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INTRODUCTION

Computer programmers are among the great innovators of our times. Unhap
pily, among their most enduring accomplishments are several new techniques for
wasting time. There is no shortage of horror stories about programs that took
twenty times as long to debug as they did to "write."And one hears again and again
about programs that had to be started over several times because they were not
well thought through the first time around. But much less is said of what may be
the most successfully mastered time-wasting technique among students of program
ming: finding information about the machine. Spending hours trying to locate a
single, simple fact is a veritable rite of passage for new programmers—as is ripping
up reference books in a red-eyed frenzy.
A typical programmer's morning after is CRT eye strain, a six foot pile of crum

pled printouts, and two dozen reference books all over the floor. Among these
books are hardware tech reference manuals, DOS tech reference manuals, language
reference manuals, spec sheets on particular chips, hardware manuals for printers
and boards, plus a dozen or so computer books, each possessing some prized bit of
information required at 3 AM by a particularly intricate bit of code.

Because not many of us have photographic memories (working with computers
would make you lose it, anyway), all these books are really needed, since the same
old things have to be looked up again and again. The first time through it may
require an hour just to zero in on the information. Once found, it still may take
untold ages to extract what you need from a lengthy beginner's presentation; or, if
your misfortune is to be using a manual written entirely in Swahili, half the after
noon may go into a translation. What is wanted is one big book, with as much as
can possibly be packed into it, unencumbered by information not useful for pro
gramming, written entirely at intermediate level, covering all IBM micros, and
organized in a way that makes the information easy to find. Now where can one
find a book like that?

And so I've put together this reference-book-that-is-also-an-instruction-book for
all who aspire to write extraordinary programs, but who haven't oodles of time to
waste (or $600-800 to spend on all those other manuals and books). The material is
organized in two ways. First, the chapters are divided by hardware types, subdi
vided by features of the hardware, and then set into short entries that each address
a particular programming task. For example, one section of the video chapter con
cerns the cursor, and there the various entries show how to position the cursor,
change its shape, turn it on and off, etc.
Second, each discussion is divided into four parts (sometimes fewer). First comes

a paragraph or two giving fundamentals. Then the problem at hand is discussed
from the viewpoint of programming in a high-level language, programming in the
middle-level BIOS and DOS interrupts, and programming at low-level directly
upon the auxiliary chips that support the microprocessor. In addition, each of the
three or four sections that comprise a chapter begins with a page or two giving the
background required to understand the section. These summaries are intended for
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review, but you could probably use them to fake your way through the first time
around.

The discussions of high-level programming show the task written in an advanced
programming language. While the concepts could as well apply to Pascal or C, the
examples are given in BASIC. BASIC was chosen in part because it is the Latin of
computerdom, in part because everybody who owns an IBM microcomputer owns
BASIC, and in part because Microsoft BASIC makes more extensive use of IBM
hardware than any other programming language. Even beginning students of
BASIC should be able to use many of these discussions. To extend the capabilities
of BASIC, a number of machine language subroutines are provided, and there is an
appendix showing how to integrate them into your programs. You can do all sorts
of neat things using these routines, such as reprogramming the keyboard or adding
paging to the monochrome card.

Middle-level programming shows how a programming task is accomplished
using the interrupts provided by the operating system. These are powerful little
routines that do the drudge work of any computer, like moving the cursor, or read
ing a disk directory. They are the mainstay of assembly language programming,
and the examples given at middle level are written in assembly language. But more
and more compilers for high-level languages are allowing access to interrupts, let
ting the savvy programmer pull off things that the language itself cannot, like read
ing absolute disk sectors. And so the middle level information is of wider interest
than it might at first seem. Only PC-DOS (MS-DOS) is discussed; if you're writing
for CPM-86 or the UCSD p-system, you'll need to find documentation elsewhere.

Finally, the low-level programming examples show how the particular task is
carried out at chip level. All of the microcomputers in the IBM family basically
share the same architecture, since all are based on the same Intel family of inte
grated circuits. The chips are accessed through I/O ports, which are at your dis
posal in virtually any language, BASIC included. All of the chips important to pro
grammers are discussed, including the timer chip, the peripheral interface, the
interrupt controller, the CRT controller, the floppy disk controller, and the chips
that manage serial and parallel ports. While IBM discourages programmers from
programming at this level (out of concern that programs won't run on future
machines), again and again one discovers capabilities of the machines that can not
be reached any other way.
Not all tasks are shown at all three levels. Some are simply impossible in BASIC.

Others are not provided for in the operating system. And some are so complicated
at low level (many of the disk operations, for example) that they can not be treated
here—nor is there much point, since the authors of DOS have already done the
work and done it well. In most cases, however, all three levels are shown. By com
paring the levels, you can see how a high-level language reaches down to the
interrupts and how the interrupts, in turn, operate on the chips that are the heart of
the computer.

This book could look awfully intimidating to those who are familiar only with
high-level languages like BASIC or Pascal. This is because the middle- and low-
level sections are written in assembly language, bestowing upon the pages the aura
of the Rosetta Stone. And indeed the book would make an ideal companion for
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those studying assembler. But don't feel that only a third of the book is at your dis
posal if you don't know assembly and don't intend to learn it. For one thing, a
number of compilers will let you set up and use the operating system functions
shown at middle-level, such as Turbo Pascal and Lattice C. And many of the low-
level procedures can, in fact, be performed by high-level languages. To enable you
to decode what is going on in the assembly language examples, a brief introduction
is given in Appendix D. Even if you never use the lower level material, by keeping
an inquiring eye on what is going on you will gain a much deeper appreciation of
how your high-level language works and of why it sometimes runs into trouble.
Nearly every sub-subsection has its own sample of code. Many are only a few

trivial lines. Others are the stripped-down beginnings of an elaborate routine. Very
few are stand-alone programs. Rather than fill the book with cutesy examples, I've
left just the fragment of code you'd need when you turn to the book for help. By no
means is every example intended to be the finest possible rendition. Indeed, in
many cases the code has purposely been written inefficiently so that you can better
follow it. The idea behind the samples is not so much to provide a source book of
program modules as it is to point the way and to start you thinking about the vari
ous implications of what you are about to do. But if you like, you can enter a sam
ple as is into a program to provide a functioning starting point and then expand it
until it is just as baroque as your heart desires. Since all of the examples have been
tested, they should also act as a reference to help weed out those really dumb mis
takes that tend to crop up when long hours of programming have pummeled your
mind into a sub-zero IQ.
The prose is this book is dense, to say the least. But I've tried to avoid jargon as

much as possible, and there is a glossary of essential Computerese at the end.
Except for some highly specialized information, practically every programming-
related bit of information available from IBM documentation has been packed in.
While it would have been nice to cover absolutely everything, the book would
have reached 1000 pages, and the forest might have disappeared among the trees.
And so for really unusual programming needs—say, to extensively program the
floppy disk controller, or to reprogram the AT keyboard—you will have to get
hold of the IBM tech reference manuals or the spec sheets from the chip manufac
turers. But 99% of programs ought to require no more information about IBM
hardware than you will find here. The many different ways of doing the same thing
are gone over in the same place, with comparisons of strengths and weaknesses.
I've included all of the usual tables of ASCII codes, instruction times, and the like
so that this single volume can take care of all of your ordinary reference needs.
There is also a good deal of information here that provides details that the IBM

documentation leaves out, such as which control codes are interpreted by which
screen-output routines or how various disk functions format files. Some entries
give the how-to for common programming tasks that are not inherent in the hard
ware, but that make heavy use of hardware features, such as real-time operations or
horizontal scrolling. Space is also given to programmer's tricks that, while not
exactly blessed by the Powers Above, can help one get out of a programming tight
spot. As things stand now, every programmer has to figure these things out for
himself (usually more than once). How ironic it is that the high priests of the Infor-
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mation Age spend so much time re-inventing the wheel, as in the days before papy
rus made everything so easy.
The entries also contain information about differences between the various IBM

machines. The discussion is based on the standard PC. When the PCjr, XT, or AT
differs, individual attention is given to that machine. One line that had to be drawn
is that those features of the AT and DOS 3.0 that are directed towards multiuser

systems are not covered. This would be a book in itself. With a few noted excep
tions, the many examples of code are for a standard PC; but unless stated other
wise, they should run just fine on any of the IBM micros. There is an important
limitation, however. Every word of this book assumes the use of PC-DOS version
2.1 or later and the accompanying version of advanced BASIC. Users who won't
update to 2.1 don't deserve your innovative programs anyway.

If this book has anything, it has facts—zillions of them—and I do ever so sin
cerely hope that they are all correct. There also are several hundred program exam
ples, and for these too I have been praying for perfection. But if you think it is easy
to keep so much information out of harm's way during multiple edits and revisions,
give it a try. If you find something awful, please take a deep breath and think how
much worse it could have been using those nasty books written by the competition.
Then, sit down and write me a note (care of Brady Co., Simon & Schuster, General
Reference Group, 1230 Avenue of the Americas, New York, NY 10020). If you do,
the world will be a better place for programmers to live in when this book comes
out in a second edition, updated for IBM's latest creations.

Prosperous programming!
Robert Jourdain



Numeric Conventions Used In This Book

Assembly programmers will find nothing unusual in the way numbers and
addresses are expressed in these pages. But many high-level programmers are shel
tered from addressing systems and non-decimal numbers, and they may be a little
confused at first. If you find yourself in that category, don't be put off! This book
can serve as a fairly painless way of acquiring a familiarity with this
gobbledygook, and your education as a programmer will remain severely con
strained without it. Two appendices have been provided to help you along. Appen
dix A discusses binary and hexadecimal numbers, and how the latter are applied to
memory addresses. Appendix B covers more about binary numbers and how they
are used in bit-operations. Even if you have no need for this help, do be aware of
the following:

1. In deference to less advanced programmers, all numbers are decimal unless
followed by an H (for hexadecimal) or a B (for binary). Sometimes the B is
omitted after binary numbers when the values obviously refer to bit
patterns.

2. Another exception is the eight-digit numbers in the form 0000:0000. These
are hexadecimal numbers giving the segment and offset of a memory
address. Appendix A explains the meaning of all this.

3. Bits are numbered from 0 to 7 (or 0 to 15), where bit 0 is the least significant
bit (that is, when set, bit 0 = 1 and bit 7 = 128).

4. An expression such as "ASCII 5" refers to character number 5 of the ASCII
set. That is, it refers to a single byte with the value of 5, and not to the
ASCII code for the symbol 5, or to a two-byte integer representation of the
value 5.

5. Numbers that are placed in brackets and that look something like [2.1.3] are
crossreferences to other entries in the book. This one stands for "Chapter 2,
Section 1, Entry 3". [2.1.0] refers to the review discussion that begins Section
1 of Chapter 2. You'll find hundreds of these numbers scattered throughout
the text. They refer to the place in the book where you can find information
of the topic just mentioned. These are only to help the novice. If you under
stand the discussion, ignore the crossreferences.

6. When working program code is embedded in text, it is always written in
bold face.
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System Resources
Section 1: Assess the System Resources

When a program is loaded, its first job should be to find out where it is: what
kind of IBM microcomputer is it running in?...under what DOS version?...how
much memory does it have to work with?...are all the required peripherals present?
There are three ways to go about finding out this information. Least elegant is sim
ply to prompt the program user for the information (will he or she know the
answers?). A far better approach is to take as much information as possible from
the dip switch settings on the system board. But these settings are not always ade
quate. And so the third option is to make direct access to the hardware in question
or to try to find the information in the BIOS data area. Since the dip switch settings
are the best place to begin looking for information, this section begins with a dis
cussion of the chip where this information is found: the 8255 peripheral interface.
A program can access hardware in only two ways. It can read from and write to

any of the port addresses to which hardware happens to be connected (only a small
fraction of the 65535 possible port addresses are used). Or the program can read
from and write to any of the million-plus addresses in the random-access-memory
address space. A comparative summary of port addresses is found at [7.3.0]. Figure
1-1 shows how the operating system and programs are distributed in memory.
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1.1.1 Access the 8255 peripheral interface

The Intel 8255 peripheral interface chip is the best place to begin looking for
information about what peripherals are present. The chip is dedicated to a variety
of uses. It reports the settings of the dip switches on the system board. It receives
the computer's input from the keyboard. And it controls a number of peripherals,
including the 8253 timer chip. Among the IBM microcomputers, the AT alone does
not use an 8255; instead it stores its configuration information along with a real
time clock on a special battery-powered chip. However, the AT does use the same
8255 port addresses for keyboard operations and to control the timer chip.
The 8255 has three one-byte registers, referred to as Ports A through C. They are

located respectively at port address 60H-62H. All three ports may be read, but only
Port B may be written to. On a PC, setting bit 7 of Port B to 1 changes the informa
tion that Port A holds. Similarly, on a PC, setting bit 2 determines the contents of
the low four bits of Port C, and setting bit 3 on an XT does the same. The contents
of the registers are as follows:

Port A (60H)

Bhen Port B bit 7=0:
bits 0-7 PC,XT,PCj r,AT: eight-bit scan codes from keyboard

When Port B bit 7=1 on PC:

bit0 PC: 0=no diskette drives

1  PC: unused

2-3 PC: banks of RAM on system board
4-5 PC: type of display

(11=monochrome, 10=80x25 color,01=40x25 color)
6-7 PC: number of diskette drives

Port B (61H)

bit 0 PC,XT,PCjr: controls gate of 8253 timer chip channel 2
1  PC,XT,PC] r: output to speaker
2  PC: select contents of Port C

PC] r: 1=alpha modes, 0=graphics modes
3  PC,PCj r: 1=cassette motor off

XT: select contents of Port C

4  PC,XT: 0=enable RAM
PC] r: 1=disable beeper and cassette motor

5  PC,XT: 0=enable expansion slot error signals
6  PC,XT: 1=enable keyboard clock signal

5-6 PC]r: select sound source
(00=8253 chip, 01=cassette, 10=1/0, 11=76496 chip)

7  PC: select contents of Port A, keyboard acknowledge
XT: keyboard acknowledge

Port C (62H)

Bhen Port B bit 2=1 on PC or Port B bit 3=1 on XT:
bits 0-3 PC: bottom half of configuration switch 2

(RAM in expansion slots)
0  PCjr: 1=incoming keystroke lost
1  XT: 1=maths coprocessor installed

PCj r: 0=modem card instal led
2  PCj r: 0=diskette card instal led

2-3 XT: banks of RAM on system board
3  PCjr: 0=128K RAM
4  PC,PCjr: input from cassette

XT: unused
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5  PC,XT,PCj r: output of 8253 channel 2
6  PC,XT: 1= expansion slot error check

PCjr: 1=keyboard data
7  PC,XT: 1= parity error check

PC] r: 0=keyboard cable connected
When Port B bi t 2=0 on PC or Port 8 bi t 3=0 on XT:

bits 0-3 PC: top half of configuration switch 2 (unused)
0-1 XT: display type

(11=monochrome, 10=80x25 color,01=40x25 color)
2-3 XT: number diskette drives (00=1, etc.)
4-7 PC,XT: same as if port 8 bit 2=1

Note that a 0 in one of the register bits corresponds to an "off" setting of a dip
switch.

The AT keeps its configuration settings on a Motorola MC146818 chip, along
with the real-time clock. The AT has no 8255 chip as such, although the same port
addresses are used to control the timer chip and to receive data from the keyboard.
The chip has 64 registers, numbered from 00-3FH. To read a register, first send its
number to port address 70H and then read it from 71H. The various configuration
settings are discussed in the pages that follow. Here is an overview:

Register Number Use

10H floppy diskette drive type
12 fixed disk drive type
14 peripherals
15 system board memory (low byte)
16 system board memory (high byte)
17 total expansion memory (low byte)
18 total expansion memory (high byte)
30 expansion memory above 1 megabyte (low byte)
31 expansion memory above 1 megabyte (high byte)

High Level

There are a number of examples in this volume where these ports are accessed.
Here a BASIC program finds the number of disk drives installed in a PC. Before
reading the two high bits of Port A, bit 7 of Port B must be set to 1. It is essential
that you change the bit back to 0 before proceeding or the keyboard will be locked
out and the machine will need to be turned off to recover. BASIC does not allow

the binary representation of numbers, which makes analyzing bit patterns trouble
some. A simple subroutine can change an integer up to 255 (the largest value a port
can deliver) into an eight-character binary string. Then a string function like MID$
plucks out the relevant bits for analysis. See Appendix B for the fundamentals of
bit operations in BASIC.

100 A=INP(&H61) 'get the value in Port 8
110 A=AOR 128 ' turn on bi t 7
120 OUT &H61 ,A 'put the byte back in Port 8
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130 B=INP(&H60)
140 A=A AND 127
150 OUT &H61,A
160 GOSUB 1000
170 NUMDISK$=RIGHT$(B$,1)

•now get the value in Port A
'turn off bit 7
•restore original value to Port B
•convert it to a binary string
•get bit 0

180 IF D$="1" THEN NUMDISK=0:GOTO 230 'no disk system
190 C$=LEFT$(B$,2) 'take the two top bits of the string
200 TALLEY=0 • keep taI ley of number of disks
210 IF RIGHT$(C$,1)="1" THEN TALLEY = 2 'figure high bit
220 IF LEFT$(C$,1)="1"THENTALLEY=TALLEY+1 'add low bit
230 TALLEY=TALLEY+1 'count from 1, not 0

•.. .and now you have the number of drives

• • 'Subroutine to convert byte to binary string
1010 'B$ is the string
1020 FOR N=7 TO 0 STEP -1 'keep testing smal ler powers of 2
1030 Z=B-2^N 'subtract from the value of the byte
1040 IF Z>=0 THEN B=Z:B$=B$+"1" ELSE B$=B$+"0" 'assemble string
1050 NEXT • repeat for each bi t
1060 RETURN 'all done

Low Level

An assembler program finds the number of disk drives in the same way as the

Port B.

IN AL,61H ;get the value in Port B
OR AL,10000000B ;force bit 7 to 1
OUT 61H,AL ; replace the byte
IN AL,60H ;get the value in Port A
MOV CL,6 ;set up to shift AL right
SHR AL,CL ;shift top 2 bits six places
INC AL ;count from 1, not from 0
MOV NUM DRIVES,AL ;and now you have the number
IN AL,61H ;prepare to restore Port B
AND AL,01111111B ;turn off bit 7
OUT 61H,AL ; replace the byte
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1.1.2 Find out the type of IBM microcomputer
There are compatibility problems among the various IBM microcomputers. For a

program to run on any of the IBM machines and make full use of their capabilities,
it must be able to determine the type of machine into which it has been loaded.
This information is found in the second from last byte of memory space, at address
FFFFE in the BIOS ROM, using the following code numbers:

Computer Code

PC FF

XT FE

PCjr FD

AT FC

High Level

In BASIC, simply use PEEK to read the value:

100 OEF SE6=&HF000 'point to top 64K of memory
110 X=PEEK(8HFFFE) 'get second from last byte
120 IFX=8HF0THEN... '...then it's a PCjr

Low Level

In assembly language:

;  FIND THE COMPUTER TYPE:
MOV AX,0F000H .-point EStoROMs
MOV ES.AX
MOV AL,ES:[0FFFEH] ;get the byte
CMP AL,0FDH .-isitaPCjr?
JE INITIALIZE JR ;if so, go to initiali zation code
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1.1.3 Determine the PC-DOS version

As PC-DOS evolves, it adds new functions, many of which make it far easier to
create some kinds of code than did earlier versions. To ensure that software will
run with any DOS version, a program would need to be limited to only the func
tions available in DOS 1.0. DOS provides an interrupt that returns the DOS ver
sion number. The number can be used to check the compatibility of your software.
Minimally, a program can issue an error message at startup, alerting the user to the
need for a different version.

Middle Level

Function 30H of INT 21H returns the DOS function nunnber. The "major version
number (the 2 of 2.10) is returned in AL, and the "minor version number" (the 10
of 2.10) is returned in AH (note that a .1 minor version is reported as AH, not as
IH). AL may contain 0, which indicates a pre-DOS 2.0 version. This interrupt
destroys the contents of BX and CX, which return with the value 0.

;  FIND DOS VERSION:

MOV AH,30H /function number to get DOS version
INT 21H /get the function number
CMP AL,2 /check for version 2.x
JL WRONG__DOS /if Less than 2, issue message
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1.1.4 Find out the number and type of video adaptors
A program may need to find out whether it is running on a monochrome card, a

color graphics card, or an EGA, and whether a second adaptor is present. [4.1.6]
explains how to switch control from one adaptor to another. The equipment status
byte kept in the BIOS data area at 0040:0010 gives the settings on dip switch 1 that
tell which card is active. Ideally, bits 5-4 would be 11 if the monochrome card is in
control, 10 for 80x25 on the color card, 01 for 40x25 on the color card, and 00 for
the EGA. If an EGA is present, however, it may set the bits to a value other than
00, depending on how its own dip switches are set. So you must first use some
other means to determine whether an EGA is present, and if not, then the BIOS
data will indicate whether the active adaptor is the monochrome card or color
card. To check for an EGA, test the byte at 0040:0087. If it equals 0, there is no
EGA. If it is nonzero, when bit 3 is 0 the EGA is the active adaptor, and when it is
1, a second adaptor is in control.
When an EGA is present, search for a monochrome or color adaptor by writing a

value to the cursor address register on their 6845 chips [4.1.1] and then read the
value back to see if it matches. For the monochrome card, send 0FH to port 3B4H
in order to index the cursor register, and then read and write the cursor address
from port 3B5H. The corresponding ports on the color card are 3D4H and 3D5H.
When no card is present, the ports return 0FFH; but since this number could be
held by the register, it is not enough just to test for that value.
There are two other questions you may need answered about the EGA: how

much memory is present, and what kind of monitor is it connected to? To find the
type of display, test bit 1 at 0040:0087; when it is 1 the monochrome display is
attached, and when it is 0 a color display is attached. If your program uses the
350-line color mode, it will need to figure out whether the color display is IRGB or
R'G'B'RGB, where the latter corresponds to the IBM Enhanced Color Display. This
is told by the settings of the four dip switches on the EGA itself. These settings are
returned in CL when function 12H of INT 10H is called. The pattern of the low
four bits will be 0110 for the Enhanced Color Display. This same function reports
the amount of memory on the EGA. On return, BL contains 0 for 64K, 1 for 128, 2
for 192K and 3 for the full 256K of video RAM.

High Level — —

These code fragments check the current monitor type and mode, and they find
out what kinds of video adaptors are present in the machine:

100 ' • 'find what adaptor is in controL:
110 DEF SE6=&H40 'point to start of BIOS data area
120X=PEEK(&H87) 'check for EGA
130 IF X=0 THEN 200 ' there is no EGA, jump ahead
140 IF X AND 8=0 THEN... 'then the EGA is in controL

200 X=PEEK(&H10) 'get equipment status byte
210 Y=X AND 48 'get combined value of bits 4 and 5
220 IF Y=48THEN... '.. .then monochrome (00110000)
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230 IF Y-32 THEN... ■.. .then 80x25 graphics (00100000)
240 IF Y=16 THEN... '.. .then 40x25 graphics (00010000)

This example checks for the monochrome card when an EGA or color card is
active. The same code will search for the color card if you use port addresses
&H3D4 and &H3D5.

100 ''' f ind out i f noncehrome card
110 OUT &H3B4,&HF
120 X=INP(&H3B5)
130 OUT SH3B5,100
140 IF INP(SH3B5)<>100THEN...
150 OUT SH3B5,X

is present:
'address the cursor register
' read i t and save va tue
■send arbitrary value to register
"... then card present if returns same
' restore value i f card present

Low Level

These examples parallel the BASIC examples above.
;  FIND WHAT ADAPTOR IS IN CONTROL:

MOV AX,40H ;point ES to BIOS data area
MOV ES,AX ;
MOV AL,ES:[87H] ;see i f EGA i s present
CMP AL,0

t

JE NO EGA ; i f 0040:0087 i s 0, no EGA
TEST AL,00001000B ;there is an EGA, now test bit 3
JNZ EGA_NOT_ACTIVE ;if bit 3=1, EGA is not acti ve

MOV AL,ES:[10H] ;get the video status byte
AND AL,00110000B ;isolate bits 4 S 5
CMP AL,48 ;is it monochrome card?
JE MONOCHROME ;j ump i f so

EGA NOT ACTIVE:

;eLse assume color card

Assuming a monochrome card was found, find out if a (non-active) color card is
installed:

;  IS NON-ACTIVE COLOR CARD INSTALLED?
MOV DX,3D4H ;point to 6845 address regi ster
MOV AL,0FH .•request cursor register
OUT DX.AL ;index the register
INC DX ;poi nt to data regi ster
IN AL.DX ;get current reading
XCHG AH,AL ;save the value
MOV AL,100 ;use 100 as test value
OUT DX.AL ;send it
IN AL.DX ;read it back
CMP AL.100 ;compare
JNE NO CARD ; j ump i f no card
XCHG AH.AL ;else there is a color card...
OUT DX.AL ;—so restore initial reading
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1.1.5 Find out the number and type of disk drives
On all machines but the AT (discussed below) the registers of the 8255 peripheral

interface chip contain information about how many floppy disk drives a machine
has. See the examples at [1.1.1] to get at this information. The information that
identifies the type of disk is kept in the disk's file allocation table (FAT), which
keeps track of disk space and usage. The first byte in the FAT holds one of the fol
lowing codes:

Code Disk Type

FF double-sided, 8-sector

FE single-sided, 8-sector
FD double-sided, 9-sector

FC single-sided, 9-sector
F9 double-sided, 15-sector (high density)
F8 fixed disk

A file allocation table is not itself a file. It can be read using the BIOS or DOS func
tions that directly read particular disk sectors. [5.1.1] contains all of the informa
tion you need to find the FAT and read it. Fortunately, the operating system pro
vides a function that returns the identification byte for a disk.
The BIOS data does not indicate how many hard disks are in place, since the dip

switches are set only for floppies. However, you can use the operating system func
tion given here to search for drives. Instead of one of the above codes, it returns
0CDH when no drive is present. Simply keep testing higher and higher drive num
bers until this value occurs.

The AT is unique in that its configuration information tells what kind of disk
drives are used. This information is obtained from port address 71H after sending a
register number to 70H. For floppy diskettes the register number is 10H. Informa
tion for the first diskette is held in bits 7-4 and for the second in bits 3-0. In both
cases, the bit pattern is 0000 if no drive is present, 0001 for a double-sided (48
track-per-inch) drive, and 0010 for the high capacity (96 track-per-inch) drive. The
fixed disk information is in register 12H. Again, bits 7-4 and 3-0 report for the first
and second drives. 0000 indicates that there is no drive. Fifteen other values are
possible, reflecting the size and construction of the drive. These codes are compli
cated; should you need this information for some reason, consult the AT Technical
Reference Manual.

Middle Level

Function ICH of INT 21H reports information about a specific drive. Place the
drive number in DL, where 0 = default, 1 = A, etc. On return DX holds the number
of clusters in the FAT, AL holds the number of sectors per cluster, and CX holds
the number of bytes in a sector. DS;BX points to a byte containing the disk identifi-

10
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cation code from the FAT, as in the table above. This example finds out the disk
type of drive A:

;  FIND THE DISK TYPE:

MOV AH,1CH ;function
MOV 0L,1 ;seLect drive A
INT 21H ;get the information
MOV DL,[BX] ;get the dri ve type
CMP DL,0FDH ; i s i t doubLe-sided, 9-sector?
JE DbL_9 ;...etc

The AT BIOS has a function that reports general drive parameters. This is func
tion 8 of INT 13H. It returns the number of drives in DL, the largest number of
sides in a drive in DH, the maximum number of sectors in CL and tracks in CH,
and the disk error status code in AH (shown at [5.4.8]).
Another AT BIOS function returns disk type. This is function 15H of INT 13H,

which requires the drive number in DL. It returns a code in AH, where 0 = no disk,
1 = diskette without change detection, 2 = diskette with change detection, and
3 = fixed disk. If a fixed disk, CX:DX returns the number of 512-byte sectors.

11
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1.1.6 Find out the numbers and types of peripherals

At Startup, BIOS checks what equipment is connected, and it puts together a sta
tus register to report its findings. The register is two bytes long, beginning at
0040:0010. The following bit pattern applies to all machines, unless noted
otherwise:

bit 0 If 1, then diskette drives present
1  XT,AT: 1=math coprocessor present (PC,PCj r: unused)
2-3 11=64K base RAM (AT: unused)
4-5 Active video adaptor (11=80x25 monochrome card,

10=80x25 color card, 01=40x25 color card)
6-7 Number of diskette drives (if bit 0=1)
8  PCj r: 0=DMA chip present (PC,XT,AT: unused)
9-11 Number of serial adaptors
12 1=game port attached (AT: unused)
13 PCjr: serial printer attached (PC,XT,AT: unused)
14-15 Number of para I lei adaptors

Most of the information is straightforward. But note that the information about
the disk drives is divided between bits 0 and 6-7. The value 0 in 6-7 indicates that

there is one disk drive; to determine that there are none, you must consult bit 0.
The number of serial ports attached can be found by looking into the BIOS data

area. BIOS allocates four two-byte fields to hold the base addresses of up to four
COM ports (DOS uses only two of these). A base address is the lowest number
port address of the group of ports that access the COM channel. The four fields
begin at 0040:0008. COMl is at :0008 and COM2 at :000A. The fields contain 0
when there is no corresponding serial port. Thus, if the word at :0008 is non-zero
and the word two bytes higher at :000A is zero, there is one serial port.
The AT keeps information about peripherals at register 14H of its configuration

chip. First write 14H out to port address 70H, then read the register at 71H. Here is
the bit pattern:

bits 7-6 00=1 floppy drive, 01=2 floppy drives
5-4 01=displaying in 40 columns on color card

10=displaying in 80 columns on color card
11=displaying on monochrome display

3-2 unused

1  1=math coprocessor installed
0  0=no diskette drives, 1=drives instal led

High Level ————————————

In BASIC, simply read the status bytes directly from the BIOS data area. Appen
dix B explains how bit operations are performed in BASIC. This example checks to
see if there are any disk drives by ascertaining whether the low byte of the status
register is even or odd (even = no drives).

100 DEF SEG=0 • poi nt to the bottom of memory
110 X=PEEK(&H410) 'get the low byte of the regi ster
120 IF X MOD 2 = 0 THEN 140 * if no remainder after /2, no drives
130 PRINT"Disk drive(s) present 'else, there are drives, give message
140 GOTO 160 ' jump over 2nd message

12
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150 PRINT"Di sk dn* ve(s) absent
160 ...

To check for COMl:

100 DEG SEG=40H
110 PORT=PEEK(0)+256*PEEK(1)
120 IF PORT = 0 THEN ...

* no drives, give message
'continue...

'point to start of BIOS data area
'get the word at offset 0
'...then there is no COMl adaptor

Middle Level

BIOS INT IIH returns the equipment status bytes in AX. There are no input reg
isters. This example checks the number of disk drives.

-GET THE NUMBER OF DISK DRIVES:

INT 11H

TEST AL,0
JZ NO_DRIVES
AND AL,1100000B
MOV CL,5
SHR AL,CL
INC AL

;get the status byte
;are there any drives?
; jump ahead i f there are none
;isoLate bits 5 and 6
;prepare to shift register right
;shift right five bits
;add 1, so count begins from 1
;and now the number of drives is in AL

Low Level

Assembly programs work just like those shown above for BASIC. Here is an
example that reads configuration information on the AT, checking if the math
coprocessor chip is installed:

MOV AL,14H
OUT 70H,AL
IN AL,71H
TEST AL,10B
JZ NO COPROCESSOR

; register number
;send register request
; read the regi ster
;test bit 1
;if not set, no coprocessor

13
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1.1.7 Assess the amount of RAM

"How much RAM is there?" can mean three things. How much RAM is recorded
on the system board dip switchs? How many banks of RAM chips are really resi
dent in the machine? And how much memory is actually unoccupied and available
for DOS to assign to your program? A machine might have ten banks of 64K, but
the dip switches could be set to 320K to set aside half for some special use. And of
the 320K "available," how is your program to know what other software has been
loaded and kept resident at either the high or low ends of memory?

Each question is answered in a different way. On the PC and XT the dip switch
settings are simply read from Port B of the 8255 peripheral interface chip. See
[1.1.1] for how to do this. BIOS keeps a two-byte variable at 0040:0013 that
reports the number of K of usable memory. On the PCjr, bit 3 at port address 62H
(port C of the 8255 chip) equals 0 when the machine has the 64K expansion option.
The AT gives especially good information about memory. On the chip that holds
configuration information, registers 15H (low) and 16H (high) tell how much mem
ory is installed on the system board (there are only three valid sizes: 0100H for
256K, 0200H for 512K, and 0280H for 512K plus the 128K memory expansion
option). I/O channel memory on the AT is reported by registers 17H and 18H
(given in 512K increments). Memory positioned above the one-megabyte range is
available from 30H and 31H (again in 512K increments, up to 15 megabytes). If the
AT's 128K memory expansion option is installed, bit 7 is set to 1 in register 33. In
all cases, first send the register number to port address 70H, then read the register
value from 71H.

It is easy to write a routine that directly tests for the presence of RAM at regular
intervals in the memory space. Since RAM is installed minimally in 16K units, it is
only necessary to check one memory location in each 16K segment to be able to
infer that the whole 16K is there. When an address in the memory space is empty, it
will read as 233. An arbitrary number other than 233 is written into the location,
and the same address is immediately read to see if the number is there. If instead
233 turns up, the particular memory bank is nonexistent. Avoid this technique on
the AT, where built-in exception handling comes in to action when a write is made
to nonexistent RAM. The AT's diagnostics are so good that you can rely on the
system's configuration information.
RAM is extensively occupied by parts of the operating system, device drivers,

resident interrupt handlers, and DOS memory control blocks. When checking for
the memory banks, you must not make any permanent changes in the contents of
memory. First save the contents of a (presumed) memory location, then check it,
and then restore the original contents.
There is one more problem. Should your routine momentarily happen to change

the very code that comprises it, a crash could result. Thus it is necessary to choose
a location in a 64K block that is away from the offset in which your routine resides.
Place the routine early in a program, and use as the offset in a block the same offset
as the code segment uses. For example, if the code segment register holds 13E2,
then the segment begins at offset 3E2 within the second 64K block of memory.
Since your routine is located somewhat beyond this address, it is safe to check the

14
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byte at 3E2 in each block. Disable interrupts [1.2.2] lest the code be changed for a
hardware interrupt that occurs while the check is made.

Finding out how much memory is actually available to DOS also requires a trick.
When a program first receives control, DOS gives it all available memory, includ
ing the part of high memory that holds the transient part of DOS (which automati
cally reloads if it has been overlaid). To run another program from within the cur
rent program or to make a program fit for multiuser systems, the allocated memory
must be shrunk down to the required size. [1.3.1] explains how this change is made
using function 4AH of INT 21H.
The same function can also be used to expand allocated memory. Since all mem

ory is allocated when a program is loaded, such expansion is impossible at startup.
If you attempt it, the carry flag is set to indicate an error condition, error code 8
appears in AX, and the maximum number of 16-byte 'paragraphs available is
returned in BX. The latter is just the information needed. Simply place a request for
an impossibly large block in BX (say, F000H paragraphs), then execute the inter
rupt. Be sure to execute the function first thing in a program while ES still holds its
initial value.

High Level —

Interpreted BASIC uses only 64K (although PEEK and POKE can access memory
outside of the 64K). The amount of the 64K that is available is returned by the FRE
function. The function always takes a dummy argument, which may be either
numeric or string. BYTES = FRE(x) gives BYTES the number of bytes free.
BYTES = FRE(x$) does the same. But the string argument forces a "housecleaning"
of the data area before the byte count is returned. Note that if the size of the work
space is set using CLEAR, the amount reported by FRE will be 2.5 to 4 kbytes
smaller, owing to the requirements of the interpreter work area.
The IBM BASIC compiler does not impose the 64K restriction on code and data

combined. But the compiler itself is limited in how much memory it can use while it
compiles. If space is short, delete all unnecessary line numbers using the /N option
at compile time. Also, use shorter words as variable names.

Middle Level

BIOS interrupt 12H checks the dip switch settings and returns in AX the number
of kilobytes in the system. This value is calculated from the settings on the 8255
register settings or, in the AT, from the configuration/clock chip. There are no
input registers. Keep in mind that the dip switch settings may be incorrect, limiting
the reliability of this approach.
To find out how many 16-byte paragraphs are available to DOS, use function

4AH of INT 21H. ES must hold the value it has at startup:

;  FIND OUT NUMBER OF PARAGRAPHS AVAILABLE TO DOS:
MOV AH,4AH ;use SETBLOCK function
MOV BX,0FFFFH ;request impossibLe alLocation
INT 21H ;now BX holds number of free paragraphs

15
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The AT uses function 88H of INT 15H to make an extended memory check,
which seeks memory that is outside the address range of the CPU when it is in real
address mode. That is to say, it looks for memory above the one-megabyte mark.
The system board must be equipped with 512-640K for this function to operate.
The number of IK blocks of extended memory is returned in AX.

Low Level

The first example checks the number of 64K memory banks in the first ten 64K
segments of memory. If you test within the higher six banks of memory space, keep
in mind that there are video buffers in the segment starting at 6000:0000 (and pos
sibly A000:0000) and ROMs in the segment starting at F000:0000 (and possibly
0000:0000).

NEXT:

GO AHEAD:

CLI ;disabLe hardware interrupts
MOV AX, OS ;get the segment value for the code
AND AX,0FFFH ;turn off top 4 bits (set to bottom seg)
MOV ES,AX ;place pointer in ES
MOV DI,0 ; Let DI count the number of 64K banks
MOV OX,10 ; repeat the check for 10 banks
MOV BL,'X' ;use'X'as the replacement byte "
MOV DL,ES:[0] ;save the byte at the sample address

;place 'X' at the sample addressMOV ES:[0],BL
MOV DH,ES:[0] ;read the sample address
MOV ES:[0],DL ;replace the original value of the byte
CMP DH,'X' ;does it match what was written?
JNE GO AHEAD ;if not, don't include in the tally
INC DI ;increment the tally of memory banks
MOV AX,ES ;get ready to increment pointer
ADD AX,1000H ;point to address 64K higher
MOV ES,AX ;set pointer back in ES
LOOP NEXT ;do the next bank
STI ;reenable interrupts

;and now the tally is in DI
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Section 2: Manage Interrupts
Interrupts are ready-made routines that the computer calls to perform a common

task. There are both hardwcire and softwcivs interrupts. A hardware interrupt is one
that is initiated by hardware, whether on the system board or from a card in an
I/O channel. It may be brought about by a pulse of the timer chip, by a signal from
a printer, by pressing a key on the keyboard, or by a variety of other routes. Hard
ware interrupts are not coordinated with the operation of software. When one is
called, the CPU stops what it is doing, performs the interrupt, and then picks up
where it left off. So as to be able to return to the exact place in the program that it
left off, the address of that place (CS:1P) is pushed on to the stack, as is the flag reg
ister. Then the address in memory of the interrupt routine is loaded into CS:1P so
that the routine is given control. Interrupt routines are often referred to as "inter
rupt handlers". An interrupt handler always ends with an IRET instruction, which
undoes the process that started up the interrupt, replacing the original values for
CS:1P and the flags, so that the program continues along its way.
Software interrupts, on the other hand, do not Teally interrupt anything. They

are essentially no more than procedures that your programs call to perform mun
dane tasks, like taking a keystroke or writing on the screen. These routines, how
ever, are written within the operating system, not within your programs, and the
interrupt mechanism is the means of getting at them. Software interrupts may be
nested inside each other. For example, all DOS keyboard-input interrupts use the
BIOS keyboard-input interrupt to get a character from the keyboard buffer. Note
that a hardware interrupt can take control during a software interrupt. Confusion
does not arise from all this activity because each interrupt routine is carefully
designed to save all registers that it changes, restoring them at its conclusion so that
when it is finished it leaves no trace of its having occupied the CPU.
The addresses of interrupts are called vectors. Each vector is four bytes long. The

first word holds the value for IP and the second keeps CS. The bottommost 1024
bytes of memory hold interrupt vectors, so there is room for 256 vectors in all.
Taken together, they are referred to as the vector table. The vector for INT 0 is at
0000:0000, INT 1 starts at 0000:0004, INT 2 is at 0000:0008, etc. If you were to
look at the four bytes starting at 0000:0020, which keeps the vector for INT 8H (the
time-of-day interrupt), you would find A5FE00F0. Keeping in mind that the low
byte of each word comes first in memory, and that the order is IPrCS, the four-byte
value translates to F000:FEA5. This is the starting address in ROM for the routine
that performs INT 8. Figure 1-2 shows the path a program takes in executing INT
21H.
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1.2.1 Program the 8259 interrupt controller
The Intel 8259 programmable interrupt controller chip is used in all IBM micro

computers to manage hardware interrupts. Because more than one request for an
interrupt can arrive at the same time, the chip has a priority arrangement. There
are eight levels of priority, except in the AT, which has 16, and calls to the levels
are referred to by the abbreviations IRQ0 to IRQ7 (IRQ0 to IRQ15), which stand
for "interrupt request." Highest priority goes to level 0. The extra eight levels on
the AT are handled by a second 8259 chip; this second series of levels takes prece
dence between IRQ2 and IRQ3. Interrupt requests 0-7 fit into the vectors for INT
8H-INT FH; on the AT interrupt requests 8-15 are serviced by INT 70H-INT 77H.
Here are the interrupt assignments:

Hardware Interrupts By Precedence

IRQ0 timer

1 keyboard
2 I/O channel

8 real-time clock (AT only)
9 software redirected to IRQ2 (AT only)
10 reserved

11 reserved

12 reserved /
13 maths coprocessor (AT only)
14 fixed disk contrpller (AT only)
15 reserved

3 COMl (COM2 on the AT)
4 COM2 (modem on the PCjr, COMl on the AT)
5 fixed disk (video vertical retrace on PCjr, LPT2 on AT)
6 diskette controller

7 LPTl

The time-of-day interrupt [2.1.0] is given highest priority because repeatedly miss
ing it would throw off the time-of-day reading. The keyboard interrupt [3.1.0] is
invoked when a key is pressed or released; it brings about a chain of events that
usually ends in a key code being placed in the keyboard buffer (from there it is
retrieved by software interrupts).
The 8259 has three one-byte registers that control and monitor the eight hard

ware interrupt lines. The interrupt request register (IRR) changes a bit to 1 when
the corresponding interrupt line signals a request. The chip then automatically
checks whether another interrupt is in progress. It consults the in service register
(ISR) for this information. Additional circuitry assures that the priority scheme is
enforced. Finally, before invoking the interrupt, the interrupt mask register (IMR)
is checked to see whether an interrupt of that level is currently allowed or not.
Ordinarily, programmers access only the interrupt mask register at port address
21H [1.2.2] and the interrupt command register at port address 20H [1.2.3].
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1.2.2 Allow/disallow particular hardware interrupts
Assembler programs can disable the hardware interrupts listed at [1.2.1]. These

are maskable interrupts; other hardware interrupts that intercept special errors
(such as divide-by-zero) cannot be masked out. There are two reasons to disable
hardware interrupts. In one case, all interrupts are blocked out so that a critical
piece of code can be completely executed before anything else takes place in the
machine. For example, interrupts are disabled while a hardware interrupt vector is
altered, lest the interrupt occur when the vector is only half changed.

In the second case, only selected hardware interrupts are masked out. This is
because those particular interrupts interfere with some time-critical activity. For
example, a precisely timed I/O routine could not afford to be waylaid by a lengthy
disk interrupt.

Low Level

Ultimately, the execution of all interrupts relies upon the interrupt flag (bit 9) of
the flag register. When it is 0, it honors any interrupt request that the interrupt
mask register permits. When it is 1, no hardware interrupt can occur. To set the
flag to 1, disabling interrupts, use the CLI instruction. To clear the flag to 0,
reenabling interrupts, use STI. Avoid shutting off interrupts for long periods. The
time-of-day interrupt occurs 18.2 times per second, and if more than one request is
made for this interrupt while hardware interrupts are disabled, the extra requests
are discarded and the time-of-day count falls behind.
Be aware that the machine automatically disables hardware interrupts when a

software interrupt is invoked and it automatically reenables them on return. When
you write your own software interrupts, you may start the routine with STI if there
is reason to keep the hardware interrupts moving. Note also that failing to follow
CLI with STI can freeze up the machine, since input from the keyboard is shut out.
To mask out particular hardware interrupts, simply send the appropriate bit pat

tern to port address 21H, which is the address of the interrupt mask register (IMR).
The mask register on the second 8259 chip in the AT (IRQ8-15) is at AlH. Set to 1
those bits that correspond to the numbers of the interrupts you wish to mask. The
register is write-only. The example below blocks out the disk interrupt. Be sure to
clear the register with zeros at the end of a program or the settings will continue
after a program is terminated.

;  MASK OUT BIT 6 IN THE INTERRUPT MASK REGISTER:
MOV AL,010000008 ;riask out bit 6 (diskette interrupt)
OUT 21H,AL ;send to the interrupt mask register

MOV AL,0 ;clear IMR at end of program
OUT 21H,AL
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1.2.3 Write your own interrupt

There are several reasons for writing your own interrupts. First, most of the
ready-made interrupts provided by the operating system are nothing more than
common procedures available to all programs, and you may wish to add to this
library. For example, many of your programs might use a routine that writes
strings on the screen vertically. Rather than link the routine into each program as a
procedure, you could set it up as an interrupt that is written as a program that
stays resident in memory after termination [1.3.4]. Thus, instead of CALL
WRITE ^VERTICALLY you might have INT 80H (keep in mind that calling an
interrupt is slightly slower than calling a procedure).
A second reason to write interrupts is to make use of some special hardware

interrupts. These interrupts are automatically invoked by some occurence within
the computer hardware. In some cases BIOS initializes the vectors for these inter
rupts to point to a routine that does nothing at all (it contains only an IRET state
ment). You can write your own routine and change the interrupt vector to point to
it. Then, whenever the hardware interrupt occurs your routine is executed. One
such routine is the time-of-day interrupt [2.1.0], which is invoked automatically
18.2 times a second. Ordinarily this interrupt only updates the time-of-day clock,
but you can add any code you like to the interrupt. If your code checks the clock
setting and swings into action at designated times, real-time operations are made
possible. Other uses include programming a routine for Ctrl-Break [3.2.8], for
PrtSc [3.2.9], and for error conditions [7.2.5]. Printer interrupts [6.3.1] and com
munications interrupts [7.1.8] allow the computer to rapidly switch back and forth
between I/O operations and other processing.

Finally, you may wish to write an interrupt that entirely replaces one of the oper
ating system routines, tailoring it to your program's needs. [1.2.4] shows how to
write an interrupt within an interrupt that lets you modify existing routines.

Middle Level

Function 25H of INT 21H sets an interrupt vector to a specified address. The
addresses are two words long. The high word holds the segment value (for CS),
and the low word holds the offset (for IP). To set a vector to point to one of your
routines, simply place the segment for the routine in DS and the offset of the rou
tine in DX (follow the order in the example below). Then place the interrupt num
ber in AL and call the function. Any interrupt routine must end with IRET rather
than the usual RET instruction. (IRET pops three words off the stack—the flag reg
ister is included—whereas RET pushes only two. If you attempt to test the routine
as an ordinary procedure, but as one ending with IRET, the stack will be thrown
off kilter.) Note that function 25H automatically disables hardware interrupts when
it changes the vector, so there is no danger that midway a hardware interrupt could
occur that would make use of the vector.

;  TO SET UP THE INTERRUPT:
PUSH DS ;saveDS
MOV DX,OFFSET ROUTINE ;offset of the 1 nterrupt routine in DX

21



1.2.3 Write your own interrupt

MOV

MOV

MOV

MOV

INT

POP

AX,SEG ROUTINE
DS,AX
AH,25H
AL,60H
21H

DS

;  THE INTERRUPT ROUTINE:
ROUTINE PROC FAR

PUSH AX

;segment of the interrupt routine
;pLace in DS
;function to set up a vector
;the vector number (INT 60H)
;change the interrupt
;restore DS

;save aL L changed registers

ROUTINE

POP AX

MOV AL,20H
OUT 20H,AL
I RET

ENDP

;restore aLL changed registers
;use these two Lines for
;hardware interrupts only

Place the following two lines of code at the end of any hardware interrupts you
write:

MOV

OUT

AL,20H
20H,AL

It is coincidental that the numbers (20H) are the same in the two lines. If a hard

ware interrupt does not end with this code, the 8259 chip will not clear its in service
register so that it reenables interrupts at lower levels than the one just completed.
Failure to add the code can easily crash the program; since the keyboard interrupt
is likely to be shut out, even Ctrl-Alt-Del will be useless. Note that this code is not
required by those interrupt vectors that add extensions to existing interrupts, such
as INT ICH, which adds code to the time-of-day interrupt [2.1.7].
When a program ends, the original interrupt vectors should be restored. Other

wise a subsequent program may call the interrupt and jump to a place in memory
where your routine no longer resides. Function 35 of INT 21H returns the current
value of a vector, placing the segment value in ES and the offset in BX. Before set
ting up your own interrupt, get the current value using this function, save the
value, and then restore it using function 25H (as above) just before terminating
your program. For example:

;  IN THE DATA SEGMENT:
KEEP CS DU 0

KEEP_IP DU 0
;  AT THE BEGINNING OF THE PROGRAM:

MOV AH,25H
MOV AL,1CH
INT 21H

MOV KEEP_IP,BX
MOV KEEP__CS,ES

;  AT THE END OF THE PROGRAM:
CLI

PUSH DS

MOV DX,KEEP_IP
MOV AX,KEEP_CS
MOV DS,AX
MOV AH,25H

;holds segment for replaced interrupt
;holds offset for replaced interrupt

;function number to get INT address
;number of the vector (the timer INT)
;now segment is in ES, offset in BX
;store offset
;store segment

;DS is destroyed
;prepare to restore offset

f

;prepare to restore segment
;function to set an interrupt vector
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MOV AL,1CH ;number of the vector
INT 21H ;now the interrupt 1 s reset
POP DS ;restore OS
SIX

There are a couple of pitfalls to look out for when you write an interrupt. If the
new interrupt routine needs to access data variables within, take care that DS is
properly set (ordinarily the interrupt can use the stack provided by the calling pro
gram). Another consideration is that programs that end via Ctrl-Break will fail to
restore interrupt vectors that have been changed unless the Ctrl-Break interrupt
itself is programmed to see to it that the job is done [3.2.8].

Low Level

The DOS functions discussed above do nothing more than retrieve or change
two words at the low end of memory. The offset of a vector is obtained simply by
multiplying the number of the vector by 4. To place the address of INT 16H in
ES:BX, for example:

;  GET THE ADDRESS OF INT 16H:
SUB AX,AX
MOV ES,AX
MOV DI,16H
SHL DI,1
SHL DI,1
MOV BX,ES:CDI]
MOV AX,ES:CDI]+2
MOV ES,AX

set extra segment to bottom of memory

put INT number (INT 16H) in DI
multiply by 2
multiply by 2 again
put low byte in BX
put high byte in ES

It is inadvisable to go around the DOS functions and set interrupt vectors directly.
In particular, in a multitasking environment the operating system may support a
number of interrupt vector tables, and the actual physical location of the table may
be known only to DOS.
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1.2.4 Make additions to existing interrupts
Although unusual, sometimes it is useful to add features to an existing in

terrupt. As an example, consider the software utilities that convert single key
strokes into long user-defined strings of characters (keyboard macros). These
utilities may exploit the fact that all standard keyboard input arrives via func
tion 0 of BIOS interrupt 16H [3.1.3]. The basic DOS keyboard-input interrupts
call the BIOS interrupt to take a character from the keyboard buffer. Thus one
need only modify INT 16H so that it acts as a gateway for the macros, and then
any program will receive the macro no matter what keyboard-input interrupt
it uses. (Sophisticated keyboard macro programs completely replace the key
board interrupt, INT 9.)
At this time only BIOS interrupts may be modified. DOS interrupts are non-

reentrant. A BIOS interrupt, however, can not be internally modified because
it is on ROM. But you can write a subroutine that precedes and/or follows a
BIOS interrupt, and this subroutine will be invoked every time the interrupt
is called. In the case of INT 16H, for example, you need only write a routine
and point to it the interrupt vector for INT 16H. The original vector for INT 16H
meanwhile is transferred to some unused vector, say 60H. The new routine
simply calls INT 60H to make use of the original 16H interrupt; that is, when
a program calls INT 16H, control is transferred to the special routine, which
then calls the original 16H interrupt, which returns to the special routine when
it is finished, and the new routine in turn returns to the place in the program
that made the call for 16H. Once this is set up, special coding can be placed
within the new routine before or after INT 60H is called. Figure 1-3 diagrams
this procedure. In summary:

1. Set up the new routine, at some point calling INT 60H.
2. Transfer the interrupt vector for 16H to 60H.
3. Change the 16H vector to point to the new routine.
4. Terminate the program, leaving it resident in memory [1.3.4].
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Figure 1-3. Adding on to an existing interrupt.
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Section 3: Manage Programs

Most programs are loaded into memory, run, and then abandoned by DOS
when the program terminates. High level languages like BASIC ordinarily leave no
alternatives. But other options are available to assembly programmers, and this
section demonstrates them. Some programs operate as device drivers or interrupt
handlers, and their code must be kept in memory ("kept resident") even after other
programs have been loaded (interrupt vectors provide the means by which subse
quent programs find their way to the resident routines). And sometimes one pro
gram may need to run another program from within itself. In fact, DOS allows a
program to load a second copy of COMMAND.COM into memory, and the sec
ond copy can be used for its usual user-interface facilities, such as the COPY or
DIR commands.

Programs may be in two formats, .EXE and .COM. The former allows programs
to be larger than 64K, but it requires that DOS do some processing as it loads the
program into memory. COM programs, on the other hand, already exist in the
image that memory requires. COM programs are especially useful for short utili
ties. In either case, the code that comprises a program is preceded in memory by a
program segment prefix (PSP). This is an area 100H bytes large that holds special
information DOS requires to operate the program; the PSP provides space for file
I/O operations as well [5.3.5]. When an EXE file is loaded, both DS and ES point
to the PSP. For COM files, CS also initially points to the PSP. Note that DOS 3.0
has a function that returns the PSP segment number. This is number 62H of INT
21H; there are no input registers, and the paragraph number is returned in BX.
One reason the PSP location is of concern is that its first word contains the num

ber of the DOS interrupt that will terminate the program. When the final RET
statement of a program is executed, the values left at the top of the stack direct the
instruction pointer (the IP register) to the start of the PSP, so that the termination
code is executed as the next instruction of the program. There is more discussion of
this feature at [1.3.4] and at [1.3.6].
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For reference, here is a map of the PSP fields:

Offset Field Size Use

0H DW number of DOS function used to terminate program
2 DW memory size in paragraphs
4 DW reserved

6 DD long call to DOS function dispatcher
A DD terminate address (IP,CS)
E DD Ctrl-break exit address (IP,CS)
12 DD critical error exit address (IP,CX)
16 22 bytes reserved

2C DW paragraph number of the program's environment string
2E 46 bytes reserved

5C 16 bytes parameter area 1 (formatted as unopened FCB)
6C 20 bytes parameter area 2 (formatted as unopened FCB)
80 128 bytes default disk transfer area/receives command line data

27



1.3.1 Allocate/deallocate memory

1.3.1 Allocate/deallocate memory

When PC-DOS loads a program, the program is placed at the low end of mem
ory, just above COMMAND.COM and any installed device drivers or other utili
ties that have been left resident. At this time, all of memory above the program
itself is allocated to the program. If the program needs some memory to set up a
data area, it can figure out approximately where in memory its own code ends, and
then it is free to place the data area anywhere above that. To calculate the end of a
program, place a "pseudo segment" at the end of the program, such as:

ZSEG SEGMENT

ZSEG ENDS

On the IBM assembler, ZSEG will be made the last because segments are arranged
in alphabetical order. With other assemblers, actually place it at the end of the
source code. In the program itself, simply write MOV AX,ZSEG, and AX will then
point to the first free segment in memory following the program.
This approach works so long as the program does not assume the existence of

memory that is not actually there. Nor does it work in a multiuser environment
where several programs may be sharing the same range of memory addresses. As a
solution to these problems DOS is able to keep track of 640K of memory in the sys
tem, and to allocate memory blocks of any size a program demands. A memory
block is simply a continuous section of memory; it can be as large as there is mem
ory available; in particular, it can be larger than one segment (64K). If too large a
block is requested, DOS returns an error message. Any possibility of overlapping
blocks is ruled out. In addition, DOS can deallocate, shrink, or expand existing
blocks. While a program is not forced to use these means, it is both prudent and
convenient to do so. And certain DOS functions require that the DOS memory
management tools be used, such as when a program is loaded and then left resident
[1.3.4] or when one program is run from within another [1.3.2].

Before any memory allocation can be made, the existing block (all of memory
from the beginning of the program on up) must be shrunk down to the size of the
program. Thereafter, whenever a block is created, DOS sets up a 16-byte memory
control block that immediately precedes the block in memory. The first five bytes
of this field are significant, as follows:

byte 0 ASCII 90 if the Last block in the chain,
otherwise ASCII 77

bytes 1-2 0 if the block has been deallocated
bytes 3-4 size of the block in (16-byte) paragraphs

DOS references the blocks as a chain. The address of the first block is kept in an
internal variable. The variable enables DOS to locate the memory control block of
the first allocated block, and from the information contained there it can find the
next block, and so on, as shown in Figure 1-4. Once you start using the DOS mem
ory allocation system, you must stick with it. If a program subsequently overwrites
areas containing control blocks, the chain will be broken, and DOS will begin
returning error messages.

28



Allocate/deallocate memory 1.3.1

Low

Memory

2^
c "
o o
O OQ

2-
o o
o m

o

o

n o o
lOtO

90

Address to

DOS Variable

I High
Memory

Address Address

Figure 1-4. Memory Control Block Linkage.

DOS provides three memory allocation functions, numbers 48H-4AH of INT
21H. Function 48H allocates memory, and 49H deallocates memory. The third
function ("SETBLOCK") changes the size of memory currently allocated to a pro
gram; this is the function that must be executed before the others can be used. Then
blocks may be allocated and deallocated freely. A program must deallocate all of
the blocks it has allocated before terminating. Otherwise memory will be seques
tered away from subsequent uses.

Middle Level

All three memory allocation functions of INT 21H use a 16-bit starting address
for the memory block they operate upon. This address represents the segment in
which the block begins (the block always starts at offset 0 in that segment). Thus
the actual block starting location is at the memory address represented by this
value multiplied by 16. Also, in all three functions, BX contains the number of 16-
byte sections of memory ("paragraphs") that are to be allocated or freed. If the
function fails, the carry flag is set and AX returns an error code explaining why.
The three relevant codes are:

7

8

9

memory control blocks have been destroyed
there is insufficient memory available
the memory block address is invalid

The allocation function uses codes 7 & 8, the deallocation function uses codes 7 &
9, and the function that changes the allocation uses all three codes. The following
code first allocates a 1024-byte block, saving its starting address in the variable
BLOCK—SEG. BX holds the number of 16-byte paragraphs requested, and upon
return the start address is found as AX:0 (that is, as a 0 offset within the segment
value contained in AX). The second part of the code deallocates the same block, as
is required when a program terminates. In this case, the value returned in AX is
placed in ES. DOS keeps track of the block size and knows how many paragraphs
to deallocate.

;  ALLOCATE A 1024-BYTE AREA:
MOV AH,48H
MOV BX,64
INT 21H

;function number
; request 64 16-byte paragraphs
;attempt the at location
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JC ERROR ;go to error handling routine if carry
MOV BLOCK_SEG,AX ;else, AX holds block segment, save it

;  DEALLOCATE THE SAME AREA:
MOV AX,BLOCK__SEG ;retrieve start address of the block
MOV ES,AX ;placeitinES
MOV AH,49H ;function number to deal locate
INT 21H ;make the deallocation

Finally, here is an example of function 4AH. ES holds the segment value of the
program segment prefix, that is, of the very first byte in memory at which the pro
gram is loaded. ES is initialized to this value at startup. To use SETBLOCK, either
call the function at the very beginning of a program (before ES is changed) or else
store the initial value of ES for later use.

BX holds the desired block size in 16-byte paragraphs. To calculate the size, place
an extra, fake segment in the program that will reside at the end of the source code.
On the IBM Macro Assembler, the segments are laid out in alphabetical order, and
so this dummy segment can be placed anywhere in the source code so long as it has
a name like "ZSEG". On other assemblers, place the dummy segment at the actual
end of the source code. The program can read the position of this segment and
compare it with its own starting segment, giving the amount of memory required
by the program. At the time that the program is loaded, both ES and DS hold the
paragraph number for the very beginning of the program at the program segment
prefix; in COM files CS also points to this position, but in EXE files it does not.

;  REALLOCATE A PROGRAM*S MEMORY (ES HOLDS SAME VALUE AS AT LOAD-TIME) :
MOV BX,ZSEG ;get paragraph U of end of program + 1
MOV AX,ES ;get paragraph # of start of program
SUB BX,AX ;calculate program size in paragraphs
MOV AH,4AH ;function number
INT 21H ;make the reallocation
JC MEMORY ERROR ;check for errors, etc...

;  THE DUMMY SEGMENT:
ZSEG SEGMENT

ZSEG ENDS

30



Run one program from within another 1.3.2

1.3.2 Run one program from within another

DOS provides the EXEC function (number 4B of INT 21H) to run one program
from within another. The first program is called the "parent," and the one that is
loaded and run is called the "child."

High Level

BASIC 3.0 introduces the SHELL command. With considerable limitations, it lets
a BASIC program load and run another program. The format is SHELL command-
string. The command string may be just the name of a program, or it can be the
name plus the parameters that would ordinarily follow the program name on the
command line. If no command-string is named, a copy of COMMAND.COM is
loaded and the DOS prompt appears. Any DOS commands may be used, and,
when finished, typing EXIT returns control to the BASIC program.
There are a number of restrictions of the use of SHELL. If the program that is

loaded changes the screen mode, for example, the change will not be automatically
remedied on return. All files must be closed before the program is loaded, and it
must not be a program that stays resident after termination. See the BASIC manual
for a discussion of several other problems.

Middle Level

Function 4BH is more complicated than most, requiring four preparatory steps:

(1) Make space available in memory for the program.
(3) Create a parameter block.
(2) Build a drive, path, and program name string.
(4) Save the SS and SP registers in variables.

Space must be made in memory because DOS assigns the whole of memory to a
program when it is loaded. Without freeing some memory there would be no where
to load the second program. [1.3.1] explains how it is done using the SETBLOCK
function. Once memory is freed, you need merely place in BX the required number
of 16-byte paragraphs of memory space, put 4AH in AH, and execute INT 21H to
shrink down the memory allocation so that only the number of paragraphs
requested is available to the program.
The parameter block, to which ESiBX must point, is a 14-byte block of memory

in which you must place the following four pieces of information:

DW segment address of environment string
DD segment/offset of command Line
DD segment/offset of first file control block
DD segment/offset of second file control block

An environment string is a string of one or more specifications that DOS follows
when it executes a program. The elements of an environment string are the same as
those that would be found in a CONFIG.SYS file on disk. For example,
VERIFY = ON could be placed in the string. Simply begin the string with the first
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element, end the element with the ASCII 0 character, write the next, and so on. The
last element must be followed by two ASCII 0 characters. The string must begin on
a paragraph boundary (that is, its address MOD 16 must be 0). This is because the
entry in the parameter block that points to the string holds only a two-byte seg
ment value. All of this may be avoided if the new program can operate with the
same environment string as the one that loads it. In that case, simply place ASCII 0
in the first two bytes of the parameter block.
The next four bytes of the parameter block point to a command line for the pro

gram being loaded. A "command line" is the string that invokes a program. Load
ing a program from DOS, it might be something like EDITOR A:CHAPTER1
\NOTES.MS. Here, the editor is called and given the name of a file in a
subdirectory of drive A to open immediately. When you set up a command line for
EXEC, include only the latter information, not the name of the program to be
loaded. Precede the command line with one byte that holds the number of charac
ters in the string, and end the string with a carriage return byte, which is ASCII 13.
The last eight bytes of the parameter block point to file control blocks (FCBs).

The FCBs hold information for the one or two files named in the command line. If
there are no files to be opened, fill the eight bytes with ASCII 0. [5.3.5] explains
how FCBs operate. Since the advent of DOS version 2.0, FCBs have been essen
tially obsolete, and you may avoid including the FCB information by instead using
the DOS 2.0 file handle conventions, which access a file by a code number rather
than by a control block (also discussed at [5.3.5]).

Finally, you must build a drive, path, and file name string. This is the string that
names the program to be loaded. DS:DX points to the string when EXEC is exe
cuted. The string is a standard "ASCII Z string" which is nothing more than a
drive specifier, a tree directory path, and the file name and extension, ending with
an ASCII 0 byte. For example, the string might be B: \NEWDATA\ FILER.EXE0,
where 0 is ASCII 0.

Once all of the above information is set up, there remains one final task. All reg
isters are altered by the program that is called. The stack segment and stack pointer
must be saved so that they can be restored when control returns to the calling pro
gram. Set aside variables to do this. Since DS is also destroyed, these variables can
not be retrieved until the statements MOV AX,DSEG and MOV DS,AX are
repeated. Once SS and SP are saved, place 0 in AL to choose the "load and run"
option (EXEC is also used for overlays [1.3.5]). Then place 4AH in AH and call
INT 21H. At this point essentially two programs are running, and the parent goes
on "hold." DOS provides a way for the child program to pass a return code to the
parent, so that errors and status may be reported. [7.2.5] explains how this is done.
Minimally, on return the carry flag is set if there has been an error, and in this case
AX returns 1 for an invalid function number, 2 if the file was not found, 5 for disk
problems, 8 if insufficient memory, 10 if the environment string was invalid, and
11 if the format was invalid.

The example given here is the simplest possible, but often the EXEC procedure
requires no more. It leaves the entire parameter block as zeros, and does not create
an environment string. This means that no command line is passed to the loaded
program, and that the environment will be the same as that of the calling program.
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You need only change the memory allocation, set up the filename and (empty)
parameter block, and save SS and SP.

;  IN THE DATA SEGMENT:
FILENAME DB *ArTRIAL.EXE',0
PARAMETERS DW 7dup(0)
KEEP_SS DU 0
KEEP__SP DW 0

;  REALLOCATE MEMORY:
MOV BX,ZSEG
MOV AX,ES
SUB BX,AX
MOV AH,4AH
INT 21H

;  POINT TO PARAMETER BLOCK:
MOV AX,SEG PARAMETERS
MOV

MOV

ES,AX
BX,OFFSET PARAMET

; Load TRIAL.EXE from dm* ve A
;parameter block all zeros
;var1abLe to keep SS
;variabLe to keep SP

;get paragraph U of end of program
;get paragraph # of start of program
;caLcuLate program size in paragraphs
;function number
;make the reallocation

ERS
;  STORE COPIES OF SS AND SP:

MOV

MOV

KEEP__SS,SS
KEEP_SP,SP

;  POINT TO FILE NAME STRING:
MOV DX,OFFSET FILENAME
MOV AX,SEG FILENAME
MOV DS,AX

;  LOAD THE PROGRAM:
MOV AH,4BH
MOV AL,0
INT 21H

;  AFTERWARDS, RESTORE REGISTERS:
MOV AX,DSEG
MOV DS,AX
MOV SS,KEEP_SS
MOV SP,KEEP SP

ES holds segment

;BX holds offset

;save SS
;save SP

;offset in DX
;segment in DS

;EXEC function
;choose "load and run" option
; run i t

restore DS

restore SS

restore SP

;  AT THE END OF THE PROGRAM CREATE A DUMMY SEGMENT TO MARK END OF CODE:
ZSEG SEGMENT ;see C1.3.1 ] for an explanation
ZSEG ENDS
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1.3.3 Use DOS user-interface commands from within a

program

Programs can have at their disposal the full range of DOS user-interface com
mands, such as DIR or CHKDSK. When these services are used from within a pro
gram, a second copy of COMMAND.COM is loaded and run. While a good deal
of programming can be saved by this approach, it does impose the need for ade
quate memory for this second copy, and your program could be left at an impasse
if not enough is available.

High Level

BASIC 3.0 can load a second copy of COMMAND.COM using its SHELL state
ment. SHELL is discussed at [1.3.2]. COMMAND.COM is loaded when no file
name is specified, so simply writing SHELL brings up the DOS prompt. Any of the
DOS utilities may be used, including batch files. To return to the calling BASIC
program, enter EXIT.

Middle Level

The example at [1.3.2] must have a command line added to it in this case. Nor
mally the line begins with a byte giving its length, then the command string itself,
and finally ASCII 13. When passing a command to COMMAND.COM, you must
place /C before the string (see the DOS manual under Invoking a Secondary Com
mand Processor), You also should specify the drive where COMMAND.COM is
found, placing the drive prefix at the start of the command string. To have the
directory of drive A shown when COMMAND.COM is on drive B, write:

COMMAND__LINE DB 12, *8: /C DIR A:M3

The following bit of code sets the command line address into the parameter block
used in the example at [1.3.2]:

LEA BX,PARAMETERS ;get offset of parameter block
MOV AX,OFFSET COMMAND_LINE ;get offset of command Line
MOV [BX]+2,AX ;pLace in 1st 2 bytes of block
MOV AX,SE6 COMMAND__LINE ;get segment of command line
MOV [BX3+4,AX ;place in 2nd 2 bytes of block
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1.3.4 Keep a program in memory after it has terminated

Programs left resident in memory may serve as utilities to other programs. Nor
mally such a program is accessed via an unused interrupt vector. DOS treats the
program as if it were part of itself, protecting it from being overlaid by programs
that are subsequently loaded. Resident programs are usually written in COM form,
as discussed at [1.3.6]. They are slightly more difficult to make resident when they
are written as EXE files.

Terminating a program with INT 27H causes it to stay resident. At the time that
INT 27H is executed, CS must point to the start of the program segment prefix for
this function to work properly. In COM programs, CS is initially set to this posi
tion, and so you need simply end the program with 27H. In EXE programs, on the
other hand, CS initially points to the first byte following the PS? (that is, to 100H).
In the normal termination of an EXE program, the final RET instruction pops off
the stack the first values pushed on to the stack: PUSH DX/MOV AX,0/PUSH AX.
Since DS initially points to the bottom of the PSP, when these values are popped
the instruction pointer is directed to offset 0 in the PSP, which is initialized to con
tain the code for INT 20H. INT 20H is then executed, and it is the standard func
tion for terminating programs and returning control to DOS. Figure 1-5 diagrams
this process. To make INT 27H work in an EXE program, poke 27H into the second
byte of the PSP (the first holds the machine code for "INT"), and end the program
with the usual RET. For both kinds of file, before INT 27H is executed DX must
contain the offset of the end of the program, starting from the beginning of the
PSP.
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Figure 1-5. Termination of an .EXE program.
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Middle Level

The interrupt vector is set up using function 25H of INT 21H, as discussed at
[1.2.3] (vector number 70H is used here). Be sure that the routine ends with IRET.
Apart from providing the routine, the set-up program does nothing more than ini
tialize the interrupt vector, point DX to the end of the interrupt routine, and termi
nate. In COM files, simply place the INT 27H statement at the end of the program.
In EXE files, poke it into the first word of the PSP, and terminate the program
using the usual RET statement. Thereafter the routine executes whenever a subse
quently loaded program calls INT 70H.
Examples are given here for both COM and EXE files. Both set up the label "FIN

ISH" to mark the end of the interrupt routine (recall that the $ sign gives the
instruction pointer value at that point). In the COM file, FINISH gives the offset
from the start of the PSP, as required by INT 27H. In the EXE file, the offset is
from the first byte following the PSP, and so 100H is added to this value so that
this offset too starts from the bottom of the PSP. Note that by placing the routine
first in the program, the set-up code can be excluded from the resident portion.
Another trick is to use MOVSB to move the code for the routine down into the

unused part of the PSP, starting from offset 60H, freeing 160 bytes of memory.

COM f 1 Le case:

;  HERE IS THE INTERRUPT ROUTINE:
BEGIN: JMP SHORT SETJUP

ROUTINE PROG FAR

PUSH DS

;jump over the resident routine

;save altered registers

(the routine)

POP DS

IRET

FINISH EQU $

ROUTINE ENDP

;restore registers
;interrupt return
;mark end of routine

;  SET UP THE INTERRUPT VECTOR:
SETJUP: MOV DX,OFFSET ROUTINE

MOV AL,70H
MOV AH,25H
INT 21H

;  LEAVE THE PROGRAM, STAYING RESIDENT:
LEA DX,FINISH ;set offset of resident routine
INT 27H ;quit, and routine stays resident

;put offset of routine in DX
;interrupt vector number
;function to set vector
;set the vector

EXE f i Le case:

;  HERE IS THE INTERRUPT ROUTINE:
JMP SHORT SET_UP

ROUTINE PROC FAR

PUSH DS

; jump over the resident routine

;save altered registers

(the routine)
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FINISH:
ROUTINE

;  SET UP THE
SET UP:

POP OS

IRET

EQU $

ENDP

INTERRUPT VECTOR:
_  MOV DX,OFFSET ROUTINE

MOV AX,SEG ROUTINE
MOV DS,AX
MOV AL,70H
MOV AH,25H
INT 21H

;  LEAVE THE PROGRAM, STAYING RESIDENT
MOV DX,FINISH+100H
MOV ByTEPTRES:1,27H
RET

;restore registers
;interrupt return
;mark end point of routine

;put offset of routine in DX
;put segment of routine in DS

t

;interrupt vector number
;function to set vector
;set the vector

;set offset of end of resident routine
;poke 27H into PSP
;quit, and routine stays resident

Function 31H of INT 21H works in much the same way, except that DX is given
the number of 16-byte paragraphs required by the routine (calculate the program
size from the start of the program segment prefbc—see the example at [1.3.1]).The
advantage of this routine is that it can pass an exit code to the parent program, pro
viding information on the status of the routine. The parent senses the code via
function 4DH of INT 21H. Exit codes are discussed at [7.2.5],
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1.3.5 Load and run program overlays

Overlays are parts of programs that remain on disk while the body of the pro
gram is resident in memory. When the functions of a particular overlay are
required, that overlay is loaded into memory and the program calls it as a proce
dure. Other overlays may subsequently be loaded at exactly the same place in
memory, overlaying the prior code. For example, a data base program might load a
sort routine and then later overlay it with a report-generation routine. This tech
nique is used to conserve memory. But it works well only for procedures that are
not in constant use; otherwise, the frequent disk operations make the program
operate much too slowly.

Middle Level

DOS uses the EXEC function to load overlays. This function, number 4BH of
INT 21H, is also used to load and run one program from within another when the
code number 0 is placed in AL [1.3.2]. When 3 is placed in AL, however, an over
lay is loaded instead. In this case, no program segment prefix is built, so the over
lay is not set up as an independent program. The function merely loads the over
lay, without turning control over to it.

There are two ways to provide memory for the overlays. Either an area inside
the body of the main program may be overlaid, or memory outside of the main
program must be specially allocated. The EXEC function is given only a segment
address (a 16-byte boundary) as the location at which the overlay is to be loaded.
When the overlay is loaded into a program, the program must calculate a para
graph number that will keep the overlay from encroaching on surrounding code.
When memory is separately allocated, on the other hand, DOS provides the pro
gram with a paragraph number.
The example below uses the memory allocation method. Since DOS initially

allocates all available memory to a program, first function 4AH is used to
deallocate excess memory. Then function 48H allocates a block big enough to
accommodate the largest overlay that will be set into it. This function returns the
segment value of the block in AX, and that paragraph number is the one at which
the overlay is loaded and the one at which the overlay is (indirectly) called by the
main program. These functions are discussed in more detail at [1.3.1].

Besides the code number 3 in AL, there are two other inputs you must set up for
this function. Point DS:DX to a string that gives the path to the overlay file, ending
the string with a byte of ASCII 0. Give the entire name of the file, complete with
.COM or .EXE ending, since DOS does not read it as if it were searching for a pro
gram file.

Finally, point ES:BX to a four-byte parameter block that contains (1) the two-
byte paragraph number at which the overlay is to be loaded and (2) a two-byte
relocation factor that is used for relocating addresses within the overlay (relocation
is explained at [1.3.6]). For the paragraph number, use the number returned in AX
for the paragraph number of the allocated memory block. The relocation factor
gives an offset by which relocatable items in the overlay can be calculated. Use the
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paragraph number at which the overlay is loaded. Once this is set up, call the func
tion and the overlay will be loaded. Simply by changing the path to the overlay
file, the function can be called again and again, loading different overlays each
time. On return, if the carry flag is set, there has been an error, and an error code is
returned in AX. The code is 1 if the function number was bad, 2 if the file was not
found, 5 if there was a disk problem, and 8 if memory was insufficient.
Once the overlay is in memory, it is accessed as a far procedure. A double-word

pointer must be set up in the data segment to accommodate this call. The segment
part of the pointer is simply the current code segment. The offset of the overlay
must be calculated by finding the difference between the code segment and the
overlay segment and multiplying the result by 16 (changing the value from para
graphs to bytes). In the example below the two variables OVERLAY_OFFSET and
CODE—SEG are placed one after another so that the pointer is set up correctly.
The overlay, once loaded, can then be called by CALL DWORD PRT OVER-
LAY_OFFSET.

The overlay may be a complete program in itself, with its own data and stack
segments, although generally the stack segment is omitted so that the calling pro
gram's stack is used instead. When the overlay is called, the segment value of its
own data segment must be placed in DS.

;  END THE PROGRAM WITH DUMMY SEGMENT FOR MEMORY ALLOCATION (see C1.3.1 ]) :
ZSEG SEGMENT

ZSEG ENDS

;offset of overlay in code segment
;overLay segment — must foL Low OVERLAY OFFSET
.EXE' ~

;4-byte parameter block for overlay

;make a copy of CS
;copy of PSP segment value
;end of program segment address
;ca leu late the di fference
;SETBLOCK function number

;deal locate all other memory
_  ;carry f lag signals error

;  ALLOCATE MEMORY FOR THE OVERLAY:

MOV BX,100H ;al locate 1000H bytes to over lay
MOV AH,48H ;function to al locate memory
INT 21H ;now AX:0 points to new block
JC ALLOCATION__ERROR ;carry f lag signaIs error
MOV OVERLAY_SEG, AX ;store seg address of over lay block

;  CALCULATE OVERLAY OFFSET IN THE CODE SEGMENT:
MOV AX,CODE__SEG ;subtract over lay segment value
MOV BX,OVERLAY_SEG ; from the code segment value
SUB BXfAX ;now BX holds number of 16-byte units
MOV CL,4 ;shift this number left 4 places
SHL BX,CL ; to multiply by 16
MOV OVERLAYjOFFSET,BX;save the offset

;  LOAD THE FIRST OVERLAY:

MOV AX,SEG BLOCK ;ES:BX points to parameter block
MOV ES,AX ;
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MOV CODE SEG,CS
MOV AX,ES
MOV BX,ZSEG
SUB BX,AX
MOV AH,4AH
INT 21H

JC SETBLK ERROR

;  IN THE DATA SEGMENT:
OVERLAY SEG DU 7

OVERLAY OFFSET DW 7

CODE SEG DW 7

PATH DB •A
0BLOCK DD 0

;  FREE MEMORY:
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MOV BX,OFFSET BLOCK
MOV AX,OVERLAY SEG
MOV [BX],AX
MOV CBX]+2,AX
LEA DX,PATH
MOV AH,4BH
MOV AL,3
INT 21H

JC LOAD ERROR

put seg address of overlay at fi rst
word of the parameter block

use overlay seg as relocation factor
DS:DX points to f i le path
EXEC function number
code for overlay
load the overlay

;go to error routine if problem
;  NOW THE PROGRAM GOES ABOUT ITS BUSINESS:

CALL DWORD PTR OVERLAY OFFSET ;calI the overlay
; (must use DWORD PTR si nee
;the overlay is a far procedure)

;  OBSERVE THIS STRUCTURE WHEN WRITING THE OVERLAY:
SEGMENTDSEG

DSEG ENDS

;set up a data segment as usual
;skip the stack segment (use the
; stack of the calling program)

CSEG

OVERLAY

SEGMENT

PROC FAR

ASSUME CS:CSEG,DS:DSEG
PUSH DS

MOV AX,DSEG
MOV DS,AX

PARA PUBLIC 'CODE*
;far procedure as always

;keep copy of calling program's DS
;set up overlay's DS

OVERLAY

CSEG

POP DS

RET

ENDP

ENDS

END

;when finished, restore prior DS

40



Convert programs from .EXE to .COM type 1.3.6

1.3.6 Convert programs from .EXE to .COM type
Assembly language programmers have the option of converting their programs

from the usual EXE format to COM format. EXE files have a header field that con
tains information for relocation) DOS relocates certain addresses in the program
while it loads the program. COM files, on the other hand, are set up in such a way
that relocation is not required—they are already in the form in which a loaded pro
gram resides in memory. For these reasons, EXE files are at least 768 bytes larger on
disk than the COM equivalent (they consume the same amount of RAM once
loaded). By avoiding relocation, COM files also load more quickly. There are no
other advantages, and many programs are too complex or too large to be con
verted to COM form.

Relocation is a process that sets addresses that are placed in the segment regis
ters. For example, a program may point to the beginning of a data area by the
code:

MOV DX,OFFSET DATA_AREA
MOV AX.SEG DATA AREA
MOV DS.AX

The offset in DX is in relation to the setting of the segment register DS. But what
value is to be placed in DS itself? The program code requires an absolute address,
but at what paragraph number DATA AREA will reside depends on where in
memory the program is loaded—and that can vary by the DOS version and by
whether other programs have been kept resident in the low end of memory. Only
at the time that DOS loads the program is it a certainty where in memory the pro
gram begins. For this reason, at the time that the program is linked, all that can be
done is to set up any segment values as offsets from the start of the program. Then
when DOS performs relocation, the value of the starting location of the program is
added to the segment values, giving the absolute location required by a segment
register. Figure 1-6 illustrates the relocation process.
COM files have no need of relocation because they are written without any need

of these "segment fixups." Everything in the program is set up as an offset from the
start of the code segment, including all data and the stack as well. For this reason,
the whole program cannot exceed 65535 bytes in length, which is the largest offset
that addressing can manage (because the high end of this block is used for the
stack, the actual space available for code and data is somewhat less than 65535
bytes, although the stack segment can be moved outside the 64K block if neces
sary). COM files point all of their segment registers to the bottom of the program
segment prefix; compare this with EXE files, where DS and ES are initialized the
same, but CS is set to the first byte following the PSP.

Setting up a program in COM form requires adherence to the following rules:

1. Do not set up the program as a procedure. Instead, place a label at the very
beginning of the code, such as START, and end the program with the
statement END START.

2. Place the statement ORG 100H at the start of the code. This sets the point of
origination of the code (that is, it sets the instuction pointer). COM pro-
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Figure 1-6. Relocation of the memory position of "DATA—AREA".

grams begin from 100H, which is the first byte after the PSP, because CS
is set to the start of the PSP, 100H bytes lower. The value 100H is always
used. To start the code from elsewhere, place a JMP instruction at 100H.

3. An ASSUME statement sets OS, ES, and SS to match the value of the code
segment, as in, for example, ASSUME CS:CSEG, DS:CSEG, ES:CSEG,
SStCSEG.

4. The program's data can be placed anywhere in the program so long as it
does not interfere with the code. It is best to begin the program with the
data, since the macro assember can create errors during its first pass if ref
erences are made to data items not yet encountered. Start the program
with a JMP instruction to jump over the data.

5. Segment fix-ups such as MOV AX,SEG NEW DATA are never used. The
offset of a label alone suffices. In particular, skip the usual code at the
start of a program that sets up the data segment by MOV AX,DSEG/
MOV OS, AX.

6. The stack segment is omitted altogether in the initial code. The stack pointer
is initialized to the very top of the 64K address space used by the program
(recall that the stack grows downwards in memory). In COM programs
that must be made smaller than 64K, SS and SP may be changed. Note
that when you link the program, the linker gives an error message telling
that there is no stack segment. Ignore it.

7. Terminate the program either with a RET instruction or by writing INT 20H.

42



Convert programs from .EXE to .COM type 1.3.6

INT 20H is the standard function for terminating programs and returning
control to DOS. Even when the program ends with RET, INT 20H is actu
ally used. This is because the first word on the stack is initialized to 0.
When the final RET instruction of the program is encountered, the 0 pops
off the stack, redirecting the instruction pointer to the start of the program
segment prefix. The INT 20H function at that location is executed as the
next instruction, causing control to return to DOS. All of this means that
you should not push DS and 0 onto the stack at the start of the program
(PUSH DS/MOV AX,0/PUSH AX) as required by EXE files.

Once a program has been constructed in this way, assemble and link it as
always. Then convert it to COM form by using the utility EXE2BIN that is found
on the DOS diskette. If the name of the file produced by the linker is MYPROG.
EXE, simply type in EXE2BIN MYPROG. It will create a program file named
MYPROG.BIN. At that point you need only rename the file MYPROG.COM. Or
write EXE2BIN MYPROG MYPROG.COM to make the conversion directly to a
file with a .COM extension.

Low Level

This example provides a short, complete program that reads the dip switch set
ting of how many drives are in the machine and then reports it on the screen. It is
an example of the sort of short utility programs for which COM format is ideal.

CSEG

;  THE DATA:
START:

MESSAGE1

MESSAGE2

;  PRINT THE
BEGIN:

SEGMENT

ORG 100H

ASSUME CS:CSEG, DS:CSEG, SS:CSEG ;aLL segments set to CSEG

JMP SHORT BEGIN ; jump over the data
DB 'The dip switches are set for $'
DB • disk drive(s) .$'

FIRST HALF OF THE MESSAGE:

MOV AH,9 ;function 9 of INT 21H writes strings
MOV DX,OFFSET MESSAGE1 ;point DS:DX to the string
INT 21H ;write the string
PUSH AX ;keep the function value to use again

—GET THE DIP SWITCH SETTING FROM PORT A OF THE 8255 CHIP:

;  PRINT THE

IN AL,61H ;get the byte in Port B
OR AL,10000000B ;force bit 7 on
OUT 61H,AL ; replace the byte
IN AL,60H ;get switch settings from Port A
AND AL,11000000B ;isolatethe top2bits (^drives)
MOV CL,6 ;prepare to shift AL right
SHR AL,CL ;move the 2 bits to bottom of register
ADD AL,49 ;add 1 to count from 1 to 4, plus

;  add 48 to convert to ASCII symbol
MOV DL,AL ;put the value in DL
MOV AL,61H ;must restore PB, get the value
AND AL,01111111B ;force bit 7 off
OUT 61H,AL ;replace the byte

NUMBER OF DRIVES:

MOV AH,2 ;use function 2 of INT 21H
INT 21H ;print the number in DL
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;  PRINT THE SECOND HALF OF THE MESSAGE:
POP AX ;get back the function number
MOV DX,OFFSET MESSAGE2 ;get ready to write the second string
INT 21H ;write the string
INT 20H ;end the program

CSEG ENDS

END START
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2

Timers And Sound
Section 1: Set and read timers

All IBM microcomputers use the Intel 8253 (or 8254) timer chip to tally pulses
from the system clock chip. A number of cycles of the system clock are converted
into a single pulse, and chains of these pulses are counted for timing purposes, or
they can be sent to the computer's speaker to generate sound of a particular fre
quency. The 8253 chip has three identical, independent channels, and each can be
programmed.
The 8253 chip operates independently of the CPU. The CPU programs the chip

and then return to other matters. Thus the 8253 operates like a real-time clock—it
keeps its beat no matter what else happens in the computer. However, the longest
programmable interval is barely a twentieth of a second. Some other means is
required to time minutes and hours. It is for this reason that pulses from channel 0
of the timer chip are tallied in a variable in the BIOS data area. Figure 2-1 diagrams
the process. This tally is usually referred to as the "time-of-day count." 18.2 times
per second the output from channel 0 invokes a hardware interrupt (the "timer
interrupt") which briefly stops the CPU and increases the time-of-day count. A
count of 0 signifies 12:00 midnight; when the count reaches the equivalent of 24
hours it is reset to 0. Other times of the day are easily calculated by dividing the
count by 18.2 for every second. The time-of-day count is used in most timing
operations.

System
Clock

8253 Timer Chip

BIOS Data Area

4-Byte Count
at 0040:006C

Is Incremented

8259 Interrupt Chip

Channel 0 1  r

Counts to 65535

then Pulses

Performs

INT 8N

Invokes

NTS

ROM BIOS

Figure 2-1. Updating the BIOS time-of-day count.
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2.1.1 Program the 8253/8254 timer chip

Each of the three channels of the 8253 timer chip (8254 on the AT) consists of
three registers. Each group of three registers is accessed through a single port, num
bered from 40H to 42H for channels 0 to 2. A port leads to an eight-bit I/O register
that sends and receives data for the channel. When a channel is programmed, a
two-byte value is sent through the port, low byte first. The number is passed to a
16-bit latch register, which keeps the number, and from there a copy is placed in a
16-bit counter register. In the counter register, the number decrements by 1 each
time a pulse from the system clock is allowed into the channel. When the number
reaches zero, the channel issues an output pulse and then a new copy of the number
in the latch register is moved into the counter register and the process repeats. The
smaller the number in the counter register, the faster the beat. All three channels
are always active: the CPU does not turn them on and off. The current value of
any counter register may be read at any time without disturbing the count.
Each channel has two lines going into it, and one line coming out. The out line

conducts the pulse that results from the counting. The destination of these signals
varies by the type of IBM microcomputer:

• Channel 0 is used by the system time-of-day clock. It is set by BIOS at
startup so that it issues a pulse roughly 18.2 times a second. A four-byte
tally of these pulses is kept in memory at 0040:006C (the least significant
byte is lowest). Each pulse invokes the timer interrupt (INT 8), and it is
this interrupt that increases the tally. This is a hardware interrupt, and so
it continues to occur no matter what the CPU is doing, so long as hard
ware interrupts are enabled (see the discussion at [1.2.2]). The out line of
channel 0 is also used for timing certain disk operations, and so if you
change it you must be sure to restore it to its original reading every time
disks are accessed.

• Channel 1 controls memory refresh on all machines but the PCjr, and it
should never be tampered with. The out line of the channel is connected to
the direct memory access chip [5.4.2], and a pulse causes the DMA chip to
refresh all of RAM. On the PCjr, channel 1 paces the conversion of incom
ing keyboard data from serial to parallel form. The PCjr does not use a
direct memory access chip, and when it instead channels data through the
CPU, the timer interrupt is shut out. Channel 1 is used to count the inter
vening pulses of the time-of-day clock so that the count can be updated
after disk operations are completed.

• Channel 2 is connected to the computer's speaker, and it produces simple
square-wave signals for making sound. Programmers have more control
over channel 2 than the others. Simple sounds may be made to occur
simultaneously with other program operations, or more complex sounds
may be produced with the full attention of the CPU. Channel 2 may also
be disconnected from the speaker and used for timing operations. Finally,
the out line of channel 2 is connected to the computer s speaker. The
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speaker will not sound, however, unless a particular setting is made on the
8255 peripheral interface chip.

The two lines going into each channel consist of a clock line that feeds the system
clock signal from the system clock chip, and a line called the gate that turns the
clock signal on and off. The gate is always open for the clock signal to channels 0
3rid 1. But it can be opened and closed on channel 2, and this feature allows special
sound techniques. The gate is closed by setting to 1 the lowest bit at port address
61H, which is a register on the 8255 chip; changing the bit back to 0 reopens the
gate. [1.1.1] discusses this chip. Note that—like the output of channel 2—bit 1 at
61H is connected to the speaker, and it too may be used to make sound. Figure 2-2
diagrams the 8253 timer chip.

Clock

Chip

Channel 0

Channel 1

Channel 2

Latch Counter

Gate (Always Open)

Latch Counter

.BIOS Timer
Interrupt

■RAM Refresh

Gate (Always Open)

Latch Counter

Peripheral Interface

Port B

Output Signal

to Speaker
Port C

Figure 2-2: The 8253/8254 Timer Chip.

The timer chip can be used directly for timing activities, but this is seldom practi
cal. The input clock rate is 1.19318 million times a second (even on the AT, where
the system clock runs faster, the timer chip receives a 1.19 MHz signal). Since the
largest number held by 16 bits is 65535, and since that number divides into the
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2.1.1 Program the 8253/8254 timer chip

clock pulse rate 18.2 times, the longest possible period between pulses is scarcely a
twentieth of a second. Most timing operations instead use the BIOS time-of-day
count. An interval is timed by reading the time-of-day value and comparing it to
some earlier reference value to see how many pulses have passed. Special tech
niques described at [2.1.7] use the time-of-day count for real-time operations.
The 8253 offers hardware designers six modes of operation for each channel.

Programmers ordinarily confine themselves to mode 3, both in channel 0 for timing
or in channel 2 for either timing or sound. In this mode, once a latch register is
given a number, it immediately loads a copy into the counter register. When the
number reaches 0, the latch instantly reloads the counter, and so on. During half of
the count the out line is "on" and during half it is "off." The result is a square wave
pattern that is equally useful for making sound and for counting.
An eight-bit command register controls how a number is loaded into a channel.

This register is located at port address 43H. The command register is given a byte
that tells which channel to program, in what mode, and whether one or both of the
bytes of the latch will be sent a number. It also shows whether the number will be
in binary or BCD (binary coded decimal) form. The bit pattern is as follows:

bits 0 1 f 0, binary data, else BCD
3-1 mode number, 0-5 (000-101)
5-4 kind of operation:

00 = move counter value into Latch

01 = read/write high byte only
10 = read/write Low byte only
11 = read/write high byte, then Low byte

7-6 number of channel to program, 0-2 (00-10)

In summary, here are the three basic steps for programming the 8253 chip. Once
step 3 is completed, the programmed channel immediately begins to function at the
new setting.

(1) Send a byte to the command register (43H) that holds the bit pattern that
selects the channel, the read/write status, the mode of operation, and the
numerical type.

(2) If channel 2, enable the clock signal by setting bit 0 to 1 at port address 61H.
(When bit 1 of this register is set to 1, channel 2 drives the speaker. Set it
to 0 for timing operations.)

(3) Calculate a counter from 0-65535, place it in AX, and send the low byte and
then the high byte to the channel's I/O register (40H-42H).

The three channels of the 8253 are always in operation. For this reason, pro
grams should restore the original settings of the 8253 registers before ending. In
particular, if sound is in progress when the program ends, the sound will continue
even after DOS takes control and loads another program. Keep this in mind when
designing a Ctrl-Break exit routine [3.2.8].

Low Level

In this example channel 0 is programmed to a different value than the setting
made by BIOS at start-up. The reason for changing the setting is so that the time-
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Program the 8253/8254 timer chip 2.1.1

of-day count increments at a rate faster than 18.2 times a second. The rate is
changed to, say, 1000 times per second, for the purpose of making precise labora
tory measurements. The latch value must be 1193 (1193180 clocks per second/
10000). To read the current value of the counter register, see the example at [2.1.8].
Prior to disk operations, the original latch value must be replaced, since channel 0
controls their timing. This value is the highest possible—65535 clock inputs be
tween pulses from the channel—and it is made by placing 0 in the latch register (the
0 immediately counts down to 65535).

;  SET UP I/O REGISTER:
COMMAND_REG EQU 43H
CHANNEL_0 EQU 40H

MOV AL,00110110B

OUT COMMAND__REG,AL
;  SEND COUNTER TO LATCH:

MOV AX,1193
OUT CHANNEL_2,AL
MOV AL,AH
OUT CHANNEL 2,AL

;set address of command register
;set address of channel 0
;bit pattern for channel 2, 2-byte
;  counter, mode 3, binary number
;send byte to command register

;counter for 100 pulses/sec.
;send LSB
;shift MSB, since must send from AL
;send MSB
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2.1.2 Set/read the time

At Start-up, DOS prompts the computer user for the time-of-day. The value
entered is placed in the four bytes that hold the time-of-day count (starting at
0040:006C, with the least significant byte lowest). But first it is converted to the
form in which the time-of-day is counted, that is, the time is converted to a value
that represents the number of (roughly) 18th-seconds that have passed since mid
night. This count is continuously updated 18.2 times per second by the timer inter
rupt. When there is a subsequent request for the time, the current value of the
time-of-day count is converted back from its tally of 18ths of a second into the
familiar hours-minutes-seconds format. If no value is entered at start-up, the count
is set to 0, as if it were midnight. Computers equipped with a clock-calendar chip
may automatically set the time-of-day count [2.1.4].

High Level

TIMES sets or retrieves the time as a string in the format hh:mm:ss, with the
hours counted from 0 to 23, starting from midnight. For 5:10 PM:

100 TIMES = "17:10:00" 'set the time

110 PRINT TIMES 'get the time

Since TIMES returns a string, the string functions MIDS, LEFTS, and RIGHTS
are required to pick out any particular part of the time reading. For example, to
convert the time from 17:10:00 to 5:00, you must cut out the characters from the
string that show the hour, convert them to numeric form (using VAL), subtract 12,
then change the result back to string form:

100 TS=TIMES 'assign the TIMES string to TS
110 H0URS=LEFTS(TS,2) 'get the 2 Left characters of TS
120 MINUTESS=MIDS(TS,4,2) 'get the 2 characters showing minutes
130 NEWHOUR=VAL(HOURS) 'convert HOURS to numeral
140 IF NEWH0UR>12 THEN NEWH0UR=NEWH0UR-12 'subtract 12 if appLicable
140 NEWHOURS=STRS(NEWHOUR) 'convert new value back to string form
150NEWTIMES=NEWHOURS+":"+MINUTESS 'make string of hour, :, and minutes

Middle Level

DOS provides interrupts that read and set the time, making the required conver
sions from the time-of-day count to hours-minutes-seconds. The time is set to an
accuracy of 100ths of a second, but since the time-of-day count is updated at only a
fifth this rate, the 100ths-second reading is really only an approximation. Function
2CH of INT 21H retrieves the time, and function 2DH sets it. In both cases, CH

holds the hour (0-23, where 0 = midnight), CL holds the minutes (0-59), DH holds
the seconds (0-59), and DL holds the "hundredth-seconds" (0-99).

In addition, when function 2CH gets the time, AL holds the number of the day of
the week (0 = Sunday). The day will be correct only if the date has been set. DOS
calculates the day of the week from the date. Note that when function 2DH sets the
time, AL flags that the values entered for the time were valid (0 = valid, FF =
invalid).
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;  TO SET THE TIME:
MOV

MOV

MOV

MOV

MOV

INT

CMP

JE

CH,HOURS
CL,MINUTES
DH,SECONDS
DL,HUNDREDTHS
AH,2DH
21H

AH,0FFH
ERROR

-TO RETRIEVE THE TIME:

MOV AH,2CH
INT 21H

MOV DAYJ0F_WEEK,AH

enter the time values

function number for set time
sets the time

check that time value was correct
go to error routine if not

;function number for get time
;get the time
;take day of week from AH

Low Level

If you change the pulse rate of channel 1 of the 8253 chip for a special applica
tion, you will need to decode the time-of-day count with your own routines. BIOS
turns the count over to 0 after 1.573 million pulses, and this can be changed only
by rewriting the timer interrupt. Thus a true hundredth-seconds clock can not run
for 24 hours without some special programming. Note that the byte at 0040:0070 is
set to 0 at start-up, and that it increments to 1 (but not higher) when the clock turns
over.
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2.1.3 Set/read the date

When the computer is turned on, DOS prompts the user to enter the current date
and time. The time is recorded in the BIOS data area. The date, however, is placed
in a variable in COMMAND.COM. It is formatted in three successive bytes that
hold respectively the day of the month, the number of the month, and the number
of the year, counting from 0, where 0 equals 1980. Unlike the time-of-day count,
the memory location of the date varies with the DOS version and the position of
COMMAND.COM in memory. For this reason the date must always be accessed
via the ready-made utilities in BASIC or DOS rather than fetched directly.
Machines equipped with a clock-calendar chip will automatically set the time

and date with the aid of special software (usually run at start-up via an
AUTOEXEC.BAT file). See [2.1.4] for how to access a clock-calendar chip. Note
that when the BIOS time-of-day count rolls over after 24 hours, DOS adjusts the
date accordingly.

High Level

DATES sets or retrieves the date as a string in the format mm-dd-yyyy. You may
use slashes instead of dashes. The first two digits of the year may be omitted. For
Halloween of 1984:

100 DATES = "10/31/84" 'set the date
110 PRINT DATES 'show the date

.. -and the screen displays: 10-31-1984

Middle Level ———— —

Functions 2AH and 2BH of DOS interrupt 21H get and set the date. To get the
date, place 2AH in AH and execute the interrupt. On return, CX contains the year
as a number from 0 to 119 that corresponds to 1980-2099 (this is to say that the
date is an offset from 1980). DH holds the number of the month, and DL holds the
day.

MOV AH,2AH ; funct ion number to ret ri eve date
INT 21H ;get the date
MOV DAY,DL ;day in DL
MOV MONTH,DH ;month in DH
ADD CX,1980 ;add base value to the date
MOV YEAR,CX ;if CX=5, then 5+ 1980 = 1985

To set the date, place the day, month, and year in the same registers and execute
function 2BH. If the values for the date are invalid, AL returns FF; otherwise it

returns 0.

MOV DL,DAY ;place day in DL
MOV DH,MONTH ;place month in DH
MOV CX,YEAR ;place year (eg. 1985) in CX
SUB CX,1980 ;make year an offset from 1980
MOV AH,2BH ;function number to set date
INT 21H ;set the date
CMP AH,0FFH ;check if operation successful
JE ERROR ;date out of range, go to error
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2.1.4 Set/read the real-time clock

A real-time clock has an independent processor that can count the time without
interference from other computer operations. It also has a battery power supply
that keeps it running when the computer is turned off. A program can both read
and set a real-time clock. Ordinarily, auxiliary software will have set the BIOS
time-of-day count and DOS date variables so that they reflect the current setting of
the real-time clock. But a program may check to see that these values are current
before it uses them, and it can set matters straight if there is a discrepancy.
The various time and date settings on the clock are made through a series of port

addresses. Many of the multifunction boards available for IBM microcomputers
have a real-time clock, but unfortunately there is no standard chip or range of port
addresses. The AT comes equipped with a real-time clock that is based on the
Motorola MC146818 chip, and it shares registers on the chip with configuration
data for the system. The registers are accessed by first sending a register number to
port address 70H and then reading the register value from 71H. The clock-related
registers are as follows:

Register Number Function

00H Seconds

01 Seconds alarm

02 Minutes

03 Minutes alarm

04 Hours

05 Hours alarm

06 Day of the week
07 Day of the month
08 Month

09 Year

0A Status register A
0B Status register B
0C Status register C
0D Status register D

Bits in the four status registers perform various functions, of which only the fol
lowing are of much concern to programmers:

Register A: bit 7 1 = time update in progress (wait until 0 before
reading)

Register B: bit 6 1 = periodic interrupt is enabled
5 1 = alarm interrupt is enabled
4 1 = update-ended interrupt is enabled
1 1 = hours counted by 24, 0 = counted by 12
0 1 = daylight savings time enabled
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2.1.4 Set/read the real-time clock

The AT's real-time clock can invoke hardware interrupt IRQ 8. A program may
point the vector for this interrupt to any routine it wants performed at a particular
time [1.2.3]. Use vector 4AH. Real-time operations created in this way entail less
processing overhead than those discussed at [2.1.7] (although at the cost of pro
gram portability). The interrupt may be invoked in three ways, all of which are
disabled at start-up. The periodic interrupt occurs at a regular period. The period is
initialized to roughly one millisecond. The alarm interrupt occurs when the settings
in the three alarm-related registers match their corresponding timing registers. The
update-ended interrupt occurs after every update of the register settings on the
chip.
INT lAH is expanded in the AT BIOS to set and read the real-time clock. Since

the readings are never more than two decimal digits, the time values are given in
binary coded decimal (BCD), where a byte is divided in half, with each digit occu
pying four bits. This format makes it easy to convert the numbers to ASCII form.
A program needs only to shift half of a byte into the low end of a register and add
48 in order to obtain the ASCII symbol that corresponds to the number. On all
IBM machines, functions 0 and 1 of INT lAH read and set the BIOS time-of-day
count. There are six new functions to service the AT's real-time clock:

Function 2: Read the time from the real-time clock

On return: CH = hours in BCD

CL = minutes in BCD

DH = seconds in BCD

Function 3: Set the time on the real-time clock

On entry: CH = hours in BCD
CL = minutes in BCD

DH = seconds in BCD

DL = if daylight savings, else 1

Function 4: Read the date from the real-time clock

On return: CH = century in BCD (19 or 20)
CL = year in BCD (offset from 1980)
DH = month in BCD

DL = day of month in BCD

Function 5: Set the date on the real-time clock

On entry: CH = century in BCD (19 or 20)
CL = year in BCD (offset from 1980)
DH = month in BCD

DL = day of month in BCD

Function 6: Set the alarm on the real-time clock

On entry: CH = hours in BCD
CL = minutes in BCD

DH = seconds in BCD

Function 7: Reset the alarm

(no input registers)
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Set/read the real-time clock 2.1.4

The alarm setting is made as an offset from the time the setting is made. The maxi
mum period is 23:59:59. As explained above, interrupt vector 4AH must be pointed
to the alarm routine. Note that if the clock is not operating (most probably as the
result of a dead battery) then functions 2, 4, and 6 set the carry flag.

55



2.1.5 Delay program operations

2.1.5 Delay program operations

When program operations are delayed by empty loops, a good deal of program
ming time can be wasted testing and retesting the loop for proper duration. Even
when the right length is found, it can not be relied upon in all future applications of
a program. The loop may vary in speed depending on the compiler used (or, in
BASIC, the speed will depend on whether the program is compiled or not). And
now that the AT and various IBM ''compatibles" have appeared—bringing with
them a range of CPU speeds—even assembly language loops may give varying
durations. Thus it is always good policy to create precisely clocked program
delays. The 18.2 times/second pulse rate of the BIOS time-of-day count should be
adequate for most needs (see [2.1.1] to increase the pulse rate).
To make a delay of a set duration, a program must calculate how many pulses of

the time-of-day count equal that duration. That value is added to a reading of the
current value of the count. Then the program keeps reading the count and compar
ing it to the anticipated value. When the two values are equal, the delay has been
achieved and the program moves on. The four bytes that hold the time-of-day
count start at 0040:006C (as always, the least significant byte is the lowest in mem
ory). Delays under 14 seconds may be timed by reading the lowest byte alone. The
lowest two bytes can time up to an hour (one-half second short of an hour, to be
precise).

High Level

In BASIC, use the SOUND statement [2.2.2] with the value 32767 for the fre
quency. In this case no sound is produced at all. This non-sound lasts for as many
time-of-day pulses as you specify. A five-second delay takes 91 pulses (5 x 18.2)
Thus:

100 SOUND 32767,91 'delays the program for 5 seconds

To read the time-of-day count directly:

100 DEF SEG=0 'set segment to the bottom of memory
110 L0WBYTE=PEEK(&H46C) 'get Lowest byte
120 NEXTBYTE=PEEK(&H46D) '2nd byte
130 L0WC0UNT=NEXTBYTE*256+L0WBYTE

'value of the two low bytes combined

Middle Level

Read the BIOS time-of-day count using function 0 of INT lAH, and add the
desired number of 18th-second pulses to that value. Then keep rereading the time-
of-day count, each time testing the current value against the desired one. When
equal, the delay ends. INT lAH returns the two low bytes in DX (within which
most delays may be counted), and so the two high bytes returned in CX may be
disregarded, allowing you to avoid all the fuss of 32-bit operations. In this exam
ple, the delay will be 91 pulses, equalling five seconds.
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;  GET THE BIOS COUNT AND ADD DELAY VALUE:
MOV AH,0
INT 1AH

ADD DX,91
MOV BX,DX

;  KEEP CHECKING BIOS TIME-OF-DAY VALUE:
REPEAT: INT 1AH

CMP DX,BX
JNE REPEAT

;function number for "read"
;get the time-of-day count
;add 5 sec. delay to Low word
;store "end of delay" value in BX

;get the time-of-day reading again
;compare reading to delay value
;go back to REPEAT if not equal
;else, end of delay, go on...

The AT possesses an additional function within INT 15H that performs a mea
sured time delay. Place 86H in AH, and the number of microseconds of delay in
CX:DX. Then execute the interrupt.
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2.1.6 Time program operations

A program times operations exactly as people do: it takes an initial reading of
the system time-of-day count and later compares it to a subsequent reading. The
reading can be taken in hours-minutes-second format, but it is messy to calculate
the difference between two such readings because the counting system is not deci
mal. Better to read the BIOS time-of-day count directly, measure the elapsed dura
tion in 18ths of a second, and then convert it to the hh:mm:ss form normally
required.

High Level

In BASIC, read the BIOS count directly from memory location 0040:006C.
Divide the number by 65520 to figure hours elapsed, 1092 for minutes, and 18.2 for
seconds.

100 60SUB 500 'get the time-of-day count
110 START=TOTAL 'save the initial count in START

(the timed process moves along)

300 GOSUB 500 'get the final time-of-day count
310 TOTAL=TOTAL-START 'figure pulses elapsed
320 HOURS=FIX(TOTAL/65520) 'calculate number of hours
330 TOTAL=TOTAL-HOURS*65520 'subtract hours from TOTAL
340 MINUTES=FIX(TOTAL/1092) 'calculate number of minutes
350 TOTAL=TOTAL-MINUTES*1092 'subtract minutes from TOTAL
360 SEC0NDS=FIX(T0TAL/18.2) 'calculate number of seconds
370 PRINT HOURS,MINUTES,SECONDS 'the result
380 END

500 DEF SEG=0 ' subrouti ne to read time-of-day
510 A=PEEK(&H46C) 'get lowest byte
520 B=PEEK(&H46D) '2nd lowest
530 C=PEEK(&H46E) '3rd lowest
540 TOTAL=A+B*256+C*65535 ' ta I ly the count i n TOTAL
550 RETURN 'all done

The TIMER function in BASIC returns the number of seconds that have passed
since the time-of-day count was last set to 0. Ordinarily this will be the number of
seconds since the computer was last booted up. If the time was correctly set at sys
tem start-up, TIMER returns the number of seconds that have passed since mid
night. Simply write N = TIMER.

Middle Level

INT lAH has two functions to set (AH = 1) and retrieve (AH = 0) the time-of-
day count. To read the count, simply execute the interrupt with 0 in AH. On return
CX:DX holds the count, with the most significant word in CX. AL contains 0 if the
count has not passed the 24-hour value since it was last set. To set the count, place
the two words in the same registers, and set AH to 1. This example measures an
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elapsed time under one hour. Only the bottom two bytes of the counter need be
consulted. In this case, be sure to allow for a "turnover" condition where the initial
reading is higher than the second reading.

;  IN THE DATA SEGMENT:
OLDCOUNT DU (9 ;hoLds the initiat time-of-day count

;  TAKE THE INITIAL TIME-OF-DAY READING:
MOV AH,0 ;set function number
INT 1AH ;get the count (Low word in DX)
MOV OLDCOUNT,DX jsave the initial count

(the timed process moves along)

;  LATER, TO CALCULATE TIME ELAPSED:
MOV AH,0 ;set function number
INT 1AH ;get the count
MOV BX,OLDCOUNT ; retrieve the f i rst reading
CMP BX,DX ;check for "turn over"
JG ADJUST ; jump to adjust routine if "turn over"
SUB DX,BX ;else, find difference (=elapsed pulses)
JMP SHORT FIGURE__TIME ; jmp over adjustment, to time calculation

;  ADJUST FOR TURN OVER:
ADJUST: MOV CX,0FFFFH ;place largest number (65535) in CX

SUB CX,BX ;subtract first reading
ADD CX,DX ;add second reading
MOV DX,CX ;as above, leave elapsed time in DX

;  BEGIN TIME CALCULATION ROUTINE:
FIGURE__TIME: ;now divide DX by 18.2 for seconds, etc.
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2.1.7 Control real-time operations

In real-time operations, a program issues instructions at specified points in time,
rather than issuing them as soon as possible. This technique is usually associated
with robotics, but it has many other uses. There is a choice of approaches to real
time operations. In programs that have little or nothing to do between the real-time
instructions, the program needs merely to idle along, doing nothing but checking
the BIOS time-of-day count to sense when it is time to become active. This tech
nique is little more than a series of delay loops, as described at [2.1.51.
The second approach is more difficult. It is used when a program is constantly

busy, but needs to interrupt its operations at specific times in order to carry out
some task. An extension is made to the timer interrupt, which is executed 18.2
times per second. Whenever the interrupt occurs, the extension checks the new
value of the time-of-day count, and if it matches the count value at which a real
time activity is to begin, the routine initiates the activity. Figure 2-3 illustrates this
process. The simple examples given here show how to create within a program a
sort of alarm clock that can be set by the user to beep when "time's up." (A more
complicated low-level example found at [2.2.6] plays music while the CPU is com
pletely occupied with other matters.)

High Level

BASIC provides primitive control over real-time operations by the ON
TIMER(n) GOSUB statement. When a program comes upon this statement, it
begins to count to the number of seconds given by n. Meanwhile, program opera
tions continue. When n seconds have passed, the program jumps to the subroutine
beginning at the specified line number, performs the subroutine, and then returns
to where it left off. The counting then starts anew from 0, and the subroutine will
be called again after n seconds more.
ON TIMER will not function until it is enabled by a TIMER ON statement. It

may be disabled by TIMER OFF. In cases where the timing should continue but
transfer to the subroutine must be delayed, use TIMER STOP. In this case it is
recorded that n seconds have passed, and the program jumps to the subroutine as
soon as another TIMER ON statement is encountered.

Because it repeats, ON TIMER is particularly useful for showing a clock on the
screen:

100 ON TIMER(60) GOSUB 500 'change the clock every 60 sees
110 TIMER ON 'enable the timer

500 LOCATE 1,35:PRINT"TIME: LEFT$(TIME$,5) 'locate cursor, print the time
510 RETURN

Low Level

BIOS contains a special "dummy" interrupt (INT ICH) which does nothing until
you provide a routine for it. At start-up, the vector for the interrupt points to an
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Vector

Table

INT ICH

(Extension
ofSH)

INT8H

(TIme-of-Day
Interrupt)

IRET

Your

Real-Time
Routine

8259

Interrupt
Controller

INT ICH

MOV AL, 20H
OUT 20H, AL
IRET

BIOS

TIme-of-Day
Routine

8253

Timer Chip

END TIme-of-Day Interrupt

BEGIN TIme-of-Day Interrupt

Figure 2-3. Extending the timer interrupt.

IRET (interrupt return) instruction; when the interrupt is called, it simply returns.
What is special about INT iCH is that it is invoked by the BIOS timer interrupt
after that interrupt has updated the time-of-day count. That is to say, it is a hard
ware interrupt that automatically occurs 18.2 times per second. You may change
the vector for this interrupt to point to a procedure in your program. Then that
procedure will be called 18.2 times a second. See Section [1.2.3] about how to write
and install your own interrupts.
The procedure you provide should first read the freshly updated time-of-day

count, compare it to the count that corresponds to the awaited time, and do what
ever is required when the right time arrives at last. Of course, when it is not yet
time to perform the real-time operation, the routine merely returns with no further
ado. In this way the CPU is kept free for other activity.
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In the example below, a routine (unshown) requests from the program user a
value up to 60 for the number of minutes that should pass before an alarm goes off.
The number, which is stored in MINUTES, is multiplied by 1092, giving the equiv
alent in time-of-day pulses. A one-hour period fits into 16 bits—longer periods
require more complicated 32-bit operations. The number of pulses is added to the
low word of the current time-of-day reading, and then it is saved as ALARM-
COUNT.

Next, the vector for interrupt ICH is changed to point to a procedure called
ALARM. Remember that once the vector is changed, ALARM will immediately
begin to be invoked every 18th of a second. When it is called, it gets the current
time-of-day reading via interrupt lAH, and then it retrieves ALARMCOUNT for
comparison. If the two values match, the routine calls a procedure called "BEEP"
(also unshown—see [2.2.4]) that beeps the speaker. Otherwise, the routine simply
returns. The usual return code for hardware interrupts (MOV AH,20H/OUT
20H,AL) is not required, since it is handled by the timer interrupt. Be very careful
about saving changed registers.

;  IN THE DATA SEGMENT:
MINUTES DU 0

ALARMCOUNT DU 0

;  SET ALARMCOUNT TO THE AWAITED BIOS TIME
CALL REQUEST_MINUTES
MOV AX,MINUTES
MOV BX,1092
MUL BX

;6ET CURRENT TIME-OF-DAY VALUE:
MOV AH,0
INT 1AH

;ADDTHETWO VALUES:
ADD AX,DX
MOV ALARMCOUNT,AX

;  CHANGE THE DUMMY INTERRUPT VECTOR:
PUSH DS

MOV AX,SEG ALARM
MOV DS,AX
MOV DX,OFFSET ALARM
MOV AL,1CH
MOV AH,25H
INT 21H

POP DS

;holds number of minutes unti L alarm
;holds time-of-day for alarm setting

;-OF-DAY VALUE:

;get from user the minutes unti I alarm
;move number of minutes to AX
;number of time-of-day pulses/minute
;muItiply -result now in AX

;function number for time-of-day read
;get count, low word in DX

;add alarm time to current time-of-day
;set time-of-day value for the alarm

;save the data segment
;get segment of the alarm routine
;place segment in DS
;get offset of the alarm routine
;number of interrupt vector to change
;DOS function that changes vectors
;change the vector
; restore the data segment

;  PROGRAM CONTINUES ALONG.. .NEW INTERRUPT OCCURS 18.2 TIMES/SEC

;  AT END OF PROGRAM REPLACE FORMER INTERRUPT VECTOR:
;original offset for INT 1CH
;original segment
;place segment in DS
;number of interrupt vector to change
;DOS function that changes vectors
;restore the original vector
;etc...

MOV DX,0FF53H
MOV AX,0F000H
MOV DS,AX
MOV AL,1CH
MOV AH,25H
INT 21H

;  PROCEDURE TO SOUND ALARM:
ALARM PROC FAR ;create a far procedure
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PUSH AX

PUSH CX

PUSH DX

;READ THE TIME-OF-DAY COUNT:
MOV AH,0
INT 1AH

;GET THE COUNT CORRESPONDING TO ALARM
MOV CX,ALARMCOUNT
CMP DX,CX
JNE NOT_YET

;SOUND ALARM IF THE TWO COUNTS MATCH:
CALL BEEP

;OTHERWISE, RETURN FROM INTERRUPT:
NOT YET: POP DX

;save changed registers

;function number for time-of-day read
;get count. Low word in DX

TIME:

;get variable that signals "time's up"
;does the current reading match?
;if not, leave the routine

ALARM

POP

POP

IRET

ENDP

CX

AX

;beep routine is not shown

;restore changed registers

;return from interrupt
;end of the procedure
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2.1.8 Generate random numbers by the timer chip
Considerable mathematical sophistication is needed to generate a series of ran

dom numbers. But sometimes programs require only a single number at a particu
lar instant. In this case the random number can be derived simply by reading the
current value from a channel of the timer chip. BASIC uses such a value as the seed
from which to calculate a random series. Of course, you can not derive a series of
random numbers by reading timer settings successively, since the sampling rate will
itself be nonrandom.

High Level

BASIC contains a random number generator that can be reseeded using the
TIMER statement, so that a different series of random numbers is created each time
a program is run. Simply write RANDOMIZE TIMER, and then use the RND func
tion to call a random number.

100 RANDOMIZE TIMER •automatically reseed the generator
110 PRINT RND,RND,RND 'print three random numbers

...producing: .7122483 .4695052. 9132487

Low Level —

Since the counter register of a timer channel is reloaded again and again with a
given number (counting down to 0 in the interim), select a counter that equals the
desired range of random numbers. Thus, for a random hour of the day, use 23 as
the counter.

It is best to use mode 3 in channel 2 (port 42H) of the timer chip [2.1.1]. First set
the counter in the desired range (the example below uses 10000, giving a random
value from 0000 to 9999). Then, to sample the channel for a random number,
instruct the timer chip command register at port 43H to "latch" the current value of
the counter register by setting bits 4 and 5 to zero. This transfer to the latch register
does not interfere with the ongoing counting. Next, set both bits 4 and 5 of the
command register to 1 so that the CPU can read from the latch register. Then two
IN instructions will bring first the low byte and then the high byte into the AL reg
ister. Finally, reset the latch register to its original value so that the counting con
tinues across the desired range.

;  SET THE PORT ADDRESSES:
C0MMAND_RE6 EQU 43H ;set command register address
CHANNEL_2 EQU 42H ;set channel 2 address

CALL SET_COUNT ;set the timer range

;  THE PROGRAM MOVES ALONG AND THEN REQUESTS A RANDOM NUMBER:

CALL GET_NUMBER ;get a random number
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;  START CHANNEL 2 COUNTING:

AL,10110110B
COMMAND_REG,AL
AX,10000
CHANNEL__2,AL
AL,AH
CHANNEL 2,AL

SET_COUNT PROC
MOV

OUT

MOV

OUT

MOV

OUT

RET

SET_COUNT ENDP
;  GET A RANDOM NUMBER:
REAb__NUMBER PROC
;  MOVE THE COUNTER VALUE INTO THE LATCH

MOV AL,10000110B
OUT COMMAND_REG,AL

;  READ THE VALUE OF THE COUNTER:
MOV AL,10110110B
OUT COMMAND_REG,AL
IN AL,CHANNEL_2
MOV AH,AL
IN AL,CHANNEL_2
CALL SET_COUNT
SWAP AH,AL
RET

ENDPREAD NUMBER

;channeL 2, both bytes, mode 2, binary
;send instruction byte to command reg
;counter value
;send low byte of counter
;move high byte to a I
;send high byte of counter

REGISTER:

;instructs command register to "latch"
;send the instruction

;request for "read/write"
;send the request
;get low byte
;temporari ly keep low byte in AH
;get high byte
;restore value in latch register
; reverse high and low bytes
;and now the random number is in AX
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Section 2: Create Sound

BASIC is equipped with elaborate sound facilities, but the operating system
makes possible only a single "beep." To make any other sound you must directly
program the 8253 timer chip. Channel 2 of the chip is connected to the computer's
speaker. When the channel is programmed in mode 3, it produces a square wave of
given frequency. Because the speaker is a simple one, it rounds the edges of the
square wave, reducing it to a more pleasant sounding sine wave. Unfortunately,
the 8253 chip can not alter the amplitude of the wave, so there is no control over
the volume of sound from this source.

The speaker receives not one, but two, inputs to make sound. As Figure 2-2 at
[2.1.1] shows, in addition to the timer chip, the 8255 peripheral interface [1.1.1]
also sends a signal. The pulse rate at either chip can be changed, and combining the
actions of the two chips can produce special sound effects.
The PCjr alone possesses a dedicated sound generator chip. It can deliver three

simultaneous tones, plus noise for sound effects. The volume of each channel may
be set independently. Another unique attribute of the PCjr is that it can manage
sound from an external source (such as a cassette player).
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2.2.1 Program the 76496 sound generator (PCjr only)

The PCjr is blessed with a four-channel sound generator in which three channels
produce tones and the fourth generates 'noise" for sound effects. The four channels
are independently programmable—with each having its own volume control—and
their outputs are combined into a single audio signal. The chip is the TI SN76496N
Complex Sound Generator. It has eight registers—two for each channel—all of
which are addressed through the single port address C0H. This port address is
write-only; if an IN (or INP) instruction is used, the entire system will freeze up.
The PCjr has a plug for external audio output. At system start-up the audio

channel receives output from the 8253 timer chip. But the channel may be turned
over to the sound generator chip, or to either of two external audio inputs. This is
done by changing bits 5 and 6 of Port B on the 8255 Peripheral Interface chip (port
address 61H—see [1.1.1]). The bit patterns are as follows:

Bits 6 & 5 Function Selected

00 8253 timer chip
01 Cassette audio input
10 I/O channel audio input
11 76496 sound generator

To select the audio source, the PCjr BIOS adds function 80H to INT lAH. Place in
AL a code number from 0 to 3, corresponding to the table above, and call the func
tion. There are no return registers. The 76496 sound generator must use this audio
channel, since it cannot drive the PCjr's internal speaker.

Generally speaking, when a byte of data is sent to the sound generator, bits 4-6
hold an identification code telling which of the eight registers the data is directed
to. The codes are:

Bits 6-4 Register addressed

000 Tone 1 frequency
001 Tone 1 volume

010 Tone 2 frequency
011 Tone 2 volume

100 Tone 3 frequency
101 Tone 3 volume

110 Noise control

111 Noise volume

In the case of the tone frequency registers, two bytes are required. The bit pat
terns are:
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byte 1: bits 0-3 Low 4 bits of frequency data
4-6 register identification code
7  always set to 1

byte 2; bits 0-5 high 6 bits of frequency data
6  unused

7  always set to 0

The frequency of a tone is set by sending to the register a ten-bit value that when
divided into 111,843 results in the number of cycles per second desired. Thus, fre
quencies from 110 CPS upward are possible (111843/2^10). Once the register is ini
tialized (and Port B on the 8255 is properly set), the sound begins immediately and
continues until it is shut off. It is not necessary to send another two bytes to change
the frequency. If only byte 2 is sent (the high six bits of frequency data), it auto
matically replaces the corresponding data in the channel that was last addressed.
This feature enables tones to smoothly warble and slide.
The noise generator takes only one byte to program. Its bit pattern is:

bits 0-1 noise density
2  noise quality
3  unused

4-6 register identification code
7  always set to 1

The noise quality (feed back configuration) is set for white noise (a constant hiss)
when bit 2 is 1 and for periodic noise (waves of sound) when bit 2 is 0. The noise
density (shift rate) increases with settings for bits 0-1 from 00B to 10B; when set to
llB, the sound varies with the output of tone channel 3.
The volume of each of the four channels is changed by attenuating the basic sig

nal. It is set using only one byte of data. The bit pattern is:

bits 0-3 attenuation data

4-6 register identification code
7  always set to 1

When all four bits of data are 0, the sound is at its maximum volume. When all are

1, the sound is shut off entirely. Any combination of bits can be used to set inter
mediate volume levels. Bit 0 attenuates the sound by 2 dB (decibels), bit 1 by 4 dB,
bit 2 by 8 dB, and bit 3 by 16 dB. Maximum attenuation is 28 dB.
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2.2.2 Make a tone
This subsection explains how to make sound while the computer does nothing

else; [2.2.3] shows how it is done while other activity is going on. Oddly, for
assembly language programmers the latter is simpler. It entails programming the
8253 timer chip, which operates independently of the CPU. In the method shown
here, the CPU controls the speaker directly, and so the software must do the work
of the timer chip hardware. Although more difficult, this technique allows much
more control over the speaker, and most special sound effects [2.2.8] rely on it.

High Level

The BASIC SOUND statement plays a tone over a wide range of frequencies and
durations. The frequency is given in cycles per second (37-32767), and the duration
is counted in pulses of the BIOS time-of-day reading (0-65535), where there are
18.2 such pulses per second. SOUND 440,91 plays the tuning note A for five sec
onds (5 X 18.2). The frequencies of the octave starting at middle C are:

Middle C 523.3

D 587.3

E 659.3

F 698.5

G 784.0

A 880.0

B 987.7

Frequencies an octave higher are roughly twice these values, and two octaves
higher they are twice as great again. Conversely, frequencies an octave lower are
about half of these values (a well-tuned piano does not precisely follow the arith
metic intervals).

By virtue of its sound generator chip [2.2.1], the PCjr can use the SOUND state
ment for three independent channels of sound, and it can control the volume of
each. The format is SOUND frequency, duration, volume, channel. The volume is
from 0 to 15, defaulting to 8. The channel number is from 0 to 2, defaulting to 0.
Because the PCjr can use the multivoice and volume control features only over an
external speaker, that speaker must first be enabled. Do this by writing SOUND
ON. SOUND OFF restores control to the internal beeper. To play a D minor chord
(D-F-A) at low volume, write:

100 SOUND ON ;enable mult 1-channel sound
110 SOUND 587,50,3,0 ;playD
120 SOUND 699,50,3,1 ;play F
130 SOUND 880,50,3,2 ;playA

Low Level

Producing sound from the 8255 peripheral interface adapter entails nothing more
than turning on and off at the desired frequency the bit in Port B that is hooked up
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to the speaker (bit 1). Port B is located at port address 61H (although the AT does
not have an 8255 peripheral interface as such, it uses the same port address and bit
assignment). If a program changes the bit back and forth as rapidly as possible, the
frequency produced is far too high to be useful. Thus delay loops must be inserted
between the on-off actions. Remember that bit 0 of Port B controls the gate to
channel 2 of the timer chip, which in turn is connected to the speaker. So this bit
should be turned off, disconnecting the timer channel. Figure 2-4 shows how this
method sets the sound frequency.

On —

SIGNAL

Off —

Cycles

Duration Count: Count Count .Count

Now Shorten Wait Loops
to Increase Frequency

150

Cycles

Figure 2-4. Producing sound by the 8255 chip.

In the following example, there are two variables. The one labeled 'TRE-
QUENCY" is used as the counter in the delay loops between the on-off actions. The
smaller the number, the quicker the alternation, and the higher the frequency. The
variable ''NUMBER CYCLES", on the other hand, sets the duration of the tone. It
tells how many times the whole on-off process should be cycled through. The
larger the number, the longer the tone lasts.
Note that hardware interrupts are cleared (deactivated) during this routine. The
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reason is that the timer interrupt occurs with such frequency and regularity (18.2
times per second) that it audibly modulates the tone. Be cautioned that whenever
the interrupts are deactivated, the BIOS time-of-day count falls behind. When a
time-of-day reading is subsequently made, it will be thrown off proportionately
unless adjustments are made.

NUMBER CYCLES EQU

FREQUENCY

PORT 8

NEXT CYCLE:

FIRST HALF:

SECOND HALF:

EQU

EQU

CLI

MOV

IN

AND

OR

OUT

MOV

LOOP

AND

OUT

MOV

LOOP

DEC

JNZ

STI

1000

300

61H

DX,NUMBER__CYCLES
AL,PORT__B
AL,11111110B
AL,00000010B
PORT_B,AL
CX,FREQUENCY
FIRST_HALF
AL,11111101B
PORT_B,AL
CX,FREQUENCY
SECOND_HALF
DX

NEXT CYCLE

;disable interrupts
;DX counts the length of the tone
;get Port B
;disconnect speaker from timer chip
;turn on speaker
;send the command to Port_B
;move the delay for 1/2 cycle to CX
;make delay whi le speaker is on
;turn off speaker
;send the command to Port__B
;move the delay for 2nd half of eye le
;make delay whi le speaker is off
;subtract 1 from the number of cycles
;if 0, then duration is exhausted
;reenable interrupts
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2.2.3 Make a tone simultaneous to other operations

BASIC programmers will find no great distinction made between the techniques
for simultaneous and non-simultaneous sound production. But assembly program
mers resort to entirely different techniques. Because the 8253 timer chip operates
independently of the 8088 CPU, it is trivial to make sounds that continue while
other operations are going on. You need merely to program channel 2 of the chip to
begin producing a particular frequency, and then later you must reprogram the
chip to stop the sound.

High Level ——

The SOUND statement in BASIC can not make simultaneous sound, but the
PLAY statement can if it is especially instructed to do so. PLAY is followed by a
string that tells what notes (and rests) are to be played, their durations, and other
characteristics. The details of PLAY strings are discussed at [2.2.5]. When the string
contains the letters MB ("music background"), the string is placed in a special
buffer and it is performed while other program operations proceed. Conversely,
MF ("music foreground") stops all other program operations until the string is fin
ished. Here a single tone A is played in the background.

100 PLAY "MB A" 'plays A...
110 ... '...while doing this

Note that when in MB mode, the statement X = PLAY(0) returns the numbers of
notes (up to 32) that remain to be played. When in multichannel mode on the PCjr,
this statement returns the number of notes in the buffer of the particular channel
(0-2) named within the parentheses.

Low Level

Simply send a counter to channel 2, as explained at [2.1.1]. The chip must first
be enabled via Port B of the 8255 peripheral interface (at 61H). Calculate the
counter for the latch by dividing 1.19 million by the number of cycles per second
desired. The sound will continue until the gate for channel 2 is shut off. So you
must reset bit 1 of Port B to 0, or else the sound will continue indefinitely and can
be stopped only by rebooting the computer. To precisely time the duration of the
tone, use the BIOS time-of-day count, as discussed at [2.1.6]. In this example, the
pitch is set to 440 cycles per second. A delay is provided by waiting for a random
keystroke.

;  ENABLE CHANNEL 2 BY SETTING PORT B OF THE 8255 CHIP:
PORT__B EQU 61H ;set address of PB on the 8255 chi p
"  IN AL,PORT_B ;getPortB

OR AL,3 ;turn on 2 low bi ts (3=00000011B)
OUT PORT_B,AL ;send changed byte to Port B

;  SETUP I/O REGISTER:
COMMAND__REG EQU 43H ;set address of command register
CHANNEL_2 EQU 42H ;set address of channel 2

MOV AL,10110110B ;bit pattern for channel 2, 2 bytes,
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OUT COMMAND REG,AL
;  SEND COUNTER TO LATCH:

MOV AX,2705
OUT CHANNEL_2,AL
MOV AL,AH
OUT CHANNEL_2,AL

;  DELAY BY WAITING FOR KEYSTROKE:

MOV AH,1
INT 21H

;  TURN OFF THE SOUND:

IN AL,PORT_B
AND AL,11111100B
OUT PORT__B,AL

;mode 3, binary number
;send byte to command register

;the counter: 1190000/440
;send LSB
;shift MSB, since must send from AL
;send MSB

;function number of INT 21H
;caLL interrupt

;get the byte in Port B
;force the two low bits to 0
;send changed byte to Port B
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2.2.4 Beep the speaker
Some programs require a variety of warning "beeps." They are easy to create in

BASIC, but the operating system provides no "beep" function as such, and it only
indirectly allows access to the beeping sound you hear at system start-up. For alter
nate tones an entire sound-production routine must be programmed at low level.
Use a little imagination to tailor the beep to its message. To augur impending
doom, create a siren out of sliding tones [2.2.7], or, if the printer is on line, alter
nate between the computer speaker and printer speaker (output ASCII 7 on the
printer data line).

High Level ^———

In BASIC, simply write "BEEP". Here, a likely error is met with a beep and a
query:

100 INPUT"Enter your age",AGE 'get age
110 IF AGE>100 THEN BEEP:PRINT"Are you reaLLy over 100?" 'error?

•etc..,.

For beeps of another frequency or duration, use the SOUND statement. The
form is SOUND pitch, duration, where the pitch is given in cycles per second (3000
is mid-range) and the duration is given in intervals of (roughly) eighteenths of a
second. SOUND 3000,18 makes a mid-range sound for about one second. In this
example the speaker rapidly alternates between a high and low sound, scaring the
living daylights out of anyone nearby.

100 FOR N=1 TO 200 'set the number of alternations
110 SOUND 500,1 'low sound for 1/18th of a sec
120 SOUND 5000,1 'high sound for 1/18th of a sec
130 NEXT 'repeat

Middle Level

The operating system does not offer a function specially made for sound. But
you can elicit the familiar "beep" sound simply by "writing" ASCII character 7 "to
the standard device" using one of the DOS or BIOS functions—that is, send it to
the video monitor. ASCII 7 is interpreted as the "bell" control code, and its symbol
is not placed on the screen. Function 2 of DOS interrupt 21H is easiest:

MOV AH,2 ;function to write character on screen
MOV DL,7 ;send ASCII 7
INT 21H ;the speaker beeps

Note that BIOS function AH of INT 10H does not cause a beep when it handles
ASCII 7; it displays the character instead.

Low Level

For a simple "beep," the method based on the 8255 peripheral interface chip
[1.1.1] is the most concise. The example here roughly replicates the BIOS beep tone
heard when the computer is switched on. »
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;  BEEP THE SPEAKER:
MOV

IN

AND

OR

OUT

MOV

LOOP

AND

OUT

LOOP

DEC

JNZ

NEXTCYCLE:

CYCLEUP:

CYCLEDOWN:

DX,800 ;counts the number of eyeLes
AL,61H ;read Port 8 on the 8255 chip
AL,0FEH ;turn off the 8253 timer bit
AL,2 ;turn on the speaker bit
61H,AL ;send the byte back to port 8
OX,150 ;set duration of 1st half of wave
CYCLEUP ;delay whi le signal is high
AL,0FDH ;turn off the speaker bit
61H,AL ;send the byte to port 8
CYCLEDOWN ;delay whi le signal is low
DX ;dee 1 from the number of eye les
NEXTCYCLE ;do another eye le i f DX not 0

75



2.2.5 Make a string of tones

2.2.5 Make a string of tones

This subsection shows how to make a timed string of sounds while the computer
does nothing else; the next section shows how sound strings are performed while
the computer is busy with other operations. When the sound is non-simultaneous,
the string may be either a melody or a display of sound effects; when the sound is
simultaneous, however, sound effects are not possible.
Sound strings are an advanced feature offered by BASIC. Building the strings

from scratch in assembly language requires a good deal of work. Either of the two
sound production methods [2.2.2 & 2.2.3] may be used. For both, it is only a mat
ter of starting one tone, timing it, then starting the next, and so on. Every sound
string is formed from two data strings, one that holds the frequencies of the succes
sive tones, and another that holds the duration for each (providing different length
tones are required). The durations are measured using the BIOS time-of-day count
[2.1.6].

High Level

The PLAY statement is one of BASIC'S most advanced features. The statement is

comprised of a string of notes that is interspersed with information about how the
notes are to be played. The notes are written as the letters A - G, and signs for
sharps and flats ("accidentals") follow. Sharps are shown by # or -I-, and flats by
-. PLAY"CC#D" and PLAY"CD-D" are equivalent (but do not use accidentals to
show non-black key notes). A second way of naming notes is to calculate a code
number from 0 to 84, where 0 equals a rest, and 1 through 84 correspond to the 84
possible notes in the seven octaves, starting from the bottom. Precede the number
with the letter N: PLAY"N3N72N44".

A seven-octave range is allowed, each reaching from C to B. The octaves are
numbered from 0 to 6, and middle C starts octave 3. The current octave may be
changed at any point in the string by inserting O (the letter "O", not zero) followed
by the octave number. All notes that follow are played in that octave until another
octave setting is made. When none is initially set, octave 4 is used. PLAY
"03C04C05C06C" plays progressively higher Cs. Another way to change the
octave is to place the symbols > or < in the string; these respectively switch a
tune up or down one octave. PLAY"03C>C>C>C" also plays progressively
higher Cs.
Notes may be given different lengths by inserting a code number preceded by the

letter L. All notes that follow are given that length until another length code
appears. The code is a number from 1 to 64, where 1 is a whole note and 64 is a
64th note. Write L4 to make quarter notes. The tempo at which the notes are
played is set by a tempo code, which is the letter T followed by a number from 32
to 255, giving the number of quarter notes per minute. When left unspecified, the
note length defaults to L4, and 120 is used for the tempo. To change the length of
only a single note and not all that follow, place the value of the length after the
note, and without the letter L. PLAY "L4CDE16FG" plays E as a sixteenth note and
all others as quarter notes.
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Rests are counted in the same way as note lengths are counted. Place a number
from 1 to 64 after the letter P (for "pause"). Pi gives a whole note pause, and P64
gives a 64th note pause. Placing a period after a note has the same effect as it does
in ordinary music notation: the length of the note is extended by half. A second
period extends the length by half as much again.
By default, notes are played for 7/8ths of their specified duration. To play them

for their full duration {legato), put ML in the string. To play them at 3/4ths dura
tion {staccato), put MS in the string. And to return the texture to normal, write
MN.

Normally, all other program activity stops until the string has been completed.
Use MB to cause the string to be played in the background while statements that
follow the PLAY statement are executed. To restore the normal situation, write
MF.

Finally, the PLAY statement allows substrings to be played from within a larger
string. This means that a part of a string can be set up as an ordinary string vari
able, and then that variable can be called from within the string that forms the
PLAY statement. For example, if S$ = "EEEEE", then in the statement
PLAY"CDXS$;FG" the note E is repeated five times. Note that the variable name is
preceded by the letter X, and it is followed by a semicolon. (For compiled programs
another method, using VARPTR$, is required—see the BASIC manual for details.)

This example plays the familiar grandfather clock chimes. The string first sets the
melody to play in legato, then sets the tempo and starting octave, and finally lays
out the four notes, a pause, and then the same four notes in reverse. The spaces
between the codes are entirely for the convenience of the programmer—BASIC
ignores them.

100 PLAY "ML T40 03 ECD<G P32 G>DEC"

Because of its special sound chip, the PCjr adds two features to the PLAY state
ment. First, it accepts a V parameter, which sets the volume. The expression V5
sets (or changes) the volume to level 5. The volume settings range from 0 to 15,
with 8 as the default. 0 shuts off sound completely. Second, three strings of sound
can be made to sound simultaneously using the PLAY statement. Place all three
strings on the same line, separating them with commas. To use these special fea
tures, you must first enable the external speaker by writing SOUND ON.

100 SOUND ON

110 PLAY " "/• "

Low Level

This example uses the 8253 timer chip to produce sound. It does no more than
play a scale of eight notes, but with a little modification it could be made quite ver
satile. There are three data strings. The first sets the duration of each note as a mul
tiple of an arbitrary delay period (changing the arbitrary period changes the
tempo). The second string holds frequencies for each of the eight notes; the values
are those that when placed in the latch register of channel 2 of the 8253 chip result
in the desired tones. The third string holds the melody in the form of code numbers
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from 1 to 8 that correspond to the eight frequencies. This string terminates with FF
to flag its end. The routine does nothing more than read each note of the melody,
look up the corresponding frequency, and place it in channel 2. Then the duration
assigned to that note is fed into a delay loop that uses the time-of-day count, and
when the delay is finished, the next note is processed. Figure 2-5 diagrams the
routine.

1 3  4 5 6 7 8

Frequency String 1355

Fetch Next Note

1
Melody String

Get Frequency1
at that Offset

Place in

8253 Chip

1 1 5 5 6 6 5 4 4 3 3

Get Corresponding Number

Timer

of Beats in the Note

Add to

Beat String
i

Time-of-Day Count

4 2 4 2 1 1 1 1 8 4

Go to Next Note-*—

Figure 2-5. Playing a string of notes

Keep Reading
Count until

it Equals
the Sum

-IN THE DATA SEGMENT:

BEAT

FREQUENCY

MELODY

DB

DU

DU

DB

10,9,8,7,6,5,4,3,2
2280,2031,1809,1709
1521,1355,1207,1139
1,2,3,4,5,6,7,8,0FFH

;duration of each note
;table of frequencies

;f requency code of each note

;  INITIALIZATION:
PORT B EQU 61H

COMMAND REG EQU 43 H

LATCH2 EQU 42H

IN AL,PORT B ;get current status of Port B
OR AL,00000011B ;enabLe the speaker and timer channel 2
OUT PORT B,AL ; replace the byte
MOV 81,0 ;initialize ptr to melody/beat strings
MOV AL,0B6H ;initialize channel 2 for mode 3
OUT COMMAND REG,AL ;send byte to command register

— LOOK UP A NOTE, GET ITS FREQUENCY, PLACE IN CHANNEL 2:
NEXT_NOTE: LEA BX,MELODY ;get offset of melody string

MOV AL,CBX]CSI] ;get code for nth note of the string
CMP AL,0FFH ;is it FF? (end of string marker)
JE NO MORE ; i f so, j ump to end of rout i ne
CBW ;convert AL to word-length operand
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;6ET THE FREQUENCY:
MOV BX,OFFSET FREQUENCY
DEC AX

SHL AX,1
MOV DI,AX
MOV DX,CBX]CDI]

;START THE NOTE PLAYING:
MOV AL,DL
OUT LATCH2,AL
MOV AL,DH
OUT LATCH2,AL

;  CREATE DELAY LOOP:
MOV AH,0

STILL SOUND:

;  FINISH UP:
NO MORE:

;get offset of the frequency table
;AX - 1 so that counting starts from 0
;doubLe AX, since word-length table
;mov to DI for addressing
;get the frequency from the table

;prepare to send low byte of frequency
;send to latch register (via I/O reg)
;prepare high byte
;send high byte

;function to get BIOS time-of-day count
INT 1AH ;get the count
MOV BX,OFFSET BEAT ;get offset of beat string
MOV CL,CBX][SI] ;get beat value for note number SI
MOV CH,0 ;clear high half of CX to use as word
MOV BX,DX ;get low word of BIOS count from DX
ADD BX,CX ;add beat count to current BIOS count
INT 1AH ;get the count
CMP DX,BX ;cmp count with end-of-note count
JNE STILL_SOUND ; if not equaI, continue sound
INC SI ;else, point to next note
JMP NEXT__NOTE ;go get the next note

IN AL,PORT__B ;get the byte in Port__B
AND AL,0FCH ;turn of f the speaker bi ts
OUT 61H,AL ;replace the byte in Port_B
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2.2.6 Make a string of tones simultaneous to other
operations

Although BASIC makes it easy, simultaneous music is a tricky bit of real-time
programming. Only the 8253-based sound production method [2.2.3] may be used,
since the 8255-based method [2.2.2] keeps the CPU busy. Accordingly, only strings
of pure musical tones—and no sound effects—can be played simultaneously. The
basic technique of real-time programming is shown at [2.1.7]. Real-time programs
modify the BIOS timer interrupt, which stops the CPU 18.2 times per second to
update the BIOS time-of-day count. An extension to the interrupt compares the
new time-of-day count to a value representing the desired duration of the sound,
and when that value is reached it stops the tone, starts another, and sets up the tim
ing for the new tone.

High Level —

A simultaneous tone string is just another option within Advanced BASIC'S very
elaborate PLAY statement, which is discussed at length at [2.2.5]. Simply add MB
to the beginning of the control string. This stands for 'Music Background"; insert
MF (for "Music Foreground") to cause PLAY to revert to stopping all other pro
gram operations until the melody is finished. This example plays a scale while
drawing and filling a box (it requires graphics capability).

100 PLAY "MB T100 03 L4;CDEFOABC" 'play a scale from middle C
110 LINE(10,10)-(80,80) ,1 ,BF 'draw a box at the same time

Low Level

The routine below is an elaboration of the non-real-time routine shown in the
previous subsection. It requires an understanding of how the timer interrupt is
reprogrammed, as discussed at [2.1.7]. The routine is pointed to by an interrupt
vector, and it is executed 18.2 times a second, at the same time as the BIOS time-
of-day count is updated. Normally, only a few lines are actually executed—just
enough to determine that no change of sound is required—and the routine returns,
freeing the CPU for other tasks.
The BIOS time-of-day count is used to measure the duration of each note. When

ever a change is made from one note to another, the duration of the new note is
calculated as a number of pulses of the BIOS time-of-day count, and that value is
added to a reading of the current count. The time-of-day value is checked each time
the routine is invoked, and when the awaited value finally comes up, a chain of
events looks up the next note, programs its frequency into channel 2 of the 8253
chip, and sets up a new duration counter. Extra code is required for the special
cases of the first and last notes of the strings.

;  IN THE DATA SEGMENT:
BEAT DB 10,9,8,7,6,5,4,3,2 ;duration of each note
FREQUENCY DW 2280,2031,1809,1709 ;table of frequencies

DW 1521,1355,1207,1139
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MELODY DB 1,2,3,4,5,6,7,8,0FFH
HOLDIP DW 0
HOLDCS DW 0
SOUND NOW? DB 1

FIRST NOTE? DB 1
END NOTE DW 0
WHICH NOTE DW 0
—INITIALIZE THE INTERRUPT VECTOR:

;CHANGE THE VECTOR:
PUSH DS

MOV AX,SEG MEL0DY2
MOV DS,AX
MOV DX,OFFSET MEL0DY2
MOV AL,1CH
MOV AH,25H
INT 21H

POP DS

;frequency code of each note
;stores original INT 1CH vector
;ditto
; flags whether sound on or off
; flags special case of 1st note
; ho Ids timer count to end note
;pts to current note in string

;DS is destroyed
;get segment of routine
;place in DS
;get offset of routine
;interrupt vector to change
;function to set vector
;change the vector
;restore DS

;  THE PROGRAM MOVES ALONG, CALLS SOUND ROUTINE AT ANY TIME

AT END OF PROGRAM, REPLACE ORIGINAL VECTOR:
MOV

MOV

MOV

MOV

MOV

INT

RET

DX,0FF53H
AX,0F000H
DS,AX
AL,1CH
AH,25H
21H

;put original INT 1C offset in DX
;put original INT 1C segment in DS
r

;number of the interrupt
;function to change interrupt vector
;replace the original interrupt

;  HERE IS THE INTERRUPT:
MEL0DY2 PROC FAR

PLAY IT:

PUSH AX

PUSH BX

PUSH CX

PUSH DX

PUSH DI

PUSH SI

PUSH DS

MOV AX,SS:C114]
MOV DS,AX
CMP SOUND N0W?,1
JE PLAY IT

JMP NOT NOW

CMP FIRST NOTE?,0
JE TIME CHECK

PORT_B
COMMAND__REG
LATCH2

;  INITIALIZATION:
EQU

EQU

EQU

IN

OR

OUT

MOV

MOV

OUT

MOV

61H

43H

42H

AL,PORT__B
AL,0000001IB
PORT_,AL
SI,0
AL,0B6H
COMMAND_REG,AL
FIRST_NOTE?,0

LOOK UP A NOTE, GET ITS FREQUENCY, PLACE
NEXT_NOTE: LEA BX,MELODY

save aItered regi sters

get original DS from stack
restore DS

i s sound requi red?
if so, move on
if not, skip the interrupt
is this the beginning of a string?
if not, jump to timing loop
otherwise, start the melody string

set equates for port names

get current status of Port B
enable the speaker and timer channel 2
replace the byte
initialize ptr to melody/beat strings
initialize channel 2 for mode 3
send byte to command register
set flag that melody now in progress
IN CHANNEL 2:

get offset of melody string
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MOV SI,WHICH_NOTE
MOV AL,[BX][Sn
CMP AL.BFFH
JE NO_MORE
CBU

;6ET THE FREQUENCY:
MOV BX,OFFSET FREQUENCY
DEC AX

SHL AXJ
MOV DI,AX
MOV DX,[BX]CDI]

;START THE NOTE PLAYING:
MOV AL,DL
OUT LATCH2,AL
MOV AL,DH
OUT LATCH2,AL

;  CREATE A DELAY LOOP:
TIME IT: MOV AH,0

TIME CHECK:

NO MORE:

NOT NOW:

MEL0DY2

INT 1AH

MOV BX,OFFSET BEAT
MOV CL,CBX]CSI]
MOV CH,0
MOV BX,DX
ADD BX,CX
MOV END NOTE,BX
MOV AH,0
INT 1AH

CMP DX,END NOTE
JNE NOT NOW

MOV SI,WHICH NOTE
INC SI

MOV WHICH NOTE,SI
JMP NEXT NOTE

:ROUTINE:

IN AL,PORT B
AND AL,0FCH
OUT 61H,AL
MOV SOUND NOW?,0
MOV FIRST N0TE?,1
POP DS

POP SI

POP DI

POP DX

POP CX

POP BX

POP AX

I RET

ENDP

SI gets pointer to current note
get code for nth note of the string
is it FF? (end of string marker)
if so, jump to end of routine
convert AL to word-Length operand

get offset of the frequency table
AX - 1 so that counting starts from 0
double AX, since word-length table
mov to DI for addressing
get the frequency from the table

prepare to send low byte of frequency
send to latch register (via I/O reg)
prepare high byte
send high byte

function to get BIOS time-of-day count
get the count
get offset of beat string
get beat value for note number SI
clear high half of CX to use as word
get low word of BIOS count from DX
add pulse count to current BIOS count
store as value at which to end note
function to get BIOS time-of-day count
get the count
cmp count with end-of-note count
if not equal, quit the interrupt
otherwise, start next note
increase the note counter by one
save the note counter

start the next note

get the byte in Port_B
turn off the speaker bits
replace the byte in Port_B
set the play-a-string variable off
set the f i rst-note variable on
restore altered registers

return from the interrupt
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2.2.7 Make sliding tones
Sliding tones are made by continuously changing frequency. Both BASIC and

low-level programming can achieve them. This sound effect is made more dramatic
by slightly shortening the duration of each segment of the tone as it rises, or by
slightly lengthening the duration as the tone falls.

High Level

In BASIC, simply place a SOUND command [2.2.2] in a loop, using very short
durations for the tone. Increment the frequency by some multiple of the counter
each time through. See [2.2.8] for an example using the PLAY statement, which
allows faster transitions.

100 FOR N=1 TO 500 STEP 15

110 SOUND 400 + N,1
120 NEXT

Low Level

It is easiest to use the method of sound production controlled from the 8255
peripheral interface chip. Simply modulate bit 1 of Port B between 1 and 0, using
empty timing loops as shown at [2.2.2]. Each time the timing loop is restored by
placing a value in CX, slightly increase or decrease that value. Here, the tone rises:

;  DISABLE THE TIMER CHIP
PS EQU 61H ;set PB equal to address of 8255 port 8

IN AL,PB ;get the byte at PB
OR AL,1 ;turnoffbit0
OUT PB,AL ;put the changed byte back in PB

;  SET THE SOUND FREQUENCY AND DURATION
MOV BX,9000 ;initial counter value, decreased below
MOV DX,3000 ;sound wi 11 continue for 3000 cycles

REPEAT: ; return here after each eye le
;  TURN THE SPEAKER BIT ON

OR AL,00000010B ;force bit 1 "on"
OUT PB,AL ;place "on" byte in PB
MOV CX,BX ;set counter for 1st half of cycle

CYCLE1: LOOP CYCLE1 ; idle at loop for 1000 repetitions
;  TURN THE SPEAKER BIT OFF

AND AL,11111101B ;force bit 1 "off"
OUT PB,AL ;place"off"byte inPB
MOV CX,BX ;set counter for 2nd half of cycle

CYCLE2: LOOP CYCLE2 ;idle at loop for 1000 repetitions
;  GO ON TO NEXT CYCLE

DEC BX ;decrement counter, increase frequency
DEC BX ;and again
DEC DX ;decrement the remaining duration
JNZ REPEAT ;do another cycle if DX not 0

;else, the sound ends...

This simple method results in the high range passing considerably more quickly
than the low range. Over short intervals this effect is actually desirable; when not,
code must be added so that as the tone rises DX is given ever higher values when it
is reloaded (6th line of the example).
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2.2.8 Make sound effects

Sound effects generally entail a continuous change in the frequency of a tone.
Only the PCjr is well equipped for this purpose (see the special discussion at
[2.2.1]). On the other machines sound effects cannot readily be produced simulta
neously with other program operations.

High Level

Because of the power of the SOUND and PLAY statements, BASIC makes it easy
to produce sophisticated sound effects. But all must be constructed out of a pure
musical tones, which means that the effect of sound distortion must be created by
changing the tones so quickly that the ear blurs them together. For example, a
piercing "warble" is created by rapidly switching back and forth between the same
tone set several octaves apart:

100 FOR N=1 TGI00

110 PLAY"L64t255"

120PLAY"01A"

130PLAY"05A"

140 NEXT

•set duration

•fastest possible tempo
•play a low A
•play a high A
• repeat

When the variation ranges over only a few cycles per second, the result is a sort of
vibrato:

100 FOR N=1 TO 100

110 SOUND 440,1
120 SOUND 445,1
130 NEXT

•set duration

•play an A
•play the A slightly sharped
• repeat

Another technique entails nesting sliding tones within a sequence that itself moves
upwards or downwards. Figure 2-6 shows an upward-moving sequence. Many
arcade games use this technique:

cm

011

Qi

Figure 2-6. The sliding-sliding tone sound effect.
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100 FOR 1=1 TO 10 • set number of repetitions
110 FOR J=0 TO 6 * repeat scale 6 times
120 PLAY "mbL64t255o=j ;ba^ag^gf#fed#dc#cc#dd^eff^gg#aa#b" *stide thru a seaLe
130 NEXT • repeat at higher octave (o=j)
140 NEXT ' repeat the whole sequence

The PCjr is much more versatile than the other machines, thanks to its special
sound chip. The NOISE statement can generate a variety of sounds, using the for
mat NOISE source, volume, duration. The source is a number from 0 to 7 taken

from the following table:

0 high pitch periodic noise
1 medium pitch periodic noise
2 low pitch periodic noise
3 periodic noise where pitch varies with channel 3
4 high pitch white noise
5 medium pitch white noise
6 low pitch white noise
7 white noise where pitch varies with channel 3

The volume is given as a number from 0 to 15, where 0 is "off." And the duration is
specified as a number of pulses of the BIOS time-of-day count, where there are 18.2
pulses per second.

Low Level

Any of the techniques shown for BASIC are also available through assembly lan
guage, although they may take a good deal of programming, as earlier parts of this
chapter demonstrate. In addition, assembly programming allows you to create
impure tones in which the interval during which the speaker is turned off does not
equal the interval during which it is on. This distortion of symmetry makes for a
variety of buzzing and clicking sounds. Buzzing results when the difference in the
two intervals is, say, 50 to 1. When the difference is 10 to 20 times that, the buzz
slows down to individual clicking sounds. In either case, the sound must be pro
duced from the 8255 peripheral interface chip, using the basic technique shown at
[2.2.2]. Here is an example of a buzz:

NUMBER CYCLES EQU

FREQUENCY1

FREQUENCY2

PORT B

NEXT CYCLE:

FIRST HALF:

EQU

EQU

EQU

CLI

MOV

IN

AND

OR

OUT

MOV

LOOP

AND

300

50

3200

61H

DX,NUMBER_CYCLES
AL,PORT B
AL,1111T110B
AL,00000010B
PORT_B,AL
CX,FREQUENCY1
FIRST__HALF
AL,11111101B

;number of times speaker goes on-off
;11 me on
;time off
;address of Port B of 8255 chip
;disable interrupts
;DX counts the length of the tone
;get Port B
;disconnect speaker from timer chip
;turn on speaker
;send the command to Port_B
;move the delay for 1/2 cycle to CX
;make delay whi le speaker is on
;turn off speaker
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SECOND HALF:

OUT PORT_B,AL
MOV CX,FREQUENCY2
LOOP SECOND_HALF
DEC DX

JNZ NEXT__CYCLE
STI

;send the command to Port__B
;move the delay for 2nd half of eyeLe
;make delay whi le speaker 1 s off
;subtract 1 from the number of cycles
;if 0, then duration is exhausted
;reenable interrupts

To produce clicking sounds, use the same code, but change the value of
FREQUENCY 2 to about 40000.
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2.2.9 Make simultaneous sounds

Only the sound generating chip found in the PCjr can produce true simultaneous
sound (see the discussion at [2.2.1]). However, in assembly language the two low-
level methods of sound production may be combined to simulate the production of
two simultaneous sounds. The pulse rates combine to create the effect of a complex
wave form. The two sounds are each of diminished intensity, and if they are not
widely separated, the result is more like a buzz than like two voices. This trick is
really only useful for sound effects.

Low Level

Simply combine the two sound production techniques shown at [2.2.2] and
[2.2.3]. Start sound from channel 2 of the timer chip. Then modulate output to the
speaker from bit 1 of Port B of the peripheral interface. This second action deter
mines the duration of the sound. Remember to shut off the timer chip when
finished.

;  START SOUND OUTPUT FROM CHANNEL 2 OF 8253 TIMER CHIP:
IN AL,61H ;get byte from Port B
OR AL,3 ;turn on bottom 2 bytes
OUT 61H,AL ;send byte back to PB
MOV AL,10110110B ;bit pattern for 8253 command register
OUT 43H,AL ;send to register
MOV AX,600H ;counter for channel 2
OUT 42H,AL ;send Low byte
MOV AL,AH ;ready to send high byte
OUT 42H,AL ;send high byte

;  GENERATE A SECOND FREQUENCY FROM THE 8255 CHIP:
EQU

EQU

CLI

MOV

IN

AND

OR

OUT

MOV

LOOP

AND

OUT

MOV

_  LOOP
DEC

JNZ _
STI

;  SHUT OFF CHANNEL 2 OF TIMER CHIP:
IN AL,61H
AND AL,11111100B
OUT 61H,AL

NUMBER___CYCLES
FREQUENCY

NEXT CYCLE:

FIRST HALF:

SECOND HALF:

150

DX,NUMBER_CYCLES
AL,61H
AL,11111111B
AL,000000108
61H,AL
CX,FREQUENCY
FIRST_HALF
AL,11111101B
61H,AL
CX,FREQUENCY
SECOND_HALF
DX

NEXT CYCLE

;number of times to cycle on-off
;delay time for 1/2 cycle
;disable interrupts
;DX counts the length of the tone
;get Port B
;disconnect speaker from timer chip
;turn on speaker
;send the command to Port__B
;move the delay for 112 eyele to CX
;make delay whi le speaker is on
;turn off speaker
;send the command to Port__B
;move the delay for 2nd half of cycle
;make delay whi le speaker is off
;subtract 1 from the number of cycles
;if 0, then duration is exhausted
;reenable interrupts

;get byte from Port B
;turn off bottom 2 bits
; replace the byte
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3

The Keyboard
Section 1: Monitor the Keyboard

The keyboard contains an Intel microprocessor which senses each keystroke and
deposits a scan code in Port A of the 8255 peripheral interface chip [1.1.1], located
on the system board. A scan code is a one-byte number in which the low seven bits
represent an arbitrary identification number assigned to each key. A table of scan
codes is found at [3.3.2]. Except in the AT, the top bit of the code tells whether the
key has just been depressed (bit = l, the "make code") or released (bit = 0, the
"break code"). For example, the seven-bit scan code of the <B> key is 48, which is
110000 in binary. When the key goes down, the code sent to Port A is 10110000,
and when the key is released, the code is 00110000. Thus every keystroke registers
twice in the 8255 chip. Each time, the 8255 issues an "acknowledge" signal back to
the microprocessor in the keyboard. The AT works slightly differently, sending the
same scan code in either case, but preceding it with the byte F0H when the key is
released.

When the scan code is deposited in Port A, the keyboard interrupt (INT 9) is
invoked. The CPU momentarily sets aside its work and performs a routine that
analyzes the scan code. When the code originates from a shift or toggle key, a
change in the key's status is recorded in memory. In all other cases the scan code is
transformed into a character code, providing it results from a key depression (oth
erwise the scan code is discarded). Of course, the routine first checks the settings of
the shift and toggle keys to get the character code right (is it "a" or "A"?). And then
the character code is placed in the keyboard buffer, which is a holding area in
memory that stores up to fifteen incoming characters while a program is too busy
to deal with them. Figure 3-1 shows the path a keystroke takes to travel to your
programs.

There are two kinds of character codes, ASCII codes and extended codes, ASCII

codes are one-byte numbers that correspond to the IBM extended ASCII character
set, which is listed at [3.3.3]. On the IBM PC, these include the usual typewriter
symbols, plus a number of special letters and block-graphics symbols. The ASCII
codes also include 32 control codes which ordinarily are used to send commands to
peripherals, rather than to act as characters on the screen; each, however, has its
own symbol which can be displayed by direct memory mapping onto the video dis
play [4.3.1]. (Precisely speaking, only the first 128 characters are true ASCII char
acters, and it is redundant to speak of "ASCII codes," since "ASCII" stands for
"American Standard Code for Information Interchange." But programmers com
monly speak of "ASCII codes" in order to distinguish them from other numbers.
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8048
Keyboard Processor

I Scan Code

8255

Peripheral Interface

I
Keyboard Interrupt
(Stored In ROM)

I
ASCII Codes and

Extended Codes

Keyboard Buffer
(System RAM)

I
Screen Output

Interrupts Program Code

Video Buffer

(Video Adaptor Cord)

Figure 3-1. From Keyboard To Screen.

For example, "ASCII 8" refers to the backspace character, while "8" is the letter ref
erenced by ASCII 56).
The second kind of codes, the extended codes, are assigned to keys or key-com

binations that have no ASCII symbol to represent them, such as the function keys
or Alt key combinations. Extended codes are two bytes long, and the first byte is
always ASCII 0. The second byte is a code number, as listed at [3.3.5]. The code
0;30, for example, represents Alt-A. The initial zero lets programs tell whether a
code number is from the ASCII set or the extended set.
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There are a few key combinations that perform special functions and that do not
generate scan codes. These combinations include < Ctrl-Break >, < Ctrl-Alt-Del >,
and <PrtSc>, plus <Sys Req> on the AT, and <Ctrl-Alt-Cursor left, -Cursor
right, -CapsLock, -Ins> on the PC Jr. These exceptions bring about special pre
defined results [3.2.2]. All other keystrokes must be interpreted by your programs,
and if they have a special purpose, such as to move the cursor leftward, your pro
gram must provide the code that achieves that effect.

Fortunately, the operating system offers a variety of routines that read codes
from the keyboard buffer, including means to receive whole strings at once.
Because the routines do just about anything you can ask, it is generally senseless to
write your own keyboard procedures, and so there are few low level programming
examples in this chapter. However, a discussion of how to reprogram the keyboard
interrupt is provided.
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3.1.1 Clear the keyboard buffer

Programs should clear the keyboard buffer before prompting for input, eliminat
ing any inadvertent keystrokes that may be waiting in the buffer. The buffer holds
up to fifteen keystrokes, whether they be one-byte ASCII codes or two-byte
extended codes. Thus the buffer must provide two bytes in memory for each key
stroke. For one-byte codes, the first byte holds the ASCII code, and the second, the
key's scan code. For the extended codes, the first byte holds ASCII 0 and the second
byte holds the code number. This code number is usually the key's scan code, but
not always, since some keys combine with shift keys to produce more than one
code.

The buffer is designed as a circular queue, also known as a first-in first-out
(FIFO) buffer. Like any buffer, it occupies a range of contiguous memory ad
dresses. But no particular memory location is the "front of the line" in the buffer.
Rather, two pointers keep track of the 'head' and 'tail' of the string of characters
currently in the buffer. New keystrokes are deposited at the position following the
tail (towards higher addresses in memory) and the tail pointer is adjusted accord
ingly. Once the highest memory location of the buffer space is filled, the insertion
of new characters wraps around to the low end of the buffer; thus, the head of the
string in the buffer will sometimes be at a higher memory location than the tail.
Once the buffer is full, additional incoming characters are discarded; the keyboard
interrupt beeps the speaker when this happens. Figure 3-2 diagrams some possible
configurations of data in the buffer.

While the head pointer points to the first keystroke, the tail pointer points to the
position after the last keystroke. When the two pointers are equal, the buffer is
empty. To allow for fifteen keystrokes, a sixteenth, dummy position is required,
and its two bytes always contain a carriage return (ASCII 13), and the scan code
for < enter >, which is 28. This dummy position immediately precedes the head of
the keystroke string. The 32 bytes of the buffer begin at memory location 0040:00
IE. The head and tail pointers begin at 0040:001A and 0040:001C, respectively.
Although the pointers are two bytes long, only the lower, least significant byte is
used. The values of the pointers vary from 30 to 60, corresponding to positions
within the BIOS data area. Simply set the value of 0040:001A equal to the value in
0040:001C to "clear" the buffer.

Note that it is possible for a program to insert characters into the buffer, ending
the string with a carriage return and adjusting the buffer pointers accordingly. If
this is done right before exiting a program, when control returns to DOS the char
acters are read and another program may be loaded automatically.

High Level

In BASIC use PEEK and POKE to fetch and change the values of the buffer
pointers:

100 DEF SEG=&H40 * set segment to bottom of memory
110 POKE &H1C,PEEK<&H1A) 'equaLize the pointers
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0040:003C 'F'

3A 'F'

38 'E'

36 'R'

34 'B'

32 'U'

30 'F'

2E 'F'

2C 'E'

2A 'R'

28

26

24

22

20 'B'

1E 'U'

1C 28 —Tail Pointer—^ 34

0040:001 A 34 —Head Pointer—^ 20

This method is not reliable. Some applications may create a buffer elsewhere in
memory, and there is also a slight possibility that the keyboard interrupt will break
in in the midst of line 110, changing the tail pointer. For these reasons, it is better to
leave the buffer pointers alone. Instead, read from the buffer until null is returned,
discarding the keystrokes:

100 IF INKEYSO"" THEN 100 'take another keystroke if not null

Middle Level

Function C of INT 21H performs any of the DOS keyboard input functions 1, 6,
7, 8, and A (described elsewhere in this section) but clears the keyboard buffer first.
Simply place the number of the input function in AL (here it is 1):

;  CLEAR BUFFER BEFORE AWAITING KEYSTROKE:
MOV AH,0CH ;seLect DOS function 0CH
MOV AL,1 ;seLect key input function
INT 21H ;cLears buffer, waits for keystroke
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3.1 .t Clear the keyboard buffer

Low Level

As in the high level example, make the tail pointer equal to the head pointer. To
avoid interference by the keyboard interrupt, disable interrupts while the change is
made:

;  EQUALIZE THE HEAD AND TAIL POINTERS:
CLI ;disableinterrupts
SUB AX,AX ;makeAX=0
MOV ES,AX ;set ES to bottom of memory
MOV AL,ES:[41AH] ;move head pointer to AL
MOV ES:C41CH],AL ;pLace in tai L pointer
STI ;reenabLeinterrupts
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3.1.2 Check the buffer for keystrokes
You can check whether or not there has been keyboard input without actually

removing a character from the keyboard buffer. The buffer uses two pointers that
show the front and end of the queue of characters currently in the buffer. When the
two pointers are equal, the buffer is empty. Simply compare memory locations
0040:001A and 0040:001C for equality. (One can not merely check for a character
at the "front" of the queue, because the buffer is formed as a circular queue, and
the "front" is constantly changing position [3.1.1]).

High Level

Simply use PEEK to read the two bytes, and compare them:
100 DEF SEG=&H40 'set the memory segment to 0
110 IF PEEK(&H1A)OPEEK(&HlC) THEN... '.. .then a character has arrived...

Middle Level

Function B or INT 21H returns FFH in the AL register when the keyboard buffer
holds one or more characters, and it returns 00 when the buffer is empty:
;  CHECK IF A CHARACTER IS IN THE BUFFER:

MOV AH,0BH ;function number
INT 21H ;calL interrupt 21
CMP AL,0FFH ;compare to FF
JE 6ET__KEYSTR0KE ; jump to input routine if char present

Function 1 of BIOS interrupt 16H provides the same service, but in addition it
shows what the character is. The zero flag (ZF) is set to 1 if the buffer is empty, or
to 0 if a character is waiting. In the latter case, a copy of the character at the head
of the buffer is placed in AX without removing it from the buffer. AL returns the
character code for one-byte ASCII characters, or it returns ASCII 0 for extended
codes, in which case the code number appears in AH.

;  FIND OUT IF THERE IS A CHARACTER:
MOV AH,1 ;set function number
INT 16H ;check if character in buffer
JZ NO^CHARACTER iJump if zero flag = 1

;  THERE IS A CHARACTER, SO SEE WHAT IT IS:
CMP AL,0 ;is it an extended code?
JE EXTENDED_CODE ;if so, go to extended code routine

;otherwise, take character from AL

Low Level

As with the high level example, simply compare the two buffer pointers:
;  COMPARE HEAD AND TAIL POINTERS:

MOV AX,0 ;use the extra segment
MOV ES,AX ;set the segment to 0
MOV AL,ES:C41AH] ;get one pointer
MOV AH,ES:[41CH] ;get other pointer
CMP AH,AL ;compare the pointers
JNE 6ET_KEYSTR0KE ;iump to input routine if unequal

95



3.1.3 Wait for a keystroke and do not echo it on the screen

3.1.3 Wait for a keystroke and do not echo It on the
screen

Normally, incoming keystrokes are echoed on the screen to show what has been
typed. But sometimes automatic echoing is undesirable. One-keystroke menu selec
tions need no echo, for example. And sometimes incoming characters may need
error-checking before they are sent to the screen. In particular, any program that
accepts extended codes must be cautious of automatic echoing, since the first byte
(ASCII 0) of these codes will be displayed, leaving spaces between the characters.

High Level

The INKEY$ function of BASIC does not echo. It returns a string that is one byte
long for ASCII characters and two bytes long for extended characters. INKEY$
does not wait for a keystroke unless it is placed within a loop that cycles again and
again until a character arrives. The loop functions by invoking INKEY$ and then
assigning the string it returns to a variable, here C$. When no keystrokes have been
received, INKEY$ returns the null string, which is a string that is 0 characters long,
denoted by two quotation marks with nothing between So long as INKEY$
returns the loop repeats: 100 C$ = INKEY$:IF C$ = THEN 100.
The example below assumes that the incoming keystrokes are menu selections

and that each selection sends the program to a particular subroutine. The selections
are made by striking A,B,C... (resulting in one-byte ASCII codes) or ALT-A, ALT-
B, ALT-C... (resulting in two-byte extended codes). To tell the difference, use the
LEN function to check whether the string is one or two characters long. If a one-
byte ASCII code, a series of IF...THEN statements immediately begin to test the
identity of the keystroke, sending the program to the appropriate subroutine. In the
case of two-byte codes, control transfers to a separate routine. There the RIGHTS
function eliminates the lefthand character, which, of course, is nothing more than
the 0 that identifies extended codes. The ASC function is then used to convert the

character from string form to numeric form. Finally, a second series of IF...THEN
statements checks the resulting number against those corresponding to ALT-A,
ALT-B, etc.

100 C$ = INKEYS: IF C$="" THEN 100

110 IF LEN(C$) =2 THEN 500

120 IF C$="a" OR C$="A" THEN GOSUB 1100
130 IF C$="b" OR C$="B" THEN GOSUB 1200

140 IF C$="c" OR C$="C" THEN GOSUB 1300

•wait for a keystroke
• if extended code, jump
• is it menu selection a?

•b?

•c?

500 C$=RIGHT$(C$,1)
510 C=ASC<C$)

520 IF C=30 THEN GOSUB 2100
530 IF 0=48 THEN GOSUB 2200

540 IF 0=46 THEN GOSUB 2300

•get 2nd byte of extended code
•convert to numeric value

•is it menu selection Alt-A?

•Alt-B?

•Alt-0?

Note that line 120 (and those following) could instead have used the numeric values
for the ASCII codes for "a" and 'W, and so on:
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120 IF C=97 OR C=65 THEN GOSUB 1100

Of course, first C$ would need to be converted to integer form, exactly as in line
510. In programs with a long sequence of these statements, you can save space by
changing C so that it always represents either the lower- or upper-case form of a
letter. First do some error checking to be sure that the ASCII value of C$ is in the
correct range. Then find out if the number is below 91, in which case it is upper
case. If so, add 32 to convert it to lower case. Otherwise, do nothing. Then a
shorter statement such as IF C = 97 THEN... will suffice. Here is the code:

500 C=ASC(C$) 'get ASCII number of the character
510 IF N0T((C>64 AND C<91) OR (096 AND C<123)) THEN...

•. - - then out of range, ignore it
520 IF C<91 THEN 0=0+32 'add 32 to value of upper-case Letters
530 IF 0=97 THEN... •... then begin to test the values...

Middle Level

Functions 7 and 8 of INT 21H wait for a character if none is in the keyboard
buffer, and when one arrives, it is not echoed on the screen. Function 8 detects
Ctrl-Break (and initiates the Ctrl-Break routine [3.2.8]), while function 7 does not.
In both cases, the character is returned in AL. When AL contains ASCII 0, an
extended code has been received. Repeat the interrupt and the second byte of the
code appears in AL.

;  GET A KEYSTROKE:
MOV

INT

OMR

JE

AH,7
21H

AL,0
EXTENDED CODE

;  EXTENDED CODE ROUTINE:
EXTENDED CODE:

0 R:

INT

OMR

JNE

JMR

OMR

21H

AL,75
0 R

OURSOR_LEFT
AL,77

;set function number
;wait for character
;see if extended code
;go to extended code routi ne i f so
;otherwise, take character from AL

;now the extended code number is in AL
;check if "cursor-left"
;if not, check next possibi lity
;if so, go to routine
,...etc...

BIOS provides a service that matches the DOS function. Place 0 in AH and call
INT 16H. The function waits for a character and returns it in AL. In this case,
extended codes require calling the interrupt only once. If 0 appears in AL, an
extended code number is found in AH. Ctrl-Break is not detected.

;  GET A KEYSTROKE:
MOV

INT

CMR

JE

AH,0
16H

AL,0
EXTENDED CODE

;  EXTENDED CODE ROUTINE:
EXTENDED CODE: CMR AH,75

;function number to intercept keystroke
;get the keystroke
;is it an extended code?
;if so, go to special routine
;otherwise, take ASCII char from AL

;take extended code from AH
,...etc...
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3.1.4 Wait for a keystroke and echo it on the screen
With text or data entry, keystrokes are normally echoed on the screen. In echo

ing, characters like the carriage return or backspace are interpreted by moving the
cursor accordingly rather than displaying the ASCII symbols for the characters.
The echoing begins at whatever point the cursor is currently set, and the text auto
matically wraps around from the last column to the next line. The wrap requires
no special coding because the characters are simply deposited at the next position in
the video buffer, and the buffer is essentially one long line containing the 25 lines of
the screen.

High Level

In BASIC, intercept a keystroke using INKEY$, as shown at [3.1.3]. Then print it
before returning to intercept another. Either use the PRINT statement, or else
POKE the keystroke directly into the video buffer, using the memory mapping
techniques shown at [4.3.1] (the buffer starts at memory segment &HB000 for the
monochrome adaptor and at &HB800 for the color adaptor). If you use PRINT, be
sure to end the statement with a semicolon, or a carriage return will occur automat
ically. Below are examples of each method. No attempt is made here to sort out
non-character keystrokes. The variable KEYSTROKES$ collects the incoming key
strokes into a data string.

100 * • 'method using PRINT:
110 LOCATE 10,40 * set the cursor to row 10, col 40
120 KEYSTROKES$='"' 'clear variable that holds incoming string
130 C$=INKEY$:IF 0$="" THEN 130 'get a keystroke
140 KEYSTROKES$=KEYSTROKES$+C$ 'add the keystroke to a string variable
150 PRINT C$; 'print the character
160 GOTO 130 'get next character

100 '' 'method using POKE (monochrome adaptor):
110 DEF SEG=&HB000 'set segment offset to start of buffer
120 P0INTER=1678 'position of 10,40 = (2*((10*80)+4 0))-2
130 KEYSTROKES$="" 'clear variable holding incoming string
140 C$=INKEY$:IF 0$="" THEN 140 'get a keystroke
150 KEYSTROKES$=KEYSTROKES$+C$ 'add the keystroke to a string variable
160 POKE POINTER, ASC(C$) 'poke ASCII number of char into buffer
170 P0INTER=P0INTER+2 'up pointer by 2 (skip attribute byte)
180 GOTO 140 'get next character

Middle Level —————

Function 1 of INT 21H waits for a character if none is found in the keyboard
buffer, then echos it on the screen at the current cursor position. Ctrl-Break is inter
cepted so that the (programmable) Ctrl-Break routine is executed [3.2.8]. Charac
ters are returned in AL. In the case of extended codes, AL holds ASCII 0. Repeat
the interrupt to bring the second byte of the code into AL.

;  GET A KEYSTROKE:
MOV AH,1 ;set the function number
INT 21H ;wait for a character
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CMP

JE

AL,0
EXTENDED CODE

EXTENDED CODE ROUTINE;

INT 21H

CMP

JNE

JMP

C R: CMP

AL,77
C_R
CURSOR_RIGHT
AL,75

;extended code?
;ifso, jump to special routine
;eLse, take ASCII character from AL

;bring the code number into AL
;check if "cursor-right"
;if not, check next possibi Lity
;if so, go to routine
;...etc...

This function completely ignores the escape key. It interprets a tab keystroke
normally. The backspace key causes the cursor to move back one space, but the
character in that position is not erased. The enter key causes the cursor to move to
the start of the current line (there is no automatic line feed).
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3.1.5 Intercept a keystroke without waiting
Some real-time applications cannot stop to wait for incoming keystrokes; they

take keystrokes from the keyboard buffer only when it is convenient for the pro
gram to do so. For example, idling the CPU while awaiting a keystroke would stop
all screen action in a video game. Note that it is easy to test whether or not the key
board buffer is empty, using the methods shown at [3.1.2].

High Level

Simply use INKEY$ without nesting it within a loop:

100 C$=INKEY$

110 IFC$0»»"THEN...

120 ...

•check for a character

•there is a character, so...
•else, there is no character

Middle Level

Function 6 of INT 21H is the only interrupt that receives keystrokes without
waiting. The function does not echo characters on the screen, nor does it sense
Ctrl-Break. FFH must be placed in DL before calling this interrupt. Otherwise func
tion 6 serves an entirely different purpose—it prints at the current cursor position
whatever character is found in DL. The zero flag is set to 1 if there are no charac
ters in the buffer. When a character is intercepted, it is placed in AL. Should the
character be ASCII 0, an extended code is indicated, and a second call is needed to
bring in the code number.

MOV AH,6 ;DOS function 6
MOV DL,0FFH ;request function for keyboard input
INT 21H ;get character
JZ NO CHAR ; jump to NO_CHAR if no keystroke
CMP AL,0 ;see if character is ASCII 0
JE EXTENOED_CODE ;if so, go to extended code routine
... ;ASCII character now in AL

INT 21H ;get 2nd byte of extended code
... ;code number now in AL
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3.1.6 Intercept a string of keystrokes
Both BASIC and DOS provide routines to intercept strings of keystrokes. They

automatically repeat the single-keystroke input routines described in previous sec
tions, watching for a carriage return to tell that the string is complete. Of course,
memory must be allocated to hold each character of the string, and the length of
each string must be recorded in order to delimit one string from another. This is
done using string descriptors, which consist of one or more bytes that hold the
address and/or the length of the string. In BASIC the first two bytes of string
descriptors hold the address of the string, and the descriptors are kept in an array
that is apart from the strings themselves. The string length is held in the third byte
of the three-byte descriptors. The DOS function, on the other hand, places the
string length at the start of the actual string, and it is up to the program to keep
track of the string's location in memory.

High Level

BASIC can intercept strings both with and without automatic echoing of the
string on the screen. Echoing is easiest, since it is performed by the ready-made
string input function, INPUT. INPUT automatically collects the incoming key
strokes, placing each on the screen as it is received. When the enter key is pressed,
the input ends and the string is assigned to a specified variable (the ASCII 13 code
sent by the enter key is not appended to the string). INPUT incorporates the DOS
line-editing features, so that typing errors may be corrected before the string is
entered. INPUT receives numbers in string form, and it will automatically convert
them to numeric form if you specify a numeric variable name for the input. Finally,
INPUT can prompt the user for the desired information by automatically writing a
string on the screen. The string may be up to 254 characters long. If this length is
exceeded, the excess characters are ignored. The basic form is INPUT"prompt",
variable name. See the BASIC manual for variations.

110 INPUT"Enter your name: NAMES 'wait for character string, assign to NAMES
120 INPUT"Enter your age: ",AGE% 'wait for numeric character string, convert

•  it to numeric form, assign it to AGE%

The INPUT statement is inadequate when the incoming flow of keystrokes may
contain extended codes, as for the cursor movements of a full-screen text processor.
Instead, the non-echoing INKEY$ function must intercept each keystroke one by
one, then check for extended codes, then check for control codes like the carriage
return, and then place only those characters on the screen that belong there. These
screen-bound characters are also added, one at a time, to the end of a string vari
able. Text files are comprised of whole arrays of these string variables. You will
find at [3.1.8] an extensive keyboard input routine that shows INKEY$ used this
way.

Middle Level

Function 0AH of INT 21H inputs strings of up to 254 characters, echoing the
input on to the display. This routine continues to add incoming keystrokes to the
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string until the enter key is struck. DS:DX points to the place in memory where the
string will be deposited. On entry, the first byte at this location must contain the
number of bytes alloted to the string. After the string is entered, the second byte is
given the number of characters actually received. The string itself begins from the
third byte.

Allocate just enough memory for the desired string length plus two bytes for the
string descriptor and one extra byte for the carriage return. When you set the maxi
mum string length in the first byte, add 1 for the carriage return. The carriage
return code—ASCII 13—is entered as the final character of the string, but it is not
counted in the character tally placed by the function in the second byte of the string
descriptor. Thus, to receive a 50-character string, allocate 53 bytes of memory and
place ASCII 51 in the first byte. If 50 characters are entered, on return the second
byte will contain ASCII 50 and the 53rd byte of allocated memory will contain
ASCII 13.

;  IN THE DATA SEGMENT:
STRING DB 53DUP(?) ;space for 50 char stn*ng

;  (2 chars for descriptor, 1 for OR)

;  RECEIVE A STRING FROM THE KEYBOARD:
LEA DX,STRING ;DS:DX points to string space
MOV BX,DX ;make BX also point to string
MOV AL,51 ;set string Length (+1 for CR)
MOV CBX],AL ;pLace in first byte of descriptor
MOV AH,0AH ;function number of string routine
INT 21H ;receive the string

;  CHECK THE LENGTH OF THE STRING:
MOV AH,CBX]+1 ; Length now in AH

This routine makes use of the DOS line editing functions. Striking the backspace
or cursor-left keys deletes the prior character on the screen, and eliminates it from
memory as well. The tab key works, extended codes are ignored, and empty strings
are permitted (that is, a carriage return without any preceding keystrokes). On the
monitor, strings wrap at the end of a line, and the screen scrolls upward when a
string reaches the bottom right corner. When keystrokes exceed the alloted length
of the string, they are ignored, and the speaker sounds.
DOS provides a second way of receiving a string, and in this case it does not

echo it on to the screen. Function 3FH of INT 21H is a general purpose input func
tion that is most commonly used in disk operations. It requires a predefined
handle, which is a code number used by the operating system to designate an I/O
device. The handle for the keyboard is the number 0, and it must be placed in BX.
Point DS:DX at the place where the string is to reside, place the maximum string
length in CX, and call the function:

;  READ STRING WITHOUT ECHOING:
MOV AH,3FH ;function number
MOV BX,0 ;handLe number
LEA DX,STRING_BUFFER ;DS:DX points to buffer
MOV CX,100 ;maximum Length of string
INT 21H ;wait for input
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String input terminates when the Enter key is struck, and DOS adds two characters
to the end of the string: a carriage return and line feed (ASCII 13 and ASCII 10).
Because of these additional characters, when the length of a string is specified as
100 characters, it may occupy up to 102 bytes of memory. The length of the string
entered is returned in AX, and this value includes the two terminating characters.
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3.1.7 Check/set the status of the toggle and shift keys

The two bytes found at memory locations 0040:0017 and 0040:0018 hold bits
showing the status of the shift and toggle keys, as follows:

0040:0017

0040:0018

Bit Key Meaning when bit = 1

7 Insert Insert mode "on"

6 CapsLock CapsLock mode "on"
5 NumLock NumLock mode "on"

4 ScrollLock ScrollLock mode "on"

3 Alt shift key down
2 Ctrl shift key down
1 Lefthand shift key down
0 Righthand shift key down

7 Insert key down
6 CapsLock key down
5 NumLock key down
4 ScrollLock key down
3 Ctrl-NumLock Ctrl-NumLock mode "on'

(others unused)

The keyboard interrupt immediately updates these status bytes if a toggle or shift
keystroke occurs, even if no keystrokes have been read from the keyboard buffer.
This is true for the Ins toggle key as well, which is the only one of the eight keys
that places a code in the buffer (the Ins status setting is changed even if there is no
room for the character in the buffer). Note that bit 3 of 0040:0018 is set to 1 while
the Ctrl-Numlock hold state is in effect; since a program is suspended during this
state, the bit is of no significance.
The keyboard interrupt checks these status bits before interpreting incoming key

strokes, so when a program changes one of the bits the effect is the same as physi
cally striking the corresponding key. You may wish to set the state of the NumLock
and CapsLock keys to assure that input is of the desired kind. Conversely, your
programs may need to read the status of the keys, perhaps to echo the current sta
tus on the screen. Note that the AT keyboard keeps its toggle indicator lights set
correctly even when the status register settings are made by software.

High Level —

Here, the NumLock key is made to activate the cursor keys by setting bit 5 of
0040:0017 to 0. This is done by ANDing the value at this address with 223 (the bit
pattern 11011111B - see Appendix B for the logic behind bit operations). The result
is placed in the status byte. The example then sets the bit back to 1 by ORing it
with 32 (00100000B).
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100 DEF SEGS&H40
110 STATUSBYTE=PEEK(&H17)
120 NEWBYTE=STATUSBYTE AND 223
130 P0KE(8H17,NEWBYTE)

Alternatively, to turn the bit ON:

120 NEWBYTE=STATUSBYTE OR 32
130 P0KE(&H17,NEWBYTE)

Lines 110-130 may be condensed to the form:

110 P0KE(&H417,PEEK(&H417) AND 223)

110 P0KE(&H417,PEEK(&H417) OR 32)

'set memory segment to BIOS data area
'get status byte
'set bit 5 to 0
'place new value in the status register

'set bit 5 to 1
'place new value in the status register

Middle Level

Function 2 of INT 16H gives access to one—but only one—of the status bytes.
This is the byte at 0040:017H, which contains the more useful information. The
byte is returned in AL.

;  CHECK STATUS OF INSERT MODE
MOV AH,2
INT 16H

TEST AL,100000008
JZ INSERT OFF

;set function number
;get the status byte
;test bit 7
; i f bi t i s 0 then INSERT i s off

Low Level

Here the insert mode is forced on by turning on bit 7 of the status byte at
0040:0017 (here addressed as 0000:0417).

SUB AX,AX .
MOV ES,AX
MOV AL,10000000B
OR ES:C417H],AL

set the extra segment to 0

prepare to turn on bit 7
directly change the status byte
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3.1.8 Write a general-purpose keyboard Input routine
The system of codes used by the keyboard defies simple interpretation. The

codes may be one or two bytes long, and there is no simple correspondence
between the code length and whether it is for a character or for hardware control.
Not all keystroke combinations even produce a unique code, and extra care must
be taken to differentiate them. Neither the ASCII codes nor the extended codes are
numbered in a fashion that facilitates grouping and error checking. In a word, a
general keyboard input routine makes for messy programming.
Examples are given here in BASIC and using INT 16H. They show how to put

together much of the information given in this chapter. The general algorithm is
shown in Figure 3-3.

Next CharacterGet Character

^ Is It an
Extended Code?

(First Byte Is 0)

Yes

No (It Is an ASCII Code)

Is It a

Control Code?
(Less than 32)

No

Yes

Is It ^
ASCII

8, 9, or 13?

No

Yes

^ Is It Scan
Code for

Ctrl-H, I or M?

No

Yes

Routine to

Analyze Second
Byte of Code

Routine to

Process ASCII

Character Codes

Routine to

Process ASCII

Control Codes

Routine to Analyze
Ctrl-H

Ctrl-I

and Ctrl-M

Figure 3-3. Flow Chart For A General Input Routine.
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High Level

A keyboard input routine written in BASIC can do all that an assembly language
routine can, but with one exception. The INKEY$ function does not have access to
scan codes. This means that it is difficult to tell whether ASCII codes 8, 9, 13, and
27 have arisen from the backspace, tab, enter, and escape keys, or from Ctrl-H, I,
M and [. The distinction can instead be made by checking the Ctrl key status bit at
0040:0017 at the time the key is pressed. But this ploy fails if the keystroke is stored
in the keyboard buffer for any length of time.

100 C$=INKEY$:IF C$="" THEN 100 'get a character
110 IF LEN(C$)=2 THEN 700 'if extended code, go to its routine
120 C=ASC(C$) 'else ASCII character, get its number
130 IF C<32 THEN 300 ' if control code, go to its routine
140 IF C<65 OR 0123 THEN 100 'accept only typewriter keystrokes
150 " 'C is a typewriter keystroke — do with it what you wi L L, for example:
160 S$=S$+C$ 'make character the next in a string
170 PRINT C$; 'echo it on the screen
180 " '.. -etc.. -

190 GOTO 100 'get next keystroke

300 '' 'ASCII control code routine

310 DEF SEG=0 'point to bottom of memory (BIOS area)
320 REGISTER=PEEK(&H417) 'get the shift key register
330 X = REGISTER AND 4 'X=4if bit 5 is on
340 IF X=0 THEN 500 'CTRL not down, so go to 4-key routine
350 ' "C is a Ctrl-alpha combination — do with it what you wi 11, for example:
360 IF C=8 then GOSUB 12000 'Ctrl-H, so create 'HELP screen'
370 "'...etc...

380 GOTO 100 'get next keystroke

500 '' '4-key routine: decodes ASCII codes 8, 9, 13, and 27 when the Ctrl
510 ' key is up (i .e. as backspace, tab, enter, and escape)
520 IF C=8 THEN GOSUB 5000 'go to backspace routine
530 IF C=9THEN GOSUB 6000 'go to tab routine
540 IF C=13 THEN GOSUB 7000 'go to carriage return routine
550 IF C=27 THEN GOSUB 8000 'go to Esc routine
560 GOTO 100 'get next keystroke

700 '' 'extended code routine

710 C$=RI6HT$(C$,1) 'make C$ = 2nd character only
720 C=ASC(C$) ' change to numeri caI form
730 '' 'C is an extended code number — do with it what you wi 11, for example:
740 IF C<71 OR 081 THEN 100 'accept only cursor keystrokes
750 IF C=72 THEN GOSUB 3500 'goto 'cursorup' subroutine
760 "'...etc...

770 GOTO 100 'get next keystroke

Middle Level

This example differs from the one above in the way that the four special cases for
Ctrl-H, I, M and [ are treated. Here, when the question arises as to whether the
code arises from a single key or a Ctrl key combination, the scan code is checked.
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This method is more reliable than checking the Ctrl key status bit, since the scan
code is stored in the keyboard buffer, whereas the setting of the Ctrl key status bit
is transient.

;  GET A KEYSTROKE AND DETERMINE ITS TYPE:
NEXT: MOV AH,0

INT

CMP

JE

CMP

JL

CMP

JL

CMP

JG

16H

AL,0
EXTENDED__CODE
AL,32
CONTROL_CODE
AL,65
NEXT

AL,123
NEXT

;  NOW PROCESS CHARACTER IN AL:
STOSB

MOV AH,2
MOV DL,AL
INT 21H

select BIOS keyboard input function
get a keystroke
check if extended code

if so, jump to its routine
check if control code

if so, jump to its routine
see if below range of typewriter chars
if so, get another character
see i f above range of typewri ter chars
if so, get another character

save character in memory at ES:DI ptr
choose DOS function to display char
put character i n DL, as requi red
display character (cursor forwards)
etc.

JMP NEXT ;get next character
;  ANALYZE CONTROL CODES (start with special cases)
CONTROL CODE:

C M:

TAB:

CMP AL,13 ;is the code ASCII 13?
JNE TAB ;if not, check next special case
CMP AH,28 ;it*s13 — was scan code for CR?
JNE C__M ;if not, go to Ctrl-M case
CALL CARRIAGE_RETURN ;perform carriage return routine
JMP NEXT ;go get next keystroke
CALL CTRL__M ;perform Ctr l-M routine
JMP NEXT ;go get next keystroke
CMP AL,9 ;check whether TAB or Ctr 1-1...

CMP AL,10 ;after special cases, check others

REJECT: JMP NEXT

;  ANALYZE EXTENDED CODES (2nd byte of code is in AH):
;default: go get another keystroke

EXTENDED_CODE: CMP AH,71
JL REJECT

CMP AH,81
JG REJECT

;  AH HAS A CURSOR CODE — ANALYZE IT:
CMP AH,72
JE CJU
CMP AH,80
JE CD

; check number agai nst bottom of range
;if below, get next char via REJECT
;check number against top of range
;if above, get next char via REJECT

;see if • cursor up*
;if so, go to 'cursor up* routine
;see if 'cursor down*
;if so, go to 'cursor down* routine

C U:

C D:

CALL CURSOR_UP
JMP NEXT

CALL CURSOR_DOWN
JMP NEXT

;perform * cursor up* routine
;get next keystroke
;perform'cursor down* routine
;get next keystroke
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3.1.9 Reprogram the keyboard interrupt

When the keyboard microprocessor deposits a scan code in Port A of the 8255
chip (at port address 60H—see [1.1.1]), it invokes INT 9. The job of this interrupt
is to convert the scan code to a character code on the basis of the shift and toggle
key settings, and to place the code in the keyboard buffer. (When the scan code is
for a shift or toggle key, no character code goes to the buffer (except for <lns>);
instead, the interrupt makes changes in two status bytes located in the BIOS data
area [3.1.7]). The BIOS and DOS "keyboard interrupts" are really only "keyboard
buffer interrupts." They do not actually "read" keystrokes. Rather, they read the
interpretations of keystrokes that INT 9 provides. Note that the PCjr uses a special
routine (INT 48H) to convert input from its 62 keys into the 83-key protocol used
by the other IBM machines. The results of this routine are passed on to INT 9,
which performs its work as usual. Via INT 49H, the PCjr also provides for special
non-key scan codes that could potentially be set up for peripheral devices that
would make use of the infrared (cordless) keyboard link.

It takes a very unusual application to make it worthwhile to reprogram this
interrupt, especially considering that DOS allows you to reprogram any key of the
keyboard [3.2.6]. Still, if you must reprogram INT 9, this section will give you a
start. Read [1.2.3] first to understand in general how interrupts are programmed.
There are three basic steps in the keyboard interrupt:

1. Read a scan code and send an acknowledge signal to the keyboard.
2. Convert the scan code into a code number or into a setting in the shift/toggle

key status register.
3. Place a key code in the keyboard buffer.

At the time the interrupt is invoked, a scan code will be in Port A. So first the
code is read and saved on the stack. Then Port B (port 61H) is used to very briefly
issue the "acknowledge" signal to the keyboard microprocessor. Simply change bit
7 to 1, then immediately change it back to 0. Note that bit 6 of Port B controls the
clock signal of the keyboard. It must always be 1, or the keyboard is effectively
turned off. These port addresses apply to the AT as well, even though it does not
have an 8255 interface chip.
The scan code is first analyzed to see whether the key was depressed (the "make"

code) or released (the "break" code). Except on the AT, a break code is indicated
when bit 7 of the scan code is set to 1. On the AT, where bit 7 is always 0, a break
code is two bytes: first 0F0H and then the scan code. All break codes are thrown
away except those for shift and toggle keys, for which the appropriate changes are
made in the shift/toggle status bytes. On the other hand, all make codes are proc
essed. Here again the shift/toggle status may be changed. But in the case of charac
ter codes, the status bytes must be consulted to see whether, for example, the scan
code 30 indicates an upper or lower case A.
Once an incoming character has been identified, the keyboard routine must find

its ASCII code or extended code. The example here is much too short to show all
cases. In general, the scan code is correlated with an entry in a data table that is
accessed by the XL AT instruction. XLAT takes a number from 0-255 in AL and
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3»1.9 Reprogram the keyboard interrupt

returns in AL a corresponding one-byte value from a 256-byte table that is pointed
to by DS:BX. The table may be set up in the data segment. If AL initially contains
scan code 30, then AL receives byte number 30 of the table (the 31st byte, since
we're counting from 0). This byte of the table should have been set to 97, giving the
ASCII code for a. Of course, a second table would be required for capital A, and it
would be called instead should the routine find that the shift state is "on". Or, alter

natively, some other part of a single table could hold the capital letters, in which
case the scan code would need to have an offset added to it.

^Get Scan Code) END

Yes

■^Is Key
Released

Yes

No
No

'^Is It^
the INS

. Key? .

No

YesYes
ENDEND

NoNo

Yes

No
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Is It air
xtende
Code?
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Is Key^

Set BIOS
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Analyze Shift
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Code and
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s^Yes
Released

Figure 3-4. The Keyboard Interrupt.
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Finally, code numbers must be placed in the keyboard buffer. The routine must
first check to see if there is any room in the buffer for another character. [3.1.1]
shows how the buffer is constructed as a circular queue. Memory location
0040:001A contains the pointer for the head of the buffer, and 0040:001C contains
the pointer for the tail. The word-length pointers are offsets within the BIOS data
area (which starts at segment 40H), ranging from 30 to 60. New characters are
inserted at higher memory positions in the buffer, and when the upper limit is
reached, the insertion wraps around to the low end of the buffer. When the buffer
is full, the tail pointer is 2 less than the head pointer—except when the head pointer
equals 30 (is at the top of the buffer) in which case the buffer is full if the value of
the tail pointer is 60.
To insert a character in the buffer, place it at the position pointed to by the tail

pointer, then increase the tail pointer by 2; if the tail pointer equals 60, change it
instead to 30. That is all there is to it. Figure 3-4 diagrams the keyboard interrupt.

Low Level

An efficient routine requires much thought. This example gives only the rudi
ments. It intercepts only the lower- and upper-case letters, loading them both into
the same table, with the capital letters 100 bytes higher in the table than their sib
lings. Only the left shift key is attended to, and the current status of the CapsLock
is ignored.

;  IN THE DATA SEGMENT:
TABLE 08 16DUP(0) ;skip fi rst 16 bytes of table

08 •quertyuiop',0,0,0,0 ;top row (scan code #16 = q)
08 'asdfghjkl*,0,0,0,0,0;middle row
08 'zxcvbnm' ;bottom row
08 16dup(0) ;offset upper case to 100 bytes higher
08 •QUERTYUIOP* ,0,0,0,0 ;caps for top row
08 'ASOFGHJKL',0,0,0,0,0;caps for middle row
08 'ZXCVBNM* ;caps for bottom row

;  AT BEGINNING OF THE PROGRAM, INSTALL THE INTERRUPT:
CLI ;disable interrupts
PUSH OS ;save OS
MOV AX,SEG NEW__KEY8OAR0 ;make OS:OX point to interrupt routine
MOV OS,AX
MOV OX,OFFSET NEW__KEY8OAR0
MOV AL,9 ;number of interrupt vector to change
MOV AH,25H ;OOS function to change vector
INT 21H ;change the vector
POP OS ; restore OS
STI ;reenable interrupts

(The program continues, perhaps ending and staying resident [1.3.4])

;  HERE IS THE KEYBOARD INTERRUPT ITSELF:
NEW__KEY80ARO PROC far ;hardware interrupts are far procedures

PUSH AX ;save alI changed registers
PUSH 8X ;
PUSH CX
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3.1.9 Reprogram the keyboard interrupt

PUSH DI

PUSH ES

;  GET THE SCAN CODE AND SEND AN ACKNOWLEDGE SIGNAL:
AL,60H
AH,AL
AX

AL,61H
AL,100000006
61H,AL
AL,011111118
61H,AL

IN

MOV

PUSH

IN

OR

OUT

AND

OUT

;  POINT ES TO BIOS DATA AREA:
MOV AX,40H
MOV ES,AX
POP AX

;  CHECK IF SHIFT KEY:

KEY UP:

CMP AL,42
JNE KEY UP

MOV BL,1
OR ES:C17H],BL
JMP QUIT

CMP AL,170
JNE NEXTKEY

MOV BL,11111110B
AND ES:C17H],BL
JMP QUIT

NEXTKEY:

;get the scan code from Port A
;place a copy in AH
;save the scan code
;get the current reading of Port 8
;turn bit 7 on
;pLace the changed byte in Port 8
;turn bit 7 back off
;return Port 8 to its original reading

;set ES to bottom of memory

t

; restore scan code to AL

; left shi ft down?
;if not, try next possibi lity
;if so, prepare to set register bit 1
;0R the status regi ster di rect ly
;quit the routine
; left shift up?
;if not, try next possibi lity
;if so, prepare to set register bit 1
;AND the status regi ster di rect ly
;quit the routine
;continue for all shift/toggle keys

-IT'S A CHARACTER KEY - INTERPRET THE SCAN CODE:

CONVERT CODE:

TEST AL,1
JNZ QUIT

MOV 8L,ES:C17H]
TEST 8L,000000118
JZ CONVERT_CODE
ADD AL,100
MOV 8X,OFFSET TABLE
XLAT TABLE

CMP AL,0
JE QUIT

;code from releasing key?
;if so, quit the routine
;otherwise, get shift status byte
; i s ei ther shi ft key down?
;if not, jump ahead
;else capital letter, add TABLE offset
;get ready for table exchange
;convert scan code to ASCII code
;0 returned?
;if so, no entry in table - quit

—KEY CODE READY - FIND OUT IF KEYBOARD BUFFER FULL:
MOV BX,1AH ;offset of head ptr in BIOS data area
MOV CX,ES:CBX] ;get head pointer
MOV DI,ES:CBX]+2 ;get tai I pointer
CMP CX,60 ;is head pointer at top of buffer?
JE HIGH_END ; i f so, jump to speci a I case
INC CX ;increase head pointer by 2
INC CX

CMP CX,DI ;compare it to the tai I pointer
JE QUIT ;if equal, the buffer is full-quit
JMP GO_AHEAD ;else, jump over specie I case
CMP DI,30 ;head ptr is 60, is tai I ptr 30?
JE QUIT ;if so, the buffer is full-quit

HIGH END:

-BUFFER IS NOT FULL — INSERT THE CHARACTER:

GO_AHEAD: MOV
CMP

JNE

MOV

NO_WRAP: ADD
MOV

;  END THE INTERRUPT:
QUIT: POP ES

ES: CDI] ,AL ;place char in buffer at tai I position
DI,60 ;tai I at top of buffer?
NOJWRAP ;if not, jump ahead
DI,28 ;if so, set tai I to 28+2=30
DI,2 ;add 2 to get new tai I position
ES: CBX]+2,DI ;place new tai I pointer in BIOS data

;restore all changed registers
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NEW KEYBOARD

POP DI

POP CX

POP BX

POP AX

MOV AL,20H
OUT 20H,AL
IRET

ENDP

signal end of hardware interrupt

i nterrupt return
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Section 2: Access Particular Keys

A keystroke input routine must watch for a variety of keystroke types and con
ditions, since both one- and two-byte codes may arrive in combination with the
shift and toggle keys. Not all keys are logically grouped by the kind of code they
issue. The backspace key, for example, generates a one-byte ASCII code, but the
delete key makes a two-byte extended code. The Ctrl key produces one-byte codes
in combination with the alphabet keys, but two-byte codes otherwise. These irreg
ularities result from the limitations of the ASCII character set: the keyboard inter
rupt follows the ASCII conventions when possible, but improvises its own codes
when not.

This section lists the various key groupings, gives their codes, and explains any
anomalies. For the most part, the same information is less conveniently available in
the tables of the ASCII codes and extended codes that are found in Section 3 of this

chapter. Also discussed here are special features added by BASIC to the keys and
special facilities within DOS interrupts that interpret particular keystrokes (such as
the backspace).
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3.2.1 Use the Backspace, Enter, Escape, and Tab keys
The enter, escape, backspace, and tab keys are the only four non-character keys

that generate one-byte ASCII codes. Their codes are among the control codes
[7.1.9] that comprise the first 32 numbers of the ASCII set. These four codes may
also be produced by combinations of letter keys and Ctrl:

ASCII 8 backspace CTRL + H

9 tab CTRL+ I

13 enter CTRL + M
27 escape CTRL+ [

Section [3.2.2] shows how to avoid a mixup between the single keystrokes and the
CTRL combinations. Note that the back-tab is produced by a Shift -t- Tab combi
nation, resulting in the extended code 0;15.
Some of the keyboard input interrupts automatically interpret these four special

codes. In BASIC, the INPUT function responds to the backspace, tab, and enter
keys. The INKEY$ function does not interpret any of the command codes, since it
does not automatically echo on the screen. Your code must do the work. Remem
ber that BASIC provides the TAB function to facilitate cursor movements. Of the
BIOS and DOS interrupts, any that echo on the screen also interpret the backspace
and tab in their cursor movements. After the code is so interpreted, the ASCII code
still appears in AL, to be included in a data string or to be ignored, as the case may
be.
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3.2.2 Use the Shift Keys: Shift, Ctrl, and Ait

The three kinds of shift key cause only some of the other keys of the keyboard to
generate different codes. Shift combinations generally produce extended codes. But
in two cases they give rise to ASCII codes: (1) when the typewriter-style shift
changes the input from the ordinary typewriter keys, and (2) for Ctrl-A to Ctrl-Z,
resulting in ASCII codes 1-26. All other combinations result in extended codes, as
listed at [3.3.5]. The PCjr has some exceptions which are discussed below.

Inadmissible key combinations produce no code at all. Except in the case of the
special Ctrl-Alt combinations, simultaneous depression of the shifts results in only
one being effective, with priority given to Alt, then Ctrl, and then Shift. [3.1.7]
shows how to check whether a shift key is currently depressed. [3.2.3] explains
how to use the Scroll Lock key (a toggle key), as a shift key with any key on the
keyboard. Other shift key combinations are made possible only by writing a com
pletely new keyboard interrupt that replaces the BIOS routine [3.1.9].
There is a special problem with certain Ctrl key combinations, since Ctrl -I- H, I,

M, and [ produce ASCII codes identical to those of the backspace, tab, enter, and
escape keys. [3.1.8] shows how an assembly language program can check the scan
code of the keystroke to find out whether it was the control key or the letter key
that was pressed (the scan code is found in AH when the keystroke is received by
INT 16H). Unfortunately, BASIC programs do not have this capability. In this case
a program can distinguish between the two by checking the shift status register to
see if the Ctrl key is down or not. When bit 2 at address 0040:0017H is set to 1, the
Ctrl key is depressed. This method works only at the moment that the keystroke is
made, and not if the key code is read out of the keyboard buffer some time later.
The PCjr keyboard has only 62 keys, compared to 83 on a PC or XT, or 84 on an

AT. Certain shift key combinations make up for some of the missing keys (combi
nations using the function keys are shown at [3.2.5]):

PCjr Keystrokes PC/XT/AT Equivalents

Alt + Fn -t- 0-9 0-9 (scan codes from numeric keypad)
Alt + / \

Alt + '

Alt + [ !

Alt -1- ]
Alt -1- . * (scan code when from PrtSc key)
Shift + Del . (scan code from numeric keypad)
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The PCjr keyboard also offers the following unique shift key combinations:

Fn + Shift + Esc toggles number keys to function keys
Ctrl + Alt + CapsLock toggles keyboard click feature
Ctrl + Alt + Ins runs diagnostics
Ctrl + Alt + Cursor left shifts screen leftwards

Ctrl + Alt + Cursor right shifts screen rightwards
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3.2.3 Use the Toggle Keys: NumLock, CapsLock^ Ins, and
ScrollLock

With the exception of the Ins key, the toggle keys do not produce a code number
that is placed in the keyboard buffer. Rather, they make changes in two status
bytes in the BIOS data area at 0040:0017 and 0040:0018. The keyboard interrupt
checks these settings before it assigns a code to an incoming keystroke. Your pro
grams can access the status register and change the setting of any toggle key, as
explained at [3.1.71.
Other settings in the register show whether a toggle key is currently depressed.

This feature allows a program to use toggle keys as shift keys. While no new key
codes are created, there are potential applications. For example, < ScrollLock >
could be used to add yet another set of shift + function key combinations. A pro
gram would receive an ordinary function key code, would check whether or not
< ScrollLock> is down, and then would interpret the keystroke accordingly. Note
that either of the < Shift > keys reverse the setting of the NumLock key.
The <Ins> key places the code 0;82 in the keyboard buffer, to be read when

ever your program chooses. The setting for <Ins> in the status bytes changes
immediately, however. Even if there is no room for the <Ins> code in the buffer,
the status settings are changed when the key is struck. Both <Ins> and
< ScrollLock > have no effect on the other keys of the keyboard (unlike
<NumLock> and <CapsLock>). You may define any role you please to them.
The IBM Technical Reference Manuals state that < ScrollLock > should be used to

toggle in and out of the state where the cursor keys scroll the screen rather than
move the cursor.

Of course, you may create all the toggle keys your program needs by simply
dedicating keys to that purpose. Although there is no ready-made status register,
you can simply assign a variable to each that flags "on" by equalling -1 and "off"
by equalling 0. For example, to use F10 to toggle the variable CLOCK on and off:

100 • • • • • Interpret Extended Codes (C = 2nd byte of code):
110CLOCK=-1 'start with status on
110 IF X <= 100 THEN NOT CLOCK 'toggles the variable CLOCK
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3.2.4 Use the numeric keypad and cursor keys

On a PC or XT, the numeric keypad includes the number keys, the Ins and Del
keys, and the + and - keys. The AT adds the "System Request" (Sys Req) key,
while the PCjr has only the four cursor keys (the others may be emulated by special
<shift> and <Fn> combinations, shown at [3.2.2] and [3.2.5]). <NumLock>
switches between the cursor and number functions. <Ins> and <Del> operate
only when <NumLock> is "on," that is, locked on to the numbers. The + and -
keys issue the same codes no matter how <NumLock> is set.
The number keys of the numeric keypad issue exactly the same one-byte codes as

the number keys at the top row of the keyboard—that is, ASCII codes 48-57 for the
numerals 0-9. So do the + and - keys. Assembly language programmers can differ
entiate between the two key sets by checking the key scan codes, which are found
in AH on return from both the INT 16H and INT 21H single-key input routines.
Note that either of the typewriter shift keys shifts the keypad keys to the mode
opposite that set by the NumLock key. The setting of the CapsLock key has no
effect. The "5" key in the center is active only as a number key, and it produces no
code number when < NumLock > is set to cursor mode.

Besides the four familiar arrows, the cursor keys include the Home, End, PgUp,
and PgDn keys, which often are used to jump the cursor by whole lines or pages.
All produce a two-byte extended code. These keys have no direct control over the
cursor. They merely issue a cpde like any other key, and it is the programmer's job
to convert the codes to cursor movements on the screen.

Some combinations of the keypad keys and the Ctrl key are available.
< NumLock> must be set to cursor-control for these combinations to work. See

[3.1.7] for how to make your program set the NumLock key automatically. Here is
a summary of the relevant key codes:

ASCII codes:

43 +

45 -

46 ,

48-57 0-9

Extended codes:

72, 75, 77, 80 Cursor Up, Left, Right, & Down
71, 73, 79, 81 Home, PgUp, End, PgDn
82, 83 Ins, Del
115, 116 Ctrl-cursor left, -cursor right
117, 118, 119, 132 Ctrl-end, -PgDn, -Home, -PgUp

The AT has an 84th key, Sys Req, which is unique in its function. The key is
intended for multiuser systems as a way to enter the main system menu. When the

119



3.2.4 Use the numeric keypad and cursor keys

key is pressed down, the code 8500H appears in AX, and INT 15H is executed.
Upon release of the key, 8501H shows up in AX, and INT 15H is executed once
again. The AT BIOS provides no code for functions 84H and 85H in INT 15H; a
sin\ple return is made. But system software can replace the interrupt vector for 15H
so that it points to the Sys Req routine. Such a routine must first read AL to see if
the Sys Req key has been depressed (AL = 0) or released (AL = 1). Note that INT
15H provides a number of services, some of which might be required of a program
using SYS REQ. In this case, the SYS REQ routine must reestablish the interrupt
vector it overlays, and if a function number different from 84H or 85H is found in
AH, the routine should pass control to the usual INT 15H routine [1.2.4].
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3.2.5 Use the function keys
The ten function keys issue different codes in combinations with the Shift, Ctrl

and Alt keys, given 40 possible keystrokes. In all cases, the resulting code is a two-
byte extended code, where the first byte is always ASCII 0 and the second byte is
an arbitrary number as follows:

Code Keystroke

59-68 F1-F10 (alone)
84-93 Shift + F1 - F10

94-103 Ctrl + F1 - F10

104-113 Alt + F1 - F10

Too many shift + function key combinations can confuse a program user. But
should you need one more group of ten, consider using <ScrollLock> + <Fn>
combinations, as explained at [3.2.3].
The PCjr keyboard has only 62 keys, compared to 83 on a PC or XT, or 84 on an

AT. Certain function key combinations make up for some of the missing keys, as
follows:

PC Jr Keystrokes PC/XT/AT Equivalents

Fn + 1-0 F1-F10

Fn + B Break

Fn + E Ctrl + PrtSc

Fn + P Shift + PrtSc

Fn + Q Ctrl + NumLock

Fn + S ScrollLock

Fn + Cursor left PgUp
Fn + Cursor right PgDn
Fn + Cursor up Home

Fn + Cursor down End

Fn + - - (numeric keypad scan code)
Fn + = + (numeric keypad scan code)

(Combinations using the shift keys are shown at [3.2.2])
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3.2.6 Reprogram individual keys

To reprogram a key means to cause it to produce a different code. But by the
time programs receive keystroke codes, the keyboard interrupt has already inter
preted the incoming scan code and converted it to some predefined ASCII code or
extended code. Fortunately, beginning from version 2.0, DOS contains a utility for
reprogramming the code assignments. This utility operates only when the key
strokes are intercepted by the DOS keyboard input functions—the INT 16H func
tions of BIOS continue to interpret the keystrokes normally.
The DOS utility operates by an escape sequence. A short string that begins with

the escape character (ASCII 27) is "output to the standard device," that is, it is
treated as if it were being sent to the video display. But owing to the escape code,
no characters ever reach the monitor. Rather, the string causes DOS to thereafter
reinterpret a particular key that is named in the string. Each key alteration requires
its own string, and the same code may be assigned to as many keys as you like.
The general form for the strings is first the escape character (ASCII 27), then [,

then the code number for the key that is to be changed, then a semicolon, then the
new code number to be assigned to the key, and finally the character p. Thus
27/[65;97p' changes A (ASCII 65) to a (ASCII 97). Extended codes are written
showing both bytes, with the initial zero byte followed by a semicolon.
27/[0;68;0;83p' gives F10 (0;68) the same code as Delete (0;83). You may only
assign extended codes found in the extended code table [3.3.5].
There are a number of variants on the basic string. First, character keys may be

specified by typing the character itself within quotation marks. Thus 27/["A";"a"p'
also changes A to a. Second, whole strings of codes ("macros") can be assigned to a
single key by simply writing the characters or their code numbers into the expres
sion. 27/["A";"A is for Apple" p' writes A is for Apple whenever a capital A is
typed. In fact, these escape sequences are really nothing more than a single string in
which the first character or code number tells which key is to be redefined, and the
remainder of the string shows what is to be assigned. Remember that the code num
bers must always be separated by semicolons, and characters must always be sur
rounded by quotation marks. Codes and characters may be freely mixed. The key-
reassignment utility requires that the file ANSI.SYS (a device driver) be loaded
when DOS is booted. Otherwise the escape sequences are ignored. Appendix E
shows how.

Some aspects of keyboard functioning are programmable on a PCjr or AT. The
AT procedures are mainly of interest to systems programmers; because these proce
dures are quite involved and are useful to very few programmers, they are not cov
ered here. See the AT Technical Reference Manual. In the case of the PCjr, BIOS
INT 16H has been given two extra functions (AH = 3 and AH = 4), the first of
which sets the typematic rate. The "typematic rate" is the frequency at which a key
sends its code when it is continuously held down. The second function turns the
keyboard click sound on and off. For function 3, place 0 in AL to return to the
default typematic rate, 1 to increase the initial delay before typematic action
begins, 2 to cut the typematic rate by half, 3 to invoke features 1 and 2, and 4 to
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turn off the typematic feature. For function 4, place 0 in AL to turn the keyboard
click off and 1 to turn it on.

High Level — .

Unfortunately, the PRINT and WRITE statements in BASIC do not work with
escape sequences. BASIC programs must incorporate a simple assembly language
subroutine that makes use of the DOS output interrupt discussed below under
"Middle Level." Appendix D shows how to integrate assembly routines into BASIC
programs. The example here assumes that the routine will be poked into memory
starting at memory address 2000:0000. The DATA statements contain the assembly
code. Add a $ sign to the end of the macro code string.

100 DATA &H55,&H8B,SHEC,&H8B,&H5E,&H06,&H8B,&H57
110 DATA &H01,&HB4,&H09,&HCD,&H21,&H50,&HCA,8H02,&H00
120 *poke the routine into memory at 2000:0000
130 DEF SE6=&H2000 'point to 20000
140 FOR N=0 TO 16 'the routine is 17 bytes
150 READ Q ' read one byte
160 POKE N,Q 'poke it in
170 NEXT •

180 '' • change A to a: '
190 Q$=CHR$(27)+"[65;97p$" 'set up the string
200ROUTINE=0 'point to the string
210 CALL ROUTINE(Q$) 'call the routine

Middle Level

Use function 9 of DOS interrupt 21H to send the string to the "standard output
device." DSrDX must point to the first character of the string in memory, and the
string must end with the $ character (24H). Here, F2 (0;60) is changed so that it
functions as Del (0;83).

;  IN THE DATA SEGMENT:
CHANGE_KEY DB 27,'C0;60;0;83p$'

;  TO CHANGE THE KEY ASSIGNMENT:

LEA DX,CHANGE__KEY ;point DSiDX to string
MOV AH,9 ;set the function number
INT 21H ;and now the key is reassigned
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3.2.7 Assign keyboard macros to individual keys
A keyboard macro is a string of characters that originates from a single key

stroke. Macros are programmed into the BASIC interpreter or into the operating
system to cut down on typing. Since the string may contain control codes, such as
the character for a carriage return (ASCII 13), a single macro can perform a chain
of commands. To speed program development, for example, one might write a
macro that contains all the keystrokes required to compile and link a particular
program.

The keyboard macros provided by BASIC work both within BASIC programs
and at BASIC'S command level. For example, if you program a key to output the
word "Orangutan," the INPUT function will receive the whole string when the key
is pressed, and an INKEY$ loop will successively read in the nine characters. On
the other hand, the DOS macro facility always works at DOS command level, but
it works within programs only when the programs use the DOS keyboard input
functions. Since much commercial software uses BIOS INT 16H, the DOS macros

are of limited utility. Of course, macro-like features within programs are easily set
up in the keystroke input routine. For example, to allow a program user to set a
macro for Fl, request the string and place it in MACROl$, and then (in BASIC)
write something like:

1000 "•Extended Code Input Routine (C = 2nd byte of code)
1010 IF C = 59 THEN LOCATE X,Y:PRINT MACROIS

High Level

BASIC has its own macro facility, but it allows you to program only the 10 func
tion keys, and the strings may be only 15 characters long. The function keys are
referred to as "soft keys" in BASIC. The KEY statement assigns the macros to the
keys. KEY 5/'END" causes function key #5 to send the word END to the current
cursor position of the screen.
The characters that make up the strings may be written either as strings or as

ASCII codes (using CHR$) or as a combination of both. KEY 5/'A" and KEY
5,CHR$(65) are equivalent. To enter a string - as if by the Enter key - add ASCII
character 13 to the end. The FILES command, which shows the disk directory, is
invoked by Fl once you enter KEY l/'FILES" + CHR$(13).
BASIC preprograms the ten function keys with common BASIC expressions.

You may disable a key by assigning a null string to it. KEY 1/'" causes Fl to do
nothing when pressed. The first six characters of each string are automatically
shown on the bottom line of the screen by the BASIC interpreter. You can turn this
display on and off using KEY ON and KEY OFF. To fill the screen with the full
string assignments, enter KEY LIST. Here are some examples:

KEY 1 /'ERASE" ;now Fl inputs "ERASE"
KEY 10/'LIST"+CHR$(13) ;now F10 Lists the program
KEY?/'" ;disabLes F7
KEY OFF ;turns off the display on Line 25
KEY ON ;turns Line 25 back on
KEY LIST ; Lists the fuLL strings of all 10 keys
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To assign macros to other keys in BASIC, you must use the DOS utility described
at [3.2.6].

Middle Level

Macros are created in DOS using the key-reprogramming facility described at
[3.2.6]. The only difference is that the escape sequence assigns more than one char
acter to a particular keystroke. The string may be comprised of characters written
within quotation marks, or of code numbers, or of both in combination. Here are
some examples:

27,' ["A";"SET"p* ;assigns SET to capital A
27, • C"ASET"p* ;variant of above (1st char is key)
27,' C27;"cli r";13p' ;assigns di r <enter> to the escape key
27, • C0;59;copy b:";13p* ;assigns copy b: <enter> to F1
27, • C0;68;0;72;0;72;0;72p' ;makes F10 move cursor up three Lines
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3.2.8 Set up the Ctrl-Break routine

When the Ctrl-Break key combination is entered, the keyboard interrupt sets up
a flag indicating that there is need for the Ctrl-Break routine to come into action.
Control is given to the Ctrl-Break routine only at the time that the program uses a
do's function that is capable of sensing this flag. Normally, only the standard
DOS input-output functions can detect Ctrl-Break (numbers 1 - C of INT 21H, but
not 6 & 7). But by placing the line BREAK = ON in either the AUTOEXEC.BAT or
CONFIG.SYS files used by DOS at start up, all DOS functions are caused to check
for Ctrl-Break whenever they are called. This action slightly slows program execu
tion.

The Ctrl-Break routine exists as a way of exiting a program at any time. When a
DOS function senses the Ctrl-Break status, control is directed to the routine
pointed to by interrupt vector 23H. DOS sets up the routine to terminate the pro
gram in progress. But the routine may be rewritten to any specifications you like.
A programmable routine is required so that crucial adjustments can be made before
terminating the program. The stack may require adjustment so that SP points to
the second word from the top (first word in COM programs) prior to the final RET
instruction. Interrupt vectors changed by the program may be restored, and open
I/O devices may be closed. If interrupts have been disabled, they can be reenabled.
All of this ensures that the computer will be ready to manage another program
after the Ctrl-Break termination. Alternatively, the Ctrl-Break routine may simply
contain an IRET instruction, which effectively disables the Ctrl-Break feature.

Middle Level

This example exits a program after adjusting the stack. The routine ends with
RET rather than IRET, since the effect of the return is to be the same as that of the
RET instruction that terminates a program normally. At the time it is used, the
stack pointer (SP) must point to the second word on the stack. This assumes that
the program is in .EXE form. Remember that the stack places its first word at the
highest memory location within the stack segment, the second word below that
one, and so on. If the stack size is 400 bytes, point SP to 396. For COM programs,
set the stack pointer to the first word on the stack, or simply end the Ctrl-Break
routine with INT 20H to terminate.

;  HERE IS THE NEW CTRL-BREAK ROUTINE:
C B PROG FAR

C B

MOV AX,396 ;vaLue of 2nd word on the stack
MOV SP,AX ;adjust stack pointer for return
RET ; return to DOS
ENDP

INTERRUPT VECTOR:

PUSH DS ;DS is destroyed
MOV AX,SEGC B ;pLace segment of routine in DS
MOV DS,AX t

MOV DX,OFFSETC B ;pLace offset of routine in DX
MOV AH,25H ;function to change interrupt vector
MOV AL,23H ;number of the vector
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INT 21H ;change the vector
POP DS ;restore DS

A program can check at any time if a 'request" for the Ctrl-Break routine has
been made. Place 0 in AL and call function 33 of INT 21H. On return, DL will hold
1 if the status is "on" and 0 if it is not. Placing 1 in AL at entry sets the status. In
this case, before calling the function, place 1 or 0 in DL to turn the status "on" or
"off."
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3.2.9 Reprogram the PrtSc key

The PrtSc key produces an asterisk (ASCII 42) when struck alone, and it issues
extended code 114 when struck in combination with < Ctrl >. But the < Shift > +

< PrtSc > combination has a special status all its own. Other keystrokes cause the
keyboard interrupt to deposit their codes in the keyboard buffer (or, for toggle and
shift keys, to record their status [3.1.7]). A keystroke can have no impact upon the
program in progress until the program gets around to reading it from the buffer.
But the < Shift > + < PrtSc > combination causes the keyboard interrupt to
immediately turn control over to whatever routine is pointed to by the vector for
INT 5. In this way it functions like a hardware interrupt.

Interrupt 5 is preprogrammed to dump the contents of the screen onto a printer.
But the interrupt vector can be pointed to a procedure dedicated to an entirely dif
ferent use. For example, an involved simulation program that takes hours to run
could be interrupted at any time by Shift + PrtSc to issue a report of preliminary
results. You might also want to reprogram PrtSc so that it will send graphics
screens to the printer. Another possibility is to use PrtSc as a way to access a pro
gram that is loaded and left resident when DOS is booted [1.3.4]. This strategy
allows you to write a utility program that can be operated from within other
software.

Low Level

Here is the basic form in which to reprogram the routine. Be sure to replace the
original interrupt vector (F000:FF54) when you leave the program. Should you fail,
all will seem to be well until Shift-PrtSc is pressed, and then the computer will
crash (see the more complete example of interrupt programming at [1.2.3]).

;  CHANGE THE PRTSC INTERRUPT VECTOR
CLI

MOV AX,SEGNEW ROUTINE
MOV DS,AX
MOV DX,OFFSET NEW ROUTINE
MOV AL,5
MOV AH,25H
INT 21H

STI

;disable interrupts
;get the segment of the routine
;put the segment in DS
;put the routine offset in DX
;choose the vector to replace
;DOS function to replace vector
;change the vector
;reenable interrupts

—SET UP THE PRTSCRN ROUTINE:

NEW__ROUTINE PROC FAR
STI

PUSH AX

MOV CX,100

NEW ROUTINE

POP AX

IRET

ENDP

reenable interrupts
save all registers

.your routine

restore all registers
perform interrupt return
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Section 3: Look Up Key Codes and
Applications

The various key codes and character codes can become confusing. The tables
that follow list them all. Watch for the following anomalies:

• The Ins key is the one key that, when struck, both issues a character code to
the keyboard buffer and makes a change in the shift and toggle key status
registers.

• There are four ASCII codes which can be produced in two ways. ASCII 8 is
produced by both the backspace key and by Ctrl-H, ASCII 9 by the tab
key or Ctrl-I, ASCII 13 by the enter key or Ctrl-M, and ASCII 27 by the
Esc key or Ctrl-[.

• The symbols that correspond to the 32 ASCII control codes are not printed
on the screen by those key input functions that automatically echo charac
ters. They must be displayed by function 10H of INT 10H or by direct
memory mapping (both are discussed at [4.3.1]).

• The Ctrl key combinations with the letters of the alphabet all produce one-
byte (ASCII) codes. All other Ctrl combinations produce two-byte (ex
tended) codes.

• The <5> key of the keypad is not operational when the NumLock key is set
to cursor control.

• The Shift-PrtSc and Ctrl-Alt combinations (and on the AT, the SYS REQ
key) are the only cases where key combinations are set up to immediately
invoke special routines. Of these, only the former is reprogrammable. The
Ctrl-Break interrupt (also reprogrammable) is brought about only when
the the Ctrl-Break status is detected by a DOS routine.

• Any ASCII code except 0 can be entered by holding down the Alt key, typing
the ASCII number on the keypad, and then letting up the Alt key. Since 0
is excepted, extended codes cannot be entered this way.

Note that there is little you can do to overcome the limitations imposed by inad
missible keystroke combinations. For example, you can not detect < Ctrl-Cursor
Up> by intercepting the < Cursor Up> code and then checking the shift status
register to see if <Ctrl> is down. Should <Ctrl> be down, no key code would be
issued at all.
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3.3.1 Assign uses to the keys
There are certain conventions in the use of the keys that should be followed by

all programs. These are laid down by the Technical Reference Manual, and if pro
grammers would always observe them, it would be easier for users to move from
one program to another. Note, however, the IBM's own software does not rigidly
follow these guidelines. The conventions are:

SCROLL LOCK Toggles the cursor keys in and out of a state where
they scroll the screen rather than move the cursor.

CTRL 4/6 Moves the cursor left or right by one word.
Alternatively, scrolls the screen horizontally one
tab-width to the left or right.

PgUp Scrolls backward 25 lines.

Pg Dn Scrolls forwards 25 lines.

CTRL END Deletes all text from the cursor to the end of the

line.

CTRL PgDn Deletes all text from the cursor to the bottom of the

screen.

HOME In text, moves cursor to the start of a line, or
alternatively, to the start of the document. In
menus, switches to the topmost menu.

CTRL HOME Clears the screen and positions the cursor at top
left.

END Moves cursor to the end of the line, or
alternatively, to the end of the document.

BACKSPACE/DELETE DELETE removes the character under the cursor

and moves all that follows one space left.
BACKSPACE removes the character to the left of

the cursor, moves the cursor to that position, and
shifts leftward all that follows.

INS Toggles in and out of a mode where text is inserted
in the midst of other text.

TAB/BACKTAB Jumps the cursor rightward when Tab alone is
struck; jumps the cursor leftward when Shift -h
Tab.

ESC Exits from a program or program routine.
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3.3.2 Look up a scan code
Every key produces two kinds of scan codes, a make code when the key goes

down and a break code when it is released. Except on the AT, the break codes are
128 higher (bit 7 = 1) than the make codes. Thus, the "T" key creates code number
20 when it is pressed down and number 148 when it is released. The AT uses the
same bit pattern for make and break codes, but the break codes are two bytes long,
and the first byte is always 0F0H. The PCjr has a special phantom key scan code,
number 55. This code originates when three or more keys are struck at once, help
ing to avoid input errors. The keyboard interrupt throws away this code, and it has
no associated ASCII code or extended code.

Typewriter Keys

KeyMake CodeKeyMake CodeKeyMake Code

"1"-2'T'-20"L"-38

"2"-3"Y"-21-39
"3"-4"U"-22-40
"4"-5"1"-23-41

"5"-6"O"-24-43

"6"-7-25"Z"-44
"7"-8r-26"X"-45

"8"-9-27"C"-46
"g"-10"A"-30"V"-47
"id"-11"S"-31"B"-48

-12"D"-32"N"-49

-13"P"-33"M"-50
"Q"-16"G"-34

" "
-51

"W"-17"H"-35-52

"E"-18T-36"I"-53

"R"-19"K"-37space bar-57

Control Keys

Esc-1Ctrl-29Alt-56

Backspace-14left shift-42CapsLock-58
Tab- 15right shift-54NumLock-69

Enter-28PrtSc-55ScrollLock- 70

Function Keys

F1-59F5-63F9-67

F2-60F6-64F10-68
F3-61F7-65

F4-62F8-66

Keypad Keys

"7"- 71"5"- 76"3"-81

"8"- 72"6"- 77"0"-82
"9"- 73- 78-83

- 74"1"- 79Sys Req- 67 (AT orUy)
"4"- 75"2"-80Phantom key- 55 (PC Jr only)
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3.3.3 Look up an ASCII code
Code numbers 0 - 31, the control codes, are explained in greater detail at [7.1.9].

Note that any ASCII code from 1 to 255 can be entered from the keyboard by hold
ing down the Alt key while typing in the code number on the numeric keypad (with
NumLock properly set). When the Alt key is then released, the code is input.

symbol decimal hex binary symbol decimal hex binary

(null) 0 00 00000000 0 48 30 00110000

© 1 01 00000001 1 49 31 00110001

e 2 02 00000010 2 50 32 00110010

V 3 03 00000011 3 51 33 00110011

♦ 4 04 00000100 4 52 34 00110100
♦ 5 05 00000101 5 53 35 00110101

6 06 00000110 6 54 36 00110110
• 7 07 00000111 7 55 37 00110111

p 8 08 00001000 8 56 38 00111000

o 9 09 00001001 9 57 39 00111001

10 0A 00001010 58 3A 00111010

cf 11 0B 00001011 ; 59 3B 00111011

9 12 0C 00001100 < 60 3C 00111100

J=' 13 0D 00001101 = 61 3D 00111101

ja 14 0E 00001110 > 62 3E 00111110

15 0F 00001111 ? 63 3F 00111111

► 16 10 00010000 @ 64 40 01000000
17 11 00010001 A 65 41 01000001
18 12 00010010 B 66 42 01000010

!! 19 13 00010011 C 67 43 01000011
<ir 20 14 00010100 D 68 44 01000100
§ 21 15 00010101 E 69 45 01000101

1 22 16 00010110 F 70 46 01000110
i 23 17 00010111 G 71 47 01000111
t 24 18 00011000 H 72 48 01001000

25 19 00011001 I 73 49 01001001
26 lA 00011010 J 74 4A 01001010
27 IB 00011011 K 75 4B 01001011

u. 28 IC 00011100 L 76 4C 01001100
— 29 ID 00011101 M 77 4D 01001101
A 30 IE 00011110 N 78 4E 01001110
▼ 31 IF 00011111 O 79 4F 01001111

(space) 32 20 00100000 P 80 50 01010000
I 33 21 00100001 Q 81 51 01010001
" 34 22 00100010 R 82 52 01010010
# 35 23 00100011 S 83 53 01010011
$ 36 24 00100100 T 84 54 01010100
% 37 25 00100101 U 85 55 01010101
& 38 26 00100110 V 86 56 01010110
' 39 27 00100111 W 87 57 01010111

( 40 28 00101000 X 88 58 01011000
) 41 29 00101001 Y 89 59 01011001
* 42 2A 00101010 Z 90 5A 01011010
+ 43 2B 00101011 [ 91 5B 01011011

44 2C 00101100 \ 92 5C 01011100
- 45 2D 00101101 1 93 5D 01011101

46 2E 00101110 A 94 5E 01011110
/ 47 2F 00101111

—

95 5F 01011111
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symboldecimalhexbinary

966001100000

a976101100001

b986201100010

c996301100011

d1006401100100

e1016501100101

f1026601100110

g1036701100111

h1046801101000

i1056901101001

j1066A01101010

k1076B01101011

11086C01101100

m1096D01101101

n1106E01101110

o1116F01101111

P1127001110000

q1137101110001

r1147201110010

s1157301110011

t1167401110100

u1177501110101

V1187601110110

w1197701110111

X1207801111000

y1217901111001

z1227A01111010

11237B01111011

11247C01111100
}1257D01111101

1267E01111110

1277F01111111

Q1288010000000

u1298110000001

e1308210000010
a1318310000011
a

1328410000100
a1338510000101

a1348610000110

1358710000111

"e1368810001000

1378910001001

1388A10001010

1398B10001011

1408C10001100

1418D10001101
A1428E10001110

1438F10001111

E1449010010000
s1459110010001

1469210010010
o1479310010011
61489410010100

d1499510010101

u1509610010110
li1519710010111
V1529810011000

symbol

6
U

£

¥
Pt

/

Ya

%

i

«

»

I

H

HI

H-

h

IF
iL

decimalhexbinary

1539910011001

1549A10011010

1559B10011011

1569C10011100

1579D10011101

1589E10011110

1599F10011111

160A010100000

161A110100001

162A210100010

163A310100011

164A410100100

165A510100101

166A610100110

167A710100111

168A810101000

169A910101001

170AA10101010

171AB10101011

172AC10101100

173AD10101101

174AE10101110

175AF10101111

176B010110000

177B110110001

178B210110010

179B310110011

180B410110100

181B510110101

182B610110110

183B710110111

184B810111000

185B910111001

186BA10111010

187BB10111011

188BC10111100

189BD10111101

190BE10111110

191BF10111111

192C011000000

193C111000001

194C211000010

195C311000011

196C411000100

197C511000101

198C611000110

199C711000111

200C811001000

201C911001001

202CA11001010

203CB11001011

204CC11001100

205CD11001101

206CE11001110

207CF11001111

208D011010000

209D111010001
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symboldecimalhexbinarysymboldecimalhexbinary

210D211010010-0-233E911101001

11-211D311010011234EA11101010

1=212D4110101006235EE11101011

F213D51101010100236EC11101100

nr214D6110101100237ED11101101

+215D711010111(238EE11101110

+216D811011000n239EE11101111

J217D911011001
=

240F011110000

r218DA11011010+241F111110001

■219DB11011011
>

242F211110010

tm220DC11011100
<

243F311110011

1221DD11011101r244F411110100

1222DE11011110j245F511110101

■1223DF11011111246F611110110
OL224E011100000247F711110111

P225El11100001o248F811111000
ri
1226E211100010•249F911111001
TT227E311100011.250FA11111010

I228E411100100251FB11111011

a229E511100101n252FC11111100
fJ230E6111001102253FD11111101
T231E711100111■254FE11111110

$232E811101000(blank 'FF')255FF11111111
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3.3.4 Look up a box-graphic code
For convenience, these diagrams summarize the ASCII code numbers of the sym

bols used to construct lines and boxes.

218 194 191 213 209

195 197 180

192 193 217

196

214 210 183

199 215 182

184

179

198 216 181

186

II

212 207 190

205 =

201 203 187

204 206 185

211 208 189 200 202 188
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3.3.5 Look up an extended code

VALUE OF 2ND BYTE CORRESPONDING KEYSTROKE

15 Shift + Tab ("back-tab")

16-25 Alt + Q to Alt + P (the top row of letters)
30-38 Alt + A to Alt + L (the middle row of letters)
44-50 Alt + Z to Alt + M (the bottom row of letters)
59-68 Function keys 1 to 10
71 Home

72 Cursor-up
73 PgUp
75 Cursor-left

77 Cursor-right
79 End

80 Cursor-down

81 PgDn
82 Ins

83 Del

84-93 Function keys 1 to 10 with the Shift key down
94-103 Function keys 1 to 10 with the Ctrl key down
104-113 Function keys 1 to 10 with the Alt key down
114 Ctrl + PrtSc

115 Ctrl + Cursor-left

116 Ctrl + Cursor-right
117 Ctrl + End '

118 Ctrl + PgDn
119 Ctrl + Home

120-131 Alt + 1 to Alt + = (the top row of the keyboard)
132 Ctrl + PgUp
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4

The Video Display
Section 1: Control the Video Display
This chapter covers the monochrome adaptor, the color graphics adaptor, the

PCjr video system, and the enhanced graphics adaptor (EGA). All four video sys
tems are centered upon the Motorola 6845 CRTC (cathode ray tube controller)
chip; the EGA in fact uses a custom chip that is based on the 6845 design. The 6845
manages a number of technical tasks that are not ordinarily of concern to program
mers. However, it also sets the screen mode, generates and controls the cursor, and
(on the color graphics adaptor) assigns colors. The chip is easy to program directly,
although operating system routines can handle most of its operations. The PCjr has
an auxiliary video chip, the video gate array, which is discussed along with 6845 in
this section. The EGA uses an architecture that is quite different from the others,
and it is discussed separately. There is a general compatibility among the non-EGA
systems in their use of port addresses, but there are some important differences.
The EGA shares few port addresses with the other systems.

All of the video systems use buffers in which the data for the screen image are
mapped. The screen is periodically updated by a scan of this data. The size and
memory locations of these buffers varies by the system, by the screen mode, and
by the amount of memory dedicated. When multiple screen images are held in the
buffer, each image is referred to as a "page." Here is a summary:

Monochrome Adaptor The monochrome adaptor has 4K bytes of on-board mem
ory, starting from memory address B0000H (that is, at
8000:0000). This memory provides enough space for only
one 80-column page of text.

Color Graphics Adaptor
The color graphics adaptor has 16K of on-board memory,
starting from memory address B8000H. This is enough
memory for one graphics screen, with no paging, or four
to eight text screens, depending on whether they are 40 or
80 columns.

The PCjr has a video system that is essentially an ad
vanced version of the color graphics adaptor. It is unique
in using ordinary system RAM for the video buffer. When
BIOS initializes the system, the top 16K of installed mem-
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4.1.0 Control the Video Display

ory is assigned to the buffer. Thus the location of the
buffer varies depending on whether the system is outfitted
for 64K or 128K. Additional blocks of memory can be set
aside for more video pages, or the original allocation of
16K may be whittled down to 4K to support only a single
text screen.

EGA The EGA may be equipped with 64K, 128K, or 256K of
RAM. Besides serving as the video buffer, this memory
also holds the data for the patterns of up to 1024 charac
ters (as explained at [4.3.4]). The starting address of the
buffer is itself programmable, so that it begins at A000H
for the advanced graphics modes, and at B000H and
B800H for compatability with the standard monochrome
and color graphics modes. At most, the EGA occupies the
two segments from A000H to BFFFH, even when 256K of
RAM is present. This is possible because in some modes
two or more bytes of video memory are accessed by the
same memory address. The number of pages available
depends both on the screen mode and on the amount of
memory present. Owing to its complexity, the EGA has
16K of ROM that replaces and extends the BIOS video
routines. The ROMs start at 0000:0000.

In text modes the buffers begin with the data for the top row of the screen, start
ing from the left end. The succession of data wraps around from the right end of
one row to the left end of the next, as if the screen were really only one very long
row—and from the viewpoint of the buffer, it is nothing more. In graphics modes,
however, the video buffer may be divided into two or four parts. On the color
graphics card and the PCjr the different parts of the buffer hold data for every sec
ond or every fourth line of dots on the screen. In the EGA each part of the buffer
holds one bit of the two or four bits that define the color of a pixel.
The various video systems all operate in the same way when displaying text.

4000 bytes are allocated so that there are two bytes for each of the 2000 screen posi
tions (25 rows X 80 columns). The first byte holds an ASCII code. Video circuitry
converts the ASCII code number to its associated symbol and sends it to the screen.
The second byte (the attribute byte) holds information about how the character is
to appear. On the monochrome monitor, it sets whether the character is shown
underlined, intensified, in reverse-image, or as a combination of these attributes.
On color systems the attribute byte sets the foreground and background colors of a
character. In all cases your programs may write data directly to the buffer, a prac
tice that speeds up screen operations considerably.

All systems but the monochrome card offer a variety of color graphics modes
which vary both in resolution and in the number of colors that can be simulta
neously displayed. Both the PCjr and the EGA can display up to 16 colors simulta
neously, and the EGA can choose the 16 from a palette of 64. When 16 colors are
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used, every pixel requires four bits of memory, since four bits can hold a number
from 0-15. Similarly, four-color graphics require only two bits per pixel. Two-color
graphics can pack the representation of eight pixels into a single byte in the video
buffer. The amount of memory required for a particular screen mode is easily cal
culated by figuring out how many pixels there are and how many bits they require.
Text is readily combined with graphics (BIOS draws the characters on to the graph
ics screen), and you can create your own special characters.
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4.1.1 Program the 6845 video controller

4.1.1 Program the 6845 video controller

All of the video systems are built around the Motorola 6845 cathode ray tube
controller (the EGA uses a custom chip that is based on the 6845). The chip is used
in much the same way in the monochrome card, the color card, and the PCjr; but
the EGA is not as compatible, and for this reason it is advised that you avoid pro
gramming the chip directly when BIOS can do the job for you. Generally speaking,
the 6845 sets up the CRT to operate in one of several alphanumeric or graphics
modes. It performs the basic job of interpreting ASCII code numbers and retrieving
the data for the corresponding characters from onboard ROM chips (and some
times from RAM). It decodes the values for attributes or colors and adjusts the
screen accordingly. And it creates and controls the cursor. The EGA archtecture
divides some of these functions among other chips.
The 6845 has 18 control registers, numbered 0 - 17. The first ten registers fix the

horizontal and vertical display parameters. These generally are of no concern to
programmers, since the values in the registers are automatically adjusted by BIOS
when the screen mode is changed. It is unwise to experiment with these registers
since there is a possibility of damage to the monitor. The registers are eight bits
long, and some are paired to hold 16-bit values. Numbers 10 & 11 and 14 & 15 set
the shape [4.2.4] and location [4.2.1] of the cursor. Numbers 12 & 13 handle paging
[4.5.3]. And numbers 16 & 17 report the light pen position [7.3.2]. Most of the reg
isters are write-only; only the cursor address register is read/write, and only the
light pen register is read-only. The EGA has six additional registers that are
devoted to technical aspects. Number 20 is of most interest; it determines which
scan line in a row of characters is used for an underscore.

The 18 registers are accessed by the same port address, which on the mono
chrome card is 3B5H. It is 3D5H on the color card or PCjr (Note that all port
addresses of the monochrome card are the same as for the color systems, except
that the middle digit is B rather than D.) The EGA uses either address, depending
on whether it is connected to a monochrome or color monitor. To write to a regis
ter on the monochrome card, an address register located at port 3B4H (3D4H color)
must first be sent the number of the desired register. Then the next byte sent to port
address 3B5H will be directed to that particular register. Since the registers that
concern programmers are used in pairs, you must first write to the address register,
then to one register, then again to the address register, and then to the second regis
ter. Because the port numbers are adjacent, it is easiest to address them using INC
and DEC, is in the following example:

;  WRITE TO 6845 REGISTERS 11 & 12 (DATA IS IN BX):
;  SELECT THE LOW-BYTE REGISTER:

MOV DX,3B4H ;port address of the address register
MOV AL,11 ;seLect the register for the Low byte
OUT DX,AL ;output to 3B5H goes to #11

;  SEND THE BYTE:
INC DX ;increase port address to 3B5H
MOV AL,BL ;put Low byte in AL
OUT DX,AL ;put Low byte in register #11

;  SELECT THE HIGH-BYTE REGISTER:
DEC DX ; reset port address to 3B4H

140



Program the 6845 video controller 4.1.1

MOV AL,12 ;seLect the register for the high byte
OUT DX,AL ;now output to3B5H goes to #12

;  SEND THE BYTE:
INC OX ;again increase port address to 3B5H
MOV AL,BH ;put high byte in AL
OUT DX,AL ;now second byte is in place

On the monochrome and color adaptor there are three other ports that are of
importance to programmers. They are numbered 3B8H, 3B9H, and 3BAH on the
monochrome adaptor, and 3D8H, 3D9H, and 3DAH on the color adaptor. The
first sets the screen mode, the second is primarily concerned with setting screen col
ors, and the third reports useful information about the display's status.
The PCjr does not use all of these port addresses in the same way. Rather, it

keeps some of the information they access in a video gate array chip, which was
added primarily to give extra control over screen colors. The video gate array is
accessed via port address 3DAH. On the color card this port returns a status byte;
on the PCjr the port also returns a status byte when IN (or INP) is used, but it
accesses the gate array when OUT is used. The registers of the video gate array are
as follows:

number purpose

0 mode control 1

1 palette mask
2 border color

3 mode control 2

4 reset

10H-1FH palette color assignments

All registers are reached through port 3DAH. First send to the port the number
of the register to be accessed, and then send the value for the register. The port tog
gles back and forth between these address and data functions. Read the port to
reset it so that it awaits an address. The registers are discussed under the various
headings in this chapter.
Of particular interest are the 16 palette registers from 10H-1FH. Each register is

only four bits long, allowing just enough space to hold the 16 code numbers used
by the 16 possible colors. For every character position or dot position on the screen
the video buffer contains data that specifies in which color the character is to be
displayed. This information is referred to as attribute data. Unlike on the color
graphics card, the PCjr does not use the attribute data to directly determine the
color actually displayed. Rather, the attribute data is regarded as pointing at one of
the 16 palette registers, and the number held in that register is the color in which
the character is written. Using this technique, a program needs only to change the
setting of a palette register, and all characters or dots of corresponding attribute
change color. The palette registers work in all screen modes, both for text and for
graphics.
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The EGA divides these functions between an attribute controller chip (located at
port 3C0) and two graphics controller chips (at 3CC—3CF). The attribute control
ler holds the EGA's sixteen palette registers, numbered 00-0F. These registers may
hold six-bit color codes when the EGA is connected to an Enhanced Color Display,
so that any sixteen colors can be used out of a palette of sixty-four. [4.4.1] shows
how to program the PCjr and EGA palette registers.

142



Set/check the screen display mode 4.1.2

4.1.2 Set/check the screen display mode

The monochrome card supports one screen mode, the color card supports seven,
the PCjr supports ten, and the EGA supports twelve. The PCjr system is more ver
satile than the monochrome or color adaptors, since it offers a wider choice of col
ors in the two- and four-color modes, and it allows gray-shades in black and white
modes. The EGA is far more sophisticated still, supporting a palette of 64 colors,
graphics on the monochrome display, and 43-line displays. Here are the various
modes:

Number Mode Adaptors

0 40x25 (320x200) B&W alphanumeric color, PCjr, EGA
1 40x25 (320x200) color alphanumeric color, PCjr, EGA
2 80x25 (640x200) B&W alphanumeric color, PCjr, EGA
3 80x25 (640x200) color alphanumeric color, PCjr, EGA
4 320x200 4-color graphics color, PCjr, EGA
5 320x200 B&W graphics (4 gray shades on PCjr) color, PCjr, EGA
6 640x200 B&W graphics color, PCjr, EGA
7 80x25 (720x350) B&W alphanumeric monochrome, EGA
8 160x200 16-color graphics PCjr
9 320x200 16-color graphics PCjr
A 640x200 4-color graphics PCjr
B reserved by the EGA —

C reserved by the EGA —

D 320x200 16-color graphics (EGA only) EGA

E 640x200 16-color graphics (EGA only) EGA

F 640x350 4-color graphics on monochrome display EGA
10 640x350 4- or 16-color graphics EGA

The EGA allows eight pages in mode 7, the standard monochrome text mode.
Modes 0-6 are fully compatible, using memory in the same way. Providing the con
figuration switches on the EGA are set for operation with the IBM Enhanced Color
Display, the "traditional" text modes are shown in high resolution color, us
ing 8x14 pixel characters, rather than the usual 8x8.
BIOS keeps a one-byte variable at 0040:0049 that holds the current mode num

ber. The byte at 0040:004A gives the number of columns in text modes.

High Level

BASIC uses the SCREEN and WIDTH statements to control the screen mode.
The PCjr uses these statements somewhat differently from the monochrome and
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color cards, and it is discussed separately below. SCREEN alone will set the mode
for the color adaptor. Follow it first with a code number for the resolution, where:

0  text mode

1  medium resolution graphics mode
2  high resolution graphics mode

SCREEN 1 sets the screen to medium resolution. A second parameter turns color on
and off. It is irrelevant for high resolution on the color card, since only B&W is
allowed. For text screens, 0 as the second parameter turns color off, and 1 turns it
back on. SCREEN 0,0 makes for a B&W text screen. The opposite applies to graph
ics screens: 0 turns color on and 1 turns it off. SCREEN 1,1 creates B&W medium
resolution graphics.

All modes are initially shown in black and white. A COLOR statement (see
[4.1.3]) must be used to fill the screen in a background color. In graphics modes,
the color statement alone suffices to change the whole background to the specified
color. But for text screens in color you must follow the COLOR statement with
CLS.

Text screens can have 40 or 80 columns. Use the WIDTH statement to set the
number of columns. WIDTH 40 gives 40 columns, and WIDTH 80 gives 80. No
other values are accepted. When the WIDTH statement is used with screens set to
graphics modes (SCREEN 1 or SCREEN 2), WIDTH 40 forces the screen into
medium resolution mode, and WIDTH 80 forces it into high resolution mode. Here
are some examples:

100 SCREEN 0,1 :WIDTH 40 'makes a 40-column color text screen
..or..

100 SCREEN 0,0:WIDTH 80 'makes a color display act like monochrome
..or..

100 SCREEN 1,0 'setting for medium resolution color graphics

500 WIDTH 80 'changes screen to high resolution graphics

The monochrome monitor can be forced into 40-column mode by writing
SCREEN 0:WIDTH 40. To restore 80-column mode, write WIDTH 80. The charac
ters retain their usual width in 40-column mode, so only the left half of the screen is
used. Lines wrap around from the 40th column, and the cursor can not be placed
on the right half of the screen using LOCATE. CLS clears only the left half of the
screen. It is a rare application that would use this feature, but it does allow a pro
gram to take input (say, via INPUT statements) while confining the user's typing to
the left side of the screen, keeping the right half open for some kind of on-going
feedback. Any writing on the right half of the screen would require direct memory
mapping, as explained at [4.3.1].
The PCjr uses seven mode numbers in BASIC:
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Number Mode

0  text mode-WIDTH may be 40 or 80 (80 only on 128K machines)
1  4-color medium resolution graphics
2  2-color high resolution graphics
3  16-color low resolution graphics
4  4-color medium resolution

5  16-color medium resolution (only on 128K machines)
6  4-color high resolution (only on 128K machines)

The last four modes require the BASIC cartridge. The page size tells how much
memory is required per screen ([4.5.3] discusses paging). A program must allocate
adequate memory before it sets a mode. This is done with CLEAR. CLEAR is fol
lowed by three numbers that allocate memory, the third of which sets up the video
buffer (the first two parameters are discussed at [1.3.1]). For example, the 16K
default size for the screen buffer is given by CLEAR„16384. Unfortunately, the size
of the video buffer is given in bytes, and the actual size of the buffer is not a round
value like 4000 or 32000, but rather 4096 or 32768. Keep in mind that 2K = 2^11,
4K = 2 12, 16K = 2^14, and 32K = 2'^15. For three pages of 16K, write
CLEAR„3*2^14. This statement should be made at the very beginning of the pro
gram, since all variables are cleared when the CLEAR statement is used. Note that
when multiple pages are created, page 0 starts at the lowest memory address.
At this writing BASIC does not support the advanced EGA screen modes. [4.4.3]

provides a machine language subroutine that lets you set the mode.

Middle Level

Function 0 of INT 10H sets the screen mode. AL holds a mode number from 0 to
A. To set the screen for medium resolution color graphics:

MOV AH,0 /function number
MOV AL,4 /mode number for medium resolution coLor
INT 10H /set the mode

To find out the current graphics mode, use function F of INT 10H. The interrupt
returns the mode number in AL. It also gives the current page number in BH, and
the number of character columns in AH.

MOV AH,0FH /function number
INT 10H /get the screen mode information
MOV MODE_NUMBER,AL /mode number in AL
MOV NUMBER__COLS,AH /number of columns in AH
MOV CURRENT_PAGE,BH /current page number in BH

DOS also provides escape sequences for setting and resetting the screen mode.
These require that you load the device driver ANSI.SYS, as explained in Appendix
E. The code string is in the form ESC [ = #h, where # is a mode number given as an
ASCII character, and ESC stands for the single ASCII escape character, number 27.
For example:
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;  IN THE DATA SEGMENT:
MED_RES__COLOR DB 27/C=4h$*
MED_RES_B&W DB 27,*C=5h$*

;  SET THE SCREEN MODE TO MEDIUM RESOLUTION COLOR GRAPHICS:
MOV AH,9 ;use DOS string-write function
LEA DX,MED__RES_COLOR ;DS:DX points to escape string
INT 21H ;the mode changes

Low Level

The color adaptor, monochrome adaptor, and PCjr are discussed separately
here, since they vary considerably.The color graphics adaptor has a register that
sets the screen mode. It is located at port address 3D8H. Bits 0, 1, 2, and 4 hold the
setting. Bit 0 sets the screen to 40 columns when 0, and 80 columns when 1. Bit 1
turns the scteen to alphanumeric mode when 0, and to graphics mode when 1. Bit 2
sets the screen to color when 0, and to B&W when 1. And bit 4 sets a graphics
screen to medium resolution when 0, and to high resolution when 1 (bit 2 must
equal 1). The combinations are:

MODE

0. 40x25 B&W Text

1. 40x25 Color Text

2. 80x25 B&W Text

3. 80x25 Color Text

4. 320x200 B&W Graphics
5. 320x200 Color Graphics
6. 640x200 B&W Graphics

bit: 5 4 3 2 1 0

1 0

1 0

1 0

1 0

0 0

0 0

0 1

10 0

0 0 0

1 0

0 0

1 1

select 80x25 alpha
select 320x200 graphics

select B&W

enable video

select 640x200 graphics (B&W)
enable blinking

Changing these bits does not result in a screen mode change. There are many
other steps required, including resetting the parameters of the first ten registers at
address 3D5H. BIOS efficiently takes care of all this, and there is no sense in doing
it from scratch. However, there may be occasion to reinitialize the mode register in
its current mode, changing bits 3 or 5, which are not really part of the mode set
ting. When bit 5 is set to 0, it disables the blinking-character attribute; in this case,
when the high bit of a character's attribute byte is set to 1, it instead changes the
background color to high intensity (see the example at [4.1.3]). Bit 3 of the register
controls "video enable." When it is set to 0, the entire screen is forced to border
color, but the video buffer is not cleared. The display returns instantly when the bit
is changed back to 1. This feature is useful for avoiding screen interference during
scrolling [4.5.1]. Some utility programs use it to save wear and tear on the screen
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phosphors when the computer is turned on but not in use. Note that the two high
bits of the register are unused.
The monochrome adaptor has a matching port address at 3B8H. Only three bits

are significant. Bit 0 sets the screen to high resolution, which is the only mode the
monochrome display is allowed. If this bit is set to 0, the computer crashes. The
other two significant bits are numbers 3 and 5, which control 'Video enable" and
blinking, exactly as they do in the color adaptor.
The PCjr divides the information kept at a single port address on the mono

chrome and color cards. The video gate array has two mode registers, numbers 0
and 3. To access these registers, first send the register number to port address
3DAH, and then write the data to the same address (reading this address assures
that the first access will be interpreted as an address number). Here are the bit
patterns:

Register 0;
bit 0 1=80X25 alpha, and modes 5 and 6, else 0

1  1=graphics mode, 0=alpha
2  1=color disabled, 0=color enabled
3  1=video signal enabled, 0=disabled
4  1 =16-color mode, 0=a 11 other modes

Registers;
bit 0 always 0

1  1=enable blink, 0=16 alpha background colors
2  always 0
3  1=2-color graphics, 0=all other modes

Like the two adaptor cards, these registers should not be set directly by your pro
grams, since a good deal of other programming is required on the 6845 chip. But
each register contains a bit that programs sometimes need to modify, and since the
registers are write-only, the entire bit pattern must be understood. These bits are
the video enable bit in register 0 and the blink enable bit in register 3. They func
tion exactly as described above, and their applications are discussed elsewhere in
this chapter (at [4.5.1] and [4.1.3]).
The EGA has two registers that control the screen mode. One is at port address

3D5H. This register does not contain bits related to any other purpose, and so there
is never reason to access it. The second is at 3C0H, and it contains a bit that
chooses whether bit 7 of video text data selects blinking or high intensity. This fea
ture is discussed at [4.1.3].
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4.1.3 Set character attributes/colors

When the display is set to alphanumeric mode on any of the video systems, two
bytes of memory are given to each row and column position on the screen. The
first byte holds the ASCII code number for the character, and the second byte
holds the attribute for the character. The color card and PCjr can display in color
both a character and the box in which is resides (the background color). The mono
chrome card is limited to black & white, but it can generate underlined characters,
which the color card and PCjr can not. All three video systems can create blinking
and reversed image characters. And all three can create high-intensity characters,
although on the color card and PCjr the higher intensity characters are regarded as
having a different color (the eight basic colors each have high intensity versions,
making 16 colors in all). The EGA can do anything that the other systems can, and
more. In particular, in enhanced mode it can underline color characters, since the
8x14 character box provides a scan line for this purpose.

Color Attributes:

The same code numbers are used for the screen colors in BASIC and the operat
ing system interrupts. They are:

0. black 8. gray

1. blue 9. light blue
2. green 10. light green
3. cyan 11. light cyan
4. red 12. light red
5. magenta 13. light magenta
6. brown 14. yellow
7. white 15. bright white

The lowest four bits of an attribute byte set the color of the character itself (bit 3
turns on high intensity). The next three bits set the character's background. And,
under normal circumstances, the top bit turns blinking on and off. Thus:

When bit 0 = 1, blue is included in the foreground color
1 = 1, green is included in the foreground color
2 = 1, red is included in the foreground color
3 = 1, the character is displayed in high intensity
4 = 1, blue is included in the background color
5 = 1, green is included in the background color
6 = 1, red is included in the background color
7 = 1, the character blinks

Bits 0-2 and 4-6 hold the same color components for the characters and their
backgrounds. These three-bit groups allow eight possible combinations. When the
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high-intensity bit is on, eight more colors are allowed. The sixteen color codes are
derived from these bit patterns, as follows:

Red Green Blue Low Intensity Color High Intensity Color

0  0 0 black gray

0  0 1 blue light blue
0  1 0 green light green
0  1 1 cyan light cyan
1  0 0 red light red
1  0 1 magenta light magenta
1  1 0 brown yellow
1  1 1 white bright white

It is possible to have 16 background colors as well. In this case, bit 7 must act as a
high-intensity bit for background, rather than as a blink bit. On the color card,
change bit 5 at port address 3D8H to 0, as shown below. Since the port is write-
only, all other bits must be reset at the same time. This feature is relevant in only
two cases: 80- and 40-column text modes. For 80 column text, send 9 to the port.
For 40 column text, send 8. To switch back to blinking, add 32 to either of these
values. On the PCjr, set bit 1 to 0 in register 3 of the video gate array. All other bits
are 0, except for number 3, which is set to 1 when in a two-color graphics mode.
Except in these modes, set the blink bit by first reading port address 3DAH, which
readies the video gate array, then send 3 to 3DAH to specify the register, and then
0 to 3D AH to set the bit. Always reenable the blink bit before terminating the pro
gram, since other programs may rely upon it.
The EGA also can enable/disable the blink bit, although in this case the port

address is 3C0H. First read port 3DAH to access the address register at 3C0H. Then
send 10H to 3C0H to index the proper register. Finally, write the data to the same
address. The register is write-only, so all bits must be set. Blinking is turned on by
setting bit 3 and turned off by changing it back to 0. All other bits will be 0 when in
a color alphanumeric mode.
On the color card, when characters are written in a color graphics mode they are

drawn against the current background color. The statements that write on the
screen in BASIC and DOS (INT 21H) both limit themselves to writing characters in
the third color of the palette in use (there are two palettes of three colors—see
[4.4.11). In palette 0 the characters are yellow/brown, and in palette 1 they are
white. The BIOS character-display routines (INT 10H), however, can specify any
of the three colors of a palette. On the PCjr, on the other hand, the color assigned
to a particular position in the palette may be changed, and so any colors may be
chosen for the characters.

On the PCjr the colors displayed by these code numbers may be changed. Each
code number is associated with a palette register in the video gate array [4.1.1].
These registers are numbered from 10H to IFH, corresponding to codes 0-15. Each
four-bit register holds a number from 0-15 that represents the actual color that is
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displayed when a program statement uses one of the color code numbers. For
example, if a line in a program states that a character is to be drawn in code num
ber 0, then whatever color code is held in palette register 0 determines the actual
displayed color. The register is initialized to 0000, so that black will be displayed.
But the contents of the register may be changed to, say, 0001, in which case the use
of code number 0 results in blue characters. The code numbers used for the palette
registers are exactly the same as those used for program statements. Figure 4-1
shows the palette registers as they are initially set, except that the code for green
has been changed to display magenta.

Video Buffer Data Palette Register

(Register (1)2 Has
Been Changed)

(Black)-

(Blue)-

(Green) •

1 (Cyan)-

(Red) —

(Magenta)'

(Brown)—

^)111 (White)—

(Gray)1

1001 (Light Blue)-

(Light Green) —

1011 (Light Cyan)

1100 (Light Red)

1101 (Light Magenta)-

1110 (Yellow)

1111 (Bright White) —

i

0011

0101

0110

111

1000

1001

1011

1100

1101

1110

1111

Screen

Black

• Blue

MAGENTA

Cyan

Red

■ Magenta

Brown

■White

Gray

Light Blue

Light Green

Light Cyan

Light Red

Light Magenta
Yellow

Bright White

Figure 4-1. Displaying "green" as magenta.

To program a PCjr palette register, you must first send its number (10H to IFH)
to the video gate array located at port address 3DAH. Then send the data to the
same address. To be sure that the array is ready to receive a register number rather
than data, first read from 3DAH, throwing away the result.
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The EGA also uses sixteen palette registers. They are located at port address
3C0H, and the palette numbers range from 00-0FH. First read port 3D AH to toggle
the port to its address register, then send the palette register number to 3C0H, and
then the data. When the dip switches on the EGA card are set to enhanced mode
(for the IBM Enhanced Color Display), the palette may be selected from 64 colors.
In this case, the palette register settings are six bytes long, in the format
R'G'B'RGB. The RGB bits produce dark colors, and the R'G'B' bits produce
brighter ones. When both R and R' are set, for example, a very bright red results.
Bits are mixed to produce new hues. Should the palette registers be set up for 64
colors when the EGA is not in enhanced mode, bits 4 & 5 of the registers are
ignored, and their contents are treated as an ordinary IRGB pattern. Because the
PCjr and EGA use palette registers, the choice of background colors is not limited
by using bit 7 of an attribute byte as a blink bit.

Monochrome Characters:

Monochrome characters are slightly more idiosyncratic in their use of the attri
bute bytes. As with color attributes, bits 0-2 set the foreground color, and bits 4-6
set the background color. These "colors" may only be white or black, of course,
and they result from the following bit patterns:

Bit Bit Bit

6 or 2 5orl 4 or 0 Foreground Attribute Background Attribute

0 0 0 black black

0 0 1 underlined white white

0 1 0 white white

0 1 1 white white

1 0 0 white white

1 0 1 white white

1 1 0 white white

1 1 1 white white

Normal mode is white on black, so bits 0-2 are set to 111 and bits 4-6 are set to
000. Reverse image is created by reversing these assignments. The characters are
given high intensity by setting bit 3 to 1; there is no way to give high intensity to
the background when a character is displayed in reverse image, nor is underlining
allowed in reverse image. In all cases, setting bit 7 to 1 sets the character blinking.
All in all there are ten possible combinations that create visible characters. Most of
the combinations can be obtained from a variety of bit settings. Here is one setting
for each attribute:
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Attribute Bit Pattern Hex Decimal

normal 00000111 7 7

intense 00001111 F 15

normal underlined 00000001 1 1

intense underlined 00001001 9 9

reverse image 01110000 70 112

blinking normal 10000111 87 135

blinking intense 10001111 8F 143

blinking normal underlined 10000001 81 129

blinking intense underlined 10001001 89 137

blinking reverse image 11110000 F0 240

Note that there is no underlining in reverse image. This limitation does not apply
to the EGA. Use the same bit patterns as for the monochrome card, but program
palette registers 0 and 1 to change black to white and white to black.

High Level

BASIC sets the color or attribute of characters by the COLOR statement. All
PRINT or WRITE statements that follow a particular COLOR statement are exe
cuted with the specifications of that statement. The background color is changed
only for the characters subsequently written, not the whole screen. A new COLOR
statement has no effect on what has already been written.

Except on the monochrome card, COLOR 3,4 sets a character's foreground color
to #3 (cyan) and its background color to #4 (red). The foreground color codes
range from 0-31; numbers 0-15 correspond to the colors listed in the table above,
and numbers 16-31 result from adding 16 to any of these values, which results in
the same color but causes the character to blink. (In blinking, the foreground alter
nates between background color and foreground color while the background itself
remains unchanged.)
PRINT and WRITE are also able to write characters on graphics screens. The

color of the characters is always the third color of the current palette, that is, yel
low/brown in palette 0, or white in palette 1.
Note that when you start out in color text modes, the screen is in black and

white. To set the entire screen to a background color, write a COLOR statement
like COLOR,2 for green background, and then clear the screen using CLS. When
ever you clear the screen during a program, be sure that the most recent COLOR
statement has set the current background color to the one with which you want the
whole screen filled.

Monochrome attributes are set in much the same way. 0 represents black, and
any of the numbers from 1 to 7 represent white. Thus, COLOR 0,7 makes for black
on white ("reverse image"), while COLOR 7,0 results in white on black (the stand
ard attribute). There is one exception: 1, as a foreground color, gives an underlined
character. Adding 8 to any of the foreground values leads to an intensified image.
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Adding 16 to any of the values from 0 to 15 causes the character to blink. Thus
7 + 8 + 16 = 31 gives a blinking, intense, white foreground. Background values
range only from 0-7.
When you use direct memory mapping [4.3.1], the COLOR statement has no

effect. Instead, you must figure out a bit pattern from the tables above, and POKE
it directly into each character's attribute byte. Remember that attribute bytes are
always at odd-numbered positions in the video buffer. Memory mapping lets you
use 16 background colors in BASIC (providing you don't need blinking characters).
On the graphics card, write OUT &H3D8,8 to cause the high bit of each attribute
to act as a high-intensity bit for background colors. The following example prints
at the center of the screen a dark red '!' over a light red background.

100 DEF SEG=&HB800 'point to graphics card buffer
110 OUT &H3D8,8 'use 16 background colors
120 POKE 1000,33 'print '!' at mid-screen
130 POKE 1001,196 'red on Light red (11000100)

As explained above, the PCjr keeps the blink bit in the video gate array. Here is the
same program set up for the PCjr (it is not valid for two-color graphics):

100 DEF SE6=&HB800 'point to graphics card buffer
110 X=INP(&H3AH) 'make dummy read to ready gate array
120 OUT &H3AH,3 'request access to register 3
130 OUT &H3AH,0 'turn off all bits in the register
140 POKE 1000,33 'print '!' at mid-screen
150 POKE 1001,196 'red on light red (11000100)

Here is an example of changing the color assignment of a palette register. The color
code that normally displays blue (0001) is made to be displayed in magenta (0101).
The video gate array register number for the register corresponding to color code 1
is IIH.

100 X=INP(&H3AH) 'make dummy read to ready gate array
110 OUT &H3AH,&H11 'request register 11H (color code 1)
120 OUT &H3AH,5 'put magenta code in register (0101=5)

Middle Level

The BIOS and DOS interrupts are poorly equipped to handle color text. Only
function 9 of INT 10H takes an attribute byte when it writes a character. Function
A of INT 10H writes single characters without specifying a color or attribute; it
simply places the character in the video buffer without touching the adjoining attri
bute byte, so that the current attribute remains. Function D of INT 10H, the "tele
type" routine, also leaves the current attribute bytes alone. All of these functions
are discussed at [4.3.1].
The DOS routines of INT 21H that write on the screen always write in white on

black. Even if the entire screen has been initialized to a particular background
color, the DOS routines change the background attribute to black (or "normal") at
each character it writes. There is a way around this limitation, however. DOS pro
vides a device driver named ANSI.SYS that can interpret special escape sequences.
See Appendix E for background about how to use this feature. The escape
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sequences are "output" via function 9 of INT 21H, which ordinarily writes strings
on the screen. The string in this case consists of the escape character followed by [,
and then one or more code numbers from the list that follows. The string ends with
the letter m, plus the usual terminating $. Here are the codes:

0 all attributes OFF (white on black)
1 high intensity ON
4 underscore ON (monochrome display only)
5 blink ON

7 reverse video ON

8 cancelled ON (makes characters invisible)

30 black foreground 40 black background
31 red " 41 red

32 green 42 green "
33 yellow " 43 yellow "
34 blue 44 blue

35 magenta " 45 magenta "
36 cyan " 46 cyan
37 white " 47 white "

Note that when DOS routines write characters in graphics modes they ordinarily
are confined to code 3 of the current palette. The escape sequences above can set a
character's color to any of the palette codes. Use 30 or 31 for background, 32 or 33
for code 1, 34 or 35 for code 2, and 36 or 37 for code 3. In this case, do not specify
a background color.
The following example writes two strings on a color display using function 9 of

INT 21H. The first is drawn in blue on red, and the second in blinking cyan on red.
There is no need to redeclare red as the background color in the second string
because the color assignments affect all following write commands (including the
BIOS functions of INT 10H) until another assignment is made. Note how easy it is
to intersperse the color commands with the strings themselves.

;  IN THE DATA SEGMENT:
STRING_1 DB 'The rain in Spain* ,0AH,0DH,'$•
STRINGJ2 DB * FaL Ls mainly on the plainS*
BLUE_RED DB 27,*C34;41m$'
BLINK_CYAN DB 27,*C5;36m$'

-WRITE THE STRINGS

MOV

LEA

INT

LEA

INT

LEA

INT

LEA

INT

AH,9 ;string-write function
DX,BLUE_RED ;point DX to escape sequence
21H ;from now on, all chars blue on red
DX,STRING_1 ;point to first string
21H ;print the string (+LF and CR)
DX,BLINK__CYAN ;point to second escape sequence
21H ;change foreground to bLinki ng cyan
DX,STRING__2 ;point to second string
21H ;write the string
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You should always take care to reset the DOS color attributes to normal at the end
of a program, since they can otherwise prevail during programs that follow. Write
a final escape sequence that uses code number 0, as listed above.
The PCjr and EGA have a special BIOS function to set the contents of the palette

registers. This is subfunction 0 of function 10H of INT 10H. Place the number of
the palette register (from 0-15) in BL and the value of the color code (also 0-15) in
BH, then execute the interrupt. Subfunction 2 of function 10H sets all palette regis
ters and the border color as well by using a 17-byte array pointed to by ES:DX.
Bytes 0-15 of the array are placed in palette registers 0-15, and the 16th byte sets
the border color. See [4.1.4] to set the border color alone.

Low Level

As explained above under "High Level", simply memory-map a desired attribute
byte after its character. This example is for the color card or PCjr. It sets the screen
up as a 25x80 text screen with 16 background colors, then initializes the screen to
red on light blue:

;  GET SET FOR 16 BACKGROUND COLORS IN 80x25 TEXT MODE:
MOV AL,000010018 ;set blink bit to 0 in color select reg
MOV DX,3D8H ;address of the register
OUT DX,AL ;setthebit

;  INITIALIZE THE ENTIRE SCREEN TO RED ON LIGHT BLUE:
MOV AX,0B800H ;point to graphics video buffer
MOV ES,AX
MOV CX,2000 ;write attribute at 2000 places
MOV BX,1 ;BX points to the attribute bytes
MOV AL,10010100B ;the attribute byte

NEXT_CHAR: MOV ES:[BX],AL ;move the byte to a buffer position
INC BX ;increment the attribute pointer
INC BX

LOOP NEXT__CHAR ;do the next posi tion
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4.1.4 Set the screen border color
The border of a character screen may have a different color from the central

background color. Any of the 16 colors may be used. Graphics screens, on the
other hand, do not technically have a border area. When the background color is
set in graphics mode, the whole screen including the border area is set to that color.
Operations that write dots on the screen do not access the border area, however; if
most addressable pixels are changed to a non-background color, then a border
region is effectively created.

High Level

The third parameter of BASIC'S COLOR statement sets the border color. The
same color code numbers are used that are listed at [4.1.3]. For example, to set the
border to light blue, write COLOR,,8. The PCjr additionally can change the color
by altering the setting in the palette register that corresponds to the color code spec
ified for the border color. See [4.1.3] for a full explanation.

Middle Level

On all video systems, the background color may be set by function BH of INT
10H. This function also sets foreground colors. Place 0 in BH to specify that it is
the background color that is to be changed, put the color code in BL, and execute
the interrupt. In addition, both the PCjr and the EGA have a dedicated function to
set background color. This is subfunction 1 of function 10H of INT 10H. Place 10H
in AH, 1 in AL, and the color code in BH. There are no return registers.

Low Level

On the color graphics adaptor, bits 0-3 of port 3D9H (the "Color Select Regis
ter") set the border color when the screen is in a text mode. As usual, the ascending
order of the bits is blue, green, red, and high intensity. Because it is a write-only
address, the other significant bit in this register must also be set at the same time.
This is Bit 4, which when set to 1 causes all background colors to be displayed in
high intensity.

;  SET THE BORDER COLOR TO LIGHT BLUE:
MOV AL,00001001B ;bit pattern for Light blue
MOV DX,3D9H ;address of color select register
OUT DX,AL ;set the border color

In the PCjr, the video gate array [4.1.1] contains a register that sets the border
color. The register is only four-bits wide, where bits 0-3 correspond to blue, green,
red, and high intensity when they are set to 1. For light blue, send the bit pattern
1001 to the register. The border color register is number 2 in the video gate array.
The register is accessed by first sending 2 to port address 3D AH to request access to
the register. Then send the data to the same address. To be sure that the chip is
ready to receive a register number rather than data, first read port 3DAH. The fol
lowing example sets the border color to red (bit 2 is turned on).
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MOV DX,3DAH ;address of video gate array chip
IN AL,DX ;dummy read to ready the chip
MOV AL,2 ;register number
OUT DX,AL ;send the request
MOV AL,4 ;turn on only bit 2
OUT DX,AL ;set the border color

The border color on the EGA is set by the overscan register. This register is num
ber IIH at port address 3C0H. First read port 3D AH to toggle the port to its
address register, then send llH to 3C0H as an index, and then send the data. Only
the low four bits of the data are significant, unless the EGA is running the IBM
Enhanced Color Display, in which case the low six bits set the border color.
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4.1.5 Clear all/part of the screen
Clearing the screen can be a matter of merely placing a space character (ASCII

32) at each cursor location of the screen. However, if "non-normal" attributes have

been used while writing on the screen, then the attribute bytes of each character
must also be reinitialized. The operating system provides an easy way to clear only
a part of the screen.

High Level

BASIC provides the CLS statement to clear the whole screen. Line 25 will clear
only if the function key list at the bottom of the screen has been erased using KEY
OFF. The attribute bytes are set to ASCII 7. [4.5.1] provides a scrolling routine that
can be used by BASIC to clear windows on the screen.

Middle Level

The operating system offers several ways to clear the screen. Which you choose
may depend on whether the means are already required by the program for some
other purpose. The first method is simply to reset the screen mode, using function 0
of INT 10H [4.1.2]. For character screens each box is filled with a space (ASCII 32),
and the attribute is "normal" (ASCII 7). Ordinarily this method is a good idea only
at the beginning of a program when the screen mode needs setting in any case. On
the color graphics adaptor and PCjr, screen mode reinitialization makes the screen
flash and bounce. There is no such interference on the monochrome monitor or on

the EGA.

;  CLEAR SCREEN BY REINITIALIZING MONOCHROME MONITOR:
MOV AH,0 ;function to set screen mode
MOV AL,2 ;code for 25x80 B&U
INT 10H ;cLear the screen

A second method is to use functions 6 or 7 of INT 10H, which scroll the screen.

The number of lines to scroll is placed in AL, and when it is 0, the screen is cleared.
The interrupt allows only part of the screen to be scrolled, and hence a window on
the screen can be cleared alone. Put the coordinates of the top left corner of the
window in CX, and the coordinates of the bottom right corner in DX (row in CH/
DH, column in CL/DL). Set the attribute in which the screen is to be cleared in BH.

The coordinates are numbered from 0.

;  CLEAR THE WINDOW BETWEEN 3,4 AND 13,15:
MOV AH,6 ;use a scroll routine
MOV AL,0 ;set number of rows to scroll to 0
MOV BH,7 ;attribute byte for fill
MOV CH,3 ;top left row
MOV CL,4 ;top right col
MOV DH,13 ;bottom right row
MOV DL,15 ;bottom right column
INT 10H ;clear the window

A third method is to use function 9 of INT 10H, which writes a character and

attribute as many times as CX specifies. A value of 2000 clears the screen once the
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cursor is set to 0,0 using the method shown at [4.2.1], AH holds the space charac
ter, AL takes the attribute byte, and BH has the page number.

;  SET CURSOR TO TOP LEFT CORNER OF SCREEN:
MOV AH,2 .-function to set cursor
MOV BH,0 ;page number
MOV DX,0 .-coordinates are 0.0
INT 10H ;set the cursor

;  WRITE THE SPACE CHARACTER 2000 TIMES:
MOV AH.9 ;function number
MOV ex.2000 ;number of times to write
MOV AL.' ' .-space character in AL
MOV BL.7 .-attribute in BL
INT 10H ;clear the screen

Finally, DOS can perform screen erasures using the special escape sequences that
work with the device driver ANSI.SYS. See Appendix E for background. These
sequences are strings that begin with the escape character and terminate with a $
sign. The strings are "output" using function 9 of INT 21H, where DS;DX points to
the first character of the string. DOS interprets the string without displaying it on
the screen. To erase the whole screen, the string is [2J. To erase from the cursor to
the end of the line (cursor position included), the string is [K.

;  IN THE DATA SEGMENT:
CLEAR_LINE DB 27.'[KS'

.-—CLEAR FROM CURSOR POSITION TO END OF LINE:
MOV AH.9 ;string-writingfunction
LEA DX.CLEAR_LINE ;point DX to start of string
INT 21H ;erase to end of Line

Low Level

At low level, simply poke the space character and attribute byte directly into the
memory buffer using STOSW. Here is an example for the monochrome display:

MOV AX.0B000H ;point to monochrome video buffer
MOV ES.AX
MOV DI.0 ;DI points to start of buffer
MOV AL.32 .-space character
MOV AH.7 .-normal attribute
MOV ex.2000 ;number of times to write

REP STOSW ; send AX to ES:DI 2000 t imes
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4.1.6 Switch between video adaptors

A machine may be equipped with both monochrome and color cards, or with an
EGA and one of the other adaptors. A program may choose which monitor is to be
active by changing the value of bits 4 and 5 at memory location 0000:0410. Making
both bits 1 chooses the monochrome adaptor. Changing bits 5-4 to 10 selects the
graphics adaptor in 80-column mode, and 01 selects 40-column mode. And chang
ing the bits to 00 selects the EGA. In all cases, you must immediately execute a
mode-setting command after making the change in the register, since BIOS has
many other registers to change before the display will operate correctly.
Note that while the operating system can not drive both adaptor cards at once,

programs can display on both monitors simultaneously by performing direct mem
ory mapping [4.3.1] upon the video buffer addresses of the "non-active" monitor.

High Level

In BASIC, simply use the following code:

100 'Switch to monochrome monitor:
110 KEY OFFrCLS

120 WIDTH 40

130 DEF SE6=0

140 M=PEEK(&H410)
150 POKE &H410,M OR &H30
160 WIDTH 80
170 LOCATE,,1,12,13
180 KEY ON

100 'Switch to color/graphics monitor (80 column mode):
110 KEY OFF:CLS

120 WIDTH 80

130 DEF SEG=0

140 M=PEEK(&H410)

150 POKE 8H410,(M AND &HCF) OR &H20
160 WIDTH 80

170 SCREEN 0

180 LOCATE,,1,6,7
190 KEY ON

100 'Switch to EGA (80 column mode):
110 KEY OFF:CLS

120 WIDTH 80

130 DEF SEG=0

140 M=PEEK(SH410)

150 POKE &H410,M AND &HCF
160 WIDTH 80

170 SCREEN 0

180 LOCATE,,1,6,7
190 KEY ON

Adjust the WIDTH and SCREEN commands to switch to other initial screen
modes.
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Low Level

In assembly language, as in BASIC, directly change bits 5 and 4 at 0000:0410.
Reset the screen mode immediately after making the change.

;  SWITCH TO MONOCHROME MONITOR:
SUB AX, AX ;make AX 0
MOV ES,AX ;set ES to the bottom of memory
MOV DL,ES:C410H] ;get byte at 0000:0410
OR DL,00110000B ;turn bits 5 and 6 on
MOV ES:C410H],DL ; replace the byte
MOV AH,0 ;BIOS function to set screen mode
MOV AL,0 ;80 X 25 monochrome mode
INT 10H ;set the mode

.OR MONITOR (40 COLUMNS) :

SUB AX, AX ;make AX 0
MOV ES,AX ;set ES to the bottom of memory
MOV DL,ES:[410H] ;get byte at 0000:0410
AND DL,11001111B ;turn bits 5 and 4 off
OR DL,00010000B ;turn bit 4 on
MOV ES:C410H],DL ; replace the byte
MOV AH,0 ;BIOS function to set screen mode
MOV AL,1 ;40 X 25 color mode
INT 10H ;set the mode

i:

SUB AX, AX ;make AX 0
MOV ES,AX ;set ES to the bottom of memory
MOV DL,ES:[410H] ;get byte at 0000:0410
AND DL,11001111B ;turn bits 5 and 4 off
MOV ES:C410H],DL ; replace the byte
MOV AH,0 ;BIOS function to set screen mode
MOV AL,1 ;40 X 25 color mode
INT 10H ;set the mode
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Section 2: Control the Cursor

The cursor serves two functions. First, it acts as a pointer to the place on the
screen to which program statements send their characters. Second, it provides a
visible reference point on the screen for the program user. Only in the latter case
does the cursor actually need to be visible. When the cursor is invisible ("turned
off"), it still points to a screen position. This is important because any operating
system-supported output to the screen starts at the current cursor position.
The cursor is generated by the 6845 CRT controller chip that is described at

[4.1.1]. The chip contains registers that set the cursor's size and position. The 6845
chip makes only a blinking cursor, although there are ways for a program to create
a non-blinking one [4.2.6]. The rate at which the cursor blinks cannot be changed.
In graphics modes no cursor is shown, even though characters are positioned on
the screen by means of the same cursor-setting routines as in text modes.
When a video system operates in a mode that allows several display pages, each

page has its own cursor, and when you switch between pages, the cursor position
shifts to wherever it was when the new page was last operated upon. Some screen
modes allow up to eight display pages, and their cursor positions are held in a
sequence of eight two-byte variables in the BIOS data area, starting from address
0040:0050H. In each variable, the low byte keeps the column number, counted
from 0, and the high byte holds the row, also starting from 0. When fewer than
eight pages are used, the variables lowest in memory are used.
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4.2.1 Set the cursor to an absolute position
The cursor may be set to absolute coordinates or to coordinates that are relative

to its former position [4.2.2]. The absolute coordinates match the 25 rows and 80
(sometimes 40) columns of the screen. High-level languages generally count the
screen coordinates starting from 1, so that the top left corner position is 1,1.
Assembly language always counts from 0, making this position 0,0.

High Level —— ————

BASIC numbers the rows from 1 to 25 and the columns from 1 to 80. The
LOCATE statement sets the cursor in the format LOCATE row,col. When no cur
sor settings are made, the cursor jumps to column 1 of the next row whenever a
carriage return occurs, and scrolling begins once the 24th line is filled. To write on
the 25th line you must use LOCATE (first clear the line using KEY OFF). To stop
automatic scrolling on lines 24 and 25, follow the PRINT statement with a semico
lon (use direct memory mapping [4.3.1] to stop scrolling at 24,80 and 25,80). Here
a vertical line is drawn down the center of the screen using one of the block-graph
ics characters.

100 FOR N=1 TO 25 ' repeat for each row
110 LOCATE N,40 'set cursor to row n, column 40
120 PRINT CHR$(186); 'print Line character (no scroll)
130 NEXT 'next row

When several display pages are in use, the LOCATE statement operates on what
ever page of memory is currently "active." If the page shown on the monitor is not
the active page, the cursor position on the screen does not change. Note that
BASIC has its own variables that keep track of the cursor position. If you hook in
an assembly language subroutine that moves the cursor, BASIC will ignore the new
cursor position when it resumes control.

Middle Level

The operating system offers two ways to position the cursor at absolute coordi
nates. Function 2 of INT 10H sets the cursor belonging to a specified page of mem
ory. The pages are numbered from 0, and for the monochrome display the display
page (held in BH) must always be 0. DH:DL keeps the row and column, which also
are numbered from 0. The cursor changes its position on the screen only if the cur
sor setting is made for the page in view.

;  SET THE CURSOR TO ROW 13, COLUMN 39
MOV AH,2 ;function number
MOV BH,0 ;display page
MOV DM,13 ;row
MOV DL,39 ;col
INT 10H ;position the cursor

The second method for setting the cursor is to use the special device driver
ANSI.SYS, which may be loaded along with DOS at start-up. Appendix E gives the
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necessary background. Function 9 of INT 21H is used to output a string that con
tains the row and column information. The string begins with the escape character
(ASCII 27), and it ends with $, which acts as a terminating character. The format
of the string is Esc[row,coIH$, where row and col are numbered from 0, and ''Esc"
stands for ASCII character 27. For example, 27/[10;60H$' sets the cursor to row
10, column 60.

While this method may seem unduly complicated, it is very convenient for writ
ing a series of strings on the screen, since an escape sequence may be treated as just
one more string. In this example, a three line message is dispersed across the screen.

;  IN THE DATA SEGMENT:
POSITIONJ DB 27/C10;30H$'
STRING_1 DB 'There are two options:$'
P0SITI0N__2 DB 27/C13;32H$'
STRING_2 DB ' (1) Review part 1$'
P0SITI0N_3 DB 27/C15;32H$'
STRING_3 DB ' (2) Move on to part 11$'

;  PRINT THE STRINGS:
MOV AH,9 ;function number to print string
LEA DX,P0SITI0N_1 ;offset of 1 St cursor String in DS
INT 21H ;set the cursor
LEA DX,STRING_1 ;of f set of 1 st text st ri ng in DS
INT 21H ;print the string
LEA DX,P0SITI0N__2 ;etc...
INT 21H

LEA DX,STRING__2
INT 21H

LEA DX,P0SITI0N_3
INT 21H

LEA DX,STRING_3
INT 21H

Low Level

Registers 14 and 15 on the 6845 chip hold the cursor position. You can change
the value and the cursor will move to the matching screen position, but the BIOS
and DOS interrupts that write on the screen will ignore your setting and resume
their prior reading. This happens because each time interrupts are used, they reset
the cursor registers using a two-byte value kept in the BIOS data area. There may
be up to eight such values, each giving the current cursor position of a video page,
starting from 0040:0050. A low-level routine must alter these values in order to
completely take over the cursor.
The cursor position is kept in registers 14 and 15 as a number from 0 to 1999,

corresponding to the 2000 (25 x 80) character boxes. Take care not to confuse this
numbering system with the 0-3999 positions in the video buffer, where each charac
ter also has a byte to hold its attribute (shift the buffer pointer right by one bit to
obtain the equivalent cursor pointer). Also, watch that you do not reverse the high
and low bytes: register 14 is high, and register 15 is low.

;  IN THE PROGRAM:
MOV BL,24 ;row inBL(0-24)
MOV BH,79 ;column in BH (0-79)
CALL SET__CURSOR ;go set the cursor posi tion
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PROCEDURE TO SET THE CURSOR:

SET_CURSOR PROC
;REQUEST ACCESS TO LOW BYTE REGISTER:

MOV DX,3B4H ;port number for 6845 address register
MOV AL,15 ;seLect register 15
OUT DX,AL ;send the request

;CALCULATE THE CURSOR POSITION:
MOV AL,80 ;wi LI multiply number of rows by 80
MUL BL ;now rows times 80 is in ax
MOV BL,BH ;transfer number of columns to BL
SUB BH,BH ;extend BL through BX
ADD AX,BX ;add the column count to the row count

;SEND THE LOW BYTE OF THE RESULT:
INC DX ;next port # i s for control regi ster
OUT DX,AL ; send low byte to regi ster 15

;REQUEST ACCESS TO HIGH BYTE REGISTER:
MOV AL,14 ;prepare to send high byte to reg 14
DEC DX ;set port number back to address reg
OUT DX,AL ;send request for register 14

;SEND THE HIGH BYTE OF THE RESULT:
INC DX ; reset port # to control regi ster
MOV AL,AH ;put high byte in al
OUT DX,AL ;send the byte
RET

SET CURSOR ENDP
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4.2.2 Set the cursor to a relative position
Sometimes it is useful to make cursor moves relative to the prior position: up one

row, left three columns, etc. It is easy enough to adjust ordinary absolute cursor
positions for this purpose. But for added convenience DOS supplies some com
mands for relative cursor movements.

Middle Level

The relative cursor move function operates by escape sequences. These are
strings that are output to the screen using function 9 of INT 21H. Appendix E pro
vides the necessary background for using them. The strings are especially interpre
ted by DOS such that the cursor moves, rather than having the characters of the
string displayed. A string begins with the escape character, ASCII 27, and the [
character, and $ marks its end. The string itself is no more than the number of
spaces to move, followed by the code number for the direction. To move three
spaces:

UP 3A

DOWN 3B

RIGHT 3C

LEFT 3D

The numbers are written as ASCII strings. Do not, for example, convert 33C (33
spaces right) to 33/C; it is '33C. The example below places the numbers 1-8 at reg
ular intervals across the screen, as if to label columns of data. The spacing between
the numbers is made by the escape sequence that moves the cursor rightward after
each digit is printed.

;  IN THE DATA SEGMENT:
CURSOR_RIGHT DB 27/C9C$'

;  SET INITIAL CURSOR POSITION:
MOV BH,0 ;page number
MOV DH,1 ;row
MOV DL,5 ;coLumn
MOV AH,2 ;function to set cursor position
INT 10H ;set the cursor

;  WRITE THE NUMBERS:
LEA BX,CURSOR__RIGHT ;BX wi LI XCHG with DX
MOV OX,8 ;number of numbers to write
MOV DL,*0' ;startfrom0

NEXT__NUMBER: MOV AH,2 ;DOS function to write single char
INT 21H ;write the character
INC DL ;increment to next ASCII symbol
XCHG DX,BX ;switch string pointer into DX
MOV AH,9 ;get set to write cursor move string
INT 21H ;move the cursor right 9 spaces
XCHG DX,BX ;switch the ASCII symbol back into DX
LOOP NEXT__NUMBER ;clo the next number

There are also a pair of escape sequences that cause the cursor either to wrap or
not to wrap from the end of a line as it is automatically forwarded by the interrupts
that write characters on the screen. When set not to wrap, the excess characters are
discarded. The sequence is ESC[ = 7h (or, as data, 27/[ = 7h'). To return to auto
matic wrapping, use ESC[ = 71 (27/[ = 71').
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4.2.3 Turn the cursor on/off
The cursor is generated by the 6845 chip. It operates completely apart from video

RAM. This means that during direct memory mapping of the display buffer [4.3.1]
software must coordinate the cursor movements with the insertion of new charac
ters into the buffer. Note that the 6845 can not create a non-blinking cursor, nor
can it change the rate at which the cursor blinks. See [4.2.6] for how to construct
alternative, "artificial" cursor types.

High Level ii^—

The BASIC interpreter automatically turns off the cursor while a program runs.
The cursor appears when the INPUT statement is used, but not otherwise. Should
your program require the cursor, say for an 1NKEY$ routine, then it may be turned
on by setting the third parameter that follows the LOCATE statement to 1 (0 turns
it back off). Recall that the first two parameters following LOCATE set the row
and column coordinates for the cursor.

100 LOCATE 15,40,1 ;turn on cursor, set to row 15, column 40
■ ■ o r • •

100 LOCATE,,1 ;turn on the cursor wherever it is
■■end■■

200 LOCATE,,0 ;turn the cursor back off

The cursor will remain on through successive LOCATE statements without setting
the third parameter each time. But note that the INPUT and INPUTS statements
will turn it off when they are finished.

Middle Level

Assembly programs leave the cursor on unless otherwise instructed. The operat
ing system does not offer specific means to turn off the cursor, but it is easy to do.
Simply position the cursor "off the screen," using function 2 of INT 10H to set it at
column 1 of "row 26." Remember that the coordinates are counted from 0, so they
should be 25,0.

MOV BH,0 ;page number (always 0 for monochrome)
MOV DH,25 ;row
MOV DL,0 ;column
MOV AH,2 ;function number
INT 10H ;set the cursor off-screen

Low Level

Bit 6 of register 10 of the 6845 chip [4.1.1] turns the cursor off when it is 1 or on
when it is 0. This register also holds the value for the "start-line" for the cursor,
which along with the "stop-line" found in register 11 determines the thickness of the
cursor [4.2.4]. Since the shape of the cursor is no concern when it is turned off,
simply place 32 in register 10 to set bit 6 to 1. To turn the cursor back on, you must
reset the value of the cursor start-line. For a normal cursor this value is 11. The
stop-line for the cursor remains unaffected since it resides in a different register.
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;  TURN OFF THE CURSOR:
MOV DX,3B4H ;port number for 6845 address register
MOV AL,10 ;select register 10
OUT DX,AL ;send the request
INC DX ;next port number accesses registers
MOV AL,32 ;32 turns on bit 6, turning off cursor
OUT DX,AL ;turn off the cursor

;  TURN CURSOR BACK ON: ; (if necessary, readdress register 10)
MOV AL,11 ;start-Line value (bit 6 wi LL = 0)
OUT DX,AL ;turn on the cursor
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4.2.4 Change the cursor shape

The cursor can vary in thickness from a thin line to a character-size block. It is
built up out of short horizontal line segments, the topmost of which is referred to as
the "start line," and the bottommost as the "stop line." On the monochrome dis
play, 14 lines make up the box in which a character is drawn, numbered 0 to 13,
starting from the top. Spacing between characters is provided by the top two lines
and the bottom three lines. Most characters fit on lines 2-10, although descenders
from some characters reach down to lines 11 and 12. An ordinary cursor fills lines
12 and 13, while underlines occupy line 12 alone.
On a 200-line color display, only eight lines make up the box for one character,

and the character is drawn on the top seven lines. The eight lines of a box are num
bered from 0 to 7, starting from the top, and a normal cursor is formed by line 7
alone. (Note that there is no underlining on a graphics display, since the use of line
7 as an underline would fuse the characters with those below.) A high-resolution
color display uses the 14-line monochrome specification in its high-resolution
modes and the eight-line mode when it is run in one of the color-graphics compati
ble modes.

A cursor may be formed from any combination of adjacent line segments. On
the monochrome display, a solid block cursor results when the start line is set to 0
and the stop line to 13 (on a graphics display, use 7 as the stop line instead). If the
start and stop lines are given the same value, a single-line cursor appears. And
when the stop line is a higher number than the start line, the result is a two-part,
wrap-around cursor. For example, if the start line is 12 and the stop line is 1, first
line 12 is filled, then line 13, then line 0, and lastly, line 1. The cursor takes on the
form of two parallel lines that skirt the top and bottom edges of the row it occu
pies.

BIOS keeps a two-byte variable at 0040:0060 that gives the current values of the
start and stop lines. The first byte holds the stop line value and the second holds
the start line value.

High Level

In BASIC, the LOCATE command shapes the cursor, as well as positioning it
upon the screen, and turning it on and off. The parameters that set the start and
stop lines are the fourth and fifth numbers that follow the word "LOCATE". The
other parameters may be omitted so long as the commas that separate them are
included. Thus, to create a solid block cursor from lines 2 to 12, write
LOCATE,„2,12. Note that BASIC ordinarily turns the cursor off while it is run
ning. See [4.2.3] for how to turn it back on.

Middle Level ——

Function 1 of BIOS interrupt 10H sets the cursor start and stop lines. CH takes
the start line, and CL takes the stop line.
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;  SET CURSOR START AND STOP LINES:
MOV AH,1 ;function number
MOV CH,0 ;start cursor at top Line
MOV CL,7 ;end cursor at eighth line
INT 10H

Low Level

Registers 10 and 11 of the 6845 CRT controller hold the values for the start and
stop lines, respectively. Both registers are accessed via port address 3B5H on the
monochrome card or 3D5H on the color card and PCjr. The number of the register
must first be sent to the address register at port address 3B4H (see [4.1.1]). The val
ues occupy the low end of each register. The stop line register, number 11, has no
other contents. However, the start line register (#10) indicates by bits 5 and 6
whether or not the cursor is showing. Since the cursor appears when both of these
bits are set to 0, placing the line number alone in the register will keep these bits set
to zero. The other bits of register 10 are unused.

"——"SET START LINE:

MOV DX,3B4H ;access the 6845 address regi ster
MOV AL,10 jseLect register 10
OUT DX,AL ;send the request
MOV AL,0 ;start line is number 0
INC DX ;next port number accesses control registers
OUT DX,AL ;start line now in register

;  SET STOP LINE:
MOV AL,11 ;select register 11
DEC DX ;set port number back to address register
OUT DX,AL ;send the request
MOV AL,7 ;stop line is number 7
INC DX ; reset port number to control registers
OUT DX,AL ;stop line now in register
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4.2.5 Read/save/restore the cursor position
Programs sometimes read and save the cursor position so that the cursor can be

temporarily moved to a command line or elsewhere and then returned to its start
ing point. The current cursor position of any of up to eight pages of memory can be
found in the BIOS data area. There are eight two-byte variables, ranging upwards
from address 0040:0050. The first position corresponds to page 0, the second to
page 1, and so on. The low byte of each variable holds the cursor's column and the
high byte holds the row. Both rows and columns are numbered from 0.

High Level

In BASIC, CRSLN retrieves the row and PCS the column. PCS must be

equipped with a dummy argument, so always write it as POS(0). Here, the cursor
is moved to the bottom line of the screen, then returned. Note how the cursor is
turned back on following the INPUT statement [4.2.3].

100 ROU=CRSLIN

110COL=POS(0)
120 LOCATE 25,1
130 INPUT"Enter f i Le name",F$
140 LOCATE ROW,COL, 1

'get the cursor's row
'get the cursor's column
'move cursor to command Line
'get information at the command line
'restore original position, turn on

Middle Level —

Function 3 of INT 10H returns the cursor row in DH and column in DL. On

entry, place the page number in BH (always 0 for the monochrome card).

;  FIND THE CURSOR POSITION
MOV AH,3
MOV BH,0
INT 10H

;function number
;page 0
;place row: column in DH:DL

DOS provides two escape sequences that save and restore the cursor position.
These sequences are special strings that control the monitor when they are "output"
to the screen. Background for the use of these sequences is given in Appendix E.
The sequence to save the position is Esc[s, and to restore the position, Esc[u. There
is no need to provide variables to hold the coordinates.

;  IN THE DATA SEGMENT:
SAVE__CURSOR DB 27,'Cs$'
RESTORE_CURSOR DB 27,'Cu$'

SAVE THE CURSOR:

LEA

MOV

INT

RESTORE THE CURSOR:

LEA

MOV

INT

DX,SAVE__CURSOR
AH,9
21H

;Esc sequence to save cursor position
;Esc sequence to restore cursor position

; load offset of string into DX
; St ring output function number
;save the cursor position

DX,RESTORE_CURSOR ; load offset of string intoDX
AH,9 ; St ring output function number
21H ;restore the cursor position
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Low Level

Registers 14 & 15 of the 6845 chip hold the current cursor position, as explained
at [4.1.1]. The high byte is in register 14. The two bytes hold a number from 0 to
1999 in 80-column mode, or from 0-999 in 40-column mode. It is your job to con
vert the number to row and column coordinates. You could read this value to find

the current position of the visible cursor on the screen. But saving the value and
restoring it to the register later will not necessarily return the cursor to its former
position, especially if your program uses any of the usual screen operations pro
vided by the operating system. This is because BIOS keeps track of the cursor in its
own variables so that it can manage paging [4.5.3]. After you reset registers 14 and
15, the cursor will move to the corresponding position, but at the next call to a
screen-write interrupt the cursor will jump back to wherever the BIOS variables
state that it should be.
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4.2.6 Create alternative cursor types

All operating system interrupts that write on the screen use the cursor. You can
change the shape of the cursor by the techniques shown at [4.2.4], or the cursor can
be made invisible [4.2.3]. Alternative cursor types are possible when the screen is
written upon by direct memory mapping techniques [4.3.1]. Here, the ''true" cursor
is turned off, since it does not direct characters to a particular position in the video
buffer. Instead a "false" cursor is created using the attribute byte.
The most effective technique is to set a reverse-image attribute for the character

at which the cursor resides. For a white-on-black screen, use ASCII 112 for this
attribute. A second possibility is to cause the cursor's character to blink. In this
case, simply add 128 to the current attribute to start it blinking and subtract 128 to
restore it. Third, try setting the character to non-blinking underline mode (use
ASCII 1). Or finally, in single-line applications consider using a special graphics
character that follows the last character of the line, such as one of the arrow char
acters displayed by ASCII 17 or 27. Note that when a program receives input in
several modes, you can help identify the current mode by showing a particular cur
sor type.

High Level

This example forms a cursor by setting the character at the cursor position to
reverse image. The variable CURSORPOSITION holds the offset in the video
buffer of the cursor's character. It is an even number between 0 and 3998. Adding 1
to CURSORPOSITION gives the location of the attribute byte for that character,
and placing 112 in it makes the reverse image. The variable FORMERATTRIBUTE
keeps the character's usual attribute so that it can be replaced after the cursor
moves on.

500 '••'•routine to analyse incoming extended codes:

560 IF EXTENDEDC0DE=77 THEN GOSUB 5000 'this Line senses <cursor-right> key

5000 • • • • 'subroutine that moves the cursor right one space:
5010 POKE CURSORPOSITION+1,FORMERATTRIBUTE 'restore attribute at old position
5020 CURS0RP0SITI0N=CURS0RP0SITI0N+2 'set the new cursor position
5030 F0RMERATTRIBUTE=PEEK(CURS0RP0SITI0N+1) 'store attribute of new position
5040 POKE CURSORPOSITION+1,112 'turn on cursor at new position
5050 RETURN 'all done

Low Level

Here is the above example written in assembly code:

ROUTINE TO MOVE CURSOR RIGHT ONE SPACE (ES POINTS TO BUFFER)
CURSOR_RIGHT: MOV BX,CURSORPOSITION ;get current cursor position in buffer

INC BX ;point to that character's attribute
MOV AL, FORMERATTRIBUTE ;get the former attribute of the char
MOV ES:[BX],AL ;restore the former attribute
INC BX ;point to the char at new position
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MOV CURSORPOSITION,BX ;save the offset of the position
MOV AL,ES: CBX3+1 ;get the attribute of the new char
MOV FORMERATTRIBUTE,AL ;save the attribute
MOV AL,112 ;place reverse-image attribute in AL
MOV ES: CBX3+1 ,AL ;112 goes to next cursor position
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Section 3: Write Characters On the Screen

There are many means for writing characters on the screen. Some simply place a
single white-on-black character at the current cursor position. Other methods are
more complicated but give more control over the character's placement and its
attribute or color. Special routines write whole strings on the screen. In all cases, at
bottom the machine is doing nothing more than placing the character's ASCII code
at a specified position in the video buffer; it may or may not place an attribute byte
in the following memory address.
Your programs may place these codes into the buffer directly, a technique that is

referred to as "memory mapping." Memory mapping tends to require a little more
programming than do the functions that the operating system provides for this pur
pose, but it results in much faster screen operations. The technique is discouraged
by IBM because future changes in hardware design could render a program inoper
able. But in fact IBM has gone out of the way to make its new hardware conform
to the addressing scheme that memory mapping relies upon.
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4.3.1 Write a single character on the screen

In BIOS and DOS (and in BASIC as well), all operations that write characters on
the screen place the character at the current cursor position and automatically for
ward the cursor one space. All wrap the cursor from the end of the line, unless spe
cial provision is made to throw away any characters beyond the 80th column
[4.2.2]. An important difference between the various operations is that some write
a character's attribute along with the character, while others do not.

In both high and low-level programming languages, characters can be placed on
the screen without using the usual print operations. Rather, direct memory map
ping is performed, in which the codes for a character and its attribute are directly
placed in the memory locations of the video buffer that correspond to a particular
cursor position on the screen. The buffer begins at B000:0000 on the monochrome
card and at B800:0000 on the color card and on the PCjr. In compatible screen
modes, the EGA uses these same buffer addresses. Even numbered positions (start
ing from 0) hold the ASCII character codes, and odd numbered positions hold the
attribute bytes. Figure 4-2 illustrates this layout. The cursor does not follow these
operations, and it may be turned off if desired [4.2.3]. In lieu of a cursor, keep vari
ables that act as pointers to the screen.

High Level

BASIC writes both single characters and whole strings with the same statements,
either PRINT or WRITE. PRINT is used most; WRITE is a variant with special, sel
dom used formatting characteristics. PRINT functions with data in three forms. It
displays the contents of both string and numeric variables, as in PRINT S$ or
PRINT X. It displays characters inserted (within quotes) in the PRINT statement
itself, such as PRINT'These words are printed". And it displays the characters that
correspond to ASCII codes that appear within the PRINT statement in the form of
CHR$ statements, as in PRINT CHR$(65), which writes A (ASCII code #65) on the
screen.

A single PRINT statement can hold many data items, and any of the three forms
of data may be intermixed. The data items are delimited using commas or semico
lons. Commas set each subsequent data item at the next tab position on a line.
Semicolons cause the items to be printed together on the screen with no intervening
spaces (note that PRINT adds a space before any numeric variables it displays;
WRITE does not). Normally, a PRINT statement automatically makes a carriage
return at its end, so that the next such statement will begin writing on the following
line on the screen. To avoid this carriage return, place a semicolon at the end of the
PRINT statement, as in PRINT 5$;.

Use the LOCATE statement to set the cursor position before printing. Without
LOCATE statements, PRINT always begins writing at the first column of the line
the cursor is on. Successive PRINT statements fill the screen until line 24 is written

upon, whereupon the screen scrolls upwards, so that the next PRINT statement
also writes on line 24. Only by using LOCATE can PRINT write on line 25; doing
so also results in automatic scrolling. To stop the scrolling, end the PRINT state-
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Figure 4-2. Memory mapping on the monochrome adaptor.

AN APPLE A DAY. . .

ment with a semicolon. This measure, however, will not work at the last columns
of lines 24 and 25. To fill these spaces without scrolling, you must use memory
mapping, as described below.
You may embed control characters [7.1.9] within a PRINT statement in order to

achieve cursor movements ' midstring." For example, placing CHAR$(13) within a
string causes a carriage return at that point. When printed, "One" + CHR$(13)+
"Two" + CHR$( 13) + "Three" results in each word starting on a new line. ASCII
codes 28-31 respectively move the cursor one space right, left, up, or down. A
PRINT statement that contains no data items at all results in a simple carriage
return, so that the next PRINT statement begins writing at the line after next.
Memory mapping considerably speeds up screen writing operations in BASIC. It

is especially useful for constructing block graphic displays, where boxes may reach
down to the lower right corner of the screen. First set the memory segment pointer
to &HB000, then use POKE to place each byte in memory. Horizontally adjacent
character positions are two bytes apart, with attribute codes in between. On 80-col-
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4.3.1 Write a single character on the screen

umn screens, vertically adjacent positions are 160 bytes apart (two bytes for each
character and attribute that make up the 80 columns of a row). The following two
examples draw a box around the circumference of the screen using the special
double-line graphics characters. The first case mostly uses PRINT statements, and
the second case exclusively uses memory mapping. Note how the first case still
requires memory mapping at the last columns of rows 24 and 25 to avoid auto
matic scrolling.

Using PRINT:

10 CLSlKEYOFF

20 DEF SEG=.

30 LOCATE 1,1 iPRINT CHR$(201)
40 LOCATE 1,80:PRINT CHR$(187)
50 LOCATE 1,24:PRINT CHR$(186)
60 LOCATE 1,25:PRINT CHR$(200)
70 POKE 3838,186
80 POKE 3998,188
90 FOR N=2 TO 79

100 LOCATE 1 ,N:PRINT CHR$(205)
110 NEXT

120 FOR N=2 TO 23

130 LOCATE N,1 iPRINT CHR$(186)
140 NEXT

'blank the screen

'access buffer for 24,80 and 25,80
'corner character at 1,1
'corner character at 1,80
'the loop below misses this character
'corner character at 1,25
'column 80 of row 24

'column 80 of row 25

'print the horizontals
LOCATE 25,N:PRINT CHR$(205)

f

'print the verticaLs
: LOCATE N,80:PRINT CHR$(186>

Using Memory Mapping;

10 CLS:KEY OFF

20 DEF SEG=&HB000

30 POKE 0,201
40 POKE 158,187
50 POKE 3840,200
60 POKE 3998,188
70 FOR N=2 TO 156 STEP 2

80 POKE N,205:POKE N-^3840,205
90 NEXT

100 FOR N=160 TO 3680 STEP 160
110 POKE N,186:P0KE N+158,186
120 NEXT

•blank the screen

'point to monochrome buffer
'top left character
'top right character
'bottom left character

'bottom right character
'insert horizontals

'both top and bottom
I

'Insert verticals

'both left and right

Middle Level

The operating system offers six routines that write on the screen - three in BIOS
and three in DOS. They differ mostly by whether or not they move the cursor after
writing a character, whether they cause scrolling, whether they set the character s
attribute or color, and which control codes they interpret (some see the backspace
character, for example, as just another symbol, which others actually make a back
space on the screen). The six routines are:
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INT 10H:

function 9 writes character with attribute

A writes character without attribute

E "teletype" routine (treats screen like a printer)

INT 21H:

function 2 writes character without attribute

6 writes character without attribute
9 writes string of characters

Functions 9 and A of INT 10H do not interpret any control codes at all. The
DOS functions interpret those in the following table. Function E of DMT 10H inter
prets all codes in the table except ASCII 9.

ASCII 7 beep
8 backspace
9 tab

10 line feed

13 carriage return

The first two functions of INT 10H do not move the cursor after they write a
character. Function 9 of this interrupt writes with an attribute, and function A
writes without one, so that the current attribute of a particular position remains.
AL holds the character, and BL gets the attribute. The page number is in BH. It
must be set even for the monochrome monitor, which, of course, has only one page
of memory for the screen to use. In this case, set it to the first page, which is num
bered as page 0. A special feature of these two BIOS functions is that they print the
character as many times as is specified in CX. Ordinarily CX is given 1, but a whole
line of characters may be easily printed using a higher count—a useful feature for
block graphics. Note that even when multiple characters are written, the initial cur
sor position remains unchanged. When the line of characters exceeds the space
below the cursor, the line wraps around to the top of the screen.

;  WRITE A CHARACTER IN REVERSE IMAGE:
MOV AH,9 ;function to write with attribute
MOV AL,THE_CHARACTER ;character in AL
MOV BL,112 ;attribute in BL
MOV BH,0 ;page1
MOV CX,1 ;write the character just once
INT 10H

Rather than constantly restore the count in CX, the BIOS interrupts also offer a
"teletype" routine that is more suitable for outputting strings of characters. This is
performed by function E. It is set up the same as function A above, but without
placing a value in CX. Strings are written simply by changing the character in AL

179



4.3.1 Write a single character on the screen

and recalling the interrupt. When used in a graphics mode, the palette color is set in
BL; otherwise the current attributes remain.

;WRITE A STRING USING THE TELETYPE ROUTINE:

NEXT CHAR:

MOV AH,0EH ;teLetype function number
MOV BH,0 ;page number
LEA BX,STRING ;point BX to the string
MOV AL,CBX] ;mov a character to AL
CMP AL,'$' ;is it •$* (end of string)?
JE ALL DONE ;if so, quit
INT 10H ;write the string, cursor forwards
INC BX ;point to next char
JMP SHORT NEXT CHAR ;go get next character

ALL_DONE:

INT 21H of DOS offers generally more useful routines, since they all forward the
cursor and cause the screen to scroll after the bottom line is accessed, as well as

interpreting some of the common control codes. The DOS functions write to what
ever page has been set by function 5 of INT 10H [4.5.31. There are two functions
designed to write a single character, numbers 2 and 6. The former senses Ctrl-Break
[3.2.81; the latter does not. (When Ctrl-Break is entered from the keyboard, the
Ctrl-Break routine does not execute until a function that can detect it is used.)
Both functions write characters in white on black unless special provision is

made for color via the ANSl.SYS device driver [4.1.31. In general, you need only
place the character in DL, place the function number in AH, and invoke INT 21H.
However, function 6 is special in that it has a second life as a keyboard input func
tion. It acts in this role only when it is given the character FF in DL [3.1.5]. In all
other cases, it writes on the screen whatever is in DL. In the next example, function
6 alternates between receiving and printing a character ([3.1.4] discusses routines
that combine both of these features).

MOV AH,6 ;function number
NEXT: MOV DL,0FFH ;if FF in DL, gets keystroke

INT 21H ;execute the interrupt
JZ NEXT ;if no character, keep trying
CMP AL,13 ;got a character, is it OR?
JE END__INPUT ;if so, quit
MOV DL,AL ;otherwise, move the character to DL
INT 21H ;now function 6 prints the character
JMP SHORT NEXT ;go get the next

Low Level

At bottom, all output to the monitor is memory mapped. The technique is dis
couraged so as to sustain compatibility through generations of machines, but IBM
has gone to lengths to see to it that the video buffers of its microcomputers are
structured the same and positioned in memory at the same range of addresses.
Because the buffers are structured so that attributes are interleaved with character

bytes, character data cannot be moved from memory to the buffer using a simple
MOVSB instruction, since the pointer to the buffer must increment by 2 after each
one-byte transfer. Still, screen operations are much faster using this technique.
Note that memory mapping does not work when writing characters in graphics
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modes. In this case the video bufiFer size is 16K or 32K, and BIOS draws each char
acter, pixel by pixel. Note also that memory mapping does not make use of the cur
sor to position characters. If desired, the cursor can be moved along with the input
[4.2.1], or it may be turned off and a pseudocursor can be created [4.2.6].
;  IN THE DATA SEGMENT:

SAMPLE_STRINGDB 'PRINT THIS STRINGS';data string ends with «$) terminator

;  WRITE OUT THE STRING:

NEXT:

MOV AX,0B000H ;monochrome monitor
MOV ES,AX ;point to video buffer
LEA BX,SAMPLE STRING ;BX points to the string
MOV DI,CURSOR START ;starting point in buffer for string
MOV AL,[BX] ;get a character
CMP AL,'$' ;is it end of string?
JE ALL DONE ;if so, quit
MOV ES:CDI],AL ;eLse put the character in the buffer
INC DI ;increase buffer pointer by 2
INC DI

t

INC BX ; increase string pointer by 1
JMP SHORT NEXT ;go get next character

ALL_DONE: ;move on

The color card and PCjr (but not the EGA) present special problems in memory
mapping. When the buffer memory is written to at the same time as it is read for
output to the screen, interference occurs on the screen. The problem is avoided by
waiting for an "all clear" signal before beginning to write. Continuously read the
value of port address 3D AH. When bit 0 equals 1 it is safe to begin writing. (3DAH
is the port by which the PCjr sends data to its video gate array; when read, it
returns a status register just like the color card.)
;  WAIT UNTIL ALL CLEAR:

MOV DX,3DAH
CHECK_AGAIN: IN AL,DX

TEST AL,1
JZ CHECK_AGAIN

;  NOW WRITE THE MESSAGE:
LEA BX,MESSAGE
MOV

MOV

NEXT_CHAR: MOV
CMP

JE

MOV

INC

INC

INC

JMP

ALL DONE:

DI

AH,01000001B
AL,[BX]
AL,'$'
ALL_DONE
ES:CDI],AX
BX

DI

DI

SHORT NEXT CHAR

;port address for status register
;get the value
;is bit 0 set?
;if not, keep trying

;message in data segment, ends with $
;start writing at center screen
;set the attribute to blue on red
;get one character of the message
;is it the end of the string?
;if so, move on
;otherwise, write the character
;increase pointer to the string
;increase pointer to the buffer
i

;do the next character
;move on

by
by

You must experiment to find out how many characters your routine can write,
without interference, in a single cycle. Keep in mind that when the loop is first
entered, the test bit may equal 1, but there may not be enough time left in the cycle
to complete a write operation.
The PCjr is specially wired so that output to the addresses used by the video

buffer of the color graphics card are redirected to the place in the PCjr's memory
where the buffer actually resides. This feature helps make software compatible for
the two systems.
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4.3.2 Write a string of characters on the screen
Routines that display whole strings of characters are very useful, but they can

impose restrictions on the content of the string. Pay attention to which control
codes (tab, space, etc.) are interpreted and which are not. Until the advent of the
AT, the BIOS did not have a function to display strings, although PC-DOS always
has had one. The BIOS function offers more control over character attributes. Of

course, use of the new BIOS function presents compatibility problems with all of
the earlier machines. Note that the EGA has ROMs on board that extend the BIOS,

and that the string-display function is one of these extensions. Thus any PC or XT
may have access to the BIOS routine.

High Level

BASIC writes strings the same way that it writes individual characters. Simply
use PRINT 5$, where S$ is any string up to 255 characters that the program has
constructed or transported into memory. Ten of the control codes are interpreted.
They include:

ASCII 7 beep
9 tab
10 line feed
11 cursor home
12 form feed (erases screen, cursor home)
13 carriage return
28 cursor right
29 cursor left
30 cursor up

31 cursor down

All other codes appears as symbols on the screen.

Middle Level —

Function 9 of INT 21H displays a string. DSiDX points to the first character of
the string. The string must end with the $ character, which means that $ itself can
not be part of the string. The string may be any length. The function does not auto
matically send the cursor to the start of the next line after the string is printed; to
cause this, append 0AH (line feed) and 0DH (carriage return).

;  IN THE DATA SEGMENT:
FIRST_STRING DB 'This is the first string in memory',0AH,0DH,'$*
SECOND_STRING DB 'And this is the second string$*

;  PRINT THE STRING:
MOV AH,9 ;function number to print string
LEA DX,FIRST__STRING ; Load the offset of FIRST__STRING in DX
INT 21H ;prints string at cursor position
LEA DX,SECOND_STRING ; Load pointer to SECOND__STRING
INT 21H ;write 2nd string at start of new Line
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The following control codes are interpreted:

ASCII 7 beep
8 backspace
9 tab

10 line feed

13 carriage return

DOS function 40H of INT 21H is also useful for writing strings on the screen. It
requires that you know the length of the string, since the string requires no termi
nating character; it is especially handy for dumping text files on the screen. This
function was designed primarily for output to files. It requires a handle, which is an
ID number assigned to a particular file or peripheral. The video display has a
ready-made handle, number 1. Place the handle in BX and the number of bytes in
the string in CX. Then point DS:DX at the string. The function writes text with a
normal (white-on-black) attribute. Note that there is no need to "open" the video
display the way you must open a file in order to use this function. Here is an
example:
;  OUTPUT 1000 BYTES OF TEXT:

MOV AH,40H ;function number
MOV BX,1 ;handle for video display
LEA DX,STRING ;point DS:DX at the St ring
MOV CX,1000 ;number of bytes to display
INT 21H

DOS provides a number of escape sequences, which are special strings that con
trol hardware. When they are output by function 9 of INT 21H, these strings con
trol the cursor, the video mode, the character color, and some aspects of the key
board. Appendix E discusses how they are used. When programs write many
strings on the display, escape sequences are often the easiest way to position the
cursor and set the string color. This is because an escape sequence itself is treated as
just another string in the series of strings that are displayed.
On the AT, or in machines equipped with the EGA, function 13H of BIOS INT

10H displays a string. Point ES:BP to the string, and place the length of the string
in CX. DX is given the cursor position at which the string starts (calculate it as an
offset from the start of the page the string is written on, not counting attribute
bytes). BH takes the page number. Finally, place a code number from 0-3 in AL to
specify how the string is to be displayed:

AL = 0 string is all characters, cursor is not moved
AL = 1 string is all characters, cursor is moved
AL = 2 string alternates characters and attributes.

and cursor is not moved

AL = 3 string alternates characters and attributes.
and cursor is moved
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When AL = 0 or 1, place the attribute in BL. All characters will be written in this
attribute. The backspace, carriage return, line feed, and bell (ASCII 7) codes are
interpreted as commands by this function, rather than as printable characters.

Low Level

The restriction on the use of $ makes function 9 useless for many applications.
Yet this is the only interrupt available on all machines that displays strings of
unspecified length. Consider writing your own interrupt ([1.2.3] shows how) that
uses the memory mapping techniques shown at [4.3.1]. Instead of use a special
character as the string terminator, such as ASCII 0. Add routines to interpret only
those control codes you need. The resulting code will be much faster than that pro
vided by DOS.
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4.3.3 Read the character and attribute at a given position
Ordinarily, a program takes data from its variables in memory and places it in

the video buffer for projection onto the screen. The program in a sense "knows"
what is on the screen. But there are situations in which the video buffer is itself

used as a work area (as in cut-and-paste graphics programs) so that the current
contents of the screen are unrecorded in program memory. In these cases it may be
necessary to read from the screen rather than write to it. A BIOS function reads the
character and attribute at a particular screen position; otherwise it can be found by
memory mapping [4.3.1] in reverse. To find the character and attribute at row 0,
column 39 (1,40 in BASIC) in 80-column mode, add (0 x 160) plus (39 x 2) and take
the two bytes at that offset in the video buffer. See [4.5.3] if offsets for paging are
required. Note that reverse memory mapping will not work with characters written
in graphics mode.

High Level

BASIC uses the SCREEN function to find a character or attribute (this statement
is entirely separate from the SCREEN statement that sets the video mode). SCREEN
5,10 retrieves the ASCII code (0-255) of the character at row 5, column 10 (rows
and columns are numbered starting from 1). To retrieve the attribute/color of the
character instead, add 1 as a third parameter, as in SCREEN 5,10,1. When used in a
graphics mode, 0 is returned if the indicated screen position does not contain an
(unmodified) character.

The attribute is also returned as a code number up to 255. Because BASIC does
not permit the use of numbers in binary form, it is a little tricky to sort out the bit
pattern of the attribute. The foreground color is equal to ATTRIBUTE MOD 16.
Once you have the foreground color, the background color is calculated as
(((ATTRIBUTE - FOREGROUND)716) MOD 128). When the attribute is greater
than 127 the character is blinking (or, if you have set it up as such, it has an intensi
fied background [4.1.3]). Appendix B discusses bit operations in BASIC.

Middle Level

Function 8 of INT 10H returns the character and attribute at the current cursor

position. Place in BH the value of the current display page (numbered from 0, and
always 0 for the monochrome adaptor). The character code is returned in AL, and
its attribute byte in AH. This function is so versatile as to be able to read characters
in graphics modes, reporting the palette color in AH. It works even for user-defined
character [4.3.4]. This example checks the character and attribute at 0,39 on page 2
of the graphics adaptor:

;  SET THE CURSOR POSITION:
MOV AH,2 ;function to set cursor
MOV DH,0 ;set cursor row
MOV DL,39 ;set cursor column
MOV BH,0 ;set the page number
INT 10H ;position the cursor
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;  FIND THE CHARACTER AND ATTRIBUTE:
MOV AH,8 ;function to find character/attribute
MOV BH,2 ;page 2 (always 0 on monochrome card)
INT 10H ;now AH:AL holds attributeicharacter

Low Level

Calculate the offset and perform memory mapping in reverse. Add a page offset
if required. This example gets the character and attribute at 7,39 on page 2 of the
graphics card:

;  FIND THE CHARACTER AND ATTRIBUTE AT 7,39 IN PAGE 2:
MOV AX,0B800H ;address of graphics buffer
MOV ES,AX ;ES points to first byte of buffer
MOV DI,1000H ;page offset
MOV AL,80 ;multiply number of rows by 160
MOV BL,7 ;place row number in BL
MUL BL ;now AX has (rows-1) times 160
MOV AX,39 ;place column number in AX
ADD BX,AX ;add rows and columns
SHL BX,1 ;double number for attribute bytes
MOV AX,ES:[BX]CDI] ;now AH:AL holds attributeicharacter
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4.3.4 Create special characters

Only the monochrome adaptor cannot display characters of the programmer's
own design. The color card allows 128 user-defined characters, the PCjr allows
256, and the EGA allows 1024, of which 512 may be on line at once. On the color
adaptor the ROM BIOS contains data for drawing only the first 128 characters of
the ASCII set (numbers 0-127). The second 128 characters are not available for
your use unless you re-create them using the technique explained here. Note that
DOS 3.0 provides the GRAFTABL command to supply the required data for the
second 128 characters. The PCjr has on board the data for the second 128 charac
ters. The EGA has complete character sets for both 200- and 350-line screens.

Characters on the graphics card and PCjr are designed within a box that is 8x8
pixels. Eight bytes hold the data for each character. Each byte holds the settings for
a row of pixels, starting with the top row, and the high bit (number 7) corresponds
to the leftmost pixel of the row. When the bit equals 1, the pixel shows. To design a
character, you must determine the bit patterns for the eight bytes and place them in
sequence in memory. Figure 4-3 shows how eight bytes can form a diamond.

Bit

Value 128 64 32 16 8 1

Scan
Lines

Figure 4-3. Bit patterns to form a diamond.

One hundred twenty-eight characters together require 1024 bytes, although there
is no requirement that all characters be set up in memory. A special interrupt vec
tor (a permanent pointer in low memory, see [1.2.0]) is set to point to what would
be the first byte for the first character of the extended set, that is, to character num
ber 128. When the code 128 is sent to a character position in the video buffer, these
first eight bytes are looked up and displayed. If the character is 129, the ninth
through sixteenth bytes are displayed, and so on.
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The interrupt vector is number IFH, which is located at address 0000:007C.
Place the address of the offset in the low word (low byte first), and the address of
the segment in the high word (again, low byte first). Note that you can create
higher code numbers without setting aside memory for lower ones; simply adjust
the vector to some lower address that is actually Outside of the block that contains
the character data. The eight-byte sequences that draw ASCII characters 128-255
are given at [4.3.5]. On the PCjr, vector IFH points to the second 128 ASCII char
acters, and vector 44H points to the first 128. Either vector can be redirected,
allowing a full 256 user-defined characters.
The EGA is much more complicated, and much more versatile. When a text

mode is initialized, one of the two character sets (8x8 or 8x14) is copied from the
EGA ROMs on to bit map 2 of the video buffer. This part of the buffer is treated as
if it were broken into blocks, and the standard character set is placed in block 0.
Providing the EGA is equipped with adequate memory, three more blocks of char
acter data may be set up. The size of a block depends on the number of scan lines
used in the character. Characters that are 8x8 need 8 times 256, or 2048 bytes.
When more than one block of characters is enabled, bit 3 of the attribute byte of a
character determines which block the character data will be taken from.

Which block is used depends on the settings of bits 3-0 in the character map
select register, which is located at port address 3C5H. First send 3 to 3C4H to index
the register. Bits 1-0 give the number of the character block that is enabled when bit
3 of an attribute byte is 0, and bits 3-2 do the same for when bit 3 is 1. When the
pattern is the same in both pairs of bits, the dual character set feature is disabled,
and bit 3 of attribute bytes reverts to setting character intensity. In this case, only
block 0 is enabled. Nothing stops you from placing your own characters at what
ever positions you choose within this block, however. And if you overwrite the
standard character set, you can replace it at any time from the ROM data.

High Level

In BASIC you must take care to place the character data outside of the memory
area used by the program. If lots of memory is available, place the data at the high
end; if there is a danger of conflict, use the CLEAR command to limit how much
memory BASIC can use. Then poke the address of the starting byte of the data into
the interrupt vector. The following example sets up a square box as character 128.
A DATA statement holds the values that make up the character. They are either
255 or 129; in the first case all bits are 1, and in the second case only the end bits
are 1. See Appendix B about calculating the decimal values of bit patterns.

100 ■ *'' * Place the data beginning at memory segment &H3000:
110 DATA 255,129,129,129,129,129,129,255 'data for 1 character
120 DEF SEG=&H3000 * poke at &H30000
130 FOR N=0 TO 7 'there are 8 bytes
140 READ Q 'readi byte
150 POKE N,Q 'poke it
160 NEXT 'etc.

170 • • • • 'Set the interrupt vector:
180 DEF SE6=0 'poi nt to bottom of memory
190 POKE 124,0 'poke offset
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200 POKE 125,0
210 POKE 126,0
220 POKE127,&H30
230 " '' 'Print the character:
240 LOCATE 12,12:PRINT CHR$(128)

'poke segment

'and now char 128 exists

Middle Level

On the color card or PCjr, use function 25H of INT 21H to set the interrupt vec
tor, which is number IFH. On entry, DS:DX points to the first byte of the data
block. See [1.2.3] for more information. The example creates two characters, num
bers 128 and 129. They are mirror images of each other, and written in sequence
they form a small rectangle.

;  IN THE DATA SEGMENT:
CHARACTER_DATA DB 111111118,100000008,100000008,100000008

08 100000008,100000008,100000008,111111118
08 111111118,000000018,000000018,000000018
08 000000018,000000018,000000018,111111118

—SET UP THE INTERRUPT VECTOR:

PUSH OS

LEA

MOV

MOV

MOV

MOV

INT

POP

OX,CHAR__OATA
AX,SEG CHAR_OATA
OS, AX
AH,25H
AL,1FH
21H

OS

;  PRINT THE CHARACTER:
MOV AH,2
MOV 0L,128
INT 21H

MOV 0L,129
INT 21H

;save OS
;of f set of character data 1 n OX
;segment of character data in OS

t

;interrupt to set vector
;number of the vector to change
;set the vector
;restore OS

;OOS function to write single char
;first character
;write it
;second character
;write it

On the EGA, function llH of INT 10H manipulates the character sets. This func
tion can be quite complex when it is used to create special screen modes, but its
basic application is straightforward. There are four subfunctions. When AL is 0,
user-defined data is transferred from elsewhere in memory into a special character
block. When AL is 1 or 2, the 8x14 and 8x8 ROM data sets are respectively copied
into a block. And when AL is 3, the function sets the block assignments in the char
acter map select register, as described above. In the latter case, simply place the rel
evant data in BL and call the function. To load the ROM data, place the block
number in BL and execute the function. To load your own data, point ES:BP to it
and place the number of characters to transfer in CX, the offset (character number)
in the block at which to begin the transfer in DX, the number of bytes per character
in BH, and the number of the block in BL. Then call INT 10H. Here is an example:

;  INSTALL 128 USER DEFINED CHARACTERS AT TOP END OF BLOCK 0:
MOV AX,SEG CHARACTER_OATA ;point ES:8P to the data
MOV ES,AX
MOV BP,OFFSET CHARACTER__OATA
MOV CX,128 ;number of characters
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MOV DX,128 ;Starting offset
MOV BL,0 ;bLock number
MOV BH,8 ;8x8 character box
MOV AL,1 ;subfunction number
MOV ;function number
INT 10H ;transfer the data

You can retrieve status information about the character sets using subfunction
30H of function IIH of INT 10H. Without setting any input registers, CX returns
the number of bytes per character in use, and DL tells how many rows fit on the
screen (which depends on both the character size and the vertical screen
resolution).
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4.3.5 Look up data for block-graphics characters

Here are the eight-byte sequences required to draw block characters with the
color graphics card. Their use is explained at [4.3.4].

ASCII number Symbol Sequence (in hexadecimal)

128 Q 78 CC C0 CC 78 18 0C 78

129 00 CC 00 CC CC CC 7E 00

130 IC 00 78 CC FC C0 78 00

131 7E C3 3C 06 3E 66 3F 00

132 CC 00 78 0C 7C CC 7E 00

133 E0 00 78 0C 7C CC 7E 00

134 a 30 30 78 0C 7C CC 7E 00

135 9 00 00 78 C0 C0 78 0C 38

136 7E C3 3C 66 7E 60 3C 00

137 e CC 00 78 CC FC C0 78 00

138 e E0 00 78 CC FC C0 78 00

139 V CC 00 70 30 30 30 78 00

140 1 7C C6 38 18 18 18 3C 00

141 i E0 00 70 30 30 30 78 00

142 A C6 38 6C C6 FE C6 C6 00

143 A 30 30 00 78 CC FC CC 00

144 E IC 00 FC 60 78 60 FC 00

145 SB 00 00 7F 0C 7F CC 7F 00

146 /t 3E 6C CC FE CC CC CE 00

147 0 78 CC 00 78 CC CC 78 00

148 6 00 CC 00 78 CC CC 78 00

149 d 00 E0 00 78 CC CC 78 00

150
/s

U 78 CC 00 CC CC CC 7E 00

151 U 00 E0 00 CC CC CC 7E 00

152 y 00 CC 00 CC CC 7C 0C F8

153 6 C3 18 3C 66 66 3C 18 00

154 u CC 00 CC CC CC CC 78 00

155 18 18 7E C0 C0 7E 18 18

156 £ 38 6C 64 F0 60 E6 FC 00

157 ¥ CC CC 78 FC 30 FC 30 30

158 Pt F8 CC CC FA C6 CF C6 C7

159 r 0E IB 18 3C 18 18 D8 70

160 a IC 00 78 00 7C CC 7E 00

161 r 38 00 70 30 30 30 78 00

162 6 00 IC 00 78 CC CC 78 00

163 u 00 IC 00 CC CC CC 7E 00
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ASCII number Symbol Sequence (in hexadecimal)

164 n 00 F8 00 F8 CC CC CC 00

165 N FC 00 CC EC FC DC CC 00

166 a 3C 6C 6C 3E 00 7E 00 00

167 0 38 6C 6C 38 00 7C 00 00

168 i 30 00 30 60 C0 CC 78 00

169 r- 00 00 00 FC C0 C0 00 00

170 —1 00 00 00 FC 0C 0C 00 00

171 72 C3 C6 CC DE 33 66 CC 0F

172 74 C3 C6 CC DB 37 6F CF 03

173 i 18 18 00 18 18 18 18 00

174 « 00 33 66 CC 66 33 00 00

175 » 00 CC 66 33 66 CC 00 00

176 22 88 22 88 22 88 22 88

177 55 AA 55 AA 55 AA 55 AA

178 * DB 77 DB EE DB 77 DB EE

179 1 18 18 18 18 18 18 18 18

180 H 18 18 18 18 F8 18 18 18

181 H 18 18 F8 18 F8 18 18 18

182 HI 36 36 36 36 F6 36 36 36

183 ■Tl 00 00 00 00 FE 36 36 36

184 00 00 F8 18 F8 18 18 18
185 HI 36 36 F6 06 F6 36 36 36
186 II 36 36 36 36 36 36 36 36
187 =n 00 00 FE 06 F6 36 36 36

188 =ii 36 36 F6 06 FE 00 00 00
189 .ji 36 36 36 36 FE 00 00 00
190 ad 18 18 F8 18 F8 00 00 00
191 —1 00 00 00 00 F7 18 18 18

192 u 18 18 18 18 IF 00 00 00
193 -1. 18 18 18 18 FF 00 00 00
194 T 00 00 00 00 FF 18 18 18
195 18 18 18 18 IF 18 18 18
196 — 00 00 00 00 FF 00 00 00
197 + 18 18 18 18 FF 18 18 18
198 (= 18 18 IF 18 IF 18 18 18
199 IF 36 36 36 36 37 36 36 36

200 lb 36 36 37 30 3F 00 00 00
201 It 00 00 3F 30 37 36 36 36
202 -lu 36 36 F7 00 FF 00 00 00
203 TT 00 00 FF 00 F7 36 36 36
204 IF 36 36 37 30 37 36 36 36
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ASCII number Symbol Sequence (in hexadecimal)

205 00 00 FF 00 FF 00 00 00

206 JL
-ir 36 36 F7 00 F7 36 36 36

207 18 18 FF 00 FF 00 00 00

208 _u_ 36 36 36 36 FF 00 00 00

209 =T= 00 00 FF 00 FF 18 18 18

210 -rr 00 00 00 00 FF 36 36 36

211 u_ 36 36 36 36 3F 00 00 00

212 - b= 18 18 IF 18 IF 00 00 00

213 F= 00 00 IF 18 IF 18 18 18

214 rr 00 00 00 00 3F 36 36 36

215 4- 36 36 36 36 FF 36 36 36

216 4= 18 18 FF 18 FF 18 18 18

217 j 18 18 18 18 F8 00 00 00

218 r 00 00 00 00 IF 18 18 18

219 ■ FF FF FF FF FF FF FF FF

220 ■i 00 00 00 00 FF FF FF FF
221 1 F0 F0 F0 F0 F0 F0 F0 F0
222 1 0F 0F 0F 0F 0F 0F 0F OF
223

-
FF FF FF FF 00 00 00 00

224 a 00 00 76 DC CB DC 76 00
225 P 00 78 CC F8 CC F8 C0 C0
226 r 00 CC C0 C0 C0 C0 00 00
227 TT 00 FE 6C 6C 6C 6C 6C 00
228 S FC CC 60 30 60 CC FC 00
229 cr 00 00 7E D8 D8 D8 70 00
230 00 66 66 66 66 7C 60 C0
231 'T 00 76 DC 18 18 18 18 00

232 FC 30 78 CC CC 78 30 FC
233 -e- 38 6C C6 FE C6 6C 38 00
234 0 38 6C C6 C6 6C 6C EE 00
235 6 IC 30 18 7C CC CC 78 00
236 oo 00 00 7E DB DB 7E 00 00
237 0 06 0C 7E DB DB 7E 60 C0
238 ( 38 60 C0 F8 C0 60 38 00
239 n 78 CC CC CC CC CC CC 00

240 = 00 FC 00 FC 00 FC 00 00
241 ± 30 30 FC 30 30 00 FC 00
242 > 60 30 18 30 60 00 FC 00
243 < 18 30 60 30 18 00 FC 00
244 f 0E IB IB 18 18 18 18 18
245 j 18 18 18 18 18 D8 D8 70
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ASCII number Symbol Sequence (in hexadecimal)

246 30 30 00 FC 00 30 30 00

247 =5= 00 76 DC 00 76 DC 00 00

248 O 38 6C 6C 38 00 00 00 00

249 • 00 00 00 18 18 00 00 00

250 . 0 00 00 00 18 00 00 00

251 V 0F 0C 0C 0C EC 6C 3C IC

252 n 78 6C 6C 6C 6C 00 00 00

253 2 70 18 30 60 78 00 00 00

254 ■ 00 00 3C 3C 3C 3C 00 00

255 (blank 'FF') 00 00 00 00 00 00 00 00
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Section 4: Draw Dot Graphics

The color graphics adaptor uses three graphics modes, the PCjr uses six, and the
EGA uses seven. How to set these modes is shown at [4.1.2]. The video memory
requirements of these modes vary considerably, depending on the screen resolution
and the number of colors used. In its advanced graphics modes, the EGA uses
memory in a very different way from the other video systems, but it emulates their
memory use exactly in the three graphics modes it shares.

First consider the color card and PCjr systems. Two colors (including black and
white) require but one bit of memory for every dot on the screen. Four colors take
two bits, and sixteen colors take four (eight-color modes are avoided because the
three bits that would be required do not divide evenly into the eight bits of a byte).
In all screen resolutions there are 200 dots vertically. Low resolution (available
only on the PCjr) uses 160 dots horizontally, medium resolution uses twice that
(320 dots), and high resolution doubles the number again (to 640 dots). The num
ber of Kbytes of memory required for each mode is shown at [4.5.3].
When in two- or four-color modes, the PCjr has the choice of any of the 16 col

ors available. The color adaptor is more limited. In two colors it is always
restricted to black and white, and in four colors it can choose only the background
color from the 16, while the three foreground colors must be taken from either of
two ready-made palettes. Palette 0 holds the colors brown, green, and red; palette
1 holds cyan, magenta, and white.

Unlike text data, in modes 4-6 and 8-A graphics data is laid out over a video
page in parts. In most modes, the data is split in two, and the first half of the buffer
holds data for the even-numbered lines of the screen, and the second half keeps
data for the odd-numbered lines (the lines are numbered downwards from the top
of the display). In the PCjr's 16-color modes, however, the 32K buffer that is used
is divided into four parts, with each part holding data for every fourth line.

In four-color modes, the first byte in the buffer gives the leftmost horizontal dots
on line 0, with the highest bits holding the information for the leftmost pixel. The
next byte holds data for the next segment of the line, and so on. 80 bytes are
required per line. The 81st byte keeps the information for the left end of line 2.
Sixteen-color modes use roughly the same arrangement, but 160 bytes are required
for a line, and each part of the buffer holds data for only half as many lines. On the
color graphics adaptor, even lines stretch from offset 0000 to 1F3FH and the odd
lines from 2000H to 3F3FH. The gap between 1F3FH and 2000H is ignored. On the
PCjr, the corresponding locations vary considerably, depending on the mode and
the number of pages used. The PCjr is specially wired so that output to the 16K
starting at segment B800H is redirected to the actual memory addresses in which
the data resides. This feature facilitates writing programs that run on both the color
card and the PCjr.

For screen modes DH through 10H on the EGA, memory is organized quite dif
ferently. It is split up into one, two, or four bit planes, in which a single plane is
organized as in the high-resolution blank and white mode discussed above: when a
byte of data is sent to an address in the video buffer, each bit corresponds to a pixel
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on the screen, laid out as a horizontal segment with bit 7 leftmost. Picture four such
bit planes, residing side-by-side at the same address in the video buffer. This leaves
four bits for each pixel, which provides for sixteen colors. Figure 4-4 shows the var
ious memory schemes.

Characters may be written while in graphics mode. They are not created in the
usual way; rather, BIOS draws them dot by dot without changing the background
color. For this reason, there is no such thing as reverse-image or blinking characters
in graphics modes. Nor is there a cursor. BIOS is also capable of reading and com
paring the dots at a cursor position to see what character is present. The characters
are positioned at one of the usual row and column positions, which means that
they always begin at an eight-pixel boundary.
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Figure 4-4. Four strategies for graphics layout in memory.
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4.4.1 Set the colors for dot graphics

The PCjr and EGA work with color in a completely different way from the color
card. They use palette registers that let them at any time change the color that is
displayed by the color codes. Because of this difference, the two systems are dis
cussed separately, starting with the color card.
Both systems use the same basic series of color codes, which is exactly the same

as that used for character colors:

Code Number Bit Pattern Color

0 0000 Black

1 0001 Blue

2 0010 Green

3 0011 Cyan
4 0100 Red

5 0101 Magenta
6 0110 Brown

7 0111 White

8 1000 Gray
9 1001 Light Blue
10 1010 Light Green
11 1011 Light Cyan
12 1100 Pink

13 1101 Light Magenta
14 1110 Yellow

15 1111 Bright White

On the color graphics adaptor, color is allowed only in medium resolution
graphics. Two bits out of each byte in the video buffer are given over to each pixel.
The four possible bit combinations represent one background color and three fore
ground colors. The background color may be any of the 16. The three foreground
colors, however, must be chosen from one of two palettes that are limited to three
predetermined colors each. They are:

Code number Bit pattern Palette 0 Palette 1

0 00 background color background color
1 01 green cyan

2 10 red magenta

3 11 yellow/brown white

While you can change between palettes at any time, all colors already written on
the screen will change accordingly. The only way to use colors from outside of the
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two palettes is by artificially treating one of the palette colors as the background
color, which requires filling the whole screen in that color whenever the screen is
cleared (use memory mapping for this). Then the true background color can "show
through" as a foreground color. This technique results in a screen border like that
of text screens. Graphics screens do not otherwise set a special border color because
the whole screen is set to the background color, even though the border-area pixels
are not addressable. Note that BIOS keeps a 1-byte variable in its data area that
holds the current palette number. It is located at 0040:0066H. Changing this num
ber does not change the palette setting; conversely, if you change the palette color
through means other than an operating system function, you should update this
setting.

Characters may be interspersed with dot graphics. The color in which characters
appear depends on which routine is used to write the characters. The simpler rou
tines default to the third color of the current palette. But there are ways to use any
palette color and to intermix characters written in different palette colors. See the
discussion at [4.1.3].
The EGA and PCjr have extra flexibility in their use of color attributes, no mat

ter which video mode they operate in. In 16-color graphics, the four bits laid down
in memory for a particular dot on the screen give a bit pattern that is not directly
translated into the corresponding color in the above table. Rather, the number
refers to one of 16 palette registers. Each of these registers holds the bit pattern for
the color that will actually be displayed. If all 16 registers are given the pattern
0100, then no matter what attribute is used in memory for a pixel, it is displayed in
red. The value in register 0 is used as the background color. Figure 4-1 at [4.1.3]
diagrams this mechanism. In two- and four-color modes, only the first two or four
palette registers are relevant.
The palette registers enable a program to change everything displayed in one

color to another without making any other changes in the video buffer. What's
more, objects can be made to magically disappear and reappear. This is done by
changing to background color the value found in the palette register that corres
ponds to the attribute in which the objects are drawn. For example, say that the
backgroimd color is. black (0000) and that an object is drawn using the attribute
1110, so that it appears in whatever color is given in palette register 15 (yellow is
the default value for this register). By changing register 15 to 0000 (the black back
ground color) the object disappears from view. But the object is still defined in
memory by virtue of being written with the attribute 1110, rather than the attribute
0000, as would be used by all background dots. The object can be made visible
again by changing palette register 15 back to 1110. Not all yellow objects would
need to disappear, since some could be drawn using a different attribute that also
corresponds to a palette register containing the code for yellow.
The EGA can use six bits of a palette register, rather than four, when it is con

nected to an IBM Enhanced Color Display. Sixty-four colors are made possible,
using the pattern R'G'B'RGB. R, G, and B produce dark colors, and R', G', and B'
produce lighter ones. The various combinations create the 64 hues. As always,
mill is white and 000000 is black. Note that the 64 colors are available through
the palette registers no matter what screen mode the EGA is running in. When

199



4,4.1 Set the colors for dot graphics

working in four color graphics (as on the color card), only the four lowest palette
registers will be active, but they may contain any color.

High Level —

When the color card is in a graphics mode, BASIC treats the COLOR statement
differently than for a text mode. First comes the background color as a number
from 0 to 15, and then the palette number is given, either 0 or 1. For example,
COLOR 2,1 sets the whole screen to the background color green (#2) and activates
palette 1. Thereafter the three foreground colors are specified by their palette num
bers: 1 for cyan, 2 for magenta, and 3 for white (e.g. in PAINT statements). To
turn off color in medium-resolution mode, write SCREEN,1. Note that no memory
is saved by using black and white in medium-resolution. The PCjr uses the COLOR
statement this way only for SCREEN 1. For SCREEN 3 to SCREEN 6 the format for
the statement is COLOR foreground, background. The foreground is a number
from 1-15 in a 16-color mode or from 1-3 in a four-color mode. It must not be 0,
which is always the background color.
There are special statements to set the contents of palette registers: PALETTE

and PALETTE USING. PALETTE sets the color corresponding to any attribute.
PALETTE 9,11, for example, causes dots drawn with palette color 9 (normally light
blue) to be shown in color 11 (light cyan). To change all palette registers back to
their initial settings, so that register 0 contains 0, register 12 contains 12, etc., sim
ply write PALETTE. Note that in the modes SCREEN 4 and SCREEN 6 the palette
registers are initialized so that the attributes of colors 1-3 are the same as those of
palette 1 on the color graphics card. This is done for the sake of compatibility.

All 16 palette registers may be set by a single statement, PALETTE USING. PAL
ETTE USING dumps the contents of a 16-element integer array into the palette reg
isters. By keeping several such arrays, a program can quickly switch back and forth
between various color schemes. Each element of the array must be a number from 0
to 15, or else -1, in which case no change is made in the contents of the correspond
ing register. For example, to reverse the usual color scheme, create an array where
ARRAYNAME(0) = 15, ARRAYNAME(l) = 14, etc. Then write PALETTE USING
ARRAYNAME(0), and the contents of ARRAYNAME are dumped into the palette
registers. The 0 indicates the starting position in the array from which the data for
the registers is taken. Longer arrays may be used, with the data taken from any
starting point so long as there are 16 elements between it and the end of the array.
PALETTE USING ARRAYNAME(12) would take data starting from the 12th byte
of the array. Note that PALETTE USING operates for both text and graphics
modes. Here is an example:

100 DBF INT A-Z 'all variables integers
110 DIM SCHEME1 (16) 'array for color scheme #1
120 DIM SCHEME2(16) 'array for color scheme #2
130 DATA 3,5,9,2,4,12,15,1,6,7,14,13,8,11,10,0
140 DATA 0,11,13,7,1,12,2,5,10,8,14,6,15,4,9,3
150 FOR N=0 TO 15 'for each palette register
160 READ Q ' read color code
170 SCHEME1 (N)=Q 'place in the array
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go get next
repeat for second array.

180 NEXT
190 FOR N=0TO1S
200 READ Q

210SCHEME2(N)=Q
220 NEXT
230 PALETTE USING SCHEME1 (0) 'set the registers

500 PALETTE USING SCHEME2(0) 'change them raid-program

Middle Level ———— —

Function BH of INT 10H sets both background and palette colors—but not at the
same time. To set the background, place 0 in BH, and then put a color code from
0-15 in BL. To set the palette, place 1 in BH, and put either 0 or 1 in BL. This exam
ple sets the background to cyan and chooses palette 0:
;  SET BACKGROUND AND PALETTE COLORS:

MOV AH,0BH ;function to set graphics colors
MOV BH,0 ;first, choose background color
MOV BL,3 ;code for cyan background
INT 10H ;set the color
MOV BH,1 ;now set the palette
MOV BL,1 ;choose palette 1
INT 10H ;set the palette

On the PCjr this function works in exactly the same way in four-color modes,
setting up registers 1-3 in either of the same color schemes that are used by the
color card. In a two-color mode, a 0 in BL makes for white as color 1, and a 1
makes for black. This function has no effect on the 0-15 arrangement used by the
16-color modes. In all cases, however, the background color may be set by placing
0 in BH and a code in BL.

Low Level

On the color card, port address 3D9H accesses the "Color Select Register." The
register operates in graphics modes differently than for text modes (described at
[4.1.3]). Bits 0-3 hold the background color information in the usual format
(respectively, the blue, green, and red components, and intensity). Bit 5 selects the
palette; when the bit is 0, the palette is number 0. In graphics modes no other bits
are significant. The register is write-only, so you must include both the background
and palette bits when making a change in either.

MOV DX,3D9H ;color select register address
MOV AL,00100110B ;bit pattern for cyan, palette 1
OUT DX,AL ;send it

Since they use palette registers, the above example does not apply to either the
PCjr or the EGA. Instead, simply load the desired values into these registers. On
the PCjr the registers are numbered from 10H to IFH. All registers are accessed
through the same port address, 3DAH. Every other value received by the port is
taken as a register address. So first send the register number and then the color
code for that register. To be sure that the port is awaiting a register number, read
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from it and throw away the result. For example, to place the color light blue (1001)
in palette register 2H:

;  PLACE CODE FOR LIGHT BLUE IN PALETTE REGISTER 2:
MOV DX,3DAH ;video gate array address
IN AL,DX ;read the port to clear it
MOV AL,12H ;register number
OUT DX,AL ; send the registernumber
MOV AL,00001001 ;code for Light blue
OUT DX,AL ;send the color

On the EGA the palette registers are at 3C0H, and they are numbered from 00 to
0FH. Read port 3D AH (not 3C0H) to be sure an index is awaited. When the IBM
Enhanced Color Display is connected and the dip switches are set accordingly, six-
bit values are placed in the registers.
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4.4.2 Draw a dot on the screen (monochrome card^ color
card, PCjr)

Because of the organization of graphics information in the video buffer, drawing
a dot entails changing individual bits within memory. The two-, four-, and sixteen-
color modes require that one, two, and four bits respectively be changed to set a
single dot. These operations can consume a tremendous amount of processor time,
as evidenced by how slowly much graphics software operates. Careful forethought
often leads to ways of setting all of the bits of a particular byte at once, rather than
accessing the same byte four or eight times. Keep this in mind before blindly opting
to use the simple dot-by-dot techniques shown here.

High Level

BASIC provides the PSET and PRESET statements to change the color of indi
vidual dots. The names stand for PointSET and PointRESET. They are nearly the
same. Both are followed by the column and row coordinates of the dot, placed in
parentheses. Note that coordinates are given in the order x,y—that is, first the col
umn and then the row; this is the reverse of the row-column order by which the
LOCATE statement positions text on the screen. PSET(50,80) or PRESET(50,80) set
the dot color at column 50, row 80. PSET may be followed with a color code that is
in the range permitted by the current screen mode. When no color is given, the
highest number code that the screen mode allows is used. PRESET, on the other
hand, names no color. It always returns the dot to background color (code 0). For
example:

100 PSET (100,180) ,3 'set dot at 100,180 to palette color 3
110 PRESET (100,180) 'change the dot back to background color

PSET and PRESET ordinarily use a coordinate system where the top left corner
of the screen is numbered 0,0. The WINDOW statement lets you redefine the coor
dinate system so that, for example, the top left corner is -100,100, center-screen is
0,0, and the bottom right corner is 100,-100. In this instance, the statement would
be written as WINDOW(-100,100)-(100,-100). (The new coordinates have no effect
upon the 25x80 (or 25x40) system by which the LOCATE statement positions char
acters on graphics screens [4.2.1]).
As in a LINE statement [4.4.5], the first number in each of the pairs of parenthe

ses gives horizontal, x-axis coordinates. They could both be positive or negative, so
long as they are not identical. The left edge of the screen is always assigned the
smallest number (which may be the largest negative number). Thus, even by
reversing the coordinates of the example to WINDOW(100,-100)-(-100,100) the
value -100 is given to the left end of the x-axis.
The second number of each coordinate pair gives the vertical boundaries of the

screen. Again, whichever value is smallest is given to the bottom edge of the
screen, no matter which coordinate pair it is matched with. The largest positive
value (or smallest of two negative values) is assigned as the value of the y-axis at
the top line of the screen. The direction of increasing value can be reversed so that
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the largest value is at the bottom of the screen and vice-versa. Simply add the word
SCREEN to the statement, as in WINDOW SCREEN (-100,100)-(100,-100).
A program may direct points to be set at areas outside of the screen coordinate

system. For example, a circle could be centered off-screen, so that only an arc of it
is in view. Note also that the coordinates given by WINDOW statements may be
continuously changed to "zoom" or "pan" an image. The image must be redrawn,
and sometimes erased, each time the WINDOW coordinates are changed.
The PMAP statement converts coordinates between the usual physical system

and a world system set up by a WINDOW statement. PMAP uses four code
numbers:

0 convert x from world to physical
1 convert y from world to physical
2 convert x from physical to world
3 convert y from physical to world

The statement takes the form PMAP(position,code). For example, say that you
have set up a system of world coordinates using WINDOW. The top left corner of
the screen is given (-100,100), and the bottom right is given (100,-100). What is the
pixel position of the center point of the screen (0,0) using the usual 320 x 200 physi
cal system, where the top left is 0,0? To find X, write X = PMAP(0,0), and to find
Y, write Y = PMAP(0,1). X will be given the value 160, and Y will be 100.

Middle Level

Function CH of INT 10H sets a dot. DX holds the row, and CX the column, both
counted from 0. The color code is placed in AL. Note that the contents of AX are
destroyed during the interrupt. When the interrupt is used repeatedly from within a
loop, be sure to PUSH AX before, and POP it afterwards.

;  PRINT A DOT AT 100,180:
MOV AH,0CH ;function to set dot
MOV AL,3 ;choose palette color 3
MOV CX,100

DX,180
; row

MOV ; column
INT 10H ;draw the dot

ERASE" THE DOT:

MOV AH,0CH ;replace function (AX destroyed)
MOV AL,0 ;use background color to "erase"
MOV DX,100 ;row

MOV CX,180 ;column
INT 10H ;erase the dot

While the palette color is placed in the low bits of AL, the top bit is also signifi
cant. When it is equal to 1, the color is exclusive-ORed (XORed) with the color cur
rently in place. Recall that in the XOR operation a bit equals 1 solely in the case
where, of two bits compared, only one is presently turned on. If both of the bits
compared are 1, or if neither is 1, then the bit is set to 0. In two-color modes this
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means that XORing a bit reverses its setting. The whole screen can be reversed by
XORing every pixel. In four- or sixteen-color modes, on the other hand, areas of
the screen can be made to change their colors. For example, say that in four-color
medium resolution an area is entirely covered by pixels of either palette code 1 (bit
pattern 01B) or palette code 2 (10B). What happens if every pixel in the area is
XORed with llB? 01B becomes 10B, and 10B becomes 01B—the colors
reversed.

are

Low Level

At low level one accesses the video buffer directly ("memory mapping"). First
you must calculate the offset of the dot (a) within the buffer and (b) within the byte
that contains the bits that set the dot. Then bit operations make the proper setting.
Note that if you choose to use this technique on the PCjr when in one of the 16-
color modes that use a 32K page, output to the addresses starting at paragraph
B800H will not be redirected properly. Instead direct the operations to their actual
locations below segment 2000H.
To find the dot, first calculate whether it is on an even or odd numbered row. In

this example, the row is placed in CX, and the column in DX. If bit 0 of DX is 0, the
row is an even number. Even rows begin at offset 0 in the buffer. On the other
hand, if the row is odd numbered, add 2000H to point to the beginning of the sec
ond half of the buffer.

Next, divide the number of rows by 2, since the count is for only even or odd
rows, and multiply the number by 80 for the 80 bytes that make up a row. By using
the SHL instruction to make the division, the result will give the number of bytes in
all rows preceding the row that the dot resides on.

Rather than next calculate the number of columns in the current row, it is best to
first figure the position of the two bits within the byte that holds them. This is done
by reversing all bits in the column count (after storing a copy), and then taking the
bottom two bits. These show whether the two bits of the pixel are in the first, sec
ond, third, or fourth position within the byte. Multiplying the position by 2 gives
the bit number of the first of the two bits of the pixel.
Next, it is time to calculate the number of bytes in the row leading up to the byte

holding the pixel. In medium-resolution, divide the number of columns by 4; in
high-resolution, divide by 8. Add together the three offsets: the row byte-count,
the column byte-count, and the even/odd line offset within the buffer. Then get the
byte out of the buffer.

Finally, perform the operations on the relevant bits of the byte. Rotate the byte
until the two pixel bits are at the bottom. The rotation is counted using the bit-posi
tion value calculated above. Then turn off both bits and OR them with the desired

palette code. Re-rotate the bits to their former position, and send the byte back to
the video buffer.

;  IN THE DATA SEGMENT:
PALETTE COLOR DB 2

;  CALL THE ROUTINE:
MOV AX,0B800H ;point to graphics buffer
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MOV ES,AX t

MOV CX,100 ;row in CX
MOV DX,180 ;column in DX
CALL SET DOT

1 —FIGURE NUMBER OF BYTES IN ROWS PRIOR TO PIXEL'S ROW:
SET DOT PROC

TEST CL,1 ; i s i t an odd numbered row?
JZ EVEN ROW ; i f not, then jump ahead
MOV BX,2000H ;put offset for odd rows in BX
JMP SHORT CONTINUE ; jump ahead

EVEN ROW: MOV BX,0 ;put offset for even rows in BX
CONTINUE: SHR CX,1 ;haLf the number of rows

MOV AL,80 ;multiply by 80 bytes per row
MUL CL ;now AX holds bytes up to prior row

t' FIGURE POSITION OF 2 BITS WITHIN THE BYTE:
MOV CX,DX ;copy the column count
NOT CL ;reverse bits
AND CL,00000011B ;now CL has bit position3-0
SHL CL,1 ;CL X 2 gives bit position of 1st bit

t' TALLY NUMBER OF BYTES IN COLUMN OFFSET:

SHR DX,1 ;divide number of columns by 4
SHR DX,1 ; (keep bottom 2 bits)

t' FIGURE OFFSET OF THE BYTE THAT NEEDS CHANGING:

ADD AX,DX ;add column offset to row offset
ADD BX,AX ;add above to buffer offset

!'—CHANGE THE BITS:

MOV AH.ES:[BX] ;get the byte at that position
ROR AH,CL ; move re levant bi ts to bottom of byte
AND AH,11111100B ;blank out the bottom 2 bits
MOV AL,PALETTE COLOR ;palette color in AH
OR AH,AL ;change the bits to the palette color
ROL AH,CL ;rotate bits back to correct position
MOV ES:CBX],AH ; replace the byte
RET

SET DOT ENDP

206



Draw a dot on the screen (EGA) 4.4.3

4.4.3 Draw a dot on the screen (EGA)

Graphics on the EGA are complicated. From the CPU's point of view, screen
modes 0 through 7 operate exactly as on the color card or PCjr, but modes DH
through 10H are completely different. The memory organization of these memory
modes varies, depending on how many colors are used, and how much RAM is
installed on the card. See Figure 4-4 at [4.4.0].

In modes D, E, and 10H, memory is organized in four bit planes. A single plane
is organized as in the color card's high-resolution black and white mode discussed
at [4.4.2]: when a byte of data is sent to an address in the video buffer, each bit
corresponds to a pixel on the screen, laid out as a horizontal segment with bit 7
leftmost. Picture four such bit planes, residing side-by-side at the same address in
the video buffer. This leaves four bits for each pixel (giving 16 colors), where each
bit is in a separate byte on a separate bit plane.
But how can you write four different bytes of data when they are at the same

memory address? The answer to this question is not that four bytes are sent in
sequence to the address. Rather, one of three write modes can alter all four bytes
on the basis of a single byte of data received from the CPU. The effect of the CPU
data depends on the settings of several registers, including two mask registers that
determine which bits and which bit planes are to be affected.
To understand these registers, you must first know about the four latch registers.

These hold the data from each of the bit planes at whatever memory position was
last accessed. (Note that the term bit plane is used to refer to both the entire extent
of the video buffer, and to the one-byte swatches of the buffer temporarily held in
these latch registers). When the CPU sends data to a particular address, that data
may change or entirely replace the latch register data, and then it is the latch regis
ter data itself that is written into the video buffer. How the latch registers are influ
enced by the CPU data depends on which write mode is used and how certain other
registers are set up. Whenever a video memory address is read, the latch registers
are filled by the four bytes from the four bit planes at that location. The latch regis
ters are easily manipulated so that their contents may be ORed, ANDed, XORed,
or rotated, greatly facilitating fancy graphics and scrolling.
The bit mask register and map mask register act on the latch registers, protecting

particular bits or bit planes from being changed by the CPU data. The Bit Mask
Register is a write-only register at port address 3CFH. First send 8H to 3CEH to
index the register. Setting a bit to 1 in this register masks out a bit across all four bit
planes, so that the corresponding pixel on the screen is immune to change. The
hardware still operates in byte-size units, however, so the "unchanged" bits are in
fact rewritten into the four bit planes. The data for these masked-out bits is what
ever resides in the latch registers, and so the program must be sure that the current
contents of the latch registers are those of the relevant memory address. For this
reason, the memory address is read before being written to.
The Map Mask Register is at port address 3C5H. The register is write-only.

Before sending data, send 2 to this address as an index. Bits 0-3 of this register cor
respond to bit planes 0-3; the high four bits of the register are not used. When bits
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0-3are 0, the corresponding plane is unaffected by write operations. This feature is
used in different ways by the various write modes, as you will see below.
The three write modes are set by the mode register, a write-only register at 3CF

that is indexed by first sending 5H to the port. The write mode is set in bits 0 and 1
as a number from 0 to 2. Bit 2 should be 0, as should bits 4 through 7. Bit 3 sets up
one of two modes for reading from the video buffer. The bit may be set to either 1
or 0. The EGA BIOS initializes the write mode to 00.

Write Mode 0:

In the simplest case, write mode 0 copies the byte of CPU data into each of the
four bit planes. For example, say that llllllllB is sent to a video memory address
when all bits and all bit planes are enabled (that is, none are masked out using the
registers discussed above). Every bit in all four planes is set to 1, so that the bit pat
tern for each of the corresponding pixels is llllB. This means that the eight pixels
are shown in color code 15, which is initialized to bright white, although the palette
registers allow it to be any other color, of course.
Now, consider the same case, but sending the value 00001000B. The bit pattern

for pixel 3 is 1111, and for the others it is 0000, which corresponds to black (at
start-up). And so in this case only pixel 3 would appear on the screen (again as
bright white), and the other seven pixels would be "off." Even if the other seven
pixels were already set to display a color, they would all be switched to 0000.
Next, consider using a color other than llllB. If you send the palette code of the

desired color to the map mask register, the register will mask out certain bit planes
in a way that creates that color. For example, if you want the color code to be
0100, send 0100 to the map mask register. Bit planes 0, 1, and 3 will then be
immune from changes. When you send llllllllB to the address, that value will be
placed only in bit plane 2, and the bit patterns for each pixel will be 0100. If you
send 00001000B to the address, pixel 3 will have the pattern 0100B, and all other
pixels will be 0000B.
There is a complication, however. The map mask register disables bit planes, but

it does not zero them. Say that bit plane 0 is filled with I's, and that bit planes 1
and 3 are filled with 0's. If you disable these three planes and then write llllllllB
to the video address, bit plane 2 will be filled by llllllllB, and bit plane 0 will
keep its Is, so that the resulting color code for each pixel will be 0101B. There are
cases where you may wish to use this feature as a means of adjusting screen colors.
But generally it is necessary to clear all four bit planes (that is, all four latch regis
ters) before writing in any color other than llllB or 0000B. This is done simply by
sending 0 to the address. Be sure that all four bit planes are enabled when doing
this.

The discussion up to now has concerned writing eight pixels at once. What about
writing fewer pixels? In this case, existing pixel data must be preserved, of course,
and this is done by seeing to it that the current contents of the video address are
stored in the latch registers. Then the bit map register is used to mask out those
pixels that are not to be changed. When a bit is set to 0 in this register, the data sent
from the CPU for that bit is ignored, and instead the data for the bit that is found
in the latch registers is used. Whether the bit in the CPU data is a 1 or a 0 makes no
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difference; if you are changing only bit 2 and all others are masked out, the data
you send to the CPU could be 0FFH, or 4H, or any other value in which bit 2 is
turned on. If bit 2 is off, 0 is placed in that position in all enabled bit planes.

Generally, a program must first read any memory position to which it is about
to write fewer than eight pixels. There are two read modes (discussed at [4.4.4]),
and it does not matter which is selected. The read operation ''primes" the latch reg
isters with the four bytes of data from that memory address. The data returned to
the CPU by the read operation may be discarded.
Now, all of this comprises only the most basic functioning of write mode 0. You

can make matters much more complicated if you like. One option is to modify the
latch contents before writing, using logical operations. The data rotate register uses
the following bit pattern to provide these services:

bits 2-0 rotate count
4-3 00 data unmodified

01 data ANDed with Latch contents
10 data ORed with Latch contents
11 data XORed with Latch contents

7-5 unused

The data rotate count, from 0 to 7, sets how many bits the data is rotated before it
is placed in the latch. Normally the value is 0. Similarly, bits 4-3 are 00 except
when the data is to be ANDed, ORed, or XORed. By clever manipulation of these
features, the same data can result in different colors and images, all without any
additional CPU processing. The data rotate register is indexed by sending 3 to port
address 3CEH; then send the data to 3CFH.

Finally, write mode 0 can be made to operate completely differently by enabling
the set/reset feature. Here, a particular color is kept stored in the low four bits of
the set/reset register (also located at 3CFH, and indexed by sending 0 to 3CEH).
There is a corresponding register, the enable set/reset register which enables any or
all of these four bits by setting its own low bits to 1. When all four bits in the set/
reset register are enabled, they are placed in all eight locations of the bit plane when
data is received from the CPU, and the CPU data is completely discarded. When
fewer than all four of the set/reset bits are enabled, the CPU data is placed in the
unenabled bit maps. Note that the bit mask register will prevent the set/reset data
from being written to certain pixels, but that the map mask register setting is
ignored by the set/reset feature. BIOS initializes the enable set/reset register to
zeros so that it is inactive. It is located at 3CFH and is indexed by sending 1 to
3CEH.

Write Mode 1:

Write mode 1 is for special applications. In this mode, the current contents of the
latch register are written to the specified address. Recall that the latch registers are
filled by a read operation. This mode is extremely useful for rapidly transferring
data during scroll operations. The bit mask register and map mask register have no
effect on this operation. Nor does it matter what value it is that the CPU sends to
the particular memory address—the latch contents are dumped without alteration.
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PVrife Mode 2:

Write mode 2 provides an alternate way of setting individual pixels. The CPU
sends a value in which only the four low bits are significant, and these four bits are
taken as a color (palette register index). This is to say that the bit pattern is inserted
across the four bit planes. The pattern is replicated across all eight positions at that
memory address unless the bit mask register has been set up to protect certain
pbcels from being changed. The map mask register is active, as in write mode 0. Of
course, the CPU must send a whole byte to the memory address, but only the low
four bits are significant.
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Figure 4-5. The EGA graphics write modes.

210



Draw a dot on the screen (EGA) 4.4.3
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Figure 4-5 (cont.). The EGA graphics write modes.
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High Level

BASIC supports the EGA in the "traditionar' color graphics card modes. But at
this writing the advanced EGA modes are not available. Thus you have no choice
but to perform direct memory mapping onto the video buffer starting at
A000:0000. The biggest problem is setting the screen mode. Use the following
machine language subroutine:

10S$=CHR$(&H2A)-(>CHR$(&HE4)'i>CHR$(&HB0)-i-CHR$(&H0D)

+CHR$(&HCD)+CHR$(&H10)+CHR$(&HCB) 'the machine routine
20 DEF SEG 'set memory segment
30 Y=VARPTR(S$) 'point to string descriptor
40 Z=PEEK(Y+1)+PEEK(Y+2)*256 'calculate string address
50 CALL Z 'call the subroutine

The fourth byte of 8$ holds the mode number, here mode D. You may change it to
any value you please. Appendix D explains how this routine fits into BASIC. It is
completely self-contained; there is no need to set aside memory to hold the machine
code. Be sure to restore the prior mode when finished.

Next, set the proper write mode. Here is the sequence to set write mode 2:

50 OUT &H3CE,5 'index the mode register
60OUT&H3CF,2 'select mode 2

The original write mode should also be restored when the program is finished.
Finally, here are samples of code that perform the actual memory mapping:

Write Mode 0:

100 'draw red pixel at top left corner of the screen:
110 DEF SEG = &HA000 'point to the video buffer
120 OUT &H3CE,8 'address the bit mask register
130 OUT &H3OF, 128 'mask out al I bits but 7
140 X = PEEK(0) ' read current contents into latches
150 POKE 0,0 'clear
160 OUT &H3C4,2 'address map mask register
170OUT&H3C5,4 'set red as the color
180 POKE 0,&HFF 'draw the pixel

Write Mode 1:

100 'copy top scan line to the scan line below:
110DEFSEG=&HA000 'point to video buffer
120 FOR N=0 TO 79 'for all 80 bytes in the line
130 X=PEEK(N) 'fill the latches
140 POKE N+80,Y 'empty latches at scan segment below
150 NEXT ' go do next scan Ii ne segment

Write Mode 2:

100 'draw a red pixel at the top left corner of the screen:
110DEFSEG=&HA000 'point to the video buffer
120 OUT &H3CE,8 'address the bit mask register
130 OUT &H3CF,128 ' mask out a 11 but bi t 7
140 X=PEEK(0) 'fi 11 the latch registers
150 POKE 0,4 'send red as the color

212



Draw a dot on the screen (EGA) 4.4.3

Middle Level

The EGA supports the standard BIOS graphics functions. Draw pixels using
function CH of INT 10H, just as for the color card and PCjr. On entry, DX holds
the row, and CX the column, both counted from 0. The color code is placed in AL.
The contents of AX are destroyed during the interrupt.

PIXEL AT 50,100:
MOV AH,0CH ;function to set dot
MOV AL,12 ;choose palette register 12
MOV CX,100 ; column
MOV DX,50 ;row

INT 10H ;draw the dot

Low Level

Examples of the three write modes are given below. Before using them you must
set a screen mode that uses the video buffer at A000:0000. Use the ordinary BIOS
function; for example, to set mode D:

MOV AH,0
MOV AL,0DH
INT 10H

;function to change mode
; choose mode D
;change the mode

Be sure to restore the prior mode when finished. You will also need to set the write
mode. Here is an example that sets write mode 2:

MOV

MOV

OUT

INC

MOV

OUT

DX,3CEH
AL,5
DX,AL
DX

AL,2
DX,AL

;po1nt to address register
;Index register 5
;send the Index
;point to mode register
;choose write mode 2
;set the mode

Finally, here are examples of the three write modes:

VJrite Mode 0:

;  DRAW RED PIXEL AT TOP LEFT CORNER OF SCREEN:
MOV AX,0A000H
MOV ES,AX
MOV BX,0

;  MASK ALL BITS BUT BIT 7:
MOV DX,3CEH
MOV AL,8
OUT DX,AL
INC DX

MOV AL,10000000B
OUT DX,AL

;  CLEAR CURRENT LATCH CONTENTS:
MOV AL,ES:CBX]
MOV AL,0
MOV ES:[BX],AL

;  SET UP MAP MASK REGISTER FOR RED:
MOV DX,3C4H
MOV AL,2
OUT DX,AL
INC DX

point ES to buffer

point to f 1 rst byte of the buffer

;po1nt to address reglster
;register number
;send It
;now point to data register
;the mask
;send the data

;read contents In
;get ready to clear
;clear It

;po1nt to address register
;map mask register Index
;set the address
;po1nt to data regl ster
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MOV

OUT

;  DRAW THE PIXEL:
MOV

MOV

]Nrite Mode 1:

AL,4
DX,AL

AL,0FFH
ES:[BX],AL

;coLor code
;set the color

;send any value with bit 7 on
;pixel written

;  COPY A SCAN LINE TO THE SCAN LINE BELOW:

NEXT BYTE:

Write Mode 2:

MOV

MOV

MOV

MOV

MOV

MOV

INC

CX,80
BX,0
AX,0A000H
ES,AX
AL,ES:CBX]
ES:[BX]+80,AL
BX

LOOP NEXT BYTE

;eighty bytes in a scan line
; start from f i rst byte of buffer
;buffer address
;point ES to it
;f i 11 latch registers with data
;empty latch at scan segment below
;point to next byte
;go do next

;  DRAW RED PIXEL AT TOP LEFT CORNER OF SCREEN:
MOV AX,0A000H
MOV ES,AX
MOV BX,0

;  SET UP BIT MASK REGISTER:
MOV DX,3CEH
MOV AL,8
OUT DX,AL
INC DX

MOV AL,10000000B
OUT DX,AL

;  DRAW A RED PIXEL:
MOV AL,ES:CBX]
MOV AL,4
MOV ES:CBX],AL

;point ES to buffer

;point to f i rst byte of the buffer

;point to address register
;bit mask register
;address the register
;point to data regi ster
;mask out all bits but bit 7
;send the data

;f i 11 the latch regi sters
; red
;draw the pixel
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4.4.4 Find the color at a point on the screen

For the graphics modes of the color card and PCjr, finding the color of a pixel at
low-level entails no more than reversing the procedures that write one: a program
reads from video memory and isolates the relevant bits. The EGA, however, can
not be accessed this way in modes DH - 10H, since there are two or four bytes of
memory at any particular address. The card has two read modes to deal with this
difficulty. Keep in mind that on the PCjr and EGA, once you find the color code
for a pixel, you still must check the current palette register setting for that code in
order to find the color it is associated with.

Any programming language can access the two EGA read modes. Mode 0 returns
the byte found at any one of the bit planes at the particular address. Mode 1 seeks a
specified color code and returns a byte in which a bit is set to 1 when the corres
ponding pixel has that color. Bit 3 of the mode register determines which read
mode is in effect (0 = mode 0). This register is at port address 3CFH, and you must
first send 5 to 3CEH to select the register. Ordinarily, all other bits in this write-
only register are set to 0, except for bits 0 & 1, which set the write mode. Since
BIOS sets these two bits for write mode 0 (so that they are both 0), normally you
need only send 0 to the register to bring about read mode 0, or send 8 to invoke
read mode 1.

Read mode 0 requires that you first set the map select register. The sole purpose
of this register is to set which bit map is to be read. So send a number from 0 - 3 to
it. The register is at port address 3CFH, and 4 must first be sent to 3CEH to index
the register.
Read mode 1 is more complicated. First the color compare register must be given

the bit pattern of the color code you are seeking. The code is placed in the bottom
four bits of the register; the high four bits are not significant. The register is at port
address 3CFH, and it is indexed by first sending 2 to 3CEH. When the memory
position is read, a byte is returned with I's for every pixel that matches that color.
However, by using the color don't care register, one or more bits of the color code
can be ignored when the comparison is made. Normally the four low bits of this
register are set to 1; zeroing one of these bits causes the contents of the correspond
ing bit plane to be ignored. For example, ordinarily if the bit pattern for pixel #3
(bit 3) at a particular address is 0110, and the color compare register contains the
value 0010, it will return a byte in which bit 3 = 0 when the color don't care register
is all I's. But if the color don't care register contained 1011, bit 3 would be set to 1
in the byte returned to the CPU.
The color don't care register is at 3CFH, and it is indexed by sending 7 to 3CEH.

The high four bits are not significant. Note that IBM documentation (August 2,
1984) states that the register operates in the opposite way, so that a 1 in the register
makes the comparison operation ignore a bit plane. Experimentation shows other
wise.

Neither of the two read modes can quickly tell the color of a particular pixel. In
read mode 0, four separate reads are required, one for each bit plane, and then the
relevant bits must be masked out of each byte. In read mode 1, on the other hand,
it could take up to sixteen reads before a 1 is returned for a particular pixel, show-
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ing that it is the specified color. While the EGA is relatively slow in this particular
operation, it moves quickly for other needs.

High Level

BASIC provides the POINT function to return the color of a pixel. The palette
color of the pixel at column 200, row 100 is found by Q = POINT(200,100). The
value given to Q is an ordinary color code number. If a point off-screen is named,
POINT returns -1. When the coordinate system of the screen has been changed by
a WINDOW statement [4.4.2], the POINT statement observes the new system.
POINT can also report the position of the last pixel drawn. Using the ordinary

coordinate system where 0,0 is the top left corner or the screen, Q = POINT(l)
gives to Q the x coordinate of the pixel, and Q = POINT(2) gives the y coordinate.
If a WINDOW statement is in effect, Q = POINT(3) and Q = POINT(4) provide
the respective x and y coordinates in the specified coordinate system. When no
WINDOW statement is operational, the second two statements operate like the
first two.

At this writing, BASIC does not support the EGA in its advanced modes
(D-10H). In these modes a program must directly read the contents of the video
buffer. Here is an example using read mode 1 that searches for color code 0001 or
1001:

100 OUT &H3CE,5 'address the mode register
110OUT&H3CF,8 'set read mode 1
120 OUT &H3CE,2 'address color compare regi ster
130OUT&H3CF,1 'search for 0001
140 OUT &H3CE,7 'address color don't care regi ster
150OUT&H3CF,7 '7=0111B, so wi 11 seek 0001 or 1001
160 DEF SE6=&HA000 'point to EGA buffer in modes DH-10H
170 X=PEEK(0) ' read f i rst byte
180 IF XO0 THEN... '...then 0001 or 1001 was found

Middle Level

Function D of INT 10H returns the color code of a specified pixel. The BIOS on
board the EGA assures that this function works with any screen mode. Place the
row number (counting from 0) in DX, and the column number (also from 0) in CX.
The result is returned in AL.

;  FIND THE PALETTE CODE OF 100,200:
MOV AH,0DH ;function number to read dot
MOV DX,100 ; row number
MOV CX,200 ;column number
INT 10H ;and now the palette code is in AL

Low Level

In the color card and PCjr graphics modes, simply reverse the memory mapping
process by which a pixel is set, as shown at [4.4.2]. Use the same example found
there, but end it this way:
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;  CHANGE THE BITS (starting point for the change):
MOV AH,ES:[BX] ;get byte from correct position
ROR AH,CL ;move 2 relevant bits to bottom of AH
AND AH,00000011B ;make out other bits
RET ;and now AH holds the palette code

For EGA modes DH-10H, manipulate the registers discussed above. The follow
ing example uses read mode 0 to read bit plane 2 at memory address A000:0012.

;  SET THE READ MODE:
MOV DX,3CEH
MOV

OUT

INC

MOV

OUT

;  SET WHICH BIT PLANE TO READ:
DEC DX

MOV

OUT

INC

MOV

OUT

;  READ THE BIT MAP:
MOV

MOV

MOV

MOV

AL,5
DX,AL
DX

AL,0
DX,AL

AL,4
DX,AL
DX

AL,2
DX,AL

AX,0A000H
ES,AX
BX,12
AL,ES:[BX]

;index register
;address the mode register f i rst
;send the index
;point to the register itself
;a11 bits off for read mode 0
;set the mode

;point back to index register
;address the map select register
;send the index
;point to the register itself
; request bit map 2
;send the value

;buffer starts at A000:0000
;point ES to the buffer
;offset in buffer
; read bit plane 2

Finally, here is an example that seeks color code 0010 or 1010 using read mode 1:

;  SET THE READ MODE:
MOV DX,3CEH
MOV

OUT

INC

MOV

OUT

;  SET THE COLOR COMPARE REGISTER:
DEC DX

MOV

OUT

INC

MOV

OUT

;  SET THE COLOR DON'T CARE REGISTER:
DEC DX

MOV

OUT

INC

MOV

OUT

;  SEEK THE COLOR:
MOV

MOV

MOV

MOV

CMP

JNZ

AL,5
DX,AL
DX

AL,8
DX,AL

AL,2
DX,AL
DX

AL,0010B
DX,AL

AL,7
DX,AL
DX

AL,0111B
DX,AL

AX,0A000H
ES,AX
BX,12
AL,ES:CBX]
AL,0
FOUND IT

;index register
;address the mode regi ster f i rst
;send the index
;point to the register itself
;set bit 3 for read mode 1
;set the mode

; return to i ndex regi ster
;address of color compare regi ster
;send the index
;point to the regi ster itself
;the color code
;send the code

;back to the index register
;address of color don't care register
;send the index
;point to the regi ster itself
;accept either 1010 or 0010
;send the value

;buffer starts at A000:0000
;point ES to the buffer
;offset in buffer
; read the buffer position
;any bits set?
;if so, go find out which ones
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4.4.5 Draw lines on the screen

The simplest way to draw lines on the screen is to calculate at which point the
next dot of a line resides and then change the bits of the byte that hold that point.
Such operations are slow, although they are often unavoidable. It is better, when
possible, to calculate the range of screen positions that hold a particular color.
Then the required bit operations need be done on only one byte, and that byte can
be placed in a range of corresponding position in the video buffer.

High Level

BASIC draws straight lines with the LINE statement. LINE (20,10)-(40,30) draws
a line from column 20, row 10 to column 40, row 30. Both rows and columns are
numbered from 0. You may omit the first coordinate, in which case drawing origi
nates from the last point drawn in the previous graphics statement. The second
coordinate may also be specified relative to the prior point by writing LINE
-STEP(xoffset,yoffset).
The LINE statement also holds specifications for the color and pattern of the

line. The color code immediately follows the listing of the coordinates; LINE
(50,50)-(60,60),2 draws the line in color 2. When no color is given, it defaults to
number 3. The style feature lets lines be dotted in any way you please. A binary
pattern is written in decimal or hexadecimal form. For example, the pattern
1010101010101010, which is equal to &HAAAA, results in a line where the dots
alternate between the given color and the background color. Write the pattern
specification as the third parameter following the coordinates. For example, LINE
(30,30)-{40-40),3,,&HAAAA produces the above pattern in color code 3.
BASIC also provides routines to draw rectangles and circles. Rectangles are

drawn using the LINE statement. In this case the coordinates describe the top left
and bottom right corners of the box. Simply write B (for "box") as the third param
eter following the coordinates. LINE (50,50)-(100,100),l,B,&HAAAA draws a
square 50 dots on a side in palette color 1, using the style pattern explained above.
Write BP instead to draw a rectangle filled in the designated color (do not set a style
pattern in this case).

Circles are drawn by the CIRCLE statement. It is based on the formula, CIRCLE
(x,y),r,color,start-angle,stop-angle,aspect. The x-y coordinates give the screen
address of the center of the circle, and r gives the radius in pixels; all other informa
tion is optional. The color is a color code that defaults to 3. The start- and stop-
angles can be set to draw only an arc of a circle (when omitted, a whole circle is
drawn). The angle is measured as a positive or negative quantity starting from the
rightwards horizontal. Measure it in radians (there are 2*PI radians in 360 degrees
(6.292 radians), and 1 degree = .0174532 radians). The aspect is a ratio that
adjusts horizontal to vertical dimensions. A round circle results when it is 5/6 in
medium resolution or 5/12 in high resolution. Smaller numbers make for horizon
tally extended ellipses; larger ones create the opposite. In summary,
PI = 3.14159:CIRCLE (200,50),30,2,PI/2,PI,10/6 results in an arc centered at row
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50, column 200, with a 30-pixel radius, drawn in color 2, encompassing only the
top-left quadrant of a vertically extended ellipse.
More complex lines may be drawn with the DRAW statement, which is

extremely versatile. DRAW is followed by a string (set in parentheses) in which
code numbers give the sequence of orientations and lengths of the segments that
make up the line. For example, DRAW"E12F12G12H12" draws a diamond. Set the
initial point with PSET (discussed at [4.4.2]); otherwise it defaults to center-screen.
The basic codes consist of a letter followed by the number of pixels of segment
length. The codes are as follows:

Ux Move up (x pixels)
Dx Move down

Rx Move right
Lx Move Left

Ex Move diagonal Ly up and right
Fx Move diagonally down and right
Gx Move d1 agona I ly down and left
Hx Move d1 agona I ly up and left

In medium resolution, 100 pixels horizontally and 100 pixels vertically result in line
segments of approximately equal length (the y to x aspect ratio is actually 5/6). In
high resolution, the horizontal line would be roughly half the length of the vertical
one. Because of the greater distance between the pixels, diagonals that form a
hypoteneuse across a box have the same number of pixels as the longest side of the
box, even though the segment itself is longer.
To draw diagonals at angles other than 45 degrees, use the code letter M. This

code will draw the next line segment to either an absolute or relative position on
the screen. For an absolute position, list its x and y coordinates. DRAW"M50,60"
extends the line to column 50, row 60. Add plus and minus signs before the letters.
If the current point on the x axis is 100, + 50 will extend the line to column 150,
and -50 will extend it to colunrn 50. To move from 100,100 to 120,70, write
DRAW"M -H 20,-30".

The line need not be continuous. When the letter B is placed before a code, the
code moves "the point of the pen" as specified, but without actually drawing the
segment. For example, DRAW"L10BU5R10" draws two parallel horizontal lines.
To draw more than one segment outward from a single point, precede a code with
the letter N. In this case, "the point of the pen" returns to its starting point after
drawing the segment.
There are a number of special codes which can be placed anywhere in a string,

and which affect all codes that follow (until another such code makes a different
specification). Set the color of line segments by the letter C followed by a color
code. DRAW"C2D5" draws a line downwards in color 2. Change the scale
in which a figure, or part of a figure, is drawn by setting the scale factor. Add
to the string the letter S followed by the factor. The factor is a number that is
divided by 4. The factor is normally set to 4, which makes the scale equal to T'.
Changing the factor to 8 doubles the size of the figure drawn. In this case, write
DRAW "S8U12D12".. .etc.

You may tilt the axes of the entire coordinate system using either of two codes.
The code letter A turns the axes counterclockwise by 90-degree increments. A0
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turns it not at all, Al turns it by 90 degrees, A2 by 180 degrees, and A3 by 270
degrees. Similarly, the TA turns the axes by a specified number of degrees, num
bered from 0 to 360 (counterclockwise), or from 0 to -360 (clockwise).
DRAW"A1L10" and DRAW"TA90L10" both result in a leftward-drawn line being
directed 90 degrees downward instead.
A DRAW statement may contain string variables that themselves contain valid

codes. This feature enables a program to reuse parts of figures in different draw
ings. Within a DRAW statement, place the name of the string after the letter X and
follow the string name with a semicolon. For example:

100 S$="U12R15U45L32"

110 DRAW"XS$;"

A number of strings may be combined in a single DRAW statement, interspersed
with any of the other codes. Note that any of the numbers used with codes in
DRAW statements may themselves be variables. In this way a single DRAW rou
tine can easily be made to vary in its configuration, color, scale, and orientation.
Place an equals sign between the code letter and the variable name, and follow the
name with a semicolon. For example, to set the color by a variable, write
DRAW'C = PCOLOR;". The BASIC compiler requires that these variables be ref
erenced by means of a VARPTR$ function. In this case, write the statement as
DRAW"X" + VARPTR$(S$) or DRAW"C = " +VARPTR(PCOLOR). Complex
drawings may be stored in an array and returned to the screen at any time. See
[4.4.6] for a discussion.

Low Level

The routine below uses Bresenham's algorithm to draw a straight line between
any two points. It uses the BIOS function that sets pixels, and it could be made
even faster by replacing the function with a direct memory mapping routine in line.
Like all fast algorithms, it avoids multiplication and division operations. A line is
treated as a series of two kinds of segments: those that move diagonally, and those
that move either horizontally or vertically. In lines with a slope greater than 1, the
straight segments are vertical, and otherwise they are horizontal; the first task of
the algorithm is to figure out the slope. Then an adjustment factor is calculated that
sees to it that a certain number of straight segments are longer than the rest.
Finally, a complicated loop switches back and forth between plotting the diagonal
and straight segments. BX alternates between positive and negative values, flagging
which kind of segment to draw. Here, the data is set up for a diagonal from one
corner of the screen to the opposite:

;  IN THE DATA SEGMENT:
START X DU0

END X DW319

START Y DU0

END Y DW199

COLOR DB2

DIAGONAL Y INCREMENT DU ?

DIAGONAL X INCREMENT DU ?

SHORT DISTANCE DU ?
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STRAIGHT_X__INCREMENT DU ?
STRAIGHT__Y_INCREMENT DU ?
STRAIGHT_COUNT DW ?
DIAGONAL_COUNT DW ?

;  SET SCREEN MODE:
MOV AH,0 ;function to set mode
MOV AL,4 ;320x200 color
INT 10H ;set the mode

;  SET INITIAL INCREMENTS FOR EACH PIXEL POSITION:
MOV CX,1 ;hoLds Increment for X axis
MOV DX,1 ;holds increment for y axis

;  CALCULATE THE VERTICAL DISTANCE: ;keep It In CX
MOV DI,END__Y ;subtract starting point
SUB DI,START_Y ; from ending point
JGE KEEP__Y ; jmp ahead If negative slope
NEG DX ;otherw1se, yIncrement Is -1
NEG DI ;make the d1 stance a positive value

KEEP_Y: MOV DIAGONAL__Y_INCREMENT,DX ;y Increment Is 1
;  CALCULATE THE HORIZONTAL DISTANCE: ;keep1t InDX

MOV SI,END_X ;subtract starting point
SUB SI,START__X ; from ending point
JGE KEEP__X ; jmp ahead If negative slope
NEG CX ;otherw1se, X Increment Is-1
NEG SI ;make the distance a positive value

KEEP_X: MOV DIAGONAL_X__INCREMENT,CX ;x Increment Is 1
;  FIGURE WHETHER STRAIGHT SEGMENTS ARE HORIZONTAL OR VERTICAL:

CMP SI,DI ;1s horizontal longer than vertical?
JGE HORZ_SEG ; 1 f so, jump ahead
MOV CX,0 ;else, no x-axIs change when straight
XCHG SI,DI ;place long distance In CX (DX short)
JMP SAVE_VALUES ;save these values

HORZ__SEG: MOV DX,0 ;no y-axis change when straight
SAVE_VALUES: MOV SHORT_DISTANCE,DI ;save value of short d1 stance

MOV STRAIGHT_X_INCREMENT,CX ;one value 1s1, one 1s0, so
MOV STRAIGHT_Y_INCREMENT,DX ,-straight line Is vert or horz

;  CALCULATE ADJUSTMENT FACTOR:
MOV AX,SHORT_DISTANCE ;short d1 stance Into AX
SHL AX,1 ;double short distance
MOV STRAIGHT__COUNT,AX ;save It for straight loop
SUB AX,SI ;2*short distance - long distance
MOV BX,AX ;save It as loop counter
SUB AX,SI ;2*short d1stance-2*long distance
MOV DIAGONAL_COUNT,AX ;save It for loop

;  PREPARE TO DRAW THE LINE:
MOV CX,START_X ;set starting x coordinate
MOV DX,START_Y ;set startingycoordinate
INC SI ;Increase long axis by 1 for end point
MOV AL,COLOR ;place color code In dx

;  NOW DRAW THE LINE: ;SI & DI set coordinates for x & y
MAINLOOP: DEC SI ;decrement counter for long d1 stance

JZ LINE_FINISHED ;qu1t after last pixel
MOV AH, 12 ;function to draw pi xeI
INT 10H ;draw1t
CMP BX,0 ;draw straight segment when BX <0
JGE DIAGONAL_LINE ; else, draw diagonal segment

;  DRAW STRAIGHT LINE SEGMENTS:
ADD CX,STRAIGHT__X_INCREMENT ;set up x and y Increments
ADD DX,STRAIGHT_Y__INCREMENT ; for straight segment
ADD BX,STRAIGHT__COUNT ;add to adjustment factor
JMP SHORT MAINLOOP ; go do next pi xe I
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;  DRAW DIAGONAL LINE SEGMENTS:
DIAGONAL_LINE: ADD CX,DIAGONAL_X_INCREMENT ;set up x and y increments

ADD DX,DIAGONAL__Y_INCREMENT ; for diagonaL segment
ADD BX,DIAGONAL__COUNT ;subtract from adjustment factor
JMP SHORT MAINLOOP ;go do next pixel

LINE FINISHED:
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4.4.6 Fill areas of the screen

Careful forethought can eliminate much of the painful slowness at which many
programs fill areas of graphics screens. When the fill is based on simple calculations
that operate dot-by-dot, then time-consuming bit operations are required. Smarter
code can sometimes figure out whether all bit-positions of a particular byte in the
video buffer will be given the same color; when so, the byte is given a predefined
value that sets all bits to the correct color. In this way, the byte does not need to be
repeatedly operated upon, each time setting bits for only one of the pixels that the
byte holds information for.
[4.3.4] explains how to create special 8x8 dot characters in whatever pattern you

choose. Although they are restricted to normal character positions, such characters
can greatly facilitate graphics fills. A solid 8x8 pattern may be written over all posi
tions within several rows and columns, filling the area several times faster than
pixel-by-pixel drawing would. This kind of character graphics can be freely inter
mixed with dot-addressed graphics. Block graphics are also a good technique for
fills that are tiled or dithered.

High Level

BASIC provides the PAINT statement to fill a closed figure of any shape. You
need only specify a single, arbitrary point within the area and the routine takes
care of the rest. A palette color may be set for the fill, so that, for example, PAINT
(100,110),2 paints in palette color 2. The painting works outward from the point
until non-background-color pixels are encountered. Alternatively, you may specify
a boundary color, and the painting continues outward in all directions until pixels
of that color are located. In this way, lines of other colors within the boundary can
be occluded by the paint operation. The boundary color follows the palette color
for the fill; thus, PAINT (100,180),2,3 paints in color 2 up to lines in color 3. Note,
however, that this routine does not fill "around corners"; that is, once a limiting
color is encounter along a particular vertical or horizontal trajectory, no further
pixels along that trajectory are filled, even if the shape is an irregular one that
reaches around. The following example draws two overlapping boxes in cyan and
magenta and then fills the latter in white. The segments of the cyan box that over
lap are painted over.

100 LINE (50,70)-(270,130),1,B 'draw box in cyan
110 LINE (100,30)-(220,170) ,2,B 'draw overlapping box in magenta
120 PAINT (101,31),3,2 'fi IL the second box in white

Be aware that the LINE command can itself fill in a box, using 'BF' (for "box fill")
instead of 'B'. See [4.4.5].
The PAINT statement has a "tiling" feature that lets you fill areas in a specified

pattern. A "tile" which in medium resolution is four dots wide and up to eight dots
deep (8 X 8 in high resolution) is repeated over the designated area. The pattern is
described as a series of bytes that hold the bit pattern of successive rows of the tile.
In medium resolution, the bit pattern 10000011 gives four horizontal dots, the first
in color 2, the next two in background color, and the last in color 3. The pattern
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equals 131, or &H83 (see Appendix B for a discussion of bit operations in BASIC).
Reversing the pattern to 11000001 would give 193 (&HC1). These might be com
bined in the string CHR$(&H83) + CHR$(&HC1), forming a tile that is four pixels
wide and two pixels deep. Up to eight bytes may be included in such a string, mak
ing for a depth of up to eight pixels. Such a string is used in a PAINT statement in
place of the palette color. Here a square is filled in the above pattern:

100 LINE (100,100)-(150,150),1,B 'draw the box
110 PAINT (125,125),CHR$(&H83)+CHR$(&HC1),1 'tile it in

Note that peculiarities of the tiling pattern can sometimes cause the PAINT routine
to stop before it has completed the fill. BASIC provides a solution in the back
ground parameter for the PAINT statement. If you have trouble, consult the
BASIC manual for details.

The DRAW statement, which draws complex lines, also can fill an area. It is dis
cussed at [4.4.5]. The "current point" (from which the next line segment is drawn)
must be led into any area bound by a border of a particular palette color. Place
within the DRAW string the code letter P, followed by the palette color in which to
paint, and then the palette color of the boundary. To draw a box in palette color 1
and then fill it in color 3, write DRAW"U10R10D10L10BH1P3,1". Here, the first
four codes draw the walls of the box, then the code 'BH' moves the point into the
box without drawing a segment, and then the P code causes the box to fill. Much
more complex shapes can be filled this way. Note that it is not necessary to jump to
a point within the figure without drawing a line segment along the way. However,
the final segment must be of a different color than the boundary that is filled.
BASIC also has a way of filling areas of the screen with a predefined image. The

image, which may be of any dimensions, is stored in an array, and it may be pro
jected on the screen at any position. Ordinarily, one creates the image on the screen
using the many tools available and then stores it in the array using the GET state
ment. The array may then be placed in a sequential file [5.4.3] so that a program
can load it and project the image. The GET statement lists the top left and bottom
right coordinates of the box that contains the image, giving first the column and
then the row of each coordinate pair. Then the array name is given, without plac
ing it in quotes. For example, GET(80,40)-(120,60),ARRAYS places all of the pixels
in the defined box in the array named ARRAYS.
The one-dimensional array, like any other, must be defined beforehand using a

DIM statement. The array may consist of elements of any precision. To calculate
the required size of the array, first figure how many bytes are needed to hold the
image. The formula for this is 4 + INT((x*bitsperpixeI +7)/8)*y. Here, 'bitsper-
pixel' equals 1 in high resolution and 2 in medium resolution. The letters x and y
refer to the number of pixels along the horizontal and vertical sides of the image
block. INT' indicates that you should round downwards if the division by 8 results
in a remainder. Finally, figure how many elements the array requires to hold that
number of bytes. Each element is two bytes in an integer array, but four for single-
precision and eight for double-precision.
To call the image from the array and display it on the screen, use the PUT state

ment. This statement requires only the coordinates of the top left corner of the area
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on the screen where the image is to be placed. Follow the coordinates with the
array name. For example, PUT (40,30),ARRAY1 places the image with the top left
corner at column 40, row 30. The PUT statement optionally takes a final parameter
that determines the colors in which the image is drawn. When omitted, the image
appears exactly as it was recorded by GET. This is equivalent to writing PUT
(40,30),ARRAY1,PSET. Otherwise, there are several other options. If instead of
PSET you write PRESET, palette color 0 in the original image is printed in color 3,
or vice-versa, and color 1 is replaced with color 2, or vice-versa.
There are three other cases which involve using the logical operators AND, OR,

and XOR. Like PRESET, these words replace PSET in the example above. See
Appendix B for a discussion of the three operations. Each operation entails compar
ing the bits of the existing pixel on the screen with the bits of the pixel in the image
that will overlay it. In high resolution, where there is only one bit per pixel, the
operations are straightforward. But in medium resolution, various color transfor
mations occur because of the combinations made possible by two bits per pixel.
AND turns a bit on only if the bit is on for both the screen pixel and the image

pixel (from the array). In high resolution, this means that a pixel in the image
appears only when the matching pixel on the screen is already turned on. All other
pixels in the area are turned off. In medium resolution, the two bits of each pixel
are ANDed together. If a pixel on the screen is 01 and the corresponding pixel of
the image is 10, then neither bit is turned on (since neither bit is 1 in both cases),
and the pixel on the screen changes to 00, which is background color.
OR turns on a bit if the bit is on in either the screen pixel or the image pixel. In

black and white, OR superimposes the image on to the existing image. But in color,
again you must calculate the effects. Palette codes 1 (01) and 2 (10) combine into 3
(11), but so do codes 0 (00) and 3 (11).

Finally, XOR turns on a bit only if the bit is on in one, and only one, of the two
bits compared. XORing an entire area of a black and white screen with 1 causes the
image to reverse (1 and 1 result in 0, and 1 and 0 result in 1). In medium resolution,
all colors change when XORed. The result is to superimpose the XORed image. But
more importantly, when the image is XORed a second time, the screen reverts to
being exactly as it was before. The image is effectively erased. This technique is
useful for animation, in which case the image is XORed twice at one position, then
XORed twice at an adjacent point, and so on.

Low Level

There are a number of approaches to graphics fill routines. None is ideal, since
there is necessarily a tradeoff between the speed of the routine and the complexity
of the figure that it can handle. Any routine that fills areas pixel-by-pixel is bound
to be slow, no matter how elegantly it is conceived. Keep in mind that nearly every
pixel affected will reside in a byte in which all pixels are changed to the same color.
Making several accesses to the same byte through a complicated routine takes
much more time than setting the whole byte by a single access to the video buffer.
For example, clearing the screen pixel-by-pixel takes several seconds on a PC when
the BIOS function is used, but memory mapping is instantaneous:
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MOV

MOV

MOV

MOV

MOV

REP STOSU

AX,0B800H
ES,AX
CX,8192
AX,0
DI,0

;point ES to screen buffer

t

;f i LL at L bytes, even between 2 parts
;put 0 in each byte
;DI points to each byte in turn
;write AX 8192 times

Many routines fill one horizontal line at a time, seeking the boundary color to
the left and right and filling as they go. Since the lines are comprised of contiguous
bytes of data, take each byte from the video buffer and quickly examine whether
the boundary color is present anywhere in it. If not, replace the byte with an entire
byte of fill color. Otherwise, resort to the usual pixel-by-pixel approach for that
byte.
There is an extremely fast way of figuring out whether the boundary color

appears within a byte of video data. Say that in four-color medium resolution the
routine is seeking palette color 1 as the boxmdary color. The bit pattern for this
color is 01, so first make an entire byte of those patterns: 01010101. Then use NOT
to reverse each bit, so that the value becomes 10101010. XOR this value with a byte
of data taken from the video buffer; the result will be a byte in which both bits in a
field are 1 only in those fields that hold the bit pattern for the boundary color.
After XORing the data, use NOT to reverse the digits so that boundary color fields

5. Then use TEST to seek fields of 0 value. If such a field is found, the bound-are <

ary color has been located, and the routine jumps to code that operates on pixels
one-by-one, in the traditional fashion. Using word-length data makes this proce
dure even faster.

MOV AL,ES:CBX]
XOR AL, 101010108
NOT AL

TEST AL,110000008
JZ F0UND_80UNDARY
TEST AL,001100008
JZ F0UND_80UNDARY
TEST AL,000011008
JZ F0UND_80UNDARY
TEST AL,000000118
JZ F0UND__80UNDARY
MOV AL,FILL_COLOR
MOV ES:[8X],AL

FOUND BOUNDARY:

;get a byte from the video buffer
;both bits on if boundary pattern
;both bits off if boundary pattern
;test bits 7-6
; jump if boundary color found
;test bits 5-4
; jump if boundary color found
;test bits3-2
; jump if boundary color found
;test bits 0-1
; jump if boundary color found
;no boundary color, so f i 11
;replace byte in video buffer
;.. .go get next byte

;... instead, use BIOS to read and
set pixels in this boundary byte

Where feasible, consider designing your graphics so that the edges of rectangular
shapes reside on two-, four-, or eight-pixel boundaries so that direct memory
accesses can completely fill them. Although not as fast, another option is to create
user-defined block characters [4.3.4], printing them over the edges of the fill area.
There is much room for ingenuity here, and there often is no good reason for slug
gish graphics.
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4.4.7 Draw graphics using block characters

When graphics displays are drawn dot by dot, they can take up too much com
puting time, particularly when the graphics are animated. One way to increase
speed is to reduce some or all of the graphics shapes to figures that can be con
structed out of 8-by-8 dot patterns. These patterns are created as user-defined char
acters, as shown at [4.3.4]. Once the patterns are set up, they are written on the
screen very quickly and with little code. The patterns may be mixed with dot-
addressed graphics, just like ordinary characters. One way to quickly fill a shape is
to repeat a solid block character within the shape. Note that these characters are
always positioned at the usual cursor positions.

Middle Level

This example draws a human figure that is two characters wide and two charac
ters high. As explained at [4.3.4], interrupt vector number IFH is pointed to the
beginning of the character data. The four characters can be printed with ordinary
BIOS and DOS routines. It would be easy to create a second set of characters
showing the figure with legs and arms in a different position. The two character
sets could then be alternated at adjacent cursor positions—making erasures
between—to give the illusion of a man walking across the screen.

;  IN THE DATA SEGMENT:
CHARACTER_DATA 08001100006

08 011001118

08 011001118
08 001100118

08 000111118

08 000011118

08 000011118

08 000001118

08 000000118

08 100011008
08 100110008
08 001100008

08111000008

08110000008

08110000008

08100000008

08 000011118

08 000111118

08 000111008

08 000110008

08 000110008

08 001100008
08 011000008

08 000100008

08110000008

08110000008

08110000008

08110000008

;top-left quadrant of figure

;top-right quadrant of figure

;bottom-left quadrant of figure

;bottom-right quadrant of figure
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DB01100000B

DB 00010000B
DB 00011110B

OB 00000000B

;  SET UP THE INTERRUPT VECTOR:
PUSH OS

MOV

MOV

MOV

MOV

MOV

INT

POP

;interrupt destroys OS
DX,OFFSET CHAR_DATA ;offset of character data in DX
AX,SEG CHAR_DATA ;segment of character data in OS
OS,AX

;function to set interrupt vector
;number of the vector
;set the vector
;restore OS

AH,25H
ALJFH
21H

OS

;  DRAW THE FIGURE:
;  POSITION CURSOR FOR TOP ROW:

MOV AH,2
MOV DH,13
MOV DL,20
MOV BH,0
INT 10H

;  DRAW TOP TWO CHARACTERS:
MOV

MOV

INT

MOV

INT

DL,128
AH,2
21H

DL,129
21H

;  POSITION CURSOR FOR BOTTOM ROW:
MOV DH,14
MOV DL,20
MOV AH,2
INT 10H

;  DRAW BOTTOM TWO CHARACTERS:
MOV DL,130
MOV AH,2
INT 21H

MOV DL,131
INT 21H

;function to set cursor
;row 13
;column 20
;page 0
;set the cursor

;get character 128
;function to write/forward cursor
;write it
;get character 129
;write it

;row 14
;column 20
;function to set cursor
;set the cursor

;get character 130
;function to write/forward cursor
;write it
;get character 131
;write it
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Section 5: Use Scrolling and Paging
Scrolling and paging are two ways of transferring blocks of information from

memory to screen. In scrolling, one edge of the screen is shifted inward, erasing the
information on the opposite side. Then the area that has been opened up is filled
from memory. Repeating this action line after line creates the illusion of a scroll.
On the other hand, paging is based on keeping several screens of information in

the video buffer at the same time, switching the video display from one or another.
Paging is not possible on the monochrome adaptor since it contains only enough
memory for one character screen. The other video systems can manage multiple
pages in most screen modes. Paging is particularly useful for constructing time-con
suming screens out of view; once finished, the screen may be displayed instantly. A
pseudo-paging routine for the monochrome adaptor is given at [4.5.3]. It is particu
larly useful for dealing with slow screen output in BASIC.
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4.5.1 Scroll a text screen vertically

When a text screen is scrolled upwards, lines 2 through 25 are rewritten upon
lines 1 through 24, and the next line of a data is taken from memory and written on
line 25. By being written over, the top line of data is "lost," although it continues to
exist in memory. Downward scrolling works in like fashion.

High Level —— —

BASIC is notoriously slow in its screen operations. For rapid scrolling you will
want to use the following machine language subroutine, which does nothing more
than make use of INT 10H, as described under middle level below. The routine
scrolls the whole screen or any window within it. Appendix D shows how to inte
grate machine subroutines into your programs. Your BASIC program must specify
the coordinates of the top left and bottom right corners of the window, counting 0-
24 and 0-79. Also required is a parameter telling whether the scroll moves upwards
or downwards (6 or 7, respectively), the number of lines to scroll (if 0, the window
clears), and the value of the attribute byte for the lines that are blanked out (7 for
"normal"). Use integer variables. The example below makes the whole screen scroll
downwards one line, and then fills the vacated line.

100 • • 'data for the subroutine:

110 DATA &H55,&H8B,&HEC,&H8B,&H76,&H12,&H8A
120 DATA &H24,&H8B,&H76,&H10,&H8A,&H04,&H8B
130 DATA &H76,&H0E,&H8A,&H2C,&H8B,&H76,&H0C
140 DATA &H8A,&H0C,&H8B,&H76,&H0A,&H8A,&H34
150 DATA &H8B,&H76,&H08,&H8A,&H14,&H8B,&H76
160 DATA &H06,&H8A,&H3C,&HCD,&H10,&H5D,&HCA
170 DATA &H0E,&H00
180 • • 'place the data at segment value &H2000:
190 DEF SE6=&H2000 'place data at &H20000
200 FOR N=0 TO 43 ' 44 bytes
210 READ Q ' read one byte
220 POKE N,Q 'place it in memory
230 NEXT 'next

300 "'in the program:
310 60SUB 270 ' scro 11 down one I i ne
320 LOCATE 1,1 :PRINT TEXT$(LINEPTR); 'write line of text at 1,1

500 ''' sc ro 11 subrout i ne:

510 DEFINT A-Z 'use integer variables
520TLR=0 'top left row
530TLC=0 'top left column
540 BRR=24 'bottom right row
550 BRC=79 'bottom right column
560 NUMR0WS=1 ' sc ro 11 one row
570DIR=7 'scro11 downwards
580 FILL=7 'fi II in normal attribute
590 DEF SEG=&H2000 'point to machine routine
600 SCRO LL=0 'start at fi rst byte
610 CALL SCROLL(DIR,NUMROWS,TLR,TIC,BRR,BRC,FILL) 'make the scroll
620 RETURN 'all done
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Middle Level

Function 6 of INT 10H scrolls any part of the screen upwards, and function 7
scrolls it downwards. In both cases AL holds the number of lines to scroll, and
when AL = 0, the entire screen is cleared instead of scrolled. CH:CL holds the row
and column for the top left corner, and DH:DL holds the coordinates for the bot
tom right. The row(s) that are scrolled away from are cleared, and they are given
the attribute code placed in BH.

;  SCROLL UPWARDS ONE LINE:

MOV AH,6
MOV AL,1
MOV CH,0
MOV CL,0
MOV OH,24
MOV DL,79
MOV BH,7
INT 10H

;function number to scrolL upwards
;number of rows to scroL L upwards
;coordinate of top Left row
;coordinate of top Left coLumn
;coordinate of bottom right row
;coordinate of bottom right coLumn
;attribute of cLeared Line
;make the scroLL
;now f i LL bottom Line with text...

Low Level

Scrolling the whole screen vertically is a trivial task, since in memory the right
end of one line continues at the left end of the next. Moving everything in the video
buffer 160 bytes upwards in memory (80 columns x 2 bytes per character) results in
scrolling the screen downwards by one line. If you write your own scroll routine
using direct memory mapping, be careful of the screen interference that occurs on
the color card and in the PCjr. This problem is discussed at [4.3.1]. The usual solu
tion is to keep checking a status byte until it gives the go-ahead to write data into
the video buffer. You will need to experiment to see how much data can be written
in a cycle.
An alternate solution is to turn off the screen entirely during the scroll operation

and then instantly restore it. To "turn the screen off" means that the projection of
data from the video buffer is disabled, but the buffer itself is untouched. This pro
cess is used by the BIOS scroll routine above; although it is unpleasant to the eyes,
it is not as bad as the interference it averts.

To turn the screen off on the color graphics adaptor, set bit 3 at port address
3D8H to 0. Changing the bit to 1 instantly turns the screen back on. The port
address is for the Mode Select Register on the color graphics card. This one-byte
register is write-only, so a program cannot just read it, change bit 3, and then
replace the byte. Rather, you must determine the settings for the other bits of the
register as well (listed at [4.1.2]). On the PCjr this bit is located in Mode Control
Register 1 in the video gate array. [4.1.1] explains how to access and program this
register.
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4.5.2 Scroll a text screen horizontally
Horizontal scrolling is sometimes required for special text processing, such as in

program editors. The operating system has no special facilities for it. For this rea
son it is more complicated than vertical scrolling—but not by much. Consider the
case in which you want the screen to scroll leftwards by five columns. The five col
umns on the left are to be overlaid, the other text is shifted left, and the rightmost
five columns must be blanked out. Since the video buffer is one long string, if every
character in it is moved downwards in the buffer by ten bytes, the net effect is that
the leftmost five characters of every line wrap around to the right edge of the line
above. Thus the screen is shifted leftwards by five columns, moving the five dis
carded columns to the right edge of the screen. All that remains is to blank out the
right edge. This is easily done with the vertical scrolling routine [4.5.1], which can
be set up to operate on only part of the screen, and which blanks out that area
when it is told to scroll by zero lines. Figure 4-6 illustrates this method.

Erase this Column Using-i
Vertical Scroll Function 1

rOverlaid

m

Col. 80 Col. 1

Figure 4-6. Horizontal Scrolling.
Col. 80

Low Level

This example scrolls leftwards by five columns. It is easy to modify it to scroll
rightwards as well and to move by a specified number of columns. By using direct
memory mapping to shift the characters, this technique results in a practically
instantaneous scroll.

-SHIFT EVERYTHING DOWNWARDS BY 10 BYTES:
MOV AX,0B000H
MOV ES,AX
MOV DS,AX
MOV SIJ0
MOV DI,0
MOV CX,1995

REP MOVSW

;  BLANK OUT THE RIGHT EDGE:
MOV AH,6
MOV AL,0

;point DS and ES to monochrome buffer

;shift from SI
;...to DI
;move all but 5 of 2000 characters
;make the shi ft

;verticat scroLL function of INT 10H
;0 Lines to scrolL blanks out window
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MOV CH,0 ;top Left row
MOV CL,75 :top Left coLumn
MOV DH,24 ;bottom right row
MOV DL,79 ;bottom right coLumn
MOV BH,7 ;attribute to use for bLank
INT 10H ;c Lear the window
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4.5.3 Switch between text pages

Because all video systems except the monochrome card have enough memory for
several video buffers, several screens may be constructed at once, and whichever is
required at the moment may be displayed. Rather than move data around in video
memory, the monitor is sent data from different parts of video memory. The num
ber of pages possible varies by video system and screen mode. Here is a compar
ison:

Mode Type Number pages Buffer start

0 alpha 8 B800

1 alpha 8 B800

2 alpha 4/8 B800

3 alpha 4/8 B800

4 graphic 1 B800

5 graphic 1 B800

6 graphic 1 B800

7 alpha 1/8 B000

8 graphic variable B800

9 graphic variable B800

A graphic variable B800

D graphic 2/4/8 A000

E graphic 1/2/4 A000

F graphic 1/2 A000

10 graphic 1/2 A000

Modes 8-A are PCjr graphics modes; the number of pages varies depending on how
much read/write memory has been allocated for the video buffer. The page size is
2K or 4K for alpha modes, 32K for four colors in high resolution or 16 colors in
medium resolution, and 16K for all other modes. Modes D-10 are confined to the
EGA. The number of pages varies by how much RAM is mounted. Modes F and 10
minimally require 128K. Mode 7 allows one page for the monochrome card, and
eight with the EGA.
The monochrome adaptor does not have memory aboard for extra pages. There

is no reason why a section of main memory cannot be set aside as a screen buffer.
In this case, paging is achieved by quickly exchanging the entire contents of the
memory buffer and the video buffer (which is located at 8000:0000). Think of the
buffer in main memory as a "pseudopage." While not true paging, the result is
much the same so long as the data is shifted by an assembly language routine.
When paging is used, care must be taken that operations that write on the screen

are directed to the proper page. A program is not required to write on the page cur
rently displayed. In fact, it is often desirable to construct screens "off stage" and
then bring them to view instantaneously. This technique is particularly useful when
making complicated screens in BASIC that take long to write. BIOS keeps a one-
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byte variable in its data area that reports which page is currently displayed. The
variable ranges from 0 to 7. It is located at 0040:0062.

High Level

BASIC uses the SCREEN command to set which page is written upon (the active
page), and which is displayed (the visual page). The pages are numbered from 0 to
3 for 80-column text, or from 0 to 7 for 40-column text. The third parameter fol
lowing SCREEN sets the active page. SCREEN„2 causes all PRINT statements to
write upon page 2. The fourth parameter sets the visual page. SCREEN,,, 1 causes
page 1 to be the one currently shown. Taken together, SCREEN,,2,1 writes on
screen 2 while displaying screen 1. When the display page is left unspecified, it
automatically becomes the same as the active page.
To set aside memory for paging on the PCjr, use the CLEAR statement. This

statement sets the total amount of memory devoted to the screen buffer, which at
start-up is 16384 bytes. To add a second 16K page, write CLEAR,,,32768. Addi
tional text pages require 4096 bytes each. Providing memory is set aside in this
way, the paging commands of the SCREEN statement operate as described above.
The PCjr alone has an extra parameter for this SCREEN statement that erases pages
(that is, returns them to background color). See the BASIC manual for details. Also
unique to the PCjr is the PCOPY statement, which copies an image from one page
to another. PCOPY 2,1, for example, copies the whole of page 2 onto page 1.
Although the monochrome adaptor hasn't enough memory for paging, there is a

way to provide a sort of "pseudopaging." The machine language subroutine below
treats a block of memory as a display page. When the subroutine is called, it
exchanges the contents of the video buffer with the contents of this memory area.
Thus the effect is as if there were two display pages. (Appendix D explains how to
use machine subroutines in BASIC programs.)
You must set aside a 4000-byte memory block for the pseudopage in addition to

the memory that will hold the machine subroutine. In the example below, the block
starts at segment value &H2000 and the machine routine is placed at &H2200. The
segment value of the block is contained within the 9th and 10th bytes of machine
code, and you can easily change it. You will find that the address &H2000 is
expressed as &H00,&H20 in the DATA statement. This is because the least signifi
cant digits are always placed in the lowest memory locations. If you want to posi
tion the block at, say, 1234:0000, then change bytes 9 and 10 to &H34,&H12.
You may need to clear the pseudopage of any garbage left by other programs.

Lines 230-260 accomplish this by poking ASCII 32, the space character, into every
byte (32 acts as a "normal" attribute byte). A program can write to the screen nor
mally and then transfer the contents to the pseudopage. But if you want to write
directly to the pseudopage you must use direct memory mapping.

100 • • • • 'the machine code:

110 DATA &H1E,&H06,&HB8,&H00,&HB0,&H8E,&HC0
120 DATA &HB8,&H00,&H20,&H8E,&HD8,&HBF,&H00
130 DATA &H00,&HBE,&H00,&H00,&HFC,&HB9,&HD0
140 DATA &H07,&H26,&H8B,&H1D,&HAD,&HAB,&H89
150 DATA &H5D,&HFE,&HE2,&HF6,&H07,&H1F,&HCB
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160 ' • • * 'poke the code into memory
170 DEF SE6=&H2200 'point to Location for routine
180 FOR N=0 TO34 'start from fi rst byte
190 READ Q ' read a byte of the routine
200 POKE N,Q 'poke it
210 NEXT •
220 '' " 'clear the pseudopage of garbage:
230 DEF SEG=&H2000 'point to start of pseudopage
240 FOR N=0 TO3999 'for each char and attribute...
250 POKE N,32 'poke in 32
260 NEXT 'unti L whole buffer cleared

500 " " 'write di rect ly to pseudopage:
510 DEF SEG=&H2000 'point to pseudopage
520 S$="PSEUDOPAGE" 'write "pseudopage" mid-page
530M=LEN(S$) 'get length of string
540 FOR N=1 TOM 'for each character of the string...
550 POKE N*2+2000,ASC(MID$(S$,N,1)) 'poke at memory position after next
560 NEXT '... leaving it in video buffer format

600 " " 'now use the routine:

610 PRINT"SCREEN 1" 'print message on screen as usual
620 DEF SEG=:&H2200 'point to the machine subroutine
630 PSEUDOPAGE=0 ' start at the beginning
640 CALL PSEUDOPAGE 'exchange screen and pseudopage
650 CALL PSEUDOPAGE 'switch them back

660

Middle Level

Function 5 of INT 10H chooses which page is currently displayed. Simply place
the page number in AL:

;  SET THE VISUAL PAGE:
MOV AH,5 ;function number
MOV AL,2 ;page number (numbered from 0)
INT 10H ;set the page

This function does not, however, specify the page that is written upon. Any of the
BIOS interrupts that write on the screen (functions of INT 10H) require that the
number of the page to be written upon be given as one of the input registers. But
the DOS screen interrupts all write upon the page currently in view. Thus, for
"off-stage" operations you must use INT 10H.
To find the current page, execute function F of INT 10H, which gives the video

status. The page number is returned in BH.

Low Level

Display pages are chosen by changing the point in video memory from which the
monitor receives its data. This point in memory is set by registers 12 (high byte)
and 13 (low byte) on the 6845 chip, which are together referred to as the start
address. The values for the page boundaries in the B800 buffer are as follows:
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40 COLUMNS 80 COLUMNS

page 0 0000H 0000H

1 0400H 0800H

2 0800H 1000H

3 0C00H 1800H

4 1000H

5 1400H

6 1800H

7 1C00H

[4.1.1] explains how the 6845 registers are programmed, and [4.5.4] contains an
example in which the start address is programmed. In the latter example, simply
give BX one of the values in the table above. All of this only sets the page that is
displayed, of course. To write to a particular page from low level, use one of the
values from the table as an offset into the video buffer during direct memory map
ping operations.

Because direct memory mapping is so rapid, the illusion of paging is easily cre
ated on the monochrome monitor. Set aside a 4000-byte block of RAM to hold the
page. Although the monochrome adaptor cannot be made to read directly from
user memory, the contents of the memory block and of video memory can be
switched so quickly that no one would know the difference. The following routine
toggles the contents of the two.

;  IN THE DATA SEGMENT:
PSEUDO PAGE DU 2000 DUP(720H) ;im*tiaLize buffer to spaces

;  TOGGLE BETWEEN THE PSEUDO_PAGE AND VIDEO BUFFER:
;point ES to the video bufferMOV AX,0B000H

REPEAT:

NEXT WORD:

MOV ES,AX
MOV AX,SEG PSEUDO PAGE
MOV DS,AX

MOV DI,0
MOV SI,OFFSET PPAGE
CLD

MOV CX,2000
MOV BX,ES:CDI]
LODSW

STOSW

MOV DS:CDI]-2,BX
LOOP NEXT WORD

;point DI to start of video buffer
;point SI to start of pseudo-page
;set di rection flag for "forward"
;get set to move 2000 words
;put byte from video buffer in BX
;word from pseudo-page in AX (SI+2)
;word from AX to video buffer (DI+2)
;put byte from BX into pseudo-page
;do the next

The PCjr keeps a Page Register at port address 3DFH. The bit pattern is as
follows:

bits2-0 sets which page (of up to 8) is displayed
5-3 sets whi ch page (of up to 8) i s wri tten

upon when output i s address to B800H
7-6 =00 for a LI a Lpha modes

=01 for 16K graphics modes
=11 for 32K graphics modes
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4.5.4 Scroll between text pages

Because text pages are adjacent to each other in the video buffer, a short array of
text can be laid out entirely within that memory. Then the text can be scrolled up
and down across the screen without actually moving it around in the buffer.
Instead, the screen is caused to start showing the contents of the buffer beginning
from different points, creating the illusion of scrolling. This technique is known as
hardware scrolling.
Hardware scrolling is achieved by changing the display's "start address," which

is a number that points to the character in video memory that is to be displayed at
the top left corner of the screen. Adding 80 to the number "scrolls" the whole
screen upward one line, and subtracting 80 scrolls the screen downwards. In 40-col-
umn mode, add or subtract 40 instead. Figure 4-7 diagrams hardware scrolling.

Video

Buffer
Memory

Row 1

Page 1

Page 2

Page 3

Page 4

High
Memory

Screen Image
Moves Upwards

.. .as Paging Moves
toward Higher
Addresses

Figure 4-7. Hardware Scrolling.

Note that the Start-Address Register does not count attribute bytes; you must
calculate memory positions differently than for direct memory mapping. Also be
aware that, although there is blank memory along the boundaries between pages
(96 bytes between 80-column pages, 48 bytes between 40-column ones), the 6845
chip sees to it that these areas are skipped over, so that the scroll appears to be con-
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tinuous from one page to another. Hardware scrolling occurs so quickly that you
may wish to incorporate a delay routine so that the program user has time to con
trol how far the screen shifts.

BIOS keeps the current value of the start address register in a variable in its data
area. The two-byte variable is located at 0040:004EH.

Low Level

The start address is contained in registers 12 (high byte) and 13 (low byte) on the
6845 chip. [4.1.1] explains how the chip operates. Before each byte of the address is
sent to port address 3D5H, the number of the register it is destined for must be sent
to port address 3D4H. In this example the screen is scrolled upwards by one line.
The variable START ADDRESS holds the address of the first character of the cur-

MOV BX,START ADDRESS ;start at beginning of buffer
ADD BX,80 ;move one Line (80-column Mode)

MOV DX,3D4H ;output to the address register
MOV AL,12 ;address register 12
OUT DX,AL ;send the request

INC DX ;now output to the command regi sters
MOV AL,BH ;high word of start address in AL
OUT DX,AL ;send it to register 12

DEC DX ;back to the address regi ster
MOV ALJ3 ;address register 13
OUT DX,AL ;send the request

INC DX ;back to the command regi sters
MOV AL,BL ; low word of start address i n AL
OUT DX,AL ;send it to register 13
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5

The Disk Drives
Section 1: Monitor Disk Allocation

All disks, whether floppy or fixed, are organized in the same fashion. The sur
face of the disk is laid out as a series of concentric rings, called tracks, and the
tracks are divided radially into sectors. For example, standard 5-1/4-inch floppy
disks have 40 tracks, and under DOS 2.0, each track is broken into nine sectors (15
sectors on the 1.2M floppy, and 17 on the fixed disks). The sector size is 512 bytes,
and 512 bytes x 9 sectors x 40 tracks x 2 sides adds up to the 360K capacity of the
diskette. All types of disk use the 512-byte sector size in PC-DOS.
A file is divided among as many sectors as are required to hold it. Only a few

sectors on the outside rim of the diskette are reserved for special purposes. The oth
ers are available on a "first-come, first-served" basis. This means that as the disk is
filled with data the sectors are gradually filled up, moving inwards to the center of
the disk. When files are deleted, sectors are freed, and with time the available space
comes to be scattered around the diskette, dispersing new files and making them
slow to read and write.

Fixed disks have some special characteristics. Often they are comprised of two or
more parallel disks, each with a pair of heads to read from the two sides. Taken
together, all tracks a given distance from the center are referred to as a cylinder.
Because the heads for all of the disks move in tandem, economy of motion is
achieved by filling all tracks in one cylinder before moving inward to the next.
Groups of cylinders may be devoted to different operating systems. The DOS
FDISK program can, in fact, partition a fixed disk into up to four sections of vary
ing size. For this reason, the specifications of a fixed disk can vary greatly.

Disk sectors are defined by magnetic information written by the utility that for
mats the disk. The information includes an ID number for each sector. BIOS num
bers the sectors from 1-8, 1-9, or 1-15, depending on the disk capacity. Tracks are
not marked magnetically; rather, they are mechanically defined as an offset of the
read/write head from the outer edge of the disk. Tracks are numbered from 0-39 on
5-1/4-inch floppies, or higher on disks of greater capacity. The BIOS disk functions
reference a particular sector using both track and sector numbers. The DOS func
tions, however, regard all sectors of a disk as a single chain numbered upwards
from 0, so that every sector has its own logical sector number.

For floppy disks, the first sector (track 0, sector 1) is given the boot record,
which is a small program that enables the computer to operate the disk drives well
enough to read other parts of DOS. Next comes two copies of the file allocation
table, which keeps track of the allocation of disk space (the second copy is for
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safety's sake). And then comes one copy of the root directory, which lists files and
references to subdirectories and tells where on the disk they begin. Finally, there
are two small DOS programs, IBMBIOS.COM and IBMDOS.COM, which are
read at startup, and which give the computer the capability needed to find and load
COMMAND.COM, which, of course, is the body of the disk operating system.

Fixed disks have a master boot record which contains a partition table that
enables the disk to be partitioned between several operating systems. The partition
table contains information about where the DOS partition begins on the disk, and
the first sector at that partition contains the DOS boot record. The partition is oth
erwise organized like a floppy.
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5.1.1 Read the file allocation table

Disks use a file allocation table (FAT) to allot disk space to files and to keep
track of free sectors. For reasons of reliability, two copies of the FAT are kept on
all disks. They are located in sequence at the lowest possible logical sectors num
bers, beginning from side 0, track 0, sector 2 (sector 1 is always taken by the boot
record): The number of sectors used by a FAT varies by the size and type of disk.
Note that under DOS 3.0 the size of the FAT entries may be 16 bits for fixed disks.
The discussion here assumes 12-bit entries; see the DOS Technical Reference man
ual for information about 16-bit entries.

The file allocation table works by keeping track of every cluster of sectors on the
diskette. A cluster is a group of standard, 512-byte sectors (no matter the disk type,
DOS always works in 512-byte sectors). Groups of sectors are used to keep the
FAT size small. However, the large clusters used by fixed disks waste disk space
when small files are recorded (a 500-byte utility still takes up 4K of disk space).
Here are the various cluster sizes and FAT sizes used by the IBM microcomputers:

Disk Type Sectors/Cluster FAT Size (sectors)

160K floppy 1 1

180K floppy 1 1

320K floppy 2 2

360K floppy 2 2

1.2M floppy 1 7

10M fixed 8 8

20M fixed 4 40

Large cluster size tends to waste disk space, but when large disks have a small
cluster size, the FAT becomes large. During disk operations, DOS loads a copy of
the FAT into memory, keeping it there if possible, and so a large FAT can take up a
good deal of RAM. Because most ATs have plenty of RAM, a much larger FAT is
deemed acceptable. Hence the 20M fixed disk has smaller clusters than the 10M
disk, promoting efficient utilization of disk space. The 1.2M floppies use a single-
sector cluster size because they are primarily intended as a backup medium for the
fixed disk, and so compactness is most important.
Every position in a file allocation table corresponds to a particular cluster posi

tion on the disk. Files usually range across a number of clusters, and a file's direc
tory entry contains the starting cluster at which the first part of the file is stored. By
looking up the position in the FAT that corresponds to the starting cluster, DOS
finds the number of the cluster in which the next bit of the file is found. This cluster
also has its own corresponding entry in the FAT, which in turn contains the num
ber of the next cluster in the chain. For the last cluster occupied by a file, the FAT
contains a value from FF8H to FFFH. Unused clusters (or freed clusters) are given
the value 000, and bad sectors are given FF7H. Finally, values from FF0 to FF7 are
used to indicate reserved clusters.
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5.1.1 Read the file allocation table

A cluster number uses three hexadecimal digits, which is a value contained by
1-1/2 bytes. In order to keep file allocation tables small, the numbers for two adja
cent clusters are kept in three consecutive bytes of the table. DOS automatically
takes care of the necessary arithmetic.
The first three bytes of a FAT are not used for cluster numbers. The first byte

gives a code about the disk type (see [1.1.5]), and the next two bytes are both FFH.
Since these table positions are occupied, the clusters are counted starting from 2,
with 2 and 3 taking up the second triplet of bytes in the table.
DOS 3.0 can generate FATs that have 16-bit entries. These are required for fixed

disks over 10M, which have more than 4086 clusters. Figure 5-1 shows the relation
ship between the FAT and disk clusters.

File's

Directory
Entry

Starting Cluster Number

1FILENAMEEXT

File

Allocation

Table

Offset of Data

for Cluster 34

(IV2 Bytes/Cluster)

1 f|c 0|2 4 1 A0 0 9 3

Read Cluster #34

Tr

= 36

Read Cluster
#147, etc.

Offset
for

Cluster
36 = OlDlD010(1)1 UKDH

= 147

Read
Cluster

#36

Figure 5-1. The File Allocation Table.

There is seldom good reason to make direct changes in the file allocation table.
DOS takes care of all file operations, and it provides services that analyze the table
for data about space availability on the disk. But for certain special needs, such as
unerasing files or creating block device drivers, direct access to the FAT is unavoid
able. Use the following rules to read the FAT directly.

To find the next cluster:

1. Multiply the cluster number by 1.5.
2. Get the two bytes at the resulting offset (rounded down).
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3. If the cluster number is even, take the low 12 bits; otherwise take the high 12
bits.

To convert the cluster number to a logical sector number:

1. Subtract 2 from the cluster number.

2. Multiply the result by the number of sectors in a cluster.

High Level

This example reads the FAT and looks up the value under cluster number 6.
[5.4.2] explains the initial code that reads the FAT sectors. The result is a 12-bit
value expressed as three hexadecimal digits (four bits each), returned in string form.
In the example two 2-digit hexadecimal numbers are combined, and either the right
or left three digits are taken as the result. When BASIC converts a character to hex
form, it returns only one digit if the first is 0, and so the deleted 0 must be restored
for this method to work properly.

100 •'' read FAT sectors
110 DEFINT A-Z 120 DATA &H55,&H8B,&HEC,&H1 E,&H8B,&H76,&H0C,&H8B
130 DATA &H04,&H8B,&H76,&H0A,&H8B,&H14,&H8B,&H76
140 DATA &H08,&H8B,&H0C,&H8B,&H76,&H06,&H8A,&H1C
150 DATA &H8E,&HD8,&H8B,&HC3,&HBB,&H00,&H00,&HCD
160 DATA &H25,&H59,&H1F,&H5D,&HCA,&H08,&H00
170 DEF SEG=&H1000 'pLace machine code at 1000:0000
180 FOR N=0 TO 38 * read 39 bytes of data
190 READ Q:POKE N,Q 'move to memory
200 NEXT 'next byte
210 READSECTOR=0 'start subroutine from first byte
220 BUFFER=&H2000 'transfer data to buffer at 2000:0000
230 L0GICALNUMBER=1 'starting sector for FAT on 360K disk
240 NUMBERSECT0RS=2 ' two sectors in FAT
250 DRIVE=0 'read drive A
260 CALL READSECTOR(BUFFER,LOGICALNUMBER,NUMBERSECTORS,DRIVE) 'get sectors
270 '' 'find the cluster number in the data
280 DEF SEG=&H2000 'point to the FAT data
290 CLUSTERNUMBER!=6 'get cluster number 6
300 C!=CLUSTERNUMBER! 'make copy
310 C!=INT(C!*1.5) 'multiply by 1.5 and round down
320 X=PEEK(C!) ' read two bytes at that position
330 Y=PEEK(C!+1) '
340 X$=HEX$(X) :Y$=HEX$(Y) 'convert to hexadecimal strings
350 IF LEN(X$)=1 THEN X$="0"+X$ 'make strings two bytes if truncated
360 IF LEN(Y$)=1 THEN Y$="0"+Y$ '
370 H$=Y$+X$ 'combine the numbers into one string
380 '' 'see if even or odd numbered cluster, and patch together numbers:
390 IF CLUSTERNUMBER! MOD 2 <> 0 THEN 420 ' jump for ODD case
400 NEXTCLUSTER$=RIGHT$(H$,3) 'even number: take left three digits
410 GOTO 430 ' j ump ahead
420 NEXTCLUSTER$=LEFT$(H$,3) 'odd number: take right three digits
430 PRINT NEXTCLUSTER$ 'print the result

Middle Level

DOS function ICH provides information about the file allocation table, but it
does not return the FAT itself. Place the drive number in DL, where 0 = default.
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1 = A, etc. On return DX has the number of clusters in the FAT, AL has the num
ber of sectors per cluster, and CX has the number of bytes in a sector. DS:BX will
point to a byte that contains the initial FAT byte that is a code describing the disk
type; these codes are listed at [1.1.5].

Low Level

It is far easier to access a FAT in assembly language. Note how the cluster num
ber is multiplied by 1.5 by making a copy of the number and shifting it rightward
one bit to divide it by two, then adding the copy to the original. This method auto
matically rounds the result down. The code that reads the FAT sectors into mem
ory is discussed at [5.4.2].

ODD CLUSTER:

CONTINUE:

SEGMENT:

BUFFER DB1024DUP(0) ;set up space for 2 sectors

INTO MEMORY:

LEA BX,BUFFER ;point to data buffer
MOV DX,1 ; logical sector number
MOV CX,2 ;2 sectors
MOV AL,0 ;drive A
INT 25H ;read sectors
POP CX ;balance stack (see [5.4.2])
FER NUMBER:

MOV AX,3 ;put cluster number in AX
MOV CX,AX ;make copy
MOV DX,AX ;make second copy
SHR DX,1 ;divide second copy by 2
ADD CX,DX ;add the 2 copies (= x1.5)
ADD BX,CX ;add as offset to buffer pointer
MOV DX,[BX] ;get the 2 bytes at that offset
TEST AX,1 ; i s the c luster number odd?
JNZ ODD CLUSTER ; jump if so, else it's even:
AND DX,0000111111111111 B;get number by clearing high 4 bits
JMP SHORT CONTINUE ; jump over "odd" case
MOV CL,4 ;prepare to shift right
SHR DX,CL ;shift down top 12 bits

;and now the next cluster is in DX
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5.1.2 Determine available disk space
Although the next subsection explains how to recover from full-disk errors, there

is no medicine like prevention. Programs should monitor the available disk space
and inform users of an impending shortage. If space is short, the user can leave the
program and correct the problem without loss of data.

High Level —

The following assembly routine returns in the variable CLUSTERS the number of
clusters available on a specified disk. Place the drive number in DRIVENUM,
where 1 = A, 2 = B, etc. Appendix D explains how assembly language subroutines
are integrated into BASIC programs.

10 DEFINT A-Z 'must use integer variables
20 DRIVENUM=1 'put drive number here
30 CLUSTERS=0 ' initialize clusters with any value
40 DATA &H55,SH8B,&HEC,&H8B,&H76,SH06,&H8B
50 DATA &H14,&HB4,&H36,8HCD,&H21,&H8B,&H7E
60 DATA 8H08,&H89,&H1D,SH5D,SHCA,&H04,8H00
70 DEF SEG=8H1000 'place routine at 10000H
80 FOR N=0 TO 20 'for each byte of the routine...
90 READ Q:POKE N,Q ' read it and poke into memory
100 NEXT •
110 FREE^ACE=0 'pointer to start of routine
120 CALLFREESPACEICLUSTERS,DRIVENUM) 'calI the routine
130 PRINT"CLUSTERS: CLUSTERS 'print the number of c lusters

Middle Level

Function 36H of INT 21H tells how much disk space is free. The only input regis
ter is DL, which contains the drive number. The default drive is noted by 0, drive
A by 1, etc. On return, BX contains the number of clusters available, AX tells how
many sectors there are in a cluster, and CX tells how many bytes are in a sector. A
little multiplication produces the desired result. The following example checks that
there is at least 2K of disk space remaining on a double-sided floppy;

MOV AH,36H ;function number
MOV DL,1 ;drive A
INT 21H ;go get the disk space
CMP BX,2 ;at Least 2 clusters (2K) free?
JL RUNNING OUT ;if not, alert the program user
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5.1.3 Get/set the file size

A program may need to check file size for a variety of reasons. One is to calcu
late the number of records a file contains. Another is to determine the end-of-file

position where the file pointer may be set in order to append new data to a file
without changing the existing data.

File size, of course, is automatically set by the DOS functions. Sometimes a pro
gram may need to reserve disk space for future use. In this case, simply open the
file in random access mode and write a record at as high a position as you would
like the file to be long. The records between the high "dummy" record and the file
proper will be filled with whatever data happens to be in the disk sectors allocated
to the file by this action.

High Level

In BASIC, the LOP ("length of file") function returns the exact number of bytes
allocated to a file (be cautioned, however, that old, 1.x versions of BASIC return
the number of 128-byte blocks used by a file). The file must be opened, and it is
referred to by the file buffer number under which it is opened. The format is
X = LOF(l), etc. The following example finds out how many 64-byte records are
contained in a file opened as #3:

100 OPEN"FILENAME" AS U3 'open the f i Le
110 REC0RDLEN=64 'define record size
120NUMBERRECORDS=LOF(3)/RECORDLEN ' caLculate number of records

Middle Level

FCB function 23H of INT 21H reports the number of records in a file. By giving
the file a one-byte record length, its size is returned in bytes. Point DS:DX to an
opened file control block. Then call the function. If the file is not found, AL returns
with FF. Otherwise AL returns 0, and the number of records is placed in the ran
dom record field of the FCB (bytes 33-36). To work properly, the FCB's record
length field must be set after the FCB is opened but before the function is called; the
two-byte field is located at offset 14 in the FCB. If the file is not evenly divided by
the given record length, the number of records reported is rounded upwards. Here
is an example in which a record length of 1 is used:

;  FIND THE SIZE OF A FILE:
LEA DX,FCB ;point DSiDX to FCB
MOV BX,DX ;copy the pointer into BX
MOV CX,1 ;record size in CX
MOV CBX]+14,CX ;move into FCB record size field
MOV AH,23H ;function that reports fi le size
INT 21H ;calI the function
MOV AX,CBX]+33 ;get low part of fi le size count
MOV CX,CBX]+35 ;get high part of fi le si ze count

;now CX:AX has fi le size

It is also possible to set file length using file control blocks. Use the random block
write function, which is discussed at [5.4.5]. This function has a special case where
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if the number of records to be written is set to 0, then the file length is set to the
number of records specified in the random record field.
The file handle method has no function that directly reports file size, but it is

possible to calculate the size by moving the file pointer from the beginning to the
end of the file. When the file is opened the pointer is automatically set to its first
byte. The pointer is moved by function 42H of INT 21H. Place the code number 2
in AL, directing the pointer to the end of the file. BX takes the file handle. CX:DX
holds the offset from the end of the file to the position at which the pointer is set, so
place 0 in both of these registers. Then call the function. On return DX:AX con
tains the new position of the pointer as an offset from its prior position—that is, it
contains the file length (DX holds the most significant part). If an error occurs, the
carry flag is set and AX returns 1 if the function number was invalid, or 6 if the
handle was invalid. Don't forget to reset the pointer to the start of the file, if this is
desired. Place 0 in AL, CX, and DX, and call the function again. Here is an
example:

;  OPEN THE FILE:
LEA DX,FILE_PATH
MOV AL,0
MOV AH,3DH
INT 21H

JC OPEN__ERROR
MOV HANDLE,AX

;  FIND THE FILE LENGTH:
MOV AH,42H
MOV

MOV

MOV

MOV

INT

JC

MOV

MOV

AL,2
BX,HANDLE
CX,0
DX,0
21H

POINTER_ERROR
FILESIZE__HIGH,DX
FILESIZE__LOW,AX

;point DS:DX to path string
;open for reading
;function to open f i Le
;open it
;check for errors
;save the fi Le handle

;function to move pointer
;code to set to end-of-f i le
;fi le handle in BX
;0 in CX and DX
t

;move the pointer
;error?
;store the fi le size
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5.1.4 Recover from insufficient disk space errors
Programs can crash when they attempt to write to a full disk. It is often easy to

avoid this condition, even in BASIC, by checking available disk space beforehand
[5.1.2]. Once the error occurs, try to give the program user options about how to
deal with it. Let him edit out part of the data. Or let him erase some other file on
disk and then try the write operation again. Most radically, let the user insert a dif
ferent diskette to receive the data. This last approach must be undertaken with
great care. First close all open files. Then prompt the disk change. Once the user
indicates that a new disk is in place, create a new file and then write out the data.

High Level

In BASIC, set up an error trapping routine, as shown at [7.2.5]. If a BASIC state
ment attempts to write to a file on a filled disk, error condition #61 occurs. Control
may be transferred to an error-correction routine that informs the user of the prob
lem and allows him to correct it without loss of data.

100 ON ERROR GOTO 3000 'enable error trapping

200 OPEN FILENAMES FOR OUTPUT AS 'open f i Le
210 FOR N=1 TO ARRAYLEN ' start to write an array to di sk
220 PRINT#1,ARRAY$(N) 'write one element
230 NEXT 'next

5000 IF ERR=61 THEN 5100 'an error has occurred: disk full?
5010IFERR= 'other errors...

5100 '' 'full-disk error recovery:
5110 BEEP:PRINT"Disk full — choose an option:"
5120 PRINT"(A) Re-edit the fi le"
5130 PRINT"(B) Delete some other fi le from disk"
5140 PRINT"(C) Use different diskette"

(recovery routines here)

5500 RESUME

Middle Level

All DOS functions that write to disk are capable of some kind of error code that
indicates a full disk. Here is a summary of these codes:
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Access Method Function Name Return Error Code

File Control Block 15H Sequential Write AL = 1
22H Random Write AL=:1
27H Random Block Write AL = 1

File Handle 40H Write to File/Device CX <> BX

Monitor these error conditions after every operation that writes to disk. No critical
error condition occurs, so it is easy to recover. Just test for the error code each time
one of the functions is invoked, and create as elaborate a recovery routine as you
like.

251



5.2.0 Operate On Disk Directories

Section 2: Operate On Disk Directories

Every disk has one root directory from which all directory searches begin. The
root directory may hold entries that refer to subdirectories, which in turn may hold
references to other subdirectories, resulting in a tree structured directory system.
The root directory is always found on particular disk sectors; subdirectories are
kept as ordinary disk files, so they may be located anywhere on disk. Note that a
hard disk may have up to four root directories if it has been partitioned into four
parts, although DOS will only "see" its own root directory. Directories vary in size
depending on the size of a disk and how it is partitioned. The following table shows
the size and locations of the root directories of the various disk types:

Disk Type Directory Size Directory Entries Logical Starting Sector

160K floppy 4 sectors 64 9

180K floppy 4 64 9

320K floppy 7 112 15

360K floppy 7 112 15

1.2M floppy 14 224 29

10M fixed variable—

20M fixed variable—

Depending on how they are partitioned, fixed disks vary in the size of their directo
ries and their logical starting sectors. When the entire disk is given over to PCDOS,
both the XT and AT fixed disks allot 32 sectors to the root directory, giving 512
entries.

Both root directories and subdirectories use 32 bytes to hold the information for
a single file, no matter the type of disk. Thus each sector contained in a directory
holds 16 entries. Each 32-byte field is broken down as follows:

bytes 0- 7 File name

8-10 File name extension

11 File attribute

12-21 (reserved)
22-23 Time file last accessed

24-25 Date file last accessed

26-27 Starting cluster
28-31 File size

No period is written between the file name and its three-byte extension. Both are
left-justified in their fields, and empty bytes are padded with spaces (ASCII 32).
The file attribute tells whether a file is hidden, read-only, etc. [5.2.6]. It also defines
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special directory entries, such as subdirectories or volume labels. The time and date
information is compressed, and reading the values requires bit operations [5.2.5].
The starting cluster refers to a position in the file allocation table (FAT), which is

discussed at [5.1.1]. The FAT keeps track of free space on the disk, and it assigns
the sectors in which a file is written. The FAT may allocate space in groupings
larger than one sector, and these groupings are referred to as clusters. A file is laid
out along a chain of clusters, and the FAT contains a corresponding chain of entries
that indicate where the clusters are located on the disk. The directory needs to
point to the start of a file's chain of entries in the FAT, and that is what the starting
cluster value does. Since files usually do not evenly divide into clusters, the file size
field is required to give the file's exact size in bytes.
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5.2.1 Read/change the root directory

A disk directory is divided between the root directory (discussed here) and
subdirectories (discussed at [5.2.3]). When the program user enters the name of a
particular file to work on, it can be useful to check whether the file is indeed pres
ent. Ordinarily, changes in the root directory are made in the course of normal file
operations or through special DOS functions. However, the directory may be
directly accessed. There is greater need of this approach in high-level languages,
where the DOS utilities are largely unavailable.
The root directory is read and changed by placing the whole of it into memory

using the techniques shown at [5.4.2] that read absolute disk sectors. These opera
tions leave no space between the sectors when they deposit them in memory. The
buffer containing the sector data may be thought of as a series of 32-byte fields,
and a pair of pointers may be used to move about the directory. One pointer is
always a multiple of 32, and it points to the start of a directory entry. The second
pointer is added to the first to locate one of the fields within a 32-byte entry. The
data in memory may be changed as required, and then the entire buffer is written
back to the disk.

There are two methods of reading absolute disk sectors, and in both instances
only one number in the code differs between the read- and write-cases. Since an
error in writing to disk can easily disable the disk and all its contents, take special
care. First be sure that the sector-read operation has performed correctly in all
respects. Only then should you test the sector-write code, making it an exact dupli
cate of the code used for reading, except for the function number change.

High Level

BASIC displays the directory using the FILES command. Only the file names are
listed. FILES gives the directory on the default drive; to specify the drive, write
FILES"A:", etc. Alternatively, information for a particular file can be displayed by
writing FILES"A:MYFILE.DAT". The filename may include * and ?, as in DOS.
The FILES statement supplies file information to the computer user, but sometimes
it is the program that needs to check for the presence of the file. In this case the file
is opened for sequential input, and if it does not exist an error condition is inter
cepted. See the discussion and example at [5.2.3].
To retrieve any information from the root directory, use the machine language

subroutines shown at [5.4.2]. Once the directory data is in memory, set up pointers
as described above and search the memory buffer at 32-byte intervals. The example
below searches for the directory entry of an erased file. When files are erased the
first byte of the file name is changed to E5H, but the remainder of the entry is left
intact. Of course, the disk space for the file is deallocated in the file allocation
table. A routine that unerases a file needs to know the starting cluster in the FAT.
The example locates this two-byte cluster number at offset 26 in the directory
entry.
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100 '''read the directory sectors into memory at segment &H2000:
110 INPUT"Enter erased fi lename ".FILENAMES 'prompt user for fi lename
120 IF LEN(FILENAME$)>12 THEN BEEP:GOTO 110 'error
130 IF INSTR<FILENAME$,".")>9THEN BEEP:GOTO110 'error (etc...)
140 '' 'pad f i Lename and extension with spaces
150 Y=INSTR(FILENAMES,".") 'check position of extension period
160 IF Y=0 THEN FI RSTPART$=F I LENAMES: GOTO 230 'noextension, jump ahead
170EXTENSIONS=LEFTS(FILENAMES,LEN(FILENAMES)-Y) 'isolate extension
180 EXTENSI0NS=EXTENSI0NS+STRINGS(3-LEN<EXTENSI0NS) ") 'add trai ling spaces
190 FIRSTPARTS=RIGHTS(FILENAMES,Y-1) 'isolate first part of fi le name
200 FIRSTPARTS=FIRSTPARTS+STRINGS(8-LEN(FIRSTPARTS) ") 'add trai ling spaces
210 FILENAMES '=FIRSTPARTS+EXTENSIONS
220 '' 'now go find the erased fi le:
230 MIDS(FILENAMES,1,1)=CHRS(&HE5)
240 DIRPTR=0
250 FIEL0PTR=26
260 FOR N=1 to 112
270 XS=""

280 FORM=0to10
290 XS=XS+PEEK<DIRPTR+M)
300 NEXT

310 IF XS=F I LENAMES THEN 340
320 NEXT

assemble the complete name, no period

'make f i rst character 8HE5
'pointer to32-byte entries
'set field pointer to cluster number
'112 di r entries on dbl sided diskette
'clear XS
'put together the f i lename string
'get each character in turn
'next

'matches the modified input string?
'if not, go check next entry

330 PRINT"Too Late — f i le entry obi iterated": END 'not found
340 X—PEEKCDIRPTR+FIELDPTR) 'found it! Get 1 st byte of c luster no.
350 Y=PEEK(0IRPTR+FIELDPTR+1) 'get 2nd byte of cluster number
360 Z=X+256*Y 'Z now has the complete cluster number

Middle Level

DOS provides two pairs of file-searching functions, one for files opened under
the file control block method, and one for files opened under the file handle
method. One function of each pair searches for the first occurrence of a file name in
a directory, and the second searches for subsequent occurrences when global char
acters are given in the file name. Only the file handle method can search sub
directories.

FCB Method:

Function IIH of INT 21H searches for the first occurrence of a file. Point DS:DX
to an unopened FCB and execute the function. Upon return, AL will hold 0 if the
file has been found, and FF if it has not. The DTA is filled with information from
the directory. For normal FCBs, the first byte in the DTA is the drive number
(1 = A, etc.), and the next 32 bytes receive the directory entry. For extended FCBs,
the first seven bytes of the file match the first seven of the extended FCB, the eighth
byte is the drive specifier, and the next 32 are the directory entry.
;  IN THE DATA SEGMENT:

FCB DB 1,'NEWDATABAK',25dup(0)

;  SEARCH FOR THE FILE:

MOV AHJ1H
LEA DX,FCB
INT 21H

CMP AL,0
JNE NO FILE

LEA BX,DTA

;function to search di rectory
;point to the FCB
;make the search
;successful?
; 1 f not, go to recovery routine
;now DS:BX points to di rectory entry
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After function llH has been used, function 12H can search for all subsequent
entries when the file name contains global characters. Only the ? symbol may be
used in the file name (and not *). This function works exactly as the first, and if a
second match is found, the information in the DTA for the first is overlaid.

File Handle Method:

Function 4EH of INT 21H finds the first match to a file name. Point DS:DX to a
string giving the path to the file. For example, B:EUROPE\ FRANCES PARIS
points to the file PARIS. The string may have up to 63 characters, and it is fol
lowed by one byte of ASCII 0. The file name may contain global characters,
including both ? and *. Place the attribute(s) of the file in CX; if normal, the value
is 0, otherwise consult [5.2.6] for attribute values.
Upon return, the carry flag is set if the file was not found. If found, the function

fills the DTA with information about the file. Note this special use of the DTA by
the file handle method of access—the DTA is generally used by the DOS FCB func
tions. The first 21 bytes of the DTA are reserved by DOS for searches for more
matches. The twenty-second byte gives the file's attribute, followed by two bytes
holding the time, and two more holding the date. The next four bytes keep the file
size, low word first. And finally the file name is given in a variable length string
that ends with ASCII 0. A period (ASCII 46) separates the file name and its exten
sion, and neither are padded with spaces.

;  IN THE DATA SEGMENT:
PATH DB •B:FRANCE\PARIS\4EME',0

;  SEARCH FOR THE FILE:
MOV AH,4EH ;function number
LEA DX,PATH ;point DS:DX to path string
MOV CX,0 ;normaL fi Le attribute
INT 21H ;search for the f i Le
J C NO__F I LE ; j ump i f not found
LEA BX,DTA ;point DS:BX to DTA
MOV AL, CBXI+21 ;now fi le's attribute is in AL

The next occurrence of the file name (when global characters are used) is found
by function 4FH of INT 21H. It is set up the same as 4EH, and it can only be used
after 4EH, with the DTA pointer unchanged. When there are no more matches, the
carry flag is set and 18 appears in AX.
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5.2.2 Create/delete a subdirectory
A program can create and delete subdirectories, so long as certain preconditions

are met. To create a subdirectory, there must be at least one empty slot in the root
directory. To delete a subdirectory, it must be empty of all files and all references
to other subdirectories. Further, you can not delete a subdirectory that is the cur
rent directory (the one to which all directory operations are by default directed).
Note that it is impossible to delete the root directory.

High Level i—

BASIC provides the MKDIR ("make directory") and RMDIR ("remove direc
tory") commands. Both are followed by a standard directory path of up to 63 char
acters, including the drive specifier. The path is placed in quotes. To add a direc
tory called STORKS to the subdirectory BIRDS, simply write MKDIR"B:MAM-
MALS \ BIRDS \ STORKS". Once this statement is executed, a file named
STORKS is created for use as a subdirectory, and its existence is recorded as an
entry in the subdirectory file named BIRDS. To delete the same subdirectory, first
remove all files from it [5.3.2]. Then use the statement RMDIR"B:MAMMALS\
BIRDS \ STORKS".

The above example assumes that the root directory is the current directory. But
the entire path need not be listed if the current directory is somewhere along the
way to the subdirectory operated upon. Hence, if BIRDS were the current direc
tory, the STORKS subdirectory could be created or deleted using MKDIR
" \ STORKS" or RMDIR" \ STORKS".

Middle Level

Since file control blocks serve only the root directory, the methods that create
and delete subdirectories must use file handles.

Create a Subdirectory:
Point DS:DX to a string giving the drive and path to the directory in which to

place the subdirectory entry. The string must end with an ASCII 0 byte. To open a
subdirectory called "PRIMATES" in the root directory of drive A:, simply write the
string as A: \ PRIMATES". To open the subdirectory within another subdirectory
called MAMMALS, write A:\MAMMALS\PRIMATES. The drive specifier A:
may be omitted if the disk is in the default drive, and the path need originate only
from the current directory. Place 39H in AH and execute INT 21H; a new directory
will be created if the path is valid. Otherwise the carry flag is set to 1 and AX con
tains the error code 3 ("path not valid") or 5 ("access denied"). This example sets up
the PRIMATES subdirectory:

;  :NTHE data SEGMENT:
PATH DB 'A:MAMMALS\PRIMATE$',0

;CREATE A SUBDIRECTORY NAMED "PRIMATES":
LEA DX.PATH ipoint DS:DX to path string
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MOV AH,39H ;function number
INT 21H ;create the subdirectory
JC ERROR_ROUTINE ;intercept errors

Remove a Subdirectory:
To remove a subdirectory, set up a string exactly as shown in the above example

that creates a subdirectory. Then place 3AH in AH and call INT 21H. Again, error
codes 3 or 5 are returned in AX if the function fails (code 5 may indicate that the
directory is not empty).
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5.2.3 Read/change a subdirectory
Subdirectories are much like root directories, except that they are kept in ordi

nary files rather than at an invariable sector location. Subdirectories are never con
fused with ordinary files because a directory entry that represents a subdirectory
uses a special attribute byte (bit 5 is set to 1—see [5.2.6]). Subdirectories begin with
two special 32-byte entries, the first named by a single period, and the second by
two periods. These orient the subdirectory to other directories around it. Refer
ences to lower subdirectories appear just like file entries.
Supposedly a subdirectory can be read like any other file, so it would seem an

easy matter to load one into memory. But unfortunately the designers of DOS
elected to, place 0 in the file-length field in directory entries that refer to sub
directories. As a result, DOS assumes the file to be of 0-length, and it refuses to
read it. There is no simple way to overcome this problem.

High Level —————

In BASIC, the FILES command can use standard path names to show a
subdirectory; for example, FILES"B:MAMMALS \ BIRDS" displays all of the files
in the subdirectory BIRDS . FILES may also be used to find out if a particular file
is present in a directory. For example, FILES"LEVEL1 \ NEWDATA" checks for the
file NEWDATA and displays the filename if it is found. While this may be useful to
the user, often it is the program itself that needs to be alerted to whether or not a
file exists. To accomplish this, try to open the file for sequential input. If it is not
found then error condition 63 occurs. Set up an error recovery routine, as
explained at [5.4.8]. Then use a variable to flag whether or not the file has been
found ("EXISTS" in the example below). If the program does not need the file
opened, be sure to close it before moving on.

100ON ERROR GOT01000 'initialize error recovery
110 EXISTS=1 'set flag to "fi le exists"
120 INPUT"Enter fi Le name: ",S$ 'request fi le name from user
130 OPEN S$ FOR INPUT AS #3 'open fi le for sequential input
140 IF EXI$TS=0THEN BEEP:PRINT"Fi le does not exist"

'  inform user that no fi le, etc.

IFERR=53 THEN 1500
1010 IF ERR=64THEN ...

1500 EXISTS=0
1510 RESUME 140

'is it error for non-existent fi le?
'capture bad fi les names, etc...

'set flag showing f i le not found
'resume line following error

Middle Level

The file handle functions that access the root directory [5.2.1] can just as easily
reference any subdirectory. To dump the entire contents of a subdirectory, simply
use function 4EH to search for *.*, and then repeat the search operation using func
tion 4FH. When there are no more files, the carry flag will be set and AL will con-
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tain 18. Each time an entry is found, the DTA receives data about the file, includ
ing its entire path string (note the use of the DTA with a file handle function). The
following example displays the path strings of all normal files in a subdirectory.

;  IN THE DATA SEGMENT:
PATH DB 'AiMAMMALSN*.*',®
DTA DB 256DUP(?

;  SET DTA:
LEA DX,DTA
MOV AH,1AH
INT 21H

;  SEEK FIRST FILE:
MOV AH,4EH
LEA DX,PATH
MOV CX,0
INT 21H

JC ERROR

;  DISPLAY THE FILE NAME:
NEXT LINE:

NEXT CHAR:

LEA BX,DTA
ADD BX,30

_  MOV DL,CBX]
CMP DL,0
JE END__STRIN6
MOV AH,2
INT 21H

INC BX

JMP SHORT NEXT_CHAR
;  OUTPUT CARRIAGE RETURN/LINE FEED AT

END__STRING: MOV AH, 2
MOV DL,13
INT 21H

MOV DL,10
INT 21H

;  LOOK FOR NEXT FILE:
LEA DX,PATH
MOV

INT

JC

JMP

FINISHED:

AH,4FH
21H

FINISHED

SHORT NEXT LINE

;point DS:DX at DTA
; funct i on to set DTA
;set the DTA

;function to seek 1st fi lename match
;point to path string
;read fi Les of normal attribute only
;go search for *.*
;if an error, go to recovery routine

;point BX to the DTA
;add offset of f i Lename
;get a character of the f i Lename
;is it the Last in the string?
;if so, jump ahead
;otherwise, function to display char
;display character and forward cursor
;increment pointer to DTA
;go get the next character

END OF EACH LINE:

;function to display character
;carriage return
;write it
; line feed
;write it

;point to path string
;function to search next match
;calI the function
;quit i f no more matches
;go write out name of next match
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5.2.4 Get/set the current directory
The current directory is the directory in which DOS searches for a file that is

specified without a path name. If not set otherwise, the current directory is the root
directory.

High Level —

BASIC sets the current directory using CHDIR. The command is followed with a
string giving the path to the directory to which to move. The string may have up to
63 characters, including a drive specifier, and it is placed within quotation marks
CHDIR"C:MAMMALS\ PRIMATES \ GIBBONS" makes GIBBONS the default
subdirectory. To move to the root directory, write CHDIR" \ " or CHDIR"B: \
BASIC 3.0 can report the path to the current directory, exactly as the DOS

PATH command does. Simply enter PRINT ENVIRON$("PATH").

Middle Level

Function 3BH of INT 21H sets the current directory. Point DS;DX to a string in
standard directory-path form, and end the string with one byte of ASCII 0. For
example, BrBIRDS \ PARROTS \ POLLY would make POLLY the current direc
tory. The B: could be omitted if B: is set as the default drive [5.3.1]. To make the
root directory of drive A the current one, write B: \. This example sets POLLY as
the current drive:

;  IN THE DATA SEGMENT:
path DB •B:BIRDS\PARROTS\POLLY',0

;  MAKE POLLY THE CURRENT DIRECTORY:
MOV AH,3BH ;function number
LEA DX,PATH ;point DS:DX to path
INT 21H ;set the current Di rectory

To find out which directory is current, use function 47H of INT 21H. DS:SI
points to a 64-byte data area in which the path will be written. DL is given the
drive number, where 0 = "default", 1 = A, 2 = B, etc. On return, the function
returns the string without a drive specifier. If a non-existent drive was called, AL
returns with error code 15. The string begins with the name of the first subdirectory
in the chain, not with a backslash. An ASCII 0 byte signals the end of the string.
This example assigns the name of the current directory to the variable
"CURRENT_DIR":

;  IN THE DATA SEGMENT:
CURRENT_DIR DB 64 DUP(?)

;  GET THE CURRENT DIRECTORY:

MOV AH,47H ;function number
LEA SI,CURRENT_DIR ;point to data area
MOV DL,1 ;drive A
INT 21H ;place the string at DS:SI

261



5.2.5 Get/set the time and date of a file

5.2.5 Get/set the time and date of a file

Counting from 0, bytes 22-23 of a 32-byte directory entry hold the time at which
a file was last accessed. Bytes 24-25 hold the date. The bit patterns are:

TIME: bits 11-15 hours (0-23)
5-10 minutes (0-59)
0-4 seconds (0-29 in two-second intervals)

DATE: bits 9-15 year (0-119, as an offset from 1980)
5-8 month (1-12)
0-4 day (1-31)

The day of the week is not recorded; DOS calculates it from the other information.
Also note that, as always, the low byte of these two-byte values precedes the high
byte in memory.

Middle Level

The file control block method of file access can get at a file's date, but not its
time. When the FCB is opened by function FH of INT 21H, the two-byte date field
is filled in the format shown above. This field is located at offset 14H in the FCB
[5.3.5].
The file handle method, on the other hand, can both fetch and set a file's time

and date. Function 57H of INT 21H performs all operations. To set the time and
date, place the file handle in BX and 1 in AL. To retrieve the time and date, place
0 in AL instead. In both cases the date goes in DX, and the time in CX. The bit
pattern is exactly as shown in the table above. The DOS technical reference
manuals state that an exception is made, and that the low bytes of information
are in CH and DH, and vice-versa. This in fact is not the case. The carry flag is
set to 1 if an error occurs, in which case AX returns 1 if the number in AL was
invalid or 6 if the file handle was no good. The following example finds the hour
of the day in a file's time setting:

;  IN THE DATA SEGMENT:
PATH DB •B:NEWDATA.BAK',0

;  OPEN THE FILE:
LEA DX,PATH ;point to path string
MOV AH,3DH ;function to open f i le
MOV AL,0 ;opentoread
INT 21H ;open it
JC OPEN_ERROR ; jump to error routine if problem

;  GET THE TIME AND DATA SETTINGS:
MOV BX,AX ;move fi le handle to BX
MOV AL,0 ;code to fetch time
MOV AH,57H ;function number
INT 21H ;go get the fi le's time
JC TIME_ERROR ; jump to error routine if problem

;  SHIFT 'HOUR* BITS TO BOTTOM OF CH:
MOV CL,3 ;shift down bits 11-15
SHR CH,CL ;hour value is now in CH
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5.2.6 Write protect or hide files

DOS uses six different file "attributes," which give a file name a special status. A
file may have several of these attributes concurrently (but not all). The attribute is
set by the 12th byte of a 32-byte directory entry. The low six bits are significant,
and the others are set to 0. The bits are:

if bit 5 = 1, then the file has been written to since the last backup
4 = 1, then the f i le i s a subdi rectory
3 = 1, then the fi le Is not a fi Le at all, but the volume label
2 = 1, then the fi le is classified as a "system" fi le
1=1, then the fi le is hidden fromdirectory searches
0 = 1, then the f i le is made "read-only"

Bit 5 is the "Archive Bit" used by the BACKUP and RESTORE commands of DOS.
The bit is set to 0 after a backup and changed to 1 when the file is worked on again.
The next time backups are made, unchanged files can be identified and ignored.

High Level ——^

BASIC does not allow you to set a file attribute directly. Consult [5.2.1] for how
to read the directory into memory, find a file, make changes, and then rewrite it to
disk. Once the directory is laid out in memory, the attribute bytes are found at off
sets 11, 43, 75, etc. If you must, read the current attribute byte and change only
one bit, using the bit operations techniques shown in Appendix B. It is easier just to
write all attributes anew. Take care-mistakes can be disastrous. This example
finds the attribute of a file named "NEWDATA.AAA".

100 • load the di rectory sectors at &H2000 and then.,.
110 DEF SEG=&H2000 'point to start of di rectory data
120 FILENAME$="NEWDATAAAA" 'search for f i lename without
130OIRPTR=0 'pointer to directory

'check each entry (dbl sided floppy)
'temporary string to hold file name
'■'°r each character of fi le name...

lan ^ 'add it to the temporary string180 NEXT 'get next character of f i le name
9am 'compare fi lenames, jump if match^  ̂ 'otherwise, go check next entry
Ha J?""d":END 'no match found, give error message220 X-PEEK(0IRPTR+11) 'match found, get attribute byte
230 IF X AND 32 o 0 THEN PRINT"Fi le not backed up" 'analyze attribute
240 IF X AND 16 o 0 THEN PRINT"Fi le i s a subdi rectory"
250 IF X AND 8 o 0 THEN PRINT"Volume Label name — not a f i le"
260 IF X AND 4 O 0 THEN PRINT"Fi le is a system fi le"
270 IF X AND 2 O 0 THEN PRINT"Fi le is a hidden f i le"
280 IF X AND 1 O 0 THEN PRINT"Fi le is read-only"

Middle Level — ————

Function 43H of INT 21H can both change and find a file's attribute, but only if
the file has been opened using the file handle method rather than the file control
block method. There is no complementary function for FCBs. The attribute byte

263



5.2.6 Write protect or hide files

may be set when the file is created [5.3.2] by using an extended file control block.
But if you subsequently open the FCB, change the attribute byte setting, and then
close the file, the original attribute will remain. While you could change the attri
bute by some roundabout method, it is far easier to simply use the file handle func
tion.

To use function 43H, place 1 in AL to give the file the attribute byte placed in CX
(that is, in CL, but with CH equal to 0). Alternatively, place 0 in AL to have the
function return the file's current attribute byte in CX. In both cases, DS:DX points
to a string giving the file's path. As always, it may have 63 characters, including
the drive specifier. The end of the string is marked with an ASCII 0 byte (not
counted as one of the 63 characters). This example gives the "hidden" status to the
file OVERDUE:

;  IN THE DATA SEGMENT:
PATH DB 'A:ACCOUNT$',0

;  TURN ON THE "HIDDEN" ATTRIBUTE BYTE:
MOV AH,43H ;function number
MOV AL,0 ;get the attribute byte
LEA DX.PATH ;point DS:DX to the fi Le's path
INT 21H ;place attribute byte in CX
JC ERROR_ROUTINE ; jump to recovery routi ne
OR CL,10B ;turnonbit1
MOV AH,43H ;function number
MOV AL,1 ;replace the byte
INT 21H ;and now the fi le has hidden status

The carry flag is set to 1 if an error occurs. In this case, AX returns with 2 if the file
was not found, 3 if the path was not found, and 5 if there were other problems
("access denied").
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5.2.7 Read/change the volume label

The volume label of a floppy disk is nothing more than a directory entry with a
special attribute byte. The label fills the first 11 bytes of the entry, as would a file
name and its extension. The attribute byte at offset 11 holds the value 8 (bit 3 = 1).
The date and time fields are also filled in. One property of this attribute is that it
prevents the entry from being displayed when the DIR command is used.
The label can occupy any position in the directory. It is found simply by testing

all attribute bytes in sequence until the value 8 appears. Erase the label by placing
E5 m the first byte of the entry—the attribute byte itself does not need to be
changed. To change the label, write over the first 11 characters (use spaces, if
required, to write over alt 11). And to add a volume label to a disk that does not
have one, search out an empty directory field and write in the label and the attri
bute; nothing more is required.

High Level —^

The discussion at [5.4.2] explains how to read and write absolute disk sectors
from BASIC. For a standard double-sided diskette, use 0 for the side number, 0 for
the track number, 6 for the sector number, and 7 for the number of sectors to read
or write. Once the data is loaded at the designated buffer, the examples given here
can be used to change or add a volume label. Then the sectors are rewritten to disk.
Be careful: mistakes could mean loss of all information on the disk. This example
searches for the volume label and changes it:

100 • load the sectors at, say, &H1000, and then...
110DEFSEG=&H1000

lira cftS 'pointer to first attribute byte
^ ̂ 2 'testall112di rectory ent ri es140 IF PEEK(DIRPTR)=8 THEN 180 'jump below if it is volume label
150 DIRPTR=0IRPTR+32 ' increase pointer to next entry
160 NEXT "go check attribute byte of next entry
170 PRINT"NO VOLUME LABEL FOUNO":END 'no label
180 INPUT"Enter the new volumn lable ",V$ 'prompt user for new label
190 IF LEN(V$)>11 THEN BEEP;PRINT"11 characters only":GOTO 180 'error

?in nTPDTD-I?iD?f string with spaces to 11 chars210 DIRPTR-DIRPTR-11 'point to start of the entry
220 FOR N=1 TO LEN(V$) "for each character of the label

McvT 'poke into the volume label position2^2 next 'next character
250 'and now rewrite the sectors to disk...

Low Level

The example below assumes that you have set up a 3584-byte data buffer to hold
all seven sectors of the directory of a 360K floppy. The buffer is called
DIR_AREA. The first example finds the label and displays it, or, failing to find a
label, it displays a message telling that there is no label. For convenience, the code
sets up the area to hold the sectors in the data segment; it is better to allocate mem
ory for the task and then deallocate it afterwards [1.3.1].
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;  IN THE DATA SEGMENT:
VOL_STRING DB 'The volume label is $•
NO LABEL DB 'There is no volume label $*
DIR AREA DB 3584dup(?) ;holds 7 sectors

;  READ IN THE 7 DIRECTORY SECTORS:
MOV AX,SEG DIR__AREA ;get segment of buffer
MOV ES,AX ;ES:BX points to the buffer
MOV BX,OFFSET DIR_AREA ;get offset of buffer
MOV DL,0 ;drive number
MOV DH,0 ;head number
MOV CH,0 ;track number
MOV CL,6 ;di rectory starts at sector 6
MOV AL,7 ;7 sectors on double-sided diskette
MOV AH,2 ;function number to read sectors
INT 13H ;read the di rectory into memory

;  CHECK ATTRIBUTE BYTES UNTIL FIND ONE EQUALLING 8:
MOV CX,112 ;number of di rectory entries
ADD BX,11 ;point to fi rst entry

TRY AGAIN: MOV AL,CBX3 ;get the fi rst entry
~  CMP AL,8 ;does it have the volume attribute?

JE GOT__IT ;if so, jump below
ADD BX,32 ;otherwise, increase pointer to next
LOOP TRY__A6AIN ;go check next entry

display message TELLING THAT THERE IS NO VOLUME LABEL:
MOV AH,9 ;DOS function to print string
LEA DX,NOl_LABEL ;point to string
INT 21H ;print it
JMP SHORT CONTINUE ;skip below

;  DISPLAY MESSAGE GIVING VOLUME LABEL:
got IT: MOV AH,9 ;DOS function to print string

"■ LEA DX,VOL_STRING ?point to string
INT 21H ;print it
SUB BX,11 ;move pointer from attri to label
MOV CX,11 ;wi II write all 11 chars
MOV AH,2 ;DOS function to write character

NEXT CHAR: MOV DL,CBX] ;place character in DL
INT 21H ;write it, forward cursor
INC BX ;point to next character
LOOP NEXT_CHAR ;gogetit

CONTINUE:

To erase the label, place the following code at GOT__IT:

GOT IT: MOV AL,0E5H ;code to mark empty dir field
"" SUB BX,11 ;point BX to start of field

MOV CBX],AL ;change 1st byte of field

To change the volume label, instead use this code at GOT_IT. It assumes that you
have set up elsewhere the 11-byte string NEW LABEL.

got IT: LEA SI,NEM_LABEL ;point SI to new label
SUB BX,11 ;point BX to start of label
MOV DI,BX ;place pointer in DI
MOV CX,11 ;11 chars to move

REP MOVSB ;move the string

To add a label, write it in as above, but also set the attribute byte to 8 (you can
simply append ASCII 8 to the string holding the new label, since the attribute byte
immediately follows the label itself).
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Finally, in all cases that change the directory, write the directory back to disk.
Mistakes in this code tend to be unforgiving.

;  WRITE CHANGED SECTORS BACK TO DISK:
MOV AX,SEG DIR_AREA ;same input registers as above
MOV ES,AX
MOV BX,OFFSET DIR AREA
MOV DL,0
MOV DH,0
MOV CH,0
MOV CL,6
MOV AL,7
MOV AH,3 ;function number to write sectors
INT 13H
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Section 3: Prepare for file operations

Programs written in high level languages need only open a file and all of the
required preparatory work for file operations is automatically performed. Assem
bly language programmers, however, must set up special data areas that are used
by file I/O. PC-DOS uses two methods of file access, the file control block (FCB)
method and the file handle method. The FCB method descends from the days
before PC-DOS made use of tree-structured directories; it can only access files in
the current directory. The file handle method can reach files anywhere in a tree
directory no matter which is set as the current directory.

Because tree directories are now widely used, the FCB method has become essen
tially obsolete; DOS continues to support this method in order to maintain compat
ibility with older software, and for this reason it is covered here. But your pro
grams should always use the file handle method. The file handle method offers the
additional advantage that it is easier to set up. In some applications, however, the
read/write operations themselves may be somewhat more complicated than in the
FCB method. For example, random file operations using the file handle functions
require that a program calculate each record's offset within the file, whereas the
corresponding FCB function accepts a record number and performs the calculations
itself.

Files must be "opened" before data can be read or written. To open a file means
to set up and initialize a special data area that DOS can use to keep crucial infor
mation about the file, such as its name and drive specifier, the size of the file's
records, etc. High level languages like BASIC automatically set up these areas. A
file control block is such a data area, and when the FCB method is used, the pro
gram sets up the block and DOS reads and manipulates its contents. The FCB is ini
tially given only the name and drive of a file; once it is opened, information is
entered into the block about the size of the records the file is organized in and
about the location in the file from which access should begin.
In the file handle method, on the other hand, DOS automatically sets up a data

area for the file at an unspecified location. DOS then creates a unique 16-bit code
number for the file, and thereafter that "handle" is used by DOS functions to iden
tify which opened file to operate upon. All that must be provided to find the file is
a standard DOS path string with an optional drive specifier and with backslashes
separating subdirectory names. These strings differ from those used with the DOS
A> prompt only in that they terminate with a byte of ASCII 0 so that the program
can tell where the string ends (the IBM manuals dub them "ASCIIZ strings").
The operations that move data to and from files require that you specify an area

in RAM in which the data is to be deposited or from which it is to be taken. This
buffer is defined by allocating an area of memory and setting a pointer to its first
byte (that is, to the buffer's lowest position in memory). If too much data is trans
ferred, the buffer overflows, possibly destroying data at higher addresses. The
buffer can be used as a transfer buffer, handling only a small amount of data for a
read or write operation. Or the buffer can be placed at the area in memory where
the program actually keeps and manipulates the data that is transferred.
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The file control block functions define the transfer buffer by a pointer kept by
DOS at all times. The buffer is referred to as the disk transfer area, or DTA. Unfor
tunately, the IBM technical literature also refers to the pointer that defines the
buffer as the "DTA", although it is better to think of it as the "disk transfer area
pointer." Once the DTA pointer is defined by a special function, all file operations
use that pointer until it is changed. The file handle functions, on the other hand,
require you to define the starting address of the transfer buffer each time a function
is called, and they ignore the DTA pointer used by the file control block functions.
Figure 5-2 shows the two file access methods.

Identify File

Set Starting
Point for

Read/Write

Set Number

of Bytes to
Read/Write

Drive, Name and Extension
Fieids in FCB

Handle Placed in BX
(Obtained by Opening

File Using
ASCIIZ String)

f ((Current Biock x 128) +
(Current Record))
X Record Size

'  •- Caicuiated from
Random Record Number

Set File Pointer

Record Size
(May Read/Write
Multipie Records)

Set Number of Bytes
in CX

Figure 5-2. The two file access methods.
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5.3.1 Set/check the default drive

Programs can save themselves some work by setting a default drive to which all
data file activity is directed. If early in a program the user is invited to choose the
default drive, there will be no confusion as to what goes where.

High Level

The following lines of BASIC code switch the current drive using a machine lan
guage subroutine. The subroutine is only seven characters long. It is placed in the
string X$, and the variable Z is made to point to the first byte of the routine.
Appendix D explains how assembly routines are integrated into BASIC programs.
Set the number of the drive in line 110, where 0 = A, 1 = B, etc. No error condition
occurs if a non-existent drive is set as the default, so be careful. Do not attempt to
combine lines 120 and 130 of this routine, since the BASIC interpreter will not pro
cess them correctly.

100 DEF SEG * set segment to bottom of BASIC data area
110 NUMBER=0 'choose drive A
120 X$=CHR$(180)+CHR$(14)+CHR$(178)+CHR$(NUMBER)+CHR$(205)+CHR$(33)+CHR$ (203)
130 Y=VARPTR(X$) 'get string descriptor (string address at Y+1)
140 Z=PEEK(Y+1)+PEEK(Y+2)*256 'calculate address of string
150 CALL Z 'perform the machine subroutine

Middle Level

Function EH of INT 21H sets the default drive. Simply place the drive number
(0 = A, 1 = B, etc.) in DL and execute the interrupt. This function returns in AL the
number of drives in the machine. Note that 2 is returned when the machine has
only one drive. A better way to determine the number of drives is shown at [1.1.5].

MOV AH,0EH ;function number
MOV DLJ ;code for drive B
INT 21H ;set B: as the default drive

Function 19H of INT 21H reports which disk drive is currently the default drive.
There are no input registers. AL returns with a code number, where 0 = A, 1 = B,
etc.
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5.3.2 Create/delete a file

A file may be created without placing any information into it. A directory entry
is set up, and the file length field in the directory is set to 0. When the file is deleted,
this directory entry is not actually removed, it is merely made non-operational by
changing the first byte of the entry (the first character of the file name) to E5H.
Thereafter the entry can be overwritten by that of a newly created file. At the time
of file deletion, changes are also made in the file allocation table so that the sectors
used by the file are freed for use by others. The contents of the sectors are not
themselves erased. Hence it is possible to recover a deleted file—but be warned that
the operations on the file allocation table are intricate.

High Level

BASIC has no special command that creates a file. Instead, when OPEN is used,
it searches the directory for the file name it is given and creates a new file if the
name is not found. If a new file is opened and closed without any write operations
between, it remains in the directory with a one-byte length, and a cluster of disk
space is allocated to it (the single byte is the Ctrl-Z character—ASCII 26—that is
used to terminate a standard ASCII file). See [5.3.3] for details of the OPEN state-
ment.

The CLOSE statement does not conversely delete a file. Rather, the KILL com
mand performs this task. The file must not be open while deleted. Simply place the
file name in quotes, as in KILL "ArACCOUNTS.DAT". Or, if the file is in a sub
directory, use a standard path string, such as KILL "A:\FINANCES\AC-
COUNTS.DAT". In either case, the drive specifier is required only if the file is not
on the default drive. Note that you can not use this method to delete a subdirectory
(which is a kind of file)—use RMDIR instead [5.2.2].

Middle Level _

A file may be created or deleted using either the file control block or file handle
methods. Creating the file by one method in no way restricts future access to the
file by that method alone. But because a file is opened at the same time that it is
created, it should be created using the same method of access as you wish to use at
that time. When files are created and then closed with nothing placed in them, the
file keeps a slot in the directory with 0 in the file size field, but no disk space is allo
cated to the file. It is important to understand that when a sequential file is opened
for writing data (but not appending data), it is these file-creation functions that are
used, since the file is reduced to zero-length and then entirely rewritten.

FCB method:
j

Function 16H of INT 21H creates and opens a file. Set up an FCB with the file's
name and drive, and point DS:DX to it. Then call the function. The directory is
searched and, if a match is found, the existing directory entry is reused so that the
created file overwrites the file by that name. To avoid inadvertently destroying an
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existing file, first check for a match to the file name using function llH of INT 21H
[5.2.1]. When there is no matching name, a new directory entry is created and AL
returns 0; if the directory is full, AL returns FF. Use an extended file control block
[5.3.5] to give the file a special attribute (e.g., read-only status) [5.2.6]. Once
opened, the new file is initialized to 0 length, and it is allocated a cluster of disk
space. Here is an example:

;  IN THE DATA SEGMENT:
FCB DB 1/MYFILE

;  CHECK FOR EXISTING FILE:
MOV AH,11H
LEA OX,FCB
INT 21H

CMP AL,0
JE WARN_USER

;  CREATE THE FILE:
MOV AH,16H
INT 21H

DAT",25 DUP(0)

;function to search for fi Le name
;point DS:DX to the FCB
;make the search
;if fi Le already exists, AL=0
; jump to error routine if so

;eLse, function number to create f i Le
;create the fi Le (DS:DX already set)

Use an extended file control block to create a file with a special attribute, such as
read-only status. The attribute bytes are discussed at [5.2.6]. Add a seven-byte
header to the usual FCB, starting with FFH, then five bytes of ASCII 0, and then
the desired attribute byte. A hidden file requires that bit 1 of the attribute byte be
set to 1. To hide the file opened in the above example, write:

0FFH,5 DUP(0),2,1,'MYFILE DAT',25 DUP(0)FCB DB

Function 13H of INT 21H deletes a file. Point DS:DX to an wnopened FCB and
execute the function. If no match is found for the file name, AL returns with FF;
otherwise AL is given 0. Global characters (question marks, but not asterisks) may
be used in the file name, in which case more than one file may be deleted by a sin
gle call to the function. Here is an example:

;  IN THE DATA SEGMENT:
FCB DB 1,'MYFILEDAT',25 DUP(0)

;  DELETE 'MYFILE':
MOV

LEA

INT

CMP

JE

AH,13H
DX,FCB
21H

AL,0FFH
DELETE ERROR

;function number
;point DS:DX to FCB
;deLete the f i Le
;check for failure
; Jmp to routine if fai Led

File Handle Method:

Function 3CH of INT 21H creates and opens a new file by the file handle
method. Point DS:DX to a string giving the file's path and name in standard DOS
format, including an initial drive specifier if the file is not on the default drive. The
string must end with an ASCII 0 byte. Place an attribute byte [5.2.6] for the file in
CX (0 for a normal file). Then execute the function. If successful, on return the
carry flag is set to 0 and AX contains a handle for the new file. An error has
occurred if the carry flag is set to 1, and in that case AX contains 3 if the path was
not found, 4 if all file buffers are already open, or 5 if the directory is full or if the
file already exists but is marked read-only. Note that if the directory already con-
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tains a file by that name, the existing file is truncated to 0 length, effectively
destroying it. To avoid mistakes, use function 4EH of INT 21H to check for a
match beforehand.

;  IN THE DATA SEGMENT:

PATH DB •8:LEVE L1\LEVEL2\FILENAME.EXT•,0

;  CHECK FOR A MATCH TO THE FILENAME:
MOV AH,4EH ;function to check for match
LEA DX,PATH ;point DS:DX to the path
INT 21H ;see if there is a match
JNC WARN USER ;don't go on if match found

;  CREATE THE FILE:

MOV AH,3CH ;eLse use function to create fi le
MOV CX,0 ;normal attribute
INT 21H ;create the file (DS:DX,CX sti LI set)
JC OPEN_ERROR ;go to error routine if carry flag set
MOV HANDLE,AX ;store a copy of the f i Le handle

DOS 3.0 adds a new function to create files by the file handle method. This is
number 5BH of INT 21H. It operates exactly as function 3CH above, except that it
produces extended error codes for better error checking. These are explained at
[7.2.5].
To delete a file by the file handle method, use function 41H of INT 21H. Again,

point DS:DX to a string giving the file's path and name. Global file name charac
ters are not allowed. Then call the function. If the carry flag is 1, the function has
failed; AX will hold 2 if the file was not found and 5 if there was a disk drive prob
lem. Note that you cannot delete read-only files with this function; change the file's
attribute [5.2.6] before deleting it. Here is an example:

;  IN THE DATA SEGMENT:
PATH DB 'B:LEVEL1\LEVEL2\FILENAME.EXT',0

;  DELETE THE FILE:

MOV AH,41H ;function number
LEA DX,PATH ;DS:DX points to the di rectory path
INT 21H ;delete the f 1 le
JC DELETE_ERROR 790 to error rout i ne 1 f carry flag set

DOS version 3.0 has a special function (5AH of INT 21H) that creates a tempo
rary "nameless" file. DOS generates a name of its own for the file and checks to see
that it does not already exist in the directory. This feature averts any possibility
that a program's temporary files might match the name of an existing disk file,
destroying it. On entry, DS:DX must point to a string that traces the path up to the
directory in which the temporary file will be created. End the string with a
backslash. Place the file's attribute in CX (normally 0). On return AX holds the file
handle, unless the carry flag is set to 1, in which case AX holds error information.
The arbitrary file name is appended to the end of the path string. This function can
return extended error codes, which exist only in DOS 3.0; they are explained at
[7.2.5]. The file is not automatically deleted by this function—the program must
use function 41H (above). This example causes DOS to create a temporary file and
later deletes it:
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;  IN THE DATA SEGMENT:
PATH DB • 8: LEVEL1 \LEVEL2\ M2 DUP(0)

;  CREATE THE TEMPORARY FILE:
MOV AH,5AH
LEA

INT

JO

DX,PATH
21H
CREATION ERROR

;function number
;point DS:DX to the path
;make the temporary f 1 le
;error routine is carry f lag=1
;.. .handle now in AX

MOV AH,41H
LEA DX,PATH
INT 21H

JC DELETION ERROR

;... later, to delete f i le:
;function number
;repoint DS:DX to path string
;delete the temporary f i le
;error routine is carry f lag=1
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5.3.3 Open/close a file

To open a file means to set aside small blocks of memory to hold information
about the file and to act as a way station (a buffer) through which data moves
between the file and memory. High level languages automatically set up these
blocks for you; assembly language does not. When a file is opened, the directory is
searched for its presence. When found, DOS takes information from the directory
about the file, such as its size and date. Later, when the file is closed, DOS updates
this directory information. Closing a file also "flushes" out the DOS data transfer
buffer, sending to disk the last information directed to the file. Failing to close files
before ending a program can result in loss of data.

If a program operates on many files, be sure to keep an eye on how many are
open at any one time. DOS 2.1 allows up to 99 files to be open at once, with the
default being 8 (change the number with the DOS FILES command); BASIC allows
no more than 15. Each file takes up memory for the parameter block and buffer.
And the memory for each file is put aside before any files are opened, so that the
memory is unavailable to the program even when the specified number of files are
not open. For this reason, you can conserve memory by setting the largest admissi
ble number of files to no more than required, using the methods shown below.

High Level ——^

When BASIC opens a file, it searches the directory for it, and if it is not found, a
new file by the given name is created. There are two ways of writing a statement
that opens a file, and in most instances one does as well as the other. The only dif
ference is that one form is rather cryptic, while the second comes closer to natural
language in its expression. In either statement you must supply at least three pieces
of information. First, the name is required; since it is a string, it is placed within
quotes. Second, a number from 1 upwards is assigned to the file as the ID number
by which other statements read or write to the file. And third, you must specify for
what purpose the file is being opened, that is, whether it is for random access, for a
sequential read, or whatever. To open the file MYFILE.TXT to write to a sequential
file ("OUTPUT" or "O"), where the file accessed is the one opened as #2, write
either:

OPEN "0",#2,"MYFILE.TXT"

•■■OPsaa

OPEN "MYFILE.TXT" FOR OUTPUT AS #2

Note that in either case the number #2 refers to file buffer 2. The number may be
any value that does not exceed the number of file buffers allowed. If six files are
supported simultaneously, the number must be from 1 to 6. However, file buffer #1
does not need to be used before a file can be opened under number #2. BASIC sets
the number of files buffers to 8 by default, and you can change the number to from
1 to 15. Of these, four are used by BASIC for its own purposes, so that in the
default condition only four are available for I/O. Use the F: parameter when
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BASIC is loaded in order to set the number of buffers. For example, if you type
BASICA/F:10 when starting up BASIC, ten buffers are created, and six are avail
able for file operations.
A second parameter, S:, sets the size of the file buffers. All buffers are the same

size. The default is 128 bytes, and the value may be as large as 32767. For sequen
tial files it may be set to 0, saving a little memory. For random files it must be as
large as the largest record size. Note that if records are 512 bytes long and the
buffer size is set to 512, faster disk operations result. BASICA/S:512/F:10 opens 10
buffers with a 512-byte record size. Each file takes 188 bytes plus the buffer size, so
7K of memory is consumed by this configuration. The number of file buffers
opened must not be more than allowed by DOS.

Cryptic Form:
The first form of the OPEN statement shown above uses single letters to desig

nate the kind of file operation desired. There are three options:

"0" output data to a sequential fi Le
"I" input data from a sequential fi le
"R" both read and write data to and from a random f i le

Sequential files can not be written to while they are opened for reading, and vice-
versa. Typically, a sequential file is opened, read in its entirety into memory, and
then the file buffer is closed. After changes have been made, the file is reopened
(via any file buffer) for output, and the file is written back to disk, overlaying the
sectors that hold the file and possibly taking up some more.

There are a few things to note about this form of the OPEN statement. The file
name should contain a drive specifier if the file is not found on the default drive
(the drive from which BASIC was loaded). Also, the file name may be given as a
string showing the path to a file located in a subdirectory, as in OPEN
"r,#l/'A:\ LEVEL1\LEVEL2\MYFILE.TXT". In addition, note that you can
tack on a record length specification to the end of the statement, as in OPEN
"R",#3/'B:MYFILE.TXT",52. In this case, every record will take up 52 bytes of disk
space. If a FIELD statement does not make use of all 52 bytes, the remainder is
wasted. This parameter is essential in random file operations. Most sequential file
operations do not require a record length setting, but you can speed up file opera
tions by setting the record size to 512. The record length may be from 1 to 32767
bytes, and it defaults to 128.

Natural Language Form:
The second form of the OPEN statement does exactly the same as the first,

except that it uses complete words. Rather than write "O" or 'T", write OUTPUT
and INPUT (without quotes), as in OPEN "FILENAME" FOR INPUT AS #1. For
random files, give no such specification at all, as in OPEN "MYFILE.TXT" AS #2.
In addition, you can specify APPEND to write data starting from the end of a
sequential file, without overwriting any of the existing data, as in OPEN
"B:MYFILE.TXT" FOR APPEND AS #3. As with the first form discussed above,
the statement also takes an optional specification of record length. Just append
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LEN = number to the end of the statement. For example, OPEN "C:MYFILE.TXT"
AS #1 LEN = 52 opens a random file with 52-byte records.
Often a program will take the name of a file from the program user. To use this

file name, in the OPEN statement simply substitute for the name of the file the
name of the string that holds the file name. Error checking is required to be sure the
name is acceptable.

100 INPUT"Enter fi le name: ",F$ 'get f i le name from user
110 IF INSTR(F$,".")O0 THEN 130 'jump if it has an extension
120 IF LEN(F$) > 8 THEN 500 ELSE 150 'if Longer than 8 chars, error
130 IF LEN(F$) > 12 THEN 500 ' if Longer than 12 chars, error
140 IF LEN(F$)-INSTR(F$,".")>3 THEN 500 'if extension over 3 chars, error
150 OPEN F$ FOR INPUT AS #1 'open the f i Le

500 INPUT"Improper fi Le name — enter another: ",F$ 'get another name
510 GOT0110 ' ana Lyze new name

Closing Files:
Closing files is trivial. To close all that are open, simply write CLOSE. To close a

particular buffer, or several buffers, write CLOSE #1 or CLOSE #1,#3, etc. It is
important to close all files before a program terminates. Data may remain in the
buffer that has not yet been output to disk. Note that the END, NEW, RESET,
SYSTEM, and RUN commands close all file buffers, but they do not flush the buff
ers. Once closed, the file can be reopened using any available buffer number.

Middle Level ————

DOS provides different functions for opening and closing files depending on
whether a program uses the file control block method or the file handle method of
access. In either case, only pre-existing files may be opened. A separate function
[5.3.2] creates new files.

FCB Method:

Function FH of INT 21H opens an existing file. You must first set up a file control
block, as shown as [5.3.5]. Before opening the FCB, fill in only the file name and
drive specifier (0 = default, 1 = A:, etc.). Point DS:DX to it and call the function.
On return AL will hold 0 if the file was successfully opened, and FF if the file was
not found. If 0 was used as the drive specifier, the number will be changed to that
of the default drive.

Only after the file has been opened should you set the record size (defaults to 128
bytes), or the random record or current record fields (these are discussed in the sec
tions concerning sequential and random operations). When opened, the current
block field is set to 0, and the date and time fields are filled in from directory infor
mation.

To close a file using the FCB method, point DS:DX to the opened FCB and call
function 10H of INT 21H. If successful, information about the file's size, time, and
date will be set in the directory, and AL will return 0. But if the file name is not
found in the directory, or if it is found in a different position, a disk change will be
indicated by AL returning FF.
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;  IN THE DATA SEGMENT:
FCB DB 1,'FILENAMEEXT',25 DUP(0)

MOV AH.BFH ;function number
LEA DX.FCB ;point DS:DX to the FCB
INT 21H ;opens the f i le
CMP AL,0 ;check for errors
JNE OPEN ERROR ; jump to routine if error

;  CLOSE THE FILE:
MOV AH,10H ;function number
LEA DX,FCB ;point DS:DX to the FCB
INT 21H ;close the f i le
CMP AL,0 ;check for error
JNE CLOSE ERROR ; jump to recovery routine

File Handle Method:

Use function SDH of INT 21H to open files. Point DS:DX to a string giving the
path and file name, with drive specifier if required. The entire string should be no
more than 63 bytes long, and it must be followed by an ASCII 0 byte. Place an
"access code" in AL, where 0 opens the file for reading, 1 opens it for writing, and 2
opens it for both. Upon return, AX will hold the 16-bit handle by which the file is
thereafter identified. The file pointer is set to the beginning of the file. The record
size is set at one byte—this is because random file operations under the handle
method are not specially buffered: in essence, random files are treated like sequen
tial ones, and the same functions deal with both. This function opens both normal
and hidden files. On return the carry flag will be set to 0 if the file opened success
fully. If not, the flag will be set to 1, and AX will hold 2 if the file was not found, 4
if the program has attempted to open too many files, 5 if there was a disk access
problem, and 12 if the access code placed in AL was invalid. Here is an example:

;  IN THE DATA SEGMENT:
PATH DB •A:LEVEL1\FILENAME.EXT\0

;  OPEN THE FILE FOR BOTH READING AND WRITING:
MOV AH,SDH ;function number
MOV AL,2 ;open for reading or writing
LEA DX,PATH ;point DS:DX to path string
INT 21H ;open the file
JC OPEN_ERROR ; jump to error routine if problem
MOV HANDLE,AX ;save a copy of the handle

Function 3EH of INT 21H closes files opened under the file handle method. Sim
ply put the handle in BX and execute the function. On return, the carry flag will be
set to 0 if successful, and to 1, with AL = 6, if the file handle was invalid.

;  CLOSE THE FILE:
MOV

MOV

INT

JC

AH,3EH ;function number
BX,HANDLE ;place fi le handle in BX
21H ;close the fi le
CLOSE ERROR ;go to error routine if carry f lag set
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Function 45H of INT 21H creates a second file handle from an existing, opened
handle. BX is given the existing handle, and AX returns the new one. Function 46H
of INT 21H, on the other hand, links a second handle (placed in CX) to an opened
handle (in BX) so that the former refers to the same file or device as the latter.
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5.3.4 Rename a file/move a file's directory location

Renaming a file can entail nothing more than changing the first 11 characters of
the file's directory entry. In a tree structured directory, however, the entire direc
tory entry may be moved to another subdirectory, redefining the path to the file. A
single command can both rename a file and move it to another directory.

High Level

The NAME command in BASIC renames a file. It can also move the file to a dif

ferent directory. List first the existing name and then the new name for the file,
placing them separately in quotes, as in NAME "OLDFILE.EXT" AS "NEWFILE.-
EXT". In this case, a file in the root directory is renamed. File paths may be used to
change the names of files located in subdirectories. For example, NAME
"B:LEVELl\OLDFILE.EXT" AS "B:LEVEL1\NEWFILE.EXT" changes 'OLD-
FILE.EXT" to "NEWFILE.EXT".

Note that the complete path must be given for the new file name. If you were
instead to write NAME "B:LEVEL1 \ OLDFILE.EXT" AS "NEWFILE.EXT", then

the file would not only be renamed, but it also would be transferred to the root
directory. To move a file from one subdirectory to another without changing its
name, write NAME "A:SUBDIR1 \ OLDHLE.EXT" AS "A:SUBDIR2\OLDFILE.-
EXT". Files may not be moved between disks using this method. Because files of the
same name may be kept in different directories, another possible error is to attempt
to move like-named files together. In this case, error code 58 is returned [5.4.8].

Middle Level

DOS can rename files using both the file control block method and the file han
dle method. The former may operate only upon files in the current directory.

FCB Method:

Use function 17H of INT 21H. Point DS:DX to an opened file control block.
Place the new name for the file in the FCB starting at offset llH (this is a "reserved
area" of the block). The second name may use the global character ?, in which case
the characters at those positions in which it appears are not changed. Upon return,
if the new name has already been used elsewhere in the directory then AL = FF,
otherwise AL = 0. This example changes the file ACCOUNTS.DAT to
DEBTS.DAT.

;  IN THE DATA SEGMENT:
FCB 08 1/FILENAMEEXT*,25 DUP(0)
NEWNAME 08 'NEWNAMEEXT' ;11 characters to replace old name

;  PLACE NEW FILENAME IN VARIABLE CALLED * 'NEWNAME* *, THEN...
MOV SI,OFFSET NEWNAME ;point OS:SI to the new f i Lename
MOV AX,SEGFC8 ;ES:OI points to FCB
MOV ES,AX
MOV 01,OFFSET FCB
ADO 0I,11H ;start at offset 11
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MOV CX,11
REP MOVSB

LEA DX,FCB
MOV AH,17H
INT 21H

CMP AL,0FFH
JE RENAME ERROR

;11 bytes in a fi Lename
;transfer the 11 bytes
;point DS:DX to the FOB
;function to change name
;change the name
;test for error
;go to error routine if problem

File Handle Method:

Function 56H of INT 21H renames and moves files. DS:DX points to the usual
DOS path string (to 63 characters) that gives the name of the file to be renamed,
and that terminates with an ASCII 0 byte. ES:DI points to a second string that
gives the new name and path. The drive specifiers (if any) must match. If the paths
are different, the file is moved to a different subdirectory, as well as being
renamed. To move a file without renaming it, simply give the same name but a dif
ferent path in the second path string. On return, if an error has occurred, the carry
flag is set and AX contains 3 if one of the paths was not found, 5 if there was a disk
error, and 17 if different drives were specified. This example moves ACCOUNTS.-
DAT from the subdirectory "GAINS" to the subdirectory "LOSSES".

;  IN THE DATA SEGMENT:
OLDPATH DB 'A:GAINS\ACCOUNTS.DAT',0
NEWPATH DB 'A:LOSSESNACCOUNTS.DAT',0

;  CHANGE THE FILE'S PATH:
LEA DX,OLDPATH
MOV AX,SEG NEWPATH
MOV ES,AX
MOV DI,OFFSET NEWPATH
MOV AH,56H
INT 21H

JC ERROR ROUTINE

point DS:DX to old path
point ES:DI to new path

function number
move the f i Le

go to error routine i f carry f Lag set
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5.3.5 Prepare for file operations
High-level languages like BASIC automatically perform the preparatory work

for file operations. But assembly language programs have work to do before they
can create or open a file. The requirements differ depending on whether the pro
gram uses the file control block or the file handle method of file access. In general,
for either method you must set up a string or parameter block that names the file,
and also a buffer for the data transfers. DOS provides separate sets of read/write
functions for the two methods.

Middle Level

File Control Block Method:

The file control block method of file access requires that you construct a parame
ter block that initially contains just enough information about the file so that it can
be found in the directory. Although an FOB has many fields, generally only a few
need to be filled; once the file is opened, DOS fills in much of the remainder of the
information. Note that a special field is tacked on to the front of the block to make
an extended PCS, which is explained below. Here is the FOB structure:

Drive (DB) A number telling which drive the file is found on. 1 = drive
A, 2 = drive B, etc. If set to 0, DOS uses the default drive,

and it replaces the 0 with the number of the default drive.

Name & Extension (11 bytes)
Left-justify the eight-byte file name, and fill the remaining
spaces with blanks (ASCII 32). The same applies to the
three-byte extension. No period symbol is placed between
the two.

Current block (DW) DOS organizes files in blocks of 128 records, numbered 0-
127. For example, it treats random record #129 as record #0
of block #1 (counting for both records and blocks starts
from 0). There are no special markings in the file that
delimit blocks and records. Rather, the offsets of blocks and
records are calculated on the basis of the record size, which

is set in the next field of the FCB.

Record size (DW) All DOS functions that read and write to files work in units

of records. For random files it is essential that the record

size be set to match that of the random records placed in the
file. For sequential files the record size is not critical, but a
small record size can slow down file operations. Because the
sector size is 512 bytes, a 512-byte record size is optimal.
DOS automatically places the default value 80H (128) in the
record size field when the file is opened. So be sure to set
the field after opening the FCB.

282



Prepare for file operations 5.3.5

File size (DD)

File date (DW)

Current record (DB)

The size is given to the nearest byte. It is filled in by DOS
when the file is opened.

The date is written in by DOS when the FCB is opened. The
format is given at [5.2.5].

The current record is the counterpart of the current block
field. The records are numbered 0-127. Random record
#200, which is located in block 1, would have current
record number 71 ((200-128)-l).

Random record number (DD)
Rather than require that the program calculate the block
and record positions of random records, DOS does the
work itself. In random file operations, simply place the
record number in this four-byte field. When the random file
operation is performed, DOS places the proper values in the
current block and current record fields. Remember that the
most significant byte is the highest in memory.

The relationship of the current record field, current block field, and random record
field is shown in Figure 5-3.

Current Current Random Record
Block Record Number

0
0

0 0
1 1

0 2 2

0
1

2

128

129

130

Figure 5-3. The organization of random records in an FCB.

It is easiest to set up an FCB as a variable in a program's data segment. If the
name of the file to be opened is invariable, the name can be written directly into its
field. Initialize the remainder of the block with ASCII 0. Only after the FCB has
been opened (using function FH of INT 21H, as shown at [5.3.3]) should you write
the remaining information into the block. Note that the FCB for a simple sequential
operation using a 128-byte record size requires no further preparation. Once the
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FCB is set up, subsequent file operations access it by pointing DS:DX to it. The
simplest form is:

FCB OB 1,'FILENAMEEXT',25 DUP(0)

Alternatively, set the FCB up as a structure:

FCB STRUC
DRIVE_NUM DB 0
FILE_NAME DB 8 DUP(?)
FILE_EXT DB 3 DUP(?)
BLOCK_NUM DW 0
RECORD_SIZE DU 0
FILE_SIZE DD 0
FILE_DATE DW 0
RESERVED DB 10 DUP(0>
CURRENT_REC DB 0
RANDOM_REC DD 0
FCB ENDS

This approach makes it easy for a program to place data into the FCB, since labels
exist for every field. Depending on the type of file operation, the fields pose the fol
lowing requirements:

1. To access random files you must set the record size and the record number in
the random record field.

2. To access sequential files from the beginning you need only set the record
size, providing that you initialize the current block and current record
fields to 0 (simply initialize the entire FCB to 0's except the drive specifier
and file name). V^en opened, the record size field is set to 128; if that suf
fices, no further initialization is required.

3. To access sequential files midway, or at the end, you must set the current
block and current record fields (here your program must do the calculat
ing itself).

The program segment prefix [1.3.0] has a field large enough to hold a file control
block. This space is provided for every program, and so it is economical to make
use of it, especially in COM programs. The FCB field is located at offset SCH in the
PSP. In COM programs, use ORG to set up the FCB, as follows (here, the default
DTA—which is discussed below—is also labeled):

;  AT THE BEGINNING OF THE CODE SEGMENT:
ORG SCH

FCB LABEL BYTE

DRIVE NUM DB 0

FILE NAME DB 8 DUP(?)

FILE EXT DB 3 DUP(?)

BLOCK NUM DU 0

RECORD SIZE DW 0

FILE SIZE DD 0

FILE DATE DU 0

RESERVED DB 1C9 DUP(0)

CURRENT REC DB 0

RANDOM REC DD 0

ORG 80H
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DTA LABEL BYTE

ORG 100H
ASSUME CS:CSEG,0S:CSE6,SS:CSEG

An extended FCB is used to create or access files that have special attributes,
such as hidden files and read-only files. The various attributes are explained at
[5.2.6], Extended FCBs are seven bytes longer, with the additional seven bytes pre
ceding the usual block. The first byte is FF, which indicates the special status. It is
followed by five bytes of ASCII 0, and then by the attribute byte itself. When
opening a file using an extended FCB, DS:DX points to the first of the additional
seven bytes (FF), rather than to the drive specifier as for normal FCBs. Here is the
general form, in which 2 is the value of the attribute byte and 1 is the drive
specifier:

FCB DB 0FFH,5 DUP(0),2,1,'FILENAMEEXT',25 DUP(0)

File Handle Method:

The file handle method is easier to set up than the FCB method. For this method,
you need only set up a string giving the file's path, just as in standard DOS com
mands. For example, BrCOMPILE \ UTILITY \ PASCAL names the file PASCAL
in the subdirectory UTILITY. The strings are limited to 63 characters, including the
drive specifier. When the file is opened (using function SDH of INT 21H—see
[5.3.3]), DS:DX is pointed to the first byte of this string. DOS does all the work of
parsing the string and finding the file, and once the file is opened DOS returns a
16-bit ID number for the file in AX. The ID is called the file handle, and it is used in
all subsequent operations that operate on the file.

The Data Buffers:
A program must specify a location in memory where incoming data is deposited

or outgoing data is removed. This space in memory can be a transfer buffer that
acts as a way station for the data. Or the memory space can be the actual location
at which the data resides when it is processed. A transfer buffer typically is set to
the size of one record, and it may conveniently be set up as a string variable in the
data segment, as in the example below. Large data work areas, on the other hand,
should be allocated by DOS using the memory allocation methods given at [1.3.1].
Setting up, say, a 10000-byte data area in the data segment itself makes the pro
gram 10000 bytes larger on disk, which is wasteful.
The buffer used by the FCB method of file access is called the "disk transfer

area," or DTA. This buffer is pointed to by a word-length pointer that is kept by
DOS and that can be changed by your programs. IBM documentation often refers
to this DTA pointer simply as "the DTA." Since only the start of the buffer is speci
fied, nothing stops data from being deposited beyond the end of the DTA, so you
must see to it that this never happens. The DTA pointer is set by a special DOS
function, and once it is set, all read/write functions automatically access it. This
means that the functions themselves do not have to contain the transfer buffer
address.
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When the DTA is made synonymous with the memory area in which the data is
processed, it may be necessary to constantly change the DTA so that file operations
can access particular fragments of the data. In a single sequential read operation or
in a single random block read operation, DOS automatically places one record
after another in the DTA. Be sure to allot enough space to hold the number of
records the program has requested. The DTA cannot be more than one segment
(64K) long.

Use fimction lAH of INT 21H to set the DTA pointer. Point DS:DX to the first
byte of the DTA and execute the function. That is all there is to it. Here is an
example:

;  IN THE DATA SEGMENT:
DTA 256 DUP<?)

;  SET UP THE DTA:
LEA DX,DTA 'point DS:DX to DTA
MOV AH,1AH 'function to set DTA
INT 21H 'set the DTA

Function 2FH of INT 21H reports the current DTA pointer setting. There are no
input registers. On return, ESiBX holds the segment and offset of the DTA.
The program segment prefix [1.3.0] provides every program with a 128-byte

ready-made DTA from offset 80H to 9FH. You may wish to use it if memory is
scarce. The DTA pointer is initially set to point to this buffer, so there is no need to
set the pointer at all if it is used. This default buffer is especially easy to use in
COM files, where DS points to the bottom of the PSP. EXE files may require a little
extra coding to access the default DTA. Note that to find the current setting of the
DTA pointer you must use function 2FH of INT 21H. There are no input registers.
On return ESiBX points to the DTA.
The DTA pointer is not used in the file handle method of file access. The func

tions that read and write data always contain the address at which the data buffer
is located. It is entirely up to you whether the data is moved to an intermediary
buffer or to its final location in memory.
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5.3.6 Analyze information from the command line
When loaded, many programs allow the user to place additional information on

the DOS command line, usually to indicate the name of the file that the program
will first work on. This information is dumped into the 128-byte region beginning
at offset 80H in the program segment prefix [1.3.0], (This same area is also used as
the default DTA, as discussed at [5.3.5]). The first byte at 80H tells how many
characters there are in the string, and then the string itself follows.

For programs that use the file handle methods to work on files, the form in which
a file name is entered from the command line should be adequate for file opera
tions. Just require that the program user adhere to the standard DOS protocol for
path strings. File control blocks, on the other hand, require that a string like
'A:ACCT.BAK' be converted to the form 1/ACCT BAK'. DOS has a special
function that makes this conversion from the first information following the pro
gram name on the command line. This procedure is referred to as "parsing."

Middle Level —

The filename should be the first information to follow the name of the program
being loaded. The name may be separated from the program name by : . ; , = -|-
TAB SPACE. And the end of the filename may be delimited by : . ; , = TAB
SPACE \ < > I / " [ ] and any of the control characters (ASCII 1-31).

Function 29H of INT 21H parses the filename. Point DS:SI to offset 81H in the
PSP. Remember that when the program is loaded both DS and ES point to the bot
tom of the PSP. ES:DI must point to a memory area that is to serve as the file con
trol block for the new file. The bit settings in AL determine how the parsing is to be
performed. Only bits 0-3 are significant:

bit 0 1 = Leading separators are ignored.

1  1 = The drive ID byte is set in the FCB only if specified in the
command line.

2  1 = FCB filename changed only if the command line contains a
filename.

3  1 = FCB filename extension changed only if the command line
contains filename extension.

Once this information is set, the program can call the function. If no drive specifier
is found in the command line, the default drive is assumed. And if no filename
extension is present, it is assumed to be blanks (ASCII 32). Should an asterisk
appear in the file name, it is converted to the appropriate number or question
marks in the filename entry of the FCB. AL returns 1 if the filename contains ? or *,
and it returns FF if an invalid drive was specified.
On return, DS:SI points to the first character after the filename at offset 81H.

Additional command line information must be deciphered by your own code.
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ES:DI points to the first byte of the newly formatted FCB. If no valid filename has
been created at the FCB, ES:[DI1 +1 is a blank. Here is an example that places the
code in the FCB area of the PSP, starting at offset 5CH:

;  PARSE THE COMMAND LINE, SETTING UP A FCB AT 5CH IN THE PSP:
MOV AH,29H ;function number
MOV SI,81H ;DS:SI points to fi lename
MOV DI,5CH ;ES:DI points to FCB area
MOV AL,11118 ;set code byte
INT 21H ;set up the FCB
MOV AL,ES:CDI]+1 ;get status information
CMP AL,32 ;no f 1 Le set up?
JE ERROR ROUTINE ;if not, jump to error routine
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Section 4: Read and Write Files

There are two basic ways to access files, sequentially and randomly. Although
computer literature commonly refers to "sequential files" and "random files," the
files themselves reside on disk in exactly the same way: as a continuous sequence of
bytes. There is no indication in the directory or anywhere else that a particular file
is "sequential" or "random." What differentiates the two kinds of files is the layout
of data and the corresponding method of access. Any random file can be accessed
sequentially, and any sequential file can be accessed randomly, although there is
seldom reason to do so, especially in the latter case.

Sequential files place data items one after the other—no matter their length—sep
arating the items with a pair of characters, first the carriage return (ASCII 13) and
then the line feed (ASCII 10). High-level languages like BASIC insert these delimit
ing characters automatically, while assembly language programs must take the
trouble of inserting them after each variable is written to the file. Both numbers
and strings may be saved in sequential files. Strings take up one byte for every
character in the string. Numbers are conventionally written in string form,
although they could as well be written in numeric form. Thus BASIC automatically
writes out the value 128' as a three-digit string, although an assembly language
program could write it as a two-byte integer, or even as a one-byte code—anything
goes so long as the file will be reread by software that understands the format. For
the sake of compatibility, writing numbers as strings is advised.
There is no requirement that each number or string be separated by a carriage

return/line feed pair, but when the pair is omitted the program must provide a way
of separating the data. Ten integers could be stored as a 20-byte data element, for
example. On the other hand, very large data elements, such as a paragraph of text,
may be divided into several data elements (a standard text file is nothing more than
a document broken down into strings of manageable size, saved in sequential
form). Because the data items are of varying length, it is impossible to know just
where in the file a particular item is located. And so a program must read the file
from its beginning to find a particular item, counting the number of carriage
return/line feed pairs until it encounters the desired item. It is for this reason that
files of this format are called "sequential." Generally, the entire file is transferred
from disk to memory.
Random files pre-allocate a fixed amount of space to each data item. When a

particular data item does not fill the entire space allotted, the excess is filled with
spaces. If every item occupies ten bytes, then it is easy to look up the 50th item,
since one can calculate that it starts at the 491st byte of the file (that is, byte #490,
since counting begins from 0). Generally, a related set of items is grouped together
into a record. Each record holds several fields, which provide a set number of
bytes into which to place each data item. For example, a record may have fields for
age, weight, and height. The respective fields for each might be two bytes, three
bytes, and five bytes. Taken together, they would form a record ten bytes long. A
random file could consist of thousands of such records. Each record follows imme
diately upon the prior, with no delimiters like the carriage return/line feed pairs
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used in sequential files. However, the records may be written in any order, so that
record 74 may be written even though record 73 has not been (disk space would
still be allocated for record 73, and the record would contain whatever data hap
pens to be in the sector to which the record is assigned). Unlike sequential files, ran
dom files remain on disk. Only the particular records that are operated on at any
particular moment are present in memory.
When file control blocks are used to access random files, DOS is told the size of

each record in the file (all must be the same for any one file). This allows a program
to ask for any record by number, and DOS then calculates exactly where that
record is located on disk. When the file handle method of access is used for random

files, the program must itself calculate the position of particular records.
DOS keeps a file pointer for every file buffer. It points to the nth byte of the file,

defining the place in the file at which the next read or write operation begins. In a
sequential over-write operation, the file pointer is initially set to the beginning of
the file, and the pointer constantly increments as more and more data are written
out to the file. When data is appended to a sequential file, the file pointer is initially
set to the end of the file. When a single record is accessed in a random file, the loca
tion of the record is calculated as an offset from the start of the file, and the pointer
is set to that value; then a record's worth of data is read or written to the file. DOS
ordinarily looks after the file pointer, but programs can take control and manipu
late the pointer for special ends.
The only low-level example in this section is of single-sector read/write opera

tions. Reading or writing whole files is nothing more than a sequence of these
single-sector reads or writes, programming the floppy disk controller chip anew for
each sector. Full-scale file operations are enormously complex at this level, as the
hefty size of COMMAND.COM suggests. Still, by studying the discussion of low-
level operations along with those about the file allocation table [5.1.1] and disk
directories [5.2.1], you will come to appreciate how disk operating systems work.
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5.4.1 Program the 765 Floppy Disk Controller and 8237
DMA Chip

The NEC 765 floppy disk controller chip controls floppy disk drive motors and
heads, and it manages the flow of data to and from disk sectors. A single control
ler, mounted on the disk drive adaptor, runs up to four drives. Except in the arcane
field of copy protection, programmers almost never need to program the FDC chip
directly. The disk management routines of BIOS and PC-DOS are both efficient
and reliable, and it can be quite risky to write one's own routines, since bugs could
damage a disk's directory or file allocation table, rendering the disk useless.
The discussion that follows is intended only to get you started. The BIOS listing

at the end of any IBM Technical Reference Manual contains the code for an elabo
rate routine that formats diskettes, reads and writes sectors, and resets and reports
the status of the diskette system. Once you absorb the material here, study the
BIOS routine to continue your education in low-level disk operations. You will also
need the Intel documentation for the 8272A FDC chip, which is the same as the
NEC chip. This documentation lists the interrupts generated by the FDC, which the
IBM documentation does not. The 8272A information is found in the "Microsystem
Comporients Handbook, Volume 11".
The FDC performs fifteen operations in all, of which only three are discussed

here: seek operations and single-sector reads and writes. Understanding how these
operations work will enable you to perform any of the twelve others, providing
you have the information mentioned above. Reading a file basically entails looking
it up in a directory [5.2.1], tracking its disk locations through the file allocation
table [5.1.1], and performing a series of single-sector read operations. The example
listed below reads a single disk sector. There are sk steps in this procedure:

1. Turn on the motor and wait briefly for it to come to speed.
2. Perform the seek operation, and wait for an interrupt that announces its

completion.
3. Initialize the DMA chip to move the data to memory.
4. Send the read instructions to the FDC and then wait for an interrupt indicat

ing that the data transfer is complete.
5. Take status information about the FDC.
6. Turn off the motor.

The FDC is operated through only three I/O ports. There are in fact more than
three registers on the chip, but most are loaded through a single port address. The
three ports are:

3F2H digital output register
3F4H status register
3F5H data register

The first step is to access the digital output register. It has the following bit
pattern:
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bits 1-0 selects a drive, where 00 = A
01 =B

10 = C

11 =D

2  0=reset the floppy di sk control ler
3  1=enable FDC interrupt and DMA access

7-4 1=turn on drive motors D - A (bit 4 = A)

This register is write-only, and so all bits must be set at once. The example below
uses drive A, and the bit pattern required is 00011100. This pattern selects drive A,
keeps bit 2 set to 1, enables the FDC system, and turns on drive A. Do not set bit 2
to 0 at any time, or you will have to recalibrate the drive, an action that is seldom
necessary.

To "recalibrate" a drive means to retract its head to track 0. The operation is
made by sending a simple command sequence to the FDC chip. The FDC monitors
the current head position by keeping track of all changes it makes in the head posi
tion from its initial setting at track 0. When the FDC is reset by briefly changing bit
2 of the digital output register to 0, the reading for the current head position is set
to 0 no matter at which track the head actually resides, making the recalibration
necessary. Ordinarily, an FDC reset is required only after a disk error has occurred
which is so serious that the current state of the disk controller and drive is
unknown.

Note that selecting a drive and turning on its motor are separate actions. The
FDC can access only one drive at a time, but more than one motor can turn simul
taneously. Motors may be left running for a few seconds after data transfer is com
plete in anticipation of further disk accesses. This strategy avoids the loss of time
that would result from repeatedly waiting for the motor to come up to speed. Con
versely, the motor should not be left on all the time because diskettes would wear
out prematurely.
The FDC chip operates in three phases: the command phase, the execution phase,

and the result phase. In the command phase, one or more bytes is sent to the data
register. The sequence of bytes is strictly fixed, and it varies by the command. The
FDC then undertakes the command, and during that time the FDC is in the execu
tion phase. Finally, during the result phase, a number of status bytes are read from
the data register. It is imperative that there be no error in the number of bytes sent
to, and read from, the data register during the command and result phases.
The number of command and result bytes varies among the disk operations that

the FDC performs. Any IBM Technical Reference Manual supplies the data for all
fifteen operations. The first byte of a command is a code that names the desired
operation. The code number is held in the low five bits of the byte, and in some
cases additional information is encoded in the high three bits. In most cases, the
second command byte gives the drive number (0-3) in its two lowest bits and the
head number (0 or 1) in bit 2; all other bits are ignored by the FDC. In a seek oper
ation only one more byte is required, and this is the number of the new track.
Reading or writing a sector requires seven more command bytes, and they are iden
tical in either case. The third through fifth bytes give the current track number, the
head number, and the sector number. And then there follows four bytes of techni
cal data required by the FDC.
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The first of these technical data is the number of bytes in a sector, which is coded
as 0 for 128, 1 for 256, 2 for 512, and 3 for 1024, Diskettes created by PC-DOS
have 512-byte sectors, of course. Next is the end-of-track (EOT) data, which gives
the final sector number of a cylinder; this value is 9 for 360K floppies. Finally, there
is a byte that gives the gap length (GPL, set to 2AH), and the data length (DTL, set
to FFH). The Technical Reference Manuals contain a table that explains other input
parameters, such as those used for disk formatting. DOS keeps the four technical
parameters in memory in a parameter table called the disk base. The disk base is
pointed to by interrupt vector lEH. The four values are arranged in the order that
the FDC requires them, starting from offset 3. The following table shows the com
mand sequence for the three operations shown in the example below. In the bit pat
terns, X's indicate that the setting of a bit is irrelevant, H stands for the head num
ber, and DD stands for the drive number.

Operation
Setting for Head 0,

Byte# Function Track 15, Sector 1

Seek: 1 code number: 00001111 IFH
2 head and drive: XXXXXHDD 00H

Read a Sector: 1 code number: 01100110 66H
2 head and drive :XXXXXHDD 00H
3 track number 0FH
4 head number 00H
5 sector number 01H
6 bytes in a sector 02H
7 end-of-track 09H
8 gap length lAH
9 data length FFH

Write a Sector: 1 code number: 01000101 45H
2-9 same as for reading a sector

You must be sure that the FDC is ready before you send or read a byte from the
data register. Bits 7 and 6 of the status register provide this information. Here is the
bit pattern of the entire register:

bits 3-0 1 = d1 sk drive D-A in seek mode
4  1 = FDC read or write command in progress
5  1 = FDC i n non-DMA mode
6  1 = FDC data register ready to send data

0 = ready to recei ve data
7  1 = FDC ready to send or recei ve data

Before starting disk operations it is a good idea to check that bit 6 is set to 0, indi
cating that the FDC is waiting for a command. If it is waiting to send data then an
error has occurred. When a byte of data is sent to the data register, bit 7 of the sta-
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tus register goes to 0; keep reading the register until the bit changes back to 1, and
then send the next command byte. Similarly, consult this status bit before reading a
status byte from the data register during the result phase. The example below ends
with two procedures that perform these functions.
When the seek operation is complete, the FDC invokes INT 6, the diskette inter

rupt. While one could as easily sense the end of the seek operation by polling the
status register, the interrupt is monitored in the example given here. When the
interrupt occurs, the BIOS interrupt handler sets bit 7 of the seek status byte in the
BIOS data area, located at 0040:003E. This is the sole result of the interrupt. Keep
polling this byte until bit 7 is set, then reset the bit to 0 and continue on to the next
step of the sector-read operation.
The next step is the initialization of the 8237 direct memory access chip. This

chip transfers data between peripheral devices and memory, a job that could
instead be handled by the CPU. In fact, in the PCjr, where there is no DMA chip,
the FDC sends data directly to the CPU, which in turn moves it to memory. The
clock speed of the CPU is barely adequate to this task, however, and all interrupts
are shut out while the data transfer is made so that no data will be lost. This means
that in the PCjr input from the keyboard or a modem is shut out. The timer inter
rupt is also ignored, but the time-of-day count is updated afterwards by a special
routine that uses channel 1 of the 8253 timer chip to count the pulses made during
disk operations. All other IBM machines have DMA chips, and the CPU is free
during data transfers.
The PC and XT use the four-channel 8237 DMA chip. Channel 0 is dedicated to

memory refresh; it constantly restores the charge in the RAM memory cells. If you
operate on this channel, the machine is likely to crash. Channel 2 is dedicated to
disk operations, and the other two channels, numbers 1 and 3, are available (via
the system board slots) to add-on hardware. Unfortunately, memory-to-memory
transfers require two channels, and channel 0 must be one of them, so these trans
fers are not possible on the PC and XT. The AT, however, has seven channels of
direct memory access, and DMA is automatically used by the MOVS instructions,
greatly improving performance.

Before initializing a channel, a program must send a code to the chip telling it
whether it is reading from or writing to the floppy disk controller. This one-byte
code is 46H for reading, and 4AH for writing. The code must be sent to each of two
separate port addresses, numbers 0BH, and 0CH.
Each channel of the 8237 chip uses three registers. One 16-bit register, the count

register, is given the number of bytes of data to transfer. This value should be set to
1 less than the number of bytes desired. For channel 2, this register is accessed
through I/O port 05H; send the two bytes of the count in succession, with the least
significant byte first.
The other two registers hold the address of the buffer in memory to or from

which data is transferred. This address is set up as a 20-bit value, so that, for exam
ple, 3000:ABCD is expressed as 3ABCD. The low 16 bits are sent to the address
register, which for channel 2 is at port address 04H. Send the least significant byte
first. The high four bits go to a page register, which is at 81H for channel 2. When a
byte is sent to this register, only the low four bits are significant. If the buffer is set
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up in the data segment, you will need to add the values of DS and the buffer offset
to derive the 20-bit value. The addition may result in a carry to the page register
value. For example, if DS is 1F00H and the buffer offset is 2000H, then the resulting
address will be 1F000 + 2000 = 21000H.
Once the three registers are set up, send 2 to port address 0AH to enable channel

2. This leaves the DMA chip waiting for disk data, and the program should imme
diately start sending the command codes to the FDC. Here is a summary of the
steps in programming the 8237 chip:

Send a read or write code.

Calculate the 20-bit memory address of the buffer to which the data is to be
sent, and place it in the channel 2 address and page registers.

3. Place the value of the number of bytes to transfer (minus 1) in the channel 2
count register.

4. Enable the channel.

After sending the command bytes, again wait for an interrupt, and monitor it in
the same way as for a seek operation. Then read the status bytes. These are as
follows:

1.

2.

Operation Byte # Function

Seek: none -

Read: 1 status byte 0
2 status byte 1
3 status byte 2
4 track number
5 head number
6 sector number
7 bytes/sector code (0-3)

Write: 1-7 same as read

Here are the bit patterns of the three status bytes

Status byte 1: bi ts 7-6 00=normaL term

Status byte 2: bit

ination
01=execution begun, could not complete
10=i nva I i d command

11=fai led because disk drive went off line
5  1=seek operation in progress
4  1=disk drive fault
3  1=disk drive not ready
2  number of selected head
1-0 number of selected drive

7  1=requested sector beyond last sector number
6  unused (always 0)
5  1=data transfer error
4  1=data overrun
3  unused (always 0)
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2  1=cannot fi nd or read sector
1  1=cannot write because of write-protection
0  1=missing address mark in disk formatting

Statusbyte3: bit 7 unused (always 0)
6  1=encountered deleted-data address mark
5  1=cycLic redundancy check error in data
4  1=track indentification problem
3  1=scan command condition satisfied
2  1=scan command condition not satisfied
1  1=bad track
0  1=mi ssing address mark

As you can see, much of the status information is devoted to disk formatting,
which does not concern us here. There is a fourth status byte, however, that pro-
duces useful information:

Status byte 4: bit 7 1=disk drive fault
6  1=disk i s write-protected
5  1=disk drive is ready
4  1=current head position is known
3  1=disk i s double-sided
2  number of selected head
1-0 number of selected drive

You can retrieve this fourth status byte by sending the "Sense Drive Status" com
mand to the FDC. The first byte of this two-byte command is the number 4, and
the second is a byte in which bits 1 & 0 hold the drive number and bit 2 holds the
head number. Status byte 3 is the only result value. Note that after every disk oper
ation where you use the BIOS or DOS services, the resulting status bytes are placed
in the BIOS data area, starting at 0040:0042. The operating system also keeps a
diskette status byte at 0040:0041, where the bit pattern is as follows:

bit pattern error

80H attachment failed to respond
40H seek operation failed
20H FDC failed

10H data error (bad CRC) on data read
09H attempt to DMA across 64K boundary
08H DMA overrun

04H requested sector not found
03H tried to write on write-protected disk
02H address mark not found

01H bad command sent to FDC

In conclusion, here is a complete disk-read routine, which transfers one sector of
data from track 12, sector 1, head 0 of drive A to a 512-byte buffer in the data seg
ment. The seven status bytes are also delivered to a holding buffer. This routine is
designed for a PC or XT. You will need the PCjr or AT technical reference manuals
to work on those machines. On the AT, change the delay loops to account for the
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greater processor speed, and remember to add a JMP SHORT $ + 2 statement
between successive OUT commands that are directed to the same port address.
Ffaced disks operate in a similar marmer, and you should be able to transfer the con
cepts you have learned here to other situations.

;  IN THE DATA SEGMENT:
BUFFER DB512DUP(?)
STATUS BUFFER DB7DUP(?)

SECTOR_READ PROC
;  TURN ON MOTOR:

STI

MOV DX,3F2H
MOV AL,28
OUT OX.AL fOCIIU LIIC U

WAIT FOR MOTOR TO COME TO SPEED (1/2 second delay):
CALL MOTOR DELAY

;begin the singLe-sector read procedure

;be sure interrupts are enabled
;address of digital output register
;set bits 2, 3, and 4
;send the command

;  PERFORM SEEK OPERATION:

MOV AH,15
CALL OUT FDC
MOV AH,0
CALL OUT FDC

MOV AH,12
CALL OUT__FDC
CALL WAIT INTERRUPT

;  WAIT FOR HEAD TO SETTLE (25 MSEC) :
MOV CX,1750

WAIT_SETTLE: LOOP WAIT SETTLE
;  BEGIN INITIALIZATION OF DMA CHIP:

MOV AL,46H
OUT 12,AL
OUT 11,AL

;  CALCULATE ADDRESS OF TRANSFER BUFFER:
MOV AX,OFFSET BUFFER

NO CARRY:

MOV

MOV

ROL

MOV

AND

AND

ADD

JNC

INC

OUT

MOV

OUT

MOV

OUT

BX,DS
CL,4
BX,CL
DL,BL
DL,0FH
BL,0F0H
AX,BX
NO_CARRY
DL

4,AL
AL,AH
4,AL
AL,DL
81h,AL

;  FINISH INITIALIZATION:

MOV AX,511
OUT 5,AL
MOV AL,AH
OUT 5,AL
MOV AL,2
OUT 10,AL

;  GET POINTER TO DISK BASE:

MOV AL,1EH
MOV AH,35H
INT 21H

;count 9 turns of BIOS c lock

;code number
;send to FDC
;dr1ve number
;send to FDC
;track number
;send to FDC
;wa1t for INT 6

; count for empty loop (PC or XT)
;1dle for 25 ml 111 seconds

;code to read data from FDC
;send the code to 2 addresses

;get buffer offset In DS
;put DS In BX
;ready to rotate high nibble of DS
; rotate to bottom four b1 ts of BX
;copy BLtoDL
;blank top nibble of DL
;blank bottom nibble of BX
;add BX Into AX (DS Into offset)
;1f no carry, DL Is page value
;but If carry, first Increment DL
;send low byte of address
;sh1ft high byte
;send high byte of address
;fetch page value
;send page number

;count value
;send low byte
;ready high byte
;send high byte
;get set to enable channel 2

;a11 done, DMA waits for data...

;number of vector that points to table
;funct1on that fetches vector
;now ES:BX points to d1 sk base
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;  SEND READ PARAMETERS:
MOV AH,66H
CALL OUT_FDC
MOV AH,0
CALL OUT_FDC
MOV AH,12
CALL OUT__FDC
MOV AH,0
CALL OUT_FDC
MOV AH,1
CALL OUT^FDC
MOV AH,ES:CBX]+3
CALL OUT__FDC
MOV AH,ES:CBX]+4
CALL OUT_FDC
MOV AH,ES:CBX]+5
CALL OUT__FDC
MOV AH,ES:CBX]+6
CALL OUT_FDC
CALL WAIT_INTERRUPT

;  READ THE RESULT BYTES:
MOV CX,7
LEA

NEXT: CALL
MOV

INC

LOOP NEXT

;  TURN OFF MOTOR
MOV DX,3F2H
MOV AL,12
OUT DX,AL
RET

SECTOR READ ENDP

BX,STATUS__BUFFER
IN_FDC
[BX],AL
BX

;code for single-sector read
;send it
;head and drive number
;send it
;track number
;send it
;head number
;send it
; record number
;send i t
;sector size code (fromdisk base)
;send it
;end-of-track number (fromdisk base)
;send it
;gap Length (from disk base)
;send it
;data length (fromdisk base)
;send i t
;wait till INT 6 marks end of transfer

;7 result bytes from reading a sector
;place them in a buffer
;get a byte
;place in buffer
;point to next byte of buffer
;go get next byte

;address of digital output register
; leave bits 3 and 4 on
;send the new setting
;end of sector-read procedure

WAIT INTERRUPT PROC
.monitor INT 6 STATUS IN BIOS STATUS BYTE:

;waits for INT 6, resets status byte

AGAIN:

WAIT INTERRUPT

MOV

MOV

MOV

MOV

TEST

JZ

AND

MOV

RET

ENDP

AX,40H
ES,AX
BX,3EH
DL,ES:CBX]
DL,80H
AGAIN
DL,01111111B
ES:[BX],DL

;segment of BIOS data area
;place in ES
;offset of status byte
;get the byte
;test bit 7
;keep looping if not yet set
; reset bit 7
; replace status byte
;continue...

OUT FDC

KEEP TRYING:

OUT FDC

IN FDC

PROC

MOV DX,3F4H
IN AL,DX
TEST AL,128
JZ

INC

MOV

OUT

RET

ENDP

KEEP_TRYING
DX

AL,AH
DX,AL

PROC

MOV DX,3F4H

;sends byte in AH to FDC
;status register port address
;fetch value
; i s bi t 7 on?
; i f not, keep loopi ng
; ready, so poi nt to data regi ster
;value was passed in AH
;send the value
;all done

; returns byte (in AL) from FDC
;status register port address
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ONCE__AGAIN: IN AL,DX ;fetch value
TEST AL,128 ;isbit7on?
JZ KEEP_TRYING ; i f not, keep Looping
INC DX ; ready, so point to data register
IN AL,DX ; read a byte from the data regi ster
RET ;aLLdone

IN FDC ENDP
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5.4.2 Read/write at particular sectors
Reading and writing particular disk sectors is a technique used mostly to access a

disk's directory or file allocation table, where the sectors are always positioned at
the same location. While reading the sectors is harmless enough, writing absolute
sectors requires that the code be completely accurate the first time it is used. A mis
take could make the directory or FAT unreadable, effectively destroying all data on
the disk.

Both BIOS and DOS offer functions for reading and writing to particular sectors.
They specify the sectors differently. On the PC, XT, and PCjr, the BIOS routine
requires information about the side number (0 or 1), track number (0-39), and sec
tor number (1-8). Because of the eight-sector limitation, this method is essentially
obsolete on these machines. On the AT, however, the sector number may be 8, 9,
or 15, and the track numbers may range to either 39 or 79. The DOS functions
specify the sector by a single number, referred to as the logical sector number.
Starting from the outside rim of the disk and moving inward, the sectors are
assigned consecutive higher numbers. This method may be used with a disk of any
size and kind.

The logical sector count begins from side 0, track 0, sector 1, and it continues to
side 1, track 0, then goes on to side 0, track 1, etc. (On large fixed disks, the entire
outside cylinder is counted first.) Depending on how the disk is formatted, the logi
cal sector number increases by a certain amount with every track. For a 360K
floppy, each track (taking both sides) adds 18 to the number. But the calculation is
slightly complicated by the fact that the numbering begins from 0. Thus the first
sector of track 3 on side 1 might at first seem to be 3*18 for tracks 0-2, plus,9 for
side 0 of track 3, plus 1 to point to the first sector of track three on side 1. This
equals 64. The logical sector number is 1 less than this number. Figure 5-4 com
pares the BIOS and DOS methods of naming disk sectors.

High Level ———— —————

BASIC does not provide direct access to disk sectors. Use the following machine
language subroutine. Appendix D explains the logic behind how such routines are
set up. The example reads the nine sectors of track 3 on side 1 of a 360K floppy.
The routine itself is positioned in memory at segment address &H1000, and the
contents of the sectors is deposited starting from segment address &H2000 (recall
that an absolute address equals a segment address multiplied by 16). To instead
write from this address to the sectors, change the seventh from last byte of program
data, &H25, to &H26. Everything else remains the same.

100 DEFINT A-Z 'all variables are integers
110 DATA &H55, &H8B, &HEC,&H1 E, &H8B,&H76, &H0C,&H8B * the assemb Iy rout i ne
120 DATA &H04,&H8B,&H76,&H0A,&H8B,&H14,&H8B,&H76
130 DATA &H08,&H8B,&H0C,&H8B,&H76,&H06,&H8A,&H1C
140 DATA &H8E,&HD8,&H8B,&HC3,&HBB,&H00,&H00,&HCD
150 DATA &H25,&H59,&H1F,&H5D,&HCA,&H08,&H00
160 DEF SEG=&H1000 'place the routine at &H10000
170 FOR N=0 TO38 'for each byte of the routine...
180 READ Q:POKE N,Q 'read each byte and poke into memory
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190 NEXT
200 REAOSECTOR=0

210BUFFER=&H2000
220 L0GICALNUMBER=62
230 NUMBERSECT0RS=9
240 DRIVE=0

'next byte
'execute the code from first byte
'place sector data at &H20000
' logical sector 62
' read 9 sectors worth
'drive 0=A, 1=B, etc-

250 CALL READSECT0R(BUFFER,L06ICALNUMBER,NUMBERSECT0RS,DRIVE)
260 '' 'and now the sectors are in memory, starting from 2000:0000

Middle Level

BIOS uses function 2 of INT 13H to read sectors, and function 3 of INT 13H to
write sectors. In both cases, DL holds a drive number from 0-3, where 0 = A, etc.
DH has the head (side) number, 0 - 1. CH holds the track number, from 0 - 39, and
CL keeps the sector number, from 0 - 8. AL is given the number of sectors to be
read. Only eight are allowed, which is more than enough for most purposes. ES:BX
points to the starting point in memory at which the transfer is to be deposited, or
from which it is taken. On return, AL holds the number of sectors read or written.
The carry flag is set to 0 if the operation was successful. If it is 1, then AH holds the
disk operation status bytes that are described at [5.4.8].

;—IN THE D
BUFFER

SEGMENT:

DB 4000 DUP(?) ;create a buffer (or al locate memory)

;  READ SECTORS:;:
MOV AX,SEG BUFFER ;point ES:BX to the buffer
MOV ES,AX !
MOV BX,OFFSET BUFFER f

MOV DL,0 ;drive number
MOV DH,0 ;head number
MOV CH,0 ;track number
MOV CL,1 ;sector number
MOV AL,1 ;number of sectors to read
MOV AH,2 ;function number for "read"
INT 13H

DOS interrupts 25h and 26h respectively read and write absolute sectors.
Place the beginning logical sector number in DX, and point DS:BX to the
transfer buffer. CX is given the number of sectors to read or write, and AL takes
the drive number, where 0 = A, 1 = B, etc. All registers are destroyed except
the segment registers. On return the flag register remains on the stack, leaving
the stack off balance. Be sure to POP this value off the stack immediately upon
return (in the example, it is arbitrarily POPed into CX).

;  IN THE DATA SEGMENT:
BUFFER DB 5000 dup(?)

;  READ SECTORS:

;set up a buffer (or al locate memory)

PUSH DS ;save all required registers
MOV AX,SEG BUFFER ;point DS:BX to the buffer
MOV DS,AX t

MOV BX,OFFSET BUFFER
1

MOV DX,63 ; logical sector number
MOV CX,9 ;read whole track
MOV AL,0 ;drive A
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INT 25H ;DOS function to read sectors
POP CX ;pop flags from stack to any register
POP OS ;restore registers
JNC NO ERROR ; jump below if carry flag0
CMP AH,3 ;test for write-protected disk

•

y0tCa m m m m

•

;continue..-Nq_ERROR:

On return the carry flag will be set to 1 if there has been an error, in which case
AH and AL contain separate error status bytes that are largely redundant. If AH is
4, then the requested sector was not found, and if it is 2, the disk formatting is
faulty. If AH is 3, an attempt was made to write on a write-protected disk. All
other values in AH indicate a hardware failure.

Low Level

Disk operations at low level require you to directly program the disk controller
chip and the direct memory access chip. Because these operations are particularly
involved, they are discussed separately at [5.4.1].
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BIOS Numbering

Side 0 or 1

Includes
Both Sides

DOS Numbering

Figure 5-4. BIOS & DOS organization of disk sectors.
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5.4.3 Write to sequential files
From the programmer's perspective, high-level languages appear to operate on

sequential files one data item at a time. A single statement "writes" the contents of
a variable into the sequential file, delimiting variables by interspersing a carriage
return/line feed pair. Assembly programs, on the other hand, deal with the data in
one-record units. They place the data in a buffer that is one or more records large,
adding carriage return/line feed pairs between the data elements, but not between
the records. Particular data items may span two records. Then a DOS function is
used to write one or more records to disk. At all programming levels, DOS may
not actually physically write data on the disk each time a data output command is
used. Rather, in the interest of economy, DOS waits for its output buffer to fill
before sending it to disk.
Note that BASIC automatically appends an ASCII 26 character (Ctrl-Z) to the

end of the sequential files it writes. This is required of standard ASCII text files.
The DOS functions do not add this character; your program must write it in as a
final data item. Random files are not terminated with ASCII 26.

High Level .

BASIC prepares to write to a sequential file by opening the file in sequential
mode, using the OPEN statement. The statement has two forms, and which to
choose is a matter of preference. The formats are:

100 OPEN "MYFILE" FOR OUTPUT AS #1

...OP...

100 OPEN "O'-.^l,"MYFILE"

The "O" in the second statement stands for "output". The symbol #1 designates the
number 1 as the code number by which to refer to the file in statements that access
the file, such as in WRITE #1 or INPUT #1. In both cases, a file named MYFILE is
opened and made ready to receive sequential data. If no file by that name is found
on disk, the OPEN statement creates one. And if the file already exists, its contents
are overwritten, so that when it is closed it contains only the new data written into
it. To append data to the end of a sequential file without changing its prior con
tents, open it using the first type of OPEN statement shown above, in the form
OPEN "MYFILE" FOR APPEND AS 1. See [5.3.3] for more information.
Data is written to the file using the PRINT# or WRITE# statements. They share

the form:

100 PRINT#1,S$

...OP...

100 URITE#1,X

#1 refers to the file ID number (the "file descriptor") assigned by the OPEN state
ment. The first example writes a string variable to the file, and the second writes a
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numeric value, but each can write either. Numeric values are written into sequen
tial files in string form, even though they are taken from non-string variables. For
example, 232 is a two-byte integer in numeric form, but if X = 232, then
PRINT#1,X places three bytes in the file, using the ASCII codes for the symbols 2
3, and 2.

The PRINT# and WRITE# statements differ in how they separate one data item
from the next in a file. Which is best depends on the characteristics of the data. The
chief difference between the two statements is that lAIRITE# places extra delimiters
around the data items. Consider the case where a statement outputs several vari
ables, in the form 100 PRINT#1,A$,Z,B$ or 100 WRITE#1,A$,Z,B$. In this case,
the carriage return/line feed pair is placed in the file only after the last of the three
variables (note that string and numeric variables may be mixed). How can the three
variables then be distinguished? If PRINT# is used, they cannot. The three items
are joined into a continuous string. But when WRITE# is used, each data item is
enclosed in quotes, and commas are placed between the items. Later, when the
items are read back from the file, BASIC automatically strips away the quotes and
commas that were added by the WRITE# statement.
There are a number of minor points to consider. One is that the whole problem

of delimitation can be solved by simply writing only one variable in each PRINT#
or WRITE# statement. In this case, PRINT# separates all items with the carriage
return/line feed pair, and WRITE# does the same, but also surrounds the item with
quotes (which wastes file space). Further, WRITE# should not be used with strings
that contain quotes themselves, since the first internal quote will erroneously signal
the end of the variable when the string is read back. Finally, note that when several
variables are printed with the same statement, both PRINT# and WRITE# format
the data exactly as if it were to be printed on the screen. Thus, PRINT#1,A$,B$
spaces B$ apart from A$, while PRINT#1,A$;B$ does not; the file will be padded
with spaces accordingly.The PRINT# statement can be used in the form PRINT#!
USING..., where all of the usual screen PRINT USING formats are available to for
mat output to the file.
In general it is most economical to use the PRINT# statement, writing only one

data item at a time. This method gives over the least amount of file space to delimi
ters, and it allows a string of any composition to be read back without error. The
more complicated delimitation schemes required by writing multiple variables with
a single PRINT# or lA/RITE# statement can lead to trouble, especially when one
variable is read as two, so that the correct position in the data sequence is lost.

After all data has been written, simply close the file to secure the data. Write
CLOSE to close all files that are open, or CLOSE#! to close file #!, CLOSE#!,#3 to
close files #! and #3, etc. Although BASIC is sometimes forgiving of unclosed files,
this is not the case here. PRINT# and WRITE# statements output data to the file
buffer; the information is written on disk only when the buffer is filled. The last
data entered is flushed out to disk by the CLOSE statement. Omitting the statement
can result in lost data. Here is an example:

100 OPEN"A:NEWSEQ" FOR OUTPUT AS 1 'open for sequential output
;three strings to write
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130 C$~*'ccccc'* *
140 WRITE#1,A$,B$,C$ 'write the strings
150CLOSE 'flushbuffer

Middle Level — —

DOS can write sequential files both by the file control block method and the file
handle method. The FCB method provides a function that is specifically tailored for
writing sequential files. The file handle method, on the other hand, has only a
general-purpose function to write to files, but it is just as easy to use for this pur
pose. In either case, the way in which a file is opened is important in sequential
operations. If data is to be appended to a sequential file, an ordinary "open" func
tion is used. However, when the file is to be overwritten, the function that "cre
ates" a file is required. Such a function truncates the file to 0 length so that its sub
sequent length will be no greater than the amount of data written into it.

FCB Method:

Function 15H of INT 21H writes sequential files. Prepare the file control block
and disk transfer area as shown at [5.3.5]. If the entire file will be overwritten,
open it with function 16H, which "creates" the file, truncating its length to 0. If you
merely "open" the file using function 0FH, then remnants of the old file will remain
at the end of file should the new file length be less than the old one. On the other
hand, if you wish to append data to the file, use the "open" function.
Once the file is opened, point DS:DX to the start of the FCB and call function

15H to write one record's worth of data. The amount of data in a record depends
on the value placed in the record size field at offset 14 in a normal FCB; this value
defaults to 128 bytes. If the record size is less than the 512-byte disk sector size, the
data may be buffered until enough has accumulated to warrant an actual disk-write
operation; thus a sequential record may have been successfully written even if the
disk drives do not turn. When the file is closed, any data remaining in the buffer is
flushed on to the disk. Upon return from function 15H, AL holds 0 if the operation
was successful, 1 if the disk has become full, and 2 if the data transfer segment is
too small.

In the following example, five 256-byte records are written to disk. The records
might be a mass of text data. This data is laid out in a memory area labeled
WORKAREA. The DTA pointer is initially set to the beginning of this area, and
after each record is written the DTA setting is changed so that it points 256 bytes
higher. Note that ordinarily memory is specially allocated for such a work area
[1.3.1], but for simplicity this example uses a buffer set up in the data segment.

;  IN THE DATA SEGMENT:
WORKAREA DB 2000 DUPC?) ;data buffer
FCB DB 1,'FILENAMEEXT',25 DUP(0)

;  POINT DTA TO THE WORKAREA:
LEA DX,WORKAREA ;DS:DX points to DTA
MOV DI.DX ;keep copy
MOV AH,1AH ;function to set DTA
INT 21H ;settheDTA
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;  OPEN THE FILE:

MOV AH,16H
LEA DX,FCB
INT 21H

;  SET RECORD SIZE:
LEA BX,FCB
MOV AX,256
MOV CBX3+14,AX

;  SEND THE DATA:

MOV ex,5
NEXT_RECORD: MOV AH,15H

LEA DX,FCB
INT 21H

CMP AL,2
JE CONTINUE

CMP AL,1
JE DISK__FULL

;  TRANSFER OK, RESET DTA:
ADD DI,256
MOV DX,DI
MOV AH,1AH
INT 21H

LOOP NEXT__RECORD

;  LATER, CLOSE THE FILE:
LEA DX,FCB
MOV AH,10H
INT 21H

;function to open f i Le for overwri te
;DS:DX points to the FCB
;open the f i Le

;point BX to FCB
;256 byte record si ze
;set record size

;number of record to write
;function for sequential write
;point to FCB
;write the data
;write error?
;if so, go to recovery routine
;disk fuLL
;go to fuL L disk routine

;add 1 record to DTA position
;point DS:DX to new DTA
;function to set DTA
;set DTA to new position in data area
;go write the next record

;point DS:DX to FCB
;function to close fi le
;close it

The file control block method is unwieldly for appending data to the end of
sequential files. Unlike the file handle method, in which you can point to the end of
the file, here you must manipulate the current record and current block fields. Read
the last data-bearing record into the DTA and fill its empty space with the first of
the data you want appended. Then rewrite that record to its former position in the
file, following it with as many additional new records as are required. Open the file
using function 0FH.

File Handle Method:

Be careful about how you open a file for sequential output by the file handle
method. Because the same function is used to write to random files, when the file is
closed its length is not set to the ending position of the file pointer. For example,
say that a 2000-byte text file is taken from disk and pared down to 1000 bytes in
memory. If a simple "open" command (function SDH) has opened the file, then
after the new, shorter version of the text is written to disk and the file is closed, the
length of the file remains 2000 bytes, with the new text having overlaid the first
1000 bytes. For this reason, to open a file for sequential over-write, use function
3CH of INT 21H [5.3.2]. This function normally creates a new file, but if the file
already exists, it truncates it to 0 length. To append data to a sequential file, how
ever, use the ordinary "open" function, SDH of INT 21H [5.3.3].

Consider first the case of completely overwriting the file. After the file is opened
by function 3CH, the file pointer is set to 0, so there is no need to set its position.
Place the file handle in BX and the number of bytes to be written in CX. Then point
DS:DX to the first byte of the output data and execute function 40H of INT 21H.
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On return, if the carry flag has been set, there has been an error, and AX holds 5 if
there was a disk drive problem, or 6 if the file handle was bad. Otherwise AX holds
the number of bytes actually written; if there is a disparity, it is most probably
attributable to a full disk. Do not fail to provide error recovery for this situation,
since, if the program crashes, the original contents of the disk file are lost (owing to
the truncation to 0 length). To check disk space, see [5.1.2]. Here is an example:

;  IN THE DATA SEGMENT:
PATH DB 'B:FILENAME.EXT*,0 ;d1rectory path

DATA BUFFER DB 2000 DUP(?) ;or at locate memory for buffer C1.3.1 ]
;  OPEN THE FILE USING THE "CREATE" FUNCTION:

;  WRITE

LEA DX,PATH
MOV CX,0
MOV AH,3CH
INT 21H

JC OPEN__ERROR
MOV HANDLE,AX

BYTES OUT TO THE FILE:

MOV AH,40H
MOV BX,HANDLE
MOV CX,1000
LEA DX,DATA_BUFFER
INT 21H

JC OUTPUT_ERROR
CMP CX,2000
JNE FULL DISK

;point DS:DX to di rectory path
;f i Le attribute (here, normal)
;function number
;truncate f i le to 0 length
;catch errors
;keep copy of handle

;function number
;handle in BX
;number of bytes to write
;DS:DX points to data buffer
;write the data
;go to error routine if carry
;1000 bytes successfully written?
;go to error routine if problem

To append data to a sequential file, open it with function SDH of int 21H, plac
ing 1 in AL if the program will only write data, or 2 in AL if both reading and writ
ing are to take place. The file length is left unchanged, although it will increase as
data is appended. The file pointer must be set to the end of the file or else existing
data will be overwritten. This is accomplished by function 42H of INT 21H. Place
the subfunction number 2 in AL to set the pointer to the end of the file, and put the
file handle in BX. CXrDX points to the offset from the end of the file at which writ
ing is to start, so place 0 in each. Then execute the function to set the pointer. On
return, a set carry flag indicates an error, and AX holds 1 if the function number in
AL was invalid, and 6 if the file handle was invalid. Once the pointer is set, the
write operation proceeds exactly as above:

;  IN THE DATA SEGMENT:
PATH DB •B:FILENAME.EXT,0 ;di rectory path
DATA_BUFFER DB 1000 DUPC?) ;or al locate memory for buffer C1.3.1!

;  OPEN THE FILE:
LEA DX,PATH ;point DS:DX to di rectory path
MOV AL,1 ;code to open for writing only
MOV AH,3DH ;function number
INT 21H ;open the f i le
JC OPEN ERROR ;go to error routine if carry
MOV HANDLE,AX ;keep copy of handle

;  SET FILE POINTER TO END OF FILE:
MOV BX,AX ;f i le handle in BX
MOV CX,0 ;CX:DX gives 0 offset from end of fi le
MOV DX,0 #

MOV AL,2 ;code number for end-of-f i le
MOV AH,42H ;function to set f i le pointer
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INT 21H

JC POINTER_ERROR
;  APPEND 300 BYTES TO THE FILE:

MOV AH,40H
MOV BX,HANDLE
MOV CX,300
LEA DX,DATA_BUFFER
INT 21H

JC OUTPUT_ERROR
CMP CX,300
JNE FULL DISK

;set the pointer
;go to error routine if carry

;function number
;handle in BX
;number of bytes to write
;DS:DX points to data buffer
;append the data
;go to error routi ne i f carry
;300 bytes successfully written?
;go to error routine if problem
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5.4.4 Read from sequential files
Reading sequential files is much the same as writing them, except that the process

is reversed. In BASIC, data is taken from the file and put into individual variables
or into a data array. In assembly language, the data is placed in a buffer in mem
ory. In the later case, the data is transferred record by record, and it is the responsi
bility of the program to separate the data items contained in the records. A
"record" here refers to the size of the units in which the file is read.

High Level

Reading sequential files in BASIC is less complicated than writing them, since
there are only two choices about how to go about it, depending on what characters
in the file are to be recognized as marking the end of a data item. The INPUT#
statement recognizes commas and quotation marks as data separators, as well as
carriage return/line feed pairs. The LINE INPUT# statement recognizes only the
CR/LF combination, and thus it can read whole lines of text that contain the other
delimiters. This capability is essential for text processing.
To read three items with the INPUT# statement, first open the file, as discussed

at [5.3.3] (for example: OPEN"A:NEWSEQ" FOR INPUT AS 1). If the file has been
opened as #1, then INPUT #1,X$,Y$,Z$ assigns the first three elements in sequence
to the three string variables. When using numeric variables, as in INPUT #1,X,Y,Z,
be sure that the numeric type of the variable matches the variable found in the file.
A double-precision number must be read into a variable that is itself double-preci
sion so that it will be large enough to hold eight bytes. An alternative way of read
ing three data items is to place them in an array:

100 DIM ITEM$(40) 'create 40-element string array
100 FOR N=0 to 39 'for each element...
110 INPUT #1 ,ITEM$(N) 'read it, and place it in the array
120 NEXT

To read the nth item in a sequential file, a program must still read all items that
precede it. Simply set up a loop that keeps reading data items, but do not save the
data as it arrives.

The LINE INPUT# statement operates in much the same way as INPUT#, except
that it can take only one variable at a time, and the variable is always a string. The
variable may be up to 254 characters long, which is the longest that a data item can
be if it was created by BASIC. A carriage return/line feed pair contained in the
original data is included in the string that LINE INPUT# returns. This feature
enables text files to keep track of paragraph endings.
The EOF ("end of file") function may be used to figure out when all data items in

a file have been read. The function returns -1 if the file has been exhausted and 0
otherwise. The buffer number under which the file was opened is required by the
function; for example, if the file was opened as #2, then X = EOF(2). The following
example reads an entire text file into an array:

100 OPEN "TEXT.AAA" FOR INPUT AS U2 'open for sequential input
110 DIMTEXT$(500) 'allow 500 lines
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120 LINEC0UNTER=I9 'counts array lines
130 LINE INPUT #1 ,TEXT$(LINECOUNTER) 'get 1 Line
140IFEOF(2) THEN 170 ' if end of f i Le, quit
150 LINEC0UNTER=LINEC0UNTER+1 'increment line counter
160 GOT0130 ' read next I i ne
170... 'continue

The INPUTS statement reads a specified number of characters from a sequential
file. It is the responsibility of the program to figure out where the various data ele
ments begin and end. The format for a file opened as #1, in which 30 bytes are to
be read, is S$ = 1NFUT$(30,#1). Although you can specify the number of bytes to
be read, be aware that this number cannot exceed 254 since this is the maximum
size of the string variable into which the data is placed. INPUTS is useful for trans
ferring a body of data into a contiguous memory area. For example, the following
code dumps the first 200 bytes of a sequential file into the monochrome display
buffer so that it is displayed on the screen, control characters and all:

100 OPEN"A:NEWFILE" FOR INPUT AS #1 'open f i le
100 CLSrDEF $EG=&HB000 'clear screen, point to video buffer
110 FOR N=0 TO 9 'get 10 groups of 200 bytes
120$$=INPUT$(20,#1) 'get 1 group
130 FOR M=1 TO 20 'take each byte and place it at...
140 POKE N*160 + M*2,ASC(MID$(S$,M,1)) '... even-numbered positions
150 NEXT M 'go get next byte
160 NEXT N 'go get next group of 200

Middle Level

As for ail file operations, DOS can read sequential files using either the file con
trol block method or the file handle method. Only the first has a function specially
designed to write sequential files. The file handle method uses a more general func
tion, manipulating it in the particular way required for sequential access.

FCB Method:

Function 14H of INT 21H reads sequential files. Set up a file control block and
disk transfer area, as explained at [5.3.5]. Open the file using function F of INT
21H [5.3.3]. With DS:DX pointing to the first byte of the FCB, function 14H reads
one record of the file each time it is called. You may set the record size at offset 14
in the FCB. Do this after the FCB is opened since DOS inserts a default value of 128
when it opens the file.
Each time the function is called the data is loaded into memory starting at the

first byte of the DTA. If the DTA is designed as a small transfer buffer, then before
reading the next record the DTA contents must be transferred to the file's data area
in memory. Alternatively, the DTA pointer may initially be set to the starting
memory address at which the file is to reside, and after each record is read the
pointer is incremented by the record size so that it points to the place at which the
next record is to be deposited.
By setting the current record field (DB, offset IFH) and the current block field

(DW, offset CH) to values other than 0, a sequential file can begin reading from
any point (make the settings after the FCB is opened). After each read, the current
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record field is automatically incremented by 1, and after 128 records the current
block field is also incremented. On return, AL holds 0 if a whole record was suc
cessfully read. Upon encountering the end of the file, AL holds 1 if function 14H
returned no data at all, and AL holds 3 if part of a record was encountered.

This example reads two records from a file, placing them in sequence in the data
area where they are required. The record length is set to 256 bytes. The two records
are read within a loop, and after the first is read, the DTA position is changed so
that the DTA begins at the next empty byte in the data area.

;  PLACE FOB IN THE DATA SEGMENT:
FOB DB 0/OLDDATADAT',25 DUP(0)
DATA AREA DB 512 DUP(?) ;wi 11 use as the DTA

-SET DTA TO START OF THE DATA AREA:
LEA DX,DATA AREA ;point DS:DX to DTA
MOV DI,DX ;keep a copy in DI
MOV AH,1AH ;function to set DTA
INT 21H ;set the DTA

-OPEN THE FILE:

LEA DX,FCB ;DS:DX points to the FCB
MOV AH,0FH ;function to open f i le
INT 21H ;open the f i le
CMP AL,0 ;error?
JNE OPEN ERROR ;go to routine if so

-SET RECORD SIZE TO 256 BYTES:
LEA BX,FCB ;point DS:DX to FCB
MOV AX,256 ;record size
MOV DS:CBX]+14,AX ;place value in FCB record size field

-READ THE DATA:

MOV CX,2 ;number of records to read
NEXT RECORD: MOV AH,14H ;function for sequential read

LEA DX,FCB ;point DS:DX to FCB
INT 21H ;read1 record
CMP AL,0 ;transfer OK?
JE CONTINUE ; jump to error routine if problem
CMP AL,2 ;error?
JE READ__ERROR ;go to routine if so

•

;else, end of f i le condition...

CONTINUE: ADD DI,256 ;add record si ze to DTA counter
MOV DX,DI ;point DX to new DTA position
MOV AH,1AH ;function to set DTA position
INT 21H ; change the DTA
LOOP NEXT_RECORD

;  LATER, CLOSE THE FILE:
LEA DX,FCB
MOV AH,10H
INT 21H

CMP AL,0FFH
JE CLOSE ERROR

;go get the next record

;point DS:DX to the FCB
;function to close a fi Le
;close it
;error?
; 1 f so, go recover

File Handle Method:

Function 3FH of INT 21H can read data from a file sequentially. This function is
used for all file reading done via file handles, including random files. The file is
opened by function 3DH of INT 21H, with the code number 0 placed in AL for
reading only, or 2 for reading and writing. When opened, the file pointer is auto
matically set to the first byte of the file. The function that reads from the file speci
fies how many bytes to read, and once that is done the file pointer points to the
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byte following the last byte read, ready for the next call to the function. Note that
the file pointer is unique to the file—operations on other files do not affect its posi
tion.

A program may set up a small data transfer buffer, say of 512 bytes, and repeat
edly call the read function without attending to the position of the file pointer.
Alternatively, a program may in one stroke transfer the entire file directly to the
place in memory where it is to reside. In the latter case you can simply request that
the function read more bytes than there are in the file, since reading stops after the
last byte of the file. However you still must calculate the exact file length so that
you know where the data stops in the buffer into which it is read.

Find the file size by moving the file pointer to the end of the file. This is done
right after the file is opened, when the file pointer is set to the beginning of the file.
Place the code number 2 in AL and call function 42H to move the pointer to the
end of the file. And put 0 in both CX and DX, which otherwise would offset the
pointer from the end-of-file position by whatever value they hold. On return from
this function, DX:AX contains the new position of the pointer as an offset from the
start of the file—that is, it contains the file length. Be sure to reset the pointer to the
beginning of the file before starting to read; this is done in exactly the same way,
except that AL is given 0. If an error occurs in function 42H, the carry flag is set
and AX returns 1 if the function number was invalid and 6 if the handle was
invalid.

Now the program is ready to read from the file. Put the file handle in BX and the
number of bytes to read in CX, then execute the interrupt. On return, AX holds the
number of bytes actually read. If AX is 0, then the end of the file has been overrun.
For other errors, the carry flag is set to 1 and AX holds 5 if there was a hardware
error and 6 if the handle was invalid. The following example reads an entire short
file into a memory buffer. For convenience, the buffer is set up in the data segment,
which significantly increases the size of the program on disk. It is better for your
programs to create the buffer using the memory allocation techniques shown at
[1.3.1].

;  IN THE DATA SEGMENT:
PATH DB •A:FILENAME.EXT,0 ;di rectory path string
DATA BUFFER DB 1000 DUP(?) ;buffer
HANDLE DW 7 ;stcres fi Le handle
FILESIZE DU ? ;stores fi le size

;  OPEN THE FILE:
LEA DX.PATH ;point DS:DX to di rectory path
MOV AL,0 ;code to open fi le for reading
MOV AH,3DH ;function to open fi le
INT 21H ;open the f i le
JC OPEN ERROR ;go to error routine if carry
MOV HANDLE,AX ;make copy of the handle

;  SET FILE POINTER TO END OF FILE:

MOV AH,42H ;function to set pointer
MOV AL,2 ;code for end of f i le
MOV BX,HANDLE ;fi le handle in BX
MOV CX,0 ;offset in CX:DX is 0
MOV DX,0

9

INT 21H ;set pointer, DX:AX returns position
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JC P0INTt;R_ERR0R1
MOV FILESIZr.,.\X

;  RESET FILE POINTER TO START OF FILE:
MOV AH,42H
MOV AL,0
MOV CX,0
MOV DX,0
INT 21H

JC P0INTER_ERR0R2
;  READ THE ENTIRE FILE:

MOV AH,3FH
MOV BX,HANDLE
MOV CX,FILESIZE
LEA DX,DATA_BUFFER
INT 21H

JC READ ERROR

;go to error routine if problem
;store f i Le size (assume < 64K)

(■restore function number
;code for start of fi le
; restore CX and DX to 0
9

;set the pointer
;go to error routine if problem

;function number to read from a f i le
;put f i le handle in BX
;number of bytes to read
;DS:DX points to buffer
; read the f i le
;go to error routine if problem

LATER, CLOSE THE HANDLE:
MOV BX,HANDLE
MOV AH,3EH
INT 21H
JC CLOSE ERROR

(•handle in BX
;function to close handle
;close i t
;check for error
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5.4.5 Write to random files
Random files are not physically different from sequential files, they differ only in

their mode of access. Random files assume that all data is organized in records of a
fixed size, so that the position of any record of data can be calculated (sequential
files must find the nth data element by counting the delimiters between the ele
ments, starting from the beginning of the file). DOS automatically performs this
calculation. Any program can perform this work itself, however, by setting the file
pointer to the desired position and reading sequentially however many bytes there
are in a record.

High Level

[5.3.3] explains the format for opening a random file in BASIC. Unlike sequen
tial files, a single random file may be read and written to at the same time, without
closing and reopening the file in between. The OPEN statement ends with a num
ber giving the size of one record of the file. For example, OPEN
"NEWDATA", 20 sets the record size to 20 bytes in the file NEWDATA (opened in
file buffer #1).
Once the file is opened, the records can be partitioned into their component vari

ables using a FIELD statement. A FIELD statement tells how many bytes of the
record are given to each variable. For example, a 20-byte record might be divided
up as FIELD 1,14 AS LASTNAME$,2 AS DEPOSIT$,4 AS ACCTNUMS. In this
statement, the initial number 1 indicates that the FIELD statement is defining the
layout for the records of the file opened as number #1. The data is placed in the
record in exactly the same order as the FIELD statement records it. The RSET and
LSET statements move data into the fields, fitting each item against either the right
(RSET) or left (LSET) end of the field, and padding unused room (if any) with space
characters. For example, in the 14-byte field that is tagged LASTNAME$, the name
"SMITH" is inserted by RSET LASTNAMES = "SMITH", or, if N$ is given the
value "SMITH", then RSET LASTNAMES = N$. LSET could as easily be used as
RSET. When the data is later read from the field into a variable, the variable is
given all 14 characters. If RSET has been used, the program would have to delete
the extra spaces from the left of the string variable, but if LSET had been used the
excess spaces would be on the right.
Note that all of the variable names in a FIELD statement are for strings. In ran

dom files BASIC treats all variables—numbers included—as strings. A numeric
variable must be "converted" to a special form before it is set into its field, and it
must be reconverted when it is later read back. The word "converted" is written
in quotes because BASIC does not actually change the number from the way that it
is represented in memory; it just treats the number in a special way. Numeric fields
in a FIELD statement require two bytes for integers, four for single-precision num
bers, and eight for double-precision numbers—the same number of bytes that these
values require in memory. To convert them to "string form," use the MKI$, MKS$,
and MKD$ functions, which make the numeric-to-string conversion for variables
of integer-, single- and double-precision type respectively. Normally, these func
tions are combined with an RSET or LSET statement, as in RSET ACCTNUMS =
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MKI(X), where X is an integer variable if ACCTNUM$ has been allotted only two
bytes in a field statement.
Once all fields have been filled by RSET and LSET statements, the record is writ

ten to disk using PUT#. PUT#1,245 places the data in record number 245 of the file
that has been opened as #1. The record number may be omitted, in which case the
data is written to the record number that is 1 greater than the last record written to
(beginning with record 1). The entire record is written over, even if all fields have
not been filled with data. Note that the fields in the buffer are not cleared after a
PUT operation, so a data item such as the current date needs to be RSET into the
buffer only once, and thereafter it will be written to all records that are accessed in
that session. THE LOC function returns the number of the last record written to. If
the file is opened under buffer #3, write X = LOC(3).
The LOP (length of file) function returns the length of a file in bytes. Divide this

number by the record size in order to determine the number of records contained in
the file. Adding 1 to this value gives the record number to use in order to append
new records to a file. If the file is opened through buffer #2 with a 32-byte record
size, write RECORDNUM = LOF(2)/32 +1.
The following example opens a random file with a 24-byte record size, and parti

tions the record into three variables. The program user is prompted for the data for
each field, and when it is complete, the record is appended to the file. Line 120 cal
culates the initial record number. Note that the data may not be physically written
to the disk each time a record is PUT. Several records may accumulate in the out
put buffer before this is done.

100 OPEN "R",1 ,"A:NEUDATA.DAT",24 'open with 24-byte records
110 FIELD 1,18 AS LASTNAME$,2 AS AGES,4 AS WEIGHTS 'parti tion the records
120 R=L0F<1)/24+1 'number of last record + 1
130 CLS 'c tear screen for messages
140 INPUT"Enter name: ",NS 'get the name (string variable)
150 INPUT"Enter age: ",A% 'get the age (integer)
160 INPUT"Enter weight: ",W! 'get the weight (single-precision)
170 RSET LASTNAMES=NS 'place name in field
180 RSET AGES=MKIS(A%) 'place age in field
190 RSET WEIGHTS=MKSS(U!) 'place weight in field
200PUT#1,R 'write the record
210 R=R+1 'point to next record for next time
220 PRINT:PRINT"Do another y/n?" 'query user
230 CS=INKEYS:IF CS="" THEN 220 'wait for response
240 IF CS="y" or CS="Y" THEN CLS:130 ' i f yes, go do another
250 CLOSE 'otherwise close the fi le

Middle Level

As with other DOS file operations, there are two methods of writing random
files, one using file control blocks and one using file handles. For both you must set
up a data transfer buffer that is at least the size of the random records to be writ
ten.

File Control Block Method:

Open the file control block using function 0FH, and point DS:DX to it. Once the
file is opened, place the random record number in the random record field of the
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FCB. Then call function 22H of INT 21H, which will transfer the data from the
DTA to the file buffer set up when the FCB was created. The data may not be
immediately written to disk if the record size is smaller than the file buffer size.
Rather, the disk write will occur only when subsequent calls to function 22H have
filled the buffer.

Upon return from function 22H, AL holds 00 if the transfer was completed suc
cessfully. Otherwise it holds 1 if the disk has inadequate space or 2 if the disk trans
fer segment had not enough space to write one record (that is, if the buffer size set
for DOS was smaller than that specified in the FCB).

;  IN THE DATA SEGMENT:
FCB 08 1/NEWDATA •,25DUP(0)
DTA DB 256DUP(?)

;  OPEN THE FILE AND SET FCB FIELDS:
MOV AH,0FH ;function number
LEA DX,FCB ;point DS:DX to FCB
MOV BX, DX ; copy FCB offset i nto BX
INT 21H ;open the file
MOV AX,256 ;256 byte record size
MOV CBX]'i'14,AX ;pLace in record size fieLd
MOV AX,233 ; record number
MOV CBX]+33,AX ;put in random record field (Low)
MOV AX,0 ;0 for high word of field
MOV [BX]+35,AX ;put in random record field (high)

;  TRANSFER DATA FROM DTA TO FILE:
MOV AH,22H ; random write function number
LEA DX,FCB ;point DS:DX to FCB
INT 21H ;write the data
CMP AL,0 ;error?
JNE WRITE_ERROR ;if so, goto recovery routine

;  LATER, CLOSE THE FILE:
LEA DX,FCB

AH,10H
;point DS:DX to the FCB

MOV ;function to close a file
INT 21H ;close it
CMP AL,0FFH ;error?
JE CLOSE ERROR ;if so, go recover

Often programs work on a sequence of random records at once, moving them to
and from memory as a single unit. DOS provides a special function for FCB access
called a random block write. It is function 28H of INT 21H. On entry, DS:DX
points to an opened FCB in which the random record field has been set to the num
ber of the first of the series of records that are to be written upon. This function is
almost exactly like that in the above example. The only difference (besides the dif
ferent function number) is that CX is given the number of records in the block (do
not confuse the concept of "block" with the blocks of 128 records by which DOS
keeps track of records a program may read any number of records, beginning at
any point).
CX returns with the number of records actually written. AL holds 0 if all records

were written successfully and 1 if disk space was insufficient, in which case no
records are written at all. Unlike function 22H, this function automatically incre
ments the current record, current block, and random record fields in the FCB so
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that they point to the record following the last one read. Note that if CX is set to 0
on entry, the file length is set to the number of records specified by the random
record field. In this way, disk space can be reserved for future use by the file.

File Handle Method

DOS makes no distinction between sequential and random files when using the
file handle method of access. Your program must calculate the location in the file at
which any particular record begins and set the file pointer to it. The file pointer is
positioned using function 42H of INT 21H. Place the file handle in BX and the off
set in the file into CX:DX (CX contains the high part of the value). Then put a code
number from 0 - 2 in AL. When 0, the pointer is moved to an offset that is CX:DX
bytes from the beginning of the file; if 1, the offset is to the point CX:DX bytes
higher than the current offset; and if 2, the pointer is moved to the end of the file
plus the offset (that is, it extends the file). Negative numbers are not allowed for
relative offsets. On return DX:AX contains the new pointer location (with DX as
the high part of the value). If the carry flag is set to 1, an error has occurred. AX
will contain 1 if the code number in AL was invalid, or 6 if the handle was invalid.
Once the file pointer is positioned, a random record is written using the same

function used for sequential files, 40H of INT 21H. On entry, BX contains the file
handle and CX tells how many bytes to write. DS:DX points to the first byte of the
data to be written. Upon return, AX holds the number of bytes actually written. If
it differs from the number placed in CX, the disk is probably full (see [5.1.4]). As
usual, the carry flag is set to 1 if there has been an error. In that case, AX contains
5 if there has been a disk drive problem, and 6 if the file handle was invalid.
The file pointer is to a file's image on disk what a DTA is to a data set's image in

memory. It can be moved around to access particular parts of the data. By care
fully manipulating the file pointer in random file operations, the contents of a par
ticular field of a particular record can singly be taken from the disk and deposited
precisely where required in memory.

;  IN THE DATA SEGMENT:
HANDLE DU

FILEPATH DB

RECORD_BUFFER DB
;  OPEN THE FILE:

MOV

MOV

LEA

INT

JC

MOV

;  CALCULATE THE RECORD POSITION AND
MOV AX,30
MOV

MUL

MOV

MOV

MOV

MOV

MOV

INT

JC

•A:NEWDATA',0
30 DUP (?)

AH,3DH
AL,1
DX,FILEPATH
21H

OPEN_ERROR
HANDLE,AX

CX,54
CX

CX,DX
DX,AX
AL,0
AH,42H
BX,HANDLE
21H

POINTER ERROR

;stores fi Le handle
;directory path string
;holds record ready for output

;function number
;code to open file for writing
;point DS:DX to path string
;open the file
;go to error routine if carry flag set
;keep copy of file handle

SET FILE POINTER:

;record size is 30 bytes
;write record #54 <55th record)
;now DX:AX has record offset
;move high word of offset to DX
;move low word of offset to CX
;sets pointer to start of file
;function to set file pointer
;handle in BX
;set the pointer
;go to error routine if carry flag set
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;  WRITE THE RANDOM RECORD:

MOV AH,40H
MOV

MOV

LEA

INT

JC

BX,HANDLE
OX,30
DX,RECORD BUFFER
21H

WRITE ERROR

;function number
;fi le handle In BX
;record size
;DS:DX points to record buffer
;write the record
;go to error routine if carry flag set

Unlike the FCB method, the file handle method makes no special provision for
writing blocks of random file records. But your program needs only to calculate
how many bytes comprise the block of records that is to be written.
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5.4.6 Read from random files

Reading random files reverses the process of writing them. DOS calculates the
position of a record within a file on disk, then reads the record and deposits it in
memory. A program must then divide the record into fields of the exact same
dimensions as the fields used when the record was constructed. Don't forget to
remove any space characters that were used to pad the fields. The discussion of
writing data to random files [5.4.5] contains information that will help you better
understand the information here.

High Level —

To read a random file, open it and define the record fields just as was explained
for writing random files. Then use GET# to read a particular record from disk.
GET#1,23 reads record number 23 from the file opened under buffer #1. When the
record is read, the variables named in the FIELD statement are automatically given
the corresponding values in the record. For example, if the FIELD statement is
FIELD 1,20 AS X$,2 AS Y$, then after the statement GET#1,23 is executed, X$ will
hold the string in the first 20 bytes of record 23 and Y$ will hold the second ten
bytes. There are no statements corresponding to RSET and LSET that must be used
to remove the data from their fields.

In the case of numeric data, recall that they had to be converted to string form
using MKI$, MKI$, or MKD$. To reassign these values to proper numeric variables
so that they may be manipulated or printed, reconvert them using the correspond
ing functions CVI, CVS, CVD. If Y$ holds an integer, then write Y% =CVI(Y$)
and the reconversion is made, with Y % holding the original value of the variable
before it was specially processed for random files. If you were to display the string
value of the variable, you would find a number between 0 and 65535 encoded as
two ASCII characters.

This example opens the file created by the example at [5.4.5] and displays the
data found in any record requested:

100 OPEN "A:NEWDATA" AS 1 LEN=24 'open the f i Le
110 FIELD 1,18 AS LASTNAME$,2 AS AGE$,4 AS WEIGHTS 'partition the records
120 CLS:INPUT"What is the record number";R ' request a record number
130 IF R*24> LOF(I) THEN BEEP:PRINT"No such record":GOTO 120'past end of fi Le?
140 GET m,R 'get the record
150 PRINT LASTNAMES,CVI(AGES),CVS(WEIGHTS) 'print the data
160 PRINT:PRINT"Do another y/n?" ' request another?
170 CS=INKEYS:IF CS="" THEN 170 ' loop unti L keystroke
180 IF CS="y" OR CS="Y" THEN 120 'go get another if requested
190 CLOSE 'else close the fi le

Middle Level

The FCB method of file access has two functions that read random records. The
file handle method, on the other hand, uses the same function that it uses to read
sequential files. The two access methods are treated separately.
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FCB Method:

Function 21H of INT 21H reads single random records. A second DOS function,
27H, reads blocks of consecutive random records; it is discussed below. Set up a
file control block as discussed at [5.3.5] and open it [5.3.3]. After the FCB is
opened, enter into the FCB the record size of the random files (DW at offset 14) and
the number of the record that is to be read (DD at offset 33). Once DS:DX is
pointed to the first byte of the FCB, call function 21H to read the record, and it will
be deposited in memory starting at the first byte of the DTA.
When a record is successfully read, AL returns with 0. This outcome does not

necessarily indicate that there has been no error, however, since an improper
record size could cause parts of adjacent records to be returned as if they were a
single record. If a request is made for a record number larger than the number of
records contained by the file, AL returns 1 or 3. When 3, the very end of the file
has been read, and part of a record of data has been read. When 1, no data was
read at all.

This example reads one record and deposits it in the DTA:

;  IN THE DATA SEGMENT:
FCB 08 1,'OLDDATA '^ZSOUPCB)

;  OPEN THE FILE AND SET FCB FIELDS:
MOV AH,0FH
LEA

MOV

INT

MOV

MOV

MOV

MOV

MOV

MOV

;  TRANSFER DATA FROM DTA TO FILE:

MOV AH,21H
LEA

INT

CMP

JNE

;  LATER, CLOSE FILE:
MOV AH,10H
LEA DX,FCB
INT 21H

DX,FCB
BX,DX
21H

AX,55
CBX]+14,AX
AX, 22
CBX]+33,AX
AX,0
CBX]+35,AX

DX,FCB
21H

AL,0
READ ERROR

;function number
;point DS:DX to FCB
;copy FCB offset into BX
;open the f i Le
;55 byte record size
;pLace in record size field
; record number to read
;put in random record field (low)
;0 for high word of field
;put in random record field (high)

;random read function number
;point DS:DX to FCB
;read the data, place at DTA
;error?
;if so, go to recovery routine

;function to close fi le
;point DS:DX to FCB
;close it

To read blocks of consecutive records into memory at once, use function 27H of
INT 21H. It is set up exactly like function 21H, above, except that in addition CX is
given the number of records to be read, and upon return CX holds the number of
records actually read. The values returned in AL are also the same as those for
function 21H. Unlike in function 21H, the FCB fields that keep track of records (the
random record, current block, and current record fields) are automatically incre
mented to point to the next unread record when this function is used.
Note that in both single and multiple random record readings, the current block

and current record fields of the FCB are set from the initial value of the random
record field. If you know the value of the current block and record, but not the cor-
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responding random record number, use function 24H of INT 21H to do the calcu
lation for you. There are no input registers other than to point DS:DX to the
opened FCB. Upon return the random record field is filled with whatever value
matches the settings of the other two fields.

File Handle Method:

The previous section shows how to write random records using the file handle
method. Set up a random-read routine in exactly the same way, calculating the off
set in the file to which to direct the file pointer. Point DS:DX to a buffer into which
the record is to be deposited, then execute function 3FH of INT 21H. On entry, CX
contains the record size, and BX holds the file handle.

;  IN THE DATA SEGMENT:
HANDLE DB

FILEPATH DB

RECORD_BUFFER DB
—OPEN THE FILE:

MOV

MOV

LEA

INT

JC

MOV

•A:OLDDATA

30 DUP (?)

AH,3DH
AL,0
DX,FILEPATH
21H

OPEN_ERROR
HANDLE,AX

,0

;  CALCULATE THE RECORD POSITION AND SET
MOV AX,30
MOV

MUL

MOV

MOV

MOV

MOV

MOV

INT

JC

;  READ A RANDOM RECORD:
MOV AH,3FH
MOV

MOV

LEA

INT

JC

CX,54
CX

CX,DX
DX,AX
AL,0
AH,42H
BX,HANDLE
21H

POINTER ERROR

BX,HANDLE
CX,30
DX,DATA_BUFFER
21H

READ ERROR

;stores fi le handle
;di rectory path string
;buffer for 1 record

;function number
; code to open f i le for readi ng
;point DS:DX to path string
;open the f i le
;go to error routine if carry flag set
;keep copy of fi le handle

THE FILE POINTER:

; record si ze i s 30 bytes
;write record #54 (55th record)
;now DX:AX has record offset
;move high word of offset to DX
;move low word of offset to CX
;sets pointer to start of f i le
;function to set f i le pointer
;handle in BX
;set the pointer
;go to error routine if carry flag set

;function number
;handle in BX
; record si ze
;DS:DX points to record buffer
;write the record
;go to error routine if carry flag set

—LATER, CLOSE THE HANDLE:
MOV BX,HANDLE
MOV AH,3EH
INT 21H

JC CLOSE ERROR

;handle in BX
;function to close handle
;close it
;check for error
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5.4.7 Verify data after write operations
DOS can verify the accuracy of disk data transfers at the time they occur. Errors

occur so seldom that the verification measures ought ordinarily to be avoided,
since they slow down disk I/O. But when they are required there are two ways to
make the verification. One is to place the command VERIFY = ON in a
CONFIG.SYS file, which is automatically read when DOS boots up. Thereafter, all
disk operations are verified. This is the only verification measure available to
BASIC. A second method is to leave the VERIFY parameters "off," and to use a
special DOS function to verify only those disk operations that are critical. When
the verification procedure finds an error, it brings about a critical error condition,
as described at [7.2.5].

Middle Level

Function 2EH of INT 21H switches verification on and off. Place 1 in AL for "on"
and 0 in AL for "off." Also put 0 in DL. Then execute the interrupt. There are no
result registers.

;  TURN ON VERIFICATION:

MOV AL,1
MOV DL,0
MOV AH,2EH
INT 21H

;code number
;required input register
;function number
;compLete

To find out what the current verification setting is, call function 54H of INT
21H. There are no input registers. On return, AL = 1 if "on," and AL = 0 if "off."
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5.4.8 Define/recover from disk errors

Disk operations are so complicated that there are a large number of possible
errors. Most disk errors are discussed along with the operations in which they may
occur. Here they are brought together in one place to help you create a general pur
pose procedure for recovery from disk errors.
Disk errors are of two kinds, which you may think of as "soft" or "hard." Soft

errors result from inappropriate requests for file access: the file requested may not
exist, or disk space may run out before all of a file can be written. Hard errors, on
the other hand, result from the faulty sequencing or timing of disk operations, as
might occur from bad alignment or from flaws in the disks themselves. In the latter
case it is a good idea to "reset" the disk before proceeding.

High Level ————————————

[7.2.5] explains how to set up an error recovery routine. An ON ERROR
GOSUB statement shifts the program to an error recovery subroutine when any
critical error occurs. The subroutine first finds out the BASIC error code number,

and for disk errors the following are provided:

52 Bad f 1 Le number. No fi Le has been opened under the buffer
number designated (#1, #2, etc.).

53 Fi Le not found. Used with LOAD, KILL, NAME, FILES, and OPEN.

54 BadfiLemode. Attemptedtoaccessafiledifferentlythan
the way 11 was opened, e.g., bytryingto input froma
sequential file that was opened for output.

55 Filealreadyopen. Triedtoopenafilethat isalready
open, ortoKILLa fi Le that is sti LL open.

58 Filealreadyexists. Triedto renameafile (usingNAME)
with a name found elsewhere inthedi rectory.

61 Diskfull. See C5.1.4] foraspecialdiscussionofthis
error.

62 Input past end. Triedto readmorevariables froma
sequential fi Le than it contains. Use EOF to avoid this
error, asexplainedat C5.4.4].

63 Bad recordnumber. Triedto readorwritetoa record
numbered higher than the number of records the f i le
contains.

6 4 Bad fi le name . Used with KILL, NAME, and FILES.

67 Toomanyfiles. Thedirectoryhasno roomformoreentries.
A 11 ernat i ve ly , anattemptwasmadetoopenonemorefile
when the maximum number of simultaneously opened fi les had
already been reached.

70 Disk iswrite-protected.

71 Disk is not ready. Most likely, thediskdrivedoor isopen.

72 Disk media error. There maybedamage to thedisk. This
error a Iso somet imes occurs with hardware faults.
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74 Specified wrong disk in RENAME ope ration.

75 Path/fi le access error. Tried to open a subdi rectory or
volume label as it it were a fi le. Or tried toopen a read-
only file for writing. This error also occurs if you attempt
to remove the current di rectory. Used with OPEN, NAME,
MKOIR, CHOIR, and RMDIR.

76 Path not found. The path was incorrectly specified, or it
does not exist. Used with OPEN, MKOIR, CHOIR, andRMOIR.

Once the routine has decoded the error, the user may be informed of the prob
lem. When the user indicates that the problem has been corrected, a RESUME state
ment sends the program back to the line where the error occurred. The RESUME
statement may end with a line number so that the program returns to the beginning
of an entire sequence of disk operations, no matter where the error occurred (note
that files do not close when an error occurs). The following example recovers from
full-disk errors and write-protection errors:

100 ON ERROR GOSUB 5000 ' Start up error trapping

600 '' 'disk operations begin here

5000 '' 'error recover subroutine
5010 IF ERR=61 PRINP'Disk FuLl":GOTO 5100
5020 IF ERR=70 PRINT"Oisk Is Write Protected";GOTO 5100

5100 PRINT"Correct the problem, then strike any key"
5110 C$=INKEY$:IF C$="" THEN 5110
5120 RESUME 600

Middle Level —

Function 1 of INT 13H returns a byte in AL that gives the status of the disk
drives. The bit pattern is as follows:

bit 0-1 01 =invaLid command, or, if bit 3=1,
tried to transfer data over 64k boundary

10=address mark not found
11=write attempt to write-protected di sk

2  1=specified sector not found
3  1=DMA overrun operation (data Lost during transfer)

or, if bit 0=1, attempted transfer across a
64k boundary

4  1=data was read incorrectLy, must try again
5  1=controLLerfaiLure
6  1=seek operation fai Lure
7  1=drive fai Led to respond (time-out error)

Each DOS disk function uses only a few of the available disk error codes, or
sometimes none at all. In all cases, the carry flag is set to 1 when an error occurs. If
there is an error, its code number is placed in AX. Here are the codes relevant to
disk operations:

1  InvaLid function number
2  FiLe not found
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3  Path not found
4  Maximum number of f i Les already open
5  Access denied (hardware error)
6  Invalid fi le handle
15 Invalid drive was specified
16 Tried to remove the current di rectory
17 Not same device
18 No more f i les (when searchi ng di rectory usi ng

global fi lename characters)

Recovery from these soft errors is a simple matter. Some alert you to program
ming errors. Others are attributable to the program user. When the drive itself does
not respond correctly a critical error occurs. [7.2.5] shows how to write a routine
to deal with critical errors.

DOS 3.0 introduces extended error codes. These may be retrieved by function
59H of INT 21H when the carry flag indicates an error has occurred. See [7.2.5] for
a discussion.

326



6

The Printer

Section 1: Control Printer Operations

DOS can handle three parallel devices (LPTl-3), and this chapter shows how to
control them. Serial printers are controlled exactly as parallel printers, except for
the way in which the data is sent to the printer; for this information, see Section 1
of Chapter 7. Each parallel device has its own adaptor. An adaptor is manipulated
through three I/O registers, and the port addresses of these registers are different
for each adaptor. The BIOS data area contains the base address of each adaptor. A
base address gives the lowest address of the group of three port addresses. The base
address for LPTl is at 0040:0008, for LPT 2 it is as 0040:000A, and so on. Which
adaptor is assigned to which LPT number is not certain, as the table below shows.
For this reason a program that accesses the parallel port directly should look up the
addresses it uses. Note that a base address is initialized to 0 when no corresponding
adaptor is installed.

Adaptor Data Output Status Control

Monochrome card (PC/XT/AT) 3BCH 3BDH 3BEH

PC/XT Printer adaptor
PC Jr Printer adaptor
AT serial/parallel card

(set as LPTl)

378H 379H 37AH

AT serial/parallel card
(set as LPT2)

278H 279H 27AH

The data output register is the port address to which each byte of data is sent on
Its way to the printer. The status register reports a variety of information about the
printer; the CPU may continuously monitor it in order to sense when it is all right
to send data. The status register also reports that a printer error has occurred. The
control register initializes the adaptor and controls the output of data. It also can
set up the parallel port for interrupt operations, so that the printer will interrupt
the CPU when it is ready for another character, leaving the CPU free for other mat
ters. Here are the bit patterns in the status and control register:
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Output Register;

bit 0  0=normal setting, 1=causes output of byte of data
1  0=normaI setting, 1=automatic Line feed after CR
2  0=initialize printer port, 1=normaL setting
3  0=deselect printer, 1=normal setting
4  0=printer interrupt disabled, 1=interrupts enabled
-7 unused

Status Register;

bit 0-2  unused
3  0=printer error, 1=no error
4  0=printer not on line, 1=printer on line
5  0=printer has paper, 1=printer out of paper
6  0=printer acknowledges receipt of character, 1=normal
7  0=printer busy, 1=printer not busy

There is no good reason for any program to lack the error recovery routines
needed to deal with printer problems. A well written program should begin by
checking that a printer is on line. If more than one printer is connected, the pro
gram should let the user choose the one he prefers. And the print routine should be
able to recover from printer errors of any kind, preferably without requiring that
the entire document be redone.
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6.1.1 Initialize the printer port/reinitialize the printer
Programs should initialize each printer port (LPT1-LPT3) prior to its first use.

Printer ports should also be reinitialized after a printer error condition is corrected.
Do not confuse printer port initialization with the initialization of the printer itself.
Printer initialization is essentially a matter internal to the printer. It occurs auto
matically when the printer is turned on, and in most cases a printer cannot truly be
reinitialized without switching it off and then back on. But a program can reini
tialize a printer in the sense that it can restore the initial parameters it uses for
printing, cancelling all of the special fonts, tab settings, etc. It is considered good
etiquette to reset the printer this way when a program is finished with it.

High-level languages automatically initialize the printer port, but assembly lan
guage programs require a short routine for this purpose. Restoration of initial print
parameters, on the other hand, is a problem for all programs. Some printers, such
as the newer Epson printers, have a "Master Reset Code" by which the printer is
entirely reset. But since all printers do not have such a code, a program must make
provision in its exit code to reset any parameters it may have changed. For exam
ple, it might output the codes for "italics off," "compressed mode off," etc. Remem
ber to include a call to this procedure in a Ctrl-Break exit routine.
Keep in mind that on many printers, characters are not printed until an end-of-

line carriage return is received (or until a line's worth of data is input). Characters
can wait in the printer buffer indefinitely, even after the program that originated
them has terminated. lA/hen a fresh data transmission begins, these lingering char
acters are printed. To avoid this problem always clear the buffer before starting to
print; and, as good etiquette, clear the buffer when your programs are finished.
This is done by sending ASCII 24 to the printer (no print parameters are altered).

Middle Level ——

Function 1 of BIOS INT 17H initializes a printer port and returns a byte giving
the port's status. Place in DX the port number, from 0-2 for LPTl to LPT3, then
call the interrupt. A printer status byte (identical to that discussed at [6.1.2]) is
returned in AH.

;  INITIALIZE LPT1:

MOV AH,1 ;function to initialize printer
MOV OX,0 ;LPT1
INT 17H imake the initialization

Low Level ——

The output control register of each printer adaptor has a bit that causes the adap
tor to initialize. This register is located at the port address that is 2 higher than
the base address of the adaptor. Recall that the base address for LPTl is kept at
0040:0008, for LPT2 it is at 0040:000A, etc. Only the low five bits of the output
control register are significant. Bit 2 is the printer initialization bit, and ordinarily it
is set to 1. To initialize the adaptor, set this bit to 0 for a thousand turns through an
empty loop (3000 on the AT, or time l/20th second using the BIOS time-of-day
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count [2.1.5]). Only bit 3 ("printer selected") needs to be set to 1 at this time. So
send 12 to the port, make the delay, and then send the usual (non-interrupt) initial
ization value to the register, which is 8.

This example initializes LPTl:

DELAY:

MOV DX,ES:[8]
INC DX

INC DX

MOV AL,12
OUT DX,AL
MOV AX,1000
DEC AX

JNZ DELAY

MOV AL,8
OUT DX,AL

;move base address to DX
;add 2 to the base address
t

; i ni t i a I i zat 1 on va lue
;start the initialization
;begindelay loop
;decrement the counter
; Iopp 1000 times
;normal value for the control register
; t i me' s up — end i ni t i a I i zat i on
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6.1.2 Test that a printer is on-line

A program should always test that a printer is on line before starting to send out
put. It is easy to ascertain that a printer is not ready, since bit 3 of the printer status
register is set to 1 in this case. But it is more difficult to find out exactly why the
printer is not ready: whether it is turned off, deselected, or out of paper. This is
because printers of different manufacture bring about different bit patterns in the
status register even when they are in an identical state. Although the status register
has bits that should show the three printer states, the bit patterns that actually
occur with these conditions may not be in accord (bit 3 should show that the
printer is turned off, bit 4 that it is deselected, and bit 5 that paper has run out).
The values below are returned in the status register by the Epson "standard" that is
generally followed by IBM:

Value Bit Pattern Interpretation
223 11011111 printer ready
87 01010111 printer not ready
119 01110111 printer out of paper
247 11110111 printer turned off

The input status register is located at the port address that is one greater than the
base address of the printer. The base address for LPTl is kept at 0040:0008, for
LPT2 it is at 0040:000A, etc. Keep in mind that if the printer was turned off, it will
take a while to self-initialize once it is switched on. Do not begin printing until the
input status register indicates that the printer is on line and ready to receive data.

High Level

This routine tests whether the printer is on line and tells the program user what
to do if it is not. It uses the values in the table above. As mentioned above, this
approach is not useful for general print routines that access many different printers,
but it is appropriate when you write printer-specific device drivers. Note that line
120 derives the value of a two-byte number by multiplying the high byte by 256
and adding it to the low byte. 1 is added to the result as the offset of the input sta
tus register address from the base address.

100 '' 'Set the LPTl address and see if a printer is ready:
110 DEF SEG=S1H40 'point to the BIOS data area
120 PRTRBASE=PEEK(9)*256+PEEK(8)+1 'get the input status regi ster address
130 IF INP(PRTRBASE)=223THEN180 'if printer is ready, jump
140 BEEP 'else beep, analyze, print messages:
150 IF INP(PRTRBASE)=87 THEN LOCATE 1,1 :PRINT"$trike the SELECT key":GOTO 150
160 IF INP(PRTRBASE)=247 THEN LOCATE 1,1 :PRINT"Turn the printer on":GOTO 160
170 IF INP(PRTRBASE)0223 THEN 170 'wait unti I initialization finished
180 '' 'Printer is now on line — begin print operations: 'etc...
190 LPRINT Z$
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Middle Level

Use function 2 of INT 17H to fetch the printer port status byte. On entry, DX
contains the LPT number (0-2 for LPT1-LPT3). This function turns off the three
unused bits of the byte, and it XORs two others, so the bit patterns differ from
those listed above:

Value Bit Pattern Interpretation

144 10010000 printer ready
24 00011000 printer not ready
184 10111000 printer turned off

Again, be aware that these numbers differ from printer to printer. The more gen
eral "off or not ready" status is indicated when bit 3 of the register is set to 0.

Low Level

This example takes a simpler route and merely checks the "on line" bit of the sta
tus register. Use the base address of LPTl to get the status byte.

;  IN THE DATA SEGMENT:
MESSAGE DB ' Pri nter not ready — stri ke any key when 0K$'

;  CHECK TO SEE IF ON LINE:
MOV AX,40H
MOV

MOV

INC

IN

ES,AX
DX,ES:[8]
DX

AL,DX
TEST AL,1000B
JNZ GO AHEAD

;  PRINT ERROR MESSAGE AND WAIT FOR KEYSTROKE:

;point ES to BIOS data area
$

;get the base address
;offset to status register
;put status byte in AL
;test bi t 3
; jump ahead if printer on-tine

GO AHEAD:

MOV AH,9 ;function to display string
LEA DX,MESSAGE ;DS:DX points to message
INT 21H ;print the error message
MOV AH,7 ;function to wait for keystroke
INT 21H ;wait for keystroke (no echo)

jprogram conti nues...
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6.1.3 Interpret/recover from printer errors

Error checking must not stop once a program ascertains that a printer is on line.
Printer errors can occur at any time while the printing is going on, and a program
must be ready to recover. While a printer is capable of many sorts of errors, only
three are reported back to the computer. These are the "out of paper" error, the
"not on line" error, and a general purpose "error has occurred" message. As [6.1.2]
explains, not all printers report these error conditions in the same way, but theoret
ically the input status register uses the following bit pattern:

bit 3 = 0 when a printer error has occurred
4  = 0 when the printer has gone off line
5  = 1 when the printer has run out of paper

Bit 4, in particular, may not operate as it is supposed to. The input status register is
located at the port address that is one greater than the base address of the printer.
The base address for LPTl is kept at 0040:0008, for LPT2 it is at 0040:000A, etc.
At low level, when a program sends data to a printer, it constantly monitors bit

7 of this register to see if the printer is ready to accept another character. It is an
easy matter to check bit 3 at the same time to see if an error has occurred. If the
errors that should be indicated by bits 4 and 5 have occurred, at least bit 3 will
have become 0. The program can then do its best to analyze the error, and then it
can prompt the user to correct the situation. Note that the DOS function that out
puts characters to the printer (number 5 of INT 21H—see [6.3.1]) can be made to
continuously monitor for time-out errors by means of the MODE command.
Before loading a program that uses function 5, enter MODE LPTl:,,P (or better
still, place the command in an AUTOEXEC batch file).

All of these errors require that printing stop and that action be taken before it
can begin again. It is frustrating to the program user when much of a long docu
ment must be reprinted because of a printer error. Careful design of a recovery rou
tine should allow a program to resume printing from the top of the page on which
the error occurred. Always store a copy of the pointer to the output data whenever
a new page is begun. When an error recovery procedure comes into action, it can
order the user to reset the page to top-of-form, and then printing can recommence
at the start of the page where printing left off.

High Level

BASIC provides two error conditions for printers. Error code 24 occurs when the
printer is de-selected, and code 27 occurs when the printer is turned off, or if it runs
out of paper. These codes are detected using the error-trapping technique explained
at [7.2.5]. Unfortunately, only code 27 is trapped efficiently. Code 24 takes approx
imately half a minute to register, during which time the program freezes. It is not
very useful to read the status register directly before each print operation. This
works before printing begins, but not if the printer is deselected while printing is in
progress. For what it is worth, here is the error-trapping routine:
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6.1.3 Interpret/recover from printer errors

100 ON ERROR GOTO 1000 'enable error trapping

1000 •' 'begin error recovery routines:
1010 IF ERR=24 OR IF ERR=27 THEN GOSUB 2000:RESUME 'is it a printer error?

2000 BEEP:LOCATE 1,1 :PRINT"Printer Not Ready"
2010 PRINT"Stri ke any key when ready"
2020 IF INKEY$="" THEN 2020
2030 RETURN

' inform user of problem

' loop unti I key struck
'go back to program

Middle Level

Whenever function 0 of INT 17H outputs a character to the printer, it returns the
printer status byte in AH. Check the value of this byte after every character is sent.
BIOS slightly modifies the status byte. Normally, bit 0 is not significant, but in this
case it is set to 1 when a "time-out" (printer off line) error occurs. The following
example detects two kinds of errors: a general "printer not ready" condition and
the "out of paper" condition. The example assumes that at the beginning of each
page (that is, after every form feed) the program saves a pointer to the start of the
output data, placing it in the variable STARTING_PTR. This enables the program
to recommence from the top of the page rather than from the beginning of the doc
ument. Of course, the printer must be fully reinitialized before recommencing, so
that all formatting parameters are restored. (This example merely illustrates error
checking—it is not a working print routine).

;  IN THE DATA SEGMENT:
MESSAGE1 DB 'Printer off-line — strike any key when readyS'
MESSAGE2 DB 'Printer out of paper — strike any key when ready$'

;  SEND A CHARACTER AND CHECK FOR ERRORS:
NEXT CHAR: MOV AH,0 ;function number

OFF LINE:

RECOVER:

MOV DX,0 ;choose LPT1
MOV AL,[BX] ;BX points to data
INC BX ;increment data ptr for next time
INT 17H ;send the character to the printer
TEST AH,00001000B ; isolate bit 3 (error flag)
JZ NEXT CHAR ;go do next character i f no error
TEST AH,00100000B ;isolate bit 5 (no paper)
JZ OFF LINE ;if not out of paper, jump ahead
MOV AH,9 ;prepare to print no paper message
LEA DX,MESSAGE2 ;point DS:DX to string
INT 21H ;print the string
JMP SHORT RECOVER ; jump ahead
MOV AH,9 ;prepare to print time-out message
LEA DX,MESSAGE1 ;point DS:DX to string
INT 21H ;print the string
MOV BX,STARTING PTR ;restore top-of-page pointer
MOV AH,0 ;function to wait for keystroke
INT 16H ; wa i t
CALL PRTR INITIALIZA ;reinitialize printer parameters
JMP NEXT CHAR ;start over from top of page
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6.1.4 Switch between two or more printers
Computers equipped with multiple parallel ports may have two or more printers

attached. Output may be switched between the printers in two ways. One way is
by using only those printer output statements that specify which printer is used.
You may wish to design the code so that the specification can be changed.
The second way of switching printers is to allow LPTl to be used by default, but

to change the printer that is addressed by LPTl. This is done by switching the
base address used by LPTl. This base address is kept in the BIOS data area at
0040:0008. Exchange it with the base address for LPT2 or 3 (at 0040:000A or
:000C) and a different adaptor will be accessed as LPTl.

High Level ————

In BASIC, if the printer has been opened by the statement OPEN "LPTl" AS #1,
then to change printers first CLOSE #1 and then open the second printer using the
statement OPEN "LPT2" AS #1. Thereafter all PRINT #1 statements will direct
their output to the second printer. This change is not so easily made in programs
that use the LPRINT statement, since LPRINT sends all output to LPTl by default.
In this case you must exchange the printer base addresses. The following BASIC
code does just that, switching LPTl and LPT2. Used a second time, it switches the
addresses back to their initial configuration.

100 DEF SEG=SH40 'point to bottom of BIOS data area
110 X=PEEK(8) 'get low byte of LPTl address
120Y=PEEK(9) 'high byte of same
130 POKE 8,PEEK(10) 'transfer low byte of LPT2 address
140 POKE 9,PEEK(11) 'transfer high byte
150 POKE 10,X 'switch low byte of LPTl to LPT2
160 POKE 11,Y 'high byte of same
170 SYSTEM 'leave BASIC

This is a handy program to invoke when ready-made software does not address
the desired printer. It can be compiled and kept on disk, say by the name
OTHERPRN, and then one need merely type that name (from the DOS prompt) to
toggle between printers. If you have no compiler, make a batch file named
OTHERPRN.BAT, and place in the file the line BASIC OTHERPRN. When you
type OTHERPRN, the batch file loads BASIC, which automatically runs OTH
ERPRN.BAS, and then BASIC is exited. Be sure BASIC.COM resides on the disk.
Keep in mind that you must resist the temptation to test this program before it has
been saved on disk, since it erases itself when it is run.

Low Level

One way an assembly language program can change the printer to which it sends
data is by always using function 0 of INT 17H for output [6.3.1]. This function
requires that the printer number be placed in DX. Supply this number from a vari
able, so that it can be changed at any time. The second possibility is to exchange
the base address of LPTl with that of LPT2 or LPT3. The following program does
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6.1.4 Switch between two or more printers

just that. Like any short utility, it should be written in .COM form, as explained at
[1.3.6].

;  EXCHANGE BASE ADDRESSES OF LPT1 AND LPT2:
MOV AX,40H ;segment of BIOS data area
MOV ES,AX ;point ES todata
MOV BX,8 ;off set of LPT1 base address
MOV DX,ES: CBX] ;save LPT1 base address
MOV AX,ES: CBX3+2 ;save LPT2 base address
MOV ES:CBX],AX ;switch LPT2 base address
MOV ES:CBX]+2,DX ;switchLPT1 base address
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Section 2: Set Printing Specifications
Special codes are sent to a printer to set the many specifications for page format,

type style, etc. These codes are sent to the printer like any other data. Some are no
more than one-byte codes from the first 32 bytes of the ASCII character set. These
are control codes (listed at [7.1.9]), and they initiate such common printer opera
tions as line feeds and form feeds. Most print specifications, however, are sent as
escape sequences, where one or more code bytes follow the escape character, which
is ASCII 27. The initial escape character informs the printer that the character(s)
that follow are to be interpreted as commands, rather than as data. Such escape
sequences generally have no terminating character, since the printer "knows" the
length of each sequence. Only in the few cases where the escape sequence is of
variable length is a terminating character required, and that character is always
ASCII 0.

In almost all cases, the specifications made by these codes stay in effect until they
are explicitly undone. Once the code for underlining is received, for example,
underlining continues indefinitely until the code that stops underlining is sent. The
printer's buffer may be cleared without affecting the specifications. But if there is a
printer error and the printer is reset (turned off and back on), then all specifications
must be restored.

Most codes that set print specifications are interspersed throughout the data they
affect. For example, data for a word that is to be boldfaced is preceded by an
escape sequence that turns boldfacing on and followed by an escape sequence that
turns it off. Since there is no universal standard for the various codes, sophisticated
printing requires that printer drivers be written for every printer that is to be sup
ported. Each driver converts instructions generated by the print routine into the
protocol used by the particular printer.
Sending the codes is straightforward in assembly language, but in BASIC you

must remember to follow the statements that send the codes (like LPRINT or
PRINT#) with a semicolon. Otherwise the statements will automatically follow the
codes with a carriage return/line feed pair.
The discussions and examples in the following pages are largely based on the

IBM Graphics Printer. The codes used by this printer are as "standard" as any
printer protocol can be. This is largely because they are based on the protocol used
by Epson printers (the first IBM printers were Epsons) which make up about a third
of all printer sales. The control codes used by the IBM printers are compared at
[6.2.7]. While the information given in this section may not specifically apply to
the printers you write for, most of the principles will.
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6.2.1 Set text and graphics modes

A printer is always in text mode unless it is specially placed in a graphics mode.
The command that invokes a graphics mode must state how many bytes of graph
ics data follow (never more than one line) and once that number of bytes has been
interpreted as a graphics image, the printer returns to text mode. For this reason,
there is no code that turns on text mode.

The number of graphics modes varies from printer to printer. In all cases the
escape code that invokes the graphics mode is followed by two bytes that specify
how many bytes of graphics data follow (low byte first). To calculate the value of
the two bytes, divide the number of data bytes by 256 and place the result in the
second byte and the remainder in the first byte. These two bytes are immediately
followed by the data bytes themselves.

Each byte defines a bit pattern that corresponds to the eight vertical dots of one
position along the line. The low bit (1) corresponds to the bottom of the column
formed, and the high bit (128) corresponds to the top. For example, to print a pyra
mid, first send a byte in which only the bottom bit is turned on, then a byte with
the bottom two bits turned on, etc. After the eighth byte, reverse the series. The
value of the first byte is 1, then 3 (1 + 2), then 7 (1 + 2-1-4), then 15 (1 + 2 + 4 + 8),
etc. Figure 6-1 diagrams this pattern.

Byte

1  2 3 4 5 6 7 8 9 10 11 12 13 14 15

128 o

64 o o o

§ 32 o o o o o

> 16 o o o o o o o

S 8 o o o o o o o o o

4 o o o o o o o o o o o

2 o o o o o o o o o o o o o

1 o o o o o o o o o o o o o o o

\ ̂  A A  'b N

Value

Figure 6-1. Bit patterns that print a pyramid.

To print the pyramid in BASIC on an IBM Graphics Printer, write the following
code:

100 LPRINT CHR$(27);CHR$(75);CHR$(15);CHR$(0);CHR$(1);CHR$<3);
CHR$(7);CHR$(15);CHR$(31);CHR$(63);CHR$(127);CHR$(255);
CHR$(127);CHR$(63);CHR$(31);CHR$(15);CHR$(7);CHR$(3);CHR$(1);
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Set text and graphics modes 6.2.1

The first two CHR$ bytes start up the 480-dot graphics mode, the next two tell that
fifteen bytes of graphics data follow, and then the sequence of data bytes is listed.
Of course, this could be programmed much more cleverly so that the fifteen bytes
of data are generated by a loop. Note that all kinds of problems can occur when the
number of bytes specified does not accord with the number of bytes given. To add
space between graphics figures, output a number of 0-value bytes. In BASIC, when
more than 80 bytes of graphics data are output to a single line, be sure to set the
printer to "infinite width." Write WIDTH "LPTl:",255.
The IBM Graphics Printer has four graphics modes which are more or less

"standard." They are:

27.75 480-dots per line. The "normal" mode. Maximum 480 bytes of data per
statement.

27.76 960-dots per line. Twice the horizontal resolution, but printed at half the
speed ("double density"). Maximum 960 bytes of data per statement.

27.89 960-dots per line, printed at normal speed ("high speed double density").
Two horizontally adjacent dots may not both be printed, since the pins in
the print head do not have enough time to refire. If an attempt is made to
do so, the second dot is ignored. Maximum 960 bytes of data per state
ment.

27.90 1920-dots per line, printed at half speed ("quadruple density"). Horizon
tally adjacent dots must be at least 3 dots apart (that is, print 1, skip 2).
Maximum 1920 bytes of data per statement.

The denser modes generally can not print one dot after another when they are hori
zontally adjacent. To fill in between the dots, take the carriage back to the left mar
gin, move the print head slightly to the right, and make a second pass using the
same data. Here is a comparison of the dot densities that are elicited by the same
control codes on different printers:

Code Graphics Printer Color Printer Compact Printer Proprinter

27,75 480 dots 1108 dots 560 dots 480
27,76 960 dots 2216 dots -- 960
27,89 960 dots 2216 dots — 960
27,90 1920 dots 4432 dots — 1920

The color printer is unique among the IBM printers in that it can set the aspect
vatio of graphics images. This ratio reflects the difference between the horizontal
and vertical distances between dots. Ordinarily a 1:1 ratio is desirable, since graph
ics calculations become difficult otherwise. But when dumping a graphics image
from the video display, an aspect ratio is required that is the same as the screen's
ratio. In a medium resolution screen mode, five dots vertically equal the same
physical distance as six dots horizontally. This makes the aspect ratio 5:6, and it is
the default value assumed by the color printer. Only 1:1 and 5:6 ratios are allovyed.
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6.2.2 Control line spacing

Except on printers with special plotting capabilities, all printing is done in lines.
Even graphics images are comprised of lines, although in this case no space is left
between them. ASCII 10 is the standard line feed control code. Sending it to the
printer (without a preceding escape character) causes the paper to move forward by
whatever spacing has been specified. Ordinarily, if no line feed is sent along with a
carriage return (ASCII 13), the print head returns to the left edge of the paper so
that it may rewrite over the same line. However, the line feed can be made to occur
automatically after every carriage return. The printer's dip switch settings may
activate this feature. Or it can be done by turning on bit 1 of the output control
register (see [6.1.0]). Many printers can toggle the auto-line feed feature on and off
using the code 27,53, and some can make reverse line feeds (27,93).
The graphics printer defaults to 1/6 inch line spacing (that is, it writes six lines

per inch), and it can be returned to this mode by sending 27,50 (this code is also
used in combination with a variable line-spacing code that is discussed below).
There are two other ready-made spacings for this printer, 1/8 inch and 7/72nd
inch. Their respective control codes are 27,48 and 27,49.

Fine gradations of line spacing are also possible. The graphics printer uses three
codes that can shift the platen in very small gradations. All three use a two-byte
escape sequence followed by the number of 72nds or 216ths of an inch to space by.
The vertical distance between the centers of two dots is l/72nd inch. Spacing
8/72nds inch leaves no space between lines (= 9 lines/inch). Standard 6 lines/inch
spacing is given by 12/72nds inch. Finally, 1/216th is l/3rd of l/72nd. Movements
of this size enable the print head to be slightly offset from dot centers so that on a
second pass dots are joined to achieve better print quality. Here are the escape
sequences:

Movement Escape Sequence

72nds inch 27,65,n (where n = 1 to 85)

216ths inch 27,51,n (where n = 1 to 255)

216ths inch 27,74,n (where n = 1 to 255)

The command for 72nds inch spacing does not become active until a second control
code is used: 27,50. As explained above, this second code may also be used alone to
restore the printer to l/6th inch line spacing. If 27,65,n has been used at any time,
however, you will need to restore 1/6 inch spacing by sending 27,65,12,27,50. The
two codes for 216ths inch spacing are not identical. The first causes all subsequent
line feeds to follow its specifications; the second operates for only a single line feed,
and thereafter the line spacing reverts to its former setting.

This table compares the line spacings made by the same control codes on several
IBM printers:
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Matrix Graphics Color Compact Jet Wheel Pro
Code Printer Printer Printer Printer Printer Printer Printer
27,48 1/8 1/8 1/8 1/9 1/8 1/8 1/8
27,49 7/72 7/72 6/72 1/9 9/96 7/72
27,50 1/6 1/6 1/6 1/6 1/6 1/6 1/6
27,51 n/216 n/144 n/216
27,65 n/72 n/72 n/72 n/72 n/72
27,74 n/216 n/144 n/216

No matter how line spacing is changed, the printer keeps track of the forward
and backward motions of the platen so that the skip-over-perforation is always
made at the correct place.
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6.2.3 Control paper movement
The paper in a printer is moved by line feeds, vertical tabbing, and form feeds. A

dip switch setting in the printer determines whether the printer automatically skips
to a new page when it encounters the perforation between pages. If the per-
formation is not skipped over, print may end up right on top of it. The skip leaves
three lines of space at the top and bottom of each page. The printer does not actu
ally sense the perforation; rather, it assumes at start-up that the top of the page is
properly aligned, and then it keeps track of the number of line feeds it has made. A
program can override the dip switch setting by sending control codes to the printer.
27,56 stops the printer from skipping over the perforation, and 27,57 causes it to
skip.
The Graphics Printer uses a code that sets the number of lines skipped at page

breaks. The code is 27,78,n, where n is the number of lines from 1 to 127. For
example, 27,78,10 causes the printer to skip 10 lines. If the line spacing is set to
l/6th inch, so that an 11 inch page holds 66 lines, then after printing 56 lines the
printer makes a 10-line skip. It is up to your program to initially forward the paper
by five (blank) lines so that the 55 lines of text are centered on each page.

If forms are used that have a different length from the usual eleven inches, the
page length must be changed so that the skips occur at the correct place and so that
form feeds move the paper to the proper position. The page length can be set either
by the number of lines or by a length given in inches. To set the number of lines per
page, send the code 27,67,n, where n is the line count. The same escape sequence is
used for setting the form length in inches, except that the page length is written as
0,n, where n may be from 1 to 22 inches. For the standard page, send 27,67,0,11.
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6.2.4 Control the print head position
Print is positioned on the page in part by moving the paper [6.2.3] and in part by

moving the print head. The head can be positioned anywhere, but not simply by
specifying a lateral coordinate. Rather, the print head is positioned as an offset
from the left extreme of its reach. There are no sensors in a printer that report the
current position of the print head. Your program must keep track of the position if
it must be known. It is a good idea to start printer output with the control code
27,60, which moves the head to the left extreme without making a line feed (a car
riage return can accomplish the same).

In printing text, there are several ways to move the print head to a particular
position. It is moved rightward by sending to the printer one or more space charac
ters or tab characters, and it is moved leftward by sending one or more backspace
characters, or by the carriage return charcter. The movements are made essentially
continuously—do not think of them as you would similar operations on a manual
typewriter. So long as your program knows the initial position of the print head it
can combine line feeds with spacing, tabs, and backspacing to format print exactly
as you like. Printers that can make reverse line feeds can easily function as a plot
ter.

Graphics modes can move the print head by small fractions of an inch. When
printing text, a graphics mode can be entered to achieve variable spacing between
words. Unfortunately, this process slows the printer considerably. See the example
at [6.3.2].

There is a special code that causes the print head always to return to the left mar
gin before printing a line, canceling bidirectional printing. While this feature slows
down printer operation considerably, it helps position the print head more accu
rately. It is especially useful in graphics work. To turn unidirectional printing on,
send 27,85,1, and to turn bidirectional printing back on, send 27,85,0.
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6.2.5 Set tab positions
Depending on the printer, both horizontal and vertical tab positions may be set

(the IBM graphics printer has no vertical tabs). Horizontal tabs are defined as off
sets from the left margin, given in spaces. In some cases up to 112 horizontal tab
positions are a}lowed. Similarly, vertical tabs are defined as offsets from the top of
the page, and here the measurement is made in line spacings. For most IBM print
ers, the maximum is 64 vertical settings.
The first two bytes of the code for setting horizontal tabs is 27,68, and for verti

cal tabs it is 27,66. For both kinds of tabs, the two initial code bytes are followed
by a string of bytes giving the tab positions in ascending order. Place an ASCII 0
byte at the end of the string to mark its end. To set horizontal tabs at columns 15,
30, and 60, send 27,68,15,30,60,0 to the printer. And to set vertical tabs at lines 8
and 12, send 27,66,8,12,0. Note that if the page length differs from 11 inches, it
must be set before the vertical tab positions. Vertical tabs are canceled by 27,67.
Note that most printers do not have margin settings as such. Left margins may be

set up by tabbing, or by outputting the appropriate number of space characters at
the start of each line. For precise margin settings, switch into a graphics mode and
output a number of ASCII 0 bytes. Right margins are created simply by limiting the
line length.
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6.2.6 Change the print font

An 8-1/2-inch wide page holds up to 80 normal characters per line when each
character is given the same width. Proportional spacing [6.3.3] may fit a few more
characters per line. Compressed print, on the other hand, fits 132 characters on a
line, double-width print fits 40, and compressed double-width fits 64. Be cautioned
that intermixing the varying widths on a single line can make formatting difficult.
Most dot matrix printers offer a variety of special font modes. Here are the

standard options as used on the IBM Graphics Printer:

Compressed Print:
To turn on the compressed print mode, send the one-byte control code 15. To

turn the mode off, send 18. An 8-1/2 inch wide page can have 132 characters per
line in this mode.

Double-Width Print:

To start the printer writing in double-width characters, send the one-byte control
code 14. Double-width character mode is unusual in that the printer automatically
turns it off when it receives a line feed or carriage return. Since these characters are
ordinarily confined to single-line titles, this feature is convenient. To turn off the
mode mid-line, send 20.

Emphasized Print:
In emphasized print, each character is printed twice at exactly the same position.

This makes the dots darker, giving a boldface appearance. Printer speed is halved.
To turn the mode on, send the control code 27,69. To turn the mode off send
27,70.

Double-Strike Print:

In double strike mode the paper is shifted l/216th of an inch before a second pass
of the print head. Better formed characters result, and there is a slight boldfacing of
the print. The printer speed is cut in half. Turn the mode on by sending the control
code 27,71, and turn it off by 27,72.

Underlined Print:

Underlining may be performed in two ways. Graphics printers have an underline
mode that causes an underline to be placed under all characters, spaces included.
For the IBM Graphics Printer, the mode is turned on by sending 27,45,1, and it is
turned off by sending 27,45,0. Printers that do not have an underline mode can cre
ate underlining by making a second pass over the line of print, printing the
understore character (ASCII 95) where underlining is required, and spaces (ASCII
32) at all other positions. A second pass is performed simply by making a carriage
return (ASCII 13) without a line feed (ASCII 10). Making second passes does not
interfere with the printer's calculation of page length.
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Subscripted/Superscripted Print:
On graphics printers, subscripted or superscripted text is compressed vertically.

To begin superscripting, send the control code 27,83,0, and to begin subscripting,
send 27,83,1. It is possible to shift directly from one to the other. To turn this fea
ture off so that printing resumes on the current line, send 27,84.
Some modes can not be used in combination with others. If you want to use four

modes at once, consult the following table. Each of the six columns gives an
allowed combination.

Combination 1 2 3 4 5 6

Normal XX

Compressed XX

Emphasized XX

Double Strike X X X

Sub/Superscript X X X

Double Width XXXXXX

Underline XXXXXX
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6.2.7 Compare IBM printer capabilities

The following table compares the control codes of the IBM printers. The infor
mation is not adequate to program many of the codes (you will need the IBM
documentation) and in some cases unique codes have been omitted. The table is in
tended to show the range of printer capabilities, and to point out which codes are
'standard". Note that the codes for the first four printers are available through the
Options and Adapters series of Technical Reference Manuals, and that the codes
for the others are found in their accompanying Guide to Operations manuals.

Code Function
Matrix Graphics Color Compact Jet Wheel Pro
Printer Printer Printer Printer Printer Printer Printer

Paper Movements:
10 Line feed X X X X X X X
11 Tab vertically X X X X X X
12 Form feed X X X X X X X
13 Carriage return X X X X X X X
27,52 Set top of page X X X
27,56 Ignore paper end X X
27,57 Cancel ignor paper end X X
27,66 Set vertical tabs X X X X X
27,66 Clear vertical tabs X
27,78 Set skip perforation X X X X X
27,79 Cancel skip perforation X X X X X

Print Head Movements:
8 Backspace X X X X
9 Tab horizontally X X X X X X X
27,60 Move print head to left X X X
27,62 Set horizontal motion index X
27,68 Set horizontal tabs X X X X X X X
27,68 Clear horizontal tabs X
17,77 Automatic justification X
27,5fd Proportional spacing ON/OFF X X
27,82 Reset tabs to defaults X X X X
27,85 Unidirectional print ON/OFF X X X
27,88 Set left/right margins X X
27,100 Variable forward space X
27,101 Variable backspace X

Line/Character Spacing:
27,48 1/8 inch line spacing X X X X X X
27,48 1/9 inch line spacing X
27,48 7/72 inch line spacing X X
27,49 7/72 inch line spacing X
27,49 9/96 inch line spacing

X
27,49 6/72 inch line spacing X
27,49 1/9 inch line spacing X
27,50 Start 27,65 variable feed X X X
27,50 1/6 inch line spacing X X X X X X X
27,51 Variable line feed (n/216) X X
27,51 Variable line feed (n/144) X
27,53 Automatic line feed ON/OFF X X X X X
27,65 Variable line feed (n/72) X X X X X
27,67 Set page length X X X X X X X
27,74 Variable line feed (n/216) X X
27,74 Variable line feed (n/144) X
27,93 Reverse line feed X X
27,104 Half line feed forward X
27,105 Half line feed reverse

X
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Matrix Graphics Color Compact Jet Wheel Pro

Code Function Printer Printer Printer Printer Printer Printer Printer

Fonts:

11 15 characters per inch ON X

14 Double width print ON X X X X X X

15 Compressed print ON X X X X X X

18 Compressed print OFF X X X X X

1810 characters per inch ON X X X

20 Double-width print OFF X X X X X X

27,45 Underline ON/OFF X X X X X X

27,58 12 characters per inch ON X X X

27,69 Emphasized print ON X X X X

27,70 Emphasized print OFF X X X X

27,71 Double-strike print ON X X X X X

27,72 Double-strike print OFF X X X X X

27,83 Subscript/superscript ON X X X X X

27,84 Subscript/superscript OFF X X X X X

27,87 Double-width print ON/OFF X X X X X

27,91 Color underline ON X

27,95 Overscore ON/OFF X

Special character sets/colors:
27,54 Select character set 2 X X X X X

27,55 Select character set 1 X X X X X

27,61 Download fonts X X

27,73 Change print quality X X X

27,92 Print control codes X X X

27,94 Print any character X X X

27,97 Shift ribbon at page end X

27,98 Select ribbon band 4 X

27,99 Select ribbon band 3 X

27,109 Select ribbon band 2 X

27,121 Select ribbon band 1 X

Graphics Modes:
27,75 480-dot bit-image graphics X X

27,75 560-dot bit-image graphics X

27,75 1108 dot bit-image graphics X

27,76 960-dot bit-image graphics X X

27,76 2216-dot bit-image graphics X

27,89 960-dot normal speed X X

27,89 2216-dot bit-image graphics X

27,90 1920-dot bit-image graphics X X

27,90 4432-dot bit-image graphics X

27,91 Set image resolution/color X

27,110 Set aspect ratio X

Miscellaneous:

7 Bell X X X X X

17 Select printer X X X X X

19 Deselect printer X X X X

24 Clear buffer X X X X X X X

27,81 Deselect specific printer X X
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Section 3: Send Data to the Printer

Sending data to the printer is trivial in high-level languages, and there are several
operating system functions that make it easy for assembly language programs as
well. Low-level programming requires more work, but it allows more options.
Generally, a low-level print routine sends a character to the printer and then con
stantly monitors the input status register of the serial port to which the printer is
attached. The next character is sent only when the printer signals that it is ready
(the printer may not actually print the character at once—it may save it in the
printer's own buffer until a line's worth of characters has been received).
In addition, low-level routines may use the printer interrupt, or they may simu

late the action of this interrupt. Through special programming the printer can be
made to interrupt the CPU when it is ready for another character. The interrupt
routine quickly sends the next character along its way, and then the CPU returns to
its other chores. This method is used for background printing (also known as
spooling). Because the physical motions of the printer are so slow compared to the
speed of the computer's electronics, the output of characters to the printer takes up
only a few percent of the CPU's time. The interrupt lets the remaining time be used
productively.
While sending data to a printer is a fairly simple bit of programming, setting up

the output data can be terribly complex. Most of the extraordinary feats we are
accustomed to seeing printers perform are accomplished by combining text and
graphics data with the various printer codes discussed earlier in this chapter. By
combining text and graphics modes on the same line, right justification and propor
tional spacing are made possible. In addition, any graphics printer can create spe
cial characters of any design, and by careful manipulation of line spacing and
overstriking, any of the IBM block characters may be printed.
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6.3.1 Output text or graphics data to the printer

The CPU may devote its full attention to sending data to the printer, or it may
print "in the background" by using the printer interrupt. A third alternative is to
have the program send characters to the printer at regular intervals, as a sort of
"pseudo-interrupt." This method is not as closely coordinated with the printer's
operations as true interrupts; but printer operations, after all, are not time-depend
ent.

No matter how the data is output, just one character is sent to the printer at a
time. High-level languages provide functions that appear to send whole strings of
data at once, but these functions break the strings down into individually transmit
ted characters. Usually high-level languages send a carriage return/line feed pair
after each string. Assembly language programs, on the other hand, must set up all
of this. The cost is that there is more coding to do, but the benefit is that there is
more flexibility, particularly with error checking.

High Level — —

BASIC provides the LPRINT and PRINT# statements for sending data to a
printer. LPRINT requires no special preparation, but PRINT# requires that the
printer be opened just like a file, using the statement OPEN "LPTl" AS #1, or
OPEN "LPT3" AS #2, or whatever. The LPRINT statement always addresses
LPTl, whereas PRINT# can address any printer number.
A carriage return/line feed pair is automatically inserted after every LPRINT and

PRINT# statement, unless the statement is followed by a semicolon. To avoid inad
vertent line feeds, make it a habit to follow all control sequences with a semicolon.
Do the same for any strings of text you want printed adjacent to one another. Be
aware, however, that many printers do not begin printing until they have received
data for a whole line. This is signaled either by a carriage return or by 80 characters
(or whatever) having been received. Be sure to send a final carriage return to
"flush" the last characters from the printer's buffer.
The printer automatically wraps around from the end of the line. The default

width of a printer line is 80 columns, but full-width printers may use more. Lines
written with compressed or expanded characters may also require a change of the
printer width. To change the number of columns printed before the print head
wraps around, write WIDTH "LPTl:",n, where n is the desired number of col
umns. When a string is printed that is as long as the line length, or longer, the print
head wraps around, effectively performing a carriage return/line feed. This means
that when the string length exactly matches the line length, a second line feed is
make if the string is followed by a carriage return/line feed pair.
In graphics printing the printer is ordinarily set to "infinite width." To bring this

about, set the width to 255 by writing WIDTH "LPT1:",255. If you fail to include
this statement, when a long stream of graphics data is output, after every 80 bit
patterns are printed BASIC will insert the patterns for the line feed and carriage
return characters. These extra characters will be counted in the tally of data bytes
for the graphics statement so that subsequent printer statements will be thrown off.
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A single LPRINT statement may contain several data items in a variety of forms.
The information may be written into the statement itself, as in LPRINT'The Rain
In Spain", or it may be referred to by variable names, as in (X$ = "The Rain In
Spain":LPRINT X$). Special characters may be included by using CHR$. Control
sequences are normally sent this way; for example, LPRINT CHR$(10) sends a line
feed control code to the printer. CHR$ is most often used for ASCII codes that are
not represented by a common (keyboard) symbol. All kinds of data can be com
bined in the same statement. Place semicolons between the items to have the items
printed adjacent to one another, or use commas to have each item begin at the next
tab position. This is to say that an LPRINT statement is printed exactly as a simi
larly formatted PRINT statement would be displayed on the screen. Here are some
examples:

100 LPRINT S$;" and ";Y$ 'combines three strings
11? X,Y,Z '3 numbers spaced as on screen120 LPRINT "The total is ";X 'combines string and numeric values
130 LPRINT "The ";CHR$(27);CHR$(45);CHR$(1);"reaL";

CHR$<27);CHR$(45);CHR$(0);" thing."
'underlines the middle word

The PRINT# statement can use the same data types as LPRINT, and it also can
include many data items in one statement and can mix data of different types.
Semicolons and commas operate in the same fashion. Here are some examples that
parallel those above:

100 0PEN"LPT1:"AS U2

110PRINT#2,S$;"and";Y$
120 PRINT#2,X,Y,Z
130 PRINT#2/'The total is ";X
140 PRINT#2,"The ";CHR$(27);CHR$(45);CHR$(1);"reaL";

CHR$(27);CHR$(45);CHR$(0);" thing."

Middle Level

Function 0 of INT 17H sends one character to the printer. Place the character in
AL and the printer number in DX. On return AH holds a status register that should
constantly be monitored to detect printer errors. [6.1.3] explains how to do this. To
output a stream of data, set a pointer to the buffer holding the data, and write a
routine like this:

;  OUTPUT DATA TO LPT1:

MOV CX,NUMBER_CHARS ;CX counts number bytes output
MOV DX,0 ;chooseLPT1

NEXT_CHAR: MOV AH,0 ;function to send 1 byte to printer
MOV AL,[BX] ;BX points to data buffer
INT 17H ;send the character
TEST AH,8 ;test error bit
JNZ PRNTR_ERROR ;if problem, jump to recovery routine

; increment data pointer
LOOP NEXT__CHAR ;go get next byte

The standard DOS interrupt for printer output is function 5 of INT 21H. Simply
place the character in DL and call the function. It always accesses LPTl, and there
are no return registers.
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;  OUTPUT DATA TO LPT1:
MOV AH,5 ;DOS function number
MOV DL.CHAR ;move output character to PL
INT 21H ;send it

Another way to output data to the printer is by function 40H of INT 21H. This
function is the standard output function used by the file handle method of access to
a file or device [5.3.0]. In this case, the function uses a special, ready-made handle
(identification number) for the printer. This number is 0004, and it is placed in BX.
The function only accesses LPTl, so to use a different printer you will need to
switch the base addresses [6.1.4]. DS:DX points to the output data, and CX holds
the number of bytes to send. For example:

;  OUTPUT 120 BYTES OF DATA TO LPTl:
MOV AH,40H ;function number
MOV BX,4 ;predefined handle for printer
MOV CX,120 ;number of bytes to send
LEA DX,PRTR_DATA ;point DStDX to the data
INT 21H ,-send the data
JC PRTR_ERROR ; jump to recovery routine i f error

On return the carry flag is set if there has been an error, in which case AX holds 5 if
the printer was off line, or 6 if you used the wrong handle number. Note that there
is no need to open a device when a pre-defined handle is used.

Low Level

A byte of data is sent to the printer by placing it in the output data register, the
port address of which is the same as the base address for the printer. Remember
that the base addresses for LPTl-3 are the port addresses found at offsets 8,10, and
12 in the BIOS data area (beginning at 0040:0000). Once the data is sent to the reg
ister, briefly turn on the strobe bit of the output control register, which is located at
the port address that is 2 higher than the data register. The strobe bit is number 0,
and it need be set to 1 only very briefly to initiate transmission of the data in the
data register. The print routine may immediately change the strobe bit back to 0.
Once the byte of data is sent, the program must wait for the printer to signal that

it is ready for another. This is done in two ways. When ready, the printer briefly
pulses the acknowledge bit of the input status register. This register is located at the
port address that is 1 greater than the base address of the printer. The acknowledge
bit is number 6, and it normally is set to 1. The acknowledge pulse sets the bit to 0
long enough that an assembly language program is sure to catch it if it constantly
monitors the register.
An alternative way of knowing that the printer is ready for another byte of data

is to constantly monitor bit 7 of the status register, which is set to 0 when the
printer is busy and to 1 when it is free to receive data. If you write a low-level print
routine in interpreted BASIC or some other very slow language, use this method.
The following example checks the BIOS data area for the base address of LPTl,

and then it writes data from a buffer pointed to by BX. The program monitors the
status register for its busy signal, and at the same time it checks bit 3 to see if there
has been a printer error.
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;  GET READY:
MOV AX,40H ;point ES to bottom of BIOS data area
MOV ES,AX
MOV DX,ES:[8] ;put base address of LPT1 in DX
MOV BX,DATA START ;BX poi nts to data buffer

;  SEND A CHARACTER: ""
NEXTCHAR: MOV AL, [BX] ;pLace character in AL

OUT DXfAL ;send the character
INC DX ;point DX to output control register
INC DX

MOV AL,13 ;bit pattern to pulse strobe line
OUT DX,AL ;send the strobe signal
'^EC AL ;normal bit pattern for control reg
OUT DX,AL ;turn off strobe signaI

;  CHECK FOR ERRORS, WAIT TILL PRINTER READY:
DEC DX ;point DX to status register

NOT__YET: IN AL,DX ;get status byte
TEST AL,8 ;error?
JZ PRTR__ERROR ; jump to error routine if a problem
TEST AL,80H ;printer busy?
JZ NOT__YET ;ifso, loop
^NC BX ;printer ready, increment data pointer
DEC DX ;point DX to data regi ster
JMP NEXTCHAR ;go print next character

When bit 4 of the printer control register is set to 1, the printer interrupt is ena
bled. When interrupts are used, a program does not have to wait for a "not busy"
signal from the printer by continuously monitoring the printer status register.
Instead, a program may send a character to the printer and then go about some
other business; when the printer is ready for the next character, it sends an
acknowledge signal (bit 6 of the status register is briefly set to 1), and the printer
interrupt is automatically invoked. The interrupt routine sends the next character
to the printer and returns, whereupon the main program continues along its way
until it is again interrupted for a character. When the output data is exhausted, the
interrupt must shut itself off. The printer interrupt is set up much like the commu
nications interrupt, which is discussed at [7.1.8].

Unfortunately, a design flaw makes the interrupt feature of the first printer adap
tors unreliable. On some cards it works and on others it does not. Only in the case
of the AT's serial/parallel card can you always trust it. Instead, use the timer inter
rupt, as explained at [2.1.7]. Set the 8253 timer chip so that the interrupt occurs at
a rate somewhat slower than the rate at which the printer can handle data. Then
write an interrupt handler that sends a character to the printer each time the time-
of-day interrupt occurs. In order to ensure proper synchronization, have the rou
tine check the "printer busy" bit of the status register (bit 7), and if indeed the
printer is still busy, have the routine retium without sending a new character.
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6.3.2 Right justify text
True right justification entails dividing the extra space at the end of a line so that

it is distributed equally between all words. Some printers have a special mode that
automatically performs justification. The IBM Color Printer has this capability;
sending 27,77,0 causes on-board circuitry to interpret the incoming data and for
mat it perfectly. Otherwise, a printer must vary the width of the spaces between
words by switching into a graphics mode when it prints a space character. In
graphics modes the space widths can be adjusted by one-sixth or less of a character
width. Unfortunately, many printers very briefly stall while changing between text
and graphics modes, so this method can be very slow. An alternate approach is to
make spaces using the usual ASCII 32 character, dispersing the extra spaces as
evenly as possible across the line. The more difficult graphics approach is shown
here.

The steps to formatting a right justified line of text are as follows. First, the num
ber of columns in the line must be calculated from the page format settings. Then
the number of characters required by each successive word is entered into a tally
that includes the spaces between the words. A separate count is kept of the number
of spaces. When the talley comes to exceed 80 (or whatever width the printer is
using), then the last incomplete word is eliminated from the talley, along with its
preceding space. The number of excess columns in the line is multiplied by 6, which
is the number of horizontal dots in a character, and the resulting number is divided
by the number of spaces between the words.

After each word is printed, the printer is set to 480 dots-per-line graphics mode,
and it sends a number of bytes of ASCII 0. Each byte moves the print head one dot
rightwards. The number sent should be 6 for the ordinary space, plus the result of
the division of the extra space. Finally, if the remainder of the division is not 0,
send one extra byte of 0 to each space until the remainder is exhausted.

In summary, consider a case in which a particular line contains twelve words,
totaling 61 letters, plus eleven spaces between the words. This leaves eight columns
unused in an 80-character line. The eight columns are multiplied by six to give 48
dots worth of horizontal space. Since there are eleven spaces in the line, each space
may be given four extra dots of space, and there still remain four surplus dots, one
of which is added to each of the first four spaces. The first four spaces have six dots
for the normal spacing, plus five extra, equalling eleven. The other spaces are ten
dots wide. To send this data to the printer, set up code that sends a single ASCII 0
byte and place it in a loop that repeats as many times as there are bytes of 0
required. Figure 6-2 illustrates this process.
The example below shows the basics of right justification. Take care to provide

code for special cases, such as single "words" that are longer than one line (e.g., a
long string of dashes). The routines also need modification to deal with the situa
tion in which there are only a few words on a line, as at a paragraph ending. Don't
allow these words to be spread across the full width of the page.
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Figure 6-2. Right justification.

High Level

In this example, BUFFERPTR points to the point in a data buffer from which the
next line of output begins.

100 S$="This text wi LL be printed with right justification using the printer
alternately in text modes and graphics modes."

110 STRINGPTR=1 'points to the data string S$
120 C0LUMNS=1 'counts column positions 1-80
130 SPACES=0 'counts number of spaces in the line
140 " 'figure out how many words wi 11 fit on a line
150 C$=MID$(S$,STRINGPTR,1)
160IFC$O" " THEN 190

170 LASTSPACE=COLUMNS

180SPACES=SPACES+1
190 C0LUMNS=C0LUMNS+1
200 STRINGPTR=STRINGPTR+1

210 IF C0LUMNS=81 THEN 230
220 GOTO 150

230 IF C$0'' '' THEN 270
240 C0LUMNS=79

250 SPACES=SPACES-1

260 GOTO 340

270 C$=MID$(S$,STRINGPTR+1,1)
280 IF C$0** •• THEN 300
290 GOTO 340
300 COLUMNS=COLUMNS-LASTSPACE
310 STRINGPTR=STRINGPTR-C0LUMNS+1
320 C0LUMNS=LASTSPACE-1
330 SPACES=SPACES-1

340 '' 'figure out number of dots per space
350 EXTRASPACES=80-COLUMNS
360 TOTALSPACES=EXTRASPACES+SPACES
370 T0TALD0TS=6*T0TALSPACES

380 DOTSPERSPC=TOTALDOTS\SPACES
390 EXTRADOTS=TOTALDOTS MOD SPACES
400 'now print out the fi rst line of the string

'get a character
' if not a space, jump ahead
' if a space, keep track of position
'add 1 to tally of spaces
'increment column pointer
'increment data pointer
' j ump ahead i f end of I i ne
'otherwise, go get next character
'if last char not a space, jump ahead
'else, line length is 79 chars
'don't count the last space
'go figure spacing
'test if col 80 is last char of word
'next char wi 11 be spc i f so, else jump
'if so, go figure spacing
'col 80 is mid-word, backtrack
'set back data pointer for next line
'number columns is 1 less than last spc
'decrement tal ly of spaces

'figure extra spaces at line end
'add in spaces between words
'multiply by 6 dots per space
'divide by spaces and get quotient
'divide by spaces and get remainder
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410OPEN"LPT1:"AS #1

420 PRINTPTR=1

430 C$=MID$(S$,PRINTPTR,1)
440 PRINTPTR=PRINTPTR+1

450 IFC$=""THEN 500

460 PRINT#1,C$;
470 IF PRINTPTR=C0LUMNS+1 THEN 590

480 GOTO 430

490 '''here 1 s the spacing routine
500 PRINT#1,CHR$(27)+"K";
510 NUMBERDOTS=DOTSPERSPC

520 IF EXTRADOTS=0 THEN 550

530 NUMBERD0TS=D0TSPERSPC+1

540 EXTRAD0TS=EXTRAD0TS-1

550 PRINT#1,CHR$(NUMBERD0TS);
560 PRINT#1,CHR$(0);
570 FOR N=1 TONUMBERDOTS:PRINT#1,CHR$(0);
580 GOTO 430

590 PRINT#1,CHR$(13)

'open printer
'points from start of data buffer
'get a character
' increment pointer
' if a space, jump to spacing routine
'otherwise, print the character
' if end of Line, quit
'otherwi se, go get next character

' swi tch to 480-dot graphi cs mode
'NUMBERDOTS sets number 0's sent

'if no extra dots, jump ahead
'else add an extra dot

'decrement tally of extra dots
'send number of graphics chars (low)
'send number of graphics chars (high)
:NEXT 'send graphics 0's
'space finished, go get next char
'at very end, send carriage return

Low Level

The corresponding assembly language routine is too long to include here. It
would work much as the BASIC example above, except that there is no need to set
up a separate string variable to hold the line. Just set pointers within the data buffer
to the beginning and end of the line that will be printed.
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6.3.3 Proportionally space text
Generally speaking, proportional spacing requires a special printer that contains

information in its ROM about the width of each character. The IBM Color Printer
has a proportional spacing mode which is turned on by the sequence 27,78,1, and
turned off by 27,78,0. A program that formats output to the printer in this mode
must know the width of each character (found in the documentation). With this
data it can calculate how many unbroken words can be fit onto a line.
Be cautioned that some dot matrix printers automatically double-strike propor

tional text. If the words in a line are separated by extra graphics-mode spacing, the
printer may go back for the second pass after each word, rather than doing the
whole line at once. Since printers are relatively slow when changing the direction in
which the head travels, in this case right justified proportional text can take a very
long time to print out, and it can place undue wear on the printer. This problem
does not apply to single-strike proportional spacing. Note that the IBM color
printer can automatically combine proportional spacing with its automatic justifi
cation feature so that no special coding is required.

Ambitious programmers can cause any graphics printer to perform proportional
spacing. The program must store in memory the bit patterns of each character (see
[6.3.4]). Rather than send ASCII codes to the printer, which call on the character
data held in the printer's ROMs, the bit patterns are used to construct a graphics
image of a line of text. Then the entire string of data is output in a graphics mode.
This approach requires a good deal of memory to hold the character data, but it
allows precise control of the printed image.

High Level ——

This example turns on proportional mode and prints the first line of a pro
gram's output data. The widths of the proportional font are read into the array
FONTWIDTH from a sequential file.
100 >' > < < pead in the array of font widths
110 DIM FONTWIDTH(127) 'array to hold font widths
120 OPEN "FONTS" FOR INPUT AS 'open fi le holding widths
130 FOR N=32 to 127 'fi le has codes for ASCII 32-127
140 INPUT #1,F0NTWIDTH(N) 'readawidth into the array
150 NEXT 'next width
160 " " 'figure out how many characters can fit on the line:
170 CHARPTR=0 'CHARPTR points to buffer
180 LINE$='''' 'holds data for 1 line
190 l.INELENGTH=0 'counts length up to 480 dots
200 WHILE LINELENGTH<480 'keep adding chars unti I line full
210 C$=PEEK(BUFFERPTR+CHARPTR) 'get character from data buffer
220 LINELENGTH=LINELENGTH+FONTWIDTH(ASC(C$)) 'add char width to tally
230 LINE$=LINE$-«-C$ 'add character to LINES
240 CHARPTR=CHARPTR+1 'increment the character pointer
250 WEND 'go get next character from buffer
260 ''' "end of line, search LINES backwards unti I end of last word found
270 IF CS='' '' THEN 310 ' last char a space? if so, jump
280 FOR N=LEN(LINES) TO 1 STEP -1 'search backwards from end of line
290 IFMIDS(LINES,N,1) = " "THEN310 'is character a space?
300 NEXT 'if not, go get next
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310 LINELENGTH=N-1 *if so, prior char is the end of Line
320 initialize proportional spacing and send data
330 LPRINT CHR$(27);CHR$(78);CHR$(1); 'code to start proportional spacing
340 FOR N=1 TO LINELENGTH ' for each character
350 LPRINT PEEK(BUFFERPTR+N-1); 'print it
360 NEXT 'go get the next character

Low Level

An assembly language program would work in much the same way as the BASIC
example above. One advantage in assembly is that the XLAT instruction is avail
able to facilitate the look-up of the character widths. Place the character in AL,
point DS:BX to the table, and invoke XLAT. The character width will be returned
in AL:

;  LOOK UP THE CHARACTER WIDTH:
LEA SI,DATA__BUFFER ;point to printer data
LEA BX,WIDTH_TABLE ;point to character width table
MOV AL,CSI] ;geta byte of data
XLAT WIDTH_TABLE ;place its proportional width in AL

;etc...
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6.3.4 Print special characters

Most printers do not support the full IBM character set, yet most programs use
the special block graphics characters. It can be very useful to be able to print these
characters, and it is not terribly difficult to do so on any dot matrix printer that has
graphics capability. Rather than rely on the printer's ROM for the data with which
to create the character, the print program itself must contain this information, and
it must manipulate the printer in special ways to get it on to the page.

Printing special characters in itself is trivial. Simply break down the character
into six bytes in which the bit patterns correspond to the dot patterns of the six col
umns of dots that make up a character. For example, to print the horizontal
double-line character, ASCII 205, a program must output the bit pattern 00100100
six times in 480-dots-per-line mode.This amounts to exactly one character width,
since 6/480 equals l/80th of a line. To invoke this particular graphics mode, send
27,75. Then send the number of bytes of graphics data coming, using two bytes
with the low byte first: 6,0. Finally, send six bytes of the pattern itself, which in
this case is the sum of the values of bits 2 and 5 (4 "F 32 — 36). The entire sequence
is 27,75,6,0,36,36,36,36,36,36. More precise graphics modes may be used for finer
resolution; generally the extra overhead in computing time is negligible relative to
the speed of printer operations.
There is a special problem when block graphics characters must connect verti

cally one to another. Printers normally print a line of eight-dot columns, then skip
downwards by twelve dots, so that a four-dot margin is left between the lines of
characters. Block characters must print across the margin, and in some cases a sin
gle character is twelve dots high. Because most print heads have only eight pins,
the only solution to this problem is to make two passes to form the character, mov
ing the paper forward before the second pass. In this case, the line feed character
(ASCII 10) is not used at all. Rather, the printer alternates between making special
four-dot spacings and then eight-dot spacings. During the second pass half of the
pins will overlap where dots have already been printed, and each of these pins must
always be sent 0 so that they do not fire.
To forward the paper by four dots, send the sequence 27,65,4,27,50, and to for

ward it by eight dots, send 27,65,8,27,50. An automatic carriage return results.
While the first pass occurs, create a temporary line of text that is to be printed dur
ing the second pass. If a character is an ordinary one, place a space character
(ASCII 32) in the corresponding position of the temporary second line. But where
the character is a special graphics character that prints across the four-dot margin,
place its ASCII code in the matching second-line position. For example:

Character position: 1 2 3 4 5 6 7 8 9 10

ASCII code: 205 32 98 111 114 105 110 103 32 205

2nd line code: 205 32 32 32 32 32 32 32 32 205
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A separate table must be kept of the dot patterns for the second pass. For a doubled
descending line, the table contents for the first pass would be 0,255,0,255,0,0, and
for the second pass it would be 0,15,0,15,0,0. Note that in the second and fourth
bytes of the second-pass code, the top four bits are left 0 to avoid overstriking.

In summary, when printing begins, the first character is checked to see if it is a
special graphics character, and, if not, it is simply sent to the printer as an ASCII
code. A space character is entered in the temporary string used for the second pass.
Then the next character is processed. When a graphics character appears, the six
bytes that encode it are looked up in a table, and the printer enters 480-dot graphics
mode, initializes for six bytes, and then sends the data. The printer then automati
cally reverts to character mode. The corresponding position in the second-pass
string is given the ASCII code of the graphics character. This process continues
until the end of the line, then a four-dot line feed is ordered. In the second pass,
each character is again considered in turn. If it is a space, then print the space char
acter (that is, print nothing at all, but forward the print head). And if it is a graph
ics character, look up the second-pass code in a separate table and print it using the
same graphics technique used for the first pass. Reuse the second-pass string for
each line of print. Figure 6-3 diagrams this procedure.
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6.3.4 Print special characters

High Level —

This example divides text into two columns so that a continuous line divides
them down the center. For simplicity, only one line is printed, but the example can
be made to print a whole page by creating a FOR/NEXT loop at lines 325 and 505.
To show two approaches, the first pass is printed character by character, while the
second pass prints out the entire line as a single string.

100 " " 'data table for f i rst pass (ASCII chars 179 and 180 only)
110 DATA 0,0,255,0,0,0
120 DATA 4,4,255,0,0,0
130 " " 'data table for second pass (ASCII chars 179 and 180 only)
140 DATA0,0,15,0,0,0
150 DATA0,0,15,0,0,0
160 '''' 'place the fi rst table into an array
170 DIM FIRSTPASS$(45) 'holds Ist-pass data for special chars
180 FOR N=1 TO2 'fi II the array
190 Y$='''' ' Y$ takes al I 6 bytes per character
200 FORM=1 T0 6:READX:Y$=Y$+CHR$(X):NEXT 'read data
210 FIRSTPASS$(N)=Y$:NEXT 'place in array
220 ''' "place the second table into an array
230 DIM SECONDPASS$(45) 'holds 2nd-pass data for special chars
240 FOR N=1 TO 2 'fill the array as above
250 Y$=""

260 FOR M=1 TO 6:READ X:Y$=Y$+CHR$(X) :NEXT
270 SECONDPASS$(N)=Y$:NEXT
280 "" 'print the text in the following string
290 TEXT$="Here is one column "+CHR$(179)+" Here is the second column"
300TEMP$=STRING$(80,32) 'create a string of spaces for pass 2
310GRAPHICS$=CHR$(27)+CHR$(75)+CHR$(6)+CHR$(0) 'graphi cs mode control string
320 OPEN "LPT1 AS #1 'open printer
330 FOR N=1 TO LEN(TEXTS) 'for each character of the text...
340 C$=MID$(TEXT$,N,1) 'get the character
350 IF C$<CHR$(128) THEN PRINT#1 ,C$; :GOTO400 'if not special, print, get next
360 " " 'assume any other characters are block graphics (ASCI1 179-223)
370 PRINT #1 ,GRAPHICS$; 'go into graphics mode
380 PRINT #1 ,FIRSTPASS$(ASC(C$)-178); 'print 1st pass data for the character
390MID$(TEMP$,N)=C$ 'put marker in 2nd pass string
400 NEXT 'go get next character
410 ''' "space by 8 dots and make second pass
420 PRINT #1 ,CHR$(27)+CHR$(65)+CHR$(4)+CHRS(141); 'make the line spacing
430 Z$='''' 'ZS holds output string for 2nd pass
440 FOR N=1 TO LEN (TEXTS) 'for each character of text...
450 CS=MIDS(TEMPS,N,1) 'get the character
460 IF CS=CHRS(32) THEN GOTO 480 'if a space, add to string
470 ZS=ZS+GRAPHICSS+SEC0NDPASSS(ASC(CS)-178) 'else add special char sequence
480 NEXT 'go get next character
490 PRINT #1 ,ZS 'print the whole string
500 PRINT #1 ,CHRS(10); 'add line feed at end

Low Level ——

An assembly program uses the same algorithm as the BASIC program above.
When only a few of the ASCII characters are used, you can save space by creating
a table that compresses them together, so that their positions in the table are not
proportional to their positions in the ASCII set. Then set up a small table using the
XLAT instruction and have it provide the index used to find character data in the
data table.
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6.3.5 Perform screen dumps

A text screen dump is simple enough if all of the characters used are contained in
the printer's ROM and if none are shown on the screen in special attributes, such as
with an underline or in reverse image. In this simplest case a program needs only to
set the printer width to 80 characters and then read the characters from the video
buffer one-by-one, sending them as an unbroken data stream to the printer. If the
printer ROMs lack special characters, such as the IBM block graphics characters,
then a program must set up its own data table for the characters and output them
to the printer in graphics mode. Because these characters may connect across line
spacings, special programming is required [6.3.4].

Special character attributes each have their own problems. Check the attribute of
each character as it is read from the video buffer ([4.1.3] discusses the bit patterns
for the various attributes). When a character is underlined or intensified, turn on
and off the printer's underline or boldface modes. If the character is reverse-image,
however, the same problem arises as with many of the block graphics characters:
the reverse-image area should descend to the top edge of the line below. Follow the
prescriptions given at [6.3.4], and fill in solid dots on the second pass. Depending
on the printer, you may need to create special character data tables for reverse
image characters, since when they are printed, the surrounding dots may be too
close to each other, obscuring the dark area that forms the character. Double-strik
ing is out of the question in this case. A simple solution to the reverse-image prob
lem is to use a graphics mode to display a text screen, then use one of the printer's
graphics modes to dump the screen.

Graphics dumps present another sort of difficulty. A byte of printer data repre
sents eight vertical dots. But a byte of video graphics data represents eight horizon
tal dots. A conversion routine is required, as shown in Figure 6-4. Fetch eight bytes
at a time from the screen, taking those that correspond to an 8-by-8 dot area. Then
use logical operators to move the bits, as shown in the examples below.

Be aware that most dot matrix printers distort the screen image. This is because
they tend to use a 1:1 aspect ratio, while the screen uses 5:6 (the aspect ratio com
pares the number of horizontal dots per inch to the number of vertical dots per
inch). Correctly speaking, it is actually the screen's aspect ratio that creates the
image distortion, since programs must alter the data for the image so that it will
appear as it should (a circle on the screen, for example, is created by the mathemat
ical image of an ellipse). When the video data is dumped onto a printer, these
adjustments must be reversed. Some printers have special graphics modes that can
print out the screen image without distortion, and the IBM color printer can alter
the aspect ratio of any of its graphics modes.

High Level

This BASIC routine prints a simple copy of a text screen, ignoring special
attributes:

363



6.3.5 Perform screen dumps

1 2 3

Byte

4  5 6 7 8

o O 1 o o

o o 2 o o

o o 3 o o

o o o o o o 4
—Byte

5

o o o o o o

o o

o o o o o o 6 o O O O 0 o

o o 7 o o

o o a o o

J
Figure 6-4. A graphics screen dump of one character cell.

10OPEN"LPT1:"AS #1

20 DEF SEG=&HB000

30 PRINT CHR$(13)

40 FOR G=0 TO 3998 STEP 2

50 PRINT #1 ,CHR$(PEEK(G)) ;
60 NEXT

•open the printer
•point to the monochrome video buffer
• reset print head to Left
•for every other byte of buffer...
• read i t and pri nt i t
•next byte

Rearranging the bit patterns for a graphics dump is time consuming in BASIC.
Place in an array (here, BYTE$) the eight bytes from an 8-by-8 dot block of screen
area. Create a second array (VERTICALS) and initialize its elements to 0, then
change the bits of its elements 1-by-l, as follows:

500 FOR M=0 to 7

510 FOR N=0 TO 7

520 X=ASC(BYTE$(N))

530 Y=2(7-M)

540 Z=X AND Y

•for every bit
•of every byte...
•get the value of the byte
•make a mask with 1 bit turned on

•see if that bit is on in the byte
550 IF Z<>0 THEN VERTICAL$(M) = CHR$(ASC(VERTICAL$(M)) OR 2 N)

• i f so, turn on the same bi t in
•  the corresponding position in the
•  second array

560 NEXT N •next bit

570 NEXT M •next byte

Low Level

Assembly language can make the bit conversions much more quickly. Here is a
routine that is terribly fast because it keeps everything on the chip (it also is a little
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large—you might want to write up the BASIC algorithm shown above instead).
The routine works by keeping the eight result bytes in the CX, DX, BP, and DI reg
isters. A byte of screen data is placed in AL, and then CL, CH, DL, and DH are
moved in sequence into AH. A single bit is shifted from AL into AH each time, and
when four shifts have been made, CX and DX are exchanged with DX and BP, and
then it is all done again. This process is repeated for each of the eight screen bytes,
and when it is complete, the converted image is held on the chip registers, with the
leftmost byte of printer data in CL. These are dumped on to the printer and
reinitialized to 0, and then the process starts all over again with another eight bytes
from the screen. To begin with, fetch the eight bytes from the screen and place
them in a buffer called BUFFER. Place 0 in AX, CX, DX, BP, and DL Then:

LEA BX,BUFFER
MOV 31,0

6ET_BYTE: MOV AL,[BX]CSI]
DO__HALF: XCHG AH,CL

SHL AX,1
XCHG AH,CL
XCHG AH,CH
SHL AX,1
XCHG AH,CH
XCHG AH,DL
SHL AX,1
XCHG AH,DH
XCHG AH,DH
SHL AX,1
XCHG AH,DH

;  BEGIN SECOND HALF OF THE BIT MOVES:

XCHG CX,BP
XCHG DX,DI
CMP SI,7
JE PRINT__BYTES
INC SI

JMP SHORT GET_BYTE
;  PRINT THE BYTES:

PRINT_BYTES: PUSH DX
MOV

MOV

INT

MOV

INT

MOV

INT

MOV

INT

AH,5
DL,27
21H

DL,75
21H

DL,6
21H

DL,0
21H

CALL PRINT__2_BYTES
POP CX

CALL PRINT__2_BYTES
MOV CX,BP
CALL PRINT__2_BYTES
MOV DX,DI
CALL PRINT 2 BYTES

point to video data buffer
points to offset in buffer
fetch a byte
get CL, CH, DL, and DH,
shifting a bit from AL

switch CX and DX contents

if at I bytes converted, print

otherwi se point to next byte
go get i t

save DX

DOS printer output function
escape code
send i t

graphi cs mode code
send it

wi L L send 6 bytes

send contents of CX

send former contents of DX

send BP contents

send DI contents

(go do next group of eight bytes)
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6.3.5 Perform screen dumps

PRINT 2 BYTES PROC NEAR

MOV AH, 5
MOV DL,CL
INT 21H

MOV DL,CH
INT 21H

RET

;DOS print function
;CL first
;print it
;CH next
;print it

PRINT 2 BYTES ENDP
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7

Input/Output
Section 1: Access a Serial Port

In asynchronous communications, the machine sends or receives bytes of infor
mation one bit at a time. The timing between the bytes of data is not important,
but the timing of the sequence of bits that make up a byte is critical. The signal on
the line goes high and low, corresponding to logical Is and 0s, and the line is said
to be marking when the level is high ( = 1) and to be spacing when the level is low
( = 0).

The line is held in the marking condition whenever it is not transferring data. At
the onset of the transmission of a byte of data, the signal drops to 0 during the start
bit. Then the eight bits of data (sometimes fewer) follow as a pattern of highs and
lows. The last data bit is optionally followed by a parity bit used in error detection,
and then the sequence concludes with 1 or more stop bits, which are comprised of a
high signal. These stop bit(s) begin the marking state that continues until the trans
mission of the next byte of data begins; the number of stop bits used is significant
because they set the minimum amount of time that must pass before the next start
bit. Figure 7-1 diagrams this sequence.

CD

05
■4—»

(D

CO

m

B
c5
Q
CO

CO
00

05
CL

CO

d
O

CO

CO
Q)

2 IB

I §
si
X Q)
Uj ^

CO

B
-«—•

X
CD
z

,1.

Figure 7-1. The transmission of one byte of serial data.
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7.1.0 Access a Serial Port

Of course, both the transmitting and receiving stations must use the same proto
col for these bit patterns, and they must operate at the same transmission speed
(measured in bits per second (bps), also referred to as baud). Errors can easily
occur, and the serial hardware offers a variety of status information, both for the
port itself, and for the modem that the port is connected to. The modem's job is to
convert the signal generated by the serial port into an acoustic signal that can be
transmitted across phone lines. Most modems also provide a number of advanced
communications features, such as automatic dialing and answering, most of which
are not supported by the serial port itself.
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7.1.1 Program the 8250 UART chip
Serial communications is so complicated that special chips have been designed to

do the work of forming and timing the strings of bits that comprise serial data.
Such a chip is called a universal asynchronous receiver transmitter, or UART.
Without UARTs, communications programming would be extremely complicated.
The IBM microcomputers user the Intel 8250 UART.
DOS supports two communications ports, and hence two UARTS. Their base

addresses are kept at 0040:0000 for COMl and 0040:0002 for COM2. (A base
address is the lowest two-byte port address of the group of port addresses by which
the UART is accessed). On all machines but the PCjr, COMl starts at 3F8H and
COM2 at 2F8H; the PCjr keeps its internal modem at 3F8H and COMl at 2F8H.
For convenience, the discussion here refers to the registers numbered 3FxH, but the
same specifications apply to the registers at 2FxH.
The 8250 has ten programmable one-byte registers by which to control and mon

itor the serial port. Most are devoted to initializing the port, a process that can be
rather complicated. The ten registers are accessed through seven port addresses,
numbers 3F8H - 3FEH (or 2F8FI - 2FEFI). In five cases, the register accessed at a par
ticular port address depends on how bit 7 is set in the line control register, which is
the only register at port 3FBH. Here are the registers:

3F8H (OUT, bit 7=0 at 3FBH) Transmitter Holding Register
3F8H (IN, bit 7=0 at 3FBH) Recei ver Data Register
3F8H (OUT, bi t 7=1 at 3FBH) Baud~Rate Di vi sor (Low byte)
3F9H (IN, bi t 7=1 at 3FBH) Baud-Rate Di vi sor (high byte)
3F9H (OUT, bit 7=0 at 3FBH) Interrupt Enable Register
3FAH (IN) Interrupt Identification Register
3FBH (OUT) Line Control Register
3FCH (OUT) Modem Control Register
3FDH (IN) Line Status Regi ster
3FEH (IN) Modem Status Register

Of the ten registers, only sbc are necessary for simple serial communications. The
transmitter holding register holds the byte of data about to be sent [7.1.6], and the
receiver data register keeps the most recently received byte of data [7.1.7]. The line
control and line status registers initialize and monitor the serial line, using the baud
rate placed in the two baud-rate divisor registers [7.1.2]. Of the remaining four reg
isters, the modem control and modem status registers are used only for modem
communications [7.1.5], and the two interrupt-related registers are used only in
interrupt-driven routines [7.1.8].

Interrupts are used in communications for reasons of efficiency. Simple commu
nications routines constantly monitor the line status register, waiting for an
incoming character, or waiting until the register indicates that it is all right to trans
mit another byte of data. Because the CPU operates very quickly relative to the 300
or 1200 bit-per-second rate at which serial data typically moves, this method can be
wasteful of CPU time that might otherwise be devoted to processing the incoming/
outgoing data. For this reason the 8250 may be set up to bring about an interrupt
whenever a character arrives, an error occurs, etc. The interrupt momentarily
brings into action a procedure in your program that would, say, output the next
character from a communications buffer.
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7.1.2 Initialize the serial port

7.1.2 Initialize the serial port
When a communications port is initialized ("opened")/ all of the parameters by

which it operates are set. These parameters include the word length, the number of
stop bits, the parity setting, and the baud rate. The word length is the number of
bits that form the basic data unit. While we are accustomed to working in eight
bits, seven bits is adequate for standard ASCII files (where all characters are below
ASCII 128), and as few as four bits may be suitable for the transmission of numeric
data.

High Level

BASIC opens the communications channel as a file, and as such it must be given
a file identification number:

0PEN"C0M1: " AS #1

Placed within the quotation marks is all the information required to initialize the
serial port, each entry separated from the prior by a comma. The initialization data
is always entered in the following order:

Baud rate given as an integer: 75, 100,150, 300, 600, 1200, 1800, 2400, 480
0/, or 9600 bits per second. Defaults to 300 baud.

Parity given as a one-character code: O for ODD parity; E for EVEN
parity (the default); N for NONE (no parity); S for SPACE,
where the parity bit is always 0; and M for MARK, where the
parity bit is always 1. If eight data bits are used, specify N; if
four bits are used, do not use N.

Data bits given as the integer 4, 5, 6, 7, or 8, with 7 as the default value.

Stop bits given as the integer 1 or 2, with 2 as the default for 75 and 110
bps, and 1 for all others. When the number of data bits is 4 or 5,
2 stands for 11/2 stop bits. "11/2" bits is possible because in
communications a bit is a unit of time, and hence it is divisible.

The statement OPEN "COMl:" AS #1 opens COMl for 300 bps communications
with even parity, using seven data bits and one stop bit. OPEN
"COM1:1200,O,8,1" sets up the port for 1200 bps communications with odd par
ity, eight-bit characters, and one stop bit. Note that you can end one of the OPEN
statements with the expression LEN = number, where the number sets the maxi
mum block size by which GET and PUT instructions may handle data (128 bytes is
the default). There are a number of modem-control commands that optionally may
be included with these specifications ([7.1.5] explains the special terminology found
here):

RS Suppresses the "Request To Send" signal. If this command is omitted,
OPEN"COM... turns on RTS.
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Initialize the serial port 7.1.2

CS Causes the Clear To Send" line to be checked. This command may
optionally be followed by a value (from 0-65535) that gives the number
of milliseconds to wait for the signal before a "Device Time-out" error
occurs—for example, CS500. The default value is 1000, unless RS is
specified, in which case it is 0.

DS Causes the "Data Set Ready" line to be checked. An optional parameter
is allowed, as for CS above. The default value is 1000.

CD Causes the "Carrier Detect" line to be checked. An optional timing
parameter is allowed, as for CS above. The default value is 0.

LF Causes a line feed (ASCII 10) to automatically follow every carriage
return (ASCII 13). Used for serial output to a printer.

PE Enables parity checking, causing a "Device Time-out" error if a parity
error occurs.

These special commands may be placed anywhere in the OPEN"COM... state
ment and in any order. Note that normally the CTS and DSR signals must be
turned on or the OPEN statement will fail and a "Device Time-out" error will
occur. In summary, here is an OPEN"COM... statement that includes all parame
ters except RS and LF:

0PEN"C0M1;1200,0,7,1,082000,DS2000,CD,PE" AS #1 LEN=256

Middle Level —

BIOS function 0 of INT 14H initializes the serial port. DX is given the number of
the communications channel (COMl = 0, COM2 = l). AL takes a byte that gives
the initialization data, as follows:

bits 1-0 Word length. 10=7 bits 8 11=8 bits.
2  Number of stop bits. 0=181=2.

4-3 Parity. 00or10=none. 01=odd811=even.
5-7 Baud rate. 000=110 bps

001=150
010=300
011=600

100=1200

101=2400
110=4800
111=9600

This example initializes the port to an eight-bit word length with one stop bit and
even parity. The baud rate is 1200 bps.

;  ASSIGN VALUES TO THE PARAMETER VARIABLES:
MOV WORDLENGTH,00000011B ;8-bit word Length
MOV STOPBITS,00000000B ;1 Stop bit
MOV PARITY,00011000B ;even parity
MOV BAUDRATE,10000000B ;1200 baud

;  INITIALIZE C0M1:

MOV AL,0 ;cLearAL
OR AL,WORDLENGTH jinitialize the bits from 4 variables
OR AL,STOPBITS ;
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7.1.2 Initialize the serial port

OR AL,PARITY
OR AL^BAUDRATE
MOV AH,0 ;function to initiaLize serial port
MOV DX,0 ;seLectC0M1
INT 14H ;initiaLize the port

Low Level

Whether for input or output, minimally four registers of the 8250 chip must be
initialized for serial operations. These are the two baud-rate divisor registers, the
line control register, and the interrupt enable register.

Baud-rate initialization:

The baud-rate divisor is a number that divides the rate of the system clock
(1190000 cycles/second) to give a result that equals the desired baud rate. For
example, for 1200 bps the baud-rate divisor would be 96, since 119000/96 equals
roughly 1200. The larger the divisor, the slower the baud-rate. Baud rates of 300
and under require a two-byte number for th6 divisor, and for this reason the 8250
chip needs two registers to hold the divisor. The high byte is sent to 3F9H (or
2F9H), and the low byte to 3F8H (2F8H). In both cases, bit 7 of the line control reg
ister at 3FBH (2FBH) must be set to 1 before sending values; otherwise these two
addresses direct the values to other registers (see [7.1.0]). Here are some values
required by common baud rates:

Baud Rate 3F9H 3F8H

110 04H 17H

300 01H 80H

600 00H C0H

1200 00H 60H

1800 00H 40H

2400 00H 30H

3600 00H 20H

4800 00H 18H

9600 00H 0CH

Always set the baud rate registers first since they are the only ones that require
that bit 7 equal 1 in the line control register. Then set the contents of the line con
trol register, making bit 7 equal 0 so that all subsequent register accesses are cor
rect. Since the line control register is write-only, there is no way to set bit 7 back to
1 without redoing all of the bits in the register. Note that the PCjr uses different
divisors—see the technical reference manual if you need them.

Line Control Register Initialization:

The bit settings for the line control register at 3FBH (or 2FBH) are as follows:
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bits 1-0 Character length. 00 = 5 bits, 01 =6 bits
10 = 7bits, 11=8bits.

2  Number of stop bits. 0 = 1. 1 =1.5 if the
character Length is 5, else =2.

3  Parity. 1 =parity bit is generated, 0 = not.
4  Parity Type. 0 = odd, 1 =even.
5  Stick Parity. Causes parity to aLuays be 1 or 0.

0 = disabLed.
1 = always 1 if bit 3 = 1 & bit 4 = 0,
or 1 = always 0 if bit 3 = 1 & bit 4 = 1
or 1 = no parity if bit 3 = 0.

6  Set Break. Causes output of string of 0s as signal
to remote station. 0 = disabled, 1=break.

7  Toggles port addresses of other registers on chip.

Ordinarily bits 5 - 7 are set to 0. The others are given the values of the desired com
munications protocol.

The intemipt-enable register:

Even when interrupts are not used, you should access the interrupt-enable regis
ter to be sure that interrupts are disabled. Simply place 0 in the register. The inter
rupt identification register may be ignored.

The remaining initialization registers are concerned with modems. Modems, of
course, are required only for distant communications and not for the control of
nearby devices such as a serial printer. [7.1.5] explains how to initialize the modem
control register.

In this example the base address of COMl is found in the BIOS data area and the
various registers are initialized for 1200 baud, seven-bit data, even parity, and one
stop bit.

;  GET BASE ADDRESS OF COMl:

MOV AX,40H ;point ES to BIOS data area
MOV ES,AX
MOV DX,ES:C0] ;get base address for COMl

;  INITIALIZE THE BAUD RATE DIVISOR REGISTERS FOR 1200 BPS:
ADD DX,3 ;point to line control register
MOV AL,10000000B ;turnonbit7
OUT DX,AL ;send the byte

DX ;point to MSB of baud rate di visor
DEC DX

MOV AL,0 ;MSB for 1200 bps
OUT DX,AL ;send the byte

DX ;point to LSB of baud rate divisor
MOV AL,60H ; LSB for 1200 bps
OUT DX,AL

;  INITIALIZE THE LINE CONTROL REGISTER:
MOV AL,0 ; initialize AL to 0
OR AL,10B ;7-bit data length
OR AL,000B ;1 stop bit
OR AL,1000B ;parity bit generated
OR AL,10000B ;even parity
ADD DX,3 ;point to line control register
OUT DX,AL ;send the initialization value
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7.1.2 Initialize the serial port

;  INITIALIZE THE INTERRUPT ENABLE REGISTER:
DEC DX ;point to interrupt enable register
DEC DX

,  MOV AL,0 ;disabLeall interrupts
OUT DX,AL ;send the byte

;continue
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7.1.3 Set the current communications port
There are two ways by which a program can decide which of the COM channels

is to be used. One means is by specifying the channel number in program state
ments. The second way is by writing the program for COMl, but changing which
communications adaptor is accessed by COMl.
The BIOS data area contains space for four two-byte variables which hold the

base addresses of the serial channels (PC-DOS supports only the first two). A base
address is the lowest port address of the group of port addresses that access a par
ticular serial channel. The base address of COMl is at 0040:0000, and COM2 is at
0040:0002. To change serial ports, simply exchange the two values. Switching the
addresses a second time restores the original port assignments.

High Level —

In BASIC the OPEN"COM... statement may be set up in the form OPEN
C$ + "1200,N,8" AS #2, where C$ may be either "COMl:" or "COM2:". Alterna
tively, use PEEK and POKE to switch the base addresses:

100 DEF SEG=&H40

110X=PEEK(0):Y=PEEK(1)
120 POKE 0,PEEK(2) :POKE 1 ,PEEK(3)
130 POKE2,X:POKE3,Y

'point to bottom of BIOS data area
* Store the f i rst 2 bytes
•transfer the second 2 bytes
'put 1st 2 bytes at higher position

Middle Level

If a program accesses the communication ports via BIOS INT 14H, then the
COM port may be specified in DX as either 0 or 1 (for COMl or 2). Rather than fill
DX with an immediate value, fill it with a variable that can be set to either 0 or 1,
as required. Programs that use communications functions 3 and 4 of DOS INT 21H
always address COMl. In this case, switch the two base addresses:

;  EXCHANGE BASE ADDRESSES OF COMl AND COM2

MOV AX,40H
MOV ES,AX
MOV DX,ES:C0]
MOV AX,ES:C2]
MOV ES:C0],AX
MOV ES:C2],DX

point ES to BIOS data area

put 1st base address in DX
put 2nd base address i n AX
exchange the addresses
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7.1.4 Monitor the status of the serial port
The line status register of the 8250 UART sets up the communications protocol.

This register is located at the port address that is 5 higher than the base address for
the particular COM channel. Ordinarily it is constantly monitored during commu
nications activity. During data transmission, the register tells when the prior char
acter has been sent off, lest the program write the next character on top of it. In
data reception, the register informs the program when a character arrives, so that
the program can remove it before it is overlaid by the one that follows. The con
tents are as follows:

bi t 0 1 = a byte of data has been recei ved
1  1 = received data has been overrun (prior

character was not removed in time)

2  1 = parity error (probably from Line noise)
3  1 = framing error (transmission is out of

sync)
4  1 = break detect (a long string of 1 's has

been received, indicating that the
other station requests an end to
transmission)

5  1 = transmitter holding register empty (this
regi ster i s gi ven output data)

6  1 = transmi tter shi ft regi ster empty (this
regi ster takes holdi ng regi ster data
and converts it to serial form)

7  1 = time-out (off-line)

High Level —

In BASIC, first find the base address for the COM channel in use, add 5 to it,
and then use INP to get the byte at that port address. Appendbc B explains how to
perform bit operations in BASIC so that a program can interpret the byte. The fol
lowing example checks the break detect bit:

100 DEF SEG=&H40 'point to start of BIOS data area
110 ADDRESS=PEEK(4)+PEEK(5)*256 'calculate COM2 base address
120 X=INP(ADDRESS+5) 'get status port value
130 IF X AND 16 THEN 500 ' jump to subroutine if bit 4 is on

500 'begin BREAK routine

Middle Level ■

Function 3 of BIOS INT 14H returns the contents of the line status register in AH
(AL receives the modem status register [7.1.5]). On entry DX holds the number of
the communications port that is accessed, where COMl = 0 and COM2 = 1. Like
the one above, this example checks for the break detect condition:

MOV AH,3 ;function number
MOV DX,1 ;choose COM2
INT 14H ;fetch the status byte
TEST AH,10000B ,-break detect?
JNZ BREAK_DETECT ; jump to break routine if so
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Low Level

This example is much like the one given above for BASIC. Read the base address
of the COM channel from the BIOS data area, add 5, and get the status byte from
the resulting port address.

MOV AX,40H
MOV ES,AX
MOV DX,ES:C2]
ADD DX,5
IN AL,DX

AL,10000BTEST

JNZ BREAK DETECT

;point ES to bottom of BIOS data area
#

;get COM2 base address
;add offset of 5 for status register
;get the status byte
;bit 5 set?
;if so, jump to break routine
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7.1.5 Initialize and monitor the modem

There are six lines by which modems communicate with the computer (more
advanced modems may have extra lines through the RS232 interface). Here are
their names, abbreviations, and functions:

From computer to modem:

Data Terminal Ready (DTR) informs modem that computer is
powered up and ready for
communications

Request To Send (RTS) informs modem that computer wants to
send data

From modem to computer:

Data Set Ready (DSR) informs computer that modem is
powered up and ready

Clear To Send (GTS) informs computer that modem is ready
to begin data transmission

Data Carrier Detect (DCD) informs computer that modem has
connected with another modem

Ring Indicator (RI) informs computer that the phone line
the modem is connected to is ringing

First the computer turns the data terminal ready signal on, and then it instructs
the modem to dial the remote station. Once the modem has established a connec
tion, it turns on the data set ready signal. This informs the computer that the
modem is ready for communications, and at that point the computer can turn on
the request to send signal. When the modem replies with clear to send, transmission
can begin.
The two standard lines by which the computer controls the modem may be

accessed through the modem control register on the 8250 UART chip. This register
is located at an address that is 4 greater than the base address for the COM channel
in use. Here is the bit pattern in the register:

Modem Control Register:

bits 7-5 (always 0
4 1 = UART output looped back as input
3 auxiliary user designated output #2
2 auxiliary user designated output #1
1 1 = "request to send" is active
0 1 = "data terminal ready" is active
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Ordinarily bits 0 and 1 of the modem control register are set to 1, and the others
are set to 0. Bit 2 is set to 0 unless a modem's manufacturer has given it a special
use. Bit 3 is set to 1 only when interrupts are used [7.1.8]. Finally, bit 4 is a special
feature that is useful for testing communications programs without actually going
on line. The output signal from the UART is looped back so that the UART
receives it as serial input. This feature may be used to test whether the chip is func
tioning properly. Loop-back is not available through the BIOS INT 14H communi
cations routines.

The four lines by which the modem sends information to the computer are moni
tored through the modem status register. This register is located at the port address
that is 6 higher than the base address of the communications adaptor in use. Here is
the bit pattern:

Modem Status Register:

bit 7 1 = "data carrier detect"
6 1 = "ring indicator"
5 1 = "data set ready"
4 1 = "clear to send"
3 1 = change in "data carrier detect"
2 1 = change in "ring indicator"
1 1 = change in "data set ready"
0 1 = change in "clear to send"

Programs constantly monitor these bits during communications operations. Note
that the four low bits parallel the four high bits. These bits are set to 1 only when a
change has occurred in the status of the corresponding high bit since the last time
the register was read. All four low bits are automatically restored to 0 after the read
operation. Programs of any level may read the register directly. Alternatively,
function 3 of BIOS INT 14H returns the contents of the modem status register in
AL (the line status register contents appear in AH). On entry to this function DX
must hold the number of the COM channel (0 or 1).
Most modems have many more capabilities than the two modem-related registers

reflect. Features like autodial and autoanswer are controlled by control strings.
These strings are sent to the modem as if they were data being transmitted. The
modem extracts the strings from the data by watching for a special character used
only to signal the start of a control string. This character may be predefined (often
it is ASCII 27, the ESCape character) or it may be user-selectable. The modem is
able to determine how long each sequence must be, so that beyond the end of the

If again treats the transmission outflow as data. Every modem has its own set
of commands. By way of example, here are those used by the internal modem of
the PCjr:
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Symbol Meaning Application

A answer enter answer mode

Bn break send a break signal n * 100 ms long
C ncount before answering count n rings
Dn...n dial dial the string of numbers n...n
Fn format set up communications protocol
H hang-up break the connection

I initialize initialize the modem

LR long response toggles code system used by modem
M mode make modem see characters as data

Nn new change command character to n
O originate enter originate mode
P pick-up enter voice mode

Q query request modem status
R retry retry dial command
Sn speed select baud rate

Tn...n transparent ignore Ctrl sequences next n...n bytes
V voice force modem to voice mode

w wait do nothing until next command
X xmit transmit dial tones

z ztest perform hardware diagnostics

In response to a query command, the modem returns status information, sending it
to the 8250 like incoming data. Among other things, this information can report
that the line is busy. All in all, a good deal of documentation is required to prop
erly use a modem's command sequences and status information. For the PCjr's
modem, see the PCjr Technical Reference Manual. The examples below give only
the bare framework by which modem connections are established.

High Level

Because the telephone system works at less than blinding speed, establishing a
modem link is perhaps the one point in communications programming where
BASIC can work every bit as well as assembly language. Here is the framework:

100 OUT BASEADDRESS+4,1 'turn on "data terminal ready"
110 '''now send control string to modem to dial number and establish
120 '''connection — this code varies by the modem

200 X=INP<BASEADDRESS+2)
210 IPX AND2 0 2THEN 200
220 OUT BASEADDRESS+4,3
230 X=INP(BASEADDRESS+2)
240 IFXAND1 Ol THEN 230

250 '' 'now being sending data...

'get modem status regi ster va lue
'keep looping unti I bit 1 is set
' turn on "request to send" bi t as we 11
'get modem status register value
' keep loopi ng unt i I bi t 0 i s set
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Low Level ———————

Here is the same general framework written in assembly language:

;  TURN ON THE "DATA TERMINAL READY" SIGNAL:
MOV DX,BASE__ADDRESS ;start with base address
ADD DX,4 ;point to modem control register
MOV AL,1 ;turnonbit1
OUT DX,AL ;turnonDTR

;  SEND CONTROL STRING TO MODEM TO DIAL NUMBER...

;thi s code i s modem-dependent

;  THEN WAIT UNTIL "DATA SET READY"

INC DX

INC DX

TRY__AGAIN: IN AL,DX
TEST AL,10B
JZ TRY__AGAIN

;  TURN ON "REQUEST TO SEND":

DEC DX

DEC DX

MOV AL,3
OUT DX,AL

;  WAIT FOR "CLEAR TO SEND"

INC DX

INC DX

ONCE_MORE: IN AL,DX
TEST AL,1
JZ ONCE MORE

;  NOW BEGIN SENDING DATA...

SIGNAL IS ON"

;point to modem status register
!

;get contents
;see if bit 2 is on
;don't continue unti L it is

;return to modem control register
!

;turnonRTS, leaving DTR on
;send the new bit setting

; return to modem status regi ster
I

;get the status byte
; ready to send?
;don't go on if not
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7.1.6 Transmit data

Transmitting data is simpler than receiving it, since a program has complete con
trol over the composition of the data, and over the rate at which it is sent. Still,
transmission routines can become elaborate if they process the data as they send it.
And timing can be a problem when the XON/XOFF protocol is used. This protocol
uses ASCII characters 17 (XON) and 19 (XOFF) to signal to the transmitting station
that the receiver wants the transmission flow temporarily interrupted. To accom
modate it, the program must constantly watch for incoming characters while it
transmits (in the full duplex mode in which most modems operate, signals simulta
neously flow both ways across the telephone line). Similarly, to detect that the
remote station has sent a string of 0's and brought about a break condition, the
transmitting status must intermittently monitor the status of the break bit (number
4) of the line status register [7.1.4]. Figure 7-2 (at [7.1.7]) shows how the data trans
mission routine interacts with the data reception code.

Because of these considerations, the presentation here of an isolated transmission
routine is somewhat artificial. But it can be combined with the data reception rou
tine shown at [7.1.7] to create a general framework. Obviously, a tremendous
amount of elaboration is required to form a workable routine, particularly by way
of error checking and recovery.

High Level —

In BASIC, use PRINT#, PRINT#USING, and WRITE# to send characters out an
opened communications port. The latter two statements have special formats that
parallel those of the PRINT USING and WRITE statements used for video opera
tions. Generally PRINT# is used. This example sends data taken directly from the
keyboard. It assumes that COMl has already been opened, as shown at [7.1.2].
The routine monitors the break bit of the line status register.

500 C$=INKEY$:IF C$<>"" THEN PRINT#1 ,C$ 'if a keystroke, send it
510 X=BASEADDRESS+5 'read Line status register
520 IF X AND 32=32 THEN 1000 ' i f bi t 5 set then BREAK
530 IF EOF(I) THEN 500 'if input buffer empty, check for keystroke
540... 'else, go receive data...

(data reception routine here)

1000 • • 'BREAK routine begins here

Middle Level

Function 1 of BIOS INT 14H sends the character in AL out the serial port. On
entry, DX holds the COM port number (0-1). On return, AH holds a status byte in
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which bit 7 — 1 if the operation failed. In this case, the following bits are
significant:

bit 4 Break detect (the receiving station signals "stop!")
5  Transmission shi ft register empty
6  Transmission holding register empty

DOS has an asynchronous communications function that transmits the character
placed in DL. The function, number 4 of INT 21H, offers no advantage over the
BIOS interrupt; indeed, it does not return status information, and it does not allow
you to designate which COM port to use (it always addresses COMl).
To output strings of data, use function 40H of INT 21H. This is the common out

put function for all files and devices under the file handle method of access. COMl
has a predefined handle, number 0003. Place the handle in BX and the number of
bytes to output in CX. Then point DS:DX to the output data buffer and call the
function.

MOV AH,40H ;function number
MOV BX,3 ;predefined COM handle
MOV CX,50 joutput 50 bytes
LEA DX,DATA_BUFFER ;point DS:DX to the data buffer
INT 21H ;send the data
JC COM_ERROR ; jump i f there has been an error

Note that there is no need to "open" a predefined handle. If an error occurs, the
carry flag is set, and AX returns 5 if the communications port was not ready and 6
if the handle number was wrong.

Low Level

When a character of data is placed in the 8250's transYnittQV holding register, it is
automatically output to the serial line via the transmitter shift register, which seri
alizes the data. There is no need to pulse a strobe bit to initiate the transfer, as is
required on the parallel adaptor. Bit 5 of the line status register tells whether the
transmitter holding register is free to receive data. The register is constantly moni
tored until bit 5 becomes 1. Then one byte of data is sent to the transmitter holding
register, from where it is instantly output. Bit 5 changes to 0 while the byte is out
put, and only when it again becomes 1 may the next character be sent to the trans
mitter holding register. This process is repeated as long as required.
The following example gives the basic setup of such a routine. Of course, it can

be made extremely complex (in particular, communications programming requires
extensive error checking and recovery procedures). The example assumes that the
serial port and modem have already been initialized, as shown at [7.1.2] and
[7.1.5]. The first part is a loop that keeps checking for errors and received charac
ters. [7.1.7] gives the code for the data reception routine.

;  WAIT UNTIL ALL RIGHT TO SEND A CHARACTER:
KEEP_TRYING: MOV DX,BASE_ADDRESS ;base address from prior code

ADD DX,5 ;point to line status regi ster
IN AL,DX ;get status byte
TEST AL,00011110B ;test for error
JNZ ERROR ROUTINE ; jump to error routine i f a problem
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TEST AL,00000001B
JNZ RECEIVE

TEST AL,001000008
JZ KEEP TRYING

;test whether data received
;go to receive routine C7.1.7]
;test if ready to transmit character
;if not. Loop around

;  TRANSMIT A CHARACTER (GET IT FROM THE KEYBOARD) :
MOV AH,1 ;BIOS function to check if keystroke
INT 16H ;BIOS keyboard interrupt
JZ KEEP TRYING ;return to Loop if no keystroke awaits
MOV AH,0 ;BIOS function to get a keystroke
INT 16H ;keystroke now in AL
SUB DX,5 ;point to transmitter hoLding register
OUT DX,AL ;send the character
JMP SHORT KEEP TRYING ; return to Loop
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7.1.7 Receive data

A communications program is ready to receive data once a communications port
has been initialized [7.1.2] and contact has been established with the remote station
[7.1.5]. Data reception is never entirely separate from data transmission, since a
program may need to send an XOFF signal (ASCII 19) to stop the data flow if data
is received faster than it can be processed. XON (ASCII 17) tells the remote station
to recommence transmission. Note that the PCjr cannot receive data while disk
operations are taking place; XON and XOFF may be used to overcome this limita
tion.

Depending on the complexity of the data protocol, the incoming data may
require only a little, or a good deal, of interpretation. Any of the various control
codes listed at [7.1.9] might be received. Those that signal data boundaries are
more often found in synchronous communications. When displaying the incoming
data on the screen, consider the effect of line feed characters (ASCII 10), since some
languages (BASIC included) automatically insert a line feed after a carriage return;
in this case, eliminate the incoming line feed characters to avoid double-spacing on
the screen. Figure 7-2 diagrams the basic communications routine, including the
transmission code that is discussed at [7.1.6].

High Level

For communications routines written in interpreted BASIC, time is of the
essence. Processing is slow, and if the input routine is improperly designed, the
input buffer can fill (that is, overflow) while the program is still busy interpreting
the prior data received. An obvious solution to this problem is to make the buffer
extremely large. When BASIC is loaded the input buffer size is set by appending a
/C: command. BASICA/C:1024 creates a IK buffer, and this is the minimum size
for 1200 baud (4096 bytes may be required by complex routines). The default value
is 256 bytes, and this buffer size has the advantage that when BASIC reads from the
buffer it can fit the entire contents into a single string variable. Use it only at 300
baud or below.

BASIC reads from the buffer using the INPUTS statement (INPUT# and LINE
INPUT# also work, but INPUTS is the most flexible). This statement is in the form
INPUTS(numberbytes,filenumber). For example, INPUTS(10,#1) reads ten bytes
from the communications channel opened as #1. If the buffer size is under 256
bytes, it is most convenient to read the entire contents of the buffer at once. LOC
tells how many bytes of data currently reside in the buffer. So write
SS = INPUT$(LOC(l),#l) and SS is given all the data received since the buffer was
last accessed. Of course, if LOC(l) = 0 then the buffer is empty, and the routine
must keep looping until data is received. Note that EOF(l) also reports on the
buffer contents, returning -1 if empty, and 0 if there are any characters.
Once data is given to S$, the program seeks whatever control codes are of con

cern. The INSTR function performs this task most quickly. Recall that INSTR is
followed by first the position in the string from which to begin searching, and then
the name of the string, and finally the character (or string) that is sought. To find
the XOFF character (ASCII 19) the statement would be INSTR(1,S$,CHR$(17)). To
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Figure 7-2. The basic communications routine.

find a second occurrence of a control code, search the string again, starting from
the character following the position at which the first was located.

Ordinarily the input routine eliminates most control codes from the incoming
data so that it appears properly on the display. Then the data is displayed, shunted
around memory, and sometimes written to disk or dumped on to a printer. In the
midst of all this, the program must constantly return to look for more data. If the
buffer turns out to be filling too quickly, the program can send an XOFF character
to the transmitting station, halting the data flow. Then the flow may be reenabled
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to the transmitting station, halting the data flow. Then the flow may be reenabled
after the received data has been decoded. Of course, XON and XOFF must be sup
ported by the protocol in use. Programs written in interpreted BASIC usually can
use XON/XOFF for ''speed-matching" when they receive data; but often such pro
grams cannot respond quickly enough when they receive an XOFF signal while they
are transmitting.

500 • • 'transmission routine here (see C7.1.6])

600 IF LOC(1)>100THEN X0FF=1 :PRINT#1,CHR$(19) 'if buffer fi LLing,
•turn XOFF status on by sending ASCII 19

610 C$=INPUT$(LOC(1) ,#1) ' read the contents of the buffer
620 •' • f i Lter the data for special characters:
630 IF INSTR(1,C$,CHR$(19))>0 THEN 800 'XOFF character received?
640 IF INSTR(1,C$,CHR$(17))>0 THEN 900 'XON character received?

(delete unwanted control codes)

700 PRINT C$; 'display the string
710 IF LOCd)>THEN 600 • if more data arrived, go get it
720 IF X0FF=1 THEN XOFF=0:PRINT#1 ,CHR$(17) 'switch off XOFF
730 GOTO 500 'goto start of transmission routine

800 ' respond to XOFF

900 ' respond to XON

When applied to a communications port the LOF (length of file) function returns
the amount of free space remaining in the input buffer. For example, if the COM
port was opened as #1, then LOF(l) reports the amount of free space. This feature
may be useful for telling when the buffer is nearly full. But note that the LOG state
ment returns the location of the buffer pointer, and this value can be used for the
same purpose. For example, for a COM port opened as #3, in which the buffer size
is 256 bytes, so long as LOC(3) does not return 256, the buffer is not full.

Middle Level

BIOS function 2 of INT 14H waits for a character from the serial port, places it
in AL when received, and then returns. On entry, place the COM port number (0
or 1) in DX. On return AH holds 0 if no error has occurred. If AH is not 0, then a
status byte has been returned in which only five bits are significant. These bits are;

bit 1 overrun error (new character before prior one removed)
2  parity error (probably from a transmission line problem)
3  framing error (start and stop bits not as they should be)
4  break detect (received a long string of 0 bits)
7  time out error ("data set ready" signal not received)

DOS also offers an asynchronous communications function that receives single
characters, number 3 of INT 21H. The function waits for a character from COMl
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and places it in AL. Note that there is no matching function to initialize the port,
and so it must be done via the BIOS routine, or directly, as shown at [7.1.2]. The
default initialization is 2400 baud, no parity, with one stop bit, and eight-bit char
acters. This interrupt offers no advantages over the BIOS routines (except to help
with compatibility in other MS-DOS machines) and it returns no status informa
tion.

Low Level

When receiving data without the use of the communication interrupt [7.1.8], a
program must constantly monitor the line status register, which is located at the
port address that is 5 greater than the base address of the serial adaptor in use. Bit 0
of this register is set to 0 so long as no character has been received in the receiver
data register. When bit 0 changes to 1, the character must immediately be removed
from the register in order to avoid its being overrun by the next character to arrive.
Once the character is removed, bit 0 immediately returns to 0, and it stays 0 until
another character is received.

Although not shown here, be aware that communications routines usually set up
a circular buffer to collect the incoming characters. Circular buffers are discussed at
[3.1.1]. You also should know that if the incoming data is directed to the screen at
1200 baud, the BIOS scrolling routine [4.5.1] cannot act quickly enough, and an
overrun will occur. An easy solution to this difficulty is to rely on communications
interrupts, as explained at [7.1.8].
The following example duplicates part of that shown in the prior section, where

characters are transmitted. What is shared is the infinite loop that begins the code.
Combine the two routines along with the initializiation routines at [7.1.2] and
[7.1.5] for a complete serial I/O routine.

KEEP_TRYING: MOV DX,BASE__ADDRESS ;base address from prior code
ADD DX,5 ;point to Line status register
IN AL,DX ;get status byte
TEST AL,00011110B ;test for error
JNZ ERROR ROUTINE ; jump to error routine if a problem
TEST AL,00000001B ;test whether data received
JNZ RECEIVE ;go to receive routine
TEST AL,00100000B ;test if ready to transmit character
JZ KEEP_TRYING ; i f not, loop around

;else, transmit a character...

;  (transmission routine here—see C7.1.6])

;  RECEIVE DATA AND DISPLAY ON SCREEN:
RECEIVE: MOV DX,BASEADDRESS ;base address=recei ver data register

IN AL,DX ;get the newly arrived character
CMP AL,19 ;check for XOFF, etc
JE XOFF ROUTINE

;etc...

MOV DL,AL ;prepare to display the character
MOV AH,2 ;DOS interrupt to display character
INT 21H jdisplay the character
JMP SHORT KEEP_JRYING ; return to loop
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7.1.8 Send/receive data by communications interrupts

Elaborate communications programs have too much to do to devote full time to
I/O operations. Incoming data must be analyzed, outgoing data must be gathered,
and large blocks of data may need to be moved to and from disk. Communications
interrupts let a program spend no more time in I/O operations than is required. For
example, by setting up an interrupt, control is transferred to a data transmission
routine only when the transmitter holding register is empty, and control reverts to
the program once a byte of data is sent, allowing the program to continue until the
transmitter holding register is ready again. Be sure to be familiar with the discus
sion of interrupts at [1.2.3] before reading on.
The IBM machines allot two hardware interrupt channels for communications,

numbers 3 (COMl) and 4 (COM2). Note that on the PCjr the modem is on channel
3 and COMl on channel 4. The 8250 UART for each channel allows four classes of
interrupts, using the following binary code numbers:

00 change in modem status register
01 transmitter holding register empty
10 data received
11 reception error, or break condition received

These codes are contained in bits 2-1 in the interrupt identification register, which
is located at the port address that is 2 greater than the base address of the serial
port in use. Bit 0 of this register is set to 1 when an interrupt is pending; the other
bits are not used, and are always set to 0.
To select one or more interrupts, program the interrupt enable register, which is

located 1 higher than the base address. The bit pattern is;

bit 0 1=interrupt when data received
1  1=interrupt when transmitter holding register empty
2  1=interrupt when data reception error
3  1=interrupt when change in modem status regi ster

4-7 unused, always 0

When one of these events occurs, a hardware interrupt is invoked, which takes
place on channel 3 of the 8259 interrupt chip for COMl and on channel 4 for
COM2. The interrupt routine transfers control to whatever code is pointed to by
the associated interrupt vectors. Because this is a hardware interrupt, it can be
masked out [1.2.2]. Remember that the interrupt routines you provide must end
with the standard exit code for hardware interrupts MOV AL,20H/OUT 20H,AL.
Figure 7-3 illustrates the communications interrupt.
Any number of interrupt types may be enabled simultaneously. But if more than

one is enabled, the routine must begin by checking the interrupt identification regis
ter to find out which it is. More than one interrupt can occur simultanously, and
for this reason bit 0 of the identification register tells whether additional interrupts
are pending. When two or more occur at the same instant, they are processed in the
order shown in the table below. The additional interrupts must be processed before
the interrupt routine returns. The prior interrupt condition is "undone" by taking
the action shown in the righthand column of this table:
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Figure 7-3. The communications interrupt.
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Code Type Action for "reset"

11 error or break read line status register
10 data received read receiver data register
01 transmitter ready output character to transmitter

modem status change
holding register

00 read modem status register

Low Level

Here is the general form of a communications interrupt handler:

;  SET UP THE COMMUNICATION INTERRUPT VECTOR:
PUSH DS ;DS changed by function
MOV DX,OFFSET 10 INT ;point DS:DX to COM routine
MOV AX,SEG 10 INT

t

MOV DS,AX !
MOV AL,0BH ;vector number for C0M1
MOV AH,25H ;function to change vector
INT 21H ;change vector
E INTERRUPT-ENABLE REGISTER (C0M1):
MOV AX,40H ;point DS to BIOS data area
MOV DS,AX

t

MOV DX,DS:[0] ;get base address for C0M1
INC DX ;point to interrupt enable register
MOV AL,3 ,'enable both receive and transmit INTS
OUT DX,AL ;send the byte
POP DS ;restore DS

;the program continues...

;  HERE IS THE INTERRUPT ROUTINE-FIRST FIND OUT TYPE OF INTERRUPT:
IO_INT
NEXT INT:

PROC FAR

MOV DX,BASEADDRESS
INC DX

INC DX

IN AL,DX
TEST AL,10B
JNZ TRANSMIT

RECEIVE:

;base address for C0M1

I

;point to interrupt identification reg
;read the value
;transmitter?
;go transmit a character
;eLse, must be receive interrupt:

;begin character/Line reception

TRANSMIT:

JMP SHORT ANOTHER ;go see if another interrupt pending

;begin routine to transmit a character

BEFORE EXITING, CHECK THAT NO OTHER INTERRUPT REQUESTS PENDING:
ANOTHER: " "MOV DX,BASEADDRESS ;base address of C0M1

INC DX ;point to interrupt identification reg
INC DX

t

IN AL,DX ;read the value
TEST AL,1 ;request pending?
JNZ NEXT INT ;if so, jump back to start of routine
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MOV AL,20H ;else, send end-of-interrupt code
OUT 20H,AL ;
IRET ;quit

10 INT ENDP ;end of interrupt procedure
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7.1.9 Look up a communications control code
This table gives the 32 ASCII control codes that are used in communications or

to operate printers or other devices. An extra code is added, ASCII 127 (DEL),
because it is normally used as a control code, although there is no Ctrl key combi
nation to produce it. The applications of some of these codes are invariant, such as
the carriage return. But most are given a wide range of interpretations, much to the
detriment of equipment compatibility.

ASCII Code Number Ctrl
decimal hex Symbol Code Mnemonic Purpose
00 00 (null) NUL Spacing character (meaningless, so also useful

for delays).
01 01 '^A SOH Start Of Heading. Begins transmission of data

block or new file.
02 0 e 2^B STX Start Of Text. Marks beginning of text

following header data.
03 03 ¥ AC ETX End Of Text. May mark beginning of error

04

checking data.
04 ♦ EOT End Of Transmission. Sign-off code, but

05

sometimes only marks end of file.
05 ♦ ENQ Enquiry. Requests status information from

remote station.

06 06 Ap ACK Acknowledge. Verifies the success of

communications between stations.
07 07 • BEL Bell. Beeps the speaker, signalling need of

attention.

08 08 D BS Backspace.
09 09 o '^I HT Horizontal Tab.
10 0A LF Line Feed.
11 0B CT VT Vertical Tab.
12 0C 9 FF Form Feed.
13 0D

c=»

CR Carriage Return.
14 0E an SO Shift Out. Changes character set.
15 0F SI Shift In. Changes character set.
16 10 ► Ap DIE Data Link Escape. Modifies meaning of

17
subsequent characters (like Esc).

11 DCl Device Control 1. Used as XON to signal
remote station to transmit.

18 12 DC2 Device Control 2. General purpose toggle

!l
signal.

19 13 '^S DC3 Device Control 3. Used as XOFF to signal
remote station to not transmit.

20 14 <n' A-p DC4 Device Control 4. General purpose toggle

§
signal.

21 15 NAK Negative Acknowledge. Signals transmission
failure.
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ASCII Code Number Ctrl

decimal hex Symbol Code Mnemonic Purpose

22 16 Ay SYN Synchronous Idle. Used between data blocks in

t
synchronous communications.

23 17 AW TB End Of Transmission Block. Variant of ETX.

24 18 \ CAN Cancel. Usually signals transmission error.

25 19 \ AY EM End Of Medium. Signals physical end of data-

source.

26 lA SUB Substitute. Replaces characters that are invalid
or impossible to display.

27 IB ESC Escape. Marks following characters as a control
sequence.

28 IC L- FS File Separator. Marks logical boundary between
files.

29 ID —
GS Group Separator. Marks logical boundary

between data groups.

30 IE ▲
AA RS Record Separator. Marks logical boundary

between data records.

31 IF ▼
A US Unit Separator. Marks logical boundary

between data units.

127 7F (C) none DEL Delete. Eliminates other characters.
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Section 2: Create a Device Driver

Device drivers are special programs that control input/output with a peripheral
like a printer or hard disk. Since the specifications by which such peripherals oper
ate vary by the manufacturer, a program intended for a wide range of users may
need dozens of device drivers to accommodate the range of hardware it must work
on. There are four ways of incorporating device drivers into programs:

1. Place the code for all devices right into the program. For example, to support
a variety of printers, create a table of printer control sequences and look up
the correct code each time it is used. This approach wastes memory, and it
can be slow.

2. Create a number of device drivers, and have the program load the one that is
needed as an overlay (that is, drop it into the program at an area that has
been specially set aside for it [1.3.5]).

3. Set up the device driver as a separate program that is listed in the batch file
that boots up the machine. The program is run, and it sets up the device rou
tine that it contains as an interrupt. Then the program exits, but stays resi
dent in memory, as explained at [1.3.4]. Thereafter, any program can use the
device driver via the interrupt vector.

4. Set up a full-fledged installable device driver, in which the device is loaded
at start-up by the CONFIG.SYS file. DOS makes provision for this kind of
device driver, and once loaded it can make full use of DOS commands,
including error checking. A special command, lOCTL ("I/O Control"), lets a
program check a driver's status, and it can send control strings to the driver
apart from the flow of data.

The first three strategies are easily accomplished using information given else
where in this book. Installable device drivers, on the other hand, are quite com
plex. But once they are in place, they are extremely powerful. DOS treats the
device with as great a familiarity as the keyboard or a disk drive. The device may
be given a name, such as SERIALPR for a serial printer, and the device may then be
opened from any language for access. In BASIC, the statement OPEN "SERIALPR"
FOR OUTPUT AS #2 would ready the serial printer for output. In assembly lan
guage the printer could be accessed by both file control block and file handle com
mands, including the very powerful lOCTL function. And from the DOS user
interface (that is, from the prompt A>, B>, etc.) the user could merely enter
COPY A:MYFILE SERIALPR: and the contents of MYFILE would be dumped on to
the serial printer.

Installable device drivers can only be written in assembly language. They ser\^e
two kinds of devices, character and block devices. These names describe the units
by which the devices handle data. Generally, block device drivers serve disk drives
and character device drivers serve just about everything else, from serial printers to
robots. Block devices move large blocks of data, and so they are devoted to data
storage. Character devices move data byte-by-byte, and so they are better suited
for the control of devices and for data transfers where the lines cannot handle a
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high transfer rate. Block device drivers are quite complicated, and there is not ade
quate room here to explain their structure. It is the rare programmer that ever
needs to write one. The DOS technical reference manuals give the necessary infor
mation and a complete example of a RAM-disk. You should be able to follow this
information after you study the discussion of character device drivers found here.

Installable device drivers are unforgiving of programming mistakes. Because the
drivers are automatically installed by DOS when COMMAND.COM is booted, it
is essentially impossible to get at the programs with a debugger. So be meticulous
about details.

Device driver programs break down into three parts, each of which is discussed
separately in the sections that follow. These are (1) the device header, which names
the device and keeps track of the other parts of the driver, (2) the device strategy,
which keeps track of a data area set up by DOS called the request header, and (3)
the device interrupt handler which actually contains the code that drives the device.

396



Set up the device header 7.2.1

7.2.1 Set up the device header

Device drivers must be set up as a COM file [1.3.6]. They are not, however, true
programs, since they must not have a program segment prefix (PSP). To achieve
this, do not place an ORG 100H statement at the beginning of the program, as is
required of ordinary COM programs. Either write ORG 0, or write nothing at ail.
Set the driver up as a far procedure, just as for any program. The example below
begins with the initial code for a driver named DEVICE12. It replaces the default
AUX device provided by DOS, so that it receives any data output by function 4 of
DOS INT 21H. The entire device driver is comprised of the code in this subsection
and the two that follow; place them end-to-end to arrive at the complete program.
A device driver begins with the device header. It is eighteen bytes long, divided

into five fields. The first field (DD) is always given the value -1 (FFFFFFFFH), and
when DOS loads the driver it places the starting address of the next driver at this
position. In this way, when DOS seeks a particular driver it can search along the
chain of addresses. The last driver loaded is left with -1 in the first field of the
header.

The second field is the driver s attribute byte. Only seven bits are significant, as
follows:

bit 15 1=character device/0=bLock device
14 1 = I0CTL supported/0=IOCTL not supported
13 1=IBM block format/0=other block format
3  1=clock device/0=not a clock device
2  1=current NUL device/0=not NUL device
1  1=standard output devi ce/0=not standard output
0  1=standard input device/0=not standard input

Ordinarily only bit 15 is set, or bits 15 and 14 are set if lOCTL is supported (as dis
cussed at [7.2.4]). Bit 13 applies only to block devices. The others are used to
replace DOS default devices (the ''standard input and output devices" are the key
board and video display; the clock device integrates the system's real-time clock
with the BIOS time-of-day clock; and the NUL device is a dummy device designed
for testing purposes).
The third and fourth fields hold the offsets of the strategy and interrupt routines,

which are explained in the next two subsections. Finally, the last field contains the
device name. The name may be up to eight characters long, and it must be left-jus
tified in the eight-byte field, with trailing spaces. To replace an existing DOS
device, such as LPTl or COM2, use the same device name, as in the example here.

Low Level

This example sets up a driver for a serial device. "DEVICE12" is the name of the
file that is placed in the DOS configuration file to load this device. The attribute
byte has only bit 15 set to 1, showing that it is a character device and that it does
not support lOCTL. DEV ^STRATEGY and DEV ^INTERRUPT are the names of
the routines discussed in following subsections. The device is named AUX so that it
replaces the ordinary DOS device by that name. This makes it especially easy to
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access the device, since DOS has a ready-made handle by which to access an AUX-
iliary (serial) device. Included in the example is the initial code for the driver, set
ting it up as a COM program. The ending counterparts of these lines occur in the
third part of the program, two subsections ahead.

CSEG SEGMENT PUBLIC 'CODE' ;set up the code segment
ORG 0 ;this Line is optional
ASSUME CS:CSEG,DS:CSEG,ES:CSEG ;aLL offsets from code segment

DEVICE12 PROG FAR ;drivers are far procedures
DD 0FFFFFFFFH ;address of next driver (-1)
DU 8000H ;attribute byte
DU DEy__STRATEGY ;address of strategy routine
DW DEy_INTERRUPT ;address of interrupt routine
DB 'AUX • ;device name (pad with spaces)
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7.2.2 Set up the device strategy
The device strategy routine requires only five lines. When DOS loads the device,

it sets up a data block called the request header. The request header has two func
tions. First, it acts as a data area for the internal operations of DOS. More impor
tant, the request header is the point through which information is passed between
the driver and the program that calls it. For example, when a driver outputs data, it
is given the address of that data by means of the request header. And when the
driver is finished with its work, it sets a status byte in the request header which can
then be made available to the calling program, alerting it to errors.
DOS creates the request header when the device driver is installed (when the sys

tem is booted). The device strategy routine is executed only once, at that time.
ES:BX is found pointing to the newly formed request header, and the strategy rou
tine needs merely to make a copy of ES:BX so that the request header can be found
whenever the driver is accessed. The offset and segment addresses of the header are
placed in two variables. You will find in the next section that, when the driver is
called, one of the first things it does is to restore these values to ES:BX so that it can
take information from the request header.
The request header varies in length, depending on the kind of request being made

of the device driver (e.g., initialization, data output, or status return). The first
thirteen bytes of the header are the same in all cases, however. The format is as
follows:

1. Length of request header (DB)
2. Unit code (DB). Defines the device number for block devices.
3. Command Code (DB). The number of the most recent command sent to the

device driver is kept here. These codes are listed at [7.2.3].
4. Status (DW). The status is set each time the driver is called. When bit 15 is

on, then an error code is placed in the low eight bits. These are listed at
[7.2.3].

5. Reserved Area (eight bytes). Used by DOS.
6. Data required for the driver s operation (variable length—see next section).

Low Level

Here are the five lines of the device strategy routine. Note how the two word-
length variables that hold ES and BX follow the RET instruction, as required by the
COM format.

DEV_STRATEGY:M0V CS:KEEP__ES,ES ;make copy of request header segment
MOV CS:KEEP__BX,BX pmake copy of request header offset
RET ;that*saLL

KEEP_CS DW ? ;keep the 2 variables here
KEEP BX DW?
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7.2.3 Set up the device interrupt handler
A device driver begins with the two pieces of code shown in the prior two sub

sections. These are followed by the interrupt routine proper. It is actually a misno
mer to call this routine an "interrupt," since the driver does not function like an
interrupt, and the routine ends with an ordinary RET instruction.

There are thirteen kinds of functions that an installable device driver can per
form. When the driver is called upon by a DOS function (say, by function 3FH of
INT 21H, which reads data from a file or device) the function places a code number
from 1 to 13 in the one-byte field at offset 2 in the request header (for input, code
number 5). Control is then given to the driver interrupt routine by looking up its
location in the device header [7.2.1]. The interrupt routine first restores ESiBX so
that it points to the request header, and then it looks up this code number. Using
the code, the interrupt routine calls the matching procedure that performs the
requested function. The procedure is located by means of a thirteen-word table that
contains the offsets for the thirteen kinds of functions. The functions are always
listed in the following order:

1. INITIALIZE

2. CHECK MEDIA

3. MAKE BPB

4. lOCTL IN

5. INPUT DATA

6. NONDESTRUCT IN

7. INPUT STATUS

8. CLEAR INPUT

9. OUTPU DATA

10. OUTPUT VERIFY

11. OUTPUT STATUS

12. CLEAR OUTPUT

13. lOCTL OUT

Once the procedure is completed, the interrupt routine terminates with a RET
instruction, and control reverts to the calling program. The device driver may
include code for only a few of the functions, or for many of them, depending on
the device and the degree of control and error checking required. Function numbers
for which no routine is supplied in the device driver are all directed to a line of code
that simply exits the device driver, with nothing having been done. In this case,
before exiting set bits 15, 8, 1, and 0 in the request header to inform the calling pro
gram that a non-existent function was called (bit 15 indicates an error, bit 8 that the
driver functioned correctly, and bits 0 and 1 give the error code 3 for "command
unknown").

One function must be present in all device drivers, and that is number 1, the ini
tialization function. This function is automatically performed when the driver is
loaded, and not again. One important task required of the procedure is that it set
the address of the end of the driver in the four bytes beginning at offset 14 in the
request header. The end of the program is marked in the example below by the
label eop:. Beyond this task, the initialization routine should perform any initial
ization that the device itself requires. Figure 7-4 diagrams the device driver
structure.
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7.2.3 Set up the device interrupt handler

Which of the other twelve possible functions are included in a device driver
depends on what the driver has to do. Some, such as CHECK MEDIA or
MAKE BPB, are relevant only to block devices (they set the type of disk, size of
sectors, etc.). For character devices the two functions of primary importance are
INPUT DATA and OUTPUT DATA (note that these names are arbitrary—it is
the positions of the labels in the function table that are invariant). In either case,
the request header has the following structure:

13 bytes standard request header format
1 byte media descriptor byte (block devices only)
4 bytes offset/segment of data transfer buffer
2 bytes count of number of bytes to transfer
2 bytes starting sector number (block devices only)

The output function is used in the example below. The procedure that performs the
output takes from the request header the address of the buffer in which the output
data resides (offset 14). It also finds there the number of bytes that it should output
(offset 18). When the procedure has finished sending out the data, it sets the status
word in the request header (offset 3), and then it returns. If the operation is success
ful, set bit 8 of the status word to 1. The other possibilities are discussed below.

Low Level

This example gives the general form of the interrupt routine, without actually
including the code that drives the device.

;  INITIALIZE THE DEVICE INTERRUPT HANDLER:

DEV INTERRUPT: PUSHES save all registers
PUSH DS

PUSH AX

PUSH BX

PUSH CX

PUSH DX

PUSH SI

PUSH DI

PUSH BP

MOV AX,CS:KEEP ES set ES:BX to point to request header
MOV ES,AX
MOV BX,CX:KEEP BX
MOV AL,ES:CBX]+2 get the command code from the header
SHL AL,1 multiply by 2 (since 2-byte entries)
SUB AH,AH make AH 0

LEA DI,FUNCTIONS point DI to offset of function table
ADD DI,AX add offset into function table

JMP WORDPTRCDI] jump to the address at that offset

FUNCTIONS LABEL WORD here is the function table

DU INITIALIZE

DW CHECK MEDIA

DU MAKE BPB

DW lOCTL IN

DW INPUT DATA

DW NONDESTRUCT IN

DW INPUT STATUS
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DU

DW

DW

DU

DW

DU

CLEAR_INPUT
OUTPUT__DATA
OUTPUT__VERIFY
OUTPUT__STATUS
CLEARJOUTPUT
lOCTL OUT

;  EXIT DRIVER IF UNUSED FUNCTION:
CHECK__MEDIA:
MAKE_BPB:
IOCTL_IN:
INPUT__DATA:
NONDESTRUCT__IN:
INPUT_STATUS:
CLEAR_INPUT:
OUTPUT_VERIFY:
OUTPUT_STATUS:
CLEARJOUTPUT:
lOCTL OUT:

OR

JMP

ES:UORD PTR CBX]+3,8103H
QUIT

;modi fy status word to show error
; jump to end of program

-HERE ARE THE ROUTINES FOR THE 2 CODES PROVIDED FOR:
INITIALIZE: LEA

MOV

MOV

AX,E_0_P ;offset of end-of-program in AX
ES:UORD PTRCBX3+14,AX jpLace ejo__p offset in header
ES:UORD PTRCBX]+16,CS ;pLace ejojD segment in header

;set up device initialization code

JMP QUIT

OUTPUT DATA; MOV

CBU

MOV

MOV

MOV

CL,ES:CBX]+18
CX

AX,ES:[BX]+16
DS,AX
DX,ES:CBX]+14

get character count from table
use CX to count

get data buffer address
(place in DS:DX)

now begin the output operations:

JMP QUIT

;  QUIT, MODIFYING THE STATUS BYTE IN THE REQUEST HEADER:
QUIT:

E_CJP:
DEVICE12

CSEG

OR

POP

POP

POP

POP

POP

POP

POP

POP

POP

RET

ENDP

ENDS

END DEVICE12

ES:UORD PTR CBX]+3,100H
BP

DI

SI

DX

CX

BX

AX

DS

ES

;set bit 8 to show that "done"
;restore all registers

;mark end of program
;terminating code

Before returning, the driver sets the status word in the request header. In the
above example, this is done in two places, depending on whether or not the func-
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tion called was one of those provided for. The lines read OR ESiWORD PTR
[BX] + 3,XXXXH. The bit pattern for XXXX is set as follows:

bits 0-7 error code (if bit 15=1)
bit 8 set to 1 when function completed
bit 9 set to 1 whi Le driver is "busy"
bits 10-14 reserved for DOS
bit 15 set to 1 when error occurs

The low byte of this word contains the following error codes when bit 15 is set to
indicate an error:

0  tried to write to write-protected media
1  unknown unit

2  device not ready
3  unknown command
4  cyclic redundancy check error
5  bad drive request structure length
6  seek error

7  unknown media

8  sector not found
9  printer out of paper
A  write error
8  read error

C  generalfai lure
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7.2.4 Access the device driver

A device driver is installed by placing the name of the finished COM program in
the DOS configuration file. To load the example program, place a line in
CONFIG.SYS that reads DEVICE = DEVICE12.COM. Then reboot the system to
install the driver. If the machine will not boot, there most likely is a bug in the
driver's initialization code.

Once the driver is in place, use the regular DOS functions of INT 21H to access
it. Which functions are used depends on whether the device replaces a standard
DOS device (as in the example given here) or whether it is added as an entirely new
device. To replace the standard DOS serial device, name the driver AUX, and then
functions 3 [7.1.7] and 4 [7.1.6] of INT 21H respectively perform input and output.
If the device is parallel, name it PRN, then use function 5 [6.3.1] of INT 21H to
output printer data. Alternatively, use functions 3FH [5.4.4] for input and 40H
[5.4.3] for output. In this case, use the file handle 0003FI for a serial device and
0004H for a parallel one. Note that there is no need to "open" the device when
these predefined handles are used.

If the device does not replace one of the DOS standard drivers (that is, if it is not
named with one of the reserved words, PRN, AUX, etc.), open the device using the
same functions that open files. You may use both the file control block and file
handle methods of access, although the latter is preferred. To be sure that a disk file
has not mistakenly been opened, place the file handle in BX, 0 in AL, and then exe
cute function 44H of INT 21H. This is the lOCTL function, and if bit 7 of the value
it returns in DL is 1, the driver is present.
lOCTL requires that the appropriate bit setting be made in the driver's attribute

byte, and that at least the framework of an lOCTL routine be set up in the device
interrupt handler. The lOCTL function has eight subfunctions, numbered from 0 to
7, and one of the following code numbers is placed in AL when the function is
called:

0  Return device information inDX
1  Set device information, using DL (DH should be 0)
2  Read CX bytes from device driver via the control

channel, and place them at DS:DX
3  Write CX bytes to the device driver via the control

channel, taking them from DS:DX
4  Same as #2, but use the drive number in BL, where

0=default drive, 1=A, etc.
5  Save as #3, but use the drive number in BL (as in #5)
6  Get input status
7  Get output status

Various information is returned, depending on which function was called. For
subfunctions 0 and 1, DX is given the following bit pattern (providing bit 7 = 1, so
that it is a device and nqLa file that is accessed):

0  1=device is console input
1  1 =devi ce i s console output
2  1=devi ce i s nul I (test) devi ce
3  1=devi ce i s c lock devi ce
4  reserved
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5  1=no checks for CtrL-Z, 0=checks for CtrL-Z
6  1=not yet end of f i Le, 0=end of f i Le
7  1=is a device, 0=is a disk fi Le

8-13 reserved
14 1=if OK to use subfunctions 2 &3, 0=not OK
15 reserved

Subfunctions 2-5 allow arbitrary control strings to move between the program
and the device. This allows control messages to operate outside of data flow
through the device, simplifying matters considerably. On return, AX holds the
number of bytes transferred. Subfunctions 6-7 allow a program to check if a device
is ready for input or output. For devices, AL returns FF is the device is ready, and 0
if not. When used with an open file (bit 7 = 0), AL returns FF until the "end of file"
condition occurs.

Note that BASIC 3.0 adds lOCTL and IOCTL$ statements. These respectively
allow a BASIC program to send and receive control strings through device drivers
after they have been opened by an OPEN statement. The output string is enclosed
in quotes, as in lOCTL #3," ". Similarly, A$ = IOCTL$(3) receives status
information via lOCTL.
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7.2.5 Detect/analyze device errors

Devices malfunction for three kinds of reasons. The device may be physically
damaged or out of condition. The software that controls the device may be faulty.
Or the program may make a request of the device that is not allowed (for example,
asking a disk drive to write on a write-protected diskette). DOS detects and ana
lyzes most such errors, and it provides the possibility of recovery.

High Level

The BASIC interpreter detects a variety of errors, with device driver errors
included among them. Error codes are returned when the error is encountered, and
if no error recovery measures have been taken, a program simply stops in its
tracks, flowever, it is possible to set up error trapping, so that when a "critical"
(that is, fatal) error occurs, BASIC automatically shifts over to an error recovery
subroutine that you have set up. The routine can analyze the code and find out on
which line of the program it occurred. Once this is accomplished, the program can
take steps to recover from the error, either by requesting help from the user or by
executing some alternate code. Once finished, the program can be made to resume
from any place in the program you like (with certain restrictions). All of the code
required for extensive error checking can increase the size of a program considera
bly. Note that on the IBM BASIC compiler even a little error checking requires an
overhead of more than four bytes for every line of the program.
To enable error trapping in BASIC, place at the beginning of the program the

line ON ERROR OOSUB n, where n is the line number at which the error recovery
subroutine begins. Whenever a critical error occurs, control is transferred to that
line. At the beginning of the subroutine, set up a series of lines on the form IF
ERR = n THEN linenumber, where n is an error number taken from the error mes
sage appendix in the BASIC Reference Manual. The line numbers mark the begin
ning of the section of the error recovery routine that is devoted to that particular
error. These sections may in turn be divided according to a series of statements
reading IF ERL = n THEN linenumberr. ERL returns the line number on which the
error occurred, enabling the recovery routine to pinpoint the location of the error.
Once the recovery process is complete, use the statement RESUME to return to

the line on which the error occurred. RESUME may be followed by a line number
in order to return to some other line. Be cautioned, however, that you must not use
RESUME to jump to a point in the program that is outside the subroutine in which
the error occurred. If recovery is impossible but the program can continue anyway,
then write RESUME NEXT so that the program resumes on the line following the
one on which the error occurred. Here is the general setup for error recoverv in
BASIC:

100 ON ERROR GOTO 5000 'enable error trapping

5000 IF ERR=61 THEN 5100 'disk full error
5010 IF ERR=71 THEN 5200 'di sk not ready error
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5100 IF ERL=2080 THEN 5120 'check where error occurred
5110 BEEP:PRINT"Disk indriveB is fuLl":RESUME ' inform user, continue
5120 BEEP:PRINT"Disk in drive A is ful l":RESUME

5200 BEEP:PRINT"A disk drive is not ready" 'write error message
5210 PRINT"Strike any key when corrected"
5220 IF INKEY$="" THEN 5220 'wait for a keystroke
5230 RESUME ERL-10 ' retry the operation

BASIC 3.0 introduces the ERDEV and ERDEV$ instructions. Both fetch read
only variables from the INT 24H critical error handler. Z% = ERDEV returns a sta
tus word in Z%, where the high byte contains bits 13-15 of the attribute in the
device header, and where the low byte contains the INT 24 error code.
Z$ = ERDEVS places the eight-byte device name in Z$ for a character device, or the
two-byte drive specifier for a block device.

Low Level

Sometimes device drivers incur errors that are so serious that a program simply
cannot continue until they are corrected. When such an error occurs, DOS invokes
the critical error handler. The critical error handler swings into action both for
standard system devices and for installed device drivers. Users most often encoun
ter it when a disk operation is tried on a drive that has an open door. The message
appears: "Not ready error reading drive A—Abort, Retry, Ignore?"
The critical error handler may be rewritten to take advantage of your installed

devices. Interrupt vector 24H points to the DOS routine, and you may redirect the
vector to your own routine. When the routine is invoked, the high bit of AH equals
0 if the error was in a block device, and 1 if in a character device. BP:SI points to
the device header of the faulty device, which can yield additional information. The
eight bytes beginning at offset AH in the header give the device name, and the criti
cal error handler places a word-length error code in Dl. Here are the code numbers
(they do not represent bit positions):
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Code Problem

0 attempted write on write-protected disk
1 unknown device
2 drive not ready
3 unknown command
4 data transfer error
5 bad request structure length
6 seek error

7 unknown media type
8 sector not found

9 printer out of paper
A write fault

B read fault

C general failure

In the case of a disk error, AL contains the number of the drive that failed (0 = A,
1 = B, etc.), and bits 2-0 of AH indicate the kind of failure. Bit 0 is set to 1 if the
error occurred during a write operation and 0 if during a read operation. Bits 2-1
hold information about where on the disk the error occurred, giving 00 for the ini
tial DOS sectors, 01 for the FAT, 10 for the directory, 11 if elsewhere.
There are three ways in which a program can recover from a critical error:

1. The computer user can be instructed to remedy the problem (such as by clos
ing the disk drive door) and DOS can be 'made to retry the device
operation.

2. Control can be returned to the program at the instruction following the INT
21H function that attempted to use the driver.

3. The program can be terminated, with control transferred back to DOS.

Your error handling routine may recover from the error by issuing an IRET instruc
tion after having placed 0 in AL to ignore the error, 1 to retry the operation, and 2
to terminate the program. If you want the routine to undertake the recovery itself,
it must restore the application program's registers from the stack and then remove
all but the last three words on the stack. An IRET instruction then returns control
to the program, although DOS itself will thereafter be unstable until it has carried
out a function call higher than number 12. Here is the stack configuration (from
top to bottom) when the critical device handler is called:

Error handler return address: IP,CS,FLAGS

User regi sters from when
device was called: AX,BX,CX,DX,SI,DI,BP,D$,ES

IP,CS,FLAGS

DOS also processes many non-critical errors. These include the error codes that
may show up in a result register when a DOS function is called. The codes are dis
cussed in this book wherever the accompanying function is covered. Be aware,
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however, that beginning with version 3.0 DOS returns extended error codes for the
functions that use FCBs or file handles. When the carry flag is set following one of
these functions, the usual error codes are returned in AX. The additional extended
error information is made available by executing INT 59H, with 0 placed in BX.
This function also reports on critical errors, and it may be used from within an INT
24H critical error handler.

The function places in AX an error code taken from a list that contains all of the
familiar error codes (like "insufficient memory") and some new ones (like "sharing
violation" for multiuser systems). BH returns a code for the error class, telling what
genre of error has occurred. For example, code 1 indicates "out of resources," tell
ing that memory, file buffers, or whatever have run out. Other classes can point to
software problems, media problems, formatting problems, etc. BL returns a code
that suggests an action to take for recovery, such as "retry" or "abort" or "make a
request of the user." Finally, CH gives a number reporting the locus of the prob
lem: did it take place in a block device?..a serial device?..in RAM?
The data for these error codes is quite extensive. See the DOS 3.0 Technical Ref

erence Manual for complete information. Since DOS 3.0 is not intended for use on
the pre-AT machines, reliance on these codes limits the compatibility of your soft
ware. Still, a 3.0-only set of routines could be added on top of the traditional error
checking procedures. [1.1.3] shows how a program can figure out what version of
DOS it is running.

Finally, be aware that one process can pass an exit code to the process that calls
it. The term process is applied to programs that interact. For example, when the
EXEC function loads and runs one program from within another, the loaded pro
gram is the child, and the loading program is the parent. The parent may require
information about how well the child performed. To make use of this feature, place
the desired exit code in AL and execute function 4CH of INT 21H to terminate the
program. When the parent process then regains control, it executes function 4DH
of INT 21H (no input registers) and AL receives the code, which can then be ana
lyzed and responded to. In addition, AH returns information about how the child
process terminated: 0 for normal termination, 1 if by Ctrl-break, 2 if by a critical
device error, and 3 if by function 31H, which leaves the process resident.

If a program terminates by means of this function (instead of 20H —see the dis
cussion at [1.3.4]) DOS receives the exit code, and the code may be incorporated
into the operation of batch files by using the IF subcommand. This subcommand
allows for the conditional execution of other commands in the batch file. The exit
code is treated as an ERRORLEVEL number, and the conditional operation is per
formed depending on whether the code is a certain number or higher. Using this
feature, a batch file could be made to stop processing and display a message should
an error occur in one of the programs it runs. For more information, see the Batch
Commands section of the DOS operations manual.
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Section 3: Use Special I/O devices
There are a vast variety of I/O devices available for the IBM microcomputers,

including mice, bar code pens, graphics tablets, plotters, robot arms, and much
more. This section discusses only those peripherals specifically supported by IBM
hardware. These include cassette recorders, light pens, and the various devices that
may be hooked up to a game port. The port addresses that control other devices in
the system are discussed at their respective sections in this book. The mapping of
the ports is much the same in all of the IBM machines:

Port Address Function

00-0F DMA chip (8237) (not on PCjr)
20-2F Interrupt chip (8259) (AT controller #1: 20-3F)
40-4F Timer chip (8253/8254)
60-6F PPl chip (8255) (AT uses keyboard addresses only)
70-7F Real-time clock (AT only)
80-83 DMA page registers (not on PCjr)
A0-BF Interrupt chip #2 (AT only)
C0-C7 Sound chip (SN76496N) (PCjr only)
F0-FF PCjr diskette controller, AT math coprocessor control

1F0-1F8 AT fixed disk
200-20F Game adaptor
278-27F AT serial port #2
2F8-2FF Serial adaptor (COM2) (COMl on the PCjr)
320-32F XT Fixed disk
378-37F Parallel printer adaptor cards for PC, XT, AT
3B0-3BF Monochrome/parallel adaptors (not on PCjr)
3D0-3DF Color graphics adaptor
3F0-3F7 Diskette controller
3F8-3FF Serial adaptor (COMl) (PCjr modem, COMl at 2F8)

411



7.3.1 Read from/write to a cassette recorder

7.3.1 Read from/write to a cassette recorder
Only very few IBM PCs or PCjrs have ever been used with a cassette recorder,

and the XT and AT do not support cassette operations at all. Besides being notori
ously unreliable, cassette I/O is inconvenient, and it allows only secjuential, and
not random, file operations. Still, there may be cause to program for cassette on
the PCjr. Be cautioned that cassette operations use channel 2 of the 8253 timer chip
[2.1.1], so do not attempt any simultaneous use of this channel. Note also that dur
ing cassette read operations the time of day interrupt is disabled, throwing off the
BIOS time-of-day count.

High Level

Although cassette files are handled entirely differently than disk files, the com
mands that access them are similar. Only program files and sequential data files
may be written to cassette. The latter may include memory-image files. Note that
data may not be appended to sequential files. When created, the following one-byte
extensions are given to the file names:

.B BASIC program
,P Protected BASIC program
.A BASIC program in ASCII format
.M Memory image fi le
• D Sequential data fi le

To save a program on cassette, write SAVE "CASltfilename". To load a pro
gram, write LOAD "CASlrfilename". In the latter case the tape is gone through
until the file is found, and the name of each file encountered is shown on the screen
(cassettes do not use a directory). By requesting a non-existent file a full listing of
files on the cassette may be displayed.

Middle Level

BIOS operates on cassette tapes in units of 256-byte blocks rather than files. A
series of blocks is prefaced by a "leader, which is comprised of 256 bytes of ASCII
1. The leader ends with a sync bit of 0. Then there follows a sync byte with the
value 16H, followed by the 256 bytes of data. After that come two bytes of error
checking, then the next data block, then another pair of error checking bytes, and
so on. The entire sequence ends with a four-byte trailer, all of the ASCII 1.
To read data from cassette, use function 2 of INT 15H. There is no need to open

a file as a program would for disk operations. ES:BX points to a buffer in memory
to which the data is transferred, and CX holds the number of bytes to read. On
return, DX reports how many bytes were actually read and ES:BX points to the last
byte read plus one. The carry flag is set to 0 if the transfer was successful, other
wise AH contains 1 if error checking found a problem, 2 if data transfer failed, or 3
if the data was not found on the tape.
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Function 3 of INT 15H writes data to cassette, ES:BX points to the first byte of
data, and CX holds the number of bytes to write. Upon return ES:BX points to the
byte following the last written. The motor is controlled by executing functions 0
(on) and 1 (off) of INT 15H. There are no input or return registers for either
function.
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7.3.2 Read the light pen position

Although few computers are equipped with a light pen, it is one of the few auxil-
iary periph6ral devic6s supported by both hardware and the operating system.
Light pens operate by a small optical detector in the tip of the pen. As the electron
beam scans the screen, it initiates a pulse in the optical detector when the beam
reaches the point of the screen at which the light pen is held. The timing of the
pulse relative to the display's horizontal and vertical sync signals tells the light pen
position.

High Level —

BASIC can read the light pen by two methods. In the first, a program continu
ously monitors the pen status. In the second, whenever the light pen is used, con
trol is instantly transferred to a subroutine provided by your program. To con
tinuously monitor the pen, use the PEN statement as a function in the form
X = PEN(n), where n is a code number that determines what information X is given
about the pen and its position. The values for n are:

0  returns -1 i f pen swi tch down si nee Last pel L, 0 i f not
1  returns Last x coordinate (0-319 or 0-639) at which

the pen was switched on (it may since have
been moved whi Le sti LL switched on)

2  returns Last y coordinate (0-199) at which the pen was
switched on (as above)

3  returns -1 if pen currentLy switched on, 0 if not
4  returns the current (or most recent) x coordinate of

the pen (0-319 or 0-639)
5  returns the current (or most recent) y coordinate of

the pen (0-199)

6  returns Last character-row position (1-24) at which
the pen was Last activated

7  returns the character-coLumn position (1-40 or 1-80)
at which the pen was Last activated

8  returns the current (or most recent) character-row
position (1-24)

9  returns the current (or most recent) character-
coLumn position (1-40 or 1-80)

Tills example finds out if the pen is switched on, and if so, it gets the current
pixel position:

100 IF NOT PEN(3) THEN 130 * if pen not on, jump ahead
110 X=PEN(4) 'get x-axis pixeL position
120 Y=PEN(5) 'get y-axis pixeL position
130 'continue

More flexible use of the light pen is offered by the ON PEN GOSUB statement.
This statement gives the line number at which a subroutine begins that is activated
when the light pen is switched on. BASIC accomplishes this by making a check on
the pen status between every instruction that it executes. The subroutine may read
the pen position and take whatever action is required. When the subroutine is fin
ished, the program returns to wherever it was when the pen was switched on.
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ON PEN GOSUB does not operate unless a PEN ON statement activates it. PEN
the feature back off. The point of this is that constantly checking the pen

status between instructions slows down execution time, and so "trapping" should
only operate when it is required. If a program enters a critical section of code that
should not be interrupted by the ON PEN GOSUB routine, write PEN STOP. In
this case, the pen status continues to be checked, and if the pen is switched on, that
fact is remembered. But not until another PEN ON statement is encountered does
ON PEN GOSUB send the program to the subroutine.
This example causes the program to be interrupted whenever the light pen switch

is pressed. The pixel at the light pen position is turned on by the routine that the
trapping brings into action.

100 ON PEN GOSUB 5000 'set light pen subroutine Location
110 PEN ON 'enable trapping

5000 ''' light pen routine
5010X=PEN(4) 'get the X coordinate
5020Y=PEN(5) 'get the Y coordinate
5030 PSET(X, Y) ' turn on the pi xeI
5040 RETURN

Middle Level

Function 4 of BIOS INT 10H reports the current light pen position. There are no
input registers. On return, AH contains 0 if the pen switch has not been triggered,
and 1 if values for a new position have been received. Two sets of position coordi
nates are returned, both for the character position and the pixel position. The char
acter position is given by DX, where DH contains the ROW (0-24) and DL contains
the column (0-79). The pixel position is kept in CH and BX, where CH has the row
(line) position (0-199), and BX has the column position (0-319 or 0-639, depending
on the screen mode).

;  GET READING AND SAVE PIXEL ROW AND COLUMN POSITIONS:

;function number
;BIOS video interrupt
;new position?
; jump ahead if not
;save pixel column position
;row position now in CL and CH
;make CH,0
;save pixel row position

MOV AH,4
INT 10H

CMP AH,1
JE NO READING

MOV COL,BX
MOV CL,CH
MOV CH,0
MOV ROW,CX

Low Level

The light pen is essentially an extension of the video system and, as such, of the
6845 CRT controller chip. The light pen position is given by a single two-byte
value contained in registers 10H (high) and IIH (low) of the chip. [4.1.1] explains
how to read the chip registers. See the example there. Port address 3DCH sets the
light pen latch, and 3DBH clears it.
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MOV DX,3DAH
IN AL,DX
TEST AL,4
JNZ NOT SET

TEST AL,2
JZ NOT SET

SUB DX,7
MOV AL,10H
OUT DX,AL

INC DX

IN AL,DX
XCHG AH,AL
DEC DX

MOV AL,11H
OUT DX,AL
INC DX

IN AL,DX

;point to status register
;get the information
;test switch
;quit routine
;test trigger
;quit routine
;point to 6845 address regi ster
;request Low Light pen reading
;send the request
;point to 6845 data registers
;get the vaLue
;store it in AH
;poi nt back to address regi ster
;point to Low byte of data
;send the request
;back to data regi sters
;now AX hoLds reading, go caLcuLate
;  position on basis of screen mode.
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7.3.3 Take analog input from the game port
The game port can support two joysticks or four paddles. For a joystick it

reports a pair of coordinates and the status of two buttons; for a paddle it reports
one coordinate and the status of one button. A number of auxiliary devices—such
as graphics tablets—may also be hooked up to the game port; their operation par
allels that of a joystick. This section discusses how to read coordinates, and the
next section discusses how to tell the status of the buttons.

High Level ———— ————

The STICK function returns a position on the axis specified by the following
code numbers:

0  X-axis of joystick A
1  Y-axis of joystick A
2  X-axis of joystickB
3  Y-axis of joystick 8

You need only write X = STICK(0), for example, and X will be given the X-axis
value for joystick A. But this function has a quirk that you must not overlook.
Only when code number 0 is used are the joystick coordinates actually read, and at
that time it reads all four values. Code numbers 1-3 merely report the findings of
code number 0. To use the latter three codes, write a X = STICK(0) function imme
diately before, even if the program does not need to know the value returned by
code 0.

Joysticks vary in their physical characteristics, and for this reason they must be
aligned so that their extreme positions coincide with the edges of the video display.
The following example shows how this is done. The example continuously draws
pixels at the current joystick position, an action that requires that the range of val
ues returned by the game port be converted to the range of screen positions.

100 " 'get the extreme readings of the joystick
110STRIGON 'enable button
120 V=STRIG(0) • c Lear any prior input
130 PRINT"brief Ly push button 1 when stick is farthest to Left"
140 XLEFT=STICK(0) 'get Left-most stick reading
150 IF STRIG(0)=0 THEN 140 ' Loop unti L button pressed
160 STRIG OFF:FOR N=1 TO 1000:NEXT:STRIG ON 'make delay so user can Let go
170 PRINT"brief Ly push button 1 when stick is farthest to right"
180 XRIGHT=STICK(0) 'get right-most stick reading
190 IF STRIG(0)=0 THEN 180 ' Loop unti L button pressed
200 STRIG OFFrFOR N=1 TO 1000:NEXT:STRIG ON 'make delay so user can Let go
210 PRINT"brief Ly push button 1 when stick is farthest to top"
220 V=STICK(0):YTOP=STICK(1) 'get top-most stick reading
230 IF STRIG(0)=0 THEN 220 ' Loop unti L botton pressed
240 STRIG OFF:FOR N=1 TO 1000:NEXT:STRIG ON 'make delay so user can Let go
250 PRINT"brief Ly push button 1 when stick is farthest to bottom"
260 V=STICK(0) :YB0TT0M=STICK(1) 'get bottom-most stick reading
270 IF STRIG(0)=0 THEN 260 ' Loop unti L botton pressed
280 STRIG OFF 'finished
290 '' 'get multipliers to set screen coordinates, counting from 0
300XRIGHT=XRIGHT-XLEFT 'get horizontaL difference
310 XMULTIPLIER=320/XRIGHT 'calculate pixels per unit
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320 YBOTTOM=YBOTTOM-YTOP 'get vertical difference
330 YMULTIPLIER=200/B/YBOTTOM ' caLculate pi xeIs per uni t
340 • • 'now figure coordinates in medium resolution graphics:
350 X=STICK(0) 'get horizontal stick reading
360 Y=STICK(1) 'get vertical strick reading
370 X=(X-XLEFT)*XMULTIPLIER 'figure horizontal pixel position
380 Y=(Y-YTOP)*YMULTIPLIER 'figure vertical pixel position
390PSET(X,Y) 'turn on the pixel
400 GOTO 350 ' repeat

Middle Level —————

Only the AT provides operating system support for joysticks. Function 84H of
INT 15H returns coordinates, where:

AX = x-axis of joystick A
BX = y-axis of joystick A
CX = x-axis of joystickB
OX = y-axis of joystickB

On entry, place 1 in DX. When 0 is in DX the function instead returns the joystick
button settings [7.3.4]. On return, the carry flag is set if there is no game port in the
machine.

Low Level —

Information about coordinates is held for both joysticks or all four game paddles
in just one byte that is found at port address 201H. Here are the respective bit
patterns:

kit Joystick Paddle

3 Y-axis of stick B Coordinate of paddle D
2 X-axis of stick B Coordinate of paddle C
1 Y-axis of stick A Coordinate of paddle B
0 X-axis of stick A Coordinate of paddle A

A single bit describes a coordinate by means of timing. Begin by sending a byte
of any value to the port. This causes the four low bits to be set to 0. Then continu
ously read the value of the port, timing how long it takes for the bit in question to
become 1. The elapsed time is proportional to the joystick position on that axis.
The longest times are taken for the down-position on the Y-axis and the right-posi
tion on the X-axis. No matter the position, the bits change from 0 to 1 very quickly
relative to the speed at which the joystick or paddle is mechanically moved. A pro
gram can with fair accuracy test first the Y-axis position and then the X-axis posi
tion; there is no need to alternate between testing each. In this example a value is
taken for the X-axis of joystick A.

;  GET X-AXIS POSITION OF JOYSTICK A
MOV DX,201H ;game port address
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NEXT:

FINISHED:

OUT DX,AL ;send an arbitrary value to the port
MOV AH,1 ;wi 11 test bit 1
MOV SI,0 ;initialize counter
IN AL,DX ; read the port
TEST AL,AH ;test bit 1
JE FINISHED ; jump ahead when bi t turns to 1
INC SI ;else increment the counter
LOOP NEXT ; loop around

;now SI has X-axis value for stick A
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7.3.4 Take digital input from the game port
The game port supports four game paddles or two joysticks, as well as a variety

of graphics devices. The status of up to a total of four buttons on the devices may
be monitored. Monitoring the buttons can be a complex matter, since a program
may not be free to check them at all times; yet a button could be pressed and then
released while the program is busy elsewhere. Special trapping routines are created
to deal with this problem. The status of the buttons is automatically read several
times per second without the program specifically requesting that this be done;
when it turns out that a button is down, control is transferred to a subroutine that

figures out which button it is and then acts accordingly.

High Level

BASIC uses the STRIG statement to read the status of the buttons. STRIG is

sophisticated in that it can trap the occurrence of the depression of a button even
without the program immediately concerning itself with the button's status; that is,
the program can ask "has the button been pressed since I last enquired?" This fea
ture is extremely useful in video games, since a program can devote itself to manip
ulating the screen without constantly needing to check the button status. The fea
ture slows down a program's operation, however, since BASIC is made to check
the buttons after every instruction. For this reason, STRIG is operational only
when it is purposely turned on, and it may be turned on and off as a program
requires.

STRIG operates in two ways. First, it can act as a function that directly reads the
current value of the buttons, in the form X = STRIG(n). Here n is a code number:

0  Button A1 pressed since Last cat I
1  Button A1 current Ly depressed
2  Button B1 pressed since Last catL
3  Button B1 current Ly depressed
4  Button A2 pressed since Last caLL
5  Button A2 current Ly depressed
6  Button B2 pressed since Last caLL
7  Button B2 current Ly depressed

In all cases, the function returns -1 if the description applies, and 0 if not.
The second way in which STRIG is used is in the form where it is set up to auto

matically switch the program over to a subroutine whenever a button is pressed.
Write ON STRIG(n) GOSUB line. The line number refers to the starting line of the
subroutine. The number n refers to the button, where 0 = Al, 2 = Bl, 4 = A2, and
6 = B2. Each button may be interpreted by its own subroutine, or they may all be
directed to the same subroutine.

To activate the STRIG function, include a program line reading STRIG(n) ON.
Use the four code numbers above as values for n. To deactivate it (speeding up pro
gram execution) write STRIG(N) OFF. There is a third option. STRIG(n) STOP
causes the button depressions to be trapped, but no action is taken until the next
STRIG(n) ON statement. This feature keeps ON STRIG GOSUB from making
undesirable interruptions. A program is still slowed during the STRIG(n) STOP
condition.
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The following example shows ON STRIG GOSUB in action. The example at
[7.3.3] contains lines showing the X=STRIG form.

100 ON STRIG(0) GOSUB 5000 'set up transfer to 5000 if A1 pressed

200 STRIG(0) ON 'activate trapping

300 STRIG(0) STOP 'deactivate trapping, but monitor button

400 STRIG(0) ON 'goto 5000 i f A1 has been pressed

500 STRIG(0) OFF 'stop checking button status

5000 '' 'Subroutine to respond to button A1

5500 RETURN • return to wherever Left off

Middle Level — ^

Only the AT offers operating system support for a joystick. Function 84H of INT
15H returns the button settings in bits 4-7 of AL, as discussed below. On entry, DX
should contain 0; when DX contains 1 the joystick coordinates are returned instead
[7.3.3]. On return, the carry flag is set if no game port is installed.

;  TEST BUTTON UZ OF STICK 8 (BIT 7) ;
MOV AH,84H
MOV DX,0
INT 15H

JC NO_JOYSTICK
TEST AL,10000000B
JNZ BUTTON DOWN

;function number
; request button sett i ngs
;caLL the function
;go to error routine if no joystick
;test bit 7
; j ump i f buttom down
;etc...

Low Level

Bits 7-4 of port address 201ff contain the status of the buttons connnected to the
game port. The bit assignments vary depending on whether joysticks or paddles are
connected:

bit Joystick Paddle

7 Button #2 of stick B Button of paddle D
6 Button #1 of stick B Button of paddle C
5 Button #2 of stick A Button of paddle B
4 Button #1 of stick A Button of paddle A
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A program need only read the value from the port and check the relevant bit
settings:

MOV DX,201H ;port address of game adaptor
IN AL,DX ;get the value
TEST AL,0010B ;is bit 1 on? (button A2 down?)
JNZ BUTT0N__A2 ;if bit 1 on, jump to routine

Programs generally have better things to do than constantly watch the game port,
but it is equally impractical to periodically check the port by interspersing a routine
throughout the program. To achieve the trapping effect described above for
BASIC, you will need to set up an addition to the time-of-day interrupt, as
described at [2.1.7], The interrupt is normally invoked 18.2 times per second, and
each time a check of the game port can be made and appropriate action taken.
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Appendices
APPENDIX A: Binary and hexadecimal
numbers and memory addressing

The basic unit of computer data storage is the bit. In most microcomputers eight
bits are combined to make a byte, and each bit of the byte may be set to be "on"
(= 1) or "off" (= 0), allowing 256 combinations. Thus 256 different symbols may
be expressed by one byte (the extended ASCII character set), or an integer from 0
to 255 may be held within one byte. While we are accustomed to writing these num
bers in decimal form, they may as well be written in binary or hexadecimal form—
their values are unchanged, and programming software can read them as easily in
one form as in another. Instead of saying that a byte can hold a number from "0 to
255", one could say the value is from "00000000 to 11111111" in binary or from
"00 to FF" in hexadecimal. Since the different forms can be confused, binary and
hex numbers are specially marked. In assembly language, a binary number is fol
lowed by B and a hexadecimal number is followed by H, as in llllllllB or FFH.
Microsoft BASIC prefixes hexadecimal numbers with &H, as in &HFF; unfortu
nately, it does not at all recognize numbers written in binary form.

Binary numbers:

When the contents of a byte are expressed in binary form, eight digits are
required. Each digit corresponds to one of the bits, and the bits are numbered from
0 to 7. As with decimal numbers, the digits are laid out right to left from lowest to
highest value. Unlike decimal numbers, where each successive digit counts to ten
times higher than the digit to the right (10,100,1000), binary digits count to only
twice as high as the digit to the right. Thus the rightmost digit counts to 1, the next
counts to 2, the third counts to 4, and so on up to 128 for the eighth digit. This
means that if the first digit is 1, then adding 1 to it causes it to go back to 0, with 1
carrying over to the second digit, just as 9 -F 1 = 0 plus a carry to the 10s place in
decimal arithmetic. Here is what counting to 10 looks like in binary:

00000000 0

00000001 1

00000010 2

00000011 3

00000100 4

00000101 5

00000110 6

00000111 7

00001000 8

00001001 9

00001010 10
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In this sequence, most of the zeros on the left are unnecessary; that is, the
sequence could as well be written as 0, 1, 10, 11, 100, 101...etc. The zeros are
included here only to remind you that each digit corresponds to a bit of a byte.
While all the zeros and ones may be a little overwhelming, you will find binary
numbers easy to deal with if you think of them this way:

bit: 7 6 5 4 3 2 1 0
value: 128 64 32 16 8 4 2 1

When you encounter the binary number 10000001, bits 7 and 0 are on. Bit 7 is
worth 128 and bit 1 is worth 1, so the decimal value of the byte is 129. If the byte
represents a character, then it corresponds to ASCII 129, which is u with an
umlaut. Conversely, to find the bit pattern for the letter A, which is ASCII 65,
search the table above for the bit values it contains: 64 and 1, equalling
01000001B.

Why bother with binary numbers? One reason is that computers keep informa
tion in status bytes in memory or in status registers on support chips. Several pieces
of information are crammed into one or two bytes. This is accomplished by allot
ting particular bits to particular data. For example, a status byte might, among
other things, tell how many printers and disk drives are connected to the machine.
Say that the two highest bits hold the printer number, and the two lowest bits hold
the disk drive number. The status byte would be found at a particular memory
location, and like any byte, it would have a value from 0 to 255. If the value of the
byte is 66, then it would be 01000010 when converted to binary form (64 + 2).
Now, the binary number held in the two high bits is 01, and in the two low bits it is
10. The first tells that there is one printer, and the second indicates two disk drives.
A group of bits taken together in this way is referred to as a field. Often your pro
grams will need to read status bytes or registers, and sometimes they will need to
make changes in the bit settings. These operations are trivial in assembly language,
but not in BASIC. Appendix B explains how they are performed.

Hexadecimal numbers:

Whereas in binary numbers each successive higher digit counts to twice as high
as the digit to the right, in hexadecimal numbers each digit is 16 times higher. In
decimal numbers there is first a I's place, then a 10's place, and then a hundred's
place. And in binary numbers the succession is from I's place to 2's place to 4's
place. But with hex numbers there is a I's place, then a 16's place, then a 256's
place, etc. This means that when the I's place contains 9, adding 1 more to it does
not result in a carry to the next highest digit, as would be the case with decimal
numbers. But how do you write the decimal number 10 as a single digit? The
answer is that hex numbers use the first six letters of the alphabet as additional
numeric symbols:
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hexadecimal symbol decimal equivalent

A 10

B 11

C 12

D 13

E 14

F 15

Counting in hexadecimal numbers goes along like this: ...8, 9ABCDEF
10,11 19, lA, IB, etc.
The usefulness of hexadecimal numbers lies in the fact that one hex digit

describes the contents of exactly 1/2 byte. For example, in the number F6, the F
corresponds to the high four bits of a byte, and the 6 to the low four bits (four bits
taken together are called a nibble). It is not too hard to calculate the binary equiva
lent of only four bits. FH = llllB, and 6H = 0110B (remember the H and B suf
fixes: how else can you tell apart 11 binary, 11 decimal, and 11 hexadecimal?). So
F6H has the bit pattern 11110110. A two-byte number (an integer) might equal
6FF6H. In this case, the bit pattern is 0110111111110110. If the number is only
three digits, like F6FH, then the top half of the high-value byte of the number is 0-
0000111101101111.

Hexadecimal numbers are much easier to read than binary numbers. And,
although they take some getting used to, they ultimately prove much more conven
ient to work with than decimal numbers.

Memory and port addresses:

Now that you understand hexadecimal numbers, the system by which the CPU
addresses memory becomes comprehensible. First, it is important to note that there
are two kinds of addresses: memory addresses and port addresses. The address
numbers used for each are entirely separate; sending a value to memory address
2000 is completely different from sending a value to port address 2000. Port
addresses are accessed via BASIC'S INP and OUT instructions, or by IN and OUT
in assembly language. Memory addresses are directly accessed by the PEEK and

instructions in BASIC, or by MOV in assembly. There are 65K possible port
addresses and 1024K possible memory addresses.

Because the CPU uses 16-bit registers, it is fastest for it to calculate memory
addresses if they are no more than 16 bits long. However, the largest number that
16 bits can hold is 65535. Think of this as the four-digit hexadecimal number
FFFFH. It takes four more bits to hold a number as large as a million (FFFFFH),
which is the size of a PC s address space (the PC AT can access more through vir
tual addressing, which is not covered here).
The CPU solves the problem of addressing more than 64K with a 16-bit pointer

by breaking memory up into segments. A segment is any 64K stretch of memory;
since it is only 64K, a 16-bit value can point to any byte within it. The CPU keeps
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track of just where in the one-megabyte address space a segment begins, and it
counts the 16-bit address as an offset from that point. But how define the point?
The answer is that a second two-byte value is used to mark the beginning of a seg
ment, and the value is multiplied by 16 (= 4 bits) before it is put to this use. Thus,
if this segment value is equal to 2, it is multiplied by 16 to make 32, and addresses
are then calculated as an offset from the 32nd byte of memory. If an address in the
segment is 7, then 32 -I- 7 means that the byte accessed is actually the 39th byte in
memory, not the 7th. It's relative address (or offset) is 7, and its absolute address
is 39.

In BASIC you can set the segment address using the DEF SEG statement. If you
write DEF SEG = 2, then the beginning of the segment you wish to address is set to
the 32nd byte, as in the example above. Then you may use PEEK or POKE to read
or write to individual bytes of memory. PEEK(7), for example, would read the byte
that is the 7th from the start of the segment, that is, the 39th byte in memory.
Now, in many places this book refers to absolute memory addresses. This is nec

essary since the operating system stores crucial information at particular places. An
absolute address is given in the form 0000:0000, where the first four hexadecimal
digits are the segment address and the second four digits are the memory address
(offset). Using the example given above, the address of the 39th byte of memory
could be written as 0002:0007. Note that the same address can be written differ
ently if the segment register value is changed, as in 0001:0017. Alternatively, an
address can be written as a single five-hex-digit number. For example, the video
buffer begins at B000:0000, which can be written as B0000H. Note that the H suffix
is omitted in the special address notation.
There is one last point to note about the use of memory. When a number is

spread across two or more bytes, the lowest, least significant part of the number is
placed at the lowest memory address. If the integer value A48BH begins at memory
location 1000:0007, then :0007 holds 8B and :0008 holds A4. Similarly, in a single
precision number like F58CA98DH, 8D would be found in the lowest of four mem
ory addresses, and F5 would be in the highest.
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APPENDIX B: Bit operations in BASIC

BASIC cannot use numbers in binary form. It sees the bit pattern 11000000 as
equalling 11 million, not 192. But manipulating bit patterns is essential in sophisti
cated programming since the contents of status bytes and status registers are often
read or changed.
Two logical operators are used for most operations on bit patterns. These are OR

and AND, and both are available in BASIC. Used alone or in combination they
enable a program to read or set individual bits of a byte. OR and AND operate on
two values and give a third value as the result, just like the arithmetic operators: Z
= X OR Y. When used with byfc-length values, the operations are actually per
formed eight times, once for each bit. OR would examine bit 0 of the two bytes,
and if the bit is on (= 1) in either byte, then bit 0 is turned on in the result byte that
OR creates. The same process is performed on the other seven pairs of bits. The
AND operation, on the other hand, would turn on a bit in the result byte only if
both of the two corresponding bits are 1; otherwise the bit is 0. Examine the two
operations in the diagrams below:

operand 1 operand 2 result operand 1 operand 2 result
bit 7 1 0 1 1 0 0

6 1 0 1 1 0 0

5 1 1 1 1 1 1

4 1 OR 1 = 1 1  AND 1 1

3 0 0 0 0 0 0

2 0 0 0 0 0 0

1 0 1 1 0 1 0

0 0 1 1 0 1 0

In programming, OR is used to turn on one or more bits in memory or in a status
register. For example, there may be need to turn on the blink attribute at a particu
lar character position on the display. This requires that bit 7 be turned on. Now,
the program could simply write a whole attribute byte at this location, but the sta
tus of the other seven bits may not be known. Instead, the byte is first read from
the video buffer and placed in an integer variable such as X. Then a second byte is
made in which only bit 7 is turned on. As you know (or as you can learn from
Appendix A), this byte equals 128. Simply write Y = X OR 128, and Y will
become the same byte as X, but with bit 7 turned on. This diagram shows why:
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bit attribute 128 result

7 0 1 1

6 1 0 1

5 0 0 0

4 1 OR 0 =  1

3 0 0 0

2 0 0 0

1 0 0 0

0 1 0 1

In the number 128, only bit 7 is turned on. Whether bit 7 is on or off in the attri
bute byte, it will be turned on in the result byte. But in the case of the other 7 bits,
they are turned on in the result byte only if they are already on in the attribute
byte. The OR instruction can turn on more than one bit at once (but see the note of
caution below). To turn on bits 2 and 3, use the combined value of these two bits: 4
+ 8 = 12.

bit attribute 12 result

7 0 0 0

6 1 0 1

5 0 0 0

4 1  OR 0 =  1

3 0 1 1

2 0 1 1

1 0 0 0

0 1 0 1

AND is used to turn off one or more bits. Here, calculate the value of the byte in
which every bit is turned on except the one(s) you want turned off. Remember that
both corresponding bits must be on to make the result bit also be on. To turn off
bit 7, use 255 - 128 = 127:

bit attribute 127 result

7 1 0 0

6 1 1 1

5 0 1 0

4 1 AND 1 =  1.

3 0 1 0

2 0 1 0

1 0 1 0

0 1 1 1
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Note how every bit set to 1 in the attribute byte (except bit 7) combines with a 1 in
the byte value 127 so that the corresponding bit is set to 1 in the result byte. Bits
that are set to 0 in the attribute byte remain 0.
Sometimes a program will need to set a group of bits (a field). For example, say

that you want to change the three lowest bits of a video attribute byte, changing
the foreground color of a character. Perhaps the new pattern should be, in descend
ing order, 101. This value equals 5, but ORing the attribute byte with 5 will not
necessarily do the job, since OR will turn on a bit in the result byte if either of the
corresponding bits equals 1. If the middle bit is turned on in the attribute byte, it
remains on in the result byte:

to attribute U result

2 0 1 1

1 1 0 1

0 0 1 1

In such a case a program must first turn off all three bits using AND, and then it
can safely OR the bit pattern desired. In this case, 255-4-2-1 = 248, so first calculate
Y = X AND 248 and then calculate Z = Y OR 5.

It is not too difficult for a program to tell if one particular bit is on or off. In this
case, AND the byte with the value for which all bits are off except the one tested
(say, bit 5, which equals 32). If the result is non-zero the bit is shown to be on:

bit attribute result

7 1 0 0

6 0 0 0

5 1 1 1

4 1  AND 0 =  0

3 0 0 0

2 0 0 0

1 0 0 0

0 1 0 0

But what if a program needs to learn the settings of two or more bits? For exam
ple, bits 6 and 7 taken together may hold a number from 0 to 3, but if the two bits
are isolated they result in one of four (decimal) values: 0, 64, 128, and 192. Since
BASIC forces you to work in non-binary numbers, some fancy processing is
required to figure out the bit patterns these numbers represent. Here are two sub
routines that let you avoid these machinations. The first converts the decimal num
ber retrieved from a byte into a string of eight I's and 0's. Note that this is a charac
ter string, not a binary numeral. A second routine takes such a string (of any
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length) and converts it into decimal form. Using these routines, you can easily
examine status bytes in memory. And with the help of the MID$ function you may
snip out a bit field and convert the value it holds to decimal. Here is the decimal-
to-binary routine:

100 STATUSBYTE=PEEK(13) :GOSUB 1000 'get byte from memory, gosub binary
110 PRINT BITPATTERN$ 'on return BITPATTERN$ has string

1000 • • 'Convert decimal number to 8-character binary string
1010 BITPATTERN$="" 'clear the variable
1020 FOR N=7 TO 0 STEP -1 'work backwards from bit 7

1030 IF STATUSBYTE-2'^N <0THEN 1060 'jump ahead if bit off
1040 BITPATTERN$="1"+BITPATTERN$ 'else add a "1" to the string
1050 STATUSBYTE=STATUSBYTE-2'^N:GOTO 1070 'and subtract bit value from total

1060 BITPATTERN$="0"+BITPATTERN$ 'if off, add "0" to string
1070 NEXT ' repeat 7 t i mes
1080 RETURN 'all done

It is important to note that the order of bits in these binary strings is
reversed. Rather than moving left to right from bit 7 to bit 0, bit 0 resides at
the left end of the string. The reason for this is so that MID$ can easily find the
bits you want to isolate. Because MID$ counts from 1, and not from 0, think of
the bits as numbered from 1 to 8. To isolate the fourth and fifth bits, write

BITFIELDS = MID$(BITSTRING,4,2). Then to find the decimal value (0-3) held in
the field, use this reconversion routine:

100 BITFIELD$=MID$(BITPATTERN$,4,2):GOSUB 2000 'cut out part of binary string
110 PRINT DECIMALVALUE ' returns decimal value of field

2000 '' 'Convert variable length binary string to decimal number
2010 DECIMALVALUE=0 'clear the variable

2020 FOR N=1 TO LEN(BITFIELD$) 'repeat for length of field
2030 DECIMALVALUE=DECIMALVALUE+VAL(MID$(BITFIELD$,N,1))*2^(N-1) 'add values
2040 NEXT ' repeat
2050 RETURN 'all done
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APPENDIX C: Some background on assembly
language

A reader of this book who does not know assembly language quickly learns that
many programming tricks can be accomplished through no other means. While
learning assembly language requires a book in itself, this appendix provides basics
that will help newcomers decode some of the assembly language examples. By
keeping an inquiring eye on the middle- and low-level sections, you'll gradually
develop a sensibility for how assembly language works, and this will make learning
the specifics much easier. Not all assembly instructions used in this book are dis
cussed here, but you will find those instructions that occur 95% of the time, and
the function of the rest may be decipherable from the program notes.
The 8088 chip has thirteen 16-bit registers, each devoted to particular uses. While

in a high-level language you might place two numbers into variables and then add
the variables together, in assembly language the numbers are placed in two regis
ters on the 8088 chip and then one register is added to the other. Everything in
assembly language is a matter of moving numbers in and out of registers and then
operating on the registers, changing individual bits, performing arithmetic opera
tions, etc. Part of the reason assembly language operates so quickly is that data is
kept on the chip registers; compilers tend to return everything to memory after
each instruction, and accessing memory is very time consuming. Figure C-1 shows
the thirteen registers on the 8088 or 80286 chips (the latter has extra facilities for
multitasking that do not concern us here).
The AX, BX, CX, and DX registers are "general purpose registers." They are spe

cial in that operations may be made not only upon the whole register, but also
upon only half of it. Each of the four registers is divided into a high part and a low
part, where, for example AH stands for "AX high," and AL stands for "AX low."
Similarly, an assembler program can access BH, BH, CH, CL, DH, and DL. This
division is useful, since often programs work with one-byte values. The BP, SI, and
DI registers are also fairly versatile, although they only take 16-bit values. In the
flag register each bit indicates something about the CPU's status, such as whether
an arithmetic operation results in a carry.

Generally speaking, values are placed in the registers by means of the MOV
instruction. MOV AX,BX moves the contents of BX into AX, overlaying whatever
value currently resides in AX. MOV AH,BL moves a byte between registers,
but MOV AX,BL is not allowed—the values must be the same width. MOV al
so can fetch values from memory, as in MOV AX,ACCT_NUMBER. Here,
ACCT—NUMBER is a variable name that the programmer makes up, just as in a
high-level language. The variable is set up with a statement that would look like
ACCT—NUMBER DW 0. This statement sets aside a "data word" (2 bytes), initial
izing it to zero. Other symbols include DD for double words, and DB for single
bytes and strings. The assembler does the work of keeping track of where the vari
able is located, so that when the statement MOV AX,ACCT_NUMBER is assem
bled, an address is filled in for ACCT NUMBER.
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Working with variable names is the easiest way of tracking down data in assem
bly language programs. But there are all sorts of fancy addressing techniques that
enable a program to get at elaborate arrays or to use pointers. For example, MOV
AX,[BX][SI1 moves to AX whatever value is contained at the offset made up of the
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coinbined values found in the BX and SI registers. But an offset from where? The
answer is that all data is sequestered into one part of the program, and all code is
kept elsewhere. The data part is called the data segment, and the code part is called
the code segment. Data variables are always defined as offsets from the start of the
data segment.
The position in memory at which the data segment begins is set by the OS regis

ter, which is one of four segment registers. Like all registers on the chip, it is 16 bits
wide, which means that it cannot hold a number larger than 65535. How then can
the data segment point to locations high in the one-megabyte memory space that
the CPU uses? The answer is that the contents of the segment register are automati
cally multiplied by 16, and the result points to the place in memory at which the
segment starts. Thus segments always begin on 16-byte boundaries in memory.
Once the segment is established, other registers can hold an offset to any point in
the 65535 bytes that follows. The ES ("extra segment") register is also used to point
to data in memory.
Among the assembler instructions you will often see in this book are those that

load the segment and offset values for a variable. MOV AX, SEG ACCT NUM
BER places the segment in which ACCT NUMBER resides into AX, and from there
it is shifted to DS. MOV BX,OFFSET ACCT_NUMBER moves into BX the offset
in the data segment of ACCT_NUMBER. Once accomplished, DS:BX points to
ACCT—NUMBER. If ACCT—NUMBER is a one-dimensional array, then another
offset could be used to get at a particular element in the array. You'll often also see
the instruction LEA, which is another way of loading an offset.
The code segment holds the sequence of machine instructions that comprise the

program. A MOV instruction, for example, exists as a few bytes of machine code
where the values of the bytes indicate to which register the move is made, and from
where. The IP (instruction pointer) register holds an offset value that tells at what
point in the code segment instructions are currently being executed. After each
instruction is carried out, IP is incremented to point to the next. In a trivial pro
gram IP would move from the first byte in the code segment to the last, and that
would be the end of the program. But, like other programs, assembly language pro
grams are broken up into procedures (subroutines), and so the instruction pointer is
constantly jumping around from one place in the code segment to another.
When the instruction pointer jumps to another point in the code, its prior posi

tion must be remembered so that it can return to its starting point, just as a
RETURN statement in a BASIC program brings control back to the place from
which a subroutine is called. In assembly, the procedure is given a name, such as
"COMBINE—DATA", and then the statement CALL COMBINE DATA sends the
program off to the procedure. The procedure ends with a RET ("return") instruc
tion. At the time that the procedure is called, the CPU saves the current instruction
pointer value by pushing it onto the stack.
The stack is just what it sounds like—a stack of data used for temporary storage.

When the procedure is finished, the prior instruction pointer value is retrieved from
the stack and the programs moves along. The stack is also kept in a separate mem
ory segment called, naturally enough, the stack segment, which is set by the SS reg
ister . The SP register holds the stack pointer, and this number always points to the
"top" of the stack, and it changes as items are added or taken away.
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Now, a stack may seem like an awfully clumsy way of keeping information, but
it has two advantages. First, access to its contents is much faster than to other vari
ables kept in memory, and second, the stack can be used for many purposes. It can
hold the return addresses for procedures within procedures within procedures. And
the same memory space can later be used by the programmer to hold data that is in
the midst of processing, but for which there is no available space on the chip. Pro
grams PUSH the contents of a register on to the stack, and later they POP it off.
You will find the assembly programs in this book studded with instructions like
PUSH BX and POP DX. Getting the pushes and pops out of order is a favorite way
of crashing assembly programs.
Once a programmer succeeds in setting up the three segments (CS, DS, and SS)

and in getting the data on to the chip, there are a variety of built-in features pro
vided by the CPU that help the assembly programmer. Here are some of the most
prominent:

ADD AX,BX adds BX to AX. There also is a SUB instruction, plus variants
on each.

MUL BL multiplies BL times AX. There also is a DIV instruction, plus
variants on each.

INC BL increments BL by 1. There also is a DECrement instruction.

LOOP XXX loops the program back to the line labeled ''XXX", repeating
the process the number of times contained in CX (just like a
FOR . . . TO . . . NEXT instruction in BASIC).

OR AL,BL performs the logical OR instruction by BL on to AL, leaving
the result in AL. There also are AND, XOR, and NOT
instructions.

SHL AX,1 shifts left all bits in AX by one position. This effectively
multiplies the contents of AX by 2. Other instructions shift the
bits right, or roll them around from one end of register to the
other. There instructions are invaluable for bit operations,
such as setting pixels on the screen.

IN AL,DX moves into AL the byte found at the port address given in DX.
There also is an OUT instruction.

JMP jmps program control to some other place in the program, like
a GOTO instruction in BASIC. JMP YYY transfers control to
the line of the program that is given the label "YYY:".

CMP AL,BL compares the contents of AL and BL. A CMP instruction is
followed by one of a host of jump instructions that operate
conditionally. For example, if the CMP instruction is followed
by JGE, then the jump is made only if BL is greater than, or
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equal to, AL. CMP instructions achieve the same result as IF
.  . . THEN instructions in BASIC (which is to say that IF . . .
THEN instructions are translated into CMP instructions by the
BASIC interpreter).

TEST AL,BL tests if any of the bits that are on in BL are also on in AL. It is
followed by conditional jump instructions, just as CMP is.
TEST is useful for testing status bits (bit operations are very
easy to perform in assembly language).

MOVS Movs a string of the length specified in CX from the place in
memory pointed to by SI to the place pointed to by DI. There
are several other instructions that facilitate string movement
and string searches.

Assembly language provides many variants of these instructions and quite a few
other special instructions besides. There is a whole class of instructions called
pseudo ops, which are instructions placed in the source code that tell the assembler
how to proceed. For example, one type of pseudo op can automatically insert fre
quently used code throughout a program. These snips of code are called macros,
and it is this feature that earns the assembler its name 'macro assembler."

Finally, assembly language has a capability that is (or should be) the envy of all
who program only in higher level languages. This is that assembly language can
make optimum use of the operating system interrupts. These are nothing more than
ready-made procedures. Rather than being accessed by CALL, however, they are
brought into action by an INT instruction. INT 21H calls up interrupt number hex
21. There are scores of these interrupts, both on the ROM BIOS and in DOS, and
some of the routines are extremely powerful. Some, in fact, are so thoroughly inte
grated with DOS that there is simply no way that you could write and integrate an
equivalent routine of your own. High-level languages make use of many of the
interrupts. They write on the screen using them, get keystrokes using them, and
access disk drives using them. But many really useful interrupts are commonly
ignored by high-level languages, such as the one that lets you run one program
from within another. Some compilers (such as Lattice C and Turbo Pascal) allow
access to the interrupts if you know how to set them up, and you may want to use
the middle-level sections of this book for that purpose.

Before an interrupt is called, certain information has to be placed in registers on
the CPU. The interrupt that scrolls the screen vertically, for example, needs to
know the dimensions of the window it is to scroll, the number of lines to shift, etc.
These are sometimes referred to as input registers. Again and again you'll see the
words "on entry, BH contains...", giving the input register specifications. Simi
larly, when the interrupt returns, certain registers will return a value, or give status
information. These are called result registers, and they are referred to by the words
"on return, AX contains...". Often a single interrupt contains many functions.
DOS, in particular, crams almost everything into INT 21H. And so often a func
tion number is required on entry to an interrupt. Whether in BIOS or in DOS, the

435



APPENDIX C; Some background on assembly language

function number always goes into AH (sometimes a sub-function number goes into
AL).

All of this is a lot of information to digest. But keep an eye on the simpler exam
ples in this book, and gradually you'll see the underlying logic. Assembly language
deserves its reputation for difficulty. What you've just read is the simple stuff.
There are all sorts of intricacies that are encountered at more advanced levels. And

bugs in assembly code can be terribly difficult to locate, if only because the source
code is much longer than for equivalent code in a high-level language (the assem
bled code is much tighter, however). These days, many professionals write their
programs in C, analyze the performance, and then rewrite critical, time-intensive
routines in assembly language. The inability to write those assembly subroutines
can sometimes condemn one's programming efforts to mediocrity. So find a good
assembly primer and get going! Perhaps the greatest reward is finding one day that
you really, truly understand how computers work.
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APPENDIX D: Integrating assembly routines
into BASIC programs

Assembly language subroutines consist of a string of bytes of machine code.
When the routine is executed, BASIC jumps away from the sequence of instructions
that comprise the BASIC program, and it begins to execute the sequence of instruc
tions that are encoded in the assembly language string. When the assembly routine
is finished, control jumps back to where the BASIC program left off.

This book provides assembly routines for BASIC programs in two ways. Both
have the subroutine written into the program, rather than kept on a separate disk
file. The first method requires that the program set aside memory to hold the rou
tine, the second, less conventional, method does not.
In the first method, the routine is coded in DATA statements, and the program

moves it to an unused part of memory and then accesses it with the CALL state
ment. Care must be taken that the routine is not inadvertently overwritten by data,
or vice-versa. The usual solution to this problem is to place the routine at a mem
ory location that BASIC can not reach. Since interpreted BASIC can not extend
beyond 64K, systems that have, say, 256K of memory need only poke the routine
into the highest 64K block. For 128K systems you should calculate how much mem
ory will be required by DOS, BASICA, and any device drivers. Allow for at least
25K plus the 64K that BASIC will use. In 64K systems, at start-up use the CLEAR
command to limit the amount of memory that BASIC can use. CLEAR,n limits
BASIC to n bytes. Then poke the routine into the very top of memory.
Use DEF SEG to point to the first byte of the location at which the routine is to

be deposited, and then use READ to fetch a byte of the routine and poke it into
memory space, continuing until the whole routine is in place. For example:

100 DATA &Hxx,&Hxx,&Hxx,&Hxx,&Hxx 'a 10-byte routine
110 DATA &Hxx,&Hxx,&Hxx,&Hxx,&Hxx

300 •' 'poke the routine into memory:
310 DEF SEG=&H3000 'point to memory Location
320 FOR N=0 to 9 ' for each of 10 bytes
330 READ Q ' read the byte from DATA
340 POKE N,Q 'poke it into memory
350 NEXT

Once the routine is loaded into memory and you wish to call it, be sure that the
most recent use of DEF SEG points to the beginning of the routine. Then give the
value of 0 to an integer variable, and CALL the name of that variable. If parame
ters are passed to the routine, they are placed in parentheses at the end of the CALL
statement. For example:

500 DEF SE6=&H3000 'point to start of routine
510 D0GS=12 '3 parameters for the routine
520 CATS=44 '

530 P0SSUMS=1 '
540 CASUALTIES=0 'start executing from f i rst byte
550 CALL CASUALTIESCDOGS,CATS,POSSUMS) 'execute the routine
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There is a much easier and more economical way of setting up assembly lan
guage subroutines that avoids the problem of memory allocation. Simply set up the
routine as a string variable in the program. Each byte may be coded using CHR$.
Then use VARPTR to find the offset of the string in memory. The offset is held in
the two bytes beginning from the byte after the one VARPTR points to (the first
byte is the string length). Then use the address to call the routine. Note how DEF
SEG is used to point to BASIC'S data segment so that the string address will consti
tute an offset for the CALL statement. For example:

100 DEF SEG *set segment to BASIC data area
110 X$="CHR$(B4) + . 'the code for the subroutine
120 Y=VARPTR(X$) 'get the string descriptor (2nd and 3rd bytes are

'  the string's address
130Z=PEEK(Y+1)+PEEK(Y+2)*256 'caLculate the address
140 CALL Z 'call the subroutine

Many of the values expressed by CHR$( )can be more economically written as
ASCII symbols. Rather than write ROUTINE = CHR$(12) + CHR$(65)+
CHR$(66), write ROUTINE = CHR$(12) + "AB". In fact, most ASCII symbols can
be entered by holding down the Alt key, typing in the ASCII number on the
numeric keypad, and then releasing the Alt key. Codes 0-31, however, may not be
entered in this way to serve this purpose.
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APPENDIX E: Using the ANSI.SYS device
driver

ANSI.SYS is a small program found on the DOS diskette that may optionally be
loaded into memory to increase the capabilities of DOS. It was not made a part of
COMMAND.COM so as to save memory when it is not in use. The facilities
ANSI.SYS provides may be used as a matter of programming convenience; they
also provide a way of achieving a certain degree of software compatibility with
non-IBM MS-DOS machines. There is no feature that it adds to the machine that
cannot be achieved in other ways; but ANSI.SYS makes certain kinds of control
over the keyboard and video display much easier (and usually considerably
slower). All of the ANSI.SYS features are described in this book under the relevant
headings.
ANSI.SYS can be loaded only at the time that DOS is booted. Beginning with

version 2.0, at start-up DOS automatically looks for a CONFIG.SYS file as well as
for an AUTOEXEC.BAT file. The CONFIG.SYS file contains various parameters,
such as the number of file buffers to set up. And it also contains the names of any
device drivers that should be loaded and integrated into COMMAND.COM.
ANSI.SYS is such a device driver. Simply place a line in the file that reads
DEVICE = ANSI.SYS. It may be the only line in the file. To create this file, use the
DOS COPY command. Simply type (from, say, A>):

COPY CON:CONFIG.SYS <carn*age return>
DEVICE=ANSI.SYS <carriage return>
<F6> <carn*age return>

Striking F6 after the final entry writes the Ctrl-Z character (ASCII 26) that marks
the end of the file.
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APPENDIX F: The 8088 instruction set

The number of clocks to add for the effective address (EA) is as follows:

Components Operands Clocks

(a) Base or index [BX1,[BP],[DIL[SI] 5

(b) Displacement label or disp 6

(c) Base + index [BX][SI],[BX]IDI] 7

[BP][SI],[BP][DI] 8

(d) Displacement + base or index [BX],[BPL[DI],[SI] + disp 9

(e) Displace + base + index [BX][SI],[BX]lDI] + disp 11

[BP][SI],[BP][DI] + disp 12

Add two clocks for segment overrides. Here are the instruction times:

instruction clocks bytes

AAA 4 1

AAD 60 2

AAM 83 1

AAS 4 1

ADC register, register 3 2

ADC register, memory 9(13)+ EA 2-4

ADC memory, register 16(24) + EA 2-4

ADC register, immediate 4 3-4

ADC memory, immediate 17(25) + EA 3-6

ADC accumulator, immediate 4 2-3

ADD register, register 3 2

ADD register, memory 9(13) + EA 2-4

ADD memory, register 16(24) + EA 2-4

ADD register, immediate 4 3-4

ADD memory, immediate 17(25) + EA 3-6

ADD accumulator, immediate 4 2-3

AND register, register 3 2

AND register, memory 9(13)+ EA 2-4

AND memory, register 16(24) + EA 2-4

AND register, immediate 4 3-4

AND memory, immediate 17(15) + EA 3-6

AND accumulator, immediate 4 2-3
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instruction clocks bytes

CALL near procedure 23 3
CALL far procedure 36 5
CALL word memory pointer 29 + EA 2-4
CALL word register pointer 24 2
CALL double word memory pointer 57+EA 2-4

CBW 2 1

CLC 2 1

CLD 2 1

CLI 2 1

CMC 2 1

CMP register, register 3 2
CMP register, memory 9(13)+ EA 2-4
CMP memory, register 9(13)+ EA 2-4
CMP register, immediate 4 3-4
CMP memory, immediate 10(14)+ EA 3-6
CMP accumulator, immediate 4 2-3

CMPS destination, source 22(30) 1
CMPS (REP) destination, source 9+ 22(30)/rep 1

CWD 5 1

DAA 4 1

DAS 4 1

DEC word register 2 1
DEC byte register 3 2
DEC memory 15(23) + EA 2-4

DIV byte register 80-90 2
DIV word register 144-162 2
DIV memory byte (86-96)+ EA 2-4
DIV memory word (154-172) + EA 2-4

ESC immediate, memory 8(12)+ EA 2-4
ESC immediate, register 2 2

HLT 2 1

IDIV byte register 101-112 2
IDIV word register 165-185 2
IDIV memory byte (107-118) + EA 2-4
IDIV memory word (175-194) + EA 2-4

IMUL byte register 80-98 2
IMUL word register 128-154 2
IMUL memory byte (86-104) + EA 2-4
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instruction clocks bytes

IMUL memory word (138-164)+ EA 2-4

IN accumulator, immediate byte 10(14) 2

IN accumulator, DX 8(12) 1

INC word register 2 1

INC byte register 3 2

INC memory 15(23) + EA 2-4

INT 3 52 1

INT immediate byte other than 3 51 2

INTO 53 or 4 1

IRET 32 1

JCXZ short-label 18 or 6 2

IMP short-label 15 2

JMP near-label 15 3

IMP far-label 15 5

JMP word memory-pointer 18 + EA 2-4

JMP word register-pointer 11 2

JMP dblword memory-pointer 24 + EA 2-4

Jxxx short-label 16 or 4 2

LAHF 4 1

LDS word register, memory dblword 24 + EA 2-4

LEA word register, memory word 2 + EA 2-4

LES word register, memory dblword 24 + EA 2-4

LOCK 2 1

LODS source-string 12(16) 1

LODS (REP) source 9 + 13(17)/rep 1

LOOP short-label 17 or 5 2

LOOPE short-label 18 or 6 2

LOOPNE short-label 19 or 5 2

LOOPNZ short-label 19 or 5 2

LOOPZ short-label 18 or 6 2

MOV memory, accumulator 10(14) 3

MOV accumulator, memory 10(14) 3

MOV register, register 2 2

MOV register, memory 8(12) + EA 2-4

MOV memory, register 9(13) + EA 2-4

MOV register, immediate 4 2-3
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instruction clocks bytes

MOV immediate, register !0(!4) + EA 3-6
MOV segment register, word register 2 2
MOV segment register, memory word 8(!2) + EA 2-4
MOV word register, segment register 2 2
MOV memory, segment register 9(!3) + EA 2-4

MOVS destination, source !8(26) !
MOVS (REP) destination, source 9 + !7(25)/rep !
MUL byte register 70-77 2

MUL word register !!8-!33 2
MUL memory byte (76-83) + EA 2-4
MUL memory word (!28-!43) + EA 2-4

NEC register 3 2
NEG memory !6(24) + EA 2-4

NOP 3 !

NOT register 3 2
NOT memory !6(24) + EA 2-4

OR register, register 3 2
OR register, memory 9(!3) + EA 2-4
OR memory, register !6(24) + EA 2-4
OR register, immediate 4 3-4
OR memory, immediate !7(!5)+ EA 3-6
OR accumulator, immediate 4 2-3

OUT immediate byte, accumulator !0(!4) 2
OUT DX, accumulator 8(!2) !

POP register !2 !
POP segment register !2 !
POP memory 25 + EA 2-4

POPE !2 !

PUSH register 15 !
PUSH segment register !4 !
PUSH memory 24 + EA 2-4

PUSHF !4 !

RCL register,! 2 2
RCL register, CL 8 + 4/bit 2
RCL memory,! !5(23) + EA 2-4
RCL memory, CL 20(28)+ EA +4/bit 2-4

RCR register,! 2 2
RCR register, CL 8 + 4/bit 2
RCR memory,! !5(23) + EA 2-4
RCR memory, CL 20(28)+ EA +4/bit 2-4
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instruction clocks bytes

REP 2 !

REPE 2 !

REPNE 2 !

REPZ 2 !

REPNZ 2 !

. RET (intra-segment, no POP) 20 !

? RET (intra-segment, POP) 24 3

(inter-segment, no POP) 32 !

(inter-segment, POP) 3! 3

ROL register,! 2 2

ROL register, CL 8 + 4/bit 2

ROL memory,! !5(23) + EA 2-4

ROL memory, CL 20(28)+ EA +4/bit 2-4

ROR register,! 2 2

^ : ;ror register, CL 8 + 4/bit 2

S  :ROR memory,! !5(23) + EA 2-4

ROR memory, CL 20(28)+ EA +4/bit 2-4

SAHF 4 !

SAL register,! 2 2

SAL register, CL 8 + 4/bit 2

SAL memory,! !5(23) + EA 2-4

^  SAL memory, CL 20(28)+ EA +4/bit 2-4

SAR register,! 2 2

SAR register, CL 8 + 4/bit 2

SAR memory,! !5(23) + EA 2-4

SAR memory, CL 20(28)+ EA +4/bit 2-4

SBB register, register 3 2

SBB register, memory 9(!3) + EA 2-4

SBB memory, register !6(24) + EA 2-4

SBB register, immediate 4 3-4

SBB memory, immediate !7(25) + EA 3-6

SBB accumulator, immediate 4 2-3

SCAS destination !5(!9) !

SCAS (REP) desination 9 + !5(!9)/rep !

SHL register,! 2 2

SHL register, CL 8 + 4/bit 2

SHL memory,! !5(23) + EA 2-4

SHL memory, CL 20(28)+ EA +4/bit 2-4

SHR register,! 2 2

SHR

"i-: '—:

register, CL 8 + 4/bit 2
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instruction clocks bytes

SHR memory,! 15(23) + EA 2-4
SHR memory, CL 20(28)+ EA + 4/bit 2-4

STC 2 1

STD 2 1

STI 2 1

STOS destination 11(15) 1
STOS (REP) destination 9 + 10(14)/rep 1

SUB register, register 3 2
SUB register, memory 9(13) + EA 2-4
SUB memory, register 16(24) + EA 2-4
SUB register, immediate 4 3-4
SUB memory, immediate 17(25) + EA 3-6
SUB AL, immediate 4

TEST register, register 3 2
TEST register, memory 9(13)+ EA 2-4
TEST register, immediate 5 3-4
TEST memory, immediate 11 + EA 3-6
TEST AL, immediate 4 2-3

WAIT 3 + 5n 1

XCHG AL, 16-bit register 3 1
XCHG memory, register 17(25)+ EA 2-4
XCHG register, register 4 2

XLAT source-table 11 1

XOR register, register 3 2
XOR register, memory 9(13)+ EA 2-4
XOR memory, register 16(24)+ EA 2-4
XOR register, immediate 4 3-4
XOR memory, immediate 17(15)+ EA 3-6
XOR AL, immediate 4 2-3
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APPENDIX G: The 8(1286 instruction set

In keeping with the theme of the book, only instructions for the real address
mode are listed here. The more powerful 80286 chip does not require effective
address additions to the instruction times, nor are there dififerences in the number
of clocks required for byte or word operands. An asterisk indicates that you should
add one clock if three elements are summed in the offset calculation. The letter'm'
is the number of bytes in the next instruction, and 'n' stands for the number of
repetitions.

clocks bytes

AAA 3 1

AAD 14 2

AAM 16 2

AAS 3 1

ADC

ADC

ADC

register/memory with register to either
immediate to register/memory
immediate to accumulator

2,7*
3,7*
3

2

3-4

2-3

ADD

ADD

ADD

register/memory with register to either
immediate to register/memory
immediate to accumulator

2,7*
3,7*
3

2

3-4

2-3

AND

AND

AND

register/memory and register to either
immediate to register/memory
immediate to accumulator

2,7*
3,7*
3

2

3-4

2-3

CALL

CALL

CALL

direct within segment
register/memory indirect within segment
direct intersegment

7 + m

7 + m,ll + m*
13 + m

3

2

5

CBW 2 1

CLC 2 1

CLD 2 1

CLl 3 1

CMC 2 1

CMP

CMP

CMP

CMP

register/memory with register
register with register/memory
immediate with register/memory
immediate with accumulator

2,6*
2,7*
3,6*
3

2

2

3-4

2-3
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clocks bytes

CMPS repeated cx times 5 + 9n 2
CMPS byte or word 8 1

CWD 2 1

DAA 3 1

DAS 3 1

DEC register/memory 2,7* 2
DEC register 2 1

DIV byte register 14 2
DIV word register 22 2
DIV byte memory 17* 2
DIV word memory 25* 2

ESC 9-20* 2

HLT 2 1

IDIV byte register 17 2
IDIV word register 25 2
IDIV byte memory 20* 2
IDIV word memory 28* 2

IMUL byte register 13 2
IMUL word register 21 2
IMUL byte memory 16* 2
IMUL word memory 24* 2
IMUL integer immediate multiply (signed) 21,24* 3-4

IN fixed port 5 2
IN variable port 5 1

INC register/memory 2,7* 2
INC register 2 1

INS string 5 + 4m 2
INS byte or word 5 1

INT type specified 23 4" m 2
INT type 3 23+ m 1

INTO 24 + m or 3 1

IRET 17-hm 1

JCXZ 8 + m or 4 2

IMP short/long 7-l-m 2
IMP direct within segment 7-1- m 3
IMP register/memory indirect within segment 7-l-m,ll + m* 2
IMP direct intersegment 114-m 5
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clocks bytes

Jxxx 7 + m or 3 2

LAHF 2 1

LDS T 2

LEA 3* 2

LBS 7* 2

LOCK 0 1

LCDS 5 1

LCDS repeated cx times 5 + 4n 2

LOOP 8 + m or 4 2

LOOPZ/LOOPE 8 + m or 4 2

LOOPNZ/LOOPNE 8 + m or 4 2

MOV register to register/memory 2,3* 2

MOV register/memory to register 2,5* 2

MOV immediate to register/memory 2,3* 3-4

MOV immediate to register 2 2-3

MOV memory to accumulator 5 3

MOV accumulator to memory 3 3

MOV register/memory to segment register 2,5* 2

MOV segment register to register/memory 2,3* 2

MOVS byte or word 5 1

MOVS repeated cx times 5 + 4n 2

MUL byte register 13 2

MUL word register 21 2

MUL byte memory 16* 2

MUL word memory 24* 2

NEC 2 2

NOT register / memory 2,7* 2

OR register/memory and register to either 2,7* 2

OR immediate to register/memory 3,7* 3-4

OR immediate to accumulator 3 2-3

OUT fixed port 3 2

OUT variable port 3 1

OUTS string 5 +4m 2

OUTS byte or word 5 1

POP memory 5* 2

POP register 5 1

POP segment register 5 1

POPA 19 1
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clocks bytes

POPF 5 1

PUSH memory 5*
PUSH register 3 1 •'Ti"
PUSH segment register 3 1
PUSH immediate 3 2-3

PUSHA 17 1

PUSHF 3 1

RCA register/memory by 1 2,7* 2
RCA register/memory by CL 5 + n,8 + n* 2
RCA register/memory by count 5 + n,8 + n* 3

RCR register/memory by 1 2,7* 2
RCR register/memory by CL 5 + n,8 + n* 2
RCR register/memory by count 5 + n,8 + n* 3

RET within segment 11 + m 1
RET within segment adding immediate to SP ll + m 3
RET intersegment 15 + m 1
RET intersegment adding immediate to SP 15+ m 3

ROL register/memory by 1 2,7* 2
ROL register/memory by CL 5 + n,8 + n* 2
ROL register/memory by count 5 + n,8 + n* 3

ROR register/memory by 1 2,7* 2
RCR register/memory by CL 5 + n,8 + n* 2-

ROR register/memory by count 5 + n,8 + n*

SAHF 2 1

SAL register/memory by 1 2,7* 2
SAL register/memory by CL 5 + n,8 + n* 2
SAL register/memory by count 5 + n,8 + n* 3.

SAR register/memory by 1 2,7* 2..- :
SAR register/memory by CL 5 + n,8 + n* 2, ". - ■
SAR register/memory by count 5 + n,8 + n* 3'- ' ■

SBB register/memory and register to either 2,7* 2
SBB immediate from register/memory 3,7* 3-4
SBB immediate from accumulator 3 2-3

SCAS repeated cx times 5 + 8n 2-
SCAS byte or word 7

SEG (segment override) 0

SHL register/memory by 1 2,7* 2  "
SHL register/memory by CL 5 + n,8 + n* 2
SHL register/memory by count 5 + n,8 + n* 3
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clocks bytes

STC 2 1

STD 2 1

STI 2 1

STOS repeated cx times 5 + 3n 2

STOS 3 1

SRL register/memory by 1 2,7* 2

SRL register/memory by CL 5 + n,8 + n* 2

SRL register/memory by count 5 + n,8 + n* 3

SUB register/memory and register to either 2,7* 2

SUB immediate from register/memory 3,7* 3-4

SUB immediate from assumulator 3 2-3

TEST register/memory and register 2,6* 2

TEST immediate data and register/memory 3,6* 3-4

TEST immediate data and accumulator 3 2-3

WAIT 3 1

XCHG register/memory with register 3,5* 2

XCHG register with accumulator 3 1

XLAT 5 1

XOR register/memory and register to either 2,7* 2

XOR immediate to register/memory 3,7* 3-4

XOR immediate to accumulator 3 2-3
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APPENDIX H: A glossary for IBM
microcomputers*
146818: The chip in the AT that holds the real-time clock and configuration infor
mation.

6845: The video controller chip.

76496: The PCjr's sound synthesizer chip.

765 (PD765): The floppy disk controller chip.

8048: The keyboard microprocessor.

8237: The direct memory access (DMA) chip.

8250: The serial communications adaptor chip.

8253: The programmable timer chip.

8255: The peripheral interface adaptor chip.

8259: The interrupt controller chip.

8087: The math coprocessor chip in the PC, XT, and PCjr.

8088: The central processing unit (CPU) in the PC, XT, and PCjr.

80286: The central processing unit (CPU) in the AT.

80287: The math coprocessor chip in the AT.

Absolute address: A memory address given as an offset from the lowest address
in memory (0000:0000), rather than from some offset within memory (a relative
address).

Absolute coordinates: Coordinates specified in relation to a central axis, rather
than by reference to the position of the prior coordinates used (relative co-
ordinates).

Absolute disk sectors: To access an absolute disk sector" means to read a sector
at a particular, numbered position on the disk.

Access code: DOS Technical Reference Manual terminology for a subfunction
number that is, the code for one function of several performed by a particular
interrupt.

Acknowledge: An I/O signal that indicates that a task has been performed, and
that the hardware is ready to perform it again.

Address register: A register on some support chips that acts as a pointer to several
data registers on the chip that are accessed through a single port address. A pro-

*Note: Boldfaced words in the definitions are themselves entries in the glossary.
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gram first indexes the register it must access by sending a register number to the
address register.

Addressing: The means of accessing particular locations in memory through a
system of absolute positions and relative offsets.

AND: A logical operation in which the bit patterns of two values are compared
and a third value is created in which all bits are turned on that are on in both of the
two component values.

ANSI.SYS: A device driver supplied with DOS that performs many of the func
tions of BIOS. It is used to extend software compatibility to all machines that run
MS-DOS, whether they are IBM microcomputers or not.

ASCII code: A code number from 0-127 that corresponds to one of the 128 ASCII
characters. The IBM microcomputers use an extended ASCII set of 256 characters.

ASCII text file: A sequential text file in which all numbers are represented as
ASCII characters, where data elements are separated by a carriage return/line feed
pair, and where the end of the file is marked by a character (ASCII 26).

ASCIIZ string: Same as a path string.

Aspect ratio: The ratio of the number of vertical to horizontal dots along equal
distances on the video display or in graphics printing.

Assembler: Software that converts assembly language source code into machine
code.

Assembly language: The lowest level of programming language, in which the pro
grammer writes instructions that directly control the actions of the CPU..

Asynchronous communications: Serial communications in which the time that
passes between sending characters may vary.

Attribute: A characteristic imparted to a device or to data. Every character of a
text screen has an attribute that sets its color, intensity, etc. Device drivers have
attributes that tell how they handle data, control strings, etc. And files can have
attributes that make them hidden, read-only, etc.

Attribute byte: In general, a byte containing a code that sets special characteris
tics for whatever medium it refers to. A file's attribute byte (in the disk directory)
sets hidden status, read-only status, etc. In the video buffer there is for every char
acter position on the screen an attribute byte that holds information about color,
underlining, etc.

AUTOEXEC.BAT: The name of the batch file that is automatically executed
when DOS is booted.

B: Suffix denoting a number expressed in binary form, as in 10111011B. See
Appendix A.
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Background color: The background color in use on the video display. It is the
color to which the enter screen returns when the display is "cleared."

Background operation: A subsidiary process that occurs while a program runs.
For example, a word processing program can send data to a printer while the pro
gram is used for editing. Background operations may work by the use of interrupts.

Base address: The lowest address of a group of contiguous port addresses through
which a peripheral device is accessed.

Batch file: A file listing DOS commands and programs; these are automatically
invoked either in the order in which they are listed or by conditional branching.

Baud rate: The number of bits-per-second at which data is transmitted.

BIOS: The "basic input/output system," which is the part of the operating system
that is permanently kept in the machine on ROM chips.

BIOS data area: An area in memory starting at 0040:0000 where BIOS keeps sta
tus information and the keyboard buffer.

Bit field: When a byte or word is viewed as a bit pattern, several bits taken
together may hold a particular item of information. For example, bits 0-3 of a
text attribute byte form a bit field that holds a character's foreground color.

Bit operations: Program operations that read or change particular bits within
data.

Bit Plane: On the EGA, the video buffer is divided into four sections, referred to
as bit planes 0 - 3. In 16-coIor modes the four planes are in parallel, so that four
bytes are located at a particular memory address (the latch registers intermediate
movement of data between the CPU and video memory). In some cases the planes
may be chained, that is, they are combined into one or two larger planes.

Block device: A device that sends or receives data in block units. Disk drives are
the most common block device.

Boot record: A short program placed on a disk at the position at which the disk is
first read when DOS is booted. The program provides the computer with the abil
ity to load portions of DOS.

Boundary: A defined interval in memory, in a file, etc. For example, programs
are placed in memory at 16-byte boundaries. This means that the absolute memory
address of such a position is always evenly divisable by 16.

Break code: The kind of scan code that is generated when a key is released (the
make code occurs when the key is first depressed).

Break detect: A capability of a serial communications adaptor to sense a long
sequence of logical 0s. These signal that the remote station wants transmission bro
ken off.
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Buffer: An area of memory that is set aside as a holding area for information in
transit from one part of the computer to another. The keyboard uses a buffer, as do
the disk drives and video displays.

Carry flag: One of the bits in the CPU's flag register that is often used by DOS
functions to indicate an error condition.

CD: "Carrier detect." See DCD.

Chaining: On the EGA, video memory is divided into four bit planes. When these
are combined into one or two larger planes, they are said to be "chained."

Character device: A device that sends or receives data one character at a time,
such as a printer. Compare this with block devices, which move data in block
units.

Child process: A program that runs while another program (the parent) is in con
trol.

Circular Queue: A kind of data buffer in which data is inserted at one end and
taken from the other. The two ends of the buffer are constantly changing, and two
pointers keep track of the current "front" and "rear."

Cluster: A group of disk sectors that form the basic unit in which disk space is
allocated.

Code: The series of executable instructions that make up a program, as distinct
from the data that they operate on. Generally, "code" refers to the sequence of
machine instructions that a compiler or assembler produces from source code.

Code segment: The section of memory that holds the code used by a program
(other segments hold the data and stack).

Color attribute: The bit pattern held in the video buffer that sets the color for a
particular dot or character on the screen. On the monochrome and color cards,
these attributes coincide with a system of color code numbers. In the PCjr and
EGA, however, the color attributes refer to the number of a palette register, and
that register contains the code for the color that the attribute is to be associated
with.

Color code: A number from 0-15 that refers to one of the sixteen display colors.
On an EGA attached to the IBM Enhanced Color Monitor there may be 64 color
codes (0-63).

.COM: A type of file in which relocation has already been performed so that all
addresses are already written into the file before it is loaded.

Command line: A line on the video display that receives command information,
such as a line starting with the DOS prompt.

Communications interrupt: A hardware interrupt brought about by a serial adap
tor. It can occur whenever a character arrives over the serial line, whenever it is
time to send another, etc.

454



A glossary for IBM microcomputers APPENDIX H

Compiler: A program that converts the source code instructions of a high-level
language into a machine code file (or sometimes into intermediate code which is
then executed by an interpreter).

CONFIG.SYS: The name of a special file that DOS searches for when booted.
The file contains information about DOS parameters and device drivers that lets
DOS configure the system.

Control block: See parameter block.

Control code: One of the first 32 characters of the ASCII character set. They are
customarily used to control hardware rather than to encode data. The carriage
return and line feed are among the most familiar.

Control string: A string of characters that controls hardware. Control strings are
often embedded in data sent to printers and modems. They begin with a special
character that signals their special status (usually the ESC character, ASCII 27).

CPU: The "central processing unit" which performs the instructions that make up
a computer program. The Intel 8088 chip is the CPU for all IBM microcomputers
except the PC AT, which uses the Intel 80206.

CRC: See cyclic redundancy check

Critical error: A device error that prevents a program from proceeding. It
invokes the DOS critical error handler.

Critical error handler: A DOS interrupt that is invoked when a serious device
error occurs. It can be replaced with an error-recovery routine.

CR/LF: "Carriage return/line feed." The pair of characters that is used to cause
the cursor or print head to start a new line.

CRT: "Cathode ray tube." The video display.

CTS: "Clear to send." A signal from a modem to a communications port indicat
ing that the modem is ready to begin data transmission. It is part of the hand
shaking procedure.

Current block: The 128-record block of file data that is currently referenced by
the file control block method of file access. See current record number.

Current directory: The directory in a tree-structured directory to which all file
operations are automatically directed unless a path string specifies otherwise.

Current record number: In the file control block method of file access, data is
organized in blocks of 128 records. The current record number is the number of the
record in the current block. For example, the current record number of random
record 128 is 0, since it is the first record in block 1 (all counting starts from 0, so
random record 128 is the 129th record in the file, block 1 is the second block, and
the last record of block 0 is number 127).
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Cyclic redundancy check: An error checking technique where a mathematically
derived code follows the transmission of a block of data; the code is recalculated
and compared to be sure that the data has not changed during transmission.

Cylinder: In disk drives, a cylinder is the group of tracks at a given distance from
the center of the disk or disks mounted in the drive.

Data segment: An area in memory that contains a program's data. In assembly
language this memory area is pointed to by the DS register.

Data transfer area: A buffer used by the control block method of disk access to
hold data that is transferred to and from disk.

DB: An assembly language term indicating that a data object is one byte long, or
that it is a string comprised of one-byte codes.

DCD: "Data carrier detect." A signal from a modem to a serial port indicating
that connection has been made with another modem.

DD: An assembly language term indicating that a data object is four bytes long.

Default DTA: The 128-byte data transfer area every program is given, starting
from offset 80H in the program segment prefix.

Delimiter: Special characters that separate data items.

Device: Generally speaking, a device is any peripheral that stores, displays, or
processes information, such as a disk drive, video display, or printer.

Device driver: A software routine that controls and monitors a device, such as a
printer or disk drive.

Device header: The beginning part of a DOS device driver routine; it identifies
the device.

Device interrupt handler: The body of a DOS device driver routine; it holds the
code that carries out the device driver functions.

Device strategy: A part of a DOS device driver routine that links the driver to the
request header, which is the parameter block DOS creates to manage the driver.

Direct memory access: A way of making very rapid data transfers between
peripherals and memory. It is especially useful for disk operations. DMA uses a
special chip (not found on the PCjr).

Direct memory mapping: See memory mapping

DMA: See direct memory access

DOS prompt: The symbols at the start of a DOS command line: A>, B>, etc.

Drive specifier: A two-byte string naming a disk drive, in the form A:, B:, etc.

DSR: "Data set ready." A signal from a modem to a communications port indi
cating that the modem is ready.
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DTA: "Disk transfer area." The buffer used when transferring data to and from
disks by the file control block method of file access.

DTR: "Data terminal ready." A signal from a communications port to a modem
indicating that the computer is ready.

DW: An assembly language term indicating that a data object is two bytes long.

Echo: Feedback for verification. For example, incoming keystrokes are usually
echoed on the screen, and communications output also is usually echoed.

Entry: The words "on entry" refer to how the CPU registers are set up before an
operating system function is executed.

Environment string: A string of one or more specifications that DOS follows
when it executes a program. It contains configuration commands entered by the
user, such as BUFFERS or BREAK.

EOF: Abbreviation for "end of file."

Error code: A code number produced by the operating system to indicate a partic
ular error condition.

Error trapping: Coding that causes program control to be passed to a special
error-recovery procedure whenever a critical error occurs.

Escape sequence: A control string that begins with the escape character (ASCII
27). Most printer control, for example, is performed using escape sequences.

•EXE: A program file that requires relocation when it is loaded. Not all addresses
in the program can be set until the position of the program in memory is deter
mined. EXE files have headers that hold the information for relocation. They take
slightly longer to load, and are slightly larger on disk, than COM files.

EXEC: The DOS function that lets a program run another program. It also loads
overlays.

Exit code: A code passed from a child process to the parent process. For example,
when one program runs another, an exit code may be passed from child to parent
when the child terminates. The programmer may define the codes.

Extended code: A key code used to identify those keystrokes (or keystroke com
binations) for which there are no symbols in the ASCII character set, such as the
function keys, or the Ctrl or Alt key combinations. Extended codes are two bytes
long, where the first byte is always ASCII 0 to differentiate the code from an ordi
nary one-byte ASCII code.

Extended error code: Beginning with DOS 3.0, elaborate extended error codes are
returned when an error occurs. These codes report not only the error, but also its
type, its location in the hardware, and its probable means of recovery.

Extended file control block: A file control block that has an extra seven-byte
header field that sets the file attribute.
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Extra segment: The place in memory pointed to by the CPU's ES register. The set
tings in ES and DS (the data segment register) are often used in tandem to move
data from one part of memory to another.

FAT: See file allocation table.

FCB: See file control block.

Field: A group of bits or bytes allocated to hold a particular data item.

File allocation table: A table found on every disk that keeps track of available
disk space, and that records which clusters of disk space are allocated to which file.

File attribute: A setting in a file's directory entry that determines the status of the
file, making it normal, hidden, read-only, etc.

File control block: A parameter block that a program sets up in memory to hold
information required by DOS to operate on a file.

File control block method: A collection of DOS functions that access disk files by
means of file control blocks. This method has been made obsolete by the file handle
method of access.

File descriptor: In BASIC or other high level languages, a file descriptor is the
buffer number under which the file was opened, e.g., as #1 or #3.

File handle: A code number returned by DOS when a file is opened using the file
handle method of disk access. This code is used to identify the file in all subsequent
disk operations. Certain predefined handles identify the video display, the printer,
etc.

File handle method: The method of file access that makes use of file handles. This
method largely replaces the earlier file control block method of access.

File pointer: A variable kept by DOS for every file it opens. The file pointer
points to the position in the file from which read/write operations begin.

Flags: A flag is a variable that, by being either "on" or "off", tells whether or not
a particular condition prevails. The CPU has a 16-bit flag register in which the bits
act as indicators of various aspects of the CPU's operation.

Foreground color: The colors in which characters or graphics are drawn on the
screen.

Framing error: An error in serial communications where the data flow gets out of
sync, so that data bits, parity bits, start bits, and stop bits are misinterpreted.

Function: In high-level languages, a function generally refers to a procedure that
converts data from one form to another. At operating system level, the word func
tion can refer to any interrupt routine. More specifically, a particular interrupt may
perform several services, and each of these is a function of that interrupt (the func
tion number is always placed in the AH register when the interrupt is called). The
functions themselves may contain a number of subfunctions.
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Global character: Either of the characters ? or * as they are used in DOS for
unspecified characters in file names.

H: A suffix denoting a number expressed in hexadecimal form, as in 0D3H. See
Appendix A.

Handle: See file handle.

Handshaking: The exchange of predetermined signals between two devices to
establish a connection between them.

Hardware interrupt: An interrupt brought about by the action of hardware,
whether a peripheral device, support chips, or the CPU itself.

Hardware scrolling: A video vertical scrolling technique that works by changing
the starting point in the video buffer from which data is displayed, rather than by
shifting the contents of the buffer.

Header: A parameter block placed at the beginning of a program, a device driver,
or some other body of code or data. The header contains information about the
code or data that is essential for its use. The operating system, for example, places
a 256-byte header before every program it loads—the program segment prefix—
and uses the information it contains to manage the program.

Hidden file: A status that can be given to a file by setting its attribute byte. Hid
den files are not shown in directory listings.

Installable device driver: A device driver that is fully integrated with DOS, so
that it can make use of special error checking and control facilities.

Instruction pointer: A register on the CPU that points to the next machine
instruction that is to be executed. It marks offsets within the code segment.

Interpreter: A program that translates source code one instruction at a time, exe
cuting it immediately. The programs BASIC.COM and BAS1CA.COM are inter
preters.

Interrupt: Interrupts are software routines that are brought into action in two
ways. Hardware interrupts are initiated by hardware, as when a key is pressed on
the keyboard; they instantly take control of the CPU, do their job, and then return
the CPU to its work. Software interrupts perform common program needs, such as
sending a character to the screen or printer; they are supplied by the operating sys
tem, and they occur only when a program explicitly calls them.

Interrupt Handler: An interrupt routine. The term is used most often for hard-
ware interrupts.

Interrupt vector: See vector.

lOCTL: "I/O Control." A mechanism provided by DOS allowing a program to
interact with a device driver, sending and receiving control strings directly, rather
than placing them in the flow of data that the device handles.
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IRQ: Abbreviation for "interrupt request". Used in reference to the maskable
hardware interrupts.

Keyboard buffer: A 15-character circular queue in which the keyboard interrupt
deposits incoming characters.

Keyboard interrupt: A hardware interrupt that is invoked whenever a key is
pressed down or let up. It converts scan codes received from the keyboard micro
processor into the codes used by programs, and it inserts these codes into the key
board buffer.

Latch registers: On the EGA there are four one-byte latch registers that hold the
four bytes of data at a particular memory address in the video buffer. When the
CPU reads from the buffer, the latch registers are filled, and usually when the CPU
writes to the buffer the latch contents are dumped into the corresponding memory
location.

Linker: A program that links together program object modules, organizing their
addresses so that the modules can communicate. Even single-module programs
must be linked, since the linker also sets up the code for relocation.

Logical sector number: Rather than refer to disk sectors as ' side x, track x, sector
X," logical sector numbers reflect a sector's position by counting all sectors as a
sequence, starting from the outside edge of the disk.

LSB: "Least significant bit" or "least significant byte."

Machine instruction: The numeric codes used by the CPU. For example, the INT
instruction is encoded as CD, and the sequence CD 21 causes the CPU to invoke
interrupt 21H.

Machine language: The lowest level of programming, where the programmer
writes his instructions directly in the binary codes used by the CPU. Assembly lan
guage programming more conveniently achieves the same results by creating the
codes from mnemonics like MOV or TEST.

Machine language subroutine: A subroutine that is written in assembly language,
assembled, and then integrated into a program written primarily in a high level lan
guage. Such subroutines are generally used for actions that are repeated many
times and that must be performed very quickly. Depending on the compiler or
interpreter, the machine code may be linked into the program, coded into the lines
of the program, or separately loaded into memory from disk.

Make code: The kind of scan code that is generated when a key is depressed (the
break code occurs when the key is subsequently released).

Marking: Said of a serial signal when it is "high," that is, equal to a logical 1. In
particular, in asynchronous communications the signal is said to be "marking" dur
ing the time between the transmission of data units.

Mask: A bit pattern that determines what bits in a second pattern are active. For
example, particular hardware interrupts are disabled by setting bits in the mask
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register on the interrupt controller chip; the fourth hardware interrupt is masked
out by 00001000B.

Master boot record: A boot record on a hard disk. It contains the partition table,
which points to the various disk partitions. Each partition begins with an ordinary
boot record, which initiates loading of the associated operating system.

Memory allocation: The allocation by DOS of a block of memory for a pro
gram's use.

Memory control block: A 16-byte parameter block set up by DOS at the start of
each block of memory it allocates to a program through its memory allocation
functions.

Memory mapping: Placing video data directly into the video buffer (from which
it is projected onto the screen) rather than using the functions provided by the
operating system or a high level language.

Memory space: The range of memory addresses that the CPU can access. The
address space of the 8088 chip is approximately one million bytes.

MSB: "Most significant bit" or "most significant byte."

Object module: A file of machine code in which the relative addresses are not yet
fixed. The linker processes and combines object modules into finished EXE or COM
program files.

OR: A logical operation in which the bit patterns of two value are compared and
a third value is created in which all bits are turned on that are on in one or both of
the two component values.

Overlay: A sub-program that is kept on disk until the main program requires it.
It is loaded into memory on top of some part of the main program, overlaying it.

Overrun: An overrun occurs when data in a buffer or register is overlaid by
incoming data before it has been processed.

Page: In video operations a page is a part of the video buffer that holds data for a
single screen. The display can be switched to show the contents of one page, and
then another. The term page also refers to a 256-byte section of memory.

Palette: The selection of colors available in a particular video mode.

Palette code: A number that corresponds to a particular color from the available
palette.

Palette register: One of 16 registers in the EGA or PCjr that speciBes the color
that is displayed on the screen when its associated color code appears in video
memory.

Paragraph: A 16-byte unit of memory that begins from a boundary that is evenly
divisible by 16.
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Paragraph number: A number that defines a position in memory by referring to
memory in 16-byte units. Paragraph number 1, for example, refers to the second 16
bytes of memory, and when a pointer is directed at this paragraph, it points to the
17th byte of memory.

Parameter: A number that is supplied as a specification for the performance of a
device, operating system function, or programming language statement.

Parameter block: A group of variables set up in memory to hold information
used by a device or operating system function.

Parent Process: A program that makes use of other programs (the child process)

Parity Bit: An extra (9th) bit that is added to every byte of memory in order to
check for transmission errors. Parity bits are also attached to data in serial commu
nications.

Parse: To resolve a text string into its component parts. DOS can parse command
line information and reformat it for use by the file access functions.

Partition: A section of a hard disk. A hard disk may be partitioned so that it can
be used with more than one operating system.

Partition table: A table included in the master boot record of a fixed disk. It con
tains information about the size and location of each partition.

Path string: A string used to identify a file in the file handle method of disk
access. The string is in the same form required by DOS at command level. It may
begin with a drive specifier, it may contain subdirectory names separated by
backslashes, and it must be followed by an ASCII 0 byte to mark its end. The max
imum string length is 63 bytes.

Physical coordinates: The coordinates of a point on the video display as mea
sured from the top left corner, which is regarded as 0,0. See also world co
ordinates.

Pixel: A dot of video graphics. IBM documentation refers to a pixel as a ''pel," for
"picture element."

Pointer: A variable that holds the address of another variable.

Polling: Monitoring a peripheral device by continuously checking its status until
a desired change comes about.

Port: A path through which data may be transferred between the CPU and its
support chips.

Port A (Port B, Port C): One of the three registers that programs can access on
the 8255 peripheral interface chip.

Port Address: A number from 0 to 65535 that addresses a port. Port addresses are
separate from memory addresses. Ports are accessed by the IN and OUT instruc
tions in assembly language, and by INP and OUT in BASIC.
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Printer interrupt: A hardware interrupt that occurs when the printer adaptor
sends a "not busy" signal. The interrupt routine ordinarily sends a character of out
put data to the printer and then returns control to the CPU; this procedure allows
the printer to operate while the computer is used for other purposes.

Program segment prefix: The 256-byte header that DOS places before all EXE or
COM programs when they are loaded into memory. It contains variables used by
DOS to manage the program, plus space for a file control block and data transfer
area.

Protocol: The system of parameters and data formats used by a device.

PSP: See program segment prefix

Random block: A block of records that are read or written by a single random
file operation in the file control block method of file access.

Random record number: The number entered into the random record field of a
file control block. Subsequent file operations convert the number into current
block and current record values.

Real-time operations: Program operations that take place at a specified moment,
rather than at whatever time the computer is able to accomplish them. Screen ani
mation, alarms, and robots all use real-time operations.

Record: A block of data of specified size that is the unit in which information is
output to/input from files.

Record number: A number giving the position of a record in a file, counting from
0. In a file that is organized into 10-byte records, record number 5 refers to bytes
50-59 of the file, even if lower numbered records have not been entered.

Register: A place on a chip where data is stored or manipulated. In the IBM
microcomputers, most registers are either eight or sixteen bits long. Registers on the
CPU receive values from memory and hold them while they are added, multiplied,
etc. Registers on the video control chip are initialized with data that set the video
characteristics.

Relative address: A memory address that is described as an offset from some
point defined in memory. In COM files, for example, variables are positioned at
addresses that are relative to the starting point of the program.

Relative coordinate: A coordinate that is fixed relative to the last coordinate
used. In this case, 3,5 indicates "3 to the right and 5 upwards" and -3,-5 indicates "3
to the left and 5 downwards."

Relocation: A process performed by DOS when an EXE program is loaded. DOS
calculates the base addresses (segment addresses) from which all other addresses are
offsets. These base addresses can not be set until the program is loaded because the
position of the program in memory is not clear until that time. COM programs do
not require relocation.
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Request header: A parameter block set up by DOS to control a device driver.

Resident program: A program kept in memory after it terminates. DOS prevents
it from being overlaid by subsequently loaded programs, which can access the rou
tines it contains by means of interrupt vectors.

RTS: "Request to send." A signal from a communications port to a modem indi
cating that the computer wants to send data.

Return: The expression "on return..." refers to what information is found in the
CPU registers after an operating system function has been executed.

RI: "Ring indicator." A signal from an auto-answer modem to a communications
port that tells when the telephone the modem is connected to is ringing.

ROM BIOS: See BIOS

Root directory: The central directory on a disk. It is positioned at an invariable
location on the disk. It may contain file listings, a volume label, and pointers to
subdirectories.

Scan code: A code number sent from the 8048 keyboard microprocessor to the
8255 peripheral interface (or equivalent) telling which key has been struck or
released. The keyboard interrupt converts scan codes into ASCII codes, extended
codes, and settings in the status bytes that keep track of the toggle and shift keys.

Segment: A 64K area of memory set up to hold code, data, or the stack. Seg
ments are always at 16-byte boundaries in memory, since they are derived by mul
tiplying the value found in a segment register by 16.

Segment address: A misnomer for segment value or paragraph number.

Segment register: One of four registers on the CPU that point to the starting posi
tions of memory segments. The value in the register is automatically multiplied by
16 so that it points to one of the 65535 16-byte boundaries within the 1-megabyte
CPU address space. The names of the segment registers are CS (code segment), DS
(data segment), SS (stack segment), and ES (extra segment).

Segment value: A number that defines a position in memory be referring to mem
ory in 16-byte units. The same as a paragraph number.

SETBLOCK: A DOS function that can shrink or expand the amount of memory
allocated to a program.

Software Interrupt: An interrupt brought about by a software INT instruction.

Source code: A program as it is originally written, before it is compiled, assem
bled, or interpreted.

Stack: An area in memory that a program sets up to temporarily hold data. The
last element placed on the stack is the first retrieved. The stack can be accessed
more quickly than variables.

Stack segment: An area of memory set aside by a program to hold the stack.
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Start bit: In serial communications, a start bit precedes every word of data. It
consists of a 0 bit, and it marks the end of the marking state (a series of I's) that
fills in the variable time that passes between words.

Starting cluster: The cluster starting from which a file is recorded on disk. The
file's directory entry points to the starting cluster, and the file allocation table keeps
track of any subsequent clusters used by the file.

Start line: The scan line at which the cursor image starts. For example, 14 hori
zontal scan lines make up a line of text on the monochrome display, and these are
numbered from 0-13. The start line for a normal cursor is number 12, and the stop
line is number 13.

Status byte: A memory location that holds a bit pattern describing the current
status of a device.

Status register: An I/O register that holds a bit pattern describing the current sta
tus of a device.

Stop bit: In serial communications, stop bits follow every word of data. They
place the communications line in a marking state and hold it there for the minimum
time that must pass before the next word is sent.

Stop line: The scan line at which the cursor image stops. See start line.

Subdirectory: A directory that is structured exactly as a root directory, except
that it is held on disk as a file, rather than at absolute disk sectors. The root direc
tory may contain entries that point to subdirectories, and these may in turn hold
entries for other subdirectories.

Subfunction: One routine of several performed by a function of an operating sys
tem interrupt. Whereas a function number is always placed in AH, subfunction
numbers go in AL before the interrupt is executed.

Support Chip: Any of the major integrated circuits that connect the CPU to other
parts of the computer or to external devices. This glossary begins with a list of the
support chips discussed in this book.

Synchronous communications: Serial communications in which the sending and
receiving stations transmit and receive data at a precisely synchronized rate.

System clock: The crystal that supplies the underlying pulse that drives all cir
cuitry, including the 8253 timer chip.

System file: A special status that may be given to a file by way of its attribute
byte. It marks the file as being part of the operating system.

Tiling: Filling in an area of a graphics display with a pattern, rather than in a sin
gle color.

Time-of-day count: A variable in the BIOS data area that is constantly incre
mented by the timer interrupt. Its value is used by the operating system to calculate
the time of day.
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Time Out: An expression used in input-output operations to indicate that a
peripheral device is not operating.

Timer interrupt: An interrupt initiated by the 8253 timer chip 18.2 times per sec
ond. Each time it occurs the interrupt increments the BIOS time-of-day count.

Track: A ring of disk space. 360K diskettes are divided into 40 tracks, and each
track is subdivided radially into nine sectors.

Tree-structured directory: A system of subdirectories organized like the branches
of a tree, where the first level of subdirectories are referenced by the root directory,
and where those subdirectories reference more distant subdirectories.

Typematic rate: The rate at which the keyboard keys repeatedly send a code
when they are continuously held down.

Vector: The four-byte memory address of an interrupt routine. The high two
bytes give the segment, and the low two bytes give the offset.

Vector Table: A table of pointers. Interrupt vectors are held in 256 four-byte
fields that take up the lowest 1024 bytes of memory. Each field holds the address of
an interrupt routine. INT 0 is pointed to by the first vector, INT 1 by the second,
etc.

Video Buffer: An area in memory that is set aside to hold information displayed
on the screen. The color graphics card, for example, uses a 16K buffer. Video cir
cuitry continuously scans the buffer, decoding the buffer contents and projecting
them on to the screen.

Video gate array: A chip in the PCjr's video system that holds a number of con
trol and status registers, including the palette registers.

Volume label: A special directory entry used to provide an 11-character identifier
for diskettes.

Word: Generally speaking, word refers to the size of the basic data unit used by a
microprocessor. In this book the term almost always means a two-byte unit.

World coordinates: A screen coordinate system instituted by software that pre
scribes the range of x and y coordinates, which may or may not include negative
numbers. For example, the left and right edges of the screen might be given the val
ues -100and 100. These coordinates are mapped on to the screen's physical coordi
nate system, in which the top left corner is always defined by x = 0 and y = 0, and
in which only positive numbers are used.

XON/XOFF: A handshaking method in serial communications that uses ASCII
characters 17 and 19, respectively, to signal to the transmitting station that it
should resume or stop transmission. It is used when data is arriving too quickly to
process.
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XOR: A logical operation in which the bit patterns of two values are compared
and a third value is created in which the only bits that are turned on are those in
which only one bit is on out of the two compared.
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CLOSE, 271, 277, 305
CLS, 158
COLOR, 152-153,156, 200
Color graphics adaptor, 137

presence, 8-9

COM files, 26, 41
Command line, 287-288
Control codes, 129,179,182-183, 393-

394

modem, 379-380
printer, 338-348

CSRLN, 171

Ctrl-Break, 23, 48,126-127
CVI$/CVS$/CVD$, 320

Data transfer area, 269, 285-286
DATES, 52
Device drivers,

access, 405-406

attributes, 397
header, 397-398
interrupt handler, 400-404
lOCTL, 405-406
request header, 399
strategy, 399

Dip switches, 3, 43
Direct memory access chip, 46, 294-

295

Disks,

available space, 247, 250
capacity, 241
directories, 241-242, 252-261

Disks—cont.

fixed, 241
format, 10-11, 241-242
sector operations, 300-302

volume label, 265-267
Disk drives,
number of, 4-5,10-11,12-13
type, 10-11

DMA, see direct memory access chip
DRAW, 219-220, 224
DTA, see data transfer area

EGA, see enhanced graphics adaptor
Enhanced graphics adaptor, 138

presence and configuration, 8-9
special screen modes, 207-210, 215-

217

Environment string, 31
EOF, 310-311, 385
ERDEV/ERDEV$, 408
ERL, 407
ERR, 407

Error trapping, 250, 324-326, 333-334,
407-410

EXE files, 26, 41

FAT, see file allocation table
FIELD, 315, 320
FILES, 254, 259
File allocation table, 30, 241, 243-246,

253

File control block, 268, 282-285
extended, 255, 272, 285

File operations,
append, 248, 306
file pointer, 290, 318
random, 289-290, 315-322
random block, 317-318, 321-322
sequential, 289, 304-314
verification, 323
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Floppy disk controller chip, 291-299
PRE, 15

Game port, 417-422
presence, 12

GET#, 320

Handles, 183, 268

INKEY$, 93, 96-97, 98, 100, 107,115

INPUT, 101, 167, 171

INPUT#, 310

INPUTS, 311, 385

INT 10H,

function 0H, 145, 155, 158

function IH, 169-170

function 2H, 163, 167

function 3H, 171

function 4H, 415

function 5H, 180, 236

function 6H, 158, 231

function 7H, 158, 231

function 8H, 185-186

function 9H, 153, 158, 179

function AH, 179

function BH, 156, 201

function CH, 204-205, 213

function DH, 153, 216

function EH, 179

function FH, 145, 236

function 10H, 156

function llH, 189-190

function 13H, 183-184

INT IIH, 13

INT 12H, 15

INT 13H,

function 1, 325

function 2, 266, 301

function 3, 266, 301

INT 14H,

function 0, 371-372

function 1, 375, 382-383

function 2, 375, 387

function 3, 376

INT 15H,

function 0, 413

function 1, 413

function 2, 412

function 3, 413

function 84H, 120, 418, 421

function 85H, 120

function 86H, 57

function 88H, 16

INT 16H,

function 0, 97

function 1, 95

function 2,105

function 3,122-123

function 4, 122-123

INT 17H,

function 0, 334, 351

function 1, 329

function 2, 332

INT lAH, 54-55, 56-57, 58-59, 67

INT ICH, 60-63

INT lEH, 293

INT IFH, 188, 227

INT 20H, 35

INT 21H,

function IH, 93, 98-99

function 2H, 179

function 3H, 375, 387, 405

function 4H, 375, 383, 405

function 5H, 351-352

function 6H, 93, 100, 179

function 7H, 93, 97

function 8H, 93, 97

function 9H, 179, 182-183

function AH, 74, 93,101-102

function BH, 95

function CH, 93

function EH, 270

function FH, 262, 277

function 10H, 277-278

function llH, 255-256, 272

function 12H, 255-256

function 13H, 272

function 14H, 311
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INT 21H—cont.

function 15H, 306-307
function 16H, 271-272
function 17H, 280-281
function 19H, 270
function lAH, 286, 307
function IBH, 245-246
function ICH, 10, 22, 245-246
function 21H, 321
function 22H, 317
function 23H, 126, 248
function 24H, 321-322
function 25H, 21-23
function 27H, 321-322
function 28H, 317-318
function 29H, 287-288
function 2AH, 52
function 2BH, 52
function 2CH, 50-51
function 2DH, 50-51
function 2EH, 323
function 2FH, 286
function 30H, 7
function 31H, 37
function 33H, 127
function 35H, 21-23
function 36H, 247
function 39H, 257
function 3AH, 258
function 3BH, 261
function 3CH, 272-273, 307
function 3DH, 278, 285, 307, 312-

314

function 3EH, 278
function 3FH, 102-103, 312-314,

321-322, 405

function 40H, 183, 307-308, 318,
352, 383, 405

function 41H, 273
function 42H, 249, 308-309, 313,

318-319

function 43H, 263-264
function 44H, 405
function 45H, 279
function 46H, 279
function 47H, 261

function 48H, 29-30
function 49H, 29-30
function 4AH, 29-30
function 4BH,

subfunction 0, 31-33, 34
subfunction 3, 38-40

function 4CH, 410
function 4DfI, 37, 410
function 4EH, 256, 259-260, 273
function 4FH, 256, 259-260
function 54H, 323
function 56H, 281
function 57H,, 262
function 59H, 326
function 5AH, 273-274
function 5BH, 273

INT 23H, 126

INT 24H, 408
INT 25H, 301-302

INT 26H, 301-302
INT 27H, 35

INT 4AH, 55

Interrupts, 17
additions to, 24-25
communications, 19, 373, 389-392
disk, 19, 294

keyboard, 19,109-113
printer, 19, 349, 353

timer, 19, 58-59, 60-63

Interrupt controller, 19
mask register, 20

KEY, 124, 158

Keyboard,
ASCII codes, 89,132-134
buffer, 89, 92-94, 95, 111
click, 122-123

extended codes, 89,136
function keys, 121
interrupt, 46, 89
shift keys, 104-105, 116, 129
toggle keys, 104-105, 118, 129
typematic rate, 122-123

KILL, 271
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LEN, 277, 370

Light pen, 414-416
LINE, 218, 223

LINE INPLTT#, 310

LOC, 316, 385

LOCATE, 163,167,169, 203

LOP, 248, 316, 387

LPRINT, 350-351

LSET, 315

Math coprocessor, 12-13,19
Memory

allocation, 28-30, 38

availability, 12,14-16
extended, 16

map, 2
MKDIR, 257
MKI$/MKS$/MKD$, 315-316, 320

Modems, 378-381

Monochrome adaptor, 137
presence, 8-9

NAME, 280

NOISE, 85

ON ERROR GOSUB, 324-325, 407

ON PEN GOSUB, 415

ON STRIG GOSUB, 420

ON TIMER GOSUB, 60

OPEN, 271, 275-277, 304, 335, 350,
370, 375, 395

Paging, 162, 234-237
PAINT, 223-224

Palette registers, 149-151,198-202
PALETTE (USING), 200-201
Parallel port, 327-328
number, 12

switch between, 335-336

PEN, 414

Peripheral interface chip, 3, 67, 69-71,
83, 87, 89,109

PLAY, 72, 76-77, 80, 84

PCOPY, 235

PMAP, 204

POINT, 216

POS, 171

PRINT, 152,176-178, 182
PRINT#, 305, 335, 350, 382
Printer,

adaptors, 327-328
errors, 331-332, 333-334
initialization, 329-330

interrupt, 353

Program segment prefix, 26-27, 35,
41, 284, 287

PrtSc key, 128
PSET/PRESET, 203

PSP, see program segment prefix
PUT, 224-225

PUT#, 316

Random numbers, 64-65
RANDOMIZE, 64

Real-time,

clock, 53-55
operations, 60-63

Relocation, 38, 41

RESUME, 407

RMDIR, 257

RND, 64

RSET, 315-316

Scan codes, 89,109-110,119, 131
phantom key, 131

Screen

character attributes, 148-155

border color, 156-157

graphics attributes, 198-202
SCREEN, 143-144,185, 200, 235
Scrolling, 229, 230-231, 232-233
hardware scrolling, 238-239

Serial ports, 367-369
initialization, 370-374

interrupts, 389-392
number, 12
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SHELL, 31, 34
SOUND, 56, 72, 74, 83
Sound generator chip, 67-68
Speaker, 46, 66
STICK, 417
STRIG, 420
String descriptors, 101
Sys Req key, 119-120

TIMES, 50

Time-of-day clock, 45, 46, 56-57, 58-
59, 60-63

Timer chip, 45, 46-49, 67, 72-73, 77-
79, 80-82, 87

Vector table, 17, 23
Video,

adaptor type and number, 8-9, 12
blink bit, 146-7, 149, 153
buffer, 138, 176, 180-181, 194-196,

205-206

controller chip, 140-142,162-165,
167-168,170, 171-172, 181, 201

enable bit, 146-7, 231
gate array (PCjr), 141, 147, 156
mode, 143-7,195
switching adaptors, 160-161

WIDTH, 143-144, 339, 350
WINDOW, 203-204
WRITE, 152, 176-178
WRITE#, 305, 382
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Related Resources Shelf
Inside the IBM PC, revised & enlarged Peter Norton
This best-seller has been thoroughly updated and expanded to include every model of the

IBM microcomputer family! Detailed in content, yet brisk in style, INSIDE THE IBM PC
provides the fascinating tour inside your machine that only the renowned Peter Norton can
give. He'll lead you into a complete understanding of your IBM—knowing what it is, how it
works, and what it can do. First review the fundamentals, then move on to discover new
ways to master the important facets of using your micro to its fullest potential. Definitive in
all aspects.

□ 1985/384 pp/paper/0-89303-583-l/$21.95

Creating Utilities with Assembly Language: 10 Best for the IBM PC & XT
Stephen Holzner

With assembly language as its foundation, this book explores the most popular utility pro
grams for the IBM PC and XT. For the more advanced user, this book unleashes the power
of utilities on the PC. Utilities created and discussed include PCALC ONE KEY CLOCK
FONT, DBUG SCAN, DSKWATCH and UNDELETE. The author is a regular contributor to
PC Magazine.
□ 1985/352 pp/paper/0-89303-584-X/$19.95

Artificial Intelligence for Microcomputers: A Guide for Business Decision
Makers Mickey Williamson

This book discusses artificial intelligence from an introductory point of view and takes a
detailed look at expert systems and how they can be used as a business decision-making tool.
Includes step-by-step instructions to create your own expert system and covers applications
to cost/benefit analysis, personnel evaluations and software benchtesting.
□ 1985/224 pp/paper/0-89303-483-5/$17.95

Assembly Language Programming with the IBM PC AT Leo J. Scanlon
Author of Brady's best-selling IBM PC & XT ASSEMBLY LANGUAGE: A GUIDE FOR

PROG^MMERS (recently revised and enlarged), Leo Scanlon is the assembly language
authority. This new book on the AT is designed for beginning and experienced program
mers, and includes step-by-step instructions for using the IBM Macro Assembler. Also
included is a library of 30 useful macros, a full description of the 80286 microprocessor, and
advanced topics like music and sound.
□ 1985/464 pp/paper/0-89303-484-3/$21.95

To order, simply clip or photocopy this entire page, check your order selection, and com
plete the coupon below. Enclose a check or money order for the stated amount or include
credit card information. Please add $2.00 per book for postage & handling, plus local sales
tdX*

Mail To: Brady Books, c/o Prentice HaU Press, 200 Old Tappan Road, Old Taooan NT
07675. rr / j

You may also order from Brady directly by calling 800-624-0023 (800-624-0024 if in New
Jersey).

Name

Address.

City/State/Zip

Charge my credit card instead: □ MasterCard □ Visa
Credit Card Account # Expiration Date /
Signature
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No matter what language you program in, here's a ready reference
that will give you complete control over your IBM PC.
Introducing...

PROGRAMMER'S PROBLEM SOLVER

FOR THE IBM PC, XT AND AT
by Robert Jourdain

Integrating information from dozens of sources, you'll find over 150 discussions
of common hardware-control tasks, each performed in a high-level language
(such as BASIC, Pascal, or C), through the built-in operating system functions
(accessible to Lattice C, Turbo Pascal, and other compilers), and by directly
programming the system support chips (video controller, floppy disk controller,
and the asynchronous communications chip).

At a glance you can compare the three levels of programming, the various
approaches at each level, and the differences between the machines! And a
working sample of code is given for every solution to every task. You can
quickly find the best way to get the job done, and you can make it work the
very first time!

This book is as diverse as the people who will want to use it. ..

'For programmers in BASIC, Pascal, C, and other languages: you'll find disk
directory access, keyboard macros, scrolling, paging on the monochrome card,
advanced video and sound control!

'For assembly language programmers: it includes overlays, device drivers, error
diagnosis and recovery, COM files, DOS access, and real-time operations.

'For everyone: you'll explore graphics on the EGA, control of serial and parallel
ports and modems, proportional spacing and printer graphics, file operations of
all kinds, assessment of what equipment is installed, and anything else you'll need
to write professional quality programs!

Every section begins with a review of the fundamentals and includes cross-
referencing. You'll also find helpful appendices for less experienced programmers,
a detailed index, all standard data tables, and an advanced-level glossary^—making
this an ideal self-teaching tool! The ultimate reference book, THE PROGRAMMER'S
PROBLEM SOLVER is an excellent source of ideas, a valuable tutor, and a
tremendous time-saver.
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