
Progra111111ing the

SudE.
Smith

lntel8Q386

MarkT.
Johnson

SCOTT, FORESMAN AND COMPANY COMPUTER BOOKS

PROGRAMMING
THE INTEL 80386

PROGRAMMING
-----THE INTEL 80386

Bud E. Smith

Mark T. Johnson

Scott, Foresman and Company
Glenview, Illinois London

ISBN □-673-18568-□

Copyright @ 1987 Bud E. Smith.

All Rights Reserved.

Printed in the United States of America.

library of Congress Cataloging-in-Publication Data

Smith, Bud E.
Programming the Intel 80386.

Includes index.
1. Intel 80386 (Microprocessor)-Programming.

L Johnson, Mark T. II. Title.
QA76.8l2928S65 1987 005.265 86-29862
ISBN 0-673-18568-0

1 2 3 4 5 6 MVN 91 90 89 88 87 86

NOTICE OF LIABILITY

The information in this book is distributed on an "As Is" basis, without warranty. Neither
the author nor Scott, Foresman and Company shall have any liability, loss, or damage
caused or alleged to be caused directly or indirectly by the programs contained herein.
This includes, but is not limited to, interruption of service, loss of data, loss of business or
anticipatory profits, or consequential damages from the use of the programs.

Scott, Foresman Professional Publishing Group books are available for bulk sales at quan
tity discounts. For information, please contact Marketing Manager, Professional Books,
Professional Publishing Group, Scott, Foresman arid Company, 1900 East Lake Avenue,
Glenview, IL 60025.

Dedication

Dedicated to all those who are right now burning the midnight oil
trying to make something "insanely great" happen with a pile of quirky
transistors in silicon, and to their long-suffering friends and families.

Aclmowleclgments

Our first debt is to Jonathon Shiell of Carlton G. Amdahl Associates,
Inc., in Santa Clara, California. He has put many hours into suggestions,
comments, and criticisms. He also contributed notes for what became
Chapter 7, and gave us early access to his excellent series of articles for
Byte magazine and the research behind them. Beyond this, he has also
marshalled an impressive array of friends and confreres in Silicon Valley
who have interrupted important and pressure-filled work to contribute.
The level of advice would normally be expensive to get; the level of
energy and committment given to turning a pedestrian work into some
thing to be proud of are priceless.

Ken Williams, Vice President for Research and Development at Soft
guard Systems, was the single main source in keeping us relentlessly up
to-date with the latest developments. Many others at Softguard have also
provided assistance at a time when all of them needed R & R, not more
386-oriented work

Dick Balluf of DB Micro offered a software developer's viewpoint of
what's needed in a book of this nature.

Andrew J. Piziali looked past the technical details to help correct our
all-too-frequent abuse of that most important programming language,
English.

Bill Gladstone and Tershia D'Elgin of Waterside Productions put the
wheels back on when they were about to fall off, introduced the principals
to one another and kept on top of schedules and financial commitments.

Richard Swadley at Scott, Foresman had patience with a project that
went slowly for all too long.

Bob Caldwell of Centaurus Software and Roger Ogden gave hard
ware support for the writing process.

vii

Contents

INTRODUCTION

CHAPTER 1 ASSEMBLY LANGUAGE BASICS

Assembly Language and the Assembler
Computer Numbers
Binary Math
Binary Math Applications

CHAPTER 2 80386 APPLICATIONS ARCHITECTURE

Intel's and Other Early Microprocessors
The 8086 Family
Microprocessor Basics
The Fetch-Decode-Execute Cycle and the 80386
A Bit-by-bit Look at EFlags
Flat and Segmented Memory

CHAPTER 3 GUIDE TO THE INSTRUCTIONS

Data Movement Instructions
Standard Arithmetic Instructions
Data Conversion Instructions
Decimal Arithmetic Instructions
Logical Instructions
Shift and Rotate Instructions
Bit Instructions
Flag Control Instructions
String Instructions
Flow Control Instructions
High-Level Language Support Instructions

xi

1

2
9

14
19

23

24
25
26
28
33
37

51

52
54
58
60
61
62
64
65
66
68
70
Ix

x Contents

Processor Control Instructions
Address Manipulation Instructions
Translation Instruction
Summary

CHAPTER 4 THE 80386 INSTRUCTION SET

How Assembly Language Works
What is an Instruction's Format?
Timing Information
The 80386 and other iAPX 86 Chips
The Instructions

CHAPTER 5 PROTECTED MODE

Multitasking
Segmentation
Paging
Virtual Memory

CHAPTER 6 V8086 MODE AND MORE

Virtual 8086 Mode Defined
Virtual Machines
More On Virtual Modes
Processors and Modes Compared
Operating System Considerations

CHAPTER 7 THE 80386 PROCESSOR IN DEPTH

Computer System Performance
How an 80386 Memory Access Works
Inside the 80386
Ripley's Believe It or Not
Some Applications Programming Considerations

71
71
72
73

75

78
79
81
84
86

277

278
281
284
287

291

292
293
294
296
304

307

308
309
323
338
339

Introduction

Welcome to Programming the Intel 80386, the most detailed yet easy
to understand book to date on the capabilities of the Intel 80386 micro
processor. In this book, we hope to reach several audiences:

The experienced 8086/8088 programmer who wants or needs to
understand the capabilities of the 80386. This book delves into the low
level and operating system considerations which give necessary back
ground for designing and implementing serious programming projects.

The programmer experienced with other microprocessors (68000,
6502, Z80, etc.) who wants to step into the 8086 family. This book not only
gives detailed coverage of the instruction set, it explains how addressing,
protection, and other important features of the 80386 work. It does not
assume prior experience with previous Intel microprocessors.

The high-level language programmer who wants to learn assembly
language. This book includes an introduction to numbering systems and
other basic topics. This reader, however, will also need programming
examples, either in book form or from a fellow programmer, to understand
how assembly language is used.

The person with good computer knowledge who wants to be an
intelligent computer and software buyer. Besides describing the processor
itself, this book talks about different memory arrangements and possible
operating system capabilities. Someone buying an 80386-based computer
would do well to know what the processor can handle as background for
judging the products that use it

This book is not designed to be a complete source for those who are
writing systems programs like operating systems, device drivers, etc; no
single book can do that Reading this book would be an excellent first
step, however, for writing these complex programs. This book is not
for the person new to programming, although the first chapter and parts
of other chapters are accessible to the general reader.

xi

xii Introduction

Given the variety of material presented here, you may want to read it
out of order, or skim some parts as you go through it the first time; it's
hard to imagine anyone reading the instruction set in Chapter 4 straight
through. Even if you are normally very careful with your books, this might
be a good one to write in. Put question marks next to new subjects you
want to explore more, and check off sections as you read them. For
anyone who's not already an expert there will be much here to learn and
to research further later on.

HIGHLIGHTS OF THE 80386

This book looks at the 80386 on its own terms, not just as a derivative
of the 8086/88 and the 80286 (we will refer to the 8086 and the 8088
together as simply "the 8086" unless otherwise specified). In fact, much of
the text deals with ideas that have come to the microprocessor world
from minicomputers and mainframes. Capabilities like paging, virtual
memory, and multitasking are discussed at some length. These are fea
tures which are made available by operating systems; the experienced
programmer of IBM PC-type computers will be eager to know what
advantages the 80386 offers the applications programmer. Each of these
advantages is discussed at length, with terms defined where needed.
Here's a short list of important new capabilities available in Real Mode,
based on the experience of a friend who's writing systems software for the
new processor:

SPEED. Simply by running at a clock speed of 16 MHz, the 80386 is
twice as fast as most 80286s. Lower clock counts and new instructions
give a further 50% speed increase. Thus, machines built around the new
processor run about three times as fast as an IBM PC AT. The use of
cache memories and other memory optimizations can increase perfor
mance even more.

32-BIT REGISTERS. Larger registers make it very easy to handle large
numbers and other data items efficiently. They also make it possible to
do more work with register variables and cut down memory accesses.

NEW INSTRUCTIONS. Among the most important of the many new
instructions offered by the 80386 are the Bit Test instructions, which
allow testing and turning on and off of individual bits.

EXTRA SEGMENT REGISTERS. The new FS and GS registers are
offered as segment registers for additional data segments. They can also

Introduction xiii

be used as general registers (up to a point), and are very useful in either
capacity.

NEW DEBUG REGISTERS. The 80386 has registers which make it
easy to put in code or even data breakpoints, and to single-step a pro
gram. These registers can be used either from within a program or by a
debugger.

SCALED INDEXING. Memory addresses which use indexing can now
be scaled by a factor of 2, 4, or 8 bytes, making certain data structures
very easy and fast to access.

IMMEDIATE SHIFTS AND ROTATES. This capability, which first
appeared on the 80286 and continues with the 80386, makes many appli
cations problems easier to solve. The number of bits by which to shift or
rotate a quantity can now be given as an immediate value in the code
itself, avoiding extra register usage.

FLAT MEMORY MODEL. The old 64 Kb limit on segment size is
now gone. The new limit is 4 Gb, making it easy for even a very large
program to have just one code segment, one stack segment, and one or
more data segments, each with huge data structures not broken into seg
ments. However, unlike the advantages listed above, this one is only
available in Protected Mode.

OVERVIEW

This book is somewhat unusual for a work about microproces
sors. The 80386 has many capabilities similar to those of a minicomputer
or even (in some cases) a mainframe. As an example, the 80386 can exe
cute up to 4 million instructions per second (mips). It was only ten years
ago that the first mainframe to attain a speed of 1 mips became available.
Thus all the work that was done for optimizing those computers- support
hardware, efficient and capable operating systems, and more- applies
directly to the 80386. The designers at Intel have been very conscious of
this previous work, building capabilities like paging and virtual memory
support right into the chip for the first time in any microprocessor. In
order to describe the capabilities of the new chip, much space is devoted
to paging, segmentation, and other advanced topics not usually covered
in such a "chip book."

This book is called Programming the Intel 80386, and it includes a
complete description of the instruction set as used for non-systems pro-

xiv Introduction

grams, with a summary of the different classes of instructions and exam
ples of how each works. However, it does not include large-scale pro
gramming examples or a systematic treatment of optimization techniques.
There is so much ground to cover in describing the processor itself and
the operations it can perform that large application examples are left for
future books, including one from this pair of authors. These future
programming-examples books will generally assume that you've read a
book like this one as preparation for plunging into the details of actual
applications.

Because there are not yet an operating system and computer which
really stretch the power of the 80386, successive topics within a chapter
may seem somewhat unrelated. This is because the system software and
large applications which will relate them, tying the capabilities together
into new and powerful programs, are not yet written. The information in
this book will give the programmer the vocabulary and insight he or she
will need in order to design and implement the programs which will be
demanded in the next few years. As you use an 80386-based system with
a suitable operating system, the capabilities described here will come
alive for you and be reflected in the programs you write.

This book is not only broad in its coverage of important topics, it is
also deep. As authors we have been surprised to find out how little most
programmers know about how a microprocessor really works. For in
stance, when we say an instruction takes two clocks to execute, how does
this relate to what's going on inside the chip itself? Chapter 7 explains the
operations of the 80386 and the units which make it up. It describes tech
niques for memory access and follows a short programming example as it
is executed. We hope that even those who mostly program some other
microprocessor will find this chapter interesting, and that it will give pro
grammers a better understanding of what they're actually causing to
happen as they do their work

CONTEXT

A book like this aims for a certain timelessness; it should be as useful
ten years after it was published as when it first came out However, this
work is being published early enough in the life cycle of the 80386 that
some background should be given. In early 1987, as this is published, the
80386 itself is in version BO. It is available in 12.5 MHz and 16 MHz

Introduction xv

versions, but the 16 MHz version seems to be the choice of system devel
opers.

The processor is being produced using a 1.5 micron feature size,
which means that the highest resolution possible in placing circuit ele
ments is 1.5 microns. It's believed that within one year Intel will come out
with an 80386 made with a 1 micron feature size. This new version
should allow clock speeds of 20 or even 25 MHz, but won't cause any
changes in the instruction set or in the number of clocks needed for each
instruction.

There are currently three types of 80386-based systems: 1) the Com
paq 386, built around a proprietary design by Compaq; 2) other an
nounced computers built around an 80386 motherboard (processor plus
support chips) made by Intel; and 3) Turbo cards for the IBM PC AT and
compatibles, which offer an 80386 and a cache memory and which plug
into the socket normally occupied by an 80286.

As this is written there are no true operating systems for the 80386,
only a bootstrapping program from Microsoft which allows the Compaq
386 to run 8086-based operating systems. The bootstrapper supports an
extended memory specification to allow access to memory beyond the
640 Kb limit of MS-DOS 2.x and 3.x. Also, there are only a couple of .
assemblers available, and these are known to be "buggy."

Our contacts at companies working on system software for the 80386
tell us that it works as expected, with the exception of some obscure
bugs which will not be noticed by applications programmers. This book
does not depend on any one operating system, version of an assembler, or
computer system. However, the mnemonics (instruction names like MUL
and ADD) used by your assembler might be slightly different from the
ones we use here.

Future revisions of this book, which will be produced as demand
warrants, will note any changes in the 80386. We would be interested in
hearing your likes and gripes about this book, along with the things you
would like to see included in it or in other works. In particular, we are
planning a book of programming examples which will be a companion to
this volume, and would appreciate any suggestions for that book. Such
letters can be sent to the authors care of Scott, Foresman; simply put both
authors' names and the name of this book on the envelope.

CHAPTER 1,_,___-
Assembly Language
Basics

ASSEM BLY LANGUAGE AND THE ASSEMBLER
COMPUTER NUMBERS
BINARY MATH
BINARY MATH APPLICATIONS

There is a tremendous range of experience among programmers
using the 80386. Some are systems programmers with extensive ex
perience in operating systems, device drivers, or large assembly language
programs. Others are experienced in one or more high-level languages
like BASIC and PASCAL, but have used assembly language very little,
perhaps only as in-line code within a high-level program. This chapter
will help ensure that each reader is exposed to the most important
concepts used in assembly language programming.

First we'll take a look at an 80386-style assembly language statement
as an example of what an assembler does and what each statement
causes the machine to do. Following this we'll discuss the different types
of numbers used in assembly-language programming-binary, BCD,
hexadecimal, and more. Most programmers will know most of these
terms, but the basics of number types and operations will be assumed
later in the book, so an overview is given here. If you have programmed

1

2 Assembly Language Basics

Intel chips in assembler before, you may want to skim this chapter rather
than read it On the other hand, if much of what follows is new to you,
further study might be indicated before plunging into 80386 program
ming. This chapter will be a useful review for the large number of
programmers with some, but not extensive, assembler experience.

ASSEMBLY LANGUAGE AND THE ASSEMBLER

The following instruction is a typical 80386 assembly language
statement

MOV AX, BX

The first word is MOV, an assembly language command, like a direct
order from the programmer to the computer. So what gets moved? AX
and BX are registers, storage locations in the 80386 itself. The number
stored in the BX register is moved into location AX After the MOV both
AX and BX will contain the same value.

Each non-blank line in an assembly language program contains
either an "instruction" or a "directive." The most important pieces of an
instruction are a command and up to three operands. The command
performs some operation, generally using the data in its operands. Other
parts of an instruction and a directive are described below.

MOV AX, BX, for instance, has a command and two operands. Most
two-operand instructions are of the form:

COMMAND Destination, Source

Arithmetic instructions with the commands ADD and DIV, for example,
look like this. The instruction takes its second operand, performs some
operation on it using the first operand (like adding the two together), then
stores the result in the first operand. Whatever was in the first operand is
overwritten by the result

Many instructions have implied operands. For instance, the instruc
tion CLC means "clear the C bit," that is, put the Carry bit to 0. The

Assembly Language and the Assembler 3

command itself is "clear;" the operand (the Carry bit) is implied by the
instruction. An instruction's operands can be individual bits in the chip's
own registers, bytes, words or doublewords in registers, or any of these in
the computer's main memory. Chapter 2 will cover more about the
overall design of the computer system.

Normally a computer executes instructions in the order in which
they appear in the program. However, we need to be able to change this
sometimes-in order to make the program execute a loop, for example.
To make this happen we might use these instructions:

JCC LoopTop

LoopTop: MOV BX, AX ; top of the loop

JZ LoopTop

The word "LoopTop" is a label for the statement MOV BX, AX. The
symbol ";" on the same line indicates a comment, which follows im
mediately. The dots on some lines indicate statements that we're not
interested in for now.

The JCC (Jump if Carry Clear) instruction checks the Carry bit (more
on this later) and, if a O is in it, passes control to the MOV statement
labeled "LoopTop." The JZ (Jump if Zero) instruction does the same thing,
but checks the Zero bit to decide whether to jump to the label.

An assembly language statement can take the form:

Label : COMMAND Operand(s) ; comment

The label is optional, and so is the comment; the number of operands
needed varies with the command used. The only part of a statement
that is always required is the command itself; if a label is alone on a
line it's assumed to go with the command on the following line.

Instead of going on with examples of various 80386 instructions here,
we refer the interested reader to Chapter 3, which gives a brief functional
description of each type of 80386 instruction. Beyond the actual instruc-

4 Assembly Language Basics

tions and operands, there are several other elements in assembly language,
and these are explained below.

Instruction Prefixes

Prefixes (reserved words used in an 80386 statement just before the
instruction itself) cause some instructions to act differently than they
would otherwise. Two useful prefixes are LOCK, which helps the 80386
grab sole control of a piece of RAM when several processors are sharing
the same memory, and REP and its variants, which cause an instruction
to be repeated. Prefixes are mentioned here because they further enlarge
what we can find on any single line of an assembler program:

Label: PREFIX COMMAND Operand(s) ; comment

For example:

OneLoop : REP MOVS Dest, Source ; moves bytes

This moves a given number of bytes (the number is found in one of the
chip's registers) from one location in RAM to another.

Assembler Directives

The commands discussed above are all instructions, which the
assembler translates into machine language commands to be executed
by the microprocessor. The assembler determines exactly which form of
a given command to use in order to get the effect the programmer wants.

There are times when we need to tell the assembler in advance what
it is we plan to do. For instance, if our data items in a program are all
word-sized (16-bit quantities), we don't want the computer to move
doublewords (32-bit quantities) around. Assembler directives look a lot
like regular instructions, but aren't translated directly into machine
language commands which tell the processor what to do next Instead,
they tell the assembler how to interpret the instructions and directives

Assembly Language and the Assembler 5

which follow them, point out where a program starts and stops, and serve
many other functions.

For example, almost every program has variables in it A directive to
tell the assembler a variable's name has the form:

Name Directive Initial Value ; comment

For example:

MyAge DB
DB

29
0

; directive w/fake data
; 2nd byte, initial value O

This tells the assembler that whenever the variable MyAge is referred to
in the program following, a byte value is being referred to and the byte's
initial value is 29. The byte reserved on the next line could be referred to
as MyAge + 1, meaning "the byte after the byte with MyAge in it" As
shown by these two directives, the name at the start of a directive line is
optional.

Another important directive is EQU, which tells the assembler to
give a name to a number. For instance, the following directive tells the
assembler to use the number 62 wherever the word Retire is found in the
program:

Retire EQU 62

Notice that the DB directive tells the assembler to put a certain value (29)
in a given byte in memory, while the EQU directive tells it to remember
to replace the word "Retire" with the value 62 as it is converting the
program to machine language. In a typical use of the EQU directive, if the
retirement age needed by the program changes, we can change the line
to read:

Retire EQU 65

6 Assembly Language Basics

When the program is reassembled the number 65 will be used wherever
the word Retire is found.

More information about directives can be found in the documenta
tion for the assembler you;re using, and this should be studied carefully.
Among other functions, directives determine how programs are arranged
in memory, and they can help give a program some of the structure of a
high-level-language program.

Assembler Arithmetic

In both instructions and directives the assembler will evaluate ex- .
pressions for us. That is, if it finds an expression (like RETIRE - 3) where
it expects a single number, it will do the math required and place the
result in the machine language program. For instance, if we've used an
EQU instruction to tell the assembler that Retire is equal to 65, then the
following command will move Retire + 5, or (65 + 5 =) 70 into AX:

MOV AX, Retire + 5

However, the work of deciding what "Retire+ 5" equals is done when the
program is assembled, so assembler math can only use numbers that
have been specified before a given statement is assembled. Exact descrip
tions of math done by your assembler will be found in the appropriate
documentation.

What Assembly Language Does

You might ask, "What's the difference between assembly language
and a high-level language?" The structure of assembly statements is a
little unusual, but even the brief examples seen so far demonstrate loops,
transfers of control, conditional statements, and variables, all elements of
high-level languages.

The most important feature of assembly language is that every
instruction is translated by the assembler into one and only one machine
language instruction. The machine language code for a MOV between
two registers is slightly different than that for a MOV between two
locations in RAM, but in both cases each assembly instruction translates

Assembly Language and the Assembler 7

into one instruction in machine language. In a high-level language each
statement can be translated into any number of machine language
instructions (sometimes just one, but often five or more depending on the
statement and its context).

Another important feature of assembly language is that the program
mer can directly name the microprocessor registers and exact memory
locations to be used for storing and operating on data. When a BASIC
programmer says LET A= B, he or she has no control over where the
numbers end up. Writing MOV AX, BX in assembler, however, lets the
programmer know exactly what he or she is doing.

The different forms taken by a MOV instruction depend on exactly
what type of operands it has, and are rarely of concern to the program
mer. The important thing is the overall effect, that a value is copied from
one location to another. This book will give both the overall effect and
the details of how it's achieved, because at those times when it becomes
important to know an instruction's format the information needs to be
quickly available and understandable.

It is often said that an assembly language program can do everything
a high level language can do, and additional things besides. This is true
from the computer's point of view, but not necessarily the programmer's.
The sheer amount of detail that the assembler programmer must be
concerned with-exactly where does this number go, will this loop always
terminate-can cause the programmer to shy away from complicated
control and data structures. Even a poorly written assembler program
will generally execute faster than a well-written high-level-language pro
gram, but only the most carefully written assembler code approaches a
high-level-language in clarity (to humans) and ease of maintenance.

Assembling an 80386 Instruction

Let's look at Listing 1-1 to see exactly what the assembler does with
a very small piece of assembly language code.

The assembler will translate the code in Listing 1-1 into machine
language for the 80386 to execute.

Line 1, the EQU statement, tells the assembler to substitute the
number 8 wherever it sees the word "GenRegs."

Line 2, the DB statement, tells the assembler that a given byte in
memory will be named RegsUsed, and will start out with the value 0.

Line 3 tells the processor to compare the value in RegsUsed, which
may have been changed by the lines above it, to the number 8, which is

8 Assembly Language Basics

GenRegs EQU
RegsUsed DB

DoMore

8 ; 1. number of 80386 general registers
O ; 2. number of registers in use

; code that stores data in general registers
; and increments RegsUsed when a register
; is used

CMP RegsUsed,GenRegs ; 3. all registers in use?
JNE DoMore ; 4. if not, continue

Llsting 1-1. Assembly Process Example

represented by GenRegs. In hexadecimal (discussed later) the machine
language produced by the assembler is:

80 3E ?? 08

This means compare (80) a byte at a specified location in memory (3E ??)
to an immediate value (08, as defined by the EQU above). The Zero flag
will be set to 1 if the two numbers are equal.

The trickiest part of this is the displacement (??), which is determined
by the addressing mode used to find the byte in memory. This is
discussed further in Chapter 4.

Line 4 tells the processor to continue executing at the label DoMore
if the CMP on the line above showed that the two numbers were equal.
The machine language is:

75 XX

Here 75 indicates a "short jump," to a location within about +!- 127
bytes if the condition of "not equal" (the zero flag is 0) is met XX is the
number of bytes to the location, which would be the number of bytes
between the instruction labeled DoMore and this JNE instruction.

Listing 1-2 summarizes the assembly process by showing the as
sembly code next to the resulting machine-language output

Assembly Language

GenRegs EQU 8
RegsUsed DB 0
DoMore

Computer Numbers 9

Machine Language

0

CMP RegsUsed,GenRegs 80 3E ?? 08
JNE DoMore 75 XX

Listing 1-2. Assembly Process in Hexadecimal

This book gives the numeric equivalent of each 80386 instruction
and addressing mode, while an assembler listing typically gives the
machine-language output resulting from assembling a given program.
Once you grasp the basic concept of how an instruction is translated to
machine language, further study will let you learn as much as needed
about the machine language code produced by your program.

COMPUTER NUMBERS

Representing What's in the Computer

In order to talk about what's going on inside the computer and
command it to do exactly what we want, several different numbering
systems are used. The most important is binary, the language used by
the computer itself.

The insides of the computer can be seen as a series of toggle
switches that can be set to either of two positions, 0 or 1, Off or On,
False or True. Each switch is called a bit. To describe whether a series of
bits is on or off, we write down their values in sequence (1001 or 10110
or 10001001001); each represents a series of bits in the computer, some of
which are on (1) and some of which are off (O).

In order to organize all these bit values, we usually look at them in
groups of 8, called bytes. The last binary number above would thus be
written as 00000100 01001001, so we could talk about the value in the
first byte or in the second byte.

We can describe exactly what's stored at each location in the
computer, but writing a byte value (01101001 for instance) takes a lot of

10 Assembly Language Basics

space, so we use hexadecimal notation, which sums up in one symbol
what's contained in a group or four bits. A symbol is assigned to each of
the possible combinations of bits, as in Listing 1-3.

A single byte, then, can be represented by two hex digits, one for
each four bits in the byte; 11000001 becomes Cl, and 01001001 becomes
49. Since we can't tell at first glance whether 49 represents a decimal
value or a hex value, we write it followed by an H; 49H means 49, hex.
Although hex notation is prominently used in programming, it is really
only a shorthand way to write out binary values.

Octal notation is commonly used in programming some computers.
This notation looks at only three bits at a time, and translates each group
of three bits into an octal digit, 0-7. Each character identifies one of eight
patterns (not one of sixteen as with hex), and writing out the value in a
byte takes three characters rather than two. Octal notation is not used in
this book.

Many times we are interested in the number represented by a
pattern of bits. To translate a binary pattern into a decimal number we
start with the rightmost position in the binary number (the units position).
A 1 in the units position has the value one. The position next to it is the

Bit Pattern Decimal Equivalent Hex Digit

Pos'n value: 8421

0000 0 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 5
0110 6 6
0111 7 7
1000 8 8
1001 9 9
1010 10 A
1011 11 B
1100 12 C
1101 13 D
1110 14 E
1111 15 F

Listing 1-3. Binary, decimal, and hex numbers

Computer Numbers 11

twos position; a 1 in the twos position has the value two. The next
position is the fours position, and so on using a greater power of two for
each position. Looked at in this way, every binary number can be
translated into decimal by translating each position into a decimal
number and adding the results. For instance, 1110 read from right to left
means "O ones, 1 two, 1 four, and 1 eight" Translating this into decimal is
simple: O + 2 + 4 + 8 = 14.

Another way to look at the same thing is to think of the bit positions
strictly as successive powers of 2. This is the system used in talking about
bit positions in a byte.

Binary number: 1 0 1 0 1 0 1 0

Power of 2: 7 6 5 4 3 2 1 0

The "0th" (or rightmost) bit position has the value 2°, the next position
over has value 21, and so on up through 27, or 128. So "there's a O in bit
position 4" means that the fifth position from the right has a O in it

Representing Numbers

There are problems with representing numbers in pure binary form.
For one thing, we've only talked about representing integers; no fractions
or numbers with decimal points have been discussed. Also, most people
don't work in binary, so numbers have to be converted back and forth on
their way in and out of the computer.

One way to simplify number representation is to make the computer
use base 10, as most people do. This is done using BCD (Binary Coded
Decimal) notation. The 80386 includes hardware support for BCD arith
metic in a series of "ASCII Adjust" instructions that use the AL register
to do BCD math two digits at a time.

In "packed BCD" four bits represent one digit, 0-9. As the figure
above shows, four bits can hold sixteen different patterns (as in the hex
digits 0-9 plus A-F), yet we only need ten of them (the decimal digits 0-9),
so each BCD digit is wasting some of the available storage capability. An
even worse problem comes when we try to do math with these numbers,
because the computer automatically treats them as binary numbers,
producing results that make no sense for BCD digits. Although we'll go

12 Assembly Language Basics

into binary math in more detail below, let's add two BCD digits to
illustrate this problem.

Binary math: 1000 (8 BCD)+ 0100 (4 BCD)= 1100 (? BCD)

The sum of the two numbers is 12, but by the rules of BCD, 12 is too large
a number to fit in a single, 4-bit BCD digit What we want is for the
computer to do a carry for us whenever the result of adding two BCD
digits results in a number above 9 (which no longer fits in a single digit):

BCD math: 1000 (8 BCD) + 0100 (4 BCD) = 0001 0010 (12 BCD)

The ASCII Adjust instructions automatically note when an addition
or other arithmetic operation has caused a discrepancy between binary
rules and BCD rules, and make the needed adjustments. Note that two
packed BCD digits fit in a single byte, so with BCD notation a single byte
can express any number from 00 through 99; in binary the same byte can
express any number from 0 through 255. BCD causes a loss of storage
capability.

If enough RAM is available to make up for the wasted space caused
by BCD digits, and if speed is not of the essence, BCD math is very
effective for results that need to be in a human-understandable format
To store large numbers we can just use more BCD digits as needed, and
to handle numbers with decimal points we simply agree on a convenient
format that tells us where to place the decimal point for each number.
BCD works well for dollars-and-cents applications, where it's unusual to
find a number of much more than 15 digits and precision all the way
down to the cents columns is very important

However, for large numbers (as used in science and other applica
tions) we need a format that stores very large numbers in a fixed
number of bytes and doesn't just keep adding to the amount of storage
needed as numbers get larger. The answer here is to use a floating-point
format Almost all floating-point math is done through prewritten software
packages, and you'll need to learn the rules of any such package you
wish to use.

Computer Numbers 13

Floating-point numbers are an agreed-on format for storing large
numbers in a limited number of bits. For instance, a 32-bit floating-point
number might have this format

First bit sign bit of fraction
Next 8 bits: exponent
Next 23 bits: fraction

It is assumed that the number we're representing is in the form:

(+/- 1.fraction) X (2+/- exponent)

This is much like the scientific notation you might have learned in
school. Since the "1" at the start of "1.fraction" and the "2" as the base for
the exponent are always the same, they're not included in the floating
point number. Also, a trick involving the largest number that can fit in
8 bits allows the sign of the exponent to be deduced, so it's not explicitly
stored in the number either.

The advantage of floating point numbers is that any number between
about 1/2128 and 1"'(2127) can be represented in a mere 32 bits, so we can
express (if sometimes inexactly) numbers as small as about 1 over a 1
followed by 38 zeros, and as large as about 1 followed by 37 zeros.
However, the floating-point representation is not precise since the frac
tion part of the number is 23 bits, not 128. Thus a floating-point number
is usually a rounded number. Precision can be improved greatly by using
64 or 80 bits instead of 32, but precision loss remains in many cases. The
adjustments needed to make a binary-based computer do floating-point
arithmetic are so complicated that such math is almost always done
through calls to prewritten software packages or math coprocessors.

Translating Large Binary Numbers

When working with computers we end up talking a lot about large
binary numbers. The 80386, for example, handles data in 32-bit chunks,
and the largest number we can express in 32 bits is:

14 Assembly Language Basics

11111111 11111111 11111111 11111111

Reading right to left, this is:

1 + 2 + 4 + ... + 1,073,741,824 + 2,147,483,648 =
4,294,967,295 (4 billion bytes, or 4 Gb).

This number is also the number of bytes of RAM that the 80386 can
address directly. When you read that the 80386 can directly address 4
gigabytes, you can see that it does so by using a 32-bit-long number to
point to the byte that is being addressed.

For dealing with these large numbers and for doing math with
smaller numbers, a programmer needs to have a feel for what a given
power of 2 translates to in decimal. Listing 1-4 shows the number of bytes
associated with the powers of 2 from 2° up through 231

.

These numbers are very handy when talking about the capabilities
of the 80386. A good way to deal with the really large numbers, like 224

or 232
, is to note that 210 is just over a thousand (1 Kb), 220 is just over a

million (1 Mb), and 230 is just over a billion (1 Gb). Powers in between fall
into the same kind of progression (1, 2, 4, 8, 16, 32, 64, 128, 256, 512) that
is found between 21 and 29

• So 216
, for example, is 64 (because of the 6)

Kb (because of the 10).

BINARY MATH

The next few pages contain a reasonably complete description of
binary math in very compact form, because many readers will already
know some or all of the material. If any of the sections below are new to
you, you'll save a lot of programming anc::l debugging time in the future
by working out the examples given and then constructing a few of your
own until the principles involved are understood.

We can do binary math by simply following a set of rules, using the
decimal values of the numbers only as a check In adding two binary
digits, we can run into four possible combinations:

o+o=o
0+1=1

Binary Math 15

1+0=1
1 + 1 = 0, carry of 1

We can add any two binary numbers just by repeatedly applying these
rules for one pair of bits at a time, starting with the two rightmost digits

Number of bytes Decimal equivalent

20 1
21 2
22 4
23 8
24 16
25 32
26 64
27 128
28 256
29 512
210 1,024

211 2,048
212 4,096
213 8,192
214 16,384
215 32,768
216 65,536
217 131,072
218 262,144
219 524,288
220 1,048,576

221 2,097,152
222 4,194,304
223 8,388,608
224 16,777,216
225 33,554,432
226 67,108,864
227 134,217,728
228 268,435,456
229 536,870,912
230 1,073,741,824

231 2,147,483,648
232 4,294,967,296

Listing 1-4. Powers of 2 and Bytes

Name

1 kilobyte (kilo = thousand)

2 Kb
4 Kb
8 Kb

16 Kb
32 Kb
64 Kb

128 Kb
256 Kb
512 Kb

1 megabyte (mega= million)

2 Mb
4Mb
8Mb

16Mb
32 Mb
64Mb

128 Mb
256Mb
512 Mb

1 gigabyte (giga = billion)

2 Gb

4 Gb

16 Assembly Language Basics

and working left (just as with two decimal numbers). The only complica
tion is the carry generated when we add two l's; the trick is to make sure
to add the two digits in the operands first, yielding a one-bit result, then
add the carry to this result to determine the final value (and whether or
not there's a further carry). Here's an example:

1100110
110111

10011101

This is the equivalent of adding (0 + 2 + 4 + 0 + 0 + 32 + 64 =) 102 and
(1 + 2 + 4 + 0 + 16 + 32 =) 55, with a result of (1 + 0 + 4 + 8 + 16 +
128 =) 157, as expected.

Subtracting Binary Numbers

Subtraction is less intuitively obvious than addition. The four pos
sibilities when subtracting one binary digit from another are:

o-o=o
0 - 1 = 1, borrow 1
1-0=1
1-1=0

We can subtract by repeatedly applying these rules to two binary
numbers, starting at the rightmost end, just as in addition. Again, subtract
the two bits in the operands first, then subtract any borrow from the
result When the result of subtracting two digits is a 1 and a borrow is
applied, the result becomes O; when the result of subtracting two digits is
a O and a borrow is applied, the result is 1 and a further borrow is
generated.

1100110
110001
110101

Binary Math 17

Here's how an internal dialogue of someone doing this subtraction in his
or her head might go:

"Ones position: 0 - 1 = 1, borrow 1.
Twos position: 1 - 0 = 1, subtract borrow, result is 0.
Fours position: 1 - 0 = 1.
Eights position: 0 - 0 = 0.

Sixteens position: 0 - 1 = 1, borrow 1.
Thirty-twos position: 1 - 1 = 0, subtract borrow, result is 1 with

a borrow of 1.
Sixty-fours position: 1 - 0 = 1, subtract borrow, result is 0."

This is the equivalent of subtracting 49 from 102, with the result (32
+ 16 + 0 + 4 + 0 + 1 =) 53, as expected. This process is complicated
enough that people often do binary subtraction by converting both
operands to decimal, doing the sQbtraction, then converting the result to
binary again. Another technique is to convert the second operand to its
opposite (negate it), then add the two numbers together, using the
addition technique. This is the technique used inside the 80386 and other
processors in its family.

Negative Binary Numbers

So far we've only dealt with positive numbers, and we've used as
many bits to represent a number as it needed; the first bit is always 1,
because it's useless to write leading zeros. In most systems which can
handle positive and negative numbers, however, a leading 1 always
indicates a negative number. In order to express both kinds of numbers,
we agree in advance that all numbers will be (for example) eight bits
long, and that leading zeros will be written out, as in 00000100 (the
binary representation for 4 in decimal).

Several different ways exist to describe negative numbers. The
simplest is to put an additional bit in front of each number to represent
the sign of the number, a O bit for positive, a 1 bit for negative, with the
bits after the first one representing the number's size. This is called
"sign-magnitude representation," meaning "a sign bit in front, plus several
bits to represent the magnitude." However, the addition and subtraction

18 Assembly Language Basia

rules described above, which are the simplest possible, don't work for
sign-magnitude numbers unless adjustments are made. Another problem
is that there are two equivalent ways to represent zero: 00000000 (or 0),
and 10000000 (or "negative zero"); both mean the same thing. The
floating-point representation described above is a modified form of
sign-magnitude representation; it's compact but difficult for doing arith
metic.

Inside the 80386, as in most computers, negative numbers are
represented by a method called "two's complement" notation. We use
this notation because the same simple math rules apply to both positive
and negative two's complement numbers. Positive numbers in two's
complement are exactly the same as in regular binary notation: 4
decimal is 00000100 binary; 11 decimal is 00001011 binary. Zero is
00000000.

To form a negative number we construct a positive number of the
same magnitude and then flip (i.e., negate or invert) every bit, which
yields "one's complement" notation, then add one to this result Here are
two examples of forming negative two's complement numbers:

Start with decimal number: -4 -11
Write out positive number in binary: 00000100 00001011

11111011 11110100
11111100 11110101

Negate each bit (one's complement):
Add 1 (two's complement):

There are a couple of things worth noting. Each negative number in two's
complement starts with 1, so the lead bit serves as a sign bit; the negative
numbers work fine for the computer but are hard for a person to convert
to decimal. The simplest way to do this for negative two's complement
numbers is to find the absolute value of them by reversing the process
above: negate each bit and then add 1 to get the positive component
(magnitude or absolute value) of the negative number. The resulting
positive binary number is then easy to convert to decimal.

Here are two examples of arithmetic with two's complement num
bers:

11001000 (-56)
+ 01101001 (105)

00110001 (+49)

11101111 (-17)
- 00000011 (+3)

11101100 (-20)

Binary Math Applications 19

Both follow the same arithmetic rules as the positive (i.e., unsigned)
numbers we dealt with before. In the rest of this book a two's comple
ment number will also be called a signed number, meaning a binary
number in which the high-order (leftmost) bit serves as a sign bit

BINARY MATH APPLICATIONS

Overflow and Carry

When the 80386 performs a math operation (like an add or subtract)
it uses a special piece of hardware called an adder, which handles only
a couple of different operations, but performs them very quickly. The
80386 can perform up to 8 million simple additions in a second.

However, sometimes even a simple operation like addition can get
complicated. When we add two unsigned numbers the result can be too
large to fit in the number of bits available. For example, 10000001 (129
decimal) + 01111111 (127 decimal) = 1 00000000 (256 decimal), which
doesn't fit in eight bits. The adder will return a result of 00000000, which
is not what we expect

To communicate that a problem has occurred, the adder sets an
extra bit inside the microprocessor (called the "carry flag"). This flag is
set (to 1) if the result of an addition doesn't fit in the number of bits
available for the result, and is cleared (to 0) otherwise.

In a signed number only the low-order (leftmost) seven bits contain
a number's value; the high-order bit is reserved for the sign. The equiv
alent of a carry (magnitude too large to fit the representation) occurs
when adding two seven-bit numbers gives a result that won't fit in
seven bits. For example, 01111100 (124 decimal) + 00001111 (15 decimal)
= 10001011 (- 11 decimal), which is not right at all. This forced changing
of the high-order bit, caused by the sum of the remaining bits being too
large, is called an overflow. There's a flag in the 80386 (called the
"overflow" flag) that is set any time the result in the first seven bits
changes the eighth bit, and cleared otherwise. The overflow can be
ignored when we're dealing with unsigned numbers. To summarize, a
carry is caused by a carry out of the leftmost bit, and an overflow is
caused by a forced change of the high-order bit

The exact conditions under which each flag is set can be important,
and there are other flags in the chip that depend on the results of

20 Assembly Language Basics

arithmetic, as do carry and overflow. These are discussed in detail in
Chapter 2.

Sign Extension

So far all our examples of binary math have dealt with numbers
that can be represented in an eight-bit byte. The 80386 also uses words
(two bytes) and doublewords (four bytes) in its hardware. Often, we need
to convert a byte to a word or doubleword (called a dword).

This is simple for positive numbers; just add zeroes to the left end of
the number. The byte 00010011 (19 decimal) becomes the word 00000000
00010011 (19 decimal), for instance. Negative numbers in two's comple
ment representation are a little more complicated. If we add zeroes to the
left end of a negative number, it changes completely; 11101101 (-19
decimal) becomes 00000000 11101101 (237 decimal). Luckily, there is a
simple rule called sign extension that fits smaller operands into larger
ones while preserving both magnitude and sign. Just take the leftmost bit
of the smaller data type (i.e., byte or word) and repeat it in the extra bits
of the larger data type (i.e., word or dword). The byte 00010011 (19
decimal) still becomes 00000000 00010011 (19 decimal), but the byte
11101101 (-19 decimal) becomes 1111111111101101 (-19 decimal) as a
word. The 80386 allows you to either zero extend (the added bits become
zeroes) or sign extend (the added bits are copies of the leftmost bit) when
moving a byte into a word or a doubleword, or moving a word into a
doubleword.

Binary Logic

Some words we use somewhat loosely in English (such as "and," "or,"
and "not") have precise meanings in computer math as logical operators
on numbers. Listing 1-5 shows what different logical operators do when
applied to different combinations of bits.

One way to remember these rules is to think of the O's as representing
false English statements (like "all hair is green") and the l's as represent
ing true statements (like "the earth is round"). Substitute these statements
for the O's and l's on the left hand side of the equations in Listing 1-5 to
make sentences. The equation is true if the resulting sentence is also true.
For example, 0 AND 0 becomes "all hair is green AND the earth is
round;" this is false because all hair isn't green.

Binary Math Applications 21

NOT o = 1 NOT 1 = 0
(result is opposite of operand)

0AND0=0 0ANDl=0 lAND0=0 1AND1=1
(result is 1, or True, if and only if both operands are True)

o OR o = 0 0 OR 1 = 1 1 OR o = 1 1 OR 1 = 1
(result is 1, or True, if either operand is True)

0 XOR 0 = 0 0 XOR 1 = 1 1 XOR 0 = 1 1 XOR 1 = 0
(result is 1, or True, if one and only one operand is True)

Listing 1-5. Binary Ldgic

This trick doesn't work as well for XOR, which is short for "eXclusive
OR" and means "either one, but not both." As we start using non-English
constructions like XOR and construct statements that combine two or
more operators in one statement (NOT 0 OR 1), it becomes easier to
simply memorize and apply rules like those in Listing 1-5 than to
construct increasingly convoluted sentences as examples.

We can apply these logic rules to bytes as well as bits. Simply line
the bytes up as if you were going to add them, then use the rules above
on each pair of bits in tum. Since there is no carry, it doesn't matter
whether the comparisons start with the two leftmost bits or the two
rightmost bits. Listing 1-6 shows the results of applying the NOT, AND,
OR, and XOR operators to byte operands.

These operators work the same way on operands of any number of
bits as long as both operands are of the same length.

NOT
01010110

10101001

11001010 AND
01010110

01000010

Listing 1-6. Examples of NOT, AND, OR, XOR

11001010 OR
01010110
11011110

11001010 XOR
01010110
10011100

CHAPTER 2
80386 Applications
Architecture

INTEL'S AND OTHER EARLY MICROPROCESSORS
THE 8086 FAMILY
MICROPROCESSOR BASICS
THE FETCH-DECODE-EXECUTE CYCLE AND THE 80386
A BIT-BY-BIT LOOK AT EFLAGS
FLAT AND SEGMENTED MEMORY

In this chapter we talk about the 80386's architecture, or the way its
facilities look to the programmer trying to make the chip work. We start
with a brief description of the history of the 80386, and an equally brief
discussion of the functions of a typical microprocessor. This chapter
concentrates on the facilities used by the applications programmer and
describes each of the chip's registers, including those generally used only
by operating systems. Also covered are interrupts and exceptions.

A program running in the 80386's Virtual 8086 Mode works almost
exactly the same as one running in Real Mode, and both are well suited
for bringing 8086 programs and operating systems, and 80286 Real Mode
programs, onto the 80386.

23

24 80386 Applications Architecture

Programs running in Protected Mode have access to all the facilities
in Real Mode (as described here) plus those available in Protected Mode.
An understanding of the material here is necessary for using any of the
modes and capabilities of the 80386.

We start with some background on the evolution leading up to the
Intel 8086 family and the 80386. This gives some insight into why the
80386 works the way it does and what the future may hold. Next, we'll
talk about what a microprocessor is and what parts make it up. Follow
ing this is the bulk of the chapter, which is about the 80386's internal
organization, how it looks at memory, and the data types and addressing
modes it uses in talking to memory. This chapter covers all registers and
addressing modes except the ones only accessible through Protected
Mode. Some of the material here, though, can be skimmed by the
experienced 8086 and/or 80286 programmer, since much of the 80386
design is an extension of these earlier microprocessors.

INTEL'S AND OTHER EARLY MICROPROCESSORS

The 4004 from Intel (the first general-purpose microprocessor) ap
peared in 1971. Like the later examples of its type, it could execute any
program made up of the right commands, bring data in, operate on it, and
send data back out All this was done by a concatenation of electrical
components about the size of a quarter. The 4004 operated on four bits
of data at a time, with each four bits encoding a single decimal digit, as
in BCD math (Chapter 1). The 4004 was originally designed for use in
calculators. It contained the equivalent of about 1,000 transistors and
performed 8,000 operations in a second, easily fast enough for calculator
use.

Within the next couple of years Intel introduced two new microproces
sors, the 8008 (basically a 4004 which processed eight bits at a time) and
the 8080 (the first chip powerful enough to run a small computer). The
8080 (which is still popular for process control and other applications)
includes facilities for performing decimal and 16-bit math, making sub
routine calls, and addressing memory up to 64 Kb. The 8080 uses an 8-bit
data path and a 16-bit addressing bus, meaning it can handle numbers
and addresses up to 64 K (2 to the 16th) easily.

A group of Intel engineers left their company to form Zilog (just as
Intel itself was formed by ex-Fairchild Semiconductor people) and in

The 8086 Family 25

1976 introduced the popular Zilog Z80. This did everything the 8080 does
and then some, adding additional instructions and registers. However, so
many 8080-based computers existed by this time that most programs
were still written to run unchanged on both the Z80 and the less
powerful 8080, maximizing market share but sacrificing performance.
Computers which run the once-popular CP/M operating system tend to
have some version of the 8080 or Z80.

Other companies weren't oblivious to the progress and sales made
by these new chips. In 1974 Motorola introduced the 6800, which was as
powerful as the competition and added new ways to address data,
speeding program development and execution. In 1975 some ex-Motorola
engineers produced the first processor in the 6500 series, which was
similar to but cheaper than the 6800. The MOS Technologies 6502 and
its descendants are found in the Apple II series of computers.

In 1980 Motorola came out with the 68000, a 16/32 bit chip which
mostly handled 16-bit values but had some ability to process 32 bits
internally and used 32-bit addressing to directly address up to 4 billion
bytes of memory. The 68000 could handle about 800,000 operations per
second. Its descendants include the 68010, the 68020, and the brand new
68030; each of the chips in this family powers both microcomputers and
minicomputers. The 68000 series is currently the main competition in
sales and capability to the 8086 family.

In the decade between the 4004 and the 68000, microprocessors
improved dramatically in most respects; about 70 times as many transis
tors could be found on a chip, the largest available word size had
climbed from 4 bits to at least 16 bits, and the speed of operation was
increased over 100 times. Although some physical limitations of chip
construction were approached, the size of the market has increased
enough to inspire a similar rate of improvement in this decade, as
reflected by the 80386. What the future holds is anyone's guess.

THE 8086 FAMILY

In 1978 Intel introduced the 8086, followed a year later by the 8088.
The 8086 is a 16-bit chip (in the data sizes it processes internally and in
the size of words its data bus brings in from memory). However, the
address size used is 20 bits, so 1 megabyte (2 to the 20th power) can be
addressed directly, but only in 64 Kb chunks.

26 80386 Applications Architecture

The 8088 works just like the 8086, but its data bus is only 8 bits wide.
When the 8088 needs a 16-bit quantity it must get it in two 8-bit chunks,
slowing operations. When processing data internally or working with
byte-sized data, the 8088 is just as fast as the 8086 and has the advantage
of being able to work with inexpensive 8-bit memory chips and other
peripherals designed for older microprocessors. It is irritating to the
experienced 8088 programmer to find repeated references to the "8086" or
the "basic architecture" in technical documents and books. All this means
is that the 8086 is the model which must be emulated by other members
of its family to preserve compatability. The 8088 is identical to the 8086
in every way but the size of its data bus. Any reference to the 8086 mean
"the 8086 and the 8088" unless specified otherwise.

In discussing the 80386's operations in Real Mode we will largely be
talking about the capabilities of an 8086. The instruction set is somewhat
extended on the 80386; several new registers have been added, as has
32-bit capability. However, the 8086 programmer has only a short learn
ing curve to traverse before learning to program the 80386 in Real Mode.

MICROPROCESSOR BASICS

Every computer has at its heart a central processing unit with the
computer's arithmetic and logic control circuitry. A microprocessor is a
central processing unit (CPU) fitted onto one (or at most a few) silicon
chips. The small size of the microprocessor is less important than its low
cost, which makes possible low computer prices and therefore the recent
explosion in small computers.

From a programmer's point of view the basic workings of a
microprocessor are the same as the basic workings of any other CPU. The
two necessary parts of a CPU are an arithmetic/logic unit (ALU) that
performs arithmetic operations, and a control unit (CU) that brings data
to the ALU and otherwise directs the moving of data within the com
puter. In order to speed up operations most CPUs contain registers, which
are quickly accessible storage locations. Some of the registers are used
mostly by programmers, while others are reserved for use by the control
unit

One of the two remaining parts of a computer is the memory, which
holds programs and data. There are two types of memory we're con
cerned with on the 80386: random access memory (RAM), which the

Microprocessor Basics 27

programmer can both write data to and read data from, and read-only
memory (ROM), which can only be read. RAM generally loses its contents
when power is turned off or the computer is rebooted, while ROM keeps
the same contents at all times. The other parts of a computer in which we
are interested are its 1/0 ports, through which data is sent and received
between the CPU and the outside world. Figure 2-1 depicts the relation
ship between these different parts of the computer.

The distinction between memory and 1/0 ports is becoming blurred
because much 1/0 is memory-mapped; the contents of locations in RAM
control what is output (memory-mapped video displays) or reflect what is
input (memory-mapped keyboard input). In these cases 1/0 is handled
just by reading and writing values in memory put there automatically by
an input device or transferred automatically to an output device. The
only other use of 1/0 by many programs is to write to and read from a
disk. This is largely accomplished by calls to the operating system, which
accesses code in ROM to make the transfers.

Memory

ROM
1/0 Ports

RAM .~ -~
,, ,,

I Data Bus I -~ •• .il

,~ ,~
I Registers I I ALU I I Control I

' I

CPU

Figure 2-1. The CPU plus 1/0 and memory

28 80386 Applications Architecture

Data movement inside the computer is done at the command of the
control unit on the CPU, and goes through the data bus (which is like a
parallel port between the CPU and the memory and 1/0 ports). The
computer's registers and ALU are each connected directly to one end of
the data bus, while memory and 1/0 are connected to the other. The
control unit directs the placing of data on (and reading of data from) the
bus by the CPU.

When a computer is referred to as a 16-bit or 32-bit computer, this
refers to the number of bits which fit in its internal registers. Almost as
important as the register size is the width of the data bus. When the 8088
is referred to as an 8/16-bit computer, this means it has an 8-bit data bus
and a 16-bit internal register size. The 80386 is a "true 32-bit" computer,
meaning that its registers and data bus are all 32 bits wide. The 80386
also has a 32-bit address bus, making address calculation much easier,
because a single register can hold a complete address.

The 80386 is highly integrated; it has its CPU (including ALU and
registers) and memory management unit (discussed in detail below) all
on a single chip. This is a real achievement for a 32-bit processor. Main
memory (RAM and ROM) and 1/0 ports are not on the microprocessor
chip.

There is much we haven't discussed here: the timing of the different
signals that control data movement and other chip functions, how the
80386 communicates with memory, and how a computer is physically
organized into circuit boards, buses, and so on. Many of the hardware
details are covered in Chapter 7. Communications with memory are
covered below; the other chips found in a typical 80386-based computer
aren't discussed here, because they change as new, more highly in
tegrated support chips become available.

THE FETCH-DECODE-EXECUTE CYCLE AND THE 80386

Most computers in current use execute one instruction at a time. A
regular order of events is repeated for each instruction: an instruction is
fetched from memory, the instruction is decoded (translated from Os and
ls into the microcode used inside the CPU itself), and then the microcode
is executed. This is called the fetch-decode-execute cycle.

There are a couple of additional considerations on most computers.
During fetching a register called the Program Counter is automatically

The Fetch-Decode-Execute Cycle and the 80386 29

incremented. The Program Counter tells the computer where to look for
its next instruction. As the counter is incremented by the same amount
for each fetch, instructions are executed in the order in which they're
stored in memory. This only changes when a "jump" instruction or a
"call" to a subroutine forces a brand new value into the Program Counter,
causing the program to get its next instruction from some new location.

The other consideration is that many instructions have operands that
are stored in memory when the instruction is brought into the CPU. For
instance, an ADD instruction might add two numbers, one of which is in
memory. The value in memory must be brought into the ALU so it can
be operated on. Thus, the fetch-decode-execute cycle comes to look more
like a fetch-increment program counter-decode-get operand from memory
execute cycle. Instructions with an operand in memory can start taking a
long time to complete.

The 80386 gets around this complication by using a technique
called "pipelining." While one instruction is being fetched another is
being decoded and a third is being executed. Five or six instructions are
typically in one or another of these stages at any given time. Pipelining is
discussed in great detail in Chapter 7; the important thing to understand
for now is that most of the time the 80386 finishes executing one
instruction and then immediately starts executing a new one that has
already been fetched and decoded.

The 80386 Processor

The 80386 processor is divided up into functional pieces called
"units." The only one the programmer has direct control over is the
Execution Unit, which contains the chip's onboard storage registers and
arithmetic hardware, plus the controller that actually causes instructions
to execute. Besides the chip the most important element of the computer
is main memory, usually in the form of RAM. In the rest of this chapter
we're going to talk a little bit about the 80386's ALU, and a lot about its
registers and communications with memory. The areas talked about the
most are the ones that an applications programmer has the most control
over.

The 80386's Execution Unit includes a fast adder, which works with
32-bit values, and a 64-bit barrel shifter, which can shift or rotate a 32-bit
operand by up to 31 bits in either direction. The important thing to know
for programming purposes is that adds and shifts are among the fastest
instructions, especially if the operands are in registers.

30 80386 Applications Architecture

0

')

The 80386's Applications Register Set

The 80386 has many registers; most are accessible to applications
programmers, a few are used only by systems programs. The applications
register set includes the general registers, the segment registers, the flags
register, and the instruction pointer. These are discussed below.

"Base register set" is another term used to describe some of the
registers found on the 80386. The base register set is a core group of
registers that are found on each and every member of the 8086 family.
These include the lower 16 bits of the applications registers along with
the machine status word (covered in Chapter 6).

The 80386 has eight general registers. The registers are each 32 bits
wide. The full 32-bit registers have names starting with E (for Extended):
EAX, EDX, ECX, EBX, EBP, ESI, EDI, and ESP (Figures 2-2 and 2-3). The
lower 16 bits of each of these registers can be addressed using the same

31 15 7 0

I I AH I AL

(Accumulator) AX
EAX

31 15 7 0

I I BH I BL

(Base) BX
EBX

31 15 7 0

I I CH I CL

(Count) ex
ECX

31 15 7 0

I I DH DL

(Data) DX
EDX

Figure 2-2. 80386 Data Registers

I

I

I

I

4

~

7

The Fetch-Decode-Execute Cycle and the 80386 31

31 15 0

I I I
(Stack Pointer) SP

ESP

31 15 0

I I I
(Base Pointer) BP

EBP

31 15 0

I I I
(Source Index) SI

ESI

31 15 0

I I I
(Destination Index) DI

EDI

Figure 2-3. 80386 Pointer and Index Registers

names as on earlier 8086-family chips: AX, DX, CX, BX, BP, SI, DI, and SP
(the same names without the E). Finally, the first four 16-bit registers can
each be addressed pairs of byte-sized registers: AH and AL name the high
(bits 8 through 15) and low (bits O through 8) halves of AX; the same
pattern is used for DH and DL, CH and CL, and BH and BL, each naming
one of the two bytes in the corresponding 16-bit register.

All of the registers are doubleword addressable (names starting with
E, for Extended); they are accessible as full-sized 32-bit registers. For a
register to be "dword addressable" means that a single command (for
example, MOV EAX, 1) affects a whole doubleword (or dword). The lower
half of each register is word addressable (accessible as a 16-bit register).
A dword-sized register that is "word addressable" can have values put in
its lower word without affecting the upper 16 bits of the dword. When we
wish to refer to a register in either its 32-bit or 16-bit form (whichever is
more convenient for the programmer) we put the E in the name in

32 80386 Applications Architecture

parentheses: (E)AX means "EAX or AX, whichever is needed." The first
four registers are "byte addressable" in their first two bytes.

Despite the fact that these are general registers, each has specific
uses. Operations like ADD allow the programmer to name any two
registers as operands. Operations like PUSH, for instance, assume that the
location in the stack which the operand will be pushed to is pointed at
by SP. Because of this type of assumed use, each register is reserved for
certain purposes when needed:

(E)AX, or the Accumulator register, is used for BCD math.
(E)BX, or the Base register, is used as a base for address calculations.
(E)CX, or the Count register, is used as a counter for string operations.
(E)DX, or the Data register, holds data for any of several different kinds of

operations.
(E)SP, or the Stack Pointer, has the current offset of the top of the stack
(E)BP, or the Base Pointer, can point to the base of a data area.
(E)SI and (E)DI, or the Source and Destination Index, are used when

moving strings to point to the source string and the destination string.

Further details on the uses of each register are given in chapter 4.
The segment registers on the 80386 are used to name the starting

points in memory of different pieces of code and data (Figure 2-4). There
are six segment registers, each with a different purpose. CS is the starting
address of a program's code, DS of its data, and SS of its stack ES, FS and
GS are all extra segments for additional data structures; of these only ES
is used specifically by certain instructions.

An applications program often doesn't need to modify the segment
registers, which can be completely controlled by the operating system.

15 0

CS Code Segment

DS Data Segment

SS Stack Segment

ES Extra Segment

FS Additional Extra Segment
GS ._ ______ __._ ______ ___. Additional Extra Segment

Figure 2-4. The Segment Registers

A Bit-By-Bit Look at EFlags 33

The contents of the segment registers are combined with other registers
to tell the program where to get its next instruction (CS plus the
Instruction Pointer), where the top of the stack is (SS plus ESP, the Stack
Pointer), and so on. The exact way the two registers are combined varies
depending on what mode your program is operating in, as explained
below.

The final two registers of interest are EFlags, which controls some
operations and indicates the current status of the 80386, and the Instruc
tion Pointer, which is combined with the CS (Code Segment) register to
point to the next instruction to be executed. Only some of the bits in
EFlags (each of which has a different meaning) can be directly set by the
applications programmer, and the Instruction Pointer can only be changed
as a side effect of operations like jumps and calls.

A BIT-BY-BIT LOOK AT EFLAGS

EFlags is the 80386's 32-bit-wide flags register. Applications deal
only with the lower 16 bits of this, which are collectively called the Flags
register. The bits in EFlags reflect the status of the 80386 and control the
way some operations are performed.

There are three different types of flags used here: Systems flags
(which reflect the current state of the machine as a whole and which are
more often used by operating systems than by applications programs),
Status flags (which reflect the state of a particular program), and a
Control flag (which directly affects how a few instructions operate).
Figure 2-5 shows the EFlags register and the Flags register (the EFlags'
lower 16 bits).

31 17 15 13 11 9 7 5 3 1

00000000 000000VR 0 N 1/0 0 DI T SZ0A0P1C
M T PL

18 16 14 12 10 8 6 4 2 0
FLAGS

EFLAGS

Figure 2-5. EF!ags and Flags

34 80386 Applications Architecture

Reserved for Intel

Some bits have been reserved for Intel; bits 31 through 18, the first 14
bits of EFlags, are always 0. Bits 15, 5, and 3 are also always 0, and bit 1
is always 1. These bit positions are reserved for Intel use. If you use these
bits and other "reserved for Intel" bits your programs will probably work
on current versions of the 80386, but may run into trouble on later Intel
chips.

Systems Flags

VM (VIRTUAL MODE) FLAG, BIT 17

0 = Protected Mode, 1 = Virtual 8086 Mode
The Virtual Mode flag indicates whether your program is running in

Virtual 8086 Mode (discussed in Chapter 5). You generally won't be able
to examine this bit or the next one while in Real Mode.

R (RESUME) FLAG, BIT 16

O = no fault, 1 = debug fault
The Resume flag turns off debugging temporarily when a program

resumes just after a debugging exception.

NT (NESTED TASK) FLAG, BIT 14

0 = current task not nested, 1 = current task is nested
NT, for Nested Task, indicates whether the current task is running

"beneath" some other task; it affects how the IRET instruction operates.

IOPL (1/0 PRIVILEGE LEVEL) FLAG, BITS 13 AND 12

O = current task has highest 1/0 priority, 1 = second highest, 2 = third
highest, 3 = lowest 1/0 priority

The two bits in the I0PL are used by the processor and the operating
system to determine your application's access to 1/0 facilities. Allowed
levels range from O (most privileged) to 3 (least privileged).

I (INTERRUPT) FLAG, BIT 9

A Bit-By-Bit Look at EFlags 35

0 = external interrupts disabled, 1 = enabled
The Interrupt flag controls whether or not the CPU will respond to or

ignore external interrupts. Exceptions (caused directly by the running of
a program) and nonmaskable external interrupts are unaffected by this
flag. Programs which will run on multitasking systems, as many 80386
programs will, should modify this flag as infrequently as possible.

T (fRAP) FLAG, BIT 8

0 = no trap, 1 = interrupt after each instruction
The Trap flag causes an exception to be generated by every instruc

tion; this is used for single-stepping instructions when debugging.

Status Flags

Status flags (used directly by applications programs) are set or
cleared by some 80386 instructions, especially arithmetic ones.

Once conditioned the flag can be examined by the programmer to
help determine what the program will do next Specific instructions
cause the flags to be changed in specific ways, so while each flag has a
general function, the exact meaning of the flag's status depends on the
instruction that has executed most recently.

0 (OVERFLOW) FLAG, BIT 11

0 = no overflow, 1 = overflow occurred
The overflow flag is set (put to 1) when the result of some arithmetic

operation is too large (needs too many bits) to fit in the result; if the result
fits, the O flag is cleared.

S (SIGN) FLAG, BIT 7

o = high bit is o, 1 = high bit is 1
The Sign flag has the same value as the high bit of an instruction's

result When using signed numbers this high bit indicates the sign of the
destination operand: 1 if negative, 0 if positive.

Z (ZERO) FLAG, BIT 6

36 80386 Applications Architecture

0 = last result not O; 1 = last result was 0
Zero is set to 1 (True) if the result of an operation is zero, and is set

to O (False) if the result is nonzero. Thus the Z flag is only O when the
result is nonzero.

A (ADJUST OR AUXIIJARY CARRY) FLAG, BIT 4

0 = no internal carry, 1 = internal carry
This bit is called the Adjustflag (or Auxiliary Carry flag). It indicates

whether an "internal carry" has occurred. If a BCD add or subtract causes
a carry or borrow from the fourth bit of the operand into the fifth bit, the
A flag is set; otherwise it is cleared.

P (PARITY) FLAG, BIT 2

0 = low byte even parity, 1 = low byte odd parity
The setting of the Parity flag depends on the low-order eight bits

of a result If 0, 2, 4, 6, or all 8 bits in a byte are set to 1, the Parity flag is
cleared and parity is even. If the low byte has an odd number of bits set
to 1 (1, 3, 5, or 7 bits), the P flag is set and parity in the byte is odd.

C (CARRY) FLAG, BIT 0

0 = no carry from high bit, 1 = carry
This flag indicates whether an addition or subtraction has caused a

carry or borrow from the high bit of the destination into what would be
the next higher bit if there were one.

Control Flags

Control flags affect string instructions only.

D (DIRECTION) FLAG, BIT 10

0 = auto-increment string instructions, 1 = auto-decrement
The Direction flag controls the "direction" of string operations. When

the D flag is cleared these operations process strings from low memory
up towards high memory. When this flag is set strings are processed from
high to low memory.

Flat and Segmented Memory 37

FLAT AND SEGMENTED MEMORY

On the 8086 addresses are formed by combining two values: a 16-bit
long segment selector and a 16-bit long offset To calculate an address
the segment selector is shifted left four places and the two numbers are
added, yielding a 20-bit address (See Figure 2-6.)

Programs and data areas are each made up of pieces called seg
ments. For example, at the start of a major piece of the program CS (the
Code Segment) is loaded with a value which is the starting location of
the program's code. The Instruction Pointer is set to 0. As successive
instructions are executed the value in the Instruction Pointer is incre
mented to point to new instructions in succession. JMP and CALL
instructions cause a new value to be loaded into the Instruction Pointer,
but the Code Segment is unchanged. Because the value in the 16-bit
Instruction Pointer is perforce limited to a maximum of 216- 1, the maxi
mum size of a program segment is 216 bytes, or 64 Kb. In fact, the
maximum size of any segment under this addressing scheme is 64 Kb. A
program or data area can continue over several segments, but the 20-bit
address size limits memory to 220 bytes, or 1 Mb. Programmers using DOS
are further limited by that operating system's inability to address more
than 640 Kb.

These segment and memory-size limitations are a severe problem for
many 8-086 programs and systems. A data structure, for instance, can be
no larger than 64 Kb without stretching across two or more segments.
Any program that accesses such a large structure must constantly check

15 0

cs ~ Shift left by 4 .___ ________ __._ ________ ___,

15 0

+ IP

19 0

Figure 2-6. Adding Selector and Offset to Get 20-bit Address

\

38 80386 Applications Architecture

whether it is approaching a segment boundary and switch to a new
segment at the appropriate time. This checking and switching greatly
slows access to these large structures. Updating a video screen, for
example, must be done very quickly to prevent visible flickering. A 1,024
by 1,024 pixel screen might need one byte to describe each pixel (on, off,
blinking, and brightness are among the possible parameters for even a
noncolor screen). This means that 1 Mb of RAM is needed to support the
screen, far more than the 64 Kb limit of one data segment; this is the
same as the amount of memory an 8086 can address at all, leaving no
room in memory for programs or data!

Addresses for data are calculated by using the DS (or sometimes the
ES) register and an offset; addresses for stack operations are calculated
with the SS register and SP (the Stack Pointer). In each case the
maximum segment size is 64 Kb.

The 80286 and the 80386 both have Real Modes, in which they
operate this same way. In Protected Mode, however, things are different
On the 80386 we can take advantage of the larger 32-bit registers to
implement a flat memory model.

In a flat memory model there are no segments (or if you prefer there
is one large segment that holds everything). Memory is treated as one big,
unbroken expanse. This is the memory model used by the 68000 and
other popular microprocessors. To implement it on the 80386 we just set
all the segment registers- to 0. All the registers that are used as offsets
when we calculate addresses (the Instruction Pointer (EIP), the Stack
Pointer (ESP), and the other general registers) are 32 bits wide. Thus the
most memory we can address is 232 bytes, or 4 Gb; this is 4 billion bytes,
or over 4,000 times more than can be addressed by the 8086.

If we wish we can also use a segmented memory model in 80386
Protected Mode, just as on the 8086. However, the address calculation
method is different Segment registers aren't added directly to offsets to
calculate an address. Instead the segment register is used as a selector or
pointer into a list of "segment descriptors." The descriptor contains
several pieces of information about the segment, including the base
address and length of the segment This is described in detail in Chap
ter 5.

Control, Test, and Debug Registers

These registers aren't generally used by applications programs.
However, they are important to understand because they are used to

Flat and Segmented Memory 39

support the operating system, coprocessors, debuggers, and other parts of
the environment your programs are developed and run in.

There are four Control Registers that can only be accessed by
variants of the MDV instruction. For example, MDV EAX, CRD will load
EAX with the contents of CRD, the first control register; MDV CR3, EBX
will load CR3, the last control register, with the contents of EBX These
variants of MDV can be used only at privilege level 0. CRD contains
several flags of interest

PG (PAGING ENABLE) FLAG, BIT 31

0 = no paging, 1 = paging on
When this flag is on the processor uses the paging tables, which are

used for Virtual Memory and other purposes to determine what address
to use. When it's off the paging tables are unused.

ET (EXTENSION TYPE) FLAG, BIT 4

0 = 16-bit (80287) coprocessor, 1 = 32-bit (80387) coprocessor
The setting of this flag tells the 80386 which type of coprocessor is

available, a 16-bit 80287 or a 32-bit 80387. The 80386 uses a 16-bit
protocol in the first case, a 32-bit protocol in the second.

TS (TASK SWITCHED) FLAG, BIT 3

0 = no task switch, 1 = task switched
When this flag is on, a task switch has just occurred. This flag affects

coprocessor and other instructions.

EM (EMULATION) FLAG, BIT 2

0 = no emulation of coprocessor, 1 = emulate coprocessor
The ESC command is generally used to transfer control to the

numeric coprocessor. If EM is set when ESC is executed an exception is
generated to allow an exception handler to emulate the numeric coproces
sor.

MP (MATH PRESENT) FLAG, BIT 1

0 = no coprocessor, 1 = coprocessor present

40 80386 Applications Architecture

The 80386 tests this flag when executing a WAIT instruction. If set
the TS flag is tested; if that is also set exception 7 is generated, which
should cause the coprocessor to be made available.

PE (PROTECTION ENABLE) FLAG, BIT 0

0 - Real Mode, 1 = Protected Mode (includes Virtual 8086 Mode)
The setting of this flag indicates whether the processor is in Real

Mode or Protected Mode. Note that Virtual 8086 Mode is a subset of
Protected Mode.

All 32 bits of the second control register (CR1) are currently reserved
by Intel. CR2 is used when paging is on; when a page fault occurs
(typically because a needed page is not in memory) the linear address
that triggered the fault is stored here. The upper 20 bits of CR3 are also
used for paging; they hold the base address of the paging directory. The
lower 12 bits of CR3 are undefined.

The debug registers (Figure 2-7) are a vital element in the advanced
debugging capabilities of the 80386. The registers themselves are described
briefly below. The Resume and Trap bits in the EFlags register, also used
in debugging, are described above.

The four Debug Address Registers (DRO-DR3) contain addresses of
breakpoints. The addresses can be either real addresses or indexes to the
page tables, depending on whether or not paging is enabled. Since
different tasks can use different paging tables, a bit in DR7 (see below)
tells whether the addresses in DRO-DR3 apply to all tasks or to the current
task only. The addresses are actual addresses and apply to the current
task when the processor is in Real Mode, since paging and multitasking
are both unavailable. Thus applications programs can use the debug
registers directly.

Depending on the settings of the flags in DR7, the four addresses in
DRO-DR3 can cause a break in execution when the data in them is
executed, overwritten, or either read or written.

Registers DR4 and DR5 are reserved by Intel. Register DR6 is the
Debug Status Register, and contains several bits of interest The low-order
bits, BO through B3, indicate which set of conditions caused a break
Likewise BD, BS, and BT (bits 13, 14, and 15) indicate conditions in the
debug registers, whether a single-step exception occurred, and whether
the new TSS invoked by a task switch has its T bit set, causing a break
on the attempt to switch to the task.

Register DR7, the Debug Control Register, helps turn debugging

Flat and Segmented Memory 41

31 15 0

LEN R/W LEN R/W LEN R/W LEN R/W 0 0 0 0 0 O G L G L G L G L G L DR7
3 3 2 2 1 1 0 0 E E 3 3 2 2 1 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 B B B 0 0 0 0 0 (j 0 0 0 B B B B
T s D 3 2 1 0

RESERVED
DR5

RESERVED
DR4

BREAKPOINT 3 LINEAR ADDRESS DR3

BREAKPOINT 2 LINEAR ADDRESS
DR2

BREAKPOINT 1 LINEAR ADDRESS
DRl

BREAKPOINT o LINEAR ADDRESS
ORO

Figure 2-7. Debug Registers

features on and off. The fields LENO-LEN3 specify the length of the data
item to be monitored at the address specified in D0-D3. FJW 0-3 tell
under which conditions a given Debug Address Register will cause a
break, on instruction execution only, on data writes, or on either reads or
writes. If the value in one of the four FJW fields is 0 (break on instruction
execution) the corresponding LEN field should also be 0 (no length
specified).

The four bits GO through G3 specify for each register (D0-D3)
whether it is globally enabled (accessible by all tasks). LO through 13
specify whether each of the address registers is locally enabled; that is,
accessible specifically by the current task L0-13 are changed at each
switch to a new task, but are overridden by a 1 in the corresponding
flag (G0-G3).

Because of the pipelining feature of the 80386 the processor may
cause a breakpoint by prefetching an instruction. Since several instruc
tions in a row may be in the chip's pipeline, the offending instruction
may even be one that would not normally have been executed. If LE or
GE is set, prefetching is turned off, slowing execution but ensuring that
only the instruction which is currently being executed can cause a break
LE is cleared at a task switch, but GE is not

42 80386 Applications Architecture

The two test registers are accessed by variants of the MOV instruc
tion. They allow data to be written to and read from the Translation ·
Lookaside Buffer, which is used to speed paging. They are of potential
help in writing test programs for the hardware and even in writing
optimization routines for paging. They are probably not of much use to
the typical applications or systems programmer, however, so they won't
be explained in more detail here.

Memory Management Registers

There are four registers that describe data structures used by an
operating system to manage memory. They will be described briefly here
and mentioned again elsewhere in the book. The important thing to
know is that the 80386 can be running several tasks at once and that
each task is made up of several segments; each segment has a descriptor
that gives its size and other important information. Multitasking is
described in Chapter 5.

IDTR. The Interrupt Descriptor Table Register points to the table of entry
points for interrupt handlers.

GDTR. The Global Descriptor Table Register contains the descriptors of
segments that are available to any of the (possibly many) tasks running
on the computer.

LDTR. The Local Descriptor Task Register contains the descriptors of
segments that are available specifically to the currently running task.

TR. The Task Register holds a copy of the descriptor of the current task
and describes where the descriptor itself is stored in memory.

Data Types

The basic data types of the 80386 are those found on the chip
itself-bits (the smallest unit of data for any computer), bytes (as used in
AL, AH, and other byte-sized registers), 16-bit words (as in AX, BX and
other 16-bit registers), and dwords (the size of all the physical registers,
EAX, ESP, etc.). This can be confusing because a computer's "word size"
is typically the size of its data bus and/or internal registers, and the 80386

Flat and Segmented Memory 43

is 32 bits throughout However, a 16-bit quantity is still called a word for
consistent usage throughout the 8086 family. Other data types are derived
from these basic ones, either by interpreting the data in one of the basic
types or by combining the basic types to form larger units.

When we deal with memory the 80386 actually reads and writes
dwords (four-byte chunks), but particular bytes can be updated indepen
dently of the dword they're in. To the programmer memory is made up
of a long series of bytes, each with its own address.

Below is a list of the data types supported by the 80386. Much of this
list will be a review to the experienced assembly language programmer,
but it's important that these terms be completely understood.

The bit is the smallest unit and can have a value of 0 or 1. When
examining bits in the EFlags register these values can be thought of as
False (0) and True (1).

The byte is the basic organizational unit, consisting of eight bits. It
can be seen in several different ways:

1) An unsigned number from 0 to 255. Every bit from the lowest (bit
0) to the highest (bit 7) represents a successive power of 2. These
values can also represent ASCII characters, with a letter, numeric
digit, or special character assigned to each of the values from Oto
255.

2) A Signed number from -128 to +127. The high-order bit (bit 7)
represents the sign of the number, a high-order 1 represents a
negative number, and the remaining bits represent the magnitude
of the number. Two's complement notation is used to determine
the bit pattern that represents negative numbers (see Chapter 1).
It's important to note that the bit pattern 11111111 represents
either the unsigned number 255 or the signed number -128,
depending only on how it's interpreted.

3) A BCD digit This is just like an unsigned number but with values
restricted to the range 0 through 9. A single byte can also contain
two packed BCD digits, each taking up four bits (a nibble).
Commands found on all 8086-family processors support packed
BCD arithmetic.

The 16-bit word can, of course, contain two bytes, each of which may
have any of the formats above. Looked at as a single quantity the word
can be interpreted in two ways:

44 80386 Applications Architecture

1) A 16-bit unsigned number ranging in value from O to 65,535 (64
K). Again, every bit represents a power of two;· the bits are
numbered from O (lowest) to 15 (highest).

2) A signed number, with bit 15 treated as a sign bit, from -32,768
to 32,767. If bit 15 is 1 the number is negative; if bit 15 is O the
number is positive.

A 32-bit dword, besides containing any of the data types above, has
several possible types of values. These values have extra importance
because the 80386 has 32-bit registers, a 32-bit data bus, and a 32-bit
address bus. Thus the 32-bit data types represent the largest numbers and
addresses the 80386 can handle at top speed. They have two possible
interpretations:

1) A 32-bit unsigned number ranging in value from O to 232 - 1
(about 4 billion). This many bytes is called 4 gigabytes, and is the
most memory the 80386 can address directly. 32-bit unsigned
numbers are also called near pointers, as they can point to any
location within a given segment

2) A 32-bit signed number, with bit 31 treated as a sign bit, ranging
in value from 232 to 232 - 1, a range between about -2 billion and
+2 billion. Again, a high bit value of 1 indicates a negative
number.

There are several data types made up by repeating one of the basic
data types:

1) The bit field is a series of contiguous bits (each next to the others)
within a dword. The bit field starts anywhere within a dword, but
doesn't extend past the end of the dword it starts in. The maxi
mum length of a bit field is anywhere from 1 to 32 bits, as
determined by its starting point in the dword. The EFlags register
is made up of a series of bit fields.

2) The term "string" is used in a general sense to mean a contiguous
series of bits, bytes, words, or dwords. A bit string may contain up
to 232 - 1 bits; other strings may contain up to 232 - 1 bytes. A
character string is a string of bytes each containing an ASCII
character.

The 8087 uses two additional large data types not normally found in
80386 programming: a 64-bit (8-byte) quadword (qword) and an 80-bit
long quantity called a tbyte.

Flat and Segmented Memory 45

Addressing Modes

Some instructions in an assembly-language program operate on data
that is contained in the instruction itself (immediate data), or on data that
is in one of the processor's registers, and thus do not access memory. The
addressing mode in which data from a register is used directly is called
Register Operand Mode; when data is contained in an instruction itself it
is called Immediate Operand Mode. The command MOV AX, 7FH gets
its destination operand from Register Operand Mode and its source
(second) operand by using Immediate Operand Mode.

When a computer program reads data from memory or writes data
to memory, it must tell the computer what location in memory to use.
The simplest assembly-language statements name the location to be used
directly. For instance, ADD AX, ANADDRESS refers to a previously
specified location in memory, ANADDRESS.

Effective programming requires that there be several different ways
to name a memory location. There are four possible elements within an
assembly language statement that are combined to determine the ad
dress to be used. This calculated or "effective address" is combined with
the appropriate segment register to determine the address that is actually
used. These four elements are:

1) Base. This is the contents of one of the general purpose registers. It
is used as a starting point; other elements are added to it to form
the effective address. The beginning location of an array might be
placed in a register for use in this way.

2) Displacement The displacement is the address of a location in
memory. The displacement can be 8, 16, or 32 bits long.

3) Index. As with based addressing, the contents of a general purpose
register are used to produce an effective address. When 16-bit
operands are in force SI and DI are used for indexing; with 32-bit
operands any register but ESP can be used.

4) Scaled. If the index is a 32-bit quantity it may also be multiplied
by 2, 4, or 8. This is useful in accessing arrays with elements of
fixed size.

An effective address is calculated by combining the elements listed
above in a straightforward way:

EA = Base Register + (Index Register * Scale factor) + Displacement

46 80386 Applications Architecture

The formula is simplified when not all elements are used. If there is no
index, for instance, the EA is just Base + Displacement Here are some
examples of how each mode is used and how the different modes can be
combined:

1) Direct addressing includes both register and immediate operands;
no memory access is needed.

2) Memory uses a displacement only. The displacement is typically
indicated by a label; the distance from the current instruction to
the label is calculated and used as the offset to use in accessing
memory.

3) Indirect uses the contents of a register as an address. The register
being used for indirection is placed in brackets. For example,
MOV AX, BX will move the contents of BX into AX MOV AX, [BX]
will move the contents of the memory location indicated by BX's
contents into AX

4) Based addressing allows a constant to be added to the value in a
register and the resulting sum used as the effective address. The
register + displacement expression is placed in brackets. MOV
AX, [BX +4] will take the contents of BX, add 4 to it, and then use
the result as the effective address. The quantity at this address
will be moved into AX

The remaining modes all use indexing. The index is placed
in brackets after the base it will be added to; only indexes can be
scaled (multiplied by 2, 4, or 8).

5) Indexed addressing adds a direct address and an index to produce
the effective address. ADD ECX, TABLE[SI] will add SI to the
value of TABLE to calculate an effective address. The number at
the effective address will be added to ECX

6) Index combines a base in a register and an index in a register.
MOV ECX, [EDX] [EAX] will add the contents of EAX to the
contents of EDX and use the result to calculate an effective
address. When 32-bit operands are used indexes can also be
scaled.

7) Scaled index mode allows the index to be multiplied by 2, 4, or 8
before it is used; ADD ECX, TABLE[ESI * 8) will multiply the
value in ESI by 8, add it to the address represented by TABLE,
and use the result as an effective address. This is especially
effective if the data items being used are 8 bytes long.

Flat and Segmented Memory 47

Besides the modes listed here, any combination of bases, indexes
(whether scaled or not), and displacements can be used. Address calcula
tion is done while the processor is doing other things, so even the most
complex address takes no extra time to calculate. There is one exception;
if a base, an index, and a displacement are all present, the instruction as
a whole will take one extra clock to execute.

Interrupts and Exceptions

An interrupt is an alteration in the normal flow of program execu
tion. Interrupt handling capabilities are built into the 80386; the first thing
the processor does when executing an instruction is check for interrupts.
The interrupt (which can come from outside the program or be caused by
executing an instruction) causes a table of interrupts to be accessed; the
table points to a routine that serves as an "interrupt handler," presumably
doing whatever is necessary to resolve the interrupt There are three types
of interrupts on the 80386. The first is called an "exception" and is caused
by the execution of an instruction. The INT instruction, for example,
actually causes an exception when executed. The handling of interrupts
varies among different operating systems; A list of real mode exceptions
is provided in Table 2-1.

There are four types of exceptions: aborts, traps, faults, and pro
grammed exceptions (also called software interrupts). An abort is the
most serious; it is an exception that doesn't allow the instruction that
caused it to be identified, nor does it allow restarting the program that
triggered it This is the case when some element of the computer system
behaves unexpectedly, meaning that not only is the current instruction
causing problems, but previous results may have been incorrect Hard
ware errors (not 1/0 device errors) and inconsistent values in system
tables are often reported with aborts.

A trap is an exception reported just after the offending instruction
has finished executing. A fault, on the other hand, is reported just before
an instruction begins to execute or during execution of the instruction.

A software interrupt is caused by an instruction designed to cause an
exception some or all of the time. INT 3, INT n, INTO, and BOUND are
the instructions designed to sometimes or always cause exceptions.

Hardware interrupts are of two main types: maskable interrupts
(which can be recognized or not depending on the setting of the I flag)
and nonmaskable interrupts (which must always be recognized). Inter
rupts are recognized by the 80386 at the very beginning of executing each

48 80386 Applications Architecture

Number Description Instruction

0 Divide error DIV, IDIV
1 Debug exception Any
2 Non-maskable interrupt
3 Breakpoint INT 3
4 Overflow INTO
5 Array boundary check BOUND
6 Invalid opcode Undefined opcode (includes

LOCK with wrong
instruction)

7 Coprocessor not available ESC, WAIT
8 Interrupt vector too large for INT

table
9 Reserved
10 Invalid TSS Any task switch
11 Segment not present Many
12 Stack boundary crossed PUSH, POP, PUSHF, POPF,

(Stack access, offset less PUSHA, POPA
than O or greater than
64 Kb)

13 General protection (Data or Many
code access, offset > 64 Kb,
or instruction length greater
than 15 bytes)

14 Page fault (page not Many
present)

15 Reserved
16 Coprocessor error ESC, WAIT
17-31 Reserved
32-255 Available for maskable

interrupts

TABLE 2-1. Interrupt ID Numbers and Descriptions

instruction; a non-masked hardware interrupt will cause an interrupt
handler to be called with no intervention from the program, regardless of
what the program is doing at the time. Maskable interrupts are signalled
via the 80386's INTR pin; non-maskable interrupts are signalled via the
NMI pin, although these interrupts actually are masked during handling
of a previous non-maskable interrupt

As Table 2-1 shows, all non-maskable interrupts are assigned iden
tifier 2, but maskable interrupts can use any identifier from 32 through

Flat and Segmented Memory 49

255. These numbers are assigned using an external interrupt controller
(for example, an Intel 8259A Programmable Interrupt Controller). Each of
these can handle up to eight interrupts, and one controller can have
another controller as one of its inputs. This is known as using "cascaded"
interrupt controllers. The arrangement of the controllers is transparent to
the programmer, who knows an interrupt only by its number. Interrupts
of all types are little different on the 80386 than on previous members of
the 8086 family. One of the big differences is the problems that can be
caused by one task altering the I flag in a multitasking system, as
described in Chapter 6.

Particular interrupts are used for important functions like coproces
sor handling and protection. We will discuss interrupts as they arise in
connection with other subjects, but will not cover their use in detail.

Guide to the
Instructions

DATA MOVEMENT INSTRUCTIONS
STANDARD ARITHMETIC INSTRUCTIONS
DATA CONVERSION INSTRUCTIONS
DECIMAL ARITHMETIC INSTRUCTIONS
LOGICAL INSTRUCTIONS
SHIFT AND ROTATE INSTRUCTIONS
BIT INSTRUCTIONS
FLAG CONTROL INSTRUCTIONS
STRING INSTRUCTIONS
FLOW CONTROL INSTRUCTIONS

CHAPTER 3

HIGH-LEVEL LANGUAGE SUPPORT INSTRUCTIONS
PROCESSOR CONTROL INSTRUCTIONS
ADDRESS MANIPULATION INSTRUCTIONS
THE TRANSLATION INSTRUCTION
SUMMARY

This chapter is meant to be a road map to the standard instructions
of the 80386. As such it serves two purposes. First it will serve to help
those readers who are unfamiliar with the 8086 family of processors. Its

51

52 Guide to the Instructions

second purpose is as a reference to the instruction set by function
(Chapter 4 presents the instructions in alphabetical order).

The instructions are grouped according to function. Each instruction
is described briefly and common usages are given. Most of the functional
groups include an example that demonstrates the operation of several of
the instructions from the group.

Central to the understanding of the 80386 instructions is the concept
of operands. Simply put, an operand is the data value that the instruction
"operates" on. Although each instruction has its own operand structure,
there are many common features that can be easily summarized.

An operand is normally classified as either a source or a destination
operand (depending on whether the instruction gets data from it or stores
data into it). In general a source operand may be a register, a memory
location, or an immediate value. Destination operands may be only
registers or memory locations. It is unusual for an instruction to accept
memory locations as both source and destination operands.

Usually the operands may be of any size (byte, word, or dword). For
most instructions with multiple operands all operands are the same size.

For a full description of the function and operands for each instruc
tion, see Chapter 4.

DATA MOVEMENT INSTRUCTIONS

This group of instructions performs the essential task of moving data
from place to place within the computer system. Data can be moved
between two registers, between a register and memory, and between a
register or memory and the stack

MOV The MOV (move) instruction moves a single data item from one
place to another.

XCHG XCHG (exchange) is used to swap the contents of two registers or
swap the contents of a register with that of a memory location. This
operation is often used for synchronization of multiple processes
because it can not be interrupted by another device using the data
bus.

PUSH The PUSH instruction copies its source operand onto the top of
the stack PUSH is most often used to place parameters on the stack

Data Movement Instructions 53

before calling a procedure. The instruction is also useful for tempo
rarily storing something on the stack.

POP The POP instruction removes the top entry from the stack and
moves it to the destination operand. The instruction is used to restore
values saved on the stack by a PUSH instruction.

PUSHA and PUSHAD The PUSHA and PUSHA.D (push all) instruc
tions are used to place all eight general registers on the top of the
stack. The difference is that PUSHA pushes the 16-bit registers and
PUSHAD (PUSH All Doubleword) pushes the 32-bit registers. These
instructions are very useful in the preamble of a procedure to save
the state of the registers for the caller.

POPA and POPAD The POPA and POPAD (pop all) instructions are the
complements of the PUSHA and PUSHAD instructions. Their func
tion is to restore all eight general registers to the values they had
before the corresponding push all. Again, the POPA operates on the
16-bit registers and the POPAD operates on the 32-bit registers.

The example below shows an easy and a hard way to swap the
contents of two registers. Notice how the stack is used in Case 1 to avoid
the use of a memory location.

State Before

Case 1

EAX 00000117

EBX 00002F3E

PUSH EAX ; Save contents of EAX on the stack.
MOV EAX,EBX ; Get EBX contents into EAX.
POP EBX ; Get old EAX contents into EBX

Case 2

XCHG EAX,EBX ; Swap contents of EAX and EBX

54 Guide to the Instructions

State After (Both Cases)

EAX 00002F3E

EBX 00000117

STANDARD ARITHMETIC INSTRUCTIONS

These instructions are used to perform arithmetic on signed and
unsigned integers. This is the most common type of arithmetic required
in programs, so this group is a cornerstone of the instruction set

ADD The ADD instruction is used to add two operands, placing the
result in the first (destination) operand.

SUB The SUB (subtract) instruction is used to subtract one operand
from another. The destination is replaced with the old value of the

_ destination minus the value of the source.
INC The INC (increment) instruction performs just like an ADD with an

immediate operand of one, except that the carry flag is unaffected.
This instruction is most commonly used in loops to add one to the
value of an index.

DEC The DEC (decrement) instruction performs just like a SUB with an
immediate operand of one, except that the carry flag is unaffected.
This instruction is most often used in loops to subtract one from the
value of an index or loop counter.

MUL The MUL (unsigned integer multiply) instruction is the simpler of
the 80386's two multiply instructions; it takes only one operand, the
source. The other two operands of the multiply are implied by the
size of the source operand.

IMUL The other multiply instruction is IMUL (signed integer multiply).
It is a much more versatile and complex instruction. The instruction
has four basic forms, based on the number and type of operands.
There are forms with one, two, and three operands.

DIV The DIV (unsigned division) instruction performs an unsigned
divide. For a division there are really four operands: the dividend, the

Standard Arithmetic Instructions 55

divisor, th_e quotient, and the remainder. Only the location of the di
visor is specified. All the other operands are located implicitly, based
on the size of the 9-ivisor.

IDIV The IDIV (integer division) instruction performs identically to the
DIV instruction except that IDIV performs a signed divide.

NEG The.NEG (two's complement negate) instruction is used to change
the sign of its single operand. The operand may be either a register or
memory location.

CMP The CMP (compare) instruction is identical to the SUB instruction
in all respects except one: it does not store the result The instruction
is used to compare two numbers in preparation for one of the condi
tional jump instructions (see below).

ADC The only difference between the ADC (add with carry) instruction
and the ADD instruction is that the former adds the value of the carry
bit into the sum. This feature makes it useful for multiple precision
arithmetic.

SBB There is only one difference between the SBB (subtract with bor
row) instruction and the SUB instruction: SBB subtracts the value of
the carry bit from the difference. This feature makes it useful for mul
tiple precision arithmetic.

To appreciate the difference between ADD and ADC consider the
following example:

State Before

EAX FFFFFFF0

EDX 00002F3E

Case 1

MEMLOC 000027DA

MEMLOC+4 00000117

ADD EAX,MEMLOC ; Add first pair of DWORDS.
ADD EDX,MEMLOC+4 ; Add second pair of DWORDS.

56 Guide to the Instructions

State After (Case 1)

Case 2

EAX 000027CA

EDX 00003055

MEMLOC 000027DA

MEMLOC+4 00000117

ADD EAX,MEMLOC ; Add least significant DWORD.
ADC EDX,MEMLOC+4 ; Add most significant DWORD.

State After (Case 2)

EAX 000027CA

EDX 00003056

MEMLOC 000027DA

MEMLOC+4 00000117

The following example illustrates the difference between the signed
and unsigned multiply instructions:

State Before

Case 1

AL~
DL [gJ

MUL AL,DL ; 132*18 = 2376.

State After (Case 1)

AX I 09481

Standard Arithmetic Instructions 57

The value in AX is 948H or 2376 decimal.

Case 2

IMUL AL,DL ; -124*18 = - 2232.

State After (Case 2)

AX I F748 I
I

The following example illustrates the difference between the signed
and unsigned divide instructions:

State Before

Case 1

AX~

DL~

DIV AL,DL ; 1215/154 = 7, Remainder 137.

State After (Case 1)

AX~907
AH 89

AL 07

AL contains the quotient; AH contains 89H or 137 decimal, the remainder.

58 Guide to the Instructions

Case 2

IDIV AL,DL ; 1215/-102 = -11, Remainder 93.

State After (Case 2)

AX fflDF5
AH 5D

AL F5

AL contains F5H or -11 decimal, the value of the quotient; AH contains
5DH or 93 decimal, the remainder.

DATA CONVERSION INSTRUCTIONS

This group of instructions is used to convert one type of data into
another. Most of the instructions deal with signed numbers, but there is
one that helps with unsigned data.

MOVSX The MOVSX (move with sign extension) instruction moves a
source operand into a larger destination operand by extending the
sign bit of the source throughout the upper part of the destination.

MOVZX MOVZX (move with zero extension) is similar to MOVSX
except that the upper part of the destination is set to zero.

CBW The CBW (convert byte to word) instruction is like a limited form
of MOVSX It can only deal with the AL register as the source and
the AX register as the destination. The AH register is filled with the
sign bit from AL, converting the signed byte in AL into a signed word
in AX

CWDE A similar instruction is CWDE (convert word to dword extended).
This instruction converts the signed word in AX into a signed dword
in EAX by extending the sign bit of AX throughout the upper half of
EAX

Data Conversion Instructions 59

CWD The CWD (convert word to dword) instruction has the same goal
as CWDE but behaves differently. It is also meant to convert a signed
word to a signed dword, but the result is placed into two registers
(unlike CWDE). The DX register is filled with the sign bit from AX

CDQ The last of the conversion instructions is CDQ (convert dword to
qword). This instruction fills the EDX register with the sign bit of the
EAX register.

The following example illustrates the instructions in this group:

State Before

EAX FACEFFF0

EBX 5A5A5A5A

ECX ACACACAC

EDX 12345678

Instructions

MOVSX EAX,MEMLOC
MOVZX EBX,MEMLOC
MOVSX ECX,MEMLOC2
MOVZX EDX,MEMLOC2

State After

EAX FFFFFF3E

EBX 0000FF3E

ECX 000007DB

EDX 000007DB

MEMLOC

MEMLOC2
~
~

; Move (sign extend) from MEMLOC.
; Move (zero extend) from MEMLOC.
; Move (sign extend) from MEMLOC2.
; Move (zero extend) from MEMLOC2.

MEMLOC

MEMLOC2

60 Guide to the Instructions

DECIMAL ARITHMETIC INSTRUCTIONS

The 80386 does not directly provide support for BCD arithmetic, but
the decimal adjust instructions (when used in conjunction with the
normal arithmetic instructions) do provide this support The decimal
adjust instructions come in two basic types; The ASCII adjust instruc
tions handle one BCD digit per byte, and the decimal adjust instructions
handle BCD digits packed two per byte.

AAA, AAS, AAM, and AAD There is one ASCII adjust instruction for
each of the four basic arithmetic operations. Three of these are used
after the normal arithmetic instruction to adjust the result so that it
still contains a valid BCD digit They are AAA (ASCII adjust after
addition), AAS (ASCII adjust after subtraction), and AAM (ASCII
adjust after multiplication). The other instruction, AAD (ASCII adjust
before division), is performed before the division to prepare the ope
rands for division.

DAA and DAS There are only two decimal adjust instructions, one for
addition and one for subtraction. They are used in the same way as
their ASCII adjust counterparts.

The following example uses the instruction AAA to illustrate the use
of the ASCII adjust instructions:

State Before

AX I 0009 I
Instructions

ADD AL,8 ; 9 + 8 = 11 H (17}.
AAA ; Adjust to BCD format

State After

AX I 01071

Logical Instructions 61

LOGICAL INSmUCTIONS
Lbdi iiisii JH1NH¥ft¥ WMMi@ § Bi fffl-&MX?W J\1- @ t ¥ ¥¥iiitii¥¥itttt-®tm1UI

This group of instructions is used for two purposes: it provides the
operations used on Boolean (sometimes called logical) values, and also
provides ways to access and manipulate bit fields within bytes, words, or
dwords.

AND The AND instruction performs a logical "and" function on its two
operands. This instruction is useful for clearing a bit field to zero.

OR The OR instruction performs a logical "or" function. The common
usage with bit fields is to set the value of the field by first using AND
to clear the field and then using OR to store the desired value.

NOT The NOT instruction (one's complement negation) takes only a
single operand. This instruction reverses all the bits in its operand.

TEST The TEST (logical compare) instruction performs identically to
AND except that the result is not stored. This instruction is useful for
testing the value of a bit field for zero (or non-zero).

XOR The XOR instruction provides the logical "exclusive or" function.
The main value of the instruction with bit fields is to complement
only the bits in a given field.

SETxx The SETxx instructions are used to remember the result of some
comparison. The "xx" is replaced by one of a large set of possible
comparison conditions. If the comparison is true then the destination
operand is set to one. The destination is set to zero if the comparison
is false.

The following example shows the effects of the four major logical
instructions using identical operands. If you have difficulty understand
ing the results of these operations, try converting the hexadecimal num
bers to binary. This exercise will give you a better appreciation for the
operations involved.

State Before

MEMLOC1 C3C3

MEMLOC2 C3C3

MEMLOC3 C3C3

62 Guide to the Instructions

Instructions

AND MEMLOC1,AX
OR MEMLOC2,AX
XOR MEMLOC3,AX
NOT AX

State After

AX I 5555 MEMLOC1 8282

MEMLOC2 EBEB

MEMLOC3 6969

SHIFT AND ROTATE INSTRUCTIONS

These instructions provide a way to move bits within one of the
standard data types. The main usefulness of these instructions lies in two
areas; they can be used to speed multiply and divide operations on
integers, and can also be used in the implementation of bit fields.

SHR and SHL The SHR (shift right) and SHL (shift left) instructions
perform logical shifts. They shift zeros into one end of the operand so
that data bits "fall off' the other end.

SAR and SAL The two arithmetic shift instructions are SAR (right) and
SAL (left). The left arithmetic shift is identical to a left logical shift
The SAR, however, shifts in a copy of the sign bit on the left This
feature allows for division of signed numbers by powers of 2.

ROR and ROL The rotate instructions do not cause any data bits to be
shifted out of the operand. Instead, the ROR and ROL instructions
perform a circular shift. In a circular shift any bits shifted out one
end of an operand are shifted back in the other end.

RCR and RCL The next pair of shift instructions are RCR and RCL, the
rotate through carry shifts. In these instructions a bit shifted out one
end of the operand is placed into the carry flag, and the old value of

Shift and Rotate Instructions 63

the carry flag is shifted into the other end of the operand. The most
common use of these instructions is for multiple precision shifts (of
all three kinds).

SHRD and SHLD The last of the shift instructions are the double preci
sion shifts SHRD and SHLD. These are also useful for multiple preci
sion shifts, but work in a different way than the rotate through carry
instructions. These instructions have three operands: source, destina
tion, and shift count The destination is shifted and bits "fall off' one
end, but the vacated bits are filled with bits from the source. The
source is unchanged.

The following example illustrates the difference between the normal
rotate instructions and the rotate through carry instructions:

State Before

AX 166991
FLAGS 0202

Case 1

ROR AX,1 ; Sets overflow, carry unchanged.

State After (Case 1)

AX I B34C I
FLAGS 0A02

Case 2

RCR AX,1 ; Clears overflow, sets carry.

64 Guide to the Instructions

State After (Case 2)

AX I 334C I
FLAGS 0A03

BIT INSTRUCTIONS

This instruction group is very useful for manipulating single bits. It
includes all the required operations for setting and testing individual bits.

BT, BTS, BTR, and BTC The BT (bit test) instruction simply places the
value of a specified bit into the carry flag. Three other instructions
perform the same function but also allow you to store a value in the
addressed bit BTS sets the bit to one; BTR resets the bit to zero, and
BTC complements the bit

BSF and BSR The two bit scan instructions, BSF (bit scan forward) and
BSR (bit scan reverse), find the first 1 bit in an operand from either
the least significant end (BSF) or the most significant end (BSR).
Either instruction will be useful in implementing bit maps. BSR can
also be used to compute base two logarithms.

The following example shows one of the bit scan and one of the bit
test instructions (note that the 22 in the BTC instruction is a decimal
number):

State Before

EAX 004037BF

EBX

ECX

FLAGS

00000000

00000000

I 0242

Flag Control Instructions 65

Instructions

BSR EBX,EAX ; EBX = bit number of most significant one.
BTC EAX,22 ; Change bit 22 from one to zero.
BSR EC:x,EAX ; EBX = bit number of most significant one.

State After

EAX 000037BF

EBX

ECX

FLAGS

00000016

0000000D

I 0203

FLAG CONTROL INSTRUCTIONS
lfiN$ •- fl GW-if#IIRfflttfti+NifWjijf-1¥A 4 W i O t\lM-}iti 4 41114

This group of instructions allows the programmer to monitor and
control the 80386 flags. There are two sub-groups; one contains instruc
tions that address an individual flag, and the other contains instructions
that address the flags as a whole.

There are seven instructions that reference an individual flag. The
CLD and STD instructions clear and set the flag which controls the
direction of the string operations. The CLI and STI instructions clear and
set the interrupts enabled flag. The CLC and STC instructions clear and
set the carry flag. In addition, the CMC instruction is also provided to
complement the value of the carry flag.

The LAHF instruction loads the least significant byte of the flags into
the AH register. The SAHF instruction, on the other hand, stores the data
from the AH register into the low byte of the flags register. There are four
instructions that move flags to and from the stack The PUSHF and
PUSHFD instructions push the FLAGS and EFLAGS registers (respec
tively) onto the stack The corresponding pop operations are performed
by POPF and POPFD.

66 Guide to the Instructions

The following example demonstrates both the usage of the stack to
save the flags and one of the flag setting instructions.

State Before

Instructions

PUSHF
SUB EAX,EAX
POPF
STD

State After

EAX 00003 7BF

FLAGS 0A93

; Save current flags on the stack.
; Clear OF, SF, AF, CF; set ZF and PF.
; Get old flags back from the stack.
; Set the direction flag.

EAX 00000000

FLAGS 0E93

STRING INSTRUCTIONS

It is often necessary to deal with large chunks of data at a time. The
instructions in the String Instruction group are helpful in doing just that
Many common loops that would otherwise require several instructions
can be implemented in just a single string instruction.

Each of the string instructions normally performs a single operation.
The operation can be a move, a compare, a load, a store, or a scan. The
(E)SI register is used to point to the source operand, and the (E)DI register
is used to point to the destination operand. Both these registers are
updated to point to the next string element after the instruction. The

String Instructions 67

instructions are most useful, however, when used with one of the repeat
prefixes.

REP, REPE, REPZ, REPNE, and REPNZ The repeat prefixes allow the
string instruction that follows to be executed a controlled number of
times. The REP prefix causes the following string instruction to be
executed the number of times in the ECX register. The REPE and
REPZ prefixes are synonyms. They cause the instruction to repeat
until either the count is exhausted or the instruction ends with the
Z flag set to zero. The other two repeats (REPNE and REPNZ) work
just like REPE except that the loops they are used in exit when the
Z flag is set to one.

MOVS The MOVS instruction simply moves a string of data from one
spot in memory to another. Care must be taken to achieve the desired
result when the two strings overlap. The direction flag is useful for
this situation.

CMPS The CMPS instruction is used to compare two strings. The REPE
or REPNE prefix is used to terminate the comparison at the point
of interest

STOS The STOS instruction is useful for filling a string with a constant
value. It transfers the contents of the appropriate part of the EAX
register into each element of the string.

SCAS The SCAS instruction is similar to STOS in the way that CMPS is
similar to MOVS. SCAS compares each element of the string with
the contents of the suitable part of the EAX register. Normally REPE
or REPNE are used with this instruction.

LODS The LOOS instruction is atypical of this group in that it is not
usually used with a repeat prefix. It merely loads the next element of
the string into some part of the EAX register.

The following example uses the MOVS instruction to illustrate the
general principles of the string instruction group:

Assumptions

STRING 1 is at offset 100H in segment 151H.
STRING 20 is at offset 105H in segment 151H.
The D (direction) flag is set to O (forward).

68 Guide to the Instructions

State Before

ESI

EDI

DS
ES

Instructions

00000200

00000300

0151

011C

LEA SI,STRING1
LES DI,STRING2
MOV ECX,5
REP MOVSB

State After

ESI

EDI

DS
ES

00000105

0000010A

0151

0151

STRING1

STRING2

Al

FF
AZ

FF
A3 A4

FF FF

; Prepare the source address.
; Prepare the destination.

A5

FF

; Get the count for the string move.
; Move the byte string.

STRING1

STRING2

Al

Al

AZ

AZ

A3 A4 A5

A3 A4 A5

FLOW CONTROL INSTRUCTIONS

It would be impossible to write any useful programs without some
way to change the normally sequential flow of instruction execution. The
instructions in this group provide the needed tools for controlling the
flow of program execution.

JMP The most basic transfer of control is the unconditional jump (JMP)
instruction. Most commonly the programmer supplies a label after

Flow Control Instructions 69

the JMP that indicates which instruction is to be executed next The
assembler then generates the correct form of JMP based on its
knowledge of the location of the named statement

]xx The next type of control transfer is the conditional jump, the Jxx
instructions (where "xx" is replaced by a code for the particular con
dition to be tested). See Chapter 4 for an explanation of all of these
codes. Generally the programmer does a comparison (or any instruc
tion which sets some flags) and then issues a conditional jump caus
ing the program to change locations based on a bit in the FLAGS
register.

CALL The CALL instruction is used to implement procedures (some
times called subroutines, subprograms, or functions). It transfers
control in a manner similar to JMP. However, just before the trans
fer, information is placed on the stack so that the CALLed pro
cedure can cause instruction execution to resume at the instruction
following the CALL. The RET (return) instruction is used to perform
this action.

LOOP, LOOPE, LOOPZ, LOOPNE, and LOOPNZ The loop instructions
help in the construction of many program loops. The LOOP instruc
tion is used to execute a loop the number of times specified by the
ECX register. The LOOPE and LOOPZ instructions have the addi
tional constraint that the loop will terminate when the zero flag is
zero. The LOOPNE and LOOPNZ instructions are similar to LOOPE
and LOOPZ except that a zero flag of one will cause the loop to
terminate.

INT, INTO, IRET, and IRETD The final form of control transfer is the
interrupt These will be only briefly treated here, as they are covered
in more detail in chapter 5. The INT instruction causes a system
interrupt procedure to be activated. The INTO instruction causes
interrupt procedure 4 to be activated if the overflow flag is set Inter
rupt procedures are normally provided by the operating system. The
interrupt procedure will return to the calling program with one of the
return from interrupt instructions (IRET or IRETD).

The flow control instruction example deviates from the form of our
other examples. This one consists of a program fragment written in a
higher-level language and the assembler code that might be generated by
the compiler. Note that the high-level code is intentionally not the best
possible code to sum the odd numbers between 1 and 10.

70 Guide to the Instructions

The high level code:

SUM= 0;
DO INDEX = 1 TO 10;

IF (INDEX AND 1) = 1 THEN SUM = SUM + INDEX;
END;

The generated assembly code.

MOV BX,0
MOV Ax,1
MOV ECX,10

LOOP _ST ART:
TEST Ax,1
JZ SKIPIT

ADD Bx,AX
SKIP_IT:

; Set SUM to zero.
; Initial value of INDEX
; Repeat count for the loop.

; Test the low order bit
; Jump if number is even.

; Sum if number is odd.

INC
LOOP
MOV

AX ; Increment number.
LOOP _ST ART ; Loop until done.
SUM,BX ; Store the result

HIGH-LEVEL LANGUAGE SUPPORT INSTRUCTIONS

The instructions in this group are normally generated by high-level
language compilers, not assembly language programmers. They make the
compiler writer's job easier and provide fast hardware support for some
common operations.

BOUND The BOUND instruction is meant for use in checking array
bounds. It takes a value, a lower limit, and an upper limit as ope
rands. If the value does not lie within the limits an interrupt occurs.

ENTER and LEA VE The ENTER and LEA VE instructions are com
plementary instructions meant to lessen the set- up time at the
beginning of a procedure. ENTER sets up the stack at the beginning

Address Manipulation Instructions 71

of a procedure to ease access to arguments, local variables, and vari
ables in related procedures. LEA VE restores the stack in preparation
for the RET instruction.

PROCESSOR CONTROL INSTRUCTIONS

The instructions in this group control the activity of the central pro
cessor. The most common usage is to help interface with other processors
(like an 80287 floating point coprocessor) in the system.

ESC The ESC prefix informs the 80386 that the instruction that follows
is not meant for the 80386 at all, but rather must be handled by a
coprocessor.

WAIT The WAIT instruction causes the processor to stop executing
instructions. The processor will not resume until the bus signal BUSY
is inactive. This operation is used to wait for a coprocessor to finish
the computation of a needed result

LOCK The LOCK prefix causes the system bus to be dedicated to the
80386 for the duration of the prefixed instruction. This capability is
used to prevent bus contention at critical times in multi-processor
systems. NOTE: the LOCK prefix in the 80386 has a number of restric
tions. Please check the full instruction definition in Chapter 4 if you
are porting a program that uses LOCK from an older processor to the
80386.

NOP The no-operation instruction, NOP, is an instruction that does
nothing. It is therefore not commonly used. It does, however, have
some usefulness in debugging.

HL T The final instruction in this group is HL T, the halt instruction. This
instruction causes the processor to stop all activity until reset HLT is
normally only used as a drastic measure.

ADDRESS MANIPULATION INSTRUCTIONS

In this group are the instructions used for loading address pointers.
Although there are six instructions in the group, they really are of only
two types. The first type consists of the single instruction LEA. LEA loads
a register with the offset of a specified memory location. It is useful for

72 Guide to the Instructions

loading an index register. The second type is the full pointer load type.
These instructions load both a segment register and an index register.
The segment register is loaded with the segment selector of a memory
location, and the index register is loaded with the offset of the memory
location. The instruction mnemonics are of the form Lxx, where "xx" is
the name of one of the segment registers.

State Before

EDI 00000200

ES 011C

Case 1

MOV ES,MEMLOC ; Load selector into ES.
LEA EDI,MEMLOC ; Load offset into EDI.

Case 2

LES EDI,MEMLOC ; Load selector into ES, offset into EDI.

State After (Both Cases)

EDI 00000100

ES 0242

THE TRANSLATION INSTRUCTION

XLAT The final instruction does not fit any of the other groups, so it
gets a group of its own. The XLAT instruction performs a table look

Summary 73

up translation. That is, it assumes that AL contains a byte index into
a table pointed to by (E)BX The byte in AL is replaced by the table
entry that it points to. This instruction is useful in character code
translation applications, and in command parsing and other charac
ter classification applications.

SUMMARY

This chapter has been a brief summary of the 80386 instruction set
It should also prove useful as a reference when you know what you need
to do but are unsure of which instruction to use. You should now be
prepared for chapter 4, which consists of a more detailed look at each of
the instructions.

CHAPTER 4
The 80386
Instruction Set

HOW ASSEMBLY LANGUAGE WORKS
WHAT IS AN INSTRUCTION'S FORMA n
TIMING INFORMATION
THE 80386 AND OTHER iAPX 86 CHIPS
THE INSTRUCTIONS

So far we've tried to take a gentle approach to some intimidatingly
technical subjects. With its high-level capabilities, the 80386 has the most
advanced ideas in computing burned into its silicon; yet, because it is
compatible with earlier Intel efforts, it also embodies a history of
microcomputing. Programming the chip to its capabilities therefore re
quires drawing on a large body of knowledge, some of which is sum
marized in the preceding pages. Having a firm grasp of this general
knowledge enables the programmer to act as an architect, designing a
program or set of programs that will fit the user's needs while getting the
most out of the hardware resources at hand.

A large amount of programming time is spent grinding out solutions
to problems after the design work is done-get the data into the chip, shift

75

76 The 80386 Instruction Set

or multiply or add it, then store or print it In this effort the chip's
instruction set is the programmer's toolbox. Knowing when to use a
rubber mallet (perhaps a Shift instruction) and when to use a 5-pound
sledge (like the Multiply instruction) can make a big difference in how
the final product looks and works.

This chapter is a list of tools. The instruction set is the closest most
of us get to the actual inner workings of the chip. A working knowledge
of factors like timing and at least a general understanding of instruction
sizes is important to anyone wanting to be a competent assembler pro
grammer. Working assembler programs can be written by those who
know only a small subset of the instruction set and are aware that
assembler programs run faster than high-level language programs, but
don't know why. This approach may be sufficient when writing small
program loops in assembler to be combined with large high-level
l_anguage programs. However, those who want to go beyond this minimal
approach and write medium or large programs that get the most out of
the machine would do well to spend some time with this chapter, trying
previously unused instructions in small programs and putting some
thought into how to write efficient code.

The efficiency comes from knowing how quickly each of a program's
routines will execute. For a very simple example, let's say you're convert
ing an 8088 program to the 80386 and optimizing it where possible. The
8088 program at one point has to multiply a number by 10, and does so
by shifting the number left by three bits (same as multiplying by 8) and
then adding the original number to the result twice (this equals multiply
ing by 10). At 14 clocks this multistep process is far more efficient than
using the 8088's MUL instruction (which takes 70 or more clocks to exe
cute) if all the numbers are in registers. On the 80386 the same multistep
process takes 9 clocks, but using an IMUL instruction would require only
10 clocks. Given the simplicity and directness of using a single instruc
tion, the IMUL is a better choice.

Figure 4-1 shows the fact that the 80386's instruction set is "flat" in
terms of execution time; that is, the slower and the faster instructions
aren't too far apart in speed. Of course it also illustrates the fact that the
80386 is much faster than the 8088. On the 80386 IDIV (or Integer
DIVision), for instance, only takes 6 times as long as a CMP (CoMPare).
On the 8088, by contrast, an IDIV takes 19 times as long as the CMP. On
the older chip a good way to speed up your program was to replace a
slow instruction with a bunch of fast instructions (for example, doing
three ADDs instead of MULtiplying by 3). Another good trick was to use

How Assembly Language Works 77

200

180

160

C 140
I
0 120
C
k
s 100

80

60

40

20

0
CLC

8088 □ 80386

Figure 4-1. Some Instruction Execution Times, 8088 vs. 80386

a CMP or two before something slow like an IDIV. The result of the CMP
might help you avoid doing the IDIV. Of course, this took more program
mer time and resulted in lengthy, hard-to-follow code. On the 80386,
however, it's not worth avoiding something like an IDIV, since executing
even a few other instructions will take just as long. In general, the 80386
will reward using the most logically appropriate instruction and using
the entire instruction set, not just a few of the faster instructions.

This brings us to the other benefit of knowing the information given
in this chapter- compactness. Well-written assembler programs are com
pact for several reasons. They always use the best instruction for the job,
based on a detailed knowledge of the instruction set and the time needed
to execute each instruction. Also, the actual size of an instruction is a
factor. An instruction that adds two registers is smaller than an instruc
tion that adds a register and an immediate value, because the immediate
value takes up space in the object code.

A diligent programmer will use the information in this chapter as a
guide and then test time- or size- critical programs to see how long they

78 The 80386 Instruction Set

run and how big they are. If you're writing a subroutine that will be used
by others, including timing and size information with the routine's
documentation will make your program much more usable by later
programmers.

HOW ASSEMBLY LANGUAGE WORKS

Your assembly language program is not really the lowest possible
level of programming. First, the assembler translates your program into
the "formats" described below. The instruction POPA, for instance, is
translated into a byte containing 61 hex. Other instructions are longer
because they need to include memory addresses or register designations.

These assembled instructions make up "object code," which is in
"machine language." Using the information in this chapter you can
predict exactly what machine language code a given instruction will
produce once it's assembled. Compilers produce machine language ob
ject code too, but it tends to be less efficient than assembler-based code
because compilers aren't as smart as humans.

Simpler chips have very simple assembly languages and assembler
programs. The 6502, for instance, has only two general registers. Very
specific instructions like TXY (transfer the value in the X register to the Y
register) are used and each instruction has one machine language coun
terpart (or perhaps a few, each using a different addressing mode). The
80386, on the other hand, has many registers and many addressing
modes. To transfer any register to another (or to memory, or to transfer
from memory to the register) we use the MOV instruction followed by the
registers we wish to move information from and to. This means that the
MOV instruction has many machine language counterparts, depending
on the type of move (register to register in this case) and which addressing
modes are used. Different versions have different formats and lengths. The
important difference between assembly language and a high-level
language is that every instruction in assembler translates into a single
machine language instruction, although which one is used depends on
such things as which register is used. In high-level language most single
instructions translate into several machine language instructions.

Just how integral, how "built-in" is the assembly language of a
processor? The secret's in the "microcode" included with most modern
processors. Microcode is a "program" running in the chip that decodes

What is an lnstru~lon's Format? 79

the object code presented to it and performs the desired functions.
Microcode is a tool of the hardware designers that allows them to simplify
and modularize their chip design to make it easier to work with.

WHAT IS AN INSTRUCTION'S FORMAT?

An instruction's format is just the translation of the instruction into
O's and l's. For much assembly language programming there's no need to
be concerned about formats. However, when trying to read hex dumps
knowledge of instruction formats is necessary, and the only way to patch
an existing program is by using knowledge of the formats to change the
instructions themselves.

Most 80386 instructions have many different formats because they're
really many different instructions. To the chip, adding a number from
memory into one in a register is much more complicated than adding
two values in registers. The prefetcher, for instance, has to try to steal
bus cycles to go get the operand from memory while some other
command is executing, which can affect prefetch efficiency. The various
80386 assemblers are very powerful and keep the programmer a healthy
distance from the bit-level operations of the chip. This is usually a good
thing. To better understand the formats used by each instruction we'll
look at the elements a machine language has to have to make a
computer get things done.

First there is the instruction itself, often called the opcode (short for
operation code). Are we asking the computer to move information? To
add two numbers together? To transfer program execution to a new
location? The opcode tells the computer what we're going to do. In
several cases the opcode is all that the computer needs to get the needed
task done. For instance, the instruction STC (SeT the Carry bit) requires
only an opcode since its operation is implicit in the instruction itself. The
instruction format is very simple: OF9H. At one byte this is as small as any
instruction on the 80386, and executes in a mere two clocks.

Besides the opcode the computer needs to know where to find its
operands-the parameters or arguments needed to complete the instruc
tion. There are two techniques used by 80386 instructions to encode this
information. The first is simple, the second more complex.

Some instructions use bits in the opcode to specify a register
operand. The PUSH command (which puts a number on the stack) has

80 The 80386 Instruction Set

one operand. If the number being PUSHed is a register, a number telling
which register to push is included in the opcode: 50H pushes the AX
register, while 51H pushes the CX register. The last three bits tell which
register to push. Again, these instructions are one byte long and take two
clocks to execute.

Instructions that have more than one operand or an operand in
memory use the more complicated scheme to specify their operand
location. For these instructions there is an another byte following the
opcode byte that is called the ModRM byte. This byte is formatted as
follows:

ModRMByte

mod reg r/m

7 65 4 32 1 0

The three fields in the ModRM byte each play a different role in
specifying the operands of the instruction.

The "r/m" field occupies the least significant three bits of the byte. It
specifies either one of the eight general registers or one of 24 addressing
modes, depending on the value of the "mod" field.

The "reg" field is contained in the next three bits in the byte. For
instructions with two operands, it specifies a register number. For single
operand instructions this field acts as an extension of the opcode, further
specifying the exact nature of the instruction.

The most significant two bits of the byte are occupied by the "mod"
field. Of its four possible values, one indicates that the "rim" field contains
a register number. The other three values are used to select one of three
groups of eight addressing modes.

Now to return to our example of the PUSH instruction. If the number
being pushed is in RAM, we need to tell the computer where to find the
number that it's going to push. In this case, the instruction goes like this:
0FFH mod 6 rim. The instruction itself is the first byte (all l's), plus three
bits in the middle of the second byte (110). The "mod rim" bits (two for
mode, three for register/memory) tell the addressing mode and where in
memory to get the number from. Then, the actual address in RAM to get
the number from is given. With all the work that goes into decoding this
instruction, it's surprising that the instruction executes in only 5 clocks-on
the 8088 it takes more than 16 clocks.

Timing Information 81

Some of the addressing modes mentioned above require even more
information to successfully locate the desired operand. When a ModRM
byte specifies an addressing mode that requires this information, it is
followed by another byte. This extra byte is called the SIB byte for Scale,
Index, and Base. Its format is:

SIB Byte

scale index base

7 6 5 4 3 2 1 0

As in the ModRM byte, the three fields in the SIB byte each specify
a different item of information about the addressing mode.

The "base" field is contained in the least significant three bits of the
byte. It specifies the register that will be used as the base register.

The index register is specified in the "index" field, which occupies
the next three bits in the SIB byte.

The "scale" field resides in the most significant two bits of the byte.
It gives the scale factor used for indexed addressing modes.

Speaking of software evolution, an experienced programmer can see
many evidences of change over time just by looking at the instruction
formats for the 80386. For instance, the new Bit Test instructions (which
test and change individual bits) might be expected to be as short as
possible. After all, these instructions will be much-used and they perform
straightforward functions. However, these instructions actually all start
with the same first byte (OFH) and it takes another byte to specify which
instruction is being used, plus more bytes for address and immediate
data. Compared to similar instructions the extra byte seems to make
these instructions take an extra cycle to execute.

Precise directions for decoding the information given in the format
section included with each instruction are given just before the start of
the listings of the instructions themselves.

TIMING INFORMATION

The timing data given with the instructions ranges from very precise
to surprisingly vague, considering that we're dealing with assembly

82 The 80386 Instruction Set

language (which gives us the most precise control over the machine that
we can hope to get). Of course, instructions like CLC (Clear the Carry bit),
which always do the same thing in exactly the same way, always take the
same amount of time (two clocks in this case). Instructions that can use
either registers or memory as operands vary tremendously in the amount
of time they take to execute. In a way, such an instruction is actually
several different instructions depending on where its operands are com
ing from. Thinking of it as a single instruction is a powerful tool for
making programming easier but distances us from what's actually hap
pening inside the chip. It takes a fair amount of work to adjust your
thinking down to the machine level when trying to calculate how long an
instruction will take to execute. The information given for each instruc
tion gives the various forms an instruction can take and timing informa
tion for each.

Also complicating matters is the fact that the timing information
given below isn't precise; most programs take about 5 percent longer to
execute than they should based on the timing information given below.
The details of this are interesting and depend directly on the way the
80386 is designed, but if you don't often have cause to time your
programs or write timing-critical loops you might wish to skip the
explanation below.

The reason the chip runs slow is that the times given in this chap
ter assume that pipelining is always in effect Pipelining, as described
previously, is the ability to fetch one instruction, decode another, and
execute a third all at the same time. This is aided by the existence
of queues, which hold several fetched instructions awaiting decod
ing and several more decoded instructions awaiting execution. The
timing information given below assumes that pipelining is in full effect at
all times. In actuality, however, some instructions take less time to
execute than they do to fetch and decode. If several of these instructions
occur in a row the queues slowly empty as the instruction unit charges
through the simple code. Once the queues empty, the instruction unit has
to wait for at least part of the fetching and decoding time until it can do
its own thing. When this happens the chip slows down (See Figure 4-2).
Any instruction that transfers program control (such as JMP, CALL, RET,
etc.) will also empty out the queues since the fetcher doesn't know where
the next instruction is coming from until it's needed.

The upshot of this problem (which is not a "bug" in the 80386, but
actually just a necessary exception to its usual full-speed, pipelined
execution) is that the times given below aren't exact If the instruction

Timing Information 83

Prefetch Queue Instruction Queue Execution Unit

Normal Operation: Execution Unit Uses Queues

Prefetch Queue Instruction Queue Execution Unit

5 Percent of Time: Execution Unit Runs Ahead of Queues

Figure 4•2, Queues and Execution Speed

queue happens to be empty when the execution unit is ready, the next
instruction will take longer than usual to execute. How much longer
depends on how long it takes to get a decoded instruction into the queue.
On average the occasional breakdown of pipelining adds a little more
than 5 percent to the time it takes a given program to execute. If your
system has a cache memory this percentage will be less, as fetching will
execute even more quickly than usual. Of course, there's not really such
a thing as an "average" program, so you'll have to compare your own
programs to the clock counts given below if you wish to see what effect
all this is having on your own programs.

Knowing exact timing information is unlikely to be necessary for
most programs most of the time. The "average" programmer (again,
there's really no such thing) can get by just fine by adding 5 percent to
the calculated execution time for a given program. It's almost never
worthwhile to try and cut down this overhead by reordering instructions.

Writing a program that needs to execute in a precise amount of time
can range from frustrating (for a simple timing loop) to impossible (if
your program has to handle highly variable input data). Adding to this
frustration is the variation in times a given instruction can take to
execute, depending mostly on where it gets its operands. If your program
should take 129 cycles to execute and it's taking 142, is the problem an
extreme example of pipelining breakdown or did you make a mistake in
adding up the cycle counts given below?

84 The 80386 Instruction Set

Really extinguishing any hopes of precisely timing some programs is
the difference in execution speeds between Real Mode and Protected
Mode. The programmer doesn't necessarily know when coding what
mode the program will be run in, so he or she can't predict program
execution time if some of the instructions run at different speeds in
different modes. Luckily the speeds are only different when loading
pointers (LDS, LES, LFS, LGS, and LSS) and making CALLs, JMPs, and
RETs across segments (the conditional jumps like JNE don't go across
segments). Few programs make these types of jumps in timing-sensitive
sections, or make enough of these jumps that the added execution time
in Protected Mode is a problem.

THE 80386 AND OTHER iAPX 86 CHIPS

The 80386 programmer who is converting programs from earlier
iAPX family chips, or whose programs may later be converted to one of
the earlier chips, needs to know which instructions work on which
microprocessors. Even the 80386-only programmer will want to adapt
sections of code written for the 8086/88, saving himself much work in the
process. The earlier chapters on the iAPX 86 family included some
information about which instructions were new with each new chip.

The instruction descriptions below tell in detail which instructions
(and even which modes of a given instruction) were first seen with which
chip. Every new iAPX 86's instruction set is a superset of the preceding
chips; which allows upward compatability of programs. In some cases
the chips are assembly language compatible but not object code com
patible. In these cases "all you need to do" to make a program run is
to recompile its source code on the new machine. The reason for the
quotes around "all you need to do" is that it's easy to get the source for
your own programs, but try getting a copy of the source code of Lotus
1-2-3 so you can recompile it!

Few new instructions have been added with each new chip and
operating mode. About nine out of ten of the 80386's instructions are
unchanged from the 8086/88 (except that when run on the 80386 they
can handle 32-bit operands). Of the remaining one tenth, some have had
new addressing modes or protection considerations added, and a few are
brand new.

The 80386 and Other iAPX 86 Chips 85

Figure 4-3 shows the relationship between the various pieces of the
80386's instruction set Most of the instructions come unchanged from
the 8086/88. In fact, these instructions are called the Basic Instruction Set
of the iAPX 86 family. Several new instructions of the type used in
everyday programming were added for the 80186/188, and that chip's
operation is considerably faster than its predecessor's.

The 80286 had no new instructions of the type programmers use
every day, but it did have new operating system type instructions for
memory management and program protection. Very few programmers
have learned to use these new instructions because few operating sys
tems or applications programs have taken any advantage of the 80286's
capabilities. Indeed, the 640 Kb address space limit (which MS-DOS
imposes on the IBM PC) still hasn't been lifted as the first 80386-based
machines become available. A whole cottage industry of standards
committees and programming tips and tricks grew up among those
seeking to get beyond this limit

The 80286 was an odd man out in other ways as well. For instance,
its onboard clock wasn't duplicated on the 80386. The 80386, on the
other hand, is a direct descendant of the 8086 which incorporates the
lessons learned with the 80286. It has several new everyday-type instruc
tions (as represented by the Extended Instruction Set in 80386 Real
Mode) mostly dealing with bit manipulation (something Intel's chips had
always fallen short in compared to the competition). It also integrates
32-bit registers and data paths completely throughout the system while
still making byte and word manipulation easy.

Protected Mode Instruction Set
80386 Protected Mode

Extended Instruction Set
80386 Real Mode

Protected Mode Instruction Set
80286 Protected Mode

Extended Instruction Set
80186/88

I Basic Instruction Set I 8086/88

Figure 4-3. The 80386 Instruction Set and Other iAPX 86 Instructions

86 The 80386 Instruction Set

Finally, the 80386 has a complete set of memory management,
protection, virtual memory, and debugging instructions accessible mostly
through Protected Mode (as represented by the System Control Instruc
tion Set, 80386 Protected Mode).

THE INSTRUCTIONS

The remainder of this chapter is a list of the instructions available in
80386 assembler language, with instruction formats, clock counts, and
other information given for each instruction. The instructions are ar
ranged alphabetically except when extremely similar or identical instruc
tions can be grouped on a single page. This grouping makes reading
through the descriptions easier.

Perhaps the most important sections for someone concerned about
the instruction formats are the pages just before the instructions start
These include all the references needed to understand the abbreviations
in the formatting information.

Figure 4-4 presents a list of logical functions and their effects on bit
patterns. Several instructions implement one of these functions directly,
and many rely on these definitions in their descriptions.

The instruction descriptions have a consistent format throughout
There are several sections that appear for each instruction. The abbrevia
tions and formats used are described below.

The first line of each instruction's description contains three separate
pieces of information. On the left is the instruction mnemonic normally
used by the assembler. In the middle is a descriptive title for the
instruction. On the right is the first iAPX processor on which the instruc
tion appeared.

The first major section contains the instructions' various opcodes,

p Q PandQ Por Q Pxor Q NotP Not Q

1 1 1 1 0 0 0
1 0 0 1 1 0 1
0 1 0 1 1 1 0
0 0 0 0 0 1 1

Figure 4-4. Logical Operations on Nibbles P (1100) and Q (1010)

The Instructions 87

the corresponding assembler format, and the execution time for the
instruction in clocks. Any of the suing instructions that can be repeated
have two timing columns, one for with and one for without a REP
prefix. Certain other instructions (JMP and CALL, for instance) have an
additional column to clarify the type of the instruction used with that
opcode.

Values that may be used in the opcode column and their meanings
are:

hh Two hexadecimal digits specify a byte containing exactly that
value.

[r] A standard mod r/m byte (see above). By implication this may be
followed by an SIB byte (also above) and/or a memory offset

[n] Where "n" is digit O through 7, this is a mod r/m byte with the
register field set to the digit In this case the digit is really an
extension of the opcode.

ib An immediate value of byte length.
iw An immediate value of word length.
id An immediate value of dword length.
db An 8-bit signed value to be added to (E)IP to obtain the target for

a jump or call type instruction
dw A 16-bit signed value to be added to (E)IP to obtain the target for

a jump or call type instruction.
d A displacement (offset) of the operand in memory within a spe

cific segment May be 16 or 32 bits.
dd A 32-bit signed value to be added to EIP to obtain the target for a

jump or call type instruction.
pd A 32-bit pointer. The first 16 bits are a segment selector and the

second 16 bits are the offset within that segment
pp A 48-bit pointer. The first 16 bits are a segment selector and the

next 32 bits are the offset within that segment

The format column uses many of the same codes as the opcode
column to represent instruction operands. These codes have the same
meaning in both columns. This column also sometimes uses specific
register names or explicit numbers to represent the operands. In addition
the following codes are also used in the format column:

r/mb The operand is the contents of the byte register or memory
location specified by the mod r/m byte.

88 The 80386 Instruction Set

r/mw

r/md

rb

rw

rd

mb

mw

md

mw:w

mw:d

The operand is the contents of the word register or memory
location specified by the mod r/m byte.
The operand is the contents of the dword register or memory
location specified by the mod r/m byte.
The operand is the contents of the byte register specified by the
mod r/m byte.
The operand is the contents of the word register specified by
the mod r/m byte.
The operand is the contents of the dword register specified by
the mod r/m byte.
The operand is the contents of the byte at the memory location
specified by the mod r/m byte.
The operand is the contents of the word at the memory
location specified by the mod r/m byte.
The operand is the contents of the dword at the memory
location specified by the mod r/m byte.
The operand is a pointer at the memory location specified by
the mod r/m byte. The pointer contains 16 bits of segment
selector and 16 bits of segment offset
The operand is a pointer at the memory location specified by
the mod r/m byte. The pointer contains 16 bits of segment
selector and 32 bits of segment offset

The clocks column contains the instruction execution time in ma
chine cycles (or clocks). If there are two values separated by a"/" then the
first is the time required for register operands and the second is the time
required for memory operands. Some of the entries contain formulas
which are normally explained just below the table. However, the transfer
of-control instructions usually contain an entry of the form "7+m." The
"m" in this formula refers to the number of components in the next
instruction executed. A component is defined as one of the following:
each prefix byte, each opcode byte, any mod r/m byte, any SIB byte, any
displacement value, or any immediate value.

The next section describes the flags affected by the instruction. A
blank under a flag name means no change. A "O" indicates that the flag
is cleared to zero. A "1" shows that the flag is set to one. A "U" is used
when the instruction leaves the flag in an undefined state. An "S" shows
that the flag is set or cleared depending on the result of the instruction.

The next section gives the pseudocode, a semi-formal description of

The Instructions 89

the operation of the instruction. This an algorithmic description borrow
ing forms from higher-level languages.

The function performed by the instruction is described in detail in
the operation section. Any clarification of timings, opcodes, or operands
is also given here.

All exceptions that can be generated by the instruction are listed in
the exceptions section. The modes column uses a single letter to represent
the processor mode for each exception. A "P" stands for Protected Mode,
an "R" represents Real Mode, and a "V" is used for Virtual 8086 Mode.

The user notes section contains any extra information about the
instruction. Common usage, things to beware of, and compatibility issues
are some of the things often found in this section.

Finally, each instruction has an example to illustrate its usage.
Please note that these examples are not always samples of good cod
ing practice. They are designed to demonstrate what a particular in
struction does.

90 The 80386 Instruction Set

AAA ASCII Adjust AL for Add

Opcode

37

Flags

NT
0

IOPL

Pseudocode

Format

AAA

OF DF
u

Clocks

4

IF TF SF
u

ZF AF
u 0 s 0

If (lower nibble of AL> 9) OR (Aux Carry= 1) THEN
increment AL by 6
set upper nibble of AL to 0
increment AH by 1
set Carry Flag and Aux Carry Flag

ELSE
reset Carry Flag and Aux Carry Flag

END IF

Operation

AAA changes AL to an unpacked decimal number.

Exceptions

None

8086

PF CF
u l s

The Instructions 91

User Notes

This instruction should be used after adding BCD digits. It converts the
results of the addition to BCD. Most programmers won't use this instruction
much. BCD arithmetic is explained in Chapter 1.

AAA itself only handles binary to BCD conversion. To convert AL to
ASCII use OR AL,48.

Example

MOV AX,8 ; Loads a BCD 8 into AL and clears AH.
ADD AL,6 ; Adds a BCD 6 to AL giving 14 (decimal).
AAA ; AX contains 104 (hex) or 14 BCD, both CF and AF

; are 1.

92 The 80386 Instruction Set

AAD ASCII Adjust AL Before Division 8086

Opcode

D50A

Flags

NT
0

IOPL

Pseudocode

Format

AAD

OF
u

DF

Clocks

19

IF TF

Set AL to (AL+ (10 X AH))
Set AH to 0

Operation

SF ZF AF PF CF
s s 0 u 0 s I u

AAD converts a number from unpacked BCD to binary. The greatest
possible value of an unpacked BCD value in a 16-bit register is 99 10 (a 9 in
each byte of the register), which is 6316, This easily fits in AL, so AH is set to 0
after the conversion.

Exceptions

None

User Notes

This instruction should be used before dividing unpacked BCD digits.
Most programmers won't use this instruction much. BCD arithmetic is
explained in Chapter 1.

The Instructions 93

The instruction itself only handles BCD to binary conversion. To
convert AL from ASCII to BCD use AND AL,15.

Example

MOV AX,405H
MOV BL,3
AAD
IDIV BL
AAM

; Loads dividend (a BCD 45) into AX
; Loads divisor (a BCD 3) into BL.
; Converts BCD into binary, result is 45 (decimal).
; Does the division, result is 15 (decimal).
; AX contains 105 (hex) or 15 BCD.

94 The 80386 Instruction Set

AAM ASCII Adjust AL after Multiply 8086

Opcode

D4 OA

Flags

NT
0

IOPL

Pseudocode

Format

MM

OF
u

Divide AL by 10

OF

Clocks

17

IF TF SF ZF
s s 0

Set AH to quotient (Tens digit of result)
Set AL to remainder (Ones digit of result)

Operation

AF PF CF
u 0 s 1 u

Any number less than 10010 will fit easily in the AL register, which can
hold any number up to 12810• MM converts a numberless than 100 which is
in AL to an unpacked BCD number in AX

Exceptions

None

User Notes

This instruction should be used after multiplying unpacked BCD digits.
The result of the MUL is always less than (9 X 9 =) 81, so the assumption that

The Instructions 95

the number in AAL is less than 100 works out fine. Most programmers won't
use this instruction much. BCD arithmetic is explained in Chapter 1.

The instruction itself only handles BCD to binary conversion. To
convert AL from ASCII to BCD use AND AL,15.

Example

See example for AAD.

96 The 80386 Instruction Set

AAS ASCII Adjust AL after Subtract 8086

Opcode

3F

Flags

Format

AAS

Clocks

4

NT IOPL OF OF IF TF SF ZF AF PF
0 u u u 0 s 0

Pseudocode

IF (lower nibble of AL> 9) OR (Aux Carry= 1) THEN
decrement AL by 6
set upper nibble of AL to 0
decrement AH by 1
set Carry and Aux Carry Flags

ELSE
reset Carry Flag and Aux Carry Flag

END IF

Operation

u
CF

1 s

AAS changes AL to an unpacked decimal number and adjusts it, using
the Aux Carry Flag to decide how much work is needed. The Aux Carry or
the size of AL's lower nibble indicates whether a decimal carry was needed.

Exceptions

None

The Instructions 97

User Notes

This instruction should be used after subtracting BCD digits, and
converts the results of the subtraction from binary to BCD (taking the effects
of the subtraction into account). Most programmers won't use this
instruction much. BCD arithmetic is explained in Chapter 1.

AAS itself only handles binary to BCD conversion. To convert AL to
ASCII use OR AL,48.

Example

MOV AX,205H
SUB AL,8
AAS

; Loads a BCD 25 into AX
; Subtracts a BCD 8 from AL giving OFD (hex).
; AX contains 107 (hex) or 17 BCD, both CF and
; AF are 1.

98 The 80386 Instruction Set

ADC Add With Carry

Opcode Format Clocks

ttJc.b 14 ib ADC AL,ib 2
15 iw ADC AX,iw 2 d.~CW
15 id ADC EAX,id 2 ~lei
80 [2] ib ADC r/mb,ib 2/7 q_Jc b
81 [2] iw ADC r/mw,iw 2/7 'L1C 0 81 [2] id ADC r/md,id 2/7 a... c., I
83 [2] ib ADC r/mw,ib 2/7
83 [2] ib ADC r/md,ib 2/7
10 [r] ADC r/mb,rb 2/7
11 [r] ADC r/mw,rw 2/7
11 [r] ADC r/md,rd 2/7
12 [r] ADC rb,r/mb 2/6
13 [r] ADC rw,r/mw 2/6
13 [r] ADC rd,r/md 2/6

Flags

NT IOPL OF OF IF TF SF ZF AF PF
0 s s s 0 s 0 s

Pseudocode

IF (source operand has fewer bits than destination) THEN
sign-extend source operand

END IF

8086

CF
I s

Add source operand to destination, place result in destination operand
Add CF to destination, place result in destination operand

Operation

ADC adds two numbers whose values are given as operands of the
instruction, plus the value in the Carry bit The first operand is overwritten by

The Instructions 99

the result, while the second operand is unchanged. A good translation of an
ADC instruction into English might be "Add operand number 2 into operand
number 1, then add 1 more if needed."

Exceptions

#GP(O)
#GP(O)

Modes Reasons

#SS(O)
#PF(fc)
INT(13)

User Notes

p
p

p
PV
RV

Result in nonwritable segment
Illegal memory effective address in CS,
DS, ES, FS, or GS segments
Illegal address in SS segment
Page fault
Some part of operand is outside of
address range O to OFFFFH

The ADC instruction is generally used when doing multibyte,
multiword1 or multidword additions, to let the Carry bit propagate as needed
through the series of additions.

Understanding how the flags work for ADC can be very important,
especially since the result of one of the flags after an addition is often used to
decide whether to make a jump, or even as a parameter in a subroutine call.
The ADD (below) works just like the ADC but ignores the value in the Carry
bit Anyone modifying an existing . program should look at all ADC's
following any changes to make sure the Carry bit is still set as the original
programmer had assumed it would be.

Example

MOV AX,956
MOV BX,373
ADD AL,BL

ADC AH,BH

; Loads a 956 (3BC hex) into AX
; Loads a 373 (175 hex) into BX
; Adds OBC (hex) and 75 (hex) giving 31 (hex) with
; CF set
; Adds 3 and 1 giving 5 (because CF was set).
; AX now contains 1329 (531 hex), the sum of 956
; and 373.

100 The 80386 Instruction Set

ADD Add 8086

Opcode Format Clocks

04 ib ADD AL,ib 2
05 iw ADD AX,iw 2
05 id ADD EAX,id 2
80 [0] ib ADD r/mb,ib 2/7
81 [0] iw ADD r/mw,iw 2/7
81 [0] id ADD r/md,id 2/7
83 (0] ib ADD r/mw,ib 2/7
83 [0] ib ADD r/md,ib 2/7
00 [r] ADD r/mb,rb 2/7
01 [r] ADD r/mw,rw 2/7
01 [r] ADD r/md,rd 2/7
02 [r] ADD rb,r/mb 2/6
03 [r] ADD rw,r/mw 2/6
03 [r] ADD rd,r/md 2/6

Flags

NT IOPL OF DF IF TF SF ZF AF PF CF
0 s s s 0 s 0 s 1 s

Pseudocode

IF (source operand has fewer bits than destination operand) THEN
sign-extend source operand

END IF
Add source operand to destination,place result in destination operand

Operation

ADD simply adds two numbers whose values are given as operands of
the instruction. The first operand is overwritten by the result, while the

The Instructions 101

second operand is unchanged. A good translation of an ADD instruction into
English might be "Add operand number 2 into operand number 1."

Exceptions Modes Reasons

#GP(0)
#GP(0)

#SS(0)
#PF(fc)
INT(13)

User Notes

p
p

p
PV
RV

Result in nonwritable segment
Illegal memory effective address in CS, DS, ES,
FS, or GS segments
Illegal address in SS segment
Page fault
Some part of operand is outside of address range
Oto 0FFFFH

Understanding how the flags work for ADD can be very important,
especially since the result of the Carry flag after an addition is often used to
decide whether to make a jump, or even as a parameter in a subroutine call.
The ADC (above) even incorporates a carry from (perhaps) a previous ADD
into a subsequent add. Many fascinating and obscure programming tricks
can be executed using the flags; some of these were used to get around the
lack of bit-test instructions on Intel chips before the 80386. Some
programmers will find themselves unraveling this arcana while translating
programs to the 80386, while others will reinventitin translating back down
to the earlier chips.

The ADD instruction should be used when possible in preference to
the ADC to avoid complications caused by the often unpredictable state of
the Carry bit

Example

MOV AX,956
MOV BX,373
ADD Ax,BX

; Loads a 956 (3BC hex) into AX
; Loads a 373 (175 hex) into BX
; AX now contains 1329 (531 hex), the sum of 956
; and 373.

102 The 80386 Instruction Set

AND Logical And 8086

Opcode Format Clocks

24 ib AND AL,ib 2
25 iw AND AX,iw 2
25 id AND EAX,id 2
80 [4] ib AND r/mb,ib 2/7
81 [4] iw AND r/mw,iw 2/7
81 [4] id AND r/md,id 2/7
20 [r] AND r/mb,rb 2/7
21 [r] AND r/mw,rw 2/7
21 [r] AND r/md,rd 2/7
22 [r] AND rb,r/mb 2/6
23 [r] AND rw,r/mw 2/6
23 [r] AND rd,r/md 2/6

Flags

Pseudocode

REPEAT
IF a bit in the destination operand is 1 and the corresponding bit in

the source operand is 1 THEN
leave the bit in the destination operand at 1

ELSE
clear the bit in the destination operand to O

END IF
UNTIL all bits in destination operand are checked

The Instructions 103

Operation

AND carries out a Boolean or "logical" AND on its two operands and
leaves the result in the destination operand. This operation is depicted in
Figure 4-4, which gives "truth tables" for all logical operations. A 1 can be
regarded as Tor True, while a 0 corresponds to For False. A logical AND
takes two bits and calculates a result using this rule: If both input bits are 1,
then the output bit is 1, else the output bit is 0. The instruction AND simply
does the same operation on all the bits in each of two operands; the leftmost
bit in one operand is compared to the leftmost bit in the other, then the two
bits one position to the right are compared, until all the bit pairs have been
compared.

The use of a logical AND is much like the use of "and" in English; if you
say, "The cat is black and white," then you are incorrect if the cat is neither
black nor white, black but not white, or white but not black

AND can only be used with two operands of the same size (same
number of bits); otherwise the comparison would be meaningless for some
of the bits in the longer operand.

Exceptions Modes Reasons

#GP(0)
#GP(0)

#SS(0)
#PF(fc)
INT(13)

User Notes

p
p

p
PV
RV

Result in nonwritable segment
Illegal memory effective address in CS, DS, ES,
FS, or GS segments
Illegal address in SS segment
Page fault
Some part of operand is outside of address range
0 to 0FFFFH

AND is often used to clear certain bits or to do nibble arithmetic (as in
BCD arithmetic); to clear the high nibble of a byte in AL, just use AND AL, 15.
It is also used to implement bit tests and graphics on earlier iAPX 86's, but
these functions can be implemented with generally more efficient bit-test
commands on the 80386.

104 The 80386 Instruction Set

. Example

MOV AX,5963H ; Loads a hex number into AX
MOV BX,6CA5H ; Loads a hex number into BX
AND AX,BX ; AX now contains 4821 hex.

BOUND

Opcode

62 [r]
62 [r]

The Instructions 105

Check Value in Range 80186

Format

BOUND rw,mw
BOUND rw,md

Clocks

10*
10*

*Number of clocks is for when Interrupt 5 is not taken

Flags

Pseudocode

IF (first operand < word pointed to by second operand) OR
(first operand > word after word pointed to by second operand)

THEN
INT 5

END IF

Operation

BOUND is used to check whether a value is outside or inside an
acceptable range. If the value is inside the range then no action is taken.
Otherwise an Interrupt 5 is triggered. This instruction is intended to be
generated by high-level language compilers to check if an array index has
gotten too high or too low. If it has the index is no longer within the bounds
of the array.

The first operand, a register, holds the array index. The second operand
is a pointer to a location in memory.At this location are two words, the lower
and upper indices of the array. These numbers are the minimum and

106 The 80386 Instruction Set

maximum values of the index, not the lowest and highest points in memory
occupied by the array.

If the index is less than the first word or greater than the second, an
interrupt type 5 is generated. The BOUND instruction sets no flags and gives
no indication of which bound check failed.

Exceptions Modes Reasons

#GP(0)

#SS(0)
#PF(fc)
#VD
INT(5)
INT(13)

User Notes

p

p
PV
p
PRV
RV

Illegal memory effective address in CS, DS, ES,
FS, or GS segments
Illegal address in SS segment
Page fault
Second operand specifies a register, not memory
Bound test failed
Some part of operand is outside of address range
0 to 0FFFFH

The BOUND instruction is very useful for reassuring yourself that your
program isn't looking off the end of an array. However, the actual
implementation of the instruction is a bit troublesome. It might seem easier
to set the Overflow Flag if the bound check failed, and perhaps also set the
Sign Flag to indicate whether the index had gone too low or too high.

Instead, BOUND simply jumps to an interrupt when the check fails.
Therefore, the interrupt must be set up in advance. It can handle the error
completely or it can simply set a flag to indicate that an error has occurred,
return control to the program, and let the main program code jump on the
flag to an appropriate error handler.

Example

MOV
MOV
MOV

WORD PTR BND, 0
WORD PTR BND+2, 99
AX,100

BOUND AX,BND

; Sets lower bound to zero.
; Sets upper bound to 99.
; Loads value to check into
;AX
; Causes an Interrupt 5.

The Instructions 107

BSF Bit Scan Forward

Opcode

· OF BC [r]
OF BC [r]

Format

BSF rw,r/mw
BSF rd,r/md

*n is number of zero bits skipped

Flags

Pseudocode

IF 2nd operand is zero THEN
Set ZF

Clocks

10+3n*
10+3n*

Set 1st operand to an undefined value
ELSE

Clear ZF
Select low-order bit {bit O} of 2nd operand
DO WHILE selected bit= 0 {not executed if bit O = 1}

Select next higher bit
ENDDO

80386

Copy index of selected bit into 1st operand {index is 0-15, or 0-31}
END IF

Operation

BSF finds the first 1 bit in its second operand, a word or dword in a
register or memory. It starts looking at bit O and stops when it finds a 1 bit
The index or bit position of this 1 bit is then placed in the second operand.

108 The 80386 Instruction Set

Exceptions Modes Reasons

#GP(0)

#SS(0)
#PF(fc)
INT(13)

User Notes

p

p
PV
RV

Illegal memory effective address in CS, DS, ES,
FS, or GS segments
Illegal address in SS segment·
Page fault
Some part of operand is outside of address range
0 to 0FFFFH

Many applications are made easier with the new bit manipulation
instructions (for instance setting up allocation tables, wherein a bit's setting
represents whether a piece of RAM or a sector on disk is in use). The BSF
command allows the first nonzero bit (perhaps the first allocated sector on
disk) to be quickly found. For example, a simple loop might find the first
nonzero word or dword in a sector allocation table, then use BSF to find the
first nonzero bit

Example

MOV BX,3CD0H
BSF AX,BX

; Loads value to scan into BX
; Sets AX to 4 and clears ZF.

The Instructions 109

BSR Bit Scan Reverse

Opcode

OF BD [r]
OF BD [r]

Format

BSRrw,r/mw
BSR rd,r/md

*n is number of zero bits skipped

Flags

Pseudocode

IF 2nd operand is zero THEN
SetZF

Clocks

10+3n*
10+3n*

Set 1st operand to an undefined value
ELSE

Clear ZF
Select high-order bit {bit 15 or 31} of 2nd operand
DO WHILE selected bit= O {not executed if bit O = 1}

Select next lower bit
ENDDO

80386

Copy index of selected bit into 1st operand {index is 0-15, or 0-31}
END IF

Operation

BSR finds the first 1 bit in its second operand, a word or dword in a
register or memory. It starts looking at the high bit and stops when it finds a 1
bit The index or bit position of this 1 bit is then placed in the second
operand.

110 The 80386 Instruction Set

Exceptions Modes Reasons

#GP(0)

#SS(0)
#PF(fc)
INT(13)

User Notes

p

p
PV
RV

Illegal memory effective address in CS, DS, ES,
FS, or GS segments
Illegal address in SS segment
Page fault·
Some part of operand is outside of address range
Oto 0FFFFH

Many applications are made easier with the new bit manipulation
instructions (for instance setting up allocation tables, wherein a bit's setting
represents whether a piece of RAM or a sector on disk is in use). The BSR
command allows the first nonzero bit (perhaps the first allocated sector on
disk) to be quickly found. For example, a simple loop might find the first
nonzero word or dword in a sector allocation table, then use BSR to find the
first nonzero bit

Example

MOV BX,3CD0H ; Loads value to scan into BX
BSR AX,BX ; Sets AX to 13 and clears ZF.

The Instructions 111

BT Bit Test 80386

Opcode Format Clocks

OF A3 [r] BT r/mw,rw 3/12
OF A3 [r] BT r/md,rd 3/12
OF BA [4] ib BT r/mw,ib 3/6
OF BA [4] ib BT r/md,ib 3/6

Flags

Pseudocode

Use the 1st operand to locate a register or a memory address.
Use the 2nd operand to select a single bit (bit O is the low order bit).
Set the Carry Flag to the selected bit

Operation

Bit Test allows the programmer to select any bit in memory and put it
into the Carry Flag. The first operand is a register or memory address. The
second operand is a bit number. It can be any unsigned integer up to 8 bits
wide, but only the low order 4 or 5 bits are used depending on the size of the
first operand. The Carry Flag is then set to this bit The bit in memory is left
unchanged.

Exceptions Modes Reasons

#GP(O)
#GP(O)

p
p

Result in nonwritable segment
Illegal memory effective address in CS, DS, ES,
FS, or GS segments

112 The 80386 Instruction Set

#SS(O)
#PF(fc)
INT(13)

User Notes

p
PV
RV

Illegal address in SS segment
Page fault
Some part of operand is outside of address range
0 to OFFFFH

Many applications are made easier with the new bit manipulation
instructions (for instance setting up allocation tables, wherein a bit's setting
represents whether a piece of RAM or a sector on disk is in use). The BT
command allows quick access to any bit in the table. A more dramatic
example to the average user is the improvement in updating large video
displays made possible by the large segment size and quick bit access of
the 80386.

Example

MOV AX,3CDOH ; Loads value to scan into AX
BT AX,10 ; Sets CF.

The Instructions 113

BTC Bit Test and Complement 80386

Opcode Format Clocks

OF BB [r] BTC r/mw,rw 6/13
OF BB [r] BTC r/md,rd 6/13
OF BA [7] ib BTC r/mwJb 6/8
OF BA [7] ib BTC r/mdJb 6/8

Flags

Pseudocode

Use the 1st operand to locate a register or a memory address.
Use the 2nd operand to select a single bit (bit O is the low order bit).
Set the Carry Flag to the selected bit
Invert the selected bit {If it's O make it 1, if 1 make it O}.

Operation

Bit Test and Complement has two functions. The first is to allow the
programmer to select any bit in memory and invert (or reverse) it in memory,
so the bit now has the opposite value it had before the command. The
second is to save the old bit value in the Carry Flag.

BTC's first operand is a memory address or register. The second oper
and is a bit number.It can be any unsigned integer up to 8 bits wide, but only
the low order 4 or 5 bits are used depending on the size of the first operand.
The Carry Flag is then set to this bit The bit in memory is inverted (set to O if
it had been 1 and vice versa).

114 The 80386 Instruction Set

Exceptions Modes Reasons

#GP(0)
#GP(0)

#SS(0)
#PF(fc)
INT{13)

User Notes

p
p

p
PV
RV

Result in nonwritable segment
Illegal memory effective address in CS, OS, ES,
FS, or GS segments
Illegal address in SS segment
Page fault
Some part of operand is outside of address range
Oto 0FFFFH

Many applications are made easier with the new bit manipulation
instructions (for instance setting up allocation tables, wherein a bit's setting
represents whether a piece of RAM or a sector on disk is in use). The BTC
command allows any bit in the table to be quickly reversed. One dramatic
example is the improvement in updating large video displays made possible
by the large segment size and quick bit access of the 80386.

Example

MOV .AX,3CD0H ; Loads value to scan into AX.
BTC .AX,2 ; Clears CF, sets AX to 3CD4 (hex).

The Instructions 115

BTR Bit Test and Reset 80386

Opcode Format Clocks

OF B3 [r] BTRr/mw,rw 6/13
OF B3 [r] BTR r/md,rd 6/13
OF BA [6] ib BTR r/mw,ib 6/8
OF BA [6] ib BTR r/md,ib 6/8

Flags

Pseudocode

Use the 1st operand to locate a register or memory address.
Use the 2nd operand to select a single bit (bit O is the low order bit).
Set the Carry Flag to the selected bit
Reset the selected bit (*Make it O*).

Operation

Bit Test and Reset has two functions. The first is to allow the pro
grammer to select any bit in memory and reset it (put in O) in memory. The
second is to save the old bit value in the Carry Flag.

BTR's first operand is a memory address or register. The second oper
and is a bit number.It can be any unsigned integer up to8 bits wide, but only
the low order 4 or 5 bits are used depending on the size of the first operand.
The Carry Flag is then set to this bit The bit in memory is reset (cleared, or
made equal to O).

116 The 80386 Instruction Set

Exceptions Modes Reasons

#GP(0)
#GP(0)

#SS(0)
#PF(fc)
INT(13)

User Notes

p
p

p
PV
RV

Result in nonwritable segment
Illegal memory effective address in CS, DS, ES,
FS, or GS segments
Illegal address in SS segment
Page fault
Some part of operand is outside of address range
0 to 0FFFFH

Many applications are made easier with the new bit manipulation
instructions (for instance setting up allocation tables, wherein a bit's setting
represents whether a piece of RAM or a sector on disk is in use). The BTR
command allows any bit in the table to be quickly reset (thus releasing a
sector for instance). A more dramatic example to the average user is the
improvement in updating large video displays made possible by the large
segment size and quick bit access of the 80386.

Example

MOV AX,3CD0H ; Loads value to scan into AX.
BTR AX,7 ; Sets CF, sets AX to 3C50 (hex).

The Instructions 117

BTS Bit Test and Set 80386

Opcode Format Clocks

OF AB [r] BTS r/mw,rw 6/13
OF AB [r] BTS r/md,rd 6/13
OF BA [5] ib BTS r/mw,ib 6/8
OF BA [5] ib BTS r/md,ib 6/8

Flags

Pseudocode

Use the 1st operand to locate a register or a memory address.
Use the 2nd operand to select a single bit (bit O is the low order bit).
Set the Carry flag to the selected bit
Set the selected bit (*Make it 1*).

Operation

Bit Test and Set has two functions. The first is to allow the programmer
to select any bit in memory and set it (put in 1) in memory. The second is to
save the old bit value in the Carry Flag.

BTS's first operand is a memory address or register. The second oper
and is a bit number. It can be any unsigned integer up to 8 bits wide, but only
the low order 4 or 5 bits are used depending on the size of the first operand.
The Carry Flag is then set to this bit The bit in memory is set (made 1).

118 The 80386 Instruction Set

Exceptions Modes Reasons

#GP(0)
#GP(0)

#SS(0)
#PF(fc)
INT(13)

User Notes

p
p

p
PV
RV

Result in nonwritable segment
Illegal memory effective address in CS, DS, ES,
FS, or GS segments
Illegal address in SS segment
Page fault
Some part of operand is outside of address range
Oto 0FFFFH

Many applications are made easier with the new bit manipulation
instructions (for instance setting up allocation tables, wherein a bit's setting
represents whether a piece of RAM or a sector on disk is in use). The BTS
command allows any bit in the table to be quickly set (thus marking a sector
as allocated, for instance). A more dramatic example to the average user is
the improvement in updating large video displays made possible by the
large segment size and quick bit access of the 80386.

Example

MOV AX,3CD0H ; Loads value to scan into AX.
BTS AX,2 ; Clears CF, sets AX to 3CD4 (hex).

The Instructions 119

CALL

Opcode

E8 dw
E8 dd
FF [2]
FF [2]
9Apd
9App
FF [3]
FF [3]

Call Procedure

Format

CALL dw
CALL dd
CALL r/mw
CALL r/md
CALL pd
CALL pp
CALL mw:w
CALL mw:d

Type

Near, direct
Near, direct
Near, indirect
Near, indirect
Far, direct
Far, direct
Far, indirect
Far, indirect

Clocks

7+m

8086

7+m
7+ml10+m
7+ml10+m
17+m,*
17+m,*
22+m,*
22+m,*

*These instructions have varying functions and timings in Protected Mode
(see Chapter 5).

Flags

Normally CALL affects no flags. However, when a task switch is made
in Protected Mode all flags are changed to the new task's saved flags.

Pseudocode

IF inter-segment CALL THEN
PUSH CS (Code Segment) onto stack
Set CS to segment selector of operand

END IF
PUSH IP (Instruction Pointer) onto stack
Set IP to offset part of operand

Operation

The CALL instruction is used to transfer control to another part of the
program in such a way that control can be returned to the current point at a

120 The 80386 Instruction Set

later time. This facility is used to implement the procedures, functions, and
subroutines of higher level languages. Itis also extremely useful in assembly
programs.

There are several types of CALL instructions, based on two different
pairs of attributes. A call may be either near or far, and either direct or
indirect Therefore there are four different type of calls to consider.

The difference between a near and a far call is simply whether the
called procedure is in the same segment as the caller (near) or in a different
segment (far). For a far call the 80386 must place both the CS and IP registers
on the stack before placing the new values into them. For a near call only
IP is saved on the stack and changed.

The distinction between direct and indirect calls depends on how the
programmer specifies the address of the called procedure. In a direct call the
address is placed directly into the instruction. In an indirect call the pro
grammer supplies a pointer to a register or memory location containing the
address of the called procedure.

A near direct call contains a displacement to be added to IP, rather than
an offset to be stored there as in the far direct call. A near indirect call may
point to either a register or a memory location that contains the actual
segment and offset for the called procedure. A far indirect call may not use a
register, only memory (since full pointers can be 48 bits long).

The basic procedure is the same in Protected Mode, but inter-segment
calls are much more complicated, since CALL may specify an operating
system routine or even another task. In either case memory protection must
be checked (see Chapter 5).

Exceptions Modes Reasons

#NP
#TS
#GP(O)

#SS(O)
#PF(fc)
INT(13)

p
p
p

p
PV
RV

Target code segment not present
Task.switch required
Illegal memory effective address in CS, DS, ES,
FS, or GS segments
Illegal address in SS segment
Page fault
Some part of operand is outside of address range
Oto OFFFFH

The Instructions 121

User Notes

Most programmers use CALLS frequently to help get the most mileage
out of a given piece of code. The interesting problem is how to pass param
eters to and from the CALLed routine. On the later members of the iAPX 86
family, instructions like PUSHA help in preserving register values, while
ENTER helps implement multiply nested routines. The subjects of when to
use routines versus copies of pieces of code, and when to have the same
routine copied into each segment versus using intersegment calls, are too
complex to cover here, but are worth study as a way to optimize the
efficiency of programs-especially the large programs supported easily by
the 80386.

Example

CALL SUBROUTINE

122 The 80386 Instruction Set

CBW
CWDE

Opcode

98
98

Flags

Pseudocode

Convert Byte to Word
Convert Word to Dword

Format

CBW
CWDE

Clocks

3
3

IF operand size = 16 bits THEN (* CBW *)

8086
803~6

Set each bit of AH to same value as highest order bit of AL.
ELSE (* CWDE *)

Set high order 16 bi ts of EAX to same value as highest order bit of AX
ENDIF

Operation

Converting a byte to a word is done by "sign-extending" the byte. This
means that the byte's highest-order bit (its leftmost or most significant bit) is
"propagated" or copied into every bit of the word not already occupied by
the byte. For instance, sign-extending 1111 0000 into a word yields 1111
11111111 0000, while sign-extending 0101 0101 yields 0000 0000 0101 0101.
Converting a word to a dword works in the same way.

Although it's not intuitively obvious why this works, it turns out that
sign-extending a byte yields a word with the same value as the byte. Sign
extending just preserves the byte's value when it is placed into a word.

Exceptions

None

User Notes

The Instructions 123

CBW and CWDE are necessary instructions for the many times when a
low-precision number needs to be converted for use in higher-precision
math.

Example

MOV AL,OFCH ; Loads a -4 into AL.
CBW ; Sets AX to FFFC (hex) or a word-length -4.

124 The 80386 Instruction Set

CLC

Opcode

FB

Flags

Pseudocode

Format

CLC

Clear Carry Flag

Clocks

2

Clear the Carry Flag to 0.

Operation

CLC simply sets the Carry Flag to zero.

Exceptions

None

User Notes

8086

Some other microprocessors have only an ADC instruction and no ADD
instruction. On these machines using CLC or its equivalent is always
necessary. Normally this isn't necessary on the iAPX 86s because there's an
ADD instruction that ignores the carry when executing and conditions it
when finished executing. However, there are two ways to write loops that
add large numbers by repeatedly adding byte-sized pieces of them. One

The Instructions 125

way is to start with an ADD and then use a loop with ADC. The other way is to
just use a loop with ADC; this results in a smaller program but requires that
CLC be used before the start of the loop.

Also, unlike some other processors, the iAPX 86s require that C be
cleared before a SBB (SuBtract with Borrow) that is not preceded by a
flag-conditioning SUB. Other microprocessors may require that the carry
type flag be set before an SBB-type operation.

Example

CLC ; Clears CF.

126 The 80386 Instruction Set

CLO

Opcode

FC

flags

Pseudocode

Clear Direction Flag

Format

CLO

Clocks

2

Clear the Direction Flag to 0.

Operation

CLO simply sets the Direction Flag to zero.

Exceptions

None

User Notes

8086

The Direction Flag controls the direction of string operations. When
D is cleared the index registers SI and/or DI are incremented after each
repeat of a string operation. This is the "normal" direction, and is useful
when each character in the string is stored in successively higher
numbered locations in memory and the string is being processed first

The Instructions 127

character first It's also useful when the string is stored starting in high
memory and heading toward low and is being processed last character first

Example

CLD ; Clears DF.

128 The 80386 Instruction Set

CLI Clear Interrupts Enabled Flag 8086

Opcode

FA

Flags

Pseudocode

Format

CLI

Clocks

3

Clear the Interrupt Flag to O

Operation

CLI sets the Interrupt Flag to zero, preventing further interrupts until it is
again set to one. However, there are some complications in 80286 and 80386
Protected Mode. CLI can fail if the current privilege level of the program
executing the CLI is larger (less privileged) than the 1/0 privilege level bits in
the Flags register.

Exceptions Modes Reasons

#GP(O) p Current privilege is greater than IOPL

User Notes

CLI is a vital instruction for time-sensitive pieces of code that can't be
allowed the indeterminate length stops in processing that occur when

The Instructions 129

interrupts are enabled. CLI also disables the keyboard (assuming it's
interrupt-based and not polled), which is useful for ensuring that users do
not attempt to interrupt the program.

Although the privilege restrictions on CLI are burdensome, they're
necessary. If an operating system is timesharing between several programs it
must be able to interrupt each in tum to let the others execute. If your
operating system allows access to Protected Mode, it's important to under
stand how it handles privilege levels before attempting to -control interrupts
from within your program.

Example

CLI ; Clears IF.

130 The 80386 Instruction Set

CMC Complement Carry Flag

Opcode

F5

Flags

Pseudocode

Format

CMC

Clocks

2

IF (Carry flag= O) THEN
set the Carry flag

ELSE
clear the Carry flag

END IF

Operation

8086

CMC complements (negates, reverses, flips) the Carry Flag. After CMC
the Carry Flag will contain the bit value opposite of the one it had before.

Exceptions

None

The Instructions 131

User Notes

This instruction is useful when using Carry as data storage or a param
eter within a program. If you already know the state of the Carry Flag don't
use CMC; use CLC or STC instead. This practice will make your programs
more maintainable.

Example

CMC ; Changes the sense of CF.

132 The 80386 Instruction Set

CMP Compare 8086

Opcode Format Clocks

3C ib CMP AL,ib 2
3D iw CMP AX,iw 2
3D iw CMP EAX,id 2
80 [7] id CMP r/mb,ib 2/5
81 [7] iw CMP r/mw,iw 2/5
81 [7] id CMP r/md,id 2/5
83 [7] ib CMP r/mw,iw 2/5
83 [7] ib CMP r/md,id 2/5
38 [r] CMP r/mb,rb 2/5
39 [r] CMP r/mw,rw 2/5
39 [r] CMP r/md,rd 2/5
3A [r] CMP rb,r/mb 2/6
3B [r] CMP rw,r/mw 2/6
3B [r] CMP rd,r/md 2/6

Flags

NT IOPL OF DF IF TF SF ZF AF PF CF
0 s s s 0 s 0 s 1 s

Pseudocode

Subtract second operand from first, but don't store result in either
Condition flags based on result of subtraction

Operation

CMP subtracts its second operand from its first, but doesn't store the
result in the destination operand or anywhere else. Instead, the only output

The Instructions 133

is that the applicable flags are set or reset ("conditioned" is often used to
mean "set or reset") according to the result of the subtraction. SUB is
explained below.

Exceptions Modes Reasons

#GP(0)

#SS(0)
#PF(fc)
INT(13)

User Notes

p

p
PV
RV

Illegal memory effective address in CS, DS, ES,
FS, or GS segments
Illegal address in SS segment
Page fault
Some part of operand is outside of address range
Oto 0FFFFH

CMP is often used as a bit-test operator to force the Flags bits to tell you
a bout what bit pa ttem is in the first operand. It's also used more generally to
help decide whether one number is greater than another; in either case, a
conditional jump can use the information gained to help the program
decide what to do next ·

Example

MOV AX,956 ; Loads a 956 (3BC hex) intp AX
MOV BX,373 ; Loads a 373 (175 hex) into BX
CMP AX,BX ; Clears CF, AF, ZF, SF, and OF; sets PF.

134 The 80386 Instruction Set

CMPS Compare String 8086

Opcode

A6

Format Clocks Single

10

Clocks Repeated

A7
A7

CMPSB
CMPSW
CMPSD

10
10

The "N" in the "Clocks Repeated" column stands for the number of
repetitions actually executed.

Flags

Pseudocode

Subtract ES:[(E)DI] from DS:[(E)SI], but don't store result
Condition flags based on result of subtraction
IF DF = O THEN

Add size of operands (in bytes) to (E)SI and (E)DI
ELSE

Subtract size of operands (in bytes) from (E)SI and (E)DI
END IF

Operation

CMPS subtracts its destination operand from its source operand, but
doesn't store the result in the destination operand or anywhere else. Instead,
the only output is that the applicable flags are set or reset ("conditioned")
according to the result of the subtraction.

The Instructions 135

This differs from CMP in that CMPS's operands are not specified in the
instruction. The first one is pointed to by the Source Index [(E)SI] (which
normally points to the Data Segment unless a prefix override has been used)
and the second is pointed to by the Destination Index [(E)DI] (which always
must point to the Extra Segment for all string operations).

All of this could be done with the CMP, but CMPS also changes the
values in SI and DI. Normally the Direction flag is O and SI and DI are in
cremented, but if an STD has been executed SI and DI are decremented.
The increment and decrement are useful in automatically setting up the
pointers for a repetition of the same instruction, and the REPE and REPNE
prefixes are generally used with CMPS.

Exceptions Modes Reasons

#GP(O)

#SS(O)
#PF(fc)
INT(13)

User Notes

p

p
PV
RV

Illegal memory effective address in CS, DS, ES,
FS, or GS segments
Illegal address in SS segment
Page fault
Some part of operand is outside of address range
0 to OFFFFH

CMPS is generally used to compare two strings for equality. In this case
the CX register is initialized to the length of the strings (since CX is checked
and decremented by the REP-type prefixes) and SI and DI are initialized to
the first character in each of the strings (which may or may not be a length
byte). Then REPE CMPS does a continuing multiple operation (compare the
two bytes, increment [or decrement if D = 1] the pointers, decrement CX)
until the CMP shows two operands to be not equal (Z flag # O) or CX is
decremented to 0. Commonly a JNZ instruction will then be used to
jump away if the strings aren't equal; otherwise code for equal strings
is executed.

Use REPNE CMPS for this operation, and the loop will fail when CX is
zero or two equal characters are found. This tests for two strings that are
different in every position.

136 The 80386 Instruction Set

Example

STR1 DD
STR2 DD

CLD

1,2,3,4,5
1,2,4,5,6

; Ensure direction is forward.
LDS ESI,STR1 ; Set up source of compare, DS:[ESI].

; Set up destination of compare, LES EDI,STR2

MOV ECX,5
REPE CMPSD

; ES:[EDI].
; Set up repeat count for compare.
; Executes 3 times, ends with ECX=2,
; DS:[ESI] points at 4 in
; STR1, and ES:[EDI] points at 5 in
; STR2.

The Instructions 137

CWD Convert Word to Dword 8086
COO Convert Dword to Oword 80386

Opcode

99
99

Flags

Pseudocode

Format

CWD
CDQ

Clocks

2
2

IF operand size = 16 bits THEN (* CWD *)
Set each bit of DX to same value as highest order bit of AX

ELSE(* CDQ *)
Set each bit of EDX to same value as highest order bit of EAX.

END IF

Operation

Converting a word to a doubleword·is done by "sign-extending" the
word. This means that the word's highest-order bit (its leftmost or most
significant bit) is "propagated" or copied into every bit of a second word. For
instance, sign extending 1111 1111 1111 0000 yields 1111 1111 1111 1111
111111111111 0000, while sign extending 0000 0000 0101 0101 yields ...
you get the idea. There is an explanation of sign extension under CBW in this

138 The 80386 Instruction Set

chapter; the important point is that CWD yields a doubleword with the
same value as the original word. CDQ works the same way for longer
conversions.

Exceptions

None

User Notes

CWD (or CDQ) is a necessary instruction for the many times when a
word-length number is needed for higher-precision math. Since CWD has
no effect on positive numbers, user's often fail to use it for routines that
only handle positive input and then run into problems later when nega
tive input is encountered. Since it only takes two clocks to execute, using
this instruction in a conversion loop is efficient even when it's not ini
tially expected that input will have negative values.

On the 80386 this instruction is not needed much, a dword fits in a
single register of the 80386, while CWD spreads it over two registers. CWD is
important when converting programs between the 80386 and earlier
iAPX 86s.

Example

MOV AX,0FFFCH ; Loads a -4 into AX.
CWD ; Sets DX to FFFF (hex) making DX:AX a

; dword-length -4.

The Instructions 139

DAA

Opcode

27

Flags

Decimal Adjust AL
After Addition

Format Clocks

4 DAA

NT IOPL OF DF IF TF SF ZF AF PF
0 s s s 0 s 0

Pseudocode

IF (lower nibble of AL> 9) OR (Aux Carry= 1) THEN
increment AL by 6
set Aux Carry Flag

ELSE
reset Aux Carry Flag

END IF
IF (AL > 9FH) OR (Carry = 1) THEN

set AL to AL + 60H
set Carry flag

ELSE
clear Carry flag

END IF

Operation

s

8086

CF
I s

DAA adjusts AL after a two packed BCD digit ADD. This instruction is
needed because the smallest operands ADD uses are byte sized, while
packed BCD stores two digits in a byte; so there's no easy way to add BCD

140 The 80386 Instruction Set

digits one at a time. DM fixes each digit to the result you'd expect from
adding two two-digit decimal numbers, including conditioning the Carry
Flag appropriately for a decimal carry.

For instance, the number 2510 fits in a single packed BCD byte: 0010 0101
{25H). Adding this byte to itself yields this result 0100 1010 {4AH). Without
adjustment this result can't be interpreted as a packed-BCD byte. It does
make sense, however, if you consider that ADD treats the operands as binary
bytes and gives a binary result DM increments AL by 6, giving the result
0101 0000 {50H), which in packed-BCD is 5010, the correct result

Exceptions

None

User Notes

DM is often used as part of a loop adding multi-precision BCD
numbers: ADD a one-byte pair of digits, use DM to adjust the result, ADC the
next one-byte pair of digits, use DM, and continue using ADC and DM to
the limits of the precision in use.

DM itself only handles binary to BCD conversion.

Example

MOV AX,18H
ADD AL,6
DM

; Loads a packed BCD 18 into AL and clears AH.
; Adds a packed BCD 6 to AL giving 1E (hex).
; AX contains 24 (hex) or 24 packed BCD, CF is 0
; and AF is 1.

The Instructions 141

DAS

Opcode

2F

Flags

Decimal Adjust AL
After Subtraction

Format Clocks

4 DAS

NT IOPL OF OF IF TF SF ZF AF PF
0 s s s 0 s 0

Pseudocode

IF (lower nibble of AL > 9) OR (Aux Carry = 1) THEN
decrement AL by 6
set Aux Carry Flag

ELSE
reset Aux Carry Flag

END IF
IF (AL > 9FH) OR (Carry = 1) THEN

set AL to AL - 60H
set Carry flag

ELSE
clear Carry flag

END IF

Operation

s

8086

CF
1 s

DAS adjusts AL after a two packed BCD digit SUB. This instruction is
needed because the smallest operands SUB uses are byte sized, while
packed BCD stores two digits in a byte, so there's no easy way to subtract

142 The 80386 Instruction Set

BCD digits one at a time. DAS fixes each digit to the result you'd expect from
subtracting two two-digit decimal numbers, including conditioning the
Carry Flag appropriately for a decimal carry.

For instance, the number 25 10 fits in a single packed BCD byte: 0010
0101 (25H). Subtracting the BCD byte for 17 10, which is 0001 0111 (17H),
yields this result 0000 1110 (OEH), which can't be interpreted successfully as
a packed BCD byte. It does make sense, however, if you consider that SUB
treats the operands as binary bytes and gives a binary result DAS decre
ments AL by 6, which leaves the result as 0000 1000 (08H), which is 0810, the
correct result

Exceptions

None

User Notes

DAS is often used as part of a loop subtracting multi-precision BCD
numbers: SUB a one-byte pair of digits, use DAS to adjust the result, SBB the
next one-byte pair of digits, use DAS, and continue using SBB and DAS to the
limits of the precision you're using.

DAS itself only handles binary to BCD conversion.

Example

MOV AX,16H
SUB AL,8

DAS

; Loads a packed BCD 16 into AL and clears AH.
; Subtracts a packed BCD 8 from AL giving OD
; (hex).
; AX contains 8 or 8 packed BCD, CF is O and AF
; is 1.

The Instructions 143

DEC Decrement 8086

Opcode Format Clocks

FE [1] DEC r/mb 2/6
FF [1] DEC r/mw 2/6
FF [1] DEC r/md 2/6
48+rw DEC rw 2
48+rd DEC rd 2

Flags

Pseudocode

Set operand to operand - 1.

Operation

DEC subtracts 1 from its single operand and stores the result back in the
operand.

Exceptions Modes Reasons

#GP(O)
#GP(O)

#SS(O)
#PF(fc)
INT(13)

p
p

p
PV
RV

Result in nonwritable segment
Illegal memory effective address in CS, DS, ES,
FS, or GS segments
Illegal address in SS segment
Page fault
Some part of operand is outside of address range
Oto OFFFFH

144 The 80386 Instruction Set

User Notes

Although DEC seems to be a much simpler command than SUB, it takes
about the same amount of time to execute. Also, DEC doesn't set the Carry
Flag, so in many cases it's preferable to use SUB with a second operand of 1.
It's only worthwhile to use two DECs to replace a SUB with a second operand
of 2 when memory is very tight

Example

MOV AX,956
DEC AX

; Loads a 956 (3BC hex) into AX
; AX now contains 955.

The Instructions 145

DIV Unsigned Divide

Opcode

F6 [6]
F7 [6]
F7 [6]

Flags

Pseudocode

Format

DIV AL,r/mb
DIV AX,r/mw
DIV EAX,r/md

Clocks

14/17
22/25
38/41

IF opcode is F6 THEN (* dividend is a word *)
divide AX by unsigned byte in operand
store quotient in AL
store remainder in AH

ELSE IF operand size is 16 THEN(* dividend is a dword *)
divide DX:AX by unsigned word in operand
store quotient in AX
store remainder in DX

ELSE(* dividend is a qword *)
divide EDX:EAX by unsigned dword in operand
store quotient in EAX
store remainder in EDX

END IF

Operation

8086

.Both the dividend and the divisor are treated as unsigned integers. The
answer is given as a quotient part in one register and a remainder part in
another, both of which are unsigned integers.

146 The 80386 Instruction Set

Exceptions Modes Reasons

#GP(0)
#GP(0)

#SS(0)
#PF(fc)
INT(0)
INT(13)

User Notes

p
p

p
PV
PRV
RV

Result in nonwritable segment
Illegal memory effective address in CS, DS, ES,
FS, or GS segments
Illegal address in SS segment
Page fault
Result too large for destination or divisor is zero
Some part of operand is outside of address range
0 to 0FFFFH

DIV takes as long as several SUBS to execute; it's one of the few
commands on the 80386 which is worth avoiding if possible when execution
speed is critical. Interrupts result if the quotient is too big or the divisor is
zero, so when code space is not at a premium it's worth checking for division
by zero (go to an error-handling routine), division by one (jump around the
division after adjusting the divisor as needed), and even sometimes division
by two or four (use shifts to do the division) before actually executing the
DIV. Too large a quotient will result in interrupt O and can lead to a call to an
error-handling routine or more robust division routirie.

DIV is used for unsigned division; this means that the dividend and
divisor are always treated as positive numbers, ignoring the convention that
a 1 in the high bit denotes a negative number. This allows positive numbers
of greater magnitude to be handled directly by DIV. It's often worthwhile to
write a division routine which uses repeated DIVs or IDIVs to handle divi
sion with greater precision than is possible with a single DIV or IDIV
instruction.

Example

MOV AX,956
MOV BX,300
DIV AX,BX

; Loads a 956 (3BC hex) into AX.
; Loads a 300 (12C hex) into BX
; AL now contains 3 and AH contains 56.

The Instructions 147

ENTER

Opcode

CB iw 00
CB iw 01
CB iw ib

Make Stack Frame
for Procedure

Format

ENTERiw,0
ENTERiw,1
ENTERiwJb

Clocks

80186

The "n" in the "Clocks" column stands for the level number (first operand)
minus one.

Flags

Pseudocode

Push (E)BP
Save a copy of (E)SP
IF second operand is greater than 0 THEN

FOR 1 TO second operand minus 1 DO
Decrement (E)BP by 2 (or 4)
Push the word pointed to by (E)BP

ENDDO
Push the word pointed to by the saved copy of (E)SP

END IF
Set (E)BP to the saved copy of (E)SP
Set (E)SP to (E)SP minus first operand

Operation

ENTER is used to implement procedure calls, and is a command
expressly designed for implementing high-level languages. Basically, four

148 The 80386 Instruction Set

items are put onto the stack with each call: the procedure's arguments, the
return address, a group of "frame pointers," and the local variables used by
the procedure. All this information together is called a "stack frame." The
"frame pointers" are pointers to the stack frames of the procedure calls that
lead to the current procedure being called.

Of the four components of the stack frame, ENTER handles the last two
very conveniently. The procedure parameters are pushed explicitly by the
programmer before the CALL instruction (which pushes the return address).
ENTER pushes the frame pointers (if any) and allocates room on the stack for
the local variables. ·

There are two operands for ENTER: the first is the number of bytes of
local variable storage to reserve, and the second is the level of the current
procedure being entered. Level controls how many frame pointers are
pushed on the stack (i.e., a level zero ENTER only allocates local variable
storage). The LEA VE instruction restores the stack to its state before the
ENTER was executed.

The steps executed are: Push the current BP onto the stack, replace the
BP with the SP,push all the frame pointers (unless the level operand is zero),
and decrement the SP by the number of bytes of storage you wish to save for
local variables. These steps can be implemented by other assembly
language commands; the advantage of ENTER is that it executes very
quickly considering everything it does, and it provides a standard way for
compiler writers (who are less interested in maximum efficiency than in
predictability) to implement procedure calls.

Most assembly-language programs will either use ENTER with level
zero or not at all. The command probably does more than most assembly
language programs need. Levels greater than zero were created mostly for
compiler writers.

Exceptions Modes Reasons

#SS(O) p (E)SP has exceeded the stack limit

User Notes

ENTER at levels above O becomes complicated, because pointers to
each of the previous stack frames must be resaved at every new procedure
call. This is done so that each new procedure can treat as global all the

The Instructions 149

variables in the procedure that called it, in the one that called the caller, etc.
This kind of limited access to variables is basic to several of the newer
programming languages.

ENTER is normally the first instruction in a procedure. The first
parameter is the number of bytes of local variables to be saved; they are then
accessed using BP as an index register. The old BP value is at displace
ment zero and the frame pointers (if any) follow. Next are the local
variables. The second parameter is the current level. At the·end of the
procedure the LEA VE command will restore the stack pointer, wiping out
access to the local variables.

Example

SUBROUTINE:
ENTER 12,3 ; SUBROUTINE has 3 local variables (dwords)

; and is at nesting level 3.

LEAVE ; Removes current stack frame from stack.
RET 8 ; SUBROUTINE has 2 parameters (dwords).

150 The 80386 Instruction Set

HLT

Opcode

F4

Flags

Pseudocode

Format

HLT

Halt

Clocks

5

WHILE no enabled external interrupt or RESET DO
END WHILE

Operation

8086

HL T stops the 80386 from executing any further commands until an
external interrupt or RESET is received. HL Tis basically used for controlling
programs that must interact directly with the outside world (other CPU's,
which would reactivate the halted microprocessor with a RESET, or external
devices, which would reactivate it with a hardware interrupt).

Exceptions Modes Reasons

#GP(O) p Current privilege level is not zero

User Notes

Single-CPU computers that aren't used for device control don't use HL T
very often. Even when it is normally used it can be replaced with an infinite

The Instructions 151

loop that waits for an interrupt This allows more flexibility than simply
shutting down the processor, but can cost a little bit of time (while some or
all of the wait loop executes) when the interrupt is received.

Example

HL T ; Processor stops.

152 The 80386 Instruction Set

IDIV Signed Divide

Opcode

F6 [7)
F7 [7]
F7 [7]

Flags

Pseudocode

Format

IDIV AL,r/mb
IDIV AX,r/mw
IDIV EAX,r/md

Clocks

19/22
27/30
43/46

IF opcode is F6 THEN (* dividend is a word *)
divide AX by signed byte in operand
store quotient in AL
store remainder in AH

ELSE IF operand size is 16 THEN(* dividend is a dword *)
divide DX:AX by signed word in operand
store quotient in AX
store remainder in DX

ELSE (* dividend is a qword *)
divide EDX:EAX by signed dword in operand
store quotient in EAX
store remainder in EDX

END IF

Operation

8086

Both the dividend and the divisor are treated as signed integers. The
answer is given as a quotient part in one register and a remainder part in
another, both of which are signed integers.

The Instructions 153

Exceptions Modes Reasons

#GP(0)
#GP(0)

#SS(0)
#PF(fc)
INT(0)
INT(13)

User Notes

p
p

p
PV
PRV
RV

Result in nonwritable segment
Illegal memory effective address in CS, DS, ES,
FS, or GS segments ·
Illegal address in SS segment
Page fault
Result too large for destination or divisor is zero
Some part of operand is outside of address range
o to 0FFFFH

IDIV takes a couple of clocks longer than DIV to execute. Like DIV, it's
one of the few commands on the 80386 that is worth avoiding if possible
when execution speed is critical. Also, interrupts result if the quotient is too
big or the divisor is zero, so when code space is not at a premium it's worth
checking for division by zero (go to an error-handling routine), division by
one (jump around the division after adjusting the divisor as needed), and
even sometimes division by two or four (use rotates to do the division) before
actually executing the DIV. Too large a quotient will result in interrupt 0 and
can lead to a call to an error-handling routine or more robust division
routine.

IDIV is used for signed division; this means that the dividend and divisor
are treated as either positive or negative numbers, depending on whether a
number's high bit is 1 (making the number negative). IDIV handles both
positive or negative numbers, but doesn't handle positive integers as large as
those handled by DIV. It's often worthwhile to write a division routine that
uses repeated DIV s or ID IVs to handle division with greater precision than is
possible with a single DIV or IDIV instruction.

Example

MOV AX,956
MOV BX,-300
IDIV AX,BX

; Loads a 956 (3BC hex) into AX
; Loads a -300 (FED4 hex) into BX
; AL now contains -3 (FFFD hex) and AH
; contains 56.

154 The 80386 Instruction Set

IMUL Signed Multiply

Opcode Format Clocks

F6 [5] IMUL r/mb 9-14/12-17
F7 [5] IMUL r/mw 9-22/12-25
F7 [5] IMUL r/md 9-38/12-41
OF AF [r] IMUL rw,r/mw 9-22/12-25
OF AF [r] IMUL rd,r/md 9-38/12-41
6B [r] ib IMUL rw,r/mw,ib 9-14/12-17
6B [r] ib IMUL rd,r/md,ib 9-14/12-17
6B [r] ib IMUL rw,ib 9-14/12-17
6B [r] ib IMUL rd,ib 9-14/12-17
69 [r] iw IMUL rw,r/mw,iw 9-22/12-25
69 [r] id IMUL rd,r/md,id 9-38/12-41
69 [r] iw IMUL rw,iw 9-22/12-25
69 [r] id IMUL rd,id 9-38/12-41

Flags

NT IOPL OF OF IF TF SF ZF AF PF
0 s u u 0 u 0 u

Pseudocode

IF one operand form THEN
IF operand size is byte THEN

Set AX to the product of AL and the operand
ELSE IF operand size is word THEN

Set DX:AX to the product of AX and the operand
ELSE (* operand size is dword *)

Set EDX:EAX to the product of EAX and the operand
END IF

ELSE IF two operand form THEN

8086

CF
1 s

Set the first operand to the product of the first and second operands
ELSE (* three operand form *)

Set the first operand to the product of the second and third operands
END IF

The Instructions 155

Operation

All operands are treated as signed numbers. All results can be treated as
signed numbers. The maximum size of the result of a multiplication of two
n-bit numbers is a 2-n bit number. Therefore the multiple operand forms
of this instruction indicate the loss of the high-order bits of the result
when overflow is set The single operand forms do not have the same prob
lem since the results produced are twice the size of the input operands.

Exceptions Modes Reasons

#GP(0)

#SS(0)
#PF(fc)
INT(13)

User Notes

p

p
PV
RV

Illegal memory effective address in CS, DS, ES,
FS, or GS segments
Illegal address in SS segment
Page fault
Some part of operand is outside of address range
0 to 0FFFFH

The timing information for this instruction is given in ranges because
the time required for a multiply depends on the size of the multiplier. The
more significant bits, the longer the operation takes. The 80386 takes advan
tage of this fact with an early-out multiplication algorithm. The rightmost
operand in all forms of the IMUL instruction is called the optimizing
multiplier ("m" in the formula below). The actual number of clocks required
for a multiply can be calculated with the following formula:

IF m = 0 THEN clocks = 9
ELSE clocks = max(log2(Im I), 3) + 6

Example

MOV AL,40 ; Loads a 40 into AL.
IMUL 10 ; AX now contains 400, note that overflow gets set

156 The 80386 Instruction Set

IN Input from Port 8086

Opcode Format Clocks

E4 ib IN AL,ib 5
E5 ib IN AX,ib 5
E5 ib IN EAX,ib 5
EC IN AL,DX 6
ED IN AX,DX 6
ED IN EAX,DX 6

Flags

Pseudocode

IF second operand is immediate THEN
Zero extend second operand to 16 bits to form input port address

ELSE
Input port address is contents of DX

END IF
IF first operand size is byte THEN

Move the byte from the input port to AL
ELSE IF first operand size is word THEN

Move the word from the input port to AX
ELSE (* the first operand size is dword *)

Move the dword from the input port to EAX
END IF

The Instructions 157

Operation

The IN instruction is used to obtain a single byte, word, or dword from a
peripheral device port A port number may be any number from Oto 65,535
(Z16-1). Normally a device has several ports assigned, some for commands,
some for status, and some for data. Device control is accomplished by
sending information to the command ports and getting information from the
status ports. Input is done by getting data from a data port

Port numbers 00F8H through 00FFH are reserved by Intel and shouldn't
be used.

Exceptions Modes Reasons

#GP(0)
#GP(0)

User Notes

p
V

Current privilege is higher than IOPL
Some of the corresponding permission bits in
TSS equal 1

Most programs get input through calls to an operating system, and thus
don't use the IN instruction, but the IN instruction is indispensable for those
writing device drivers or for anyone who must deal directly with a device.

When only a few bytes of input are needed the IN instruction should be
used. If the input device can't provide data at a high rate of speed the IN
instruction can be put in a loop, with NOPs or a counting loop included to
slow down the transfer of data.

Example

MOV DX,20 ; Sets up port number for IN instruction.
IN EA:x,DX ; Input a dword to EAX.

158 The 80386 Instruction Set

INC Increment 8086

Opcode Format Clocks

FE [0) INC r/mb 2/6
FF [O) INC r/mw 2/6
FF [0) INC r/md 2/6
40+rw INC rw 2
40+rd INC rd 2

Flags

Pseudocode

Set operand to operand + 1

Operation

INC adds 1 to its single operand and stores the result back in the
operand.

Exceptions Modes Reasons

#GP(0)
#GP(0)

#SS(0)
#PF(fc)
INT(13)

p
p

p
PV
RV

Result in nonwritable segment
Illegal memory effective address in CS, OS, ES,
FS, or GS segments
Illegal address in SS segment
Page fault
Some part of operand is outside of address range
0 to OFFFFH

The Instructions 159

User Notes

Although the INC command seems to be a much simpler command
than ADD, it takes about the same amount of time to execute. Also, INC
doesn't set the Carry Flag, so in many cases it's preferable to use ADD with a
second operand of 1. It's only worthwhile to use two INCs to replace an ADD
with a second operand of 2 when memory is very tight

Example

MOV AX,956 ; Loads a 956 (3BC hex) into AX
INC AX ; AX now contains 957.

160 The 80386 Instruction Set

INS Input String from Port 80186

Opcode

6C

Format Clocks Single

8

Clocks Repeated

6D
6D

INSB
INSW
INSD

8
8

The "N" in the "Clocks Repeated" column stands for the number in the (E)CX
register.

Flags

Pseudocode

IF operand size is byte THEN
Move the byte from the input port named in DX to AL

ELSE IF operand size is word THEN
Move the word from the input port named in DX to AX

ELSE (* operand size is dword *)
Move the dword from the input port named in DX to EAX

END IF
IF DF = 0 THEN

Add size of operand (in bytes) to (E)DI
ELSE

Subtract size of operand (in bytes) from (E)DI
END IF

The Instructions 161

Operation

The INS instruction, like IN, is used to obtain a single byte, word, or
dword from a peripheral device port A port number may be any number
from Oto 65,535 (216-1). Normally a device has several ports assigned, some
for commands, some for status, and some for data. Device control is
accomplished by sending information to the command ports and getting
information from the status ports. Input is done by getting data from a data
port

There are several distinctions between IN and INS. In INS the port
number is always in DX In INS the destination of the data is pointed to by
ES:[(E)DI], and no segment override is permitted. Finally, the INS instruc
tion is designed to be used with the REP prefix. That is, at the end of the
instructions (E)DI is incremented or decremented (depending on the Di
rection Flag) by the operand size.

Port numbers 00FBH through 00FFH are reserved by Intel and shouldn't
be used.

Exceptions Modes Reasons

#GP(0)
#GP(0)

#SS(0)
#PF(fc)
INT(13)

#GP(0)

User Notes

p
p

p
PV
RV

V

Current privilege is higher than IOPL
Illegal memory effective address in CS, OS, ES,
FS, or GS segments
Illegal address in SS segment
Page fault .
Some part of operand is outside of address range
0 to 0FFFFH
Some of the corresponding permission bits in
TSS equal 1

Most programs obtain input through calls to an operating system, and
thus don't use the INS instruction, but it is indispensable for those writing
device drivers or for anyone who must deal directly with a device.

When only a few bytes of input are needed the IN instruction should be
used. If the input device can't provide data at a high rate of speed, the INS

162 The 80386 Instruction Set

instruction can be put in a LOOP, with NOPs or a counting loop included to
slow down the transfer of data.

Example

CLD
LES
MOV
MOV
REPINSB

EDI,INSTR
ECX,5
DX,40

; Ensure direction is forward.
; Set up destination of input, ES:[EDI].
; Set up repeat count for INS.
; Set up input port number for INS.
; Get 5 bytes of data from input port 40.

The Instructions 163

INT

Opcode

cc
CD ib
CE

Call to Interrupt Procedure

Format

INT 3
INT ib
INTO

Clocks

33*
37*
3,35*

8086

*These instructions have varying functions and timings in Protected Mode
(see Chapter 5). INTO takes 3 clocks when the interrupt is not taken and 35
clocks when the interrupt is taken.

Flags

Normally INT affects no flags. However, in Protected Mode all flags are
changed to the new task's saved flags when a task switch is made.

Pseudocode

IF not INTO or OF flag set THEN
Push (E)Flags register onto stack
Push CS (Code Segment) register onto stack
Push (E)IP (Instruction Pointer) onto stack
Disable external interrupts (clear Interrup.t Flag IF)
Move segment and offset from interrupt vector table into CS:(E)IP

END IF

Operation

An interrupt is much like a call to a far procedure, with the flags
automatically saved on the stack and interrupts automatically disabled. The
location to jump to is not given by the INT command itself; instead the
interrupt number is used to look up an entry in a table of interrupts, which
gives the address of the interrupt routine.

When executed in Real mode INT first pushes the Flags register onto the
stack, then it pushes the code segment register onto the stack. The same goes

164 The 80386 Instruction Set

for the Instruction Pointer. The Interrupt Flag IF is then cleared, disabling
external (hardware) interrupts. Finally, the new code segment and offset are
copied from the interrupt vector table into the CS register, and the Instruc
tion Pointer is set to the start of the interrupt routine. When the interrupt
routine is finished the registers will be restored and execution will proceed
from the command after the INT.

The basic procedure is the same in Protected Mode, but several checks
of privilege levels and sufficient stack sizes have to be passed or protection
errors occur (see Chapter 5).

INTO is like INT except that the number of the interrupt routine to be
used is assumed to be 4, and the INT is only executed if the Overflow Flag is
set INTO is generally used just after an arithmetic operation.

Exceptions Modes Reasons

#NP
#TS
#GP
#SS

#GP(0)

User Notes

p
p
p
p
R
V

Target code segment not present
Task switch required
Illegal CS, DS, ES, FS, or GS segment
Illegal SS segment
80386 shut down due to insufficient stack space
Emulates the interrupt operation if IOPL is less
than 3

Generally the interrupt vector table is set up by the operating system,
and interrupts are used largely for operating system calls. Your operating
system manual should give instructions for writing your own interrupts.

INTO replaces a series of instructions like: JNO OverOne, INT 4, Over
One; ... A series of instructions like this will serve to construct an INTO
"workalike" for other flags and interrupt numbers.

Example

MOV AL,100
MUL AL,10
INTO

; Loads a number into AL.
; This multiply will cause OF to be set
; Interrupt 4 will be taken.

The Instructions 165

IRET

Opcode

CF

Format

IRET

Interrupt Return 8086

Clocks

22*

*This instruction has varying functions and timings in Protected Mode (see
Chapter 5).

Flags

IRET restores all flags to the saved flags on the stack.

Pseudocode

Pop (E)IP (Instruction Pointer) from stack.
Pop CS (Code Segment) register from stack.
Pop (E)Flags register from stack.

Operation

An IRET is just like a RET from a far procedure except that the Flags
register is restored from the stack. Since the flags are restored from their state
before the (presumed) INT or INTO, the Interrupt Flag is also restored to its
previous state so the disabling of interrupts that occurred when the INT was
executed is now overridden by the previous state of the Interrupt Flag.

The basic procedure is the same in Protected Mode, but many checks of
privilege levels and sufficient stack sizes have to be passed or protection
errors occur (see Chapter 5).

Exceptions Modes Reasons

#NP
#TS·

p
p

Target code segment not present
Task switch required

166 The 80386 Instruction Set

#GP
#SS
INT(13)
#GP(0)

User Notes

p
p
R
V

Illegal CS, DS, ES, FS, or GS segment
Illegal SS segment
Part of operand being popped lies beyond 0FFFFH
Emulates the interrupt operation if IOPL is less
than 3

Generally the interrupt vector table is set up by the operating system,
and interrupts are used largely for operating system calls. The IRET instruc
tions for these system calls are at the end of the calls, and are not seen by the
programmer. Your operating system manual should give instructions for
writing your own interrupts.

Example

IRET ; Return from interrupt

The Instructions 167

Jee Jump if Condition is Met 8086

Opcode Format Jump Condition Clocks

77 db JAdb Above (CF=O and ZF=O) 7+m,3
OF 87 dw JAdw Above (CF=O and ZF=O) 7+m,3
OF 87 dd]Add Above (CF=O and ZF=O) 7+m,3
73 db JAE db Above or equal (CF=O) 7+m,3
OF 83 dw JAEdw Above or equal (CF=O) 7+m,3
OF 83 dd JAE dd Above or equal (CF=O) 7+m,3
72 db JB db Below (CF=l) 7+m,3
OF 82 dw JB dw Below (CF=l) 7+m,3
OF 82 dd JB dd Below (CF=l) 7+m,3
76 db JBE db Below or equal (CF=l or ZF=l) 7+m,3
OF 86 dw JBE dw Below or equal (CF=l or ZF=l) 7+m,3
OF 86 dd]BE dd Below or equal (CF=l or ZF=l) 7+m,3
72 db JC db Carry (CF=l) 7+m,3
OF 82 dw JC dw Carry (CF=l) 7+m,3
OF 82 dd JC dd Carry (CF=l) 7+m,3
E3 db JCXZ db ex register is zero 7+m,3
74 db JE db Equal (ZF=l) 7+m,3
OF 84 dw JE dw Equal (ZF=l) 7+m,3
OF 84 dd JE dd Equal (ZF=l) 7+m,3
E3 db JECXZ db ECX register is zero 7+m,3
7F db JG db Greater (ZF=O and SF=OF) 7+m,3
OF BF dw JGdw Greater (ZF=O and SF=OF) 7+m,3
OF BF dd JG dd Greater (ZF=O and SF=OF) 7+m,3
7D db JGE db Greater or equal (SF=OF) 7+m,3
OF 8D dw JGE dw Greater or equal (SF=OF) 7+m,3
OF 8D dd JGE dd Greater or equal (SF=OF) 7+m,3
7C db JL db Less (SF<>OF) 7+m,3
OF BC dw JL dw Less (SF<>OF) · 7+m,3
OF BC dd JL dd Less (SF<>OF) 7+m,3
7E db JLE db Less or equal (ZF=l or SF<>OF) '"'+m,3
OF BE dw JLE dw Less or equal (ZF=l or SF<>OF) 7+m,3
OF BE dd]LE dd Less or equal (ZF=l or SF<>OF) 7+m,3
76 db JNAdb Not above (CF=l or ZF=l) 7+m,3
OF 86 dw JNAdw Not above (CF=l or ZF=l) 7+m,3

168 The 80386 Instruction Set

OF 86 dd JNAdd Not above (CF=l or ZF=l) 7+m,3
72 db JNAE db Not above or equal (CF=l) 7+m,3
OF 82 dw JNAE dw Not above or equal (CF=l) 7+m,3
OF 82 dd JNAE dd Not above or equal (CF=l) 7+m,3
73 db JNB db Not below (CF=O) 7+m,3
OF 83 dw JNBdw Not below (CF=O) 7+m,3
OF 83 dd JNB dd Not below (CF=0) 7+m,3
77 db JNBE db Not below or equal (CF=O and ZF=O) 7+m,3
OF 87 dw JNBE dw Not below or equal (CF=O and ZF=O) 7+m,3
OF 87 dd JNBE dd Not below or equal (CF=O and ZF=O) 7+m,3
73 db JNC db Not carry (CF=O) 7+m,3
OF 83 dw JNC dw Not carry (CF=O) 7+m,3
OF 83 dd JNC dd Not carry (CF=O) 7+m,3
75 db JNE db Not equal (ZF=O) 7+m,3
OF 85 dw JNE dw Not equal (ZF=0) 7+m,3
OF 85 dd JNE dd Not equal (ZF=0) 7+m,3
7E db JNGdb Not greater (ZF=l or SF<>OF) 7+m,3
OF BE dw JNGdw Not greater (ZF=l or SF<>OF) 7+m,3
OF BE dd JNG dd Not greater (ZF=l or SF<>OF) 7+m,3
7C db JNGE db Not greater or equal (SF<>OF) 7+m,3
OF BC dw JNGE dw Not greater or equal (SF<>OF) 7+m,3
OF BC dd JNGE dd Not greater or equal (SF<>OF) 7+m,3
7D db JNL db Not less (SF=OF) 7+m,3
OF 8D dw JNLdw Not less (SF=OF) 7+m,3
OF 8D dd JNL dd Not less (SF=OF) 7+m,3
7F db JNLE db Not less or equal (ZF=O and SF=OF) 7+m,3
OF BF dw JNLE dw Not less or equal (ZF=O and SF=OF) 7+m,3
OF BF dd JNLE dd Not less or equal (ZF=O and SF=OF) 7+m,3
71 db JNO db Not overflow (OF=O) 7+m,3
OF 81 dw JNOdw Not overflow (OF=O) 7+m,3
OF 81 dd JNO dd Not overflow (OF=O) 7+m,3
7B db JNP db Not parity (PF=O) 7+m,3
OF BB dw JNPdw Not parity (PF=O) 7+m,3
OF BB dd JNP dd Not parity (PF=0) 7+m,3
79 db JNS db Not sign (SF=O) 7+m,3
OF 89 dw JNS dw Not sign (SF=O) 7+m,3
OF 89 dd JNS dd Not sign (SF=O) 7+m,3
75 db JNZ db Not zero (ZF=O) 7+m,3
OF 85 dw JNZdw Not zero ,(ZF=O) 7+m,3
OF 85 dd JNZ dd Not zero (ZF=O) 7+m,3

70 db
OF 80 dw
OF 80 dd
7A db
OF BA dw
OF BA dd
7Adb
OF BA dw
OF BA dd
7B db
OF BB dw
OF 8B dd
78 db
OF 88 dw
OF 88 dd
74 db
OF 84 dw
OF 84 dd

Flags

JO db
JOdw
JO dd
JP db
JP dw
JP dd
JPE db
JPE dw
JPE dd
JPO db
JPO dw
JPO dd
JS db
JS dw
JS dd
JZ db
JZ dw
JZ dd

Overflow (OF=1)
Overflow (OF=1)
Overflow (OF=1)
Parity (PF=1)
Parity (PF=1)
Parity (PF=1)
Parity even (PF=l)
Parity even (PF=l)
Parity even (PF=1)
Parity odd (PF=0)
Parity odd (PF=0)
Parity odd (PF=0)
Sign (SF=1)
Sign (SF=l)
Sign (SF=1)
Zero (ZF=1)
Zero (ZF=1)
Zero (ZF=1)

The Instructions 169

7+m,3
7+m,3
7+m,3
7+m,3
7+m,3
7+m,3
7+m,3
7+m,3
7+m,3
7+m,3
7+m,3
7+m,3
7+m,3
7+m,3
7+m,3
7+m,3
7+m,3
7+m,3

I O I NT I IOPL I OF I DF I 'F I TF I SF I ZF I O I AF I O I Pf I I CF I

Pseudocode

IF condition is met THEN
Set Instruction Pointer (IP) to IP + sign-extended displacement

END IF

Operation

Jump instructions allow for non-sequential flow of program execution.
The jumps covered here are conditional in that they either jump or don't
jump depending on the state of the processor. Unconditional jumps, covered

170 The 80386 Instruction Set

below, always jump. Jumps may be further classified according to how the
destination address is computed.

There are three types of jumps on the 80386-short, near, and far.
Short jumps are relative jumps to an address close to the jump instruc
tion (within the same code segment and within -128 to +127 bytes of the
next instruction). Near jumps are also relative, but have a much greater
range (anywhere in the same code segment). Far jumps, on the other
hand, are absolute jumps to a particular address, which can be in any
code segment In the 80386 conditional jumps may be only short or near.
In addition, the JCXZ and JECXZ instructions are only short jumps.

Most of the conditional jumps test the state of one or more of the flag
bits. If the condition (listed in the above table) is met then the jump is taken;
otherwise execution continues with the next instruction in sequence. The
JC:XZ and JECXZ instructions do not test any of the flags, however. Instead
they test the value in the CX (or ECX) register.

In the timings above the first figure is for when the jump is taken and the
second is for when the condition is not true and the jump is not taken. All
jump instructions slow down the 80386 when the jump is taken, because the
instruction queue is cleared and must be refilled. The value "m" in the clock
count for the jumps is the number of "components" in the instruction at the
target of the jump. Each prefix byte, opcode byte, mod r/m byte, or SIB byte is
counted as a single component Any displacement or immediate value also
counts as one component each.

Exceptions Modes Reasons

#GP(0)

User Notes

p Jump target is beyond the limits of the code
segment

Many of the conditional jumps are meant for use with unsigned
numbers, while others are meant for comparisons of signed numbers. The
way to tell the difference is that the use of "above" and "below" indicates
unsigned comparisons. The use of "greater" and "less" refers to the use of
signed numbers.

A close examination of the instruction table for conditional jumps
reveals that there are often several mnemonics for the same opcode (and

The Instructions 171

therefore conditional test). The reason for this redundancy is that the same
state of the flags can mean different things based on the context of the jump.
For example, a conditional jump often appears after a CMP or SUB has been
executed. The conditional jump then compares the two operands of the
previous instruction, and a JE (jump equal) might be appropriate. On the
other hand, right after a DEC instruction the same jump with the JZ (jump
zero) mnemonic could be used to terminate a loop after a count reached
zero. We recommend (as a matter of good programming style) choosing
jump mnemonics carefully so that they indicate the meaning of your
comparisons.

The JCXZ and JECXZ jumps are "short" jumps; the location being
jumped to must be within 128 bytes before or 127 bytes after the end of the
jump instruction, and within the same segment However, there are no direct
opposites to these commands, so to reach a far location when CX becomes
zero Je:XZ's operand will need to be the label of a JMP command, probably
outside the loop Je:xz is within.

Instructions like REPE and LOOPNE cause looping to occur until either
the Zero Flag is set or cleared, or ex is zero. A Jexz instruction just after the
repeat or loop will cause a jump in those cases when the termination
occurred due to ex reaching zero, rather than the Zero Flag reaching the
needed setting. This allows different types of looping terminations to be
handled differently.

Example

MOV EeX,5
eMP EeX,7
JLE TARGET

TARGET: AND AL,7

; Set up operand for compare.
; Compare the 5 with the 7.
; The jump will be taken, 10 clocks
; required.

; 1 byte opcode, 1 mod r/m byte,
; 1 immediate= 3 components.

172 The 80386 Instruction Set

JMP Unconditional Jump

Opcode

EB db
E9 dw
E9 dd
FF [4]
FF [4]
EA pd
EA pp
FF [5]
FF (5]

Format

JMP db
JMPdw
JMPdd
JMP r/mw
JMP r/md
JMPpd
JMPpp
JMP mw:w
JMP mw:d

Type

Short, direct
Near, direct
Near, direct
Near, indirect
Near, indirect
Far, direct
Far, direct
Far, indirect
Far, indirect

Clocks

7+m
7+m
7+m
7+ml10+m
7+ml10+m
17+m,*
17+m,*
22+m,*
22+m,*

8086

*These instructions have varying functions and timings in Protected Mode
(see chapter 5).

Flags

Normally JMP affects no flags. However, in Protected Mode all flags
are changed to the old task's saved flags when a task switch is made.

Pseudocode

IF intersegment JMP THEN
Set CS to segment selector of operand

END IF
Set IP to offset part of operand

Operation

The function of JMP is to provide an unconditional transfer of
control. It corresponds to the GOTO of higher-level languages, and differs
from the conditional jump (Jee) in that the transfer is always made and

The Instructions 173

the target of the jump may be in another segment All jump instructions
slow down the 80386 because the instruction queue is cleared and must
be refilled after the jump is taken.

There are five distinct types of unconditional jumps, differing in how
far away from the current instruction the jump target may be and in the
technique used in specifying the target address.

The short jump (also a direct jump) specifies the target witr an imme
diate displacement following the jump opcode. The displacement is
simply added to IP to produce the new execution address. Since the dis
placement is a byte, the target must lie within the same code segment and
be within -128 and +127 bytes from the instruction following the jump.

A near direct jump is similar to the short jump in that the target address
is specified by an immediate displacement following the jump opcode. This
displacement is also added directly to IP. Note that at the time of the add IP
points at the instruction following the jump. The displacement is either a
word or dword, depending on the size of the current code segment The jump
can therefore reach anywhere in the current code segment

With a near indirect jump the target address is specified indirectly. It is
still restricted to the same code segment as the jump instruction, but speci
fies either a register or memory location containing the offset within the
current code segment of the target instruction. The offset is either a word or
dword, depending on the size of the current code segment

A far direct jump permits the target of the jump to be in a different code
segment The jump instruction contains an immediate operand that is a
pointer to the target instruction. The pointer contains a word segment
selector (which is loaded into CS) and ~ither a word or dword offset (which
is loaded into (E)IP). The size of the offset depends on the size of the target
code segment

A far indirect jump is similar to a near indirect jump in that the
instruction contains a pointer to the actual target address. However, the
target address is a full pointer rather than a simple offset, and therefore may
not be in a register. The target pointer contains a segment selector (which is
loaded into CS) and either a word or dword offset (which is loaded into
(E)IP). The size of the offset depends on the size of the target code segment

The basic procedure is the same in Protected Mode, but intersegment
jumps are much more complicated since the jump may specify an operating
system routine or even another task. In either case memory protection must
be checked (see Chapter 5).

174 The 80386 Instruction Set

Exceptions Modes Reasons

#NP
#TS
#GP(0)

#SS(0)
#PF(fc)
INT(13)

User Notes

p
p
p

p
PV
RV

Target code segment not present
Task switch required
Illegal memory effective address in CS, DS, ES,
FS, or GS segments
Illegal address in SS segment
Page fault
Some part of operand is outside of address range
Oto 0FFFFH

On the 80386 a short jump (distance given by a byte) and a near jump
(distance given by a word) in Real Mode both take only 7 clocks to execute.
The only advantage of a short jump is that its instruction is a total of 1 byte
shorter. Thus, no execution speed is saved by rearranging your code to make
sure most jumps are short, as long as they're in the same segment

Example

JMP TARGET ; The jump will take 10 clocks.

TARGET: AND AX,7 ; 1 byte opcode, 1 mod r/m byte,
; 1 immediate = 3 components.

LAHF

Opcode

9F

Flags

The Instructions 175

Load Flags Into AH 8086

Format

LAHF

Clocks

2

I O I NT I 'OPL I OF I DF I IF I TF I SF I ZF I O I AF I O I PF I , I CF I

Pseudocode

Set AH to low byte of Flags register.

Operation

LAHF is a quick way to load all the flags stored in the low byte of the
Flags register into AH, where they can be changed, examined, or stored as
needed. This instruction has been provided for compatibility with the
8080/85, and is rarely used in iAPX 86 family programs (which would use
POPF instead).

The bits in AH after the transfer are: SF ZF x AF x PF x CF, with "x"
meaning "undefined."

Exceptions

None

176 The 80386 Instruction Set

User Notes

Except for programs converted from (or due to be converted to) the
8080/85, this instruction is normally not used. It could be used to check the
status of all the low-byte flags at once (by comparing AH to a bit pattern, for
instance), or to implement obscure conditional jumps that depend on flag
combinations not covered by JE, JNA, etc. However, this is made more
difficult by the fact that several of the bits are undefined.

To get around this, LAHF could be implemented; then AND AH,D5H
would ensure that the undefined bits were cleared. Finally, one or more
AND's followed by JE's or JNE's would compare the bit pattern in AH to
various predefined patterns, and jump based on the result

Example

LAHF
AND
JNZ

AH,11H
SOMEWHERE

; Loads the flags into AH.
; Mask out the AF and CF bits.
; Simulates a "jump on AF or CF set"
; instruction.

The Instructions 177

LEA Load Effective Address Offset 8086

Opcode Format Clocks

8D [r] LEA r16,m16 2
8D [r] LEA r32,m16 2
8D [r] LEA r16,m32 2
8D [r] LEA r32,m32 2

Flags

Pseudocode

IF register size is 16 THEN
IF memory size is 16 THEN

Set register to offset part of effective address
ELSE (* memory size is 32 *)

Set register to low order 16 bits of offset part of effective address
END IF

ELSE (* register size is 32 *)
IF memory size is 16 THEN

Set register to offset part of effective address, zero extended to 32 bi ts
ELSE (* memory size is 32 *)

Set register to offset part of effective address
END IF

END IF

178 The 80386 Instruction Set

Operation

LEA is like a MOV from memory to a register, but the offset part of the
address is MOVed, not the contents of RAM at the address. The memory size
referred to in the pseudocode is determined by the USE attribute of the
segment containing the memory address.

Exceptions Modes Reasons

#UD
INT(6)

User Notes

p
RV

Second operand is a register
Second operand is a register

Sometimes LEA and MOV can be used interchangeably. For instance,
LEA AX, STRUCTURE and MOV AX, OFFSET STRUCTURE have the same
effect However, LEA allows the use of any addressing mode for the second
operand, as long as it results in a memory reference. Thus LEA AX.STRUC
TURE [BX] [D1] allows the address of a doubly-indexed pointer to be moved
directly into AX; this couldn't be done directly with a MOV.

Another interesting aspect of the LEA instruction is its capability to
provide a very fast but somewhat limited integer multiply instruction. By
using scaled index addressing mode, multiplications by 2, 4, and 8 can be
accomplished. With based scaled index addressing :rnode, LEA will perform
multiplications by 3, 5, or 9. Note that these all require only 2 clocks, far
faster than either multiply or shift instructions.

Example

MOV BX,11 ; Get an 11 into BX to be multiplied.
LEA AX,[BX][BX*4] ; Loads AX with BX*5, in this case 55.

LEAVE

Opcode

C9

Flags

Pseudocode

The Instructions 179

Remove Procedure
Stack Frame

Format

LEAVE

Clocks

4

80186

Set (E)SP to (E)BP.
POP old frame pointer into (E)BP.

Operation

LEA VE is used to implement procedure calls, and is a command
expressly designed for implementing high-level languages. It resets the
stack pointer to exclude the procedure's local variables and pops from the
stack a "frame pointer." These actions prepare the stack for the RET instruc
tion that should immediately follow.

Exceptions Modes Reasons

#SS(O)

INT(13)

p

RV

BP points to a location outside the current stack
segment
Some part of the operand lies outside address
space O to OFFFFH

180 The 80386 Instruction Set

User Notes

LEA VE is much simpler than ENTER because ENTER does most of the
work. It sets BP to point at the correct place so that all LEA VE needs to do is
put BP into the stack pointer and then pop the old BP value.

LEA VE should be the last instruction before RET in a procedure in
which ENTER is the first instruction. The LEA VE instruction changes the
stack pointer so the local variables that had been on the stack are removed
and the frame pointer (BP) is set ready for the procedure that called this one.

Example

SUBROUTINE:
ENTER12,3 ; SUBROUTINE has 3 local variables

; (dwords) and is at nesting level 3.

LEAVE

RET 8

; Removes current stack frame from
; stack.
; SUBROUTINE has 2 parameters
; (dwords).

The Instructions 181

LOCK Assert BUS LOCK Signal Prefix 8086

Opcode

FO

Flags

Pseudocode

Format

LOCK

Clocks

0

Set BUS LOCK signal for duration of the following instruction.

Operation

The LOCK prefix is used in multiple-processor systems to prevent con
tention for shared memory at certain critical times. It asserts a special bus
signal, called LOCK, which prevents any other bus device from accessing the
bus during the time the signal is asserted. The signal is asserted during the
entire execution of the instruction that follows the LOCK prefix.

On the 80386 only certain instructions may be used with LOCK The use
of any other instruction will cause an undefined opcode trap to occur. The
valid instruction/operand combinations are:

BT, BTS, BTR, BTC
ADD, OR, ADC, SBB, AND, SUB, XOR
XCHG
XCHG
NOT, NEG, INC, DEC

mem, reg/imm
mem, reg/imm
reg, mem
mem, reg
mem

182 The 80386 Instruction Set

Note that all these instructions require a value to be read from memory,
modified in some way, and stored back in the same memory location. The
XCHG instruction is always locked, even if the prefix is not present

Exceptions Modes Reasons

#GP(O)

#UD

INT(6)

User Notes

p

PV

R

Current privilege level is higher than the 1/0
privilege level
Instruction following LOCK is not listed in the
table above
Instruction following LOCK is not listed in the
table above

The LOCKed instruction can generate any additional exception, just as
if it had been executed "normally."

For an example of why this prefix might be needed, consider the
following situation. A two-processor system contains a shared memory
location used as an "event" counter. When either processor detects an
"event" it must increment this shared memory location. The program in
each processor will use an INC instruction without the LOCK prefix. Sup
pose that four events have already been detected and both processors detect
an event at about the same time. If both processors attempt to execute their
respective INC instructions too close together, the following disaster
happens.

The first processor reads the value (4) from shared memory and begins
the increment process internally. While the internal increment is happening
in processor one, processor two gets the bus and uses it to read the same
value (4) from the same memory location. While processor two is internally
incrementing this value the first processor stores the result of its increment
(5) back into memory. Finally, the second processor stores the result of its
increment (also 5) back into the shared memory location. What has hap
pened is that the counter has missed an "event" The LOCK prefix would
have prevented this bug.

You may say to yourself that the above scenario is quite unlikely and
that is just the reason that this kind of bug is so difficult to find. A system with
this bug in it could run correctly for weeks or months and then suddenly start

The Instructions 183

"crashing" mysteriously because a situation that provoked the bug became
common.

Locked access may not be guaranteed if the other processor executes an
instruction with any one or more of the following conditions:

• The LOCK prefix is not used.
• The instruction is not in the list above.
• A memory operand is specified that does not exactly overlap.

Previous Intel processors allowed a more liberal use of the LOCK prefix.
Therefore, take care when converting any programs from these earlier
systems that contain a LOCK

Example

LOCK BTR FLAGWORD,AV AILBIT

JNC NODICE

; Clear avail bit to indicate
; we have the shared resource.
; Jump if someone else
; already had it allocated.

184 The 80386 Instruction Set

LOOS Load String 8086

Opcode

AC

Format Clocks Single

5

Clocks Repeated

AD
AD

LODSB
LODSW
LODSD

5

5

*
*
*

*LODS is the one string instruction which cannot use any of the repeat
prefixes.

Flags

Pseudocode

Determine size of operand
IF operand size is 8 THEN

Move byte from address DS:[(E)SI] to AL
ELSE IF operand size is 16 THEN

Move word from address DS:[(E)SI] to AX
ELSE (* operand size is 32 *)

Move dword from address DS:[(E)SI] to EAX
IF DF = 0 THEN
ENDIF

Add size of operand (in bytes) to (E)SI
ELSE

Subtract size of operand (in bytes) from (E)SI
END IF

Operation

LODS is just like a MOV from memory to AL or AX, bu tit also automati
cally adjusts SI after the move. If the Direction Flag is O SI is incremented;

The Instructions 185

otherwise it's decremented. If a byte was moved the index is adjusted by 1; if
a word, by 2; and if a dword, by 4.

Exceptions Modes Reasons

#GP(O)

#SS(O)
#PF(fc)
INT(13)

User Notes

p

p
PV
RV

Illegal memory effective address in CS, OS, ES,
FS, or GS segments
Illegal address in SS segment
Page fault
Some part of operand is outside of address range
Oto OFFFFH

LOOS can't be used with any of the REP prefixes; REP would only have
the effect of repeatedly overwriting the AL or AX register with each of the
bytes or words pointed to by SI. However, LOOS is often used in a repeat
loop looking for a given character in a string: LOOS loads AL, which is then
compared to the needed character, and this is repeated until the characteris
found.

LOOS and STOS can be used together to transfer a string from OS to ES,
with any needed conditional tests or changes put in between LOOS and
STOS. If a string of known length is to be moved unchanged, then MOVS will
do the same thing faster.

Example

The following copies a string from one location in memory to
another. It copies until either a maximum number of characters
have been moved or a zero character has been moved.
These zero-terminated strings are just like "C" language strings.

CLO ; Ensure direction is forward.
LOS ESLSSTR ; Get pointer to source string,

; OS:[ESI].
LES EDI,DSTR ; Get pointer to destination

; string, E S:[EDI].
MDV ECX,MAXSTR ; Set up repeat count for

;LOOP.

186 The 80386 Instruction Set

COPYL:
LODSB

STOSB
TEST AL,AL

LOOPNZ COPYL

; Get next character from
; source string.
; Store into destination string.
; Will set Zero flag only on
; zero character.
; Loop until MAXSTR bytes or
; a zero byte have been moved.

The Instructions 187

LOOPcc

Opcode

E2 db
El db
El db
E0 db
Eo db

Flags

Pseudocode

Loop Control with
CX Counter

Format Jump Condition

LOOP db (E)CX <> 0
LOOPE db (E)CX <> 0 and ZF = 1
LOOPZ db (E)CX <> 0 and ZF = 1
LOOPNE db (E)CX <> o and ZF = 0
LOOPNZ db (E)CX <> 0 and ZF = 0

Decrement (E)CX (* No flags are changed*)
Determine size of operand
IF condition is met THEN

8086

Clocks

11+m
11+m
11+m
11+m
11+m

Set Instruction Pointer (IP) to IP + sign-extended displacement
END IF

Operation

LOOP decrements CX (or ECX), then checks to see that it's not zero. The
Zero Flag may also be checked. If the register is not zero and any optional
ZF condition is met, a short jump is made to the label given as an operand
after the LOOPcc. The assembler translates the label into a byte offset,
which can range from 128 bytes before the instruction to 127 bytes after.
This offset is added to the current address to determine where execution
will proceed next

188 The 80386 Instruction Set

Exceptions ~odes Reasons

#GP(O)

User Notes

p Jump target is beyond the limits of the code
segment

LOOP allows a FOR-type loop to be implemented directly in assembly
language. As with a FOR loop, the value in the CX register shouldn't be
altered by any of the commands within the loop or the loop could easily go
on forever. The loop count is treated as an unsigned integer.

A common source of confusion arises from the name LOOPZ. Just
remember that the instruction loops while the last result to set the flags is
zero and (E)CX zero.

Example

See LOOS (above) for a good example of LOOPcc.

The Instructions 189

Lxx Load Full Pointer 8086

Opcode r- Clocks

C5 [r] LDS rw,mw:w 7,22*
C5 [r] LDS rd,mw:d 7,22*
C4 [r] LES rw,mw:w 7,22*
C4 [r] LES rd,mw:d 7,22*
OF B2 [r] LSS rw,mw:w 7,22*
OF B2 [r] LSS rd,mw:d 7,22*
OF B4 [r] LFS rw,mw:w 7,22*
OF B4 [r] LFS rd,mw:d 7,22*
OF B5 [r] LGS rw,mw:w 7,22*
OF B5 [r] LGS rd,mw:d 7,22*

*These instructions require extra clocks in Protected Mode due to extra
processing needs (see Chapter 5).

Flags

NT IOPL OF DF IF TF SF ZF AF PF CF
0 0 0 1

Pseudocode

Set the segment register to the segment part of the second operand.
Set the general register to the offset part of the second operand.

Operation

These instructions are used to set up two registers at one time. Both a
segment register and one of the general registers are loaded. The segment
register is loaded with the 16-bit segment selector of the operand. The

190 The 80386 Instruction Set

general register is loaded with either a word or dword offset of the operand
within its segment The size loaded depends on the size attribute of the
specified segment

This basically simple operation is somewhat more complicated in
Protected Mode. The main problem here is that any change in one of these
registers means that the processor will now be trying to reference a whole
different piece of memory, which probably has different protection levels
than the current one. If virtual memory techniques are in use the segment
may even be out on disk.

Exceptions Modes Reasons

#UD p Source operand is a register
#GP(O) p Illegal memory effective address in CS, DS, ES,

FS, or GS segments
#GP(O) p Null selector loaded to SS
#SS(O) p Illegal address in SS segment
#PF(fc) PV Page fault
INT(13) RV Some part of operand is outside of address range

0 to OFFFFH
INT(6) RV Source operand is a register

User Notes

The most common use of these instructions is to set up one of the data
segment registers and an index register in preparation for accessing a new
block of memory.

Example

LES DI, STRUCTURE ; Loads segment of STRUCTURE into ES and
; offset of STRUCTURE into DI.

The Instructions 191

MOV Move Data 8086

Opcode Format Clocks

B0+r ib MOV rb,ib 2
BB+r iw MOV rw,iw 2
BB+r id MOV rd,id 2
C6 [0] ib MOV r/mb,ib 2
C7 [0] iw MOVr/mw,iw 2
C7 [0] id MOVr/md,id 2
AO d MOV AL,db 4
Al d MOV AX,dw 4
Al d MOVEAX,dd 4
A2 d MOV db,AL 2
A3 d MOVdw,AX 2
A3 d MOV dd,EAX 2
88 [r] MOV r/mb,rb 2
89 [r] MOVr/mw,rw 2
89 [r] MOV r/md,rd 2
BA [r] MOVrb,r/mb 2/4
8B [r] MOVrw,r/mw 2/4
8B [r] MOV rd,r/md 2/4
BE [0] MOV ES,r/mw 2/5*
BE [1] MOVCS,r/mw 2/5*
BE [2] MOV SS,r/mw 2/5*
BE [3] MOVDS,r/mw 2/5*
BC [O] MOV r/mw,ES 2
BC [1] MOV r/mw,CS 2
BC [2] MOV r/mw,SS 2
BC [3] . MOV r/mw,DS 2

*These instructions require 18/19 clocks in Protected Mode due to extra
processing needs (see Chapter 5).

192 The 80386 Instruction Set

Flags

Pseudocode

Set first operand to second operand.

Operation

MOV is the same as the assignment operator in a high-level language; it
sets the first operand equal to the second. Unlike other assembly languages,
the destination operand is given first, followed by the source operand.

Although this seems very simple, there are two additional complications
encountered in using the MOV instruction. The first is when a MOV SS is
executed. This automatically inhibits all interrupts until after the next
instruction is executed. The implied expectation is that the next instruction
will be MOV SP or some other instruction that results in the SS:SP
combination being restored to a meaningful value.

The second complication is encountered when moving into any
segment register in Protected Mode. The main problem here is that any
change in one of these registers means that the processor will now be trying
to reference a whole different piece of memory, which probably has
different protection levels than the current one.

Exceptions Modes Reasons

#GP, #SS, #NP P
#GP(0) P
#GP(0) P

#SS(0) P
#PF(fc) P V
INT(13) RV

A segment register is being loaded
Result in nonwritable segment
Illegal memory effective address in CS, DS, ES,
FS, or GS segments
Illegal address in SS segment
Page fault
Some part of operand is outside of address
range 0 to 0FFFFH

The Instructions 193

User Notes

The most important thing to know about using MOV is knowing when
to pull some less-used but better-suited instruction-from your bag of tricks.
For instance, MOVS is often better for moving strings, while IN and OUT are
needed if your source or destination is a port

Example

MOV AX,ES ; Copies the contents of ES into AX

194 The 80386 Instruction Set

MOVxX

Opcode

OF BE [r]
OF BE [r]
OF BF [r]
OF B6 [r]
OF B6 [r]
OF B7 [r]

Flags

Pseudocode

Move with Sign/
Zero Extension

Format Clocks

MOVSX rw,r/mb 3/6
MOVSX rd,r/mb 3/6
MOVSX rd,r/mw 3/6
MOVZX rw,r/mb 3/6
MOVZX rd,r/mb 3/6
MOVZX rd,r/mw 3/6

8086

Extend the source operand (by either zeros or the sign bit) to the length
of the destination.

Store the result into the destination operand.

Operation

MOVSX and MOVZX handle the problem of a destination operand
that has more bits in it than the source (i.e., the target is a word, the source a
byte). SX stands for "sign extension" and means that the high bit of the source
is copied into the additional bits available in the target ZX stands for "zero
extension," and the target's available bits are filled with zeros.

The Instructions 195

Exceptions Modes Reasons

#GP(0)

#SS(0)
#PF(fc)
INT(13)

User Notes

p

p
PV
RV

Illegal memory effective address in CS, OS, ES,
FS, or GS segments
Illegal address in SS segment
Page fault
Some part of operand is outside of address range
0 to 0FFFFH

Because these instructions only allow one of the general registers as a
destination, they are most useful in setting up registers for further
computations.

Example

MOVSX AX,92H ; Sets AX to 0FF92 (hex).

196 The 80386 Instruction ~

MOVS Move String 8086

Opcode

A4
MAS
A7

Format Clocks Single

7

Clocks Repeated

MOVSB
MOVSW
MOVSD

7
7

*The "N" in the "Clocks Repeated" column stands for the number of
repetitions (from (E)CX).

Flags

Pseudocode

Determine size of operand
IF operand size is 8 THEN

Move byte from address DS:[(E)SI] to ES:[(E)DI]
ELSE IF operand size is 16 THEN

Move word from address DS:[(E)SI] to ES:[(E)DI]
ELSE (* operand size is 32 *)

Move dword from address DS:[(E)SI] to ES:[(E)DI]
END IF
IF DF = O THEN

Add size of operand (in bytes) to (E)SI and to (E)DI
ELSE

Subtract size of operand (in bytes) from (E)SI and to (E)DI
END IF

The Instructions 197

Operation

MOVS is just like a regular MOV from the place in memory pointed to
by the source index to the place in the extra segment pointed to by the
destination index. However, it also automatically adjusts both indices after
the move. If the Direction Flag is 0 SI and DI are incremented; otherwise they
are decremented. If a byte was moved the indices are adjusted by 1; if a word,
by 2; and if a dword, by 4.

Exceptions Modes Reasons

#GP(0)
#GP(0)

#SS(0)
#PF(fc)
INT(13)

User Notes

p
p

p
PV
RV

Result in nonwritable segment
Illegal memory effective address in CS, DS, ES,
FS, or GS segments
Illegal address in SS segment
Page fault
Some part of operand is outside of address range
0 to 0FFFFH

MOVS can't be used with REPE or REPZ since it doesn't condition any
flags. However, the REP prefix works as expected, moving CX bytes or words
from the source to the destination. This is the usual way of using MOVS.

REP works well when you can load CX with the length of the string
you're moving, but if the transfer has to stop when a given byte is found some
other method has to be used. One method is to use LODS, do the test, use
STOS, and then repeat with a LOOP instruction.

Example

CLD
LDS ESI,STR1
LES EDI,STR2
MOV ECX,5
REPE MOVSD

; Ensure direction is forward.
; Set up source pointer, DS:[ESI].
; Set up destination pointer, ES:[EDI].
; Set up repeat count for move.
; Executes 5 times, copies from STR1 to
; STR2.

198 The 80386 Instruction Set

MUL Unsigned Multiply

Opcode

F6 [4]
F7 [4]
F7 [4]

Flags

NT

0

IOPL

Pseudocode

Format

MUL r/mb
MUL r/mw
MUL r/md

OF DF
s

IF

Clocks

9-14/12-17
9-22/12-25
9-38/12-41

TF SF ZF
u u

IF operand size is byte THEN

AF
0 u

Set AX to the product of AL and the operand
ELSE IF operand size is word THEN

0

Set DX:AX to the product of AX and the operand
ELSE (* operand size is dword *)

PF
u

Set EDX:EAX to the product of EAX and the operand
ENDIF

Operation

8086

CF
1 s

All operands are treated as unsigned numbers.All results can be treated
as unsigned numbers. The maximum size of the result of a multiplication of
two n-bit numbers is a 2n-bit number. Therefore the results produced are
twice the size of the input operands.

The Instructions 199

Exceptions Modes Reasons

#GP(O)

#SS(O)
#PF(fc)
INT(13)

User Notes

p

p
PV
RV

Illegal memory effective address in CS, DS, ES,
FS, or GS segments
Illegal address in SS segment
Page fault
Some part of operand is outside of address range
0 to OFFFFH

The timing information for this instruction is given in ranges because
the time required for a multiply depends on the size of the multiplier. The
more significant bits, the longer the operation takes. The 80386 takes advan
tage of this fact with an early-out multiplication algorithm. The specified
operand in the MUL instruction is called the optimizing multiplier ("m" in
the formula below). The actual number of clocks required for a multiply can
be calculated with the following formula:

IF m = 0 THEN clocks = 9
ELSE clocks = max(log2(Im I), 3) + 6

Example

MOV AL,128
MOV BL,10
IMUL BL

; Loads a 128 (80 hex) into AL.
; Loads a 10 (OA hex) into AL.
; AX now contains 1280 (500 hex), note that over
; flow gets set

200 The 80386 Instruction Set

NEG Two's Complement Negation

Opcode

F6 [3]
F7 [3]
F7 [3]

Flags

Pseudocode

Format

NEG r/mb
NEG r/mw
NEG r/md

Subtract operand from 0
Place result in operand
IF operand is zero THEN

clear carry flag to 0
ELSE

set carry flag to 1
END IF

Operation

Clocks

2/6
2/6
2/6

8086

NEG does a two's complement negation of its single operand. If the
operand is 65 before the negation, it will be -65 after, and vice versa. This is
done by taking the two's complement of the operand. Every bit in the
operand is reversed; 1's are changed to O's and O's to 1's, and the resultis then
incremented by 1. This gives the negation of the original operand.

Another way of looking at NEG's operation is to say that the operand is
subtracted from O and the result is placed in the operand. This operation is
easier to understand, but doesn't make clear what's happening on the bit
level.

The Instructions 201

Exceptions Modes Reasons

#GP(O)
#GP(O)

#SS(O)
#PF(fc)
INT(13)

User Notes

p
p

p
PV
RV

Result in nonwritable segment
Illegal memory effective address in CS, DS, ES,
FS, or GS segments
Illegal address in SS segment
Page fault
Some part of operand is outside of address range
Oto OFFFFH

There are many cases in which itis useful to negate a number, and NEG
works for all of them. The one's complement of a word can be obtained with
NOT.

Example

MOV AX,579BH ; Loads a value into AX
NEG AX ; Sets AX to OA865 hex.

202 The 80386 Instruction Set

NOP No Operation

Opcode

90

Flags

Pseudocode

Format

NOP

Do nothing for 3 clocks.

Operation

Clocks

3

8086

The NOP instruction takes up one byte of code space and when exe
cuted takes three clock cycles. No registers, flags, or contents of memory
are changed. The NOP instruction is an alias for the instruction: "XCHG
AX,AX."

Exceptions

None

User Notes

NOP does nothing, which is surprisingly often a worthwhile thing to do.
It's used to fill space when debugging on the fly, or when patching an
assembled program on disk. The assembler also puts NOPs in some of the

The Instructions 203

code it outputs. If it can't predict in advance the number of bytes a given
instruction will take up, it allocates the maximum amount of space that
could be needed. If not all the space is used the difference is filled with
NOPs.

Someone writing a program for a system with super-critical timing or
space limitations could write a filter to take in an assembled program and
output the same program with all NOPs removed. The program would also
have to adjust all jump-type instructions to account for the removed bytes.

Example

NOP ; Does nothing.

204 The 80386 Instruction Set

NOT One's Complement Negation

Opcode

F6 [2]
F7 [2]
F7 [2]

Flags

Pseudocode

REPEAT

Format

NOT r/mb
NOT r/mw
NOT r/md

Clocks

2/6
2/6
2/6

Reverse a bit in the operand
UNTIL all bits in operand are reversed

Operation

8086

NOT carries out a Boolean or "logical" NOT on its single operand and
leaves the result in the operand. This operation is depicted in Figure 4-4,
which gives "truth tables" for all logical operations.A 1 can be regarded as T
or True, while a O corresponds to For False. A logical NOT takes a single bit
as operand and reverses it if the bit is O it's changed it to 1; if it's a 1 it's
changed to 0.

A logical NOT simply changes a statement to its opposite or negative, so
applying NOT to an operand is also called "negating" the operand. In
English this is like inserting the word 'not' into a statement "The dog is
black" becomes "The dog is NOT black."

The result of applying NOT to a number is called the "one's comple
ment" of the number, and arithmetic can be done using one's complements.

The Instructions 205

Adding 1 to this result gives the "two's complement," which the iAPX 86s use
to do math.

Exceptions Modes Reasons

#GP(0)
#GP(0)

#SS(0)
#PF(fc)
INT(13)

User Notes

p
p

p
PV
RV

Result in nonwritable segment
Illegal memory effective address in CS, DS, ES,
FS, or GS segments
Illegal address in SS segment
Page fault
Some part of operand is outside of address range
Oto 0FFFFH

NOT is used to do bit tests and comparisons; many of these can also be
done by using the bit test instructions which are new on the 80386 (a
register-to-immediate bit test takes 3 cycles versus 2 for a similar NOT). The
NOT is only more efficient if no other supporting instructions are needed to
set up or decipher the comparison results.

Another problem with NOT (for many applications) is that it sets no
flags.

Example

MOV AX,579BH ; Loads a value into AX
NOT AX ; Sets AX to 0A864 hex.

206 The 80386 Instruction Set

OR Or 8086

Opcode Format Clocks

oc ib ORAL,ib 2
OD iw ORAX,iw 2
OD id OREAX,id 2
80 [1] ib OR r/mb,ib 2/7
81 [1] iw ORr/mw,iw 2/7
81 [1] id OR r/md,id 2/7
08 [r] OR r/mb,rb 2/7
09 [r] ORr/mw,rw 2/7
09 [r] OR r/md,rd 2/7
OA [r] OR rb,r/mb 2/7
OB [r] ORrw,r/mw 2/7
OB [r] OR rd,r/md 2/7

Flags

Io Im I JOPL I°: I DF I 1F I TF I~ I~ IO IAF IO IP; I I I~ I

Pseudocode

REPEAT
IF a bit in the destination operand is O and the corresponding bit in

the source operand is O THEN
leave the bit in the destination operand at 0

ELSE
set the bit in the destination operand to 1

END IF
UNTIL all bits in destination operand are checked

The Instructions 207

Operation

OR carries out a Boolean or "logical" OR on its two operands and leaves
the result in the leftmost operand. This operation is depicted in Figure 4-4,
which gives "truth tables" for all logical operations.A 1 can be regarded as T
or True, while a 0 corresponds to For False. A logical 'OR' takes two bits and
calculates a result using this rule: if either input bit is 1 or both input bits are
1, then the output bit is 1; otherwise the output bit is 0. The instruction OR
simply does the same operation on all the bits in each of two operands; the
leftmost bit in one operand is compared to the leftmost bit in the other, then
the two bits one position to the right are compared, until all the bit pairs have
been compared.

The logical OR is also called an "inclusive OR" since it "includes" the
case where both statements are true. This is much like the use of "or" in
English; ifl say, "It's going to rain or snow tomorrow" then I'm proved right by
rain, snow, or both.

OR can only be used with two operands of the same size (same number
of bits); otherwise the operation would be meaningless for some of the bits in
the longer operand.

Exceptions Modes Reasons

#GP(0)
#GP(0)

#SS(0)
#PF(fc)
INT(13)

User Notes

p
p

p
PV
RV

Result in nonwritable segment
Illegal memory effective address in CS, DS, ES,
FS, or GS segments
Illegal address in SS segment
Page fault
Some part of operand is outside of address range
0 to 0FFFFH

OR is used to do bit setting; often this can also be done by using the
bit-test instructions that are new on the 80386. A register to immediate bit
test takes 3 cycles versus 2 for a similar OR, so the OR is only more efficient
if no other supporting instructions are needed to set up for the bit setting.

208 The 80386 Instruction Set

Example

MOV AX,5963H ; Loads a hex number into AX
MOV BX,6CA5H ; Loads a hex number into BX
OR AX,BX ; AX now contains 7DE7 hex.·

The lnstructtons 209

OUT Output to Port 8086

Opcode Format Clocks

E6 ib OUT ib,AL 3
E7 ib OUT ib,AX 3
E7 ib OUT ib,EAX 3
EE OUT DX,AL 4
EF OUT Dx,AX 4
EF OUT Dx,EAX 4

Flags

Pseudocode

IF first operand is immediate THEN
Zero extend first operand to 16 bits to form output port address

ELSE
Output port address is contents of DX

END IF
IF second operand size is byte THEN

Move the byte in AL to the output port
ELSE IF second operand size is word THEN

Move the word in AX to the output port
ELSE (* second operand size is dword *)

Move the dword in EAX to the output port
END IF

Operation

The OUT instruction is used to send a single byte, word, or dword to a
peripheral device port A port number may be any number from O to 65,535

210 The 80386 Instruction Set

(2 16-1). Normally a device has several ports assigned, some for commands,
some for status, and some for data. Device control is accomplished by
sending information to the command ports and getting information from the
status ports. Output is produced by sending data to a data port

Port numbers 00FBH through 00FFH are reserved by Intel and shouldn't
be used.

Exceptions Modes Reasons

#GP(0)
#GP(0)

User Notes

p
V

Current privilege is higher than IOPL
Some of the corresponding permission bits in
TSS equal 1

Most programs send output through calls to an operating system, and
thus don't use the OUT instruction. Even those that bypass the operating
system often use MOVs to write to video RAM and get information out
However, the OUT instruction is indispensable for those writing device
drivers or for anyone who must deal directly with a device.

When only a few bytes of output are needed the OUT instruction should
be used. If the output device can't accept data at a high rate of speed the OUT
instruction can be put in a loop, with NOPs or a counting loop included to
slow down the transfer of data.

Example

MOV AL,20H ; Loads an ASCII space into AL.
OUT 30,AL ; Output it to port 30.

The Instructions 211

OUTS Output String to Port 80186

Opcode

6E

Format Clocks Single

7

Clocks Repeated

6F
6F

OUTSB
OUTSW
OUTSD

7
7

The "N" in the "Clocks Repeated" column stands for the number in the
(E)CX register.

Flags

Pseudocode

IF operand size is byte THEN
Move the byte in AL to the output port ·named in DX

ELSE IF operand size is word THEN
Move the word in AX to the output port named in DX

ELSE (* operand size is dword *)
Move the dword in EAX to the output port named in DX

END IF
IF DF = O THEN

Add size of operand (in bytes) to (E)SI
ELSE

Subtract size of operand (in bytes) from (E)SI
END IF

212 The 80386 Instruction Set

Operation

The OUTS instruction, like OUT, is used to send a single byte, word, or
dword to a peripheral device port A port number may be any number from 0
to 65,535 (Z16~1). Normally a device has several ports assigned, some for
commands, some for status, and some for data. Device control is accom
plished by sending information to the command ports and getting informa
tion from the status ports. Output is produced by sending data to a data port

There are several distinctions between OUT and OUTS. In OUTS the
port number is always in DX, and the source of the data is pointed to by
DS:[(E)SI] unless a segment override is used. Finally, the OUTS instruction is
designed to be used with the REP prefix. That is, at the end of the instructions
(E)SI is incremented or decremented (depending on the Direction Flag) by
the operand size.

Port numbers 00FBH through 00FFH are reserved by Intel and shouldn't
be used.

Exceptions Modes Reasons

#GP(0)
#GP(0)

#SS(0)
#PF(fc)
INT(13)

#GP(0)

User Notes

p
p

p
PV
RV

V

Current privilege is higher than IOPL
Illegal memory effective address in CS, DS, ES,
FS, or GS segments
Illegal address in SS segment
Page fault
Some part of operand is outside of address range
0 to 0FFFFH
Some of the corresponding permission bits in
TSS equal 1

Most programs send output through calls to an operating system, and
thus don't use the OUTS instruction. Even those that bypass the operating
system often use MOVs to write to video RAM and get information out
However, the OUTS instruction is indispensable for those writing device
drivers or for anyone who must deal directly with a device.

The Instructions 213

If the output device can't accept data at a high rate of speed the OUTS
instruction can be put in a loop, with NOPs or a counting loop included to
slow down the transfer of data.

Example

CLD
LDS ESI,OUTSTR
MOV ECX,5
MOV DX,40
REP OUTSB

; Ensure direction is foward.
; Set up source of output, DS:[ESI].
; Set up repeat count for OUTS.
; Set up output port number for OUTS.
; Send 5 bytes of data to output port 40.

214 The 80386 Instruction Set

POP Pop Stack to Operand 8086

Opcode Format Clocks

BF [0) POPmw 5
BF [0) POPmd 5
5B+rw POPrw 4
5B+rd POP rd 4
1F POPDS 7*

'
07 POPES 7*

'
17 POP SS 7*

' OF A1 POPFS 7,*
OF A9 POP GS 7*

'
*The_ge instructions require 21 clocks in Protected Mode due to extra pro
cessing needs (see Chapter 5).

Flags

Pseudocode

IF operand size is word THEN
Move the word at SS:[(E)SP] to the destination word
Add 2 to (E)SP

ELSE (* operand size is dword *)
Move the dword at SS:[(E)SP] to the destination dword
Add 4 to (E)SP

END IF

The Instructions 215

Operation

In general the POP instruction moves the word on the top of the stack
into the operand given by the instruction, leaving the top of the stack
pointing to a different word. ·

In particular, POP copies the word pointed to by SS:SP into the operand.
Then SP is set to SP+ 2 (or 4). Since the stack starts at address SS and grows
downward, incrementing SP has the effect of making the stack smaller. The
word that SP now points to is the word above the popped word in RAM, but
is regarded as below the POPped word on the stack

Although this is a little confusing, through sheer necessity most pro
grammers become familiar with accessing the stack There are two addi
tional complications encountered in using the POP instruction. The first is
that when a POP SS is executed in Real Mode this automatically inhibits all
interrupts until after the next instruction is executed. The implied expecta
tion is that the next instruction will be POP SP or some other instruction
which results in the SS:SP combination being restored to a meaningful
value.

The second complication is encountered when POPping into any seg-
ment register in Protected Mode. The main problem here is that any change
in one of these registers means that the processor will now be trying to
reference a whole different piece of memory which probably has different
protection levels than the current one. Chapter 5 explains the protection
checks which must be cleared to POP into a segment register when in
Protected Mode.

Exceptions Modes Reasons

#GP, #SS, #NP P
#GP(0) P
#GP(0) P

#SS(0) P
#PF(fc) P V
INT(13) RV

A segment register is being loaded
Result in nonwritable segment
Illegal memory effective address in CS, DS, ES,
FS, or GS segments
Illegal address in SS segment
Page fault
Some part of operand is outside of address
range 0 to 0FFFFH

216 The 80386 Instruction Set

User Notes

The mostimportantthingto know about using the stack is that within a
given subroutine the number of PUSHes and the number of POPs must
match. Mismatches here cause major problems at execution time. The
well-behaved ones result in your program blowing up spectacularly and
immediately; the subtle ones don't manifest themselves until your program
has been sold to the public for a year, at which time it's very expensive to fix.

Several programming tricks concern the stack. One is to go back and
· reaccess words you've already popped, figuring they'll still be in the same
place in RAM as they were before. This often comes about when large data
structures have been stashed on the stack instead of placed at a well-defined
or specially protected place in memory. Another is to place strange values
on the stack and then immediately execute a RET or IRET, knowing that
execution will then transfer to the new value. Many of these tricks will fail to
work on newer iAPX 86s as the word size increases and protection restric
tions increase. Some of the rest will be rendered troublesome as successive
generations of programmers (a generation being about two years) try to
modify existing programs, innocently assuming that the stack is being
handled in a normal way.

Example

See PUSH (below) for an example using POP.

The Instructions 217

POPA

Opcode

61
61

Flags

Pseudocode

Pop All General Registers

Format

POPA
POPAD.

Clocks

24
24

80186

(* Refer to POP instruction for clarification of POP operation *) ·
IF operand size is word THEN

POP DI
POP SI
POP BP
POP BX (* Discard SP value from stack *)
POP BX
POP DX
POPCX
POP AX

ELSE (* operand size is dword *)
POP EDI
POP ESI
POP EBP
POP EBX (* Discard ESP value from stack *)
POP EBX
POP EDX
POP ECX
POPEAX

END IF

218 The 80386 Instruction Set

Operation

POPA pops the eight words on top of the stack into the general registers
(E)DI, (E)SI, (E)BP, (E)SP, (E)BX, (E)DX, (E)CX, and (E)AX (in that order). Note,
however, that the value POPped for (E)SP is not stored there, but discarded.
The new value of (E)SP is as if eight pop instructions were executed.

Exceptions Modes Reasons

#SS(0)
#PF(fc)
INT(13)

User Notes

p
PV
RV

Illegal address in SS segment
Page fault
Some part of operand is outside of address range
Oto 0FFFFH

This instruction replaces eight separate POP instructions, and executes
in 8 fewer clocks while taking only 1/8 the space in code. The main advan
tage of POPA, though, is the conceptual simplicity of simply getting all the
registers loaded from the stack at once. Many hard-to-find bugs have been
caused by subroutines that PUSHed some registers at the beginning and
then POPped them back in the wrong order at the end.

If code space is at a premium, POPA (preceded in almost all cases by its
counterpart PUSHA) should be used even if only two or three registers
actually need to be saved on the stack. If execution ti.me is at a premium (as it
increasingly will be in multiuser environments), remember that the break
even point is six registers PUSHed and later POPped.

POPA makes a lot of sense when used to implement high-level lan
guages whose unpredictable levels of nesting often require that all registers
be saved and restored for each subroutine call.

Knowing the order in which POPA loads the registers makes possible
several tricky ways of getting new values into the registers while mostly
bypassing protection mechanisms. While this can be fast and efficient, it can
also lead to obscure and troublesome bugs, especially in Protected Mode.

Example

See PUSHA (below) for an example using POPA

POPF

Opcode

9D
9D

Flags

NT

0 s
IOPL
* *

Format

POPF
POPFD

OF
s

DF
s

Pop Flags

Clocks

5
5

IF TF

* s
SF ZF
s s

The Instructions 219

8086

AF PF CF
0 s 0 s I s

*IOPL is altered only at privilege level O; IF is altered only when privilege is
less than or equal to IOPL.

Pseudocode

(* Refer to POP instruction for clarification of POP operation *)
IF operand size is word THEN

POP into FLAGS
ELSE (* operand size is dword *)

POP into EFLAGS
END IF

Operation

The POPF instruction copies the word pointed to by SS:[(E)SP] into the
flags register and then increments SP by 2 (or 4). Since the stack starts at
address SS and grows downward, incrementing SP has the effect of making
the stack smaller.

The flags copied into the register are, in order from most significant (bit
15) to least significant (bit O): x, nested task, 1/0 privilege level (2 bits),
overflow, direction, interrupts enabled, trap, sign, zero, x, auxiliary carry, x,
parity, x, and carry ("x" for undefined). Note that the VM (virtual memory) and

220 The 80386 Instruction Set

RF (resume) flags are not altered by this instruction. In addition, the IOPL and
IF flags may not be altered unless the current task has sufficient privilege. In
this last case no exception is generated.

Exceptions Modes Reasons

#SS(0)
INT(13)

#GP(0)
#GP(0)

User Notes

p
R

V
V

Illegal address in SS segment
Some part of operand is outside of address range
0 to 0FFFFH
Used to emulate the instruction
IOPL is less than 3

The POPF instruction, like the POPA instruction, is basically designed
to help implement high-level language compilers. With its counterpart
PUSHF, POPF enables all the flags to be saved and restored en masse so the
compiler doesn't have to "think" about which ones need to be saved and
which don't at each subroutine call. PUSHF and POPF are almost always
executed either just before (PUSHF) and just after (POPF) a subroutine call,
or at the start (PUSHF) and end (POPF) of a subroutine.

Of course POPF can be used by human assembly-language pro
grammers as well. In addition to its use with PUSHF it can also be used to
quickly load the entire flags register with an appropriate bit pattern; just
PUSH the bit pattern onto the stack and then POPF it into the flags register.
This is fast and a little dangerous, since it changes not only the conditional
flags like Zero and Carry, but also more sensitive ones such as 1/0 Privilege
Level and Nested Task.

Example

See PUSHF (below) for an example using POPF.

The Instructions 221

PUSH Push Operand onto Stack 8086

Opcode Format Clocks

FF [6] PUSH mw 5
FF [6] PUSH md 5
50+r PUSH rw 2
50+r PUSH rd 2
6Aib PUSH ib 2
68 iw PUSHiw 2
68 id PUSH id 2
OE PUSH CS 2
1E PUSHDS 2
06 PUSHES 2
16 PUSH SS 2
OF AO PUSHFS 2
OF AB PUSH GS 2

Flags

Pseudocode

IF operand size is word THEN
Subtract 2 from (E)SP
Move the source word to SS:[(E)SP]

ELSE(* operand size is dword *)
Subtract 4 from (E)SP
Move the source dword to SS:[(E)SP]

END IF

222 The 80386 Instruction Set

Operation

In general the PUSH instruction puts its operand onto the top of the
stack, changing the stack pointer so that the new value is the new top of the
stack

In particular,PUSH changes SP to SP- 2 (or4). Since the stack starts at
· address SS and grows downward, decrementing SP has the effect of making

the stack larger. The word that SP now points to is the word below (at a lower
RAM address than) the last word pushed, but it is regarded as "above" that
word on the stack The contents of PUSH's operand are now copied to the
new top of the stack

Although this is a little confusing, through sheer necessity most pro
grammers become familiar with accessing the stack There are two addi
tional complications encountered in using the PUSH instruction. The first
occurs when a PUSH SP is executed. On early iAPX 86s this causes the chain
of events one would normally expect from looking at the pseudocode a hove:
SP is decremented by 2, and then its value is pushed onto the stack However,
on the iAPX 286 and 386 the value pushed is SP before the decrement, which
is the effect programmers are usually trying to achieve when they push SP.

The second is almost always ignorable: if (E)SP is 1 when PUSH is
executed, the 80386 will shut down due to lack of stack space. It is unlikely
that this problem would ever confront you.

Exceptions Modes Reasons

#GP(0)

#SS(0)
#PF(fc)

User Notes

p

p
PV
RV

Illegal memory effective address in CS, DS, ES,
FS, or GS segments
Illegal address in SS segment
Page fault
System shut down due to lack of stack space

The most important thing to know a bout using the stack is that within a
given subroutine the number of PUSHes and the number of POPs must
match. Mismatches here cause major problems at execution time. The
well-behaved ones result in your program blowing up spectacularly and
immediately; the subtle ones don't manifest themselves until your program
has been sold to the public for a year, at which time it's very expensive to fix.

The Instructions 223

Several programming tricks concern the stack. One is to PUSH several
words and then change the stack pointer so they won't be interfered with as
subroutines call each other. When the data is no longer needed, restore SP to
its previous value. This often comes about when large data structures are
stashed on the stack instead of placed at a well-defined or specially pro
tected place in memory. Another is to place strange values on the stack and
then immediately execute a RET or IRET, knowing that execution will then
transfer to the new value. Many of these tricks will fail to work on newer
iAPX 86s as the word size increases and protection restrictions increase.
Some of the rest will be rendered troublesome as successive·generations of
programmers (a generation being about two years) try to modify existing
programs, innocently assuming that the stack is being handled in a normal
way.

Example

PUSH EAX ; Registers are fulL make one
; available.

IMUL EAX,MEMLOC,10 ; Multiply a memory value
; by 10 and

MOV MEMLOC,EAX ; store it back where it came
; from.

POP EAX ; Restore old value of EAX.

224 The 80386 Instruction Set

PUSHA Push All General Registers

Opcode

60
60

Flags

Pseudocode

Format

PUSHA
PUSHAD

Clocks

18
18

80186

(* Refer to PUSH instruction for clarification of PUSH operation *)
IF operand size is word THEN

Save value of SP in an internal register
PUSH AX
PUSH ex
PUSH DX
PUSH BX
PUSH saved SP value
PUSH BP
PUSH SI
PUSH DI

ELSE (* operand size is dword *)
Save value of ESP in an internal register
PUSHEAX
PUSH ECX
PUSH EDX
PUSH EBX
PUSH saved ESP value
PUSH EBP

PUSH ESI
PUSH EDI

END IF

Operation

The Instructions 225

PUSHA pushes the eight words on top of the stack from the general
registers (E)AX, (E)CX, (E)DX, (E)BX, (E)SP, (E)BP, (E)SI, and (E)DI (in that
order). Note, however, that the value PUSHed for (E)SP is the value before the
instruction began to execute. The new value of (E)SP is as if eight PUSH
instructions were executed.

If SP is 1, 3, or 5 before PUSHA is executed, the 80386 will shut down
without executing it If SP is an odd number between 7 and 15, exception 13
will occur.

Exceptions Modes Reasons

#SS(0)
#PF(fc)

INT(13)

User Notes

p
PV
RV
RV

Illegal address in SS segment
Page fault
System shut down due to lack of stack space
Some part of operand is outside of address range
Oto 0FFFFH

This instruction replaces eight separate PUSH instructions and exe
cutes in only 2 extra clocks, while taking only 1/8 the space in code. The
main advantage of PUSHA, though, is the conceptual simplicity of simply
getting all the registers put on the stack at once. Many hard-to-find bugs
have been caused by subroutines that PUSHed some registers at the begin
ning and then POPped them back in the wrong order at the end.

If code space is at a premium PU SHA (followed in almost all cases by its
counterpart POPA) should be used even if only two or three registers actu
ally need to be saved on the stack. If execution time is at a premium (as it
increasingly will be in multiuser environments) PUSHA gives no real advan
tage; POP A, however, gives a slight advantage when at least six of the
registers need to be PUSHed and later POPped.

226 The 80386 Instruction Set

PUSHA makes a lot of sense when used to implement high-level
languages whose unpredictable levels of nesting often require that all regis
ters be saved and restored for each subroutine call

Example

SUBROUTINE:
PUSHA

POPA
RET

; Save all registers on the stack.

; Restore all registers from the stack.
; Return from subroutine.

PUSHF

Opcode

9C
9C

Flags

Pseudocode

Format

PUSHF
PUSHFD

Push Flags

Clocks

4
4

The Instructions 227

8086

(* Refer to PUSH instruction for clarification of PUSH operation*)
IF operand size is word THEN

PUSH from FLAGS
ELSE (* operand size is dword *)

PUSH from EFLAGS
END IF

Operation

The PUS HF instruction sets (E)SP to (E)SP- 2 (or 4) and then copies the
(E)FLAGS register into the word pointed to by SS:[(E)SP]. Since the stack
starts at address SS and grows downwardj decrementing (E)SP has the effect
of making the stack larger.

The flags copied onto the stack are, in order from most significant (bit
15) to least significant (bit 0): x, nested task, I/O privilege level (2 bits),
overflow, direction, interrupts enabled, trap, sign, zero, x, auxiliary carry, x,
parity, x, and carry ("x" for undefined).

The 80386 will shut down in Real Mode if SP = 1, due to lack of stack
space.

228 The 80386 Instruction Set

Exceptions Modes Reasons

#SS(0)

#GP(0)
#GP(0)

User Notes

p
R
V
V

Illegal address in SS segment
System shut down due to lack of stack space
Used to emulate the instruction
IOPL is less than 3

The PUSHF instruction, like the PUSHA instruction, is basically
designed to help implement high-level language compilers. With its coun
terpartPOPF,PUSHF enables all the flags to be saved and restored en masse
so the compiler doesn't have to "think" about which ones need to be saved
and which don't at each subroutine call. PUSHF and POPF are almost
always executed either just before (PUSHF) and just after (POPF) a subrou
tine call or at the start (PUSHF) and end (POPF) of a subroutine.

Of course, PUSHF can be used by human assembly-language pro
grammers as well. In addition to its use with POPF, it can also be used to
quickly get the entire flags register onto the stack, and then perhaps to
another register. From here, it can be ANDed with 7FD5H to make sure the
undefined bits are clear, then Compared with any of a number of bit
patterns. JE and JNZ, for example, could then be the final step in implement
ing homemade conditional Jumps.

Example

PUSHF
OR
POPF

; Save the flags on the stack
SS:[SP],B00H ; Set the overflow flag.

; Restore modified flags from the stack

REPcc

Opcode Format

F2 * REP*
F3 * REPE *
F2 * REPNE *
F2 * REPNZ *
F3 * REPZ *

The Instructions 229

Repeat While Condition
is Met (prefix)

Repeat Condition String Instructions

(E)eX > o INS, MOVS, OUTS, STOS
(E)eX > O and ZF = 1 eMPS, SeAS
(E)eX > o and ZF = o eMPS, SeAS
(E)eX > o and ZF = o eMPS, SeAS
(E)eX > o and ZF = 1 eMPS, SeAS

8086

Clocks

*
*
*
*
*

* See description of individual string instructions.

Flags

The repeat prefixes do not affect the flags, but some of the individual
string instructions do. See the individual descriptions for full details on flags
affected for each instruction.

Pseudocode

IF (eX + O) THEN (* if ex is initially zero, the loop is not executed *)
REPEAT

Respond to any pending interrupts
Perform the string operation which REPcc is a prefix to
Decrement ex by 1 (* No flags are conditioned*)

UNTIL repeat condition is not met (* if ZF is checked it is after
execution of the instruction *)

END IF

Operation

The REP group of prefixes is used only with the string instructions as
listed in the table above. When one of these prefixes is used (E)eX is
compared to 0. If it is zero the prefixed string instruction is not executed. If it

230 The 80386 Instruction Set

is not zero the string instruction is repeatedly executed until either (E)eX
becomes zero or (for REPE, REPNE, REPNZ, and REPZ) the Zero Flag no
longer has the correct value.

At the start of each loop iteration, interrupts are handled. The string
instruction is then executed normally. Next ex is decremented without
affecting any flags. This loop repeats as long as the repeat condition (see
above table for each prefix) still holds.

Note that the loop is not executed at all if ex is initially zero, but is
executed at least once no matter what the state of the Zero Flag.

The string instructions listed are specially designed to work with the
REP type prefixes. They automatically adjust the SI and DI pointers during
execution. If the Direction Flag is O the pointers are incremented by 1 for each
byte moved; if the Direction Flag is 1 the pointers are decremented by 1 for
each byte moved.

Exceptions

The repeat prefixes do not generate exceptions, but some of the
individual string instructions do. See the individual descriptions for full
details on exceptions for each instruction.

User Notes

There are three advantages to using REP and related prefixes. The first is
that they are compact; a single line can hold the equivalent of perhaps six
non-string instructions. The second is that execution is very fast; the
checking that controls the looping is faster by 10 or more clocks than if it
were handled by other instructions. This speed saving adds up with every
repetition of the loop. The third advantage is the conceptual ease of using
REPcc. What is in most cases a single thought in the programmer's mind
(move this string to there) translates into a single line in the program, a rare
situation in assembler.

There is one thing to beware of when using these prefixes. Since they do
so much in a single line, they are a likely hiding place for bugs. For instance,
not initializing the ex register properly will result in a string of up to 65,535
characters being loaded, moved, or output, so the ex register may need a
range check before the repeated instruction is executed.

The Instructions 231

Another thing needs to be checked when using REP INS or REP OUTS.
Not all input and output ports can receive or send characters fast enough to
keep up with REP loops. If this is the case a slower loop will need to be
substituted. This is especially worth considering when some of your users
will be running your program on a different machine than you're testing on.

The JCXZ and zero-flag jumps (JZ/JE and JNZ/JNE) can be used just after
the REPcc to distinguish between loops that stop because of the CX register
reaching O and loops that stop because of the Zero Flag.

Example

LDS SI,SRC-8TR ; Set up source pointer for string move.
LES DI,DEST-8TR ; Set up destination pointer for string

;move.
MOV ECX,STRLEN ; Number of bytes to move.
REP MOVSB ; Move SRC-8TR to DEST-8TR

232 The 80386 Instruction Set

RET Return from CALL 8086

Opcode Format Type Clocks

C3 RET Near 10+m
CB RET Far 18+m,*
C2 iw RET iw Near, pop parameters 10+m
CA iw RET iw Far, pop parameters 18+m,*

*These instructions have varying functions and timings in Protected Mode
(see Chapter 5).

Flags

Normally RET affects no flags. However, when a task switch is made in
protected mode, all flags are changed to the old task's saved flags.

Pseudocode

POP IP (Instruction Pointer) from stack
IF far return THEN

POP CS (Code Segment) from stack
END IF
IF byte count given THEN

Pop that many bytes from the stack
END IF

Operation

A RET from a CALL in the same code segment as the subroutine (near
return) is a simple operation. The instruction pointer (IP) is POPped from the
top of the stack If the RET is from a CALL in another segment (far return) the
code segment (CS) is also POPped. In either case execution then resumes
from the address made up of CS:IP.

As an aid to passing parameters on the stack, an alternate form of RET
lets the programmer specify the number of bytes of parameters that exist on

The Instructions 233

the stack The processor will then remove them from the stack before
returning control to the calling procedure.

The basic procedure is the same in Protected Mode, but inter-segment
returns are much more complicated, since the CALL may have specified an
operating system routine or even another task In either case memory protec
tion must be checked (see Chapter 5).

Exceptions Modes Reasons

#NP
#TS
#GP(O)

#SS(O)
#PF(fc)
INT(13)

User Notes

p
p
p

p
PV
RV

Target code segment not present
Task switch required
Illegal memory effective address in CS, DS, ES,
FS, or GS segments
Illegal address in SS segment
Page fault
Some part of operand is outside of address range
0 to OFFFFH

Some of the most popular programming tricks are executed by putting
various values on the stack and then executing a RET. Self-contained Case
statements can be built this way, for instance. As memory-management on
the 86 family gets more complicated, however, these tricks will become
increasingly dangerous. For example, on the 80386 the segment size is not
fixed, so a RET to an address within the 64 Kb segment range is not
necessarily in the same segment anymore. Another problem is that virtual
memory is now available, meaning that the segment you're returning to
may not even be in memory when you start to return to it Any tricks which
fool the chip may also fool the operating system, with unknown results.

Example

RET 8 ; Pops 8 bytes of parameters off the stack

234 The 80386 Instruction Set

Rxx Rotate 8086

Opcode Format Clocks

DO [2] RCL r/mb,1 9/10
D2 [2] RCL r/mb,CL 9/10
Co [2] ib RCL r/mb,ib 9/10
Dl [2] RCL r/mw,1 9/10
D3 [2] RCL r/mw,CL 9/10
Cl [2] ib RCL r/mw,ib 9/10
Dl [2] RCL r/md,1 9/10
D3 [2] RCL r/md,CL 9/10
Cl [2] ib RCL r/md,ib 9/10
DO [3] RCR r/mb,1 9/10
D2 [3] RCR r/mb,CL 9/10
Co [3] ib RCR r/mb,ib 9/10
Dl [3] RCRr/mw,1 9/10
D3 [3] RCRr/mw,CL 9/10
Cl [3] ib RCRr/mw,ib 9/10
Dl [3] RCR r/md,1 9/10
D3 [3] RCR r/md,CL 9/10
Cl [3] ib RCR r/md,ib 9/10
DO [O] ROL r/mb,1 3/7
D2 [O] ROL r/mb,CL 3/7
Co [O] ib ROL r/mb,ib 3/7
Dl [O] ROL r/mw,1 3/7
D3 [O] ROL r/mw,CL 3/7
Cl [O] ib ROL r/mw,ib 3/7
Dl [O] ROL r/md,1 3/7
D3 [O] ROL r/md,CL 3/7
Cl [O] ib ROL r/md,ib 3/7
DO [1] ROR r/mb,1 3/7
D2 [1] RORr/mb,CL 3/7
Co [1] ib ROR r/mb,ib 3/7
Dl [1] RORr/mw,1 3/7
D3 [1] RORr/mw,CL 3/7
Cl [1] ib RORr/mw,ib 3/7

D1 [1]
D3 [1]
Cl [1] ib

Flags

ROR r/md,1
RORr/md,CL
ROR r/md,ib

3/7
3/7
3/7

The Instructions 235

*OF is set only on single bit rotates. Multi-bit rotates leave OF in an
undefined state.

Pseudocode

Place first operand in an internal register
DO second operand TIMES

IF rotate direction is left THEN
Save high order bit

ELSE
Save low order bit

END IF
Shift one bit in the rotate direction
IF CF is involved THEN

IF rotate direction is left THEN
Place CF into low order bit

ELSE
Place CF into high order bit

END IF
ELSE

IF rotate direction is left THEN
Place saved bit into low order bit

ELSE
Place saved bit into high order bit

END IF
END IF
Place saved bit into CF

236 The 80386 Instruction Set

ENDDO
IF second operand is 1 THEN

IF rotate direction is left THEN
IF high order bit '# CF THEN

SET OF to 1
ELSE

Clear OF to 0
END IF

ELSE
IF high order bit '# next to high order bit THEN

Set OF to 1
ELSE

Clear OF to 0
END IF

END IF
END IF
Store internal register into first operand

Operation

Rotate instructions are like shifts in that the bit pattern in the first
operand is moved either to the left or right by the number of places in the
second operand. The difference is that the bits rotated out of one end of the
operand are not lost as in a shift These bits are brought back in at the
opposite end of the operand.

The second and third letters in the instruction mnemonics control
different aspects of the rotation. The third letter controls the rotate direction,
"L" for left and "R" for right The second letter controls how the Carry Flag is
involved. If the second letter is "O" (plain rotates) then the Carry Flag simply
contains the last bit that was moved from one end of the operand to the
other. If the second letter of the instruction mnemonic is "C" (rotates through
carry) then the Carry Flag is actually treated as part of the operand to be
rotated. In this case a bit rotated out of one end of an operand is placed into
the Carry Flag, but first the old value of the Carry Flag is moved into the
vacated bit position at the opposite end of the operand.

The second operand can be either an immediate number or the con
tents of the CL register. However, only rotate counts of 31 or less are allowed.
If the count is greater than 31 only the lowest five bits are used. In addition,

The Instructions 237

there is a special short form of the instruction for the special case of a rotate
count of 1.

Exceptions Modes Reasons

#GP(0)
#GP(0)

#SS(0)
#PF(fc)
INT(13)

User Notes

p
p

p
PV
RV

Result in nonwritable segment
Illegal memory effective address in CS, DS, ES,
FS, or GS segments
Illegal address in SS segment
Page fault
Some part of operand is outside of address range
0 to 0FFFFH

One use of rotates on older processors was to speed special cases of
multi-precision multiplies and divides. The 80386 with its greater word size
and fast multiply and divide instructions obviates the need for much of
this trickery.

Another use for rotates is to get bits into the Carry Flag, where a JC or
JNC can branch on the bit's value. The bit test instructions (new on the
80386) allow this test to be done more directly.

Example

MOV EAX,0CADE4956H
STC
RCL EAX,3

; Loads a value into EAX.
; Ensure that the carry flag is set
; Sets EAX to 56F24AB7 and CF too.

238 The 80386 Instruction Set

SAHF Store AH Into Flags

Opcode

9E

Flags

NT
0

IOPL

Pseudocode

Format

SAHF

OF OF

Clocks

3

IF TF SF
s

ZF AF
s 0 s

Move AH value into low byte of Flags register.

Operation

8086

PF CF
0 s 1 s

SAHF is a quick way to set all the flags in the low byte of the Flags
register to the bit pattern in AH after they have been set, reset, examined, or
saved as needed. This instruction has been provided for compatabilitywith
the 8080/85, and is rarely used by iAPX 86 family programs, which would
use POPF instead.

The bits taken from AH are: SF ZF x AF x PF x CF, with "x" meaning
undefined.

Exceptions

None

The Instructions 239

User Notes

Except for programs converted from (or due to be converted to) the
8080/85 this instruction is normally not used. It could be used to set the
status of all the low-byte flags at once (by loading AH with a bit pattern, for
instance).

Example

LAHF
OR
SAHF'

; Loads the flags into AH.
AH,4 ; Sets image of parity flag in AH.

; Simulates a "set parity flag" instruction.

240 The 80386 Instruction Set

Sxx Shift 8086

Opcode Format Clocks

DO [4] SAL r/mb,1 3/7
D2 [4] SAL r/mb,CL 3/7
Co [4] ib SAL r/mb,ib 3/7
Dl [4] SAL r/mw,1 3/7
D3 [4] SAL r/mw,CL 3/7
Cl [4] ib SAL r/mw,ib 3/7
Dl [4] SAL r/md,1 3/7
D3 [4] SAL r/md,CL 3/7
Cl [4] ib SAL r/md,ib 3/7
DO [7] SAR r/mb,1 3/7
D2 [7] SAR r/mb,CL 3/7
Co [7] ib SAR r/mb,ib 3/7
Dl [7] SAR r/mw,1 3/7
D3 [7] SAR r/mw,CL 3/7
Cl [7] ib SAR r/mw,ib 3/7
Dl [7] SAR r/md,l 3/7
D3 [7] SARr/md,CL 3/7
Cl [7] ib SAR r/md,ib 3/7
DO [4] SHL r/mb,1 3/7
D2 [4] SHL r/mb,CL 3/7
co [4] ib SHL r/mb,ib 3/7
Dl [4] SHL r/mw,1 3/7
D3 [4] SHL r/mw,CL 3/7
Cl [4] ib SHL r/mw,ib 3/7
Dl [4] SHL r/md,1 3/7
D3 [4] SHL r/md,CL 3/7
Cl [4] ib SHL r/md,ib 3/7
DO [5] SHR r/mb,1 3/7
D2 [5] SHRr/mb,CL 3/7
Co [5] ib SHR r/mb,ib 3/7
Dl [5] SHR r/mw,1 3/7
D3 [5] SHR r/mw,CL 3/7
Cl [5] ib SHR r/mw,ib 3/7
Dl [5] SHR r/md,1 3/7

D3 [5]
C1 [5] ib

Flags

SHRr/md,CL
SHR r/md,ib

3/7
3/7

The Instructions 241

*OF is set only on single bit shifts. Multi-bit shifts leave OF in an undefined state.

Pseudocode

Place first operand in an internal register
DO second operand TIMES

IF shift direction is left THEN
Place high order bit into CF

ELSE ·
Place low order bit into CF

END IF
Shift one bit in the shift direction
IF shift direction is left THEN

Place O into low order bit
ELSE IF instruction is SHR THEN

Place O into high order bit
ELSE (* instruction is SAR *)

Place old high order bit into high order bit
END IF

END DO
IF second operand is 1 THEN

IF shift direction is left THEN
IF high order bit # CF THEN

Set OF to 1
ELSE

Clear OF to 0
END IF

ELSE IF instruction is SHR THEN
Clear OF to 0

242 The 80386 Instruction Set

ELSE (* instruction is SAR *)
Set OF to high order bit

END IF
END IF
Store internal register into first operand

Operation

Shift instructions move the pattern of bits in the first operand either to
the left or right by the number of places in the second operand. This action
will cause some bits to disappear from one end of the operand and cause the
same number of vacated bits to be filled at the opposite end of the operand.
The manner of filling depends on the instruction used.

The second and third letters in the instruction mnemonics control
different aspects of the shift The third letter controls the shift direction, "L"
for left and "R'' for right The second letter controls whether we have an
arithmetic (second letter "A") or logical (second letter "H'') shift A logical
shift always fills vacated bit positions with zeros. An SAL instruction fills
vacated positions (on the right) with zeros. On the other hand, an SAR
instruction fills vacated positions (on the left) with copies of the value of the
sign bit before the shift

The second operand can be either an immediate number or the con
tents of the CL register. However, only shift counts of 31 or less are allowed. If
the count is greater than 31 only the lowest five bits are used. In addition
there is a special short form of the instruction for the special case of a shift
count of 1.

Exceptions Modes Reasons

#GP(0)
#GP(0)

#SS(0)
#PF(fc)
INT(13)

p
p

p
PV
RV

Result in nonwrita~le segment
Illegal memory effective address in CS, DS, ES,
FS, or GS segments
Illegal address in SS segment
Page fault
Some part of operand is outside of address range
Oto 0FFFFH

The Instructions 243

User Notes

One use of shifts on older processors was to speed special cases of
single precision multiplies and divides. The 80386 with its fast multiply and
divide instructions obviates the need for much of this trickery. If you need
to use these instructions for that purpose, remember to use the arithmetic
forms for signed numbers and the logical forms for unsigned numbers.

Another use for shifts is to get bits into the Carry Flag, where a JC or JNC
can branch on the bit's value. The bit test instructions (new on the 80386)
allow this test to be done more directly.

Example

MOV EAX,0CADE4956H
SAR EAX,3

; Loads a value into EAX.
; Sets EAX to 0F95BC92AH and CF
; to 0.

244 The 80386 Instruction Set

SHxD Shift Double

Opcode Format Clocks

OF A4 [r] ib SHLD r/mw,rw,ib 3/7
OF A4 [r] ib SHLD r/md,rd,ib 3/7
OF A5 [r] SHLD r/mw,rw,CL 3/7
OF A5 [r] SHLD r/md,rd,CL 3/7
OF AC [r] ib SHRD r/mw,rw,ib 3/7
OF AC [r] ib SHRD r/md,rd,ib 3/7
OF AD [r] SHRD r/mw,rw,CL 3/7
OF AD [r] SHRD r/md,rd,CL 3/7

Flags

NT IOPL OF DF IF TF SF ZF AF
0 u s s 0 u

Pseudo code

Place first operand in an internal register IRl
Place second operand in an internal register IR2
DO third operand TIMES

IF shift direction is left THEN
Place high order bit of IR2 into CF

ELSE
Place low order bit of IR2 into CF

END IF
Shift IR2 one bit in the shift direction
Shift IRl one bit in the shift direction
IF shift direction is left THEN

Place CF into low order bit of IRl
ELSE

Place CF into high order bit of IRl

80386

PF CF
0 s I s

END IF
END DO

The Instructions 245

Store IRl into first operand

Operation

The shift double instructions move the pattern of bits in the first
operand either to the left or right by the number of places in the third
operand. This action will cause some bits to disappear from one end of the
operand and cause the same number of vacated bits to be filled at the
opposite end of the operand. The vacated bits are filled from the second
operand as if it too had been shifted by the same number of bits and the bits
shifted off one end were shifted into the first operand. Note that the second
operand is unchanged by this instruction.

The third letter in the instruction mnemonic controls the shift direction,
"L" for left and "R" for right The effect of the instruction is as if operands one
and two were taken as one double-sized number and shifted. The new value
of operand one is then stored, but operand two is not stored. For SHLD
operand one is on the left and operand two is on the right The opposite is
true for SHRD.

The third operand can be either an immediate number or the contents
of the CL register. However, only shift counts of 31 or less are allowed. If the
count is greater than 31 only the lowest five bi ts are used. If the operand size
is 16 bits (word) and the shift count is greater than 15, the instruction sets its
first operand and all the flags to an undefined state.

Exceptions Modes Reasons

#GP(O)
#GP(O)

#SS(O)
#PF(fc)
INT(13)

p
p

p
PV
RV

Result in nonwritable segment
Illegal memory effective address in CS, DS, ES,
FS, or GS segments
Illegal address in SS segment
Page fault
Some part of operand is outside of address range
Oto OFFFFH

246 The 80386 Instruction Set

User Notes

The shift double instructions behave similarly to a logical shift(see Sxx
for SHL and SHR) of the first operand by the third operand. The difference is
that the bits vacated by the shift are replaced by bits from the opposite end of
the second operand instead of with zeros.

These new shift instructions are ideal for implementing a multiple
precision shift with a loop. Any type of shift or rotate can be handled just by
minor modifications to the loop structure.

Example

,,,,,,,,,,,,,

BLOCK is the offset in the current data segment (pointed to by DS) of
an array of LENGTH dwords that is to be treated as one long bit
string and rotated left by 10 bits.

"''""'""
MOV ED:x,BLOCK ; Save value of first dword for

; after the loop.
MOV ESl,0 ; Set up index register to point to

; first dword.
MOV ECX,LENGTH ; Get number of dwords in

; BLOCK and
DEC ECX ; subtract one for our loop count

DELOOP:
MOV EAX,BLOCK +4[ES1*4] ; Load next dword from the array

; at BLOCK
SHLD BLOCK[ESl*4],EAX,10 ; Shift current dword, filling from

; next
INC ESI ; Increment index for next time

; through the loop.
LOOP DELOOP ; Loop until all dwords are done

; except the last
SHLD BLOCK[ESl*4],EDX,10 ; Shift last dword, filling from

; original value of first

The Instructions 24 7

see Subtract With Borrow

Opcode Format Clocks

1C ib SBB AL,ib 2
1D iw SBB AX,iw 2
1D id SBB EAX,id 2
80 [3] ib SBB r/mb,ib 2/7
81 [3] iw SBB r/mw,iw 2/7
81 [3) id SBB r/md,id 2/7
83 [3] ib SBB r/mw,ib 2/7
83 [3] ib SBB r/md,ib 2/7
18 [r] SBB r/mb,rb 2/7
19 [r] SBB r/mw,rw 2/7
19 [r] SBB r/md,rd 2/7
1A [r] SBB rb,r/mb 2/6
1B [r] SBB rw,r/mw 2/6
1B [r] SBB rd,r/md 2/6

Flags

NT IOPL OF DF IF TF SF ZF AF PF
0 s s s 0 s 0 s

Pseudocode

IF (source operand has fewer bits than destination) THEN
sign-extend source operand

END IF
Subtract source operand from destination.

8086

CF
1 s

Subtract CF from destination, place result in destination operand.

248 The 80386 Instruction Set

Operation

SBB subtracts the second operand plus the Carry Flag from the first
operand. The first operand is overwritten by the result, while the second
operand is unchanged. A good translation of an ADC instruction into Eng
lish might be, "Subtract operand number 2 from operand number 1, then
subtract 1 more if needed."

Exceptions Modes Reasons

#GP(O)
#GP(O)

#SS(O)
#PF(fc)
INT(13)

User Notes

p
p

p
PV
RV

Result in nonwritable segment
Illegal memory effective address in CS, DS, ES,
FS, or GS segments
Illegal address in SS segment
Page fault
Some part of operand is outside of address range
Oto OFFFFH

The SBB instruction is generally used when doing multibyte, multi
word, or multidword subtractions, to let the carry bit automatically propa
gate as needed through the series of differences.

Understanding how the flags work for ADC can be very important,
especially since the result of one of the flags after an addition is often used to
decide whether to make a jump, or even as a parameter in a subroutine call.
SUB (below) works just like SBB but ignores the value in the carry bit.
Anyone modifying an existing program should look at all SBBs just follow
ing a change to make sure the carry bit is still set as the original
programmer had assumed it would be.

Example

MOV AX,1329
MOV BX,373
SUB AL,BL

; Loads a 1329 (531 hex) into AX
; Loads a 373 (175 hex) into BX
; Subtracts 75 (hex) from 31 (hex) giving OBC
; (hex) with CF set

The Instructions 249

SBB AH,BH ; Subtracts 1 from 5 giving 3 (because CF was set).
; AX now contains 956 (3BC hex) the difference
; between 1329 and 373.

250 The 80386 Instruction Set

SCAS Scan String 8086

Opcode

AE
AF
AF

Format

. SCASB
SCASW
SCASD

Clocks Single

7
7
7

Clocks Repeated

5+8*N
5+8·kN
5+B*N

The "N" in the "Clocks Repeated" column stands for the number of
repetitions actually executed.

Flags

NT IOPL OF OF IF TF SF ZF AF
0 s s s 0 s 0

Pseudocode

IF operand size is 8 bits THEN
Subtract ES:[(E)DI] from AL, but don't store result

ELSE IF operand size is 16 bits THEN
Subtract ES:[(E)DI] from AX, but don't store result

ELSE (* operand size is 32 bits*)
Subtract ES:[(E)DI] from EAX, but don't store result

END IF
Condition flags based on result of subtraction
IF DF = O THEN

Add size of operands (in bytes) to (E)DI
ELSE

Subtract size of operands (in bytes) from (E)DI
END IF

PF CF
s I s

The Instructions 251

Operation

Like CMPS, SCAS subtracts one number from another but doesn't store
the result Instead, the only output is that the applicable flags are set or reset
("conditioned") according to the result of the subtraction.

The difference is that SCAS uses the A register and the contents of
ES:[DI], subtracting the latter from the former. Finally, DI is adjusted. Nor
mally the Direction Flag is 0, and DI is incremented; but if an STD has been
executed, DI is decremented. The increment and decrement are useful in
automatically setting up the pointers for a repetition of the same instruction,
and the REPE and REPNE prefixes are generally used with SCAS.

Exceptions Modes Reasons

#GP(0)

#SS(0)
#PF(fc)
INT(13)

User Notes

p

p
PV
RV

Illegal memory effective address in CS, DS, ES,
FS, or GS segments
Illegal address in SS segment
Page fault
Some part of operand is outside of address range
0 to 0FFFFH

SCAS is generally used to compare each element of a string to a preset
value (the one stored in the A register). The A register is initialized and SCAS
compares it to the values in the string starting at ES:[DI]. By using REP NZ (or
REPZ) with SCAS, the comparison can continue until a character not equal
to (or equal to) the value in A is found.

Example

STR1 DD 1,2,3,4,5

CLO
MOV AL,3
LES EDI,STR1
MOV ECX,5
REPE SCASB

; Ensures direction is forward.
; Sets up source of scan, DS:[ESI].
; Sets up destination of scan, ES:[EDI].
; Sets up repeat count for scan.
; Executes 3 times, ends with ECX 2,
; ES:[EDI] points at 4.

252 The 80386 Instruction Set

SETcc Set Byte on Condition 80386

Opcode Format Set Condition Clocks

OF 97 SETAr/mb Above (CF=0 and ZF=0) 4/5
OF 93 SETAE r/mb Above or equal (CF=0) 4/5
OF 92 SETB r/mb Below (CF=l) 4/5
OF 96 SETBE r/mb Below or equal (CF=l or ZF=l) 4/5
OF 92 SETC r/mb Carry (CF=l) 4/5
OF 94 SETE r/mb Equal (ZF=l) 4/5
OF 9F SETG r/mb Greater (ZF=0 and SF=OF) 4/5
OF 9D SETGE r/mb Greater or equal (SF=OF) 4/5
OF 9C SETL r/mb Less (SF<>OF) 4/5
OF 9E SETLE r/mb Less or equal (ZF=l or SF<>OF) 4/5
OF 96 SETNA r/mb Not above (CF=l or ZF=l) 4/5
OF 92 SETNAE r/mb Not above or equal (CF=l) 4/5
OF 93 SETNB r/mb Not below (CF=0) 4/5
OF 97 SETNBE r/mb Not below or equal (CF=0 and ZF=0) 4/5
OF 93 SETNC r/mb Not carry (CF=O) 4/5
OF 95 SETNE r/mb Not equal (ZF=0) 4/5
OF 9E SETNG r/mb Not greater (ZF=l or SF<>OF) 4/5
OF 9C SETNGE r/mb Not greater or equal (SF<>OF) 4/5
OF 9D SETNL r/mb Not less (SF=OF) 4/5
0F9F SETNLE r/mb Not less or equal (ZF=0 and SF=OF) 4/5
OF 91 SETNO r/mb Not overflow (OF=0) 4/5
OF 9B SETNP r/mb Not parity (PF=0) 4/5
OF 99 SETNS r/mb Not sign (SF=0) 4/5
OF 95 SETNZ r/mb Not zero (ZF=O) 4/5
OF 90 SETO r/mb Overflow (OF=l) 4/5
OF 9A SETP r/mb Parity (PF=l) 4/5
OF 9A SETPE r/mb Parity even (PF=l) 4/5
OF 9B SETPO r/mb Parity odd (PF. 0) 4/5
OF 98 SETS r/mb Sign (SF=l) 4/5
OF 94 SETZ r/mb Zero (ZF=l) 4/5

The Instructions 253

Flags

Pseudocode

IF set condition is met THEN
Set operand byte to 1

ELSE
Clear operand byte to O

END IF

Operation

These instructions are used to save a current condition for later use.
They test the state of one or more of the flag bits. If the condition (listed in the
above table) is met then the destination byte is set to one; otherwise the
destination byte is cleared to zero. Note that these instructions are similar to
the conditional jumps (Jee) except that no transfer of control occurs.

Exceptions Modes Reasons

#GP(O)
#GP(O)

#SS(O)
#PF(fc)
INT(13)

User Notes

p
p

p
PV
RV

Result in nonwritable segment
Illegal memory effective address in CS, DS, ES,
FS, or GS segments
Illegal address in SS segment
Page fault
Some part of operand is outside of address range
Oto OFFFFH

Many of the sets are meant for use with unsigned numbers, while others
are meant for comparisons of signed numbers. The way to tell the difference

254 The 80386 Instruction Set

is that the use of "above" and "below" indicates unsigned comparisons;
"greater" and "less" refer to the use of signed numbers.

A close examination of the instruction table for conditional sets reveals
that there are often several mnemonics for the same opcode (and therefore
conditional test). The reason for this redundancy is that the same state of the
flags can mean different things based on the context of the instruction. For
example, a conditional set often appears after a CMP or SUB has been
executed. The set then compares the two operands of the previous instruc
tion and a SETE (set equal) might be appropriate. On the other hand, right
after a DEC instruction the same opcode with the SETZ (set zero) mnemonic
could be used to check if the count has reached zero. We recommend
choosing your set mnemonics carefully so that they indicate the meaning of
your comparisons.

The SET cc instructions are often used for setting up tables based on the
results of several comparisons or computations. This is particularly useful in
compiler writing and other applications that require handling nested levels
of conditions.

Another good use for these instructions is for the implementation of
Boolean (or logical) variables.

Example

MOV ECX,5 ; Sets up operand for compare.
CMP ECX,7 ; Compares the 5 with the 7.
SETLE AL ; AL will be set to 1.

The Instructions 255

STC Set Carry Flag 8086

Opcode

F9

Flags

Pseudocode

Format

STC

Set the Carry Flag to 1.

Operation

Clocks

2

STC simply sets the Carry Flag to 1.

Exceptions

None

User Notes

STC has several uses. Perhaps the most prevalent is when the Carry Flag
is being used for storing data within a program or even passing parameters
between programs, in which case STC and CLC together condition the flag
as needed. Another is when doing arithmetic operations; STC followed by

256 The 80386 Instruction Set

ADC or SBB simulates a carry or borrow by an earlier instruction. Still
another is when doing logical operations such as rotates; an STC followed
by a rotate is a useful way to change the value in a register.

Example

STC ; Sets CF.

The Instructions 257

STD Set Direction Flag 8086

Opcode

FD

Flags

Pseudocode

Format

STD

Clocks

2

Set the Direction Flag to 1.

Operation

STD simply sets the Direction Flag to 1.

Exceptions

None

User Notes

The Direction Flag controls the direction of string operations. When DF
is set the index registers SI and/or DI are decremented after each repeat of a
string operation. This is the "reverse" direction, and is useful when each

258 The 80386 Instruction Set

character in the string is stored in successively lower numbered locations in
memory and the string is being processed first character first It's also useful
when the string is stored starting in low memory and heading toward high
and is being processed last character first

Example

STD ; Sets DF.

The Instructions 259

STI

Opcode

FB

Flags

Pseudocode

Set Interrupts Enabled Flag

Format

STI

Clocks

3

Set the Interrupt Flag to 1.

Operation

8086

STI sets the Interrupt Flag to 1, permitting interrupts after the next
instruction if it does not clear the Interrupt Flag. However, there are some
complications in 80286 and 80386 Protected Mode. CLI can fail if the current
privilege level of the program executing the STI is larger (less privileged)
than the 1/0 Privilege Level bits in the Flags register.

Exceptions Modes Reasons

#GP(0) p Current privilege is greater than IOPL

User Notes

STI is used to allow interrupts after they've been turned off by a CLI
instruction, or at the start of a program to ensure that interrupts are enabled.

260 The 80386 Instruction Set

Although the privilege restrictions on STI are burdensome, they're
necessary; if an operating system is timesharing between several programs it
must be able to protect them from interrupts when needed. If your operating
system allows access to Protected Mode it's important to understand how it
handles privilege levels before attempting to control interrupts from within
your program.

Example

STI ; Sets IF.

The Instructions 261

STOS Store String 8086

Opcode

AA

Format Clocks Single

4

Clocks Repeated

AB
AB

STOSB
STOSW
STOSD

4
4

The "N" in the "Clocks Repeated" column stands for the number of repeti
tions (from (E)CX).

Flags

Pseudocode

IF operand size is 8 bits THEN
Store byte from AL into byte at ES:[(E)DI]

ELSE IF operand size is 16 bits THEN
Store word from AX into word at ES:[(E)DI]

ELSE (* operand size is 32 bits*)
Store dword from EAX into dword at ES:[(E)DI]

END IF
IF OF= 0 THEN

Add size of operands (in bytes) to (E)DI
ELSE

Subtract size of operands (in bytes) from (E)DI
END IF

262 The 80386 Instruction Set

Operation

STOS is just like a MOV from AL or AX to the place in memory pointed
to by ES:DI, but it also automatically adjusts DI after the move. If the
Direction Flag is 0 DI is incremented; otherwise it's decremented. If a byte
was moved the index is adjusted by 1; if a word, by 2; if a dword, by 4.

Exceptions Modes Reasons

#GP(0)
#GP(0)

#SS(0)
#PF(fc)
INT(13)

User Notes

p
p

p
PV
RV

Result in a nonwritable segment
Illegal memory effective address in CS, DS, ES,
FS, or GS segments
Illegal address in SS segment
Page fault
Some part of operand is outside of address range
0 to 0FFFFH

STOS can't be used with REPE or REPZ since it doesn't condition any
flags; using the REP prefix will cause the character in AL to be copied into
successive positions in a string. This is a good way to fill a string with a given
character.

LODS and STOS can be used together to transfer a string from DS to ES,
with any needed conditional tests or changes put in between LODS and
STOS. If a string of known length is to be moved unchanged, then MOVS will
do the same thing faster.

Example

CLD
XOR EAX,EAX
LES EDI,BIGARRA Y
MOV ECX,1000
REP STOSD

; Ensures direction is forward.
; Sets EAX to zero.
; Sets up destination of store, ES:[EDI].
; Sets up repeat count for store.
; Fills BIGARRAY with 1000 dword zeros.

The Instructions 263

SUB Subtract 8086

Opcode Format Clocks

2C ib SUB AL,ib 2
2D iw SUB AX,iw 2
2D id SUB EAX,id 2
80 [5] ib SUB r/mb,ib 2/7
81 [5] iw SUB r/mw,iw 2/7
81 [5] id SUB r/md,id 2/7
83 [5] ib SUB r/mw,ib 2/7
83 [5] ib SUB r/md,ib 2/7
28 [r] SUB r/mb,rb 2/7
29 [r] SUB r/mw,rw 2/7
29 [r] SUB r/md,rd 2/7
2A [r] SUB rb,r/mb 2/6
2B [r] SUB rw;r/mw 2/6
2B [r] SUB rd,r/md 2/6

Flags

NT IOPL OF DF IF TF SF ZF AF PF CF
0 s s s 0 s 0 s 1 s

Pseudocode

IF (source operand has fewer bits than destination operand) THEN
sign-extend source operand

END IF
Subtract source operand from destination, place result in destination

operand.

264 The 80386 Instruction Set

Operation

SUB subtracts the second operand from the first operand. The first
operand is overwritten by the result, while the second operand is
unchanged. A good translation of a SUB instruction into English might be,
"Subtract operand number 2 from operand number 1."

Exceptions Modes Reasons

#GP(O)
#GP(O)

#SS(O)
#PF(fc)
INT(13)

User Notes

p
p

p
PV
RV

Result in a nonwritable segment
Illegal memory effective address in CS, DS, ES,
FS, or GS segments
Illegal address in SS segment
Page fault
Some part of operand is outside of address range
0 to OFFFFH

The SUB instruction is used when doing single subtraction operations,
or one SUB can be done before a series of SBB instructions to do multibyte,
multiword, or multidword subtractions (to let the Carry bit automatically
propagate as needed through the series of differences).

Understanding how the flags work for SUB can be very important,
especially since the result of one of the flags after a subtraction is often used
to decide whether to make a jump, or even as a parameter in a subroutine
call. SBB (above) works just like SUB but uses the value in the Carry bit

Example

MDV AX,1329
MDV BX,373
SUB AX,BX

; Loads a 1329 (531 hex) into AX
; Loads a 373 (175 hex) into BX
; AX now contains 956 (3BC hex) the difference
; between 1329 and 373.

The Instructions 265

TEST Logical Compare 8086

Opcode Format Clocks

A8 ib TEST AL,ib 2
A9iw TEST AX,iw 2
A9 id TEST EAX,id 2
F6 [4] ib TEST r/mb,ib 2/5
F7 [4] iw TEST r/mw,iw 2/5
F7 [4] id TEST r/md,id 2/5
84 [r] TEST r/mb,rb 2/5
85 [r] TEST r/mw,rw 2/5
85 [r] TEST r/md,rd 2/5
84 [r] TEST rb,r/mb 2/5
85 [r] TEST rw,r/mw 2/5
85 [r] TEST rd,r/md 2/5

Flags

NT IOPL OF DF IF TF SF ZF AF PF CF
0 0 s s 0 0 s J 0

Pseudocode

REPEAT
IF a bit in the destination operand is 1 and the corresponding bit in

the source operand is 1 THEN
set the bit in the result (kept internally in the 386) to 1

ELSE
clear the bit in the result (kept internally in the 386) to 0

END IF
UNTIL all bits in the operands are checked
Set the flags based on the internal result

266 The 80386 Instruction Set

Operation

TEST carries out a Boolean or "logical" AND on its two operands, but
does not store the result anywhere. Instead, the only output is that the
applicable flags are set or reset ("conditioned") according to the AND's
result AND is explained in detail above.

TEST can only be used with two operands of the same size (same
number of bits); otherwise the comparison would be meaningless for some
of the bits in the longer operand.

Exceptions Modes Reasons

#GP(0)

#SS(0)
#PF(fc)
INT(13)

User Notes

p

p
PV
RV

Illegal memory effective address in CS, DS, ES,
FS, or GS segments
Illegal address in SS segment
Page fault
Some part of operand is outside of address range
0 to 0FFFFH

TEST is often used to test whether a single bit is set This is done by
comparing the number in question with an immediate value that has a
single bit set If the bit is set the Zero Flag will have a 1 in it after the test;
otherwise it will have a 0. The new 80386 bit-test.commands can do the
same comparison more directly but slightly more slowly (3 cycles vs. 2).

Example

MOV AX,9563H
TEST AX,0C6A5H

; Loads a hex number into AX
; Sets flags: SF=l, ZF=0, PF=l.

The Instructions 267

WAIT Wait for Coprocessor 8086

Opcode

9B

Format

WAIT

Clocks

6*

*This is the minimum value, applicable if the BUSY signal is already
inactive.

Flags

Pseudocode

WHILE the BUSY pin is active DO
ENDDO

Operation

The WAIT instruction is used to synchronize the 80386 with an 80287 or
80387 numeric coprocessor. These coprocessors are used to speed certain
numeric computations, particularly floating point operations. The copro
cessors work in parallel with the 80386. When the program on the 80386
needs the results from one of these computations it must wait until the
coprocessor is finished. While the coprocessor is working it keeps an active
signal on the 80386's BUSY pin; when it finishes it makes that signal inactive.
The WAIT instruction simply does nothing until it detects that the BUSY
signal is inactive. Then execution proceeds to the next instruction. The
80386 program is thus assured that the desired result is ready for use.

268 The 80386 Instruction Set

Exceptions Modes Reasons

#NM P R V The task switched flag in the machine status
word is set

#MF PR V The ERROR# input pin is asserted (unmasked
numeric error detected)

User Notes

Instructions for the numeric coprocessors are not covered in this book,
but we have included WAIT because it controls the 80386 and not the
coprocessor.

Example

WAIT ; Waits for numeric coprocessor to finish.

The Instructions 269

XCHG Exchange 8086

Opcode Format Clocks

90+r XCHG AX,iw 3
90+r XCHG iw,AX 3
90+r XCHG EAX,rd 3
90+r XCHG rd,EAX 3
86 [r] XCHG rb,r/mb 3/5
86 [r] XCHG r/mb,rb 3/5
87 [r] XCHG iw,r/mw 3/5
87 [r] XCHG r/mw,iw 3/5
87 [r] XCHG rd,r/md 3/5
87 [r] XCHG r/md,rd 3/5

Flags

Pseudo code

Move the value of the destination operand to an internal register.
Replace the destination operand with the value of the source operand.
Replace the source operand with the value of the destination operand

(from the internal register).

Operation

XCHG swaps the contents of its two operands in a single instruction.
Without XCHG the same operation would require three MOV instructions
(and an extra register for temporary storage) or a PUSH, MOV, POP
sequence. In addition, the bus LOCK signal is asserted during this instruction

270 The 80386 Instruction Set

regardless of whether the LOCK prefix was used or not This means that the
data transfers cannot be interrupted by any other device using the system .
bus.

Exceptions Modes Reasons

#GP(0)

#GP(0)

#SS(0)
#PF(fc)
INT(13)

User Notes

p

p

p
PV
RV

At least one of the operands is in a nonwritable
segment
Illegal memory effective address in CS, DS, ES,
FS, or GS segments
Illegal address in SS segment
Page fault
Some part of operand is outside of address range 0
to 0FFFFH

Perhaps the most common use of XCHG is to provide a means of
interprocess synchronization. Because the XCHG is always locked, each of
two independent processes (perhaps on different processors) can use it to
access a variable in memory that they share without worrying about conten
tion from the other. For example, suppose two tasks need to have access to
the same output buffer. A word can be dedicated as a flag to indicate the
buffer's availability. A zero could indicate the buffer was available and
a one could indicate that one of the tasks was using the buffer. Before storing
any data in the buffer each task must first load one into a register, XCHG that
register with the Buffer Flag, and test the register for zero. If the register is zero
then the task may use the buffer safely, knowing the Buffer Flag contains a
one and the other task will not attempt to use it If the XCHG were not locked
then the situation could arise where both tasks "thought" they had safe
access to the buffer. Finally, when the task finishes its use of the buffer it
must store a zero back into the Buffer Flag.

Most sort algorithms require that two elements of the array be
exchanged when they are found to be out of order. With XCHG the number
of instructions required to accomplish this can be reduced from four to
three. An additional benefit is that only one register is required instead of
two. In fact, at the expense of two clocks, no registers need to be modified.
The example below illustrates this technique.

The Instructions 271

Example

XCHG AX,DATA1 ; AX now contains DATA1 and vice versa.
XCHG AX,DAT A2 ; DATA2 no"Y contains original DATA1, AX has

; original DATA2.
XCHG AX,DATA1 ; AX has its original value, DATA1 contains origi

; nal DATA2.

272 The 80386 Instruction Set

XLAT

Opcode

D7

Flags

Pseudocode

Translate String 8086

Format Clocks

XLAT 5

Move the byte at DS:[(E)BX + unsigned AL] to AL.

Operation

XLA Tis used to change a table index into a table value. It is only useful
for byte-valued tables of 256 bytes or less in length. However, this is a very
common usage. XLAT expects the table's base address to be in (E)BX and the
table offset to be in AL. The instruction then stores the byte at that table
offset into AL.

Exceptions Modes Reasons

#GP(O)

#SS(O)
#PF(fc)
INT(13)

p

p
PV
RV

Illegal memory effective address in CS, DS, ES,
FS, or GS segments
Illegal address in SS segment
Page fault
Some part of operand is outside of address range
0 to OFFFFH

The Instructions 273

User Notes

The most commonly cited use for XLAT is the conversion of one
character code to another. The programmer builds a 256-byte table contain
ing the values of the target character code, and the XLAT instruction then
provides a quick and easy way to do the conversion.

Perhaps a more commonly useful example of XLAT is what we call a
"character classification application." This technique can be used by com
pilers, assemblers, or any other program that has input consisting of charac
ter strings that must be interpreted. An XLAT table is built containing
character classification codes. For instance: all upper case letters get code 1,
all lower case letters get code 2, all digits get code three, etc. An XLAT
instruction and a few simple compares and conditional jumps can easily
determine the type of character and perform the desired processing. As an
alternative to the compares, a jump table could be used.

Example

TABLE25 DB 0,25,50,75,100,125,150,175,200,225,250
; multiples of 25.

CMP AL,10

]A TOOBIG

LOS BX, T ABLE25
XLAT

; Our table only handles
; multiples up to 10.
; So, let's handle it in some other
;way.
; Sets up table address for XLAT.
; Fast multiply by 25 for small
; unsigned numbers.

274 The 80386 Instruction Set

XOR Exclusive Or 8086

Opcode Format Clocks

34 ib XORAL,ib 2
35 iw XORAX,iw 2
35 id XOREAX,id 2
80 [6] ib XOR r/mb,ib 2/7
81 [6] iw XORr/mw,iw 2/7
81 [6] id XOR r/md,id 2/7
30 [r] XORr/mb,rb 2/7
31 [r] XORr/mw,rw '2/7 ·
31 [r] XOR r/md,rd 2/7
32 [r] XOR rb,r/mb 2/6
33 [r] XORrw,r/mw 2/6
33 [r] XOR rd,r/md 2/6

Flags

NT IOPL OF DF IF TF SF ZF AF PF CF
0 0 s s 0 0 s I 0

Pseudocode

REPEAT
IF a bit in the destination operand is the same as the corresponding
bit in the source operand THEN

clear the bit in the destination operand to 0
ELSE

set the bit in the destination operand to 1
END IF

UNTIL all bits in the destination operand are checked

The Instructions 275

Operation

XOR carries out a Boolean or "logical" XOR on its two operands and
leaves the result in the leftmost operand. This operation is depicted in Figure
4-4, which gives "truth tables" for all logical operations. A 1 can be regarded
as T or True, while a 0 corresponds to F or False. A logical XOR takes two
bits and calculates a result using this rule: if one and only one input bit
is 1, then the output bit is 1; otherwise the output bit is 0. The instruction
XOR simply does this same operation on all the bits in each of two
operands; the leftmost bit in one operand is compared to the leftmost bit
in the other, then the two bits one position to the right are compared,
until all the bit pairs have been compared.

A logical XOR is called an "eXclusive OR" since it "excludes" the case
where both statements are true. The closest English equivalent to an XOR is
to say, "She's rich or thin, but not both." In this case you have two chances to
be incorrect, if the person is neither rich nor thin, or the person is both rich
and thin.

XOR can only be used with two operands of the same size (same
number of bits); otherwise the comparison would be meaningless for some
of the bits in the longer operand.

Exceptions Modes Reasons

#GP(0)
#GP(0)

#SS(0)
#PF(fc)
INT(13)

User Notes

p
p

p

PV
RV

Result in a nonwritable segment
Illegal memory effective address in CS, DS, ES,
FS, or GS segments
Illegal address in SS segment
Page fault
Some part of operand is outside of address range
0 to 0FFFFH

XOR is used to do bit tests and comparisons; many of these can also be
done by using the bit-test instructions that are new on the 80386. A register
to-immediate bit test takes 3 cycles versus 2 for a similar XOR, so the XOR is
only more efficient if no other supporting instructions are needed to set up
or decipher the comparison results.

276 The 80386 Instruction Set

Example

MOV AX,5963H ; Loads a hex number into AX.
XOR AX,6CA5H ; AX now contains 35C6 hex, SF=0, ZF=0, PF=l.

CHAPTER 5--
Protected Mode

MULTITASKING
SEGMENTATION
PAGING
VIRTUAL MEMORY

The applications programmer faces a challenge in writing programs
for the 80386. On the one hand, 8086-style programs can run directly on
the new processor, so the experienced programmer need not learn
anything new to get some use out of the chip. However, there is a
bewildering array of capabilities available that are new to the majority of
programmers who haven't used 80286 or 80386 Protected Mode. These
capabilities will affect the environment in which even the simplest
programs will be running.

This chapter describes the workings of such features as tasks, seg
ments, and pages. It will not instantly make the general reader into a
systems programmer, but it should promote an understanding of the
capabilities and limitations of 80386-based systems and give the Real
Mode programmer a running start on writing capable 80386 programs.

277

278 Protected Mode

MULTITASKING

The word "task" is often tossed about rather casually to describe
almost anything a computer might do. Yet it's very important to under
stand both the idea of a task on any computer and some of the details of
the 80386 implementation. It's important because this processor gives the
operating systems designer the power to allow the multitasking of several
different operations at once, while still looking at each application as run
ning on a simple, single-function computer.

Imagine two different processors sharing a common memory area
but running two completely different programs. Call the processors A and
B. Now imagine that we wanted to suddenly swap the program which
was running on A with the program which was running on B. What
would need to be changed?

The state of an 80386-based machine at any point in time can be
pretty well described by simply listing the contents of its registers. They
point out which instruction is being executed and what data in memory
is being accessed, and contain other data the processor is using. Thus we
would swap the contents of the registers in each chip. Processor A would
get the segment registers, the instruction pointer, and the general register
values from processor B; processor B would get the same from processor
A. Include the Flags register and we've pretty well got it; the two
processors have now swapped jobs.

This interchange is much like a "task switch" on the 80386. Since
there's only one processor, the first program controls the entire system for
a while; then the program is told to "abandon ship." It saves the values
of all its registers in an area of memory called a Task State Segment
(TSS). This contains copies of all the registers, as well as other informa
tion described below. The registers are reloaded from the TSS of the
program which is taking over. When execution proceeds a new program
is in control, and the old program is waiting to be called again when
needed.

This viewpoint helps us understand exactly what multitasking is on
the 80386. Multitasking doesn't necessarily mean multiple users; indeed,
a single program like a word processor can start up a task to handle a
chore like print buffering and close down the task when the print is done,
with the "child" task invisible to the user. A single-user multitasking
system can have one operating system that controls several programs
running at once as separate tasks; the user can assign priorities to them
and switch among them at will.

A task can also be an instance of running a given program and its

Multitasking 279

operating system, controlled by a "hypervisor" or control program that
handles task switches, priority levels, etc. Virtual 8086 Mode is imple
mented this way (see Chapter 6). The hypervisor can have 80386-based
applications programs run directly under it, and can host multiple
8086-style applications and operating systems with the programs never
"knowing" they're being swapped in and out

Multiuser systems can be implemented by letting each user run as a
separate task (in any of the forms listed above). The processor switches
among the different tasks so fast that each user thinks he or she has sole
control of the computer. It's also possible to let each of the users have
multitasking at his or her terminal, but this can lead to processor
overload. The number of tasks that can run at once without obvious
strain depends on the type of hard disk, memory, and other peripherals
with which the processor must interact, as well as the timing require
ments of each task

80386 Support for Multitasking

Several data structures, stored in a standard form for quick handling,
are recognized by the 80386 and a special register, the Task Register (TR),
points to the current task Using these elements the 80386 can switch
from one task to another in 268 clocks (about 17 microseconds on a 16
MHz system). If no actual work was done between switches, this would
allow nearly 60,000 task switches per second (although operating system
overhead adds to this figure), which means that many task switches can
be made per second while still allowing plenty of time for actually
executing programs.

The software structures are listed below.

1. There is a special kind of segment called a Task State Segment
(TSS), which is always at least 26 dwords long. The TSS has room
for copies of all the 80386's registers, including EFlags and EIP,
the instruction pointer. It also contains a 16-bit pointer to the
previous TSS, which is kept in case of a return to that TSS. This
is useful when a subordinate task (like an exception handler) has
been called by another task and must return control to the caller
when finished.

2. There is also a special Task State Segment descriptor. All seg
ments have descriptors that give needed information about the
task, including its location, size, and privilege level. For a TSS
descriptor the LIMIT or length must be at least 103 bytes (104 if

280 Protected Mode

an 1/0 permission map is used; a pointer to it is stored in the last
word of the TSS}. Longer LIMITs allow bigger TSS's to be used,
with the user defining the values in the additional bytes. Also
worth noting is that TSS's aren't reentrant; if a task is busy (as
indicated by the Busy bit in the TSS descriptor}, it can't be started
again.

3. Finally, there is a Task Gate Descriptor. The task gate is a short
data structure that allows access to a TSS (other gates allow
access to other data structures}. Figure 5-1 shows the format of the
Task Gate Descriptor. The DPL is the privilege level of the task
gate. The procedure that accesses the task gate must operate at a
privilege level as low or lower than that of the task gate. If the
access is allowed, the selector allows the task state segment to be
accessed without further protection checking. This means that a
procedure that couldn't normally access a given TSS can reach it
via a task gate. Unlike TSS's, the Task Gate Descriptor can be in a
local data table and visible to some procedures (including inter
rupt and exception handlers} but not others. This allows flexible
access to a task, which can have several task gates, each accessible to
different procedures and each with a different privilege level, but all
sharing the same Selector field.

Besides the software structures, there is also a register dedicated to
multitasking, the TR register. The TR register is like an iceberg-most of it
is invisible. The upper 16 bits are the visible part; they contain a selector
that points to the current TSS descriptor. The hidden part holds a 16-bit
TSS base and a 16-bit TSS limit The TSS acts as an on-processor cache
so these fields can be accessed quickly when the current TSS is referenced
by a program.

A task switch occurs when a JMP or CALL refers to a TSS descriptor
or a task gate, when an interrupt or exception points to a task gate, or
when the current task executes an IRET and the NT (Nested Task} flag is

31 23 15 7 0

(unused) P DPL O O 1 O 1 (unused}

SELECTOR (unused)

Figure 5-1. Task Gate Descriptor

Segmentation 281

set In this last case the pointer to the previous Task State Segment stored
in the current TSS is used to quickly bring back the calling task.

Several checks are made for privilege level and for the presence in
memory of the current TSS (if it's paged out an exception occurs). If the
checks are passed the current task's registers are saved in the current TSS.
The TR is then loaded with the selector of the new TSS, and the registers
are loaded with the information in this new TSS. Finally, the TS (Task
Switched) bit in the Machine Status Word is set to alert coprocessors that
a change has occurred.

SEGMENTATION

Segments are logically separate pieces of memory, each with its own
size, level of protection, and other characteristics, but the segments can
overlap or even be exactly the same area of memory (this is called
aliasing). The 80386 accesses six segments at a time, each pointed to by
a 16-bit register. The registers CD, SS, and DS specify the starting
addresses for Code, Stack, and/or Data Segments. The registers ES, FS, and
GS specify starting addresses for three Extra segments. Each of these
segments has its own segment descriptor that contains protection and
size information.

On the 8086/88 segments are limited to 64 Kb each. This means that
most programs that run on it need separate segments for code, data, and
stack, and medium and large programs have to access several segments
for code, data, and stack during execution. Large data structures are
broken up into parts by segment boundaries.

The 80386 allows segments to be much larger, 4 Gb each. This
allows a great deal of flexibility in managing memory. However, the
structure of memory is largely determined by the operating system. An
8086 operating system (or any 80386 Real Mode or Virtual 8086 Mode
program) running on the 80386 will impose exactly the same limits as
found on the earlier chip. An 80386 OS may impose restrictions for
purposes of compatibility with existing code or to simplify the work it
has to do. The processor's full capabilities are discussed; how many of
these an application has access to depends on the operating system.

Before we plunge into the details of segmentation, it's worth noting
that the 80386 can support a totally unsegmented and unprotected
memory model. By setting all the segment registers to O and giving each
segment a limit of 4 Gb and a protection level of 3 (no protection), the

282 Protected Mode

instruction pointer, stack base, index pointer, and data pointers can all
refer to the same 4 Gb area, allowing them to be intermixed at will. This
is not necessarily good for all applications, but it allows UNIX-type
operating systems (which generally use a flat memory model) to be
ported directly to 80386-based systems.

Linear Address Creation

Most applications programs use a variety of addressing modes to
access memory. These modes affect the final value of the offset used in
address calculations; this offset is called the Effective Address of an
operand in memory. The effective address is combined with the ap
propriate segment base register to create a linear address. If paging isn't
on, the linear address is used to directly access memory.

In Real Mode the appropriate segment register is simply multiplied
by 16 (shifted left by 4 positions) and then added to the lower 16 bits of
the effective address to create a 20-bit address, just like on the 8086 or the
80286 in its Real Mode. The same technique is used for tasks running in
Virtual 8086 mode. In Protected Mode linear addresses can be up to 32
bits long and access up to 4 Gb of memory.

The segment registers are actually 64 bits long, but only the upper 16
bits are visible to programs. The 64-bit entry contains all the needed
protection and other information about the segment., and is called a
segment descriptor. It includes the actual base of the segment., which is a
quantity up to 32 bits wide that addresses 4 Gb of memory (the linear
address space). The linear address is calculated by adding the segment
base to the effective address, with no shifting.

The registers on the processor itself contain segment descriptors for
the segments that are in use by the currently executing task. However, an
80386 program may have many segments, and the processor itself may
be running several tasks at once. The segment descriptors stored in the
registers are actually only easy-to-access copies of the segment descrip
tors stored in memory.

Segment Descriptors and Tables

The format of a segment descriptor is shown in Figure 5-2. The fields
within the descriptor are interpreted slightly differently for different types
of descriptors; the one described here is for code and data segments.

Segmentation 283

31 23 15 7 0

BASE GOO AVL LIMIT P DPL 1 TYPE A BASE
31 ... 24 19 ... 16 23 ... 16

BASE LIMIT
15 ... 0 15 ... 0

Figure 5-2. Segment Descriptor

Other types of segments are similar. Individual fields are listed below.

1. BASE. The base of the segment is a 32-bit-long field stored in
three separate pieces within the segment descriptor. The pieces
are concatenated to form a single 32-bit quantity.

2. LIMIT. The limit is a 20-bit-long quantity stored in two separate
pieces within the segment descriptor. The two pieces are con
catenated to form a single 20-bit quantity. Such a quantity can
normally only be used to address 1 Mb of memory, which would
limit segments to 1 Mb in length if not for the G bit

3. GRANULARITY (G). When this bit is zero the limit is indeed a
maximum of 1 Mb, but if the G bit is one the limit is multiplied
by 4 K (the size of a page). The limit now says not that the
segment can only be a given number of bytes long, but that it can
only be a given number of pages long. This means that the limit
can only be checked to within the nearest page of the actual end
of the segment

4. AVL. This bit determines whether the descriptor is available for
use by the operating system.

5. PRESENT (P). This bit indicates whether the segment is actually
in memory. The bit is 1 and the segment is unavailable if
segment-based virtual memory is in use and the segment is
swapped out or in a space not mapped by the paging unit

6. DESCRIPTOR PRIVILEGE LEVEL (DPL). These two bits indicate
the privilege level needed to access the descriptor, from O (highest)
to 3.

7. TYPE. This 4-bit field is used differently by different types of descrip
tors. It can specify, for instance, that a segment is executable,
readable, and/or writeable. For operating system segments this
field can specify a type of descriptor like LDT, TSS, or Gate, the
latter two of which have subtypes of their own.

8. ACCESSED (A). This bit is set if the descriptor is loaded into a
segment register.

284 Protected Mode

Descriptors are created and maintained by the operating system and
other systems software like compilers and linkers; all of them must work

· together to keep the descriptors updated correctly.
All descriptors are kept in memory-based tables. These tables can be

up to 8,192 (213) descriptors long. There is a single Global Descriptor
Table (GDT) containing descriptors of segments that can be accessed by
any task with a high enough privilege level to get at the segment, either
directly or via a gate. Usually operating system code is glo.bally available.
Each task also has a Local Descriptor Table (LDT), which describes the
segments accessible only by that task; this would usually include a task's
code and data. However, two tasks can share part or all of an LDT. For
example, a word processing program that creates a separate task to serve
as a print controller can let the new task access the code and data
needed for its job.

One of the interesting special topics that arises in connection with
segment descriptors is aliasing. When two or more descriptors name parts
of the linear address space that partially or completely overlap, they are
aliases of one another. A descriptor for a code segment, for instance,
might specify that the code is readable but not writeable. An alias
segment descriptor for the code segment might specify that the same area
was writeable, and the alias could then be used (either deliberately or
accidentally) to modify or overwrite the code, possibly causing problems.
Also, the operating system must keep track of the aliases; if the operating
system wants to delete a segment, for instance, it must delete or modify
all the descriptors that allow access to that part of memory.

PAGING
4444AAAM44i#M¥BNMao/M15¥4i- ra@ aiiiiittJilfr++ti¥MW± --

The paging capability of the 80386 is one of the most interesting and
novel aspects of the processor, yet it's completely a tool of the operating
system. Whereas the applications programmer at least can see part of the
segment registers that control segment addressing, paging is invisible to
the programmer. It's also new with the 80386, so there's no base of
understanding for the 8086 or 80286 programmer to build on. Yet paging
is very much worth understanding. It will probably be the main tool used
to access large amounts of actual memory, and it is vital to the operation
of Virtual Mode, which will be the basis of both the multitasking systems

Paging 285

and the giant applications programs of the future. It's easy to learn
enough about paging to discuss and work around its implications intel
ligently without actually writing operating system code. The information
in this section and below, plus information about your particular operat
ing system, may be enough for many programmers.

An 80386 page is a 4 Kb-sized piece of memory (some other
computers use other page sizes). A page may start at any point in
memory, but for convenience's sake pages are usually placed at ad
dresses 4 Kb apart (page frames). The addresses of page frames are 0, 4
Kb, 8 Kb, 16 Kb, etc. Any data item that starts at one of these addresses is
said to be "aligned on a page boundary." Addressing a page frame in the
4 Gb linear address space is made easier because only a 20-bit address
is needed; the last 12 of the total 32 bits in the address are all zeros. In
virtual memory pages are swapped between disk and memory as needed.
The 4 Kb sections on disk that hold pages are called page slots.

An 80386 system doesn't have to use paging at all, and an 80386 in
Real Mode can't use it A bit in the Machine Status Word, inaccessible to
Real Mode and applications programs, allows paging to be on or off.
However, paging is an almost irresistible tool for the systems program
mer, since (for one thing) it provides an easy way to assign almost any
actual address to replace the linear address calculated by a program.
Thus, most 80386 operating systems will do at least some paging.

Memory can also b~ only paged, not segmented, by working around
segmentation with the trick of putting everything in one large segment
Paging can then be used for protection and privilege control. Segments
have their advantages too, especially for protection of all code or pieces
of data. A common memory model will probably use segments for
protection based on segments and paging for memory remapping and
virtual memory. Paging will be invisible to the applications programmer,
but it will affect the memory locations that a program resides in and
accesses.

Physical Address Creation

The Physical Address is the address that comes out of the paging
unit When paging is not on (or even in many cases when it is on) the
Linear Address that goes into the paging unit is the same as the physical
address that comes out However, while the process of translation is
complicated and not always used, it's worth understanding as it can
affect every aspect of the system.

286 Protected Mode

A physical address has three parts: a 10-bit DIR entry, a 10-bit PAGE
entry, and a 12-bit OFFSET (see Figure 5-3). These three fields are used
to generate a physical address in the following way:

1. The 32-bit CR3 register holds the address of the current Page
Directory. The low 12 bits of CR3 are always 0 because the !:'age
Directory always starts on a page boundary. The 10-bit DIR value
from the Linear Address points to the needed Page Directory
Entry.

2. The high 20 bits of the Page Directory Entry point to a Page Table;
12 low-order zeros are tacked on to make a full physical address
for the page-aligned table. The 10-bit PAGE value from the middle
of the Linear Address points to the needed Page Table Entry.

3. The high 20 bits of the Page Table Entry point to a page frame; 12
low-order zeros are tacked on to make a full linear address for the
page frame. The 12-bit OFFSET value from the low-order bits of
the Linear Address points to the needed location in memory.

Each page directory has up to 1024 entries, allowing that many page
tables. Each page table can point to as many as 1024 pages, each 4 Kb
long. This means that a single directory can address 1024 * 1024 * 4096
bytes, or 4 Gb (the entire physical address space of the 80386).

The Page Directory Entries (PDEs) and Page Table Entries (PTEs) are
almost identical. The page table can be thought of as a "page descriptor
table," and the Page Table Entry as a "page descriptor," if this helps keep
them straight Figure 5-3 shows an entry like that found in either table. A
bit-by-bit breakdown is listed below.

1. PAGING ADDRESS (Bits 31 ... 12). For a PDE this address points
to a Page Table; for a PTE it points to a page. The lower 12 bits of
the address are always O's, since both Page Tables and pages are ·
aligned on 4096-byte boundaries.

Bit
31 12 11 ... & 8 7 6 5 4 3 2 1 0

Figure 5-3. Page Directory Entry/Page Table Entry

Virtual Memory 287

2. OS RESERVED (Bits 11 .. 9). These bits are available for operating
system use. A typical function would be keeping statistics for
virtual memory and page swapping, like the number of times a
page had been accessed in a given period.

3. D (Bit 6). This is the Dirty bit for page table entries, which is set
automatically when the page is written to.

4. A (Bit 5). This is the Accessed bit for page directory and page
table entries, which is set automatically when the page is read or
written to.

5. U/S (Bit 2). This is the User/Supervisor bit If it's set then programs
with protection level 3 (lowest level) are allowed access.

6. R/W (Bit 1). If UIS is 1 (user access is allowed) then a zero in this
bit means only read accesses are allowed; a 1 means write
accesses are also allowed.

These bits are meaningful for PDEs and PTEs. An individual
page is protected according to the most restrictive pair of bits
from its PDE or PTE. If the UIS bit is O the page may be neither
read or written to. If U/S is 1 and R/W is O the page may be read
only; if both bits are 1 (in both entries, since the most restrictive
applies), the page can be read or written to.

7. P (Bit O). This is the Present bit that indicates whether the PDE or
PTE points to a page that is presently in memory. If this bit is 1
the bit fields are as defined above. If it's O the needed page is out
on disk and the remaining 31 bits can be the location of the page
slot out on disk that has the needed page.

While the Page Table Entry contains a lot of useful information
about a page, it's very hard to get to; two memory accesses are required
just to get the address of each page. The Translation Lookaside Buffer
(TLB) in the Paging Unit contains the 32 most recently used PTEs. The
TLB often has the needed PTE, eliminating the need to actually look at the
memory-based tables over 95% of the time. The workings of the TLB are
explained in detail in Chapter 7.

VIRTUAL MEMORY

Virtual memory lets a programmer work without having to worry
about how big memory actually is. In virtual memory systems the hard

288 Protected Mode

disk in effect becomes the main memory, and RAM ("real memory") is a
holding area for the code and data currently in use by the processor. See
Figure 5-4 for an illustration of the relationship between these types of
memory.

The number of bits in the largest address that a processor can
construct determines the size of its virtual address space. On advanced
processors like the 80386 there are two different address sizes: a large
address determines the virtual address space or amount of memory the
programmer can use. A smaller address determines the real address
space, the amount of real memory that the processor can support On the
80386 the address information in Paging Tables allows a virtual address
space of 64 Tb (over 64 trillion bytes). This is the same as 64,000 1
gigabyte CD ROMs. (If one copy of every book ever printed were stored on
CD ROM, fewer than 64,000 disks would be needed.)

The real address space can be accessed directly with a 32-bit
address, with or without paging. This address size allows up to 4 Gb of
real memory to be accessed (over 4,000 times more than a 1 Mb system
has). However, these limits are beyond the reach of current hardware. In
practice real addresses are used to access RAM and virtual addresses are

Virtual Memory
.------~ Top

\
.-------. Top

\ Real Memory

□Top

/ 0

Disk Storage

t--------1/
0

0

Virtual Memory>= Disk Storage>= Real Memory

Figure 5-4. Relation of Virtual Memory to Disk Storage to Real Memory

Virtual Memory 289

used to access a virtual space no bigger than a hard disk The virtual
addresses won't use even the full 4 Gb of space allowed by a 32-bit
address. The larger virtual address spaces will be used for networked
systems and communications at first

A simple form of virtual memory is already in use by large programs.
In this technique a core part of a program stays in memory at all times.
The rest of the program is divided up into pieces of about 64 Kb each. As
the user accesses different parts of the program, these 64-Kb chunks are
brought in from disk as needed. Each chunk is called an "overlay."
However, dividing a program into overlays and managing the swapping
of them in and out of memory are big chores for the programmer.

In virtual memory every program, data file, etc. is seen as a series of
4 Kb "pages." The real address space (RAM) is divided into a 4 Kb-wide
"page frames," and the virtual address space (hard disk) is divided into 4
Kb-wide "page slots." When needed by the user's access of different parts
of a program, different pages are brought in from their page slots into
page frames in real memory, where they can be accessed. When memory
is full and another page is needed, an existing page frame is overwritten
(if it hasn't been changed since coming into memory) or copied out to its
page slot on disk before being overwritten (if it has been changed). All
this takes place out of sight of the programmer; the programmer simply
accesses code and data at different virtual addresses and the processor
and operating system cooperate to bring the needed page into memory
when it's actually needed.

How the 80386 Supports Virtual Memory

The following features are important in the 80386 support of virtual
memory:

1. The ability to access large address spaces.
2. The ability to translate virtual addresses into real addresses for

· accessing real (physical or RAM) memory.
3. The ability to cause an exception (instead of simply halting) if a

needed piece of code or data is not currently in memory (a "page
fault").

4. Instructions that can be restarted if a page fault prevents the
instruction from completing.

290 Protected Mode

This is a lot for a processor to do, but much of the work is still left to
the operating system. When a page fault occurs the operating system
must get the needed page from disk and bring it into memory. If memory
is full it's the operating system that must write an existing page to disk, if
needed, and then overwrite it with the needed page.

There are several important issues surrounding virtual memory
which will directly affect the applications programmer. One is how much
real memory is needed to support a given amount of virtual memory. For
instance, will a system with 1 Mb of available RAM (memory above the
amount needed for video support and the operating system) run three
programs at once, each of which normally uses 640 Kb of RAM? A lot of
research into this kind of question has been done on mainframes, but the
results are not directly applicable to the different operating systems and
kinds of demands made on microcomputer-based systems.

A preliminary estimate is that a computer can safely support about
twice as much virtual memory as the amount of real memory available.
Thus our three 640 Kb programs would probably run comfortably on a
system with 1 Mb of memory free to support them. The important issue
is the size of the "working set" of each program. If each program accesses
a large number of pages repeatedly (has a large working set) they may
each make the operating system go to disk frequently for more pages,
causing "page thrashing." Repeatedly recalculating large spreadsheets
while doing a large compile or sort at the same time might be one way
to cause page thrashing.

V8086 Mode
and More

VIRTUAL 8086 MODE DEFINED
VIRTUAL MACHINES
MORE ON VIRTUAL MODES
PROCESSORS AND MODES COMPARED
OPERA Tll\1G SYSTEM CONSIDERATIONS

CHAPTER 6

The preceding chapters described the 80386's Real Mode and
Protected Mode. This chapter builds on the preceding ones to describe
Virtual 8086 (V8086) Mode, which allows a task (for instance, an applica
tions program) to run as if it was in Real Mode, while the operating
system has access to all the capabilities of Protected Mode. This chapter
also compares the 80386 in each of its modes with the 8086, describing
the differences between the processors and how they affect software.
Finally, we discuss how these factors affect what is possible in an
operating system. This section should help the reader make an informed
choice when selecting an OS and get the most out of the one chosen.

This discussion also explains how the 80386 can run plain-vanilla
PC programs and full-featured 32-bit tasks concurrently; why the 80286
didn't run so many of the earlier programs, even in Real Mode; and why
the first (and least expensive) operating systems to become available are

291

292 V8086 Mode and More

likely to tap only part of the processor's power. It ties together what's
gone before, ending with a look at future possibilities.

VIRTUAL 8086 MODE DEFINED

There is over $5 billion worth of software already in use for 8086/88
and 80286-based computers. This existing software (programs and operat
ing systems) can be run unchanged in 80386 Real Mode. In Real Mode
only one operating system and one program are running at a time,
allowing for compatability with PC and AT-style programs but using
little of the power of the 80386 besides its sheer speed. To the operating
system and the programmer the 80386 seems much like a fast 8086 with
additional instructions and registers and the same 1 Mb limit on memory
that the 8086 has.

The alternative to Real Mode is Protected Mode, which offers access
to all the capabilities of an 80386-based computer: multitasking, paging,
virtual memory, etc. The computer as a whole can only be in Real Mode
or in Protected Mode. However, while the computer is in Protected Mode,
an individual task (which can be a single program with or without a copy
of its operating system) can run in Virtual 8086 Mode, which gives an
8086-style environment (the same as an 80386 Real Mode environment)
to a task. Meanwhile, the 80386's operating system and other programs
have access to everything the computer can do in Protected Mode.

To talk about V8086 mode and its implications we have to review
and extend some vocabulary. A task is any independently running
program; to be precise, a task is a program that has an 80386 Task State
Segment or an equivalent The TSS stores register contents and other
information, allowing the 80386's operating system to halt and restart the
task at any time.

Luckily for the user's existing software library, but unfortunately for
the cause of clarity, an 8086 operating system like DOS 2.x or 3.x can run
as a task. While the user is running this task he or she can start up, run,
and exit nearly any program that runs on either an 8086 or 80286, like
Turbo Pascal® or Lotus 1-2-3®. Thus we have an operating system like
DOS 2.x running as a task under the 80386's own operating system, which
handles paging, virtual memory, and priority among other tasks that are
running at the same time. To avoid confusion we will at some points call
the 80386's own operating system a hypervisor (to differentiate it from
another operating system running under it as a task). The hypervisor

Virtual Machines 293

allows the user to set priorities and switch among several different tasks
at once.

VIRTUAL MACHINES

In virtual memory a program is allowed to be very large and/or have
large data structures, and act as if the program and its data are all in memory
at the same time. The operating system is responsible for allocating
memory space to the program and for bringing code and data in as
needed in cases where everything can't really fit in memory at once.

A "virtual machine" extends the concept of virtual memory to the
entire computer, including I/O devices like the keyboard and monitor, the
register set, etc. The program runs just as if it had an entire machine (in
this case an 8086-based computer) to itself, thus the name Virtual 8086
Mode. When the program makes calls on system resources (like a write to
the monitor), the 80386's hypervisor may let the call perform its action or
it may trap the call and perform the write itself, or not do the write at all,
before returning control to the running program.

In particular, let's suppose an 8086 assembler program wants to write
"Hello" on the screen. It dutifully calls DOS 3.1 with an INT and DOS
executes an I/O write to the screen. However, DOS 3.1 is running as a
V8086 task, which has privilege level 3. The hypervisor has put a priv
ilege level of O on the I/O area, so the DOS write causes a protection
exception. The interrupt vector calls the hypervisor by causing a task
switch to the hypervisor's TSS, which must decide what the V8086
task is trying to do, emulate it (by doing the actual screen write, in some
other way, or by ignoring the attempt), and then return control to the
V8086 DOS task As more of this type of intercepting and decision-mak
ing goes on, the 8086 assembler program is increasingly slowed when it
or DOS tries to perform I/O or otherwise use system resources. The same
process applies to V8086 copies of CP/M 86 or 8086-type UNIX lookalikes.

We said above that the I/O area had privilege level 0, but addresses
are being constructed 8086-style (1 Mb limit), so segment-based protec
tion (which uses full 80386 addresses) won't work The 8086-style address
is sent to the paging unit where it can be mapped to any page, which
may be in memory or out on disk (Virtual Memory). Thus the operating
system can enforce page-based protection whenever a V8086 task is
running, and can support virtual memory for several V8086 tasks at once
by using the paging unit and page tables.

294 V8086 Mode and More

This same type of protection checking and simulation can take place
any time the 80386 is running multiple tasks, not just when one of the
tasks is 8086-style. How does V8086 Mode "fool" the program which is
running into thinking that it's running on a 16-bit 8086 instead of a 32-bit
80386?

Bit 17 of the EFlags register is called "VM" (Virtual Mode). When a
Virtual 8086 task starts running, the VM bit is set. This bit tells the 80386
to generate addresses and handle segments as it would in Real Mode, so
addresses are generated by shifting the appropriate segment register left
four positions, adding the appropriate 16-bit offset, then using the result
as a memory address. The resulting 20-bit number allows only 1 Mb of
memory to be addressed. The VM bit also makes only the 16-bit part of
a 32-bit register (like EFlags) accessible to the current task Note that the
VM flag in bit 17 is not in the lower 16 bits of the register and not
accessible to a task running while VM is on.

Also, while the V8086 bit is set certain privileged opcodes cause
exceptions. Only the instructions and addressing modes found on the
8086 are allowed to execute.

This also helps explain how the 80386's Real Mode functions. When
the Protection Enable bit in the Machine Status Word is clear, the same
16-bit addressing and opcode restrictions apply as in Virtual 8086 Mode.
In both cases the current task operates as if running on an 8086. The
difference is that the Machine Status Word controls the whole machine,
putting it in Real Mode, while EFlags controls only the current task; the
current task acts like it's in Real Mode but a task switch back to the
hypervisor turns the V8086 flag off, allowing the privileged opcodes and
addressing modes to be used again.

MORE ON VIRTUAL MODES

The discussion below gives some background on the history and
current status of virtual modes. This will be interesting to many but does
not apply directly to V8086 mode; this section can be skipped.

The idea of virtual machines was pioneered by IBM on its largest
machines, the 370 series. The VM operating system currently used on all
these machines was developed inside IBM as a research project in the
late 1960's. There are two parts to VM: CP and CMS. CP (Control
Program) serves the same function as an 80386 hypervisor, allocating

More on Virtual Modes 295

resources to various tasks, trapping calls to I/O and other resources, and
then emulating or ignoring them. Individual programs run under a
single-user, single-tasking operating system called CMS, Cambridge (now
Conversational) Monitor System. CMS is like the copies of DOS we've
been talking about; it seems to have control of the computer, but actually
causes CP to take over when it tries to access most parts of the computer
itself.

An interesting aspect of CP is that it can run another copy of CP as
a task under itself. Neither copy "knows" whether it actually has control
of the computer; it simply acts as if it does, making use of the full
resources of the system, and if there is another CP "above" it controlling
the computer that CP will trap the calls of the "lower" one.

This is not true of the 80386. It can run V8086 tasks in which the
8086 environment is duplicated, and all 8086 programs and operating
systems will run under it An 80286 Real Mode (8086-type) application
will also run under it, but 80286 and 80386 operating systems cannot be
run as tasks under an 80386 hypervisor. It is thus said that the 80386 can
"virtualize" the 8086, but not the 80286 or itself. This is because of
problems with certain instructions, including PUSHF and POPF, which
push and pop all flags.

This means that the 80386 can run 8086-style operating systems, but
can't run 80286 versions of DOS or XENIX, for instance, as guest tasks.
These programs can run as the sole operating system for the 80386 if set
up properly, but the processor will then emulate an 80286 completely,
and that machine doesn't have the capabilities (paging, multitasking, etc.)
of the 80386. Thus these operating systems are only stopgaps until true
80386-based operating systems can be developed.

As long as the 80386 is running in Real Mode, it is only acting as a
fast 8086. When it's running an 80286 operating system, it's acting as a
fast 80286. But when it's running a V8086 task the operating system and
tasks running concurrently with the V8086 task have access to the full
power of the 80386. The V8086 task doesn't need all of these powers, it
simply "wants to pretend" it's got full control of an 8086. However, the
V8086 task may run slower on the 80386 than it did before. If multitask
ing is occurring the V8086 task will be slowed by not running all of the
time. Even if the V8086 task is all that's running, many calls to DOS may
result in task switches to the hypervisor, which then must decide what's
happened, emulate the DOS request or not, and then return control to
DOS. Many lines of code may execute between the original call to DOS
and a return to the guest application, slowing the perceived speed of the

296 V8086 Mode and More

application. The exact effects depend on which DOS calls are trapped by
the hypervisor (causing extra processing) and which are allowed to
proceed.

When a hypervisor is supporting multiple V8086 tasks it must use
paging. This is because each task will produce addresses in the same
range: 0 to 1 Mb. Paging can be used to remap most of these addresses to
physical addresses beyond 1 Mb. It can also be used to help the various
tasks share the operating system and/or hypervisor code. Finally, paging
protects the 1/0 areas from direct access by the V8086 task.

As an example of the power of paging, operating systems that allow
some degree of multitasking on the 8086 (like Concurrent PC-DOS from
Digital Research) have problems with programs that are "ill-behaved."
The best example of poor behavior is updating the video display. A
well-behaved program will call the operating system to do a screen write,
but this is noticeably slow. Ill-behaved programs write directly to the
memory locations that the screen is mapped to, producing fast results.
The problem comes when the user wants to run two programs at once,
one in "foreground" (the program the user is interacting with) and the
other in "background" (running invisible to the user). The foreground
program has control of the video monitor; the operating system intercepts
any attempt by the background program to write to the monitor. But if
the background program bypasses the operating system and writes
directly to video memory, the user suddenly sees results from the
background program appearing on his foreground screen, which is run
ning some other program!

With the 80386 a multitasking operating system simply uses the
paging tables to remap the background task's accesses to video memory.
The accesses now update some other area of memory; the actual video
memory is controlled by the operating system. This allows the operating
system to completely control what appears on the screen, while the
ill-behaved program runs very efficiently when allowed to have control
of the monitor.

PROCESSORS ANO MODES COMPARED

There are two basic types of programs (including operating systems)
which run on processors from the 8086 family. The first are Real
Mode-style programs, including 8086/88 programs and operating systems,

Processors and Modes Compared 297

80286 Real Mode programs, 80386 Real Mode programs, and V8086 tasks.
The second are Protected Mode programs, which include 80286 and
80386 operating systems and applications programs that run in Protected
Mode on one of the two processors (rare as of this writing). We won't
concern ourselves here with compatability between the 80286 Protected
Mode programs or operating systems, and we'll also leave aside the
80386's capability to run 80286 programs directly or concurrently with its
own programs. Those bringing such programs to the 80386 environment
may be directly in contact with Intel for help.

Here we will concentrate on the various types of Real Mode programs
and the similarities and differences among them. This information will
help in understanding the different processors and in bringing applica
tions from the 8086 and 80286 Real Mode to the 80386, to be run as
either V8086 tasks (very simple) or Protected Mode tasks (possibly simple
depending on the 80386 OS).

8086 Programs vs. 80386 Real Mode and Virtual
Mode Programs

One of the great advantages of the 80386 is that in Real Mode it can
run 8086 programs and operating systems almost unchanged. It can also
run these same programs and OSs as V8086 tasks, so they can run
unchanged while a hypervisor allows paging, multitasking, and other
capabilities to be used. In order to take advantage of these capabilities,
however, the programmer needs to know exactly what differences there
are between programs for the 8086 and programs for the 80386.

Because Real Mode and V8086 Mode are so similar, we will treat
them as the same when we compare them to the 8086. The next section
explains the few differences between them and how a V8086 task so
closely simulates a Real Mode program in full control of the computer.

There are two types of differences between V8086/80386 Real Mode
programs and 8086 programs. The first is improvements: new registers
and instructions, for example. The second is surprises: differences that
can cause an 8086 program to act differently when run on an 80386.
Some of the improvements can also become surprises; for instance,
increased speed can cause some programs to work differently. Being
optimists, we'll cover the improvements first

The first improvement is speed. An 8086 Real Mode program ex
ecutes six to ten times faster when run on the 80386. About half of the
speed increase is due simply to the processor running at 16 MHz instead

298 V8086 Mode and More

of, for example, about 5 MHz. Programs that often use certain much
speeded instructions (like IMULs) can expect even greater performance
improvements. This one change makes a noticeable d~fference to the user
for most programs. If the 80386 is accessing a reasonably fast hard disk,
this pleasant effect is increased. The speed increase is free to the
programmer; no changes need to be made in the program. Also, the
program can be taken as is and run on an 8086-based system at any time.
Also free is the ability of an 8086 program to be multitasked with other
programs running concurrently on the 80386.

Other performance improvements in Real Mode require changes to
the program itself. These changes will make the program smaller, faster,
and/or more capable; they will also make it incompatible with the 8086.
Before enhancing an application (the desired changes may not require a
complete rewrite), the programmer must consider the vast number of
computers that can no longer run a program when it uses the new
features available in 80386 Real Mode. One good idea is to use com
ments to point out the new 80386-only code, and to keep any removed
code (either as comments within the program or as part of a program
library with the old version). That warning given, the new features are
explored below.

New Architecture

The 80386 is architecturally different from the 8086 in that it has two
new segment registers: FS and GS. These new registers serve the same
function as ES, pointing to the base of Extra data segments. However, ES
is used as the implicit destination of certain string operations. The FS
and GS registers are not implied by any operation, and thus are free for
use in any way the programmer wishes. 8086 programs can be optimized
just by keeping much-used memory variables in FS and GS for faster
access. Segment overrides also allow these two registers to be used as
advertised, as base registers for addressing new data segments.

Real Mode programs can also access all 32 bits of the 80386's
general registers simply by using the name of the larger register in an
instruction: MOV EAX, EBX The assembler will generate an operand size
prefix that will cause the processor to access the entire 32-bit register
(accessing only the lower 16 bits is the default in Real Mode). (This
requires some care, since the upper 16 bits can't be assumed to be zero if
they haven't been initialized.) Many programs will find this addition of
32-bit operands one of the most significant improvements on the new

Processors and Modes Compared 299

processor, since it allows much larger numbers and other data items to be
used without slowing processing.

Other new registers are also available. The debug registers can be
used from directly within a rrogram or from an external debugger (to
greatly speed program debugging). We won't cover their use here, but
they're worth further investigation. Control registers aren't accessible to
applications programs (except perhaps through gates or calls provided by
the operating system), and test registers won't be generally used. In fact,
since test registers aren't a standard part of the 80386's architecture,
future versions of the 80386 and future processors in the same family
may not even have them.

New and Changed Instructions from
80188, 80186, 80286

Several new instructions were introduced with the simultaneous
introduction of the 80186/188 and 80286. The 186/188 was an improved
version of the 8086/88 with a few new instru<;:tions and lower clock
counts, especially for complex instructions like MUL. It's been used
mostly for coprocessor boards and process control in automobiles and
other applications. The 80286 is, of course, the processor at the heart of
the IBM PC AT and compatibles. In Real Mode it has the same instruc
tion set as the 80186/188; in Protected Mode it has protection and other
features similar to the 80386, but based on a 16-bit architecture.

The 80386 Real Mode has all the instructions of its predecessors; for
the benefit of those experienced with the 8086 and for those interested in
compatability between the members of the 8086 family we'll describe
instructions that were new with the 80186/188 and 80286 Real Mode. Full
descriptions are given in Chapter 4.

PUSHA AND POPA

These instructions cause all the general registers to be pushed onto or
popped from the stack, in this order: AX, CX, DX, BX, SP (its value before
the push), BP, SI and DI. The PUSHAD and POPAD versions, new on the
80386, push and pop the full 32-bit registers, while the PUSHA and POPA
push only the lower 16 bits. On the 80386, these instructions take about
the same amount of time as eight separate pushes or pops.

300 V8086 Mode and More

INS AND OUTS

These are block move instructions that move a byte, word, or dword, and
then automatically increment or decrement SI, which is the pointer to the
memory block being read or written.

ENTER AND LEA VE

These instructions cause a "stack frame" to be pushed onto or popped
from the stack The stack frame contains a count of the nesting level of
the current procedure, a count of the number of bytes of storage used for
parameter passing by the procedure, and the parameter bytes themselves.
These instructions are favorites with compiler writers for structured
high-level languages.

BOUND

BOUND compares a signed array index stored in a register to two
memory locations, the lower and upper bounds of the index. On the
80386 these numbers can be 16 or 32 bits long. If the value in the register is
not within bounds an exception 5 occurs.

IMMEDIATE OPERANDS FOR EXISTING INSTRUCTIONS

An immediate value can be pushed, used for multiplication, or used as a
count for shifts and rotates. This can decrease register usage by putting
operands in the program code itself, and decrease instruction counts by
avoiding the step of loading a register with the value that now is given as
an immediate operand.

New Instructions for 80386 Real Mode

The 80386 has many new instructions available in Real Mode (and
also, of course, in Protected Mode, which has some other new instruc
tions of its own). Also, some instructions act differently because of the
availability of 32-bit operands. Several new instructions are the result of
additions to the architecture changes.

Processors and Modes Compared 301

LSS, LFS, LGS

The new Load Pointer instructions allow full use of the SS, FS, and GS
registers. As with the other load instructions, a segment register and a
specified other register are loaded with values from a specified location
in memory. The LFS and LGS are needed to load the two new registers;
LSS has been added to ease the use of multiple stack segments.

MOV

The MOV instruction can be used to move data to and from debug, control,
and test registers. These new registers are now accessed by the MOV
instruction.

MOVSX, MOVZX

With the availability of dword registers a problem arises. When moving a
byte or word into a dword, what value should the added bit positions be
filled with? MOVZX (MOV with zero-extend) causes the extra bits to be
loaded with O's; MOVSX (MOV with sign-extend) causes the extra bits to
be loaded with the high bit of the source. MOVZX causes an unsigned
number to keep the same value in its 32-bit version; MOVSX does the
same for signed numbers. These operations also work for moving a byte
into a word.

OTHER INSTRUCTIONS

Other new instructions are of new types, giving capabilities not available
on the 8086 family until now. To the degree a program uses these
instructions it becomes increasingly more capable than (and increasingly
incompatible with) the earlier members of the 8086 family.

1. Long-distance Conditional Jumps. Instructions like JS (Jump if
Sign) are limited on earlier members of the 8086 family to a range
from 128 bytes before to 127 bytes after the current instruction.
On the 80386 these "short jumps" are still most efficient (the
instruction is smaller, but conditional "near jumps" (effectively to
anywhere within the current segment) are also possible.

302 V8086 Mode and More

2. Single-bit Instructions. Four entirely new instructions are BT, BTC,
BTR, and BTS. These are all Bit Test instructions that store an
indicated bit in the Carry Flag. The differences in the instructions
reflect what happens to the indicated bit; it can be left alone,
complemented (reversed), reset (put to 0), or set (put to 1).

3. Bit Scan Instructions. BSF and BSR are new instructions that find
the lowest-order (BSF) or highest-order (BSR) 1 bit in a word or
dword register operand.

4. Double Shifts. SHLD and SHRD are double-precision shift instruc
tions. They allow a 16- or 32-bit operand to be shifted by any
number of bits up to 31, just like a regular shift; the difference is
that the bit positions left empty by the shift are filled with bits
from a register operand. The second operand, however, is left
unchanged.

5. Set Byte on Condition. These commands are just like the condi
tionaljump instructions; most of the conditions that cause a jump
can cause a byte to be set If the condition is met (for instance, in
SETS if the sign bit is set) an indicated byte is set to 1; if the
condition is not met the byte is zeroed. This is useful for evaluat
ing multiple sets of conditions without the tangled code and
slowed execution caused by repeated conditional jumps.

Other Differences Between 8086 and Real Mode
80386 Programs

The differences listed here are the ones that could possibly lead to
compatibility problems between an 8086 program and the same program
running in 80386 Real Mode. These differences apply to 8086 programs
and to the same programs running as V8086 tasks. They're grouped by
type in the list below.

GROUP 1: INTRUCTION SPEED IMPROVED

The speed of the 16 MHz version of the 80386 comes from two sources:
faster clock speed (three times as fast as for many 8086s) and lower
clock counts. The faster clock speed can cause problems for any pro
gram that assumes a given group of operations will take at least a given
amount of real time. The lower clock counts can mean that delays re
quired by certain 1/0 devices may no longer be supplied by the same
code that used to provide them.

Processors and Modes Compared 303

GROUP2:WRAPAROUNDS

If an 8086 program specifies an address greater than 1 Mb (maximum
possible is 1 Mb plus about 64 Kb), the addres·s is truncated so it points
somewhere within the first 64 Kb of the address space. On the 80386 the
value is used as is. Page remapping can map this high 64 Kb area to the
lowest 64 Kb of the address space for compatibility.

The 8086 allows accesses to bytes at an offset beyond 65,535 (code
or data) to wrap around to byte O of the same segment Accesses to offsets
below zero (data only) wrap around to byte 65,535 of the same segment
The 80386 causes exceptions in both these cases (exception 12 for stack
data, exception 13 otherwise).

Also, shifts and rotates are only controlled by the low-order five bits
of the shift count The greatest possible shift or rotate count is thus 31;
values greater than this cause a shift by whatever remainder is left when
the count is divided by 32.

GROUP 3: PREFIXES

On the 8086 redundant prefixes can be used indefinitely, the LOCK prefix
can be used at will, and prefixes before an ESC instruction are ignored
when execution resumes after the exception is handled. On the 80386
instructions must be less than or equal to 15 bytes long, which is only a
problem if redundant prefixes are used. The LOCK prefix can only be
used before certain instructions when they update memory: bit tests, adds
and subtracts, increments and decrements, logical instructions, and XCHG
when one of the operands is in memory. Finally, prefixes before an ESC
instruction are executed, not ignored.

GROUP 4: EXCEPTIONS AND INTERRUPTS

On the 8086 a divide exception returns with CS:IP pointing to the
instruction after the DIV. On the 80386 CS:IP points to the DIV instruction
itself after the exception. On the 8086 the IDIV instruction causes an
exception if its quotient is 80H (bytes) or 8000H (words); the 80386
returns the appropriate quotient

The exception caused by an instruction executing when the 80386 is
in single-step mode has higher priority than an external interrupt, so
single-stepping a program prevents single-stepping an external interrupt

304 V8086 Mode and More

When an NMI (Non-Maskable Interrupt) is received, further NMis are
masked until an IRET is executed by the routine handling the original
NMI.

Finally, an undefined 8086 opcode may be defined when executed
on the 80386, causing some instruction to execute. If undefined for the
80386, the opcode will cause exception 6. The 80386 has six new
exceptions that only arise if a bug is encountered in the 8086 program.

GROUP 5: NUMERIC COPROCESSORS

The increased speed of the 80386 may cause problems when executing
with a coprocessor. Where several lines of code might once have allowed
sufficient time for the coprocessor to finish its work, the same code
executing more quickly on the 80386 may finish executing before the
coprocessor is done.

On the 80386 all coprocessor errors are vectored to interrupt 16.
Interrupt controllers are no longer used for coprocessor interrupts, so an
interrupt handler need no longer deal with a controller.

GROUP 6: PUSHED VALVES

Pushing the stack pointer SP now pushes the value of SP before it's
incremented by the PUSH itself; previously the value of SP after the
current PUSH was put on the stack Also, PUSHF for the 8086 always has
ones in positions 12 through 15. On the 80386 bit 15 is always zero and
bits 12, 13, and 14 have the last value loaded into them; 12 and 13
together are the 1/0 Privilege Level, and 14 is the Nested Task flag.

OPERATING SYSTEM CONSIDERATIONS

There are many different types and styles of operating systems. The
80386, with its support for a flat memory model as well as other
important features, will attract ports of many operating systems from
minicomputers. From our point of view, though, the important difference
between operating systems is the degree of access they give to the
potential power of the 80386. There are many different levels of capability
possible.

Operating System Considerations 305

The simplest is a hypervisor that simply starts up one V8086 task,
allowing a single user to run a single copy of an 8086 operating system.
This generally will support a single program. Extending this initial model,
paging can be u~ed to emulate such features as "above-board" (beyond
640 Kb) memory. It can even allow virtual memory, so the program can
use more memory than is actually physically available, the difference
being made up by page swapping from a hard disk

The next step is to allow the running of several V8086 tasks at once.
One problem here is that as soon as multitasking is allowed all accesses
to instructions that change the Interrupt flag must be trapped to the
hypervisor; otherwise programs could hang each other up at any time.
This is easy to do but increases processing overhead quite a bit The
operating system can be a single-user multitasking system, a multiuser
system with each user single-tasking, or even a multiuser multitasking
system. Such a system would either demand that the computer running
it have a certain amount of physical memory for each user allowed to
sign on, or use virtual memory so a hard disk could take up some of the
slack The individual tasks, however, would still be V8086 tasks that do
not use the full power of the 80386.

Finally, this last hypervisor (a multiuser, multitasking system with
virtual memory) can be extended to allow 80386 Protected Mode
programs to run along with the V8086 tasks. This hypervisor would have
to include a full operating system to handle system calls by the PM
programs. It might include compatibility with DOS, for instance, so the
V8086 tasks running under it could all be applications programs that
access the same OS code in the hypervisor, avoiding the need to keep a
separate operating system in each V8086 task

This simplistic summary touches on the major issues from the point
of view of making full use of the 80386. A different balance between the
need for increased power and the need to keep using existing software
will be struck by each owner of an 80386-based system, and this will
help decide which operating system(s) to use.

Sample Hypervisors

As an example of the many ways the 80386 can be used, the initial
hypervisor developed by Microsoft for the Compaq 80386 does very little.
It starts a single Virtual 8086 task and then turns over control to the
nearest copy of DOS 2.x or 3.x. The user starts up the copy of DOS and
then runs the program as if on an IBM PC. The only addresses that are

306 V8086 Mode and More

page-protected are the ones where extended memory (beyond 640 Kb)
would normally be found. When one of these addresses is accessed a
page protection fault occurs, and the interrupt vector causes a task switch
to the hypervisor. The hypervisor does the needed memory access and
then returns control to the executing program. The V8086 task generally
should run faster than the same program and operating system running
on an 8086 or 8088, because the full speed of the 80386 is used with only
a slight amount of extra overhead for accesses to extended memory.

A more capable operating system might allow more than one V8086
task to run at once. The user might be running Lotus 1-2-3 in the
foreground while Turbo Pascal compiles a program in the background.
These two programs will each get a certain percentage of the processor's
time, as specified by the user. The processor will run one program for a
few thousandths of a second and then switch to the other one. If there
isn't enough RAM for both programs the 80386 and operating system will
use virtual memory to keep only the currently used code and data in real
memory. At any given time the contents of memory will be those
page-sized pieces of code and data that have been used most recently.

Formerly tricky programs now cause little problem. For instance, a
game might run only under a particular version of DOS. The user can
start up that version of DOS and the game as a new task, separate from
other programs, and swap back and forth between them at will. The
game can be suspended when not in the foreground, or allowed to keep
running. Only the most-used parts of the old version of DOS and the
game will be in memory at any one time, the rest residing out on disk
until needed.

Despite the support given by the 80386, an operating system that will
allow all this is difficult to write. Books have .been written on such
problems as which pages to have in memory at any given time, and
which pages to overwrite first when memory fills up; these are called
"page replacement strategies." Debugging such an operating system can
be an immense task. Once it's written and made to work, however, the
capabilities of the computer running it are multiplied.

CHAPTER 7
The 80386 Processor
In Depth

COMPUTER SYSTEM PERFORMANCE
HOW AN 80386 ACCESS MEMORY WORKS
INSIDE THE 80386
RIPLEY'S BELIEVE IT OR NOT
SOME APPLICATIONS PROGRAMMING CONSIDERATIONS

The 80386 processor is more complex than any of its predecessors,
but correspondingly more powerful. A programmer who knows how the
chip works right down to the hardware level will find it easier to write for
and more enjoyable to work with. This chapter starts by looking at how
the 80386 interacts with memory and coprocessors. Then we look at the
chip itself and its functional parts or "units." Finally, we trace a series of
instructions as they are fetched from memory, decoded to a form the
80386 can work with, and executed. ·

The information in this chapter isn't strictly necessary for getting
started with the 80386. However, it's useful background, and issues covered
here, such as caching, can make a difference in computer buying decisions.
As you learn more about the processor and want to push it closer to its
limits, knowing more a bout how the chip actually operates can really make

307

308 The 80386 Processor In Depth

a difference. Finally, it's more fun to work with a computer when you have
a solid understanding of how it behaves and why.

COMPUTER SYSTEM PERFORMANCE

The next several sections are useful as a buyer's guide for 80386-
based computers and add-on cards. They describe several ways in which
a computer system can be organized for optimum performance, and
discuss some of the limitations of current technology; information that
can translate directly into dollars-and-cents buying decisions.

A computer is made up of many parts, each of which sometimes has
to wait for one of the others. A computer with floppy disk drives, for
instance, may execute a thousand instructions in a thousandth of a sec
ond, only to wait half a second or more while data is read from disk

The same type of interaction occurs between a processor and the
memory it accesses, with the processor often having to wait for data or
results to be successfully read or written before proceeding. This is why
there are general registers on the chip, to save intermediate results of
computations so we don't have to read from or store to memory as often.
At some point the program does have to access memory, often large
chunks of it in sequence, as in string and other operations. With a chip
that executes instructions as fast as the 80386 does, speeding com
munication with memory is especially important; the advantage of
having a fast chip is lessened if every memory access causes a long wait.

A controlling factor in discussing the speed of the 80386 is the clock
cycle. A chip called a clock generator sends a signal on the 80386 CLKZ
pin at regular intervals. A "cycle" of an electrical signal is the time it
takes the signal's amplitude to rise, fall, and rise again to its starting point.
The 80386 converts every two cycles sent by the clock generator to a
single internal cycle, which we call a "clock" For a 16 MHz chip the
clock generator sends a cycle every 1/32 millionth of a second; this is
converted to an internal signal that oscillates every 1/16 millionth of a
second, and so on for other "clock speeds."

Some internal functions of the 80386 take about half a clock to
complete. Even the shortest instruction (such as a MOV from one register
to another) takes two complete cycles, for reasons we'll examine later.

Figure 7-1 shows CLKZ signals in relation to the 80386 processor
clock.

How an 80386 Memory Access Works 309

1 CLK 2 Period 1 CLK 2 Period

CLK 2

Internal 80386 Clock

------62.5 nsec@16 MHz-----

1 Processor Clock Period

Figure 7-1

HOW AN 80386 MEMORY ACCESS WORKS

Many programmers speak glibly of "accessing memory" and "three
cycle RAM access" without needing to know hardware details. Under
standing the power of the 80386, and when that power is useful, requires
a little more understanding of what's actually happening in the computer.

When a processor needs to get a byte from memory it first calculates
the address at which the byte resides. Then it activates (raises the voltage
level of) certain pins, called address pins. The address pins taken as a
group are called the address bus. On many computers the same pins are
used for address and data, albeit at different and well-defined times. This
"time multiplexing" is done on the 8086 and 80286, but not on the 80386,
which has 32 address pins and 32 completely independent data pins. The
pattern of activated pins alerts the chips that make up memory as to
which byte to send to the processor.

The RAM chips at the specified address then read the byte from the
chips where it resides and place it on the data bus (all the data pins
together). The Dynamic RAM chips (DRAMs) used in most computers
experience a loss of power when they place the needed data on the bus,
and must be repowered before they can be accessed again. Static RAMs

310 The 80386 Processor In Depth

(SRAMs) are faster than DRAMs and have no repower requirements, but
are expensive and hold less data per chip than DRAMs. The data bus
takes the byte through a series of multiplexors, transceivers, and receivers
and then finally activates the appropriate pins on the 80386 to specify
which bits of the requested byte are on (1) and which are off (0). The
pattern of ls and Os is brought into the 80386 where it is placed on an
internal data bus for use inside the chip itself. If the RAM chips respond
very quickly to the request for data, the entire process (express an address
to memory, place the data on the bus, and return the data to the
processor) takes two cycles. A 16 MHz (16 million cycles per second)
80386 system therefore needs 2/16 millionths of a second (.000000125
seconds) to read a byte, word, or dword from RAM.

Notice the caveat "if the RAM chips respond very quickly." When a
memory access takes an extra clock cycle because the RAM chips didn't
respond quickly enough, the extra clock is called a "wait state." A slow
processor can use slow RAM chips without introducing wait states,
because a long single cycle is plenty of time for the chip to respond to a
request As faster processors are used (with each clock taking correspond
ingly less time) the same RAM chip can become a one-wait-state or even
a two-wait-state chip when used on a particular system. The 80386 has
several tricks that allow relatively slow RAM chips to be used while still
avoiding wait states.

One such trick is called address pipelining. The term "pipelining" is
usually used to describe the concurrent operation of prefetch, predecode,
execution, and memory management units. In the 80386 the actual
accessing of code and data from memory is also pipelined. Let's say
that we're using slow RAM chips that would normally introduce one wait
state in a 16 MHz 80386-based system, on which a single clock takes 62.5
nanoseconds (millionths of a second). A series of three reads, one
followed by another, would go something like this:

Clock 1: ST ART. Express an address on the address bus.
Clock 2: Wait while the RAM chips respond (wait state).
Clock 3: Data returned to chip on the data bus; END.
Clock 4: ST ART. Express an address on the address bus.
Clock 5: Wait while the RAM chips respond (wait state).
Clock 6: Data returned to chip on the data bus; END.
Clock 7: ST ART. Express an address on the address bus.
Clock 8: Wait while the RAM chips respond (wait state).
Clock 9: Data returned to chip on the data bus; END.

The 80386, however, can express an address for one read while the

How an 80386 Memory Access Works 311

data from a previous read is being returned, so a sequence of three reads
takes less time:

Clock 1: START. Express an address on the address bus.
Clock 2: Wait while the RAM chips respond (wait state).
Clock 3: Data returned; END & ST ART. Express next address.
Clock 4: Wait while the RAM chips respond (wait state).
Clock 5: Data returned; END & ST ART. Express next address.
Clock 6: Wait while the RAM chips respond (wait state).
Clock 7: Data returned; END & START. Express next address.

After the first read (which takes three clocks) successive reads take
only two clocks each. The process works about the same when writes are
involved; a three-cycle write becomes a two-cycle write. In both cases the
first memory access after an idle bus clock takes an extra clock, just as
the first few instructions after a JMP or CALL (which disrupt pipelining
among the 80386's units) take extra clocks.

There are other ways to avoid wait states. A RAM chip that intro
duces wait states when used at 16 MHz may be just fast enough to avoid
them at a slower speed (like 12.5 MHz), but now the rest of the system is
slowed down to avoid memory wait states. Address pipelining is optional
because it requires precise synchronization between the processor and
the rest of the system (which may not always be ready for an address to
be expressed before the data is returned and picked up off the data bus
by the processor). When 16-bit rather than 32-bit memory chips are used,
address pipelining is not available.

Interleaving Memory

Every read or write request causes a b_rief sequence of events in a
DRAM: power up, wait for a request, get request, answer the request
(causing a drop in power), and repower up. The processor only has to
wait until the request is answered before going on about its business,
which might include immediately accessing some other chip (even while
the first is still repowering up). If chips in the same bank of DRAM are
accessed twice in a row, the following sequence occurs: get request,
answer the request (causing a drop in power), get new request, power up
(processor waits), answer the request (power drop), and repower up. The
extra waiting time while the DRAM bank powers up again can cause a
wait state to be added to any memory accesses that try to use the same
bank twice in a row.

The simplest form of memory organization has all the chips in one
bank (for our purposes a bank is any chunk of memory that can be

312 The 80386 Processor In Depth

resupplied with power while another bank is being accessed). Dividing
the memory into multiple banks can save extra wait states caused by
back-to-back accesses to the same bank. It's very common for the
processor to access memory in sequence; first this address, then the
following one, then the one after that Thus successive addresses should
be in different banks. This can be implemented with a two-bank inter
leaved memory system; each successive dword is in a different bank. This
is done by using the lowest bit of the address as a bank selector.
Sequential accesses never induce extra wait states by hitting the same
bank twice in a row. Random back-to-back accesses have a 50:50 chance
of causing delays; introducing more banks would reduce the delays for
random accesses without changing the situation for the more common
sequential accesses. The additional cost of increasing the number of
banks is rendered less worthwhile by the 80386's pipeline and the use of
caches (below), which allow some extra wait states to be tolerated
without delays in actual processing.

Figure 7-2 shows Interleaved RAM.

Even Dwords Odd Dwords

Dword 0

A2=0 !
Banked Addressing

Figure 7-2. Interleaved RAM (2 banks)

A2=1

How an 80386 Memory Access Works 313

Memory Caching

On 80386-based systems caching is the use of_ a small amount of
faster memory to hold frequently-used or soon-to-be-used information. In
virtual memory all of RAM can be used as a cache for a hard disk, while
on the chip itself the prefetch and decode queues act as caches for
information the execution unit would normally have to ask for from
memory. The term "caching" is often used to mean memory caching,
which adds a group of fast memory chips (generally no wait state
SRAMs) to hold a subset of the information held in large amounts of
slower (probably 2 wait state DRAMs) main memory. Figure 7-3 shows a
block diagram of a cache system.

An 80386 running at 16 MHz can do a memory read in 125
nanoseconds (2 clocks) if the memory responds fast enough. On pipelined
accesses the available time rises to 187.5 nanoseconds (3 clocks) because
the first clock of a memory access takes place during the last clock of the
previous access. Table 7-1 illustrates various RAM chip response times.
As of this writing most SRAMs respond within the 125 nanosecond
window of a non-pipelined access, introducing no wait states. Expensive
DRAMs respond in a window between 125 and 187.5 nanoseconds,
introducing one wait state (making the processor wait one clock) on
non-pipelined accesses and adding no wait states when pipelining is in
effect Cheap DRAMs respond in 187.5-250 nanoseconds, adding two wait
states for non-pipelined or one wait state for pipelined accesses. Non
cache systems made with expensive DRAMs have good performance. In
order to build large memories of the size which 803.86-based systems can
easily handle, however, the cheaper DRAMs are needed, and an added
cache of SRAMs will noticeably improve system performance.

A SIMPLE CACHE

When a cache is used accesses to memory become more complicated.
On a non-cache (and non-virtual memory) system the processor asks for

80386 - Cache (SRAM) -- Main memory (DRAM)

I
Cache Controller

Figure 7-3. Cache Subsystem

314 The 80386 Processor In Depth

Number of
Type of Access Window at 16 MHz Type of Chip Wait States

Non-pipelined read 125 nanoseconds SRAM 0
Fast DRAM 1
Slow DRAM 2

Pipelined read 187.5 nanoseconds SRAM 0
(saves 1 clock) Fast DRAM 0

Slow DRAM 1

Table 7-1. RAM chip response time

information and main memory provides it In a cached system the
processor asks for information and the cache controller checks to see if
the information is in the cache and provides it if found. Otherwise, the
request goes through to main memory, which provides the information.
Table 7-2 summarizes the timing involved in these cases.

From the data in the figure we can see that a 50% cache success rate
(hit rate) means that half our accesses must work (O wait states) just to

Action Clocks Needed

Non-cached Read:
Express address to memory 1
Wait for RAM chip 2
Data returned 1

Total 4 (2 wait states)

Cached Read (hit):
Express address to cache 1
Check cache, return data 1

Total 2 (O wait states)

Cached Read (miss):
Express address to cache 1
Check cache, no match 1
Express address to memory 1
Wait for RAM chip 2
Data returned 1 -

Total 6 (4 wait states)

Table 7-2. Cache vs. Non-Cache Accesses

How an 80386 Memory Access Works 315

balance out those that don't work (4 wait states) and match the perfor
mance of a two wait state non-cached system. Luckily, small caches of 64
Kb or even less can offer hit rates around 90%, justifying the expense of
the cache. Table 7-3 shows hit rates for a direct-mapped cache with a
4-byte line size; other choices of mapping and line size improve the hit
rate by a few percentage points. The most commonly available SRAM
chips support a 64 Kb cache at minimum cost

The actual size of RAM makes little difference to the performance of
a cache. In a given period of time most programs access the same few Kb
of code and data repeatedly. For instance, if you're typing a letter in a
word processing program, the print control and help parts of the program
might go unused for several minutes at a time. As you type, make
changes, and then type some more, the same data is accessed over and
over. A minority of programs, however, behave poorly from a cache's
point of view. For instance, during repeated recalculating of a large
(bigger than the cache) spreadsheet the cache can be a liability, but
entering data to the spreadsheet is much like the using the word
processing program (repeated use of small pieces of code and data).

The next section goes into greater detail about how a cache works
on an 80386-based system, and may not be for everyone. Caches can
improve the performance of a system, but a computer is just as likely to
be 1/O-bound as memory-bound (especially as regards disk and video
updating), so due attention should be paid to many factors other than
caching in designing or purchasing a computer.

CACHE ACCESSES

Several problems and performance issues come up in building a cache.
We'll cover them here in just enough detail to give a working vocabulary

Cache Size

No cache, all 2-wait-state DRAM

16K
32K
64K
128K

No cache, all 0-wait-state SRAM

Table 7-3. Cache Size and Performance

Hit Rate

0%

81%
86%
88%
89%

100%

Performance Gain

0%

35%
38%
39%
39%

47%

316 The 80386 Processor In Depth

for the computer buyer and programmer. The discussion here assumes a
64K direct-mapped cache that can access up to 16 Mb of memory.

The cache itself has two levels. The first is made up of a block of tag
SRAMs that contain address information. In this direct-mapped cache
every 256 addresses map to one location in the cache. The cache
contains a copy of the information at one of these 256 1 locations. Note
that 64 K of cache entries X 256 addresses/entry yields 16 Mb addres
sable. The second level contains data SRAMs that have the actual data
copied from DRAM

The 32-bit address from the 80386 is divided into three parts. The
· first 8 bits should be zero, since this cache only covers 16 Mb of memory.

An exception might be generated if a non-zero value was found here.
Otherwise, the next 8 bits are used as a "tag" field, and the final 16 bits
are an "index" to determine which address in DRAM is being accessed.

The tag SRAMs contain a list of all the 4-byte "blocks" that are in
the cache itself. The "index" tells us where in the list the information we
need might be. The tag field tells us which of the 256 possible DRAM
locations for a given cache location is actually in the cache. If the piece
of data in the cache is the needed one, a hit has occurred and the data is
sent to the processor. Otherwise, a miss is reported and the request is sent
to DRAM. Normally the data from DRAM is also copied to the cache so
it will be there if the same information is requested again.

The cache shown in Figure 7-4 is 4 bytes wide; each location holds
a dword. Wider (8 or even 16 byte) caches can be used, which slows
cache updating but improves hit rates. An 8-byte-wide cache has a hit
rate several percentage points higher than the 4-byte-wide one, at a
considerable cost in complexity.

Also, every location in main memory is mapped to exactly one
cache location. If a program repeatedly accesses two locations in tum
and both are mapped to the same cache location, a "cache thrash"
occurs: check cache for data item 1, not found, get from DRAM, update
cache; check cache for data item 2, not found (because just updated with
item 1), get from DRAM, update cache; check cache for data item 1, not
found (because just updated with item 2), get from DRAM, update cache;
and so on as long as the alternating accesses occur.

This particular problem can be avoided by allowing any location in
main memory to go to either of two locations as needed. Now the cache
controller has to look in two places on every cache access, and when
placing a new item in the cache it has to decide which of the two
possible locations to use. This is called 2-way associativity, and using it

How an 80386 Memory Access Works 317

TAG DATA

Address: FFFF D7 000012F3 256 DRAM

Index1 = 8001 addresses

(middle of list) map to one
cache slot Tag2•3 = FF 8001 FF 00000001

(last possible of the
256 mapped locations)

0000 03 F56C4003

1. 16-bit Index tells which location of 64 K locations in tag SRAM to check.
2. 8-bit Tag in SRAM tells which of the 256 possible dwords is in the data SRAMs.
3. If requested Tag is same as Tag in SRAM, a hit has occurred. If not, access goes to
DRAM and Tag and Data are updated to hold accessed data.

Figure 7-4. Cache Access

improves hit rates by perhaps 1 percent (at a high cost in control logic).
Four-way caches are possible, as are fully associative caches (which allow
each location in memory to map to any slot in the cache). These can be
built at high cost in complexity and low improvement in hit rates for
most applications.

Because of the problems introduced by writing to a cache (the cache
now has information that main memory doesn't; what if a DMA con
troller or other processor tries to access stale ·memory whose correct
contents are in the cache) many caches are read-only, sending all writes
directly to main memory. The concerns that arise when writing to a
cache are called "cache coherency" problems, and are similar to the
updating problems (solved by accessed bits and dirty bits and other
techniques) faced by paging systems.

Page Mode RAMs

When a dword is read from memory a total of 32 memory chips are
accessed, each contributing a single bit to the result The dword's address
is divided up into row and column numbers that tell each chip which bit
to set If the row number is held constant from one access to the next
only the column number must be changed to indicate which bit to grab
from within each chip.

With some simple comparison logic at the top of the address bus the
system can recognize when an address will result in the same row being

318 The 80386 Processor In Depth

accessed (with only the column number changing). Such an access can
be made more quickly than usual, and a 1 wait state RAM will give no
wait states for this type of access. Depending on the number of rows and
columns within, for example, a megabit chip, perhaps 2,048 bits (512
bytes) can be accessed at these higher speeds. The technique is called
Page Mode RAMs, and it depends on RAM chips that are organized in
such a way as to respond more quickly to these accesses. When it's used
the effect is close to the same as having a 512 byte cache, but ~ere's no
penalty for misses, just a speeding up of all accesses within the same 512
byte group as was last accessed.

Memory Organization

One of the big problems for 80386-based systems is maintaining
compatibility with existing 16-bit computers and software. The earlier
computers were 16-bit machines, while the 80386 is 32 bits throughout
Many of the details of programming the 80386 involve choices between
16- and 32-bit operands and addressing. How are these conflicts resolved
in the hardware? The 80386 can be connected to either a 16-bit data bus
or a 32-bit one. We'll look at each situation; the 32-bit bus first because
it's simpler, then the complications (nearly invisible to the programmer)
introduced by connecting a 16-bit bus to a 32-bit computer.

To the programmer the 80386's memory is seen as a single sequence
of bytes; a word is any two bytes in a row, and a dword is any four bytes
in a row. Actually memory is divided into four sections, each one byte
wide, so instead of one long stack of bytes we have four short stacks of
bytes arranged next to each other, each stack with its own connection to
the data bus.

The four stacks together can be seen as a single stack of dwords.
Figure 7-5 shows this memory organization and how 8-bit-wide sections
of the data bus are connected to each stack of bytes. When the 80386
asks for a dword from memory a byte is taken from each short stack,
placed on the appropriate section of the data bus, and then sent to the
processor. This is how the 80386 can grab a dword in a single memory
access.

This division of memory is reflected in the pins of the 80386. We
speak of the 80386 as having a 32-bit address bus, allowing it to access
232 bytes of memory, but a close look at a pinout of the chip shows only
30 address pins, A2-A31. Where are pins AO and Al?

How an 80386 Memory Access Works 319

230
14Gb - 3 I 4Gb - 2 I 4Gb - 1 4Gb

30-bit address ► 12 14 15
3

Bus selects one of 8 9 10 11
230 dwords. Here dword 2
3 is selected. 4 5 6 7

byte 0 2 3
Dword address 0

i
BEO# BE1# BE2# BE3#

i
Four byte enable lines select one or more of four bytes in the dword. Here
only BE1# is activated.

Figure 7-5. A 30-bit address bus and four byte enable lines allow 232 bytes to be addressed.
Here tbe second byte in dword 3 (byte address: 13) is accessed.

The address bus actually indicates which dword to select from
memory, not which byte. The address pins allow us to select from among
2 30 dwords (which at 4 bytes per dword is the same as 2 32 bytes). We know
that the 80386 allows us to select any single byte from memory, as well
as any dword, so once a dword is selected how are individual bytes
chosen from within it?

One way would be to bring the whole dword into the processor and
then allow internal logic to select which byte(s) to use, but instead the
byte selection is handled by the bus systems. The 80386 has four byte
enable pins, named BE0# through BE3#. While the address pins tell
which dword to select, the byte enable pins tell which byte(s) within the
dword to choose. The two low bits of a 32-bit 80386 address are used to
determine which byte enable pins to activate.

A word which is at an even address (like 0, 2, 4, etc.) is said to be
"aligned on a word boundary;" a dword at an address which is a multiple
of 4 (like 0, 4, 8, and so on) is "aligned on a dword boundary." Most
programmers know that it's important when setting up data structures to

320 The 80386 Processor In Depth

align words on word boundaries and dwords on dword boundaries. A
description of the interaction of address lines and byte enables in the
address bus shows when and why this is important

If a non-aligned dword is selected, a single access can't get the whole
dword. For instance, if the dword is at byte address 2, half of it is in the
first dword of memory and the other half is in the second, so the 80386
automatically makes two accesses. The first gets the upper two bytes, at
byte addresses 4 .and 5. This is done by activating the address pins which
select the second dword and BE0# and BE1# to get the first and second
bytes. The second access gets the lower two bytes, at byte addresses 2
and 3 (the address selects the first dword and BE2# and BE3# get that
dword's third and fourth bytes). The bytes are automatically arranged in
the correct order on the data bus, but getting the dword has still taken
two memory accesses. If a dword is aligned on a dword boundary the
address pins select the dword and all four byte enable pins are activated
at once to grab each of the needed bytes.

Understanding how the 80386 interacts with a 32-bit bus makes it
easy to deduce some of the consequences of using a 16-bit bus instead.
The 80386 has an input pin, BS16# (Bus Size 16), which is activated by
some device on the bus to tell the 80386 when it's accessing 16-bit
devices. If the entire data bus is 16 bits then B816# is asserted for every
access.

The processor only uses the lower 16 bits of its data bus when
accessing 16-bit memory, and this causes predictable consequences; a
word that is aligned on an odd boundary requires two accesses to bring
to the processor, one for each byte. A dword takes two accesses if aligned
on a word or dword boundary (half brought by each access), and a dword
on an odd boundary takes three separate accesses (the first gets a single
byte, the second gets the middle two bytes, and the third gets the
remaining byte).

Also, address pipelining is turned off during 16-bit accesses, so no
extra cycles are available for the memory to respond. A 16-bit data bus
hooked up to two-wait-state RAM chips can therefore cause considerable
delays in memory-intensive operations, and correct alignment of data
structures on word boundaries becomes very important Prefetching
(discussed below) is also affected. A slower or smaller bus is kept busier
by the execution unit as it tries to keep up with the memory accesses of
the commands in progress. The prefetcher then has fewer cycles to use
for bringing in code, at a time when it needs extra cycles to overcome a
smaller bus size, increasing the likelihood that the prefetch and decode
queues will empty, slowing execution.

How an 80386 Memory Access Works 321

These differences boil down to some simple rules for the program
mer. All words should be aligned on word boundaries (always important
with 16-bit buses) and all dwords should be aligned on dword boun
daries (always important with 32-bit buses). Finally, a program that
shows good performance on one computer may work noticeably better or
worse on another, depending on concrete factors like RAM chip speed
and bus sizes, but also on interactions between them that are difficult to
predict without actual testing.

DESIGN TRADE-OFFS

In terms of expense and complexity, the design options above boil down
to two main techniques for improving memory performance: memory
caching and everything else. If all the non-caching techniques are used
(interleaving, page mode RAMs, RAMs with only one wait state, a 32-bit
data bus, and address pipelining) performance will approach the best
possible, which would be zero-wait-state SRAMs for all of memory. If
none of these techniques are used the resulting slow computer can be
brought up to optimum speed by adding a cache.

The first two 80386-based systems on the market illustrate these
design choices. The Compaq 386 doesn't use caching; it uses page mode
RAMs to generate a 512-byte (;lffective cache, and it uses RAMs that are
one wait state when used with a 16 MHz 80386 (the only kind available at
this writing). It also has a special 32-bit bus for fast memory access; the
rest of the system (1/0 and extra memory) is on a 16-bit bus. Despite the lack
of caching, the performance of this well-designed machine's memory
system is very good.

The other 80386-based systems available now are an expanding
number of 386 Turbo cards. These are small (about 3" by 5") computer
cards that have an 80386 and some support· chips and are designed to
plug into an IBM PC AT or compatible. Circuitry on the card maps the
80386's pins into the card's connector, which mimics the pins of an
80286; just remove the 80286 from your AT, plug in the turbo card, and
voila!-an instant 80386 system.

The turbo card makers have no control over what kind of RAMs and
memory organization techniques are used on the computers that host
them, so the best will feature an SRAM cache like the one described
above, which helps the processor avoid accessing regular RAM at all on
about 90% of memory reads. One turbo card has a 64 Kb SRAM cache
with no real bus; the 80386 pins are wired directly to the cache for

322 The 80386 Processor In Depth

greater performance. An IBM PC AT with this turbo card and a good hard
disk will come close to the performance of an 80386-based machine like
the Compaq 386 at a much lower price (especially for those who already
own an AT or compatible).

Other systems will use different techniques or combinations of
techniques to achieve the best possible performance at the lowest at
tainable cost (and the shortest amount of development time). One factor
that will greatly affect future machines is the forthcoming availability
of faster versions of the 80386. RAM chips that are one wait state at 16
MHz can become two wait state chips at 20 or 25 MHz, increasing the
importance of the techniques discussed here. In fact, a non-cached
computer may actually deteriorate in performance when a faster proces
sor is added because of the increase in wait states. This depends very
much on timing particulars that will be different for every system.

Adding a coprocessor is also a popular way to speed up program
execution. The 80386 can use either an 80287 or an 80387, although the
latter isn't available as of this writing. The 80387 should offer perhaps
three times the performance of the earlier coprocessor, but until it's
available this is a moot point

1/0 INTERFACE

The terms "memory-mapped I/O" and "I/O-mapped I/O" are tossed
around easily by programmers, but what do they really mean? In terms
of hardware, not as much as you might think. The same control logic,
data bus, and address bus are used whether accessing memory or I/O. Of
course, an 1/0 device is different from a memory chip, but a lot of
flexibility is possible in talking to the input/output device.

There are two real (non-virtual mode) address spaces on the 80386.
The one we've been discussing is the memory address space, which can
contain up to 232 bytes. This space can contain 1/0 devices as well as
memory. Some advantages of this are listed below.

1. Addresses are all 32 bits wide.
2. Any instruction that addresses memory can be used. This in

cludes AND, OR, and TEST instructions. Because most instruc
tions can be used, all addressing modes can be used to access 1/0
devices.

3. 1/0 spaces can be protected, using either segment or page-based
protection.

Inside the 80386 323

4. The other way to handle 1/0 for a given device is to put it in the
1/0 address space. This is a separate 64 Kb, which is not acces
sible via normal memory accesses or by most instructions, includ
ing data transfer instructions. This separation is enforced by the
M/1O pin on the 80386, which tells the address bus whether to use
memory or 1/0. Only the IN, OUT, INS, and OUTS instructions
can be used to access the 1/0 address space.

The advantages of 1/O-mapped 1/0 are:

1. Addresses can be 16 bits wide, or even smaller, so address
decoding is simpler.

2. 1/0 spaces are inaccessible to most instructions, protecting against
most accidental reads or overwriting.

3. The two techniques can be combined by mapping the 1/0 space
onto a 64 Kb section of the memory address space. With this
method software that assumes memory-mapped 1/0 and software
that uses IN, OUT, and so on will all work on the same system.
The addressing advantages of each method are kept this way, but
the protection advantages of both methods are lost; segment
based protection, for instance, is no protection against the OUTS
instruction.

INSIDE THE 80386

So far we've talked a lot about the hardware organization of an
80386-based system; now we'll discuss the organization and internal
workings of the processor itself. Everything discussed below works the
same no matter what the processor is connected to. Understanding these
details isn't too important in buying decisions, but it can be of great help
in programming better applications in assembler.

Instruction Pipelining Made Easy

The most important technique for speeding access to memory
(pipelining) is built into the 80386 from the ground up. Normally a
processor executes an instruction in this order:

324 The 80386 Processor In Depth

1. Fetch an instruction from memory.
2. Decode the instruction into a standard form that will be processed

further by the execution unit
3. Execute the instruction itself.

Only one step can be done at a time, so processing might proceed
something like this:

Time 1: Fetch instrl.
Time 2: Decode instrl.
Time 3: Execute instrl.
Time 4: Fetch instr2.
Time 5: Decode instr2.
Time 6: Execute instr2.

Pipelining combines these steps so that at any given time several
steps are being executed at once. One instruction might be fetched and a
second instruction decoded while the third is being executed. In order to
do all this simultaneously the processor itself must be divided up into
semi-independent units, each of which can perform its own given func
tion while the other units are simultaneously performing theirs. Let's
assume that the processor is divided into a prefetcher, a decoder, and an
execution unit (executer being too strong a term) and see how several
things might be accomplished at once (Table 7-4).

In 6 units of time 4 complete instructions have been prefetched,
decoded, and executed, and two instructions have been partially processed
(prefetched and perhaps decoded, but not yet executed). The term
"prefetching" is used to indicate that the instruction was fetched while
other things were occurring, so the rest of the system didn't have to wait

Prefetcher Decoder Execution Unit

Time 1: Prefetch instrl
Time 2: Prefetch instr2 Decode instrl
Time 3: Prefetch instr3 Decode instr2 Execute instrl
Time 4: Prefetch instr4 Decode instr3 Execute instr2
Time 5: Prefetch instr5 Decode instr4 Execute instr3
Time 6: Prefetch instr6 Decode instr5 Execute instr4

Table 7-4.

Inside the 80386 325

for a fetch step. Without pipelining only two instructions could have been
completely processed in the same amount of time, as shown above. In
this simple example pipelining has allowed us to do twice as much work
in a given time.

Real life is more complicated than this. Prefetching, decoding, and
executing don't take equal amounts of time for every instruction; some
times one instruction might tie up the data bus, forcing another instruc
tion to wait to be prefetched. Also, the prefetcher always grabs instruc
tions in sequence, no matter what the instructions do. Any instruction
that causes a change in sequence (a CALL or a JMP thatis taken as opposed
to one that falls through to the next instruction) or an interrupt will cause
the 80386's queues to be emptied. The instruction that is processed imme
diately after a change in sequence takes longer because the execution
unit must wait for it to be prefetched and predecoded before starting the
execution step.

The 80386 is divided up into units whose functions can be sum
marized as follows. The prefetch unit's job is to get instructions from
memory onto the chip. It uses the bus during times when the execution
unit doesn't need it, grabbing instructions from memory and storing them
in a prefetch queue on the processor. Sixteen bytes of instruction code
(usually three or four instructions) can be held here. The decode unit
then translates the instruction into a standard format that can be used
directly by the control and execution units. Three instructions can be
held in the decode queue. Part of the decoded instruction is a pointer
into the control ROM, which holds the microcode to orchestrate the
actions of the 80386's units.

The execution unit then acts under orders from the control unit to
actually perform the instruction. The execution unit includes an ALU for
arithmetic and the chip's register set The segment unit calculates ad
dresses and checks them against a segment's protection. The address
from the segmentation unit then goes to the paging unit, which (if paging
is on) translates it into a page-based physical address; otherwise the
address is used as it comes from the segment unit Finally, the address is
sent to the bus interface unit, which controls access to both the address
bus and the data bus. The bus interface unit is also used by the
prefetcher for its requests and by the paging unit for access to memory
based page translation tables.

There are other microprocessors that pipeline instructions to about
the same extent as described above. What makes the 80386 unique is that
it does address translation and protection checking for segments and,

326 The 80386 Processor In Depth

surprisingly, for paging on the chip itself. Other processors use a chip
called a memory management unit (MMU) for this. Sending an initial
address to it and then waiting for a final address to be returned, with
protection checking completed, slows down the rest of the system. Also,
different computers can have the same processor but different MMU's,
resulting in compatibility problems. On the 80386 the MMU is not only
onboard, but its operations are pipelined right along with fetching,
decoding, and executing, so address calculation takes no extra time; only
the actual accessing of memory during execution affects the number of
clocks an instruction takes. Some complicated addresses take one extra
cycle to calculate, as described in Chapter 2; a small percentage of paged
addresses take a few extra cycles, as described below.

80386 Units in Detail

Any discussion of the 80386 includes mention of its ability to save
time by pipelining instructions; sometimes a diagram depicting the chip
as having separate units is included. Let's take a close look at the chip
itself and see what makes it tick. We'll start with an overview of the
80386's units (which may be enough for some readers), then plunge into
the units themselves and the detailed makeup of each of them. The
foldout map of the chip included in the back of the book will be referred
to and explained here.

The last part of this chapter will follow a short series of instructions
as they're prefetched, decoded, and executed. Using the detailed look at
the chip itself as background, this will demonstrate just how the proces
sor is able to keep so many things going on at once, and how different
parts of the process are kept from interfering with each other.

This section makes repeated references to the foldout figure at the
back of the book, so you may wish to have the figure out while you read.
This figure is more detailed than any Intel or other documentation we've
seen, leading to differences between this figure and others which show
the 80386's units. An example is that Intel documentation shows the
segmentation unit as having a three-way adder; our figure shows two
two-way adders (labeled +) in series, which have the final effect of
adding three numbers together. Both approaches are accurate, but the
more detailed one gives better insight into how the processor actually
works.

The foldout figure shows a summary view of the 80386's pinout The
processor actually has 132 pins; 82 of them are named in the figure. The

Inside the 80386 327

50 m1ssmg ones include 41 power pins that distribute power to the
various units, 8 pins that are unused, and a pin called HLDA. The 82 pins
accounted for include the 32 data pins and the 34 pins used for
addressing. Of the 16 other pins like INTR, M/1O#, and BS16#, most are
described elsewhere in this chapter.

The figure also shows the contents of each of the processor's units .
. Now for the grand tour.

PREFETCH UNIT

The prefetch unit is one of the keys to the speed of the 80386. Its basic
purpose is to use otherwise empty bus cycles to bring instructions from
memory onto the 80386. A 16-byte code queue holds the instructions
until the decoder needs them. The prefetcher labors under several
handicaps, including having last priority access to the bus and not
knowing when jumps or calls will change instruction sequencing. The
prefetcher always grabs instructions in the order in which they appear in
memory. In fact, the prefetcher simply grabs code one dword at a time,
not caring whether it's bringing in complete instructions or pieces of two
instructions with each access. When a prefetched and decoded jump is
executed and the jump is taken, the contents of the prefetch and decode
queues are cleared out

When the jump is taken and the queues are empty, processing is
slowed down. An instruction is fetched, immediately decoded, and then
executed. If there are enough cycles in which the bus isn't busy during
decoding and execution, the prefetcher starts filling up its queue again. If
the first instruction after a jump is a MUL or some other instruction that
takes several clocks to calculate, the prefetcher can catch up quickly.
Program loops, for instance, can perform better with a MUL or similar
instruction at the top of the loop. Simple instructions like CLC or a
register-to-register MOV execute so fast that they may not let the
prefetcher catch up, causing further delays if the queue runs dry again.

INSTRUCTION DECODE UNIT

The instruction decode unit also saves time for the processor as a whole.
Since it doesn't use the bus it can do its work any time the prefetch
queue isn't empty. Each byte in an instruction implies whether or not
more bytes follow, telling the decoder whether it has a whole instruction
done yet (the decoder can translate about one byte per clock).

328 The 80386 Processor In Depth

The decoder's function is to translate instructions into a form the
execution unit can use quickly. A possible format ofa decoded instruction is
shown in Listing 7-1. The instruction as a whole takes up 112 bits. The
first three are yes-or-no bits for whether certain prefixes are present in the
assembly language instruction. The next 12 are the address in the control
ROM of the microcode which will actually cause the instruction to
execute. Twelve bits allow addressing of up to 212 (4096) separate items;
there are actually 2560 words of 37 bits each in the control ROM.

The next three bit fields give the numbers of the segment register,
base register, and index register used by the instruction in addressing.
Two valid bits tell whether the base and index registers are needed by
this instruction. A two-bit scale factor allows four scale factors: 1, 2, 4,
and 8.

Two large 32-bit wide fields tell the displacement of an operand and
give an immediate operand if any. Two more bit fields give the number
of two registers that may also serve as operands. Whether the operand is
in memory, immediate, or a register, the execution unit can get the
information it needs from the decoded instruction. The last 14 bits of the
decoded instruction are flags that we won't discuss in detail here. Note
that the entire decoded instruction is simply the 80386's translation of the
machine language generated by the assembler. If code could be written
directly in this 112-bit form, both assembly and decoding could be
skipped (at a large cost in human time to write the needed code).

Length

1
1
1

12
3
4
4
2

32
32

3
3

14

112

Meaning

LOCK prefix present
Address Size prefix present
Operand Size prefix present
Control ROM entry address
Segment Register
Base Register number, and valid bit
Index Register number, and valid bit
Scale factor
Displacement
Immediate operand
Operand Register (source).
Operand Register (destination)
Other flags, modifiers, and so on

Listing 7-1. Sample Definition for the Decoded Instruction Queue Entry.

Inside the 80386 329

CONTROL UNIT

This part of the 80386 actually has hooks into each of the other units,
directing their actions and interactions. The heart of the control unit is
the Control ROM, which contains the actual instructions used inside the
80386. These instructions are 37 bits wide, and there are currently 2,560
of them stored on the ROM. As mentioned above, the microcode instruc
tions are accessed by a 12-bit field in the decoded instruction.

The actual format of a microcode instruction is proprietary to Intel.
There are some facts that are generally known, however. Having the
control words in a ROM makes it much easier to upgrade and debug the
processor as a whole. The ROM is not changed lightly, but it is changed
much more easily than anything else about the 80386. Even serious flaws
in a processor are often repaired by reprogramming the ROM to work
around the flaw rather than by changing the chip itself.

Also, the 37-bit microcode words used for control are fairly narrow.
Wide control words tend to contain enough information to direct every
unit on the processor at once. The narrow words used here tend to direct
one unit at a time. Since the prefetcher and decoder follow fairly
straightforward action sequences, it can be assumed that most of the
words in the ROM direct the actions of the other units, especially the
execution unit

The control unit is also the only unit besides the bus unit that can
talk to the outside world. The pins which connect here go to a Request
Prioritizer, which tells the processor when to do what This is very
important since 6 or 7 instructions may be in various stages of processing
at any one time and the 80386 may be part of a multiprocessing system
in which it's not the only chip which can control the system bus.

The next three units discussed are each very complicated. We take a
quick look at them here, concentrating on hardware details. The next
section of this chapter, which follows a short sequence of instructions as
they execute, describes further how they work and interact with one
another. Details of register usage, protection, and paging are covered else
where in the book.

TIMING

The details of timing within the 80386 are very complicated, but some
basic rules apply. Moving information from one queue to another queue,
a queue to a register, or one register to another takes one clock. The
information must get to one of these safe places before a new cycle starts

330 The 80386 Processor In Depth

or it could be wiped out by new data placed on the same section of the
internal bus. Any move between registers (including 80386 internal reg
isters), for instance, is assumed to take one clock, no matter how many
adders, muxes, and so on are between the registers. These single clocks don't
necessarily show up in the total execution time of an instruction, because
many of them are pipelined with other processes. One of the few things that
always takes noticeable clocks is getting operands from memory (four-plus
extra clocks) and using a memory operand as a destination. This takes five
clocks: four to get the operand and one to start the memory write. The second
clock of the write can be pipelined, proceeding while the execution unit
starts work on another instruction.

Also worth noting is that different activities within the 80386 can be
seen as taking place at half-cycle intervals. This is convenient for discus
sion, but not always an exact description of timing.

EXECUTION UNIT

The execution unit has several important pieces: the register file (with all
the general and control registers) and the math unit (including a shifter,
adder, and special logic for multiplication and division). Two inputs
come into the execution unit a line from the bus unit containing
instruction operands that come from memory, and a line from the
decoder that contains immediate operands and displacements for
operands. A multiplexor (labeled MUX) selects one of these two inputs
and sends it to a register or temporary register for future use.

Numbers from the register file can be sent straight to the segment
unit for address calculations or they can loop through the arithmetic
area. Let's say we have an instruction, ADD EAX, MEM_DWORD. The
operand MEM_DWORD is brought in by the bus unit and placed in a
temporary register (this takes a total of four bus cycles, since operands
are gotten from memory during execution). Both operands are then sent
to the arithmetic area, (where they are added together) and the result is
placed in a special register called AILOUT. The adding and placement
in AR_OUT takes one bus cycle. A second bus cycle is needed to get the
result from AILOUT and place it back in EAX.

The execution unit can't do anything else while the result is moved
from AILOUT to EAX, since the very next instruction might use EAX. If
the new value had not yet been moved into the register, the next
instruction might use the old value, as the new value circles around the
internal bus to be placed in EAX. This problem (an instruction needing a

Inside the 80386 331

value that isn't yet back where it's needed) is called interlock. Since the
80386 doesn't have logic to check for this problem, it simply takes two
bus cycles for even the simplest instruction (like a MOV from register to
register), thus preventing interlock.

One of the toughest tasks for the 80386 is giving better performance
than 16-bit processors while dealing with pieces of data that are twice
that size. Some of this power is provided in the hardware. For instance,
the barrel shifter is 64 bits wide. This allows it to handle a 32-bit shift of
a 32-bit operand in a single clock. More power is provided by clever

. coding. For instance, a MUL instruction takes between 9 and 38 clocks:
six clocks, plus one clock for each significant position in one of the
multiplicands (minimum three). Multiplying by 3 (highest bit in second bit
position) takes (6 + 3 =) 9 clocks. Multiplying by a number with the
highest bit in the last (32nd) position takes (6 + 32 =) 38 clocks. A
performance penalty is only paid when the full capability of the proces
sor is being used; simple operations proceed quickly. Most instructiOJ;!S
(for example, adds) proceed at the same fast speed regardless of the size
of the operand.

SEGMENTATION UNIT

The address for reading or writing to memory comes out of the execution
unit in two places: a displacement and a scaled index. These two
numbers are added and held in a temporary register. If a base is also
needed (i.e., the address has a base, an index, and a displacement), the
result must be looped back into the adder and added to the base coming
from the execution unit This takes an extra clock whether or not the
index is scaled. The result of all this adding is an effective address, which
is the offset part of an address after all calculations are made.

The segmentation unit compares the effective address to the length
limit for the segment in use, as determined by examining the segment
descriptor. All of the segment descriptors in effect at any given time (CS,
SS, OS, ES, FS, and GS) are stored on the 80386. Access rights are also
compared to the operation that the processor is attempting, and a
problem in either area causes a protection exception to be generated. If
protection checks are met, the segment base is added to the effective
address, yielding the linear address. If paging isn't in effect this is the
same as the physical address that will be used to access memory.

332 The 80386 Processor In Depth

PAGING UNIT

The paging unit sometimes does nothing, since paging may not be in use
in simpler systems. When it is used, however, it must do a lot of work
very quickly if it isn't to slow down the entire processor. Thi~ is a real
problem because each page has its own protection and addressing
information; at 4 Kb per page frame even a relatively small 16 Mb
address space contains about 4,000 pages. The needed information for all
these pages can't be stored on the processor itself, but instead must be
stored in memory. The memory structure comes in two parts: a Page
Directory, which tells where each page's information is, and a Page Table,
which contains a descriptive entry for each page. Getting a given page
takes a read of the Page Directory, which helps us generate an address for
a read of the Page Table, which gives the needed information for finding
the actual page. The structures involved are described elsewhere. How
can we have paging without a ruinous number of memory accesses?

The answer is the same as for memory caching: store the most-used
information in a small, fast cache. The page cache is on the 80386 itself
in the paging unit, and is called the Page Cache or Translation Lookaside
Buffer (TLB). This name comes from the way in which the paging unit
"looks aside" into this buffer to check for the needed address translation
information before accessing the Page Directory table in memory.

Microprocessor designers have a lot of things to put on a VLSI chip
like the 80386, which has about 275,000 transistors. Once things like
prefetching, general registers, and paging are handled, only one cache
can be provided on-chip. There are three different things we'd like to
cache if we could: code, addressing information, and data. The 80386's
designers chose to have an addressing cache on-chip (the TLB) in the
paging unit

The TLB has four sets of eight entries each (see Figure 7-6). Each TLB
entry has two parts. The first is called VAh, the high 17 bits of the page's
Virtual Address. The second part is a copy of the actual 32-bit Page Table
Entry, which would normally be read from memory.

This next part is complicated, but read on if you really want to know
how the TLB works. Three bits from the middle of the Virtual Address,
bits 14-12, give us an offset from O through 7. Remember, the TLB has four
sets of eight entries each, so the three bits point to one entry from each
set

Each of the four entries is read out of its set at the same time. The
high 17 bits of the current Virtual Address are compared to the 17-bit

31 15 14

Virtual Address

Bis 31-15
(VAh')

12 11

Bits 14-12

Seto
TLB
Set 1

Inside the 80386 333

0

Set2 Set3
.....---"'T"'""--"""T""----,------, Offset
VAh/PTE VAh/PTE VAh/PTE VAh/PTE 0

t, II II II 1

VAh'=VAh

2
3
4
5
6
7

-----------. Miss
_____ M_a_tc_h_L_og_i_c ____ F Interrupt

I Hit

PTE

Figure 7-6. Sample Diagram for a 32-entry TLB.

V Ah field in each entry. If one of them matches, the Page Table entry
attached to the TLB entry is the one we need, and no memory access is
needed.

Now, if you're reading this with your calculator at hand hoping to
catch a mistake, you might say, "Wait! 17 bits of the Virtual Address isn't
enough to determine a page from any other page. 20 bits are needed."
However, the 17 bits from the VA combined with the 3 bits used as an
index into the TLB make 20 bits. Note that the foldout of the 80386 shows
20 bits going to the Page Cache for use in checking. This trick means that
every page in memory is mapped into one of the eight offset levels in the
TLB. When copied into the TLB the page must go to the appropriate
offset level; which set it goes in is determined by hardware. It doesn't
matter which set of the four is used because the entry from every set is
compared to V Ah every time.

334 The 80386 Processor In Depth

A match is called a page hit It might seem surprising that 98% of
paged memory addresses are page hits, but the 32 entries in the TLB
allow (32 entries X 4 Kb/page =) 128 Kb of memory to be addressed via
these entries. Since most programs use the same few pages most of the
time, this cache is large enough to give us a high number of page hits.
Page misses cause the processor to go to memory for the required page
information, which takes two separate memory accesses. An applications
programmer need do little to increase page hits, since the program may
not even be running on a paged system. However, programs that jump
around very large data areas (> 128 Kb) might cause more page misses
than others. Many of the same considerations are in effect here as with
memory caching.

The paging unit yields a physical address. This could have been
attained in one of three ways: paging was off so the linear address was
used unchanged; a TLB page hit allowed the necessary address to be
constructed and checked without extra memory accesses; or a TLB miss
caused memory accesses that may or may not have disrupted pipelining
and slowed the processor.

BUS UNIT

The bus unit controls all communications between the 80386 and the
outside world, except for the pins that go to the control unit and the
CLK2 clock signal. Data transfer requests from the execution unit and
code fetch requests from the prefetch unit are prioritized (code fetches
last) and filled by the bus unit The bus unit also handles interactions
with coprocessors and other chips that can control the system bus.

Instruction Execution and the 80386

This section ties together our newly minted understanding of the
inner workings of the 80386 by examining how a pair of instructions
operate within the chip. We look at what happens during each 80386
clock cycle as the two instructions move through each unit to comple
tion. This brief example will help improve 80386 programming skills by
showing in depth how instructions interact with the processor and each
other. Listing 7-2 shows the two instructions that will be executed. The
foldout of 80386 internals is also helpful for following the action.

For simplicity we assume that the code is being executed just after a
jump instruction, which causes the pipeline of the 80386 (especially the

Address

00120000
00120002
0012000A

Contents (Code)

03 D9
64: 2B B4 DA 01234567

Llsting 7.2. Example Instructions

Inside the 80386 335

Instruction

ADD EBX, ECX
SUB ESI, FS: 01234567h [EDX][EBX•8]

prefetch and decode queues) to clear. The prefetcher starts by getting the
first dword of the instruction stream (the code at 00120000 and above)
and storing the four bytes in the prefetch queue. The prefetcher will keep
taking advantage of otherwise unused bus cycles to fill its queue until it's
full, and then continue fetching whenever the queue begins to empty. We
won't pay much attention to the prefetcher after this, since its work is
vital but simple.

CYCLE 1

ADD: The decode unit goes to work as soon as a single byte appears in
the prefetch queue. The decode unit grabs the byte (which has the value
03) and decodes it, placing the information in the Decoded Instruction
Queue (a decode queue fill pointer points to the first empty entry in the
decode queue). The first decoded byte tells the decoder that the instruc
tion is an ADD and that it has a ModRM byte, which indicates that
there is more to follow.

CYCLE 2

ADD: The decoder reads in byte 2 from the prefetcher, which is the ADD's
ModRM byte, value D9. This byte indicates that the EBX and ECX registers
are to be used and that there is no more work to do on this instruction.
The decoded instruction is marked READY and left in the queue for
execution by the control unit The queue fill pointer is advanced to point
to the next empty entry, as will happen after each successful instruction
decode.

CYCLE 3

ADD: No prior instructions are in the pipeline, so this instruction begins
executing immediately. The first microword of the instruction is read out
of the Control ROM, and the two operands (EBX and ECX) are read out of

336 The 80386 Processor In Depth

the register file in the execution unit onto the displacement and index
buses.

In the second half of the cycle the two values are moved into the
ALU, with microcode specifying that they be added together. The result
is placed in the AR_QUT register.
SUB: The decoder sees that the SUB has an FS segment override prefix,
value 64. The queue entry's segment register field will be changed to
specify FS instead of the default OS.

CYCLE 4

ADD: Nothing happens in the execution unit during the first part of the
cycle. During the second part the contents of AR_OUT are written into
EBX in the register file, and flag bits in EFlags are updated to reflect the
result of the ADD. This completes the ADD instruction. Note that the ADD
instruction is listed in the instruction set as taking two clocks, but it took
four here due to the fact that pipelining was inactive and all the queues
were empty when this code began executing.
SUB: The decoder translates the SUB instruction byte, value 2B, which
indicates a ModRM byte follows.

If this instruction were completely decoded the displacement would
be bypassed around the register file and onto the displacement bus,
while the index or base (whichever is · specified) was read out of the
register file and placed on the index bus.

CYCLE 5

All cycles after this are executing SUB only.
The decoder translates the ModRM (mode register/memory) byte,

value B4, which indicates that a SIB byte follows. Normally this decoding
would be pipelined with other instruction execution, but the queue was
emptied by the JMP.

CYCLE 6

The decoder translates the SIB (scale factor-index-base) byte, value DA,
which indicates that a 4-byte displacement follows.

Inside the 80386 337

CYCLE 7

The decoder puts a 4-byte displacement, value 01234567H, directly in
the displacement slot of the q1,1eue entry for the SUB instruction. The
decoding of the SUB instruction is now finished.

CYCLE 8

As described above, the displacement is bypassed around the register file
and onto the displacement bus while the index is read out of the register
file (EBX) and placed on the index bus.

The end of the cycle sees the index scaled by 8 and added to the
displacement, with the result going into a holding register on the segmen
tation unit

CYCLE 9

A base register has been specified, in addition to the already accounted
for displacement and index, so the base is read out of the register file
(EDX), the previous result comes out of the holding register, and the two
are combined in the adder. This is the extra cycle needed when instruc
tions use a base, a displacement, and an index.

Note that if we had listed an instruction after the SUB it would have
been prefetched and decoded, and would have reached the execution
unit by now.

CYCLE 10

The specified segment register (FS) is read out of the register file and the
limit of this segment is compared with the effective address in the
holding register and other logic checks to see whether this segment can
be read from (Access Rights in the foldout), since the result will be written
to a register.

In the second part of the cycle the base address of the segment is
read from the segment descriptor and added to the effective address to
form the linear address, which is placed in a holding register in the
paging unit

338 The 80386 Processor In Depth

CYCLE 11

The linear address is used to access the TLB (which we'll assume gives us
a TLB hit) and the physical address for the data is calculated by merging
the upper 20 bits from the TLB entry (which name a page frame) and the
lower 12 bits from the linear address (which name a byte within the
page).

At the end of the cycle the resulting physical address is latched
(placed in a holding register).

CYCLES 12 THROUGH 14

We assume that the bus unit is free and that the memory attached to the
system bus has one wait state (is 3-cycle memory). These cycles are then
spent retrieving the data from memory. Note that memory accesses that
are part of executing an instruction aren't pipelined. At the end of Cycle
14 the data is latched (stored) in the bus unit, where it can be accessed.

CYCLE 15

The data from memory is bypassed to one input of the ALU, the value in
ESI is read into the other, and the subtraction is done with the result
placed in AR_OUT.

CYCLE 16

For the first half of the cycle nothing happens; in the second half the new
value is written from AR_OUT to ESI and the flag bits are conditioned
accordingly.

RIPLEY'S BELIEVE IT OR NOT

The example above included a two-byte ADD instruction, which
took four cycles to execute, and an eight-byte SUB which took an
additional 12 cycles to execute. Listing 7-3 shows examples from among
the longest possible meaningful instructions on the 80386. AS, OS, and
FS are address-size, operand-size, and segment override prefixes.

Some Applications Programming Considerations 339

INSTRUCTION 1: LOCK: AS: OS: FS: BTS 12345678H [EDI]
[EBX*4], 24

CODE: F0: 67: 66: 64: OF BA 94 9F 12345678 18

INSTRUCTION 2: LOCK: AS: OS: FS: ADD 12345678H [EDI] [EBX*4],
9ABCDE02H

CODE: . F0: 67: 66: 64: 81 84 9F 12345678 9ABCDE02

Listing 7-3. Longest Meaningful Instructions

Instruction 1 is 13 bytes long and takes 10 cycles to decode and 9
cycles to execute. Instruction 2 is 15 bytes long and takes 9 cycles to
decode and 8 cycles to execute. Both instructions are noteworthy for
taking longer to decode than to execute.

SOME APPLICATIONS PROGRAMMING
CONSIDERATIONS

Some simple rules for writing efficient 80386 applications programs
come out of the discussion in this and other chapters:

1. Minimize operating system calls.
This is normally a good idea, since a single OS call can cause the
execution of thousands of bytes of code, but it's an especially good
idea on an 80386-based system, where a program's operating system
may be running under a hypervisor that has final control of system
resources. In this case, a call to the operating system may cause a
further call to the hypervisor, causing longer than usual delays.

2. Align program modules on page boundaries.
In a paged system large program modules that are page-aligned at
the start will help prevent page swaps.

3. Assist locality of reference
The principle oflocality of reference is important to memory caches,
page mode RAMs, the prefetcher, the TLB paging queue, and other
aspects of 80386-based systems. Programs with have small, tightly
written modules will execute more efficiently because they will tend
to take advantage of these built-in speedup techniques.

4. Put those instructions that are quick to decode and long to execute
at the top of a loop.

340 The 80386 Processor In Depth

A register-to-register MUL is a good example of such an instruction.
These instructions will tend to help the 80386 catch up after a jump
causes its onboard queues to be emptied.

5. Targets of jumps should be dword-aligned
This will prevent the processor, which is already slowed by having
its queues emptied, from also having to make extra memory
accesses to get its first instruction after the jump.

6. Memory operands should be aligned on their natural boundaries.
Dword operands should be dword aligned, word operands should be
word aligned, and the first bit in a series of bit fields should be byte,
word, or dword aligned (depending on the number and length of the
bit fields involved).

7. Records and other large data structures should be dword- or even
page-aligned.
Dword alignment helps speed access to a record. Page ·alignment
should be considered whenever a record or other structure
approaches 2 Kb (half a page) in size. This will improve access speed
within the structure and improve performance in a page-based
Virtual Memory system.

A (adjust or auxiliary carry)
flag, 36

AAAinstruction,60,90-92
AADinstruction,60,92-94
AAMinstruction, 60, 94-96
AASinstruction,60, 96-98
Accumulator register, 30, 32
ADC,

instruction, 55,98-100
with carry instruction,

98-100
ADD instruction, 2,

54, 100-io2
Address manipulation

instructions, 71-72
Addressing modes, 45-47
ANDinstruction,61, 102-105
Applications programming,

339-340
Applications register

set, 30-33
Arithmetic instructions,

54-58
ASCII, 12

adjust AL after multiply,
94-96

adjust AL after subtract,
96-98

adjust AL before
division, 92-94

adjust AL for ADD, 90-92
Assembler directives, 4-6
Assembly language, 78-79

80386 instruction and, 7-9
assembler and, 2-9
features of, 6-7

Assert BUS LOCK signal
prefix instruction,
181-183

Base pointer, 31, 32
Base register, 30, 32
Base register set, 30
BCD see Binary coded

decimal
Binary coded decimal (BCD),

11-12
Binary logic, 20-21
Binary math, 14-21

applications of, 19-21
binary logic, 20-21

Index

negative, 17- 19
overflow and carry,

19-21
sign extension, 20

subtraction, 16-17
Binary numbers, translating

large, 13-14
Bit instructions, 64-65
Bit scan,

forward instruction,
107-109

reverse, 109-110
Bit test,

complement instruction
and, 113-114

instruction, 111-112
reset instruction and,

115-116
set instruction and,

117-118
BOUND instruction, 70,

105-106
BSFinstruction,64, 107- 109
BSR instruction, 64, 109-110
BT instruction, 64, 111-112
BTC instruction, 64, 113-114

341

342 Index

BTR instruction, 64, 115-116 Convert word to doubleword EFlags, 33
BTS instruction, 64, 117-118 instruction,137-138 EM (emulation) flag, 39
Bus unit, 334 Convert word to Dword ENTER instruction, 70-71,
Bytes, power of two, 15 instruction, 122-124 147-149

Count register, 30, 32 EQU, 5, 6
CWD instruction, 59, 137-138 ESC instruction, 71

C (carry) flag, 36 CWDE instruction, 122-124 ESI, 31, 32
Cache accesses, 315-317 CWPE, instruction, 58 ESP, 31, 32
Caching memory, 313-317 ET (extension type) flag, 39
CALL instruction, 69, Exceptions and interrupts,

119-121 D (direction) flag, 36 47-49
Call procedure, 119-121 DAAinstruction,60, 139-140 Exchange instruction,
Call to interrupt procedure DAS instruction, 60, 141-142 269-271

instruction, 163-164 Data conversion instructions, Exclusive OR instruction,
Carry in binary math, 19-21 58-59 274-276
CBWinstruction,58,122-124 Data movement, 28 Execution unit, 330-331
CDQ instruction, 59 instructions,52-54
Central processing unit, Data registers, 30-32

components of, 26 Data types, 42-44 Fetch-decode-execute
Check value in range DB, 5 cycle, 28-33

instruction, 105-106 Debug, Flag control instructions,
CLC, instruction, 2, 124-125 address registers, 40-41 65-66
CLD instruction, 126-127 control register, 40-41 Flags,
Clear carry flag instruction, registers, 38-42 EFlags, 33

124-125 DEC instruction, 54, 143-144 system, 34-36
Clear direction flag Decimal adjust AL Flat memory, 34-49

instruction,126-127 after addition Floating-point numbers, 13
Clear interrupts enable flag instruction, 139-140 Flow control instructions,

instruction, 128-129 Decimal adjust AL after 68-70
CLiinstruction, 128-129 subtraction instruction,
CMCinstruction,130-131 141-142
CMP instruction, 55, 132-133 Decimal arithmetic Global descriptor table
CMPS instruction, 67, instructions, 60 register (GDTR), 42

134-136 Decrement instruction,
Compare instruction, 143-144

132-133 Destination index, 31, 32 Halt instruction, 150-151
Compare string instruction, DIV, 2 High level language support

134-136 DIV instruction, 54-55, instructions, 70-71
Complement carry 145-146 HLT instruction, 71, 150-152

flag instruction, Double precision shifts, 63 Hypervisors, 305-306
130-131

Computers, data movement
in, 28 EAX, 30, 32 I (interrupt) flag, 34-35

Control flags, 36 EBP, 31, 32 1/0 interface, 322-323
Control registers, 38-42 EBX, 30, 32 1/0 ports, 27
Control unit, 329 ECX, 30, 32 IDIV instruction, 55, 152-153
Convert byte to word EDl,31,32 IDTR, 42

instruction,122-124 EDX, 30, 32 Immediate operand mode, 45

IMUL instruction, 54,
154-156

IN instruction, 156-157
INC instruction, 54, 158-159
Increment instruction,

158-159
Input from port instruction,

156-157
Input shing from port,

160-162
INS instruction, 160-162
Instruction decode

unit, 327-328
Instruction expansion,

334-338
Instruction pipelining,

323-326
Instructions,

AAA. 60, 90-92
AAD,60
AAM, 60, 94-96
AAS,60,96-98
ADC, 55, 98-100
ADD,54,92-94,100-102
address manipulation,

71-72
AND,61, 102-105
arithmetic, 54-58
Bit, 64-65
BOUND, 70, 105-106
BSF, 64, 107-109
BSR, 64, 109-110
BT, 64, 111-112
BTC, 64, 113-114
BTR, 64, 115-116
BTS, 64, 117-118
CALL, 69, 119-121
CBW, 58, 122-124
CDQ59
CLC, 124-125
CLO, 126-127
CU 128-129
CMC, 130-131
CMP,55, 132-133
CMPS,67,134-136
CWD, 59, 137-138
CWDE,122-124
CWPE,58

DAA, 60, 139-140
DAS, 60, 141-142
data conversion, 58-59
DEC, 54, 143-144
decimal arithmetic, 60
DIV,54-55,145-146
ENTER, 70-71, 147-149
ESC, 71
flag control, 65-66
flow control, 68-70
format of, 79-81
HLT, 71, 150-151
IDIV,55,152-153
IMUL,54, 154-156
IN, 156-157
INC, 54, 158-159
INS, 160-162
INT, 69, 163-164
INTO, 69
IRET, 69, 155-156
IRETD,69
Jee, 3, 167-171
JMP,68-69,172-174
JZ, 3
LAHF,65, 175-176
LEA, 177-178
LEAVE, 70-71, 179-180
LEFS, 301
LGS, 301
LOCK, 71, 181-183
LOOS, 67, 184-186
logical, 61-62
LOOP, 69
LOOPcc, 187-188
LOOPE, 69
LOOPNE, 69
LOOPNZ,69
LOOPZ, 69
LSS, 301
Lxx, 189-190
MOV, 52, 191-193, 301
MOVS, 67, 196-197
MOVSX, 58, 301
MOVxX, 194-195
MOVZX, 301
MUL,54,198-199
NEG, 55, 200-201
NOP, 71, 202-203

Index 343

NOT, 61, 204-205
OR, 61, 206-208
OUT,209-210

·OUTS, 211-213
POP, 53, 214-216
POPA, 53, 217-218, 299
POPAD, 53
POPF, 65, 219-220
POPFD, 65
processor control, 71
PUSH, 52-53, 65, 221-223
PUSHA, 53, 224-226, 299
PUSHAD, 53
PUSHD, 65
PUSHF, 227-228
RCL, 62
REP, 67
REPcc, 229-231
REPE, 67
REPNE, 67
REPNZ, 67
REPZ, 67
RET, 232-233
ROL, 62
ROR, 62
Rxx, 234-237
SAHF,65,238-239
SBB, 55, 247-249
SCAS, 67, 250-251
SET, 61
SETcc, 252-254
SHL, 62
SHLD, 63
SHR, 62
SHRD,63
SHxD,244-246
STC, 255-256
STD, 257-258
STI,259-260
STOS, 67, 261-262
shing, 66-68
SUB,54,263-264
Sxx, 240-243
TEST, 61, 265-266
timing data, 81-84
translation, 72-73
WAIT,71,267-268
XCHG, 52, 269-271

344 Index

Instructions (Continued) LOCK instruction, 4, memory organization,
XLAT,272-273 71, 181-183 318-321
XOR, 61, 274-276 LODS instruction, 67, page mode RAMs, 317-318

INT instruction, 69, 163-164 184-186 Memory management
Interleaving memory, Logical and, 102-105 registers, 42

311-312 Logical compare instruction, Microprocessors,
Internal registers, 28 265-266 8086 family of, 25-26
Interrupt descriptor table Logical instructions, 61-62 basics of, 26-28

register, 42 Logical operations, history o(24-26
Interrupts and exceptions, nibbles P and Q, 86 MOV,2

47-49 Loop control with CX MOV instruction, 191-193,
INTO instruction, 69 counter instruction, 301
IOPL (1/0 privilege 187-188 MOV (move) instruction, 52

level) flag, 34 LOOP instruction, 69 Move data instruction,
IRET instruction, 69, 165-166 Loop top, 3 191-193
IRETD instruction, 69 LOOPcc instruction, 187-188 Move string instruction,

LOOPE instruction, 69 196-197
LOOPNE instruction, 69 Move with sign/zero

Jccinstruction,3,167-171 LOOPNZ instruction, 69 extension instruction,
JMP instruction, 68-69, LOOPZ instruction, 69 194-195

172-174 Lxxinstruction,189-190 MOVS instruction, 67,
Jump if condition is 196-197

met instruction, MOVSX instruction, 58, 301
167-171 Make stack frame for MOVxX instruction, 194-195

JZ instruction, 3 procedure instruction, MOVZX instruction, 301
147-149 MP (math present) flag,

Memory, 26-27 39-40
LAHF instruction, 65, caching, 313-317 MULinstruction,54,198-199

175-176 effective address Multitasking, 277-281
LDTR, 42 of an operand in, 282 support for, 279-281
LEA instruction, 177-178 flat and segmented, 37-49
LEA VE instruction, 70-71, interleaving, 311-312

179-180 organization, 318-321 NEG instruction, 55, 200-201
LEFSinstruction,301 segmentation, 281-284 Negative binary numbers,
LES instruction, 301 descriptors and tables, 17-19
LGS instruction, 301 282-284 No operation instruction,
Linear address creation, 282 linear address creation, 202-203
Load effective address 282 NOP instruction, 71, 202-203

offset instruction, virtual, 287-290 NOT instruction, 61, 204-205
177-178 Memory access, 308-323 NT (nested task) flag, 34

Load flags into AH design trade-offs, 321-322 Numbering systems, 9-21
instruction, 175-176 1/0 interface, 322-323 binary math, 14-16

Load full pointer, 189-190 interleaving memory large binary numbers,
Load string instruction, and,311-312 13-14

184-186 memory caching Numbers,
Local descriptor task register, and,313-317 floating-point, 13

42 cache accesses, 315-317 representing, 11-13

Index 345

translating large binary, POPA instruction, 53, support for, 279-281
13-14 217-218,299 paging, 284-287

POP AD instruction, 53 physical address
POPF instruction, 65, creation, 285-287

0 (overflow) flag, 35 219-220 segmentation, 281-284
Octal notation, 10 POPFD instruction, 65 linear address creation,
One's complement Prefetch unit, 327 281

negation instruction, Processor, segment descriptors
204-205 applications programming and tables, 282-284

Opcode column, values used, considerations, virtual memory, 287-290
87 339-340 support for, 289-290

Operating systems, control instructions, 71 PUSCH instruction, 53
considerations, 304-306 inside the, 323-338 Push all general registers,

sample hypervisors, bus unit, 334 224-226
305-306 control unit, 329 Push flags instruction,

OR instruction, 61, 206-208 execution unit, 330-331 227-228
OUT instruction, 209-210 instruction decode unit, PUSH instruction, 52-53, 65,
Output string to port 327-328 221-223

instruction, 211-213 instruction execution, Push operand onto
Output to port instruction, 334-338 stack, 221-223

209-210 paging unit, 332-334 PUSHA instruction, 224-226,
OUTS instruction, 211-213 prefetch unit, 327 299
Overflow in binary segmentation unit, 331 PUSHAD instruction, 53

math, 19-21 timing, 329-330 PUSHD instruction, 65
Processors, 307-340 PUSHF instruction, 227-228

memory access, 308-323
P (parity) flag, 36 cache accesses, 315-317
Page mode RAMs, 317-318 design trade-offs, Queues, execution speed
Paging, 284-287 321-322 and,82-83

physical address creation, UO interface, 322-323
285-287 interleaving memory

Paging unit, 332-334 and,311-312 R (Resume) flag, 34
PE (protection enable) memory caching RAM, 4, 26-27

flag, 40-42 and,313-315 chip response time, 314
PG (paging enable) flag, 39 memory organization, page modes, 317-318
Physical address creation, 318-321 RCL instruction, 62

285-287 page mode RAMs, RCR instruction, 62
Pipelining, 29 317-318 Read only memory

defined,310 modes compared (ROM), 27
instruction,323-326 with, 296-304 Real mode, new instructions

Pop all general registers system performance, for, 300-302
instruction, 217-218 307-308 Real mode programs,

Pop flags instruction, Program counter, 28-29 296-299
219-220 Programming, applications, Register operand mode, 45

POP instruction, 53, 214-216 339-340 Registers,
Pop stack to operand, Protected mode, 277-290 control, test, and debug,

214-216 multitasking, 277-281 38-42

346 Index

Registers (Continued) Set interrupts enabled TR, 42
data, 30-32 · flag instruction, Translate string instruction,
segment, 32 259-260 272-273

Remove procedure SETccinstruction,252-254 Translation instruction,
stack frame Shift and rotate instructions, 72-73
instruction, 179-180 62-64 TS (task switched) flag, 39

REP instruction, 4, 67 Shift double instruction, Two's complement negation
REPccinstruction,229-231 244-246 instruction,200-201
REPE instruction, 67 SHL instruction, 62
Repeat while condition is SHLD instruction, 63

met (prefix) SHR instruction, 62 Unconditional jump
instruction,229-231 SHRDinstruction,63 instruction, 172-174

REPNE instruction, 67 SHxD instruction, 244-246 Unsigned divide instruction,
REPNZ instruction, 67 Sign extension in binary 145-146
REPZinstruction,67 math, 20 Unsigned multiply
RET instruction, 232-233 Signed divide instruction, instruction, 198-199
Return from CALL 152-153

instruction,232-233 Signed multiply, 154-156
ROM see Read only memory Source index,31,32 Virtual machines, 293
ROR instruction, 62 Status flags, 35-36 Virtual memory, 287-290
Rotate instruction, 234-237 STC instruction, 255-256 Virtual (V8086) mode,
Rxxinstruction,234-237 STD instruction, 257-258 291-306

STI instruction, 259-260 defined,292
Store AH into flags flag, 34

instruction, 238-239 history of, 294-296
S (sign), flag, 35 Store string instruction, programs and, 296-304
SAHF instruction, 65, 261-262 virtual machines

238-239 STOS instruction, 67, and,293-294
SBB instruction, 55, 247-249 261-262 VM (virtual mode) flag, 34
Scan string instruction, Stringinstructions,66-68

250-251 SUB instruction, 54, 263-264
SCAS instruction, 67, Subtract instruction, 263-264 Wait for coprocessor

250-251 Subtract with borrow instruction, 267-268
Segment descriptors and instruction,247-249 WAIT instruction, 71,

tables, 282-284 Sxxinstruction,240-243 267-268
Segment registers, 32
Segmentation unit, 331
Segmented memory, 34-39 T (Trap) flag, 35 XCHG (exchange) instruction,
Set byte on condition Task register, 42 52, 269-271

instruction,252-254 TEST instruction, 61, XLAT instruction, 272-273
Set carry flag instruction, 265-266 XOR instruction, 61, 274-276

255-256 Test registers, 38-42
Set direction flag, 257-258 Timing, 329-330
SET instruction, 61 data, 81-84 Z (zero) flag, 35-36

More IBM Books from Scott, Foresman and Company

The Complete Guide
to IBM PC
AT Assembly Language

By Harley Hahn
608 pages
$24.95
18263-0

This book is an excellent introduction to programming the 80286 processor and
is perfect for either the beginning programmer or the experienced programmer
new to assembly language. Both a tutorial and a reference, The Complete Guide
to IBM PC AT Assembly Language offers a new approach to assembly
language programming and includes hundreds of examples, with many specific
instructions for the IBM PC and XT, too. In a refreshingly readable style, Hahn
succeeds at presenting complex concepts in carefully defined, easy-to
understand terms. This book

• Provides instructions on how to construct, process and run your own programs
• Offers valuable suggestions on defining data, control flow, and string in

structions
• Contains numerous practical techniques for working with bits, interrupts,

input/output, and much more
• Includes a useful command summary and a comprehensive glossary of tech

nical terms

I
More IBM Books from Scott, Foresman and Company

Mastering Xenix
on the IBM PC AT

By Harley Hahn
416 pages
$21.95
18260-6

HarleyHahn

The only book specifically devoted to Xenix on the IBM PC AT, this handbook
gives you a thorough introduction to IBM Xenix, one of the most powerful
operating systems for small computers. The author starts with the basics and
progresses to more advanced Xenix concepts, helping you understand and use
the Xenix file system, send and receive messages with the Xenix mail system,
program the shell, and more. The second book in our popular series on the PC
AT, this book will give you a sound understanding of the complex Xenix
operating system. This book

• Introduces computer novices and experienced Unix users to IBM Personal
Computer Xenix

• Focuses on the practical uses of Xenix, and makes a complex system easy to
understand

• Provides a clear overview of the operating system, detailed explanations of
important concepts, and a wealth of examples

• Explains how to use the vi editor to create and modify your own text files
• Shows you how to work with the major Xenix commands and options
• Includes a detailed glossary and a summary of vi commands

More IBM Books from Scott, Foresman and Company

Working With
Xenix System V

By Martin L. Moore
256 pages
$19.95
18080-8

Working wit

XENIX SY

Martin L. Moore

This is the first book on the new Xenix System V. Both a tutorial for novice
Xenix users and a comprehensive reference guide, Working With Xenix System
V helps you learn enough about Xenix to use it productively. Written for non
programmers, this book takes the mystery out of the latest version of the
Microsoft Xenix operating system. Since Xenix System V is now compatible
with Unix System V, this book will also help you use the Unix operating
system on a variety of personal computers. Learn to use your Xenix- or Unix
based computer more efficiently with this complete user's handbook This book

• Shows you how to do useful applications with Microsoft Xenix on your IBM
PC XT, AT, or compatible

• Leads you through the most common Xenix operations, covering commands
you'll use every day

• Includes a thorough guide to the Xenix file structure and the shell
• Explains how to use the vi text editor and the mm macros for word processing
• Includes a quick-reference command dictionary which describes the most

useful Xenix commands in detail
• Provides a handy chart listing the key command differences between

Microsoft, Xenix, AT&T Unix System V, and the Berkeley Version 4.2BSD Unix

More IBM Books from Scott, Foresman and Company

Advanced Programming
Techniques Modula-2

By Terry Ward
400 pages
$21.95
18615-6

.
Tall."V A. WA. ll D

Advanced Programming Techniques in Modula-2 presents a wide variety of
tools, tips, and techniques for advanced Modula-2 programmers. Beginning with
a brief overview of the language, this book includes many examples of
advanced programming projects. This book

• Includes benchmark utilities for testing compiler performance
• Details a set of specialized module libraries for extending Modula-2, including

string handling, set operations, and bit and matrix manipulations
• Provides a set of sorting modules using various sorting algorithms
• Features a set of interface modules for use with the reader's programs

More IBM Books from Scott, Foresman and Company

Using Your IBM PC AT

By Harley Hahn
351 pages
$19.95
18262-2

This valuable reference guide introduces you to IBM's bestselling new personal
computer, the PC AT. Written in an easy-going, nontechnical style, this book is
designed to get you using your computer immediately. The author clearly
guides you from the basics to advanced features of the AT, with an emphasis
on making a complicated system understandable. This book also includes a list
of popular software programs that work on the PC AT, many examples, and a
variety of information not found in the computer's manual. This book

• Tells you everything you need to know to use your PC AT effectively
• Gives detailed information on the latest versions of DOS-versions 3.0 and 3.1
• Includes a clear overview of PC AT hardware, software, and peripherals
• Offers thorough definitions of important computer terms and concepts
• Provides techniques for managing disks and files
• Offers a helpful summary of DOS commands and error messages
• Explains such advanced features as tree-structure files and the line editor

Order Form

To order, contact your local bookstore or send this form to

Scott, Foresman and Company
Professional Publishing Group
1900 East Lake Avenue
Glenview, IL 60025
(312) 729-3000

Ot;y Code#

Total Order

State and/ or Local Taxes

6% of Total before taxes for postage*

Total

Please check method of payment

In Canada, contact
Macmillan of Canada
164 Commander Blvd.
Agincourt, Ontario
MIS 3C7

Title Price

s
s
s
s

D Check/Money Order (Make checks payable to Scott, Foresman and Company)
Amount enclosed$ _______ _

D MasterCard D VISA
Credit Card No. _________________ Exp. _______ _

Signature-----------------------------

Name (please print)-------------------------
Address ____________________________ _

City _________________ State ____ Zip ______ _

* If you enclose a check with your order, there is no charge for postage.

Full payment must accompany your order. Prices subject to change without notice.

EXECUTION UNIT

::1 ~ -
SEGMENTATION UNIT I PAGING UNIT I

I I
Displacement Bus I.,. MUX I I

: • Scale + J--. ~-
Effective I - I -Index Bus

Add,ess Bus~ I _ A
✓ - I - - -, I , -• _;j MUX 12 _ Merge I I -~, + . ,_E•+o (20:31) - J Linear I G I

~
ALU 20

Address I __:_ /(0:19) I Base Barrel Shifter - Bus I • - I - Limit I - I
Protection Segment

I /
Page

I AR_OUT Reg. Check Logic Access Descriptions - Cache ~ ,_
I

, - I - Rights 20 (TLB)

I (0:19) I
I I

Register I I File Control Control
I

Control I Logic Logic
I

Logic
I

A• .. I A1 I
L ____ -------------

_________ L ___ ------ ----
_____ I

j • I Internal Control Signals I
' • "

, -
I I -
I ' ' . I

1 ,
I Memory Operands I - -

1Mux 1~ I I --- -+--- ----~ ------------------ -------------------·---7---- ----~------

Control
Sequencer

•• '
Request

Prioritizer

~ ~

~ ,
INTR
NMI
ERROR#
BUSY#
RESET
PEREQ

I
I

Control ROM I
I
I
I - I - 2560 Words

of 37 Bits Each I
I
I
I

I
I
I

CONTROL UNIT I
I

I Immediate and I 1 r
Displacement Bus \ Prefetch I

I Pointer, I
I ➔

Limit I
Checker I

1• I & Control I I Logic I Decode I I Control I i 3 Entry Queue Logic I I <1>1 +-
of Decoded -- I <t>2+-Instructions - I

16 Byte - I I I Code -
I Prefetch -, I - Queue I 112 Bits Each - I
I I

INSTRUCTION DECODE UNIT I PREFETCH UNIT
I
I

Light Lines Are Control

Heavy Lines Are 32 Bit Data Paths

Very Heavy Lines Are 1/0 Pins

Address
drivers

and Latches

Pipeline/
Bus Size
Control

Data MUX/
Transceivers
and Latches

Clock
Generator

BUS UNIT

....
"""

....
"""

....
.....

.....
""'

... ...

... ...

...

...

A31-A2
BE3#-BEO#

HOLD
M/10#
DIC#
W/R#
LOCK#
ADS#
NA#
BS16#
READY#

D31-DO

CLK2

Programming the
lntelSQ386

Written for both novice and experienced programmers, this complete guide offers an
in-depth look at the new 80386 processor. Following a brief discussion of assembler
and microprocessors, this valuable reference explains timing, system design,
processor layout, and efficiency in programming. Special features include

• a fold-out diagram of the chip's pinout

• a complete instruction set, including detailed programmer's notes

• techniques for programming in the protected mode

You'll also find details about the differences between real mode, protected mode, and
virtual 8086 mode, and much more.

Full of information not found anywhere else, Programming the Intel 80386 is just the
resource you need to use the powerful new Intel 80386 microprocessor.

Bud E. Smith is a com
puter program mer, tech
nical writer, and data
processing supervisor.
He has worked for Cox
Cable San Diego and
Megahaus, Inc., and has
had wide experience as
a consultant. He is also

a consulting editor to Exclusive Review, a
monthly newsletter for Apple II and Apple
Works users.

Mark T. Johnson has
been programming since
1968. He has been em
ployed in computer cen
ters at both Michigan
State University and the
University of Queens
land. He has also worked
with computers at sev

eral companies in the United States and
Australia, and is currently an independent
consultant in computer graphics and elec
tronic publishing.

PROPERT't. -- ---~----
... OF _THE I E SMAN ANO COMPANY

·MARK ~wltlllAM~

)$22-95

llBRARY ISBN 0-673-18568-0

-11Mark - . Williams
Company

