or not, update
the feed list, and start the feature story timer if needed.

In storyList-assistant.js, it's used to look for changes to the displayed feed:

II considerForNotification - called when a notification is issued; if this
II feed has been changed, then update it.
StorylistAssistant.prototype.considerForNotification = function(params){

} ;

if (params && (params.type == "update")) {
if ((params.feedindex == this.feedindex) && (params.update === false))

this.storyModel.items = this.feed.stories;
this.controller.modelChanged(this.storyModel);

return undefined;

Among the scenes, only the active scene's considerForNoti fication () method is called.
That's followed by calls to the active stage assistant and finally the application assistant.
Since the application assistant is always the last on the chain, it can process what re
mains once the other assistants have had their chance at the notification block.

Back to the News: Creating Secondary Cards
T .1• r• 1 1 ,,, . 1 1. _l_ ___ l_l~" __ ,._l_ ____ ,..: ___ ._ ______ l_
in uus 11na1 exarnp1e, we 11 creaLe a :,ecuuua1 y caru :>Lagt: uy auu111g u1t: upuuu Lu pu:>u

a single feed into its own card. Add a "New Card" item to the pop-up submenu, which

254 I Chapter 10: Background Applications

displays when the user taps the unread count on a specific feed in the list. When that
item is tapped, it will push that feed into a new card. Figure 10-4 shows the new sub
menu and the card view showing the main feed List and the secondary card.

Figure 10-4. The secondary card

Secondary card stages are created like other stages. Here's the case statement from the
popupHandler method in feedList-assistant.js, triggered by the New Card submenu
selector:

case "feed-card":
Mojo.Log.info("Popup tear off feed to new card:",

popupFeed.title);

var newCardStage = "newsCard"+this.popupindex;
var cardStage = this.appController.getStageController(newCardStage);
var feedlist = this.feeds.list;
var feedindex = this.popupindex;
if (cardStage) {

Mojo.Log.info("Existing Card Stage");
cardStage.popScenesTo();
cardStage.pushScene("storylist", this.feeds.list, feedindex);
cardStage.activate();

else {
Mojo.Log.info("New Card Stage");
var pushStoryCard = function(stageController){

Advanced Applications I 255

};

stageController.pushScene("storylist", feedlist,
feedindex);

this.appController.createStageWithCallback({

break;

name: newCardStage, lightweight: true},
pushStoryCard, "card");

The stage name must be unique unless you plan to reuse the same stage for each card;
in this example, we use the feed index to form part of the stage name to keep it unique.
When reusing the stage, popScenesTo() is used with pushScene() and activate() meth
ods to maximize the stage with the storylist scene.

To enable this command option, add another choice to the submenu in the feedlist
assistant's showFeed() method:

{label: "New Card", command: "feed-card"}

When users select this option by tapping the info icon on any feed in the feed list, a
storylist scene will be pushed with the selected feed in its own card.

Background Applications
We've done most of the work to make a background application, and in some ways,
News is already running in the background. Background applications could be any of
these types:

Minimized application
Has a card stage (or window), but is not in the foreground view.

Dashboard application
Has a dashboard stage (or panel), but no card stage.

Background application
Has neither a card nor a dashboard stage, but wakes periodically through an alarm
and can issue notifications and create dashboards or cards when appropriate.

Minimized and dashboard applications should use conventional JavaScript timers,
such as setTimeout() or setlnterval(), to schedule recurring actions, for instance
checking for new articles. In its current form, News uses setTimeout() and runs while
minimized. You'll notice if you close the main card stage while there is a News dash
board panel, the application will run in the background, posting notifications when
feeds are updated with new stories. It will not perform these updates once the device
goes to sleep.

Background applications can run without a window, and can wake the device from
sleep or across boots by using the Alarm service. Since the framework will close any
application unless there is an open window, there isn't another option for this type of
application.

256 I Chapter 1 O: Background Applications

We'll replace the setTimeout() timer with an alarm set in the setWakeup() method in
app-assistant.js:

II--
11 setWakeup - called to setup the wakeup alarm for background feed updates
II if preferences are not set for a manual update (value of "00:00:00")
AppAssistant.prototype.setWakeup = function() {

} ;

if (News.feedUpdateinterval !== "00:00:00")
this.wakeupRequest =

new Mojo.Service.Request("palm:llcom.palm.powerltimeout"

' {

});

method: "set",
parameters: {

},

"key": "com.palm.app.news.update",
"in": News.feedUpdateinterval,
"wakeup": News.feedUpdateBackgroundEnable,
"uri": "palm:llcom.palm.applicationManagerlopen",
"params": {

"id": "com.palm.app.news",
"params": {"action": "feedUpdate"}

onSuccess: function(response){

},

Mojo.Log.info("Alarm Set Success", response.returnValue);
News.wakeupTaskid = Object.toJSON(response.taskid);

onFailure: function(response){

}

Mojo. Log.info("Alarm Set Failure",
response.returnValue, response.errorText);

Moj o. Log. info ("Set Update Timeout");

You might want to refer back to Chapter 9, where the Alarm service is reviewed in
detail. In this case, we set up the alarm for the specified News. feedUpdateinterval and
requested that the alarm wake the device by setting the wakeup property to true.

The Alarm service will not accept any relative alarm values of less than
five minutes.

To field the update, we'll add another action handler in the application assistant's
handlelaunch method:

switch (launchParams.action)

Background Applications I 257

//UPDATE FEEDS
case "feedUpdate"

II Set next wakeup alarm
this.setWakeup();

//Update the feed list
Mojo.Log.info("Update Feedlist");
this.feeds.updateFeedlist();

break;
}

This is pretty straightforward, and will work as long as the device is awake when the
alarm fires. But when it is sleeping, the application will only have a few seconds before
the power management system will force the device back to sleep.

',' A background application that receives an alarm when the device is
II• asleep will have less than five seconds before being shut down again. If
..... ~,' «4

~-~'"",.:;: you need more time than this, you should use activityStart() and
' activityStop() methods to prevent the device from sleeping until your

activity has completed. Refer to Chapter 9 for more information on these
service methods.

Five seconds isn't enough time for News to complete a full update of all the feeds during
a single alarm wakeup cycle. But the update process is structured to resume with the
next feed to be updated, so in these cases, News will do a full update over several cycles.

To allow the user full control of the application's background behavior, we'll add some
additional preferences features:

Manual updates
In addition to the update intervals from five minutes to one day, we'll add an option
for manual updates only which will disable the background updates.

Wakeup enable/disable
A toggle to turn off the option of waking up the device during background updates.

Notification enable/disable
A toggle to turn notifications on or off. When set to off, the feed updates will be
carried out, but without any notifications or dashboard updates.

If you're interested in seeing the final version of the application assistant, you should
review the full code listing for app-assistant.js in Appendix D.

258 I Chapter 1 O: Background Applications

Guidelines for Background Applications
Background applications are very powerful, but they can also easily overuse resources
and hurt the user experience. Most of these guidelines are common sense, but they are
critical to making your application successful.

• When minimized, suspend application behavior that isn't necessary and lengthen
polling cycles. Since the application is minimized, updates are not immediately
visible, so work done to update the display is a waste of resources.

• When your application is minimized or in the background in any way, limit system
calls, data connections, and similar requests. They consume CPU and power, and
lengthy operations will impact the responsiveness of the maximized application.

• Always provide a way to close the application and terminate any background
activity.

• Whenever possible, avoid waking up the device.

• Always give users the option of not waking the device; they should be able to run
the application and experience some background activity when the device is
awake, but not when the device sleeps.

• Set alarm and timeout intervals as long as possible.

• When using alarms in a recurring fashion, meaning after each alarm you set up a
new alarm, always provide a simple way for the user to turn off the alarms or
completely close the application so that it doesn't run indefinitely.

• Conserve power; poll as infrequently as possible. Space out your requests and
implement degrading intervals that lengthen if your polling does not produce an
event or data change.

• Tasks that are scheduled for when the device is in mass storage mode will not be
suspended. You will need to detect when the device goes into mass storage mode
and restart the task. If the timeout expires when the device is in mass storage mode,
the callback will not be made.

• Limit notifications; use the dashboard to update state and status, and limit even
banner notifications to important information.

Background Applications I 259

Summary
Whether you're interested in building an advanced application or just want to add
notifications to a basic application, you'll find some essential topics in this chapter.
After a broad review of advanced multistage applications, with an introduction to no
tifications and dashboards, you learned that advanced applications are based on an
application assistant, which can handle external launch requests and potentially run in
the background. You were also shown how to customize your application's behavior
when minimized, meaning switched out of the foreground view, and how to use the
internal application notification chain to coordinate actions between assistants or share
events and data.

With the techniques in this chapter, you should be able to move your application to
the background, build a dashboard-only application, or use secondary card stages to
support separate activities.

260 I Chapter 10: Background Applications

CHAPTER 11

Localization and Internationalization

The Palm webOS platform was designed from the beginning to be a world-ready sys
tem, from the choice of OS technologies through the UI design. While it may take some
time to support all languages and regions, and to provide the application content to
meet the needs of users in all locales, the framework has the basic support you need to
build global applications.

In this chapter, you will get an overview of the framework's locale support and learn
how to localize your application. We will localize the News application to Spanish and
we will walk through each step of the localization process. In the final section, we'll
cover some of the Internationalization APis available in Mojo.

Users can switch languages and regions at runtime using a language preferences appli
cation, shown in Figure 11-1. Users can select from any of the languages and any of the
regions, thereby creating any locale formed by those combinations.

The system does not dynamically switch languages; it must do a soft reset of the ap
plication environment, which closes any running applications and restarts the system
UI with the newly selected locale.

Locales
Palm webOS defines a locale conventionally as a combination of language and region,
and initially includes support for some Latin-1 languages and related regions. The first
products will include all North and South American languages and regions as well as
some of the Western European languages and regions.

261

Figure 11-1. A language preferences application

The choice of language indicates the primary localization, while the regional settings
govern date formats, number formats, and similar types of data representation. You
can mix any language and any region to create a locale. For example, en_DE is the
English language and German regional settings. A complete list of supported languages
and keyboard mappings is provided in Table 11-1, with some of the more common
locales and regions.

Table 11-1. Supported Languages and Regions

.\~t;a1_&; :~ng~~-~-·· . . ~~Jog.•·· '/, >"<:: .: ~tiyb~i'fl.•".;

en - us English (en) United States (US) QWERTY

en - GB English (en) Great Britain (GB) QWERTY

en - IE English (en) Ireland (IE) QWERTY

es - us Spanish (es) United States (US) QWERTY

es - ES Spanish (es) Spain (ES) QWERTY

en - CA English (en) Canada (CA) QWERTY

fr_ CA French (fr) Canada (CA) AZERTY

262 I Chapter 11: Localization and Internationalization

Locale Language Region Keyboard

de_DE German (de) Germany (DE) QWERTZ

it_IT Italian (it) Italy (IT) QWERTY

fr_FR French (fr) France (FR) AZERTY

The architecture is capable of supporting most single-byte and double-byte locales, but
the initial release does not include the necessary fonts, input methods, and some of the
text-processing utilities needed to fully support those locales. Additional support will
be provided over time, but availability will depend upon regional business priorities. If
you follow the techniques discussed in this chapter, your application should be ready
to support those locales when available.

There are many more regions supported than those shown in Table 11-1, and additional
regions are added frequently. You'll find the current list on the Palm developer site.

Character Sets and Fonts
The initial Palm webOS devices ship with a Unicode UTF-8 character set, primarily
supported by the Prelude font, which was described from a style and design perspective
in Chapter 7. Prelude supports the following character sets, as defined by Windows
codepages:

• 1250 (Eastern Europe)

• 1251 (Cyrillic)

• 1252 (Latin 1 or Western Europe)

• 1253 (Greek)

• 1254 (Turkish)

• 1257 (Baltic)

Additional fonts are included to support conventional browser content. The browser
fonts support the character sets named above, plus all the characters used for Japanese,
Chinese, Korean, and Vietnamese.

Keyboards
The keyboards will track the available locales. For example, QWERTY, QWERTZ, and
AZERTY configurations are provided with the locales as described in Table 11-1. This
is not something that will be uniform across webOS devices, so while some form of
keyboard or input method support is provided, you cannot expect a typical
configuration.

Locales I 263

Global Applications
For many developers, creating a global application means localizing your application
to the locales in which it will be used, and supporting display formats for any locale. If
you are diligent, you will use locale-sensitive formatting and sorting with text, number,
percent, and currency strings, and will accommodate global requirements for ad
dresses, phone numbers, and similar data.

But global applications should deal with regional and language requirements at a deeper
level, driving the content and features themselves. You should:

• Use locale-specific content for default data or other data sources. In our example,
the default News feeds should be locale-specific. The feeds of interest to the North
American English speaker are quite different from those of a European Italian
speaker or a South American Spanish speaker.

• Make your content appropriate to the user's location. Implement the spirit of the
function, not just literal support. For example, a sports-oriented application needs
to focus on popular sports based on regional popularity and interest.

• Use regional data servers; select web services or servers based on the user's locale
or location.

Consider your application's feature set and the data content when thinking about your
application as a product with a worldwide user base.

Localization
The system is localized for the languages and locales offered as options in the Language
picker in any given release of Palm webOS. You can localize your application to any of
the available locales and the correct localization will be selected when the application
is launched. If your application doesn't support the selected locale, it will try to match
just the language. If there is no match for the language, the base version will be selected.

To localize your application, create locale-named directories within your application
to hold the localized files. The framework will look for a directory that matches the
current locale and will automatically substitute the localized content for the content in
the base version.

You can localize any of the following:

Application name and icon
Each locale can have a separate version of the application's appinfo.json, which can
be modified for that locale to customize any of the properties defined there.

JavaScript strings
Any string appearing in JavaScript executed by the application can be extracted
and localized by encapsulating the string with the $L() function.

264 I Chapter 11: Localization and Internationalization

HTML scene or template
Each locale has a views directory, which is structured like the base version views
directory and can contain any of the base version HTML files that you wish to
modify for that locale.

HTML strings
Any string appearing in an HTML file or template can be localized by creating a
copy of the file and modifying the strings.

Typically, you will develop your application with a base version and once you reach UI
freeze or the UI is complete, you will do a test localization with a pseudolocale to
confirm that you have identified all the strings and that your application structure is
correct.

You can localize to multiple languages in parallel, but once you've done your localiza
tion, you will need to manage code or UI changes. This may be difficult under the
current structure, as the tools don't address change management, forcing you to man
ually migrate all changes.

It's good to do a pseudolanguage localization early to test localization readiness, but
wait on actual localization until your UI is final or very close to it.

Localized Application Structure
Localized applications have an additional directory, resources, at the application's root
directory, and within it are directories for each locale. Within resources are locale di
rectories that include a localized version of appinfo.json and localization files for Java
Script string translation (strings.json), and localized versions of the application's view
files. Figure 11-2 shows an example of an exploded resources directory for the News
application, which has a single localization for United States Spanish.

Figure 11-2. An example resources directory

localization I 265

You'll see that the first level of directories within resources is for locales. If the locale is
set to es_ US, the framework will look for content in the resources/es_us directory first.
If that directory or the content (e.g., appinfo.json, specific strings in strings.json, HTML
files in /views) is not there, it will then default to the app directory contents.

You can create this structure manually by creating and naming the directories with the
valid language and region codes. Table 11-1 defines the initially supported languages
and regions, but check the SDK documentation for the current set of supported names.
All of the language names are encoded as a two-letter ISO 639 language code and all
of the region names are based on a two-letter ISO 3166 country code.

At the time of this writing, there are no tools provided in the SDK to assist with creating
or maintaining localization content, but tools are planned. Check the SDK site for any
new information on localization tools.

appinfo.json
Each locale directory will include a copy of the main appinfo.json file, modified for
localization and for file path changes. For the News application, the title is changed to
"Noticias" and the main and icon property values are modified to adjust the relative
path for the location of this version of appinfo.json. The file path must reflect that this
version of appinfo.json is located at com.palm.app.newslresources/es_uslappinfo.json
and the target files are located at com.palm.app.news:

"title": "Noticias",
"type" : "web 11

,

"main": " .. / .. /index.html",
"icon": " .. / .. /icon.png",
"id": "com. palm.app. news",
11 version 11

:
11 1.0 11

,

''vendor'': 11 Palm 1
',

"theme": "light",
"n0Window 11

:
11 true 11

We only localized the application name here, but you could also do the following:

• Change the icon by pointing to a different icon image file. The appinf o.json file is
encoded in UTF-8.

• Use a localized index.html, which might be useful for including different stylesheets
for a given localization or for changing page layout based on writing direction or
cultural reasons.

JavaScript Text Strings
ThP l\!lnin fr'.'lmP"rnrk "rill rlvn"1mir"1lhr <o11h<otit11tP lnr"1li7Prl <otrino<o h>1<oPrl nn thP r11rrPnt - --- -· --;- --~---- '' ---- '' --- --) -------------/ - --- - ------- -- ------- -- - -----o- - --- - -- - -- --- - - ---- ----

locale. Any JavaScript string can be localized; you should localize all text strings that

266 I Chapter 11: Localization and Internationalization

are displayed and are visible to the user, but not those that never appear. Examples of
strings that should not be localized include logging information or information used
strictly as internal data or arguments. Nor should you localize strings that don't include
text, such as HTML templates that contain only variable definitions.

Identifying strings

You prepare for string extraction and translation by encapsulating any target string
with the $L() function, as in this example from app-assistant.js in News, where the
default application menu attributes and model are set up:

II Setup App Menu for all scenes; all menu actions handled in
II AppAssistant.handleCommand()
News.MenuAttr = {omitDefaultitems: true};

News.MenuModel = {

visible: true,
items: [

{label: $L("About News ... "), command: "do-aboutNews"},
Mojo.Menu.edititem,
{label: $L("Update All Feeds"), checkEnabled: true, command: "do-feedUpdate"},
{label: $L(" Preferences ... "), command: "do-newsPrefs"},
Mojo.Menu.helpitem

};

Or in this case, from preferences-assistant.js, where the list selector widget is set up:

II Setup list selector for UPDATE INTERVAL
this.controller.setupWidget("feedCheckintervallist",

{

},

label: $L("Interval"),
choices: [

{label: $L("Manual Updates"),
{label: $L("5 Minutes"),
{label: $L("15 Minutes"),
{label: $L("1 Hour"),
{label: $L("4 Hours"),
{label: $L("1 Day"),

this.feedintervalModel = {
value : News.feedUpdateinterval

});

value: "00:00:00"},
value: "oo:os:oo"},
value: "00:15:00"},
value: "01:00:00"},
value: "04:00:00"},
value: "23:59;59"}

The framework will use any string that is encapsulated with $L() as a key in the ap
propriate strings. j son file (based on the current locale) and substitute the resulting
value (the localized string) in the original string's place.

In this next example, the string arguments to Moj o. Log. warn() are not encapsulated,
but the arguments to Mojo.Controller.errorDialog() are:

Mojo.Log.warn("Can't open feed database: ", result);
Mojo.Controller.errorDialog($L("Can't open feed database ")+result);

Localization I 267

Sometimes translations can change the position of variables within the strings. If a
variable is inserted within a string, use templates to allow for changes in position. For
example:

Mojo.Log.warn("Can't open feed database(#", result, ").All feeds will be reloaded.");

II** These next two lines are wrapped for book formatting only**
var message = new Template($L("Can't open database (#{message}).

Feeds will be reloaded."));
Mojo.Controller.errorDialog(message.evaluate({message: result}));

This is even more critical if you have strings where there are multiple variables. Local
ization can change not only the location, but also the order of variables within strings.
For example:

"Not enough memory to #{action} the file #{fname}."

becomes (in Finnish):

"Liian vahan muistia tiedoston #{fname} #{action}."

Also, be careful about reusing keys where the same original string might have multiple
translations in another language. For example, "save" can be translated in one context
to "speichern" in German. In another, it could be translated as "retten." Likewise, the
English word "add" can mean "append" in one context, and "sum" in another context.
When using keys in different contexts, consider using different identifiers in your source
documents, even if they both have the same localization into English.

Extracting strings

Once the strings are identified, you will extract them to a strings.json file, located in the
root level of the locale directory.

You can manually extract the strings by scanning the file for $L() encapsulation and
copying the strings into the key position in strings.json. If they aren't encapsulated by
the $L() function, the framework will not perform the substitutions.

Palm recognizes that this is a very tedious process and intends to provide tool support
to facilitate string extraction, but at the time of this writing, those tools are not yet
available. Refer to the Palm developer site for more information about localization
tools.

Localizing strings

The strings.json file is a conventional JSON file, encoded in UTF-8, with the base ver
sion of the string used as a key and the localized version of the string as the value:

"Original String" : "Localized String",

The News resourcesleslstrings.json is shown here:

"#{status}" : "#{status}",

268 I Chapter 11: Localization and Internationalization

II** These next four lines are wrapped for book formatting only**
"o##{title} : No New Itemsll##{title} : 1 New Itemll>##{title} :

#{count} New Items" :
"o##{title} : No hay elementos nuevosll##{title} : 1 elemento nuevoll>##{title}
#{count} elementos nuevos",

"1 Day" : "1 dia",
''1 Hour'' : 11 1 hara'',
"15 Minutes" : "15 minutos",
"4 Hours" : "4 horas",
"5 Minutes" : "5 minutos",
"About News ... " : "Acerca de noticias ... ",
II **These next three lines are wrapped for book formatting only**
"Add Feed DB save error: #{message}; can't save feed list." :

"Error de base de datos al intentar agregar nueva fuente web :
#{message}; no se puede guardar la lista de

fuentes web.",
"Add News Feed Source" : "Aiiadir fuente web de noticias",
"Add ... " : "Aiiadir ... ",
"Adding a Feed" : "Afiadiendo una fuente web",
"All Read" : "Todas leidas",
"All Unread" : "Todas las no leidas",
"Can't open feed database: " : "No se puede abrir la base de datos de fuentes web: "
"Cancel" : "Cancelar",
"Cancel search" : "Cancelar bdsqueda",
"Check out this News story ..• " : "Leer esta noticia ... ",
"Check this out: " : "Mira esto: ",
"Copyright 2009, Palm Inc." : "Copyright 2009, Palm Inc.",
"Database save error: " : "Error al guardar en la base de datos: "
"Edit a Feed" : "Editar una fuente web",
"Edit Feed" : "Editar fuente web",
"Edit News Feed" : "Edi tar una fuente web de noticias",
"Feature Feed" : "Fuente web destacada",
"Featured Feed" : "Fuente web destacada",
"Feature Rotation" : "Rotaci6n de fuente web destacada",
"Feed Request Success:" : "Solicitud de fuente web lograda:",
"Feed Updates" : "Actualizaci6n de fuentes web",
"Help ... " : "Ayuda ... ",
"Interval" : "Intervalo",
II** These next two lines are wrapped for book formatting only**
"Invalid Feed - not a supported feed type" :

"Fuente web no valida: no es un tipo de fuente web admitido",
"Latest News" : "Ultimas noticias",
"Manual Updates" : "Actualizaciones manuales",
"Mark Read or Unread" : "Marcar leida o no leida",
"New Card" : "Tarjeta nueva",
"New features" : "Nuevas caracteristicas",
"New Items" : "Elementos nuevos",
"News Help" : "Ayuda para noticias",
"News Preferences" : "Preferencias para noticias",
II** These next two lines are wrapped for book formatting only**
"newsfeed.status" :

"Estado #{status} devuelto desde solicitud de fuente web de noticias",
11 0K 11

:
11 0K",

"Optional" : "Opcional",
"Preferences ... " : "Preferencias ..• ",

Localization I 269

"Reload" : "Cargar nuevamente",
"Rotate Every" : "Girar cada",
"Rotation (in seconds)" : "Rotaci6n (en segundos)",
"RSS or ATOM feed URL" : "Fuente web RSS o ATOM URL",
"Search for: #{filter}" : "Bu scar: #{filter}",
"Show Notification" : "Mostrar aviso",
"SMSIIM" : "SMSIIM",
II** These next two lines are wrapped for book formatting only**
"Status #{status} returned from newsfeed request." :

"La solicitud de fuente web de noticias indic6 el estado #{status}.",
"Stop" : "Detener",
"Title" : "Titulo",
"Title (Optional)" : "Titulo (Opcional)",
"Update All Feeds" : "Actualizar todas las fuentes web",
"Wake Device" : "Activar dispositivo",
II** These next two lines are wrapped for book formatting only**
"Will need to reload on next use." :

"Se tendra que cargar de nuevo la pr6xima vez que se use."

If the original string is not appropriate as a key, the $L() function can be called with an
explicit key:

$L("value":"Original String", "key": "string_key")

In this case, string_ key is the key in strings.json and the translation of Original
String is the value:

{
"string_key" : "Localized String"
}

Here's an example, again in News. The results template is defined with a key inside the
$L() function:

AppAssistant.prototype.feedRequestSuccess = function(transport)

var t = new Template($L({key: "newsfeed.status",
value: "Status #{status} returned from newsfeed request."}));

Mojo.Log.info("com.palm.app.news - Feed Request Success: ",
t.evaluate(transport));

And if you look back at the strings.json, you'll see this entry, where the key is used
instead of the original string:

II** These next two lines are wrapped for book formatting only**
"newsfeed.status" :

"Estado #{status} devuelto desde solicitud de fuente web de noticias",

Localizable HTML
The framework does not dynamically substitute localized text strings for HTML text
strings. lnstead you will create a copy of the HTML scenes and tempiates, manuaiiy
substituting the localized strings. You do get some help identifying strings and

270 I Chapter 11: Localization and Internationalization

extracting them to strings.json to facilitate translation, but you'll need to manually copy
the translated strings to your localized HTML files.

You don't have to limit the changes in the localized HTML files to localized text sub
stitution. You may also make layout changes by locale; in some cases the translations
may need some adjustments. And you can also include locale-specific CSS, which you
can use in combination with your HTML to modify the presentation, either to accom
modate text translations (for example, adjusting for significant changes in text length)
or simply to address unique formatting requirements within a specific locale.

Identifying and extracting strings

You don't need to extract the strings from the HTML files, but instead you will copy
any HTML file that includes a localized string into the views directory for each locale.
The structure of the views folder will mirror the base version, but only the files with
localized content will be included. For example, News will have only three localized
HTML files:

views!feedList!addFeed-scene.html
views!feedList!feedList-assistant.html
views/preferences/preferences-assistant. html

As part of your localization workflow, you may want to extract the strings, and it doesn't
hurt to include those strings in strings.json.

,, "
' Localizers are very familiar with translating whole HTML files.You may

want to just hand over your file to the localizers to get translated to
"' . 1 d k . h . "-.' vanous anguages an not ta e ttme to extract t e stnngs.

Localizing strings

After translation, the localized strings must be copied into the localized version of the
HTML file. Using the previous example of preferences-assistant.html, the strings are
translated to es_US:

<div class="palm-page-header">
<div class="palm-page-header-wrapper">

<div class="icon news-mini-icon"></div>
<div class="title">Preferencias para noticias</div>

</div>
</div>

<div class="palm-group">
<div class="palm-group-title">Fuente web destacada</div>

<div class="palm-list">
<div x-mojo-element="IntegerPicker" id="featureFeedDelay"></div>

</div>
</div>

</div>

localization I 271

<div class="palm-group">
<div class="palm-group-title">Actualizaci6n de fuentes web</div>

<div class="palm-list">
<div class="palm-row first">

<div class="palm-row-wrapper">
<div x-mojo-element="ListSelector" id="feedChecklntervallist">
</div>

</div>
</div>
<div class="palm-row">

<div class="palm-row-wrapper">
<div x-mojo-element="ToggleButton" id="notificationToggle">
</div>
<div class="title left">Mostrar aviso</div>

</div>
</div>
<div class="palm-row last">

<div class="palm-row-wrapper">
<div x-mojo-element="ToggleButton" id="bgUpdateToggle"></div>
<div class="title left">Activar dispositivo</div>

</div>
</div>

</div>
</div>

</div>

You can see the other HTML files along with all the localization changes made for News
to support the es_US locale. When you launch News with that locale selected, you'll
see something similar to Figure 11-3.

Figure 11-3. News localized to the es_US locale

272 I Chapter 11: Localization and Internationalization

Internationalization
The Mojo framework includes Moj o. Format, a set of locale-aware methods to assist you
with formatting different types of text strings. The available methods are summarized
in Table 11-2.

Table 11-2. Mojo.Locale and Mojo.Format methods

Method Description

Moj o. Locale. getCurrentlocale () Returns the currently set locale as an ISO 639-formatted string (e.g.,
en_us for US English)

Mojo. Locale. getCurrentFormatRegion() Returns the currently set region as an ISO 639-formatted string (e.g.,
us for US English)

Mojo. Format. format Date() Formats the date object appropriately for the current locale

Mojo. Format. formatRelativeDate() Formats the date object as with formatDate(), but returns
yesterday/today/tomorrow if appropriate, or the day of the week if in
the last week

Moj o. Format. format Number () Converts a number to a string using the proper locale-based formatfor
numbers and number separators

Moj o. Format. formatCurrency() Converts a numberrepresenting an amountofcurrencytoa string using
the proper locale-based format for currency; does not do any currency
rate conversion, just formatting

Mojo. Format. formatChoice () Formats a choice listto handle things like replacement parameters with
plurals

Moj o. Format. formatPercent () Converts a number to a percent string using the proper locale-based
format for percentages

Mojo. Format. using12HrTime () Returns true if the current locale uses 12-hour time or false if 24-hour
time

Moj o. Format. $etcu:rren!Ti~e~()ne() Returns current timezone

The behavior of some of the widgets should be influenced by the selected locale. Cur
rently, the Time Picker widget will hide the AM/PM panel if the current locale defaults
to a 24-hour time format. There will be further integration of locale-specific behavior
over time; check the Palm Developer site for updates in this area.

Back to the News: Multilingual Formatting
The News' banner notification includes a phrase indicating the number of new stories,
as shown in Figure 11-4.

Internationalization I 273

Figure 11-4. News banner notification

But this isn't linguistically correct (that is, 1 new item will display as "l New Items"),
nor will it localize properly. What's needed is a way of expressing this in a conditional
way that accounts for language differences. Moj o. Format. formatChoice () can address
this need:

var bannerParams = {

} ;

messageText: Mojo.Format.formatChoice(
this.list[this.feedindex].newStoryCount,
$L("o##{title} : No New Itemsl1##{title} : 1 New Iteml1>##{title}

#{count} New Items"),
{title: this.list[this.feedindex].title, count:

this.list[this.feedindex].newStoryCount}

appController.showBanner(bannerParams, {action: "notification",
index: this.feedindex},

this.list[this.feedindex].url);

The call to formatChoice() passes an integer representing the quantity, as well as a set
of choices. In this case, the choices are:

• For a quantity of 0 then a string of No New Items

• For a quantity of 1, then a string of 1 New Item

• For a quantity greater than 1, then a string of #{count} New Items

The final argument includes the object that supplies the values to be substituted for the
templates #{title} and #{count}.

Summary
Palm webOS is a world-ready operating system designed to support localized and in
ternationalized applications. It supports conventional locales and ships with character
sets, fonts, and keyboards required to support Latin-1 languages and regions. The
localization architecture supports dynamic string substitution and provides basic in
ternationalization APis for regional formatting.

As with the rest of the framework, building global-ready applications is easy with Mojo
and Palm webOS. If you haven't attempted to take an application beyond your own
region or locale, then this is a great opportunity to expand your potential user base.

274 I Chapter 11: Localization and Internationalization

APPENDIX A

Palm webOS Developer Program

Palm is working collaboratively with the worldwide developer community to construct
a vibrant, vital ecosystem around the Palm webOS platform to enable next-generation
mobile application development. Together, Palm and the development community
have an opportunity to revolutionize the design, development, and distribution of mo
bile applications in ways that will redefine the mobile device industry.

Through its developer website, webOSdev, Palm offers a wide range of resources to
assure that developers of all kinds receive the assistance they need to build and market
webOS applications. Palm webOSdev is the online gathering point for the worldwide
mobile OS development community, providing developers the ability to contribute to
the platform itself. Both the resources and community can be found through webOSdev
at http://developer.palm.com/.

Philosophy
Palm webOS is the latest in a long line of technologies that deliver the Palm
experience-fast, easy, reliable mobile devices and applications that allow people to
manage extraordinary lives on the go. Palm mobile computing products-together with
your applications-enable anytime, anywhere computing for consumers, mobile pro
fessionals, and enterprise users.

That's just a starting point. Building on its heritage of working together with developers
to build the Palm experience, Palm is committed to working even more closely with
the developer community. Together, we can open new, unexplored markets and pre
viously unimaginable technological and business opportunities.

To realize its vision of a thriving mobile device development ecosystem, Palm is taking
the following steps:

• Attracting developers of all kinds-consumer, enterprise, professional, educa
tional, even hobbyists from all over the world-to explore webOS technologies
and deliver innovative applications.

275

• Connecting members of the community through both online and traditional
means.

• Providing the vehicles for developers to effectively and profitably distribute their
applications to an ever-widening mobile user market.

Palm webOS: Open Platform, Open Community
Palm webOS development uses technologies like HTML, CSS, and JavaScript. Palm
believes in an open model for building the developer ecosystem as well-one where
the development community helps drive the overall direction of the platform.

Key to building an open developer ecosystem is a meeting point for the worldwide
developer community, which Palm is building through the webOSdev website.
Through user forums, blogs, and other to-be-delivered vehicles for community contri
butions, you can provide your own ideas, development techniques, questions, and
comments. Palm views you as an integral partner in building the next-generation mobile
development platform, and we'll marry code, concepts, and content from the com
munity with our own to evolve the platform.

Benefits to the Developer
By participating in the Palm developer community, you can become a part of the next
generation of mobile computing, helping to revolutionize the way people communicate
Because webOS relies on well-established, flexible, robust technologies, you have all
the tools you need to implement your ideas, and you'll be able to do develop more
quickly, cheaply, and profitably.

Working with Palm, you'll be able to do the following:

• Speed your time-to-success with the webOS platform.

• Develop applications more quickly and with more innovative user functionality
than with any other mobile OS platform.

• Help advance the state of the art of mobile application development.

• Play a part in building the new mobile computing business model, and take ad
vantage of it.

• Work with a strong partner-Palm-to reach new markets.

Resources and Community
Palm plans full lifecycle support for the developer: from the moment you first consider
the platform, through the development and distribution of your first application, then
to the maturation of your application and its evolution to the next big thing. This can
only work through an open partnership with the entire community. Palm provides an

276 I Appendix A: Palm webOS Developer Program

initial offering of resources, and you use, comment on, and add to that offering, making
it a living, breathing entity that's cared for and fed by the entire ecosystem.

Initially, Palm makes the following technical resources available through the
webOSdev developer website:

• Palm webOS Mojo Software Development Kit

• Additional Palm development tools

• Palm webOS developer guide

• Palm webOS API documentation

• Human interface guide

• Code samples

• Access to support engineers

To facilitate a dialogue with the community, Palm also supports:

• Community support forums monitored by internal Palm experts

• Palm developer blog with news, perspective, and commentary for developers

To help you distribute and sell your applications and build your business, Palm is
investing in the infrastructure to deliver:

• An application submission and signing process to certify your application

• The Palm App Catalog, with administrative features to help you manage the busi
ness of selling your application

What You Should Do
Download the Palm webOS Mojo SDK and start developing. Let us know what you're
thinking, what's working, how we can help, and, most of all, contribute back to the
community in all the ways available. Remember, your idea will become part of the
future of mobile device development.

What You Should Do I 277

APPENDIX B

Quick Reference-Developer Guide

Throughout the book, you've seen sample code and examples of widgets and services.
In this section, those interfaces are compiled in reference form to help you as you are
coding or if you just want to look something up.

This is not a comprehensive list of all Mojo APis; for that you should refer to the SDK
site. There you will find the APis mentioned in this book, including:

• Widgets

• Dialogs

• Menus

• Storage

• Services

• Controller APis

Widgets
This section includes all of the Mojo widgets. Each widget section includes a brief
description repeating some of the information from Chapters 3, 4, and 5, followed by
an enumeration of the widget's attribute and model properties, relevant events, and
public methods.

Button
Buttons are the most basic UI element, bounding an action to a region. When a button
is pushed, it can change state but gracefully returns to the previous state, like a doorbell.

279

type

disabledProperty

label

label Property

buttonClass

label

disabled

Mojo.Event.tap

activate()

deactivate()

Check Box

String

Boolean

String

String

String

String

Boolean

Choices:

Mojo. Widget. defaul tButton
Moj o. Widget. acti vi tyButton

Name of model property for disabled state

Displayed label

Model property name for label

Style options are primary, secondary, dismissal,
affirmative, or negative

Displayed label

Default property that when true, disables the widget

For an activity button, start the spinner

.~o!ana.c!ivityE.ut!~n,s~p!h~.5£>i.nner

A Check Box widget is used to control and indicate a binary state value in one element.

model Property

disabledProperty

trueValue

falseValue

inputName

value

disabled

. M.()j()~Even!:propertyChange

Date Picker

String

String

String

String

String

Boolean

Boolean

Name of model property for widget state

Name of model property for disabled state

Value to set model Property when widget state is true

Value to set modelProperty when widget state is false

Identifier for the value of the check box; used when the widget is used
in HTML forms

Current value of widget

Default property that when true, disables the widget

'T"'l _l_, ___ : __ l,_"" _11 _____ --1-- ~--- _r ______ ._1_ ,]_TT ..-....-.....lTT,...,.....,. ,....1..,,....,,...,.
i ue uaLe _l.JlLKt:l a11uw,:,, :::>t::H::Luvu u1 111v11L11, ua.y, a.uu yLa.l va1u\.-.:J.

280 I Appendix B: Quick Reference-Developer Guide

Attribute properties
label

labelPlacement

model Property

month

day

year

maxYear

min Year

··· Model properties

date

Events

None

Drawer

Type

String

String

String

Boolean

Boolean

Boolean

Integer

Integer

Type

Date

Description

Label displayed with the widget controls

Choices are:

Mojo. Widget. labelPlacementleft
Mojo. Widget. labelPlacementRight

Name of model property for date object; defaults to 'date'

Set to true to display the month field in the widget

Set to true to display the day field in the widget

Set to true to display the year field in the widget

Specify maximum year in year capsule if enabled (default 2099)

Specify minimum year in year capsule if enabled (default 1900)

Description

Date object set to the widget value

Drawers are container widgets that can be open, allowing child content to be displayed
normally, or closed, keeping it out of view.

Attribute properties
unstyled

modelProperty

Model properties
open

Events
Mojo. Event. propertyChange

Methods
setOpenState(open)

getOpenState ()

toggleState()

File Picker

Type

Boolean

String

Type

Boolean

Description

When set to true, prevents styles from being added, allowing the
Drawer to be used just for open/close function

Name of model property for date object

. Description

Current state of the widget; set to true when open

Sets the open state to open or closed

Returns current value of open state

Change the drawer's open state to theoppositeofwhat it is now

Mojo.FilePicker.pickFile (params, stageController)

Widgets I 281

The File Picker presents a file browser that lets the user navigate the directory structure
and optionally select a file. The File Picker lets users view and select files from the media
partition, and allows filtering by file type (e.g., file, image, audio, or video).

params

on Select

onCancel

kinds

defaul tKind

action Type

actionName

extensions

stageController

None

Filter Field

Object

Function

Function

Array

String

String

String

Array

Object

Object containing information about the file to select as described
below:

Function to call after selection is made; it will return an object of the
following format:

{ fullPath: /full/path/of/selected/file' }

Function to call after selection is made; when picker is canceled.

Array of strings to allow (image, audio, video, file); default is
support for all kinds; if only one kind is needed, kind: mytype can be
used and override kinds

String; the view to go to; one of image, audio, video or file

attach and open are the only supported options; open is the default

Overrides the default string defined by action Type

File extensions to filter in the files view

The calling application's stage assistant

The Filter Field can be applied to any case where you want to process the field contents
and update on-screen elements based on the entered string.

delay

disabled Property

disabled

Moj o. Event.filter

open()

close()

setCount (integer)

Integer

String

Boolean

Delay between key strokes for a filter event, in milliseconds

Name of model property for disabled state

Default property that, when true, disables the widget

Open the widget

Close the widget

Set the number to be shown in the results bubble in the Filter Field

282 I Appendix B: Quick Reference-Developer Guide

Filter List
The Filter List combines a Filter Field and a List. It is intended to display a variable
length list of objects, built by a special callback function that filters the list based on
the contents of the filter field.

Attribute properties
delay

filterFunction

listTemplate

itemTemplate

additemLabel

formatters

items Property

swipeToDelete

autoconfirmDelete

uniquenessProperty

preventDeleteProperty

reorderable

di viderFunction

dividerTemplate

fixedHeightitems

initialAverageRowHeight

render Limit

lookahead

Type

Integer

Function

String

String

String

Function

String

Boolean

String

String

String

Boolean

Function

Function

Boolean

Integer

Integer

Integer

Description

Delay between key strokes for a filter event, in milliseconds

Function called to load items into the list as it is scrolled or filter
changes; function definition is:

filterFunction (filterString, listWidget,
offset, count)

where:

fil terString: set to the input string

listWidget: this Filter Listwidget object

offset: index of first displayed entry in listfs

count; number of entries required from the function

File path relative to app folder for container template

File path relative to app folder for item template

If defined, a special "add" item will be appended to the list and taps
on this will generate a Mojo. Event. listTap

Object functions to format list entries based on model properties

Model property for items list

If true, list entries can be deleted with a swipe

lffalse, delete swipes will post a delete/undo button pair, otherwise
deletes will be made immediately after swiping

Name of an item model property which can be used to uniquely identify
items; if specified, List will maintain a hash of swiped items instead
of setting a deleted property

If specified, the item models will be checked for this property, and
swipeToDelete will be ignored on that item ifthe item model's
property is true

If true, list entries can be reordered by drag and drop

Function to create divider elements

Function to format divider

If false, list widget will not apply optimizations for fixed height lists

Initial value used for average height estimation

Max number of items to render at once; increase th is ifthe UI overruns
the list boundaries

Number of items to fetch ahead when loading new items

Widgets I 283

dragDatatype

deleted Property

nullitemTemplate

empty Template

onitemRendered

disabled

Mojo. Event. listChange
Mojo. Event. listTap
Mojo. Event. listAdd
Mojo. Event. listDelete
Mojo. Event. listReorder
Mojo. Event. filter

getlist()

open()

close()

setCount (integer)

Image View

String

String

String

String

Function

Boolean

Used for drag-and-drop reordering; if specified, will enable dragging
of items from one list to another of the same data type

Name of the item object property in which to store the deleted status
of an item

File path relative to app folderfortemplate for items that are rendered
before loading

File path relative to application folder for template for empty list

Called each time an item is rendered into the DOM with these
arguments

Default property that, when true, disables the widget

Get the List widget associated with this filter list

Open the filter field associated with this filter list

Close the filter field associated with this filter list

Set the number to be shown in the results bubble in the filter field

You can use an ImageView for displaying single images, but it is intended as a scrolling
viewer, flicking left and right through a series of images.

highResolutionload

noExtractFS

fslimi tZoom

onleftFunction

onRightFunction

Moj o. Event. imageViewChanged

Integer

Boolean

Boolean

Function

Function

Time to wait before switching photo to high res

Flag to prevent looking up a high res version

Flag to prevent or limit zooming

Called after a left scroll and transition

Called after a right scroll and transition

284 I Appendix B: Quick Reference-Developer Guide

Methods
getCurrentParams ()

manualSize(width, height)

leftUr !Provided (ur 1)

rightUr !Provided(url)

centerUr !Provided(ur 1)

Integer Picker

Return the current zoom level and focus [O, 1]

Manually size the widget

Set the image for the left scroll

Set the image for the right scroll

Setthe image for the center

The Integer Picker offers a selection between minimum and maximum integer values,
both of which are specified as properties.

Attribute properties
label

labelPlacement

model Property

min

max

padNumbers

Model properties
value

Events

Mojo:Event:pr:opertyc~ang~

List

Type

String

String

String

Integer

Integer

Boolean

Type

Integer

Description

Label displayed with the widget controls

Choices are:

Maj o. Widget. labelPlacement Left
Mojo. Widget. labelPlacementRight

Name of model property for integer value; defaults to 'value'

Minimum value of the widget

Maximum value of the widget

Add padding to single digit numbers or not

Description

Current value of the widget

List is the most common and possibly the most powerful Mojo widget. Objects are
rendered into list items using provided HTML templates, and may be variable height
and/or include other widgets.

Attribute. properties
listTemplate

item Template

additemlabel

formatters

items Property

Type

String

String

String

Function

String

Description

File path relative to app folder for container template

File path relative to app folder for item template

If defined, a special "add" item will be appended to the list and taps
on this will generate a Mojo. Event. listTap

Object functions to format list entries based on model properties

Model property for items list

Widgets I 285

itemsCallback

swipeToDelete

autoconfirmDelete

uniqueness Property

preventDeleteProperty

reorderable

dividerFunction

dividerTemplate

fixedHeightitems

ini tialAverageRowHeight

renderlimi t

lookahead

dragDatatype

deleted Property

nullitemTemplate

empty Template

onitemRendered

items

Moj o. Event. listChange
Mojo. Event.listTap
Moj o. Event. listAdd
Moj o. Event. listDelete
Mojo. Event. listReorder

Function

Boolean

String

String

String

Boolean

Function

Function

Boolean

Integer

Integer

Integer

String

String

String

String

Function

Array

focusltem(i temModel, focusSelector)

showAdditem(enable)

Items will be loaded as needed by calling this function

If true, list entries can be deleted with a swipe

If false, delete swipes will post a delete/undo button pair, otherwise
deletes will be made immediately after swiping

Name ofan item model property which can be used to uniquely identify
items; if specified, List will maintain a hash of swiped items instead
of setting a deleted property

If specified, the item models will be checked for this property, and
swipeToDelete will be ignored on that item if the item model's
property is true

If true, list entries can be reordered by drag and drop

Function to create divider elements

Function to format divider

If false, list widget will not apply optimizations for fixed height lists

Initial value used for average height estimation

Max number of items to render at once; increase th is if the UI overruns
the list boundaries

Number of items to fetch ahead when loading new items

Used for drag-and-drop reordering; if specified, will enable dragging
of items from one list to another of the same data type

Name of the item object property in which to store the deleted status
of an item

File path relative to app folderfortemplate for items that are rendered
before loading

File path relative to application folder for template for empty list

Called each time an item is rendered into the DOM with these
arguments

An array of objects to display in the list; required unless
itemsCallback property is set as an attributes property

Focus the item designated by the item model; optionally pass in the
focusSelector to tocus a specific element within the item

Show the "add item" in the list

286 I Appendix B: Quick Reference-Developer Guide

Methods
noticeUpdateditems(offset, i terns)

noticeAddeditems (offset, items)

noticeRemoveditems(offset, i terns)

getNodeByindex (index)

invalidate Items (offset, limit)

getloadeditemRange()

getMaxloadeditems ()

setini tialSize(length)

setlength (length)

set LengthAndinvalidate (length)

getlength()

revealitem(index, animate)

getitemByNode (node)

Causes the given items to be replaced and rerendered; items provided
past the current end of the list will cause the length to grow; must
pass an array

Inserts the given array of items into the list atthe given offset; iflist
items are dynamically loaded, this may cause some to be kicked out
of the cache; calling this API will not cause a property-change event
to be fired

Removes items from the list beginning at the given offset, and con
tinuing for limit items; if list items are dynamically loaded, this may
cause new ones to be requested; calling this API will not cause a
property-change event to be fired

Return top level node for the list item of the given index; returns
undefined if the item does not exist or is not currently rendered

Causes the given items to be reloaded (if currently loaded); if limit is
unspecified, causes all items after offset to be invalidated

Returns a hash with offset and limit properties indicating the range
of currently loaded item models (or items that have been requested);
this is sometimes used on the service side to optimize subscription data

Returns the maximum number of loaded items the list will maintain
in its local cache

Call to set the initial size of the list, or after resetting the list state by
calling modelChanged (); this function will set the limit on what
range of items may be requested, but subsequent changes to the list
size should be made through noticeAddeditems ()and fsno
ticeRemoveditems ();this function has no affect when the list
size!= 0

Call to set the overall length of the list; this function will set the range
of items that may be requested, but will generally not invalidate any
existing items or request any new ones; it may request new items
when the currently loaded items window is either notful I, orthe I ength
change causes the items window to move (the latter case can occur if
the length change causes the window to be "out of bounds", or if it
would ideally be positioned past the end of the list)

Behaves like setlength (),except that all currently loaded items
are invalidated; for lazily loaded lists, this API will result in a request
for a whole window of items

Returns the current length of the list

Attempts to scroll the scene to reveal the item with the given index;
may behave poorly when working with variable height list items that
are not currently loaded, since you can't accurately predictthe height
of the final rendered content

Returns the item model associated with the list item containing the
given node, if any; otherwise, returns undefined

Widgets I 287

List Selector
The List Selector enables the selection of one of many options, presented in a pop-up
list in which there is no practical limit to the number of options presented. This is
similar to the Submenu widget behavior.

model Property

disabledProperty

multi-line

label

label Placement

choices

value

disabled

choices

Password Field

String

String

Boolean

String

String

Array

Boolean

Boolean

Array

Name of model property for widget state

Name of model property for disabled state

lftrue, long labels will wrap to the next line instead of being truncated

Display label

Mojo. Widget. labelPlacementRight places label on right,
value on left (default);

Mojo. Widget. labelPlacement Left places label on left, value
on right

Array of selector descriptions, which must be in either the attributes
or model object; each entry is required to be:

{label: 'string', value: value}

There must be at least two entries, and the number of entries defines
the number of options presented in the widget

Current value of widget

Default property that, when true, disables the widget

Array of selector descriptions, which must be in either the attributes
or model object; each entry is required to be:

{label: 'string', value: value}

There must be at least two entries, and the number of entries defines
the number of options presented in the widget

A text field used for passwords or some other type of confidential information, the
Password Field provides many of the Text Field features, but masks the display. Any
entered text is displayed as a bullet or "•" character.

model Property Boolean Name of model property for widget value
hir:tTe)(t r ... ~:--

.Jlllll!:J
1-: ... : ... 11 .. .J:, .. -1 ,J .-+ .. : 1.,. ... +,.,,,J h,, ..,,..,..,J,.I .,.,.1.,,. if .,.,,... ... a;,..,..i
lt11l1a11y u1Jp1aycu .)lltlly, .lUtJ(JIOlll'CU uy lllVU\:1 VUIU\:. II .>uppm .. u

288 I Appendix B: Quick Reference-Developer Guide

Attribute properties
inputName

charsAllow

autoFocus

modi fierState

growWidth

autoResizeMax

enterSubmits

limit Resize

preventResize

holdToEnable

focusMode

changeOnKeyPress

max Length

requiresEnterKey

holdToEdit

Model properties
value

£vents
Mojo. Event. propertyChange

Methods
focus()

blur()

getValue()

setValue()

getCursorPosition ()

Type

String

Function

Boolean

String

Boolean

String

Boolean

Boolean

Boolean

Boolean

String

Boolean

Integer

Boolean

Boolean

Type

Boolean

Description

If supplied, the text area will have this DOM name so that when it is
serialized, the property can be easily pulled out

Function must return true to allow input character, or false if not
allowed

If true, field has focus on scene push

Initial state of modifier keys for this field; can be:
Mojo.Widget.numlockorMojo.Widget.capslock

Automatically grow field horizontally

Maximum width offield

If set, the Enter key will submit rather than newline; must be used
with multi-line

Limit height resize (scrolls text rather than grow field)

There will be no resizing in any dimension

If the text field is disabled, tapping and holding and releasing will
enable it; if disabled is not set, this is ignored

Replace or Insert Mode; choices are:

Mojo.Widget. focusSelectMode
Mojo.Widget. focusinsertMode
Maj o. Widget. focusAppendMode

If true, sends a property change event on every character change to a
field; otherwise only when field loses focus

Maximum character length offield; does notapplyto multi-line fields,
where it will be ignored

Required Enter key to submit; other navigation will not submit con
tents offield

Tap and hold to focus/edit; tap only will be ignored

Description

Plain-text value of the widget

Put focus on the input field

Remove focus from the input field

Get the plaintext value of the widget

Set the plaintext value of the widget

Returns an option with:

{selection Start: int, selectionEnd: int}

that describe the position of the cursor; if start is not equal to end,
there is text selected

Widgets J 289

setCursorPosi tion(start, end) Sets the cursor posi!i?n in the inp~tportion of the text field

Progress Bar
Progress Bar displays a narrow horizontal bar with an incremental internal bar to show
progress. Use a Progress Bar or Pill to show download progress, when loading from a
database, or anytime you initiate a long-running operation and have a sense of the
duration.

modelProperty String Name of model property for widget value

icon String CSS class for icon to display on the bar

iconPath String File path relative to application folder for icon

value Integer Value of the widget

title String Dynamic title to show on bar

image String File path relative to application folder for dynamic image to show on
bar

Mojo. Event. progressComplete

:Methi!ds:· ·
reset() Reset progress to 0

cancelProgress() _l~p~the progress and freeze bar display in current state

Progress Pill
Progress Pill displays a broad horizontal bar with an incremental pill to show progress.
Use a Progress Bar or Pill to show download progress, when loading from a database,
or anytime you initiate a long-running operation and have a sense of the duration.

model Property String Name of model property for widget value

title String Title to show on bar

image String File path relative to application folder for image to show on bar

icon String CSS class for icon to display on the bar

iconPath String File path relative to application folder for icon

value Integer Value of the widget

290 I Appendix B: Quick Reference-Developer Guide

Model properties
title

image

Events
Mojo. Event. progressiconTap
Mojo. Event. progressComplete

Methods
reset()

cancelProgress ()

Progress Slider

Type

String

String

Description

Dynamic title to show on bar

File path relative to application folder for dynamic image to show on
bar

Reset progress to 0

Stop the progress and freeze bar display in current state

For media or other applications in which you want to show progress as part of a tracking
slider, the Progress Slider is an ideal choice. Combining the Slider widget with the
Progress Pill, the behavior is fully integrated, but not all of the configuration options
are represented.

Jlttribllte properties
sliderProperty

progress Property

progress St art Property

minValue

maxValue

round

update!nterval

Model properties
value

Events
Mojo. Event. propertyChange
Mojo. Event. progressComplete

Methods
reset()

Radio Button

Type

String

String

Integer

Integer

Integer

Boolean

Integer

Type

Integer

Description

Name of model property for slider position value

Name of model property for progress position value

Starting position of progress bar

Starting value, or leftmost value on the slider

Ending value, or rightmost value on the slider

If true, will round the value to the nearest integer

If set >O, the widget will send events every update Interval
seconds

Description

Value of the widget

Reset prowess to O

The Radio Button presents each button as a labeled selection option in a horizontal
array, where only one option can be selected at a time.

Widgets I 291

model Property

disabled Property

choices

value

disabled

... ~ojo. Event: propertyChange

Rich Text Edit

String

String

Array

Boolean

Boolean

Name of model property for widget state

Name of model property for disabled state

Array of button descriptions; each entry is required to be:

{label: 'string', value: value}

The number of entries defines the number of buttons presented in the
widget

Current value of widget

Default property that, when true, disables the widget

There is a simple Rich Text Edit widget that behaves similar to a multi-line text field,
but in addition supports applying Bold, Italic, and Underline styles to arbitrary runs
of text within the field. To enable the styling, set the Application menu's
RichTextEdititems property to true.

None

value Boolean Current value of widget

None

Scroll er
The Scroller widget provides the scrolling behavior in Mojo. Scrollers can be applied
to any div content and set to one of six scrolling modes.

mode

snapElements

Moj o. Event. propertyChange

String

Array

Scrolling mode; one of free, vertical, horizontal, domi
nant,vertical-snap,orhorizontal-snap

Array of DOM elements used as snap points for horizontal or vertical
scrolling

292 I Appendix B: Quick Reference-Developer Guide

Methods
revealTop(newTop)

revealBottom()

reveal Element (Element)

scrollTo(x-coord, y-coord, animated,
suppressNoti fication)

getState()

setState(scrollState, animate)

adj ustBy(deltaX, deltaY)

scrollerSize

setMode (newMode)

getScrollPosi ti on()

setSnapindex(snapindex, animate)

Slider

Jumps the scroll to reveal the top of the specified object at the top of
the scroll area

Jumps the scroll to reveal the bottom of the content being scrolled

Jumps the scroll to reveal a specific DOM element

Jumps the scroll to the specified x- and y-coordinates; set animated
to true to animate the scroll, or if animated is false, set suppress
Notification to true to prevent notifications to event listeners

Returns the current scroll state for use in a future call to sets tate ()

Jumps the scroll to the value specified in scrollState; pass true
to animate the scroll

Adjusts the current scroll position by the given amount; safe to call
from scroll listeners while animating; does not cause listeners to be
notified of any changes

Returns the size of the scroller's view port in pixels:

{height: nnn, width :nnn}

Set the mode of the scroller, which controls which drag directions
causes scrolling; choices are free, dominant, horizontal, hor
izontal-snap,vertical,andvertical-snap

Get the current position of the scroll er; returns:

{left: nnn px, top: nnn px}

Sets the snap index for a snap scroll er and scrolls to the new position;
pass true to animate

The Slider presents a range of selection options in the form of a horizontal slider with
a control knob that can be dragged to the desired location.

Attribute properties
modelProperty

minValue

maxValue

round

updateinterval

Model pr11perties
value

Events

. M.cito:.E..1f.ent. e.r()eert~C_h~n..ge

Type

String

Integer

Integer

Boolean

Integer

Type

Integer

Description

Name of model property for widget value

Starting value, or leftmost value on the slider

Ending value, or rightmost value on the slider

If true, will round the value to the nearest integer

If set >0, the widget will send events every update Interval sec
onds

· Description

Value of the widget

Widgets I 293

Spinner
Use a Spinner to show that an activity is taking place. The framework uses a Spinner
as part of any activity button, and you'll see it used in the core applications. There are
two sizes: the large Spinner is 128 x 128 pixels, and the small Spinner is 32 x 32.

madelProperty

spinnerSize

superClass

startFrameCaunt

mainFrameCaunt

finalFrameCaunt

frameHeight

fps

spinning

.Eve6ts:
Maj a. Event. propertyChange

c~thq(Js'.>
start()

stop()

toggle()

Text Field

String

String

String

Integer

Integer

Integer

Integer

Integer

Boolean

Name of model property for widget state

Choices are:

Maja. Widget. spinnerlarge
Maj a. Widget. spinnerSmall

Specifies the CSS class name forthe background image with a custom
spinner

With a custom spinner, this is set to the number of frames forthe
preloop animation

With a custom spinner, this issettothe number of frames for the main
loop animation

With a custom spinner, this is set to the numberofframesforthe post
loop animation

Explicitly sets the height of the animation

Frames per second of the main loop animation

Spinner state; set to true if spinning

Start the spinner

Stop the spinner

.... ___ _ihange the~inner f~om S!~rtt~2~_cir!ro_m_stop !o_s~rt ___ _

The basic text widget that supports all general text requirements: single or multi-line
text entry, with common styles for labels, titles, headings, body text, line items, and
item details. The editing tools include basic entry and deletion, symbol and alternate
character sets, cursor movement, selection, cut/copy/paste, and auto text correction.

modelProperty

disabledProperty

hintText

Boolean

String

String

Name of model property for widget value

Name of model property for disabled state

Initially displayed string; supplanted by model value if supplied

294 I Appendix B: Quick Reference-Developer Guide

Attribute properties
inputName

charsAllow

autoFocus

modi fierState

growWidth

autoResizeMax

enterSubmi ts

limit Resize

preventResize

holdToEnable

focusMode

changeOnKeyPress

max length

requiresEnterKey

holdToEdit

emoticons

autoReplace

textCase

Model. properties
value

disabled

Events
Mojo. Event. propertyChange

Metho~s

focus()

Type

String

Function

Boolean

String

Boolean

String

Boolean

Boolean

Boolean

Boolean

String

Boolean

Integer

Boolean

Boolean

Boolean

Boolean

String

Type

Boolean

Boolean

Description

If supplied, the text area will have this DOM name so that when it is
serialized, the property can easily be pulled out

Function must return true to allow input character, or false if not
allowed

If true, field has focus on scene push

lnitialstateofmodifierkeysforthisfield;can be:Mojo. Widget. num
LockorMojo.Widget.capslock

Automatically grow field horizontally

Maximum width of field

If set, the Enter key will submit rather than newline; must be used
with multi-line

Limit height resize (scrolls text rather than grow field)

There will be no resizing in any dimension

if the text field is disabled, tapping and holding and releasing will
enable it; if disabled is not set, this is ignored

Replace or Insert Mode; choices are:

Maja. Widget. focusSelectMade
Maja. Widget. focusinsertMade
Maj a. Widget. focusAppendMade

If true, sends a property change event on every character change to a
field; otherwise only when field loses focus

Maximum character length offield; does not apply to multi-line fields,
where it will be ignored

Requires Enter key to submit; other navigation wi 11 not submit contents
Offield

Tap and hold to focus/edit; tap only will be ignored

Enable emoticons on this field

Whether to enable the Smart Text Engine services

Options are:

Maj a. Widget. steMadeSentenceCa se
Maj a. Widget. steMadeTitleCase
Maja. Widget. steMadelawerCase

Description

Value of the widget

Default property that when true, disables the widget

Put focus on the input field

Widgets I 295

blur()

getValue()

setValue(String)

getCursorPosition ()

setCursorPosi tion (start, end)

Time Picker

Remove focus from the input field

Get the plain-text value of the widget

Set the plain-text value of the widget

Returns an option with:

{selectionStart: int, selection End: int}

that describe the position of the cursor; if start is not equal to end,
there is text selected

Sets the cursor position in the inp~t po~ion of thetext field

The Time Picker enables selection of hours, minutes, and either A.M. or P.M. for time
selection. The picker will suppress the A.M./P.M. capsule if the 24-hour time format
is selected in the user preferences or by the locale.

label

labelPlacement

modelProperty

minuteinterval

time

t~ett1s'•
Maj o. Event. propertyChange

Toggle Button

String

String

String

Integer

Date

Label displayed with the widget controls

Choices are:

Mojo. Widget. labelPlacementleft
Mojo. Widget. labelPlacementRight

Name of model property for date object; defaults to 'time'

Interval between minute selections

Date object set to the widget value

The Toggle Button is another widget for displaying and controlling a binary state value.
As with the Check Box, the Toggle Button will switch between two states each time it
is tapped.

model Property String Name of model property for widget state

disabled Property String Name of model property for disabled state

trueValue String Value to set modelProperty when widget state is true
trueLabei String Label when widget state is true

falseValue String Value to set model Property when widget state is false

296 I Appendix B: Quick Reference-Developer Guide

Attribute properties Type Description
falselabel String Label when widget state is false

input Name String Identifier for the value of the check box; used when the widget is used
in HTML forms

Model properties Type Description
value Boolean Current value of widget

disabled Boolean Default property that, when true, disables the widget

Events

___lo1()1~E~ent.propertyChan~~ ________ _

Web View
To embed a contained web object, declare and instantiate a WebView widget. You can
use it render local markup or to load an external URL; as long as you can define the
source as a reachable URL, you can use a WebView to render that resource.

Attribute properties
virtualpageheight

virtualpagewidth

url

pageidenti fier

minFantSize

tapMargin

cacheAdapter

interragateClicks

shawClickedlink

Model properties

None

Events
Maj a. Event. webViewlaadStarted
Maj a. Event. webViewlaadProgress

Type

Integer

Integer

String

Function

Integer

Integer

Boolean

Boolean

Boolean

Maj a. Event. webViewlaadStapped
Maja. Event .webViewDawnlaadFinished
Maja. Event .webViewlinkClicked
Maj a. Event. webViewTi tleUr lChanged
Maja. Event. webViewTi tleChanged
Maj a. Event. webViewUr lChanged
Maj a. Event. webViewCreatePage
Maja. Event.webViewTapRejected

Description

The browser's virtual page height

The browser's virtual page width

The initial URL to display

The BrowserServer page identifier; this is used when the Browser
Server instructs an application to open a new URL

The minimum font size that the browser will display

The margin above the web view that is scrolled off the screen when a
new page is loaded

If true, cache this adapter, false if not, or undefined to not specify and
use the browser-adapter default; default is undefined

Use to call the host application for every hyperlink click via
Mojo.Event.webViewLinkClicked

Styles clicked links with grey background and border

Descrlptjon

Widgets I 297

;iX,;:,1i'.l-;Q~;~~i;:,~~:~?:ni?:~;:f ;,ti:&~ls;;::1,\;~1~l:i::~;J:1:Wi;;:;;:fil\'.?i:\l:,'.'~~~;3::~~;,r:i'.',~;,;;,r:,~~;:S:}l::I~'.~~~'.~1;r:~~W~iD;'.f,'.t:'1:~\~Y,i?;T5 :·.·.~:~ ... -::.:"c::,:J-: ;;·.·:,:c.::::.~\:':;::.·:··f ". <. ·: .. ·,~ .: :::· ;.::.:.:· .. :;:···.· , ·:~.:c~.,·:::; Y:7-'.:~. «:~~::/':~>'· ;: ::~ .. ,·,,~.::-.~---- ·<-<,:;·<

Mojo. Event. webViewScrollAndScaleChanged
Mojo. Event. webViewEditorFocused
Mojo. Event. webViewUpdateHistory
Maj o. Event. webViewSetMainDocumentError
Maj o. Event. webViewServerConnect
Maj o. Event. webViewServerDisconnect
Maj o. Event. webViewResourceHandoff
Mojo. Event .webViewFirstPaintComplete
Mojo. Event. webViewUr lRedirect
Mojo. Event .webViewModi fierTap
Maj o. Event. webViewMimeNotSupported
Maj o. Event. webViewMimeHandoff

setT opMargin (margin)

clearCache ()

clearCookies ()

deletelmage(image)

generateiconFromFile(src, dst, left,
top, right, bottom)

goBack()

goForward()

openURL(url)

reload Page()

resizelmage(src, dst, width, height)

getHistoryState (on Success)

setBlockPopups (enable)

setAcceptCookies (enable)

addUr lRedirect (ur lRe, redirect,
userData, type)

addSystemRedirects (skippAppid)

saveViewToFile(fname, left, top,
width, height)

setEnableJavaScript (enable)

stopload()

clearHistory()

setShowClickedLink(enable)

Set the top margin (in pixels)

Clear browser cache

Clear browser cookies

Delete the image file specified by the argument

Generate a 64 x 64 pixel icon from a portion of a source file; the output
icon will be given a drop shadow and sheen consistent with other
launcher icons

Go to the previous page in the user's browsing history

Go to the next page in the user's browsing history

Open the specified URL in the Web View

Reload the currently loaded page

Resize the input file to the specified width/height and write the new
image to the specified output file

Asynchronous; retrieves the current history state from the Browser
server; will call onSuccess with results

Set to true to block pop-ups

Set to false to disable cookies

Add a URL redirect; when the browser server navigates
to a URL matching ur lRe and redirect is true, it will not
navigate to that URL, and will instead send a
Mojo. Event. webViewUrlRedirect event

Read the command resource handler table and send down redirect
handler commands to the browser server

Save the specified view frame (in pixels) to the specified file

Set to false to disable JavaScript

Stop loading the current page

Clear browser history

Set to true to enable launch of clicked links
···

298 I Appendix B: Quick Reference-Developer Guide

Dialogs
This section includes the three Mojo dialog APls:

• Error dialog

• Alert dialog

• Custom dialog

Each entry includes a brief description, repeating some of the information from Chap
ter 4, followed by an enumeration of the arguments. Dialogs are accessed through a
direct API so the format for this entry will be structured as an API entry.

Mojo.Controller.errorDialog()
This API is used to post error messages in a modal dialog box with a fixed title of "Error,"
a customizable message, and a confirmation button. The Error dialog must be used
only with errors, since you can't change the title.

; : .Arg111nents
message

window

Type

String

Element

Description

Displayed message in a modal dialog

Optional argument to specify the window to post the alert within;
. re9uired in multistage applications

Mojo.Control ler .SceneControl ler .show AlertDia log()
You can display a short message using an Alert dialog, with one or more HTML buttons
presenting the selection options. This is the best option if you have either a nonerror
message for the user or want to present options in the form of button selections.

·Arguments Type
onChoose Function

message String

title String

preventCancel Boolean
choices Array

allHTMLMessage Boolean

··Description

Handler called when user makes a choice and the dialog is dismissed

Displayed message in a modal dialog

Title of the dialog box

If true, back gesture or other alerts will not cancel the dialog box

Array of button descriptions; each entry is required to be:

{label: 'string', value: value, type: 'string',
allowHTMLMessage: boolean}

The number of entries defines the number of buttons presented in the
dialog box; the type property is set to one of the button classes (e.g.,
primary, secondary, affirmative, negative); allowHTMLMessage set to
allow insertion of HTML if safe

If true, the message string will not have HTML escaped

Dialogs I 299

Mojo.Controller .SceneController .showDialog()
The showDialog function can display any type of content to the user in the form of a
modal dialog box. You can put anything into a dialog box that you'd put into a scene,
meaning almost any web content or Mojo UI content.

template

assistant

preventCancel

Menus

String

Object

Boolean

File path to HTML template containing content for the dialog box;
rendered with properties from this model object

The dialog assistant responsible for running the dialog box, which
must implement methods (setup, activate, deactivate, cleanup, and
handleCommand)

___ l!~r~~.~~-c~9~~t~r-~-~E~!~~~~!e_~~~ill~~!~~-~~l!~~~~al~9~?~

This section summarizes the four menu types:

• Application menu

• Command menu

• Viewmenu

• Submenu

The three menu types are structured like the widgets in the previous section. Each entry
includes a brief description, repeating some of the information from Chapter 4, fol
lowed by an enumeration of the widget's attribute and model properties, as well as
relevant events. Unlike the other menu types, Submenu is accessed through a direct
API, so the format for this entry will be structured as an API entry.

AppMenu
The Application menu appears in the upper-left corner of the screen when the user taps
the left side of the status bar. It includes some system-defined and some application
defined actions, and is intended to have an application-wide scope for the most part.

omi tDefaul tltems

richTextEdititems

label

vi:;iblc

Boolean

Boolean

String

Buuiedn

If true, default menu items will not be added to this menu

If true, the Edit menu will also include Bold/Italics/Underline

Currently not supported

Curreni vbiuiliiy uf ihb 111ef1u

300 I Appendix B: Quick Reference-Developer Guide

Model properties

Items

label

icon

icon Path

width

items

toggleCmd

command

disabled

submenu

template

checkEnabled

Events
Mojo. Event.command
Mojo. Event. commandEnable

Command Menu

Type

Object

String

String

String

Integer

Boolean

Boolean

Boolean

Boolean

Boolean

String

Boolean

Description

Object containing items for this menu, structured as:

User-visible label for this item, not rendered for groups

CSS class for icon to display in this item

Path to image to display in menu item, relative to application's
directory

Calculated based on item's width; specifies the width in pixels of this
menu item; overrides default calculations; ignored for groups

If this is specified, this item is a group that visually ties the child items
together

Only used when items is specified; specify this property to make this
group a toggle group; this string is the command of currently selected
choice item in this group, and this property is modified by the widget
when a different choice is made

Specify to make this item a choice; it will then respond to a user tap
by sending a Mojo. Event. command through the commander
chain with this string as the command property

Menu choice is disabled when this is true; only used for items that also
specify command

Specify to make this item a submenu item; it will then respond to a
user tap by displaying the named menu as a pop-up submenu

Path to HTML template for custom contentto be inserted instead of a
standard menu item; the template is rendered using this item model
object for property substitution

If set to true, a Mojo. Event. commandEnable event will be sent
through the commander chain each time this menu item is displayed
or invoked via keyboard shortcut

The Command menu items are presented at the bottom of the screen. Items include
variable-sized buttons that can be combined into groups, and in a horizontal layout
from left-to-right.

Attribute properties
spacerHeight

menuClass

Type

Boolean

Boolean

Description

If specified, the spacer DIV associated with this menu will bethe given
height in pixels

Alternate CSS style; default is palm-default

Menus I 301

label

visible

items

label

icon

icon Path

width

items

toggleCmd

command

disabled

submenu

template

checkEnabled

Mojo. Event. command
MoJ~: Event. commandEnable

View Menu

String

Boolean

Object

String

String

String

Integer

Boolean

Boolean

Boolean

Boolean

Boolean

String

Boolean

Currently not supported

Current visibility of this menu

Object containing items for this menu, structured as:

User-visible label for this item, not rendered for groups

CSS class for icon to display in this item

Path to image to display in menu item, relative to application's direc
tory

Calculated based on item's width; specifies the width in pixels of this
menu item; overrides default calculations; ignored for groups

If this is specified, this item is a group that visually ties the child items
together

Only used when items is specified; specify this property to make this
group a toggle group; this string is the command of currently selected
choice item in this group, and this property is modified by the widget
when a different choice is made

Specify to make this item a choice; it will then respond to a user tap
by sending a Mojo. Event. command through the commander
chain with this string as the command property

Menu choice is disabled when this is true; only used for items which
also specify command

Specify to make this item a submenu item; it will then respond to a
user tap by displaying the named menu as a pop-up submenu

Path to HTML template for custom content to be inserted instead of a
standard menu item; the template is rendered using this item model
object for property substitution

If settotrue, a Mojo. Event. command Enable event will be sent
through the commander chain each time this menu item is displayed
or invoked via keyboard shortcut

The View menu presents items as variable-sized buttons, either singly or in groups
across the top of the scene. The items are rendered in a horizontal sequence starting
from the left of the screen to the right.

302 I Appendix B: Quick Reference-Developer Guide

Attribute ~r-O~erties
spacerHeight

menuClass

Model properties
label

visible

items

label

icon

icon Path

width

items

toggleCmd

command

disabled

submenu

template

checkEnabled

Events
Moj o. Event. command
Mojo. Event. commandEnable

Submenu

Type

Boolean

Boolean

Type

String

Boolean

Object

String

String

String

Integer

Boolean

Boolean

Boolean

Boolean

Boolean

String

Boolean

Description

If specified, the spacer DIV associated with this menu will be the given
height in pixels

Alternate CSS style; default is palm-default

Description

Currently not supported

Current visibility of this menu

Object containing items for this menu, structured as:

User visible label for this item, not rendered for groups

CSS class for icon to display in this item

Path to image to display in menu item, relative to application's
directory

Calculated based on item's width; specifies the width in pixels of this
menu item; overrides default calculations; ignored for groups

If this is specified, this item is a group that visually ties the child items
together

Only used when items is specified; specify this property to make this
group a toggle group; this string is the command of currently selected
choice item in this group, and this property is modified by the widget
when a different choice is made

Specify to make this item a choice; it will then respond to a user tap
by sending a Mojo. Event. command through the commander
chain with this string as the command property

Menu choice is disabled when this is true; only used for items which
also specify command

Specify to make this item a submenu item; it will then respond to a
user tap by displaying the named menu as a pop-up submenu

Path to HTML template for custom content to be inserted instead of a
standard menu item; the template is rendered using this item model
object for property substitution

If set to true, a Mojo. Event. command Enable event will be sent
through the commander chain each time this menu item is displayed
or invoked via keyboard shortcut

Mojo.Controller.SceneController.popupSubmenu()

Menus I 303

Pop-up submenus can offer a transient list of choices to the user, typically off of another
menu entry or from a DOM element in the scene.

onChoose

placeNear

toggleCmd

popupClass

scrimClass

manualPlacement

items

label

command

secondary Icon

secondaryiconPath

Function

Element

Boolean

String

String

Boolean

Array

String

String

String

Called when user makes a choice and the pop-up is dismissed

Used to position the pop-up menu near the triggering element

Causes the appropriate item to appear with a checkmark; supported
in top-level model for pop-ups

CSS class for the pop-up menu, referenced from the HTML templates

CSS class forthe pop-up scrim; defaults to submenu-popup

If true, pop-up menu will not be placed automatically (centered, or
near placeNear element)

Array of choices; each choice is an object with the following properties:

Display name of choice

Command string passed to onChoose handler when selected

CSS class for a secondary icon to display, generally used for some kind
of status, and appearing to the left of the menu item

String Just like icon Path, but for secondaryicon

chosen ______ B_o_ol_ea_n ___ St~yle.s the item as the s_elected item in the grou~p __ _

Storage
This section describes the Cookie and Depot objects and methods. Each section in
cludes a brief description, repeating some of the information from Chapter 6, followed
by an enumeration of each object's methods with their arguments and return values.
Both storage objects are accessed through a direct API, so the format for this entry will
be structured as an API entry.

If you'd like more detailed information on the HTML 5 Database object, refer to the
specification athttp://dev.w3.org/html5/webstorage/#databases.

Mojo.Model.Cookie()
Mojo cookies are technically related to browser cookies, but with an object interface
to simplify use by webOS applications. Mojo cookies typically store small amounts of
data that will be used to preserve application state and related information, such as
preference settings.

Calling the constructor will open the named cookie if it already exists, or if it doesn't
exist, will create it.

304 I Appendix B: Quick Reference-Developer Guide

Constructor
new Moj o. Model. Cookie (cookieName, optionalDocument)

.··Arguments
cookieName

optionalDocument

·Methods
get()

Type

String

Object

put (obj ectT oStore, expirationDate)

remove()

Mojo.Depot()

Description

Name for the cookie; has an application scope so uniqueness across
applications is not a requirement

Document element to store cookie; defaults to current document

Returns the object stored in this cookie, or undefined ifthe cookie
doesn't exist

Updates the value of th is cookie with the passed objectwith an optiona I
date object to set an expiration date; ifno expiration date is set, the
cookie will not expire

Deletes the cookie

The Depot object is a wrapper on the HTML 5 APTs for simple object storage and
retrieval. You can store up to 1 MB of data in a depot by default. Mojo provides by a
few simple functions that wrap the HTML 5 APls to create, read, update, or delete a
database.

Calling the constructor will open the named depot if it already exists, or if it doesn't
exist, will create it.

:•·:·Co11structor
new Mojo. Depot (options, onSuccess, on Failure)

Arguments
options

name

version

displayName

estimatedSize

replace

on Success

on Failure

.Me~liruls.
add(key, objectToStore,
on Success, on Failure)

Type·

Object

String

Integer

String

Integer

Boolean

Function

Function

Descrlptlo11

Options for opening or creating a depot, structured as:

Name used to identify the underlying database; has an application
scope; use 'ext: ' prefix to create Depot in the /media partition

Version number used for the underlying database

Not currently supported; for future use

Estimated size in bytes; used to assist framework in managing
databases

If true, will replace the existing database if it exists; defaults to false

Callback function that is called ifthe depot is successfully opened or
created

Callback function that is called with an error string if an error occurs

Function to add an object, obj ectT oStore, identified by a key

Storage I 305

get (key, onSuccess,
on Failure)

discard(key, onSuccess,
on Failure)

Gets the object identified by the key and returned as the single ar
gument to the on Success function

Removes the depot object associated with the key

removeAll (onSuccess, Removes everything in the depot
-··-.?~.~.~.~.~~.:r::.I!).,_,,,_,,_,,,_,,_,,_,,_,,,_ ········-···-··-··-··-··-····-····-··-··-···-·-···-······-·-···-·-···-······-··-··-···-·-···-·······-··-··-·-··-····-···-··-···-"-·············-··-······-···-·--··-· .. -.. ,_ .. _ .. ,,,,_, ···-.. -.... ·-··-···-··-.. -···· .. ·-.. -... -.. ,_ .. _ ,, .. ,_.,,.,, ,_ .. ,_,,,_, .. ,,,_,,,_ .. _,_ .. ,_,

Services
This section describes the available application, device, and cloud service methods.
Each service is briefly described, repeating some of the information from Chapters 8
and 9, with a listing of the service's available methods, arguments, and responses.

All services are accessed through:

Mojo.Service.Request(serviceName, {method:methodName,
parameters:{}, onSuccess:{}, onFailure:{}})

Each service entry includes:

• The serviceName in the form of a string such as 'palm://com.palm.name'

• A description of each method, with the methodName and parameters properties

• The contents of the response object, which is provided as an argument in the call
backs to either the onSuccess or on Failure functions

Accounts
palm://com.palm.accounts/crud

The Accounts service provides an interface for interacting with the accounts system.
To use the Synergy applications, you must provide an account ID as a parameter; this
service provides access to those IDs.

Many of the methods will use some common objects.

username

domain

accountld

icons

data Types

String

String

String

Object

Object

Login credentials

The account source

The account reference for use in the Synergy applications

Includes largeicon and smallicon properties whose values are
file paths to the appropriate account icons

A hash of strings indicating which ~pp!katilms app!y to this acrnunt,
either "CONTACTS" or "CALENDAR"

306 I Appendix B: Quick Reference-Developer Guide

Account

Properties
isDataReadOnly

Method: listAccounts

Type

Boolean

Description

If true, data with this account is read-only

Lists accounts created by this application.

Parameters Type Description

None

Response
return Value

list

errorCode

error Text

Method: createAccount

Creates an account.

Parameters
account

Response
returnValue

accountid

errorCode

errorText

Method: getAccount

Type

Boolean

Array

Integer

String

Type

Object

Type

Boolean

String

Integer

String

Gets the details of an account.

Parameters
accountid

Response
returnValue

account

Type

String

Type

Boolean

Object

Description

If true, the account was successfully created; otherwise, there is an
error and the account was not created

List of account objects

lfreturnValue is false, the errorCode provides the errornumber

An error message; only provided with returnValue set to false

Description

Account object specifying account data

Description

If true, the account was successfully created; otherwise, there is an
error and the account was not created

The account reference for use accessing the account or for services that
are based on the account

lfreturnValue is false, the errorCode provides the errornumber

An error message; only provided with returnValue set to false

Description

The account reference for use accessing the account or for services that
are based on the account

Description

If true, the account was successfully created; otherwise, there is an
error and the account was not created

Account object specifying account data

Services I 307

errorCode Integer

-===~~-,-=~~- -- ------ ------ -- S.!r!n.9- __ _

lfreturnValue is false, the errorCode provides the error number

~ri_-~rr.?r. rn.~~~2~-~rl_l¥_pr~y!~~~\\'i_t~_!i:!~!".Y~~~i:-~~!t~_!~ls_~ _ __

Method: updateAccount

Updates an account with revised data type, icons, or a change to read/write permis
sions.

account!d

displayName

icons

isDataReadOnly

returnValue

accountid

errorCode

errorText

Method: deleteAccount

String

String

Object

Boolean

Boolean

String

The account reference for use accessing the account or for services that
are based on the account

The displayable account name

Includes large Icon and smallicon properties whose values are
file paths to the appropriate account icons

If true, data with this account is read-only

If true, the account was successfully created; otherwise, there is an
error and the account was not created

The account reference for use accessing the account or for services that
are based on the account

Integer lfreturnValue is false, the errorCode provides the errornumber

______ 5-!t.iri_9 ________ ~ri_~r.r.?r_rn.~-s~~9~;~n.l~pr~~i~~~-\\'i!~!~!~!".Y~~~i:~~t_t~fa_I~~

Deletes account data for one or more data types.

account!d

data Types

return Value

data Types

errorCode

errorText

String

Object

Boolean

Object

Integer

The account reference for use accessing the account or for services that
are based on the account

A hash of strings indicating which applications apply to this account,
either "CONTACTS" or "CALENDAR"

If true, the account was successfully created; otherwise there is an
error and the account was not created

A hash of strings indicating which data types were deleted

If returnVa lue is false, the errorCode provides the error number

308 I Appendix B: Quick Reference-Developer Guide

Alarms
palm://com.palm.power/timeout

The Alarm service is based on the device's real-time clock (RTC). Alarms are intended
to wake applications while minimized, maximized, or to drive polling for Dashboard
applications.

Method: set

Sets an alarm to wake up the application.

Parameters
at

in

uri

wakeup

par ams

.••.·Response·
returnValue

key

Method: clear

Type

String

String

String

Boolean

Object

Boolean

String

Clears a previously set alarm.

Parameters
key

·Response
returnValue

key

Type

String

Boolean

String

Description

Create a calendar-based alarm in GMT; of the form: 'mm/dd/yyyy
hh: mm: ss ';either at or in is required

Create a relative alarm; of the form: 'hh :mm: ss ',with a minimum
alarm of five minutes

URI of serviceName/methodName to be called when alarm fires

Wake up the device from sleep when setto true; set to false by default

Parameter object to be sent along with service call; the contents are
dependent on the service method defined by the uri parameter

Description

lftrue, the alarm was successfully set; otherwise, there is an error and
the alarm was not set

The key provided in the method call

Description

The key provided in the method call

Description

If true, the alarm was successfully set; otherwise, there is an error and
the alarm was not set

The key provided in the method call

An error message; only provided with returnValue set to false
..............................• ,.................................

Application Manager
palm://com.palm.applicationManager

Services I 309

The Application Manager service provides functions related to finding and launching
applications. Applications launched through the Application Manager will open and
maximize a new window for the targeted application while minimizing the current
application window. This is the general case of specific application services. Currently
supported are:

• Audio

• Browser

• Email

• Maps

• Messaging

• Phone

• Photos

• Video

For details on calling individual services, refer to the specific service in this section.

Method: open

The Application Manager will use the content type to find the appropriate application
to use for that content. Refer to Tables B-1, B-2, and B-3 for the supported content types.

target String

None

Table B-1. Supported file types

htm text/html

html text/html

pdf application/pdf

txt application/txt

doc application/doc

doc application/msword

xis appld":"com.palm.app.docviewer

xis appld":"com.palm.app.docviewer

xis application/vnd.ms-excel

A standard URI format of the form: command: //url, where com
mand is one of the supported commands, and the ur 1 is an argument
string in conventional URL notation; if the command is a webOS ap
plication, the url argument string will be specified by that application

310 I Appendix B: Quick Reference-Developer Guide

Extension Mime type

xis application/x-excel

xis application/x-msexcel

ppt application/ppt

ppt application/mspowerpoint

ppt application/powerpoint

ppt application/vnd.ms-powerpoint

ppt application/x-mspowerpoint

Table B-2. Supported video formats

Extension Mime type

mp4 video/mp4-generic

mp4 video/quicktime

mp4 video/mp4

mp4 video/mpeg4

m4v video/mp4-generic

m4v video/quicktime

m4v video/mp4

m4v video/mpeg4

3gp video/3gp

3gpp video/3gp

3g2 video/3gpp

3gpp2 video/3gpp

~dp application/sdp

Table B-3. Supported audio formats

.··Extension Mime type

3gp audio/3gpp

3gpp audio/3gpp

3ga audio/3gpp

3gp audio/3ga

3gpp audio/3ga

3ga audio/3ga

3g2 audio/3gpp2

3gp2 audio/3gpp2

sdp audio/amr

Services I 311

amr audio/x-amr

mp3 audio/mpa

mp3 audio/mp3

mp3 audio/x-mp3

mp3 audio/x-mpg

mp3 audio/mpeg

mp3 audio/mpeg3

mp3 audio/mpg3

mp3 audio/mpg

mp4 audio/mp4

m4a audio/mp4

m4a audio/m4a

aac audio/aac

aac audio/x-aac

aac audio/mpeg

aac audio/mp4a-latm

wav audio/wav

pis audio/x-scpls

m3u audio/mpegurl

m3u audio/x-111pe9url

Method: launch

This method will launch a specific application and pass in parameters in the form that
the application has specified.

id

params

None

Audio

String

Object

The application ID, defining the intended application

JSON object containing the parameters for the target application and
specified by the target application

palm://com.palm.applicationManager

The Audio application can be launched through the Application Manager service.

312 I Appendix B: Quick Reference-Developer Guide

Method: launch

Launches the Audio application to play or stream the file located at the target URI,
downloading it first if not already on the device. If the URI is not specified, it will just
launch the audio player to its normal starting scene.

Parameters Type Description
id String Setto 'com.palm.app.streamingmusicplayer'

params Object Includes a single property:

target String URL of the form rtsp://audio-fi/e, where audio-file is a well-formed
URI targeting an audio file encoded in a supported video format

Response Type Description

None

Calendar
palm://com.palm.calendar/crud

The Calendar API provides programmatic access to the Calendar application. It allows
you to create, read, update, delete, and list calendars, events, and attendees. To use
this API you must have an account created via the Accounts APL An account has many
calendars, a calendar has many events, and an event has many attendees.

Many of the APis will use the calendar or event objects as input or output argument.

Calendar

Properties
calendar Id

name

externalid

Event

Properties
subject

startTimestamp

endTimestamp

allDay

note

location

alarm

Type

String

String

String

Type

String

String

String

Boolean

String

String

String

Description

Immutable unique identifier for this calendar

Display name for this calendar

External ID for this calendar

Description

Title of the event

Event start time (in milliseconds UTC)

Event end time (in milliseconds UT()

True if all-day event

Optional note text

Location of the event

ISO 8601 duration format or none, all lowercase

Services I 313

rrule String RFC 2445 recurrence string, may only include RRULE, EXRULE, RDATE,
or EXDATE

rruleTZ String rrule timezone object; this object is mandatory if an rrule is
specified

endValidity String The end timestamp for nonrecurring events; for recurring events, the
end timestamp of last occurrence or 0 ifit repeats forever

attendees Object Event start time (in milliseconds UTC)

externalld String An externalld reference to this event and parented
parentld String This is an exception that needs to be linked to a parent recurring series

originalStartTimestamp Integer The original start timestamp of this event in the parent series

On methods that accept a calendarid as an input argument
II• (getCalendar, updateCalendar, and deleteCalendar), you can alternately
.,.~,' '4'

~-~•.,.~.: provide an externalld and an accountid.

Method: createCalendar

Creates a new calendar.

accountld

calendar

returnValue

errorCode

errorText

calendar!d

Method: getCalendar

String

Object

Boolean

Integer

String

String

Retrieves the named calendar.

calendar Id String

returnValue Boolean

The account reference for use in the Synergy applications

Specify the name and optionally the externalld

If true, the account was successfully created; otherwise, there is an
error and the account was not created

lfreturnValue is false, the errorCode provides the error number

An error message; only provided with returnValue set to false

Immutable unique identifier for this calendar

Immutable unique identifierfor this calendar

If true, the account was successfully created; otherwise, there is an
error and the account was not created

314 I Appendix B: Quick Reference-Developer Guide

Response
errorCode

error Text

calendar

Type

Integer

String

O~ject

Method: updateCalendar

Updates the named calendar.

Parameters
calendar

Response
return Value

errorCode

error Text

Type

Object

Type

Boolean

Integer

String

Method: deleteCalendar

Deletes the named calendar.

· ·Parameters
calendar Id

.·Response
errorCode

error Text

Method: listCalendars

String

Integer

String

Description

lfreturnVa lue is false, the errorCode provides the error number

An error message; only provided with returnValue set to false

Specify t~e n.a.111e .. an~. optio~a.Uy t~e.~.xte·~·~·~·~I d

Description

Specify the name and optionally the externalid

Description

If true, the account was successfully created; otherwise, there is an
error and the account was not created

lfreturnValue is false, the errorCode providestheerrornumber

Anerror111essage; onlypr?yided with returnValue set to false

Description ··.

Immutable unique identifier for this calendar

De.SC:riptlon

lfreturnValue is false, the errorCode provides the errornumber

.. ~~ error111essage; onlyprovidedwith ret~rnValue set to false

Lists all calendars created by the calling application; you will see only the calendars
that you have created.

· Parameters
accountid

errorCode

error Text

calendars

Method: createEvent

Type

String

Integer

String

Description

The account reference for use in the Synergy applications

lfreturnValue is false, the errorCode providestheerrornumber

An error message; only provided with returnValue set to false

Adds the provided event to the named calendar.

Services I 31 5

calendar Id

event

trackChanges

returnValue

errorCode

errorText

eventid

Method: getEvent

String

Object

Boolean

Boolean

Integer

String

Immutable unique identifier for this calendar

Details of the calendar event

Marks this change so that it's tracked, and getChanges will include
this record ID in its response; defaults to false

If true, the account was successfully created; otherwise, there is an
error and the account was not created

lfreturnVa lue is false, the errorCode provides the error number

An error message; only provided with returnValue set to false

Immutable identifier for this event

Retrieves the details of the named event.

eventld

returnValue

errorCode

errorText

event

Method: updateEvent

String

Boolean

Integer

String

Immutable unique identifier forth is event

If true, the account was successfully created; otherwise, there is an
error and the account was not created

lfreturnVa lue is false, the errorCode provides the errornumber

An error message; only provided with returnValue set to false

Details of the calendar event

Updates the event details of the named event.

event

trackChanges

returnValue

errorCode

error Text

Object

Boolean

Boolean

Integer

Details of the calendar event

Marks this change so that it's tracked, and get Changes will include
this record ID in its response; defaults to false

If true, the account was successfully created; otherwise, there is an
error and the account was not created

If return Value is false, the errorCode provides the error number

An error with returnValue set to false

316 I Appendix B: Quick Reference-Developer Guide

Method: deleteEvent

Deletes the named event.

Parameters
event!d

trackChanges

Response
return Value

errorCode

Method: listEvents

Type

String

Boolean

Type

Boolean

Integer

Description

Immutable unique identifier for this event

Marks this change so that it's tracked, and getChanges will include
this record ID in its response; defaults to false

Description

If true, the account was successfully created; otherwise, there is an
error and the account was not created

If return Value is false, the errorCode provides the error number

An errormessage;onlyprovided with return Value set to false

Lists all events created by the calling application; you will only see events in calendars
that you have created.

: :Parameters ··•
calendar Id

startTimestamp

endTimestamp

returnValue

errorCode

errorText

events

Method: startTracking

rype

String

String

String

.. Type

Boolean

Integer

String

Description

Immutable unique identifier for this calendar

Start of search range (in milliseconds UT()

End of search range (in milliseconds UTC)

· Description

If true, the account was successfully created; otherwise, there is an
error and the account was not created

lfreturnValue is false, theerrorCode providestheerrornumber

An error message; only provided with returnValue set to false

Array of ~vent obj~cts t~at fitthe search criteria

Enables change tracking for an account. After this is called, all user-initiated changes
to records belonging to this account will be returned by getChanges. Change tracking
is incremental, and changes are forgotten each time doneWithChanges is called.

: .. Parameters:• ..
account!d

tracker Id

Typ1t.:

String

String

:• Description

The account reference for use in the Synergy applications

A client-chosen handle if multiple independent change trackers are
needed per account

Services I 317

returnValue

errorCode

Method: getChanges

Boolean

Integer

If true, the account was successfully created; otherwise, there is an
error and the account was not created

lfreturnValue is false, the errorCode provides the error number

Gets a list of calendar and event IDs for records in an account that have been changed
or deleted by the user since the last time doneWithChanges was called.

accountid String The account reference for use in the Synergy applications
trackerld String A client-chosen handle if multiple independent change trackers are

needed per account

returnValue Boolean If true, the account was successfully created; otherwise, there is an
error and the account was not created

errorCode Integer lfreturnValue is false, the errorCode provides the errornumber

error Text String An error message; only provided with returnValue set to false
token String A string to be passed to doneWithChanges after processing of this

change set is complete
calendar Object Includes changed, an array of changed calendar objects (calen

darid only), and deleted, an array of deleted calendar objects
(calendarid and externalid)

events Object Includes changed, an array of changed event objects (eventid only),
and deleted, an array of deleted event objects (eventid and

Method: doneWithChanges

Forgets all changes for an account. Future calls to getChanges will return only changes
from this point forward.

accountid

tracker Id

token

String

String

String

The account reference for use in the Synergy applications

A client-chosen handle if multiple independent change trackers are
needed per account

A string to be passed to doneWi thChanges after processing of this
change set is complete

318 I Appendix B: Quick Reference-Developer Guide

Response
returnValue

errorCode

error Text

Connection Manager

Type

Boolean

Integer

String

Description

If true, the account was successfully created; otherwise, there is an
error and the account was not created

lfreturnValue is false, theerrorCode providestheerrornumber

An error message; only provided with returnValue set to false

palm://com.palm.connectionmanager

Use the Connection Manager's getStatus method to get updates on the device con
nection status.

Method: getStatus

Gets connections status and optionally subscribes to connection notifications.

Parameters
subscribe

Response
returnValue

isinternetConnectionAvailable

wifi

state

ipAddress

ssid

bssid

wan

state

ipAddress

network

btpan

state

ipAddress

panUser

errorCode

error Text

Type

Boolean

Type

Boolean

Boolean

Object

String

String

String

String

Object

String

String

String

Object

String

String

String

Integer

String

Description

Set to true for subscriptions, default is false

Description

If true, the status data was returned and the subscription was set if
requested

If true, a data connection is available; could be through any of the
transports

An object with the WiFi status properties:

Set to either 'connected' or 'disconnected'

WiFi IP address

The SSID of the currently connected access point

The BSSID of the currently connected access point

An object with the WAN status properties:

Set to either 'connected' or 'disconnected'

WAN IP address

Setto 'unknown', 'unsusable', 'gprs', 'edge', 'umts',
'hsdpa', '1x', 'evdo'

An object with the Bluetooth PAN status properties:

Set to either' connected' or' disconnected'

Bluetooth IP address

Set to the name of the Bluetooth PAN client connected to the device

If return Value is false, the errorCode provides the error number

An error message; only provided with returnValue set to false

Services I 319

Contacts
palm://com.palm.contacts/crud

The Contacts API provides programmatic access to the Contacts application. It allows
you to create, read, update, delete, and list contacts entries. To use this API you must
have an account created via the Accounts APL

Many of the APis will use the contacts or contactslice objects as input or output
arguments.

id String Immutable unique identifier for this Contact record

firstName String

lastName String

middleName String

displayText String

prefix String

suffix String

companyName String

job Title String

pictureloc String File path to picture location; 50 x 50 pixels rough size

picturelocSquare String File path to picture location; 50 x 50 pixels rough size, but guaranteed
to be square

picturelocBig String File path to picture location; a full size image

isAvatarloc String The original start timestamp of this event in the parent series

birthday String YYYYMMDD format

anniversary String YYYYMMDD format

nickname String

spouse String

children String

notes String

phoneNumbers Array Array of phone number strings

emailAddresses Array Array of email address strings

imNames Array Array of IM names strings

addresses Array Array of physical address strings

urls Array Array of urls strings

customFields Array Array of custom field strings

320 I Appendix B: Quick Reference-Developer Guide

Contact
_ ,J>ropertil!S

listPic

incomingPic

extraDetails

"i'~ontact Stice

;fl'.ll~eS•.
id

firstName

lastName

middleName

display Text

prefix

suffix

nickname

companyName

pictureloc

String

String

String

Type

String

String

String

String

String

String

String

String

String

String

Description

Input only; the local file path of the picture to use as this contact's
photo in lists; should be square, roughly 50 x 50 pixels

Input only; the local file path of the picture to use as this contact's high
quality photo

Generic overflow field for any metadata the third-party application
______ wants to stor~('Nill not~edispl~y~di~t~eS~~!~r:t:~~ppli~~ti~~)

_ Description

Immutable unique identifier for this Contact record

File path to picture location; 50 x 50 pixels rough size.

pictureLocSquare String File path to picture location; 50 x 50 pixels rough size, but guaranteed
_________________________ ___________ _ __________ t~ be_s_9uar~ _____ _ __________ _

""'· [fil On methods that accept an id as an input argument (get, update, and
delete), you can alternately provide an externalid and an account!d.

:· ,•

Method: createContact

Adds the provided record to contacts.

-;~tatii~~rf•-•t?X'
accountld

contact

external!d

trackChanges

: 'Tjpii

String

Object

String

Boolean

Immutable unique identifier for this account

The contact to save

External ID for this contact record

Marks this change so that it's tracked, and getChanges will include
this record ID in its response; defaults to false

Services I 321

returnValue

errorCode

error Text

id

Method: getContact

Boolean

Integer

String

If true, the account was successfully created; otherwise, there is an
error and the account was not created

lfreturnValue is false, the errorCode provides the error number

An error message; only provided with return Value set to false

Immutable identifier for this contact record

Retrieves the details of the named contact.

id

returnValue

errorCode

error Text

contact

Method: updateContact

String

Boolean

Integer

String

Immutable unique identifier for this contact

If true, the account was successfully created; otherwise, there is an
error and the account was not created

If return Value is false, the errorCode provides the error number

An error message; only provided with returnValue set to false

Details of the contact record

Updates the event details of the named contact.

accountid

contact

id

trackChanges

returnValue

errorCode

Method: deleteContact

Deletes the named contact.

String

Object

String

Boolean

Boolean

Integer

Immutable unique identifier for this account

The contact to save

Immutable unique identifier for this contact

Marks this change so that it's tracked, and getChanges will include
this record ID in its response; defaults to false

If true, the account was successfully created; otherwise, there is an
error and the account was not created

lfreturnValue is false, the errorCode provides the error number

322 I Appendix B: Quick Reference-Developer Guide

Parameters
accountid

id

trackChanges

Response
errorCode

error Text

Method: listContacts

Type

String

String

Boolean

Type

Integer

String

Description

Immutable unique identifier for this account

Immutable unique identifierfor this contact

Marks this change so that it's tracked, and getChanges will include
this record ID in its response; defaults to false

Description

If return Value is false, the errorCode provides the error number

.......................... A n _ e r ... r .. o r. message; only provided with returnValue set to false

Lists all contacts created by the calling application; you will see only Contact records
that you have created.

Parallleters
account Id

offset

limit

filter

· Response
errorCode

error Text

list

Method: startTracking

Type

String

Integer

Integer

String

Type

Integer

String

Description

The account reference for use in the Synergy applications

Start of range

Number of contacts to return

The filter string to search for; matches are done on the firstName,
lastName, and companyName fields

oescripti(111 ·

lfreturnValue is false, the errorCode provides the errornumber

An error message; only provided with returnValue set to false

of contacts lice

Enables change tracking for an account. After this is called, all user-initiated changes
to records belonging to this account will be returned by getChanges. Change tracking
is incremental, and changes are forgotten each time doneWi thChanges is called.

· Parameters

accountid

trackerid

Respqnse
returnValue

errorCode

error Text

Type

String

String

. Type

Boolean

Integer

Description

The account reference for use in the Synergy applications

A client-chosen handle if multiple independent change trackers are
needed per account

Description

If true, the account was successfully created; otherwise there is an
error and the account was not created

If returnValue is false, the errorCode provides the error number

Services I 323

Method: getChanges

Gets a list of contact IDs for records in an account that have been changed or deleted
by the user since the last time doneWi thChanges was called.

account Id

tracker Id

returnValue

errorCode

error Text

token

String

String

Boolean

Integer

String

String

Array

The account reference for use in the Synergy applications

A client-chosen handle if multiple independent change trackers are
needed per account

If true, the account was successfully created; otherwise, there is an
error and the account was not created

lfreturnValue is false, the errorCode providestheerrornumber

An error message; only provided with return Value setto false

A string to be passed to doneWi thChanges after processing of this
change set is complete

An array of changed contact record objects (id only) changed

deleted ~rr~y An~~rayofdel~tedcontactrecordobjects(idand~xternalid)

Method: doneWithChanges

Forgets all changes for an account. Future calls to getChanges will only return changes
from this point forward.

accountid String The account reference for use in the Synergy applications

tracker Id String A client-chosen handle if multiple independent change trackers are
needed per account

token String A string to be passed to doneWi thChanges after processing of this
change set is complete

returnValue Boolean If true, the account was successfully created; otherwise, there is an
error and the account was not created

errorCode Integer lfreturnValue is false, the errorCode provides the errornumber

error Text String ·---~error message~ only~rovide~_\Alith ret.tJ.r:~Value s~tto false .

Email
palm://com.palm.applicationManager

The Email applic;:i.tioD. C'.l.D. bi: la1_1DcliPcl tlirnngli thf' Applic<ltion Manager service.

324 I Appendix B: Quick Reference-Developer Guide

Method: open

Launches the Email application to the compose scene, which will be addressed with
the provided email address.

Parameters
target

Response

None

Method: launch

Type

String

Type

Description

A mailto URI formatted as specified in RFC2368

Description

Launches the Email application to the compose scene.

Parameters
id

params

summary

text

recipients

value

type

role

contactDisplay

attachments

accountid

Response

None

Type

Location Services

Type

String

Object

String

String

Array

String

String

Integer

String

Array

String

palm://com.palm.location

Description

Setto 'com. palm. app. email'

Includes a single property:

Text to display in the subject line

Text to display in the body of the email message

Recipients array, including:

A properly formed email address of the recipient

Set to email

Numeric ID for type of recipient where 1=To,2=CC, and 3=BCC

Display name for the recipient

Arrayofobjects containing the property full Path (the full path and
file name) and the optional properties displayName and mime
Type

The ID of the account from which to send the email message; default
account will be used if not provided

Description

Palm webOS provides basic location services to get single or multiple location fixes.

Method: getCurrentPosition

You can get the current position sourced from the built in GPS, or through Cell ID or
WiFi ID, depending on what's available.

Services I 325

accuracy

responseTime

maximumAge

errorCode

error Text

times tamp

latitude

longitude

horizAccuracy

vertAccuracy

heading

velocity

altitude

Method: startTracking

Integer

Integer

Integer

Integer

String

Double

Double

Double

Double

Double

Double

Double

Double

Accuracy or precision of the fix: 1 for high precision, 2 for medium
(default), and 3 for low

Accuracy or precision of the fix: 1 for less than 5 seconds, 2 for less than
20 seconds (default), and 3 for greater than 20 seconds

Accept a cached position no older than maximumAge (in seconds); if
0 or not specified, a new fix will always be requested

Status of service request; if errorCode, a successful request and the
following response properties will be available; otherwise, error
Code provides an error number to describe the failure

An error message; only provided with returnValue set to false

The time (in milliseconds) when the location fix was retrieved

The latitude of the location in degrees

The longitude of the location in degrees

Horizontal accuracy (in meters) of the location fix

Vertical accuracy (in meters) of the location fix

The compass azimuth (in degrees); set to -1 if unknown

The velocity (in meters/second); set to -1 if unknown

The altitude setto -1 if unknown

Requests a continuous GPS fix by invoking the onSuccess callback with a new location
object every time the service determines that the position of the device has changed. In
case of error, the service will call the callback with error code set to some value greater
than 0.

subscribe Boolean Set to true for subscriptions, default is false

errorCode Integer Status of service request; if errorCode, a successful request and the
following response properties will be available; otherwise, error
Code provides an error number to describe the failure

error Text String An error message; only provided with returnValue set to false
times tamp Double The time (in milliseconds) when the location fix was retrieved
latitude Double The latitude of the location in degrees
longitude Double The longitude of the location in degrees
horizAccuracy Double Horizontal accuracy (in meters) of the location fix

326 I Appendix B: Quick Reference-Developer Guide

Response Type Description
vertAccuracy Double Vertical accuracy (in meters) of the location fix

heading Double The compass azimuth (in degrees); set to -1 if unknown

velocity Double The velocity (in meters/second); set to -1 if unknown

altitude Double The altitude (in meters); set to -1 if unknown

Method: getReverselocation

Requests a location for the given latitude and longitude.

Parameters
latitude

longitude

Response
errorCode

error Text

address

Maps

Type

Double

Double

Type

Integer

String

String

Description

The latitude of the location in degrees

The longitude of the location in degrees

Description

Status of service request; if errorCode, a successful request and the
following response properties will be available; otherwise error
Code provides an error number to describe the failure

An error message; only provided with returnValue set to false

U.S. only, not available in other regions; formatted user-readable ad
dress with individual lines separated by a semicolon(;); typically two
orthree lines

palm://com.palm.applicationManager

The Maps application can be launched through the Application Manager service.

Method: open

Launches the Maps application to the map scene, which will be loaded from the results
of a query if provided.

~arallleters

target

ilespollse

None

Type···.

String

Jype ·.

Description

URL matching the regular expression:

(. +\.) ?google\. (com I [a-z]{2} I com?\. [a-z]{2}) (/maps/m I /maps/ml.*)
Or alternately, the target string can be of the form mapto: location, where location is a
well-formed location

Descripti0n

Services I 327

Method: launch

Launches the Maps application to the map view scene.

id

pa rams

query

zoom

location

type

layer

None

String

Object

String

String

Object

String

String

Set to' com.palm.app.maps'

Includes:

Well-formed expression complying with the Google Map Parameters spec; options include
address, latitude/longitude, location, and business search or driving directions

Zoom level: numeric value from 1to18, with 18 being max zoom in; max zoom level depends
on the region (for some regions, zoom level 18 may not be available)

If specified, map will search for query around this location as described by these properties:

lat = latitude in degrees (float)

lng =longitude in degrees (float)

ace= accuracy in meters; optional (float)

age= age offix in seconds

Sets the display type, currently limited tom for map (default when not set) and k for satellite

Activates selective overlays, currently limited tot for traffic or null for no overlay

Messaging
palm://com.palm.applicationManager

The Messaging application can be launched through the Application Manager service.

Method: launch

Launches the Messaging application to the chat scene.

id

params

personld

contactPointid

String

Object

String

String

Setto 'com.palm.app.messaging'

Includes:

Contacts ID for the recipient; only apply to the launching the chat view

Contacts entry ID forthe contact method (i.e., mobile phone number,
IM address); only apply to the launching the chat view; you can op
tionally pass a contactPointid to setthe selected transport when
you launch the chat

328 I Appendix B: Quick Reference-Developer Guide

Parameters

message Text

composeAddress

attachment

Response

None

Phone

Type

String

String

String

Type

Description

The contents of the message

Mobile phone number; an alternative to the personlD/contactPointld
above; currently only supports one number

Path to a single attachment file; JPG images only

Description

palm://com.palm.applicationManager

The Phone application can be launched through the Application Manager service.

Method: open

Launches the Phone application to the dial scene, prepopulating the dial string if
provided.

Pararneters
target

Respon$e

None

Method: launch

Type

String

Description

URL of the from "tel: I /dialstring", where dialstring is
part or all of a phone number; the number can contain pause and wait
characters to indicate that DTMF tones should be sent after the call
connects

Description

Launches the Phone application to the dial scene.

Parameters
id

Response

None

Photos

Type.

String

yYpe

Description

Setto 'com. palm. app. phone'

Description

palm://com.palm.applicationManager

The Photos application can be launched through the Application Manager service.

Services I 329

Method: launch

Launches the Photos application to its album scene.

id String Setto 'com.palm.app.photos'

None

System Properties
palm://com.palm.preferences/systemProperties

Applications can request a named system property, currently limited to a unique device
ID.

Method: getSysProperties

Requests the named property, which is returned in a response object.

key String Options: "com. palm. properties. nduid" (device ID)

return Value Boolean lftrue, the key was retrieved and the value was returned

errorText String An~rr~r111essa~e;onlyproyidedi,vit~ return Value set to false

System Service
palm://com.palm.systemservice/time

The system is designed to expose a set of services allowing applications to access some
general system settings.

Method: getSystemTime

Requests the system time, and if the subscribe property is true, it will receive notifica
tions when the timezone changes and/or the system time changes by a significant
amount (currently five minutes).

subscribe Boolean

0 1
uvv1ca11

Set to true for subscriptions, default is false

l.f+,..••n +hn I,,.,,,.,.,.,. rn+rinunrl ''.U"•rl f-hn H':'ll11a 111'.J(' r.oh11"norl
II llU\.1 lll\.. [\\..' YVU..J l\..lll\,.V\..\.I UllU Lil\,. VUIU\,. UU..J 1\..~Ull1\..U

330 I Appendix B: Quick Reference-Developer Guide

Response
errorCode

localtime

offset

timezone

System Sounds

Type

Integer

Integer

Integer

String

Description

Status of service request; if errorCode, a successful request and the
following response properties will be available; otherwise, error
Code provides an error number to describe the failure

The time for the current timezone (in seconds)

Offset from the UTC (in minutes)

The current system timezone

palm://com.palm.audio/systemsounds

The System Sounds service is used to play audio feedback in response to user interac
tion, with low latency.

Method: playFeedback

Plays a system sound using the feedback stream class. Intended for UI feedback such
as UI button clicks, keypad clicks, and similar sounds. The available sound names are
enumerated in Table B-4 .

. ··Patameters
name

·itesponse
returnValue

errorCode

error Text

Table B-4. System sounds

Names

appclose

back_Ol

default_ 425hz

delete_Ol

discardingapp_Ol

down2

dtmf_O

Type

String

Type

Boolean

Integer

browser_Ol

card_Ol

card_02

card_03

card_04

card_05

dtmf_asterisk

DescriptiOn

Setto the name of the sound to play (see Table B-4 for a complete list
of sound names)

Description

If true, the key was retrieved and the value was returned

Status of service request; if errorCode, a successful request and the
following response properties will be available; otherwise, error
Code provides an error number to describe the failure

An error only provided with returnValue set to false

pageforward_Ol

shuffle_02

shuffle_03

shuffle_04

shuffle_ OS

shuffle_06

shuffle_07

Services I 3 31

dtmf_1 dtmf_pound shuffle_ OS

dtmf_2 error_01 shuffling_01

dtmf_3 error_02 shutter

dtmf_ 4 error_03 switchingapps_01

dtmf_S focusing switchingapps_02

dtmf_6 launch_01 switchingapps_03

dtmf_7 launch_02 tones_3beeps_otasp_done

dtmf_8 launch_03 unassigned

dtmf_9 pagebacwards up2

Video
palm://com.palm.applicationManager

The Video application can be launched through the Application Manager service.

Method: launch

Launches the Video application to play or stream the file located at the target URI,
downloading it first if not already on the device. If a URI is not specified, it will launch
the video player to its normal starting scene.

Parameiets ·
id

params

target

videoTitle

thumbURL

R~sP1!ns.~
None

Controller APls

String

Object

String

String

String

Setto 'com.palm.app.videoplayer'

Includes a single property:

URL of the form rtsp:!/video-f ile, where video-file is a well
formed URI targeting a video file encoded in a supported video format

The name of the video to be displayed to the user

The URL of a thumbnail to be displayed while the video is loading

This section includes the application, stage, and scene controller methods used in the
book. These are just a subset of the APis available; refer to the Palm SDK for a complete
list of the available APis.

332 I Appendix B: Quick Reference-Developer Guide

Each entry includes a very brief description, followed by an enumeration of the argu
ments used in the method call.

Mojo.Control ler .AppControl ler .creates tage With Ca II back
(stageArguments, onCreate, optionalStageType)
Method to create a new stage and be called back when the stage is loaded.

l\rguments
stageArguments

onCreate

optionalStageType

· Retiirns

None

Type

String or Ob
ject

Function

String

Type

Description

!fa string, the name of the new stage; ifa stage exists with this name,
its contents will be replaced; if an object, it must have a name property
containing the stage nameand may have an assistantName prop
erty to specify the stage assistant and a height property to specify
the height of a pop-up alert

A function that is called once the new stage is fully loaded; it is passed
the new stage controller as its first parameter

The type of stage to create: 'card', 'dashboard', 'popup', or
'banner'

Mojo.Controller .AppController .getActiveS tageController(stage Type)
Method to return the first currently focused stage's controller.

~rgumerits·
stage Type

Returns
stageController

·.•.Type

String

Type

Object

~es~ription

The type of stage to return: 'card', 'dashboard', 'po pup', or
'banner'

Oescriptfon

Thestage controller for the active stage

Mojo.Control ler .AppController .getScreenOrientation()
Method to return the device orientation.

· ~rgulne11ts
None

Returns
orientation

Type

String

Type

String

Description

Description

The orientation of the device: 'up', '9?wn ', 'l~f~', or' !igh~'

Controller APls I 333

Mojo.Controller.AppController.getStageController{stageName)
Method to get the stage controller for a stage.

stageName String The name of the stage

Mojo.Controller.AppController.getStageProxy{stageName)
Function to get a controller or proxy object for a stage. Returns the stage controller if
available, but if the stage is still in the process of being created, a proxy object will be
returned instead. This proxy implements delegateToSceneAssistant(), and will dele
gate the calls as expected when the stage is available.

stageName

stageProxy I
stageController

String

Object

The name of the stage

Returns the stage controller if available, but if the stage is still in the
process of being created, a proxy?bject will be returned instead

Mojo. Control I er .AppControl ler .sendT oNotificationCha in
{notification Data)
Sends the passed-in notification data to everyone in the commander stack of the focused
window (usually the scene assistant, stage assistant, and application assistant), calling
considerForNoti fication (), if present, on each.

notificationData Object JSON object with payload of notification

None

Mojo.Controller.AppController.showBanner{bannerParams,
launchArguments, category)
Shows the message text from the bannerParams in the banner area. The
launchArguments will be used to launch or relaunch the application if the banner is
touched.

334 I Appendix B: Quick Reference-Developer Guide

Arguments
bannerParams

launchArguments

category

Returns

None

Type

String or
Object

Varies

String

Type

Description

Can be a string, in which case it is simply message text, or an object
with the following properties: message Text (textto display),
soundClass (string containing the sound class to use), sound

File (partial or full path to a sound file to play), and icon (partial
or full path to an icon to show)

Arguments sent to the application when it is launched or relaunched
if the banner is touched

Value defined by the application; used if you have more than one kind
of banner message; since banners are displayed for a fixed length of
time (five seconds currently), they can back up if there are more re
quests made than time to display them-if there is more than one
banner notification within a named category, the framework will dis
card all butthe last of them

Description

Mojo.Controller.SceneController.listen(element, eventType, callback,
onCapture)
Wrapper around Mojo.Event.listen that additionally will call get() on the element
parameter if it is a string, converting it to a DOM node.

Arguments Type Description
element String or An element reference or DOM ID string identifying the target element

Element

event Type String String identifier for the eventtype

callback Function Function object to be called when the event occurs

onCapture Boolean Pass true to listen during the capture phase, false to listen during
bubbling

Returns Type Description

None

Mojo.Control ler .SceneControl ler .get(elementld)
If the elementid is a string, calls document. getElementByid () with that string and returns
the result. Otherwise, it returns elementid.

Atglllllents
elementid

T;ype

String

Description

An element reference or DOM ID string identifying the target element

Controller APls I 335

element Element Element referenced byelementid

Mojo.Control ler .SceneController .removeReq uest(req uest)
Removes a request from the scene's list of requests to manage; once a scene is popped
this will no longer clear the request.

request

None

Object A request object, typically the one returned from a serviceRe
quest() call

Mojo.Controller.SceneController.serviceRequest(url, options, resubscribe)
Creates a Palm service request that will be automatically cancelled when the scene is
popped. The parameters are passed directly to new Mojo.Service.Request().

url

options

resubscribe

request

String

Object

Boolean

URI-formatted service name

Service-dependent arguments

If set to true, will automatically resubscribe when receiving an error
from the service

Object A request object, important for requests that persist beyond scene's
___________ ____ _ _ _ _ ___________ life __ ?~!o__~~~le_~o remo~e_!h_e!equest _ ___________ _ ___ _

Mojo.Controller.SceneController.setupWidget(name, attributes, model)
Registers the given attributes and model to be used with the widget of the given name.
Called by scene assistants in their setup methods.

name

attributes

model

None

String

Object

Object

Element ID for a div in which the widget is declared

Widget attributes; specific contents are dependent on the widget

Widget model; specific contents are dependent on the widget

336 I Appendix B: Quick Reference-Developer Guide

Mojo.Controller.SceneController.stoplistening(element, eventType,
callback, onCapture)
Wrapper around Mojo. Event. stoplistening that additionally will call get() on the el
ement parameter if it is a string, converting it to a DOM node.

Arguments Type Description
element String or An element reference or DOM ID string identifying the target element

Element

event Type String String identifier for the event type

callback Function Function object passed in previous call to listen ()

onCapture Boolean Pass true if it was listening during the capture phase; false if it
was listening during bubbling

Returns Type Description

None

Mojo.Controller.StageController.activate()
Activates this stage, similar to window. focus (). Causes card windows to be maximized.

Arguments

None

Returns

None

Type Description

Type Description

Mojo.Controller.StageController.activeScene()
Returns the currently active scene from this stage, if any. If no scenes are active, it
returns undefined.

·Arguments

None

Returns
sceneController

Type

Type

Object

Description

Description

The scene controller for the active scene

Mojo.Controller.StageController.deactivate()
Deactivates this stage. Causes card windows to be minimized.

Arguments

None

TYPe Description

Controller APls I 337

None

Mojo.Control ler .StageControl ler .delegate T oSceneAssistant
(function Name)
Use to call a method on the assistant of the current scene of this stage. The first pa
rameter is the name of the property that contains the function to call. The remaining
parameters are passed to that function. The this keyword is bound to the scene assis
tant for this call; any additional arguments will be passed to the scene assistant's
method.

functionName Function Function to be called within the active scene

None

Mojo.Control ler .StageControl ler .getScenes()
Returns an array of scene controllers currently on the stack.

None

' R~urii~····
results Array Array of scene controllers with the bottom scene on the stack at

result[o]

Mojo.Controller .StageController .getWindowOrientation()
Gets the orientation of the stage's window.

None

orientation String The orientation of the device: 'up, 'down, 'l~ft', or 'right'

Mojo.Controller.StageController.popScene(returnValue, options)
Removes a scene from the scene stack, passing the return value to the newly revealed
scene's activate method. Note that this is an asynchronous operation. Any additional
arguments are also passed to the new scene.

338 I Appendix B: Quick Reference-Developer Guide

Arguments
returnValue

Returns

None

Type

Object

Type

Description

Passed to the newly activated scene

Description

Mojo.Controller.StageController.popScenesTo(targetScene, returnValue,
options)
Removes scenes from the scene stack until the target scene is reached, or no scenes
remain on the stack. targetScene may be either the SceneController for the desired
scene, the scene DOM ID, or the scene name. If targetScene is undefined, all scenes
will be popped. Intermediate popped scenes are not reactivated, nor is there any visual
transition to signify their removal from the stack. This is an asynchronous operation.

Arguments
targetScene

returnValue

ietums

None

Type

String or
Element

Object

Type

Description

Name or DOM ID of scene to be activated

Passed to the newly activated scene

Description

Mojo.Controller.StageController.pushScene(sceneArguments)
Pushes a new scene; the Scene Lifecycle initial setup includes this function. This is an
asynchronous operation.

~rguments

sceneArguments

Returns

None

Type

String or
Element

Type

Description

Eitherthe name of the scene to push or an object with properties
including the name of the scene and the ID to use as a DOM ID; all
additional arguments are passed to theconstructorofthe next scene's
assistant

Description

Mojo.Controller.StageController.setWindowOrientation(orientation)
Sets the orientation of the stage's window.

Arguments ···•···.

orientation

type

String

· Description

The orientation of the device: 'free' , 'up', 'down', 'left'
or'right'

Controller APls I 339

None

Mojo.Controller.StageController.swapScene(sceneArguments)
Pops the current scene and simultaneously pushes a new scene without activating and
deactivating any underlying scenes. Note that this is an asynchronous operation.

sceneArguments

None

String or
Element

Either the name of the scene to push or an object with properties
including the name of the scene and the ID to use as a DOM ID; all
additional arguments are passed to the constructor of the next scene's
assistant

: :: · oe:scri!liiillJ>,:: ·

Mojo.Controller.StageController.topScene()
Returns the topmost scene from this stage.

None

sceneController The scene controller for the top scene

340 I Appendix B: Quick Reference-Developer Guide

APPENDIX C

Quick Reference-Style Guide

Mojo's styling is automatically provided when you select the Mojo class names within
your HTML, or use Mojo widgets. This appendix will help you determine the selectors
or properties to change when you want to override the automatic styling. It's best to
use this style guide along with the StyleMatters sample application provided with the
SDK.

The guide is organized into several categories, including:

• Scene Basics

• List Basics

• Containers

• Dividers

• Panels

• Text

• Widgets

Each category is presented in a table with:

• A brief description

• The filename of the CSS style sheet where the style category is defined

• An HTML code sample using the style

• A list of the base selectors that you can use in your CSS to override the framework's
styling

• A list of optional selectors

• Required child selectors, which must be embedded with the base selector for the
style to be used effectively

341

These styles may be updated from time to time by Palm as part of an SDK update
you should check the SDK documentation to get the latest information.

Scene Basics

Backdrop
global-base.css

Change the background of an individual scene or every scene within the application.

<div class="my-backdrop"></div>

my-backdrop

body

Notes:

• my-backdrop is a developer-defined selector (you can define any selector name); this
technique allows each individual scene to have a unique background.

• Use the body selector to style the body element; a simple solution to style all of the
scenes in your application.

Fixed Header
global-lists.css

Floating header atop your scene; visually identical to the View Menu.

<div class="palm-header"></div>
<div class=" palm-header-spacer"></ div>

. palm-header

. palm-header-spacer

Page Header
global-lists.css

.left

.right

The topmost element of the scrollable content; commonly used atop preference scenes.

342 I Appendix C: Quick Reference-Style Guide

Scene HTML
<div class="palm-page-header multi-line">

<div class=" palm-page-header-wrapper">
<div class="icon"></div>
<div class="title">

My title
</div>

</div>
</div>

Base selector
. palm-page-header

. palm-page-header-wrapper

. palm-page-header-wrapper >

.icon

. palm-page-header-wrapper >

. title

Notes:

Optional selectors
.multi-line

.icon

.left

.center

.right

. truncating-text

Required child
. palm-page-header-wrapper

• palm-page-header-wrapper is a child element with a specified margin to compensate
for the padding effect of -webkit-border-image.

• palm-page-header-wrapper > .icon should be a 32 x 32px PNG centered on the div.

Scrim
global.css

A translucent layer used to obscure background UI when modal foreground UI is lay
ered on top of the current scene.

Scene HTML
<div class="palm-scrim"></div>

Base selector
. palm-scrim

Optional selectors
.a pp-menu

.dialog

. submenu-popup

.menu-panel

. picker-popup

Required child

Scene Basics I 343

Scroll Fades
In the absence of view or command menus, these fades.at the edge of your scene indicate
more content.

<div class="my-scene-fade-top" x-mojo-scroll-fade="top"></div>
<div class="my-scene-fade-bottom" x-mojo-scroll-fade="bottom"></div>

None

Notes:

• Use a high z-index (100,000) if you want your fades to draw above all else, and use
the style -webkit-palm-mouse-target: ignore; to allow taps to pass through these
fades to underlying content.

View/Command Menus
global-menus. css

Float menus at either the top or bottom of your scene, and the gradient fades behind
them.

None

.palm-menu

. palm-menu. view-menu

. palm-menu. view-menu >
• palm-menu-fade

• palm-menu. command-menu

.palm-menu.command-menu >

. palm-menu-fade

• palm-menu-button

. palm-menu-spacer

• palm-default

• palm-white

. palm-default

• palm-white

.selected

344 I Appendix C: Quick Reference-Style Guide

List Basics

Add/Remove Rows
global-lists.css

The "add item" row appended to a list and "remove item" buttons for removable rows.

Scene HTML

None

Base selector
. list-item-add-button

. list-item-remove-button

Lists and Rows
global-lists.css

Optional selectors Required child

Rows stacked vertically within lists, designed for legibility and touch interaction.

Sc:eneHTML
< !-- Within Scene -->
<div id="my- list" x-mojo-element=" List "></div>

< ! - - Within List template - ->
<div class="palm-row" x-mojo-touch-feedback=" delayed">

<div class="palm-row-wrapper">
< ! - - row content here - ->

</div>
</div>

Base selector
.palm-list

.palm-row

. palm-row-wrapper

. palm-row-wrapper > • title

Optional sel~ors

. first

.last

. single

. no-divider

. no- separator

.disabled

. textfield-group

.left

. right

Required child

. palm-row-wrapper

List Basics I 345

Notes:

• .palm-row-wrapper: child element with a specified margin to compensate for the
padding effect of -webkit-border-image.

Separators
global-lists.css

Thin lines that visually separate rows.

None

.palm-row

Reordering Rows
global-lists.css

The space behind the reordered items and the item you're moving.

None

. palm-drag-spacer

.:.Palm~.row.:.Palm:reord~r:element

Swipe to Delete
global-lists.css

The space revealed when you swipe to delete, which may contain confirmation buttons.

None

. palm-row. palm-swipe-delete

• palm-row. palm-swipe-delete
. palm- swipe-delete-button

• palm-row. palm- swipe-delete
.:.Palm:swipe:~ndo:button

346 I Appendix C: Quick Reference-Style Guide

Touch Feedback
global-lists. css

Displaying alternate background images and content styling m response to user
interaction.

Scene HTML
<div class="palm-row" x-mojo-touch-feedback=" delayed">

<div class="palm-row-wrapper">
< ! - - row content here - - >

</div>
</div>

Base selector Optional selectors
. palm-row. selected

Notes:

Required. child

• When touched, rows using x-mojo-touch-feedback will display a selection graphic
implemented using -webkit-border-image with a 9-tile image (41x49 pixels).

• For items within scrollable content, use delayed feedback. For fixed elements that
don't scroll, immediate feedback is an option. Use immediatePersistent or delayed
Persistent only if you require exacting control of when feedback is removed (which
must be done manually).

Touch Feedback with Groups
global-lists.css

Displaying alternate background images and content styling in response to user inter
action with rows within in a palm-group.

Scene HTML
< !-- First Row -->
<div class="palm-group">

<div class="palm-row first" x-mojo-touch-feedback="delayed">
<div class=" palm-row-wrapper">

< ! - - row content here - - >
</div>

</div>
</div>

<!-- Last Row -->
<div class="palm-group">

<div class="palm-row last" x-mojo-touch-feedback="delayed">
<div class="palm-row-wrapper">

< ! - - row content here - - >
</div>

</div>
</div>

list Basics I 347

< -- Row -->
<div class="palm-group">

<div class="palm-row single" x-mojo-touch-feedback="delayed">
<div class="palm-row-wrapper">

< ! - - row content here - ->
</div>

</div>
</div>

. palm-group

. palm-row. selected. first

• palm-group
. palm-row. selected. last

. palm-group
:Palm=row.selected. single

Notes:

• The first row within a group requires a selection graphic with rounded top corners.

• The last row within a group requires a selection graphic with rounded bottom
corners.

• A single row within a group requires a selection graphic with rounded corners.

Containers

Drawers
global-lists.css

Hide UI or lists with an area that animates open and closed.

<div id="my-id" x-mojo-element="Drawer"></div>

. palm-drawer-container

. palm-drawer-contents

Labeled Groups
global-lists.css

. label

Visually group a list with a label.

348 I Appendix C: Quick Reference-Style Guide

. palm-drawer-contents

Scene HTML

<div class="palm-group">
<div class="palm-group-title">

My Title
</div>
<div class="palm-list">
< !-- rows -->

</div>
</div>

Base selector

. palm-group

Unlabeled Groups
global-lists.css

Optional selectors

Visually group a list without a label.

Scene HTML

<div class="palm-group unlabeled">
<div class="palm-list">

< !-- rows -->
</div>

</div>

Base selector
. palm-group. unlabeled

Dividers

Alphabetical Dividers
global-dividers.css

Optional selectors

Required child
. palm-group-title

Required child

Divide a scene or list of rows with a bold line containing a single character.

Scene HTML

<div class=" palm-divider alpha">
<div>#{ divider Label}</ div>

</div>

Base selector

. palm-divider. alpha

Collapsible Dividers
global-dividers.css

Optional selectors Required child

Dividers I 349

Divide a scene or list of rows with dividers that control corresponding drawers of
content.

<table class="palm-divider collapsible">
<tr>

<td class="left"></td>
<td class="label" >My label </td>
<td class="line"></td>
<td><div class="palm-arrow-closed arrow button"></div></td>
<td class="right"></td> -

</tr>
</table>

. palm-divider. collapsible .label

.line

Labeled Dividers
global-dividers.css

Divide a scene or list of rows with a bold line and label.

<table class="palm-divider labeled">
<tr>
<td class="left"></td>
<td class="label">

My title
</td>
<td class="right"></td>

</tr>
</table>

. palm-divider. labeled

Solid Dividers
global-dividers.css

.left

Divide a scene or list of rows with a bold line.

<div class="palm-divider" ></div>

.palm-divider

350 I Appendix C: Quick Reference-Style Guide

Panels

Dashboard Panel
global-notifications.css

A dashboard panel containing UI, custom messages, and images.

Scene HTML

None

Base selector
. palm-dashboard-icon-container

. palm-dashboard-text-container

. palm-dashboard-icon

. palm-dashboard-text

Dialog

Optional selectors

. selected

.alert

global.css and global-buttons.css

A modal panel pinned to the bottom of the scene.

Scene.HTML
<div class=" palm-dialog-content">

<div class="palm-dialog-ti tle"> Title</ div>
<div class="palm-dialog- separator"></ div>
<div class=" palm-dialog-message" >Message</ div>

</div>
<div class=" palm-dialog-buttons">

< ! - - buttons -->
</div>

Base selector
. palm-dialog-content

. palm-dialog-title

. palm-dialog-buttons

. palm-dialog-separator

. palm-dialog-message

Notes:

Optional selectors

. un-capitalize

Required child

Required child
. palm-dialog-title

. palm-dialog- separator

. palm-dialog-message

. palm-button

• Custom dialog box template with title, message, and buttons.

Panels I 351

Menu Panel
global-menus. css

A pop-up panel containing UI or lists, floating under the view or command menu.

None

. palm-menu-panel

. palm-menu-panel-wrapper

Submenu
global-menus.css

. palm-menu-panel-fade-top

. palm-menu-panel-fade-bottom

. palm-menu-panel-wrapper

. palm-list

A pop-up panel containing UI or lists, floating above all other scene UL

None

. palm-popup

. palm-popup- container

. palm-popup-content

. palm-popup-icon

Text

Basic Text Styles
global.css

. popup-item-checkmark

.chosen

. palm-divider

.left

.right

Body copy and informational text.

352 J Appendix C: Quick Reference-Style Guide

Scene HTML

None

Base selector Optional selectors Reqllired child
. palm-text-wrapper . palm-body-text

. palm-body-text

. palm-body-title

. palm-info-text .single

Notes:

• .palm-text-wrapper: use this wrapper to contain multiple divs of styled text for
proper padding.

Capitalization
global.css

Some Mojo widgets and styles shift strings to uppercase or apply capitalization.

·Scene HTML

None

Base selector
. capitalize

.un-capitalize

Notes:

Optional.selectors Required ~hild

• Use . capitalize for CSS title case capitalization and . un-capitalize to override
autocapitalization in buttons, dialog box titles, and page headers.

Fonts
global-base.css

Mojo uses the Prelude font family.

ScerieHTML

None

Base selector
body

button

input

textarea

Optionalselectors

. condensed

.oblique

R¢qlllred child

Text I 353

Truncation
global-base.css

Force text to fit within the available space, with an ellipsis added as needed.

None

• truncating-text

Widgets

Button
global-buttons.css

<div class=" palm-button" x-moj a-touch-feedback=" delayed">
<div class="palm-button-wrapper">

Button label
</div>

</div>

. palm-button

Check Box
global.css

.primary

.secondary

. dismiss

. negative

.affirmative

.disabled

• selected

<div id="my-id" class="left" x-mojo-element="CheckBox"></div>

. checkbox • left

.right

354 I Appendix C: Quick Reference-Style Guide

. palm-button-wrapper

Base selector

Notes:

Optional selectors
. disabled

. true

Required child

• Use the classes . left and . right on the widget when placing the check box into a
palm-row with title text.

Date Picker
global-widget-mvpicker.css

Scene HTML
<div id="my-id" x-mojo-element="DatePicker" ></div>

Base selector Optional selectors
. mv-picker-capsule

Integer Picker
global-widget-mvpicker.css

Scene HTML

<div id= "my-id" x-mojo-element="IntegerPicker" ></div>

Base selector Optional selectors
. mv-picker-capsule

Filter Field
global-textfields. css

Scene HTML
<div id="my-id" x-mojo-element=" Fil terField" ></div>

Base selector Optional selectors
. filter-field-container . filter-field-activity- spinner

. search-term

.mag-glass-icon

List Selector
global-menu.css

Required child

Required child

Required child

Widgets I 355

<div id="my-id" x-mojo-element=" ListSelector" ></div>

. palm-list-selector

. palm-popup-container

.palm-row

Progress Pill
global.css

. label

.right

. title

. list-selector-triangle

<div id="my-id" x-mojo-element="ProgressPill" ></div>

. progress-pill-background

. progress-pill-progress

Radio Button
global.css

<div id="my-id" x-mojo-element="Radio"></div>

. palm-radiobutton . selected

Slider
global.css

<div id=' my-id' x-mojo-element=" Slider" class="palm-slider" ></div>

. palm- slider

. palm- slider-button . selected

. palm-slider-background

356 I Appendix C: Quick Reference-Style Guide

Spinner
global.css

Scene HTML
<div id="my-id" x-mojo-element="Spinner"></div>

Base selector Optional selectors
. palm- activity- indicator- small

. palm-activity-indicator-large

Text Field
global-textfields. css

Scene HTML
< !-- Single Text Field -->
<div id="my-id" x-mojo-element="TextField" ></div>

< !-- Grouped Text Field -->
<div class="palm-row">

<div class="palm-row-wrapper">
<div class= "textf ield-group" x-moj o-focus-highlight= "true">

<div class=""title"">

Required child

<div class="truncating-text" x-mojo-element="TextField" ></div>
</div>
</div>

</div>
</div>

Base selector•
. textfield-group

Time Picker

Optional selectors
.focused

. title

. label

global-widget-mvpicker. css

Scene HTML
<div id= "my-id" x-moj o-element="TimePicker" ></div>

Base selector . .. Optm~al selectors
. mv-picker-capsule

Required child

Required child

Widgets I 357

Toggle Button
global.css

<div id="my-id" x-mojo-element="ToggleButton"></ div>

. sliding-toggle-container

. toggle-text

. toggle-button .true

.false

358 I Appendix C: Quick Reference-Style.Guide

APPENDIX D

News Application Source Code

Source code from the News applications is used throughout the book to show examples
of the Mojo APis, widgets, and services as they might be used within an application.
The complete source code is provided here so that you can see the full application.
The source code and image files are also posted at http://oreilly.com/catalogl
97805961552541.

Some of the sample code used in the early chapters is replaced in later
chapters. Only the final version the application is shown here.

News Application Directory Structure

news
app

Some of the JavaScript code has been broken to accommodate the book
layout, and may not execute as broken. It's best to retrieve the code from
the oreilly.com link above.

assistants
app-assistant.js
dashboard-assistant.js
feedlist-assistant.js
preferences-assistant.js
stage-assistant.js
storyList-assistant.js
storyView-assistant.js

models
cookie.js
feeds.js

views
dashboard

dashboard-scene.html
item-info.html

359

feed List
feedRowTemplate.html
feedlistTemplate.html
addFeed-dialog.html
feedlist-scene.html

preferences
preferences-scene.html

storylist
storylist-scene.html
storylistTemplate.html
storyRowTemplate.html

storyView
storyView-scene.html

appinfo.json
framework_config.json
icon.png
images

cal-selector-header-gray.png
dashboard-icon-news.png
details-closed-arrow.png
details-open-arrow.png
feedlist-newitem.png
filter-search-light-bg.png
header-icon-news.png
icon-rssfeed.png
info-icon. png
list-icon-rssfeed.png
menu-icon-back.png
menu-icon-forward.png
menu-icon-web.png
news-icon.png
palm-drawer-background-2.png
url-icon.png

index.html
resources

es us
appinfo.json
strings.json
views

feed list
addFeed-dialog.html
feedlist-scene.html

preferences
preferences-scene.html

sources.json
stylesheets

News.css

news/app/assistants/app-assistant.js
/* AppAssistant - NEWS

Copyright 2009 Palm, Inc. All rights reserved.

Responsible for app startup, handling launch points and updating news feeds.

360 I Appendix D: News Application Source Code

Major components:
- setup; app startup including preferences, initial load of feed data

from the Depot and setting alarms for periodic feed updates
- handleLaunch; launch entry point for initial launch, feed update

alarm, dashboard or banner tap
- handleCommand; handles app menu selections

Data structures:
- globals; set of persistant data used throughout app
- Feeds Model; handles all feedlist updates, db handling and default data
- Cookies Model; handles saving and restoring preferences
App architecture:
- AppAssistant; handles startup, feed list management and app menu management
- FeedListAssistant; handles feedList navigation, search, feature feed
- StoryListAssistant; handles single feed navigation
- StoryViewAssistant; handles single story navigation
- PreferencesAssistant; handles preferences display and changes
- DashboardAssistant; displays latest new story and new story count

*I

II ---
11 GLOBALS
II ---

II News namespace
News = {};

II Constants
News.unreadStory = "unReadStyle";
News. versionString = "1.0";
News.MainStageName = "newsStage";
News.DashboardStageName = "newsDashboard";
News.errorNone = "o";
News.invalidFeedError = "1";

II Global Data Structures

II No error, success
II Not RSS2, RDF (RSS1), or ATOM

across app launches II Persistent Globals - will be saved
News.featureFeedEnable = true;
News.featureStoryinterval = 5000;
News.notificationEnable = true;
News.feedUpdateBackgroundEnable = false;
News.feedUpdateinterval = "00:15:00";

II Session Globals - not saved across app
News.feedListChanged = false;
News.feedListUpdateinProgress = false;
News.featureStoryTimer = null;
News.dbUpdate = "";

News.wakeupTaskid = O;

II Enables feed rotation
II Feature Interval (in ms)
II Enables notifcations
II Enable device wakeup
II Feed update interval

launches
II Triggers update to Depot db
II Feed update is in progress
II Timer for story rotations
II Default is no update
II Id for wakeup tasks

II Setup App Menu for all scenes; all menu actions handled in
II AppAssistant.handleCommand()
News.MenuAttr = {omitDefaultitems: true};

News Application Directory Structure I 361

News.MenuModel = {

visible: true,
items: [

};

{label: $L("About News •.. "), command: "do-aboutNews"},
Mojo.Menu.edititem,
{label: $L("Update All Feeds"), checkEnabled: true,

command: "do-feedUpdate"},
{label: $L("Preferences ... "), command: "do-newsPrefs"},
Mojo.Menu.helpitem

function AppAssistant (appController) {

II ---
11
II
II
II
II

setup - all startup actions:
- Setup globals with preferences
- Set up application menu; used in every scene
- Open Depot and use contents for feedList
- Initiate alarm for first feed update

AppAssistant.prototype.setup = function() {

};

II initialize the feeds model
this.feeds = new Feeds();
this.feeds.loadFeedDb();

II load preferences and globals from saved cookie
News.Cookie.initialize();

II Set up first timeout alarm
this.setWakeup();

II ---
11 handleLaunch - called by the framework when the application is asked to launch
II - First launch; create card stage and first first scene
II - Update; after alarm fires to update feeds
II - Notification; after user taps banner or dashboard
II
AppAssistant.prototype.handleLaunch = function (launchParams)

Mojo.Log.info("ReLaunch");

var cardStageController =

this.controller.getStageController(News.MainStageName);
var appController = Mojo.Controller.getAppController();

if (!launchParams) {
II FIRST LAUNCH
II Look for an existing main stage by name.
if (cardStageController) {

II If it exists, just bring it to the front by focusing its window.

362 I Appendix D: News Application Source Code

Mojo.Log.info("Main Stage Exists");
cardStageController.popScenesTo("feedlist");
cardStageController.activate();

else {

else {

II Create a callback function to set up the new main stage
II once it is done loading. It is passed the new stage controller
II as the first parameter.
var pushMainScene = function(stageController) {

stageController.pushScene("feedlist", this.feeds);
} ;
Mojo.Log.info("Create Main Stage");
var stageArguments = {name: News.MainStageName, lightweight: true};
this.controller.createStageWithCallback(stageArguments,

pushMainScene.bind(this), "card");

Mojo.Log.info("com.palm.app.news -- Wakeup Call", launchParams.action);
switch (launchParams.action) {

II UPDATE FEEDS
case "feedUpdate"

II Set next wakeup alarm
this.setWakeup();

II Update the feed list
Mojo. Log. info("Update Feed list");
this.feeds.updateFeedList();

break;

II NOTIFICATION
case "notification"

Mojo.Log.info("com.palm.app.news -- Notification Tap");
if (cardStageController) {

II If it exists, find the appropriate story list and activate it.
Mojo.Log.info("Main Stage Exists");
cardStageController.popScenesTo("feedList");
cardStageController.pushScene("storyList", this.feeds.list,

launchParams.index);
cardStageController.activate();

} else {

II Create a callback function to set up a new main stage,
II push the feedlist scene and then the appropriate story list
var pushMainScene2 = function(stageController) {

} ;

stageController.pushScene("feedlist", this.feeds);
stageController.pushScene("storylist", this.feeds.list,

launchParams.index);

Mojo.Log.info("Create Main Stage");
var stageArguments2 = {name: News.MainStageName,

lightweight: true};
this.controller.createStageWithCallback(stageArguments2,

pushMainScene2.bind(this), "card");

News Application Directory Structure I 363

break;

} ;

II ---
11 handleCommand - called to handle app menu selections
II
AppAssistant.prototype.handleCommand = function(event) {

};

var stageController = this.controller.getActiveStageController();
var currentScene = stageController.activeScene();

if (event.type == Mojo.Event.commandEnable) {
if (News.feedlistUpdatelnProgress && (event.command == "do-feedUpdate")) {

event.preventDefault();

else {

if(event.type == Mojo.Event.command)
switch(event.command) {

case "do-aboutNews":
currentScene.showAlertDialog({

onChoose: function(value) {},
title: $L("News - v#{version}").interpolate

({version: News.versionString}),
message: $L("Copyright 2008-2009, Palm Inc."),
choices:[

l
});

break;

{label:$L("OK"), value:""}

case "do-newsPrefs":
stageController.pushScene("preferences");

break;

case "do-feedUpdate":
this.feeds.updateFeedlist();

break;

II --
11 setWakeup - called to setup the wakeup alarm for background feed updates
II if preferences are not set for a manual update (value of "00:00:00")
AppAssistant.prototype.setWakeup = function() {

if (News.feedUpdatelnterval !== "00:00:00")
this.wakeupRequest =

364 I Appendix D: News Application Source Code

}
};

new Mojo.Service.Request("palm://com.palm.power/timeout",
method: "set",

});

parameters: {

},

"key": "com.palm.app.news.update",
"in": News.feedUpdateinterval,
"wakeup": News.feedUpdateBackgroundEnable,
"uri": "palm: I I com. palm. applicationManager/open",
"params": {

"id": "com.palm.app.news",
"params": {"action": "feedUpdate"}

onSuccess: function(response){

},

Mojo.Log.info("Alarm Set Success", response.returnValue);
News.wakeupTaskid = Object.toJSON(response.taskid);

onFailure: function(response){

}

Mojo. Log.info("Alarm Set Failure",
response.returnValue, response.errorText);

Mojo.Log.info("Set Update Timeout");

news/ a pp/assistants/ dash boa rd-assista nt.js
/* Dashboard Assistant - NEWS

*/

Copyright 2009 Palm, Inc. All rights reserved.

Responsible for posting that last feed with new stories,
including the new story count and the latest story headline.

Arguments:
- feedlist; News feed list
- selectedFeedindex; target feed

Other than posting the new story, the dashboard will call the
News apps handlelaunch with a "notification" action when the
dashboard is tapped, and the dashboard window will be closed.

function DashboardAssistant(feedlist, selectedFeedindex) {
this.list = feedlist;
this.index = selectedFeedindex;
this.title= this.list[this.index].title;
this.message= this.list[this.index].stories[o].title;
this.count= this.list[this.index].newStoryCount;

DashboardAssistant.prototype.setup = function() {
this.displayDashboard(this.title, this.message, this.count);
this.switchHandler = this.launchMain.bindAsEventlistener(this);
this.controller.listen("dashboardinfo", Mojo.Event.tap, this.switchHandler);

News Application Directory Structure I 365

};

this.stageDocument = this.controller.stageController.document;
this.activateStageHandler = this.activateStage.bindAsEventListener(this);
Mojo.Event.listen(this.stageDocument, Mojo.Event.stageActivate,

this.activateStageHandler);
this.deactivateStageHandler = this.deactivateStage.bindAsEventListener(this);
Mojo.Event.listen(this.stageDocument, Mojo.Event.stageDeactivate,

this.deactivateStageHandler);

DashboardAssistant.prototype.cleanup = function() {

};

// Release event listeners
this.controller.stopListening("dashboardinfo", Mojo.Event.tap,

this.switchHandler);
Mojo.Event.stopListening(this.stageDocument, Mojo.Event.stageActivate,

this.activateStageHandler);
Mojo.Event.stopListening(this.stageDocument, Mojo.Event.stageDeactivate,

this.deactivateStageHandler);

DashboardAssistant.prototype.activateStage = function() {
Mojo.Log.info("Dashboard stage Activation");
this.storyindex = o;
this.showStory();

};

DashboardAssistant.prototype.deactivateStage = function() {
Mojo.Log.info("Dashboard stage Deactivation");
this.stopShowStory();

};

II Update scene contents, using render to insert the object into an HTML template
DashboardAssistant.prototype.displayDashboard = function(title, message, count) {

var info = {title: title, message: message, count: count};

};

var renderedinfo = Mojo.View.render({
object: info,
template: "dashboard/item-info"

});
var infoElement = this. controller. get("dashboardinfo");
infoElement.innerHTML = renderedinfo;

DashboardAssistant.prototype.launchMain = function() {
Mojo.Log.info("Tap to Dashboard");

};

var appController = Mojo.Controller.getAppController();
appController.assistant.handleLaunch({action:"notification",
index:this.index});

this.controller.window.close();

// showStory - rotates stories shown in dashboard panel, every 3 seconds.
DashboardAssistant.prototype.showStory = function() {

Mojo. Log. info("Dashboard Story Rotation'', this. timer, this. storyindex);

this.interval = 3000;

366 I Appendix D: News Application Source Code

};

II If timer is null, just restart the timer and use the most recent story
II or the last one displayed;
if (!this.timer) {

this.timer = this.controller.window.setinterval(this.showStory.bind(this),
this.interval);

II Else, get next story in list and update the story in the dashboard display
else {

II replace with test for unread story
this.storyindex = this.storyindex+1;
if(this.storyindex >= this.list[this.index].stories.length)

this.storylndex = o;
}

this.message= this.list[this.index].stories[this.storyindex].title;
this.displayDashboard(this.title, this.message, this.count);

DashboardAssistant.prototype.stopShowStory = function()
if (this.timer) {

this.controller.window.clearinterval(this.timer);
this.timer= undefined;

};

II Update dashboard scene contents - external method
DashboardAssistant.prototype.updateDashboard = function(selectedFeedindex)

this.index = selectedFeedindex;

} ;

this.title= this.list[this.index].title;
this.message= this.list[this.index].stories[o].title;
this.count= this.list[this.index].newStoryCount;
this.displayDashboard(this.title, this.message, this.count);

news/ a pp/ assistants/feed List-assista nt.js
I* FeedListAssistant - NEWS

Copyright 2009 Palm, Inc. All rights reserved.

Main scene for News app. Includes AddDialog-assistant for handling
feed entry and then feedlist-assistant and supporting functions.

Major components:
AddDialogAssisant; Scene assistant for add feed dialog and handlers
FeedlistAssistant; manages feedlists
List Handlers - delete, reorder and add feeds
Feature Feed - functions for rotating and showing feature stories
Search - functions for searching across the entire feedlist database

Arguments:
- feeds; Feeds object

News Application Directory Structure I 367

*I

II --
11 AddDialogAssistant - simple controller for adding new feeds to the list
II when the "Add ..• " is selected on the feedlist. The dialog will
II allow the user to enter the feed's url and optionally a name. When
II the "Ok" button is tapped, the new feed will be loaded. If no errors
II are encountered, the dialog will close otherwise the error will be
II posted and the user encouraged to try again.
II
function AddDialogAssistant(sceneAssistant, feeds, index) {

this.feeds =feeds;
this.sceneAssistant = sceneAssistant;

II If an index is provided then this is an edit feed, not add feed
II so provide the existing title, url and modify the dialog title
if (index !== undefined) {

}

this.title= this.feeds.list[index].title;
this.url = this.feeds.list[index].url;
this.feedindex = index;
this.dialogTitle = $L("Edit News Feed");

else {
this.title =
this.url = "";
this.feedindex = null;
this.dialogTitle = $L("Add News Feed Source");

AddDialogAssistant.prototype.setup = function(widget)
this.widget = widget;

II Set the dialog title to either Edit or Add Feed
var addFeedTitleElement =

this.sceneAssistant.controller.get("add-feed-title");
addFeedTitleElement.innerHTML = this.dialogTitle;

II Setup text field for the new feed's URL
this.sceneAssistant.controller.setupWidget(

"newFeedURL",
{

},

hintText: $L("RSS or ATOM feed URL"),
autofocus: true,
autoReplace: false,
textCase: Mojo.Widget.steModeLowerCase,
enterSubmits: false

this.urlModel = {value : this.url});

II Setup text field for the new feed's name
this.sceneAssistant.controller.setupWidget(

"newFeedName",
{

368 I Appendix D: News Application Source Code

};

},

hintText: $L("Title (Optional)"),
autoReplace: false,
textCase: Mojo.Widget.steModeTitleCase,
enterSubmits: false

this.nameModel = {value : this.title});

II Setup OK & Cancel buttons
II OK button is an activity button which will be active
II while processing and adding feed. Cancel will just
II close the scene
this.okButtonModel = {label: $L("OK"), disabled: false};
this.sceneAssistant.controller.setupWidget("okButton",

{type: Mojo.Widget.activityButton}, this.okButtonModel);
this.okButtonActive = false;
this.okButton = this.sceneAssistant.controller.get("okButton");
this.checkFeedHandler = this.checkFeed.bindAsEventListener(this);
this.sceneAssistant.controller.listen("okButton", Mojo.Event.tap,

this.checkFeedHandler);

this.cancelButtonModel = {label: $L("Cancel"), disabled: false};
this.sceneAssistant.controller.setupWidget("cancelButton",

{type: Mojo.Widget.defaultButton}, this.cancelButtonModel);
this.sceneAssistant.controller.listen("cancelButton", Mojo.Event.tap,

this.widget.mojo.close);

II checkFeed - called when OK button is clicked implying a valid feed URL
II has been entered.
AddDialogAssistant.prototype.checkFeed = function() {

if (this.okButtonActive === true) {
//Shouldn't happen, but log event if it does and exit
Mojo.Log.info("Multiple Check Feed requests");
return;

}

II Check entered URL and name to confirm a valid and supported feedlist
Mojo.Log.info("New Feed URL Request: ", this.urlModel.value);

II Check for "http://" on front or other prefix; assume any string of
// 1 to 5 alpha characters followed by ":" is ok, else prepend "http://"
var url = this.urlModel.value;
if (/A[a-z]{l,5}:/.test(url) === false) {

}

II Strip any leading slashes
url = url.replace(/A\/{1,2}/,"");
url = "http://"+url;

II Update the entered URL & model
this.urlModel.value = url;
this.sceneAssistant.controller.modelChanged(this.urlModel);

II If the url is the same, then assume that it's just a title change,
II update the feed title and close the dialog. Otherwise update the feed.

News Application Directory Structure I 369

} ;

if (this.feedindex && this.feeds.list[this.feedindex].url ==

}

this.urlModel.value) {
this.feeds.list[this.feedindex].title = this.nameModel.value;
this.sceneAssistant.feedWgtModel.items = this.feeds.list;
this.sceneAssistant.controller.modelChanged(

this.sceneAssistant.feedWgtModel);
this.widget.mojo.close();

else {

}

this.okButton.mojo.activate();
this.okButtonActive = true;
this. okButtonModel. label = "Updating Feed";
this.okButtonModel.disabled = true;
this.sceneAssistant.controller.modelChanged(this.okButtonModel);

var request = new Ajax.Request(url, {
method: "get",

});

evalJSON: "false",
onSuccess: this.checkSuccess.bind(this),
onFailure: this.checkFailure.bind(this)

II checkSuccess - Ajax request success
AddDialogAssistant.prototype.checkSuccess = function(transport)

Mojo.Log.info("Valid URL - HTTP Status", transport.status);

II DEBUG - Work around due occasional Ajax XML error in response.
if (transport.responseXML === null && transport.responseText !== null) {

Mojo.Log.info("Request not in XML format - manually converting");
transport.responseXML =

new DOMParser().parseFromString(transport.responseText, "textlxml");
}

var feedError = News.errorNone;

II If a new feed, push the entered feed data on to the feedlist and
II call processFeed to evaluate it.
if (this.feedindex === null) {

}

this.feeds.list.push({title:this.nameModel.value, url:this.urlModel.value,
type:'"', value :false, numUnRead :o, stories: []});

II processFeed - index defaults to last entry
feedError = this.feeds.processFeed(transport);

else {

}

this.feeds.list[this.feedindex] = {title:this.nameModel.value,
url:this.urlModel.value,

type:"", value:false, numUnRead:o, stories:[]};
feedError = this.feeds.processFeed(transport, this.feedindex);

II If successful processFeed returns errorNone
if (feedError === News.errorNone) {

370 I Appendix D: News Application Source Code

};

}

II update the widget, save the DB and exit
this.sceneAssistant.feedWgtModel.items = this.feeds.list;
this.sceneAssistant.controller.modelChanged(this.sceneAssistant.feedWgtModel);
this.feeds.storeFeedDb();
this.widget.mojo.close();

else {
II Feed can't be processed - remove it but keep the dialog open
this.feeds.list.pop();
if (feedError == News.invalidFeedError)

Mojo.Log.warn("Feed ",

}

this.urlModel.value, " isn't a supported feed type.");
var addFeedTi tleElement = this. controller. get ("add-feed-title");
addFeedTitleElement.innerHTML = $L("Invalid Feed Type - Please Retry");

this.okButton.mojo.deactivate();
this.okButtonActive = false;
this. okButtonModel. button Label = "OK";
this.okButtonModel.disabled = false;
this.sceneAssistant.controller.modelChanged(this.okButtonModel);

II checkFailure - Ajax request failure
AddDialogAssistant.prototype.checkFailure = function(transport) {

};

II Log error and put message in status area
Mojo.Log.info("Invalid URL - HTTP Status", transport.status);
var addFeedTitleElement = this.controller.get("add-feed-title");
addFeedTitleElement.innerHTML = $L("Invalid Feed Type - Please Retry");

II cleanup - remove listeners
AddDialogAssistant.prototype.cleanup = function() {

this.sceneAssistant.controller.stopListening("okButton", Mojo.Event.tap,
this.checkFeedHandler);

this.sceneAssistant.controller.stopListening("cancelButton", Mojo.Event.tap,
this.widget.mojo.close);

};

II ---
11
II FeedListAssistant - main scene handler for news feedlists
II
function FeedListAssistant(feeds) {

this.feeds = feeds;
this.appController = Mojo.Controller.getAppController();
this.stageController = this.appController.getStageController(News.MainStageName);

}

FeedListAssistant.prototype.setup = function() {

II Setup App Menu

News Application Directory Structure I 371

this.controller.setupWidget(Mojo.Menu.appMenu, News.MenuAttr, News.MenuModel);

II Setup the search filterlist and handlers;
this.controller.setupWidget("startSearchField",

{

},

itemTemplate: "storyListlstoryRowTemplate",
listTemplate: "storyListlstorylistTemplate",
filterFunction: this.searchlist.bind(this),
renderlimit: 70,
delay: 350

this.searchFieldModel = {
disabled: false

});

this.viewSearchStoryHandler = this.viewSearchStory.bindAsEventListener(this);
this.controller.listen("startSearchField", Mojo.Event.listTap,

this.viewSearchStoryHandler);
this.searchFilterHandler = this.searchFilter.bindAsEventListener(this);
this.controller.listen("startSearchField", Mojo.Event.filter,

this.searchFilterHandler, true);

II Setup header, drawer, scroller and handler for feature feeds

this.featureDrawerHandler = this.toggleFeatureDrawer.bindAsEventlistener(this);
this.controller.listen("featureDrawer", Mojo.Event.tap,

this.featureDrawerHandler);

this.controller.setupWidget("featureFeedDrawer", {},
this.featureFeedDrawer = {open:News.featureFeedEnable});

this.featureScrollerModel = {
scrollbars: false,
mode: "vertical"
};

this.controller.setupWidget("featureScroller", this.featureScrollerModel);
this.readFeatureStoryHandler =

this.readFeatureStory.bindAsEventListener(this);
this.controller.listen("featureStoryDiv", Mojo.Event.tap,

this.readFeatureStoryHandler);

II If feature story is enabled, then set the icon to open
if (this.featureFeedDrawer.open === true) {

this.controller.get("featureDrawer").className = "featureFeed-open";
} else {

this.controller.get("featureDrawer").className = "featureFeed-close";
}

II Setup the feed list, but it's empty
this.controller.setupWidget("feedlistWgt",

{
itemTemplate:"feedlistlfeedRowTemplate",
listTemplate:"feedlistlfeedlistTemplate",
addltemlabel: $L ("Add ••• "),

372 I Appendix D: News Application Source Code

};

},

swipeToDelete:true,
renderlimit: 40,
reorderable:true

this.feedWgtModel = {items: this.feeds.list});

II Setup event handlers: list selection, add, delete and reorder feed entry
this.showFeedHandler = this.showFeed.bindAsEventlistener(this);
this.controller.listen("feedlistWgt", Mojo.Event.listTap,

this.showFeedHandler);
this.addNewFeedHandler = this.addNewFeed.bindAsEventlistener(this);
this.controller.listen("feedlistWgt", Mojo.Event.listAdd,

this.addNewFeedHandler);
this.listDeleteFeedHandler = this.listDeleteFeed.bindAsEventlistener(this);
this.controller.listen("feedlistWgt", Mojo.Event.listDelete,

this.listDeleteFeedHandler);
this.listReorderFeedHandler = this.listReorderFeed.bindAsEventlistener(this);
this.controller.listen("feedListWgt", Mojo.Event.listReorder,

this.listReorderFeedHandler);

II Setup spinner for feedlist updates
this.controller.setupWidget("feedSpinner", {property: "value"});

II Setup listeners for minimize/maximize events
this.activateWindowHandler = this.activateWindow.bindAsEventlistener(this);
Mojo.Event.listen(this.controller.stageController.document,

Mojo.Event.activate, this.activateWindowHandler);
this.deactivateWindowHandler = this.deactivateWindow.bindAsEventlistener(this);
Mojo.Event.listen(this.controller.stageController.document,

Mojo.Event.deactivate, this.deactivateWindowHandler);

II Setup up feature story index to first story of the first feed
this.featureindexFeed = o;
this.featureindexStory = o;

//activate - handle portrait/landscape orientation, feature feed layout and rotation
FeedlistAssistant.prototype.activate = function() {

// Set Orientation to free to allow rotation
if (this.controller.stageController.setWindowOrientation) {

this.controller.stageController.setWindowOrientation("free");
}

if (News.feedlistChanged === true) {

}

this.feedWgtModel.items = this.feeds.list;
this.controller.modelChanged(this.feedWgtModel, this);
this.controller.modelChanged(this.searchFieldModel, this);

II Don't update the database here; it's slow enough that it lags the UI;
//wait for a feature story update to mask the update effect

// If there's some stories in the feed list, then start
II the story rotation even if the featureFeed is disabled as we'll use

News Application Directory Structure I 373

};

II the rotation timer to update the DB
if(this.feeds.list[this.featurelndexFeed].stories.length > 0) {

var splashScreenElement = this.controller.get("splashScreen");
splashScreenElement.hide();
this.showFeatureStory();

}

II deactivate - always turn off feature timer
FeedListAssistant.prototype.deactivate = function()

Mojo.Log.info("Feedlist deactivating");
this.clearTimers();

} ;

II cleanup - always turn off timers, and save this.feeds.list contents
FeedlistAssistant.prototype.cleanup = function() {

Mojo.Log.info("Feedlist cleaning up");

};

// Save the feed list on close, as a precaution; shouldn't be needed;
//don't wait for results
this.feeds.storeFeedDb();

// Clear feature story timer and activity indicators
this.clearTimers();

II Remove event listeners
this.controller.stoplistening("startSearchField", Mojo.Event.listTap,

this.viewSearchStoryHandler);
this.controller.stoplistening("startSearchField", Mojo.Event.filter,

this.searchFilterHandler, true);
this.controller.stoplistening("featureDrawer", Mojo.Event.tap,

this.featureDrawerHandler);
this.controller.stoplistening("feedListWgt", Mojo.Event.listTap,

this.showFeedHandler);
this.controller.stoplistening("feedlistWgt", Mojo.Event.listAdd,

this.addNewFeedHandler);
this.controller.stoplistening("feedListWgt", Mojo.Event.listDelete,

this.listDeleteFeedHandler);
this.controller.stoplistening("feedListWgt", Mojo.Event.listReorder,

this.listReorderFeedHandler);
Mojo.Event.stoplistening(this.controller.stageController.document,

Mojo.Event.activate, this.activateWindowHandler);
Mojo.Event.stoplistening(this.controller.stageController.document,

Mojo.Event.deactivate, this.deactivateWindowHandler);

FeedlistAssistant.prototype.activateWindow = function() {
Mojo.Log.info("Activate Window");
this.feedWgtModel.items = this.feeds.list;
this.controller.modelChanged(this.feedWgtModel);

II If stories exist in the this.featurelndexFeed, start the rotation
II if not started
if ((this.feeds.list[this.featurelndexFeed].stories.length > o) &&
(News.featureStoryTimer === null)) {

374 I Appendix D: News Application Source Code

}
};

var splashScreenElement = this.controller.get("splashScreen");
splashScreenElement.hide();
this.showFeatureStory();

FeedlistAssistant.prototype.deactivateWindow = function()
Mojo.Log.info("Deactivate Window");
this.ClearTimers();

};

II --
11 List functions for Delete, Reorder and Add
II
II listDeleteFeed - triggered by deleting a feed from the list and updates
II the feedlist to reflect the deletion
II
FeedlistAssistant.prototype.listDeleteFeed = function(event)

Mojo.Log.info("News deleting ", event.item.title,".");

};

var deletelndex = this.feeds.list.indexOf(event.item);
this.feeds.list.splice(deletelndex, 1);
News.feedlistChanged = true;

II Adjust the feature story index if needed:
II - feed that falls before feature story feed is deleted
II - feature story feed itself is deleted (default back to first feed)
if (deletelndex == this.featurelndexFeed) {

this.featurelndexFeed = o;
this.featurelndexStory = o;

} else {
if (deletelndex < this.featurelndexFeed) {

this.featurelndexFeed--;

}

II listReorderFeed - triggered re-ordering feed list and updates the
II feedlist to reflect the changed order
FeedlistAssistant.prototype.listReorderFeed = function(event) {

Mojo.Log.info("com.palm.app.news - News moving ", event.item.title,".");

var fromlndex = this.feeds.list.indexOf(event.item);
var tolndex = event.tolndex;
this.feeds.list.splice(fromlndex, 1);
this.feeds.list.splice(tolndex, o, event.item);
News.feedListChanged = true;

II Adjust the feature story index if needed:
II - feed that falls after featurelndexFeed is moved before it
II - feed before is moved after
II - the feature story feed itself is moved
if (fromlndex > this.featurelndexFeed && tolndex <= this.featurelndexFeed)

this.featurelndexFeed++;
} else {

News Application Directory Structure I 375

}
};

if (fromlndex < this.featurelndexFeed && tolndex > this.featurelndexFeed)
this.featurelndexFeed--;

} else {
if (fromlndex == this.featurelndexFeed) {

this.featurelndexFeed = tolndex;
}

II addNewFeed - triggered by "Add •.. " item in feed list
FeedListAssistant.prototype.addNewFeed = function()

this.controller.showDialog({
template: "feedListladdFeed-dialog",
assistant: new AddDialogAssistant(this, this.feeds)

});

};

II ----------------------------------~---
11 clearTimers - clears timers used in this scene when exiting the scene
FeedListAssistant.prototype.clearTimers = function() {

};

if(News.featureStoryTimer !== null) {
this.controller.window.clearlnterval(News.featureStoryTimer);
News.featureStoryTimer = null;

}

II Clean up any active update spinners
for (var i=O; i<this.feeds.list.length; i++)

this.feeds.list[i].value =false;
}
this.controller.modelChanged(this.feedWgtModel);

II ---
11 considerForNotification - called by the framework when a notification
II is issued; look for notifications of feed updates and update the
II feedWgtModel to reflect changes, update the feed's spinner model
FeedListAssistant.prototype.considerForNotification = function(params){

if (params && (params.type == "update")) { ·

}

this.feedWgtModel.items = this.feeds.list;
this.feeds.list[params.feedlndex].value = params.update;
this.controller.modelChanged(this.feedWgtModel);

II If stories exist, start the rotation if not started
if ((this.feeds.list[this.featurelndexFeed].stories.length > o) &&

}

(News.featureStoryTimer === null)) {
var splashScreenElement = this.controller.get("splashScreen");
splashScreenElement.hide();
this.showFeatureStory();

376 I Appendix D: News Application Source Code

return undefined;
};

II ---
11 Feature story functions
II
II showFeatureStory - simply rotate the stories within the
II featured feed, which the user can set in their preferences.
FeedlistAssistant.prototype.showFeatureStory = function() {

};

II If timer is null, either initial story or restarting. Start with
II previous story ••
if (News.featureStoryTimer === null) {

}

News.featureStoryTimer =
this.controller.window.setinterval(this.showFeatureStory.bind(this),

News.featureStoryinterval);

else {

}

this.featureindexStory = this.featureindexStory+1;
if(this.featureindexStory >=

this.feeds.list[this.featureindexFeed].stories.length)
this.featureindexStory = o;
this.featureindexFeed = this.featureindexFeed+t;
if (this.featureindexFeed >= this.feeds.list.length) {

this.featureindexFeed = o;
}

var summary= this.feeds.list[this.featureindexFeed].
stories[this. featureindexStory]. text .replace(/(< ([A>]+)>)lig," ");

summary= summary.replace(/http:\S+lig,"");
var featureStoryTitleElement = this.controller.get("featureStoryTitle");
featureStoryTitleElement.innerHTML =

unescape(this.feeds.list[this.featureindexFeed].
stories[this.featureindexStory].title);

var featureStoryElement = this.controller.get("featureStory");
featureStorySummaryElement.innerHTML = summary;

II Because this is periodic and not tied to a screen transition, use
II this to update the db when changes have been made

if (News.feedListChanged === true) {

}

this.feeds.storeFeedDb();
News.feedListChanged = false;

II readFeatureStory - handler when user taps on feature story; will push storyView
II with the current feature story.
FeedlistAssistant.prototype.readFeatureStory = function() {

this.stageController.pushScene("storyView",
this.feeds.list[this.featureindexFeed], this.featureindexStory);

News Application Directory Structure I 377

};

II toggleFeatureDrawer - handles taps to the featureFeed drawer. Toggle
II drawer and icon class to reflect drawer state.
FeedListAssistant.prototype.toggleFeatureDrawer = function(event)

};

var featureDrawer = this.controller.get("featureDrawer");
if (this.featureFeedDrawer.open ===true) {

this.featureFeedDrawer.open =false;
News.featureFeedEnable = false;
featureDrawer.className = "featureFeed-close";

}

else {
this.featureFeedDrawer.open =true;
News.featureFeedEnable = true;
featureDrawer.className = "featureFeed-open";

this.controller.modelChanged(this.featureFeedDrawer);
News.Cookie.storeCookie(); II Update News saved preferences

II ---
11 Search Functions
II
II searchFilter - triggered by entry into search field. First entry will
II hide the main feedlist scene - clearing the entry will restore the scene.
II
FeedlistAssistant.prototype.searchFilter = function(event)

Mojo.Log.info("Got search filter: ", event.filterString);
var feed ListMainElement = this. controller. get ("feedListMain");
if (event.filterString !== "") {

II Hide rest of feedlist scene to make room for search results
feedListMainElement.hide();
else {

II Restore scene when search string is null
feedListMainElement.show();

} ;

II viewSearchStory - triggered by tapping on an entry in the search results
II list will push the storyView scene with the tapped story.
II
FeedListAssistant.prototype.viewSearchStory = function(event) {

};

var searchlist = {title: $L("Search for: ")+this.filter,
stories: this.entirelist};

var storyindex = this.entirelist.indexOf(event.item);

Mojo.Log.info("Search display selected story with title= ",
searchlist.title, "; Story index - ", storyindex);

this.stageController.pushScene("storyView", searchlist, storyindex);

II searchlist - filter function called from search field widget to update the
II results list. This function will build results list by matching the
II filterstring to the story titles and text content, and then return the

378 I Appendix D: News Application Source Code

II subset of the list based on offset and size requested by the widget.
II
FeedlistAssistant.prototype.searchlist = function(filterString, listWidget,

offset, count) {

var subset = [];
var totalSubsetSize = o;

this.filter = filterString;

II If search string is null, return empty list, else build results
if (filterString !== "") {

II Search database for stories with the search string; push matches
var items = [];

II Comparison function for matching strings in next for loop
var hasString = function(query, s) {

if(s.text.toUpperCase().indexOf(query.toUpperCase())>=O)

} ;

return true;
}
if(s.title.toUpperCase().indexOf(query.toUpperCase())>=O)

return true;

return false;

for (var i=o; i<this.feeds.list.length; i++) {
for (var j=O; j<this.feeds.list[i].stories.length; j++) {

if(hasString(filterString, this.feeds.list[i].stories[j])) {
var sty= this.feeds.list[i].stories[j];
items.push(sty);

}

this.entirelist = items;
Mojo.Log.info("Search list asked for items: filter=",

filterString, " offset=", offset, " limit=", count);

II Cut down results to just the window asked for by the widget
var cursor = o;

}

while (true) {
if (cursor >= this.entirelist.length) {

break;

if (subset.length < count && totalSubsetSize >= offset)
subset.push(this.entirelist[cursor]);

totalSubsetSize++;
cursor++;

News Application Directory Structure I 379

};

II Update List
listWidget.mojo.noticeUpdateditems(offset, subset);

II Update filter field count of items found
listWidget.mojo.setlength(totalSubsetSize);
listWidget.mojo.setCount(totalSubsetSize);

II--
11 Show feed and popup menu handler
II
II showFeed - triggered by tapping a feed in the this.feeds.list.
II Detects taps on the unReadCount icon; anywhere else,
II the scene for the list view is pushed. If the icon is tapped,
II put up a submenu for the feedlist options
FeedlistAssistant.prototype.showFeed = function(event)

};

var target = event.originalEvent.target.id;
if (target !== "info") {

this.stageController.pushScene("storylist", this.feeds.list,
event.index);

}
else {

}

var myEvent = event;
var findPlace = myEvent.originalEvent.target;
this.popupindex = event.index;
this.controller.popupSubmenu({

onChoose: this.popupHandler,
placeNear: findPlace,
items: [

{label: $L("All Unread"), command: "feed-unread"},
{label: $L("All Read"), command: "feed-read"},
{label: $L("Edit Feed"), command: "feed-edit"},
{label: $L("New Card"), command: "feed-card"}
l

}) ;

II popupHandler - choose function for feedPopup
FeedlistAssistant.prototype.popupHandler = function(command) {

var popupFeed=this.feeds.list[this.popupindex];
switch(command) {

case "feed-unread":
Mojo.Log.info("Popup - unread for feed:", popupFeed.title);

for (var i=O; i<popupFeed.stories.length; i++) {
popupFeed.stories[i].unreadStyle = News.unreadStory;

}
popupFeed.numUnRead = popupFeed.stories.length;
this.controller.modelChanged(this.feedWgtModel);
break;

case "feed-read":
Mojo.Log.info("Popup - read for feed:", popupFeed.title);

380 I Appendix D: News Application Source Code

};

for (var j=o; j<popupFeed.stories.length; j++) {
popupFeed.stories[j].unreadStyle =

popupFeed.numUnRead = o;
this.controller.modelChanged(this.feedWgtModel);
break;

case "feed-edit":
Mojo.Log.info("Popup edit for feed:", popupFeed.title);
this.controller.showDialog({

}) ;

template: "feedlist/addFeed-dialog",
assistant: new AddDialogAssistant(this, this.feeds,

this.popuplndex)

break;

case "feed-card":
Mojo.Log.info("Popup tear off feed to new card:",

popupFeed.title);

var newCardStage = "newsCard"+this.popuplndex;
var cardStage = this.appController.getStageController(newCardStage);
var feedlist = this.feeds.list;
var feedlndex = this.popuplndex;
if(cardStage) {

Mojo.Log.info("Existing Card Stage");
cardStage.popScenesTo();
cardStage.pushScene("storyList", this.feeds.list, feedindex);
cardStage.activate();

} else {
Mojo.Log.info("New Card Stage");
var pushStoryCard = function(stageController){

stageController.pushScene("storyList", feedlist, feedindex);
};
this.appController.createStageWithCallback({

name: newCardStage,
lightweight: true

},
pushStoryCard, "card");

break;

news/app/assistants/preferences-assistant.js
/* Preferences - NEWS

Copyright 2009 Palm, Inc. All rights reserved.

Preferences - Handles preferences scene, where the user can:
- select the featured feed rotation interval
- select the interval for feed updates
- enable or disable background feed notifications

News Application Directory Structure I 381

- enable or disable device wakeup

App Menu is disabled in this scene.

*I

function PreferencesAssistant()

PreferencesAssistant.prototype.setup = function() {

II Setup Integer Picker to pick feature feed rotation interval
this.controller.setupWidget("featureFeedDelay",

{
label: $L("Rotation (in seconds)"),
modelProperty: "value'',
min: 1,
max: 20

},
this.featureDelayModel = {

value : News.featureStoryintervall1000
});

this.changeFeatureDelayHandler =

this.changeFeatureDelay.bindAsEventListener(this);
this.controller.listen("featureFeedDelay", Mojo.Event.propertyChange,

this.changeFeatureDelayHandler);

II Setup list selector for UPDATE INTERVAL
this.controller.setupWidget("feedCheckintervallist",

{

},

label: $L("Interval"),
choices: [

{label: $L("Manual Updates"),
{label: $L("5 Minutes"),
{label: $L("15 Minutes"),
{label: $L("1 Hour"),
{label: $L("4 Hours"),
{label: $L("1 Day"),

this.feedintervalModel =

value : News.feedUpdateinterval
});

value: "oo :oo :oo"},
value: "00:05:00"},
value: "oo: 15 :oo"},
value: "01:00:00"},
value: "04:00:00"},
value: "23:59:59"}

this.changeFeedintervalHandler =

this.changeFeedinterval.bindAsEventlistener(this);
this.controller.listen("feedCheckintervallist", Mojo.Event.propertyChange,

this.changeFeedintervalHandler);

II Toggle for enabling notifications for new stories during feed updates
this.controller.setuoWideet("notificationToegle",

{}' . - . --
this. notificationToggleModel = {

382 I Appendix D: News Application Source Code

} ;

value: News.notificationEnable
});

this.changeNotificationHandler =
this.changeNotification.bindAsEventlistener(this);

this.controller.listen("notificationToggle", Mojo.Event.propertyChange,
this.changeNotificationHandler);

II Toggle for enabling feed updates while the device is asleep
this.controller.setupWidget("bgUpdateToggle",

{},
this.bgUpdateToggleModel = {

value: News.feedUpdateBackgroundEnable
});

this.changeBgUpdateHandler
this.changeBgUpdate.bindAsEventlistener(this);

this.controller.listen("bgUpdateToggle", Mojo.Event.propertyChange,
this.changeBgUpdate);

II Deactivate - save News preferences and globals
PreferencesAssistant.prototype.deactivate = function() {

News.Cookie.storeCookie();
} ;

II Cleanup - remove listeners
PreferencesAssistant.prototype.cleanup = function() {
this.controller.stoplistening("featureFeedDelay",

Mojo.Event.propertyChange, this.changeFeatureDelayHandler);
this.controller.stoplistening("feedCheckintervallist",

Mojo.Event.propertyChange, this.changeFeedintervalHandler);
this.controller.stoplistening("notificationToggle",

Mojo.Event.propertyChange, this.changeNotificationHandler);
this.controller.stoplistening("bgUpdateToggle",

Mojo.Event.propertyChange, this.changeBgUpdate); };

II changeFeatureDelay - Handle changes to the feature feed interval
PreferencesAssistant.prototype.changeFeatureDelay = function(event)

Mojo.Log.info("Preferences Feature Delay Handler; value = ",

this.featureDelayModel.value);

} ;

II Interval is in milliseconds
News.featureStoryinterval = this.featureDelayModel.value*1000;

II If timer is active, restart with new value
if(News.featureStoryTimer !== null) {

this.controller.window.clearinterval(News.featureStoryTimer);
News.featureStoryTimer = null;

}

II changeFeedinterval - Handle changes to the feed update interva;
PreferencesAssistant.prototype.changeFeedinterval = function(event)

Mojo.Log.info("Preferences Feed Interval Handler; value = ",

this.feedintervalModel.value);

News Application Directory Structure I 383

News.feedUpdateinterval = this.feedintervalModel.value;
};

II changeNotification - disables/enables notifications
PreferencesAssistant.prototype.changeNotification = function(event) {

Mojo.Log.info("Preferences Notification Toggle Handler; value = "

this.notificationToggleModel.value);
News.notificationEnable = this.notificationToggleModel.value;

};

II changeBgUpdate - disables/enables background wakeups
PreferencesAssistant.prototype.changeBgUpdate = function(event) {

Mojo.Log.info("Preferences Background Update Toggle Handler; value = "

this.bgUpdateToggleModel.value);
News.feedUpdateBackgroundEnable = this.bgUpdateToggleModel.value;

};

news/app/assistants/storylist-assistant.js
/* StorylistAssistant - NEWS

*/

Copyright 2009 Palm, Inc. All rights reserved.

Displays the feed's stories in a list, user taps display the
selected story in the storyView scene. Major components:
- Setup view menu to move to next or previous feed
- Search filter; perform keyword search within feed list
- Story View; push story scene when a story is tapped
- Update; handle notifications if feedlist has been updated

Arguments:
- feedlist; Feeds.list array of all feeds
- selectedFeedindex; Feed to be displayed

function StorylistAssistant(feedlist, selectedFeedindex)
this.feedlist = feedlist;

}

this.feed = feedlist[selectedFeedindex];
this.feedindex = selectedFeedindex;
Mojo.Log.info("Storylist entry = ", this.feedindex);
Mojo.Log.info("Storylist feed = " + Object.toJSON(this.feed));

StorylistAssistant.prototype.setup = function() {
this.stageController = this.controller.stageController;
II Setup scene header with feed title and next/previous feed buttons. If
II this is the first feed, suppress Previous menu; if last, suppress Next menu
var feedMenuPrev = {};

var feedMenuNext = {};

if (this.feedindex > o)
feedMenuPrev = {

icon: "back",
command: "do-feedPrevious"

384 I Appendix D: News Application Source Code

};
else

II Push empty menu to force menu bar to draw on left (label is the force)
feedMenuPrev = {icon: '"', command: "", label: " "};

if (this.feedindex < this.feedlist.length-1)
feedMenuNext = {

icon Path: "images/menu-icon-forward. png",
command: "do-feedNext"

} ;
} else

}

II Push empty menu to force menu bar to draw on right (label is the force)
feedMenuNext = {icon: "", command: "", label: " "};

this.feedMenuModel
visible: true,

} ;

items: [{

} l

items: [
feedMenuPrev,
{ label: this.feed.title, width: 200 },
feedMenuNext

this.controller.setupWidget(Mojo.Menu.viewMenu,
{ spacerHeight: o, menuClass:"no-fade" }, this.feedMenuModel);

II Setup App Menu
this.controller.setupWidget(Mojo.Menu.appMenu, News.MenuAttr, News.MenuModel);

II Setup the search filterlist and handlers;
this.controller.setupWidget("storyListSearch",

{
itemTemplate: "storylist/storyRowTemplate",
listTemplate: "storylist/storylistTemplate",
filterFunction: this.searchlist.bind(this),
renderlimit: 70,
delay: 350

},
this.searchFieldModel

disabled: false
});

this.viewSearchStoryHandler = this.viewSearchStory.bindAsEventlistener(this);
this.controller.listen("storylistSearch", Mojo.Event.listTap,

this.viewSearchStoryHandler);
this.searchFilterHandler = this.searchFilter.bindAsEventlistener(this);
this.controller.listen("storylistSearch", Mojo.Event.filter,

this.searchFilterHandler, true);

II Setup story list with standard news list templates.
this.controller.setupWidget("storylistWgt",

News Application Directory Structure I 385

};

);

{

},

itemTemplate: "storylistlstoryRowTemplate",
listTemplate: "storylistlstoryListTemplate",
swipeToDelete: false,
renderlimit: 40,
reorderable: false

this.storyModel = {
items: this.feed.stories

this.readStoryHandler = this.readStory.bindAsEventlistener(this);
this.controller.listen("storyListWgt", Mojo.Event.listTap,

this.readStoryHandler);

StoryListAssistant.prototype.activate = function() {

};

II Update list models in case unReadCount has changed
this.controller.modelChanged(this.storyModel);

StorylistAssistant.prototype.cleanup = function() {

};

II Remove event listeners
this.controller.stoplistening("storylistSearch", Mojo.Event.listTap,

this.viewSearchStoryHandler);
this.controller.stoplistening("storylistSearch", Mojo.Event.filter,

this.searchFilterHandler, true);
this.controller.stoplistening("storylistWgt", Mojo.Event.listTap,

this.readStoryHandler);

II readStory - when user taps on displayed story, push storyView scene
StorylistAssistant.prototype.readStory = function(event) {

Mojo.Log.info("Display selected story= ", event.item.title,

};

"; Story index= ", event.index);
this.stageController.pushScene("storyView", this.feed, event.index);

II handleCommand - handle next and previous commands
StorylistAssistant.prototype.handleCommand = function(event)

if(event.type == Mojo.Event.command) {
switch(event.command) {

};

case "do-feedNext":
this.nextFeed();
break;

case "do-feedPrevious":
this.previousFeed();
break;

II nextFeed - Called when the user taps the next menu item
StorylistAssistant.prototype.nextFeed = function(event) {

386 I Appendix D: News Application Source Code

};

this.stageController.swapScene(
{

},

transition: Mojo.Transition.crossFade,
name: "storylist"

this.feedlist,
this.feedindex+l);

II previousFeed - Called when the user taps the previous menu item
StoryListAssistant.prototype.previousFeed = function(event) {

this.stageController.swapScene(

} ;

{

},

transition: Mojo.Transition.crossFade,
name: "storylist"

this.feedlist,
this.feedindex-1);

II searchFilter - triggered by entry into search field. First entry will
II hide the main storylist scene and clearing the entry will restore the scene.
StorylistAssistant.prototype.searchFilter = function(event) {

var storylistSceneElement = this.controller.get("storylistScene");
if (event.filterString !== "") {

II Hide rest of storylist scene to make room for search results
storylistSceneElement.hide();
else {

II Restore scene when search string is null
storylistSceneElement.show();

};

II viewSearchStory - triggered by tapping on an entry in the search results list.
StorylistAssistant.prototype.viewSearchStory = function(event)

} ;

var searchlist =

{title: $L("Search for: #{filter}").interpolate({filter: this.filter}),
stories: this.entirelist};

var storyindex = this.entirelist.indexOf(event.item);

this.stageController.pushScene("storyView", searchlist, storyindex);

II searchlist - filter function called from search field widget to update
II results list. This function will build results list by matching the
II filterstring to story titles and text content, and return the subset
II of list based on offset and size requested by the widget.t.
StorylistAssistant.prototype.searchlist = function(filterString, listWidget,

offset, count) {

var subset = [];

var totalSubsetSize = o;

News Application Directory Structure I 387

};

this.filter = filterString;

II If search string is null, then return empty list, else build results list
if (filterString !== "") {

II Search database for stories with the search string
II and push on to the items array
var items = [];

II Comparison function for matching strings in next for loop
var hasString = function(query, s) {

if(s.text.toUpperCase().indexOf(query.toUpperCase())>=O) {
return true;

};

}
if(s.title.toUpperCase().indexOf(query.toUpperCase())>=O)

return true;
}
return false;

for (var j=O; j<this.feed.stories.length; j++) {
if(hasString(filterString, this.feed.stories[j]))

var sty = this.feed.stories[j];
items.push(sty);

this.entirelist = items;

Mojo.Log.info("Search list asked for items: filter=", filterString,
" offset=", offset, " limit=", count);

II Cut down the list results to just the window asked for by the widget
var cursor = o;
while (true) {

}

if (cursor >= this.entirelist.length)
break;

if (subset.length < count && totalSubsetSize >= offset) {
subset.push(this.entirelist[cursor]);

}
totalSubsetSize++;
cursor++;

II Update List
listWidget.mojo.noticeUpdateditems(offset, subset);

II Update filter field count of items found
li•tWirloPt_mnin_•PtlPnoth(tntalSubsetSize):
ii~twidg~t.mojo.setCou~t(totalSubsetSize);-

388 I Appendix D: News Application Source Code

II considerForNotification - called when a notification is issued; if this
II feed has been changed, then update it.
StorylistAssistant.prototype.considerForNotification = function(params){

};

if (params && (params.type == "update")) {
if ((params.feedindex == this.feedindex) && (params.update === false))

this.storyModel.items = this.feed.stories;
this.controller.modelChanged(this.storyModel);

return undefined;

news/app/assistants/storyView-assistant.js
/* StoryViewAssistant - NEWS

*/

Copyright 2009 Palm, Inc. All rights reserved.

Passed a story element, displays that element in a full scene view and offers
options for next story (right command menu button), previous story (left
command menu button) and to launch story URL in the browser (view menu) or
share story via email or messaging. Major components:
- StoryView; display story in main scene
- Next/Previous; command menu options to go to next or previous story
- Web; command menu option to display original story in browser
- Share; command menu option to share story by messaging or email

Arguments:
- storyFeed; Selected feed from which the stories are being viewed
- storyindex; Index of selected story to be put into the view

function StoryViewAssistant(storyFeed, storyindex) {
this.storyFeed = storyFeed;
this.storyindex = storyindex;

}

II setup - set up menus
StoryViewAssistant.prototype.setup = function() {

this.stageController = this.controller.stageController;

this.storyMenuModel = {

items: [
{iconPath: "images/url-icon.png", command: "do-webStory"},
{},

]};

{items: []},
{},
{icon: "send", command: "do-shareStory"}

if (this.storyindex > o) {
this.storyMenuModel.items[2].items.push({

icon: "back",
command: "do-viewPrevious"

News Application Directory Structure I 389

} ;

});
else {
this.storyMenuModel.items[2].items.push({

icon: 1111
,

command:
label: "

});

if (this.storyindex < this.storyFeed.stories.length-1) {
this.storyMenuModel.items[2].items.push({

icon: "forward",
command: "do-viewNext"}

);
} else {

}

this.storyMenuModel.items[2].items.push({
icon: 1111

,

command:
label: "

});

this.controller.setupWidget(Mojo.Menu.commandMenu, undefined,
this.storyMenuModel);

II Setup App Menu
this.controller.setupWidget(Mojo.Menu.appMenu, News.MenuAttr, News.MenuModel);

II Update story title in header and summary
var storyViewTitleElement = this.controller.get("storyViewTitle");
var storyViewSummaryElement = this.controller.get("storyViewSummary");
storyViewTitleElement.innerHTML = this.storyFeed.stories[this.storyindex].title;
storyViewSummaryElement.innerHTML = this.storyFeed.stories[this.storyindex].text;

II activate - display selected story
StoryViewAssistant.prototype.activate = function(event) {

Mojo.Log.info("Story View Activated");

};

II Update unreadStyle string and unReadCount in case it's changed
if (this.storyFeed.stories[this.storyindex].unreadStyle == News.unreadStory) {

this.storyFeed.numUnRead--;
this.storyFeed.stories[this.storyindex].unreadStyle = "";
News.feedlistChanged = true;

II ---
11 Handlers to go to next and previous stories, display web view
II or share via messaging or email.
St0:ryVieiA1.l\ssist2nt. prototype. handleCommand = function(event) {

if(event.type == Mojo.Event.command)
switch(event.command) {

390 I Appendix D: News Application Source Code

}
};

case "do-viewNext":
this.stageController.swapScene(

{

},

transition: Mojo.Transition.crossFade,
name: "storyView"

this.storyFeed, this.storyindex+l);
break;

case "do-viewPrevious":
this.stageController.swapScene(

{

},

transition: Mojo.Transition.crossFade,
name: "storyView"

this.storyFeed, this.storylndex-1);
break;

case "do-shareStory":
var myEvent = event;
var findPlace = myEvent.originalEvent.target;
this.controller.popupSubmenu({

onChoose: this.shareHandler,
placeNear: findPlace,
items: [

});
break;

{label: $L("Email"), command: "do-emailStory"},
{label: $L("SMSIIM"), command: "do-messageStory"}
l

case "do-webStory":
this.controller.serviceRequest(

"palm:llcom.palm.applicationManager",
method: "open",

});
break;

parameters: {

}

id: "com.palm.app.browser",
params: {

target: this.storyFeed.stories[this.storylndex].url

II shareHandler - choose function for share submenu
StoryViewAssistant.prototype.shareHandler function(command)

switch(command) {
case "do-emailStory":

this.controller.serviceRequest(
"palm:llcom.palm.applicationManager",

method: "open",
parameters: {

id: "com. palm. app. email",
params: {
summary: $L("Check out this News story ... "),

News Application Directory Structure I 391

}
};

});
break;

text: this.storyFeed.stories[this.storyindex].url

case "do-messageStory":
this.controller.serviceRequest(

"palm:llcom.palm.applicationManager", {
method: "open",

});
break;

parameters: {
id: "com.palm.app.messaging",
params: {

messageText: $L("Check this out: ")
+this.storyFeed.stories[this.storyindex].url

news/app/models/cookies.js
I* Cookie - NEWS

*I

Copyright 2009 Palm, Inc. All rights reserved.

Handler for cookieData, a stored version of News preferences.
Will load or create cookieData, migrate preferences and update cookieData
when called.

Functions:
initialize - loads or creates newsCookie; updates preferences withcontents

of stored cookieData and migrates any preferences due version changes
store - updates stored cookieData with current global preferences

News.Cookie ({

initialize: function() {
II Update globals with preferences or create it.
this.cookieData = new Mojo.Model.Cookie("comPalmAppNewsPrefs");
var oldNewsPrefs = this.cookieData.get();
if (oldNewsPrefs) {

II If current version, just update globals & prefs
if (oldNewsPrefs.newsVersionString == News.versionString) {

News.featureFeedEnable = oldNewsPrefs.featureFeedEnable;
News.featureStoryinterval = oldNewsPrefs.featureStoryinterval;
News.feedUpdateinterval = oldNewsPrefs.feedUpdateinterval;
News.versionString = oldNewsPrefs.newsVersionString;
News.notificationEnable = oldNewsPrefs.notificationEnable;
News.feedUpdateBackgroundEnable = oldNewsPrefs.feedUpdateBackgroundEnable;

} else {
II migrate old preferences here on updates of News app

392 I Appendix D: News Application Source Code

}

this.storeCookie();

},

II store - function to update stored cookie with global values
storeCookie: function() {

});

this.cookieData.put({
featureFeedEnable: News.featureFeedEnable,
feedUpdateinterval: News.feedUpdateinterval,
featureStoryinterval: News.featureStoryinterval,
newsVersionString: News.versionString,
notificationEnable: News.notificationEnable,
feedUpdateBackgroundEnable: News.feedUpdateBackgroundEnable

});

news/app/models/feeds.js
I* Feeds - NEWS

Copyright 2009 Palm, Inc. All rights reserved.

The primary data model for the News app. Feeds includes the primary
data structure for the newsfeeds, which are structured as a list of lists:

Feeds.list entry is:
list[x].title
list[x].url
list[x].type
list[x].value
list[x].numUnRead
list[x].newStoryCount
list[x].stories

list.stories entry is:

String
String
String
Boolean
Integer
Integer
Array

stories[y].title String
stories[y].text String
stories[y].summary String
stories[y].unreadStyle String
stories[y].url String

Methods:

Title entered by user
Feed source URL in unescaped form
Feed type: either rdf, rss, or atom
Spinner model for feed update indicator
How many stories are still unread
For each update, how many new stories
Each entry is a complete story

Story title or headline
Story text
Story text, stripped of markup
Null when Read
Story url

initialize(test) - create default and test feed lists
getDefaultList() - returns the default feed list as an array
getTestList() - returns both the default and test feed lists as a single array
loadFeedDb() - loads feed database depot, or creates default feed list

if no existing depot
processFeed(transport, index) - function to process incoming feeds that are

XML encoded in an Ajax object and stores them in the Feeds.list. Supports
RSS, RDF and Atom feed formats.

storeFeedDb() - writes contents of Feeds.list array to feed database depot

News Application Directory Structure I 393

updateFeedlist(index) - updates entire feed list starting with this.feedindex.
*/

var Feeds = Class.create ({

II Default Feeds.list
defaul tlist: [

{

},{

},{

},{

},{

},{

},{

},{

},{

},{

},{

},{

title: "Huffington Post'',
url:"http://feeds.huffingtonpost.com/huffingtonpost/raw_feed",
type:"atom", value:false, numUnRead:o, newStoryCount:o, stories:[]

title: "Google",
url:"http://news.google.com/?output=atom",
type:"atom", value:false, numUnRead:o, newStoryCount:o, stories:[]

title:"BBC News",
url:"http://newsrss.bbc.co.uk/rss/newsonline world edition/

front_page/rss.xml", - -
type:"rss", value:false, numUnRead:o, newStoryCount:o, stories:[]

title:"New York Times",
url:"http://www.nytimes.com/services/xml/rss/nyt/HomePage.xml",
type:"rss", value:false, numUnRead:o, newStoryCount:o, stories:[]

title: "MSNBC",
url:"http://rss.msnbc.msn.com/id/3032091/device/rss/rss.xml",
type:"rss", value:false, numUnRead:o, newStoryCount:o, stories:[]

title: "National Public Radio",
url:"http://www.npr.org/rss/rss.php?id=1004",
type:"rss", value:false, numUnRead:o, newStoryCount:o, stories:[]

title:"Slashdot",
url:"http://rss.slashdot.org/Slashdot/slashdot",
type:"rdf", value:false, numUnRead:o, newStoryCount:o, stories:[]

title:"Engadget",
url:"http://www.engadget.com/rss.xml",
type:"rss", value:false, numUnRead:o, newStoryCount:o, stories:[]

title:"The Daily Dish",
url:"http://feeds.feedburner.com/andrewsullivan/rApM?format=xml",
type:"rss", value:false, numUnRead:o, newStoryCount:o, stories:[]

title:"Guardian UK",
url:"http://feeds.guardian.co.uk/theguardian/rss",
type:"rss", value:false, numUnRead:o, newStoryCount:o, stories:[]

title:"Yahoo Sports",
url:"http://sports.yahoo.com/top/rss.xml",
type:"rss", value:false, numUnRead:o, newStoryCount:o, stories:[]

title: "ESPN",
url:"http://sports-ak.espn.go.com/espn/rss/news",

394 I Appendix D: News Application Source Code

},{

}, {

],

type:"rss", value:false, numUnRead:o, newStoryCount:o, stories:[]

title: "Ars Technica",
url:"http:llfeeds.arstechnica.comlarstechnicalindex?format=xml",
type:"rss", value:false, numUnRead:o, newStoryCount:o, stories:[]

title: "Nick Carr",
url:"http:llfeeds.feedburner.comlroughtypelunGc",
type:"rss", value:false, numUnRead:o, newStoryCount:o, stories:[]

II Additional test feeds
testlist: [

{

},{

},{

},{

},{

},{

}, {

}, {

}, {

title:"Hacker News",
url:"http:llnews.ycombinator.comlrss",
type:"rss", value:false, numUnRead:o, stories:[]

title:"Ken Rosenthal",
url:"http:llfeeds.feedburner.comlfoxsportslrsslrosenthal",
type:"rss", value:false, numUnRead:o, stories:[]

title: "George Packer",
url:"http:llwww.newyorker.comlonlinelblogslgeorgepackerlrss.xml",
type:"rss", value:false, numUnRead:o, stories:[]

title:"Palm Open Source",
url:"http:llwww.palmopensource.comltmplnews.rdf",
type:"rdf", value:false, numUnRead:o, stories:[]

title: "Baseball Prospectus",
url:"http:llwww.baseballprospectus.comlrss/feed.xml",
type:"rss", value:false, numUnRead:o, stories:[]

title: "The Page",
url:"http:llfeedproxy.google.comltimelthepage?format=xml",
type:"rss", value:false, numUnRead:o, stories:[]

title: "Salon",
url:"http:llfeeds.salon.comlsalonlindex",
type:"rss", value:false, numUnRead:o, stories:[]

title: "Slate",
url:"http:llfeedproxy.google.comlslate?format=xml",
type:"rss", value:false, numUnRead:o, stories:[]

title: "SoSH",
url:"http:llsonsofsamhorn.netlindex.php?act=rssout&id=l",
type:"rss", value:false, numUnRead:o, stories:[]

},{

}, {

title: "Talking Points Memo",
url:"http:l/feeds.feedburner.comltalking-points-memo",
type:"atom", value:false, numUnRead:o, stories:[]

News Application Directory Structure I 395

},{

}, {

},{

}
],

title: "Whatever",
url:"http:llscalzi.comlwhateverl?feed=rss2",
type:"rss", value:false, numUnRead:O, stories:[]

title:"Baseball America",
url:"http:llwww.baseballamerica.comltodaylrsslrss.xml",
type:"rss", value:false, numUnRead:o, stories:[]

title: "Test RDF Feed",
url:"http:llfoobar.blogalia.comlrdf.xml",
type:"rdf", value:false, numUnRead:o, stories:[]

title: "Daily Kos",
url:"http:llfeeds.dailykos.comldailykoslindex.html",
type: "rss '', value: false, numUnRead :o, stories: []

II initialize - Assign default data to the feedlist
initialize: function(test) {

},

this.feedindex = o;
if (!test) {

this.list = this.getDefaultlist();
} else {

this.list = this.getTestlist();

II getDefaultlist - returns the default feed list as an array
getDefaultlist: function() {

},

var returnlist = [];
for (var i=O; i<this.defaultlist.length; i++) {

returnlist[i] = this.defaultlist[i];

return returnlist;

II getTestlist - returns the default and tests feeds in one array
getTestlist: function() {

},

var returnlist = [];
var defaultlength = this.defaultlist.length;
for (var i=O; i<defaultlength; i++) {

returnlist[i] = this.defaultlist[i];

for (var j=O; j<this.testlist.length; j++) {
returnlist[j+defaultlength] = this.testlist[j];

return returnlist;

!! loadFeedD!:> - loads feed rlh riPpnt, nr creates it with default list
II if it doesn't already exist
loadFeedDb: function() {

396 I Appendix D: News Application Source Code

},

II Open the database to get the most recent feed list
II DEBUG - replace is true to recreate db every time; false for release

this.db = new Mojo.Depot(

);

{name:"feedDB", version:1, estimatedSize: 100000, replace: false},
this.loadFeedDbOpenOk.bind(this),
function(result) {

Mojo.Log.warn("Can't open feed database: " result);

II dbOpenOK - Callback for successful db request in setup. Get stored db or
II fallback to using default list
loadFeedDbOpenOk: function() {

},

Mojo.Log.info("Database opened OK");
this.db.simpleGet("feedlist", this.loadFeedDbGetSuccess.bind(this),

this.loadFeedDbUseDefault.bind(this));

II loadFeedDbGetSuccess - successful retrieval of db. Call
II useDefaultlist if the feedlist empty or null or initiate an update
II to the list by calling updateFeedList.
loadFeedDbGetSuccess: function(fl) {

},

Mojo.Log.info("Database Retrieved OK");
if (fl === null) {

Mojo. Log.warn("Retrieved empty or null list from DB");
this.loadFeedDbUseDefault();

} else {
Mojo.Log.info("Retrieved feedlist from DB");
this.list = fl;

II If update, then convert from older versions

this.updateFeedList();

II loadFeedDbUseDefault() - Callback for failed DB retrieval meaning no list
loadFeedDbUseDefault: function() {

},

II Couldn't get the list of feeds. Maybe its never been set up, so
II initialize it here to the default list and then initiate an update
II with this feed list

Mojo.Log.warn("Database has no feed list. Will use default.");
this.list = this.getDefaultList();
this.updateFeedList();

II processFeed (transport, index) - process incoming feeds that
II are XML encoded in an Ajax object and stores them in Feeds.list.
II Supports RSS, RDF and Atom feed formats.
processFeed: function(transport, index) {

II Used to hold feed list as it's processed from the Ajax request

News Application Directory Structure I 397

var listitems = [];

II Variable to hold feed type tags
var feedType = transport.responseXML.getElementsByTagName("rss");

if (index === undefined)
II Default index is at end of the list
index = this.list.length-1;

II Determine whether RSS 2, RDF (RSS 1) or ATOM feed
if (feedType.length > o) {

this.list[index].type = "rss";

else {
feedType = transport.responseXML.getElementsByTagName("RDF");
if (feedType.length > o) {

this.list[index].type = "RDF";
}
else {

}

feedType = transport.responseXML.getElementsByTagName("feed");
if (feedType.length > o) {

this.list[index].type ="atom";
}
else {

II If none of those then it can't be processed, set an error code
II in the result, log the error and return
Mojo.Log.warn("Unsupported feed format in feed ",

this.list[index].url);
return News.invalidFeedError;
}

II Process feeds; retain title, text content and url
switch(this.list[index].type) {
case 11 atom":

II Temp object to hold incoming XML object
var atomEntries = transport.responseXML.getElementsByTagName("entry");
for (var i=o; i<atomEntries.length; i++) {

listitems[i] = {

};

title: unescape(atomEntries[i].getElementsByTagName("title").
item(o).textContent),

text: atomEntries[i].getElementsByTagName("content").
item(o).textContent,

unreadStyle: News.unreadStory,
url: atomEntries[i].getElementsByTagName("link").

item(o).getAttribute("href")

II Strip HTML from text for summary and shorten to 100 characters
listitems[i].summary = listitems[i].text.replace(l(<([A>]+)>)lig,"")
i;c+T+e:imc.ril c11mm~r" = lic+Tt-Pmcril_c;;,11mm;:irv rPnl;::irp(/httn·\S+/ip 1111)

ii~tlt;~;[i]:~~~~;~~ = ii~tlt;~~[i]:~~~~~~y:~~pl~ce(f#[a~~i+lig:;,{")
listitems[i].summary =

398 I Appendix D: News Application Source Code

listltems[i].summary.replace(l(\{([A\}]+)\})lig,"");
listltems[i].summary =

listltems [i]. summary. replace(/digg_ url ... I,"");
listltems[i].summary = unescape(listltems[i].summary);
listltems[i].summary = listltems[i].summary.substring(o,101);
}
break;

case 11 rss":
II Temp object to hold incoming XML object
var rssitems = transport.responseXML.getElementsByTagName("item");
for (i=O; i<rssltems.length; i++) {

listltems[i] = {

};

title: unescape(rssltems[i].getElementsByTagName("title").
item(o).textContent),

text: rssltems [i] .getElementsByTagName("description").
item(o).textContent,

unreadStyle: News.unreadStory,
url: rssltems[i].getElementsByTagName("link").

item(o).textContent

II Strip HTML from text for summary and shorten to 100 characters
listltems[i].summary = listltems[i].text.replace(l(<([A>]+)>)lig,"");
listltems[i].summary = listltems[i].summary.replace(lhttp:\S+lig,"");
listltems[i].summary = listltems[i].summary.replace(/#[a-z]+lig,"{");
listltems[i].summary =

listltems[i].summary.replace(/(\{([A\}]+)\})lig,"");
listltems[i].summary =

listltems[i].summary.replace(/digg_url ... I,"");
listltems[i].summary = unescape(listltems[i].summary);
listltems[i].summary = listltems[i].summary.substring(o,101);
}
break;

case "RDF":
II Temp object to hold incoming XML object
var rdfltems = transport.responseXML.getElementsByTagName("item");
for (i=O; i<rdfltems.length; i++) {

listltems[i] = {

};

title: unescape(rdfitems[i].getElementsByTagName("title").
item(o).textContent),

text: rdfitems[i].getElementsByTagName("description").
item(o).textContent,

unreadStyle: News.unreadStory,
url: rdfitems[i].getElementsByTagName("link").

item(o).textContent

II Strip HTML from text for summary and shorten to 100 characters
listltems[i].summary = listltems[i].text.replace(l(<([A>]+)>)lig,"");
listltems[i].summary = listltems[i].summary.replace(/http:\S+lig,"");
listltems[i].summary = listltems[i].summary.replace(/#[a-z]+lig,"{");

News Application Directory Structure I 399

}

},

listitems[i].summary =
listitems [i]. summary. replace(/(\{ W\}]+) \})lig, "");

listitems[i].summary =
listitems[i].summary.replace(/digg_url ... I,"");

listitems[i].summary = unescape(listitems[i].summary);
listitems[i].summary = listitems[i].summary.substring(o,101);
}
break;

II Update read items by comparing new stories with stories last
II in the feed. For all old stories, use the old unreadStyle value,
II otherwise set unreadStyle to News.unreadStory.
II Count number of unread stories and store value.
II Determine if any new stories when URLs don't match a previously
II downloaded story.
II
var numUnRead = o;
var newStoryCount = o;
var newStory = true;
for (i = o; i < listitems.length; i++) {

var unreadStyle = News.unreadStory;
var j;

}

for (j=O; j<this.list[index].stories.length; j++) {
if(listitems[i].url == this.list[index].stories[j].url) {

unreadStyle = this.list[index].stories[j].unreadStyle;
newStory = false;

}

if(unreadStyle == News.unreadStory)
numUnRead++;

if (newStory) {
newStoryCount++;

listitems[i].unreadStyle = unreadStyle;

II Save updated feed in global feedlist
this.list[index].stories = listitems;
this.list[index].numUnRead = numUnRead;
this.list[index].newStoryCount = newStoryCount;

II If new feed, the user may not have entered a name; if so, set the
II name to the feed title
if (this.list[index].title === "")

1
J

II Will return multiple hits, but the first is the feed name
var titleNodes = transport.responseXML.getElementsByTagName("title");
this.list[index].title = titleNodes[o].textContent;

return News.errorNone;

400 I Appendix D: News Application Source Code

II storeFeedDb() - writes contents of Feeds.list array to feed database depot
storeFeedDb: function() {

},

Mojo.Log.info("Feedlist save started");
this.db.simpleAdd("feedlist", this.list,

function() {Mojo.Log.info("Feedlist saved OK");},
this.storeFeedDBFailure);

II storeFeedDbFailure(transaction, result) - handles save failure, usually an
II out of memory error
storeFeedDbFailure: function(result) {

Mojo.Log.warn("Database save error: " result);
},

II updateFeedlist(index) - called to cycle through feeds. This is called
II once per update cycle.
updateFeedlist: function(index) {

},

News.feedlistUpdateinProgress = true;

II request fresh copies of all stories
this.currentFeed = this.list[this.feedindex];
this.updateFeedRequest(this.currentFeed);

II feedRequest - function called to setup and make a feed request
updateFeedRequest: function(currentFeed) {

},

Mojo.Log.info("URL Request: ", currentFeed.url);

II Notify the chain that there is an update in progress
Mojo.Controller.getAppController().sendToNotificationChain({

type: "update", update: true, feedindex: this.feedindex});

var request = new Ajax.Request(currentFeed.url, {
method: "get",

});

evalJSON: "false",
onSuccess: this.updateFeedSuccess.bind(this),
onFailure: this.updateFeedFailure.bind(this)

II updateFeedFailure - Callback routine from a failed AJAX feed request;
II post a simple failure error message with the http status code.
updateFeedFailure: function(transport) {

II Prototype template to generate a string from the return status.
var t = new Template(

$L("Status #{status} returned from newsfeed request."));
var m = t.evaluate(transport);

II Post error alert and log error
Mojo.Log.info("Invalid feed - http failure, check feed: " m);

II Notify the chain that this update is complete
Mojo.Controller.getAppController().sendToNotificationChain({

News Application Directory Structure I 401

type: "update", update: false, feedindex: this.feedindex});
},

II updateFeedSuccess - Successful AJAX feed request (feedRequest);
II uses this.feedindex and this.list
updateFeedSuccess: function(transport) {

var t = new Template($L({key: "newsfeed.status'',
value: "Status #{status} returned from newsfeed request."}));

Mojo. Log. info(" Feed Request Success: '', t. evaluate(transport));

II Work around due to occasional XML errors
if (transport.responseXML === null && transport.responseText !== null)

Mojo.Log.info("Request not in XML format - manually converting");
transport.responseXML =

new DOMParser().parseFromString(transport.responseText, "textlxml");

II Process the feed, passing in transport holding the updated feed data
var feedError = this.processFeed(transport, this.feedindex);

II If successful processFeed returns News.errorNone
if (feedError == News.errorNone) {

var appController = Mojo.Controller.getAppController();
var stageController =

appController.getStageController(News.MainStageName);
var dashboardStageController =

appController.getStageProxy(News.DashboardStageName);

II Post a notification if new stories and application is minimized
if (this.list[this.feedindex].newStoryCount > o) {

Mojo.Log.info("New Stories: '',
this.list[this.feedindex].title," : ",
this.list[this.feedindex].newStoryCount, " New Items");

if (!stageController.isActiveAndHasScenes() &&
News.notificationEnable) {

var bannerParams = {

} ;

messageText: Mojo.Format.formatChoice(
this.list[this.feedindex].newStoryCount,
$L("o##{title} : No New Items!

1##{title} : 1 New Item!
1>##{ title} : #{count} New Items"),

{
title: this.list[this.feedlndex].title,
count: this.list[this.feedindex].newStoryCount

appController.showBanner(bannerParams,
action: "notification",
index: this.feedlndex

},
this.list[this.feedindex].url);

402 I Appendix D: News Application Source Code

}

else

II Create or update dashboard
var feedlist = this.list;
var selectedFeedindex = this.feedindex;

if(!dashboardStageController) {
Mojo.Log.info("New Dashboard Stage");
var pushDashboard = function(stageController){

stageController.pushScene("dashboard", feedlist,
selectedFeedindex);

};
appController.createStageWithCallback({

name: News.DashboardStageName,
lightweight: true

},
pushDashboard, "dashboard");

else {
Mojo.Log.info("Existing Dashboard Stage");
dashboardStageController.delegateToSceneAssistant(

"updateDashboard", selectedFeedindex);

II There was a feed process error; unlikely, but could happen if the
II feed was changed by the feed service. Log the error.
if (feedError == News.invalidFeedError) {

Mojo. Log. info(" Feed ", this. nameModel. value,
"is not a supported feed type.");

II Notify the chain that this update is done
Mojo.Controller.getAppController().sendToNotificationChain({

type: "update", update: false, feedindex: this.feedindex});
News.feedListChanged = true;

II If NOT the last feed then update the feedsource and request next feed
this.feedindex++;
if(this.feedindex < this.list.length) {

this.currentFeed = this.list[this.feedindex];

II Notify the chain that there is a new update in progress
Mojo.Controller.getAppController().sendToNotificationChain({

type: "update",
update: true,
feedlndex: this.feedindex

});

II Request an update for the next feed
this.updateFeedRequest(this.currentFeed);

else {

II Otherwise, this update is done. Reset index too for next update

News Application Directory Structure I 403

}
});

this.feedindex = o;
News.feedlistUpdateinProgress = false;

news/app/assistants/views/dashboard/dashboard-scene.html
<div id="dashboardinfo" class="dashboardinfo"></div>

news/app/assistants/views/dashboard/item-info.html
<div class="dashboard-notification-module">

<div class="palm-dashboard-icon-container">
<div class="dashboard-newitem">

#{count}
</div>
<div id="dashboard-icon" class="palm-dashboard-icon dashboard-icon-news">
</div>

</div>
<div class="palm-dashboard-text-container">

<div class="dashboard-title">
#{title}

</div>
<div id="dashboard-text" class="palm-dashboard-text">#{message}</div>

</div>
</div

news/app/assistants/views/feedlist/addFeed-dialog.html
<div id="palm-dialog-content" class="palm-dialog-content">

<div-id="add-feed-title" class="palm-dialog-title">
Add Feed

</div>
<div class="palm-dialog-separator"></div>
<div class="textfield-group" x-mojo-focus-highlight="true">

<div class="title">
<div x-mojo-element="TextField" id="newFeedURL"></div>

</div>
</div>
<div class="textfield-group" x-mojo-focus-highlight="true">

<div class="title">
<div x-mojo-element="TextField" id="newFeedName"></div>

</div>
</div>

<div class="palm-dialog-buttons">
<div x-mojo-element="Button" id="okButton">
<div x-mojo-element="Button" id="cancelButton">

;/.J.:
'-/ U.l.V/

</div>

404 I Appendix D: News Application Source Code

news/a pp/ assistants/views/feed List/feed List-scene .html
<div id="feedlistScene">

<!-- Search Field -->
<div id="searchFieldContainer">

<div x-mojo-element="Filterlist" id="startSearchField"></div>
</div>

<div id="feedlistMain">

<!-- Rotating Feature Story -->
<div id="feedlist_view_header" class="palm-header left">

latest News
<div id="featureDrawer" class="featureFeed-close"></div>

</div>
<div class="palm-header-spacer"></div>
<div x-mojo-element="Drawer" id="featureFeedDrawer">

<div x-mojo-element="Scroller" id="featureScroller" >
<div id="featureStoryDiv" class="featureScroller">

<div id="splashScreen" class="splashScreen">
<div class="update-image"></div>
<div class="title">News v0.8#{version}

<div class="palm-body-text">Copyright 2009, Palm®</div>
</div>

</div>
<div id="featureStoryTitle" class="palm-body-title">
</div>
<div id="featureStory" class="palm-body-text">
</div>

</div>
</div>

</div>

< !-- Feed List -->
<div class="palm-list">

<div x-mojo-element="list" id="feedlistWgt"></div>
</div>

</div>
</div>

news/app/assistants/views/feedlist/feedlistlemplate.html
<div class="palm-list">#{-listElements}</div>

news/a pp/assistants/views/feed List/feed Row Template .html
<div class="palm-row" x-mojo-touch-feedback="delayed">

<div class="palm-row-wrapper textfield-group">
<div class="title">

<div class="palm-dashboard-icon-container feedlist-icon-container">
<div class="dashboard-newitem feedlist-newitem">

#{numUnRead}

News Application Directory Structure I 405

</div>
<div id="dashboard-icon" class="palm-dashboard-icon feedlist-icon">
</div>

</div>

<div class="feedlist-info icon right" id="info"></div>
<div x-mojo-element="Spinner" class="right" name="feedSpinner"</div>
<div class="feedlist-title truncating-text">#{title}</div>
<div class="feedlist-url truncating-text">#{-url}</div>

</div>
</div>

</div>

news/app/assistants/views/preferences/preferences-scene.html
<div class="palm-page-header">

<div class="palm-page-header-wrapper">
<div class="icon news-mini-icon"></div>
<div class="title">News Preferences</div>

</div>
</div>

<div class="palm-group">
<div class="palm-group-title">Feature Feed</div>

<div class="palm-list">
<div x-mojo-element="IntegerPicker" id="featureFeedDelay"></div>

</div>
</div>

</div>

<div class="palm-group">
<div class="palm-group-title">Feed Updates</div>

<div class="palm-list">
<div class="palm-row first">

<div class="palm-row-wrapper">
<div x-mojo-element="ListSelector" id="feedChecklntervallist">
</div>

</div>
</div>
<div class="palm-row">

<div class="palm-row-wrapper">

</div>
</div>

<div x-mojo-element="ToggleButton" id="notificationToggle">
</div>
<div class="title left">Show Notification</div>

<div class="palm-row last">
<div class="palm-row-wrapper">

</div>
</div>

</div>

<div x-mojo-element="ToggleButton" id="bgUpdateToggle">
</div>
<div class="title left">Wake Device</div>

406 I Appendix D: News Application Source Code

</div>
</div>

news/app/assista nts/views/storylist/storylist-scene .html
<div class="palm-header-spacer"></div>
<div id="storylistScene" class="storylistScene">

<div x-mojo-element="List" id="storylistWgt" ></div>
</div>
<div class="storylist-filter">

<div x-mojo-element="Filterlist" id="storylistSearch" class="palm-list"></div>
</div>

news/app/assistants/views/storylist/storylistTemplate.html
<div class="palm-list">#{-listElements}</div>

news/app/assistants/views/storylist/storyRowTemplate.html
<div class="palm-row" x-mojo-touch-feedback="delayed">

<div class="palm-row-wrapper">
<div id="storyTitle" class="title truncating-text #{unreadStyle}">

#{title}
</div>
<div id="storySummary" class="news-subtitle truncating-text">

#{summary}
</div>

</div>
</div>

news/app/assistants/views/storyView/storyView-scene.html
<div id="storyViewScene">

<div class="palm-page-header multi-line">
<div class="palm-page-header-wrapper">

<div id="storyViewTitle" class="title left">
</div>

</div>
</div>
<div class="palm-text-wrapper">

<div id="storyViewSummary" class="palm-body-text">
</div>

</div>
</div>

news/appinfo.json
{

"title": 11 News 11
,

"type": "web",
"main": "index.html",
"id": "com.palm.app.news11-1",

News Application Directory Structure I 407

}

11 version 11
:

11 1.0.0 11
,

11 vendor 11
:

11 Palm 11
,

"n0Window 11
:

11 true 11
,

1'icon 11
: ''icon.png'',

"theme": "light"

news/framework_ config .json
{

11 loglevel 11
:

11 0 11
,

"timingEnabled": "true"

news/index.html
<?xml version="1.o" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"

•http: I /www. w3. org/TR/xhtml11/DTD/xhtml11. dtd" >

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head>

<title>News</title>
<script src="/usr/palm/frameworks/mojo/mojo.js" type="text/javascript"

x-mojo-version="1"></script>
<link href="stylesheets/News.css" media="screen" rel="stylesheet"

type="text/css"/>
</head>

<body>
</body>

</html>

news/resources/es_us/appinfo.json
{

"title": "Noticias",
11 type 11

:
11 web",

"main": " .. / •. /index.html",
"id": "com.palm.app.news",
"version": "1.0.0·,
"vendor": "Palm",
un0Window 11 : 11 true 11

,

"icon": " .. / •. /icon.png",
"theme": "light"

news/resources/ es_ us/strings.json
{

"#{status}" : "#{status}",

408 I Appendix D: News Application Source Code

"O##{title} : No New Itemsll##{title} : 1 New Itemll>##{title} :
#{count} New Items" : "O##{title} : No hay elementos nuevosll##{title}
1 elemento nuevoll>##{title} : #{count} elementos nuevos",

''1 Day 1' : 11 1 dia'',
''1 Hour 11

:
11 1 hora'1

,

"15 Minutes" : "15 minutos",
"4 Hours" : "4 horas",
"5 Minutes" : "5 minutos",
"About News ... " : "Acerca de noticias ... ",
"Add Feed DB save error : #{message}; can't save feed list." :

"Error de base de datos al intentar agregar nueva fuente web #{message};
nose puede guardar la lista de fuentes web.",

"Add News Feed Source" : "Aiiadir fuente web de noticias",
"Add .•• ": "Aiiadir ... ",
"Adding a Feed" : "Aiiadiendo una fuente web",
"All Read" : "Todas leidas",
"All Unread" : "Todas las no leidas",
"Can't open feed database: "

"No se puede abrir la base de datos de fuentes web: "
"Cancel" : "Cancelar",
"Cancel search" : "Cancelar busqueda",
"Check out this News story ..• " : "Leer esta noticia ••. ",
"Check this out: " : "Mira esto: ",
"Copyright 2009, Palm Inc." : "Copyright 2009, Palm Inc.",
"Database save error: " : "Error al guardar en la base de datos: "
"Edit a Feed" : "Editar una fuente web",
"Edit Feed" : "Editar fuente web",
"Edit News Feed" : "Editar una fuente web de noticias",
"Feature Feed" : "Fuente web destacada",
"Featured Feed" : "Fuente web destacada",
"Feature Rotation" : "Rotaci6n de fuente web destacada",
"Feed Request Success:" : "Solicitud de fuente web lograda:",
"Feed Updates" : "Actualizaci6n de fuentes web",
"Help •.. ": "Ayuda .•. ",
"Interval" : "Intervalo",
"Invalid Feed - not a supported feed type"

"Fuente web no valida: no es un tipo de fuente web admitido",
"Latest News" : "01 timas noticias",
"Manual Updates" : "Actualizaciones manuales",
"Mark Read or Unread" : "Marcar leida o no leida",
"New Card" : "Tarjeta nueva",
"New features" : "Nuevas caracteristicas",
"New Items" : "Elementos nuevos",
"News Help" : "Ayuda para noticias",
"News Preferences" : "Preferencias para noticias",
"newsfeed.status" :

"Estado #{status} devuelto desde solicitud de fuente web de noticias",
uOKu : .. OKn,
"Optional" : "Opcional",
"Preferences ••• " : "Preferencias ••. ",
"Reload" : "Cargar nuevamente",
"Rotate Every" : "Girar cada",
"Rotation (in seconds)" : "Rotaci6n (en segundos)",
"RSS or ATOM feed URL" : "Fuente web RSS o ATOM URL",
"Search for: #{filter}" : "Buscar: #{filter}",

News Application Directory Structure I 409

"Show Notification" : "Mostrar aviso",
"SMS/IM" : "SMS/IM",
"Status #{status} returned from newsfeed request."

"La solicitud de fuente web de noticias indic6 el estado #{status}.",
"Stop" : "Detener",
"Title" : "Titulo",
"Title (Optional)" : "Titulo (Opcional)",
"Update All Feeds" : "Actualizar todas las fuentes web",
"Wake Device" : "Activar dispositivo",
"Will need to reload on next use." :

"Se tendra que cargar de nuevo la pr6xima vez que se use."

news/resources/es_us/views/feedlist/addFeed-dialog.html
<div id="palm-dialog-content" class="palm-dialog-content">

<div id="add-feed-title" class="palm-dialog-title">
Anadir fuente web

</div>
<div class="palm-dialog-separator"></div>
<div class="textfield-group" x-mojo-focus-highlight="true">

<div class="title">
<div x-mojo-element="TextField" id="newFeedURL"></div>

</div>
</div>
<div class="textfield-group" x-mojo-focus-highlight="true">

<div class="title">
<div x-mojo-element="TextField" id="newFeedName"></div>

</div>
</div>

<div class="palm-dialog-buttons">
<div x-mojo-element="Button" id="okButton">
<div x-mojo-element="Button" id="cancelButton">

</div>
</div>

news/resources/ es_ us/views/feed List/feed List-scene.html
<div id="feedListScene">

<!-- Search Field -->
<div id="searchFieldContainer">

<div x-mojo-element="Filterlist" id="startSearchField"></div>
</div>

<div id="feedlistMain">

<!-- Rotating Feature Story -->
<div id="feedlist_view_header" class="palm-header left">

Ultimd~ nu L.i.L.i.d~
<div id="featureDrawer" class="featureFeed-close"></div>

</div>

410 I Appendix D: News Application Source Code

<div class="palm-header-spacer"></div>
<div x-mojo-element="Drawer" id="featureFeedDrawer">

<div x-mojo-element="Scroller" id="featureScroller" >
<div id="featureStoryDiv" class="featureScroller">

<div id="splashScreen" class="splashScreen">
<div class="splashlmage"></div>
<div class="splashText">
Noticias v0.8#{version}

<div class="splashBody">Copyright 2009, Palm®</div>
</div>

</div>
<div id="featureStoryTitle" class="palm-body-title">
</div>

<div id="featureStory" class="palm-body-text">
</div>

</div>
</div>

</div>

<!-- Feed List -->
<div class="palm-list">

<div x-mojo-element="List" id="feedlistWgt"></div>
</div>

</div>
</div>

news/resources/es_us/views/preferences/preferences-scene.html
<div class="palm-page-header">

<div class="palm-page-header-wrapper">
<div class="icon news-mini-icon"></div>
<div class="title">Preferencias para noticias</div>

</div>
</div>

<div class="palm-group">
<div class="palm-group-title">Fuente web destacada</div>

<div class="palm-list">
<div x-mojo-element="IntegerPicker" id="featureFeedDelay"></div>

</div>
</div>

</div>

<div class="palm-group">
<div class="palm-group-title">Actualizaci6n de fuentes web</div>

<div class="palm-list">
<div class="palm-row first">

<div class="palm-row-wrapper">
<div x-mojo-element="ListSelector" id="feedCheckintervallist">
</div>

</div>
</div>
<div class="palm-row">

<div class="palm-row-wrapper">
<div x-mojo-element="ToggleButton" id="notificationToggle">

News Application Directory Structure I 411

</div>
<div class="title left">Mostrar aviso</div>

</div>
</div>
<div class="palm-row last">

<div class="palm-row-wrapper">
<div x-mojo-element="ToggleButton" id="bgUpdateToggle"></div>

<div class="title left">Activar dispositivo</div>
</div>

</div>
</div>

</div>
</div>

news/sources.json
[

{
11 source": "app/assistants/app-assistant.js"

},
{

11 source 11 : "app/assistants/stage-assistant.js"
},
{

"source": "app/assistants/dashboard-assistant.js",
"scenes 11

: "dashboard"
},
{

"source": "app/assistants/feedlist-assistant.js",
11 scenes": "feed List"

},
{

"source": "app/assistants/preferences-assistant.js",
"scenes": "preferences"

},
{

"source": "app/assistants/storylist-assistant.js",
11 scenes": "storylist"

},
{

"source": "app/assistants/storyView-assistant.js",
"scenes": "storyView"

},
{

"source" "app/models/cookies.js"
},
{

11 source" "app/models/feeds.js"
}

412 I Appendix D: News Application Source Code

news/stylesheets/News.css
/* News CSS

Copyright 2009 Palm, Inc. All rights reserved.

App overrides of palm scene and widget styles.
*/

/* Contrains storyView content to width of scene */
img {

max-width:28opx;
}

/* Header Styles */
.icon.news-mini-icon {

background: url(.• /images/header-icon-news.png) no-repeat;
margin-top: 13px;
margin-left: 17px;

}

/* Feedlist Header styles for feature drawer and selection */
.featureFeed-close {

float:right;
margin: 8px -12px Opx Opx;
height:35px;
width: 35px;
background: url(•• /images/details-open-arrow.png) no-repeat;

}

.featureFeed-open {
float:right;
margin: 8px -12px opx opx;
height:35px;
width: 35px;
background: url(.. /images/details-closed-arrow.png) no-repeat;

}.palm-drawer-container {
border-width: 20px 1px 20px 1px;
-webkit-border-image:

url(•. /images/palm-drawer-background-1.png) 20 1 20 1 repeat repeat;
-webkit-box-sizing: border-box;
overflow: visible;

/* Feature Feed styles */
.featureScroller {

height: 1oopx;
width: 280px;
margin-left: 2opx;

News Application Directory Structure I 413

/* feedlist styles */
.palm-row-wrapper.textfield-group {

margin-top: spx;
}

.feedlist-title {
line-height: 2.oem;

.feedlist-url {
font-size: 14px;
color: gray;
margin-top: -2opx;
margin-bottom: -2opx;
line-height: 16px;

}

.feedlist-info {
background: url(.. /images/info-icon.png) center center no-repeat;

}

.feedlist-icon-container {
height: 54px;
margin-top: spx;

}

.feedlist-icon {
background: url(•• /images/list-icon-rssfeed.png) center no-repeat;

}

.feedlist-newitem {
line-height: 20px;
height: 26px;
min-width: 26px;
-webkit-border-image:

}

url(.• /images/feedlist-newitem.png) 4 10 4 10 stretch stretch;
-webkit-box-sizing: border-box;
border-width: 4px lOpx 4px 10px;

.unReadCount {
color: white;

}

/* Story List styles */
.news-subtitle {

}

padding: Opx 14px Opx 14px;
font-size: 14px;
margin-top: -10px;
line-height: 16px;

.palm-row-wrapper > .unReadStyle {
font-weight: bold;

414 I Appendix D: News Application Source Code

}
.storylist-filter .filter-field-container {

top: 48px;
left: Opx;
position: fixed;
width: 100%;
height: 48px;
border-width: 26px 23px 20px 23px;
-webkit-border-image:

url(.. /images/filter-search-light-bg.png) 26 23 20 23 repeat repeat;
-webkit-box-sizing: border-box;
z-index: 11002;

/* Splash Screen image */
.update-image {

background: url(.. /images/news-icon.png) center center no-repeat;
float: left;
height: S8px;
width: S8px;
margin-left: -3px;

/* dashboard styles */

.dashboard-icon-news {
background: url(.. /images/dashboard-icon-news.png);

News Application Directory Structure I 415

Symbols
$() function (Prototype), 232

A
acceleration event properties, 217
accelerometer, 215-218

orientation changes, 215-217
raw acceleration, 217-218
shake events, 217

accountld property, 202
Accounts service, 201, 306
accuracy of location determination, 221
activate() method

Cross-App launch, 198
stage controller, 337

activeScene() method, 53, 337
activities, defining, 6
activity indicator (Spinner widgets), 132-136
activityEnd() method, 223
activityStart() method, 223
add() method (Depot), 167, 170
"add item row" button, 345
addltemLabel property, 78, 89
address fields (email), 205
address lookup, 223, 327
Ajax, 1, 172-176

requests, 69-73, 173-174
responders, 175
responses, 174-175
updaters, 176

Alarm service, 195, 218, 309
alarms, 218-220, 309

to update feeds (example), 82

Index

waking background applications with, 218,
256,259

Alert dialogs, 97, 99
quick reference, 299

alignment of text, vertical, 181
alphabetical dividers, 349
APis (see Mojo application framework)
App Catalog, 13
app directory, 27
app folder, 15
App menu, 16
AppAssistant object, 43
AppController class, 51
appinfo.json file, 15, 34

locale-specific versions, 264, 266
multistage applications, 232
optional and required properties, 28

application assistants, 247
in Commander Chain, 127
launch requests, handling, 251-253
notifications between, 253-254

application controllers, 333
application environment, 19
application framework, 3
application identifiers, 34
application launch lifecycle, 43
application lifecycle, 15
Application Manager, 21, 28, 196, 310
Application menu, 106, 108-115, 108-115

quick reference, 300
application model, 2
application name, localizing, 264
application services, 193-211

core services, 198-201
Cross-App launch, 197

We'd like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

417

Palm Synergy services, 201-209
registering and identifying, 194
using in background applications, 194
viewers and players, 209-210

Application UI events, 93
applications, 25-53

(see also News application (example))
anatomy of, 13-16
background (see background applications)
creating new, 26-30
deleting, 14
global, 264
launch requests, handling, 251-253
launching from Application Manager, 210
localizing, 264-272
stages and scenes, about, 14, 229-232
testing and debugging, 30
waking periodically, 218

appMenu type (Menu widget), 107
AppMenu type (Menu widget), 300
architecture, Palm webOS, 19-21
assistant property (showDialog), 101
assistants directory, 27
asynchronous HTTP transactions, 69
attributes, widget, 57
audio capture and playback, 21, 160

viewers and players, 209-210, 312
audio feedback for user actions, 225-226, 331
Audio objects, 161
audio service (Audio application), 312
autocapitalization, 87, 181
automatic mode, location services, 221
autoReplace property, 87
autoreplacement, 87

B
back (gesture), 4
back event (back gestures), 128
backdrop style (scenes), 342
background applications, 7, 229-260

creating (example), 256-258
dashboards,240-246
guidelines for, 259
notifications with, 232-239
stages, 229-232

creating new, 230
. ·-·=·--· ""\'")1

U~lll~ t:Xl:::> llllb' LJ .l

working with, 231-232
using services in, 194

418 I Index

waking with alarms, 218, 256, 259
background styles, 189-190
banner notifications, 8, 232-235

with multilingual formatting (example),
273-274

base styles, 40-42
bind() method, with event listeners, 94
bindAsEventListener() method, 94
Bluetooth Personal Area Network connection

status, 220
Bluetooth profiles, 21
border images, margins for, 186
btpan property (connection status), 220
Button widgets, 59-61

base styles for, 42
quick reference, 279
styles, 354

buttons, HTML, 59

(
caching data (see data storage)
calendar alarms, 219
Calendar application, 201, 203-204, 313
Camera application, 200
capitalization, 181, 353
capitalize style, 181
card view, 5-7
categories for banner notifications, 234
Cell ID location services, 221-223, 325
character sets, 263
Check Box widgets, 61

quick reference, 280
styles, 354

checklt handler, 90
cleanup method (scene assistant), 48
clear() method (alarms), 219, 309
close() method, for Dialog widgets, 105
closed state (drawers), 87
cloud services, 213, 226-227
collapsible dividers, 350
Command Enable events, 128
Command events, 128
Command menus, 16, 107, 119-123

quick reference, 301
style for, 344

command-line tools, 27
Ccrn:::r..~nder Ch8.in, 114, 126-129
co1nmanders, menu, 107
commandMenu type (Menu widget), 107, 301

connected applications, 15
Connection Manager, 220, 319
Connection menu, 107
connection status notifications, 220
considcrForNotification() method, 253-254
consistency, user interface, 11
Contacts application, 201, 201-204, 320

People Picker function, 204
container stylc quick reference, 348-349
controller methods quick reference, 332-340
Controller namcspace, 51
cookie-based data storage, 163, 164-166, 304
core application services, 198-201
Core OS, 19, 20, 21
createAccount() method, 307
createC1lendar() method, 314
creatcContact() method, 321
createEndpoint() method, 227
creatcEvent() method (calendars), 315
createNewStageWithCallback() method, 333
createStageWithCallback() method, 230, 241
creating new applications, 26-30

example of (News application), 33
Cross-App launch, 197
cross-fade transition, 50
CRUD operations, 16
CSS storage, 15
current data, need for, 11
current position, getting, 221, 325
custom dialogs, 97, 100-106

D

(see also Dialog widgets)
quick reference, 300

dark and light styles, 189-190
dashboard applications, 9, 13, 15, 256
dashboard panel style, 351
dashboard summary, 9
Dashboard view, 9
dashboard-new-item style, 243
dashboard-text style, 243
dashboard-title style, 243
dashboards,240-246

minimize, maximize, and tap events, 245-
246

updating, 239
data dividers (see dividers)
data formatters (see formatters)
data models, 57

updating, 57
data storage, 16, 163-176

Ajax with, 172-176
cookies, 164-166, 304
Depot, 166-170, 305
HTML 5 Database object, 170-172
quick reference, 304-306

date, alarm on specific, 219
(sec also alarms)

Date object (JavaScript), 225
Date Picker widgets, 145

quick reference, 280
styles, 355

deactivate method
scene assistants, 43

deactivate() method
stage controllers, 337

debugging applications, 30
declaring widgets, 17, 56
delay timer, 218
delegateToSceneAssistant() method, 231, 240,

338
deleteAccount() method, 308
deletcCalcndar() method, 315
delcteContact() method, 322
deleted property (list items), 78
deleted Property property, 78
deleteEvent() method (calendars), 317
deleting applications, 14
Depot-based data storage, 163, 166-170, 305
designing for Palm webOS, 33
development philosophy, 275
development tools, 22
device identifiers (nduids), 224
device motion or tilt (sec accelerometer)
dialog assistants, 101
Dialog widgets, 97-106

Alert dialogs, 99, 299
base styles for, 42
custom dialogs, 100-106, 300
Error dialogs, 98, 299
quick reference, 299-300
style for, 351

directories
browsing structure, 14 7
project directory, 27
structure for localized applications, 265

discard() method
Depot, 170

Index I 419

div tags, 17, 55
(see also widgets)

divider functions, 85
dividerFunction property, 150
dividers, 116, 150

style quick reference, 349-350
document global property, 232
$()function (Prototype), 232
DOM ID references, 93
DOM Level 2 event model, 15
domain property (accounts), 202
dominant attribute (Scroller widget), 138
doneWithChanges() method

Calendar application, 318
Contacts application, 324

double-byte locales, 263
download progress, indicating, 136
dragDatatype property, 78
Drawer widgets, 87

base styles for, 42
quick reference, 281
style for, 348

dynamic data (see Ajax; data storage)
dynamic lists, 69-73, 84
dynamic widgets, 137

E
Edit menu item (Application menu), 108
editing, Palm webOS, 91
elements, base styles for, 41
Email application, 201, 205-209, 324
emulator, 30
error codes for Location service, 221
Error dialogs, 97, 98

quick reference, 299
error() method (Mojo logging), 98
errorDialog() method, 299
event listeners, 48, 58, 93
events, 15, 92-95

Commander Chain, 126-129
handling in nested lists, 84
handling with widgets, 58
minimize, maximize, and tap, 235, 245-

246
orientation changes, 215-217
for Web View widgets, 157
with widgets, 92, 95

executeSQL() method, 171
existing stages, using, 231

420 I Index

extracting localized strings, 268, 271

F
feedback, touch, 188-189
feeds.js model, 70
file partition, WebOS devices, 147
File Picker widgets, 14 7-148

quick reference, 282
files, viewing, 209
Filter Field widgets, 86, 91

quick reference, 282
styles, 355

Filter List widgets, 64, 84, 150-155
(see also List widgets)
for adding search field (example), 150-155
quick reference, 283

filterFunction property, 150, 153
fixed header, style for, 342
fonts, 178, 263, 353
foreground application, 4
formatChoice() method, 273, 274
formatCurrency() method, 273
formatDate() method, 273
formatNumber() method, 273
formatPercent() method, 273
formatRelativeDate() method, 273
formatters property (lists), 85, 149
framework_config.json file, 98
free attribute (Scroller widget), 138
free orientation, setting, 215

G
garbage collection, service requests, 214
gestures, 4

orientation changes, 215-217
shake, 217

get() method, 38
cookies, 164
Depot, 167
scene controllers, 335

get() method (Depot), 169
getAccount() method, 307
getActiveStageController() method, 333
getCalendar() method, 314
getChanges() method

C8.lend2r 2pplicati0n, 318
Contacts application, 324

getContact() method, 322

getCurrcntFormatRegion() method, 273
getCurrentLocak() method, 273
getCurrcntPosition() method, 222, 325
getCurrentTimeZone() method, 273
GctDateO function, 145
getEvent() method (calendars), 316
GetHours() function, 146
GetMinutes() function, 146
GctMonth() function, 145
getReverseLocation() method, 327
getScenes() method, 53, 338
getScreenOrientation() method, 333
GetSeconds() function, 146
getStageController() method, 231, 334
getStageProxy() method, 231, 240, 242, 334
gctStatus() method (Connection Manager),

220,319
getSysProperties() method, 330
getSystemTime() method, 225, 330
getWindowOrientation() method, 216, 338
GetYear() function, 145
global applications, 264
global variables, 47
global-base.css stylesheet, 41, 342, 353
global-buttons.css stylesheet, 351, 354
global-dividers.css stylesheet, 349
global-lists.css stylesheet, 342, 345
global-menu.css stylesheet, 356
global-menus.css stylesheet, 344, 352
global-notifications.css stylesheet, 351
global-textfields.css stylesheet, 355, 357
global-widget-mvpicker.css stylesheet, 355,

357
global.css stylesheet, 343, 351, 352, 356
GPS location services, 221-223, 325
GPS Permanent Error, 222
graphics (images), 183-187

(see also icons)
wrapping touch targets in, 188

grouping menu items, 107, 119

H
handleLaunch() method, 251
headers styles (scenes), 342
heavyweight property (stages), 230
height property (pop-up notifications), 236
Help menu, 16
Help menu item (Application menu), 108
highlighting elements when tapped, 188

horizontal attribute (Scroller widget), 138
horizontal-snap attribute (Scroller widget),

138
HTML, localizablc, 270
HTML5 DatabaseAP!s, 16, 170-172
HTML buttons, 59

icon property (appinfo.json), 28
icon.png file, 15, 34

locale-specific versions of. 264
specifications for, 28

lCOnS

for applications (sec launcher icon)
for menu buttons, l 07, 117

id attribute (div tags), 17
id property (appinfo.json), 27, 28, 34
identifiers, device (nduids), 224
Image Picker widgets, 285
Image View widgets, 160

quick reference, 284
images, 183-187

(see also icons)
multistate images, 184
9-tile images, 184-187
standard images, 183
wrapping touch targets in, 188

images directory, 15, 28
index.html file, 15, 29, 34
indicators, 131-137

base styles for, 42
loading indicators, 158
progress indicators, 136-13 7, 290
Spinner widgets, 132-136

info() method (Mojo logging), 98
installing SDK, 26
Integer Picker widgets, 146-147

styles, 355
internationalization, 261, 273-274
isActivateAndHasScenes() method, 235
isinternetConnectionAvailable property, 220
items array (Menu widgets), 107, 119
itemsCallback function, 84
item Template property, 83

J
JavaScript

Date object, 225

Index I 421

dynamic widgets, 137
loading, 29, 231
locale-specific strings, 264, 266-270

JavaScript assistant, 35
JavaScript memory leaks, 95
javascripts folder, 15

K
key property (alarms), 219
keyboards, local-specific, 263

L
$L() function, 267
labeled dividers, 350
labeled groups, style for, 348
labels for menu items, 107
languages, 261-274

global applications, 264
locales, 261-263

large databases, creating, 170
launch lifecycle, 43
launch requests, handling, 251-253
launch() method

Application Manager, 196, 197, 312
Audio application, 313
Email application, 325
Maps application, 328
Phone application, 329
Photos application, 330
Video application, 332

Launcher, 4, 13
launcher icon, 15, 28, 34

localizing, 264
launching applications from Application

Manager, 210
lazy loading of JavaScript, 29
leaking memory QavaScript), 95
left style, 39
lifecycle, application, 15
lifecycle, application launch, 43
light and dark styles, 189-190
lightweight property (stages), 230
line-height property, 181
List Selector widgets, 63

quick reference, 288
cruloc < <;,; ..., ... JJ._..__ , .J.J

List widgets, 16, 65-83, 148-155
(see also Filter List widgets)

422 I Index

base styles for, 42
creating (example), 65-69
dividers, 85, 116, 150, 349-350
dynamic feed lists, 69-73
dynamic list items, 84
formatters property, 85, 149
maximum rendered into DOM, 68
other widgets as list items, 83, 132-136,

138
quick reference, 285

listAccounts() method, 202, 307
listAdd event, 89
listCalendars() method, 315
listChange event, 84
listContacts() method, 323
listen() method (scene controllers), 93, 335
listening (see event listeners)
listE vents() method (calendars), 317
lists, 64

(see also Filter List widgets; List widgets)
style quick reference, 345-348
widgets in, 83, 138

creating (example), 132-136
listTap event, 84
loading indicator, 158
local storage (see data storage)
locales, 261-263, 266
localization, 261, 264-272

global applications, 264
of HTML, 270
internationalization, 273-274

location services, 221-223, 325
getting current position, 221, 325
reverse location (address lookup), 223, 327
tracking, 222, 326

logging methods, 98
logLevel property, 98
lowercase styles, 353

M
ma~nitude property (shake events), 217
mam scene, 43
main view (applications), 5
main-assistant.js assistant, 43
Maps application, 201, 327
maximize events, handling, 235, 245-246
maxirniz~d ti.pplic~ticns, 235
maximizing touch targets, 187-188
media objects, 161

media partition, WehOS devices, 147
media player, 209
media server, 21
media services, 209-21 O
memory leaks, JavaScript, 95
menu icons, 107, 117
menu panels, style for, 352
Menu widgets, 16, l 06-126, 107

Application menu, 106, 300
base styles for, 42
Command menus, 107, 119-123, 301
command menus, 344
Commander Chain, 114
propagating commands with Commander

Chain, 126-129
quick reference, 300-304
submenus, 107, 123-126, 304, 352
View menu, 106, 115-119, 302, 344

Messaging application, 201, 205-209, 328
metaphors (user interface), 10
minFontSize attribute (WebView), 157
miniicon property (appinfo.json), 28
minimize events, handling, 235, 245-246
minimized applications, 235, 256

guidelines for, 259
minimizing steps for functions, 11
mobile web, challenges of, xviii
model (see data models)
Model-View-Controller (MVC) architecture

12 '

mode!Changed() method, 57
Mojo application framework, 12-19
Mojo Messaging service, 226
Mojo services (see application services)
Mojo Software Developer Kit (SDK), 21-23

installing, 26
Mojo.Controller.stageController property,

232
Mojo.log function, 98
Mojo.Service.Request() function (see Request()

functionfs)
momentary tap highlights, 189
motion, device (see accelerometer)
multi-line style, 36
multilingual formatting (example), 273-274
multistage applications, 231
multistate images, 184
Music player, 209
MVC architecture, 12

#my-toggle command (CSS), 18

N
name of project directory, 27
named system properties, 224, 330
names of applications, localizing, 264
navigation, 4
nduid (device JD), 224
negative margin, 186
nested lists, 83
new applications, creating, 26-30

example of (News application), 33
News application (example), 30-51

the complete source code for, 359
adding custom dialog, l 00-106
adding dashboard stage, 241-245
adding first scene, 35-40
adding menus

Application menu, 108-115
Command menus, 121-123
suhmenus, 124-126
View menu, 116-119

adding second scene, 44-51
adding widgets to

Button widget, 60
Filter List, for search, 150-155
Integer picker, 146
List widget (feed list), 74-83
List widget (story list), 65-69
Scroller widget, 139
Spinner widget, 132-136
text fields, 87-90
WebView widget, 156-159

application assistant for, 247
as background application, 256-258
banner notifications, 233-235
base styles, 40-42
creating, 33
dynamic feed lists (Ajax requests), 69-73
Email and Messaging services, 205-209
launch lifecycle, 43
launcher icon and application ID, 34
multilingual formatting, 273-274
saving data with cookies, 164-166
secondary cards, creating, 254-256
storing data with Depot, 167-170
using relative alarm, 219
using Web application, 198
wireframes for, 31-32

Index I 423

nextStory() method, 48
9-tile images, 184-187
noticeUpdatedltems() method, 85, 150, 154
notification bar, 8, 232
notification chains, 253-254
notifications, 7-10

(see also entries at dashboard)
alarms (see alarms)
audio feedback for user actions, 225-226,

331
with background applications, 232-239
base styles for, 42
between application assistants, 253-254
on connection status, 220
events (see events)
Mojo Messaging, 226

no Window property (appinfo.json), 28, 232,
247

number pickers, 146-14 7

0
observe() method, 93
omitDefaultltems property (Application

menu), 109
onComplete callback (Ajax.Request), 174
onCreate callback (Ajax.Request), 174, 176
onFailure function, 195, 215

location services, 221, 222
onSuccess function, 195, 214

connection status, 220
location services, 221, 222, 223
system time, 225

open platform, open community development,
276

open state (drawers), 87
open() method

Application Manager, 196, 310
Application Manager), 209
Email application, 325
Maps application, 327
Phone application, 329

openDatabase() method, 171
operating system, 3
orientation changes, responding to, 215-217
orientationchange events, 216
OS (see operating system)

424 I Index

p
padding property, 181
page header, style for, 342
Palm account, 201
Palm developer tools, 22
Palm Synergy services, 201-209

Account Manager, 201, 306
Palm webOS, about, xviii, 1-23

application framework and OS, 3
application model, 2
architecture, 19-21
developer program, 275
interface (see user interface)
Mojo (see Mojo application framework)
SDK for (see Mojo Software Developer Kit)

Palm webOS, designing for, 33
Palm webOS APis (see Mojo application

framework)
Palm webOS applications (see applications)
Palm webOS editing, 91
palm-body-text style, 39, 180
palm-body-title style, 180
palm-button class, 60
palm-button style, 181
palm-dark class, 190
palm-dashboard-icon-container style, 243
palm-dialog-title style, 181
palm-divided labeled style, 42
palm-divider collapsible style, 42
palm-generate tool, 26

creating scene with, 35
using (example), 33

palm-group style, 42
palm-group unlabeled style, 42
palm-group-title style, 42
palm-header style, 42
palm-header-spacer style, 42
palm-info-text style, 180
palm-light class, 190
palm-list style, 67, 88
palm-page-header style, 39, 42, 181
palm-page-header-wrapper style, 39
palm-row style, 67, 88
palm-row-wrapper style, 67, 88
palm-text-wrapper style, 39, 180
panel styles (quick reference), 351-352

----- -L: __ .__ 1no
pi:ili::t.111::'> UUJC~L~, .l.7U

params.summary property, 205
params.text property, 205

p<1ssi11g touches to t<irgL'ts, 189
P:1ssword held 8(1, 9 I

quick rcl.crcncc, 288

pathn:llllL'S, 66
Pcopk Picker applicition, 204
Periodical Update ohJL'Lts, 176
philosophy o(Palm wchOS dnclopmrnt, 27.5
Fl1rn1c ! 99,)29

C:amn:1 ;1pplicirirn1, 200
Photos 200, .)29

;iddrc.ss 22 5, .'>27
physical mctaphms (user mtcrf:icc), I()
pickers, 17, 144-148

h~1'.;C fo;-, +2
Date'. Picker
File P1ckn

146-147

Time Picker 145-146
pitch property (object oricnrntion), 216

sense of (user interface), 10
propcny, 12)

;rnd viewers, 209 21 ()

;~:ctL1ou~ 2.25,
!JOO-up notlficnions, K, 2J2. 2j)-L'~9

2\9
pop-11p suhn1ci1us 1 107, ; L3-l 26

quick rdcrc1icc, J04
popping scenes, 43
popSccnc() method, 52,))8

popSccncsTo() method, 52, 339
method, 304

;mcm:niun) 21 h

povver :n~n1agcn1cn!, 223--22~
Preferences n1c11 u, i h

Preferences rncnu item
108

Prelude typcf<iLc, 178, JS)

prevrntDcfoult() mnhod, 11 ')
previousStory() method, 48
Prnccssl"ccd functio~1, 71

Bar U7
quick rdcrcnce, 290

progress 136 137
loading indicators, 158
quick rdere11ce, 290

Progress Pill widgets, 1.36
quick refcrrnce, 290

n1cnu\

)56

Slider widgets, ll7

quick rdcrrncc, 29 I
prn1cct directory, 27
properties, system, V4, lJO
Prototype lihr:irv, 69
pushC:o111111;111d~T() rncthod, 127

:"Cl'l1l'S, 1g, //3
11_·() 11!ctl1olL lO, t i0,)_--;'--;

111crl1od (cookies), 164

Q
Quick Lrnnch h:ir, 4

R<ldio Button
rdcrc11cT 291
)56

62

n ... '(irLicr~:btc ;1ropcrty~ 77
reordered ro\vs, for, 346

lTl-174

response objects.,

195,214

221, 222, 223
system rime 22')

Response objects (Ajax), 174 175
response rime for location requests, 221
reverse location service, 22.1, '.l27

Rich Text Edit widgets, 86, 92
quick 292.

Index I 425

richTextEditltems property (Application
menu), 92, 109

roll property (orientation property), 216
RSS reader (example application) (see News

application (example))
runtime environment, 19

s
scene assistants, 27, 37

for dashboard scenes, 242
for dialogs (see dialog assistants)
pop-up notification customizations, 236

scene controllers, 33S
scene styles, 41
scene view, 35
SceneController class, S 1
scenes, application, 14

adding first scene (example), 3S-40
adding second scene (example), 44-Sl
applying styles to, 39
file paths for, 30
locale-specific, 26S
pushing, 38
style quick reference, 342-344

scrim style, 343
scroll (gesture), 4
scroll fades, 344
Scroller widgets, 138-144

quick reference, 292
SDK (software developer kit), 21-23

installing, 26
search fields, adding, 1 S0-1 SS
secondary card stages, creating, 2S4-2S6
selectors, S9, 61-64

Check Box widgets, 61
List Selector widgets, 63
Radio Button widgets, 62
Slider widgets, 64
Toggle Button widgets, 62

sendToNotificationChain() method, 2S3, 334
sense of place (user interface), 10
separators, 346
serial number, device, 224
service names, 194
serviceRequest() method, 194, 19S, 214, 336
services, 18 (see application services)

architecture tor (h1gh-levei), lU
cloud services, 226-227
garbage collect of service requests, 214

426 I Index

quick reference, 306-332
subscribing to, 214
system services, 213-226

set() method (alarms), 309
setCount() method, lSO
setlnterval() method, 218, 2S6
setLengthO method, lSO
setTimeout() method, 82, 218, 2S6
setting up widgets, S6
setup method (scene assistant), 38, 46

event listeners, S8
(see also event listeners)

setting up widgets, S6
setup Widget() method, 18, S6, 336
setWidgetModel() method, S7
setWindowOrientation() method, 21S, 339
shake events, responding to, 217
shakeend event, 217
shakestart event, 217
shaking event, 217
showAlertDialog() method, 299
showBanner() method, 233, 334
showDialog() method, 100-106, 300
single-byte locales, 263
single-scene applications, lS
size of touch targets, 187-188
sleep, device, 223
slideout keyword (Palm Pre phone), 91
Slider widgets, 64

Progress Slider versus, 137
quick reference, 293
styles, 3S6

smart deletion, 91
Smart Text Engine (STE), 86
software developer kit (SDK), 21-23

installing, 26
solid dividers, 350
sources.json file, 29, 231, 248
Spinner widgets, 132-136

quick reference, 294
styles, 3S7

SQLResultSet objects, 172
stage assistants, 43, 51

specifying, 230
stage controllers, 51, 337

maximize/minimize transitions, 23S
stage window orientation, setting, 215
stageActivate event, 23S
StageController class, Sl

stagcDcactivatc event, 235
stages, application, 14, 229-232

creating, 230
for dashboards, 240-246
secondary, creating (example), 254 256
using existing, 21 l
working with, 231- 232

standard images, 18)
startTracking() method

Calendar application, .l l 7
Contacts application, 323

location services, 222, 326
status bar, 4
STE (Smart Text Engine), 86
stopListening() method, 94, .337
stopObscrving() method, 94
stopPropagation() method, 127
storage (see data storage)
storyView-assistant.js assistant, .3 7
storyViewSummary tags, 36
storyViewTitlc tags, 36
strings, localizing, 265, 266-270, 271
strings.json file, 265, 268-270
styles, 177-191,341-358

buttons, 60
containers, 348-349
dividers, 349 350
i1rnges, 183--187
light and dark styles, 189-190
lists, .145-348
multilingual formatting (example), 27:3-

274
panels, 351-352
scene basics, 342-344
for scenes, 39, 40-42
text, 352-354
touchability, 187--189
typography, 178 182
widgets, 354-358

stylesheets directory, 28
stylesheets folder, 15
subject field, t:rnail messages, 205
submenus, 107, 123-126

quick reference, 304
styles for, 352

subscribe property, 214
subscribing to events (see event listeners)
subscription option, Connection Manager,

220

subscriptions to services, 214
summ<iry icon (Notification bar), 8
swapScrnc() method, 50, 52, 119, .HO
swipe to delete, style for, .346
swipeToDelete property, 77
Synergy applications, 201--209

Accoullt 1'vL111~1ger, 20 I, 306
Sysi'vlgr (sec Lil System Man;1gcr)
System i'vLm;1gcr (sec UI System Manager)
system properties, 22 4, 3)0
system services, 21) 226

accelerometer, 215-218
alarms, 218-220, _)09
Conm:ction Manager, 220, _j 19
grncral system settings, 225, 330
location services, 221-223, 325
power management, 223-224
Systrn1 Sounds, 225-226, 331

system settings (general), 225, 3)0
System Sounds service, 225-226, 331
system time, 225, 3)0
System UI events, 92

T
tap (gesture), 4

handling tap events, 245-246
highlighting clements upon, 188

targets (touch), maximizing, 187--188
Template function (Prototype library), 71
test style (see typography)
testing applications, '.30
Text Field widgets, 16, 86-92

adding to News application (example), 87-
90

capitalization control, 181
quick reference, 294
styles, 357
truncation fc:aturc, 180, 3.54

text styles (quick reference), .152 .154
text truncation, 180, 354
tcxtCase property (Text Field widgt:t), 181
TextField widgets

base styles for, 42
this keyword, 57
)-tile images, 185
tilt, device (see accelerometer; orientation

changes, responding to)
time, alarm at specific, 219

(sec also alarms)

Index I 427

Time Picker widgets, 145-146, 273
quick reference, 296
styles, 357

timezones, 225, 273
title property (appinfo.json), 28
title style, 39
Toggle Button widgets, 62

quick reference, 296
styles, 3.58

toggleC:md property, 12 l
tools package, installing, 26
topScene() method, .53, 340
touch feedback, optimizing, 188-189, 347
touchability, 187-189

maximizing touch targets, 187-188
optimizing touch feedback, 188-189
passing touches to targets, 189

trackball mode, 91
tracking (location services), 222
transaction() method, 17]
translations (see languages; localization)
truncating-text class, 66, 180
truncation, 180, 354
type property (appinfo.json), 28
typefaces, 178, 353
typography, 178-182, 3.52-3.54

u

capitalization, 181, 3.53
character sets and fonts, 178, 263, 3.53
multilingual formatting (example), 273-

274
truncation, 180, 3.54
vertical text alignment, 181

UI (see user interface)
UI controls (see widgets)
UJ System Manager, 3, 20
un-capitalize class, 181
unlabeled groups, style for, 349
unreadStyle template, 66
up-to-date data, need for, 11
update() method, 239
updateAccount() method, 308
updateC:alendar() method, 315
updateC:ontact() method, 322
updateDashboard() method, 242
updateEvent() method (calendars), 316
Updater objects, Ajax, 176
updating widget data model, 57

428 I Index

uppercase styles, 181, 353
UR!s (Uniform Resource Locators), 194
user accounts, 201, 306
user interface, 3-12

Launcher, 4, 13
navigation, 4
notifications (see notifications)
principles of, 10-12
System Manager (see UI System Manager)
touchability, 187-189
widgets (see widgets)

user interface controls (see widgets)
usingl2HrTime() method, 273

v
variables, in localized strings, 268
vendor property (appinfo.json), 28
vendorurl property (appinfo.json), 28
version property (appinfo.json), 28
version property (database), 171
vertical alignment of text, 181
vertical attribute (Scroller widget), 138
vertical-snap attribute (Scroller widget), 138
Video application, 332
video capture and playback, 21, 160

viewers and players, 209-210, 332
Video objects, 161
Video player, 210
View menu, 16, 106, 115-119

quick reference, 302
styles for, 344

view templates
for dashboard scenes, 242
localizing, 26.5
pop-up notification customizations, 236

viewers, 17, 1.56-16 J

audio and video playback, 161
Image View widgets, 160, 284
Web View widgets, 1.56-1.59

viewers and players, 209-210
viewMenu type (Menu widget), 107, 302
viewport property, 232
views directory, 27, 265
virtualpageheight attribute (Web View), 1.57
virtualpagewidth attribute (Web View), 157
visible property (menu items), 107

w
waking applications with alarms, 218, 256,

259
WAN connection status, 220
warn() method (Mojo logging), 98
Web application, 198-199
WebKit, 3, 21
webkit-border-image property, 184
webkit-border-radius property, 187
webkit-gradient property, 187
webkit-palm-target property, 189
webOS (see entries at Palm webOS)
webOS APis (see Mojo application framework)
webOS applications (see applications)
webOS Emulator, 30
webOSdev community, 22, 26
Web View widgets, 156-159

quick reference, 297
widget data model (see data models)
widget events, 92, 95
widgets, 16-18, 55-95

base styles for, 42
declaring, 56
dynamic, 137
event handling, 58
how to use, 1 7
list of major widgets, 58

(see also specific widget by name)
in lists, 83, 138

creating (example), 132-136
quick reference, 279-298
setting up, 56
style quick reference, 354-358

WiFi connection status, 220
WiFi ID location services, 221-223
WiFi location services, 325
window global property, 232
wireframes, 31-32
Wireless Comms system, 21

x
x-mojo-element attribute, 17, 55, 56

(see also widgets)
x-mojo-tap-feedback attribute, 188
x-mojo-version attribute, 29
x-palm-popup-content attribute, 236
XMLHttpRequest objects, 69, 173, 174

Index I 429

About the Author
Mitch Allen is CTO of software at Palm, Inc., where he has worked in various positions
for nine years, starting with building and leading the software team at Handspring,
which conceived and developed the Treo smartphone. Mitch contributed to the early
architecture of the webOS platform and led the development team through the initial
design stage, and as a result is intimately familiar with the capabilities of the platform
and tools. Previously, Mitch spent 15 years developing image and text-processing sys
tems at Kodak and Agfa Compugraphic; after this time, he worked at Apple. He holds
a degree in math and computer science from the University of New Hampshire.

He is currently part of the team developing the webOS SDK and tools, and is working
with initial webOS developers.

Colophon
The animal on the cover of Palm webOS is a luna moth (Actias luna). Luna moths
usually live in North American regions filled with black cherry, maple, hickory, willow,
and other trees with leaves that can feed their young.

Upon hatching, luna moth caterpillars will wander aimlessly along the plants they were
born upon and befriend other recently born caterpillars. But after passing through
subsequent stages of larval development, the caterpillars' gregarious temperaments
change, and they become loners as they prepare for pupation.

Before spinning and entering their thin cocoons, luna moth caterpillars will expel excess
water and other fluids from their bodies. Once cocooned, the caterpillars will pupate
for approximately two weeks, after which they will emerge in daylight with wet, crum
pled wings. Although their wings take only 20 minutes to dry, luna moths will wait
until nighttime to fly, as they have also metamorphosed into entirely nocturnal
creatures.

While the caterpillars will munch on the leaves of the plants they were born upon, luna
moths begin and end their adulthoods mouthless. But this trait does not disable them:
they have no need for food, as they have also lost their digestive tracts. Though other
insects will forage for food shortly after birth, luna moths exist only to find a mate and
produce another generation.

Female luna moths attract mates by releasing pheromones from their abdomens; males
detect these pheromones via their hairy antennae (and, because males and females both
possess lime-green wings, a close inspection of a moth's antennae is an easy way to
determine gender, as the male's antennae are hairier than the female's). Luna moths
typically mate after midnight, and females will lay 100 to 300 eggs on the undersides
of leaves just hours later, in the evening. The insect's short lifespan necessitates an
accelerated reproduction schedule-adult luna moths live no longer than a week.

Luna moths have inspired many: Luna Moth is the name of a character in Michael
Chabon' s novel The Amazing Adventures of Kavalier and Clay (Picador), and Vladimir
Nabokov, who was also an accomplished lepidopterist, has described the insect ad
miringly in his writings. Crafters have also paid homage to the insect's vivid wings with
products ranging from shawls to stained glass. Luna was also Palm, lnc.'s code name
for the webOS application environment, including the Mojo framework.

The cover image is from Dover's Animals. The cover font is Adobe ITC Garamond. The
text font is Linotype Birka; the heading font is Adobe Myriad Condensed; and the code
font is LucasFont's TheSansMonoCondensed.

BUILDIN:
PERFECT PC

O'REILLY®

Related Titles from O'Reilly

Hardware
Best of Make

BlackBerry Hacks

Building Extreme PCs

Building the Perfect PC, 2nd Edition

Car PC Hacks

Designing Embedded Hardware, 2nd Edition

Don't Click on the Blue El

Eccentric Cubicle

Hardware Hacking Projects for Geeks

Home Hacking Projects for Geeks

Make: Technology on Your Time, Vol. 12

Makers: All Kinds of People Making Amazing Things
in Their Backyard, Basement or Garage

Making Things Talk

Nokia Smartphones Hacks

Palm and Treo Hacks

PC Hacks

PC Hardware Annoyances

PC Hardware Buyer's Guide

PCs: The Missing Manual

Programming Embedded Systems, 2nd Edition

Repairing & Upgrading Your PC

Smart Home Hacks

Talk Is Cheap

Treo Fan Book

Wireless Hacks, 2nd Edition

Our books are available at most retail and online bookstores.
To order direct: 1-800-998-9938 • order@oreilly.com • www.oreilly.com
Online editions of most O'Reilly titles are available by subscription at safari.oreil/y.com

Did you know that if you register
your O'Reilly books, you'll get
automatic notification and upgrade
discounts on new editions?

And that's not all! Once you've registered

your books you can:

» Win free books, T-shirts and O'Reilly Gear

» Get special offers available only to registered

O'Reilly customers

» Get free catalogs announcing all our new

titles (US and UK Only)

Registering is easy! Just go to
www.oreilly.com/go/register

O'REILLY®

O'REILLY' MitcbAl!en

Get the information you need when you need it, with Safari Books Online. Safari

Books Online contains the complete version of the print book in your hands plus

thousands of titles from the best technical publishers, with sample code ready to

cut and paste into your applications.

Safari is designed for people in a hurry to get the answers they need so they can

get the job done. You can find what you need in the morning, and put it to work in

the afternoon. As simple as cut, paste, and program.

To out Safari and the online edition of the above title FREE for 45
go to and enter the coupon code CPQDKFH.

To see the complete Safari Library visit:
safari.oreilly.com

Sa fart
Books Online

70502

Mobile Programming

Palm® webOST"

This is the official guide to building native JavaScript applications
for Palm's new mobile operating system, Palm webOS. Written
by Palm's software chief technology officer along with the Palm
webOS development team, Palm webOS provides a complete
tutorial on the design principles, architecture, UI, tools, and
services necessary to develop webOS applications-including the
Mojo JavaScript framework and Palm's SDK.

Palm webOS is designed to support a fast and superb user
experience using established web standards , so if you're fam iliar
with HTML, CSS, and JavaScript, you're ready to build applications
for any webOS-based device, including the Palm Pre. You 'll gain
expertise, chapter by chapter, as you build a working mobile
application through the course of this book. You'll also learn how
to extend existing web apps to work with the new generation of
mobi le phones.

• Get a thorough overvi~w of the webOS platform and
architecture

• Understand the critical concepts for application design
what separates webOS from other web and mobile

platforms

• Learn the details of the webOS SOK and development
tools for building and testing mobile applications

• Examine best practices, important considerations, and
guiding principles for developing with webOS and the
Mojo framework

INTROD UCTORY INTERMEDIATE ADVANCED

Some knowledge of HTML, CSS, and JavaScript is recommended.

us $44.99 CAN $56.99
ISBN: 978-0-596-15525-4

''Mitch Allen has been
the drivingforce
for webO~ and he
realizes that developers
want more than an
assortment of simple
'Hello World' examples.
Get this book, get the
SDK, and start writing
webOS applications."

-Greg Stevenson
Sierra Blanco Systems

preDevCamp Global Organizer

Mitch Allen, software CTO
at Palm, Inc., is a member of
the webOS engineering team
and led the development team
during the initial design stage.

O'REILLY®
oreilly.com

11111111111111111111111111111111111111 i11 i11 i1 S ·f ..) Free online edition a a r I. for 45 days with purchase of

9 780596 155254 Books Online this book. Detai ls on last page.

