
teach
yourself.

Item
MARK GOODWIN

ADKANCED
COMPUTER

BOOKS

mis:
PRESS

© 1990 by Management Information Source, Inc.

P.O Box 5277

Portland, Oregon 97208-5277

All rights reserved. Reproduction or use of editorial or pictorial content in any
manner is prohibited without express permission. No patent liability is assumed
with respect to the use of the information contained herein. While every precaution
has been taken in the preparation of this book, the publisher assumes no
responsibility for errors or omissions. Neither is any liability assumed for damages
resulting from the use of the information contained herein.

First Printing

ISBN 1-55828-055-3

Library of Congress Catalog Card Number 90-13375

Printed in the United States of America

TRADEMARKS

IBM is a trademark of International Business Machines Corporation.
Microsoft, MS, MS-DOS, and QuickPascal are trademarks of Microsoft Corporation.
Turbo Pascal is a trademark of Borland International, Inc.

To Baby: the newest member of my wonderful family.

Contents

Figures xiii

Introduction xix

CHAPTER 1. A SIMPLE FIRST PROGRAM 1

Lesson 1. The Basic Components of the
Pascal Programming Language 1

Lesson 2. A First Program 7

CHAPTER 2. PREDEFINED DATA TYPES 11

Lesson 3. Integers 11

Lesson 4. Real Numbers 16

Lesson 5. Booleans 19

Lesson 6. Characters 21

Lesson 7. Strings 24

CHAPTERS. THE PASCAL OPERATORS 29

Lesson 8. The Assignment Operator 29

Lesson 9. The Unary Plus Operator 31

Lesson 10. The Unary Minus Operator 32

Contents

Lesson 11. The Addition Operator 33

Lesson 12. The Subtraction Operator 34

Lesson 13. The Multiplication Operator 35

Lesson 14. The Real Number Division Operator 36

Lesson 15. The Integer Division Operator 38

Lesson 16. The Remainder Operator 39

Lesson 17. The Logical Negation Operator 40

Lesson 18. The Logical And Operator 41

Lesson 19. The Logical Or Operator 43

Lesson 20. The Exclusive Or Operator 44

Lesson 21. The Bitwise Negation Operator 46

Lesson 22. The Bitwise And Operator 48

Lesson 23. The Bitwise Or Operator 49

Lesson 24. The Bitwise Exclusive Or Operator 51

Lesson 25. The Bitwise Shift Left Operator 52

Lesson 26. The Bitwise Shift Right Operator 53

Lesson 27. The String Concatenation Operator 55

Lesson 28. The Equal To Operator 56

Lesson 29. The Not Equal To Operator 57

Lesson 30. The Greater Than Operator 58

Lesson 31. The Greater Than Or Equal To Operator 59

VI

Contents

Lesson 32. The Less Than Operator 60

esson 33. The Less Than Or Equal To Operator 61

Lesson 34. Operator Precedence 62

CHAPTER 4. PROGRAM FLOW 65

Lesson 35. While Loops 65

Lesson 36. Repeat Loops 67

Lesson 37. For Loops 69

Lesson 38. If Statements 72

Lesson 39. Case Statements 75

Lesson 40. Goto Statements 77

CHAPTER 5. PROCEDURES AND FUNCTIONS 79

Lesson 41. Declaring Procedures and Functions 80

Lesson 42. Function Return Values 83

Lesson 43. Forward Declarations 85

Lesson 44. Local Variables 88

Lesson 45. Scope 91

Lesson 46. Arguments 93

Lesson 47. Nested Procedures and Functions 95

Lesson 48. Recursion 97

CHAPTER 6. USER-DEFINED DATA TYPES 101

Lesson 49. Enumerated Data Types 101

Vll

Contents

Lesson 50. The Dec Procedure 103

Lesson 51. The Inc Procedure 104

Lesson 52. The Pred Function 106

Lesson 53. The Succ Function 107

Lesson 54. Subranges 108

Lesson 55. Sets 110

Lesson 56. The Set Equal To Operator Ill

Lesson 57. The Set Not Equal To Operator 112

Lesson 58. The Set Less Than Or Equal To Operator 113

Lesson 59. The Set Greater Than Or Equal To Operator 114

Lesson 60. The Set In Operator 115

Lesson 61. The Set Union Operator 116

Lesson 62. The Set Difference Operator 117

Lesson 63. The Set Intersection Operator 118

CHAPTER 7. ARRAYS 121

Lesson 64. A Simple Array 121

Lesson 65. Typed Constant Arrays 125

Lesson 66. Multi-Dimensional Arrays 126

Lesson 67. Passing Arrays To Procedures and Functions 131

CHAPTERS. RECORDS 133

Lesson 68. Record Basics 134

vm

Contents

Lesson 69. The With Statement 137

Lesson 70. TVped Constant Records 139

Lesson 71. Record Arrays 140

Lesson 72. Field Arrays 142

CHAPTER 9. VARIANT RECORDS 145

Lesson 73. Variant Record Basics 145

CHAPTER 10. POINTERS 151

Lesson 74. Simple Pointers 151

Lesson 75. Array and Record Pointers 154

Lesson 76. Procedure and Function Pointers 157

CHAPTER 11. DYNAMIC MEMORY MANAGEMENT 165

Lesson 77. Allocating and Deallocating Single Data Objects 166

Lesson 78. Allocating and Deallocating Blocks of Memory 167

CHAPTER 12. UNITS 171

Lesson 79. The Uses Statement 172

Lesson 80. Creating a Pascal Unit 173

Lesson 81. Identifiers With the Same Name 176

CHAPTER 13. WORKING WITH STRINGS 179

Lesson 82. The String Concatenation Function 179

Lesson 83. The Pascal Copy Function 180

Lesson 84. The Pascal Delete Procedure 181

IX

Contents

Lesson 85. The Pascal Insert Procedure 182

Lesson 86. The Pascal Pos Function 183

CHAPTER 14. CONSOLE INPUT/OUTPUT 185

Lesson 87. The Write and Writeln Procedures 185

Lesson 88. The Read and Readln Procedures 187

Lesson 89. Formatted Output 188

CHAPTER 15. TEXT FILE INPUT/OUTPUT 191

Lesson 90. Text Files 192

Lesson 91. Error Trapping 196

CHAPTER 16. BINARY FILE INPUT/OUTPUT 199

Lesson 92. Typed Binary Files 200

Lesson 93. Untyped Binary Files 203

CHAPTER 17. OBJECT-ORIENTED PROGRAMMING IN

QUICKPASCAL 209

Lesson 94. Encapsulation 209

Lesson 95. Inheritance 216

Lesson 96. Polymorphism 220

CHAPTER 18. OBJECT-ORIENTED PROGRAMMING IN
TURBO PASCAL 225

Lesson 97. Encapsulation 225

Lesson 98. Inheritance 231

Lesson 99. Polymorphism 235

X

Contents

Lesson 100. Dynamic Objects 240

Index 247

XI

Figures
d

Chapter 1
1-1. The Turbo Pascal keywords 2
1-2. The QuickPascal keywords 2
1-3. The Pascal operators 5

Chapter 2

2-1. The hexadecimal number system (base 16) 12
2-2. The Pascal integer types 13
2-3. Defining an integer variable 13
2-4. Defining a typed integer constant 14
2-5. The Pascal real number types 16
2-6. Defining a real number variable 17
2-7. Defining a typed real number constant 17
2-8. Defining a boolean variable 19
2-9. Defining a typed boolean constant 20
2-10. Pascal character data representations 22
2-11. Defining a character variable 23
2-12. Defining a typed character constant 23
2-13. Defining a string variable 25
2-14. Defining a typed string constant 26

Chapter 3
3-1. The Pascal assignment operator 30
3-2. The Pascal unary plus operator 31
3-3. The Pascal unary minus operator 32

Xlll

Figures

3-4. The Pascal addition operator 33
3-5. The Pascal subtraction operator 34
3-6. The Pascal multiplication operator 35
3-7. The Pascal real number operator 37
3-8. The Pascal integer division operator 38
3-9. The Pascal remainder operator 39
3-10. A logical negation truth table 40
3-11. The Pascal logical negation operator 40
3-12. A logical and truth table 41
3-13. The Pascal logical and operator 42
3-14. A logical or truth table 43
3-15. The Pascal logical or operator 43
3-16. An exclusive or truth table 44

3-17. The Pascal exclusive or operator 45
3-18. A byte of bits 46
3-19. A bitwise negation truth table 46
3-20. The Pascal bitwise negation operator 47
3-21. A bitwise and truth table 48

3-22. The Pascal bitwise and operator 48
3-23. A bitwise or truth table 49

3-24. The Pascal bitwise or operator 50
3-25. A bitwise exclusive or truth table 51

3-26. The Pascal bitwise exclusive or operator 51
3-27. The Pascal shift left operator 52
3-28. The Pascal shift right operator 54
3-29. The Pascal string concatenation operator 55
3-30. The Pascal equal to operator 56
3-31. The Pascal not equal to operator 57
3-32. The Pascal greater than operator 58
3-33. The Pascal greater than or equal to operator 59
3-34. The Pascal less than operator 60
3-35. The Pascal less than or equal to operator 61
3-36. The Pascal operator precedence levels 63

xiv

Figures

Chapter 4
4-1. The while keyword 66
4-2. The repeat keyword 68
4-3. The for keyword 70
4-4. The Pascal if..then statement 72

4-5. The Pascal if..then..else statement 74

4-6. The Pascal case statement 75

4-7. The Pascal goto statement 77

Chapter 5

5-1. A Pascal procedure declaration 81
5-2. A Pascal function definition 81

5-3. A forward declaration 87

5-4. Procedure and function variables 88

5-5. Nested Pascal procedures and functions 95

Chapter 6

6-1. Defining a Pascal enumerated data type 102
6-2. The Pascal dec procedure 103
6-3. The Pascal inc procedure 105
6-4. The Pascal pred function 106
6-5. The Pascal succ function 107

6-6. Defining a subrange data type 108
6-7. Defining a Pascal set 110
6-8. Set assignments Ill
6-9. The Pascal set equal to operator Ill
6-10. The Pascal set not equal to operator 112

6-11. The Pascal set less than or equal to operator 113
6-12. The Pascal set greater than or equal to operator 114
6-13. The Pascal in operator 115
6-14. The Pascal set union operator 116
6-15. The Pascal set difference operator 117
6-16. The Pascal set intersection operator 118

Chapter 7
7-1. Declaring a Pascal array 123

XV

Figures

7-2. Accessing a Pascal array element 124
7-3. Declaring a typed constant array 125
7-4. Declaring a multi-dimensional array 128
7-5. Declaring a multi-dimensional typed constant 128
7-6. Accessing a multi-dimensional array element 129
7-7. Defining an array data type 131

Chapter 8

8-1. Declaring a Pascal record type 134
8-2. Declaring a Pascal record field 135
8-3. Record variable field references 135

8-4. The Pascal with statement 137

8-5. Declaring a typed constant record 139
8-6. Declaring an array of records 141
8-7. Record array field references 141
8-8. Declaring a field array 142
8-9. Field array references 143

Chapter 9

9-1. Declaring a variant record 148

Chapter 10

10-1. Declaring a Pascal pointer 152
10-2. Assigning a variable's address to a pointer 152
10-3. Assigning the value of one pointer to another 153
10-4. Assigning nil to a pointer 153
10-5. Array pointer referencing 154
10-6. Record pointer referencing 155
10-7. Defining a procedure data type 157
10-8. Defining a function data type 158
10-9. Procedure and function variable assignments 158
10-10. Declaring a pointer pointer 160
10-11. Assigning a procedure or function address to a pointer 161

Chapter 11

11-1. Allocating memory with the new procedure 166

XVI

Figures

11 -2. Deallocating memory with the dispose procedure 166
11-3. Allocating a memory block with getmem 167
11-4. The Pascal sizeof function 168
11-5. Deallocating memory with the freemem procedure 168

Chapter 12

12-1. The Pascal uses statement 172
12-2. The structure of a Pascal unit 173
12-3. Conflicting identifier references 176

Chapter 13

13-1. The Pascal concat function 180
13-2. The Pascal copy function 181
13-3. The Pascal delete function 182
13-4. The Pascal insert procedure 183
13-5. The Pascal pos function 184

Chapter 14

14-1. Using the write and writeln procedures for console output 186
14-2. Using the read and readln procedures for console input 187
14-3. Formatted write and writeln data items 189

Chapter 15

15-1. Declaring a text variable 192
15-2. The Pascal assign procedure 192
15-3. Opening a file with the rewrite procedure 193
15-4. Opening a file with the reset procedure 193
15-5. Opening a file with the append procedure 193
15-6. Reading file data with the read procedure 194
15-7. Reading file data with the readln procedure 194
15-8. Writing file data with the write procedure 194
15-9. Writing file data with the writeln procedure 195
15-10. Closing a file with the close procedure 195

Chapter 16

16-1. Declaring a typed binary file variable 200

xvu

Figures

16-2. Reading typed binary file data with the read procedure 201
16-3. Writing typed binary file data with the write procedure 201
16-4. The Pascal seek procedure 202
16-5. The Pascal filepos function 202
16-6. Declaring an untyped binary file variable 204
16-7. Opening an untyped binary file with the rewrite procedure 204
16-8. Opening an untyped binary file with the reset procedure 205
16-9. Reading data with the Pascal blockread procedure 205
16-10. Writing data with the Pascal blockwrite procedure 206

Chapter 17
17-1. Defining a QuickPascal object class 210
17-2. Defining an object class procedure 211
17-3. Defining an object class function 212
17-4. Returning values from an object class function 212
17-5. Declaring a QuickPascal object 213
17-6. Referencing instance variables 213
17-7. Calling an object's method 214
17-8. Defining a QuickPascal object subclass 217
17-9. Defining a QuickPascal polymorphic subclass 221
17-10. Calling an inherited method 221

Chapter 18
18-1. Defining a Turbo Pascal object class 226
18-2. Defining an object class procedure 227
18-3. Defining an object class function 227
18-4. Returning values from an object class function 228
18-5. Declaring a Turbo Pascal object 228
18-6. Referencing instance variables 229
18-7. Calling an object's method 229
18-8. Defining a Turbo Pascal object subclass 232
18-9. Defining a Thrbo Pascal polymorphic subclass 236
18-10. Calling an inherited virtual method 237
18-11. Dynamically allocating an object with Turbo Pascal 241
18-12. Dynamically deallocating an object with Turbo Pascal 241

XVlll

Introduction

In the early 1970s, Niklaus Wirth designed a new programming language called
Pascal. Mr. Wirth's original intention for the Pascal programming language was to
use it as an aid for teaching computer programming. Consequently, it is an excellent
programming language for the beginning programmer. Even though Pascal is such a
good language for beginners, it also provides more than enough capabilities for even
the most advanced programmers.

Today there are two basic types of Pascal: ANSI Pascal and Turbo Pascal. Although
ANSI Pascal is supposed to be a standard for all Pascal compilers, Borland's 'Ru'bo
Pascal is by far the most dominant Pascal compiler in use. Therefore, TYirbo Pascal's
form of the Pascal programming language is more of a standard than ANSI's.
Accordingly, this book is written to teach you how to program in the Turbo Pascal

XIX

Introduction

dialect. Microsoft's QuickPascal compiler is also covered in this book, as it adheres
to the Tiirbo Pascal dialect except for in the area of object-oriented programming.
Chapter 17 is dedicated to object-oriented programming in QuickPascal, while
Chapter 18 covers object-oriented programming in Turbo Pascal.

WHAT THIS BOOK WILL TEACH YOU

This book is intended to teach even a beginning programmer how to program in the
Pascal programming language. It covers all of the basic features of Pascal, including
the structure of a Pascal program, procedures, functions, program flow, data types,
arrays, records, and pointers. It also tells you how to use many of Pascal's advanced
features: dynamic memory management, units, strings, console input/output, and file
input/output. Finally, the book shows you how to use both Turbo Pascal and
QuickPascal to perform object-oriented programming.

WHAT THIS BOOK WON'T TEACH YOU

This book is not intended to teach you every detail about Turbo Pascal and
QuickPascal: that is the job of your compiler reference manuals. Additionally, this
book is not intended to teach you a lot of fancy algorithms (methods for problem
solving). That type of instruction is better suited for a more general book on
advanced programming.

WHAT YOU WILL NEED IN ORDER TO USE THIS BOOK

To use this book, you will need an IBM PC or compatible and either Turbo Pascal or
QuickPascal. You will also need a lot of patience and perseverance to become an
accomplished Pascal programmer. No matter how well-written this book is, the only
way to become a good computer programmer is to write programs, more programs,
and even more programs. You'll learn more about programming by successfully
tracking down your first bug than I or anyone else could teach you in hours of
instruction. Think of this book as a guide. It will get you going in the right direction,
but it is up to you to arrive at the proper destination. So if things seem a little hazy at
first, stick with it. With a little patience, you'll quickly get the hang of Pascal
programming.

XX

chapter1

A Simple First
Program

The first step in understanding the Pascal programming language is to become
familiar with the components of a Pascal program. Accordingly, this
chapter's first lesson acquaints you with all the Pascal programming

language's basic and essential components. The chapter concludes with a simple first
program.

LESSONl. The Basic Components of the Pascal
Programming Language

This lesson acquaints you with keywords, identifiers, constants, variables, operators,
statements, comments, procedures, and functions.

1 A Simple First Program

KEYWORDS

All programming languages use a special set of words to perform certain functions.
These special words are called keywords. Note that some programmers like to refer
to keywords as reserved words. The terms keywords and reserved words are
interchangeable and either is acceptable. Figure 1-1 presents a complete list of the
Turbo Pascal keywords, while Figure 1-2 covers the QuickPascal keywords. Because
a programming language's keywords all serve a specific purpose, they can never be
used in a program for anything other than this intended purpose.

absolute else inline procedure unit

and end interface program until

array external interrupt record uses

begin file label repeat var

case for mod set virtual

const forward nil shl while

constructor function not shr with

destructor goto object string xor

div if of then

do implementation or to

downto in packed type

Figure 1-1. The Turbo Pascal keywords.

absolute end inline packed type

and external interface procedure unit

array file interrupt program until

begin for label record uses

case forward mod repeat var

const function nil set while

cstring goto not shl with

div if object shr xor

do implementation of string
downto in or then

else inherited override to

Figure 1-2. The QuickPascal keywords.

A Simple First Program 1

IDENTIFIERS

As their name implies, identifiers are used to identify something in a Pascal program.
For example, program variables, constants, procedures, and functions all require a
name. Consequently, each of them is assigned a unique identifier. When constructing
an identifier, you must keep the following three rules in mind:

1. An identifier's first character must be either a letter or an

underscored character (_)•

2. Digits (0, 1,2,3,4,5,6,7, 8, and 9) can be used in an identifier.

3. An identifier can be of any length, but only the first 63 characters
of the identifier name are significant.

The following are some examples of valid identifiers:

First_Reading

Jastjpage

count

b32_45a

_32845

The following are some examples of invalid identifiers. Next to each identifier there
is an explanation of how the identifier violates the Pascal identifier rules.

Identifier Reason For Being Invalid

Stimes Starts with a digit,

next loop Space between next and loop.

name$ $ is an invalid identifier character.

count*three * is an invalid identifier character.

CONSTANTS

As with all other programming languages, any data found in a Pascal program that
never changes its value is called a constant. Constants come in many types (e.g.,
string, character, real, and integer).

1 A Simple First Program

The following are examples of constants:

Constant lype

Hello String Constant

'a' Character Constant

#13 Character Constant

'Another' String Constant

3.14 Real Constant

12345 Integer Constant

-32.45 Real Constant

456 Integer Constant

The Pascal programming language also permits you to name a constant. Once you
assign this name, you can substitute it freely for the constant's value. The following
are two examples of named constants:

tablejength = 1000;

Authors_Name = 'Mark Goodwin*;

VARIABLES

Although constants are a handy tool for the Pascal programmer, variables are even
more useful. As its name implies, a variable is a type of data that has a value that can
be changed throughout the life of a Pascal program. Unlike constants that can be
referred to by their literal values, a variable must always have an identifier name.

OPERATORS

The Pascal operators are a collection of symbols and keywords that are used to build
expressions. Figure 1-3 presents a list of these operators. You can use them to
perform a wide variety of functions.

A Simple First Program 1

Operator Class

@ Unary

NOT Boolean

» Multiplication

/ Multiplication

DIV Multiplication

MOD Multiplication

AND Boolean

SHL Multiplication

SHR Multiplication

+ Addition

- Addition

OR Boolean

XOR Boolean

= Relational

o Relational

< Relational

<= Relational

> Relational

>= Relational

IN Relational

Figure 1-3. The Pascal operators.

The following are some examples of expressions built from the Pascal operators:

3 + 512

3 <>4

3 = 5

32.15/3.035

1 A Simple First Program

STATEMENTS

A Pascal program statement is a collection of identifiers, keywords, operators, and
constants that performs a specific action. The following are some examples of Pascal
program statements:

name := 'John Doe';

count: integer;

count := 32 * 55;

As shown above, a Pascal statement ends with a semicolon (;).

Multiple program statements can be defined as a begin..end statement block to
express a single idea. The following is an example of a block statement:

begin

count := count + 1;

Writeln(count);

end

The main body of a Pascal program is nothing more than a begin.,end statement
block.

COMMENTS

A Pascal program comment is exactly what its name implies. It is simply a comment
for the programmer's benefit and serves no function as far as the program's
execution is concerned. Although they don't affect the program's execution, program
comments are a valuable tool for documenting the program. Strategically placed
comments clear up things by illustrating a program's inner workings. Many times a
program will require modification at a future date. While a program's
implementation (a fancy word for how it is written) can seem quite clear when it is
originally created, it won't be anywhere near as clear even a week or two down the
road. Consequently, comments are one of the Pascal programmer's most valuable
tools. You create a Pascal comment by enclosing whatever you want to say in either
braces or a (♦ ♦) pair.

A Simple First Program 1

The following are some examples of Pascal comments:

{ open the file and read in the data }

(* close the file if an error has occurred *)

PROCEDURES AND FUNCTIONS

Two of the most valuable features provided by the Pascal programming language are
procedures and functions. A procedure is a collection of program statements that
has been given a name. Essentially it is nothing more than a miniature program.
Whenever an executing program encounters a procedure's name, the program
branches away from the part of the program it is currently executing and executes the
procedure's associated statements. A Pascal function is similar to a procedure except
that a function returns a value after its associated statements have been executed.
Both procedures and functions can have their own constants and variables.

LESSON 2. A Fifst Program

Now that you know the basic Pascal components, you can write your first Pascal
program. This program is presented in Listing 1.1.

Listing 1.1

{ first.pas - A first Pascal program }
program First;

const

number = 3;

var

count, result : integer;

function multiply(nl, n2 : integer) : integer;
begin

multiply := nl * n2;

end;

continued...

1 A Simple First Program

...from previous page
begin

count := 2;

result := count * number;

Writeln(result);

result := multiply(count, number);

Writeln(result);

end.

Although Listing l.lis fairly short, it serves a very important purpose by illustrating
how the Pascal programming language's basic components are brought together in a
complete program. To better understand the basic structure of a Pascal program, let's
go through the program a line at a time.

(firstpas - A first Pascal program }
is a comment. It states the program's file name and provides a brief
description.

program First;
uses the Pascal keyword program to assign the identifier First as the
program's name. Although assigning a program name isn't absolutely
necessary, it is generally considered good programming practice to do so.

const

is the Pascal keyword for defining constants.

number = 3;

assigns the constant value of 3 to the identifier number.

var

is the Pascal keyword for defining variable identifiers.

countf result: integer;
defines two variables, count and result, with type integer.

function multiply(nl, n2: integer) : integer;
defines a function called multiply. The function expects two integer
arguments, nl and n2, and retums a value of type integer.

8

A Simple First Program 1

begin

defines the starting point for the multiply function's body.

multiply ;= nl * n2;
multiplies the function's arguments and assigns the result as the return value.

end;

defines the end of the multiply function's body.

begin
defines the starting point for the program's main body. This is where the
program starts executing.

count := 2;

assigns the initial value 2 to the variable count.

result := count * number;

multiplies the variable count by the constant number and assigns the result
to the variable result.

Writeln(result);

displays the value of result.

result := multiply(count, number);
calls the function multiply, which simply multiplies count by number, and
assigns the result of the function call to the variable result.

Writeln(result);

displays the value of result.

end,

defines the end of the program's main body. Note that a period—not a semi
colon—^follows the end keyword. As Lesson 1 stated, a semicolon is used to
signify the end of a statement; however, it is always necessary to use a
period to signify the end of the program.

Besides showing how the components of the Pascal programming language are used
in an actual program. Listing 1.1 also illustrates the use of white space (spaces, tabs,
and double spaced lines) to make a program more readable. Note that the use of
white space is strictly optional. Nevertheless, it is traditional to write Pascal

1 A Simple First Program

programs with a fair amount of white space. Without at least a minimal amount of
white space, a program will be almost illegible. For example. Listing 1.2 presents
the program firstpas (the program that was shown in Listing 1.1) stripped of all of
its unnecessary white space. Listing 1.2 is very difficult to read—the version
presented in Listing 1.1 is clearly superior.

listing L2

{ first.pas - A first Pascal program }program First;const
number = 3;var count, result : integer;function

multiply(nl, n2 : integer) : integer; begin multiply := nl

* n2; end;begin count := 2;result := count * number;

Writeln(result);result := multiply(count,
number);Writeln(result);end.

You're now familiar with some of the basic components of the Pascal programming
language and have examined a simple Pascal program. Chapter 2 discusses
predefined data types.

10

chapter2

Predefined Data

IVpes

Since a Pascal program is called upon to handle many different types of data,
the Pascal programming language comes equipped with a rich set of data
types. This chapter takes a detailed look at all of these data types, showing

how Pascal can satisfy almost any data handling requirements. The data types
covered in this chapter include: integers, real numbers, booleans, characters, and
strings.

LESSON 3. Integers

Integers are the most basic of the Pascal data types. Simply put, an integer data type
can represent whole numbers.

11

2 Predefined Data Types

The following are examples of integer constants:

32457

-43

0

167

-2335678

$FF

You may be wondering what the constant $FF is in the above example. The integer
$FF is the way the number 255 is represented using the hexadecimal number system.
This number system is base 16 and is represented by the digits 0..9 and the letters
A..F or a..f. Figure 2-1 illustrates how numbers are represented by the hexadecimal
number system.

Because the hexadecimal number system is base 16, it's easy to determine that the
constant $FF is 255 by performing the following calculation:

F » 16 + F = 255 or 15 ♦ 16 + 15 = 255

Digit Represents
0 0

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

A 10

B 11

C 12

D 13

E 14

F 15

Figure 2-1. The hexadecimal number system (base 16).

12

Predefined Data Types 2

Because a small whole number, such as the number 2, doesn't require as much
memory to store as a larger whole number, such as the number 356678, Pascal offers
five very distinct integer data types: Shortint, Byte, Integer, Word, and Longlnt.
Figure 2-2 shows the range of numbers these five integer data types can represent.

As flgure 2-2 illustrates, a Longlnt takes two times the amount of memory as an
Integer and four times the amount of memory as a Shortint. An efficient Pascal
programmer will always strive to use the smallest possible data type. For example,
an integer variable that will never hold a value less than 0 or greater than 255 should
be defined as a Byte variable instead of as an Integer, Word, or Longlnt variable.
Not only do the smaller data types require a great deal less memory than their larger
counterparts, the computer can perform operations, such as addition and subtraction,
on the smaller data types at much greater speeds.

Figure 2-3 illustrates the format for detining integer variables. As this figure shows,
you can define more than one variable per statement by separating the variable
identifiers with commas.

Data Range of Values Size in Bytes
Shortint -128 to 127 1

Byte 0 to 255 1

Integer -32768 to 32767 2

Word 0 to 65535 2

Longlnt -2147483648 to 2147483647 4

Figure 2'2. The Pascal integer types.

var

identifier: integer data type;
identifier, identifier: integer data type;

Where:

identifier is the variable's name.

integer data type is Shortint, Byte, Integer,
Word, or Longlnt.

Figure 2'3. Defining an integer variable.

13

2 Predefined Data Types

The following examples illustrate integer variable definitions:

number: Integer;
small_number: Byte;
offset: Word;
AccountNumber, AccountBalance: Longint;

In addition to named constants, the Pascal programming language also supports
typed constants. Although the value of a Pascal named constant never changes, a
typed constant*s value can be changed. Basically, a typed constant functions as a
variable with an initial value. Figure 2-4 illustrates the structure for defining integer
constants. Unlike variable definitions, you can only define one constant per
definition statement.

The following examples illustrate typed integer constant definitions:

top_row: Integer = 0;
bottom_row: Integer = 24;
left_column : Byte = 0;
right_column : Byte = 79;
CashAccount: Longint = 100000;

Listing 2.1 illustrates the use of Pascal's integer data types. It presents a short
program that defines a number of integer variables and constants and displays their
assigned values.

const

identifier: integer data type = constant;

Where:

identifier is the constant's name.

integer data type is Shortlnt, Byte, Integer, Word, or
Longint.

constant is a constant value or expression.

Figure 2-4. Defining a typed integer constant.

14

Predefined Data Types 2

Listing 2.1
{ list2-l.pas - Define and display a variety of integers }

program integers;

const

var

short_const : shortint = -1;
byte_const : byte = $3E;
integer_const : integer = 3245;
word_const ; word = 45667;
longint_const : longint = 1000000;

short_var : shortint;
byte_var : byte;
integer_var : integer;
word_var : word;
longint var : longint;

begin

short_var := 22;
byte_var := 254;
integer_var := -5563;
word_var := $ 22 2 4;
longint_var := -32;
writeln

writeln

writeln

writeln

writeln

writeln

writeln

writeln

writeln

writeln

'short_const
'byte_const
* integer_const
'word_const
'longint_const
'short_var
'byte_var
'integer_var
'word_var
'longint var

short_const);
byte_const);
integer_const);
word_const);
longint_const);
short_var);
byte_var);
integer_var);
word_var);
longint var);

end.

15

2 Predefined Data Types

LESSON4. RealNumbers

Although Pascal's integer types are quite useful and can meet the needs of a wide
variety of numeric data, many types of numeric data require a fractional part to
maintain a high degree of accuracy. Real numbers meet this requirement. The
following are some examples of real numbers:

-3236789

1.5E+2

.000000056789

55.67

-25.3999999

.333333333

In order to represent real numbers efficiently, Pascal offers five different real number
types: Single, Real (or floating point). Double, Extended, and Comp. The Comp
data type is unique. It is used to store extremely large integers and doesn't save a
number's fractional part. Figure 2-5 illustrates the range of numbers that the five real
number data types can represent.

As with the integer types, Pascal's real number types take a varying amount of
memory to store. Consequently, you should always try to use the smallest real
number type possible for a given task. As with integer types, calculations are
performed much faster on the smaller real number types than on the larger real
number types.

Figure 2-6 shows the format for defining real number variables. As this figure
illustrates, you can define more than one variable per statement by separating the
variable identifiers with commas.

Data T^pe Range of Values Size in Bytes Significant Data
Single 1.5E-45 to 3.4E+38 4 7-8

Real 2.9E-39 to 1.7E+38 6 11-12

Double 5.0E-324 to 1.7E+308 8 15-16

Extended 3.4E-4951 to l.lE+4932 10 15-16

Comp -9.2E+18to9.2E+18 8 15-16

Figure 2-5. The Pascal real number types.

l6

Predefined Data Types 2

var

identifier: real number data type;
identifier, identifier: real number data type;

Where;

identifier is the variable's name.

real number data type is Single, Real, Double, Extended, or
Comp.

Figure 2-6. Defining a real number variable.

The following examples illustrate real number variable definitions:

AccountBalance: Double;

degrees: Single;
Population: Comp;
CityBudget: Extended;
Credit, Debit: Real;

As it does with their integer counterparts, Pascal supports typed real number
constants. Figure 2-7 shows the format for defining typed real number constants. As
with typed integer constants, you can only define one constant per definition
statement.

constant

indentifier: real number data type = constant;

Where:

identifier is the constant's name.

real number data type is Single, Real, Double, Extended, or
Comp.

Figure 2-7. Defining a typed real number constant.

17

2 Predefined Data Types

The following examples illustrate real number typed constant definitions:

Cash Account: Double = -456.37;
WallHeight: Single = 3233678;
degrees: Extended = .000000678;

Listing 2.2 illustrates the use of Pascal's real number data types. It presents a brief
program that defines a number of real number variables and constants and displays
their assigned values.

Listing 2,2

{ list2-2.pas - Define and display a variety of real numbers }
program real_numbers;

{$E+} { Turbo Pascal 8087 Emulation Directive - Omit For

QuickPascal }

{$N+} { Turbo Pascal 8087 Directive - Omit For QuickPascal }

const

single_const : single = 32.3;
real_const : real = -0.0000032;
double_const : double = 666.788888;
extended_const : extended = 999.999;
comp_const : comp = 32456789;

var

single_var : single;
^«al_var : real;
doubie_var : double;
extended_var : extended;
comp_var : comp;

begin

single_var := -45.667;
real_var ;= 32.4568;
double_var ;= 10000.34;

continued...

18

Predefined Data Types 2

...from previous page
extended_var := 55000.0003
comp_var := -4567;
writeln{'single_const =
writeln(* real_const =
writeln(* double_const =
writeln('extended_const =
writeln('comp_cont =
writeln('single_var =
writeln('real_var =
writeln('double_var =
writeln('extended_var =
writeln('comp_var =

end.

single_const);
real_const);
double_const);
extended_const);
comp_const);
single_var);
real_var);
double_var);
extended_var);
comp var);

LESSON 5. Booleans

Many expressions in a computer program will return either a IVue or False result.
Unlike most other programming languages, Pascal provides a data type just for
handling True/False values. This predefined data type is known as the Boolean data
type. Because it represents only two logical values (TVue or False) the boolean data
type will always hold either a TVue or a False value.

Figure 2-8 shows the format for defining boolean variables. As this figure illustrates,
you can define more than one variable per statement by separating the variable
identifiers with commas.

var

identifier: Boolean;

identifier, identifier: Boolean;

Where;

identifier is the variable's name.

Figure 2-8. Defining a boolean variable.

19

2 Predefined Data Types

The following examples illustrate boolean variable definitions:

Flag: Boolean;
lOResult: Boolean;
answerl, answer!: Boolean;
On_Off_Flag: Boolean;
Error__Flag: Boolean;

As with integers and real numbers, typed boolean constants can be defined with
Pascal. Figure 2-9 defines how typed boolean constants are defined. Like other typed
constants, you can only define one typed boolean constant per definition statement.

The following examples illustrate typed boolean constant definitions:

Flag : Boolean = False;
TVue_Result: Boolean = True;
Not_On : Boolean = False;

Listing 2.3 demonstrates the use of Pascal's boolean data type. It presents a brief
program that defines a number of boolean variables and constants and displays their
assigned values.

const

identifier: Boolean = constant;

Where:

identifier is the constant's name,

constant is a constant value or expression.

Figure 2-9. Defining a typed boolean constant.

20

Predefined Data Types 2

Listing 23

{ list2-3.pas - Define and display a variety of booleans }
program booleans;

const

var

false_flag : boolean = false;
not on flag : boolean = false;

flag : boolean;

ioresult : boolean;

begin

flag := false;

ioresult := true;

writeln{'false_f lag
writeln{'not_on_f lag
writeln{'flag

writeln('ioresult

false_flag);
not_on_flag) ;
flag);

ioresult);

end.

LESSON 6. Gharactsers

Quite often the result of an action will be a character of data. The following are
some examples of actions that result in characters:

keyboard input
display output
printer output
some forms of disk input/output

Pascal offers the Char data type to properly deal with character data. Figure 2-10
defines the three forms of valid Pascal character data.

21

2 Predefined Data Types

Type
Control Characters

Representation
are represented with the carat symbol
followed by a control letter. For example, the
control character 1 is represented by A, the
control character 2 is represented by '^B, etc.

Readable Characters are represented in the form "character." For
example the letter a is represented by "a."

All Characters are represented with the number sign (#)
followed by the character's ASCII code number.
For example, the letter g is represented by #103.

Where:

Control Characters are the ASCII characters 0 through 31.

Readable Characters are the alphabetic, numeric, and punctuation
characters.

All Characters are any character in the ASCII code table.

Figure 2-10. Pascal character data representations.

The following are some examples of character data:

#255

#10

Figure 2-11 shows the format for defining character variables. As this figure
illustrates, you can define more than one variable per statement by separating the
variable identifiers with commas.

22

Predefined Data Types 2

var

identifier: Char

identifier, identifier: Char

Where;

identifier is the variable's name.

Figure 2-11. Defining a character variable.

The following examples illustrate character variable definitions:

Key: Char;
ReturnCode: Char;

First_Initial, Middle_Initial: Char;
Diskib: Char;
PrinterCode; Char;

As it does with other data types, Pascal supports typed character constants. Figure 2-12
illustrates the format for defining typed character constants. As with other typed
constants, you can only define one constant per definition statement.

The following examples illustrate typed character constant definitions:

CR : Char =

PrinterCode: Char = 'B';
LF: Char = #10;

ErrorCode; Char = *E';

const

identifier: Char = constant;

Where:

identifier is the constant's name.

Figure 2-12. Defining a typed character constant.

23

2 Predefined Data Types

Listing 2.4 demonstrates the use of Pascal's character data type in a program that
defines a number of character variables and constants and displays their assigned
values.

Listing 2A

{ list2-4.pas - Define and display a variety of characters }

program characters;

const

CR : char = ""M;

LF : char = #10;

var

a_character : char;
another_character : char;

begin

a_character := 'a';
another_character := 'b';
writeln('CR = ', CR);

writelnCLF = LF);

writeln('a_character = a_character);
writeln('another_character = another_character);

end.

LESSON 7. Strings

Although all of the previously described Pascal data types are important, string data
is perhaps the most important data a Pascal program handles. From word processing
programs to simple utility programs, strings are by far the most prevalent type of
computer data. Pascal offers the String data type to meet the needs that string
handling imposes upon a computer language. The examples listed at the top of the
opposite page are string data.

24

Predefined Data Types 2

'This is a sample string'
'This is another sample string'
'This a more complex'#13#10'string.'
'I"m a string, too!'

Note the use of the double apostrophe (") in the last example. Because Pascal strings
are delimited (a fancy word for surrounded) by apostrophes, you must use a double
apostrophe to signify an apostrophe inside of a string. Failure to use a double
apostrophe will confuse the compiler into thinking the string is much shorter than it
should be.

Figure 2-13 shows the format for defining string variables. As this figure indicates,
you can define more than one variable per statement by separating the variable
identifiers with commas. The figure also shows that an optional length of up to 255
characters can be specified for a string.

The following examples illustrate string variable definitions:

Name: Strmg[30];
City, State, Zip : String;
DisplayLine: String[80];
Address: String[30];
Response: String;

var

identifier: String;
identifier: String [length];
identifier, identifier: String;
identifier, identifier: String[length];

Where:

identifier is the variable's name.

length is the string's length, which
must be in the range of 1 to 255.

Figure 2-13. Defining a string variable.

25

2 Predefined Data Types

As it does with the other data types, Pascal supports typed string constants. Figure
2-14 illustrates the format for defining typed string constants. As with other typed
constants, you can only define one typed string constant per definition statement.

const

identifier: String = constant;
identifier: String [length] = constant;

Where:

identifier is the constant's name.

constant is a constant value or expression.

length is the string's maximum length, which must
be in the range of 1 to 255.

Figure 2-14. Defining a typed string constant.

The following examples illustrate typed string constant definitions:

name: String = *Jane Smith';
city : String[30] = *Los Angeles';
State: String[2] = *NV';
zipcode: String = *05501';

Listing 2.5 demonstrates the use of Pascal's string data type. It presents a brief
program that defines a number of character variables and constants and displays their
assigned values.

Listing 2.5

{ list2-5.pas - Define and display a variety of strings }

program strings;

const

name : string[20] = Vohn Doe*;

city : string = ̂ Boston*;

continued...

26

Predefined Data Types 2

...from previous page
var

state : string;

ZipCode : string[5];

begin

state := 'MA';

ZipCode := '00001';

writeln('name =

writeln{'city =

writeln{'state =

writeln('ZipCode =

name);

city);

state);

ZipCode);

end.

millet

You're now familiar with predefined data types: integers, real numbers, booleans,
characters, and strings. Chapter 3 discusses how you can use Pascal operators to
manipulate data.

27

chapter3

The Pascal
Operators

This chapter shows you how to use the Pascal operators to manipulate data.
When combined with other variables and constants, the Pascal operators—
assignment, multiplication, bitwise, and string concatenation—can be used to

build powerful and useful expressions. The chapter concludes with a discussion of
operator precedence.

LESSON 8. The Assignment Operator

As its name implies, the Pascal assignment operator (:=) assigns the result of an
expression to a variable or typed constant. Because of its extensive use in the
programs listed in Chapter 2, you should already be somewhat familiar with the
assignment operator. Figure 3-1 defines the assignment operator.

29

3 TTie Pascal Operators

identifier := expression

Where:

identifier is a variable or typed constant name.

expression is a valid Pascal expression.

Figure 3'1. The Pascal assignment operator.

The following examples illustrate the proper use of the assignment operator;

flag := False;
count := count +1;
key := ReadKey;
Name := FirstName + *' + Middlelnitial + '' + LastName;
pi := 22/7;

Listing 3.1 demonstrates how the Pascal assignment operator is used in an actual
program that assigns values to a wide variety of variables.

Listing 3>1

{ listS-l.pas - Demonstrate the use of the Pascal
assignment operator }
program assignment_operator;

var

count, number : integer;
flag : boolean;
Name : string;

begin
count := 1;

count := count + 1;

flag := False;
continued...

30

The Pascal Operators 3

...from previous page
Name := 'John' + '

writeln('count = ',
writeln('flag = ',
writeln('Name = ',

end.

' + 'Q.

count);

flag);
Name);

+ 'Public';

LESSON 9. The Unary Plus Operator

The Pascal unary plus operator (+) simply maintains the sign of an expression. In
other words, it doesn't do a thing. This may seem to be a ludicrous statement, but it's
quite true. The unary plus operator is ignored by Pascal and is only included in the
language definition to prevent the compiler from generating unnecessary syntax
errors. Figure 3-2 defines the unary plus operator.

+expression

Where:

expression is a valid Pascal expression.

Future 3-2. The Pascal unary plus operator.

The following examples illustrate the proper use of the unary plus operator.

+count

+1.234

+recordnumber

Listing 3.2 demonstrates how the Pascal unary plus operator is used in an actual
program.

Listing 3.2

{ list3-2.pas - Demonstrate the use of the Pascal unary
plus operator }
program unary^lus_operator;

continued...

31

3 The Pascal OpeiatDis

...from previous page
var

nl, n2 : integer;
rl : real;

begin
rl := +32.333;

nl := -23;

n2 := +nl;

writelnCnl = nl);
writeln('n2 = n2);
writelnCrl = •, rl);

end.

LESSON 10. The Unaiy Minus Operator

The Pascal unary minus operator (-) negates the value of an expression. If the
expression is negative, the unary minus operator makes it positive. If the expression
is positive, the unary minus operator makes it negative. Figure 3-3 defines the unary
minus operator.

The following examples illustrate the proper use of the unary minus operator:

-nl

-2345678

-count

Listing 3.3 demonstrates how the Pascal unary minus operator is used in an actual
program.

-expression

Where;

expression is a valid Pascal expression.

Figure 3-3. The Pascal unary minus operator.

32

The Pascal Operators 3

Listing 33

{ list3-3.pas - Demonstrate the use of the Pascal unary
minus operator }
program unary_minus_operator;

var

nl, n2 : integer;
rl : real;

begin
rl := -32.333;

nl := -23;

n2 := -nl;

writelnCnl = nl);

writeln('n2 = n2);

writelnCrl = rl) ;

end.

LESSON 11. The Addition Operator

The Pascal addition operator (+) adds together two expressions. Figure 3-4 defines
the addition operator.

The following examples illustrate the proper use of the addition operator:

1 + 1

nl + 3

33.333 + 500

22 + n2

i+j

expression + expression

Where:

expression is a valid Pascal expression.

Figure 3-4. The Pascal addition operator.

33

3 TTie Pascal Operators

Listing 3.4 demonstrates how the Pascal addition operator is used in an actual
program.

Listing JL4

{ list3-4.pas - Demonstrate the use of the Pascal addition operator }
program addition_operator;

var

nl, n2 : integer;
rl : real;

begin
rl := -32.4567 + 33 + 0.67;

nl := 1 + 45;

n2 := nl + 1;

writelnCnl = nl) ;

writeln('n2 = n2);
writelnCrl = rl);

end.

LESSON 12. The Subtraction Operator

The Pascal subtraction operator (-) subtracts the result of one expression from the
result of another expression. Figure 3-5 defines the subtraction operator.

The following examples illustrate the proper use of the subtraction operator:

2-3

33.456-1325

nl - g - c
55-nl-3

6-1

expression • expression

Where:

expression is a valid Pascal expression.

Figure 5-5. The Pascal subtraction operator.

34

TTie Pascal Operators 3

Listing 3.5 demonstrates how the Pascal subtraction operator is used in an actual
program.

Listing 3.5

{ list3-5.pas - Demonstrate the use of the Pascal
subtraction operator }
program subtraction_operator;

var

nl, n2 : integer;
rl : real;

begin
rl := 32.4567 - 33 - 0.67;

nl := 1 - 45;

n2 := nl - 1;

writeln(*nl = nl);

writeln('n2 = *, n2);
writeln('rl = rl);

end.

LESSON 13. The Multiplication Operator

The Pascal multiplication operator (♦) multiplies the result of one expression by the
result of another expression. Figure 3-6 defines the multiplication operator.

expression * expression

Where:

expression is a valid Pascal expression.

Figure 3-6. The Pascal muU^Ucation operator.

35

3 The Pascal Operators

The following examples illustrate the proper use of the multiplication operator:

3*4

n * pi
3.43 » 0.5

99»6

X ♦ y ♦ z

Listing 3.6 demonstrates how the Pascal multiplication operator is used in an actual
program.

Listing 3*6

{ list3-6.pas - Demonstrate the use of the Pascal
multiplication operator }
program multiplication_operator;

var

nl, n2 : integer;
rl : real;

begin
rl := 32.4567 * 27 * 0.5;

nl := 1 * 45;

n2 := nl * nl;

writelnCnl = nl);

writeln('n2 = n2);

writelnCrl = rl) ;

end.

LESSON 14. The Real Number Division Operator

The Pascal real number division operator (/) divides the result of one expression by
the result of another expression. As you will soon see, the Pascal division operators
are unique. All of the previously covered arithmetic operators (+, and ♦) retum the
same data type as the expressions to which they are applied. For example, the
addition of two integer expressions returns an integer result. The real number
division operator differs from the other arithmetic operators by always returning a
real number result. It doesn't matter whether the expressions being divided are
integers or real numbers; the calculated result is always returned as a real number.
Figure 3-7 defines the real number division operator.

36

The Pascal Operators 3

expression / expression

Where:

expression is a valid Pascal expression.

Figure 3-7, The Pascal real number operator.

The following examples illustrate the proper use of the real number division
operator:

iin

15/nl

x/z/y
count/2

15.333 / 2.1023

Listing 3.7 demonstrates how the Pascal real number division operator is used in an
actual program.

Listings*!

{ list3-7.pas - Demonstrate the use of the Pascal real
number division operator }
program division_operator;

var

rl : real;

begin
rl := 32.4567 / 27 / 0.5;

writeln('rl = rl);

end.

37

3 The Pascal Operators

1JESSON15. The Int^er Division Operator

The Pascal integer division operator (div) divides the result of one integer
expression by the result of another integer expression. The integer division operator
always returns an integer result. Figure 3-8 defines the integer division operator.

integer expression dIv integer expression

Where:

integer expression is a valid Pascal integer expression.

Figure 3-8. The Pascal integer ̂vision operator.

The following examples illustrate the proper use of the integer division operator:

22 div 7

ndlv3

X div y dIv 2
16div8

5555 div nl

Listing 3.8 demonstrates how the Pascal integer division operator is used in an actual
program.

Listing 3-8

{ listS-S.pas - Demonstrate the use of the Pascal integer
division operator }
program integer_division_operator;

var

nl, n2 : integer;

begin
nl := 3400 div 16;

n2 := nl div 3;

writelnCnl = nl);

writeln('n2 = n2);

end.

38

The Pascal Operators 3

LESSON 16. The Remainder Operator

The Pascal remainder operator (mod) calculates a remainder by dividing the result of
one integer expression by the result of another integer expression. The remainder
operator always returns an integer result. Figure 3-9 defines the remainder operator.

integer expression mod integer expression

Where:

integer expression is a valid Pascal integer expressitm.

Figure 3'9. The Pascal remainder operator.

The following examples illustrate the proper use of the remainder operator;

count mod 5

33 mod 2

45 mod n

X mod y mod z
nl mod n2

Listing 3.9 demonstrates how the Pascal remainder operator is used in an actual
program.

Listing 3*9

{ list3-9.pas - Demonstrate the use of the Pascal
remainder operator }
program remainder_operator;

var

nl, n2 : integer;

begin
nl := 3400 mod 16;

n2 := nl mod 3;
continued...

39

3 The Pascal Operators

...from previous page
writeln(*nl = nl);
writeln('n2 = n2);

end.

LESSON 17. The Logical Negation Operator

The Pascal logical negation operator (not) negates the result of a boolean expression.
If the boolean expression is equal to TVue, the logical negation operator makes it
False. If the boolean expression is equal to False, the logical negation operator
makes it IVue.

Figure 3-10 presents a truth table that illustrates how the logical negation operator
performs its function. Figure 3-11 defines the logical negation operator.

The following examples illustrate the proper use of the logical negation operator:

not flag
not False

not error__flag

Value X Value Y Result not X

True True

False False

Figure 3-10. A logical negation truth table.

not boolean expression

Where:

boolean expression is a valid Pascal boolean expression.

Figure 3-11. The Pascal logical negation operator.

40

The Pascal Operatjors 3

Listing 3.10 illustrates how the Pascal logical negation operator is used in an actual
program that displays a logical negation truth table.

Listing 3*10

{ listS-lO.pas - Demonstrate the Pascal logical negation
operator }
program logical_negation_operator;

begin
writeln('Logical Negation Truth Table');
writeln('============================');
writeln('Value Value Result');
writeln('X Not X');

writeln (' ');

writeln('True ', not True);
writeln('False ', not False);

writeln (' ===========================');

end.

LESSON 18. The Logical and Operator

The Pascal logical and operator (and) compares two boolean expressions and returns
a TVue result only if bodi of the boolean expressions are equal to TVue. Otherwise,
the logical and operator returns a False result.

Figure 3-12 presents a truth table that illustrates how the logical and operator
performs its function. Figure 3-13 defines the logical and operator.

Value X Value Y Result X and Y

True True True

True False False

False True False

False False False

Figure 3-12. A logical and truth table.

41

3 The Pascal Operators

boolean expression and boolean expression

Where:

boolean expression is a valid Pascal boolean expression.

F^tuv 3-13. The Pascal logic(U and operedor.

The following examples illustrate the proper use of the logical and operator:

flag and IVue
error and EndOfFile

keypressed and flag

Listing 3.11 demonstrates how the Pascal logical and operator is used in an actual
program that displays a logical and truth table.

LisHng3>ll

{ listS-ll.pas - Demonstrate the Pascal logical and
operator }
program logical_and_operator;

begin
writeln

writeln

writeln

writeln

writeln

writeln

writeln

writeln

writeln

writeln

Logical And Truth Table');

Value

X

Value

Y

Result');

X AND Y');

True

True

False

False

True

False

True

False

', True and True);

', True and False);

False and True);

\ False and False);

');

end.

42

Hie Pascal Operators 3

LESSON 19* The Logical or Operator

The Pascal logical or operator (or) compares two boolean expressions and returns a
TVue result if either of the boolean expressions is equal to TVue. The logical or
operator returns a False result only if bodi boolean expressions are equal to False.

Figure 3-14 presents a truth table that illustrates how the logical or operator performs
its function. Figure 3-15 defmes the use of the logical or operator.

The following examples illustrate the proper use of the logical or operator

flag or lYiie
error or EndOfFile

keypressed or mouseclicked

Listing 3.12 illustrates how the Pascal logical or operator is used in an actual
program that displays a logical or truth table.

Value X Value Y Result X or Y

True True True

True False True

False True Trae

False False False

Figure 3-14. A logical or truth table.

boolean expression or boolean expression

Where:

boolean expression is a valid Pascal boolean expression.

Figure 3-15. The Pascal lo^al or operator.

43

3 The Pascal Operators

Listing 3.12

{ list3-12.pas - Demonstrate the Pascal logical or
operator }
program logical_or_operator;

begin
writeln

writeln

writeln

writeln

writeln

writeln

writeln

writeln

writeln

writeln

Logical Or Truth Table');

Value

X

Value

Y

True

True

False

False

True

False

True

False

•);
Result');

X OR Y•);
');

True or True);

True or False);

False or True);

False or False);

========•);

end.

LESSON 20. The Exclusive or Operator

The Pascal exclusive or operator (xor) compares two boolean expressions and
returns a IVue result if both of the boolean expressions are different. Otherwise, the
exclusive or operator returns a False result.

Figure 3-16 presents a truth table that illustrates how the exclusive or operator
performs its fimction. Figure 3-17 defines the exclusive or operator.

Value X Value Y Result X or Y

True True False

True False True

False True True

False False False

Figure 3-16. An exclusive or truth table.

44

The Pascal Operators 3

boolean expression xor boolean expression *

Where:

boolean expression is a valid Pascal boolean expression.

Figure 3-17. The Pascal exclusive or operator.

The following examples illustrate the proper use of the exclusive or operator:

flag xor TVue
error xor False

keypressed xor mouseclicked

Listing 3.13 demonstrates how the Pascal exclusive or operator is used in an actual
program that displays an exclusive or truth table.

Listing 3'13

{ list3-13.pas - Demonstrate the Pascal exclusive or
operator }
program exclusive_or_operator;

begin
writeln

writeln

writeln

writeln

writeln

writeln

writeln

writeln

writeln

writeln

Exclusive Or Truth Table');

•) ;
Value

X

Value

Y

Result');

X XOR Y');

*);
True

True

False

False

True

False

True

False

True xor True);

True xor False);

False xor True);

False xor False);

');
end.

45

3 The Pascal Operators

LESSON 21. The Bitwise Negation Operator

The Pascal bitwise negation operator (not) negates the result of an integer
expression. The bitwise negation operator performs its intended function by
inverting the value of each of an integer's bits. If you are unfamiliar with the term
bit, Figure 3-18 should be of assistance. As this figure illustrates, each byte of
memory (one character of memory) is comprised of eight bits. Each bit holds the
value of either 1 or 0. By simply inverting each of the integer expression's bits, the
bitwise negation operator effectively negates the expression.

* 20 or Bit* 1

* 2lorBit * 2

* 2^ or Bit * 4

* 2^ or Bit ♦ 8
* 2^ or Bit » 16

* 2^ or Bit ♦ 32
* 2^ or Bit * 64

* 2^ or Bit * 128

Figure 3-18. A byte of bits.

Figure 3-19 presents a truth table that illustrates how the bitwise negation operator
performs its function. Figure 3-20 defines the bitwise negation operator.

Bit Value X Bit Value Result not X

1 0

0 1

Figure 3-19. A bitwise negation truth table.

46

The Pascal Operators 3

not integer expression

Where:

integer expression is a valid Pascal integer expression.

Figure 3-20. The Pascal bitwise negation operator.

The following examples illustrate the proper use of the bitwise negation operator:

not mask

not pixels
not bit__mask

Listing 3.14 demonstrates how the Pascal bitwise negation operator is used in an
actual program that displays a bitwise negation truth table.

Listing 3'14

{ list3-14.pas - Demonstrate the Pascal bitwise negation
operator }

program bitwise_negation_operator;

const

one = not 0;

zero = not 1;

begin
writeln{'Bitwise Negation Truth Table');
writeln('============================');

writeln('Value Value Result');

writeln('X not X');

writeln (' ') ;

writelnCl ', not one);

writeln('0 ', not zero);

writeln (' ');

end.

47

3 The Pascal Operators

LESSON 22. The Bitwise and Operator

The Pascal bitwise and operator (and) compares two integer expressions and returns
the result of performing and operations on diem bit-by-bit.

Figure 3-21 presents a truth table that illustrates how the bitwise and operator
performs its function. Figure 3-22 defines the bitwise and operator.

The following examples illustrate the proper use of the bitwise and operator:

value and BitMask

ShiftPressed and 1

Pixels and $F0

Listing 3.15 demonstrates how the Pascal bitwise and operator is used in an actual
program that displays a bitwise and truth table.

Bit Value X Bit Value Y Result X and Y

1 1 1

1 0 0

0 1 0

0 0 0

Figure 3-21. A bitwise and truth table.

integer expression and integer expression

Where:

integer expression is a valid Pascal integer expression.

Figure 3'22. The Pascal bitwise and operator.

48

The Pascal Operators 3

Listing 3'15

{ list3-15.pas - Demonstrate the Pascal bitwise and
operator }
program bitwise and operator;

begin
writeln

writeln

writeln

writeln

writeln

writeln

writeln

writeln

writeln

writeln

Bitwise And Truth Table');
============================.);

Value Value Result');

X Y X and Y');
.);

1 1 ', 1 and 1);

1 0 ', 1 and 0);

0 1 '/ 0 and 1);

0 0 ', 0 and 0);
.);

end.

LESSON 23. The Bitwise or Operator

The Pascal bitwise or operator (or) compares two integer expressions and returns the
result of performing or operations on them bit-by-bit.

Figure 3-23 presents a truth table that illustrates how the bitwise or operator
performs its function. Figure 3-24 dehnes the bitwise or operator.

Bit Value X Bit Value Y Result X or Y

1 1 1

1 0 1

0 1 1

0 0 0

Figure 3-23. A bitwise or truth table.

49

3 The Pascal Operators

integer expression or integer expression

Where:

integer expression is a valid Pascal integer expression.

Figure 3-24. The Pascal bitwise or operator.

The following examples illustrate the proper use of the bitwise or operator:

pixel or 1
flags or mask
shiftmask or 2

Listing 3.16 demonstrates how the Pascal bitwise or operator is used in an actual
program that displays a bitwise or truth table.

Listing 3'16

{ list3-16.pas - Demonstrate the Pascal bitwise or
operator }
program bitwise_or_operator;

begin
writeln('Bitwise Or Truth Table');

writeln('============================') ;

writeln{'Value Value Result');
writeln('X Y XorY');
writeln (' ');
writeln ('1 1 ', 1 or 1)

writeln ('1 0 ', 1 or 0)

writeln CO 1 ', 0 or 1)
writelnCO 0 ', 0 or 0)
writeln (' ');

end.

50

The Pascal Operators 3

LESSON 24. The Bitwise Exclusive or Operator

The Pascal bitwise exclusive or operator (xor) compares two integer expressions and
returns the result of performing xor functions on them bit-by-bit.

Figure 3-25 presents a truth table that illustrates how the bitwise exclusive or
operator performs its function. Figure 3-26 defines the bitwise exclusive or operator.

The following examples illustrate the proper use of the bitwise exclusive or operator:

pixels xor $FF
ErrorFlag xor mask
ShiftFlag xor 1

Listing 3.17 demonstrates how the Pascal bitwise exclusive or operator is used in an
actual program that displays a bitwise exclusive or truth table.

Bit Value X Bit Value Y Result X xor Y

1 1 0

1 0 1

0 1 1

0 0 0

Figure 3-25. A bitwise exclusive or truth table.

integer expression xor integer expression

Where:

integer expression is a valid Pascal integer expression.

Figure 3-26. The Pascal bitwise exclusive or operator.

51

3 The Pascal Operators

Listing 3*17

{ list3-17.pas - Demonstrate the Pascal bitwise xor
operator }
program bitwise xor operator;

begin
writeln

writeln

writeln

writeln

writeln

writeln

writeln

writeln

writeln

writeln

Bitwise Xor Truth Table');

Value Value Result');

X Y X xor Y')f

1

1 1 *, 1 xor 1)
1 0 ', 1 xor 0)

0 1

o

X
o

1)

0 0

u
o
X

O

0)
1
•);

end.

LESSON 25. The Bitwise Shift Left Operator

The Pascal bitwise shift left operator (shl) shifts all of the bits in an integer
expression to the left by the number of places specified by another integer
expression. Essentially, the shift left operator multiplies an integer value two times
for every position to the left it is shifted. For example, the expression 4 shl 2 has the
same effect as the expression 4*4.

Figure 3-27 defines the shift left operator.

integer expression shl count

Where:

integer expression is a valid Pascal integer expression.

count is a valid Pascal integer expression, which
specifies the number of places by which to
shift the preceding integer.

Figure 3-27. The Pascal shift left operator.

52

The Pascal Operators 3

The following examples illustrate the proper use of the shift left operator:

mask shl 1

number shl count

4 shl count

Listing 3.18 demonstrates how the Pascal shift left operator is used in an actual
program.

Listing 5.18

{ list3-18.pas - Demonstrate the Pascal bitwise shift left
operator }
program bitwise_shift_left_operator;

var

nl, n2 : integer;

begin
nl := 4 shl 1;

n2 := nl shl 2;

writelnCnl = nl);

writeln{'n2 = n2);

end.

LESSON 26. The Bitwise Shift Right Operator

The Pascal bitwise shift right operator (shr) shifts all of the bits in an integer
expression to the right by the number of places specified by another integer
expression. Essentially, the shift right operator divides an integer value two times for
every position to the right it is shifted. For example, the expression 63 shr 1 has the
same effect as the expression 63 div 2.

Figure 3-28 defines the shift right operator.

53

3 The Pascal Operators

integer expression shr count

Where:

integer expression is a valid Pascal integer expression.

count is a valid Pascal integer expression,
which specifies the number of places
by which to shift the preceding integer.

Figure 3-28. The Pascal shift right operator.

The following examples illustrate the proper use of the shift right operator:

mask shr 2

number shr count

45 shr times

Listing 3.19 demonstrates how the Pascal shift right operator is used in an actual
program.

Listing 3,19

{ list3-19.pas - Demonstrate the Pascal bitwise shift
right operator }
program bitwise_shift_right_operator;

var

nl, n2 : integer;

begin
nl := 64 shr 1;

n2 := nl shr 2;

writeln('nl = nl);

writeln('n2 = n2);

end.

54

The Pascal Operators 3

LESSON 27. llie String O>ncatenation Opemtor

The Pascal string concatenation operator (+) is used to combine characters and
strings to form an even larger string. Figure 3.29 defines the string concatenation
operator.

string expression + string expression
string expression + character expression
character expression + string expression
character expression + character expression

Where:

string expression is a valid Pascal string expression.

character expression is a valid Pascal character
expression.

Figure 3-29. The Pascal string concatenation operator.

The following examples illustrate the proper use of the string concatenation operator:

'Washington' + 'D.C.*
#13 + String
FirstName + Middlelnitiai + LastName

Listing 3.20 demonstrates how the Pascal string concatenation operator is used in an
actual program.

Listing 3*20

{ list3-20.pas - Demonstrate the Pascal string
concatenation operator }

program string_concatenation_operator;

var

FirstName, Lastname, Name : string;
Middlelnitiai : char;

continued...

55

3 The Pascal Operators

...from previous page
begin

FirstName := 'John';

LastName := 'Smith';

Middlelnitial := 'D';

Name := First:Name + #32 + Middlelnitial + '. ' + LastName;

writeln('Name = ', Name);

end.

LESSON 28. The Equal to Operator

The Pascal equal to operator (=) compares two expressions to see if they are equal in
value. If the two expressions are equal, the equal to operator returns a value of TVue.
If the two expressions aren't equal, the equal to operator returns a value of False.
Figure 3-30 defines the equal to operator.

The following examples illustrate the proper use of the equal to operator:

Flag = TVue
n = I

15.0 = Diameter

Listing 3.21 demonstrates how the Pascal equal to operator is used in an actual
program.

expression = expression

Where:

expression is a valid Pascal expression.

Figure 3-30. The Pascal equal to operator.

56

The Pascal Operators 3

Listing 3,21

{ list3-21.pas - Demonstrate the Pascal equal to operator }
program equal_to_operator;

begin
writelnCl = 1 is 1 = 1);

writeln('2 = 1 is 2=1);

writelnCl = 2 is 1 = 2);

end.

LESSON 29. The Not Equal to Operator

The Pascal not equal to operator (<>) compares two expressions to see if they are
unequal in value. If the two expressions are unequal, the not equal to operator returns
a value of TVue. If the two expressions are equal, the not equal to operator returns a
value of False. Figure 2.31 defines the not equal to operator.

The following examples illustrate the proper use of the not equal to operator:

Flag <> TVue
count <> 2

MouseButton <> Clicked

Listing 3.22 demonstrates how the Pascal not equal to operator is used in an actual
program.

expression <> expression

Where:

expression is a valid Pascal expression.

Figure 3-31. The Pascal not equal to operator.

57

3 The Pascal Operators

Listing 5.22

{ list3-22.pas - Demonstrate the Pascal not equal to
operator }
program not_equal_to_operator;

begin
writelnCl <> 1 is 1 <> 1)

writeln('2 <> 1 is 2 <> 1)

writelnCl <> 2 is 1 <> 2)

end.

LESSON 30. The Greater Than Operator

The Pascal greater than operator (>) compares two expressions to see if the first
expression is greater than the second expression. If the flrst expression is greater than
the second expression, the greater than operator returns a value of TVue. If the first
expression in less than or equal to the second expression, the greater than operator
returns a value of False. Figure 3-32 defines the greater than operator.

The following examples illustrate the proper use of the greater than operator:

n > 1

count > maximum

mouse__column > 80

Listing 3.23 demonstrates how the Pascal greater than operator is used in an actual
program.

expression > expression

Where:

expression is a valid Pascal expression.

Figure 3-32. The Pascal greater than operator.

58

The Pascal Operators 3

Listing 3»23

{ list3-23.pas - Demonstrate the Pascal greater than
operator }
program greater_than_operator;

begin
writelnCl > 1 is 1 > 1)
writeln('2 > 1 is *, 2 > 1)

writeln('1 > 2 is 1 > 2)

end.

LESSON 31. The Greater Than or Equal to Operator

The Pascal greater than or equal to operator (>=) compares two expressions to see if
the first expression is greater than or equal to the second expression. If the first
expression is greater than or equal to the second expression, the greater than or equal
to operator returns a value of True. If the first expression is less than the second
expression, the greater than or equal to operator returns a value of False. Figure 3-33
defines the greater than or equal to operator.

The following examples illustrate the proper use of the greater than or equal to
operator:

count >= 55

DisplayRow >= 23
n >= 5

Listing 3.24 demonstrates how the Pascal greater than or equal to operator is used in
an actual program.

expression >= expression

Where:

expression is a valid Pascal expression.

Figure 3-33. The Pascal greater than or equal to operator.

59

3 Hie Pascal Operators

Listing 3,24

{ list3-24.pas - Demonstrate the Pascal greater than or
equal to operator }
program greater_than_or_equal_to_operator;

begin
writelnCl >= 1 is 1 >= 1)

writeln('2 >= 1 is 2 >= 1)
writelnCl >= 2 is 1 >= 2)

end.

LESSON 32. The Less Than Operator

The Pascal less than operator (<) compares two expressions to see if the first
expression is less than the second expression. If the first expression is less than the
second expression, the less than operator returns a value of True. If the first
expression is greater than or equal to the second expression, the less than operator
returns a value of False. Figure 3-34 defines the less than operator.

The following examples illustrate the proper use of the less than operator:

n < 3

MouseRow < 0

counter < 55

Listing 3.25 demonstrates how the Pascal less than operator is used in an actual
program.

expression < expression

Where:

expression is a valid Pascal expression.

Figure 3-34. The Pascal less than operator.

60

The Pascal operators 3

Listing 3*25

{ list3-25.pas - Demonstrate the Pascal less than operator }
program less_than_operator;

begin
writelnCl < 1 is 1 < 1)
writeln('2 < 1 is 2 < 1)
writelnCl < 2 is 1 < 2)

end.

LESSON 33. The Less Than or Equal to Operator

The Pascal less than or equal to operator (<=) compares two expressions to see if the
first expression is less than or equal to the second expression. If the first expression
is less than or equal to the second expression, the less than or equal to operator
returns a value of IVue. If the first expression in greater than the second expression,
the less than or equal to operator returns a value of False. Figure 3-35 defines the
less than or equal to operator.

The following examples illustrate the proper use of the less than or equal to operator:

count <=5

DispIayColunm <= 78
n <= 3

Listing 3.26 demonstrates how the Pascal less than or equal to operator is used in an
actual program.

expression <= expression

Where;

expression is a valid Pascal expression.

Figure 3-35. The Pascal less than or equal to operator.

6l

3 The Pascal Operators

Listing 3*26

{ list3-26.pas - Demonstrate the Pascal less than or equal
to operator }

program less_than_or_equal_to_operator ;

begin

writelnCl <= 1 is 1 <= 1)
writeln('2 <= 1 is 2 <= 1)
writelnCl <= 2 is 1 <= 2)

end.

LESSON 34. Operator Precedence

Evaluating an expression with only one operator type is fairly straightforward. For
example, the expression 2 + 3 + 6 is evaluated in two separate steps: 1) the
expression 2 + 3 is figured and a result of 5 is returned and 2) the 6 is added to the
previous result. Accordingly, the expression retums a value of 11.

When expressions have the same operator type, Pascal simply evaluates them from
left to right. But how does Pascal evaluate expressions that have more than one
operator type? How, for example, does it evaluate the expression 2 + 3*6?

If Pascal was to evaluate the 2 + 3 portion of the expression first, the result would be
determined as follows:

2 + 3*6

5 *6 = 30

But if Pascal was to evaluate the 3 * 6 portion of the expression first, the result
would be determined as follows:

2+3*6=?

2+ 18 =20

It's rather obvious that the two different methods for evaluating the expression retum
vastly different results. The Pascal programming language uses a set of rules called
operator precedence to evaluate expressions in order to overcome these types of
conflicts. Essentially, Pascal assigns a precedence level for each of its operators.
When an expression is evaluated, the subexpression (one of the individual

62

The Pascal Operators 3

expressions that make up a more complex expression) that contains the operators
with the highest precedence is evaluated first, the subexpression that contains the
operators with the next highest precedence is evaluated second, and so on. This
method continues until the portion of the expression with the lowest precedence has
been evaluated.

Figure 3-36 defines the precedence levels that Pascal assigns to its wide range of
operators. (Note that two of these operators—@ and in—^haven't been covered yet.
These operators are used with some of Pascal*s more advanced data types and will be
discussed in Chapter 6.)

As figure 3-36 shows, some of the operators have equal levels of precedence.
Whenever Pascal encounters two or more subexpressions with operators of equal
precedence, they are evaluated on a strictly left-to-right basis.

It is possible to override the Pascal precedence rules by simply surrounding a
subexpression with parentheses. Surrounding a subexpression with parentheses tells
Pascal to evaluate the subexpression fnst.

For example, the expression 5 » 3 - 2 would be evaluated as follows:

5»3-2=?

15 - 2 = 13

On the other hand, the expression 5 ♦ (3 - 2) would be evaluated as follows:

5*(3-2) = ?

5* 1 =5

Level Operators

1 =, o, <, <=, >, >=, in

2 +, or, xor

3 /, div, mod, and, shl, shr

4 @,not

Figure 3-36. The Pascal operator precedence levels.

63

3 The Pascal Operators

What if you had an expression, such as 150 div ((4 - 2) ♦ 3), with nested (one
inside the other) parentheses? Pascal would interpret such an expression by
evaluating the the innermost subexpression first. Thus, the expression 150 div ((4 -
2) ♦ 3) would be evaluated as follows:

150 div ((4-2)*3) = ?
150div(2 *3) = ?
ISO div 6 =25

Listing 3.27 demonstrates how Pascal evaluates a variety of expressions.

Listing 3*27

{ lists.27.pas - Demonstrate Pascal precedence rules }
program precedence;

begin
writeln('1 + 3 * 4 = ?•);
writeln('1 + f

/ 3*4,' = ', 1 + 3 *

writeln('150 div ((4 - 2) * 3) = ?'

writeln('150 div (4 - 2, • * 3)
writeln('150 div 2 * 3, '

4);

= ?');
= ', 150

div ((4-2) * 3));
end.

You now know how to use the Pascal operators to manipulate data. You are also
familiar with the principle of operator precedence. Chapter 4 describes Pascal's
program flow.

64

Chapter4

Program Flow

This chapter describes Pascal's program flow, which can be summarized as follows.
Pascal begins executing at the program's main body b^in statement Except for
when it calls a procedure or function or encounters a program flow keyword, the

program executes fiom the top of the main body to the bottom, until it teaches the main
body's end statement In addition to examining this basic structure, this chapter introduces
you to the program flow keywords and shows you how they are used in actual programs. It
also discusses while, repeat, and for loops, as well as if, case, and goto statements.

LESSON 35. While Loops

The Pascal while keyword tells the program to continuously execute a statement until
a condition is no longer true. Figure 4-1 defines the while keyword and shows how it
is used in a while loop. The statement to be executed can be either a single program
statement or a multi-statement begin..end block.

65

4 Program Flow

while condition do

statement;

or

while condition do

begin
statement;

statement;

end;

Where:

condition is a valid boolean expression.

statement is a valid program statement.

Figure 4-1. The while keyword.

Listing 4.1 demonstrates how the Pascal while keyword is used in a program that
displays eveiy odd number between 100 and 200.

Listing 4.1

{ list4-l.pas - Demonstrate the Pascal while keyword }
program while_loopl;

var

number : integer;

begin

number := 101;

while number < 201 do

begin

writeln('number = number);

continued...

66

Program Flow 4

...from previous page
number := number + 2;

end;

end.

To better understand how the while keyword works, take a closer look at Listing
4.1 's main program body.

number := 101;

assigns the value 101 to the integer variable number.

whiU number < 201 do

checks the value of number. If number is less than 201, the while statement
is executed. If number is greater than or equal to 201, the while statement is
ignored.

wrUeln(*number=number);
displays number's current value.

number := number + 2;

increases the value of number to the next odd value. After executing this
statement, the program loops back to the while keyword.

You may be wondering what happens if the while condition is initially False. The
while statement would never be executed. For example, the following while loop
would never be executed:

while False do

i = i + l

The initial condition is False. Consequently, the statement i = i + 1 will never be
executed.

LESSON 36. Repeat Loops

The Pascal repeat keyword is similar to the while keyword. The only difference
between the two is that the repeat keyword checks for a condition after it executes
its associated program statement. Therefore, a repeat loop is, in a sense, a backwards
while loop. Figure 4-2 defines the repeat keyword and its use in constructing a
repeat loop. The repeat statement can be either a single program statement or a
multi-statement begin..end block.

67

4 Program Flow

repeat

statement

until condition;
or

repeat

begin
statement;

statement;

end;

until condition

Where:

condition is a valid boolean expression.

statement is a valid program statement.

Figure 4-2. The repeat byword.

Listing 4.2 demonstrates how the Pascal repeat keyword is used in a program that
displays every odd number between 100 and 200.

Listing 4.2
{ list4-2.pas - Demonstrate the Pascal repeat keyword }
program repeat_loop;

var

number ; integer;

begin

number := 101;

repeat

begin
writeln('number = number);

number ;= niimber + 2;

end;

until number > 199;

end.

68

Program Flow 4

To better understand how the repeat keyword works, take a closer look at Listing
4.2's main program body.

number .*= 101;

assigns the value 101 to the integer variable number.

repeat

causes the next statement to be executed.

writelnCnumber = number);

displays number's current value.

number ;= number + 2;
increases the value of number to the next odd value.

untU number > 199;
checks to see if the last odd value has been displayed. If the last odd value
hasn't been displayed, program execution loops back to the repeat keyword.

Note that a repeat loop is always executed at least once. As in the above example,
the repeat statement is executed before the condition is checked. Therefore, the
statement is always executed at least once.

LESSON 37. For Loops

The Pascal for keyword is used to tell the program to execute a statement for a set
number of times. Figure 4-3 defines the for keyword and its use in constructing a for
loop.

As Figure 4-3 illustrates, the for statement assigns the value of an expression to a
variable. Note that the expressions in a for statement must return an ordinal result.
Ordinal numbers are covered in detail in Chapter 6, but for now think of them as any
integer.

If the to keyword is used in the for statement, program execution continues by
checking to see if the variable's value is less than or equal to the value of the for
statement's second expression. If the variable's value is less than or equal to the
value of the second expression, the statement after the do keyword is executed. After
the do statement is executed, the variable is incremented (variable := variable + 1)
and its contents are once again checked against the result of the second expression.

69

4 Program Flow

for identifier := expression to expression do

statement;

or

for identifier := expression to expression do

begin

statement;

statement;

end;

or

for identifier := expression downto expression do

statement;

or

for identifier := expression downto expression do

begin

statement;

statement;

end;

Where:

identifier is a valid variable or typed constant

identifier.

expression is a valid Pascal expression.

statement is a valid program statement.

Figure 4-3. The for keyword.

70

Program Flow 4

If the downto keyword is used in the for statement, program execution continues
after variable initialization by checking to see if the variable's value is greater than
or equal to the value of the for statement's second expression. If the variable's value
is greater than or equal to the value of the second expression, the statement
following the do keyword is executed next. After the do statement is executed, the
variable is decremented (variable := variable - 1) and its contents are once again
checked against the result of the second expression.

Listing 4.3 demonstrates how the Pascal for keyword is used in a program that
displays every number between 60 and 100 in ascending order.

Listing 43

{ list4-3.pas - Demonstrate an ascending for loop }
program ascending_for;

var

cnt : integer;

begin

for cnt := 60 to ICQ do

writelnCcnt = cnt);

end.

Listing 4.4 demonstrates a descending for loop by displaying every number between
60 and 100 in descending order.

Listing 4.4

{ list4-4.pas - Demonstrate a descending for loop }
program descending_for;

var

cnt : integer;

continued...

71

4 Program Flow

...from previous page
begin

for cnt := 100 downto 60 do

writeln('cnt = ', cnt);

end.

Note that whenever the for variable's initial value exceeds the value of the second

expression in a for..to..do combination or is smaller than the value of the second
expression in a for..downto..do combination, the statement following the do will
never be executed. For example, neither the statement for i := 1 to 0 do or the
statement for i := 0 downto 1 do would ever cause its associated do statements to be

executed.

LESSON 38. If Statements

Many times a program will have to do different things depending on a certain
condition. To meet these conditional demands, Pascal is equipped with a variety of
decision-making statements. The simplest Pascal decision-making statement is the
if..then statement. Figure 4-4 defines the construction of an if..then statement.

if expression then
statement;

or

if expression then
b^n

statement;

statement;

end;

Where:

expresssion is a valid boolean expression.

statement is a valid Pascal statement.

Figure 4-4. The Pascal tf..then statement.

12

Program Flow 4

The logic behind a Pascal if..then statement is simple. If the boolean expression
following the if keyword is equal to IVue, then the program statement following the
then keyword is executed.

Listing 4.5 demonstrates how an if statement is used in an actual Pascal program.

Listing 4.5
{ list4-5.pas - Demonstrate the Pascal if..then statement }
program if_then_demo;

var

number : integers-

begin
number := 1;

if number = 1 then

writeln('number is equal to 1*);

if number = 0 then

writeln('number is equal to 0');

end.

In addition to being able to perform an action if a condition is TVue, an if statement
can also perform another action if a condition is False by using an else clause. Figure
4-5 defines the construction of an if..then..else statement.

The logic behind an if..then..else statement is easy to understand. If the condition is
TVue, then the program statement following the then keyword is executed, else the
statement following the else keyword is executed.

Listing 4.6 demonstrates how an lf..then..else statement is used in an actual Pascal
program.

Listing 4.6

{ list4-6.pas - Dononstrate the Pascal if..then..else statement }
program if_then_else;
continued...

73

4 Program Flow

...from previous page
var

number : integer;

begin

number := 1;

if number = 1 then

writeln number is equal to 1')

else

writeln('number isn''t equal to 1');

number := 0;

if number = 1 then

writeln('number is equal to 1')

else

writeln('number isn''t equal to 1');

end.

if expression then
statement;

else

statement;

or

if expression then
begin

statement;

end

else

begin

statement;

statement;

end;

statement;

Where:

expression is a valid boolean expression.

Figure 4'S. The Pascal if.,then..else statement.

74

Program Flow 4

LESSON 39* Case Statements

Although if..then and if..then..else statements are useful for performing actions
depending on a condition being either True or False, many situations arise in a
program that require a variety of actions to be performed depending on an ordinal
expression's value. To meet this requirement, Pascal provides the case statement

The case constants in a Pascal case statement can be either a single constant, a group
of constants, or a range of constants. If the value of the case statement's expression
matches any of a constant group's individual constants, the group's associated
program statement is executed. The following are some examples of constant groups:

100,101,102
-55,32,8
36,1

Figure 4-6 defines the construction of a case statement.

case expression of
case constant: statement;

case constant: statement;

case constant: statement

else

statement;

end;

Where:

expression is a valid ordinal expression.

case constant is a valid ordinal constant.

statement is a valid Pascal program statement

Figure 4-6, The Pascal case statement

75

4 Program Flow

If the value of the case statement's expression falls anywhere within a range of
constants, the range's associated program statement is executed. The following are
some examples of constant ranges:

100.300

-5..5

2000...100000

Figure 4-6 also shows that Pascal supports else clauses in a case statement. As with
the if..then statement, else clauses in a case statement are strictly optional. If used,
their associated program statement is only executed if the case statement's
expression doesn't match any of the case constants. If an else clause isn't used and
the case statement's expression doesn't match any of the case constants, the whole
case statement is ignored and program execution continues with the next program
statement.

Listing 4.7 demonstrates how a case statement is used in an actual Pascal program.

Listing 4 7
{ list4-7.pas - Demonstrate the Pascal case statement }
program case_statement;

var

number : Integer;

begin

number := 3;

case number of

1 : writelnCThe number is a 1');

2 : writelnCThe number is a 2');

3..5 : writelnCThe number is a 3, 4, or 5');

7, 10 : writelnCThe number is a 7 or 10');

8 : writelnCThe number is an 8');

9 : writelnCThe number is a 9');

else

writelnCThe number isn''t between 1 and 10');

end;

end.

76

Program How 4

LESSON 40. Goto Statements

Sometimes program execution must branch to a different part of a program without
regard for any condition. Pascal provides the goto statement for performing such an
unconditional jump. You should be aware, however, that today the use of the goto
statement is considered poor programming practice. Although the goto statement is
necessary for some other languages (i.e., BASIC), you can go through your whole
life without finding it necessary to use a goto statement in a Pascal program. Perhaps
its only acceptable use today is in implementing critical error handling routines.
Always strive to write your programs without using gotos.

Figure 4-7 defines the construction of a Pascal goto statement. Note that the goto
statement requires a label to direct it where to branch. A Pascal label can be any
series of digits in the range of 0 to 9999, or it can be an identifier.

goto label;

Where:

label is a valid Pascal label.

Figure 4-7. The Pascal goto statement.

Listing 4.8 demonstrates how a goto statement is used in an actual program.

Listing 4.8

{ list4-8.pas - Demonstrate the Pascal goto statement }

program goto_demo;

label 1;

begin

writeln('This line is executed');

goto 1;

writeln('This line never is!');

1:

writeln('This line is executed too');

end.

77

4 Program Flow

You*re now familiar with Pascal's flow keywords and know how to use while,
repeat, and for loops, as well as if, case, and goto statements in actual programs.
Chapter 5 introduces you to procedures and functions.

78

Chapter5

Procedures and

Functions

In most programs you write, you find that certain routines are used repeatedly.
Listing 5.1, for example, demonstrates how an if..then..else statement is used over
and over to conditionally display messages. This chapter introduces you to

procedures and functions—^Pascal's "programs within programs" that allow you to
avoid rewriting frequently-used routines. The chapter teaches you how to declare
procedures and functions. It also explains function retum values, forward declarations,
local variables, scope, arguments, nested procedures/functions, and recursion.

Listing 5'1

{ listS-l.pas - Display messages program }

program display_messages;
continued...

79

5 Procedures and Functions

...from previous page
var

number : integer;

begin

number := 1;

if number = 1 then

writeln('number is equal to 1')

else

writeln('number isn''t equal to 1');

number := 0;

if number = 1 then

writeln('number is equal to 1')

else

writeln('number isn''t equal to 1');

end.

LESSON 41. Declaring Procedures and Functions
Pascal's functions and procedures eliminate the necessity of repeatedly writing the
same conditional statement. Not only can it have its own body of program
statements, a procedure or a function can have its own variables, typed constants,
and procedures and functions. Figure 5-1 defines the format for defining a prodecure.
Figure 5-2 defines the format for declaring a function.

Like the program's main body, a procedure's or a function's associated program
statements are enclosed in a begin..end statement block. Figures 5-1 and 5-2 show
that procedures and functions can also have an optional parameter list. A procedure's
or function's parameters are used to pass values to the procedure or function. The
following are some examples of parameter lists:

(row, col: integer; message: string)
(x, y: integer)
(name: string)

Note in the above examples that the parameters are defined as they would be in a
variable definition. Also note how each data type is separated by a semicolon, just as
a normal program statement. However, the final parameter declaration in a parameter
list doesn't require a semicolon.

80

Procedures and Functions 5

procedure name(parameter list);
begin

statement;

statement;

end;

Where:

name is the procedure's identifier.

parameter list is a list of arguments to be passed to the
procedure.

statement is a valid Pascal program statement.

Figure S-I. A Pascal procedure declaration.

function name(parameter list) :
begin

statement;

return type;

statement;

end;

Where:

name is the function's identifier.

parameter list is a list of arguments to be passed to the
procedure.

return type is a previously defined data type.

statement is a valid Pascal program statement.

Figure 5-2. A Pascalfunction definition.

81

5 Procedures and Functions

Listing 5.2 demonstrates how a procedure is used in an actual Pascal program.
Unlike the program in Listing 5.1, this newer version uses a procedure to replace the
multiple if..then..else statements.

Listing 5»2

{ list5-2.pas - Display messages program version 2}
program display_messages2;

procedure display(n : integer);
begin

if n = 1 then

writeln('The number is equal to 1')

else

writeln('The number isn''t equal to 1');

end;

var

number : integer;

begin

number := 1 ;

display(number);

number := 0;

display(number);

end.

Although Listing 5.2 is a simple example of how a procedure is used in Pascal, it
demonstrates important points about using a procedure or a function in a program.
It's helpful to take a line by-line look at both the display procedure and the
program's main body.

procedure display(n: integer);
deflnes a procedure named display that has one integer argument identified
by n.

begin
defines the start of display's statement block.

82

Procedures and Functions 5

if n=:l then
wrUelnCThe number is equal to 1 *)

else

writelnCThe number isn"t equal to 1 *);
displays the message The number is equal to 1 if argument n is equal to 1.
Otherwise, it displays the message The number isn't equal to 1.

end;

defines the end of display's statement block.

begin

defines the start of the program's main body.

number := 1;

assigns the value 1 to the integer variable number.

display(number);
calls the procedure display. Additionally, the value of the integer variable
number is passed as display's one and only argument.

number := 0;

assigns the value 0 to the integer variable number.

displayinumber);
calls the procedure display. Additionally, the value of the integer variable
number is passed as display's one and only argument.

end.

defines the end of the program's main body.

LESSON 42. Function Return Values

Now that you've seen how a simple procedure is written, take a look at how a simple
function is written. A function declaration requires that you specify a return type. For
example, you must declare a function that returns an integer value as returning an
integer data type.

Although declaring the function's return type is fairly simple, it is not so obvious
how the function's return value is actually returned to the calling program.
Fortunately for the Pascal programmer, a value is returned by simply assigning the
function's return value to the function's identifier. The function's identifier acts like a

83

5 Procedures and Functions

variable with the data type defined as the function's return type. For example, a
function named intadd returns a value of 2 to the calling program as follows:

intadd := 2;

This example shows that returning a value to the calling program requires nothing
more than a simple assignment statement. Listing 5.3 calls a simple function that
multiplies a passed argument by 2 and returns the result.

Listing 53

{ listS-S.pas - Demonstrates Pascal functions }
program function_calls;

function times_two(n : integer) : integer;
begin

times_two := n * 2;
end;

begin

writeln(times_two(4));
writeln(times_two(16));

end.

In order to fiilly understand how the above program performs its task, its helpful to
examine the times_two function and the program's main body a line at a time.

function times_two(n: integer) : integer;
defines a function named times_two that has one integer argument
identified by n and returns an integer value.

begin
defines the start of times_two's statement block.

times_two ;= n * 2;

multiplies argument n by 2 and assigns it to the function's identifier
times_two.

end;

defines the end of the times two statement block.

84

Procedures and Functions 5

begin

defines the start of the program's main body.

writeln(times_two(4));

displays the result of multiplying 4 times 2.

writeln(times_two(16));

displays the result of multiplying 16 times 2.

end.

defines the end of the program's main body.

LESSON 43. Forward Declarations

Suppose that you want to write a program with a procedure that calls another
procedure. This is a common occurrence in Pascal. Is there a special way you have to
write such a program? As a matter of fact, there is. You can write your program
using either one of two methods: the easiest method is demonstrated in Listing 5.4.

Listing 5A

{ list5-4.pas - Demonstrate procedure calling procedures }

program procedure_calling;

procedure first;
begin

writeln('This is the first procedure.');

end;

procedure second;

begin

first;

writeln('This is the second procedure.');

end;

begin

second;

end.

85

5 Procedures and Functions

Pascal requires that a procedure that will be called by another procedure be defined
before the procedure that calls it. What would happen if the called procedure wasn't
defined first? The simplest way to find out is to enter the program in Listing 5.5 and
compile it.

Listing 5S

{ list5-5.pas - Demonstrate an incorrect declaration }

program incorrect_declaration;

procedure second;

begin

first;

writeln('This is the second procedure.');

end;

procedure firsts-

begin

writeln('This is the first procedure.');

ends-

begin

seconds-

end.

With the exception of defining procedure second before procedure first, Listing 5.5
is the same as Listing 5.4. If you took the time to enter and compile Listing 5.5, you
would be informed that the first identifier in procedure second is an unknown
identifier. Why is first an unknown identifier? It has no meaning in the program yet.
Unless you define procedure first before procedure second, the Pascal compiler has
no way of knowing what the identifier first represents. As far as the compiler is
concerned, first could be a variable, a constant, or anything else for which a Pascal
identifier is used. The compiler has to abort the compilation process and return the
rather disappointing error message.

Fortunately for the Pascal programmer, there is a way around having to define a
called procedure or function before the calling procedure or function. The method
used to perform this trick is called a forward declaration. Figure 5-3 defmes the

86

Procedures and Functions 5

structure of a forward declaration. You make a forward declaration by following a
procedure or function head with the keyword forward. Once you do this, any other
procedure or function will be able to call the forward declaration's associated
procedure or function.

procedure name(parameter list) ; forward;
or

function nameCparameter list) : return type; forward;

Where:

name is the procedure's or function's identifier.

return type is a previously dehned data type.

parameter list is a list of arguments to be passed by the
procedure or function.

Figure 5-3. A forward declaration.

Listing 5.6 demonstrates how Listing 5.5 could be correctly rewritten by adding a
forward declaration before procedure second.

Listing 5*6

{ list5-6.pas - Demonstrate a forward declaration }
program forward_declaration;

procedure first; forward;

procedure second;

begin

first;

writeln('This is the second procedure.');

end;

procedure first;

continued...

87

5 Procedures and Functions

...from previous page
begin

writeln('This is the first procedure.');

end;

begin

second;

end.

LESSON 44. Local Variables

As stated earlier in this chapter, a Pascal procedure or function can have its own
variables, called local variables. Local variables can be used only inside of the
procedure or function. The reason for this is scope, a concept that is discussed in the
next lesson. Figure 5-4 defines the format of the variables in a procedure or function.

procedure or function head;
var

variable declaration;

variable declaration;

begin
statement;

statement;

end;

Where:

procedure or function head is a valid procedure or function head.

variable declaration is a valid variable declaration.

statement is a valid program statement.

Figure 5-4. Procedure and Junction variables.

88

Procedures and Functions 5

The variable declarations are placed in between the procedure's or function's head
and its associated body. You can declare typed constants in a procedure or a function
by using this same method. Listing 5.7 demonstrates how local variables are used in
an actual Pascal program that uses the local variable i to count from 1 to 10 each
time the procedure count is called.

Listing 5.7

{ list5-7.pas - Demonstrate local variables }
program local_variables;

procedure count;

var

i : integers-

begin

i : = 1 ;

while i < 11 do

begin
writeln(i);

i := i + 1;

ends-

end;

begin

count;

count;

end.

Listing 5.8 demonstrates how typed constants are used in an actual Pascal program.

Listing 5.8

{ list5-8.pas - Demonstrate local typed constants }
program local_typed_constants;

procedure count;

const

i : integer = 1;

continued...

89

5 Procedures and Functions

...from previous page
begin

writeln(i);

i := i + 1;

end;

begin

count;

count;

end.

Listing 5.8 demonstrates an interesting fact about typed constants. Remember that
typed constants retain their value until the program finishes executing. Thus, the first
time the procedure count is called it displays a value of 1 for the typed constant i.
The second time it is called, count displays a value of 2, the third time it is called it
displays a value of 3, and so on.

Although Listing 5.8 demonstrates how a typed constant retains its value between
procedure and function calls, you may wonder what happens with a procedure's or a
function's variables between function calls. Do they still retain their values like a
typed constant? No. Like a variable in the main program, a local variable is
undefined at the start of the procedure or function call.

Listing 5.9 demonstrates how a local variable is in an undefined state at the start of
procedure call. With the single exception of declaring i as a variable instead of a
typed constant. Listing 5.9 is the same as Listing 5.8. However, this simple change
reflects how a local variable is considered undetined each time a procedure or a
function is called.

Listing 5.9

{ list5-9.pas - Demonstrate how variables are undefined }

program undefined;

procedure count;

var

i : integer;

begin

continued...

90

Procedures and Functions 5

...from previous page
writeln(i);

i := i + 1;

end;

begin

count;

count;

end.

LESSON 45. Scope
Lesson 44 explained that procedure and function variables are called local variables
because of something called scope. This lesson examines how a variable's scope
affects what parts of a program can access it. Procedure and function variables are
called local variables (only the variable's procedure or function can access them).
Thus, all procedure and function variables are said to have local scope.

What about the variables that are defined outside a procedure or function? They are
called global variables. Global variables can be accessed by any procedure, function,
or part of the program's main body that follows its declaration. Listing 5.10
demonstrates how a variable with global scope can be accessed by a procedure.

Listing 5.10

{ listS-lO.pas - Demonstrate global scope }

program global_scope;

var

i ; integer;

procedure display_i;
begin

writeln(i);

i := i + 1;

end;

begin

continued...

91

5 Procedures and Functions

...from previous page
i := 1;

display_i;
writeln(i);

end.

Not only does Listing 5.10's procedure display_i display global variable i*s value, it
increments i before returning to the program's main body. After execution is retumed
to the program's main body, i's new value is displayed.

What if a procedure or a function had a local variable named i in addition to a global
variable i? This situation is fairly common in most programs. How does a procedure
or function know which i to choose? The procedure or function will always use its
local variable i. This concept is demonstrated in Listing 5.11.

Listing 5'11

{ listS-ll.pas - Demonstrate global vs. local scope }
program global_vs_local_scope;

var

i : integer;

procedure display_i;
var

i : integer;

begin

i := 999;

writeln(i);

i := i + 1;

end;

begin

i := 1;

display_i;
writeln(i);

end.

92

Procedures and Functions 5

Listing 5.11 illustrates that the procedure displayj has no effect on the global
variable i. The procedure displayj displays its own local variable i, needlessly adds
it, and returns to the program's main body. When execution is returned to the
program's main body, the global variable i is displayed to show that it hasn t been
changed.

LESSON 46. Arguments
The previous lessons have shown that arguments (or parameters) can be passed to
either a procedure or a function. Usually, an argument is passed by value (the
argument's value is passed to the function). This concept may seem obvious, but it is
important. For example. Listing 5.12 passes global variable n's value to the
procedure count. Once it is passed to the procedure, the argument's value is
displayed and decremented over and over until it is less than zero. Note that upon
retum from procedure count, global variable n's value is displayed to prove that it
hasn't been changed by the procedure.

Listing 5*12

{ list5-12.pas - Demonstrate passing by value }
program pass_by_value;

var

n : integer;

procedure count(number : integer);
begin

repeat

writeln(number);

number := number - 1;

until number <0;

end;

begin

n ;= 10;

count(n);

writeln(n);

end.

93

5 Procedures and Functions

Although passing by value is the most common method Pascal programmers use
when passing arguments, Pascal offers another method for passing arguments:
passing by reference. You pass aiguments by reference by placing the var keyword
before the argument declaration in the procedure or function head. The following
examples illustrate aigument declarations that are passed by reference:

var row, col: integer;
var account: real;

Passing an argument by reference actually passes the aigument's memory location
and not its value. With the argument's memoiy location at its disposal, the procedure
or function is able to directly access and modify the passed aigument. Because the
procedure or function needs the aigument's actual location in memory, an expression
can't be passed by reference. Why would you want to modify the value of an
expression that lies outside the procedure or function? Once its value has been
passed to the procedure or function, the expression serves no useful purpose, thus
you should remember to always pass expressions by value.

Listing 5.13 demonstrates how an argument is passed by reference. Unlike Listing
5.12, this modified version passes the procedure count's argument number by
reference. This results in global variable n's value being modified by procedure count.
Upon retum from the procedure count, global variable n has a value of -1 and not the
value of 10 that it had in Listing 5.12.

listing 5.13

{ listS-lS.pas - Demonstrate passing by reference }
program pass_by_reference;

var

n : integer;

procedure count(var number : integer);
begin

repeat

writeln(number);

number := number - 1;

continued...

94

Procedures and Functions 5

...from previous page
until number <0;

end;

begin

n := 10;

count(n);

writeln(n);

end.

LESSON 47. Nested Procedures and Functions

In addition to being able to have its own variables, a Pascal procedure or function
can also have its own procedures and functions (nested procedures and functions).
The easiest way to imagine how a procedure or function can have its own procedures
and functions is to think of a Pascal program as nothing more than an extra large
procedure that contains other defmeable procedures and functions. Figure 5-5 defines
the structure of nested procedures and functions.

procedure or function head;

procedure or function head;
begin

statement;

statement;

end;

begin
statement;

statement;

end;

Where:

procedure or function head is a valid procedure or function head.

statement is a valid program statement

Figure 5-5. Nested Pascal procedures and functions.

95

5 Procedures and Functions

Listing 5.14 demonstrates how a function can be nested in a procedure.

Listing 5>14:

{ list5-14.pas - Demonstrate nested procedures and functions }
program nested_j)_and_f;

procedure display(n : integer);
var

i : integer;

function addone{n : integer) : integer;
begin

addone := n + 1;

end;

begin

for i := 1 to 10 do

begin

writeln(n);

n := addone(n);

end;

end;

begin

display(1);

end.

Listing 5.14 displays a number, adds one to it, and repeats the process nine more
times. When studying this program, remember to use the analogy that a Pascal
program is nothing more than a big procedure or, conversely, a procedure is nothing
more than a miniature program. Keeping that in mind will help make writing
individual nested procedures and functions easy.

To write your own nested procedures and functions correctly, you must understand how
Pascal's scope rules apply to procedures and functions. Like a procedure's or a function's
local variables, a nested procedure or function is local to the procedure or function in
which it is defined. Listing 5.15 demonstrates how the Pascal scope rules work by defining
two functions with the same name. Because of the scope rules, the function addone inside
of the procedure display is called rather than the global function addone.

96

Procedures and Functions 5

Listing 5*15

{ list5-15.pas - Demonstrate procedure and function }
program p_and_f_scope;

function addone(n : integer) : integer;

begin

addone := n + 101;

end;

procedure display(n : integer);
var

i : integer;

function addone(n : integer) : integer;

begin

addone := n + 1;

end;

begin

for i := 1 to 10 do

begin
writeln(n);

n := addone(n);

end;

end;

begin

display(1);

end.

LESSON 48. Recursion

Pascal procedures and functions posess recursion. Recursion allows a Pascal
procedure or function to call itself repeatedly. Although this may not seem to be an
important feature, recursion can simplify writing some of the most important
computer programming routines (i.e., quick sort, b-trees, etc.).

Listing 5.16 demonstrates how a Pascal procedure can recursively call itself.

97

5 Procedures and Functions

Listing 5.16

{ list5-16.pas - Demonstrate recursion }
program recursion;

procedure count(n : integer);
begin

writeln(n);

n := n - 1;

if n >= 0 then

count(n);

end;

begin

count(20);

end.

Although Listing 5.16 is simple, it's helpful to take a detailed look at how the
procedure count is used to count backwards from a passed argument.

begin
defines the start of the procedure count's body.

writeln(n);
displays the integer argument n's value.

If ;= «-1;

decrements n's value.

if n>=0 then
count(n);

checks argument n's value to see if it is still greater than or equal to 0. If it is
still greater than or equal to zero, count calls itself with n's new value for its
argument.

end;

defines the end of the procedure count's body.

This routine could be simplitied with a loop. However, there are a number of
important computer programming routines that are much easier to write using

98

Procedures and Functions 5

recursion than with more traditional programming methods. Consequently, it
essential for Pascal programmers to understand how recursion works.

IS

You now know how to declare procedures and functions and are familiar with the
concepts of function return values, forward declarations, local variables, scope,
arguments, nested procedures and functions, and recursion. Chapter 6 teaches you
how to define your own data types.

99

chapter6

User-Defined Data
TVpes

This chapter offers a new way of looking at program data: it illustrates how
you can use various procedures, functions, and operators to define your own
data types. The chapter also acquaints you with subranges and sets. The

capacity to create user-defined data types is one of Pascal's main advantages over
other programming languages.

LESSON 49. Enumerated Data Types

The type of user-defined data you will look at in this chapter is called enumerated
data. You construct an enumerated data type from a list of unique identifiers. Each of
the enumerated data type's identifiers are assigned a value of 0 to n, where n
represents the number of identifiers minus one. For example, an enumerated data
type with 10 identifiers would have assigned values of 0 to 9. Figure 6-1 defines the
structure of an enumerated data type.

101

6 User-Defined Data Types

type

data type identifier = (identifier list);

Where:

data type identifier is a valid identifier.

identifier list is a list of valid identifiers. If more than one

identifier is specified, they are separated by
commas.

Figure 6-1. Defining a Pascal enumerated data type.

As figure 6-1 shows, an enumerated data type definition follows the type keyword.
The following are some examples of enumerated data type declarations:

suit = (clubs, spades, hearts, diamonds);
computers = (IBM, Apple, Tandy, Commodore, Acer, Dell);

Listing 6.1 demonstrates how an enumerated data type is used in an actual Pascal
program.

Listing 6,1

{ list6-l.pas - Demonstrate enumerated data types }

program enum_data;

type

computers = (IBM, Apple, Tandy, Commodore, Other);

var

Jim, David : computers;

procedure display_brand(brand : computers);
begin

case brand of

IBM:

continued...

102

User-Defined Data Types 6

...from previous page
writeln(' has an IBM*);

Apple:

writeln(' has an Apple');

Tandy:

writeln(' has a Tandy');

Commodore:

writeln(' has a Commodore');

else

writeln(' doesn''t have an IBM, Apple,

Tandy, or Commodore*);

end

end;

begin
Jim := IBM;

David := Other;

write(* Jim*);

display_brand(Jim);
write(* David*);

display_brand(David);
end.

LESSON 50. The Dec Procedure

To allow programmers to easily handle enumerated data types or any other ordinal
data types (those that are expressed as a series of whole numbers, integers,
characters, etc.), Pascal comes equipped with a variety of ordinal-related procedures
and functions. The first ordinal procedure you will study is the dec procedure. The
Pascal dec procedure subtracts one from an ordinal variable's value. Figure 6-2
defines the structure of the Pascal dec procedure.

dec(ordinal variable);

Where:

ordinal variable is a valid Pascal ordinal variable.

Figure 6-2. The Pascal dec procedure.

103

6 User-Defined Data Types

Listing 6.2 demonstrates how the Pascal dec procedure is used in an actual program.

Listing 6,2

{ list6-2.pas - Demonstrate the Pascal dec function }

program dec_demo;

type

cards = (clubs, diamonds, spades, hearts);

procedure display_suit(card : cards);
begin

case card of

clubs:

writelnCThe card is a club');

diamonds:

writelnCThe card is a diamond');

spades:

writelnCThe card is a spade');

hearts:

writelnCThe card is a heart');

end;

end;

var

cl : cards;

begin

cl := hearts;

display_suit(cl);
dec(cl);

display_suit(cl);
end.

LESSON 51. The Inc Procedure

In Lesson 50 you learned that the Pascal dec procedure subtracts one from an ordinal
variable's value. Conversely, the Pascal inc procedure adds one to an ordinal
variable's value. Figure 6-3 defines the structure of the Pascal inc procedure.

104

User-Defined Data Types 6

inc(ordinal variable);

Where:

ordinal variable is a valid Pascal ordinal variable.

Figure 6-3. The Pascal inc procedure.

Listing 6.3 demonstrates how the Pascal inc procedure is used in an actual program.

Listing 6,3
{ list6-3.pas - Demonstrate the Pascal inc function }
program inc_demo;

type

cards = (clubs, diamonds, spades, hearts);

procedure display_suit(card : cards);
begin

case card of

clubs:

writelnCThe card is a club');

diamonds:

writelnCThe card is a diamond');

spades:

writelnCThe card is a spade');

hearts:

writeln('The card is a heart');

end;

end;

var

cl : cards;

begin

cl := clubs;

display_suit(cl);
inc(cl);

display_suit(cl);
end.

105

6 User-Defined Data Types

LESSON 52. The Pred Function

The Pascal pred function returns the value of an ordinal expression minus one.
Figure 6-4 deflnes the structure of the Pascal pred function.

pred(ordinal expression);

Where:

ordinal expression is a valid Pascal ordinal expression.

Figure 6-4. The Pascal pred function.

Listing 6.4 demonstrates how the pred function is used in an actual Pascal program.

Listing 6,4

{ list6-4.pas - Demonstrate the Pascal pred function }

program pred_demo;

type

cards = (clubs, diamonds, spades, hearts);

procedure display_suit(card : cards);
begin

case card of

clubs:

writelnCThe card is a club');

diamonds:

writelnCThe card is a diamond');

spades:

writeln('The card is a spade');

hearts:

writeln('The card is a heart');

end;

end;

var

cl : cards;

continued...

106

User-Defined Data Types 6

...from previous page
begin

cl := hearts;

display_suit(cl);
display_suit(pred(cl));

end.

LESSON 53. The Succ Function

Pascal offers a compliment to the pred fimction called the succ function. The Pascal
succ function returns the value of an ordinal expression plus one. Figure 6-5 defines
the Pascal succ fimction.

succ(ordinal expression);

Where;

ordinal expression is a valid Pascal ordinal expression.

Figure 6-5. The Pascal succ function.

Listing 6.5 demonstrates how the succ function is used in an actual Pascal program.

Listing 6,5

{ list6-5.pas - Demonstrate the Pascal succ function }
program succ_demo;

type

cards = (clubs, diamonds, spades, hearts);

procedure display_suit(card : cards);
begin

case card of

clubs:

writelnCThe card is a club');

diamonds:

writelnCThe card is a diamond');

spades:

writelnCThe card is a spade');

continued...

107

6 User-Defined Data Types

...from previous page
hearts:

writelnCThe card is a heart');

end;

end;

var

cl ; cards;

begin

cl := clubs;

display_suit(cl);
display_suit(succ(cl));

end.

LESSON 54. Subranges
Often you will want to limit a data type's range of values. For example, a data value
representing the months of a year would only need values in the range of 1 to 12.
Fortunately you can define new data types by using a subrange of another previously
defined ordinal data type. Thus you can construct subrange data types from integers,
characters, or enumerations.

Figure 6-6 defines a subrange data type.

type
identifier = minimum value..maximum value;

Where:

identifier is the data type's identifier.

minimum value is the smallest allowable value in the

subrange.

maximum value is the largest allowable value in the subrange.

Figure 6-6. Defining a subrange data type.

108

User-Defined Data Types 6

The following examples illustrate valid integer and character subrange data type
definitions:

rows = 1..25;
columns = 1..80;
dice = 1..6;

month = 1..12;

day = 1.31;
numeric =

control = #0..#31;
extended = #128..#255;

To define an enumerated subrange, you must first define the enumerated data type.
For example, the following enumerated subranges could be defined from the
enumerated data type computer = (IBM, Tandy, Dell, Commodore, Apple);:

ibm__and_compats = IBM..Dell;
non_ibm = Commodore..Apple;

Listing 6.6 demonstrates how subranges are used in an actual Pascal program.

Listing 6,6

{ list6-6.pas - Demonstrate Pascal subrange data types }

program subranges;

type

dice = 1..6;

var

diel, die2 : dice;

begin

randomize;

repeat

diel := random(6) + 1;

die2 := random(6) + 1;

writeln(*diel = diel);

writeln('die2 = die2);

until diel = die2;

end.

109

6 User-Defined Data Types

Listing 6.6 creates a subrange data type that can represent all of the legal values on a
die. The program demonstrates this data type by assigning randomly generated rolls
until two dice variables are equal (the program will keep rolling the dice until
doubles come up).

LESSON 55. Sets

Many Pascal programs are required to handle data that doesn't seem to have a
particular order to it. To deal with this, Pascal provides a user-defined data type
called a set. A Pascal set is made up of either all of the members of an ordinal data
type or a subrange of an ordinal data type. It cannot represent more than 256 distinct
values. Consequently, only subranges can be used to define sets of Words, Integers,
and Longlnts. Figure 6-7 defines a Pascal set.

The following examples illustrate valid Pascal set definitions:

digits = set of
logical = set of boolean;
lower_case = set of 'a'..'z';

Figure 6-8 defines the format for assigning values to set variables and typed
constants.

The following examples illustrate valid Pascal set assignment statements:

vowels ;= ['A', T, 'O', 'U'];
seta := [1,4,6,7,9,10];
setb := [1,4,5...9,100,201];

type

identifier = set of ordinal data type;

Where:

identifier is the data type's identifier,

ordinal data type is an ordinal data type or subrange.

Figure 6-7. Defining a Pascal seL

110

User-Defined Data Types 6

identifier ;= [element list];

Where:

identifier is the variable or typed constant identifier.

element list is a list of individual values, subranges, or
both. Multiple elements are separated by
commas.

Figure 6-8. Set assignments.

Pascal provides a variety of set-related operators to deal with sets. The remainder of
this chapter is devoted to studying how these Pascal set operators function.

LESSON 56. The Set Equal to Operator

Like the normal Pascal equal to operator, the set equal to operator (=) compares two
set expressions to see if they are equal. If the two set expressions are equal, the set
equal to operator returns a value of IVue. Otherwise, the set equal to operator retums
value of False. Figure 6-9 defines the set equal to operator.

set expression = set expression

Where:

expression is a valid Pascal expression.

Figure 6-9. The Pascal set equal to operator.

Listing 6.7 demonstrates how the Pascal set equal to operator is used in an actual
program.

Listing 6,7

{ list6-7.pas - Demonstrate the Pascal set equals operator }

program set_equals;

type

characters = set of char;

continued...

Ill

6 User-Defined Data Types

...from previous page
var

setl, set2, set3 : characters;

begin

setl := ['a'..'z'];

set2 ;= ['A'^'Z'];

sets := setl;

writeln{'setl = set2 is setl = set2);

writeln('setl = setS is setl = setS);

end.

LESSON 57. The Set Not Equal to Operator

The Pascal set not equal to operator (<>) compares two set expressions to see if they
are unequal in value. If the two set expressions aren't equal in value, the set not
equal to operator returns a value of TVue. Otherwise, the set not equal to operator
returns a value of False. Figure 6-10 defines the set not equal to operator.

set expression <> set expression

Where;

set expression is a valid Pascal set expression.

Figure 6-10. The Pascal set not equal to operator.

Listing 6.8 demonstrates how the Pascal set not equal to operator is used in an actual
program.

Listing 6,8

{ list6-8.pas - Demonstrate the Pascal set does not equal operator }
program set_do_not_equal;

type

characters = set of char;

continued...

112

User-Defined Data Types 6

...from previous page
var

setl, set2, set3 : characters;

begin

setl := ['a'..'z'];

set2 := ['A'..'Z'];

set3 ;= setl;

writeln(•setl <> set2 is setl <> set2);

writeln('setl <> set3 is setl <> set3);

end.

LESSON 58. The Set Less Than or Equal to Operator

The Pascal set less than or equal to operator (<=) compares two set expressions to
see if all of the elements of the first set expression are in the second set expression. If
the second set expression has at least all of the elements contained in the first set
expression, the set less than or equal to operator returns a value of IVue. Otherwise,
the set less than or equal to operator returns a value of False. Figure 6-11 defines the
structure of the set less than or equal to operator.

set expression <= set expression

Where:

set expression is a valid Pascal set expression.

Figure 6-II. The Pascal set less than or equal to operator.

Listing 6.9 demonstrates how the Pascal set less than or equal to operator is used in
an actual program.

Listing 6,9

{ list6-9.pas - Demonstrate the Pascal set less than or

equal to operator }

program set_less_than_or_equal;

type

characters = set of char;

continued...

113

6 User-Defined Data Types

...from previous page
var

setl, set2, set3 : characters;

begin

setl := ['a'..'z', 'A'..'Z'];

set2 ;= ['A'..'Z'];

set3 := ['a'..'z', #13];

writeln('set2 <= setl is set2 <= setl);

writeln('set3 <= setl is set3 <= setl);

end.

LESSON 59. The Set Greater Than or Equal to Operator

The Pascal set greater than or equal to operator (>=) compares two set expressions to
see if all of the elements of the second set expression are in the first set expression. If
the first set expression has at least all of the elements contained in the second set
expression, the set greater than or equal to operator retums a value of TVue. Otherwise,
the set greater than or equal to operator retums a value of False. Figure 6-12 defines
the set greater than or equal to operator.

set expression >= set expression

Where:

set expression is a valid Pascal set expression.

Figure 6-12. The Pascal set greater than or equal to operator.

Listing 6.10 demonstrates how the Pascal set greater than or equal to operator is used
in an actual program.

Listing 6,10

{ list6-10.pas - Demonstrate the Pascal set greater than
or equal to operator }
program set_greater_than_or_equal ;

continued...

114

User-Defined Data Types 6

...from previous page
type

characters = set of char;

var

setl, set2, set3 : characters;

begin

setl := ['a'..'z*, 'A'..'Z'];

set2 := ['A'..'Z'In

sets := ['a^.-z', #13];

writeln('set2 >= setl is \ set2 <= setl);

writeln('set3 >= setl is set3 <= setl);

end.

LESSON 60. The Set In Operator

The Pascal set in operator tests to see if the result of an ordinal expression is an
element of a set expression. If the ordinal value is contained in the set, the set in
operator returns a value of TVue. Otherwise, the set in operator retums a value of
False. Figure 6-13 dehnes the set in operator.

ordinal expression in set expression

Where:

ordinal expression is a valid Pascal ordinal expression.

set expression is a valid Pascal set expression.

Figure 6-13. The Pascal in operator.

Listing 6.11 demonstrates how the Pascal set in operator is used in an actual
program.

Listing 6,11

{ list6-11.pas - Demonstrate the Pascal in operator }

program in_demo;
continued...

115

6 User-Defined Data Types

...from previous page
procedure check_vowels(c : char);
const

vowels : set of char = ['A', 'E', 'I', '0', 'U',

'a', *e', 'i', 'o', 'u'];

begin

if (c = 'Y') or (c = 'y') then

writeln(*Y is sometimes a vowel')

else

if c in vowels then

writeln(c, ' is a vowel')

else

writeln(c, ' is a consonant');

end;

begin

check_vowels('a')
check_vowels('z')
check_vowels('Y')

end.

LESSON 61. The Set Union Operator
The Pascal set union operator (+) returns the result of combining the elements of one
set expression with the elements of another set expression. Figure 6-14 defines the
set union operator.

Listing 6.12 demonstrates how the Pascal set union operator is used in an actual
program.

set expression + set expression

Where:

set expression is a valid Pascal set expression.

Figure 6-14. The Pascal set union operator.

116

User-Defined Data Types 6

Listing 6,12

{ list6-12.pas - Demonstrate the Pascal set union operator }
program set_union_demo;

type

digits = set of

var

setl, set2 : digits;

begin

setl := ['0'..'2'];

set2 := ['4'..'9'] + setl;

writeln(' f 1 *1^ 1 1' in set2 = '1' in set2);

writeln(' 1 131 1' in set2 = '3' in

MC
M-
0

0(

writeln(' 1 151 1' in set2 = '5' in set2);

end.

LESSON 62. The Set Difference Operator
The Pascal set difference operator (■) returns the result of removing the elements of a
second set expression from a first set expression. Figure 6-15 defines the set
difference operator.

Listing 6.13 demonstrates how the Pascal set difference operator is used in an actual
program.

set expression - set expression

Where:
set expression is a valid Pascal set expression.

Figure 6-15. The Pascal set difference operator.

117

6 User-Defined Data Types

Listing 6,13

{ list6-13.pas - Demonstrate the Pascal set difference operator }
program set_difference_demo;

type

digits = set of

var

begin

setl, set2 : digits;

setl := ['0'..'2'];

set2 := ['O*..* 9'] - setl;

writeln('''1'' in set2 = ', '1' in set2);

writeln('''3'' in set2 = ', •3' in set2) ;

writeln('''5'' in set2 = ', •5' in set2) ;

end.

LESSON 63. The Set Intersection Operator

The Pascal set intersection operator (*) returns a set that is constructed from the
elements that are common to two set expressions. Figure 6-16 defines the set
intersection operator.

Listing 6.14 demonstrates how the Pascal set intersection operator is used in an
actual program.

set expression ♦ set expression

Where:

set expression is a valid Pascal set expression.

Figure 6-16. The Pascal set intersection operator.

118

User-Defined Data Types 6

Listing 6.14

{ list6-14.pas - Demonstrate the Pascal set intersection operator }

program set_intersection_demo;

type

digits = set of ' 0 ' ..'9';

var

setl, set2 : digits;

begin

setl := [' 0'..•3']/

set2 := ['2'..'9'] * setl;

writeln('• »i• • in set2 = '1' in set2)

writeln('•'3'' in set2 = '3' in set2)

writeln('''5' ' in set2 = '5' in set2)

end.

You now know how to use various procedures, functions, and operators to define
your own data types, and you are familiar with the concepts of subranges and sets.
Chapter 7 teaches you how to join many items of the same data type under one
identifier name.

119

chapter7

Arrays

Although data types differ from each other a great deal, they all share one key
characteristic: they can only represent one piece of data at a time. This
chapter demonstrates how you can join numerous data items of the same

type under one identifier name by declaring the identifier to be an array. It discusses
simple, typed constant, and multi-dimensional arrays and tells you how to pass
arrays to procedures and functions.

LESSON64. ASimpleArray

Look at Listing 7.1. This program demonstrates how a student's grades could be
stored in ten integer variables. After safely tucking away the student's grades in the
variables, the program tigures the sum of all the grades and uses the result to figure
the student's grade average.

121

7 Arrays

Listing 7.1

{ list7-1.pas - Figure student's average no. 1

program stud avg 1;

var

end.

gl, ql, g3, g4, g5, g6, ql, g8, g9, glO : integers-

total, ave : integer;

begin

gl

g2

g3
g4

g5

g6

g7

g8

g9

glO

total

total

total

total

total

total

total

total

total

total

=

90;

89;

100;

97.

 85

= 99

= 96.

= 100;

= 94;

:= 100;

= gl;

= total

= total

= total

= total

= total

= total

= total

= total

= total

g2;

g3;
g4;

g5;

g6;

g7;

g8;

g9;
glO;

ave := total div 10;

writeln('The student''s grade for the course is: ave) ;

Although Listing 7.1 gets the job done, it is inefficient. To begin with, the program
needs to declare each of the grade variables individually. An array, on the other hand,
uses only one identifier for all of its individual elements. Figure 7-1 defines the
structure for declaring an array.

122

Arrays 7

var

identifier: array[index type] of data type;

Where:

identifier is a valid Pascal identifier.

index type is an ordinal data type or ordinal subrange,
except Longint or Longlnt must be
subranges.

data type is the array's data type.

Figure 7-1. Declaring a Pascal array.

The number of elements in an array is defined by either an ordinal data type or
subrange. Almost all array indexes are declared using subranges. The following are
some examples of valid array declarations:

monthly_income : array[1..12] of real;
temperatures : array[-200..200] of integer;

If you want to declare an array for the grades in Listing 7,1, use something like the
following:

g: array[1..10] of integer;

Declaring the needed variables as an array is preferable to declaring them as
individual variables. However, one problem remains. How are the individual
elements of an array accessed? Fortunately, the method for accessing a Pascal array
element is simple.

Figure 7-2 defines the structure for accessing an array element. The grades for the
above example can be accessed as g[l], g[2], g[3], g[4], g[5], g[6], g[7], g[8], g[9],
and g[10]. Furthermore, operations can be performed on these individual array
elements just as they would be on individually declared integer variables.

123

7 Anays

identifierfindex]

Where:

identifier is a previously declared array identifier.

index is a valid element number.

Figure 7-2. Accessing a Pascal array element.

Listing 7.2 presents a modified version of Listing 7.1. It substitutes an integer array
for the student's grades. Besides showing how much easier it is to declare an array
than numerous individual variables, Listing 7.2 also demonstrates how the student's
total grade can be figured much more efficiently with a for loop. To accomplish this
calculation, the program simply uses the loop counter i for the array element index.
Thus, each of the array's individual elements are added together to form the total.

Listing 7.2
{ list7-2.pas - Figure student's average no.

program stud avg 2;
2 }

var

grades : array[1..10] of integer;

i, total, ave : integer;

begin

grades[1]

grades[2]

grades[3]

grades[4]

grades[5]

grades[6]

grades[7]

grades[8]

grades[9]

grades[10]

total := 0;

continued...

= 90;

= 89;

= 100;

= 97,

= 85

= 99

= 96,

= 100;

= 94;

:= 100;

124

Arrays 7

...from previous page

for i := 1 to 10 do

total := total + grades[i];

ave := total div 10;

writelnCThe student "s grade for the course is: ave) ;
end.

LESSON65. lyped Constant Arrays

Although Listing 7.2 is an improvement over Listing 7.1, it could be simplified even
further by declaring the student's grade array as a typed constant array. Figure 7.3
defines the structure for declaring a typed constant array. As shown in the figure, you
declare typed constant array's initial values by surrounding them with parentheses
and separating them with commas.

const

identifier: array[index type] of data type = (initial values);

Where:

identifier is a valid Pascal identifier.

index type is an ordinal data type or an ordinal subrange,
except Longlnt or Longlnt must be
subranges.

datatype is the array's data type.

initial values are the array elements' initial values, each
of which is separated by a comma.

Figure 7-3. Declaring a typed constant array.

The following examples illustrate valid typed constant array declarations:

vowels: array[1..5] of char = ('a', 'e', *1', 'o', 'u');
odd_numbers: array[1..5] of integer = (1,3,5,7,9);

Listing 7.3 demonstrates how you could modify Listing 7.2 even further by declaring
the student's grade array as a typed constant. Even a cursory examination of the

125

7 Arrays

program will disclose that the use of a typed constant array eliminates almost all of
the assignment statements found in Listing 7.2.

Listing 73

{ list7-3.pas - Figure student's average no. 3 }
program stud_avg_3;

const

grades : array[1..10] of integer = (90, 89, 100, 97,
85, 99, 96, 100, 94, 100);

var

i, total, ave : integer;

begin

total := 0;

for i := 1 to 10 do

total := total + grades[i];

ave := total div 10;

writelnCThe student''s grade for the course is: ', ave);
end.

LESSON 66. Muld-Dimensional Arrays
Although the programs already presented in this chapter have been useful for
demonstrating how arrays are used in Pascal, they are not practical. These programs
have demonstrated how a student's course average could be figured by totaling the
student's scores and then figuring the average score. It is very unlikely, however, that
a class would ever have just one student. Consequently, a useful program would have
to be written in such a way that it could figure the course averages for a number of
students. Listing 7.4 presents such a variation.

Listing 7A
{ list7-4.pas - Figure student's average no. 4 }
program stud_avg_4;

continued...

126

Anays 7

...from previous page
type

grade_arr = array[1..10] of integer;

const

studentl : grade_arr = (90, 89, 100, 97, 85, 99, 96,
100, 94, 100);

student2 : grade_arr = (85, 75, 90, 88, 87, 93, 95,
97, 99, 100);

var

i, totall, avel, total2, ave2 : integer;

begin

totall := 0;

total2 := 0;

for i := 1 to 10 do

begin

totall := totall + studentl[i];

total2 := total2 + student2[i];

end;

avel := totall div 10;

ave2 := total2 div 10;

writeln('Student no. l''s grade for the course is:
', avel);

writeln('Student no. 2'*s grade for the course is:
', ave2);

end.

Listing 7.4 declares a typed constant array for each of the students in the course.
Although the program is functionally correct, it is far from being the most efficient
Pascal program. A more efficient method for representing Listing 7.4 data would be
to defme it as a multi-dimensional array. Figure 7-4 defines the format for declaring
a multi-dimensional array. Figure 7-5 defmes the declaration of a multi-dimensional
typed constant. Although these figures both show how a two-dimensional array is
declared, multi-dimensional Pascal arrays are by no means limited to only two
dimensions: three-dimensional arrays are common in a wide variety of programs.

127

7 Arrays

var

identifier: array[index type, index type] of data type;

Where:

identifier is a valid Pascal identifier.

index type is an ordinal data type or an ordinal
subrange, except Longlnt or Longlnt must
be subranges. The array's dimensional index
types are separated by commas.

data type is the array's data type.

Figure 7-4. Declaring a multi-dimensional array.

const

identifier: arrayfindex type, index type] of data type =
((initial values), (initial values));

Where:

identifier is a valid Pascal identifier.

index type is an ordinal data type or an ordinal subrange,
except Longlnt or Longlnt must be
subranges. The array's dimensional index
types are separated by commas.

datatype is the array's data type.

initial values are the array elements' initial values, each
of which is sq)arated by a comma.

Figure 7-5. Declaring a multi-dimensional typed constant.

Accessing a multi-dimensional array element is slightly different from accessing a
single-dimensional array element. Figure 7-6 defines two methods for accessing a
multi-dimensional array element. Although both methods are acceptable, the first
method is preferred.

128

Arrays 7

identifier[index, index]

or

identifieifindex] [index]

Where:

identifier is a previously declared array identifier.

index is a valid element number.

Figure 7-tf. Accessing a multi'dimensional array element.

Listing 7.5 presents a slightly modified version of Listing 7.4. It substitutes a multi
dimensional typed constant array for the two individual student arrays.

Listing 7.5
{ list7-5.pas - Figure student's average no. 5 }
program stud_avg_5;
const

students : array[1..2, 1..10] of integer =
((90, 89, 100, 97, 85, 99, 96, 100, 94, 100),

(85, 75, 90, 88, 87, 93, 95, 97, 99, 100)) ;

var

i, totall, total2, avel, ave2 : integer;

begin

totall := 0;

total2 ;= 0;

for i := 1 to 10 do

begin

totall := totall + students[1, i];

total2 := total2 + students[2, i];

end;

avel := totall div 10;

...continued

129

7 Arrays

...from previous page
ave2 := total2 div 10;

writeln('Student no. l''s grade for the course is:

avel);

writeln{'Student no. 2''s grade for the course is:

', ave2);

end.

Although Listing 7.5 is a step in the right direction, it is wasteful to use four
variables to figure the two students' course averages.

Listing 7.6 demonstrates an even simpler version of the program; it uses a nested for
loop to calculate the course averages.

Listing 7.6
{ list7-6.pas - Figure student's average no. 6 }
program stud_avg_6;
const

students : array[1..2, 1..10] of integer =

((90, 89, 100, 97, 85, 99, 96, 100, 94, 100),

(85, 75, 90, 88, 87, 93, 95, 97, 99, 100));

var

i, j, total, ave : integer;

begin

for i := 1 to 2 do

begin

total := 0;

for j := 1 to 10 do

begin

total := total + students[i, j];

end;

ave := total div 10;

writeln('Student no. ', i, '''s grade for the

course is: ', ave);

end;

end.

130

Arrays 7

LESSON 67. Passing Arrays to Procedures and Functions

To pass an array to a procedure or a function, you first define a data type for the
array. Note that the one exception to this is for strings. Strings are nothing more
than a char array. Because they are defined as part of the Pascal programming
language, they are already a predefined data type.

Figure 7-7 defines the structure of an array data type. An array data type is defmed
like any other new data type; once it has been defmed, it can be used to indicate an
identifier's data type.

type

identifier = array[index type] of data type;

Where:

identifier is the new data type's identifier.

index type is an ordinal data type or an ordinal subrange,
except Longint or Longint must be
subranges.

data type is the array's data type.

Figure 7-7. Defining an array data type.

Listing 7.7 demonstrates how an array is passed to a function in an actual Pascal
program. Note that by using the var keyword in the total function's head, the array
is passed by reference. Although arrays can be passed by value, Pascal has to make a
temporary copy of the array before each procedure call. Not only is this a time-
consuming process, it could easily consume all available memory. This is
particularly true if the procedure or fimction is recursive. Consequently, it is usually
best to pass arrays by reference instead of by value.

Listing 7.7

{ list7-7.pas - Demonstrate how an array is passed to a function }
program array_passing_demo;

continued...

131

7 Arrays

...from previous page
type

list_array = array[1..10] of integer;

function total(var la : list_array) : integer;
var

i, t : integer;

begin

t : = 0 ;

for i := 1 to 10 do

t := t + la[i];

total := t;

end;

const

list : list_array = (3, 2, 4, 5, 6, 1, 8, 9, 1, 9);

begin

writeln('Total for the array is total(list));

end.

You now know how to group multiple data items of the same type in simple, typed
constant, and multi-dimensional arrays, and how to pass arrays to procedures and
functions. Chapter 8 tells you how to group data items of different types in a record.

132

Chapter8

Records

Although arrays are a useful programming tool, many programs work with
related data of different types. Pascal offers a user-defined data type called
records that allows you to group data of different types. This chapter

introduces you to records and discusses the with statement, typed constant records,
and record and field arrays.

Before we examine the details of Pascal records, let's take a look at Listing 8.1. This
program builds upon the programs presented in Chapter 7. Instead of just displaying
the course averages, however, it also displays the students' names. The names and
the averages are related data, but they are represented by vastly different data types.

133

8 Records

Listings,!

{ listS-l.pas - Nonrecord demonstration }
program nonrecord;

var

namel, name2 : string;

avel, ave2 : integer;

begin

namel := 'John Smith';

avel := 95;

name2 := 'Jane Doe';

ave2 := 98;

writeln(namel, '''s average is a ', avel);

writeln(name2, '''s average is a ', ave2);

end.

LESSON 68. Record Basics

The first step in using a record in a Pascal program is to define the record's data type.
Figure 8-1 defines the structure for declaring a Pascal record. The record declaration
is constructed from a number of field declarations.

type

data type identifier = record
field declaration;

field declaration;

end;

Where:

data type identifier is the new data type's identifier.

field declaration is a valid field declaration.

Figure 8-1. Declaring a Pascal record type.

134

Records 8

Figure 8-2 defines a field declaration. Field declarations are similar to variable
deflnitions.

The following examples illustrate valid Pascal record declarations:

mailjtem = record
namel, name2, address: string[30];
city: string[15];
state: string[2];
zipl: string[5];
z!p2: string[4];

end;

student = record

name: string;
grades: array[1..10] of integer;

end;

Figure 8-3 defines a record variable's field reference in an assignment statement or
an expression. You refer to the field by separating the variable's name and the field's
name with a period (.).

field identifier: data type;

Where:

field identifier is the record field's identifier.

datatype is the record field's data type.

Figure 8-2. Declaring a Pascal record field.

variable identifier.field identifier

Where:

variable identifier is the record variable's name.

field identifier is the field name.

Figure 8-3. Record variable field references.

135

8 Records

The following are a few examples of valid Pascal record variable field references:

item.namel := 'John Smith';

item.address := '375 Sleepy Lane';
sl.name := 'Jane Doe';

total := sl.grades[l] + sl.grades[2];

Listing 8.2 demonstrates how Listing 8.1 can be rewritten to take advantage of
Pascal's support for record data types. Even though it is only a simple example of
how Pascal record types are used in an actual program, it shows how related data can
be joined together as a single entry, thereby eliminating the necessity of using
separate variables for each Held.

Listing 8,2

{ list8-2.pas - Record demonstration }

program record_demo;

type

student = record

name : string;

ave : integer;

end;

var

si, s2 : student;

begin

sl.name := 'John Smith';

si.ave := 95;

s2.name := 'Jane Doe';

s2.ave := 98;

writeln(si.name, '''s average is a ', sl.ave);

writeln(s2.name, '''s average is a ', s2.ave);

end.

136

Records 8

LESSON 69* The With Statement

Although Pascal records are a valuable programming tool, records with long variable
names are hard to work with because you must type the variable name before each of
the field names. As an example, suppose you were to write a mail list program that
uses a record type similar to the following:

list_item = record
name, address: string[30];
city: string[15];
state: string[2];
zip: string[5];

end;

Now suppose that the program uses the following statements to assign values to a
list_item record variable named mail_list_iteml:

mail_listjteml.name := 'John Smith';
mail_list_iteml.address := '325 Cherry Tree Lane';
mail_list__iteml.city := 'Washington';
mail_Iist_iteml.state := 'DC;
maiMist_iteml.zip := '00001';

Typing niail_list_iteml over and over is a tedious task. Wouldn't it be nice if there
was a shorthand method for writing the above assignment statements? Pascal comes
to the rescue with the with statement. Figure 8-4 defines the format for using the
with statement to eliminate the necessity of having to retype the variables.

with variable identifier do

program statement;

Where:

variable identifier is a previously defined record variable's
identifier.

program statement is a valid Pascal program statement.

Figure 8-4. The Pascal with statement.

137

8 Records

The following statements (which are simpler than the previous statements) show
how the with statement can be used to rewrite the above malMistJteml statements:

with maiMistJteml do
begin

name := 'John Smith';

address := '325 Cherry TVee Lane';
city := 'Washington';
state := 'DC;
zip := '00001';

end;

Listing 8.3 demonstrates how Listing 8.2 can be rewritten to take advantage of the
Pascal with statement.

LisHng 8,3

{ listS-S.pas - With statement demonstration }

program with_demo;

type

student = record

name : string;

ave : integer;

end;

var

si, s2 ; student;

begin

with si do

begin

name := 'John Smith';

ave := 95;

writeln(name, '''s average is a ', ave);

end;

with s2 do

begin

continued,..

138

Records 8

...from previous page
name := 'Jane Doe';

ave := 98;

writeln(name, '''s average is a ave);

end;

end.

LESSON 70. lyped Constant Records
Like arrays, Pascal records can be declared as typed constants to furnish an easy way
for providing records with initial values. Figure 8-5 defines the declaration of a typed
constant record. You initialize a typed constant by specifying initial values for the
record variable's fields.

The following are some examples of valid typed constant record detinitions:

listl: mail = (name: *John Smith'; address: '338 Main St.
Suite C; city : 'Somewhere'; state: 'US'; zip : '00000');

si: student = (name: 'Jane Doe'; grade: 99);

Listing 8.4 demonstrates how Listing 8.2 can be further modified to utilize typed
constant records. The use of typed constant records in Listing 8.4 greatly simplifies
the program.

const

identifier: data type identifier =
(field: initial value; field: initial value);

Where:

identifier is the variable's name.

data type identifier is the variable record's type.

field is one of the record type's field names.

initial value is an initial value of the record's field.

Figure 8-5. Declaring a typed constant record.

139

8 Records

Listing 8,4

{ list8-4.pas - Typed constant record demonstration }
program type_const_record_demo;

type

student = record

name : string;

ave : integer;

end;

const

si : student = (name : 'John Smith'; ave : 95);

s2 : student = (name : 'Jane Doe'; ave : 98);

begin
Writeln(sl.name, '''s average is a ', si.ave);

Writeln(s2.name, '''s average is a ', s2.ave);

end.

LESSON 71. Record Arrays

Wouldn't it be nice if Pascal used record arrays and arrays for fields in a program?
Fortunately, Pascal fully supports both types of arrays. Figure 8-6 defines the
declaration of an array of records. There is no difference between this type of
declaration and any other array declaration.

Referencing a particular record field while using record arrays in a program,
however, may prove to be slightly difficult. Figure 8-7 defines a field referenced in
an array of records. Note how the array index comes before the period (.) and not
after the field name as you might expect.

140

Records 8

var

identifier: array[index type] of record type;

Where:

identifier is a valid Pascal identifier.

index type is an ordinal data type or ordinal subrange,
except Longint or Longlnt must be
subranges.

record type is a previously defined record type.

Figure 8-6. Declaring an array of records.

variable identifier[index].field identifier;

Where:

variable identifier is the record variable's name.

index is the record array 's element number.

field identifier is the field name.

Figure 8-7. Record array field references.

Listing 8.5 demonstrates a variation of earlier programs in this chapter. It utilizes a
record array to store the student data.

Listing 8.3

{ listS-S.pas - Demonstrate record arrays }

program record_arrays;

type

student = record

name : string;

continued...

141

8 Records

...from previous page
ave : integer;

end;

const

class : array[1..2] of student =

((name ; 'John Smith'; ave : 95)

(name ; 'Jane Doe'; ave : 98))

begin

writeln(class[1].name, '''s average is a

class[1].ave);

writeln(class[2].name, '''s average is a

class[2].ave);

end.

LESSON 72. Field Arrays

Figure 8-8 defines the declaration of a field array. This procedure is the same as any
other array declaration. Figure 8-9 shows the proper method for referencing a field
element. You specify the field element's array index immmediately after the field's
name.

field identifier: array[index type] of data type;

Where:

field identifier is the field's name.

index type is an ordinal data type or ordinal subrange.
except Longint or Longint must be
subranges.

data type is the array's data type.

Figure 8-8. Declaring afield array.

142

Records 8

variable identiher.field identifier[index]

Where:

variable identifier is the record variable's name.

field identifier is the record field's name.

index is the field array's element number.

Figure 8-9. Field array references.

Listing 8.6 demonstrates how the programs in this chapter and the last chapter can be
rewritten to take advantage of field arrays. Listing 8.6 is the superior program, as it
fully integrates all of the related student data into one neat record array.

Listing 8,6

{ list8-6.pas - Demonstrate array fields }

program record_arrays;

type

student = record

name : string;

grades : array[1..10] of integer;
end;

const

class : array[1..2] of student =

((name : 'John Smith';grades : (90, 89, ICQ,

97, 85, 99, 96, ICQ, 94, 100)),

(name : 'Jane Doe'; grades : (85, 75, 90,

88, 87, 93, 95, 97, 99, 100)));

var

i, j, total, ave : integer;
continued...

143

8 Records

...from previous page
begin

for i := 1 to 2 do

begin

total := 0;

for j := 1 to 10 do

total := total + class[i].grades[j] ;

ave := total div 10;

writeln(class[i].name, '''s average is a ', ave);

end;

end.

You now understand the concept of records and are familiar with the with statement,
typed constant records, and record and field arrays. Chapter 9 discusses variant
records—^records that can vary their fields depending on the data type to be stored.

144

chapter 9

Variant Records

This chapter examines the variant record. As its name implies, the variant
record is able to vary its Helds depending on the type of data to be stored.
Although the concept of variant records may sound strange, this type of

record can be a useful and powerful programming tool.

LESSON 73. Variant Record Basics

To better understand the power of Pascal variant records, first take a look at Listing
9.1. This program demonstrates a short faculty/student list for a small college. The
distinguishing feature of this program is its need for two record types: one for a
faculty member and one for a member of the student body. Obviously, a record for a
faculty member needs different data than a record for a student.

145

9 Variant Records

Listing 9*1

{ list9-1.pas - Display faculty/student list without variant records}
program disp_listl;

type

class_type = (freshman, sophomore, junior, senior);
faculty = record

name : string;

age : integer;

salary : real;

years : integer;

end;

student = record

name : string;

age : integers-

average : reals-

class : class_type;

ends-

const

f_list : array[1..2] of faculty =
((name : 'John Smith'; age : 53; salary : 33500;

years : 15),

(name : 'Jane Doe'; age : 45; salary : 33500;

years : 14));

s_list : array[1..2] of student =
((name : 'Calvin Doe'; age : 20; average : 3.76;

class : junior),

(name : 'Sue Smith'; age : 22; average : 4.0;

class : senior));

var

i : integers-

begin

for i := 1 to 2 do

with f_list[i] do
continued...

146

Variant Records 9

...fivm previous page

writeln(name, ' age, ' ', salary:8:2, ' ',

years);

for i := 1 to 2 do

with s_list[i] do
begin

write(name, ' ', age, ' ', average:4:2, ' ');

case class of

freshman : writeln('Freshman');

sophomore : writeln('Sophomore');

junior : writeln('Junior');

senior : writeln('Senior');

end;

end;

end.

Although the above program gets the job done, wouldn't it be nice if the faculty and
student records could be combined into one record type? Look at the following
example:

fs_rec = record
name: string;
age: integer;
salary: real;
years: integer;
average: real;
class: class_type;

end;

The above record type would work, but it would waste an enormous amount of
space. After all, you wouldn't need to store a grade point average or class for a
faculty member or a salary or number of years employed for a student. This type of
data handling requirement is ideally suited for a variant record. Not only can the two
record types be combined, but a variant record requires only as much memory as the
largest individual record from which it is constructed. Figure 9-1 defines the
declaration of a variant record.

147

9 Variant Records

record identifier = record

field declaration;

field declaration;

case tag identifier: data type of
case label: (field declaration;);

case label: (field declaration;);
end;

Where:

record identifier is the data type's identifier.

field declaration is a valid field declaration. Multiple fields in
the variant case..end structure must be

separated by a semicolon.

tag identifier is an optional tag identifier. If used, the "case"
can be accessed through the tag identifier just
as it is with any other field.

data type is the tag identifier's data type.

case label is a label that identifies which field the variant
records will use for a particular tag.

Figure 9-1. Declaring a variant record.

Listing 9.2 demonstrates how you can modify Listing 9.1 to take advantage of
Pascal's variant records. The main feature of this program is its use of the tag
identifier fs in the fs__rec variant record type. With this record field set to indicate the
type of data stored in the variant record, it is an easy task to extract and properly
display each of the variant record's appropriate values. Without fs, it would be
impossible to know what type of data is stored in the variant record and how it is
properly handled.

148

Variant Records 9

Listing 9*2

{ list9-2.pas - Display faculty/student list with variant records}

program disp listl;

type

const

fs_type = { faculty, student);
class_type = (freshman, sophomore, junior, senior);
fs_rec = record

name : string;

age : integer;

case fs : fs_type of
faculty : (salary : real; years : integer;);

student ; (average : real; class : classjtype);
end;

list : array[1..4] of fs_rec =
((name : 'John Smith'; age : 53; fs : faculty;

salary : 33500; years : 15),

(name : 'Jane Doe'; age : 45; fs : faculty;

salary : 33500; years : 14),

(name : 'Calvin Doe'; age : 20; fs : student;

average : 3.76; class : junior),

(name : 'Sue Smith'; age : 22; fs : student;

average : 4.0; class : senior));

var

i : integers-

begin

for i := 1 to 4 do

with list[i] do

if fs = faculty then

writeln(name, ' ', age, ' ',

salary:8:2, ' ', years)

else

begin

continued...

149

9 Variant Records

...from previous page

end;

end.

write(name, ' age, ' ',

average:4:2, ' ');

case class of

freshman : writeln('Freshman');

sophomore : writeln('Sophomore');

junior : writeln('Junior');

senior : writeln('Senior');

end;

You now know how to use variant records. Chapter 10 introduces you to pointers.

150

Chapter10

Pointers

This chapter examines simple array/record, and procedure/function pointers.
Pointers **point" to a data value of a specific type. For example, an integer
pointer points to an integer value, a real pointer points to a real value, etc. In

addition to pointing to data values, a pointer can also point to a procedure or a
function. Although they may not sound terribly important, pointers are one of
Pascal's most significant features. Consequently, you should be well acquainted with
how pointers are declared and how they are used in programs.

LESSON 74. Simple Pointers
As with all other types of data, a Pascal pointer must be declared before it is used in a
program. Figure 10-1 defines the declaration of a Pascal pointer.

151

10 Pointers

var

identifier: '^data type;

Where:

identifier is the pointer's identifier.

data type is the data type to which the pointer points.

Figure 10-1. Declaring a Pascal pointer.

The following examples illustrate valid pointer declarations:

intlptr, int2ptr: ̂ integer;
nameptr: ̂string;
AmountPtr: '^Real;

Note that a pointer declaration is much like a normal variable declaration: there is no
initial value assigned to the pointer. Therefore, results will be impredictable if you
use a pointer without first initializing it. You can initialize a pointer by assigning it
an address of the proper data type, assigning it the value of another pointer of the
same data type, or assigning it the special value nil.

The format for assigning a pointer the value of an address of a data value is defined
in Figure 10-2. As this figure shows, you can use either the Pascal (@) operator or
addr function to assign the address of the data value to the pointer. Since both
methods perform the same task, it doesn't matter which method you use.

pointer identifier := ©variable identifier;
or

pointer identifier := addr(variable identifier);

Where:

pointer identifier is the pointer's identifier.

variable identifier is the identifier of the variable whose address

will be assigned to the pointer. Note: Both
variable identifier and pointer identifier must
be of the same type.

Figure 10-2. Assigning a variable's address to a pointer.

152

Pointers 10

Figure 10-3 shows the format for assigning the value of one pointer to another.
Assigning one pointer to another is like assigning the value of one variable to
another.

Figure 10-4 defines the process of assigning the value nil to a pointer. The value nil
is used to indicate a pointer that has no special meaning. It's usually a good idea to
set a pointer that doesn't have a meaning to nil. That way, the program can check for
a nil pointer before it carries out a meaningless operation on an unassigned pointer.

Although all of this material about pointers is interesting, you're probably wondering
how the data value to which a pointer is pointing is actually accessed. It's simple:
you add a (^) to the end of the pointer's identifier. This tells Pascal to treat the
pointer identifier as a variable identifier for the data value to which it points. The
following are a few examples of pointers being Used to retrieve and store data values:

intjjtr'^ := 35 div count;
int_result := int_ptr'^ + 5;

Listing 10.1 demonstrates how Pascal pointers are declared and used in an actual
program.

pointer identifier := pointer identifier;

Where:

pointer identifier is a previously declared pointer identifier.

Figure 10-3. Assigning the value of one pointer to another.

pointer identifier := nil;

Where:

pointer identifier is a previously declared pointer identifier.

Figure 10-4. Assigning nil to a pointer.

153

10 Pointers

Listing 10.1

{ listlO-l.pas - Simple pointers demo }

program simplej>ointers;

var

intptr : '^integer;

il, i2 : integer;

begin

11 := 1;

12 := 2;

intptr := 0il;

writeln('intptr^ is intptr"", ' and so isn''t il);

intptr"" := 12;

writelnCNow intptr has changed il to il);

end.

LESSON 75. Array and Record Pointers
Besides supporting pointers to simple variables, Pascal also supports array and
record pointers. Figure 10-5 defines an array element referenced by an array pointer.
Figure 10-6 defines a record field referenced by a record pointer. As with a simple
variable reference, you specify a pointer reference to either an array element or a
record field by putting a C^) after the pointer's identifier.

pointer identifier'^ [index]

Where:

pointer identifier is the array pointer's identifier.

index is a valid element number.

Figure 10-5. Array pointer referencing.

154

Pointers 10

pointer identifier'^ .field identifier

Where:

pointer identifier is the record pointer's name.

field identifier is the field name.

Figure 10-6. Record pointer referencing.

Listing 10.2 demonstrates how an array pointer is used in an actual Pascal program.
This program initializes an array by using an array pointer to store the elements'
values. Once stored, the appropriate values are displayed by accessing them with
normal array element referencing methods.

Listing 10.2

{ listl0-2.pas - Array pointers }

program array_j)ointers;

type

intarray = array[1..10] of integer;

var

iaptr : ''intarray;

ia : intarray;

i : integer;

begin

iaptr := 0ia;

for i ;= 1 to 10 do

iaptr"[i] := i;

for i := 1 to 10 do

writeln{'ia[', i, '] = ia[i]);

end.

155

10 Pointers

Listing 10.3 demonstrates how a record pointer is used in a Pascal program. Similar
to Listing 10.2, this program initializes a record by using a record pointer to assign
the initial values to the record's fields. Once the appropriate values are assigned, they
are displayed by using the normal Pascal record field referencing methods.

Listing 10.3

{ listlO-S.pas - Record pointers }

program record_pointers;

type

maillist = record

name, address, city, state, zip

end;

string;

var

mlptr : "^maillist;

item : maillist;

begin

mlptr := addr(item);

mlptr'^.name := 'John Smith';

mlptr''. address := 'West 57th St.';

mlptr".city := 'Somewhere';

mlptr".state := 'US';

mlptr".zip := '00001';

writeln('Name: item.name);

writeln('Address

writeln('City

writeln('State

writeln('Zip

item.address);

item.city);

item.state);

item.zip);

end.

156

Pointers 10

LESSON 76. Procedure and Function Pointers

Now that you have explored how pointers can be used to manipulate simple
variables, array variables, and records, you will learn how they can be used with
procedures and functions. Before you continue with pointers, however, you need to
understand procedure and function variables. A procedure or a function variable is a
variable that can hold the address of a procedure or function. With the address safely
tucked away in a variable, the appropriate procedure or function can be called by
simply using the identifier in place of the name.

Suppose you were writing a program that required different routines to be called
depending upon a variety of conditions. You could write a convoluted decision-
micing statement to handle the different circumstances, but it's much easier to
modify a procedure or function variable when a certain condition occurs. That way, a
single procedure or function call can handle any circumstance that might arise in a
program.

To be able to declare a procedure or function variable in a program, you must first
define a data type for the variable. Figure 10-7 illustrates the format for defining a
procedure data type.

Figure 10-8 illustrates the format for defining a function data type. Basically, a data
type is defined with a procedure or function head that doesn't have an identifier.
Once you've defined an appropriate data type, you can declare a procedure or
function variable just like any other variable: it can be declared as a simple variable,
an array variable, a record field etc.

type

data type identifier = procedure(parameter list);

Where:

data type identifier is the data type's name.

parameter list is a list of arguments to be passed to the
procedure.

Figure 10-7. Defining a procedure data type.

157

10 Pointers

type

data type identifier = function(parameter list): return type;

Where:

data type identifier is the data type's name.

parameter list is a list of arguments to be passed to the
function.

return type is the retum value's data type.

Figure 10-8. Defining a function data type.

Before you can use a variable to call a procedure or a function, you must assign an
initial value to it. Figure 10-9 defines the assignment of an address to a variable. You
must use an (@) operator before the procedure or function variable's name. Without
the (@) operator, Pascal tries to execute the procedure or function contained in the
variable, and attempting to call the routine in an unassigned procedure or function
variable is unacceptable.

©variable identifier := ©procedure identifier;
or

©variable identifier ©function identifier;

Where:

variable identifier is the procedure or function variable's name.

procedure identifier is the procedure's name.

function identifier is the function's name.

Figure 10-9. Procedure andfunction variable assignments.

Listing 10.4 demonstrates how procedure variables can be used in an actual program
to build a simple menu system. Procedure and function variables can be quite
effective for building a menu system. If a menu item needs to be changed, the new

158

Pointers 10

routine's address can be assigned to the appropriate procedure variable. This permits
the program to quickly and efficiently modify itself due to a change in current
conditions.

Listing 10.4

{ listl0-4.pas - Procedure and function variables demo }
program proc_and_func_vars;

uses crt;

procedure ml;

begin

writeln('This is menu item 1');

end;

procedure m2;

begin

writeln('This is menu item 2');

end;

procedure m3;

begin

writeln('This is menu item 3');

end;

procedure m4;
begin

writeln('This is menu item 4');

end;

procedure m5;

begin

halt;

end;

type

proc = procedure;

continued...

159

10 Pointers

...from previous page
var

menuprocs : array[1..5] of proc;

key : integer;

begin

0menuprocs[1] := Qml;

0menuprocs[2] := 0m2;

0menuprocs[3] := 0m3;

0menuprocs[4] := 0m4;

0menuprocs[5] := 0m5;

while true do

begin

writeln('[1]...Menu

writeln('[2]...Menu

writeln('[3]...Menu

writeln('[4]...Menu

writeln('[5]...Exit

repeat

key ;

until (key

integer

Item

Item

Item

Item

The Program')

(readkey);

48) and (key < 54)

menuprocs[key - 48]

end;

end.

Now that you know how to build a menu system using procedure variables, let's see
how the same system could be built using pointers. To assign a procedure's or a
function's address to a pointer, first detine a pointer with a data type of pointer. A
pointer pointer has no real data type and can hold a pointer for anything. Figure 10-
10 deflnes the structure for declaring a pointer pointer. As shown in the tigure, a
pointer pointer is declared like any other pointer.

var

pointer identifier: pointer;

Where;

pointer identifier is the pointer's name.

Figure 10-10. Declaring a pointer pointer.

160

Pointers 10

Figure 10-11 defines the structure for assigning a procedure's or a function's address
to a pointer. Unlike procedure and function variable assignments, a pointer
assignment doesn't require the (@) operator before the pointer's identifier. The
address is being assigned to a generic pointer. Therefore, there is no way Pascal can
confuse a pointer with a function call.

pointer identifier := ©procedure identifier;
or

pointer identifier := ©function identifier;

Where:

pointer identifier is the procedure or function pointer's name,

procedure identifier is the procedure's name,

function identifier is the function's name.

Figure lO-ll. Assigning a procedure or function address to a pointer.

Listing 10.5 presents a modified version of Listing 10.4. It uses pointers instead of
procedure variables to implement the menu system. A distinguising factor of this
program is the use of typecasting to perform actual procedure calls. Without casting
the pointer to a procedure call, Pascal would assume that an assignment statement
was being constructed and would generate an unintended error.

Listing 10.5

{ listl0-5.pas - Procedure and function pointers demo }
program proc_and_funcj>trs;

uses crt;

procedure ml;

begin
writeln('This is menu item 1');

end;

continued...

I6l

10 Pointers

...from previous page
procedure m2;

begin

writeln('This is menu item 2');

end;

procedure m3;

begin

writeln('This is menu item 3');

end;

procedure m4;

begin

writeln('This is menu item 4');

end;

procedure m5;

begin

halt ;

end;

type

proc = procedure;

var

menuprocs : array[1..5] of pointer;

key : integer;

begin

menuprocs[1] := @ml;

menuprocs[2] := @m2;

menuprocs[3] := @m3;

menuprocs[4] := 0m4;

menuprocs[5] := 0m5;

while true do

begin

writeln('[1]...Menu Item # 1');

writeln('[2]...Menu Item # 2');

continued...

162

Pointers 10

...from previous page
writeln('[3]

writeln('[4]

writeln('[5]

repeat

key : =

until (key >

...Menu Item # 3');

...Menu Item # 4');

...Exit The Program');

integer(readkey);

48) and (key < 54);

proc(menuprocs[key - 48]);

end;

end.

You now know how to use pointers. Chapter 11 discusses dynamic memory
management—one of the most important uses for Pascal pointers.

163

chapter11

Dynamic Memory
Management

This chapter introduces one of the most important uses of Pascal pointers:
dynamic memory management. It teaches you how to allocate and deallocate
single data objects as well as blocks of memory. When the program is

compiled, Pascal automatically sets aside a place in the computer's memory to store
the variables' contents. Many times, however, you can't possibly know what a
program's data requirements are until the program is actually run.

Pascal provides a number of useful dynamic memory management routines that
allow you to write programs that can expand or contract their data space. You can
use these routines to allocate and deallocate memory for either a single data object
or an entire block of memory.

165

11 Dynamic Memory Management

LESSON 77. Allocating and Deallocating Single Data
Objects

You will begin your study of dynamic memory management by examining how
single data objects are allocated and deallocated. To allocate a data object, you use
the new procedure. Figure 11-1 defines this procedure. As shown in the figure, a
pointer is passed as the new procedure's only argument. When the new procedure
returns to the calling program, the pointer points to a memory location of the same
size as the pointer's data type.

You use the dispose procedure to deallocate a previously allocated data object.
Figure 11-2 deHnes the dispose procedure. Like the new procedure, the dispose
procedure requires a single pointer argument. Essentially, the dispose procedure
releases the pointer's previously allocated memory area. Once released, the
deallocated memory area is available to be used by other dynamic memory
management calls.

Listing 11.1 demonstrates how the new and dispose procedures are used to
dynamically allocate and deallocate memory. The program allocates space for an
integer data object, assigns a value to the data object, displays the data object's value,
and releases the data object's allocated memory area. As you can see from this
program, allocating and deallocating dynamic memory is simple.

new(pointer);

Where;

pointer is a pointer to the allocated memory area.

Figure Il-l. Allocating memory with the new procedure.

dispose(pointer);

Where:

pointer is a pointer to a previously allocated memory
area.

Figure 11-2. Deallocating memory with the dispose procedure.

l66

Dynamic Memory Management 11

Listing 11,1

{ listll-l.pas - Dononstrate allocating/deallocating a single cbjec± }
program alloc dealloc;

var

int_ptr : '^integer;

begin

new{int_ptr);
int_ptr^ := 4;
writeln (' int^ptr'^ = int_ptr'^);
dispose(int^ptr);

end.

LESSON 78. Allocating and Deallocating Blocks of
Memory

Allocating and deallocating a single data object is a very useful programming tool,
except if you want to dynamically allocate and deallocate memory for an array that
varies in size during the life of the program. To till this need, Pascal provides the
getmem and freemem procedures. As its name implies, the getmem procedure gets
(or allocates) a block of dynamic memory. Figure 11-3 defines the getmem
procedure. Like the new procedure, the getmem procedure requires a pointer
argument to return a pointer to the allocated memory. The getmem procedure also
requires that you specify the number of bytes to be allocated. The most convenient
way to specify the number of allocation bytes is to use Pascal's sizeof function.

getmem(pointer, size);

Where:

pointer is a pointer to the allocated memory block.

size is the size of the memory block, in bytes.

Figure 11-3. Allocating a memory block with getmem.

167

11 Dynamic Memory Management

Figure 11-4 defines the sizeof function. The sizeof function returns the size (in bytes)
for any previously defined data type. Consequently, the number of bytes required for
a 100 element integer array could be specified with the following expression:

100 * sizeof(integer)

As a compliment to the getmem procedure, the freemem procedure deallocates a
previously allocated memory block. Figure 11-5 defines the freemem procedure. As
with the getmem procedure, the freemem procedure requires that you use a pointer
to the memory block and specify the size of the block, in bytes.

Listing 11.2 demonstrates how the Pascal getmem and freemem procedures are used
to dynamically allocate and deallocate memory. Note the use of the constant
max_ints in the int_array data type definition. Max_ints represents the maximum
number of elements in an integer array. By defining an array data type with
max_ints as the largest element, you can use an int_array pointer to point to an
integer array of any size. You can adapt this method for any Pascal data type by
substituting the desired data type in the constant declaration's sizeof function.

sizeof(data type);

Where:

data type is a previously defined data type.

Figure 11-4. The Pascal sizeof function.

freemem(pointer, size);

Where:

pointer is a pointer to the previously allocated
memory block.

size is the memory block's size, in bytes.

Figure 11-5. Deallocating memory with the freemem procedure.

168

Dynamic Memory Management 11

LisHng 1L2

{ listll-2.pas - Demonstrate allocating/deallocating blocks }

program alloc_dealloc;

const

max_ints = 65520 div sizeof(integer);

type

int_array = array[1..max_ints] of integer;

var

i : integer;

int_ptr : '^int_array;

begin

getmem (int^tr, 10 * sizeof (integer)) ;
for i := 1 to 10 do

int_ptr''[i] := i;
for i := 1 to 10 do

writeln (' int_ptr''[', i, '] = int_ptr'^ [i]) ;
freemem(int_ptr, 10 * sizeof(integer));

end

You're now familiar with dynamic memory management and know how to allocate
and deallocate both single data objects and blocks of memory. Chapter 12 tells you
how to develop your own units to simplify your future programming tasks.

169

Chapter12

Units

As you write more Pascal programs, you will find yourself repeating many of
the same procedures and functions. Instead of recreating these routines each
time you write a program, you can group many of them together to form a

Pascal library called a unit.

Many of the sample programs in this book use procedures and functions that come
with Turbo Pascal and QuickPascal. The majority of these routines are contained in
Pascal's default unit called system. Other units included with T\irbo Pascal and
QuickPascal are crt, dos, printer, graph (Turbo Pascal only), graphS (Ttirbo Pascal
only), msgraph (QuickPascal only), overlay CHirbo Pascal only), and turbo3 (Turbo
Pascal only). In addition to teaching you how to use these units, this chapter tells you
how to work with the uses statement to creafe your own units. The chapter also
discusses identifiers with the same name.

171

12 Units

LESSON 79. The Uses Statement

In order to use a unit in a program, you must specify the unit's name in a uses
statement. Figure 12-1 defines the structure of a uses statement. As this figure
illustrates, you declare the name of the unit (or units) after the uses keyword. Once
you specify a unit's name in a uses statement, all of the unit's procedures and
functions are at your disposal.

uses unit identifier,

Where;

unit identifier is the Pascal unit's name. You can specify
more than one unit by separating the units'
names with commas.

Figure 12-1. The Pascal uses statement.

Listing 12.1 shows how the crt unit is used in an actual Pascal program. Although it
only clears the screen and centers a message on the top display line, this program
demonstrates how the Pascal uses statement functions.

Listing 12,1

{ listl2-l.pas - Demonstrate the Pascal uses statement }
program uses_demo;

uses crt;

begin

clrscr;

gotoxy(28, 1);

writeln{'This Message Is Centered!');

end.

172

Units 12

LESSON 80. Creating a Pascal Unit
Now that you know how a unit is used with a Pascal program, turn your attention to
the details of writing a unit. Figure 12-2 defines the structure of a Pascal unit. Just as
a program starts with a program statement, a unit starts with a unit statement. The
purpose of the unit statement is to assign a name to the unit. Figure 12-2 also defines
the construction of a unit statement.

unit identifier;

interface

public variables, constants, procedure prototypes, function prototypes, etc.

implementation

private variables, constants, procedures, functions, etc.
public procedures and functions

begin

end.

Where:

initialization code

identifier is the unit's name.

Figure 12-2. The structure of a Pascal unit.

The second part of a Pascal unit is the interface section. You use the interface
section to declare any variables, constants, data types, etc. that you want the main
Pascal program to be able to use. The interface section also includes procedure and
function prototypes for any of the unit's procedures and functions that can be called
by the main Pascal program.

The third portion of a Pascal unit is the implementation section. You use the
implementation section to declare any variables, constants, data types, etc. that
won't be accessible to the main Pascal program. The implementation section also
includes definitions for private procedures and functions as well as any procedures

173

12 Units

and/or functions that you made public by specifying their prototypes in the interface
section.

The final section of a Pascal unit is the initialization code. Like the program's main
body, this code is contained in a begin..end block. The initialization code block uses
a period (.) instead of a semicolon (;), however, to signify the end of the unit.
Essentially, any program statements contained in the initialization code are executed
before the main Pascal program. For example, a serial communications unit might
have an initialization section that quite literally initializes the serial interface.

Listing 12.2 demonstrates how a Pascal unit is actually constructed. Note how the
two public procedures' prototypes (uppercase and lowercase) are defined in the
unit's interface section and how an empty begin..end block is specified for the
unit's initialization code. If you examine the unit's code, you will quickly deduce
that the unit's uppercase procedure converts strings to all uppercase and the unit's
lowercase procedure converts strings to all lowercase.

Listing 12.2

{ list 12-2.pas - Demonstrate how a Pascal unit is written }
unit uplow;

interface

procedure uppercase(var s : string);
procedure lowercase(var s : string);

implementation

const

offset = integer('a') - integer('A');

function testupper(c : char) : boolean;
begin

if (c >= 'A') and (c <= 'Z') then
testupper := true

else

testupper := false;

continued...

174

Units 12

...from previous page
end;

function testlower(c : char) : boolean;

begin

if (c >= 'a') and (c <= 'z') then

testlower := true

else

testlower := falser-

end;

procedure uppercase(var s : string);

var

i : integers-

begin

for i := 1 to length(s) do

if testlower(s[i]) then

s[i] := char(integer(s[i]) - offset);
end;

procedure lowercase(var s : string);
var

i : integers-

begin

for i := 1 to length(s) do

if testupper(s[i]) then

s[i] := char(integer(s[i]) + offset);

ends-

begin

end.

Listing 12.3 demonstrates how the uplow unit is used in an actual program. As with any of
Pascal's supplied units, you make uplow accessible to the main Pascal program by
specifying its name in a uses statement With the string conversion statements available in
the uplow unit, the demonstration program simply converts a string of lowercase
characters to uppercase and a string of uppercase characters to lowercase.

175

12 Units

Listing 12.3

{ listl2-3.pas - uplow demonstration program }
program uplow_demo;

uses uplow;

var

si, s2 : strings-

begin

si := 'this will be converted to all uppercase';

s2 := 'THIS WILL BE CONVERTED TO ALL LOWERCASE';

uppercase(si);

lowercase(s2);

writeln(si) ;

writeln(s2) ;

end.

LESSON 81. Identifiers with the Same Name

Sooner or later you're bound to write a program that has an identifier with the same
name as one used in a unit. Obviously, having two or more identifiers with the same
name can lead to some unexpected results if the identifiers aren't handled properly.
Fortunately, Pascal provides a simple solution to work around these conflicts.

Figure 12-3 defines the format for distinguishing between a unit's identifier and an
identifier either in the main program or another unit. As the figure shows, you make
this distinction by preceding the identifier with its corresponding unit name. Think of
the unit as a big record and the identifier as one of the record's field names.

unit name.identifier

Where:

unit name is the name of the identifier's unit.

identifier is the conflicting identifier.

Figure 12-3. Conflicting identifler references.

176

Units 12

Listing 12.4 demonstrates how conflicting identiHers are referenced in a Pascal
program. This program makes use of the uplow unit, which was presented earlier in
this chapter. To provide a conflicting identitier, the program in Listing 12.4 defines a
new uppercase procedure that changes each character in a string to a (*). To use the
uppercase procedure in uplow, the program references the procedure as
uplow.uppercase.

Listing 12.4

{ listl2-4.pas - Demonstrate how conflicting identifiers
are referenced }

program conflict_ident;

uses uplow;

procedure uppercase(var s : string);

var

i : integers-

begin

for i := 1 to length(s) do

s[i] := •*';

end;

var

teststring : strings-

begin

teststring := 'I''m a test string!';

writeln('teststring = ', teststring);
uplow.uppercase(teststring);

writeln('teststring = ', teststring);
uppercase(teststring) ;

writeln('teststring = ', teststring);
end.

177

12 Units

You're now familiar with the uses statement and know how to create your own units
to simplify your future programming tasks. Chapter 13 introduces you to strings.

178

Chapter 13

Working with
Strings

String data is probably the single most important data type to the Pascal
programmer. This chapter introduces you to five important string-related
f^unctions and procedures: concatenation, copy, delete, insert, and pos. These

routines will help you to manipulate string data.

LESSON 82. The String Concatenation Function

Like the Pascal string concatenation operator (+), which is described in Chapter 3, the
Pascal string concatenation function, concat, combines one or more strings and
returns the resulting string. Figure 13-1 defines the structure of the concat function.
The concat function is simple to use. Suppose a program had an expression of 'string
one' + 'string two'. The same expression could be rewritten as concat('string one',
'string two').

179

13 Working with Strings

concat(string expressions);

Where;

string expressions are one or more string expressions
separated by a comma.

Figure 13-1. The Pascal concatfunction.

Listing 13.1 demonstrates how the Pascal concat function is used in an actual
program. Note that the program concatenates two strings together with both the
string concatenation operator and the string concatenation function. Both methods
for concatenating strings return the same result.

Listing 13»1

{ listlS-l.pas - Demonstrate the Pascal concat function }
program concat_demo;

var

si, s2, rl, r2 : string;

begin

si := 'This is string 1

s2 := 'This is string 2

writelnCsl + s2 = si + s2);

writeln('concat(si, s2) = concat(si, s2));

end.

LESSON 83. The Pascal Copy Function

Because many string manipulations require extracting a portion of one string to form
another string, Pascal provides the copy function. Figure 13-2 defines the structure
of the copy function. The copy function returns a specified number of characters
starting at a specified character position. If the specified character position exceeds
the length of the string, then the copy function returns a null string. If the specified
number of characters plus the specified character position exceeds the length of the
string, then only the remaining string characters are returned.

180

Working with Strings 13

copy(string, character position, number of characters);

Where:

string is the source string.

character position is the starting character position for the string
to be copied.

number of characters is the number of characters to be extracted.

Figure 13'2. The Pascal copy function.

Listing 13.2 demonstrates how the copy function is used in an actual Pascal
program. The program extracts and displays a person's first name. The Pascal copy
function can be a powerful tool for extracting a more pertinent piece of data from a
large one.

Listing 13-2

{ list13-2.pas - Demonstrate the Pascal copy function }
program copy_demo;

var

name, first : string;

begin

name := 'John S. Doe' ;

first := copy(name, 1, 4);

writeln('First Name: first);

end.

LESSON 84. The Pascal Delete Procedure

Because a portion of a string often must be removed in order to form a shorter string,
Pascal provides a procedure called delete for performing just such an operation. Figure
13-3 defines the structure of the delete procedure. The delete procedure removes a
specified number of characters starting at a specified character position. If the character

181

13 Woridng with Strings

position is larger than the string's length, then nothing is removed from the string. If the
number of characters plus the character position exceeds the length of the string, then
only the actual number of remaining string characters is removed.

delete(string, character position, number of characters);

Where:

string is the string from which to remove the
substring.

character position is the starting character position for the
substring to be deleted.

number of characters is the number of characters to be deleted.

Figure 13-3. The Pascal delete function.

Listing 13.3 demonstrates how the delete procedure is used in an actual Pascal
program. The program removes the middle initial from a person's name.

Listing 133

{ listlS-S.pas - Demonstrate the Pascal delete procedure }
program delete_demo;

var

s : string;

begin

s := 'John S. Doe';

delete(s, 6, 3);

writeln(s);

end.

LESSON 85. The Pascal Insert Procedure

Although the delete procedure is certainly handy for removing unwanted characters
from a string, what if the program requires characters to be inserted into a string?

182

Working with Strings 13

Pascal offers the insert procedure to meet this need. Figure 13-4 defines the structure
of the insert procedure. This procedure inserts a source string into a destination
string starting at a specified character position. If the resulting string's length is
greater than 255 characters, the string result is truncated on the right.

insertfscurce string, destination string, character position);

Where:

source string is the string to be inserted.

destination string is the string where the source string will be
inserted.

character position ' is the starting character position where the source
string will be inserted.

Figure 13-4. The Pascal insert procedure.

Listing 13.4 demonstrates how the Pascal insert procedure is used in an actual
program. This program demonstrates the insertion task by simply inserting a middle
initial into a name string.

Listing 13*4:

{ list13-4.pas - Demonstrate the Pascal insert procedure }
program insert_demo;

var

s : string;

begin

s := 'John Doe';

insert (' S.*, s, 5);

writeln(s);

end.

LESSON 86. The Pascal Pos Function

One of the most important string-handling routines for any program is a routine to
perform string searches. Pascal provides the pos function to assist in implementing

183

13 Working with Strings

such a routine. Figure 13-5 defines the structure of the pos function. This function
searches for one string in another. If the string is found in the string to be searched,
then the pos function returns the search string's starting character position in the
string to be searched. Otherwise, the pos function returns a value of 0.

pos(search string, string);

Where:

search string is the string for which to search.

string is the string to be searched.

Figure 13-5. The Pascal pos function.

Listing 13.5 demonstrates how the pos function is used in an actual Pascal program.
To demonstrate how the Pascal pos function works, the program simply searches for
a person's middle initial in a name string and displays the result.

Listing 13'3

{ list13-5.pas - Demonstrate the Pascal pos function }

program pos_demo;

var

s : string;

begin

s := 'John S. Doe';

writeln('''S.'' is located at character position

pos('S.', s));

end.

You're now familiar with strings and know how to use string-related functions and
procedures, such as concatenation, copy, delete, insert, and pos. Chapter 14 describes
how data is input and output from the console.

184

Chapter14

Console

Input/Output

The next three chapters are devoted to explaining how data is input and output
with the Pascal programming language. This chapter explains how data is
input and output from the console (keyboard and video display). It discusses

the write/writeln and read/readln procedures, as well as formatted output.

LESSON 87. The Write aadWiiteln Procedures

As their names imply, the Pascal write and writeln procedures are used to perform
data output. The only real difference between the two procedures is that the write
procedure does nothing after it has sent data to the output device, while the writeln
procedure sends a new line (carriage return/line feed combination) to the output
device. Figure 14-1 deflnes the write and writeln procedures.

185

14 Console Input/Output

write(argument list);
or

writeln(argument list);

Where:

argument list is a list of one or more data items. A data item

can be a constant or a variable. Multiple data
items are separated by commas.

Figure 14-1. Using the write and wrUeln procedures for console output.

Each argument for a write or writeln procedure is a data item. This data item can be
either a constant or a variable. You can specify multiple arguments by separating
them with commas. When executed, the write or writeln procedure displays the data
items' values in the order they appear in the argument list.

Listing 14.1 demonstrates how the write and writeln procedures are used in an
actual program. The program displays a string and two integer values with the
procedure first, followed by the same data items with the writeln procedure. The
program clearly shows how the writeln procedure differs from the write procedure
by generating a new line after displaying its arguments.

Listing 14.1

{ listl4-l.pas - Demonstrate the write and writeln procedures }

program write_writeln_demo;

var

il, i2 : integer;

begin

11 := 11;

12 := 33;

write('See the difference between write and writeln');

write (il, 12);

writeln;

continued...

186

Console Input/Output 14

...from previous page
writeln('See the difference between write and

writeln');

writeln(il, i2);

end.

LESSON 88. The Read and Readln Procedures

As the write and writeln procedures provide the means to send data to the console,
the read and readln procedures input data from the console. The read and readln
procedures differ slightly in the way they function. The read procedure only reads
the input until its data arguments have been filled. Any remaining data is used by the
next read procedure. The readln procedure, on the other hand, keeps reading data
until a new line is encountered. If any data remains after the readln procedure's data
arguments have been filled, the remaining data is ignored. When entering data with
the read and readln procedures, you must separate each data entry item by a space,
tab, or carriage return.

Figure 14-2 defines how the read and readln procedures are used in a Pascal
program. Like the write and writeln procedures, the read and readln procedures can
have multiple data item arguments.

Unlike the write and writeln procedure arguments, however, the read and readln
arguments must be variables. This requirement is obvious since a value can't be
assigned to a constant.

read(argument list);
or

readln(argument list);

Where:

argument list is a list of one or more data items. Unlike
write and writeln arguments, read and
readln arguments must be variables. Multiple
data items are separated by commas.

Figure 14-2. Using the read and readln procedures for console input.

Listing 14.2 demonstrates how the read and readln procedures are used in an actual
Pascal program. This program demonstrates the differences between the read and

187

14 Console Input/Output

readln procedures. The first read statement simply retrieves two integer values. The
second set of read statements retrieves two integer values, but the operation is
performed by two separate read statements. Note that if you enter both values as a
response to the first read statement, the program won't request any further input.
Instead, the second read statement uses the remaining data from the first read
statement. Unlike the dual read statements, the program's readln statements require
that the operator specifically enter the data one line at a time.

Listing 14,2

{ list14-2.pas - Demonstrate the read and readln procedures }
program read readln demo;

var

begin

il, i2 : integer;

read(il, i2) ;

writeln('il = 'f il.
read(il);

writeln('il = il);

read(12);

writeln('12 = 12);

readln (il);

writeln('il = il);

readln(12);

writeln('12 = 12);

i2 = ', i2);

end.

LESSON 89. Formatted Output

In addition to displaying unformatted data, the write and writeln procedures can also
display data in a formatted mode. For example, you can tell either procedure to
display a real number in a right-justified field with a specified width and number of
decimal places. Figure 14-3 defines the format of a data item with either a write or
writeln procedure. All formatted data items require a width specification. If the
specified width is a positive number, the data item will be right-justified in a field of
the specified width. If the specified width is a negative number, the data item will be

188

Console Input/Output 14

left-justified in a field of the specified width. If the data item is wider than the
specified width, it will be displayed as an unformatted data item. Figure 14-3 also
shows that real number data items can optionally specify a number of decimal
places.

data itemrwidth

or

real data item:width:decimal places

Where:

data item is a data item of any previously defined type.

real data item is any previously defined real number data type.

width is the formatted field widdi.

decimal places is an optional number of decimal places.

Figure 14-3. Formatted write and writeln data items.

Listing 14.3 demonstrates how formatted data items are specified in write and
writeln statements. This program displays an account's name, number, and balance as
a line of formatted data output. Note how the program uses a width specifier of -20 to
left justify the account's name and a width specifier of 10:2 to display the account
balance with two decimal places.

Listing 14,3
{ list14-3.pas - Demonstrate formatted write and writeln output }
program formatted_write_writeln;

var

number : integer;

name : string;

balance : real;

begin

name := 'Cash';

number := 101;

balance := 100.31;

writeln(name:-20, numberrlO, balance:10:2);

end.

189

14 Console Input/Output

♦out

You now know how to use the write/writeln and read/readln procedures and are
familiar with formatted output. Chapter 15 examines preserving and retrieving data
through text file input/output.

190

Chapter15

Text File
Input/Output

T
his chapter tells you how to preserve and retrieve text files. It also introduces
the concept of error trapping. Disk input/output is the preferred method for
preserving and retrieving data to and from a permanent type of medium.

The Pascal programming language supports two basic types of disk files: text files
and binary files. Data that is sent to and retrieved from text files is in the same
format (ASCII strings) as data that is sent to and returned from the console.
Consequently, you would have little trouble reading the data in a text file by simply
listing it. However, data sent to and retrieved from a binary file uses the same format
that Pascal uses to store data in the computer's intemal memory. As a result, binary
data files are virtually impossible to read.

191

15 Text File Input/Output

LESSON 90. Text Files

The first step in opening a text disk file is to declare a variable of type text (a
predefined data type just for working with text files). Figure 15-1 defines the format
for declaring a text variable. As you can see from the figure, a text variable is
declared like other variable types.

var

identifier: text;

Where:

identifier is the text variable's name.

Figure 15-1. Declaring a text variable.

After you declare a text variable, the next step is to assign it a file name. The Pascal
programming language provides a procedure called assign to accomplish this task.
Figure 15.2 defines the structure of the assign procedure. To assign a file name to the
text variable, specify the name of the text variable and the name of the file as the
assign procedure's two arguments.

assign(file variable, file name);

Where:

file variable is a previously declared file variable.

file name is the name of the data file.

Figure 15-2. The Pascal assign procedure.

Once you have assigned a file name to the file variable, you can open the disk file
by using any one of three distinct Pascal procedures: rewrite, reset, or append.
Although the rewrite procedure is capable of either creating a new file or opening
an existing file, using it to open an existing file results in the loss of any data that
already exists in the file. As a consequence, you should use the reset rather than the
rewrite procedure to open an existing file. The contents of the data file are
preserved when the file is opened by reset. The append procedure functions in the
same way as the reset procedure except the file pointer (an internal pointer that
points to the current location being accessed in a file) is set to the end of the file. By

192

Text File Input/Output 15

using the append procedure, you can open a tile quickly to add data to the end of the
file. Figures 15-3, 15-4, and 15-5 define the structure of the rewrite, reset, and
append procedures.

Once you open a file, you can write to it or read from it using the Pascal read,
readln, write, and writein procedures. Figures 15-6, 15-7, 15-8, and 15-9 define
these four procedures as they are used with text files. The only difference between
using any one of these procedures with a disk file and with the console is that the
disk file requires you to specify a file variable for the procedure's fnst argument.
With the variable specified, Pascal is able to direct the data input/output to the proper
file.

rewrite(file variable);

Where:

file variable is the variable for the file to be opened.

Figure 15-3. Opening a file with the rewrite procedure.

reset(file variable);

Where:

file variable is the variable for the file to be opened.

Figure 15-4. Opening a file with the reset procedure.

append(file variable);

Where:

file variable is the variable for the file to be opened.

Figure 15-5. Opening a file with the append procedure.

193

15 Text File Input/CXitput

read(file variable, data variables);

Where:

rile variable is a variable from which the rile can read the

data.

data variables are one or more data variables. Multiple data
variables are separated by commas.

Figure 15-6. Reading file data with the read procedure.

readln(rile variable, data variables);

Where:

rile variable is a variable from which the rile can read the

data.

data variables are one or more data variables. Multiple data
variables are separated by commas.

Figure 15-7. Reading fUe data with the readln procedure.

wnte(rile variable, data items);

Where:

rile variable is a variable to which the rile can write the

data.

data items are one or more constants or variables.

Multiple data items are separated by commas.

Figure 15-8. Writing file data with the write procedure.

194

Text File Input/Output 15

writeln(file variable, data items);

Where:

file variable is a variable to which the file can write the data.

data items are one or more constants or variables.

Multiple data items are separated by commas.

Figure IS'9. Writing file data with the writeln procedure.

After a data file's input/output operations have been completed, you must close the
file with the Pascal close procedure. Figure 15-10 defines the structure of the close
procedure. You close a file by specifying its file variable as the close procedure's one
and only argument.

close(file variable);

Where:

file variable is the variable for the file to be closed.

Figure 15-10. Closing a file with the close procedure.

Listing 15.1 demonstrates how a Pascal text file is accessed in an actual program.
This program starts by opening a text file, writing 10 lines of data to the file, and
closing the file. With the data safely stored away on disk, the program continues by
re-opening the text file, reading and displaying the 10 lines of data, and then
reclosing the file. Note the program's use of Pascal's eof function. It returns a value
of True if a specified file's file pointer is located at the end of the file's data.
Otherwise, the eof function returns a value of False. By using the eof function in a
while loop, the program easily reads in all of the file's data. It continues to read data
until eof returns a value of True.

Listing 15»1
{ listlS-l.pas - Text file demonstration program }
program text_file_demo;

continued...

195

15 Text File Input/Output

...from previous page
var

datafile : text;

i : integer;

s : string;

begin

assign(datafile, 'textdemo.dat');

rewrite(datafile);

for i ;= 1 to 10 do

writeln(datafile, 'This is data item no. ', i);

close(datafile);

reset(datafile);

while not eof(datafile) do

begin

readln(datafile, s);

writeln(s);

end;

close(datafile);

end.

LESSON 91. Error Trapping

Although today's disk drives are reliable storage devices, errors do occur
occasionally. Consequently, all but the simplest of data handling programs should
provide at least a minimal amount of error handling. Pascal's normal input/output
error handler generates a run-time error when an error occurs, but this crude error
handling method is too simplistic for most programs.

Pascal provides the {$!-} and {$!+} compiler directives to assist you in dealing with
input/output errors. A compiler directive tells the Pascal compiler to switch certain
features on and off. With input/output directives, the {$!-} compiler directive tells
Pascal not to generate run-time errors when an input/output error occurs. The {$!+}
compiler directive tells Pascal to generate run-time errors whenever an input/output
error occurs.

When the Pascal program is set to {$!-}, a call to the Pascal ioresult function can be
used to determine if an input/output error has occurred. If ioresult returns a value of

196

Text FUe Input/Output 15

0, the last input/output operation was returned without an error. If ioresult returns a
non-zero value, the last input/output operation was returned with an error.

Listing 15-2 is a revised version of Listing 15-1. It utilizes the {$!-} and {$1+}
compiler directives to provide a simple error handling routine. Although this
program only displays a relevant error message, you could modify the program
further to provide for a more sophisticated error handler.

Listing 15*2

{ listl5-2.pas - Error handling demonstration program }

program error_handler_demo;

procedure errorhandler(s : string);

begin

writeln(s);

halt (1);

end;

var

datafile : text;

i : integer;

s : string;

begin

{$!-};
assign(datafile, 'textdemo.dat');

rewrite(datafile);

{$!+};

if ioresult <> 0 then

errorhandler('Error opening file:

textdemo.dat');

for i := 1 to 10 do

begin

{$!-};

writeln(datafile, 'This is data item no. ', i);

{$!+};

continued...

197

15 Text File Input/Output

...from previous page
if ioresult <> 0 then

errorhandler (' Error writing file: textdemo. dat') ;

end;

{$!-};

close(datafile);

{$1+};

if ioresult <> 0 then

errorhandler('Error closing file:

textdemo.dat');

{$!-};
reset(datafile);

{$!+};
if ioresult <> 0 then

errorhandler{'Error opening file:

textdemo.dat');

while not eof(datafile) do

begin

{$!-};

readln(datafile, s);

{$!+};

if ioresult <> 0 then

errorhandler('Error reading file:

textdemo.dat') ;

writeln(s);

end;

{$1-};

close(datafile);

{$!+};

if ioresult <> 0 then

errorhandler('Error closing file:

textdemo.dat');

end.

You now know how to preserve and retrieve text data, and you understand the
concept of error trapping. Chapter 16 examines binary file storage.

198

Chapter16

Binary File
Input/Output

This chapter discusses typed and untyped binary data files—^the most efficient
way to store numeric data types. In a binary data file, data is stored on disk in
the same format that it is stored in the computer's memory. Because a data

item's internal binary representation almost always requires less memory than its
ASCn string counterpart, storing data in a binary file greatly reduces the amount of
disk space required to store the data.

Another benefit of storing data in binary files has to do with the fact that the Pascal
program is fiilly aware of the size of a data item. For example, Pascal stores integers
as two binary bytes. An ASCII string representation of an integer requires from one
(as in 0) to six (as in -19999) characters. Consequently, a Pascal program can never

199

l6 Binary File Input/Output

extract an integer accurately from a text file. Without first reading all of the
preceding data items, the program doesn't know where the data item is located in a
text file. The method of reading preceding data items in order to access data in a text
Hie is called sequential access. Because the Pascal program knows just how large
each data item is in a binary file, however, it can position the file pointer directly on
a desired data item and either read its contents or replace it with a new data item.
This method is called random access. It stands to reason that, in all but the simplest
of files, the random access method is usually the preferred method for accessing
data.

LESSON 92. Typed Binary Files

The Pascal programming language supports two types of binary files: typed binary
files and untyped binary files. In this lesson, you will explore how typed binary files
are used. Opening a typed binary file is almost identical to opening a text file. As
with a text file, the first step in opening a binary file is to declare a file variable.
Figure 16-1 defines the structure for declaring file variables for typed binary files. As
this figure shows, a typed binary file variable declaration is similar to any other
variable declaration.

var

identifier: file of data type;

Where:

identifier is the typed binary file variable's name.

data type is a previously defined data type.

Figure 16-1. Declaring a typed binary file variable.

As with opening a text file, the next step in opening a typed binary file is to use the
assign procedure to assign a file name to the file's variable. Once you've assigned a
file name to a typed binary file variable, you can open the file with either the rewrite
or the reset procedure. Data is read from a file with the read procedure and written
to a file with the write procedure. Figure 16-2 defines the read procedure as it is
used to read data from a typed binary file. Figure 16-3 defines the write procedure as
it is used to write data to a typed binary file. As these figures show, all data items in a
read or write argument list must be of the same data type as in the typed binary

200

Binary File Input/Output l6

file's variable declaration. Like text files, typed binary files are closed with the close
procedure.

If you used only the file-handling procedures described above, you could write a
very efficient sequential access data file. In order to be able to randomly access a
file, however, you need the assistance of the seek procedure and the filepos function.

You use the seek procedure to move a typed binary file's file pointer to a desired
location. Figure 16-4 defines the structure of the seek procedure. As this figure
shows, you use the second argument of the seek procedure to specify the record
number for the file pointer's new location. Note that a file's first record is record 0
and not record 1. Record 1 is the second record in a typed binary file.

read(file variable, data variables);

Where:

file variable is a typed binary file variable from which the
file can read the data.

data variables are one or more data variables with the

same data type as was used in the file
variable's declaration. Multiple data variables
are separated by commas.

Figure 16-2. Reading typed binary file data with the read procedure.

write(file variable, data items);

Where:

file variable is a typed binary file variable to which the file
can write the data.

data items are one or more constants or variables with

the same data type as was used in the file
variable's declaration. Multiple data variables
are separated by commas.

Figure 16-3. Writing typed binary file data with the write procedure.

201

l6 Binary File Input/Output

seek(file variable, position);

Where;

file variable is the typed binary file's variable.

position is the record number to which to move the file

pointer.

Figure 16-4. The Pascal seek procedure.

As its name implies, the Pascal filepos function returns the current record number for
the file's current file pointer position. The value returned by the filepos function is of
type Longlnt. Figure 16-5 defines the structure of the filepos function. As this figure
shows, the filepos function's sole argument is the typed binary file's variable.

fllepos(file variable);

Where:

file variable is the typed binary file's variable.

Figure 16-5. The Pascal filepos function.

Listing 16.1 demonstrates how a typed binary file can be used to perform random
access. The program starts by creating a typed binary file of type Integer and filling
the file with dummy integer values. It continues by re-opening the file and reading
and displaying the dummy values back in reverse order. Obviously, reading a file
backwards would be impossible to do with a text file. Although this is a rather
simple example of randomly accessing a data file, it clearly shows some of the power
offered by random access data files.

Listing 16.1

{ listl6-l.pas - Typed binary file demo }
program typed_bin_file;

var

datafile : file of integer;

i, rec : integer;

continued...

202

Binary File Input/Output l6

...from previous page
begin

writeln('Writing demo file ');
assign(datafile, 'demofile.dat');

rewrite(datafile);

for i := 1 to 10 do

write(datafile, i);

close(datafile);

write('Reading demo file backwards ');

reset(datafile);

for i := 10 downto 1 do

begin

seek(datafile, i - 1);

read(datafile, rec);

write(rec, '...');

end;

close(datafile);

writeln;

end.

LESSON 93. Untyped Binary Files

Although the typed binary files presented in the previous lesson are by far the most
commonly used of the Pascal binary file types, you can also store data as an untyped
binary file. Because an untyped binary file doesn't have a data type, data can be read
from and written to the Hie without regard for its data type. Instead of reading and
writing data in the form of constants and variables, an untyped Hie stores data in
buffer areas.

The steps for opening an untyped binary file are similar to those for opening a typed
binary file. The first step is to declare the file variable. Figure 16-6 defines the
structure for declaring an untyped binary file. As this figure shows, the Pascal
programming language provides a predefined data type called file that is used for
declaring untyped binary file variables.

203

l6 Binary File Input/Output

var

identifier: file;

Where;

identifier is the untyped binary file variable's name.

Figure I6-6. Declaring an untyped binary file variable.

Once you've declared the variable properly, you can open the untyped binary file by
first using the assign procedure to assign a file name to the variable and then using
the rewrite or reset procedure to open the file. You should be aware, however, that
the rewrite and reset procedures interact differently with untyped binary files than
with other Pascal file types. With untyped binary files, you can also use these two
procedures to specify a record size.

Figures 16-7 and 16-8 define the structures of the rewrite and reset procedures as
they are used with untyped binary data files. As these figures show, an untyped
binary file will have a record length of 128 if the default record size argument is
omitted.

rewrite(file variable, record size);

Where:

file variable is the variable for the untyped binary file to
be opened.

record size is an optional record size for the untyped
binary file. If the record size argument is
omitted, a default record size of 128 will be

used for the untyped binary file.

Figure 16-7. Opening an untyped binary file with the rewrite procedure.

204

Binary File Input/Output l6

reset(file variable, record size);

Where:

file variable is the variable for the untyped binary file to
be opened.

record size is an optional record size for the untyped
binary file. If the record size argument is
omitted, a default record size of 128 will be

used for the untyped binary file.

Figure 16-8. Opening an untyped binary file with the reset procedure.

Because an untyped binary file doesn't have a data type associated with it, the Pascal
read and write procedures can't be used to read from and write to an untyped binary
file. Instead, Pascal offers the blockread and blockwrite procedures for dealing with
these types of files. Figures 16-9 and 16-10 define the blockread and blockwrite
procedures. As these figures show, the second argument is a pointer to a predeclared
buffer area. This buffer area is simply an array that is big enough to hold the number
of records defined in the procedure's third argument. The fourth argument for both
procedures is optional and returns the actual number of records that the procedure
reads or writes. After all of the read/write operations are completed, an untyped
binary file is closed with the Pascal close procedure.

blockread(file variable, buffer, number of records, number read);

Where:

file variable is the variable for the untyped binary file to
be read.

buffer is a variable large enough to hold the block to
be read. This variable is usually an array.

number of records is the number of records to read.

number read is the actual number of records read.

Figure 16-9. Reading data with the Pascal blockread procedure.

205

l6 Binary File Input/Output

blockwrite(file variable, number of records, number written);

Where:

file variable is the variable to which the untyped binary
file is written.

buffer is a variable large enough to hold the block to
be written. This variable is usually an array.

number of records is the number of records to write.

number written is the actual number of records written.

Figure 16-10. Writing data with the Pascal blockwrite procedure.

Listing 16.2 demonstrates how untyped binary files are used in an actual program.
Essentially, this program uses two untyped binary files to emulate the DOS COPY
command. It sets up one untyped binary file with which to read the source file and
another untyped binary file to which to write an exact copy. Although this program
gets the job done, you should note that its lack of error trapping makes it unsuitable
for daily use.

Listing 16.2

{ listl6-2.pas - Untyped binary file demonstration}
program untyped_bin_file;

var

sourcefile, destinationfile : file;
buffer : array[1..4096] of char;

length, no_written : word;
filel, file2 : string;

begin

write('Enter the name of the file to be copied: ');
readln(filel) ;

write('Enter the name to copy the file to: ');

continued...

206

Binary File Inpul/Output l6

...from previous page
readln(file2);

assign(sourcefile, filel);

assign(destinationfile, file2);

reset(sourcefile, 1);

rewrite(destinationfile, 1);

repeat

blockread(sourcefile, buffer, 4096, length);
blockwrite(destinationfile, buffer, length,

no_written);
until (length =0) or (length <> no_written);
close(sourcefile);

close(destinationfile) ;

end.

You are now familiar with typed and untyped binary data files. Chapter 17 discusses
object-oriented programming in QuickPascal.

207

Chapter17

Object-Oriented
Programming in

QuickPascal

Without a doubt, object-oriented programming is the hottest area in
computer programming today. Unfortunately for both QuickPascal and
Turbo Pascal programmers, this is where the two compilers part company.

This chapter is devoted to presenting object-oriented programming as it applies to
QuickPascal. The topics covered include: encapsulation, inheritance, and
polymorphism. Chapter 18 discusses object-oriented programming as it applies to
Turbo Pascal.

LESSON 94. Encapsulation

Traditional programming methods usually call for writing programs by first defining
the program's code and then creating the data structures to go along with the resulting
code. This leads to a second class status for program data. With object-oriented

209

17 Object-Oriented Programming in QuickPascal

programming methods, however, code and data are considered equal partners. In an
object-oriented program, the programmer defines object classes.

Object classes are similar to records, but they can also have their own procedures and
functions. An object class's data fields are called instance variables and its
procedures and functions are called methods. This merging of data fields,
procedures, and functions into a single object class is called encapsulation.
Encapsulation is one of the most important features that object-oriented
programming offers.

Figure 17-1 defines the structure of an object class. An object class is defined like a
record and it's field declarations are defined like record field declarations. The object
class's method declarations are nothing more than procedure and function
prototypes. Note that the order of the field and method declarations is unimportant;
however, most programmers declare the object class's instance variables before
defining its methods.

type

class name = object
field declaration;

field declaration;

method declaration;

method declaration;

end;

Where:

class name is the new object class's identifier.

field declaration is a valid field declaration.

method declaration is a procedure or function prototype.

Figure 17-1. Defining a QuickPascal object class.

210

Object-Oriented Programming in QuickPascal 17

Figure 17-2 defines an object class procedure, while Figure 17-3 defines an object
class function.

The only difference between these procedures and functions and regular procedures
or functions is the construction. All method definition names take the form of object
class.method name. To return a value from an object class function, the return
value is assigned to the method name, as shown in Figure 17-4.

procedure object class.method name(parameter list);
begin
statement;

statement;

end;

Where:

object class is the object class's name.

method name is the method's name.

parameter list is a list of arguments to be passed to the
procedure.

statement is a valid Pascal program statement.

Figure 17-2. Defining an object class procedure.

211

17 Object-Oriented Programming in QuickPascal

function object class.method name(parameter list): retum type;
begin

statement;

statement;

end;

Where:

object class is the object class's name.

method name is the method's name.

parameter list is a list of arguments to be passed to the
function.

retum type is the data type for the function's retum value.

statement is a valid Pascal program statement.

Figure 17-3. Definingan object class function.

method name := retum value;

Where:

method name is the object class function's method name.

retum value is a retum value of the proper data type.

Figure 17-4. Returning values from an object class function.

As shown in Figure 17-5, an object or class instance is declared like other variables.
With QuickPascal, all objects are dynamic data, and you must first allocate memory
for them using the new procedure. Failure to allocate a spot in dynamic memory for
an object will result in a run-time error. Because an object is a dynamically allocated
piece of data, it must eventually be deallocated using the dispose procedure.

212

Object-Oriented Programming in QuickPascai 17

var

object name; object class;

Where:

object name is a valid Pascal identifier.

object class is the desired object class's name.

Figure 17-5. Declaring a QuickPascai object.

Once you have declared and allocated an object, you can access its fields using the
same methods as you use to access record fields. Figure 17-6 illustrates how an
object's fields are referenced. Object-oriented programming techniques consider
accessing an instance variable outside the object class's methods a violation because
of data hiding. By not allowing you to directly access instance variables outside of
the object class definitions, it insulates you from actually having to know the details
about an object class. Instead, you should define object class procedures and
functions for setting and retrieving instance variable values.

Figure 17-7 defines how an object class method is called. Other than preceding the
method name with the object name and a period (.), there is no difference between
a method call and a regular Pascal procedure or function call.

object name.field name

Where:

object name is the name of a previously declared class
instance.

field name is the name of one of the object class's fields.

Figure 17-6. Referencing instance variables.

213

17 Objea-Oriented Programming in QuickPascai

object name.method name(argument list)

Where:

object name is the name of a previously declared object.

method name is the name of the object class procedure or
function to be called.

argument list is a list of arguments to be passed to the
procedure or function.

Figure 17-7. Calling an object's method.

There is one more requirement that you must understand in order to write a simple
object-oriented program with QuickPascai. Whenever you reference one of an object
class's instance variables or methods from within one of the same object class's
methods, you must precede the field name or method name with the keyword self
and a (.). That way the object class method knows to perform an operation on the
same class instance.

Listing 17.1 demonstrates how you can use the object-oriented principle of
encapsulation in a QuickPascai program. Note how methods have been defined for
the program's object class to achieve data hiding. When using the object-oriented
programming technique of data hiding, the instance variables are never directly
accessed from outside of the object class. Data hiding is a useful technique for
reducing errors and program development time in more complex object-oriented
programs.

Listing 17.1

{ listl7-l.pas - Encapsulation demo }
program encap_demo;

type

employee = object

name : string;

age : integer;

procedure init(n : string; a : integer);
procedure display;

continued...

214

Object-Oriented Programming in QuickPascal 17

...from previous page

procedure setname(n : string);

procedure setage(a : integer);

function getname : string;

function getage : integers-

end;

procedure employee.init(n : string; a : integer);

begin

self.name := n;

self.age := a;

ends-

procedure employee, displays-

begin

writeln('Employee'•s name: self.name);

writeln('Employee''s age: self.age);

ends-

procedure employee.setname(n : string);

begin

self.name := n;

end;

procedure employee.setage(a : integer);

begin

self.age := a;

ends-

function employee. getname : strings-

begin

getname := self.names-

end;

function employee. getage : integers-

begin

getage := self.ages-

end ;

continued...

215

17 Object-Oriented Programming in QuickPascal

...from previous page
var

el, e2 : employee;

begin

new(el);

new(e2);

el.init('John Smith', 33);

el.display;

e2.setname('Jane Doe');

e2.setage(28);
writeln('Employee''s name: ', e2.getname);
writeln('Employee''s age: ', e2.getage);

end.

LESSON 95. Inheritance

Although encapsulation is the cornerstone of object-oriented programming,
inheritance makes it shine. Inheritance allows you to define an object class (called a
subclass) based upon a previously defmed object class (called a parent class).

Figure 17-8 illustrates how an object subclass is defined. Note that the only
difference between defining a subclass and a parent class is the inclusion of the
parent class's name following the object keyword in a subclass definition.

A subclass can use any instance variables and methods found in the parent class in
addition to utilizing its own instance variables and methods. The instance variables
and methods available to the subclass are a superset of the parent class's instance
variables and methods.

Although a subclass can utilize all portions of the parent class, the reverse is not true.
The parent class has no idea that the subclass even exists; therefore, it is impossible
for the parent class to take advantage of any of the subclass's instance variables and
methods.

216

Object-Oriented Programming in QuickPascal 17

type

class name = object(parent class)
field declaration;

field declaration;

method declaration;

method declaration;

end;

Where:

class name is the new object subclass's identifier.

parent class is the name of the subclass's parent class.

field declaration is a valid field declaration.

method declaration is a procedure or function prototype.

Figure 17-8. Defining a QuickPascal object subclass.

Listing 17.2 is a variation of Listing 17.1. This program uses inheritance to create a
secretary subclass and an executive subclass for the employee parent class. Note
how these new subclasses define their own unique instance variables and methods
while retaining the instance variables and methods of the parent class. Also note how
the employee parent class is never used to declare an object. Its only purpose is to
serve as the parent class of the two new subclasses.

Listing 17.2

{ listl7-2.pas - Inheritance demo }

program inherit_demo;

type

employee = object

name : string;

continued...

217

17 Object-Oriented Programming in QuickPascal

...from previous page
age : integer;

procedure init(n : string; a : integer);

procedure display;

procedure setname(n : string);

procedure setage(a : integer);
function getname : strings-

function getage : integer;

ends-

secretary = object(employee)

wpm : integers-

procedure setwpm(w : integer);
function getwpm : integers-

end;

executive = object(employee)

keys : boolean;

procedure setkeys(k : boolean);

function getkeys : booleans-

end;

procedure employee.init(n : string; a : integer);
begin

self.name := n;

self.age := a;

ends-

procedure employee. displays-
begin

writeln('Employee''s name: self.name);
writeln ('Employee •'s age: *, self, age) s-

ends-

procedure employee.setname(n : string);
begin

continued...

218

Object-Oriented Programming in QuickPascal 17

...from previous page
self.name := n;

end;

procedure employee.setage(a : integer);

begin

self.age := a;

end;

function employee, get name ; strings-

begin

getname := seIf.names-

end ;

function employee. getage : integers-

begin

get age := self, ages-

end;

procedure secretary.setwpm(w : integer);

begin

self.wpm := w;

end;

function secretary.getwpm : integer;

begin

getwpm := self.wpm;

ends-

procedure executive.setkeys(k : boolean);

begin

self.keys := k;

end;

function executive.getkeys : boolean;

begin

getkeys := self.keys;

continued...

219

17 Object-Oriented Programming in QuickPascal

...from previous page
end;

var

el : executive;

e2 : secretary;

begin

new (el);

new(e2);

el.init{'John Smith', 33);

el.setkeys(true);

el.display;

writeln('Executive Washroom Keys? ', el.getkeys);

e2.init('Jane Doe', 28);

e2.setwpm(100);

e2.display;

writeln('Words per minute: ', e2.getwpm);

end.

LESSON 96. Polymorphism

Polymorphism is the ability to allow subclasses to redefine methods found in their
parent classes. It is one of the most powerful tools at the object-oriented
programmer's disposal. Polymorphic methods are called virtual methods. The
keyword override follows the method's prototype in the subclass definition. Figure
17-9 shows the format for defining a subclass with virtual methods.

Object-oriented programming allows you to call not only the subclass's virtual
methods, but also the parent class's inherited methods. Figure 17-10 defines the
structure of calling a virtual method's inherited method. As this figure shows, an
inherited method is called by simply preceding the method call with the keyword
inherited.

Listing 17.3 demonstrates how polymorphism is used in an actual Pascal program.
Listing 17.3 is more refined than Listings 17.1 and 17.2 as it defines the two
subclasses' display methods as virtual methods. The program also demonstrates
how inherited methods can still be called by calling the inherited parent class's
display method from within the new virtual methods.

220

Object-Oriented Programming in QuickPascai 17

type

class name = object(parent class)
field declaration;

field declaration;

method declaration; override;

method declaration; override;

method declaration;

method declaration;

end;

Where:

class name is the new object subclass's identifier.

parent class is the name of the subclass's parent class.

field declaration is a valid field declaration.

method declaration is a procedure or function prototype.

Figure 17-9. Defining a QuickPascai polymorphic subclass.

inherited object name.method name(argument list)

Where:

object name is the name of a previously declared object.

method name is the name of the virtual method.

argument list is a list of arguments to be passed to the
procedure or function.

Figure 17-10. Calling an inherited method.

221

17 Object-Oriented Programming in QuickPascal

Listing 173

{ listl7-3.pas - Polymorphism demo }
program poly_demo;

type

employee = object
name : string;

age : integer;

procedure init(n : string; a : integer);
procedure display;

procedure setname(n : string);
procedure setage{a : integer);
function getname : string;
function getage : integer;

end;

secretary = object(employee)
wpm : integers-
procedure display; override;
procedure setwpm(w ; integer);
function getwpm : integers-

end;

executive = object(employee)

keys : boolean;
procedure display; override;
procedure setkeys(k : boolean);
function getkeys : boolean;

end;

procedure employee.init(n : string; a : integer);
begin

self.name := n;

self.age ;= a;

end;

procedure employee.display;
continued...

222

Object-Oriented Programming in QuickPascai 17

...from previous page
begin

writeln('Employee''s name: self.name);

writeln('Employee•'s age: self,age);
end;

procedure employee.setname(n : string);
begin

self.name := n;

end;

procedure employee.setage(a : integer);
begin

self.age := a;

end;

function employee.getname : string;
begin

getname := self.name;

end;

function employee.getage : integer;
begin

getage := self.age;

end;

procedure secretary.display;
begin

inherited self.display;

writeln{'Words per minute:', self.wpm);
end;

procedure secretary.setwpm(w : integer);
begin

self.wpm := w;

end;

function secretary.getwpm : integer;
begin

continued...

223

17 Object-Oriented Programming in QuickPascal

...from previous page
getwpm := self.wpm;

end;

procedure executive.display;
begin

inherited self.display;

writeln('Executive Washroom Keys? self.keys);

end;

procedure executive.setkeys(k : boolean);
begin

self.keys := k;

end;

function executive.getkeys : boolean;

begin

getkeys := self.keys;

end;

var

el : executive;

e2 : secretary;

begin

new(el);

new(e2);

el.initCJohn Smith', 33);

el.setkeys(true);

el.display;

e2.init('Jane Doe', 28);

e2.setwpm(100);

e2.display;

end.

You're now familiar with object-oriented programming in QuickPascal, and you
understand the concepts of encapsulation, inheritance, and polymorphism. Chapter
18 examines object-oriented programming in Turbo Pascal.

224

Chapter 18

Object-Oriented
Programming in
Turbo Pascal

This chapter explains how object-oriented programming is performed with
Turbo Pascal. The topics covered include: encapsulation, inheritance, and
polymorphism. There are a number of important differences between the way

Turbo Pascal and QuickPascal implement object-oriented programming. Object-
oriented programming with QuickPascal is covered in Chapter 17. If you have both
QuickPascal and Turbo Pascal, you should go slowly and carefully through both
chapters so as to not confuse the different approaches.

LESSON 97. Encapsulation

Traditional programming methods usually call for writing programs by first
designing the program's code and then creating the data structures to go along with
the resulting code. This leads to a second class status for the program data. With

225

18 Object-Oriented Programming in Turbo Pascal

object-oriented programming, code and data are considered equal partners. In an
object-oriented program, the programmer defines object classes. Object classes are
similar to records, but they can also have their own procedures and functions. An
object class's data fields are called instance variables and its procedures and
functions are called methods. This merging of data fields, procedures, and functions
into a single object class is called encapsulation. Encapsulation is one of the most
important features that object-oriented programming offers.

Figure 18-1 defmes the structure of an object class. An object class is defmed like a
record and its field declarations are defined like record field declarations. The object
class's method declarations are nothing more than procedure and function
prototypes. Note that the order of the field and method declarations is unimportant;
however, most programmers declare the object class's instance variables before
defining its methods.

Figure 18-2 defines an object class procedure, while Figure 18-3 defines an object class
function. The only difference between these procedure and function definitions and a
regular procedure or function defmition is the construction. All method definition names
take the form of object class.method name. To retum a value from an object class
function, the retum value is assigned to the method name, as shown in Figure 18-4.

type

class name = object
field declaration;

field declaration;

method declaration;

method declaration;

end;

Where:

class name is the new object class's identifier.

field declaration is a valid field declaration.

method declaration is a procedure or function prototype.

Figure 18-1. Defining a Turbo Pascal object class.

226

Object-Oriented Programming in Turix> Pascal 18

procedure object class.method name(parameter list);
begin

statement;

statement;

end;

Where:

object class is the object class's name.

method name is the method's name.

parameter list is a list of arguments to be passed to the
procedure.

statement is a valid program statement.

Figure 18-2. Defining an object class procedure.

function object class.method name(parameter list): return type;
begin
statement;

statement;

end;

Where:

object class is the object class's name.

method name is the method's name.

parameter list is a list of arguments to be passed to the
function.

retum type is the data type for the function's retum value.

statement is a valid program statement.

Figure 18-3. Defining an object class function.

227

18 Object-Oriented Programming in Turix> Pascal

method name := retum value;

Where:

method name is the object class function's method name.

retum value is a retum value of the proper data type.

Figure 18-4. Returning values from an object class function.

Like an ordinaiy Pascal variable, an object (or class Instance) must be declared before it
can be used in a program. Figure 18-5 defines the declaration of an object. As the figure
shows, an object declaration is identical to any other variable declaration.

Once you've defined an object, you can access its fields using the same format that
you use to access record fields. Figure 18-6 defines the format for referencing an
object's fields.

Object-oriented programming techniques consider accessing an instance variable
outside of the object class's methods a violation because of data hiding. By not
allowing you to directly access instance variables outside of the object class's
definitions, it insulates you from actually having to know the details about an object
class. Instead, you should define object class procedures and functions for setting
and retrieving instance variable values.

var

object name : object class;

Where:

object name is a valid Pascal identifier.

object class is the desired object class's name.

Figure 18-5. Declaring a Turbo Pascal object.

228

Object-Oriented Programming in Turbo Pascal 18

object name.field name

Where:

object name is the name of a previously declared class
instance.

field name is the name of one of the object class's fields.

Figure 18-6. Referencing instance variables.

Figure 18-7 defines an object class method. Other than preceding the method name
with the object name and a period (.) there is no difference between a method call
and a regular Pascal procedure or function call.

Referencing an object class's instance variables or methods inside of the object
class's methods is different from references outside of the object class: the object's
name is not required (it would be impossible to specify an object's name from inside
of a method). At times name conflicts can arise between the object's instance
variable and method names and other identifiers used in the object class's methods.
To prevent these name conflicts from occurring, you can precede the conflicting
instance variable or method with the keyword self and a period (.)• The self identifier
is equivalent to using the object's name outside of the object class's methods.

object name.field name(argument list)

Where:

object name is the name of a previously declared class
object.

method name is the name of the object class procedure or
function to be called.

argument list is a list of arguments to be passed to the
procedure or function.

Figure 18-7. Catting an object's method.

229

18 Objea<)riented Programming in Turbo Pascal

Listing 18.1 demonstrates how you can use encapsulation in a Tbrbo Pascal program. Note
how methods have been defined for the program's object class to achieve data hiding.
When using the technique of data hiding, the instance variables are never directly accessed
from outside of the object class. Data hiding is a very useful technique for reducing errors
and program development time in more complex object-oriented programs.

Listing 18.1

{ listl8-l.pas - Encapsulation demo }
program encap_demo;

type

employee = object
name : string;

age : integers-
procedure init(n : string; a : integer);
procedure displays-
procedure setname(n : string);
procedure setage(a : integer);
function get name : strings-
function getage : integers-

ends-

procedure employee.init(n : string; a : integer);
begin

name := n;

age := a;

end;

procedure employee.display;
begin

writeln('Employee''s name: ', name);
writeln('Employee*'s age: age);

ends-

procedure employee.setname(n : string);
begin

name := n;

end;

procedure employee.setage(a : integer);
continued...

230

Object-Oriented Programming in Turbo Pascal 18

...from previous page
begin

age := a;

end;

function employee. getname : strings-

begin

get name := names-

end;

function employee. getage : integers-

begin

getage := age;

end;

var

el, e2 : employees-

begin

el.init('John Smith', 33);

el.display;

e2.setname('Jane Doe');

e2.setage(28);

writeln('Employee''s name: ', e2.getname);
writeln('Employee''s age: ', e2.getage);

end.

LESSON 98. Inheritance

Although encapsulation is the cornerstone of object-oriented programming, inheritance
makes it shine. Inheritance allows you to define an object class (called a subclass) based
upon a previously defined object class (called a parent class). Figure 18-8 defines the
stmcture of an object subclass. Note that the only difference between defining a subclass
and a parent class is the inclusion of the parent class's name following the object keyword.

A subclass can use its own instance variables and methods, as well as any instance
variables and methods in the parent class. The instance variables and mediods available to
the subclass are a superset of the parent class's instance variables and methods. Although a
subclass can utilize all portions of the parent class, the reverse is not true—^It is impossible
for the parent class to take advantage of any of its subclass's instance variables or methods.

231

18 Object-Oriented Programming in Turbo Pascal

type

class name = object(parent class)
field declaration;

field declaration;

method declaration;

method declaration;

end;

Where:

class name is the new object subclasses identifier.

parent class is the name of the subclass's parent class.

field declaration is a valid field declaration.

method declaration is a procedure or function prototype.

Figure 18-8. Defining a Turbo Pascal object subclass.

Listing 18.2 is a variation of Listing 18.1. It uses inheritance to create a secretary
subclass and an executive subclass for the employee parent class. Note how these
new subclasses define their own unique instance variables and methods while
retaining the instance variables and methods of the parent class. Also note how the
employee parent class is never used to declare an object. Its only purpose is to serve
as the parent class of the two new subclasses.

Listing 18.2

{ listl8-2.pas - Inheritance demo }
program inherit_demo;

type

employee = object
name : strings-

age : integer;

continued...

232

Object-Oriented Programming in Turbo Pascal 18

...from previous page
procedure init(n : string; a : integer);

procedure display;

procedure setname(n : string);

procedure setage(a : integer);

function getname : string;

function getage : integer;

end;

secretary = object(employee)

wpm : integers-

procedure setwpm(w : integer);

function getwpm : integers-

end;

executive = object(employee)

keys : boolean;

procedure setkeys(k : boolean);

function getkeys : booleans-

ends-

procedure employee.init(n : string; a : integer);
begin

name := n;

age := a;

end;

procedure employee.displays-

begin

writeln('Employee''s name: ', name);

writeln('Employee''s age: age);

ends-

procedure employee.setname(n : string);

begin

name := n;

end;

continued...

233

18 Objea<Wented Prograimning in Turbo Pascal

...from previous page
procedure employee.setage(a : integer);
begin

age := a;

end;

function employee.getname : string;
begin

getname := name;

end;

function employee.getage : integers-
begin

getage := ages-

end;

procedure secretary.setwpm(w : integer);
begin

wpm := w;

end;

function secretary.getwpm : integers-
begin

getwpm := wpm;

ends-

procedure executive.setkeys(k : boolean);
begin

keys ;= k;

end;

function executive.getkeys : boolean;

begin

getkeys := keys;

end;

var

el : executive;

continued...

234

Object-Oriented Programming in Turbo Pascal 18

...from previous page
e2 : secretary;

begin

el.init('John Smith*, 33);

el.setkeys(true);

el.display;

writeln('Executive Washroom Keys? el.getkeys);

e2.init('Jane Doe', 28);

e2.setwpm(100);

e2.display;

writeln('Words per minute: ', e2.getwpm);

end.

LESSON 99. Polymorphism

Polymorphism is the ability to allow subclasses to redefine methods found in their
parent classes. It is one of the most powerful tools at the object-oriented
programmer's disposal.

Polymorphic methods are called virtual methods. The virtual keyword follows the
method's prototype in both the parent class and the subclass. Once a method has
been declared as virtual, it must remain virtual throughout all of the parent class's
succeeding subclasses. Figure 18-9 defines a subclass with virtual methods.

Figure 18-9 also defines a special procedure called a constructor. A constructor is
the same as a regular Pascal procedure except that the procedure keyword is
replaced with the constructor keyword, and the constructor procedure performs a
few internal tasks to enable the use of virtual methods in an object class. Note that
any object class with virtual methods must have a constructor. Furthermore, each
and every class instance must call the constructor before calling any of the class's
other methods.

Failure to call the constructor first will most likely result in a fatal program error.
Because the constructor must be called for each object, it is common practice to
make the constructor an initialization routine for the object class.

235

18 Object-Oriented Programming in Turbo Pascal

type

class name = object(parent class)
field declaration;

field declaration;

constructor declaration;

method declaration; virtual;

method declaration; virtual;

method declaration;

method declaration;

end;

Where:

class name is the new object subclass's identifier.

parent class is the parent class's identifier.

field declaration is a valid field declaration.

constructor declaration is the object class's constructor declaration.

method declaration is a procedure or function prototype.

Figure 18-9. Defining a Turbo Pascal polymorphic subclass.

Object-orented programming allows you to call not only the subclass's virtual
methods, but also the parent class's inherited methods. Figure 18-10 defines the
structure of a virtual method's inherited method. You call an inherited method by
preceding the method name with the parent class's name and a period (.)•

236

Object-Oriented Piogiamiiiing in Hirbo Pascal 18

parent class.method name(argument list);

Where:

parent class is the parent class's identifier.

method name is the name of the virtual method.

argument list is a list of arguments to be passed to the
procedure or function.

Figure 18-10. Calling an inherited virtual method.

Listing 18.3 demonstrates how polymorphism is used in an actual Pascal program. It
is more refined than Listings 18.1 and 18.2, as it defines the two subclasses' display
methods as virtual methods. It also demonstrates how inherited methods can still be

called by calling the inherited parent class's display method from within the new
virtual methods. Also note how the subclasses' constructors serve two purposes:

acting as Turbo Pascal's internal housekeeper and serving to initializing the object.

Listing 18.3

{ listl8-3.pas - Polymorphism demo }
program poly_demo;

type

employee = object

name ; string;

age : integer;

constructor init(n ; string; a : integer);

procedure display; virtual;
procedure setname(n : string);
procedure setage(a : integer);
function getname : string;

function get age : integers-

end;

secretary = object(employee)

continued...

237

18 Ol^ea<>riented Ptpgramming in l\ubo Pascal

...from previous page
wpm : integer;

constructor init(n : string; a, w : integer);
procedure display; virtual;

procedure setwpm(w : integer);
function getwpm : integer;

end;

executive = object(employee)

keys : boolean;

constructor init(n: string; a : integer; k : boolean);

procedure display; virtual;

procedure setkeys(k : boolean);

function getkeys : boolean;
end;

constructor employee.init(n : string; a : integer);
begin

name := n;

age := a;

end;

procedure employee.display;

begin

writeln('Employee *'s name: ', name);

writeln('Employee''s age: ', age);

end;

procedure employee.setname(n : string);

begin
name := n;

end;

procedure employee.setage(a : integer);
begin

age := a;

end;

continued...

238

Object-Oriented Programming in Hirbo Pascal 18

...from previous page
function employee.getname : string;
begin

getname := name;

end;

function employee.getage ; integer;

begin

getage := age;

end;

constructor secretary.init(n : string; a, w : integer);
begin

employee.init(n, a);

wpm := w;

end;

procedure secretary .displays-
begin

employee.display;
writeln('Words per minute:', wpm);

ends-

procedure secretary.setwpm(w : integer);
begin

wpm := w;

end;

function secretary.getwpm : integers-

begin

getwpm : = wpm;

end;

constructor executive.init(n : string; a : integer; k : boolean);

begin

employee.init(n, a);

keys := k;

continued...

239

18 Object-Oriented Programming in Turbo Pascal

...from previous page
end;

procedure executive.display;

begin

employee.display;

writeln('Executive Washroom Keys? keys);

end;

procedure executive.setkeys(k : boolean);

begin

keys := k;

end;

function executive.getkeys : boolean;

begin

getkeys := keys;

end;

var

begin

el : executive;

e2 : secretary;

el.init('John Smith', 33, true);

e2.init('Jane Doe', 28, 100);

el.display;

e2.display;

end.

LESSON 100. Dynamic Objects

You can dynamically allocate and deallocate objects with the new and dispose
procedures. Figure 18-11 defines the structure for dynamically allocating objects
with the new procedure. You can call an object's constructor as the new procedure's
second argument, but a constructor is only required for object classes that utilize
virtual methods. Although you can call the constructor as the new procedure's
second argument, you can also call the constructor in another program statement
after you have call^ the new procedure.

240

Object-Oriented Programming in Tuibo Pascal 18

new(object pointer);
or

new(object pointer, constructor call);

Where:

object pointer is a pointer to the object to be dynamically
allocated.

constructor call is an optional constructor call. Because the
object hasn't yet been assigned a name, only
the constructor's method name is required for
the constructor call.

Figure 18-11. Dynamically allocating an object with Turbo Pascal

Figure 18-12 deftnes the structure for deallocating dynamically allocated objects
with the dispose procedure. This figure also defines a call to a special destructor
procedure specified as the dispose procedure's second argument. You declare a
destructor procedure by substituting the destructor keyword for the procedure
keyword in the object class definition. The destructor procedure is used to correctly
deallocate dynamic memory and must be specified as the dispose procedure's second
argument. To insure that Turbo Pascal deallocates the proper number of bytes, all
dynamic objects should have a destructor. Furthermore, it is customary to specify
any other cleanup chores within the destructor's definition.

dispose(object pointer);
or

dispose(object pointer, destructor call);

Where:

object pointer is a pointer to the object to be dynamically
deallocated.

destructor call is an optional destructor call. Note that only
the destructor's method name is required for
the destructor call.

Figure 18-12. Dynamically deallocating an object with Turbo Pascal

241

18 (M^ect<Mented Pipgranmiing in Turbo Pascal

Listing 18.4 demonstrates how objects are dynamically allocated in an actual Pascal
program. This program is a revised version of Listing 18.3. Instead of using static
objects, Listing 18.4 uses dynamically allocated objects to accomplish the same
tasks. Note the use of destructors to ensure that the proper deallocation of dynamic
memory is accomplished.

Listing 18,4

{ listl8-4.pas. Dynamically allocated object demo }
program dynamic_demo;

type

employee = object
name : string;

age : integer;
constructor init(n : string; a : integer);

destructor done; virtual;

procedure display; virtual;

procedure setname(n : string);
procedure setage(a : integer);
function getname : string;

function getage : integer;

end;

secretary = object(employee)

wpm ; integer;

constructor init(n : string; a, w : integer);

destructor done; virtual;

procedure display; virtual;
procedure setwpm(w : integer);
function getwpm : integer;

end;

executive = object(employee)
keys : boolean;

constructor init(n: string; a ; integer; k : boolean);

destructor done; virtual;

continued...

242

Object-Oriented Programming in TXiibo Pascal 18

..from previous page
procedure display; virtual;

procedure setkeys(k : boolean);

function getkeys : boolean;

end;

constructor employee.init(n : string; a : integer);

begin

name := n;

age ;= a;

end;

destructor employee.done;

begin

end;

procedure employee.displays-
begin

writeln('Employee'•s name: ', name);

writeln('Employee''s age: ', age);

ends-

procedure employee.setname(n : string);

begin

name := n;

end;

procedure employee.setage(a : integer);
begin

age := a;

end;

function employee, get name : strings-

begin

getname := name;

end;

continued...

243

18 Object-Oriented Programming in Turbo Pascal

...from previous page
function employee.getage : integer;
begin

getage := age;

end;

constructor secretary.init(n : string; a, w : integer);
begin

employee.init(n, a);

wpm := w;

end;

destructor secretary.done;

begin

end;

procedure secretary.display;

begin

employee.display;

writeln('Words per minute:', wpm);

end;

procedure secretary.setwpm(w : integer);
begin

wpm := w;

end;

function secretary.getwpm : integer;
begin

getwpm := wpm;

end;

constructor executive.init(n : string; a : integer; k:

boolean);

begin

employee.init(n, a);

keys := k;

end;

continued...

244

Object-Oriented Programming in Tuibo Pascal 18

...from previous page
destructor executive.done;

begin

end;

procedure executive.display;

begin

employee.display;

writeln('Executive Washroom Keys? keys);
end;

procedure executive.setkeys(k : boolean);

begin

keys := k;

end;

function executive.getkeys : boolean;

begin

getkeys := keys;

end;

var

el : ''executive;

e2 : ''secretary;

begin

new(el, init('John Smith', 33, true));

new(e2, init('Jane Doe', 28, 100));

el^.display;

e2'' .display ;

dispose(el, done);

dispose(e2, done);

end.

You're now familiar with object-oriented programming as it applies to TYirbo Pascal,
and you understand the concepts of encapsulation, inheritance, and polymorphism.

245

Index

:= (assignment), 29-31

/ (real number), 36-37

- (set difference), 117-118

- (subtraction), 34-35

- (unary minus), 32-33

+ (addition), 33-34

+ (set union), 116-117

+ (string concatenation), 55-56

+ (unary plus), 31-32

* (multiplication), 35-36

* (set intersection), 118-119

< (less than), 60-61

<= (less than or equal to), 61-62

<= (set less than or equal to), 113-114

<> (not equal to), 57-58

<> (set not equal to), 112-113

= (equal to), 56-57

= (set equal to), 111-112

> (greater than), 58-59

>= (greater than or equal to), 59-60

>= (set greater than or equal to), 114-115

@ (address oO, 152,158

addr, 152

and (bitwise and), 48-49

and (logical and), 41-42

ANSI Pascal, xix

append, 192-193

247

Index

arrays, 121-132,140-144,154-155

assign, 192,200,204

B

begin..end, 6

blockread, 205

blockwrite, 205-206

boolean, 19

booleans, 19-21

byte, 13

case, 75-76

char, 21

characters, 21-24

close, 195,200

comment, 6-7

comp, 16

concat, 179-180

const, 8

constants, 3-4

copy, 180-181

D

data hiding, 213-216,228-231

dec, 103-104

delete, 181-182

destructor, 241

dispose, 166-167,212,240-241

div (integer division), 38

double, 16

E

encapsulation, 209-216,225-231

248

Index

enumerated data types, 101-103

eof, 195

error handling, 196-198

extended, 16

file data type, 203-204

filepos, 201-202

for, 69-72

forward declarations, 85-88

freemem, 167-169

function retum values, 83-85

functions, 7, 80-83,157-163

getmem, 167-169

global variables, 91

goto, 77

H

hexadecimal numbers, 12

identifiers, 3

if, 72-74

implementation, 173-174

in (set in), 115-116

inc, 104-105

inheritance, 216-220,231-235

inherited, 220-221

insert, 182-183

instance variables, 210,226

integer, 13

249

Index

integers, 11-15

interface, 173-174

ioresult, 196-197

K

keywords, 2

L

local variables, 88-91

longint, 13

M

methods, 210-226

mod (remainder), 39-40

multi-dimensional arrays, 126-130

N

named constants, S

new, 166-167,212,240-241

nil, 152-153

not (bitwise negation), 46-47

not (logical negation), 40-41

o

operators, 4-5

or (bitwise or), 49-50

or (logical or), 43-44

ordinal data types, 103

override, 220-221

p

parameters, 80,93-95,131-132
parentheses, 63-64

250

Index

pointers, 151-163

polymorphism, 220-224,235-240

pos, 183-184

precedence, 62-64

pred, 106-107

procedures, 7,80-83,157-163

program, 8

R

random access, 200,202

read, 187-188,193-194,200-201

readin, 187-188,193-194

real, 16

real numbers, 16-19

records. 133-144,154-156

recursion, 97-99

repeat, 67-69

reserved words, 2

reset, 192-193,200,204

rewrite, 192-193,200,204

scope, 91-93,96

seek, 201-202

self, 214,229

sequential access, 200

sets, 110-111

shl (bitwise shift left), 52-53

shortint, 13

shr (bitwise shift right), 53-54
single, 16

sizeof, 167-168

statements, 6

251

Index

String, 24

strings, 24-27

subranges, 108-110

succ, 107-108

text data type, 192
typed constants, 14,17-18,20,23,26,89-91,125-126,128,139-140

u

unit, 173

units, 171-178

uses, 172

var, 8

variables, 4,13,19-20,22-23,25, 88-91,157-160
variant records, 145-150

virtual, 235-236

w

while, 65-67

white space, 9

Wirth, Niklaus, xix

with, 137-139

word, 13

write, 185-190,193-194,200-201
writeln, 185-190,193-195

X

xor (bitwise exclusive or), 51-52
xor (exclusive or), 44-45

252

