

PROGRAMMING
THE INTEL 80386

ISBN 0-L73-18568-0

Copyright © 1987 Bud E. Smith.
All Rights Reserved.

Printed in the United States of America.

Library of Congress Cataloging-in-Publication Data

Smith, Bud E.
Programming the Intel 80386.

Includes index.

1. Intel 80386 (Microprocessor)—Programming.
L Johnson, Mark T. II. Title.
QA76.812928S65 1987 005.265 86-29862
ISBN 0-673-18568-0

1 2 3 45 6 MVN 91 90 89 88 87 86

NOTICE OF LIABILITY

The information in this book is distributed on an “As Is” basis, without warranty. Neither
the author nor Scott, Foresman and Company shall have any liability, loss, or damage
caused or alleged to be caused directly or indirectly by the programs contained herein.
This includes, but is not limited to, interruption of service, loss of data, loss of business or
anticipatory profits, or consequential damages from the use of the programs.

Scott, Foresman Professional Publishing Group books are available for bulk sales at quan-
tity discounts. For information, please contact Marketing Manager, Professional Books,
Professional Publishing Group, Scott, Foresman and Company, 1900 East Lake Avenue,
Glenview, IL 60025.

X Contents

Processor Control Instructions
Address Manipulation Instructions
Translation Instruction

Summary

CHAPTER 4 THE 80386 INSTRUCTION SET

How Assembly Language Works
What is an Instruction’s Format?
Timing Information

The 80386 and other iAPX 86 Chips
The Instructions

CHAPTER 5 PROTECTED MODE

Multitasking
Segmentation
Paging

Virtual Memory

CHAPTER 6 V8086 MODE AND MORE

Virtual 8086 Mode Defined
Virtual Machines

More On Virtual Modes
Processors and Modes Compared
Operating System Considerations

CHAPTER 7 THE 80386 PROCESSOR IN DEPTH

Computer System Performance

How an 80386 Memory Access Works

Inside the 80386

Ripley’s Believe It or Not

Some Applications Programming Considerations

n
n
72
73

75

78
79
81

86

277

278
281

287

291

292
293
294
296
304

307

308
309
323
338
339

Introduction XV

versions, but the 16 MHz version seems to be the choice of system devel-
opers. .

The processor is being produced using a 1.5 micron feature size,
which means that the highest resolution possible in placing circuit ele-
ments is 1.5 microns. It's believed that within one year Intel will come out
with an 80386 made with a 1 micron feature size. This new version
should allow clock speeds of 20 or even 25 MHz, but won’t cause any
changes in the instruction set or in the number of clocks needed for each
instruction.

There are currently three types of 80386-based systems: 1) the Com-
paq 386, built around a proprietary design by Compaq; 2) other an-
nounced computers built around an 80386 motherboard (processor plus
support chips) made by Intel; and 3) Turbo cards for the IBM PC AT and
compatibles, which offer an 80386 and a cache memory and which plug
into the socket normally occupied by an 80286.

As this is written there are no true operating systems for the 80386,
only a bootstrapping program from Microsoft which allows the Compaq
386 to run 8086-based operating systems. The bootstrapper supports an
extended memory specification to allow access to memory beyond the
640 Kb limit of MS-DOS 2.x and 3.x. Also, there are only a couple of -
assemblers available, and these are known to be “buggy.”

Our contacts at companies working on system software for the 80386
tell us that it works as expected, with the exception of some obscure
bugs which will not be noticed by applications programmers. This book
does not depend on any one operating system, version of an assembler, or
computer system. However, the mnemonics (instruction names like MUL
and ADD) used by your assembler might be slightly different from the
ones we use here.

Future revisions of this book, which will be produced as demand
warrants, will note any changes in the 80386. We would be interested in
hearing your likes and gripes about this book, along with the things you
would like to see included in it or in other works. In particular, we are
planning a book of programming examples which will be a companion to
this volume, and would appreciate any suggestions for that book. Such
letters can be sent to the authors care of Scott, Foresman; simply put both
authors’ names and the name of this book on the envelope.

Assembly Language and the Assembler 3

command itself is “clear;” the operand (the Carry bit) is implied by the
instruction. An instruction’s operands can be individual bits in the chip’s
own registers, bytes, words or doublewords in registers, or any of these in
the computer's main memory. Chapter 2 will cover more about the
overall design of the computer system.

Normally a computer executes instructions in the order in which
they appear in the program. However, we need to be able to change this
sometimes—in order to make the program execute a loop, for example.
To make this happen we might use these instructions:

JCC LoopTop
LoopTop : MOV BX, AX ; top of the loop
JZ LoopTop

The word “LoopTop” is a label for the statement MOV BX, AX. The
symbol “” on the same line indicates a comment, which follows im-
mediately. The dots on some lines indicate statements that we’re not
interested in for now.

The JCC (Jump if Carry Clear) instruction checks the Carry bit (more
on this later) and, if a 0 is in it, passes control to the MOV statement
labeled “LoopTop.” The JZ (Jump if Zero) instruction does the same thing,
but checks the Zero bit to decide whether to jump to the label.

An assembly language statement can take the form:

Label: COMMAND Operand(s) ; comment

The label is optional, and so is the comment; the number of operands
needed varies with the command used. The only part of a statement
that is always required is the command itself; if a label is alone on a
line it’s assumed to go with the command on the following line.

Instead of going on with examples of various 80386 instructions here,
we refer the interested reader to Chapter 3, which gives a brief functional
description of each type of 80386 instruction. Beyond the actual instruc-

Assembly Language Basics

tions and operands, there are several other elements in assembly language,
and these are explained below.

Instruction Prefixes

Prefixes (reserved words used in an 80386 statement just before the
instruction itself) cause some instructions to act differently than they
would otherwise. Two useful prefixes are LOCK, which helps the 80386
grab sole control of a piece of RAM when several processors are sharing
the same memory, and REP and its variants, which cause an instruction
to be repeated. Prefixes are mentioned here because they further enlarge
what we can find on any single line of an assembler program:

Label : PREFIX COMMAND Operand(s) ; comment

For example:

OneLoop: REP MOVS Dest, Source ; moves bytes

This moves a given number of bytes (the number is found in one of the
chip’s registers) from one location in RAM to another.

Assembler Directives

The commands discussed above are all instructions, which the
assembler translates into machine language commands to be executed
by the microprocessor. The assembler determines exactly which form of
a given command to use in order to get the effect the programmer wants.

There are times when we need to tell the assembler in advance what
it is we plan to do. For instance, if our data items in a program are all
word-sized (16-bit quantities), we don’t want the computer to move
doublewords (32-bit quantities) around. Assembler directives look a lot
like regular instructions, but aren’t translated directly into machine
language commands which tell the processor what to do next. Instead,
they tell the assembler how to interpret the instructions and directives

Assembly Language and the Assembler 5

which follow them, point out where a program starts and stops, and serve
many other functions.

For example, almost every program has variables in it. A directive to
tell the assembler a variable’s name has the form:

Name Directive Initial Value ; comment

For example:

MyAge DB 29 ; directive w/fake data
DB 0 ; 2nd byte, initial value 0

This tells the assembler that whenever the variable MyAge is referred to
in the program following, a byte value is being referred to and the byte’s
initial value is 29. The byte reserved on the next line could be referred to
as MyAge + 1, meaning “the byte after the byte with MyAge in it” As
shown by these two directives, the name at the start of a directive line is
optional.

Another important directive is EQU, which tells the assembler to
give a name to a number. For instance, the following directive tells the
assembler to use the number 62 wherever the word Retire is found in the
program:

Retire EQU 62

Notice that the DB directive tells the assembler to put a certain value (29)
in a given byte in memory, while the EQU directive tells it to remember
to replace the word “Retire” with the value 62 as it is converting the
program to machine language. In a typical use of the EQU directive, if the
retirement age needed by the program changes, we can change the line
to read:

Retire EQU 65

Assembly Language Basics

When the program is reassembled the number 65 will be used wherever
the word Retire is found.

More information about directives can be found in the documenta-
tion for the assembler you're using, and this should be studied carefully.
Among other functions, directives determine how programs are arranged
in memory, and they can help give a program some of the structure of a
high-level-language program.

Assembler Arithmetic

In both instructions and directives the assembler will evaluate ex- .
pressions for us. That is, if it finds an expression (like RETIRE — 3) where
it expects a single number, it will do the math required and place the
result in the machine language program. For instance, if we've used an
EQU instruction to tell the assembler that Retire is equal to 65, then the
following command will move Retire + 5, or (65 + 5 =) 70 into AX: '

MOV AX, Retire + 5

However, the work of deciding what “Retire + 5” equals is done when the
program is assembled, so assembler math can only use numbers that
have been specified before a given statement is assembled. Exact descrip-
tions of math done by your assembler will be found in the appropriate
documentation.

What Assembly Language Does

You might ask, “What'’s the difference between assembly language
and a high-level language?” The structure of assembly statements is a
little unusual, but even the brief examples seen so far demonstrate loops,
transfers of control, conditional statements, and variables, all elements of
high-level languages.

The most important feature of assembly language is that every
instruction is translated by the assembler into one and only one machine
language instruction. The machine language code for a MOV between
two registers is slightly different than that for a MOV between two
locations in RAM, but in both cases each assembly instruction translates

Assembly Language and the Assembler 7

into one instruction in machine language. In a high-level language each
statement can be translated into any number of machine language
instructions (sometimes just one, but often five or more depending on the
statement and its context).

Another important feature of assembly language is that the program-
mer can directly name the microprocessor registers and exact memory
locations to be used for storing and operating on data. When a BASIC
programmer says LET A = B, he or she has no control over where the
numbers end up. Writing MOV AX, BX in assembler, however, lets the
programmer know exactly what he or she is doing,

The different forms taken by a MOV instruction depend on exactly
what type of operands it has, and are rarely of concern to the program-
mer. The important thing is the overall effect, that a value is copied from
one location to another. This book will give both the overall effect and
the details of how it's achieved, because at those times when it becomes
important to know an instruction’s format the information needs to be
quickly available and understandable.

It is often said that an assembly language program can do everything
a high level language can do, and additional things besides. This is true
from the computer’s point of view, but not necessarily the programmer’s.
The sheer amount of detail that the assembler programmer must be
concerned with—exactly where does this number go, will this loop always
terminate—can cause the programmer to shy away from complicated
control and data structures. Even a poorly written assembler program
will generally execute faster than a well-written high-level-language pro-
gram, but only the most carefully written assembler code approaches a
high-level-language in clarity (to humans) and ease of maintenance.

Assembling an 80386 Instruction

Let’s look at Listing 1-1 to see exactly what the assembler does with
a very small piece of assembly language code.

The assembler will translate the code in Listing 1-1 into machine
language for the 80386 to execute.

Line 1, the EQU statement, tells the assembler to substitute the
number 8 wherever it sees the word “GenRegs.”

Line 2, the DB statement, tells the assembler that a given byte in
memory will be named RegsUsed, and will start out with the value 0.

Line 3 tells the processor to compare the value in RegsUsed, which
may have been changed by the lines above it, to the number 8, which is

Assembly Language Basics

GenRegs EQU 8 ;1.number of 80386 general registers
RegsUsed DB 0 ;2. number of registers in use

DoMore : ; code that stores data in general registers
: ; and increments RegsUsed when a register
; is used

CMP RegsUsed,GenRegs ; 3. all registers in use?
JNE DoMore ; 4. if not, continue

Listing 1-1. Assembly Process Example

represented by GenRegs. In hexadecimal (discussed later) the machine
language produced by the assembler is:

80 3E 77 08

This means compare (80) a byte at a specified location in memory (3E ?7?)
to an immediate value (08, as defined by the EQU above). The Zero flag
will be set to 1 if the two numbers are equal.

The trickiest part of this is the displacement (??), which is determined
by the addressing mode used to find the byte in memory. This is
discussed further in Chapter 4.

Line 4 tells the processor to continue executing at the label DoMore
if the CMP on the line above showed that the two numbers were equal.
The machine language is:

75 XX

Here 75 indicates a “short jump,” to a location within about +/— 127
bytes if the condition of “not equal” (the zero flag is 0) is met. XX is the
number of bytes to the location, which would be the number of bytes
between the instruction labeled DoMore and this JNE instruction.

Listing 1-2 summarizes the assembly process by showing the as-
sembly code next to the resulting machine-language output.

10

Assembly Language Basics

space, so we use hexadecimal notation, which sums up in one symbol
what's contained in a group or four bits. A symbol is assigned to each of
the possible combinations of bits, as in Listing 1-3.

A single byte, then, can be represented by two hex digits, one for
each four bits in the byte; 11000001 becomes C1, and 01001001 becomes
49. Since we can't tell at first glance whether 49 represents a decimal
value or a hex value, we write it followed by an H; 49H means 49, hex.
Although hex notation is prominently used in programming, it is really
only a shorthand way to write out binary values.

Octal notation is commonly used in programming some computers.
This notation looks at only three bits at a time, and translates each group
of three bits into an octal digit, 0-7. Each character identifies one of eight
patterns (not one of sixteen as with hex), and writing out the value in a
byte takes three characters rather than two. Octal notation is not used in
this book.

Many times we are interested in the number represented by a
pattern of bits. To translate a binary pattern into a decimal number we
start with the rightmost position in the binary number (the units position).
A 1 in the units position has the value one. The position next to it is the

Bit Pattern Decimal Equivalent Hex Digit

Pos’n value : 8421

0000 0 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 5
0110 6 6
0111 7 7
1000 8 8
1001 9 9
1010 10 A
1011 11 B
1100 12 C
1101 13 D
1110 14 E
1111 15 F

Listing 1-3. Binary, decimal, and hex numbers

Computer Numbers n

twos position; a 1 in the twos position has the value two. The next
position is the fours position, and so on using a greater power of two for
each position. Looked at in this way, every binary number can be
translated into decimal by translating each position into a decimal
number and adding the results. For instance, 1110 read from right to left
means “0 ones, 1 two, 1 four, and 1 eight” Translating this into decimal is
simple: 0 + 2 + 4 + 8 = 14.

Another way to look at the same thing is to think of the bit positions
strictly as successive powers of 2. This is the system used in talking about
bit positions in a byte.

Binary number:) 1 | 0o 1 0 1 0 1 O

Power of 2: 7 6 5 4 3 2 1 0

The “0Oth” (or rightmost) bit position has the value 2° the next position
over has value 2!, and so on up through 27, or 128. So “there’s a 0 in bit
position 4” means that the fifth position from the right has a 0 in it.

Representing Numbers

There are problems with representing numbers in pure binary form.
For one thing, we've only talked about representing integers; no fractions
or numbers with decimal points have been discussed. Also, most people
don’t work in binary, so numbers have to be converted back and forth on
their way in and out of the computer.

One way to simplify number representation is to make the computer
use base 10, as most people do. This is done using BCD (Binary Coded
Decimal) notation. The 80386 includes hardware support for BCD arith-
metic in a series of “ASCII Adjust” instructions that use the AL register
to do BCD math two digits at a time.

In “packed BCD” four bits represent one digit, 0-9. As the figure
above shows, four bits can hold sixteen different patterns (as in the hex
digits 0-9 plus A-F), yet we only need ten of them (the decimal digits 0-9),
so each BCD digit is wasting some of the available storage capability. An
even worse problem comes when we try to do math with these numbers,
because the computer automatically treats them as binary numbers,
producing results that make no sense for BCD digits. Although we’ll go

12

Assembly Language Basics

.

into binary math in more detail below, let's add two BCD digits to
illustrate this problem.

Binary math: 1000 (8 BCD) + 0100 (4 BCD) = 1100 (? BCD)

The sum of the two numbers is 12, but by the rules of BCD, 12 is too large
a number to fit in a single, 4-bit BCD digit What we want is for the
computer to do a carry for us whenever the result of adding two BCD
digits results in a number above 9 (which no longer fits in a single digit):

BCD math: 1000 (8 BCD) + 0100 (4 BCD) = 0001 0010 (12 BCD)

The ASCII Adjust instructions automatically note when an addition
or other arithmetic operation has caused a discrepancy between binary
rules and BCD rules, and make the needed adjustments. Note that two
packed BCD digits fit in a single byte, so with BCD notation a single byte
can express any number from 00 through 99; in binary the same byte can
express any number from 0 through 255. BCD causes a loss of storage
capability.

If enough RAM is available to make up for the wasted space caused
by BCD digits, and if speed is not of the essence, BCD math is very
effective for results that need to be in a human-understandable format.
To store large numbers we can just use more BCD digits as needed, and
to handle numbers with decimal points we simply agree on a convenient
format that tells us where to place the decimal point for each number.
BCD works well for dollars-and-cents applications, where it’s unusual to
find a number of much more than 15 digits and precision all the way
down to the cents columns is very important.

However, for large numbers (as used in science and other applica-
tions) we need a format that stores very large numbers in a fixed
number of bytes and doesn't just keep adding to the amount of storage
needed as numbers get larger. The answer here is to use a floating-point
format. Almost all floating-point math is done through prewritten software
packages, and you’ll need to learn the rules of any such package you
wish to use.

Computer Numbers 13

Floating-point numbers are an agreed-on format for storing large
numbers in a limited number of bits. For instance, a 32-bit floating-point
number might have this format:

First bit: sign bit of fraction
Next 8 bits: exponent
Next 23 bits: fraction

It is assumed that the number we’re representing is in the form:
(4+/— 1.fraction) X (2*/~ exponent)

This is much like the scientific notation you might have learned in
school. Since the “1” at the start of “1.fraction” and the “2” as the base for
the exponent are always the same, they’re not included in the floating-
point number. Also, a trick involving the largest number that can fit in
8 bits allows the sign of the exponent to be deduced, so it’s not explicitly
stored in the number either.

The advantage of floating point numbers is that any number between
about 1/2'28 and 1x(2'%”) can be represented in a mere 32 bits, so we can
express (if sometimes inexactly) numbers as small as about 1 over a 1
followed by 38 zeros, and as large as about 1 followed by 37 zeros.
However, the floating-point representation is not precise since the frac-
tion part of the number is 23 bits, not 128. Thus a floating-point number
is usually a rounded number. Precision can be improved greatly by using
64 or 80 bits instead of 32, but precision loss remains in many cases. The
adjustments needed to make a binary-based computer do floating-point
arithmetic are so complicated that such math is almost always done
through calls to prewritten software packages or math coprocessors.

Translating Large Binary Numbers

When working with computers we end up talking a lot about large
binary numbers. The 80386, for example, handles data in 32-bit chunks,
and the largest number we can express in 32 bits is:

Binary Math 15

1+0=1
1+ 1=0,carryof 1

We can add any two binary numbers just by repeatedly applying these
rules for one pair of bits at a time, starting with the two rightmost digits

Number of bytes Decimal equivalent Name

20 1

2! 2

22 4

23 8

24 16

2° 32

28 64

27 128

28 256

2° 512

210 1,024 1 kilobyte (kilo = thousand)
2n 2,048 2 Kb
212 4,096 4 Kb
213 8,192 8 Kb
21 16,384 16 Kb
2% 32,768 32 Kb
216 65,536 64 Kb
2Y 131,072 128 Kb
218 262,144 256 Kb
210 524,288 512 Kb
220 1,048,576 1 megabyte (mega = million)
21 2,097,152 2 Mb
22 4,194,304 4 Mb
2% 8,388,608 8 Mb
2% 16,777,216 16 Mb
2% 33,554,432 32 Mb
2% 67,108,864 64 Mb
2% 134,217,728 128 Mb
228 268,435,456 256 Mb
2% 536,870,912 512 Mb
2% 1,073,741,824 1 gigabyte (giga = billion)
23 2,147,483,648 2Gb
2% 4,294,967,296 4Gb

Listing 1-4. Powers of 2 and Bytes

16

Assembly Language Basics

and working left (just as with two decimal numbers). The only complica-
tion is the carry generated when we add two 1’s; the trick is to make sure
to add the two digits in the operands first, yielding a one-bit result, then
add the carry to this result to determine the final value (and whether or
not there’s a further carry). Here’s an example:

1100110
110111

10011101

This is the equivalent of adding (0 + 2 + 4 + 0+ 0 + 32 + 64 =) 102 and
(1+2+4+0+16 + 32 =) 55, with a resultof (1 +0+4+8+ 16 +
128 =) 157, as expected.

Subtracting Binary Numbers

Subtraction is less intuitively obvious than addition. The four pos-
sibilities when subtracting one binary digit from another are:

0—0=0
0—1 =1, borrow 1
1—-0=1
1—1=0

We can subtract by repeatedly applying these rules to two binary
numbers, starting at the rightmost end, just as in addition. Again, subtract
the two bits in the operands first, then subtract any borrow from the
result. When the result of subtracting two digits is a 1 and a borrow is
applied, the result becomes 0; when the result of subtracting two digits is
a 0 and a borrow is applied, the result is 1 and a further borrow is
generated.

1100110
110001

110101

Binary Math 17

Here’s how an internal dialogue of someone doing this subtraction in his
or her head might go:

“Ones position: 0 —1 =1, borrow 1.
Twos position: 1 — 0 = 1, subtract borrow, result is 0.
Fours position: 1 —0 =1.
Eights position: 0—0 =0.
Sixteens position: 0 —1 = 1, borrow 1.
Thirty-twos position: 1 —1 = 0, subtract borrow, result is 1 with
a borrow of 1.
Sixty-fours position: 1 — 0 = 1, subtract borrow, result is 0.”

This is the equivalent of subtracting 49 from 102, with the result (32
+16 + 0+ 4+ 0+ 1 =) 53, as expected. This process is complicated
enough that people often do binary subtraction by converting both
operands to decimal, doing the subtraction, then converting the result to
binary again. Another technique is to convert the second operand to its
opposite (negate it), then add the two numbers together, using the
addition technique. This is the technique used inside the 80386 and other
processors in its family.

Negative Binary Numbers

So far we've only dealt with positive numbers, and we've used as
many bits to represent a number as it needed; the first bit is always 1,
because it's useless to write leading zeros. In most systems which can
handle positive and negative numbers, however, a leading 1 always
indicates a negative number. In order to express both kinds of numbers,
we agree in advance that all numbers will be (for example) eight bits
long, and that leading zeros will be written out, as in 00000100 (the
binary representation for 4 in decimal).

Several different ways exist to describe negative numbers. The
simplest is to put an additional bit in front of each number to represent
the sign of the number, a 0 bit for positive, a 1 bit for negative, with the
bits after the first one representing the number’s size. This is called
“sign-magnitude representation,” meaning “a sign bit in front, plus several
bits to represent the magnitude.” However, the addition and subtraction

Assembly Language Basics

rules described above, which are the simplest possible, don’t work for
sign-magnitude numbers unless adjustments are made. Another problem
is that there are two equivalent ways to represent zero: 00000000 (or 0),
and 10000000 (or “negative zero”); both mean the same thing. The
floating-point representation described above is a modified form of
sign-magnitude representation; it's compact but difficult for doing arith-
metic.

Inside the 80386, as in most computers, negative numbers are
represented by a method called “two’s complement” notation. We use
this notation because the same simple math rules apply to both positive
and negative two’s complement numbers. Positive numbers in two’s
complement are exactly the same as in regular binary notation: 4
decimal is 00000100 binary; 11 decimal is 00001011 binary. Zero is
00000000.

To form a negative number we construct a positive number of the
same magnitude and then flip (ie, negate or invert) every bit, which
yields “one’s complement” notation, then add one to this result. Here are
two examples of forming negative two’s complement numbers:

Start with decimal number: —4 —11
Write out positive number in binary: 00000100 00001011
Negate each bit (one’s complement): 11111011 11110100
Add 1 (two’s complement): 11111100 11110101

There are a couple of things worth noting. Each negative number in two’s
complement starts with 1, so the lead bit serves as a sign bit; the negative
numbers work fine for the computer but are hard for a person to convert
to decimal. The simplest way to do this for negative two’s complement
numbers is to find the absolute value of them by reversing the process
above: negate each bit and then add 1 to get the positive component
(magnitude or absolute value) of the negative number. The resulting
positive binary number is then easy to convert to decimal.

Here are two examples of arithmetic with two’s complement num-
bers:

11001000 (—56) 11101111 (—17)
+ 01101001 (105) — 00000011 (+3)

00110001 (+49) 11101100 (—20)

20

Assembly Language Basics

arithmetic, as do carry and overflow. These are discussed in detail in
Chapter 2.

Sign Extension

So far all our examples of binary math have dealt with numbers
that can be represented in an eight-bit byte. The 80386 also uses words
(two bytes) and doublewords (four bytes) in its hardware. Often, we need
to convert a byte to a word or doubleword (called a dword).

This is simple for positive numbers; just add zeroes to the left end of
the number. The byte 00010011 (19 decimal) becomes the word 00000000
00010011 (19 decimal), for instance. Negative numbers in two’s comple-
ment representation are a little more complicated. If we add zeroes to the
left end of a negative number, it changes completely; 11101101 (—19
decimal) becomes 00000000 11101101 (237 decimal). Luckily, there is a
simple rule called sign extension that fits smaller operands into larger
ones while preserving both magnitude and sign. Just take the leftmost bit
of the smaller data type (i.e, byte or word) and repeat it in the extra bits
of the larger data type (i.e, word or dword). The byte 00010011 (19
decimal) still becomes 00000000 00010011 (19 decimal), but the byte
11101101 (—19 decimal) becomes 11111111 11101101 (—19 decimal) as a
word. The 80386 allows you to either zero extend (the added bits become
zeroes) or sign extend (the added bits are copies of the leftmost bit) when
moving a byte into a word or a doubleword, or moving a word into a
doubleword.

Binary Logic

Some words we use somewhat loosely in English (such as “and,” “or,”
and “not”) have precise meanings in computer math as logical operators
on numbers. Listing 1-5 shows what different logical operators do when
applied to different combinations of bits.

One way to remember these rules is to think of the 0’s as representing
false English statements (like “all hair is green”) and the 1’s as represent-
ing true statements (like “the earth is round”). Substitute these statements
for the 0’s and 1’s on the left hand side of the equations in Listing 1-5 to
make sentences. The equation is true if the resulting sentence is also true.
For example, 0 AND 0 becomes “all hair is green AND the earth is
round;” this is false because all hair isn’t green.

Binary Math Applications 21

NOT0=1 NOT1=0
(result is opposite of operand)

0ANDO=0 0AND1=0 1ANDO=0 1AND1=1
(result is 1, or True, if and only if both operands are True)

OOR 0=0 OOR 1=1 10R 0=1 10R 1=1
(result is 1, or True, if either operand is True)

OXOR0=0 0XOR1=1 1XOR0=1 1XOR1=0
(result is 1, or True, if one and only one operand is True)

Listing 1-5. Binary Logic

This trick doesn’t work as well for XOR, which is short for “eXclusive
OR” and means “either one, but not both.” As we start using non-English
constructions like XOR and construct statements that combine two or
more operators in one statement (NOT 0 OR 1), it becomes easier to
simply memorize and apply rules like those in Listing 1-5 than to
construct increasingly convoluted sentences as examples.

We can apply these logic rules to bytes as well as bits. Simply line
the bytes up as if you were going to add them, then use the rules above
on each pair of bits in turn. Since there is no carry, it doesn’t matter
whether the comparisons start with the two leftmost bits or the two
rightmost bits. Listing 1-6 shows the results of applying the NOT, AND,
OR, and XOR operators to byte operands.

These operators work the same way on operands of any number of
bits as long as both operands are of the same length.

NOT 11001010 AND 11001010 OR 11001010 XOR
01010110 01010110 01010110 01010110
10101001 01000010 11011110 10011100

Listing 1-6. Examples of NOT, AND, OR, XOR

Microprocessor Basics 27

programmer can both write data to and read data from, and read-only
memory (ROM), which can only be read. RAM generally loses its contents
when power is turned off or the computer is rebooted, while ROM keeps
the same contents at all times. The other parts of a computer in which we
are interested are its I/O ports, through which data is sent and received
between the CPU and the outside world. Figure 2-1 depicts the relation-
ship between these different parts of the computer.

The distinction between memory and I/0 ports is becoming blurred
because much I/O is memory-mapped; the contents of locations in RAM
control what is output (memory-mapped video displays) or reflect what is
input (memory-mapped keyboard input). In these cases I/O is handled
just by reading and writing values in memory put there automatically by
an input device or transferred automatically to an output device. The
only other use of I/O by many programs is to write to and read from a
disk. This is largely accomplished by calls to the operating system, which
accesses code in ROM to make the transfers.

Memory
ROM
1/0 Ports

RAM

+ A

v 4

Data Bus
Registers ALU Control
CPU

Figure 2-1. The CPU plus I/O and memory

The Fetch-Decode-Execute Cycle and the 80386 29

incremented. The Program Counter tells the computer where to look for
its next instruction. As the counter is incremented by the same amount
for each fetch, instructions are executed in the order in which they're
stored in memory. This only changes when a “jump” instruction or a
“call” to a subroutine forces a brand new value into the Program Counter,
causing the program to get its next instruction from some new location.

The other consideration is that many instructions have operands that
are stored in memory when the instruction is brought into the CPU. For
instance, an ADD instruction might add two numbers, one of which is in
memory. The value in memory must be brought into the ALU so it can
be operated on. Thus, the fetch-decode-execute cycle comes to look more
like a fetch-increment program counter-decode-get operand from memory-
execute cycle. Instructions with an operand in memory can start taking a
long time to complete.

The 80386 gets around this complication by using a technique
called “pipelining” While one instruction is being fetched another is
being decoded and a third is being executed. Five or six instructions are
typically in one or another of these stages at any given time. Pipelining is
discussed in great detail in Chapter 7; the important thing to understand
for now is that most of the time the 80386 finishes executing one
instruction and then immediately starts executing a new one that has
already been fetched and decoded.

The 80386 Processor

The 80386 processor is divided up into functional pieces called
“units.” The only one the programmer has direct control over is the
Execution Unit, which contains the chip’s onboard storage registers and
arithmetic hardware, plus the controller that actually causes instructions
to execute. Besides the chip the most important element of the computer
is main memory, usually in the form of RAM. In the rest of this chapter
we're going to talk a little bit about the 80386’s ALU, and a lot about its
registers and communications with memory. The areas talked about the
most are the ones that an applications programmer has the most control
OVer. :
The 80386’s Execution Unit includes a fast adder, which works with
32-bit values, and a 64-bit barrel shifter, which can shift or rotate a 32-bit
operand by up to 31 bits in either direction. The important thing to know
for programming purposes is that adds and shifts are among the fastest
instructions, especially if the operands are in registers.

30

80386 Applications Architecture

The 80386’s Applications Register Set

The 80386 has many registers; most are accessible to applications
programmers, a few are used only by systems programs. The applications
register set includes the general registers, the segment registers, the flags
register, and the instruction pointer. These are discussed below.

“Base register set” is another term used to describe some of the
registers found on the 80386. The base register set is a core group of
registers that are found on each and every member of the 8086 family.
These include the lower 16 bits of the applications registers along with
the machine status word (covered in Chapter 6).

The 80386 has eight general registers. The registers are each 32 bits
wide. The full 32-bit registers have names starting with E (for Extended):
EAX, EDX, ECX, EBX, EBP, ESI, EDI, and ESP (Figures 2-2 and 2-3). The
lower 16 bits of each of these registers can be addressed using the same

31 15 7 0
| AH | AL]
(Accumulator) AX
EAX
31 15 7 0
| BH [BL |
(Base) BX
EBX
31 15 7 0
| | CH T |
(Count) CX
ECX
31 15 7 0
| I DH | DL |
(Data) DX
EDX

Figure 2-2. 80386 Data Registers

The Fetch-Decode-Execute Cycle and the 80386 31

31 15 ' 0

(Stack Pointer) SP
ESP

31 15 0

(Base Pointer) BP
EBP

31 15 0

(Source Index) SI
ESI

31 15 0

(Destination Index) DI
EDI

Figure 2-3. 80386 Pointer and Index Registers

names as on earlier 8086-family chips: AX, DX, CX, BX, BP, SI, DI, and SP
(the same names without the E). Finally, the first four 16-bit registers can
each be addressed pairs of byte-sized registers: AH and AL name the high
(bits 8 through 15) and low (bits 0 through 8) halves of AX; the same
pattern is used for DH and DL, CH and CL, and BH and BL, each naming
one of the two bytes in the corresponding 16-bit register.

All of the registers are doubleword addressable (names starting with
E, for Extended); they are accessible as full-sized 32-bit registers. For a
register to be “dword addressable” means that a single command (for
example, MOV EAX, 1) affects a whole doubleword (or dword). The lower
half of each register is word addressable (accessible as a 16-bit register).
A dword-sized register that is “word addressable” can have values put in
its lower word without affecting the upper 16 bits of the dword. When we
wish to refer to a register in either its 32-bit or 16-bit form (whichever is
more convenient for the programmer) we put the E in the name in

32

80386 Applications Architecture

parentheses: (E)AX means “EAX or AX, whichever is needed.” The first
four registers are “byte addressable” in their first two bytes.

Despite the fact that these are general registers, each has specific
uses. Operations like ADD allow the programmer to name any two
registers as operands. Operations like PUSH, for instance, assume that the
location in the stack which the operand will be pushed to is pointed at
by SP. Because of this type of assumed use, each register is reserved for
certain purposes when needed:

(E)AX, or the Accumulator register, is used for BCD math.

(E)BX, or the Base register, is used as a base for address calculations.

(E)CX, or the Count register, is used as a counter for string operations.

(E)DX, or the Data register, holds data for any of several different kinds of
operations.

(E)SP, or the Stack Pointer, has the current offset of the top of the stack.

(E)BP, or the Base Pointer, can point to the base of a data area.

(E)SI and (E)DI, or the Source and Destination Index, are used when
moving strings to point to the source string and the destination string.

Further details on the uses of each register are given in chapter 4.

The segment registers on the 80386 are used to name the starting
points in memory of different pieces of code and data (Figure 2-4). There
are six segment registers, each with a different purpose. CS is the starting
address of a program’s code, DS of its data, and SS of its stack. ES, FS and
GS are all extra segments for additional data structures; of these only ES
is used specifically by certain instructions.

An applications program often doesn’t need to modlfy the segment
registers, which can be completely controlled by the operating system.

15 0
CS Code Segment
DS Data Segment
SS Stack Segment
ES Extra Segment
FS | Additional Extra Segment
GS Additional Extra Segment

Figure 2-4. The Segment Registers

34

80386 Applications Architecture

Reserved for Intel

Some bits have been reserved for Intel; bits 31 through 18, the first 14
bits of EFlags, are always 0. Bits 15, 5, and 3 are also always 0, and bit 1
is always 1. These bit positions are reserved for Intel use. If you use these
bits and other “reserved for Intel” bits your programs will probably work
on current versions of the 80386, but may run into trouble on later Intel
chips.

Systems Flags
VM (VIRTUAL MODE) FLAG, BIT 17

0 = Protected Mode, 1 = Virtual 8086 Mode

The Virtual Mode flag indicates whether your program is running in
Virtual 8086 Mode (discussed in Chapter 5). You generally won’t be able
to examine this bit or the next one while in Real Mode.

R (RESUME) FLAG, BIT 16

= no fault, 1 = debug fault
The Resume flag turns off debugging temporarily when a program
resumes just after a debugging exception.

NT (NESTED TASK) FLAG, BIT 14

0 = current task not nested, 1 = current task is nested
NT, for Nested Task, indicates whether the current task is running
“beneath” some other task; it affects how the IRET instruction operates.

IOPL (/O PRIVILEGE LEVEL) FLAG, BITS 13 AND 12

0 = current task has highest I/O priority, 1 = second highest, 2 = third
highest, 3 = lowest I/O priority

The two bits in the IOPL are used by the processor and the operating
system to determine your application’s access to I/O facilities. Allowed
levels range from 0 (most privileged) to 3 (least privileged).

I INTERRUPT) FLAG, BIT 9

A Bit-By-Bit Look at EFlags 35

0 = external interrupts disabled, 1 = enabled

The Interrupt flag controls whether or not the CPU will respond to or
ignore external interrupts. Exceptions (caused directly by the running of
a program) and nonmaskable external interrupts are unaffected by this
flag. Programs which will run on multitasking systems, as many 80386
programs will, should modify this flag as infrequently as possible.

T (TRAP) FLAG, BIT 8

= no trap, 1 = interrupt after each instruction
The Trap flag causes an exception to be generated by every instruc-
tion; this is used for single-stepping instructions when debugging.

Status Flags

Status flags (used directly by applications programs) are set or
cleared by some 80386 instructions, especially arithmetic ones.

Once conditioned the flag can be examined by the programmer to
help determine what the program will do next Specific instructions
cause the flags to be changed in specific ways, so while each flag has a
general function, the exact meaning of the flag’s status depends on the
instruction that has executed most recently.

O (OVERFLOW) FLAG, BIT 11

0 = no overflow, 1 = overflow occurred

The overflow flag is set (put to 1) when the result of some arithmetic
operation is too large (needs too many bits) to fit in the result; if the result
fits, the 0 flag is cleared.

S (SIGN) FLAG, BIT 7

0 = high bit is 0, 1 = high bitis 1

The Sign flag has the same value as the high bit of an instruction’s
result. When using signed numbers this high bit indicates the sign of the
destination operand: 1 if negative, 0 if positive.

Z (ZERO) FLAG, BIT 6

36

80386 Applications Architecture

0 = last result not 0; 1 = last result was 0

Zero is set to 1 (True) if the result of an operation is zero, and is set
to 0 (False) if the result is nonzero. Thus the Z flag is only 0 when the
result is nonzero.

A (ADJUST OR AUXILIARY CARRY) FLAG, BIT 4

0 = no internal carry, 1 = internal carry

This bit is called the Adjust flag (or Auxiliary Carry flag). It indicates
whether an “internal carry” has occurred. If a BCD add or subtract causes
a carry or borrow from the fourth bit of the operand into the fifth bit, the
A flag is set; otherwise it is cleared.

P (PARITY) FLAG, BIT 2

0 = low byte even parity, 1 = low byte odd parity

The setting of the Parity flag depends on the low-order eight bits
of a result. If 0, 2, 4, 6, or all 8 bits in a byte are set to 1, the Parity flag is
cleared and parity is even. If the low byte has an odd number of bits set
to 1 (1, 3, 5, or 7 bits), the P flag is set and parity in the byte is odd.

C (CARRY) FLAG, BIT 0

0 = no carry from high bit, 1 = carry :

This flag indicates whether an addition or subtraction has caused a
carry or borrow from the high bit of the destination into what would be
the next higher bit if there were one.

Control Flags

Control flags affect string instructions only.

D (DIRECTION) FLAG, BIT 10

0 = auto-increment string instructions, 1 = auto-decrement

The Direction flag controls the “direction” of string operations. When
the D flag is cleared these operations process strings from low memory
up towards high memory. When this flag is set strings are processed from
high to low memory.

38

80386 Applications Architecture

whether it is approaching a segment boundary and switch to a new
segment at the appropriate time. This checking and switching greatly
slows access to these large structures. Updating a video screen, for
example, must be done very quickly to prevent visible flickering. A 1,024
by 1,024 pixel screen might need one byte to describe each pixel (on, off,
blinking, and brightness are among the possible parameters for even a
noncolor screen). This means that 1 Mb of RAM is needed to support the
screen, far more than the 64 Kb limit of one data segment; this is the
same as the amount of memory an 8086 can address at all, leaving no
room in memory for programs or data!

Addresses for data are calculated by using the DS (or sometimes the
ES) register and an offset; addresses for stack operations are calculated
with the SS register and SP (the Stack Pointer) In each case the
maximum segment size is 64 Kb.

The 80286 and the 80386 both have Real Modes, in which they
operate this same way. In Protected Mode, however, things are different.
On the 80386 we can take advantage of the larger 32-bit registers to
implement a flat memory model.

In a flat memory model there are no segments (or if you prefer there
is one large segment that holds everything). Memory is treated as one big,
unbroken expanse. This is the memory model used by the 68000 and
other popular microprocessors. To implement it on the 80386 we just set
all the segment registers to 0. All the registers that are used as offsets
when we calculate addresses (the Instruction Pointer (EIP), the Stack
Pointer (ESP), and the other general registers) are 32 bits wide. Thus the
most memory we can address is 23 bytes, or 4 Gb; this is 4 billion bytes,
or over 4,000 times more than can be addressed by the 8086.

If we wish we can also use a segmented memory model in 80386
Protected Mode, just as on the 8086. However, the address calculation
method is different. Segment registers aren’t added directly to offsets to
calculate an address. Instead the segment register is used as a selector or
pointer into a list of “segment descriptors.” The descriptor contains
several pieces of information about the segment, including the base
address and length of the segment. This is described in detail in Chap-
ter 5.

Control, Test, and Debug Registers

These registers aren’t generally used by applications programs.
However, they are important to understand because they are used to

Flat and Segmented Memory 39

support the operating system, coprocessors, debuggers, and other parts of
the environment your programs are developed and run in.

There are four Control Registers that can only be accessed by
variants of the MOV instruction. For example, MOV EAX, CRO will load
EAX with the contents of CRO, the first control register; MOV CR3, EBX
will load CR3, the last control register, with the contents of EBX. These
variants of MOV can be used only at privilege level 0. CRO contains
several flags of interest.

PG (PAGING ENABLE) FLAG, BIT 31

0 = no paging, 1 = paging on

When this flag is on the processor uses the paging tables, which are
used for Virtual Memory and other purposes to determine what address
to use. When it’s off the paging tables are unused.

ET (EXTENSION TYPE) FLAG, BIT 4

0 = 16-bit (80287) coprocessor, 1 = 32-bit (80387) coprocessor

The setting of this flag tells the 80386 which type of coprocessor is
available, a 16-bit 80287 or a 32-bit 80387. The 80386 uses a 16-bit
protocol in the first case, a 32-bit protocol in the second.

TS (TASK SWITCHED) FLAG, BIT 3

0 = no task switch, 1 = task switched
When this flag is on, a task switch has just occurred. This flag affects
coprocessor and other instructions.

EM (EMULATION) FLAG, BIT 2

0 = no emulation of coprocessor, 1 = emulate coprocessor

The ESC command is generally used to transfer control to the
numeric coprocessor. If EM is set when ESC is executed an exception is
generated to allow an exception handler to emulate the numeric coproces-
SOr.

MP (MATH PRESENT) FLAG, BIT 1

0 = no coprocessor, 1 = coprocessor present

40

80386 Applications Architecture

The 80386 tests this flag when executing a WAIT instruction. If set
the TS flag is tested; if that is also set exception 7 is generated, which
should cause the coprocessor to be made available.

PE (PROTECTION ENABLE) FLAG, BIT 0

0 = Real Mode, 1 = Protected Mode (includes Virtual 8086 Mode)

The setting of this flag indicates whether the processor is in Real
Mode or Protected Mode. Note that Virtual 8086 Mode is a subset of
Protected Mode.

All 32 bits of the second control register (CR1) are currently reserved
by Intel. CR2 is used when paging is on; when a page fault occurs
(typically because a needed page is not in memory) the linear address
that triggered the fault is stored here. The upper 20 bits of CR3 are also
used for paging; they hold the base address of the paging directory. The
lower 12 bits of CR3 are undefined.

The debug registers (Figure 2-7) are a vital element in the advanced
debugging capabilities of the 80386. The registers themselves are described
briefly below. The Resume and Trap bits in the EFlags register, also used
in debugging, are described above.

The four Debug Address Registers (DR0-DR3) contain addresses of
breakpoints. The addresses can be either real addresses or indexes to the
page tables, depending on whether or not paging is enabled. Since
different tasks can use different paging tables, a bit in DR7 (see below)
tells whether the addresses in DR0-DR3 apply to all tasks or to the current
task only. The addresses are actual addresses and apply to the current
task when the processor is in Real Mode, since paging and multitasking
are both unavailable. Thus applications programs can use the debug
registers directly.

Depending on the settings of the flags in DR7, the four addresses in
DRO-DR3 can cause a break in execution when the data in them is
executed, overwritten, or either read or written.

Registers DR4 and DR5 are reserved by Intel. Register DR6 is the
Debug Status Register, and contains several bits of interest. The low-order
bits, BO through B3, indicate which set of conditions caused a break.
Likewise BD, BS, and BT (bits 13, 14, and 15) indicate conditions in the
debug registers, whether a single-step exception occurred, and whether
the new TSS invoked by a task switch has its T bit set, causing a break
on the attempt to switch to the task.

Register DR7, the Debug Control Register, helps turn debugging

Flat and Segmented Memory 41

31 15 0
LEN RW LEN RW |LEN RWLENRW |000000GL|GLGLGLGTL|DR
3 3 2 2 1 1 0 0 E E 33221100
0000O0O0CODO 0000O0O0CODO BBBOOOT OO O 000O0BBBSB DR6
T S D 3 210
RESERVED DR5
RESERVED DR4
DR3
BREAKPOINT 3 LINEAR ADDRESS
DR2
BREAKPOINT 2 LINEAR ADDRESS
DR1
BREAKPOINT 1 LINEAR ADDRESS
DRO
BREAKPOINT 0 LINEAR ADDRESS

Figure 2-7. Debug Registers

features on and off. The fields LENO-LENS specify the length of the data
item to be monitored at the address specified in D0-D3. R/'W 0-3 tell
under which conditions a given Debug Address Register will cause a
break, on instruction execution only, on data writes, or on either reads or
writes. If the value in one of the four R/W fields is 0 (break on instruction
execution) the corresponding LEN field should also be 0 (no length
specified).

The four bits GO through G3 specify for each register (D0-D3)
whether it is globally enabled (accessible by all tasks). LO through L3
specify whether each of the address registers is locally enabled; that is,
accessible specifically by the current task. LO-L3 are changed at each
switch to a new task, but are overridden by a 1 in the corresponding
flag (GO-G3).

Because of the pipelining feature of the 80386 the processor may
cause a breakpoint by prefetching an instruction. Since several instruc-
tions in a row may be in the chip’s pipeline, the offending instruction
may even be one that would not normally have been executed. If LE or
GE is set, prefetching is turned off, slowing execution but ensuring that
only the instruction which is currently being executed can cause a break.
LE is cleared at a task switch, but GE is not.

42

80386 Applications Architecture

The two test registers are accessed by variants of the MOV instruc-
tion. They allow data to be written to and read from the Translation
Lookaside Buffer, which is used to speed paging. They are of potential
help in writing test programs for the hardware and even in writing
optimization routines for paging. They are probably not of much use to
the typical applications or systems programmer, however, so they won’t
be explained in more detail here.

Memory Management Registers

There are four registers that describe data structures used by an
operating system to manage memory. They will be described briefly here
and mentioned again elsewhere in the book. The important thing to
know is that the 80386 can be running several tasks at once and that
each task is made up of several segments; each segment has a descriptor
that gives its size and other important information. Multitasking is
described in Chapter 5.

IDTR The Interrupt Descriptor Table Register points to the table of entry
points for interrupt handlers.

GDTR The Global Descriptor Table Register contains the descriptors of
segments that are available to any of the (possibly many) tasks running
on the computer.

LDTR The Local Descriptor Task Register contains the descriptors of
segments that are available specifically to the currently running task.

TR The Task Register holds a copy of the descriptor of the current task
and describes where the descriptor itself is stored in memory.

Data Types

The basic data types of the 80386 are those found on the chip
itself—Dbits (the smallest unit of data for any computer), bytes (as used in
AL, AH, and other byte-sized registers), 16-bit words (as in AX, BX and
other 16-bit registers), and dwords (the size of all the physical registers,
EAX, ESP, etc.). This can be confusing because a computer’s “word size”
is typically the size of its data bus and/or internal registers, and the 80386

Flat and Segmented Memory 43

is 32 bits throughout. However, a 16-bit quantity is still called a word for
consistent usage throughout the 8086 family. Other data types are derived
from these basic ones, either by interpreting the data in one of the basic
types or by combining the basic types to form larger units.

When we deal with memory the 80386 actually reads and writes
dwords (four-byte chunks), but particular bytes can be updated indepen-
dently of the dword they’re in. To the programmer memory is made up
of a long series of bytes, each with its own address.

Below is a list of the data types supported by the 80386. Much of this
list will be a review to the experienced assembly language programmer,
but it's important that these terms be completely understood.

The bit is the smallest unit and can have a value of 0 or 1. When
examining bits in the EFlags register these values can be thought of as
False (0) and True (1).

The byte is the basic organizational unit, consisting of eight bits. It
can be seen in several different ways:

1) An unsigned number from 0 to 255. Every bit from the lowest (bit
0) to the highest (bit 7) represents a successive power of 2. These
values can also represent ASCII characters, with a letter, numeric
digit, or special character assigned to each of the values from 0 to
255.

2) A signed number from —128 to +127. The high-order bit (bit 7)
represents the sign of the number, a high-order 1 represents a
negative number, and the remaining bits represent the magnitude
of the number. Two’s complement notation is used to determine
the bit pattern that represents negative numbers (see Chapter 1).
It's important to note that the bit pattern 11111111 represents
either the unsigned number 255 or the signed number —128,
depending only on how it’s interpreted.

3) A BCD digit. This is just like an unsigned number but with values
restricted to the range 0 through 9. A single byte can also contain
two packed BCD digits, each taking up four bits (a nibble).
Commands found on all 8086-family processors support packed
BCD arithmetic.

The 16-bit word can, of course, contain two bytes, each of which may
have any of the formats above. Looked at as a single quantity the word
can be interpreted in two ways:

44 80386 Applications Architecture

1) A 16-bit unsigned number ranging in value from 0 to 65,535 (64
K). Again, every bit represents a power of two; the bits are
numbered from 0 (lowest) to 15 (highest).

2) A signed number, with bit 15 treated as a sign bit, from —32,768
to 32,767. If bit 15 is 1 the number is negative; if bit 15 is 0 the
number is positive.

A 32-bit dword, besides containing any of the data types above, has
several possible types of values. These values have extra importance
because the 80386 has 32-bit registers, a 32-bit data bus, and a 32-bit
address bus. Thus the 32-bit data types represent the largest numbers and
addresses the 80386 can handle at top speed. They have two possible
interpretations:

1) A 32-bit unsigned number ranging in value from 0 to 23 — 1
(about 4 billion). This many bytes is called 4 gigabytes, and is the
most memory the 80386 can address directly. 32-bit unsigned
numbers are also called near pointers, as they can point to any
location within a given segment.

2) A 32-bit signed number, with bit 31 treated as a sign bit, ranging
in value from 2% to 2% — 1, a range between about —2 billion and
+2 billion. Again, a high bit value of 1 indicates a negative
number.

There are several data types made up by repeating one of the basic
data types:

1) The bit field is a series of contiguous bits (each next to the others)
within a dword. The bit field starts anywhere within a dword, but
doesn’t extend past the end of the dword it starts in. The maxi-
mum length of a bit field is anywhere from 1 to 32 bits, as
determined by its starting point in the dword. The EFlags register
is made up of a series of bit fields.

2) The term “string” is used in a general sense to mean a contiguous
series of bits, bytes, words, or dwords. A bit string may contain up
to 232 — 1 bits; other strings may contain up to 232 — 1 bytes. A
character string is a string of bytes each containing an ASCII
character.

The 8087 uses two additional large data types not normally found in
80386 programming: a 64-bit (8-byte) quadword (qword) and an 80-bit
long quantity called a tbyte.

Flat and Segmented Memory 45

Addressing Modes

Some instructions in an assembly-language program operate on data
that is contained in the instruction itself (immediate data), or on data that
is in one of the processor’s registers, and thus do not access memory. The
addressing mode in which data from a register is used directly is called
Register Operand Mode; when data is contained in an instruction itself it
is called Immediate Operand Mode. The command MOV AX, 7FH gets
its destination operand from Register Operand Mode and its source
(second) operand by using Immediate Operand Mode.

When a computer program reads data from memory or writes data
to memory, it must tell the computer what location in memory to use.
The simplest assembly-language statements name the location to be used
directly. For instance, ADD AX, ANADDRESS refers to a previously
specified location in memory, ANADDRESS.

Effective programming requires that there be several different ways
to name a memory location. There are four possible elements within an
assembly language statement that are combined to determine the ad-
dress to be used. This calculated or “effective address” is combined with
the appropriate segment register to determine the address that is actually
used. These four elements are:

1) Base. This is the contents of one of the general purpose registers. It
is used as a starting point; other elements are added to it to form
the effective address. The beginning location of an array might be
placed in a register for use in this way.

2) Displacement. The displacement is the address of a location in
memory. The displacement can be 8, 16, or 32 bits long.

3) Index. As with based addressing, the contents of a general purpose
register are used to produce an effective address. When 16-bit
operands are in force SI and DI are used for indexing; with 32-bit
operands any register but ESP can be used.

4) Scaled. If the index is a 32-bit quantity it may also be multiplied
by 2, 4, or 8. This is useful in accessing arrays with elements of
fixed size.

An effective address is calculated by combining the elements listed
above in a straightforward way:

EA = Base Register + (Index Register * Scale factor) + Displacement

46

80386 Applications Architecture

The formula is simplified when not all elements are used. If there is no
index, for instance, the EA is just Base + Displacement. Here are some
examples of how each mode is used and how the different modes can be
combined:

1)

2)

3)

4

5)

6)

7)

Direct addressing includes both register and immediate operands;
no memory access is needed.
Memory uses a displacement only. The displacement is typically
indicated by a label; the distance from the current instruction to
the label is calculated and used as the offset to use in accessing
memory.
Indirect uses the contents of a register as an address. The register
being used for indirection is placed in brackets. For example,
MOV AX, BX will move the contents of BX into AX. MOV AX, [BX]
will move the contents of the memory location indicated by BX’s
contents into AX.
Based addressing allows a constant to be added to the value in a
register and the resulting sum used as the effective address. The
register + displacement expression is placed in brackets. MOV
AX, [BX +°4] will take the contents of BX, add 4 to it, and then use
the result as the effective address. The quantity at this address
will be moved into AX

The remaining modes all use indexing. The index is placed
in brackets after the base it will be added to; only indexes can be
scaled (multiplied by 2, 4, or 8).
Indexed addressing adds a direct address and an index to produce
the effective address. ADD ECX, TABLE[SI] will add SI to the
value of TABLE to calculate an effective address. The number at
the effective address will be added to ECX.
Index combines a base in a register and an index in a register.
MOV ECX, [EDX] [EAX] will add the contents of EAX to the
contents of EDX and use the result to calculate an effective
address. When 32-bit operands are used indexes can also be
scaled.
Scaled index mode allows the index to be multiplied by 2, 4, or 8
before it is used; ADD ECX, TABLE[ESI * 8] will multiply the
value in ESI by 8, add it to the address represented by TABLE,
and use the result as an effective address. This is especially
effective if the data items being used are 8 bytes long.

Flat and Segmented Memory 47

Besides the modes listed here, any combination of bases, indexes
(whether scaled or not), and displacements can be used. Address calcula-
tion is done while the processor is doing other things, so even the most
complex address takes no extra time to calculate. There is one exception;
if a base, an index, and a displacement are all present, the instruction as
a whole will take one extra clock to execute.

Interrupts and Exceptions

An interrupt is an alteration in the normal flow of program execu-
tion. Interrupt handling capabilities are built into the 80386; the first thing
the processor does when executing an instruction is check for interrupts.
The interrupt (which can come from outside the program or be caused by
executing an instruction) causes a table of interrupts to be accessed; the
table points to a routine that serves as an “interrupt handler,” presumably
doing whatever is necessary to resolve the interrupt. There are three types
of interrupts on the 80386. The first is called an “exception” and is caused
by the execution of an instruction. The INT instruction, for example,
actually causes an exception when executed. The handling of interrupts
varies among different operating systems; A list of real mode exceptions
is provided in Table 2-1.

There are four types of exceptions: aborts traps, faults, and pro-
grammed exceptions (also called software interrupts). An abort is the
most serious; it is an exception that doesn’t allow the instruction that
caused it to be identified, nor does it allow restarting the program that
triggered it. This is the case when some element of the computer system
behaves unexpectedly, meaning that not only is the current instruction
causing problems, but previous results may have been incorrect. Hard-
ware errors (not I/O device errors) and inconsistent values in system
tables are often reported with aborts.

A trap is an exception reported just after the offending instruction
has finished executing. A fault, on the other hand, is reported just before
an instruction begins to execute or during execution of the instruction.

A software interrupt is caused by an instruction designed to cause an
exception some or all of the time. INT 3, INT n, INTO, and BOUND are
the instructions designed to sometimes or always cause exceptions.

Hardware interrupts are of two main types: maskable interrupts
(which can be recognized or not depending on the setting of the I flag)
and nonmaskable interrupts (which must always be recognized). Inter-
rupts are recognized by the 80386 at the very beginning of executing each

48

80386 Applications Architecture

Number Description Instruction
0 Divide error DIV, IDIV
1 Debug exception Any
2 Non-maskable interrupt
3 Breakpoint INT 3
4 Overflow INTO
5 Array boundary check BOUND
6 Invalid opcode Undefined opcode (includes
LOCK with wrong
instruction)
7 Coprocessor not available ESC, WAIT
8 Interrupt vector too large for INT
table
9 Reserved
10 Invalid TSS Any task switch
11 Segment not present Many
12 Stack boundary crossed PUSH, POP, PUSHF, POFF,
(Stack access, offset less PUSHA, POPA
than 0 or greater than
64 Kb)
13 General protection (Data or Many
code access, offset > 64 Kb,
or instruction length greater
than 15 bytes)
14 Page fault (page not Many
present)
15 Reserved
16 Coprocessor error ESC, WAIT
17-31 Reserved
32-255 Available for maskable

interrupts

TABLE 2-1. Interrupt ID Numbers and Descriptions

instruction; a non-masked hardware interrupt will cause an interrupt
handler to be called with no intervention from the program, regardless of
what the program is doing at the time. Maskable interrupts are signalled
via the 80386’s INTR pin; non-maskable interrupts are signalled via the
NMI pin, although these interrupts actually are masked during handling
of a previous non-maskable interrupt.

As Table 2-1 shows, all non-maskable interrupts are assigned iden-
tifier 2, but maskable interrupts can use any identifier from 32 through

Flat and Segmented Memory 49

255. These numbers are assigned using an external interrupt controller
(for example, an Intel 8259A Programmable Interrupt Controller). Each of
these can handle up to eight interrupts, and one controller can have
another controller as one of its inputs. This is known as using “cascaded”
interrupt controllers. The arrangement of the controllers is transparent to
the programmer, who knows an interrupt only by its number. Interrupts
of all types are little different on the 80386 than on previous members of
the 8086 family. One of the big differences is the problems that can be
caused by one task altering the I flag in a multitasking system, as
described in Chapter 6.

Particular interrupts are used for important functions like coproces-
sor handling and protection. We will discuss interrupts as they arise in
connection with other subjects, but will not cover their use in detail.

Data Movement Instructions 53

before calling a procedure. The instruction is also useful for tempo-
rarily storing something on the stack.

POP The POP instruction removes the top entry from the stack and
moves it to the destination operand. The instruction is used to restore
values saved on the stack by a PUSH instruction.

PUSHA and PUSHAD The PUSHA and PUSHAD (push all) instruc-
tions are used to place all eight general registers on the top of the
stack. The difference is that PUSHA pushes the 16-bit registers and
PUSHAD (PUSH All Doubleword) pushes the 32-bit registers. These
instructions are very useful in the preamble of a procedure to save
the state of the registers for the caller.

POPA and POPAD The POPA and POPAD (pop all) instructions are the
complements of the PUSHA and PUSHAD instructions. Their func-
tion is to restore all eight general registers to the values they had
before the corresponding push all. Again, the POPA operates on the
16-bit registers and the POPAD operates on the 32-bit registers.

The example below shows an easy and a hard way to swap the

contents of two registers. Notice how the stack is used in Case 1 to avoid
the use of a memory location.

State Before

EAX | 00000117
EBX | 00002F3E

Case 1
PUSH EAX : Save contents of EAX on the stack.
MOV EAXEBX ; Get EBX contents into EAX
POP EBX ; Get old EAX contents into EBX.
Case 2

XCHG EAXEBX ; Swap contents of EAX and EBX.

Standard Arithmetic Instructions 55

divisor, the quotient, and the remainder. Only the location of the di-
visor is specified. All the other operands are located implicitly, based
on the size of the divisor.

IDIV The IDIV (integer division) instruction performs identically to the
DIV instruction except that IDIV performs a signed divide.

NEG The NEG (two’s complement negate) instruction is used to change
the sign of its single operand. The operand may be either a register or
memory location.

CMP The CMP (compare) instruction is identical to the SUB instruction
in all respects except one: it does not store the result. The instruction
is used to compare two numbers in preparation for one of the condi-
tional jump instructions (see below).

ADC The only difference between the ADC (add with carry) instruction
and the ADD instruction is that the former adds the value of the carry
bit into the sum. This feature makes it useful for multiple precision
arithmetic.

SBB There is only one difference between the SBB (subtract with bor-
row) instruction and the SUB instruction: SBB subtracts the value of
the carry bit from the difference. This feature makes it useful for mul-
tiple precision arithmetic.

To appreciate the difference between ADD and ADC consider the
following example:

State Before

EAX | FFFFFFFO MEMLOC| 000027DA
EDX | 00002F3E MEMLOC+4| 00000117
Case 1

ADD EAXMEMLQC ; Add first pair of DWORDS.
ADD EDXMEMLOC+4 ; Add second pair of DWORDS.

Guide to the Instructions

State After (Case 1)

EAX | 000027CA MEMLOC | 000027DA
EDX | 00003055 MEMLOC+4 | 00000117

Case 2

ADD EAXMEMLOC ; Add least significant DWORD.
ADC EDXMEMLOC+4 ; Add most significant DWORD.

State After (Case 2)

EAX | 000027CA MEMLOC | 000027DA
EDX | 00003056 MEMLOC+4 | 00000117

The following example illustrates the difference between the signed
and unsigned multiply instructions:

State Before

DL | 12

Case 1
MUL ALDL ;132x18 = 2376.

State After (Case 1)

ax [o9ss |

Standard Arithmetic Instructions 57

The value in AX is 948H or 2376 decimal.

Case 2

IMUL ALDL ;-—124+18 = — 2232.

State After (Case 2)

AX | F748

The following example illustrates the difference between the signed
and unsigned divide instructions:

State Before

AX | O04BF
DL 9A

Case 1

DIV ALDL ;1215/154 = 7, Remainder 137.

State After (Case 1)

AX | 8907
AH 89
AL 07

AL contains the quotient; AH contains 89H or 137 decimal, the remainder.

Data Conversion Instructions

59

CWD The CWD (convert word to dword) instruction has the same goal
as CWDE but behaves differently. It is also meant to convert a signed
word to a signed dword, but the result is placed into two registers

(unlike CWDE). The DX register is filled with the sign bit from AX.

CDQ The last of the conversion instructions is CDQ (convert dword to
qword). This instruction fills the EDX register with the sign bit of the

EAX register.

The following example illustrates the instructions in this group:

State Before

EAX
EBX
ECX
EDX

Instructions

FACEFFFO

5A5A5A5A

ACACACAC

12345678

MOVSX EAXMEMLOC
MOVzZX EBXMEMLOC
MOVSX ECXMEMLOC2
MOVZX EDXMEMLOC2

State After

EAX
EBX
ECX
EDX

FFFFFF3E

0000FF3E

000007DB

000007DB

MEMLOC
MEMLOC2

; Move (sign extend) from MEMLOC.

FF3E

07DB

; Move (zero extend) from MEMLOC.
; Move (sign extend) from MEMLOC2.
; Move (zero extend) from MEMLOC2.

MEMLOC
MEMLOC2

FF3E

07DB

Logical Instructions 61

LOGICAL INSTRUCTIONS

This group of instructions is used for two purposes: it provides the
operations used on Boolean (sometimes called logical) values, and also
provides ways to access and manipulate bit fields within bytes, words, or
dwords.

AND The AND instruction performs a logical “and” function on its two
operands. This instruction is useful for clearing a bit field to zero.

OR The OR instruction performs a logical “or” function. The common
usage with bit fields is to set the value of the field by first using AND
to clear the field and then using OR to store the desired value.

NOT The NOT instruction (one’s complement negation) takes only a
single operand. This instruction reverses all the bits in its operand.

TEST The TEST (logical compare) instruction performs identically to
AND except that the result is not stored. This instruction is useful for
testing the value of a bit field for zero (or non-zero).

XOR The XOR instruction provides the logical “exclusive or” function.
The main value of the instruction with bit fields is to complement
only the bits in a given field.

SETxx The SETxx instructions are used to remember the result of some
comparison. The “xx” is replaced by one of a large set of possible
comparison conditions. If the comparison is true then the destination
operand is set to one. The destination is set to zero if the comparison
is false.

The following example shows the effects of the four major logical
instructions using identical operands. If you have difficulty understand-
ing the results of these operations, try converting the hexadecimal num-
bers to binary. This exercise will give you a better appreciation for the
operations involved.

State Before

AX MEMLOC1 | C3C3

MEMLOC2 | C3C3
MEMLOC3 | C3C3

Shift and Rotate Instructions 63

the carry flag is shifted into the other end of the operand. The most
common use of these instructions is for multiple precision shifts (of
all three kinds).

SHRD and SHLD The last of the shift instructions are the double preci-
sion shifts SHRD and SHLD. These are also useful for multiple preci-
sion shifts, but work in a different way than the rotate through carry
instructions. These instructions have three operands: source, destina-
tion, and shift count. The destination is shifted and bits “fall off” one
end, but the vacated bits are filled with bits from the source. The
source is unchanged.

The following example illustrates the difference between the normal
rotate instructions and the rotate through carry instructions:

State Before

AX | 6699
FLAGS | 0202

Case 1

ROR AX. ; Sets overflow, carry unchanged.

State After (Case 1)

AX | B34C
FLAGS | 0A02

Case 2

RCR AX1 ;Clears overflow, sets carry.

Flag Control Instructions 65

Instructions

BSR EBXEAX ;EBX = bit number of most significant one.
BTC EAXZ22 ;Change bit 22 from one to zero.
BSR ECXEAX ;EBX = bit number of most significant one.

State After

EAX | 000037BF
EBX | 00000016
ECX | 0000000D
FLAGS 0203

FLAG CONTROL INSTRUCTIONS

This group of instructions allows the programmer to monitor and
control the 80386 flags. There are two sub-groups; one contains instruc-
tions that address an individual flag, and the other contains instructions
that address the flags as a whole.

There are seven instructions that reference an individual flag. The
CLD and STD instructions clear and set the flag which controls the
direction of the string operations. The CLI and STI instructions clear and
set the interrupts enabled flag. The CLC and STC instructions clear and
set the carry flag. In addition, the CMC instruction is also provided to
complement the value of the carry flag.

The LAHF instruction loads the least significant byte of the flags into
the AH register. The SAHF instruction, on the other hand, stores the data
from the AH register into the low byte of the flags register. There are four
instructions that move flags to and from the stack. The PUSHF and
PUSHFD instructions push the FLAGS and EFLAGS registers (respec-
tively) onto the stack. The corresponding pop operations are performed
by POPF and POPFD.

String Instructions 67

instructions are most useful, however, when used with one of the repeat
prefixes.

REP, REPE, REPZ, REPNE, and REPNZ The repeat prefixes allow the
string instruction that follows to be executed a controlled number of
times. The REP prefix causes the following string instruction to be
executed the number of times in the ECX register. The REPE and
REPZ prefixes are synonyms. They cause the instruction to repeat
until either the count is exhausted or the instruction ends with the
Z flag set to zero. The other two repeats (REPNE and REPNZ) work
just like REPE except that the loops they are used in exit when the
Z flag is set to one.

MOVS The MOVS instruction simply moves a string of data from one
spot in memory to another. Care must be taken to achieve the desired
result when the two strings overlap. The direction flag is useful for
this situation.

CMPS The CMPS instruction is used to compare two strings. The REPE
or REPNE prefix is used to terminate the comparison at the point
of interest.

STOS The STOS instruction is useful for filling a string with a constant
value. It transfers the contents of the appropriate part of the EAX
register into each element of the string.

SCAS The SCAS instruction is similar to STOS in the way that CMPS is
similar to MOVS. SCAS compares each element of the string with
the contents of the suitable part of the EAX register. Normally REPE
or REPNE are used with this instruction.

LODS The LODS instruction is atypical of this group in that it is not
usually used with a repeat prefix. It merely loads the next element of
the string into some part of the EAX register.

The following example uses the MOVS instruction to illustrate the
general principles of the string instruction group:

Assumptions

STRING 1 is at offset 100H in segment 151H.
STRING 20 is at offset 105H in segment 151H.
The D (direction) flag is set to 0 (forward).

Flow Control Instructions 69

Jxx

the JMP that indicates which instruction is to be executed next. The
assembler then generates the correct form of JMP based on its
knowledge of the location of the named statement.

The next type of control transfer is the conditional jump, the Jxx
instructions (where “xx” is replaced by a code for the particular con-
dition to be tested). See Chapter 4 for an explanation of all of these
codes. Generally the programmer does a comparison (or any instruc-
tion which sets some flags) and then issues a conditional jump caus-
ing the program to change locations based on a bit in the FLAGS
register.

CALL The CALL instruction is used to implement procedures (some-

times called subroutines, subprograms, or functions). It transfers
control in a manner similar to JMP. However, just before the trans-
fer, information is placed on the stack so that the CALLed pro-
cedure can cause instruction execution to resume at the instruction
following the CALL. The RET (return) instruction is used to perform
this action.

LOOP, LOOPE, LOOPZ, LOOPNE, and LOOPNZ The loop instructions

help in the construction of many program loops. The LOOP instruc-
tion is used to execute a loop the number of times specified by the
ECX register. The LOOPE and LOOPZ instructions have the addi-
tional constraint that the loop will terminate when the zero flag is
zero. The LOOPNE and LOOPNZ instructions are similar to LOOPE
and LOOPZ except that a zero flag of one will cause the loop to
terminate.

INT, INTO, IRET, and IRETD The final form of control transfer is the

interrupt. These will be only briefly treated here, as they are covered
in more detail in chapter 5. The INT instruction causes a system
interrupt procedure to be activated. The INTO instruction causes
interrupt procedure 4 to be activated if the overflow flag is set. Inter-
rupt procedures are normally provided by the operating system. The
interrupt procedure will return to the calling program with one of the
return from interrupt instructions (IRET or IRETD).

The flow control instruction example deviates from the form of our

other examples. This one consists of a program fragment written in a
higher-level language and the assembler code that might be generated by
the compiler. Note that the high-level code is intentionally not the best
possible code to sum the odd numbers between 1 and 10.

CHAPTER 4 e

The 80386
Instruction Set

HOW ASSEMBLY LANGUAGE WORKS
WHAT IS AN INSTRUCTION'S FORMAT?
TIMING INFORMATION

THE 80386 AND OTHER iAPX 86 CHIPS
THE INSTRUCTIONS

So far we've tried to take a gentle approach to some intimidatingly
technical subjects. With its high-level capabilities, the 80386 has the most
advanced ideas in computing burned into its silicon; yet, because it is
compatible with earlier Intel efforts, it also embodies a history of
microcomputing. Programming the chip to its capabilities therefore re-
quires drawing on a large body of knowledge, some of which is sum-
marized in the preceding pages. Having a firm grasp of this general
knowledge enables the programmer to act as an architect, designing a
program or set of programs that will fit the user’s needs while getting the
most out of the hardware resources at hand.

A large amount of programming time is spent grinding out solutions
to problems after the design work is done—get the data into the chip, shift

75

76

The 80386 Instruction Set

or multiply or add it, then store or print it In this effort the chip’s
instruction set is the programmer’s toolbox. Knowing when to use a
rubber mallet (perhaps a Shift instruction) and when to use a 5-pound
sledge (like the Multiply instruction) can make a big difference in how
the final product looks and works.

This chapter is a list of tools. The instruction set is the closest most
of us get to the actual inner workings of the chip. A working knowledge
of factors like timing and at least a general understanding of instruction
sizes is important to anyone wanting to be a competent assembler pro-
grammer. Working assembler programs can be written by those who
know only a small subset of the instruction set and are aware that
assembler programs run faster than high-level language programs, but
don’t know why. This approach may be sufficient when writing small
program loops in assembler to be combined with large high-level
language programs. However, those who want to go beyond this minimal
approach and write medium or large programs that get the most out of
the machine would do well to spend some time with this chapter, trying
previously unused instructions in small programs and putting some
thought into how to write efficient code.

The efficiency comes from knowing how quickly each of a program’s
routines will execute. For a very simple example, let’s say you're convert-
ing an 8088 program to the 80386 and optimizing it where possible. The
8088 program at one point has to multiply a number by 10, and does so
by shifting the number left by three bits (same as multiplying by 8) and
then adding the original number to the result twice (this equals multiply-
ing by 10). At 14 clocks this multistep process is far more efficient than
using the 8088’s MUL instruction (which takes 70 or more clocks to exe-
cute) if all the numbers are in registers. On the 80386 the same multistep
process takes 9 clocks, but using an IMUL instruction would require only
10 clocks. Given the simplicity and directness of using a single instruc-
tion, the IMUL is a better choice.

Figure 4-1 shows the fact that the 80386’s instruction set is “flat” in
terms of execution time; that is, the slower and the faster instructions
aren’t too far apart in speed. Of course it also illustrates the fact that the
80386 is much faster than the 8088. On the 80386 IDIV (or Integer
DIVision), for instance, only takes 6 times as long as a CMP (CoMPare).
On the 8088, by contrast, an IDIV takes 19 times as long as the CMP. On
the older chip a good way to speed up your program was to replace a
slow instruction with a bunch of fast instructions (for example, doing
three ADDs instead of MULtiplying by 3). Another good trick was to use

78 The 80386 Instruction Set

run and how big they are. If you're writing a subroutine that will be used
by others, including timing and size information with the routine’s
documentation will make your program much more usable by later
programmers.

HOW ASSEMBLY LANGUAGE WORKS
-

Your assembly language program is not really the lowest possible
level of programming. First, the assembler translates your program into
the “formats” described below. The instruction POPA, for instance, is
translated into a byte containing 61 hex. Other instructions are longer
because they need to include memory addresses or register designations.

These assembled instructions make up “object code,” which is in
“machine language.” Using the information in this chapter you can
predict exactly what machine language code a given instruction will
produce once it's assembled. Compilers produce machine language ob-
ject code too, but it tends to be less efficient than assembler-based code
because compilers aren’t as smart as humans.

Simpler chips have very simple assembly languages and assembler
programs. The 6502, for instance, has only two general registers. Very
specific instructions like TXY (transfer the value in the X register to the Y
register) are used and each instruction has one machine language coun-
terpart (or perhaps a few, each using a different addressing mode). The
80386, on the other hand, has many registers and many addressing
modes. To transfer any register to another (or to memory, or to transfer
from memory to the register) we use the MOV instruction followed by the
registers we wish to move information from and to. This means that the
MOV instruction has many machine language counterparts, depending
on the type of move (register to register in this case) and which addressing
modes are used. Different versions have different formats and lengths. The
important difference between assembly language and a high-level
language is that every instruction in assembler translates into a single
machine language instruction, although which one is used depends on
such things as which register is used. In high-level language most single
instructions translate into several machine language instructions.

Just how integral, how “built-in” is the assembly language of a
processor? The secret’s in the “microcode” included with most modern
processors. Microcode is a “program” running in the chip that decodes

\¥hat is an Instruction’s Format? 79

the object code presented to it and performs the desired functions.
Microcode is a tool of the hardware designers that allows them to simplify
and modularize their chip design to make it easier to work with.

WHAT IS AN INSTRUCTION’S FORMAT?

An instruction’s format is just the translation of the instruction into
0’s and 1’s. For much assembly language programming there’s no need to
be concerned about formats. However, when trying to read hex dumps
knowledge of instruction formats is necessary, and the only way to patch
an existing program is by using knowledge of the formats to change the
instructions themselves.

Most 80386 instructions have many different formats because they’re
really many different instructions. To the chip, adding a number from
memory into one in a register is much more complicated than adding
two values in registers. The prefetcher, for instance, has to try to steal
bus cycles to go get the operand from memory while some other
command is executing, which can affect prefetch efficiency. The various
80386 assemblers are very powerful and keep the programmer a healthy
distance from the bit-level operations of the chip. This is usually a good
thing. To better understand the formats used by each instruction we’ll
look at the elements a machine language has to have to make a

. computer get things done.

First there is the instruction itself, often called the opcode (short for
operation code). Are we asking the computer to move information? To
add two numbers together? To transfer program execution to a new
location? The opcode tells the computer what we’re going to do. In
several cases the opcode is all that the computer needs to get the needed
task done. For instance, the instruction STC (SeT the Carry bit) requires
only an opcode since its operation is implicit in the instruction itself. The
instruction format is very simple: OF9H. At one byte this is as small as any
instruction on the 80386, and executes in a mere two clocks.

Besides the opcode the computer needs to know where to find its
operands—the parameters or arguments needed to complete the instruc-
tion. There are two techniques used by 80386 instructions to encode this
information. The first is simple, the second more complex.

Some instructions use bits in the opcode to specify a register
operand. The PUSH command (which puts a number on the stack) has

80

The 80386 Instruction Set

one operand. If the number being PUSHed is a register, a number telling
which register to push is included in the opcode: 50H pushes the AX
register, while 51H pushes the CX register. The last three bits tell which
register to push. Again, these instructions are one byte long and take two
clocks to execute.

Instructions that have more than one operand or an operand in
memory use the more complicated scheme to specify their operand
location. For these instructions there is an another byte following the
opcode byte that is called the ModRM byte. This byte is formatted as
follows:

ModRM Byte
mod | reg I r/m
7 6 5 4 3 2 1 0

The three fields in the ModRM byte each play a different role in
specifying the operands of the instruction.

The “r/m” field occupies the least significant three bits of the byte. It
specifies either one of the eight general registers or one of 24 addressing
modes, depending on the value of the “mod” field.

The “reg” field is contained in the next three bits in the byte. For
instructions with two operands, it specifies a register number. For single
operand instructions this field acts as an extension of the opcode, further
specifying the exact nature of the instruction.

The most significant two bits of the byte are occupied by the “mod”
field. Of its four possible values, one indicates that the “r/m” field contains

- a register number. The other three values are used to select one of three

groups of eight addressing modes.

Now to return to our example of the PUSH instruction. If the number
being pushed is in RAM, we need to tell the computer where to find the
number that it's going to push. In this case, the instruction goes like this:
OFFH mod 6 r/m. The instruction itself is the first byte (all 1’s), plus three
bits in the middle of the second byte (110). The “mod r/m” bits (two for
mode, three for register/memory) tell the addressing mode and where in
memory to get the number from. Then, the actual address in RAM to get
the number from is given. With all the work that goes into decoding this
instruction, it’s surprising that the instruction executes in only 5 clocks—on
the 8088 it takes more than 16 clocks.

Timing Information 81

Some of the addressing modes mentioned above require even more
information to successfully locate the desired operand. When a ModRM
byte specifies an addressing mode that requires this information, it is
followed by another byte. This extra byte is called the SIB byte for Scale,
Index, and Base. Its format is:

SIB Byte
scale index base I
7 6 5 4 3 2 1 0

As in the ModRM byte, the three fields in the SIB byte each specify
a different item of information about the addressing mode.

The “base” field is contained in the least significant three bits of the
byte. It specifies the register that will be used as the base register.

The index register is specified in the “index” field, which occupies
the next three bits in the SIB byte.

The “scale” field resides in the most significant two bits of the byte.
It gives the scale factor used for indexed addressing modes.

Speaking of software evolution, an experienced programmer can see
many evidences of change over time just by looking at the instruction
formats for the 80386. For instance, the new Bit Test instructions (which
test and change individual bits) might be expected to be as short as
possible. After all, these instructions will be much-used and they perform
straightforward functions. However, these instructions actually all start
with the same first byte (OFH) and it takes another byte to specify which
instruction is being used, plus more bytes for address and immediate
data. Compared to similar instructions the extra byte seems to make
these instructions take an extra cycle to execute.

Precise directions for decoding the information given in the format
section included with each instruction are given just before the start of
the listings of the instructions themselves.

TIMING INFORMATION
-

The timing data given with the instructions ranges from very precise
to surprisingly vague, considering that we’re dealing with assembly

82

The 80386 Instruction Set

language (which gives us the most precise control over the machine that
we can hope to get). Of course, instructions like CLC (Clear the Carry bit),
which always do the same thing in exactly the same way, always take the
same amount of time (two clocks in this case). Instructions that can use
either registers or memory as operands vary tremendously in the amount
of time they take to execute. In a way, such an instruction is actually
several different instructions depending on where its operands are com-
ing from. Thinking of it as a single instruction is a powerful tool for
making programming easier but distances us from what’s actually hap-
pening inside the chip. It takes a fair amount of work to adjust your
thinking down to the machine level when trying to calculate how long an
instruction will take to execute. The information given for each instruc-
tion gives the various forms an instruction can take and timing informa-
tion for each.

Also complicating matters is the fact that the timing information
given below isn't precise; most programs take about 5 percent longer to
execute than they should based on the timing information given below.
The details of this are interesting and depend directly on the way the
80386 is designed, but if you don’t often have cause to time your
programs or write timing-critical loops you might wish to skip the
explanation below.

The reason the chip runs slow is that the times given in this chap-
ter assume that pipelining is always in effect. Pipelining, as described
previously, is the ability to fetch one instruction, decode another, and
execute a third all at the same time. This is aided by the existence
of queues, which hold several fetched instructions awaiting decod-
ing and several more decoded instructions awaiting execution. The
timing information given below assumes that pipelining is in full effect at
all times. In actuality, however, some instructions take less time to
execute than they do to fetch and decode. If several of these instructions
occur in a row the queues slowly empty as the instruction unit charges
through the simple code. Once the queues empty, the instruction unit has
to wait for at least part of the fetching and decoding time until it can do
its own thing. When this happens the chip slows down (See Figure 4-2).
Any instruction that transfers program control (such as JMP, CALL, RET,
etc.) will also empty out the queues since the fetcher doesn’t know where
the next instruction is coming from until it’s needed.

The upshot of this problem (which is not a “bug” in the 80386, but
actually just a necessary exception to its usual full-speed, pipelined
execution) is that the times given below aren’t exact. If the instruction

Timing Information 83

= ;
Prefetch Queue Instruction Queue Execution Unit
Normal Operation: Execution Unit Uses Queues

Prefetch Queue Instruction Queue Execution Unit
5 Percent of Time: Execution Unit Runs Ahead of Queues

Figure 4-2. Queues and Execution Speed

queue happens to be empty when the execution unit is ready, the next
instruction will take longer than usual to execute. How much longer
depends on how long it takes to get a decoded instruction into the queue.
On average the occasional breakdown of pipelining adds a little more
than 5 percent to the time it takes a given program to execute. If your
system has a cache memory this percentage will be less, as fetching will
execute even more quickly than usual. Of course, there’s not really such
a thing as an “average” program, so you'll have to compare your own
programs to the clock counts given below if you wish to see what effect
all this is having on your own programs.

Knowing exact timing information is unlikely to be necessary for
most programs most of the time. The “average” programmer (again,
there’s really no such thing) can get by just fine by adding 5 percent to
the calculated execution time for a given program. It's almost never
worthwhile to try and cut down this overhead by reordering instructions.

Writing a program that needs to execute in a precise amount of time
can range from frustrating (for a simple timing loop) to impossible (if
your program has to handle highly variable input data). Adding to this
frustration is the variation in times a given instruction can take to
execute, depending mostly on where it gets its operands. If your program
should take 129 cycles to execute and it’s taking 142, is the problem an
extreme example of pipelining breakdown or did you make a mistake in
adding up the cycle counts given below?

84

The 80386 Instruction Set

Really extinguishing any hopes of precisely timing some programs is
the difference in execution speeds between Real Mode and Protected
Mode. The programmer doesn’t necessarily know when coding what
mode the program will be run in, so he or she can’t predict program
execution time if some of the instructions run at different speeds in
different modes. Luckily the speeds are only different when loading
pointers (LDS, LES, LFS, LGS, and LSS) and making CALLs, JMPs, and
RETs across segments (the conditional jumps like JNE don’t go across
segments). Few programs make these types of jumps in timing-sensitive
sections, or make enough of these jumps that the added execution time
in Protected Mode is a problem.

THE 80386 AND OTHER iAPX 86 CHIPS

The 80386 programmer who is converting programs from earlier
iAPX family chips, or whose programs may later be converted to one of
the earlier chips, needs to know which instructions work on which
microprocessors. Even the 80386-only programmer will want to adapt
sections of code written for the 8086/88, saving himself much work in the
process. The earlier chapters on the iAPX 86 family included some
information about which instructions were new with each new chip.

The instruction descriptions below tell in detail which instructions
(and even which modes of a given instruction) were first seen with which
chip. Every new iAPX 86’s instruction set is a superset of the preceding
chips; which allows upward compatability of programs. In some cases
the chips are assembly language compatible but not object code com-
patible. In these cases “all you need to do” to make a program run is
to recompile its source code on the new machine. The reason for the
quotes around “all you need to do” is that it’s easy to get the source for
your own programs, but try getting a copy of the source code of Lotus
1-2-3 so you can recompile it!

Few new instructions have been added with each new chip and
operating mode. About nine out of ten of the 80386’s instructions are
unchanged from the 8086/88 (except that when run on the 80386 they
can handle 32-bit operands). Of the remaining one tenth, some have had
new addressing modes or protection considerations added, and a few are
brand new.

The 80386 and Other iAPX 86 Chips 85

Figure 4-3 shows the relationship between the various pieces of the
80386'’s instruction set. Most of the instructions come unchanged from
the 8086/88. In fact, these instructions are called the Basic Instruction Set
of the iAPX 86 family. Several new instructions of the type used in
everyday programming were added for the 80186/188, and that chip’s
operation is considerably faster than its predecessor’s.

The 80286 had no new instructions of the type programmers use
every day, but it did have new operating system type instructions for
memory management and program protection. Very few programmers
have learned to use these new instructions because few operating sys-
tems or applications programs have taken any advantage of the 80286’s
capabilities. Indeed, the 640 Kb address space limit (which MS-DOS
imposes on the IBM PC) still hasn’t been lifted as the first 80386-based
machines become available. A whole cottage industry of standards
committees and programming tips and tricks grew up among those
seeking to get beyond this limit.

The 80286 was an odd man out in other ways as well. For instance,
its onboard clock wasn’t duplicated on the 80386. The 80386, on the
other hand, is a direct descendant of the 8086 which incorporates the
lessons learned with the 80286. It has several new everyday-type instruc-
tions (as represented by the Extended Instruction Set in 80386 Real
Mode) mostly dealing with bit manipulation (something Intel’s chips had
always fallen short in compared to the competition). It also integrates
32-bit registers and data paths completely throughout the system while
still making byte and word manipulation easy.

Protected Mode Instruction Set
80386 Protected Mode

Extended Instruction Set
80386 Real Mode

Protected Mode Instruction Set
80286 Protected Mode

Extended Instruction Set
80186/88

Basic Instruction Set
8086/88

Figure 4-3. The 80386 Instruction Set and Other iAPX 86 Instructions

86 The 80386 Instruction Set

Finally, the 80386 has a complete set of memory management,
protection, virtual memory, and debugging instructions accessible mostly
through Protected Mode (as represented by the System Control Instruc-
tion Set, 80386 Protected Mode).

THE INSTRUCTIONS
]

The remainder of this chapter is a list of the instructions available in
80386 assembler language, with instruction formats, clock counts, and
other information given for each instruction. The instructions are ar-
ranged alphabetically except when extremely similar or identical instruc-
tions can be grouped on a single page. This grouping makes reading
through the descriptions easier.

Perhaps the most important sections for someone concerned about
the instruction formats are the pages just before the instructions start.
These include all the references needed to understand the abbreviations
in the formatting information.

Figure 4-4 presents a list of logical functions and their effects on bit
patterns. Several instructions implement one of these functions directly,
and many rely on these definitions in their descriptions.

The instruction descriptions have a consistent format throughout.
There are several sections that appear for each instruction. The abbrevia-
tions and formats used are described below.

The first line of each instruction’s description contains three separate
pieces of information. On the left is the instruction mnemonic normally
used by the assembler. In the middle is a descriptive title for the
instruction. On the right is the first iAPX processor on which the instruc-
tion appeared.

The first major section contains the instructions’ various opcodes,

P Q Pand Q PorQ P xor Q Not P Not Q
1 1 1 1 0 0 0
1 0 0 1 1 0 1
0 1 0 1 1 1 0
0 0 0 0 0 1 1

Figure 4-4. Logical Operations on Nibbles P (1100) and Q (1010)

The Instructions 87

the corresponding assembler format, and the execution time for the
instruction in clocks. Any of the string instructions that can be repeated
have two timing columns, one for with and one for without a REP
prefix. Certain other instructions (JMP and CALL, for instance) have an
additional column to clarify the type of the instruction used with that
opcode.

Values that may be used in the opcode column and their meanings
are:

hh Two hexadecimal digits specify a byte containing exactly that
value.

[r] A standard mod r/m byte (see above). By implication this may be
followed by an SIB byte (also above) and/or a memory offset.

[n] Where “n” is digit 0 through 7, this is a mod r/m byte with the
register field set to the digit. In this case the digit is really an
extension of the opcode.

ib An immediate value of byte length.

iw An immediate value of word length.

id An immediate value of dword length.

db An 8-bit signed value to be added to (E)IP to obtain the target for
a jump or call type instruction.

dw A 16-bit signed value to be added to (E)IP to obtain the target for
a jump or call type instruction.

d A displacement (offset) of the operand in memory within a spe-
cific segment. May be 16 or 32 bits.

dd A 32-bit signed value to be added to EIP to obtain the target for a
jump or call type instruction.

pd A 32-bit pointer. The first 16 bits are a segment selector and the
second 16 bits are the offset within that segment.

pp A 48-bit pointer. The first 16 bits are a segment selector and the
next 32 bits are the offset within that segment.

The format column uses many of the same codes as the opcode
column to represent instruction operands. These codes have the same
meaning in both columns. This column also sometimes uses specific
register names or explicit numbers to represent the operands. In addition
the following codes are also used in the format column:

r/mb The operand is the contents of the byte register or memory
location specified by the mod r/m byte.

The 80386 Instruction Set

r/mw The operand is the contents of the word register or memory
location specified by the mod r/m byte.

r/md The operand is the contents of the dword register or memory
location specified by the mod r/m byte.

rb The operand is the contents of the byte register specified by the
mod r/m byte.

™w The operand is the contents of the word register specified by
the mod r/m byte.

rd The operand is the contents of the dword register specified by
the mod r/m byte.

mb The operand is the contents of the byte at the memory location
specified by the mod r/m byte.

mw The operand is the contents of the word at the memory
location specified by the mod r/m byte.

md The operand is the contents of the dword at the memory

location specified by the mod r/m byte.

mw:w The operand is a pointer at the memory location specified by
the mod r/m byte. The pointer contains 16 bits of segment
selector and 16 bits of segment offset.

mw:d The operand is a pointer at the memory location specified by
the mod r/m byte. The pointer contains 16 bits of segment
selector and 32 bits of segment offset.

The clocks column contains the instruction execution time in ma-
chine cycles (or clocks). If there are two values separated by a “/” then the
first is the time required for register operands and the second is the time
required for memory operands. Some of the entries contain formulas
which are normally explained just below the table. However, the transfer-
of-control instructions usually contain an entry of the form “7+m.” The
“m” in this formula refers to the number of components in the next
instruction executed. A component is defined as one of the following:
each prefix byte, each opcode byte, any mod r/m byte, any SIB byte, any
displacement value, or any immediate value.

The next section describes the flags affected by the instruction. A
blank under a flag name means no change. A “0” indicates that the flag
is cleared to zero. A “1” shows that the flag is set to one. A “U” is used
when the instruction leaves the flag in an undefined state. An “S” shows
that the flag is set or cleared depending on the result of the instruction.

The next section gives the pseudocode, a semi-formal description of

The Instructions 89

the operation of the instruction. This an algorithmic description borrow-
ing forms from higher-level languages.

The function performed by the instruction is described in detail in
the operation section. Any clarification of timings, opcodes, or operands
is also given here.

All exceptions that can be generated by the instruction are listed in
the exceptions section. The modes column uses a single letter to represent
the processor mode for each exception. A “P” stands for Protected Mode,
an “R” represents Real Mode, and a “V” is used for Virtual 8086 Mode.

The user notes section contains any extra information about the
instruction. Common usage, things to beware of, and compatibility issues
are some of the things often found in this section.

Finally, each instruction has an example to illustrate its usage.
Please note that these examples are not always samples of good cod-
ing practice. They are designed to demonstrate what a particular in-
struction does.

920 The 80386 Instruction Set

AAA ASCII Adjust AL for Add 8086

Opcode Format Clocks
37 AAA 4
Flags

NT | IOPL | OF | DF | IF | TF | SF | ZF AF PF CF
0 U ujujojsjojuf1r|s
Pseudocode

If (lower nibble of AL > 9) OR (Aux Carry = 1) THEN
increment AL by 6
set upper nibble of AL to 0
increment AH by 1
set Carry Flag and Aux Carry Flag
ELSE

reset Carry Flag and Aux Carry Flag
END IF

Operation

AAA changes AL to an unpacked decimal number.

Exceptions

None

The Instructions 9N

User Notes

This instruction should be used after adding BCD digits. It converts the
results of the addition to BCD. Most programmers won’t use this instruction
much. BCD arithmetic is explained in Chapter 1.

AAA itself only handles binary to BCD conversion. To convert AL to
ASCII use OR AL48.

Example

MOV AXg8 ;Loads a BCD 8 into AL and clears AH.

ADD ALG6 ;Adds a BCD 6 to AL giving 14 (decimal).

AAA ; AX contains 104 (hex) or 14 BCD, both CF and AF
;are 1.

92 The 80386 Instruction Set

AAD ASCII Adjust AL Before Division 8086

Opcode Format Clocks
D5 0A AAD 19
Flags

NT | IOPL | OF | DF | IF | TF | SF | ZF AF PF CF
0 U S|S]J]ojujo|S]|1]U
Pseudocode

Set AL to (AL + (10 X AH))

Set AH to 0
Operation

AAD converts a number from unpacked BCD to binary. The greatest
possible value of an unpacked BCD value in a 16-bit register is 99, (a 9 in
each byte of the register), which is 63,6 This easily fits in AL,so AH is setto 0
after the conversion.

Exceptions

None

User Notes

This instruction should be used before dividing unpacked BCD digits.
Most programmers won’t use this instruction much. BCD arithmetic is
explained in Chapter 1.

The Instructions 93

The instruction itself only handles BCD to binary conversion. To
convert AL from ASCII to BCD use AND AL,15.

Example
MOV AX405H ;Loads dividend (a BCD 45) into AX.
MOV BL3 ; Loads divisor (a BCD 3) into BL.
AAD ; Converts BCD into binary, result is 45 (decimal).
IDIV BL ; Does the division, result is 15 (decimal).

AAM ; AX contains 105 (hex) or 15 BCD.

24 The 80386 Instruction Set

AAM ASCII Adjust AL after Multiply 8086

Opcode Format Clocks
D4 0A AAM 17
Flags

NT | IOPL | OF | DF | IF | TF | SF | ZF AF PF CF
0 U S|IS|]ojujo|S]|]1]|]U
Pseudocode

Divide AL by 10

Set AH to quotient (Tens digit of result)

Set AL to remainder (Ones digit of result)
Operation

Any number less than 100,, will fit easily in the AL register, which can
hold any number up to 128,,, AAM converts a numberless than 100 which is
in AL to an unpacked BCD number in AX.

Exceptions

None

User Notes

This instruction should be used after multiplying unpacked BCD digits.
The result of the MUL is always less than (9 X 9 =) 81, so the assumption that

The Instructions 95

the numberin AAL is less than 100 works out fine. Most programmers won't
use this instruction much. BCD arithmetic is explained in Chapter 1.

The instriction itself only handles BCD to binary conversion. To
convert AL from ASCII to BCD use AND AL,15.

Example

See example for AAD.

926 The 80386 Instruction Set

AAS ASCII Adjust AL after Subtract 8086

Opcode Format Clocks
3F AAS 4
Flags

NT | IOPL | OF | DF | IF | TF | SF | ZF AF PF CF
0 u ulujo|ls|iojuiji S
Pseudocode

IF (lower nibble of AL > 9) OR (Aux Carry = 1) THEN
decrement AL by 6
set upper nibble of AL to 0
decrement AH by 1
set Carry and Aux Carry Flags
ELSE
reset Carry Flag and Aux Carry Flag
END IF

Operation
AAS changes AL to an unpacked decimal number and adjusts it, using

the Aux Carry Flag to decide how much work is needed. The Aux Carry or
the size of AL’s lower nibble indicates whether a decimal carry was needed.

Exceptions

None

The Instructions 97

User Notes

This instruction should be used after subtracting BCD digits, and
converts the results of the subtraction from binary to BCD (taking the effects
of the subtraction into account) Most programmers won’t use this
instruction much, BCD arithmetic is explained in Chapter 1.

AAS itself only handles binary to BCD conversion. To convert AL to
ASCII use OR AL48.

Example
MOV AX205H ;Loadsa BCD 25 into AX
SUB ALS ; Subtracts a BCD 8 from AL giving OFD (hex).
AAS ; AX contains 107 (hex) or 17 BCD, both CF and

; AF are 1.

98 The 80386 instruction Set

ADC Add With Carry 8086
|
Opcode Format Clocks b
14 ib ADC ALjb 2 Gt
15 iw ADC AXjiw 2 adew
15 id ADC EAXid 2 e del
80 [2] ib ADC r/mb,ib 2/7 QJ.O h
81 [2] iw ADC r/mw,iw 2/7 Afe D
81 [2]id ADC r/md,id 2/7 ade |
83 [2] ib ADC r/mw,ib 2/7
83 [2] ib ADC r/md,ib 2/7
10 [1] ADC r/mbyb 2/7
11 [1] ADC r/mw,rw 2/7
11 [1] ADC r/md,rd 2/7
12 1] ADC rb,r/mb 2/6
13 [r] ADC rw,r/mw 2/6
13 [1] ADC rd,r/md 2/6
Flags
NT |IOPL| OF | DF | IF | TF | SF | ZF AF PF CF
0 S S S 0| S 0] S 1 S
Pseudocode

IF (source operand has fewer bits than destination) THEN

sign-extend source operand
END IF

Add source operand to destination, place result in destination operand
Add CF to destination, place result in destination operand

Operation

ADC adds two numbers whose values are given as operands of the
instruction, plus the value in the Carry bit. The first operand is overwritten by

The Instructions 99

the result, while the second operand is unchanged. A good translation of an
ADC instruction into English might be “Add operand number 2 into operand
number 1, then add 1 more if needed.”

Exceptions Modes Reasons

#GP(0) P Result in nonwritable segment

#GP(0) P Illegal memory effective address in CS,
DS, ES, FS, or GS segments

#SS(0) P Illegal address in SS segment

#PF(fc) PV Page fault

INT(13) RV Some part of operand is outside of

address range 0 to OFFFFH

User Notes

The ADC instruction is generally used when doing multibyte,
multiword, or multidword additions, to let the Carry bit propagate as needed
through the series of additions.

Understanding how the flags work for ADC can be very important,
especially since the result of one of the flags after an addition is often used to
decide whether to make a jump, or even as a parameterin a subroutine call.
The ADD (below) works just like the ADC but ignores the value in the Carry
bit. Anyone modifying an existing program should look at all ADC’s
following any changes to make sure the Carry bit is still set as the original
programmer had assumed it would be.

Example

MOV AX956 ;Loads a 956 (3BC hex) into AX.

MOV BX373 ;Loads a 373 (175 hex) into BX.

ADD ALBL ; Adds 0BC (hex) and 75 (hex) giving 31 (hex) with
; CF set.

ADC AHBH ; Adds 3 and 1 giving 5 (because CF was set).
: AX now contains 1329 (531 hex), the sum of 956
; and 373.

100 The 80386 Instruction Set

ADD Add 8086
]
Opcode Format Clocks
04 ib ADD AL,ib 2
05 iw ADD AXjiw 2
05 id ADD EAX,id 2
80 [0] ib ADD r/mb,ib 2/7
81 [0] iw ADD r/mw,iw 2/7
81 [0]id ADD r/md,id 2/7
83 [0] ib ADD r/mw,ib 2/7
83 [0] ib ADD r/md,ib 2/7
00 [r] ADD r/mb,rb 2/7
01 [1] ADD r/mw,rw 2/7
01 [r] ADD r/md,rd 2/7
02 [r] ADD rb,r/mb 2/6
03 [1] ADD rw;r/mw 2/6
03 [1] ADD rd,r/md 2/6
Flags
NT | IOPL | OF | DF | IF | TF | SF | ZF AF PF CF
0 S S|S S))
Pseudocode

IF (source operand has fewer bits than destination operand) THEN

sign-extend source operand

END IF
Add source operand to destination, place resultin destination operand

Operation

ADD simply adds two numbers whose values are given as operands of
the instruction. The first operand is overwritten by the result, while the

The Instructions 101

second operand is unchanged. A good translation of an ADD instruction into
English might be “Add operand number 2 into operand number 1.”

Exceptions Modes Reasons

#GP(0) P Result in nonwritable segment

#GP(0) P Illegal memory effective address in CS, DS, ES,
FS, or GS segments

#S5(0) P Illegal address in SS segment

#PF(fc) PV Page fault

INT(13) RV Some part of operand is outside of address range
0 to OFFFFH

User Notes

Understanding how the flags work for ADD can be very important,
especially since the result of the Carry flag after an addition is often used to
decide whether to make a jump, or even as a parameter in a subroutine call.
The ADC (above) even incorporates a carry from (perhaps) a previous ADD
into a subsequent add. Many fascinating and obscure programming tricks
can be executed using the flags; some of these were used to get around the
lack of bit-test instructions on Intel chips before the 80386. Some
programmers will find themselves unraveling this arcana while translating
programs to the 80386, while others will reinvent it in translating back down
to the earlier chips.

The ADD instruction should be used when possible in preference to
the ADC to avoid complications caused by the often unpredictable state of
the Carry bit.

Example

MOV AXg956 ;Loads a 956 (3BC hex) into AX.

MOV BX373 ;Loads a 373 (175 hex) into BX.

ADD AXBX ; AX now contains 1329 (531 hex), the sum of 956
; and 373.

102 The 80386 Instruction Set

AND

Logical And 8086

Opcode Format Clocks
24 ib AND AL,b 2
25 iw AND AXiiw 2
25 id AND EAXd 2
80 [4] ib AND r/mb,ib 2/7
81 [4] iw AND r/mw,w 2/7
81 [4] id AND r/md,id 2/7
20 [r] AND r/mb,rb 2/7
21 [r] AND r/mw,rw 2/7
21 [r] AND r/md,rd 2/7
22 1] AND rb,r/mb 2/6
23 [r] AND rw,r/mw 2/6
23 [1] AND rd,r/md 2/6
Flags
NT | IOPL | OF | DF | IF SF | ZF AF PF CF
0 0 S|S|oO O[S]11]0
Pseudocode

REPEAT
IF a bit in the destination operand is 1 and the corresponding bit in
the source operand is 1 THEN
leave the bit in the destination operand at 1

ELSE

clear the bit in the destination operand to 0

END IF

UNTIL all bits in destination operand are checked

The Instructions 103

Operation

AND carries out a Boolean or “logical” AND on its two operands and
leaves the result in the destination operand. This operation is depicted in
Figure 4-4, which gives “truth tables” for all logical operations. A 1 can be
regarded as T or True, while a 0 corresponds to F or False. A logical AND
takes two bits and calculates a result using this rule: If both input bits are 1,
then the output bit is 1, else the output bit is 0. The instruction AND simply
does the same operation on all the bits in each of two operands; the leftmost
bit in one operand is compared to the leftmost bit in the other, then the two
bits one position to the right are compared, until all the bit pairs have been
compared.

The use of a logical AND is much like the use of “and” in English; if you
say, “The cat is black and white,” then you are incorrect if the cat is neither
black nor white, black but not white, or white but not black.

AND can only be used with two operands of the same size (same
number of bits); otherwise the comparison would be meaningless for some
of the bits in the longer operand.

Exceptions Modes Reasons

#GP(0) P Result in nonwritable segment

#GP(0) P Illegal memory effective address in CS, DS, ES,
FS, or GS segments

#SS(0) P Illegal address in SS segment

#PF(fc) PV Page fault
INT(13) RV Some part of operand is outside of address range
0 to OFFFFH

User Notes

AND is often used to clear certain bits or to do nibble arithmetic (as in
BCD arithmetic); to clear the high nibble of a byte in AL, just use AND AL, 15.
It is also used to implement bit tests and graphics on earlier iAPX 86’s, but
these functions can be implemented with generally more efficient bit-test
commands on the 80386.

104 The 80386 Instruction Set

- Example

MOV AX5963H ;Loads a hex number into AX.
MOV BX6CA5H ;Loads a hex number into BX.
AND AXBX ; AX now contains 4821 hex.

106

The 80386 Instruction Set

maximum values of the index, not the lowest and highest points in memory
occupied by the array.

If the index is less than the first word or greater than the second, an
interrupt type 5 is generated. The BOUND instruction sets no flags and gives
no indication of which bound check failed.

Exceptions Modes Reasons

#GP(0) P Illegal memory effective address in CS, DS, ES,
FS, or GS segments

#SS(0) P Illegal address in SS segment

#PF(fc) PV Page fault

#UD P Second operand specifies a register, not memory
INT(5) PRV Bound test failed

INT(13) RV Some part of operand is outside of address range
‘ 0 to OFFFFH

User Notes

The BOUND instruction is very useful for reassuring yourself that your
program isn’t looking off the end of an array. However, the actual
implementation of the instruction is a bit troublesome. It might seem easier
to set the Overflow Flag if the bound check failed, and perhaps also set the
Sign Flag to indicate whether the index had gone too low or too high.

Instead, BOUND simply jumps to an interrupt when the check fails.
Therefore, the interrupt must be set up in advance. It can handle the error
completely or it can simply set a flag to indicate that an error has occurred,
return control to the program, and let the main program code jump on the
flag to an appropriate error handler.

Example
MOV WORD PTR BND, 0 ; Sets lower bound to zero.
MOV WORD PTR BND+2, 99 ; Sets upper bound to 99.
MOV AX,100 ; Loads value to check into

; AX.
BOUND AXBND ; Causes an Interrupt 5.

The Instructions 107

BSF

Bit Scan Forward
|

80386

Opcode - Format Clocks
'OF BC [r] BSF rw,r/mw 10+3n*
OF BC [1] BSF rd,r/md 10+3n*
*n is number of zero bits skipped
Flags
NT | IOPL | OF | DF | IF SF | ZF AF PF CF
0 S 1
Pseudocode
IF 2nd operand is zero THEN
Set ZF
Set 1st operand to an undefined value
ELSE
Clear ZF
Select low-order bit {bit 0} of 2nd operand
DO WHILE selected bit = 0 {not executed if bit 0 = 1}
Select next higher bit
ENDDO
Copy index of selected bit into 1st operand {index is 0-15, or 0-31}
END IF
Operation

BSF finds the first 1 bit in its second operand, a word or dword in a
register or memory. It starts looking at bit 0 and stops when it finds a 1 bit.
The index or bit position of this 1 bit is then placed in the second operand.

108

The 80386 Instruction Set

Exceptions Modes Reasons

#GP(0) P Illegal memory effective address in CS, DS, ES,
FS, or GS segments
#S5(0) P Illegal address in SS segment-

#PF(fc) PV Page fault
INT(13) RV Some part of operand is outside of address range
0 to OFFFFH

User Notes

Many applications are made easier with the new bit manipulation
instructions (for instance setting up allocation tables, wherein a bit’s setting
represents whether a piece of RAM or a sector on disk is in use). The BSF
command allows the first nonzero bit (perhaps the first allocated sector on
disk) to be quickly found. For example, a simple loop might find the first
nonzero word or dword in a sector allocation table, then use BSF to find the
first nonzero bit.

Example

MOV BX3CDOH ; Loads value to scan into BX.
BSF AXBX ; Sets AX to 4 and clears ZF.

The Instructions 109

BSR Bit Scan Reverse 80386

Opcode Format Clocks
OF BD [r] BSR rw,r/mw 10+3n*
OF BD [r] BSR rd,r/md 10+3n*

*n is number of zero bits skipped

Flags

NT |IOPL | OF | DF | IF | TF | SF | ZF AF PF CF
0 S 0 0 1
Pseudocode

IF 2nd operand is zero THEN
Set ZF
Set 1st operand to an undefined value
ELSE
Clear ZF
Select high-order bit {bit 15 or 31} of 2nd operand
DO WHILE selected bit = 0 {not executed if bit 0 = 1}
Select next lower bit
ENDDO
Copy index of selected bit into 1st operand {index is 0-15, or 0-31}
END IF

Operation

BSR finds the first 1 bit in its second operand, a word or dword in a
register or memory. It starts looking at the high bitand stops whenitfindsa 1
bit. The index or bit position of this 1 bit is then placed in the second
operand.

110

The 80386 Instruction Set

Exceptions Modes Reasons

#GP(0) P Illegal memory effective address in CS, DS, ES,
FS, or GS segments

#S5(0) P Illegal address in SS segment

#PF(fc) PV Page fault -

INT(13) RV Some part of operand is outside of address range
0 to OFFFFH

User Notes

Many applications are made easier with the new bit manipulation
instructions (for instance setting up allocation tables, wherein a bit’s setting
represents whether a piece of RAM or a sector on disk is in use). The BSR
command allows the first nonzero bit (perhaps the first allocated sector on
disk) to be quickly found. For example, a simple loop might find the first
nonzero word or dword in a sector allocation table, then use BSR to find the
first nonzero bit.

Example

MOV BX3CDOH ; Loads value to scan into BX.
BSR AXBX ; Sets AX to 13 and clears ZF.

The Instructions m

BT | Bit Test 80386
|
Opcode Format Clocks
OF A3 [1] BT r/mw,w 3/12
OF A3 [1] BT r/md,rd 3/12
OF BA [4] ib BT r/mw,ib 3/6
OF BA [4] ib BT r/md.,ib 3/6
Flags
NT | IOPL | OF | DF | IF | TF | SF | ZF AF PF CF
0 0 0 1 S
Pseudocode

Use the 1st operand to locate a register or a memory address.
Use the 2nd operand to select a single bit (bit 0 is the low order bit).
Set the Carry Flag to the selected bit.

Operation

Bit Test allows the programmer to select any bit in memory and put it
into the Carry Flag. The first operand is a register or memory address. The
second operand is a bit number. It can be any unsigned integer up to 8 bits
wide, but only the low order 4 or 5 bits are used depending on the size of the
first operand. The Carry Flag is then set to this bit. The bit in memory is left
unchanged.

Exceptions Modes Reasons
#GP(0) P Result in nonwritable segment

#GP(0) P Illegal memory effective address in CS, DS, ES,
FS, or GS segments

12

The 80386 Instruction Set

#SS(0) P Illegal address in SS segment

#PF(fc) PV Page fault

INT(13) RV Some part of operand is outside of address range
0 to OFFFFH

User Notes

Many applications are made easier with the new bit manipulation
instructions (for instance setting up allocation tables, wherein a bit’s setting
represents whether a piece of RAM or a sector on disk is in use). The BT
command allows quick access to any bit in the table. A more dramatic
example to the average user is the improvement in updating large video
displays made possible by the large segment size and quick bit access of
the 80386.

Example

MOV AX3CDOH ;Loads value to scan into AX.
BT AX10 ; Sets CF.

The Instructions 113

BTC Bit Test and Complement 80386

Opcode Format Clocks
OF BB [1] BTC r/mw,rw 6/13
OF BB [r] BTC r/md,rd 6/13
OF BA [7] ib BTC r/mw,ib 6/8
OF BA [7] ib BTC r/md,ib 6/8
Flags
NT |IOPL| OF | DF | IF | TF | SF | ZF AF PF CF
0 0 0 1 S
Pseudocode

Use the 1st operand to locate a register or a memory address.

Use the 2nd operand to select a single bit (bit 0 is the low order bit).
Set the Carry Flag to the selected bit.

Invert the selected bit {If it's 0 make it 1, if 1 make it 0}.

Operation

Bit Test and Complement has two functions. The first is to allow the
programmer to select any bitin memory and invert (or reverse) itin memory,
so the bit now has the opposite value it had before the command. The
second is to save the old bit value in the Carry Flag,

BTC’s first operand is a memory address or register. The second oper-
and is a bitnumber. It can be any unsigned integer up to 8 bits wide, but only
the low order 4 or 5 bits are used depending on the size of the first operand.
The Carry Flagis then set to this bit. The bitin memory is inverted (set to 0 if
it had been 1 and vice versa).

114

The 80386 Instruction Set

Exceptions Modes Reasons

#GP(0) P Result in nonwritable segment

#GP(0) P Illegal memory effective address in CS, DS, ES,
FS, or GS segments

#S5(0) P Illegal address in SS segment

#PF(fc) PV Page fault

INT(13) RV Some part of operand is outside of address range
0 to OFFFFH

User Notes

Many applications are made easier with the new bit manipulation
instructions (for instance setting up allocation tables, wherein a bit’s setting
represents whether a piece of RAM or a sector on disk is in use). The BTC
command allows any bit in the table to be quickly reversed. One dramatic
example is the improvement in updating large video displays made possible
by the large segment size and quick bit access of the 80386.

Example

MOV AX3CDOH ;Loads value to scan into AX.
BTC AX_22 ; Clears CF, sets AX to 3CD4 (hex).

The Instructions 115

BTR Bit Test and Reset 80386

Opcode Format Clocks
OF B3 [1] BTR r/mw,rw 6/13
OF B3 [r] BTR r/md,rd 6/13
OF BA [6] ib BTR r/mw,ib 6/8
OF BA [6] ib BTR r/md,ib 6/8
Flags
NT |IOPL | OF | DF | IF | TF | SF | ZF AF PF CF
0 0 0 1 S
Pseudocode

Use the 1st operand to locate a register or memory address.

Use the 2nd operand to select a single bit (bit 0 is the low order bit).
Set the Carry Flag to the selected bit.

Reset the selected bit (xMake it 0+).

Operation

Bit Test and Reset has two functions. The first is to allow the pro-
grammer to select any bit in memory and reset it (put in 0) in memory. The
second is to save the old bit value in the Carry Flag,

BTR’s first operand is a memory address or register. The second oper-
and is a bitnumber. It can be any unsigned integer up to 8 bits wide, but only
the low order 4 or 5 bits are used depending on the size of the first operand.
The Carry Flag is then set to this bit. The bit in memory is reset (cleared, or
made equal to 0).

116

The 80386 Instruction Set

Exceptions Modes Reasons

#GP(0) P Result in nonwritable segment

#GP(0) P Illegal memory effective address in CS, DS, ES,
FS, or GS segments

#SS5(0) P Illegal address in SS segment

#PF(fc) PV Page fault

INT(13) RV Some part of operand is outside of address range
0 to OFFFFH

User Notes

Many applications are made easier with the new bit manipulation
instructions (for instance setting up allocation tables, wherein a bit’s setting
represents whether a piece of RAM or a sector on disk is in use). The BTR
command allows any bit in the table to be quickly reset (thus releasing a
sector for instance). A more dramatic example to the average user is the
improvement in updating large video displays made possible by the large
segment size and quick bit access of the 80386.

Example

MOV AXZ3CDOH ; Loads value to scan into AX.
BTR AX7 ; Sets CF, sets AX to 3C50 (hex).

The Instructions 17

BTS Bit Test and Set 80386

Opcode | Format Clocks
OF AB [1] BTS r/mw,rw 6/13
OF AB [r] BTS r/md,rd 6/13
OF BA [5] ib BTS r/mw,ib 6/8
OF BA [5] ib BTS r/md,ib 6/8
Flags
NT |IOPL| OF | DF | IF | TF | SF | ZF AF PF CF
0 0 0 1 S
Pseudocode

Use the 1st operand to locate a register or a memory address.

Use the 2nd operand to select a single bit (bit 0 is the low order bit).
Set the Carry flag to the selected bit.

Set the selected bit (xMake it 1+),

Operation

Bit Test and Set has two functions. The first is to allow the programmer
to select any bitin memory and set it (putin 1) in memory. The second is to
save the old bit value in the Carry Flag.

BTS’s first operand is a memory address or register. The second oper-
and is a bitnumber. It can be any unsigned integer up to 8 bits wide, but only
the low order 4 or 5 bits are used depending on the size of the first operand.
The Carry Flag is then set to this bit. The bit in memory is set (made 1).

118

The 80386 Instruction Set

Exceptions Modes Reasons

#GP(0) P Result in nonwritable segment

#GP(0) P Illegal memory effective address in CS, DS, ES,
FS, or GS segments

#S5(0) P Illegal address in SS segment

#PF(fc) PV Page fault

INT(13) RV Some part of operand is outside of address range
0 to OFFFFH

User Notes

Many applications are made easier with the new bit manipulation
instructions (for instance setting up allocation tables, wherein a bit’s setting
represents whether a piece of RAM or a sector on disk is in use). The BTS
command allows any bitin the table to be quickly set (thus marking a sector
as allocated, for instance). A more dramatic example to the average user is
the improvement in updating large video displays made possible by the
large segment size and quick bit access of the 80386.

Example

MOV AX3CDOH ; Loads value to scan into AX.
BTS AX2 ; Clears CF, sets AX to 3CD4 (hex).

The Instructions 19

CALL Call Procedure 8086
|

Opcode Format Type Clocks

E8 dw CALL dw Near, direct 7+m

E8 dd CALL dd Near, direct 74+m

FF [2] CALL r/mw Near, indirect 7+m/10+m

FF [2] CALL r/md Near, indirect 7+m/10+m

9A pd CALL pd Far, direct 174+m,*

9A pp CALL pp Far, direct 17+m,*

FF [3] CALL mw:w Far, indirect 22+m,*

FF [3] CALL mwd Far, indirect 22+m,*

*These instructions have varying functions and timings in Protected Mode
(see Chapter 5).

Flags

Normally CALL affects no flags. However, when a task switch is made
in Protected Mode all flags are changed to the new task’s saved flags.

Pseudocode

IF inter-segment CALL THEN
PUSH CS (Code Segment) onto stack
Set CS to segment selector of operand
END IF
PUSH IP (Instruction Pointer) onto stack
Set IP to offset part of operand

Operation

The CALL instruction is used to transfer control to another part of the
program in such a way that control can be returned to the current point ata

120

The 80386 Instruction Set

later time. This facility is used to implement the procedures, functions, and
subroutines of higher level languages. It is also extremely useful in assembly
programs.

There are several types of CALL instructions, based on two different
pairs of attributes. A call may be either near or far, and either direct or
indirect. Therefore there are four different type of calls to consider.

The difference between a near and a far call is simply whether the
called procedure is in the same segment as the caller (near) or in a different '
segment (far). Fora far call the 80386 must place both the CS and IP registers
on the stack before placing the new values into them. For a near call only
IP is saved on the stack and changed.

The distinction between direct and indirect calls depends on how the
programmer specifies the address of the called procedure. In a direct call the
address is placed directly into the instruction. In an indirect call the pro-
grammer supplies a pointer to a register or memory location containing the
address of the called procedure.

A neardirect call contains a displacement to be added to IP, rather than
an offset to be stored there as in the far direct call. A near indirect call may
point to either a register or a memory location that contains the actual
segment and offset for the called procedure. A farindirect call may notuse a
register, only memory (since full pointers can be 48 bits long).

The basic procedure is the same in Protected Mode, but inter-segment
calls are much more complicated, since CALL may specify an operating
system routine or even another task. In either case memory protection must
be checked (see Chapter 5).

Exceptions Modes Reasons

#NP P Target code segment not present

#TS P Task switch required

#GP(0) P Illegal memory effective address in CS, DS, ES,
FS, or GS segments

#S5(0) P Illegal address in SS segment

#PF(fc) PV Page fault
INT(13) RV Some part of operand is outside of address range
0 to OFFFFH

The Instructions 121

User Notes

Most programmers use CALLS frequently to help get the most mileage
out of a given piece of code. The interesting problem is how to pass param-
eters to and from the CALLed routine. On the later members of the iAPX 86
family, instructions like PUSHA help in preserving register values, while
ENTER helps implement multiply nested routines. The subjects of when to
use routines versus copies of pieces of code, and when to have the same
routine copied into each segment versus using intersegment calls, are too
complex to cover here, but are worth study as a way to optimize the
efficiency of programs—especially the large programs supported easily by
the 80386.

Example

CALL SUBROUTINE

122 The 80386 Instruction Set

CBW Convert Byte to Word 8086

CWDE Convert Word to Dword 80386
|

Opcode Format Clocks
98 CBW 3
98 CWDE 3
Flags
NT | IOPL | OF | DF | IF | TF | SF | ZF AF PF CF
0 0 0 1
Pseudocode

IF operand size = 16 bits THEN (* CBW *)

Set each bit of AH to same value as highest order bit of AL.
ELSE (* CWDE *)

Sethigh order 16 bits of EAX to same value as highest order bit of AX.
ENDIF

Operation

Converting a byte to a word is done by “sign-extending” the byte. This
means that the byte’s highest-order bit (its leftmost or most significant bit) is
“propagated” or copied into every bit of the word not already occupied by
the byte. For instance, sign-extending 1111 0000 into a word yields 1111
11111111 0000, while sign-extending 0101 0101 yields 0000 0000 0101 0101.
Converting a word to a dword works in the same way.

Although it's not intuitively obvious why this works, it turns out that
sign-extending a byte yields a word with the same value as the byte. Sign-
extending just preserves the byte’s value when it is placed into a word.

The Instructions 123

Exceptions

None

User Notes

CBW and CWDE are necessary instructions for the many times when a
low-precision number needs to be converted for use in higher-precision

math.
Example

MOV ALOFCH ;Loads a —4 into AL.
CBW ; Sets AX to FFFC (hex) or a word-length —4.

124 The 80386 Instruction Set

CLC Clear Carry Flag 8086

Opcode Format Clocks
F8 CLC 2
Flags

NT | IOPL | OF | DF | IF | TF | SF | ZF AF PF CF
0 0 0 110
Pseudocode

Clear the Carry Flag to 0.

Operation

CLC simply sets the Carry Flag to zero.

Exceptions

None

User Notes

Some other microprocessors have only an ADC instruction and no ADD
instruction. On these machines using CLC or its equivalent is always
necessary. Normally this isn’t necessary on the iAPX 86s because there’s an
ADD instruction that ignores the carry when executing and conditions it
when finished executing. However, there are two ways to write loops that
add large numbers by repeatedly adding byte-sized pieces of them. One

The Instructions 125

way is to start with an ADD and then use aloop with ADC. The other way is to
just use a loop with ADC; this results in a smaller program but requires that
CLC be used before the start of the loop.

Also, unlike some other processors, the iAPX 86s require that C be
cleared before a SBB (SuBtract with Borrow) that is not preceded by a
flag-conditioning SUB. Other microprocessors may require that the carry
type flag be set before an SBB-type operation.

Example

CLC ;Clears CF.

126 The 80386 Instruction Set

- CLD Clear Direction Flag 8086
|
Opcode Format Clocks
FC CLD 2
Flags
NT |IOPL|OF | DF | IF | TF | SF | ZF AF PF CF
0 0 0 0 1
Pseudocode

Clear the Direction Flag to 0.

Operation

CLD simply sets the Direction Flag'to Zero.

Exceptions

None

User Notes

The Direction Flag controls the direction of string operations. When
D is cleared the index registers SI and/or DI are incremented after each
repeat of a string operation. This is the “normal” direction, and is useful
when each character in the string is stored in successively higher-
numbered locations in memory and the string is being processed first

The Instructions 127

character first. It's also useful when the string is stored starting in high
memory and heading toward low and is being processed last character first

Example

CLD ; Clears DF.

128 The 80386 Instruction Set

CLI Clear Interrupts Enabled Flag 8086

Opcode Format Clocks
FA CLI 3
Flags

NT |IOPL]| OF | DF | IF | TF | SF | ZF AF PF CF
0 0 0 0 1
Pseudocode

Clear the Interrupt Flag to 0

Operation

CLI sets the Interrupt Flag to zero, preventing further interrupts until it is
again set to one. However, there are some complications in 80286 and 80386
Protected Mode. CLI can fail if the current privilege level of the program
executing the CLI is larger (less privileged) than the I/0O privilege level bits in
the Flags register.

Exceptions Modes Reasons

#GP(0) P Current privilege is greater than IOPL

User Notes

CLl is a vital instruction for time-sensitive pieces of code that can’t be
allowed the indeterminate length stops in processing that occur when

The Instructions 129 '

interrupts are enabled. CLI also disables the keyboard (assuming it’s
interrupt-based and not polled), which is useful for ensuring that users do
not attempt to interrupt the program.

Although the privilege restrictions on CLI are burdensome, they’re
necessary. If an operating system is timesharing between several programs it
must be able to interrupt each in turn to let the others execute. If your
operating system allows access to Protected Mode, it's important to under-
stand how it handles privilege levels before attempting to control interrupts
from within your program.

Example

CLI ;Clears IF.

130 The 80386 Instruction Set

CMC Complement Carry Flag 8086

Opcode Format Clocks
F5 CMC 2
Flags

NT |IOPL | OF | DF | IF | TF | SF | ZF AF PF CF
0 0 0 1|8
Pseudocode

IF (Carry flag = 0) THEN
set the Carry flag
ELSE
clear the Carry flag
END IF

Operation

CMC complements (negates, reverses, flips) the Carry Flag. After CMC
the Carry Flag will contain the bit value opposite of the one it had before.

Exceptions

None

The Instructions 131

User Notes
This instruction is useful when using Carry as data storage or a param-
eter within a program. If you already know the state of the Carry Flag don’t

use CMC; use CLC or STC instead. This practice will make your programs
more maintainable.

Example

CMC ; Changes the sense of CF.

132 The 80386 Instruction Set

CMP Compare 8086
—
Opcode Format Clocks
3Cib CMP AL,b 2
3D iw CMP AXiw 2
3D iw CMP EAXid 2
80 [7] id CMP r/mb,ib 2/5
81 [7] iw CMP r/mw,iw 2/5
81[7]id CMP r/md,id 2/5
83 [7]ib CMP r/mw,iw 2/5
83 [7]ib CMP r/md,id 2/5
38 [1] CMP r/mb,rb 2/5
39 [1] CMP r/mw,rw 2/5
39 [1] CMP r/md,rd 2/5
3A 1] CMP rb,r/mb 2/6
3B [1] CMP rw,r/mw 2/6
3B [1] CMP rd,r/md 2/6
Flags
NT |IOPL| OF | DF | IF | TF | SF | ZF AF PF CF
0 S S|S|]o]S oS |1 S
Pseudocode

Subtract second operand from first, but don’t store result in either
Condition flags based on result of subtraction
Operation

CMP subtracts its second operand from its first, but doesn’t store the
result in the destination operand or anywhere else. Instead, the only output

The Instructions 133

is that the applicable flags are set or reset (“conditioned” is often used to
mean “set or reset”) according to the result of the subtraction. SUB is
explained below.

Exceptions Modes Reasons

#GP(0) P Illegal memory effective address in CS, DS, ES,
FS, or GS segments
#SS(0) P Illegal address in SS segment

#PF(fc) PV Page fault
INT(13) RV Some part of operand is outside of address range
0 to OFFFFH

User Notes

CMP is often used as a bit-test operator to force the Flags bits to tell you
about what bit pattern is in the first operand. It’s also used more generally to
help decide whether one number is greater than another; in either case, a
conditional jump can use the information gained to help the program
decide what to do next. '

Example
MOV AX956 ;Loads a 956 (3BC hex) into AX.

MOV BX373 ;Loads a 373 (175 hex) into BX.
CMP AXBX ; Clears CF, AF, ZF, SF, and OF; sets PF.

134 The 80386 Instruction Set

CMPS

Compare String

8086

Opcode

A6
A7
A7

Format

CMPSB
CMPSW
CMPSD

Clocks Single

Clocks Repeated

5+9«N
5+9x«N
5+9xN

The “N” in the “Clocks Repeated” column stands for the number of
repetitions actually executed.

Flags

NT | IOPL | OF | DF | IF SF | ZF AF PF CF
0 S S S S S S
Pseudocode

Subtract ES{(E)DI] from DS:[(E)SI], but don’t store result
Condition flags based on result of subtraction

IF DF = 0 THEN
Add size of operands (in bytes) to (E)SI and (E)DI
ELSE
Subtract size of operands (in bytes) from (E)SI and (E)DI

END IF

Operation

CMPS subtracts its destination operand from its source operand, but
doesn’t store the resultin the destination operand or anywhere else. Instead,
the only output is that the applicable flags are set or reset (“conditioned”)
according to the result of the subtraction.

The Instructions 135

This differs from CMP in that CMPS’s operands are not specified in the
instruction. The first one is pointed to by the Source Index [(E)SI] (which
normally points to the Data Segment unless a prefix override has been used)
and the second is pointed to by the Destination Index [(E)DI] (which always
must point to the Extra Segment for all string operations).

All of this could be done with the CMP, but CMPS also changes the
values in SI and DL Normally the Direction flag is 0 and SI and DI are in-
cremented, but if an STD has been executed SI and DI are decremented.
The increment and decrement are useful in automatically setting up the
pointers for a repetition of the same instruction, and the REPE and REPNE
prefixes are generally used with CMPS.

Exceptions Modes Reasons

#GP(0) P Illegal memory effective address in CS, DS, ES,
FS, or GS segments

#SS(0) P Illegal address in SS segment

#PF(fc) PV Page fault

INT(13) RV Some part of operand is outside of address range
0 to OFFFFH

User Notes

CMPS is generally used to compare two strings for equality. In this case
the CX register is initialized to the length of the strings (since CX is checked
and decremented by the REP-type prefixes) and SI and DI are initialized to
the first character in each of the strings (which may or may not be a length
byte). Then REPE CMPS does a continuing multiple operation (compare the
two bytes, increment [or decrement if D = 1] the pointers, decrement CX)
until the CMP shows two operands to be not equal (Z flag # 0) or CX is
decremented to 0. Commonly a JNZ instruction will then be used to
jump away if the strings aren’t equal; otherwise code for equal strings
is executed.

Use REPNE CMPS for this operation, and the loop will fail when CX is
zero or two equal characters are found. This tests for two strings that are
different in every position.

136 The 80386 Instruction Set

Example
STR1 DD 12,345
STR2 DD 1,245,6
CLD ; Ensure direction is forward.
LDS ESLSTR1 ; Set up source of compare, DS{ESI].
LES EDLSTR2 ; Set up destination of compare,
; ES{EDI].
MOV ECX5 ; Set up repeat count for compare.
REPE CMPSD ; Executes 3 times, ends with ECX=2,

; DS{ESI] points at 4 in
; STR1, and ES{EDI] points at 5 in
; STR2.

The Instructions 137

C\Y/D Convert Word to Dword 8086
CDQ Convert Dword to Qword 80386

Opcode Format Clocks
99 CWD 2
99 CDQ 2
Flags
NT | IOPL | OF | DF | IF | TF | SF | ZF AF PF CF
0 0 0 1
Pseudocode

IF operand size = 16 bits THEN (x CWD #)

Set each bit of DX to same value as highest order bit of AX.
ELSE (x CDQ *)

Set each bit of EDX to same value as highest order bit of EAX.
END IF

Operation

Converting a word to a doubleword is done by “sign-extending” the
word. This means that the word’s highest-order bit (its leftmost or most
significant bit) is “propagated” or copied into every bit of a second word. For
instance, sign extending 1111 1111 1111 0000 yields 1111 1111 1111 1111
1111 1111 1111 0000, while sign extending 0000 0000 0101 0101 yields. ..
you get the idea. There is an explanation of sign extension under CBW in this

138 The 80386 Instruction Set

chapter; the important point is that CWD yields a doubleword with the
same value as the original word. CDQ works the same way for longer
conversions.

Exceptions

None

User Notes

CWD (or CDQ) is a necessary instruction for the many times when a
word-length number is needed for higher-precision math. Since CWD has
no effect on positive numbers, user’s often fail to use it for routines that
only handle positive input and then run into problems later when nega-
tive input is encountered. Since it only takes two clocks to execute, using
this instruction in a conversion loop is efficient even when it’s not ini-
tially expected that input will have negative values.

On the 80386 this instruction is not needed much, a dword fits in a
single register of the 80386, while CWD spreadsit over two registers. CWD is
important when converting programs between the 80386 and earlier
iAPX 86s.

Example
MOV AXOFFFCH ;Loads a —4 into AX

CWD ; Sets DX to FFFF (hex) making DX:AX a
; dword-length —4.

The Instructions 139

Decimal Adjust AL
DAA After Addition 8086

Opcode Format Clocks
27 DAA 4
Flags
NT | IOPL | OF | DF | IF | TF | SF | ZF AF PF CF
0 S S|S|JOo|S|]O]S |1 S
Pseudocode

IF (lower nibble of AL > 9) OR (Aux Carry = 1) THEN
- increment AL by 6
set Aux Carry Flag
ELSE ‘
reset Aux Carry Flag
END IF
IF (AL > 9FH) OR (Carry = 1) THEN
set AL to AL + 60H
set Carry flag
ELSE
clear Carry flag
END IF

Operation
DAA adjusts AL after a two packed BCD digit ADD. This instruction is

needed because the smallest operands ADD uses are byte sized, while
packed BCD stores two digits in a byte; so there’s no easy way to add BCD

140

The 80386 Instruction Set

digits one at a time. DAA fixes each digit to the result you'd expect from
adding two two-digit decimal numbers, including conditioning the Carry
Flag appropriately for a decimal carry.

For instance, the number 25, fits in a single packed BCD byte: 0010 0101
(25H). Adding this byte to itself yields this result: 0100 1010 (4AH). Without
adjustment this result can’t be interpreted as a packed-BCD byte. It does
make sense, however, if you consider that ADD treats the operands as binary
bytes and gives a binary result. DAA increments AL by 6, giving the result
0101 0000 (50H), which in packed-BCD is 50, the correct result.

Exceptions

None

User Notes

DAA is often used as part of a loop adding multi-precision BCD
numbers: ADD a one-byte pair of digits, use DAA to adjust the result, ADC the
next one-byte pair of digits, use DAA, and continue using ADC and DAA to
the limits of the precision in use.

DAA itself only handles binary to BCD conversion.

Example

MOV AX18H ;Loads a packed BCD 18 into AL and clears AH.

ADD ALS ; Adds a packed BCD 6 to AL giving 1E (hex).

DAA ; AX contains 24 (hex) or 24 packed BCD, CF is 0
; and AF is 1.

The Instructions 141

Decimal Adjust AL
DAS After Subtraction 8086

Opcode Format Clocks
2F DAS 4
Flags

NT | IOPL | OF | DF | IF | TF | SF | ZF AF PF CF
0 S S|S]J]O0]S]|]O]S]|1]S
Pseudocode

IF (lower nibble of AL > 9) OR (Aux Carry = 1) THEN
decrement AL by 6
set Aux Carry Flag

ELSE
reset Aux Carry Flag

END IF

IF (AL > 9FH) OR (Carry = 1) THEN
set AL to AL — 60H
set Carry flag

ELSE
clear Carry flag

END IF

Operation
DAS adjusts AL after a two packed BCD digit SUB. This instruction is

needed because the smallest operands SUB uses are byte sized, while
packed BCD stores two digits in a byte, so there’s no easy way to subtract

142

The 80386 Instruction Set

BCD digits one at a time. DAS fixes each digit to the result you'd expect from
subtracting two two-digit decimal numbers, including conditioning the
Carry Flag appropriately for a decimal carry.

For instance, the number 25, fits in a single packed BCD byte: 0010
0101 (25H). Subtracting the BCD byte for 17,,, which is 0001 0111 (17H),
yields this result: 0000 1110 (OEH), which can’t be interpreted successfully as
a packed BCD byte. It does make sense, however, if you consider that SUB
treats the operands as binary bytes and gives a binary result. DAS decre-
ments AL by 6, which leaves the result as 0000 1000 (08H), which is 08,,, the
correct result.

Exceptions

None

User Notes

DAS is often used as part of a loop subtracting multi-precision BCD
numbers: SUB a one-byte pair of digits, use DAS to adjust the result, SBB the
next one-byte pair of digits, use DAS, and continue using SBB and DAS to the
limits of the precision you’re using,

DAS itself only handles binary to BCD conversion.

Example

MOV AX16H ;Loads a packed BCD 16 into AL and clears AH.
SUB ALS8 ; Subtracts a packed BCD 8 from AL giving 0D
; (hex). ,
DAS ; AX contains 8 or 8 packed BCD, CF is 0 and AF
;is 1.

The Instructions 143

DEC Decrement 8086

Opcode Format Clocks
FE [1] DEC r/mb 2/6
FF [1] DEC r/mw 2/6
FF [1] DEC r/md 2/6
48+rw DEC rw 2
48+rd DEC rd 2
Flags
NT | IOPL | OF | DF | IF [TF | SF | ZF AF PF CF
0 S S]1S]0]S]O S|
Pseudocode

Set operand to operand — 1.
Operation
DEC subtracts 1 from its single operand and stores the result back in the

operand.

Exceptions Modes Reasons

#GP(0) P Result in nonwritable segment

#GP(0) P Illegal memory effective address in CS, DS, ES,
FS, or GS segments

#SS(0) P Illegal address in SS segment

#PF(fc) PV Page fault

INT(13) RV Some part of operand is outside of address range
0 to OFFFFH

144

The 80386 Instruction Set

User Notes

Although DEC seems to be a much simplercommand than SUB, it takes
about the same amount of time to execute. Also, DEC doesn’t set the Carry
Flag, so in many cases it's preferable to use SUB with a second operand of 1.
It's only worthwhile to use two DECs to replace a SUB with a second operand
of 2 when memory is very tight.

Example

MOV AXg956 ;Loads a 956 (3BC hex) into AX.
DEC AX ; AX now contains. 955.

The Instructions 145

DIV Unsigned Divide 8086

Opcode Format Clocks
F6 [6] DIV AL,;r/mb 14/17
F7 [6] DIV AXr/mw 22/25
F7 [6] DIV EAX;r/md 38/41
Flags
NT | IOPL | OF | DF | IF | TF | SF | ZF AF PF CF
0 0 0 1
Pseudocode

IF opcode is F6 THEN (x dividend is a word *)
divide AX by unsigned byte in operand
store quotient in AL
store remainder in AH

ELSE IF operand size is 16 THEN (x dividend is a dword *)
divide DX:AX by unsigned word in operand
store quotient in AX
store remainder in DX

ELSE (dividend is a qword *)
divide EDX:EAX by unsigned dword in operand
store quotient in EAX
store remainder in EDX

END IF

Operation

Both the dividend and the divisor are treated as unsigned integers. The
answer is given as a quotient part in one register and a remainder part in
another, both of which are unsigned integers.

146

The 80386 Instruction Set

Exceptions Modes Reasons

#GP(0) P Result in nonwritable segment

#GP(0) P Illegal memory effective address in CS, DS, ES,
FS, or GS segments

#S5(0) P Illegal address in SS segment

#PF(fc) PV Page fault

INT(0) PRV Result too large for destination or divisor is zero

INT(13) RV Some part of operand is outside of address range

0 to OFFFFH

User Notes

DIV takes as long as several SUBS to execute; it's one of the few
commands on the 80386 which is worth avoiding if possible when execution
speed is critical. Interrupts result if the quotient is too big or the divisor is
zero, so when code space isnotat a premium it’s worth checking for division
by zero (go to an error-handling routine), division by one (jump around the
division after adjusting the divisor as needed), and even sometimes division
by two or four (use shifts to do the division) before actually executing the
DIV. Too large a quotient will resultin interrupt 0 and can lead to a call to an
error-handling routine or more robust division routine.

DIV is used for unsigned division; this means that the dividend and
divisor are always treated as positive numbers, ignoring the convention that
a 1in the high bitdenotes a negative number. This allows positive numbers
of greater magnitude to be handled directly by DIV. It’s often worthwhile to
write a division routine which uses repeated DIVs or IDIVs to handle divi-
sion with greater precision than is possible with a single DIV or IDIV
instruction.

Example
MOV AX956 ;Loads a 956 (3BC hex) into AX

MOV BX300 ;Loads a 300 (12C hex) into BX.
DIV AXBX ;AL now contains 3 and AH contains 56.

The Instructions 147

Make Stack Frame

ENTER for Procedure 80186
]

Opcode Format Clocks
C8 iw 00 ENTER iw,0 10
C8 iw 01 ENTER iw,1 12
C8 iwib ENTER iw,ib 15+4*n
The “n” in the “Clocks” column stands for the level number (first operand)
minus one.
Flags
NT |IOPL | OF | DF | IF | TF | SF | ZF AF PF CF
0 0 0 1
Pseudocode
Push (E)BP

Save a copy of (E)SP
IF second operand is greater than 0 THEN
FOR 1 TO second operand minus 1 DO
Decrement (E)BP by 2 (or 4)
Push the word pointed to by (E)BP
ENDDO
Push the word pointed to by the saved copy of (E)SP
END IF
Set (E)BP to the saved copy of (E)SP
Set (E)SP to (E)SP minus first operand

Operation

ENTER is used to implement procedure calls, and is a command
expressly designed for implementing high-level languages. Basically, four

148

The 80386 Instruction Set

items are put onto the stack with each call: the procedure’s arguments, the
return address, a group of “frame pointers,” and the local variables used by
the procedure. All this information together is called a “stack frame.” The
“frame pointers” are pointers to the stack frames of the procedure calls that
lead to the current procedure being called.

Of the four components of the stack frame, ENTER handles the last two
very conveniently. The procedure parameters are pushed explicitly by the
programmer before the CALL instruction (which pushes the return address).
ENTER pushes the frame pointers (if any) and allocates room on the stack for
the local variables.

There are two operands for ENTER: the first is the number of bytes of
local variable storage to reserve, and the second is the level of the current
procedure being entered. Level controls how many frame pointers are
pushed on the stack (i.e, a level zero ENTER only allocates local variable
storage). The LEAVE instruction restores the stack to its state before the
ENTER was executed.

The steps executed are: Push the current BP onto the stack, replace the
BP with the SP, push all the frame pointers (unless the level operand is zero),
and decrement the SP by the number of bytes of storage you wish to save for
local variables. These steps can be implemented by other assembly-
language commands; the advantage of ENTER is that it executes very
quickly considering everything it does, and it provides a standard way for
compiler writers (who are less interested in maximum efficiency than in
predictability) to implement procedure calls.

Most assembly-language programs will either use ENTER with level
zero or not at all. The command probably does more than most assembly-
language programs need. Levels greater than zero were created mostly for
compiler writers.

Exceptions Modes Reasons

#SS(0) P (E)SP has exceeded the stack limit

User Notes

ENTER at levels above 0 becomes complicated, because pointers to
each of the previous stack frames must be resaved at every new procedure
call. This is done so that each new procedure can treat as global all the

The Instructions 149

variables in the procedure that called it, in the one that called the caller, etc.
This kind of limited access to variables is basic to several of the newer
programming languages.

ENTER is normally the first instruction in a procedure. The first
parameter is the number of bytes of local variables to be saved; they are then
accessed using BP as an index register. The old BP value is at displace-
ment zero and the frame pointers (if any) follow. Next are the local
variables. The second parameter is the current level. At the'end of the
procedure the LEAVE command will restore the stack pointer, wiping out
access to the local variables.

Example
SUBROUTINE:
ENTER 12,3 ; SUBROUTINE has 3 local variables (dwords)

; and is at nesting level 3.

LEAVE ; Removes current stack frame from stack.
RET 8 ; SUBROUTINE has 2 parameters (dwords).

150 The 80386 Instruction Set

HLT Halt 8086

Opcode Format Clocks
F4 HLT 5
Flags
NT | IOPL | OF | DF | IF | TF | SF | ZF AF PF CF
0 0 0 1
Pseudocode

WHILE no enabled external interrupt or RESET DO

END WHILE
Operation

HLT stops the 80386 from executing any further commands until an
external interrupt or RESET is received. HLT is basically used for controlling
programs that must interact directly with the outside world (other CPU’s,
which would reactivate the halted microprocessor with a RESET, or external
devices, which would reactivate it with a hardware interrupt).

- Exceptions Modes Reasons

#GP(0) P Current privilege level is not zero

User Notes

Single-CPU computers that aren’t used for device control don’t use HLT
very often. Even when itis normally used it can be replaced with an infinite

The Instructions 151

loop that waits for an interrupt. This allows more flexibility than simply
shutting down the processor, but can cost a little bit of time (while some or
all of the wait loop executes) when the interrupt is received.

Example

HLT ; Processor stops.

152 The 80386 Instruction Set

IDIV Signed Divide 8086
|

‘Opcode Format Clocks

F6 [7] IDIV AL,r/mb 19/22

F7 (7] IDIV AXr/mw 27/30

F7 (7] IDIV EAX;r/md 43/46

Flags

NT |IOPL|OF |DF | IF | TF |SF | ZF | - | AF PF CF
0 0 0 1

Pseudocode

IF opcode is F6 THEN (* dividend is a word *)
divide AX by signed byte in operand
store quotient in AL
store remainder in AH

ELSE IF operand size is 16 THEN (* dividend is a dword *)
divide DX:AX by signed word in operand
store quotient in AX
store remainder in DX

ELSE (» dividend is a qword x)
divide EDX:EAX by signed dword in operand
store quotient in EAX
store remainder in EDX

END IF

Operation
Both the dividend and the divisor are treated as signed integers. The

answer is given as a quotient part in one register and a remainder part in
another, both of which are signed integers.

The Instructions 153

Exceptions Modes Reasons

#GP(0) P Result in nonwritable segment

#GP(0) P Illegal memory effective address in CS, DS, ES, .
FS, or GS segments

#SS(0) P Illegal address in SS segment

#PF(fc) PV Page fault

INT(0) PRV Result too large for destination or divisor is zero

INT(13) RV Some part of operand is outside of address range
0 to OFFFFH -

User Notes

IDIV takes a couple of clocks longer than DIV to execute. Like DIV, it’s
one of the few commands on the 80386 that is worth avoiding if possible
when execution speed is critical. Also, interrupts result if the quotient is too
big or the divisor is zero, so when code space is not at a premium it’s worth
checking for division by zero (go to an error-handling routine), division by
one (jump around the division after adjusting the divisor as needed), and
even sometimes division by two or four (use rotates to do the division) before
actually executing the DIV. Too large a quotient will resultin interrupt 0 and
can lead to a call to an error-handling routine or more robust division
routine.

IDIV is used for signed division; this means that the dividend and divisor
are treated as either positive or negative numbers, depending on whether a
number’s high bit is 1 (making the number negative). IDIV handles both
positive or negative numbers, but doesn’t handle positive integers as large as
those handled by DIV. It’s often worthwhile to write a division routine that
uses repeated DIVs or IDIVs to handle division with greater precision than is
possible with a single DIV or IDIV instruction.

Example

MOV AX956 ;Loads a 956 (3BC hex) into AX.

MOV BX—300 ;Loadsa —300 (FED4 hex) into BX.

IDIV AXBX ; AL now contains —3 (FFFD hex) and AH
; contains 56.

154 The 80386 Instruction Set

IMUL Signed Multiply 8086

Opcode Format Clocks
F6 [5] IMUL r/mb 9-14/12-17
F7 [5] IMUL r/mw 9-22/12-25
F7 [5] IMUL r/md 9-38/12-41
OF AF [1] IMUL rw,r/mw 9-22/12-25
OF AF [1] IMUL rd,r/md 9-38/12-41
6B [r] ib IMUL rw,r/mw,ib 9-14/12-17
6B [r] ib IMUL rd,r/md,ib 9-14/12-17
6B [r] ib IMUL rw,ib - 9-14/12-17
6B [r] ib IMUL rd,ib 9-14/12-17
69 [r] iw IMUL rw,r/mw,iw 9-22/12-25
69 [r] id IMUL rd,r/md,id 9-38/12-41
69 [1] iw IMUL rw,iw 9-22/12-25
69 [r] id IMUL rd,id 9-38/12-41
Flags
NT |IOPL | OF | DF | IF | TF | SF | ZF AF PF CF
0 S ujujJjojluj]jojuUij1l)
Pseudocode

IF one operand form THEN
IF operand size is byte THEN
Set AX to the product of AL and the operand
ELSE IF operand size is word THEN
Set DX:AX to the product of AX and the operand
ELSE (» operand size is dword *)
Set EDX:EAX to the product of EAX and the operand
END IF
ELSE IF two operand form THEN
Set the first operand to the product of the first and second operands
ELSE (* three operand form)
Set the first operand to the product of the second and third operands
END IF

The Instructions 155

Operation

All operands are treated as signed numbers. All results can be treated as
signed numbers. The maximum size of the result of a multiplication of two
. n-bit numbers is a 2-n bit number. Therefore the multiple operand forms
of this instruction indicate the loss of the high-order bits of the result
when overflow is set. The single operand forms do not have the same prob-
lem since the results produced are twice the size of the input operands.

Exceptions Modes Reasons

#GP(0) P Illegal memory effective address in CS, DS, ES,
FS, or GS segments
#SS(0) P Illegal address in SS segment

#PF(fc) PV Page fault
INT(13) RV Some part of operand is outside of address range
0 to OFFFFH '

User Notes

The timing information for this instruction is given in ranges because
the time required for a multiply depends on the size of the multiplier. The
more significant bits, the longer the operation takes. The 80386 takes advan-
tage of this fact with an early-out multiplication algorithm. The rightmost
operand in all forms of the IMUL instruction is called the optimizing
multiplier (“m” in the formula below). The actual number of clocks required
for a multiply can be calculated with the following formula:

IF m = 0 THEN clocks = 9
ELSE clocks = max(log2(|m|), 3) + 6
Example

MOV AL40 ;Loads a 40 into AL.
IMUL 10 ; AX now contains 400, note that overflow gets set.

156 The 80386 Instruction Set

IN Input from Port 8086

Opcode Format Clocks
E4 ib IN ALjib . 5
E5 ib IN AXiib 5
E5 ib IN EAXib 5
EC IN AL,DX 6
ED IN AXDX 6
ED IN EAXDX 6
Flags
NT | IOPL | OF | DF | IF | TF | SF | ZF AF PF CF
0 0 0 1
Pseudocode

IF second operand is immediate THEN
Zero extend second operand to 16 bits to form input port address
ELSE
Input port address is contents of DX
END IF ,
IF first operand size is byte THEN
Move the byte from the input port to AL
ELSE IF first operand size is word THEN
Move the word from the input port to AX
ELSE (* the first operand size is dword *)
Move the dword from the input port to EAX
END IF

The Instructions 157

Operation

The IN instruction is used to obtain a single byte, word, or dword from a
peripheral device port. A port number may be any number from 0 to 65,535
(2'%—1). Normally a device has several ports assigned, some for commands,
some for status, and some for data. Device control is accomplished by
sending information to the command ports and getting information from the
status ports. Input is done by getting data from a data port.

Port numbers 00F8H through 00FFH are reserved by Intel and shouldn’t
be used.

Exceptions Modes Reasons

#GP(0) P Current privilege is higher than IOPL

#GP(0) \Y Some of the corresponding permission bits in
TSS equal 1

User Notes

Most programs get input through calls to an operating system, and thus
don’tuse the IN instruction, but the IN instruction is indispensable for those
writing device drivers or for anyone who must deal directly with a device.

When only a few bytes of input are needed the IN instruction should be
used. If the input device can’t provide data at a high rate of speed the IN
instruction can be put in a loop, with NOPs or a counting loop included to
slow down the transfer of data.

Example

MOV DX,20 ; Sets up port number for IN instruction.
IN EAXDX ;Input a dword to EAX

158 The 80386 Instruction Set

INC Increment 8086
|

Opcode Format Clocks

FE [0] INC r/mb 2/6

FF [0] INC r/mw 2/6

FF [0] INC r/md 2/6

404w INC rw 2

40+rd INC rd 2

Flags

NT | IOPL| OF | DF | IF | TF | SF | ZF AF PF CF
0 S) S1]10 S 0} S 1
Pseudocode

Set operand to operand + 1
Operation
INC adds 1 to its single operand and stores the result back in the

operand.

Exceptions Modes Reasons

#GP(0) P Result in nonwritable segment

#GP(0) P Illegal memory effective address in CS, DS, ES,
FS, or GS segments

#S5(0) P Illegal address in SS segment

#PF(fc) PV Page fault

INT(13) RV Some part of operand is outside of address range

0 to OFFFFH

The Instructions 159

User Notes

Although the INC command seems to be a much simpler command
than ADD, it takes about the same amount of time to execute. Also, INC
doesn’t set the Carry Flag, so in many cases it’s preferable to use ADD with a
second operand of 1.It’s only worthwhile to use two INCs to replace an ADD
with a second operand of 2 when memory is very tight.

Example

MOV AX956 ;Loads a 956 (3BC hex) into AX.
INC AX ; AX now contains 957.

160 The 80386 Instruction Set

INS Input String from Port 80186
- |

Opcode Format Clocks Single Clocks Repeated

6C INSB 8 6+6+N

6D INSW 8 6+6xN

6D INSD 8 6+6+N

The “N”in the “Clocks Repeated” column stands for the numberin the (E)CX

register.

Flags

NT | IOPL | OF | DF | IF | TF | SF | ZF AF PF CF
0 0 0 1
Pseudocode

IF operand size is byte THEN

Move the byte from the input port named in DX to AL
ELSE IF operand size is word THEN

Move the word from the input port named in DX to AX
ELSE (operand size is dword)

Move the dword from the input port named in DX to EAX
END IF
IF DF = 0 THEN

Add size of operand (in bytes) to (E)DI
ELSE

Subtract size of operand (in bytes) from (E)DI
END IF

The Instructions 161

Operation

The INS instruction, like IN, is used to obtain a single byte, word, or
dword from a peripheral device port. A port number may be any number
from 0 to 65,535 (2°—1). Normally a device has several ports assigned, some
for commands, some for status, and some for data. Device control is
accomplished by sending information to the command ports and getting
information from the status ports. Input is done by getting data from a data
port.

There are several distinctions between IN and INS. In INS the port
number is always in DX. In INS the destination of the data is pointed to by
ES{(E)DI], and no segment override is permitted. Finally, the INS instruc-
tion is designed to be used with the REP prefix. That is, at the end of the
instructions (E)DI is incremented or decremented (depending on the Di-
rection Flag) by the operand size.

Port numbers 00F8H through 00FFH are reserved by Intel and shouldn’t
be used.

Exceptions Modes Reasons

#GP(0) P Current privilege is higher than IOPL

#GP(0) P Illegal memory effective address in CS, DS, ES,
FS, or GS segments

#SS(0) P Illegal address in SS segment

#PF(fc) PV Page fault .

INT(13) RV Some part of operand is outside of address range
0 to OFFFFH

#GP(0) \Y Some of the corresponding permission bits in
TSS equal 1

User Notes

Most programs obtain input through calls to an operating system, and
thus don’t use the INS instruction, but it is indispensable for those writing
device drivers or for anyone who must deal directly with a device.

When only a few bytes of input are needed the IN instruction should be
used. If the input device can’t provide data at a high rate of speed, the INS

162 The 80386 Instruction Set

instruction can be putin a LOOP, with NOPs or a counting loop included to
slow down the transfer of data.

Example
CLD ; Ensure direction is forward.
LES EDLINSTR ; Set up destination of input, ES;{EDI].
MOV ECX5 ; Set up repeat count for INS.
MOV DX40 ; Set up input port number for INS.

REP INSB ; Get 5 bytes of data from input port 40.

The Instructions 163

INT Call to Interrupt Procedure 8086

Opcode Format Clocks
CC INT 3 33*
CDib INT ib 37*
CE INTO 3,35*

*These instructions have varying functions and timings in Protected Mode
(see Chapter 5). INTO takes 3 clocks when the interrupt is not taken and 35
clocks when the interrupt is taken.

Flags

Normally INT affects no flags. However,in Protected Mode all flags are
changed to the new task’s saved flags when a task switch is made.

Pseudocode

IF not INTO or OF flag set THEN

Push (E)Flags register onto stack

Push CS (Code Segment) register onto stack

Push (E)IP (Instruction Pointer) onto stack

Disable external interrupts (clear Interrupt Flag IF)

Move segment and offset from interrupt vector table into CS:(E)IP
END IF

Operation

An interrupt is much like a call to a far procedure, with the flags
automatically saved on the stack and interrupts automatically disabled. The
location to jump to is not given by the INT command itself; instead the
interrupt number is used to look up an entry in a table of interrupts, which
gives the address of the interrupt routine.

When executed in Real mode INT first pushes the Flags register onto the
stack, then it pushes the code segment register onto the stack. The same goes

164

The 80386 Instruction Set

for the Instruction Pointer. The Interrupt Flag IF is then cleared, disabling

" external (hardware) interrupts. Finally, the new code segment and offset are

copied from the interrupt vector table into the CS register, and the Instruc-
tion Pointer is set to the start of the interrupt routine. When the interrupt
routine is finished the registers will be restored and execution will proceed
from the command after the INT.

The basic procedure is the same in Protected Mode, but several checks
of privilege levels and sufficient stack sizes have to be passed or protection
errors occur (see Chapter 5).

INTO is like INT except that the number of the interrupt routine to be
used is assumed to be 4, and the INT is only executed if the Overflow Flag is
set. INTO is generally used just after an arithmetic operation.

Exceptions Modes Reasons

#NP Target code segment not present
#TS Task switch required
#GP Illegal CS, DS, ES, FS, or GS segment

*kkkk 80386 shut down due to insufficient stack space
#GP(0) Emulates the interrupt operation if IOPL is less
than 3

P
P
P
#SS P Illegal SS segment
R
\%

User Notes

Generally the interrupt vector table is set up by the operating system,
and interrupts are used largely for operating system calls. Your operating
system manual should give instructions for writing your own interrupts.

INTO replaces a series of instructions like: JNO OverOne, INT 4, Over-
One; . . . A series of instructions like this will serve to construct an INTO
“workalike” for other flags and interrupt numbers.

Example
MOV ALJ100 ;Loads a number into AL.

MUL AL10 ; This multiply will cause OF to be set.
INTO ; Interrupt 4 will be taken.

" The Instructions 165

IRET Interrupt Return 8086

Opcode Format Clocks

CF . IRET 22%

*This instruction has varying functions and timings in Protected Mode (see
Chapter 5). ‘

Flags

IRET restores all flags to the saved flags on the stack.

Pseudocode

Pop (E)IP (Instruction Pointer) from stack.
Pop CS (Code Segment) register from stack.
Pop (E)Flags register from stack.

Operation

An IRET is just like a RET from a far procedure except that the Flags
register is restored from the stack. Since the flags are restored from their state
before the (presumed) INT or INTO, the Interrupt Flag is also restored to its
previous state so the disabling of interrupts thatoccurred when the INT was
executed is now overridden by the previous state of the Interrupt Flag.

The basic procedure is the same in Protected Mode, but many checks of
privilege levels and sufficient stack sizes have to be passed or protection
errors occur (see Chapter 5).

Exceptions Modes Reasons

#NP P Target code segment not present
#TS - P Task switch required

166

The 80386 Instruction Set

#GP P Illegal CS, DS, ES, FS, or GS segment

#SS P Illegal SS segment

INT(13) R Part of operand being popped lies beyond OFFFFH

#GP(0) \Y Emulates the interrupt operation if IOPL is less
than 3

User Notes

Generally the interrupt vector table is set up by the operating system,
and interrupts are used largely for operating system calls. The IRET instruc-
tions for these system calls are at the end of the calls, and are not seen by the
programmer. Your operating system manual should give instructions for
writing your own interrupts.

Example

IRET ; Return from interrupt.

The Instructions 167

Jcc Jump if Condition is Met 8086

Opcode Format Jump Condition Clocks
77 db JA db Above (CF=0 and ZF=0) 7+m,3
OF 87 dw JA dw Above (CF=0 and ZF=0) 74+m,3
OF 87dd JAdd Above (CF=0 and ZF=0) 7+m,3
73 db JAE db Above or equal (CF=0) 7+m,3
OF 83 dw JAE dw Above or equal (CF=0) 7+m,3
OF 83 dd JAE dd Above or equal (CF=0) 7+m,3
72 db JB db Below (CF=1) 7+m,3
OF 82 dw JB dw Below (CF=1) 7+m,3
OF 82dd JBdd Below (CF=1) 74+m,3
76 db JBE db Below or equal (CF=1 or ZF=1) 7+m,3
OF 86 dw JBE dw Below or equal (CF=1 or ZF=1) 7+m,3
OF 86 dd JBE dd Below or equal (CF=1 or ZF=1) 7+m,3
72 db JC db Carry (CF=1) 7+m,3
OF 82dw JCdw Carry (CF=1) 7+m,3
OF 82dd JCdd Carry (CF=1) ' 7+m,3
E3 db JCXZ db CX register is zero 7+m,3
74 db JE db Equal (ZF=1) 7+m,3
OF 84 dw JE dw Equal (ZF=1) 7+m,3
OF84dd JEdd Equal (ZF=1) 7+m,3
E3 db JECXZ db ECX register is zero 7+m,3
7F db JGdb Greater (ZF=0 and SF=OF) 7+m,3
OF 8F dw JG dw Greater (ZF=0 and SF=OF) 7+m,3
OF8Fdd JGdd Greater (ZF=0 and SF=OF) 7+m,3
7D db JGE db Greater or equal (SF=0F) 7+m,3
OF 8D dw JGE dw Greater or equal (SF=OF) 7+m,3
OF 8Ddd JGE dd Greater or equal (SF=OF) 7+m,3
7C db JL db Less (SF<>OF) 7+m,3
OF 8C dw JL dw Less (SF<>OF)- 7+m,3
OF 8Cdd JLdd Less (SF<>OF) 7+m,3
7E db JLE db Less or equal (ZF=1 or SF<>OF) "+m,3
OF 8E dw JLE dw Less or equal (ZF=1 or SF<>OF) 7+m,3
OF BEdd JLE dd Less or equal (ZF=1 or SF<>OF) 7+m,3
76 db JNA db Not above (CF=1 or ZF=1) 7+m,3

OF 86 dw JNA dw Not above (CF=1 or ZF=1) 7+m,3

168

The 80386 Instruction Set

OF 86 dd

72 db

OF 82 dw
OF 82 dd

73 db

OF 83 dw
OF 83 dd

77 db

OF 87 dw
OF 87 dd

73 db

OF 83 dw
OF 83 dd

75 db

OF 85 dw
OF 85 dd

7E db

OF 8E dw
OF 8E dd
7C db

OF 8C dw
OF 8C dd
7D db

OF 8D dw
OF 8D dd
7F db

OF 8F dw
OF 8F dd

71 db

OF 81 dw
OF 81 dd

7B db

OF 8B dw
OF 8B dd

79 db

OF 89 dw
OF 89 dd

75 db

OF 85 dw
OF 85 dd

JNA dd
JNAE db
JNAE dw
JNAE dd
JNB db
JNB dw
JNB dd
JNBE db
JNBE dw
JNBE dd
JNC db
JNC dw
JNC dd
JNE db
JNE dw
JNE dd
JNG db
JNG dw
JNG dd
JNGE db
JNGE dw
JNGE dd
JNL db
JNL dw
JNL dd
JNLE db
JNLE dw
JNLE dd
JNO db
JNO dw
JNO dd
JNP db
JNP dw
JNP dd
JNS db
JNS dw
JNS dd
JNZ db
JNZ dw
JNZ dd

Not above (CF=1 or ZF=1)

Not above or equal (CF=1)

Not above or equal (CF=1)

Not above or equal (CF=1)

Not below (CF=0)

Not below (CF=0)

Not below (CF=0)

Not below or equal (CF=0 and ZF=0)
Not below or equal (CF=0 and ZF=0)
Not below or equal (CF=0 and ZF=0)
Not carry (CF=0)

Not carry (CF=0)

Not carry (CF=0)

Not equal (ZF=0)

Not equal (ZF=0)

Not equal (ZF=0)

Not greater (ZF=1 or SF<>OF)

Not greater (ZF=1 or SF<>OF)

Not greater (ZF=1 or SF<>OF)

Not greater or equal (SF<>OF)

Not greater or equal (SF<>OF)

Not greater or equal (SF<>OF)

Not less (SF=OF)

Not less (SF=OF)

Not less (SF=OF)

Not less or equal (ZF=0 and SF=O0F)
Not less or equal (ZF=0 and SF=O0F)
Not less or equal (ZF=0 and SF=OF)
Not overflow (OF=0)

Not overflow (OF=0)

Not overflow (OF=0)

Not parity (PF=0)

Not parity (PF=0)

Not parity (PF=0)

Not sign (SF=0)

Not sign (SF=0)

Not sign (SF=0)

Not zero (ZF=0)

Not zero (ZF=0)

Not zero (ZF=0)

7+m,3
7+m,3
7+m,3
7+m,3
7+m,3
7+m,3
7+m,3
7+m,3
7+m,3
7+m,3
7+m,3
7+m,3
7+m,3
7+m,3
7+m,3
7+m,3
7+m,3
7+m,3
7+m,3
7+m,3
7+m,3
7+m,3
7+m,3
7+m,3
7+m,3
7+m,3
7+m,3
7+m,3
7+m,3
7+m,3
7+m,3
7+m,3
7+m,3
7+m,3
7+m,3
7+m,3
7+m,3
7+m,3
7+m,3
7+m,3

The Instructions 169

70 db JO db Overflow (OF=1) 7+m,3
OF 80 dw JO dw Overflow (OF=1) 7+m,3
OF80dd JOdd Overflow (OF=1) 7+m,3
7A db JP db Parity (PF=1) 7+m,3
OF 8A dw JP dw Parity (PF=1) 7+m,3
OF8Add JPdd Parity (PF=1) 7+m,3
7A db JPE db Parity even (PF=1) 7+m,3
OF 8A dw JPE dw Parity even (PF=1) 7+m,3
OF 8Add JPEdd Parity even (PF=1) 7+m,3
7B db JPO db Parity odd (PF=0) 7+m,3
OF 8B dw JPO dw Parity odd (PF=0) 7+m,3
OF 8Bdd JPO dd Parity odd (PF=0) 7+m,3
78 db JS db Sign (SF=1) 7+m,3
OF 88 dw JSdw Sign (SF=1) 7+m,3
OF88dd JSdd Sign (SF=1) 7+m,3
74 db JZ db Zero (ZF=1) 7+m,3
OF 84 dw JZ dw Zero (ZF=1) 7+m,3
OF 84dd JZdd Zero (ZF=1) 7+m,3
Flags
NT | IOPL | OF | DF | IF | TF | SF | ZF AF PF CF
0 0 0 1

Pseudocode

IF condition is met THEN
Set Instruction Pointer (IP) to IP + sign-extended displacement
END IF

Operation
Jump instructions allow for non-sequential flow of program execution.

The jumps covered here are conditional in that they either jump or don’t
jump depending on the state of the processor. Unconditional jumps, covered

170

The 80386 Instruction Set

below, always jump. Jumps may be further classified according to how the
destination address is computed.

There are three types of jumps on the 80386—short, near, and far.
Short jumps are relative jumps to an address close to the jump instruc-
tion (within the same code segment and within —128 to +127 bytes of the
next instruction). Near jumps are also relative, but have a much greater
range (anywhere in the same code segment). Far jumps, on the other
hand, are absolute jumps to a particular address, which can be in any
code segment. In the 80386 conditional jumps may be only short or near.
In addition, the JCXZ and JECXZ instructions are only short jumps.

Most of the conditional jumps test the state of one or more of the flag
bits. If the condition (listed in the above table) is met then the jump is taken;
otherwise execution continues with the next instruction in sequence. The
JCXZ and JECXZ instructions do not test any of the flags, however. Instead
they test the value in the CX (or ECX) register.

In the timings above the first figure is for when the jump is taken and the
second is for when the condition is not true and the jump is not taken. All
jump instructions slow down the 80386 when the jump is taken, because the
instruction queue is cleared and must be refilled. The value “m” in the clock
count for the jumps is the number of “components” in the instruction at the
target of the jump. Each prefix byte, opcode byte, mod r/m byte, or SIB byte is
counted as a single component. Any displacement or immediate value also
counts as one component each.

Exceptions Modes Reasons

#GP(0) P Jump target is beyond the limits of the code
segment

User Notes

Many of the conditional jumps are meant for use with unsigned
numbers, while others are meant for comparisons of signed numbers. The
way to tell the difference is that the use of “above” and “below” indicates
unsigned comparisons. The use of “greater” and “less” refers to the use of
signed numbers.

A close examination of the instruction table for conditional jumps
reveals that there are often several mnemonics for the same opcode (and

The Instructions 171

therefore conditional test). The reason for this redundancy is that the same
state of the flags can mean different things based on the context of the jump.
Forexample, a conditional jump often appears after a CMP or SUB has been
executed. The conditional jump then compares the two operands of the
previous instruction, and a JE (jump equal) might be appropriate. On the
other hand, right after a DEC instruction the same jump with the JZ (jump
zero) mnemonic could be used to terminate a loop after a count reached
zero. We recommend (as a matter of good programming style) choosing
jump mnemonics carefully so that they indicate the meaning of your
comparisons.

The JCXZ and JECXZ jumps are “short” jumps; the location being
jumped to must be within 128 bytes before or 127 bytes after the end of the
jump instruction, and within the same segment. However, there are no direct
opposites to these commands, so to reach a far location when CX becomes
zero JCXZ’s operand will need to be the label of a JMP command, probably
outside the loop JCXZ is within.

Instructions like REPE and LOOPNE cause looping to occur until either
the Zero Flag is set or cleared, or CX is zero. A JCXZ instruction just after the
repeat or loop will cause a jump in those cases when the termination
occurred due to CX reaching zero, rather than the Zero Flag reaching the
needed setting. This allows different types of looping terminations to be

handled differently.

Example
MOV ECX5 ; Set up operand for compare.
CMP ECX7 ; Compare the 5 with the 7.
JLE TARGET ; The jump will be taken, 10 clocks
; required.
TARGET: AND AL7 ; 1 byte opcode, 1 mod r/m byte,

; 1 immediate = 3 components.

172 The 80386 Instruction Set

JMP Unconditional Jump 8086

Opcode Format Type Clocks

EB db JMP db Short, direct 7+m

E9 dw JMP dw Near, direct 7+m

E9 dd JMP dd Near, direct 7+m

FF [4] JMP r/mw Near, indirect 7+m/10+m
FF [4] JMP r/md Near, indirect 7+m/10+m
EA pd JMP pd Far, direct 17+m,*

EA pp JMP pp Far, direct 17+m,*

FF [5] JMP mw:w Far, indirect 22+m,*

FF [5] JMP mw:d Far, indirect 22+m,*

*These instructions have varying functions and timings in Protected Mode
(see chapter 5).

Flags
Normally JMP affects no flags. However, in Protected Mode all flags
are changed to the old task’s saved flags when a task switch is made.
Pseudocode
IF intersegment JMP THEN
Set CS to segment selector of operand

END IF
Set IP to offset part of operand

Operation

The function of JMP is to provide an unconditional transfer of
control. It corresponds to the GOTO of higher-level languages, and differs
from the conditional jump (Jcc) in that the transfer is always made and

The Instructions 173

the target of the jump may be in another segment. All jump instructions
slow down the 80386 because the instruction queue is cleared and must
be refilled after the jump is taken.

There are five distinct types of unconditional jumps, differing in how
far away from the current instruction the jump target may be and in the
technique used in specifying the target address.

The short jump (also a direct jump) specifies the target with an imme-
diate displacement following the jump opcode. The displacement is
simply added to IP to produce the new execution address. Since the dis-
placement is a byte, the target must lie within the same code segment and
be within —128 and +127 bytes from the instruction following the jump.

A neardirectjump is similar to the short jump in that the target address
is specified by an immediate displacement following the jump opcode. This
displacement is also added directly to IP. Note that at the time of the add IP
points at the instruction following the jump. The displacement is either a
word or dword, depending on the size of the current code segment. The jump
can therefore reach anywhere in the current code segment.

With a near indirect jump the target address is specified indirectly. It is
still restricted to the same code segment as the jump instruction, but speci-
fies either a register or memory location containing the offset within the
current code segment of the target instruction. The offset is either a word or
dword, depending on the size of the current code segment.

A far direct jump permits the target of the jump to be in a differentcode
segment. The jump instruction contains an immediate operand that is a
pointer to the target instruction. The pointer contains a word segment
selector (which is loaded into CS) and either a word or dword offset (which
is loaded into (E)IP). The size of the offset depends on the size of the target
code segment.

A far indirect jump is similar to a near indirect jump in that the
instruction contains a pointer to the actual target address. However, the
target addressis a full pointer rather than a simple offset, and therefore may
not be in a register. The target pointer contains a segment selector (which is
loaded into CS) and either a word or dword offset (which is loaded into
(E)IP). The size of the offset depends on the size of the target code segment.

The basic procedure is the same in Protected Mode, but intersegment
jumps are much more complicated since the jump may specify an operating
system routine or even another task. In either case memory protection must
be checked (see Chapter 5).

174

The 80386 Instruction Set

Exceptions Modes Reasons

#NP P Target code segment not present

#TS P Task switch required

#GP(0) P Illegal memory effective address in CS, DS, ES,
FS, or GS segments

#SS5(0) P Illegal address in SS segment

#PF(fc) PV Page fault
INT(13) RV Some part of operand is outside of address range
0 to OFFFFH

User Notes

On the 80386 a short jump (distance given by a byte) and a near jump
(distance given by a word) in Real Mode both take only 7 clocks to execute.
The only advantage of a short jump is that its instruction is a total of 1 byte
shorter. Thus, no execution speed is saved by rearranging your code to make
sure most jumps are short, as long as they’re in the same segment.
Example

JMP TARGET ; The jump will take 10 clocks.

TARGET: AND AX7 ; 1 byte opcode, 1 mod r/m byte,
; 1 immediate = 3 components.

The Instructions 175

LAHF Load Flags Into AH 8086
|

Opcode Format Clocks

9F - LAHF 2

Flags

NT | IOPL | OF | DF | IF | TF | SF | ZF AF PF CF
0 0 0 1
Pseudocode

Set AH to low byte of Flags register.

Operation

LAHF is a quick way to load all the flags stored in the low byte of the
Flags register into AH, where they can be changed, examined, or stored as
needed. This instruction has been provided for compatibility with the
8080/85, and is rarely used in iAPX 86 family programs (which would use
POPF instead).

The bits in AH after the transfer are: SF ZF x AF x PF x CF, with “x”
meaning “undefined.”

Exceptions

None

176 The 80386 Instruction Set

User Notes

Except for programs converted from (or due to be converted to) the
8080/85, this instruction is normally not used. It could be used to check the
status of all the low-byte flags at once (by comparing AH to a bit pattern, for
instance), or to implement obscure conditional jumps that depend on flag
combinations not covered by JE, JNA, etc. However, this is made more
difficult by the fact that several of the bits are undefined.

To get around this, LAHF could be implemented; then AND AH,D5H
would ensure that the undefined bits were cleared. Finally, one or more
AND'’s followed by JE’s or JNE’s would compare the bit pattern in AH to
various predefined patterns, and jump based on the result.

Example
LAHF ; Loads the flags into AH.
AND AH,11H ; Mask out the AF and CF bits.

JNZ SOMEWHERE ; Simulates a “jump on AF or CF set”
; instruction.

The Instructions 177

LEA Load Effective Address Offset 8086

Opcode Format Clocks
8D [r] LEA r16,m16 2
8D [r] LEA r32,m16 2
8D [1] LEA r16,m32 2
8D [r] LEA r32,m32 2
Flags
NT |IOPL | OF | DF | IF | TF | SF | ZF AF PF CF
0 0 0 1
Pseudocode

IF register size is 16 THEN
IF memory size is 16 THEN
Set register to offset part of effective address
ELSE (» memory size is 32 x)
Set register to low order 16 bits of offset part of effective address
END IF
ELSE (= register size is 32 x)
IF memory size is 16 THEN
Setregister to offset part of effective address, zero extended to 32 bits
ELSE (» memory size is 32 x)
Set register to offset part of effective address
END IF
END IF

178

The 80386 Instruction Set

Operation

LEA is like a MOV from memory to a register, but the offset part of the
address is MOVed, not the contents of RAM at the address. The memory size
referred to in the pseudocode is determined by the USE attribute of the
segment containing the memory address.

Exceptions Modes Reasons

#UD P Second operand is a register
INT(6) RV Second operand is a register
User Notes

Sometimes LEA and MOV can be used interchangeably. For instance,
LEA AX, STRUCTURE and MOV AX, OFFSET STRUCTURE have the same
effect. However, LEA allows the use of any addressing mode for the second
operand, as long as it results in a memory reference. Thus LEA AX,STRUC-
TURE [BX] [D1] allows the address of a doubly-indexed pointer to be moved
directly into AX; this couldn’t be done directly with a MOV.

Another interesting aspect of the LEA instruction is its capability to
provide a very fast but somewhat limited integer multiply instruction. By
using scaled index addressing mode, multiplications by 2, 4, and 8 can be
accomplished. With based scaled index addressing mode, LEA will perform
multiplications by 3, 5, or 9. Note that these all require only 2 clocks, far
faster than either multiply or shift instructions.

Example

MOV BX11 ; Get an 11 into BX to be multiplied.
LEA AX|BX][BX+4] ;Loads AX with BXx5, in this case 55.

The Instructions 179

‘ Remove Procedure
LEAVE Stack Frame 80186

Opcode Format Clocks
C9 LEAVE 4
Flags

NT | IOPL | OF | DF | IF | TF | SF | ZF AF PF CF
0 0 0 1
Pseudocode

Set (E)SP to (E)BP.
POP old frame pointer into (E)BP.

Operation

LEAVE is used to implement procedure calls, and is a command
expressly designed for implementing high-level languages. It resets the
stack pointer to exclude the procedure’s local variables and pops from the
stack a “frame pointer.” These actions prepare the stack for the RET instruc-
tion that should immediately follow.

Exceptions Modes Reasons

#SS5(0) P BP points to a location outside the current stack
segment

INT(13) RV Some part of the operand lies outside address
space 0 to OFFFFH '

180

The 80386 Instruction Set

User Notes

LEAVE is much simpler than ENTER because ENTER does most of the
work. It sets BP to point at the correct place so that all LEAVE needs to do is
put BP into the stack pointer and then pop the old BP value.

LEAVE should be the last instruction before RET in a procedure in
which ENTER is the first instruction. The LEAVE instruction changes the
stack pointer so the local variables that had been on the stack are removed
and the frame pointer (BP) is set ready for the procedure that called this one.

Example

SUBROUTINE:

ENTER12,3 ; SUBROUTINE has 3 local variables
; (dwords) and is at nesting level 3.

LEAVE ; Removes current stack frame from
; stack.

RET 8 ; SUBROUTINE has 2 parameters
; (dwords).

The Instructions 181

LOCK Assert BUS LOCK Signal Prefix 8086

Opcode Format Clocks
FO LOCK 0
" Flags
NT | IOPL | OF | DF | IF | TF | SF | ZF AF PF CF
0 0 0 1
Pseudocode

Set BUS LOCK signal for duration of the following instruction.

Operation

The LOCK prefix is used in multiple-processor systems to prevent con-
tention for shared memory at certain critical times. It asserts a special bus
signal, called LOCK, which prevents any other bus device from accessing the
bus during the time the signal is asserted. The signal is asserted during the
entire execution of the instruction that follows the LOCK prefix.

On the 80386 only certain instructions may be used with LOCK. The use
of any other instruction will cause an undefined opcode trap to occur. The
valid instruction/operand combinations are:

BT, BTS, BTR, BTC mem, reg/imm
ADD, OR, ADC, SBB, AND, SUB, XOR mem, reg/imm
XCHG reg, mem
XCHG mem, reg

NOT, NEG, INC, DEC mem

182

The 80386 Instruction Set

Note that all these instructions require a value to be read from memory,
modified in some way, and stored back in the same memory location. The
XCHG instruction is always locked, even if the prefix is not present.

Exceptions Modes Reasons

#GP(0) P Current privilege level is higher than the I/O
privilege level

#UD PV Instruction following LOCK is not listed in the
table above

INT(6) R Instruction following LOCK is not listed in the

table above

User Notes

The LOCKed instruction can generate any additional exception, just as
if it had been executed “normally.”

For an example of why this prefix might be needed, consider the
following situation. A two-processor system contains a shared memory
location used as an “event” counter. When either processor detects an
“event” it must increment this shared memory location. The program in
each processor will use an INC instruction without the LOCK prefix. Sup-
pose that four events have already been detected and both processors detect
an event at about the same time. If both processors attempt to execute their
respective INC instructions too close together, the following disaster
happens.

The first processor reads the value (4) from shared memory and begins
the increment process internally. While the internal increment is happening
in processor one, processor two gets the bus and uses it to read the same
value (4) from the same memory location. While processor two is internally
incrementing this value the first processor stores the result of its increment
(5) back into memory. Finally, the second processor stores the result of its
increment (also 5) back into the shared memory location. What has hap-
pened is that the counter has missed an “event” The LOCK prefix would
have prevented this bug.

You may say to yourself that the above scenario is quite unlikely and
thatis just the reason that this kind of bug is so difficult to find. A system with
this bug in it could run correctly for weeks or months and then suddenly start

The Instructions 183

“crashing” mysteriously because a situation that provoked the bug became
common.

Locked access may not be guaranteed if the other processor executes an
instruction with any one or more of the following conditions:

® The LOCK prefix is not used.
® The instruction is not in the list above.
® A memory operand is specified that does not exactly overlap.

Previous Intel processors allowed a more liberal use of the LOCK prefix.
Therefore, take care when converting any programs from these earlier
systems that contain a LOCK

Example

LOCVK BTR FLAGWORD,AVAILBIT ; Clear avail bit to indicate

; we have the shared resource.
JNC NODICE ; Jump if someone else
; already had it allocated.

184 The 80386 Instruction Set

LODS Load String 8086

Opcode Format Clocks Single Clocks Repeated
AC LODSB 5
AD LODSW 5
AD LODSD 5 *
*LODS is the one string instruction which cannot use any of the repeat
prefixes.
Flags
NT [10PL | OF [DF | IF [TF [SF | ZF AF PF CF

0 0 0 1

Pseudocode

Determine size of operand
IF operand size is 8 THEN

Move byte from address DS{(E)SI] to AL
ELSE IF operand size is 16 THEN

Move word from address DS{(E)SI] to AX
ELSE (» operand size is 32 *)

Move dword from address DS (E)SI] to EAX
IF DF = 0 THEN
ENDIF

Add size of operand (in bytes) to (E)SI
ELSE

Subtract size of operand (in bytes) from (E)SI
END IF

Operation

LODS s justlike a MOV from memory to AL or AX, butit also automati-

cally adjusts SI after the move. If the Direction Flag is 0 SI is incremented;

The Instructions 185

otherwise it's decremented. If a byte was moved the index is adjusted by 1; if
a word, by 2; and if a dword, by 4.

Exceptions Modes Reasons

#GP(0) P Illegal memory effective address in CS, DS, ES,
' FS, or GS segments
#SS(0) P Illegal address in SS segment
#PF(fc) PV Page fault
INT(13) RV Some part of operand is outside of address range
0 to OFFFFH
User Notes

LODS can’t be used with any of the REP prefixes; REP would only have
the effect of repeatedly overwriting the AL or AX register with each of the
bytes or words pointed to by SL However, LODS is often used in a repeat
loop looking for a given character in a string: LODS loads AL, which is then
compared to the needed character, and this is repeated until the characteris
found.

LODS and STOS can be used together to transfer a string from DS to ES,
with any needed conditional tests or changes put in between LODS and
STOS.1If a string of known length is to be moved unchanged, then MOVS will
do the same thing faster.

Example

The following copies a string from one location in memory to
another. It copies until either a maximum number of characters
have been moved or a zero character has been moved.

These zero-terminated strings are just like “C” language strings.

we we we we we

CLD ; Ensure direction is forward.

LDS ESLSSTR ; Get pointer to source string,
; DSJESI].

LES EDLDSTR ; Get pointer to destination

; string, ES{EDI].
MOV ECXMAXSTR ; Set up repeat count for
; LOOP.

186 The 80386 Instruction Set

COPYL:

LODSB

STOSB
TEST ALAL

LOOPNZ COPYL

; Get next character from

; source string.

; Store into destination string,

; Will set Zero flag only on

; zero character.

; Loop until MAXSTR bytes or
; a zero byte have been moved.

The Instructions 187

Loop Control with
LOOPcc CX Counter - 8086

Opcode Format Jump Condition Clocks
E2 db LOOP db (E)CX<>0 11+m
E1 db LOOPE db (ECX<>0and ZF =1 11+m
E1 db LOOPZ db (EXCX<>0and ZF =1 11+m
E0 db LOOPNE db (EXCX<>0and ZF =0 11+m
E0 db LOOPNZ db (E)CX<>0and ZF =0 11+m
Flags
NT | IOPL | OF | DF | IF | TF | SF | ZF AF PF CF
0 0 0 1

Pseudocode

Decrement (E)CX (x No flags are changed *)
Determine size of operand
IF condition is met THEN
Set Instruction Pointer (IP) to IP + sign-extended displacement
END IF

Operation

LOOP decrements CX (or ECX), then checks to see thatit's notzero. The
Zero Flag may also be checked. If the register is not zero and any optional
ZF condition is met, a short jump is made to the label given as an operand
after the LOOPcc. The assembler translates the label into a byte offset,
which can range from 128 bytes before the instruction to 127 bytes after.
This offset is added to the current address to determine where execution
will proceed next.

188 The 80386 Instruction Set

Exceptions Modes Reasons

#GP(0) P Jump target is beyond the limits of the code
segment

User Notes

LOOP allows a FOR-type loop to be implemented directly in assembly
language. As with a FOR loop, the value in the CX register shouldn’t be
altered by any of the commands within the loop or the loop could easily go
on forever. The loop count is treated as an unsigned integer.

A common source of confusion arises from the name LOOPZ. Just
remember that the instruction loops while the last result to set the flags is
zero and (E)CX zero.

Example

See LODS (above) for a good example of LOOPcc.

The Instructions 189

xx Load Full Pointer 8086
. |

Opcode ormat Clocks

C5 [1] LDS rw,mw:w 7,22*

C5 [1] LDS rd,mw:d 7,22*

C4 [1] LES rwmw:w 7,22*

C4[r] LES rd,mw:d 7,22*

OF B2 [r] LSS rwmw:w 7,22*

OF B2 [1] LSS rd,mw:d 7,22*

OF B4 [r] LFS rw,mw:w 7,22*

OF B4 [r] LFS rd,mw:d 7,22*

OF B5 [r] LGS rw,mw:w 7,22*

OF B5 [1] LGS rd,mw:d 7,22*

*These instructions require extra clocks in Protected Mode due to extra
processing needs (see Chapter 5).

Flags
NT lOPL/ OF |DF | IF | TF | SF | ZF AF PF CF
0 | 0 0 1
|
Pseudocode

Set the segment register to the segment part of the second operand.
Set the general register to the offset part of the second operand.

Operation
These instructions are used to set up two registers at one time. Both a

segment register and one of the general registers are loaded. The segment
register is loaded with the 16-bit segment selector of the operand. The

190

The 80386 Instruction Set

general register is loaded with either a word or dword offset of the operand
within its segment. The size loaded depends on the size attribute of the
specified segment. ,

This basically simple operation is somewhat more complicated in
Protected Mode. The main problem here is that any change in one of these
registers means that the processor will now be trying to reference a whole
different piece of memory, which probably has different protection levels
than the current one. If virtual memory techniques are in use the segment
may even be out on disk.

Exceptions Modes Reasons

#UD P Source operand is a register

#GP(0) P Illegal memory effective address in CS, DS, ES,
FS, or GS segments

#GP(0) P Null selector loaded to SS

#SS5(0) P Illegal address in SS segment

#PF (fc) PV Page fault

INT(13) RV Some part of operand is outside of address range
0 to OFFFFH

INT(6) RV Source operand is a register

User Notes

The most common use of these instructions is to set up one of the data
segment registers and an index register in preparation for accessing a new
block of memory.

Example

LES DI, STRUCTURE ;Loads segment of STRUCTURE into ES and
; offset of STRUCTURE into DL

The Instructions

191

MOV

Move Data

8086

Opcode

Bo+r ib
B8+r iw
B8+r id
Cé6 [0] ib
C7 [0] iw
C7 [0] id
Ao d
A1d
Ald
A2d

A3 d

A3 d

88 [r]

89 [r]

89 [r]
8A [1]
8B [r]

8B [r]

8E [0]
8E [1]
8E [2]
8E [3]
8C [0]
8C [1]
8C [2]
8C [3]

Format

MOV rb,ib
MOV rw,iw
MOV rd,id
MOV r/mb,ib
MOV r/mw,iw
MOV r/md,id
MOV AL, db
MOV AXdw
MOV EAX,dd
MOV db,AL
MOV dw,AX
MOV ddEAX
MOV r/mb,rb
MOV r/mw,rw
MOV r/md,rd
MOV rb,r/mb
MOV rw,r/mw
MOV rd,r/md
MOV ES;r/mw
MOV CSr/mw
MOV SS,r/mw
MOV DS,;r/mw
MOV r/mw,ES
MOV /mw,CS
MOV r/mw,SS

"MOV r/mw,DS

Clocks

NN DND BB RARNDMDNMDNDNDNDDNDDN

*These instructions require 18/19 clocks in Protected Mode due to extra

processing needs (see Chapter 5).

192

The 80386 Instruction Set

Flags

NT {IOPL | OF | DF | IF | TF | SF { ZF AF PF CF
0 0] 0 1
Pseudocode

Set first operand to second operand.

Operation

MOV is the same as the assignment operatorin a high-level language; it
sets the first operand equal to the second. Unlike other assembly languages,
the destination operand is given first, followed by the source operand.

Although this seems very simple, there are two additional complications
encountered in using the MOV instruction. The first is when a MOV SS is
executed. This automatically inhibits all interrupts until after the next
instruction is executed. The implied expectation is that the next instruction
will be MOV SP or some other instruction that results in the SS:SP
combination being restored to a meaningful value.

The second complication is encountered when moving into any
segment register in Protected Mode. The main problem here is that any
change in one of these registers means that the processor will now be trying
to reference a whole different piece of memory, which probably has
different protection levels than the current one.

Exceptions Modes Reasons

#GP, #SS, #NP P A segment register is being loaded

#GP(0) P Result in nonwritable segment

#GP(0) P Illegal memory effective address in CS, DS, ES,
FS, or GS segments

#SS(0) P Illegal address in SS segment

#PF(fc) PV Page fault

INT(13) RV Some part of operand is outside of address

range 0 to OFFFFH

The Instructions 193

User Notes

The most important thing to know about using MOV is knowing when
to pull some less-used but better-suited instruction from your bag of tricks.
Forinstance, MOVS is often better for moving strings, while IN and OUT are
needed if your source or destination is a port.

Example

MOV AX,ES ; Copies the contents of ES into AX

194 The 80386 Instruction Set

Move with Sign/
MOVxX Zero Extension 8086

Opcode Format Clocks
OF BE [r] MOVSX rw,r/mb 3/6
OF BE [r] MOVSX rd,r/mb 3/6
OF BF [r] MOVSX rd,r/mw 3/6
OF B6 [1] MOVZX rw,r/mb 3/6
OF B6 [1] MOVZX rd,r/mb 3/6
OF B7 [r] MOVZX rd,r/mw 3/6
Flags
NT | IOPL | OF | DF | IF | TF | SF | ZF AF PF CF
0 0 0 1
Pseudocode

Extend the source operand (by either zeros or the sign bit) to the length
of the destination.
Store the result into the destination operand.

Operation

MOVSX and MOVZX handle the problem of a destination operand
that has more bits in it than the source (i.e, the target is a word, the source a
byte). SX stands for “sign extension” and means that the high bit of the source
is copied into the additional bits available in the target. ZX stands for “zero
extension,” and the target’s available bits are filled with zeros.

The Instructions 195

Exceptions Modes Reasons

#GP(0) P Illegal memory effective address in CS, DS, ES,
FS, or GS segments

#SS(0) P Illegal address in SS segment

#PF(fc) PV Page fault

INT(13) RV Some part of operand is outside of address range
0 to OFFFFH

User Notes

Because these instructions only allow one of the general registers as a
destination, they are most useful in setting up registers for further
computations.

Example

MOVSX AX92H ; Sets AX to OFF92 (hex).

196 The 80386 Instruction Set

MOVS Move String 8086

Opcode Format Clocks Single Clocks Repeated
A4 MOVSB 7 5+4xN
ATAS MOVSW 7 5+4xN
A7 MOVSD 7 5+4+N

*The “N” in the “Clocks Repeated” column stands for the number of
repetitions (from (E)CX).

Flags

NT | IOPL { OF | DF | IF | TF | SF | ZF AF PF CF

Pseudocode

Determine size of operand
IF operand size is 8 THEN

Move byte from address DS:[(E)SI] to ES;(E)DI]
ELSE IF operand size is 16 THEN

Move word from address DS{(E)SI] to ES:{(E)DI]
ELSE (» operand size is 32 x)

Move dword from address DS{(E)SI] to ES{(E)DI]
END IF
IF DF = 0 THEN

Add size of operand (in bytes) to (E)SI and to (E)DI
ELSE

Subtract size of operand (in bytes) from (E)SI and to (E)DI
END IF

The Instructions 197

Operation

MOVS is just like a regular MOV from the place in memory pointed to
by the source index to the place in the extra segment pointed to by the
destination index. However, it also automatically adjusts both indices after
the move. If the Direction Flagis 0 SI and DI are incremented; otherwise they
are decremented. If a byte was moved the indices are adjusted by 1;if a word,
by 2; and if a dword, by 4.

Exceptions Modes Reasons

#GP(0) P Result in nonwritable segment

#GP(0) P Illegal memory effective address in CS, DS, ES,
FS, or GS segments

#SS5(0) P Illegal address in SS segment

#PF(fc) PV Page fault
INT(13) RV Some part of operand is outside of address range
0 to OFFFFH

User Notes

MOVS can’t be used with REPE or REPZ since it doesn’t condition any
flags. However, the REP prefix works as expected, moving CX bytes or words
from the source to the destination. This is the usual way of using MOVS.

REP works well when you can load CX with the length of the string
you’re moving, but if the transfer has to stop when a given byte is found some
other method has to be used. One method is to use LODS, do the test, use
STOS, and then repeat with a LOOP instruction.

Example
CLD ; Ensure direction is forward.
LDS ESLSTR1 ; Set up source pointer, DS{ESI).
LES EDLSTR2 ; Set up destination pointer, ES{EDI].
MOV ECX)5 ; Set up repeat count for move.
REPE MOVSD ; Executes 5 times, copies from STR1 to

; STR2.

198 The 80386 Instruction Set

MUL Unsigned Multiply 8086
|
Opcode Format Clocks
F6 [4] MUL r/mb 9-14/12-17
F7 [4] MUL r/mw 9-22/12-25
F7 [4] MUL r/md 9-38/12-41
Flags
NT |IOPL | OF | DF | IF | TF | SF | ZF PF CF
0 S Uulu U S
Pseudocode

IF operand size is byte THEN

Set AX to the product of AL and the operand

ELSE IF operand size is word THEN

Set DX:AX to the product of AX and the operand

ELSE (operand size is dword «)
Set EDX:EAX to the product of EAX and the operand
END IF

Operation

All operands are treated as unsigned numbers. All results can be treated
as unsigned numbers. The maximum size of the result of a multiplication of
two n-bit numbers is a 2n-bit number. Therefore the results produced are
twice the size of the input operands.

The Instructions 199

Exceptions Modes Reasons

#GP(0) P Illegal memory effective address in CS, DS, ES,
FS, or GS segments

#SS(0) P Illegal address in SS segment

#PF(fc) PV Page fault

INT(13) RV Some part of operand is outside of address range
0 to OFFFFH

User Notes

The timing information for this instruction is given in ranges because
the time required for a multiply depends on the size of the multiplier. The
more significant bits, the longer the operation takes. The 80386 takes advan-
tage of this fact with an early-out multiplication algorithm. The specified
operand in the MUL instruction is called the optimizing multiplier (“m” in
the formula below). The actual number of clocks required for a multiply can
be calculated with the following formula:

IF m = 0 THEN clocks = 9
ELSE clocks = max(log2(|m|), 3) + 6

Example

MOV AL,128 ;Loads a 128 (80 hex) into AL.

MOV BLj10 ;Loads a 10 (0A hex) into AL.

IMUL BL ; AX now contains 1280 (500 hex), note that over-
; flow gets set.

200 The 80386 Instruction Set

NEG Two’'s Complement Negation 8086

Opcode Format Clocks
F6 [3] NEG r/mb 2/6
F7 [3] NEG r/mw 2/6
F7 [3] NEG r/md 2/6
Flags
NT | IOPL | OF | DF | IF | TF | SF | ZF AF PF CF
0 S S]1S]O 0]S |1 S
Pseudocode

Subtract operand from 0
Place result in operand
IF operand is zero THEN
clear carry flag to 0
ELSE
set carry flag to 1
END IF

Operation

NEG does a two’s complement negation of its single operand. If the
operand is 65 before the negation, it will be —65 after, and vice versa. This is
done by taking the two’s complement of the operand. Every bit in the
operand isreversed; 1’s are changed to 0’s and 0’s to 1’s, and the resultis then
incremented by 1. This gives the negation of the original operand.

Another way of looking at NEG’s operation is to say that the operand is
subtracted from 0 and the result is placed in the operand. This operation is
easier to understand, but doesn’t make clear what's happening on the bit
level.

The Instructions 201

Exceptions Modes Reasons

#GP(0) P Result in nonwritable segment

#GP(0) P Illegal memory effective address in CS, DS, ES,
FS, or GS segments

#S5(0) P Illegal address in SS segment

#PF(fc) PV Page fault

INT(13) RV Some part of operand is outside of address range
0 to OFFFFH

User Notes

There are many cases in which itis useful to negate a number, and NEG
works for all of them. The one’s complement of a word can be obtained with
NOT.

Example

MOV AX579BH ; Loads a value into AX
NEG AX ; Sets AX to 0A865 hex.

202 The 80386 Instruction Set

NOP No Operation 8086

Opcode - Format Clocks
90 NOP 3
Flags
NT | IOPL | OF | DF | IF | TF | SF | ZF AF PF CF
0 0 0 1
Pseudocode

Do nothing for 3 clocks.

Operation

The NOP instruction takes up one byte of code space and when exe-
cuted takes three clock cycles. No registers, flags, or contents of memory
are changed. The NOP instruction is an alias for the instruction: “XCHG
AX,AX”
Exceptions

None

User Notes

NOP does nothing, which is surprisingly often a worthwhile thing to do.
It's used to fill space when debugging on the fly, or when patching an
assembled program on disk. The assembler also puts NOPs in some of the

The Instructions 203

code it outputs. If it can’t predict in advance the number of bytes a given
instruction will take up, it allocates the maximum amount of space that
could be needed. If not all the space is used the difference is filled with
NOPs.

Someone writing a program for a system with super-critical timing or
space limitations could write a filter to take in an assembled program and
output the same program with all NOPs removed. The program would also
have to adjust all jump-type instructions to account for the removed bytes.

Example

NOP ; Does nothing,

204

The 80386 Instruction Set

NOT One’s Complement Negation 8086

Opcode Format Clocks
F6 [2] NOT r/mb 2/6
F7 [2] NOT r/mw 2/6
F7 [2] NOT r/md 2/6
Flags
NT | IOPL | OF | DF | IF | TF | SF | ZF AF PF CF
0 0 0 1

Pseudocode

REPEAT

Reverse a bit in the operand
UNTIL all bits in operand are reversed

Operation

NOT carries out a Boolean or “logical” NOT on its single operand and
leaves the result in the operand. This operation is depicted in Figure 4-4,
which gives “truth tables” for all logical operations. A 1 can be regarded as T
or True, while a 0 corresponds to F orFalse. A logical NOT takes a single bit
as operand and reverses it: if the bit is 0 it's changed it to 1; if it's a 1 it's
changed to 0. '

Alogical NOT simply changes a statement to its opposite or negative, so
applying NOT to an operand is also called “negating” the operand. In
English this is like inserting the word ‘not’ into a statement: “The dog is
black” becomes “The dog is NOT black.”

The result of applying NOT to a number is called the “one’s comple-
ment” of the number, and arithmetic can be done using one’s complements.

" The Instructions 205

Adding 1 to thisresult gives the “two’s complement,” which the iAPX 86s use
to do math.

Exceptions Modes Reasons

#GP(0) P Result in nonwritable segment

#GP(0) P Illegal memory effective address in CS, DS, ES,
FS, or GS segments

#SS(0) P Nllegal address in SS segment

#PF(fc) PV Page fault

INT(13) RV Some part of operand is outside of address range
0 to OFFFFH

User Notes

NOT is used to do bit tests and comparisons; many of these can also be
done by using the bit test instructions which are new on the 80386 (a
register-to-immediate bit test takes 3 cycles versus 2 for a similar NOT). The
NOT is only more efficient if no other supporting instructions are needed to
set up or decipher the comparison results.

Another problem with NOT (for many applications) is that it sets no
flags.

Example

MOV AX579BH ; Loads a value into AX.
NOT AX ; Sets AX to 0A864 hex.

206

The 80386 Instruction Set

OR Or 8086
|
Opcode Format Clocks
0Cib OR AL,ib 2
0D iw OR AXiiw 2
‘0D id OR EAXiid 2
80 [1]ib OR r/mb,ib 2/7
81 [1] iw OR r/mw,iw 2/7
81[1]id OR r/md,id 2/7
08 [1] OR r/mb,b 2/7
09 [r] OR r/mw,;rw 2/7
09 [1] OR r/md,rd 2/7
0A [1] OR rbr/mb 2/7
0B [1] OR rw,r/mw 2/7
OB [r] OR rd,r/md 2/7
Flags
NT | IOPL | OF | DF | IF SF | ZF AF PF CF
0 0 S|S ‘ S 0
Pseudocode
REPEAT

IF a bitin the destination operand is 0 and the corresponding bit in
the source operand is 0 THEN

leave the bit in the destination operand at 0

ELSE

set the bit in the destination operand to 1

END IF
UNTIL all bits in destination operand are checked

The Instructions 207

Operation

OR carries out a Boolean or “logical” OR on its two operands and leaves
the result in the leftmost operand. This operation is depicted in Figure 4-4,
which gives “truth tables” for all logical operations. A 1 can be regarded as T
or True, while a 0 corresponds to F or False. A logical ‘OR’ takes two bits and
calculates a result using this rule: if either input bitis 1 or both input bits are
1, then the output bit is 1; otherwise the output bit is 0. The instruction OR
simply does the same operation on all the bits in each of two operands; the
leftmost bitin one operand is compared to the leftmost bitin the other, then
the two bits one position to the right are compared, until all the bit pairs have
been compared.

The logical OR is also called an “inclusive OR” since it “includes” the
case where both statements are true. This is much like the use of “or” in
English; if I say, “It's going to rain or snow tomorrow” then I'm proved right by
rain, snow, or both.

OR can only be used with two operands of the same size (same number
of bits); otherwise the operation would be meaningless for some of the bits in
the longer operand.

Exceptions Modes Reasons

#GP(0) P Result in nonwritable segment

#GP(0) P Illegal memory effective address in CS, DS, ES,
FS, or GS segments

#S5(0) P Illegal address in SS segment

#PF(fc) PV Page fault

INT(13) RV Some part of operand is outside of address range
0 to OFFFFH

User Notes

OR is used to do bit setting; often this can also be done by using the
bit-test instructions that are new on the 80386. A register to immediate bit
test takes 3 cycles versus 2 for a similar OR, so the OR is only more efficient
if no other supporting instructions are needed to set up for the bit setting.

208 The 80386 Instruction Set

Example

MOV AX5963H ;Loads a hex number into AX
MOV BX6CA5H ;Loads a hex number into BX.
OR AXBX ; AX now contains 7DE7 hex.’

The Instructions 209

ouT Output to Port 8086
|

Opcode Format Clocks

E6 ib OUT ib,AL 3

E7 ib OUT ib,AX 3

E7 ib OUT ibEAX 3

EE OUT DXAL 4

EF OUT DX AX 4

EF OUT DXEAX 4

Flags

NT | IOPL { OF | DF | IF | TF | SF | ZF AF PF CF
0 0 0 1
Pseudocode

IF first operand is immediate THEN

Zero extend first operand to 16 bits to form output port address
ELSE

Output port address is contents of DX
END IF
IF second operand size is byte THEN

Move the byte in AL to the output port
ELSE IF second operand size is word THEN

Move the word in AX to the output port
ELSE (+ second operand size is dword x)

Move the dword in EAX to the output port
END IF

Operation

The OUT instruction is used to send a single byte, word, or dword to a
peripheral device port. A port number may be any number from 0 to 65,535

210

The 80386 Instruction Set

(2'%—1). Normally a device has several ports assigned, some for commands,
some for status, and some for data. Device control is accomplished by
sending information to the command ports and getting information from the
status ports. Output is produced by sending data to a data port

Port numbers 00F8H through 00FFH are reserved by Intel and shouldn’t
be used.

Exceptions Modes Reasons

#GP(0) P Current privilege is higher than IOPL

#GP(0) \Y Some of the corresponding permission bits in
TSS equal 1

User Notes

Most programs send output through calls to an operating system, and
thus don’t use the OUT instruction. Even those that bypass the operating
system often use MOVs to write to video RAM and get information out.
However, the OUT instruction is indispensable for those writing device
drivers or for anyone who must deal directly with a device.

When only a few bytes of output are needed the OUT instruction should
be used. If the output device can’taccept data ata high rate of speed the OUT
instruction can be put in a loop, with NOPs or a counting loop included to
slow down the transfer of data.

Example

MOV AL_20H ;Loads an ASCII space into AL.
OUT 30,AL ; Output it to port 30.

The Instructions 21

OUTS Output String to Port .= 80186

Opcode Format Clocks Single Clocks Repeated
6E OUTSB 7 5+5«N
6F OouTSw 7 5+5+N
6F OUTSD 7 5+5xN
The “N” in the “Clocks Repeated” column stands for the number in the
(E)CX register.
Flags
NT |IOPL | OF | DF | IF | TF | SF | ZF AF PF CF

0 0 0 1

Pseudocode

IF operand size is byte THEN 4

Move the byte in AL to the output port named in DX
ELSE IF operand size is word THEN

Move the word in AX to the output port named in DX
ELSE (» operand size is dword *)

Move the dword in EAX to the output port named in DX
END IF
IF DF = 0 THEN

Add size of operand (in bytes) to (E)SI
ELSE

Subtract size of operand (in bytes) from (E)SI
END IF

212

The 80386 Instruction Set

Operation

The OUTS instruction, like OUT, is used to send a single byte, word, or
dword to a peripheral device port. A portnumber may be any number from 0
to 65,535 (2—1). Normally a device has several ports assigned, some for
commands, some for status, and some for data. Device control is accom-
plished by sending information to the command ports and getting informa-
tion from the status ports. Outputis produced by sending data to a data port.

There are several distinctions between OUT and OUTS. In OUTS the
port number is always in DX, and the source of the data is pointed to by
DS:[(E)SI] unless a segment override is used. Finally, the OUTS instruction is
designed to be used with the REP prefix. Thatis, at the end of the instructions
(E)SI is incremented or decremented (depending on the Direction Flag) by
the operand size.

Port numbers 00F8H through 00FFH are reserved by Intel and shouldn’t
be used.

Exceptions Modes Reasons

#GP(0) P Current privilege is higher than IOPL

#GP(0) P Illegal memory effective address in CS, DS, ES,
FS, or GS segments

#S5(0) P Illegal address in SS segment

#PF(fc) PV Page fault

INT(13) RV Some part of operand is outside of address range
0 to OFFFFH

#GP(0) \Y Some of the corresponding permission bits in
TSS equal 1

User Notes

Most programs send output through calls to an operating system, and
thus don’t use the OUTS instruction. Even those that bypass the operating
system often use MOVs to write to video RAM and get information out.
However, the OUTS instruction is indispensable for those writing device
drivers or for anyone who must deal directly with a device. -

The Instructions 213

If the output device can’t accept data at a high rate of speed the OUTS
instruction can be put in a loop, with NOPs or a counting loop included to
slow down the transfer of data.

Example
CLD ; Ensure direction is foward.
LDS ESLOUTSTR ; Set up source of output, DS{ESI].
MOV ECX5 ; Set up repeat count for OUTS.
MOV DX,40 ; Set up output port number for OUTS.

REP OUTSB ; Send 5 bytes of data to output port 40.

214 The 80386 Instruction Set

POP

Pop Stack to Operand

8086

Opcode

8F [0]

8F [0]

58+rw
58+rd
1F

07

17

OF A1

OF A9

Flags

Format

POP mw
POP md

POP rw

POP rd

POP DS
POP ES
POP SS
POP FS
POP GS

*These instructions require 21 clocks in Protected Mode due to extra pro-
cessing needs (see Chapter 5).

NT

IOPL

OF

DF

F

SF

ZF

AF

PF

CF

Pseudocode

IF operand size is word THEN

Move the word at SS;[(E)SP] to the destination word
Add 2 to (E)SP
ELSE (» operand size is dword *)

Move the dword at SS;[(E)SP] to the destlnatlon dword

Add 4 to (E)SP
END IF

The Instructions 215

Operation

In general the POP instruction moves the word on the top of the stack
into the operand given by the instruction, leaving the top of the stack
pointing to a different word. ' ‘

In particular, POP copies the word pointed to by SS:SP into the operand.
Then SPis set to SP + 2 (or 4). Since the stack starts at address SS and grows
downward, incrementing SP has the effect of making the stack smaller. The
word that SP now points to is the word above the popped word in RAM, but
is regarded as below the POPped word on the stack.

Although this is a little confusing, through sheer necessity most pro-
grammers become familiar with accessing the stack. There are two addi-
tional complications encountered in using the POP instruction. The first is
that when a POP SSis executed in Real Mode this automatically inhibits all
interrupts until after the next instruction is executed. The implied expecta-
tion is that the next instruction will be POP SP or some other instruction
which results in the SS:SP combination being restored to a meaningful

value.
The second complication is encountered when POPping into any seg-

ment register in Protected Mode. The main problem here is that any change
in one of these registers means that the processor will now be trying to
reference a whole different piece of memory which probably has different
protection levels than the current one. Chapter 5 explains the protection
checks which must be cleared to POP into a segment register when in
Protected Mode.

Exceptions Modes Reasons

#GP, #SS, #NP P A segment register is being loaded

#GP(0) P Result in nonwritable segment

#GP(0) P Illegal memory effective address in CS, DS, ES,
FS, or GS segments

#SS(0) P Illegal address in SS segment

#PF(fc) PV Page fault

INT(13) RV Some part of operand is outside of address

range 0 to OFFFFH

216

The 80386 Instruction Set

User Notes

The mostimportant thing to know about using the stack is that within a
given subroutine the number of PUSHes and the number of POPs must
match. Mismatches here cause major problems at execution time. The
well-behaved ones result in your program blowing up spectacularly and
immediately; the subtle ones don’t manifest themselves until your program
hasbeen sold to the public for a year, at which time it’s very expensive to fix.

Several programming tricks concern the stack. One is to go back and

- reaccess words you've already popped, figuring they’ll still be in the same

place in RAM as they were before. This often comes about when large data
structures have been stashed on the stack instead of placed at a well-defined
or specially protected place in memory. Another is to place strange values
on the stack and then immediately execute a RET or IRET, knowing that
execution will then transfer to the new value. Many of these tricks will fail to
work on newer iAPX 86s as the word size increases and protection restric-
tions increase. Some of the rest will be rendered troublesome as successive
generations of programmers (a generation being about two years) try to
modify existing programs, innocently assuming that the stack is being
handled in a normal way.

Example

See PUSH (below) for an example using POP.

The Instructions 217

POPA Pop All General Registers 80186

Opcode Format Clocks
61 POPA 24
61 POPAD 24
Flags

NT |IOPL | OF | DF | IF | TF | SF | ZF AF PF CF
0 0 0 1
Pseudocode

(* Refer to POP instruction for clarification of POP operation *)
IF operand size is word THEN
POP DI
POP SI
POP BP
POP BX (* Discard SP value from stack #)
POP BX
POP DX
POP CX
POP AX
ELSE (> operand size is dword)
POP EDI
POP ESI
POP EBP
POP EBX (* Discard ESP value from stack)
POP EBX
POP EDX
POP ECX
POP EAX
END IF

218

The 80386 Instruction Set

Operation

POPA pops the eight words on top of the stack into the general registers
(E)DL (E)SI, (E)BP, (E)SP, (E)BX, (E)DX, (E)CX, and (E)AX (in that order). Note,
however, that the value POPped for (E)SP is not stored there, but discarded.
The new value of (E)SP is as if eight pop instructions were executed.

Exceptions Modes Reasons

#SS(0) P Illegal address in SS segment

#PF(fc) PV Page fault

INT(13) RV Some part of operand is outside of address range
0 to OFFFFH

User Notes

This instruction replaces eight separate POP instructions, and executes
in 8 fewer clocks while taking only 1/8 the space in code. The main advan-
tage of POPA, though, is the conceptual simplicity of simply getting all the
registers loaded from the stack at once. Many hard-to-find bugs have been
caused by subroutines that PUSHed some registers at the beginning and
then POPped them back in the wrong order at the end.

If code space is at a premium, POPA (preceded in almost all cases by its
counterpart PUSHA) should be used even if only two or three registers
actually need to be saved on the stack. If execution time is at a premium (as it
increasingly will be in multiuser environments), remember that the break-
even point is six registers PUSHed and later POPped.

POPA makes a lot of sense when used to implement high-level lan-
guages whose unpredictable levels of nesting often require that all registers
be saved and restored for each subroutine call.

Knowing the order in which POPA loads the registers makes possible
several tricky ways of getting new values into the registers while mostly
bypassing protection mechanisms. While this can be fast and efficient, it can
also lead to obscure and troublesome bugs, especially in Protected Mode.

Example

See PUSHA (below) for an example using POPA.

The Instructions 219

POPF Pop Flags - 8086

Opcode Format Clocks
9D POPF 5
9D POPFD 5
Flags
NT | IOPL | OF | DF | IF | TF | SF | ZF AF PF CF

O}S|* *]S|{S]|*|]S]|]S|]S]J]ojS]J]ofS]1]|S

*IOPL is altered only at privilege level 0; IF is altered only when privilege is
less than or equal to IOPL.

Pseudocode

(* Refer to POP instruction for clarification of POP operation *)
IF operand size is word THEN
POP into FLAGS
ELSE (» operand size is dword *)
POP into EFLAGS
END IF

Operation

The POPF instruction copies the word pointed to by SS{ (E)SP]into the
flags register and then increments SP by 2 (or 4). Since the stack starts at
address SS and grows downward, incrementing SP has the effect of making
the stack smaller.

The flags copied into the register are, in order from most significant (bit
15) to least significant (bit 0): x, nested task, I/O privilege level (2 bits),
overflow, direction, interrupts enabled, trap, sign, zero, X, auxiliary carry, x,
parity, x, and carry (“x” for undefined). Note that the VM (virtual memory) and

220

The 80386 Instruction Set

RF (resume) flags are not altered by this instruction. In addition, the IOPL and
IF flags may not be altered unless the current task has sufficient privilege. In
this last case no exception is generated.

Exceptions Modes Reasons

#SS(0) P Illegal address in SS segment

INT(13) R Some part of operand is outside of address range
0 to OFFFFH

#GP(0) \Y Used to emulate the instruction

#GP(0) \Y% IOPL is less than 3

User Notes

The POPF instruction, like the POPA instruction, is basically designed
to help implement high-level language compilers. With its counterpart
PUSHF, POPF enables all the flags to be saved and restored en masse so the
compiler doesn’t have to “think” about which ones need to be saved and
which don’t at each subroutine call. PUSHF and POPF are almost always
executed either just before (PUSHF) and just after (POPF) a subroutine call,
or at the start (PUSHF) and end (POPF) of a subroutine.

Of course POPF can be used by human assembly-language pro-
grammers as well. In addition to its use with PUSHF it can also be used to
quickly load the entire flags register with an appropriate bit pattern; just
PUSH the bit pattern onto the stack and then POPF it into the flags register.
This is fast and a little dangerous, since it changes not only the conditional
flags like Zero and Carry, but also more sensitive ones such as I/0 Privilege
Level and Nested Task.

Example

See PUSHF (below) for an example using POPF.

The Instructions 221

PUSH Push Operand onto Stack 8086

Opcode Format Clocks
FF [6] PUSH mw 5
FF [6] PUSH md 5
50+r PUSH rw 2
50+r PUSH rd 2
6A ib PUSH ib 2
68 iw PUSH iw 2
68 id PUSH id 2
OE PUSH CS 2
1E PUSH DS 2
06 PUSH ES 2
16 PUSH SS 2
OF A0 PUSH FS 2
OF A8 PUSH GS 2
Flags
NT |IOPL OF | DF | IF | TF | SF | ZF AF PF CF
0 0 0 1
Pseudocode

IF operand size is word THEN
Subtract 2 from (E)SP
Move the source word to SS{(E)SP]
ELSE (» operand size is dword *)
Subtract 4 from (E)SP
Move the source dword to SS;(E)SP]
END IF

222

The 80386 Instruction Set

Operation

In general the PUSH instruction puts its operand onto the top of the
stack, changing the stack pointer so that the new value is the new top of the
stack.

In particular, PUSH changes SP to SP — 2 (or 4). Since the stack starts at

" address SS and grows downward, decrementing SP has the effect of making

the stack larger. The word that SP now points to is the word below (at a lower
RAM address than) the last word pushed, but it is regarded as “above” that
word on the stack. The contents of PUSH’s operand are now copied to the
new top of the stack.

Although this is a little confusing, through sheer necessity most pro-
grammers become familiar with accessing the stack. There are two addi-
tional complications encountered in using the PUSH instruction. The first
occurs when a PUSH SP is executed. On early iAPX 86s this causes the chain
of events one would normally expect from looking at the pseudocode above:
SPis decremented by 2, and then its value is pushed onto the stack. However,
on the iAPX 286 and 386 the value pushed is SP before the decrement, which
is the effect programmers are usually trying to achieve when they push SP.

The second is almost always ignorable: if (E)SP is 1 when PUSH is
executed, the 80386 will shut down due to lack of stack space. It is unlikely
that this problem would ever confront you.

Exceptions Modes Reasons

#GP(0) P Illegal memory effective address in CS, DS, ES,
FS, or GS segments

#SS(0) P Illegal address in SS segment

#PF(fc) PV Page fault

Rkkkk RV System shut down due to lack of stack space

User Notes

The mostimportant thing to know about using the stack is that within a
given subroutine the number of PUSHes and the number of POPs must
match. Mismatches here cause major problems at execution time. The
well-behaved ones result in your program blowing up spectacularly and
immediately; the subtle ones don’t manifest themselves until your program
has been sold to the public fora year, at which time it’s very expensive to fix.

The Instructions 223

Several programming tricks concern the stack. One is to PUSH several
words and then change the stack pointer so they won't be interfered with as
subroutines call each other. When the data is no longer needed, restore SP to
its previous value. This often comes about when large data structures are
stashed on the stack instead of placed at a well-defined or specially pro-
tected place in memory. Another is to place strange values on the stack and
then immediately execute a RET or IRET, knowing that execution will then
transfer to the new value. Many of these tricks will fail to work on newer
iAPX 86s as the word size increases and protection restrictions increase.
Some of the rest will be rendered troublesome as successive generations of
programmers (a generation being about two years) try to modify existing
programs, innocently assuming that the stack is being handled in a normal
way.

Example
PUSH EAX ; Registers are full, make one
; available.
IMUL EAXMEMLOC,10 ; Multiply a memory value
; by 10 and
MOV MEMLOCEAX ; store it back where it came
; from.

POP EAX ; Restore old value of EAX

224 The 80386 Instruction Set

PUSHA Push All General Registers 80186

Opcode Format Clocks
60 PUSHA 18
60 PUSHAD 18
Flags

NT | IOPL | OF | DF | IF | TF | SF'| ZF AF PF CF
0 0 0 1
Pseudocode

(* Refer to PUSH instruction for clarification of PUSH operation *)
IF operand size is word THEN
Save value of SP in an internal register
PUSH AX
PUSH CX
PUSH DX
PUSH BX
PUSH saved SP value
PUSH BP
PUSH SI
PUSH DI
ELSE (operand size is dword *)
Save value of ESP in an internal register
PUSH EAX
PUSH ECX
PUSH EDX
PUSH EBX
PUSH saved ESP value
PUSH EBP

The Instructions 225

PUSH ESI
PUSH EDI
END IF

Operation

PUSHA pushes the eight words on top of the stack from the general
registers (E)AX, (E)CX, (E)DX, (E)BX, (E)SP, (E)BP, (E)SI, and (E)DI (in that
order). Note, however, that the value PUSHed for (E)SP is the value before the
instruction began to execute. The new value of (E)SP is as if eight PUSH
instructions were executed.

If SP is 1, 3, or 5 before PUSHA is executed, the 80386 will shut down
without executingit. If SP is an odd number between 7 and 15, exception 13
will occur.

Exceptions Modes Reasons

#SS(0) P Illegal address in SS segment

#PF(fc) PV Page fault

kkkk RV System shut down due to lack of stack space

INT(13) RV Some part of operand is outside of address range
0 to OFFFFH

User Notes

This instruction replaces eight separate PUSH instructions and exe-
cutes in only 2 extra clocks, while taking only 1/8 the space in code. The
main advantage of PUSHA, though, is the conceptual simplicity of simply
getting all the registers put on the stack at once. Many hard-to-find bugs
have been caused by subroutines that PUSHed some registers at the begin-
ning and then POPped them back in the wrong order at the end.

If code space isat a premium PUSHA (followed in almost all cases by its
counterpart POPA) should be used even if only two or three registers actu-
ally need to be saved on the stack. If execution time is at a premium (as it
increasingly will be in multiuser environments) PUSHA gives no real advan-
tage; POPA, however, gives a slight advantage when at least six of the
registers need to be PUSHed and later POPped.

226 The 80386 Instruction Set

PUSHA makes a lot of sense when used to implement high-level
languages whose unpredictable levels of nesting often require that all regis-
ters be saved and restored for each subroutine call.

Example

SUBROUTINE:
PUSHA ; Save all registers on the stack.

POPA ; Restore all registers from the stack.
RET ; Return from subroutine.

The Instructions 227

PUSHF Push Flags 8086
|

Opcode Format Clocks

9C PUSHF 4

9C PUSHFD 4

Flags

NT | IOPL | OF | DF | IF | TF | SF | ZF AF PF CF
0 0 0 1
Pseudocode

(* Refer to PUSH instruction for clarification of PUSH operation *)
IF operand size is word THEN
PUSH from FLAGS
ELSE (* operand size is dword *)
PUSH from EFLAGS
END IF

Operation

The PUSHF instruction sets (E)SP to (E)SP — 2 (or 4) and then copies the
(E)FLAGS register into the word pointed to by SS(E)SP]. Since the stack
starts ataddress SS and grows downward, decrementing (E)SP has the effect
of making the stack larger.

The flags copied onto the stack are, in order from most significant (bit
15) to least significant (bit 0): x, nested task, I/O privilege level (2 bits),
overflow, direction, interrupts enabled, trap, sign, zero, x, auxiliary carry, x,
parity, x, and carry (“x” for undefined).

The 80386 will shut down in Real Mode if SP = 1, due to lack of stack
space.

228

The 80386 Instruction Set

Exceptions Modes Reasons
#S5(0) P Illegal address in SS segment

Hkdkk R System shut down due to lack of stack space
#GP(0) \Y Used to emulate the instruction

#GP(0) \Y IOPL is less than 3

User Notes

The PUSHF instruction, like the PUSHA instruction, is basically
designed to help implement high-level language compilers. With its coun-
terpart POPF,PUSHF enables all the flags to be saved and restored en masse
so the compiler doesn’t have to “think” about which ones need to be saved
and which don’t at each subroutine call. PUSHF and POPF are almost
always executed either just before (PUSHF) and just after (POPF) a subrou-
tine call or at the start (PUSHF) and end (POPF) of a subroutine.

Of course, PUSHF can be used by human assembly-language pro-
grammers as well. In addition to its use with POPF, it can also be used to
quickly get the entire flags register onto the stack, and then perhaps to
another register. From here, it can be ANDed with 7FD5H to make sure the
undefined bits are clear, then Compared with any of a number of bit
patterns. JE and JNZ, for example, could then be the final step in implement-
ing homemade conditional Jumps.

Example
PUSHF ; Save the flags on the stack.

OR SS;[SP],800H ; Set the overflow flag.
POPF ; Restore modified flags from the stack

The Instructions 229

Repeat While Condition

REPcc is Met (prefix) 8086
Opcode Format Repeat Condition String Instructions - Clocks
F2 * REP * (ECX>0 INS, MOVS, OUTS, STOS *
F3 * REPE * (E)CX>0and ZF =1 CMPS, SCAS *
F2* REPNE * (E)CX>0and ZF =0 CMPS, SCAS *
F2* REPNZ * (E)CX>0and ZF =0 CMPS, SCAS *
F3 * REPZ * (E)CX>0and ZF =1 CMPS, SCAS *

*See description of individual string instructions.

Flags

The repeat prefixes do not affect the flags, but some of the individual
string instructions do. See the individual descriptions for full details on flags
affected for each instruction.

Pseudocode

IF (CX # 0) THEN (x if CX is initially zero, the loop is not executed *)
REPEAT
Respond to any pending interrupts
Perform the string operation which REPcc is a prefix to
Decrement CX by 1 (+ No flags are conditioned *)
UNTIL repeat condition is not met (» if ZF is checked it is after
execution of the instruction)
END IF

Operation
The REP group of prefixes is used only with the string instructions as

listed in the table above. When one of these prefixes is used (E)CX is
compared to 0.If itis zero the prefixed string instruction is not executed. If it

230

The 80386 Instruction Set

is not zero the string instruction is repeatedly executed until either (E)CX
becomes zero or (for REPE, REPNE, REPNZ, and REPZ) the Zero Flag no
longer has the correct value.

At the start of each loop iteration, interrupts are handled. The string
instruction is then executed normally. Next CX is decremented without
affecting any flags. This loop repeats as long as the repeat condition (see
above table for each prefix) still holds.

Note that the loop is not executed at all if CX is initially zero, but is
executed at least once no matter what the state of the Zero Flag.

The string instructions listed are specially designed to work with the
REP type prefixes. They automatically adjust the SI and DI pointers during
execution. If the Direction Flagis 0 the pointers are incremented by 1 foreach
byte moved; if the Direction Flag is 1 the pointers are decremented by 1 for
each byte moved.

Exceptions

The repeat prefixes do not generate exceptions, but some of the
individual string instructions do. See the individual descriptions for full
details on exceptions for each instruction.

User Notes

There are three advantages to using REP and related prefixes. The firstis
that they are compact; a single line can hold the equivalent of perhaps six
non-string instructions. The second is that execution is very fast; the
checking that controls the looping is faster by 10 or more clocks than if it
were handled by other instructions. This speed saving adds up with every
repetition of the loop. The third advantage is the conceptual ease of using
REPcc. What is in most cases a single thought in the programmer’s mind
(move this string to there) translates into a single line in the program, a rare
situation in assembler.

There is one thing to beware of when using these prefixes. Since they do
so much in a single line, they are a likely hiding place for bugs. For instance,
not initializing the CX register properly will result in a string of up to 65,535
characters being loaded, moved, or output, so the CX register may need a
range check before the repeated instruction is executed.

The Instructions 231

Another thing needs to be checked when using REP INS or REP OUTS.
Not all input and output ports can receive or send characters fast enough to
keep up with REP loops. If this is the case a slower loop will need to be
substituted. This is especially worth considering when some of your users
will be running your program on a different machine than you're testing on.

The JCXZ and zero-flag jumps (JZ/JE and JNZ/JNE) can be used just after
the REPcc to distinguish between loops that stop because of the CX register
reaching 0 and loops that stop because of the Zero Flag.

Example
LDS SLSRC_STR ; Set up source pointer for string move.
LES DLDEST_STR ; Set up destination pointer for string

; move.
MOV ECX,STRLEN ; Number of bytes to move.
REP MOVSB ; Move SRC_STR to DEST_STR

232 The 80386 Instruction Set

RET Return from CALL 8086
]

Opcode Format Type Clocks
C3 RET Near 10+m
CB RET Far 18+m,*
C2 iw RET iw Near, pop parameters 10+m
CA iw RET iw Far, pop parameters 18+m,*

*These instructions have varying functions and timings in Protected Mode
(see Chapter 5). »

Flags

Normally RET affects no flags. However, when a task switch is made in
protected mode, all flags are changed to the old task’s saved flags.

Pseudocode

POP IP (Instruction Pointer) from stack
IF far return THEN

POP CS (Code Segment) from stack
END IF
IF byte count given THEN

Pop that many bytes from the stack
END IF

Operation

ARET from a CALL in the same code segment as the subroutine (near
return) is a simple operation. The instruction pointer (IP) is POPped from the
top of the stack.If the RET is from a CALL in another segment (far return) the
code segment (CS) is also POPped. In either case execution then resumes
from the address made up of CSIP.

As an aid to passing parameters on the stack, an alternate form of RET
lets the programmer specify the number of bytes of parameters that exist on

The Instructions 233

the stack. The processor will then remove them from the stack before
returning control to the calling procedure.

The basic procedure is the same in Protected Mode, but inter-segment
returns are much more complicated, since the CALL may have specified an
operating system routine or even another task. In either case memory protec-
tion must be checked (see Chapter 5).

Exceptions Modes Reasons

#NP P Target code segment not present

#TS P Task switch required

#GP(0) P Illlegal memory effective address in CS, DS, ES,

FS, or GS segments

#SS(0) P Illegal address in SS segment

#PF(fc) PV Page fault

INT(13) RV Some part of operand is outside of address range
) 0 to OFFFFH

User Notes

Some of the most popular programming tricks are executed by putting
various values on the stack and then executing a RET. Self-contained Case
statements can be built this way, for instance. As memory-management on
the 86 family gets more complicated, however, these tricks will become
increasingly dangerous. For example, on the 80386 the segment size is not
fixed, so a RET to an address within the 64 Kb segment range is not
necessarily in the same segment anymore. Another problem is that virtual
memory is now available, meaning that the segment you’re returning to
may not even be in memory when you start to return to it. Any tricks which
fool the chip may also fool the operating system, with unknown results.

Example

RET 8 ;Pops 8 bytes of parameters off the stack.

234 The 80386 Instruction Set

Rxx Rotate 8086
]
Opcode Format Clocks
Do [2] RCL r/mb,1 9/10
D2 [2] RCL r/mb,CL 9/10
Co [2]ib RCL r/mb,ib 9/10
D1 [2] RCL r/mw,1 9/10
D3 [2] RCL r/mw,CL 9/10
C112]ib RCL r/mw,ib 9/10
D1 [2] RCL r/md,1 9/10
D3 [2] RCL r/md,CL 9/10
C1[2]ib RCL r/md,ib 9/10
DO [3] RCR r/mb,1 9/10
D2 [3] RCR r/mb,CL 9/10
Co [3]ib RCR r/mb,ib 9/10
D1 [3] RCR r/mw,1 9/10
D3 [3] RCR r/mw,CL 9/10
C1[3}ib RCR r/mw,ib 9/10
D1 [3] RCR r/md,1 9/10
D3 [3] RCR r/md,CL 9/10
C1[3]ib RCR r/md,ib 9/10
Do [0] ROL r/mb,1 3/7
D2 [0] ROL r/mb,CL 3/7
Co [0] ib ROL r/mb,ib 3/7
D1 [0] ROL r/mw,1 3/7
D3 [0] ROL r/mw,CL 3/7
C1[0]ib ROL r/mw,ib 3/7
D1 [0] ROL r/md,1 3/7
D3 [0] ROL r/md,CL 3/7
C1]0]ib ROL r/md,ib 3/7
Do [1] ROR r/mb,1 3/7
D2 [1] ROR r/mb,CL 3/7
Co[1]ib ROR r/mb,ib 3/7
D1 [1] ROR r/mw,1 3/7
D3 [1] ROR r/mw,CL 3/7

C1[1]ib ROR r/mw,ib 3/7

The Instructions 235
D1 [1] ROR r/md,1 3/7
D3 [1] ROR r/md,CL 3/7
Ci[1]ib ROR r/md,ib 3/7
Flags
NT | IOPL | OF | DF | IF | TF | SF | ZF AF PF CF
0 * 0 0 1 S

*OF is set only on single bit rotates. Multi-bit rotates leave OF in an
undefined state.

Pseudocode

Place first operand in an internal register
DO second operand TIMES

IF rotate direction is left THEN
Save high order bit
ELSE
Save low order bit
END IF
Shift one bit in the rotate direction
IF CF is involved THEN
IF rotate direction is left THEN
Place CF into low order bit
ELSE
Place CF into high order bit
END IF
ELSE
IF rotate direction is left THEN
Place saved bit into low order bit
ELSE
Place saved bit into high order bit
END IF
END IF
Place saved bit into CF

236 The 80386 Instruction Set

ENDDO
IF second operand is 1 THEN
IF rotate direction is left THEN
IF high order bit # CF THEN
SET OF to 1
ELSE
Clear OF to 0
END IF
ELSE
IF high order bit # next to high order bit THEN
Set OF to 1
ELSE
Clear OF to 0
END IF
END IF
END IF
Store internal register into first operand

Operation

Rotate instructions are like shifts in that the bit pattern in the first
operand is moved either to the left or right by the number of places in the
second operand. The difference is that the bits rotated out of one end of the
operand are not lost as in a shift. These bits are brought back in at the
opposite end of the operand.

The second and third letters in the instruction mnemonics control
different aspects of the rotation. The third letter controls the rotate direction,
“L” for left and “R” for right. The second letter controls how the Carry Flagis
involved. If the second letter is “O” (plain rotates) then the Carry Flag simply
contains the last bit that was moved from one end of the operand to the
other. If the second letter of the instruction mnemonic is “C” (rotates through
carry) then the Carry Flag is actually treated as part of the operand to be
rotated. In this case a bit rotated out of one end of an operand is placed into
the Carry Flag, but first the old value of the Carry Flag is moved into the
vacated bit position at the opposite end of the operand.

The second operand can be either an immediate number or the con-
tents of the CL register. However, only rotate counts of 31 or less are allowed.
If the count is greater than 31 only the lowest five bits are used. In addition,

The Instructions 237

there is a special short form of the instruction for the special case of a rotate
count of 1.

Exceptions Modes Reasons

#GP(0) P Result in nonwritable segment

#GP(0) P Illegal memory effective address in CS, DS, ES,
FS, or GS segments

#S5(0) P Illegal address in SS segment

#PF(fc) PV Page fault

INT(13) RV Some part of operand is outside of address range
0 to OFFFFH

User Notes

One use of rotates on older processors was to speed special cases of
multi-precision multiplies and divides. The 80386 with its greater word size
and fast multiply and divide instructions obviates the need for much of
this trickery.

Another use for rotates is to get bits into the Carry Flag, where a JC or
JNC can branch on the bit's value. The bit test instructions (new on the
80386) allow this test to be done more directly.

Example

MOV EAXOCADE4956H ; Loads a value into EAX.
STC ; Ensure that the carry flag is set
RCL EAX3 ; Sets EAX to 56F24AB7 and CF to 0.

238 The 80386 Instruction Set

. SAHF Store AH Into Flags 8086

- __________________|

Opcode Format Clocks

9E SAHF 3

Flags

NT | IOPL | OF | DF | IF | TF | SF | ZF AF PF CF
0 S|S0 S|J]O]S |1 S
Pseudocode

Move AH value into low byte of Flags register.

Operation

SAHF is a quick way to set all the flags in the low byte of the Flags
register to the bit pattern in AH after they have been set, reset, examined, or
saved as needed. This instruction has been provided for compatability with
the 8080/85, and is rarely used by iAPX 86 family programs, which would
use POPF instead.

The bits taken from AH are: SF ZF x AF x PF x CF, with “x” meaning
undefined.

Exceptions

None

The Instructions 239

User Notes

Except for programs converted from (or due to be converted to) the
8080/85 this instruction is normally not used. It could be used to set the
status of all the low-byte flags at once (by loading AH with a bit pattern, for
instance).

Example
LAHF ; Loads the flags into AH.

OR AH4 ; Sets image of parity flag in AH.
SAHF ; Simulates a “set parity flag” instruction.

240 The 80386 Instruction Set

Sxx Shift 8086

|
Opcode Format Clocks
DO [4] SAL 1/mb,1 3/7
D2 [4] SAL r/mb,CL 3/7
Co [4] ib SAL r/mb,ib 3/7
D1 [4] SAL r/mw,1 3/7
D3 [4] SAL r/mw,CL 3/7
C1 [4] ib SAL r/mw,ib 3/7
D1 [4] SAL r/md,1 3/7
D3 [4] SAL r/md,CL 3/7
C1[4]ib SAL r/md,ib 3/7
Do [7] SAR r/mb,1 3/7
D2 (7] SAR r/mb,CL 3/7
Co [7] ib SAR r/mb,ib 3/7
D1 [7] SAR r/mw,1 3/7
D3 [7] SAR r/mw,CL 3/7
C117]ib SAR r/mw,ib 3/7
D1 [7] SAR r/md;1 3/7
D3 [7] SAR r/md,CL 3/7
C1[7]ib SAR r/md,ib 3/7
Do [4] SHL r/mb,1 3/7
D2 [4] SHL r/mb,CL 3/7
Co [4] ib SHL r/mb,ib 3/7
D1 [4] SHL r/mw,1 3/7
D3 [4] SHL r/mw,CL 3/7
C1[4]ib SHL r/mw,ib 3/7
D1 [4] SHL r/md,1 3/7
D3 [4] SHL r/md,CL 3/7
C1[4]ib SHL r/md,ib 3/7
Do [5] SHR r/mb,1 3/7
D2 [5] SHR r/mb,CL 3/7
Co [5] ib SHR r/mb,ib 3/7
D1 [5] SHR r/mw,1 3/7
D3 [5] SHR r/mw,CL 3/7
C1[5]ib SHR r/mw,ib 3/7

D1 [5] SHR r/md,1 3/7

The Instructions 241

D3 [5] SHR r/md,CL 3/7
C1 [5] ib SHR r/md,ib 3/7
Flags
NT | IOPL | OF | DF | IF | TF | SF | ZF AF PF CF
0 * R oS |11]S

*OF is set only on single bit shifts. Multi-bit shifts leave OF in an undefined state.

Pseudocode

Place first operand in an internal register
DO second operand TIMES
IF shift direction is left THEN
Place high order bit into CF
ELSE -
Place low order bit into CF
END IF
Shift one bit in the shift direction
IF shift direction is left THEN
Place 0 into low order bit
ELSE IF instruction is SHR THEN
Place 0 into high order bit
ELSE (* instruction is SAR)
Place old high order bit into high order bit
END IF
END DO
IF second operand is 1 THEN
IF shift direction is left THEN
IF high order bit # CF THEN
Set OF to 1
ELSE
Clear OF to 0
END IF
ELSE IF instruction is SHR THEN
Clear OF to 0

242

The 80386 Instruction Set

ELSE (* instruction is SAR x)
Set OF to high order bit
END IF
END IF _
Store internal register into first operand

Operation

Shift instructions move the pattern of bits in the first operand either to
the left or right by the number of places in the second operand. This action
will cause some bits to disappear from one end of the operand and cause the
same number of vacated bits to be filled at the opposite end of the operand.
The manner of filling depends on the instruction used.

The second and third letters in the instruction mnemonics control
different aspects of the shift. The third letter controls the shift direction, “L”
for left and “R” for right. The second letter controls whether we have an
arithmetic (second letter “A”) or logical (second letter “H”) shift. A logical
shift always fills vacated bit positions with zeros. An SAL instruction fills
vacated positions (on the right) with zeros. On the other hand, an SAR
instruction fills vacated positions (on the left) with copies of the value of the
sign bit before the shift.

The second operand can be either an immediate number or the con-
tents of the CL register. However, only shift counts of 31 or less are allowed. If
the count is greater than 31 only the lowest five bits are used. In addition
there is a special short form of the instruction for the special case of a shift
count of 1.

Exceptions Modes Reasons

#GP(0) P Result in nonwritable segment

#GP(0) P Illegal memory effective address in CS, DS, ES,
FS, or GS segments

#S5(0) P Illegal address in SS segment

#PF(fc) PV Page fault

INT(13) RV Some part of operand is outside of address range
0 to OFFFFH

The Instructions 243

User Notes

One use of shifts on older processors was to speed special cases of
single precision multiplies and divides. The 80386 with its fast multiply and
divide instructions obviates the need for much of this trickery. If you need
to use these instructions for that purpose, remember to use the arithmetic
forms for signed numbers and the logical forms for unsigned numbers.

Another use for shifts is to get bits into the Carry Flag, where a JC or JNC
can branch on the bit’s value. The bit test instructions (new on the 80386)
allow this test to be done more directly.

Example
MOV EAXO0CADE4956H ; Loads a value into EAX

SAR EAX3 ; Sets EAX to 0F95BC92AH and CF
; to 0.

244 The 80386 Instruction Set

SHxD Shift Double 80386
|
Opcode Format Clocks
OF A4 [r] ib SHLD r/mw,rw,ib 3/7
OF A4 [r] ib SHLD r/md,rd,ib 3/7
OF A5 [r] SHLD r/mw,rw,CL 3/7
OF A5 [1] SHLD r/md,rd,CL 3/7
OF AC [r] ib SHRD r/mw,rw,ib 3/7
OF AC [r] ib SHRD r/md,rd,ib 3/7
OF AD [r] SHRD r/mw,rw,CL 3/7
OF AD [r] SHRD r/md,rd,CL 3/7
Flags
NT | IOPL | OF | DF | IF | TF | SF | ZF AF PF CF
0 U S|S|J]OoOjJuU]JO]S |1 S
Pseudocode

Place first operand in an internal register IR1
Place second operand in an internal register IR2
DO third operand TIMES
IF shift direction is left THEN
Place high order bit of IR2 into CF
ELSE
Place low order bit of IR2 into CF
END IF
Shift IR2 one bit in the shift direction
Shift IR1 one bit in the shift direction
IF shift direction is left THEN
Place CF into low order bit of IR1
ELSE
Place CF into high order bit of IR1

The Instructions 245

END IF
END DO
Store IR1 into first operand

Operation

The shift double instructions move the pattern of bits in the first
operand either to the left or right by the number of places in the third
operand. This action will cause some bits to disappear from one end of the
operand and cause the same number of vacated bits to be filled at the
opposite end of the operand. The vacated bits are filled from the second
operand asifittoo had been shifted by the same number of bits and the bits
shifted off one end were shifted into the first operand. Note that the second
operand is unchanged by this instruction.

The third letterin the instruction mnemonic controls the shift direction,
“L” forleft and “R” for right. The effect of the instruction is as if operands one
and two were taken as one double-sized number and shifted. The new value
of operand one is then stored, but operand two is not stored. For SHLD
operand one is on the left and operand two is on the right. The opposite is
true for SHRD.

The third operand can be either an immediate number or the contents
of the CL register. However, only shift counts of 31 or less are allowed. If the
countis greater than 31 only the lowest five bits are used. If the operand size
is 16 bits (word) and the shift count is greater than 15, the instruction sets its
first operand and all the flags to an undefined state.

Exceptions Modes Reasons

#GP(0) P Result in nonwritable segment

#GP(0) P Illegal memory effective address in CS, DS, ES,
FS, or GS segments

#55(0) P Illegal address in SS segment

#PF(fc) PV Page fault
INT(13) RV Some part of operand is outside of address range
0 to OFFFFH

246

The 80386 Instruction Set

User Notes

The shift double instructions behave similarly to a logical shift (see Sxx
for SHL and SHR) of the first operand by the third operand. The difference is
that the bits vacated by the shift are replaced by bits from the opposite end of
the second operand instead of with zeros.

These new shift instructions are ideal for implementing a multiple
precision shift with a loop. Any type of shift or rotate can be handled just by
minor modifications to the loop structure.

.............

; BLOCKis the offset in the current data segment (pointed to by DS) of
; an array of LENGTH dwords that is to be treated as one long bit
; string and rotated left by 10 bits.

9999999299932

MOV EDXBLOCK ; Save value of first dword for
; after the loop.

MOV ESI0 ; Set up index register to point to

v ; first dword.

MOV ECX,LENGTH : Get number of dwords in
; BLOCK and

DEC ECX ; subtract one for our loop count.

DELOOP:

MOV EAXBLOCK+4[ESIx4] ; Load next dword from the array
; at BLOCK.

SHLD BLOCKIESI*4EAX,10 ; Shift current dword, filling from
; next

INC ESI ; Increment index for next time
; through the loop.

LOOP DELOOQOP ; Loop until all dwords are done

; except the last.
SHLD BLOCKIESI*4)EDX,;10 ; Shift last dword, filling from
; original value of first.

The Instructions 247

SBB Subtract With Borrow 8086
|
Opcode Format Clocks
1C ib SBB AL,b 2
1D iw SBB AX,iw 2
1D id SBB EAX,id 2
80 [3] ib SBB r/mb,ib 2/7
81 [3] iw SBB r/mw,iw 2/7
81 [3] id SBB r/md,id 2/7
83 [3] ib SBB r/mw,ib 2/7
83 [3]ib SBB r/md,ib 2/7
18 [1] SBB r/mb,rb 2/7
19 [1] SBB r/mw,rw 2/7
19 [r] SBB r/md,rd 2/7
1A [1] SBB rb,r/mb 2/6
1B [1] SBB rw,r/mw 2/6
1B [1] SBB rd,r/md 2/6
Flags
NT | 1oPL | OF | OF | IF | TF | SF | ZF AF PF CF
0 S S S|]O0O]S]|]O]S 1 S
Pseudocode

IF (source operand has fewer bits than destination) THEN
sign-extend source operand

END IF

Subtract source operand from destination.

Subtract CF from destination, place result in destination operand.

248

The 80386 Instruction Set

Operation

SBB subtracts the second operand plus the Carry Flag from the first
operand. The first operand is overwritten by the result, while the second
operand is unchanged. A good translation of an ADC instruction into Eng-
lish might be, “Subtract operand number 2 from operand number 1, then
subtract 1 more if needed.”

Exceptions Modes Reasons

#GP(0) P Result in nonwritable segment

#GP(0) P Illegal memory effective address in CS, DS, ES,
FS, or GS segments

#SS(0) P Illegal address in SS segment

#PF(fc) PV Page fault

INT(13) RV Some part of operand is outside of address range
0 to OFFFFH

User Notes

The SBB instruction is generally used when doing multibyte, multi-
word, or multidword subtractions, to let the carry bit automatically propa-
gate as needed through the series of differences.

Understanding how the flags work for ADC can be very important,
especially since the result of one of the flags after an addition is often used to
decide whether to make a jump, or even as a parameterin a subroutine call.
SUB (below) works just like SBB but ignores the value in the carry bit.
Anyone modifying an existing program should look at all SBBs just follow-
ing a change to make sure the carry bit is still set as the original
programmer had assumed it would be.

Example

MOV AX1329 ;Loadsa 1329 (531 hex) into AX.

MOV BX373 ;Loads a 373 (175 hex) into BX.

SUB ALBL ; Subtracts 75 (hex) from 31 (hex) giving 0BC
; (hex) with CF set.

The Instructions 249

SBB AHBH ; Subtracts 1 from 5 giving 3 (because CF was set).
; AX now contains 956 (3BC hex) the difference
; between 1329 and 373.

250

The 80386 Instruction Set

SCAS Scan String

8086

Opcode Format Clocks Single
. SCASB 7 5+8+N
SCASW 7 5+8xN
SCASD 7 5+8+N

Flags

Clocks Repeated

The “N” in the “Clocks Repeated” column stands for the number of
repetitions actually executed.

NT [IOPL | OF | DF | IF | TF | SF | ZF AF

PF

CF

Pseudocode

IF operand size is 8 bits THEN

Subtract ES{(E)DI] from AL, but don’t store result
ELSE IF operand size is 16 bits THEN

Subtract ES{(E)DI] from AX, but don’t store result
ELSE (» operand size is 32 bits x)

Subtract ES{(E)DI] from EAX, but don’t store result
END IF
Condition flags based on result of subtraction
IF DF = 0 THEN

Add size of operands (in bytes) to (E)DI
ELSE

Subtract size of operands (in bytes) from (E)DI
END IF

The Instructions 251

Operation

Like CMPS, SCAS subtracts one number from another but doesn’t store
the result. Instead, the only outputis that the applicable flags are set or reset
(“conditioned”) according to the result of the subtraction.

The difference is that SCAS uses the A register and the contents of
ES[DI}, subtracting the latter from the former. Finally, DI is adjusted. Nor-
mally the Direction Flag is 0, and DI is incremented; but if an STD has been
executed, DI is decremented. The increment and decrement are useful in
automatically setting up the pointers for a repetition of the same instruction,
and the REPE and REPNE prefixes are generally used with SCAS.

Exceptions Modes Reasons

#GP(0) P Illegal memory effective address in CS, DS, ES,
FS, or GS segments

#SS(0) P Illegal address in SS segment

#PF(fc) PV Page fault

INT(13) RV Some part of operand is outside of address range
0 to OFFFFH

User Notes

SCAS is generally used to compare each element of a string to a preset
value (the one stored in the A register). The A register is initialized and SCAS
compares it to the values in the string starting at ES:[DI]. By using REPNZ (or
REPZ) with SCAS, the comparison can continue until a character not equal
to (or equal to) the value in A is found.

Example
STR1 DD 12,345
CLD . : Ensures direction is forward.
MOV AL3 ; Sets up source of scan, DS;[ESI].
LES EDILSTR1 ; Sets up destination of scan, ES{EDI].
MOV ECX5 ; Sets up repeat count for scan.
REPE SCASB ; Executes 3 times, ends with ECX=2,

; ES{EDI] points at 4.

252 The 80386 Instruction Set

SETcc Set Byte on Condition 80386

Opcode Format Set Condition Clocks
OF 97 SETA r/mb Above (CF=0 and ZF=0) 4/5
OF 93 SETAE r/mb Above or equal (CF=0) 4/5
OF 92 SETB r/mb Below (CF=1) 4/5
OF 96 SETBE r/mb Below or equal (CF=1 or ZF=1) 4/5
OF 92 SETC r/mb Carry (CF=1) 4/5
OF 94 SETE r/mb Equal (ZF=1) 4/5
OF 9F SETG r/mb Greater (ZF=0 and SF=OF) 4/5
OF 9D SETGE r/mb Greater or equal (SF=OF) 4/5
OF 9C SETL r/mb Less (SF<>OF) 4/5
OF 9E SETLE r/mb Less or equal (ZF=1 or SF<>OF) 4/5
OF 96 SETNA r/mb Not above (CF=1 or ZF=1) 4/5
OF 92 SETNAE r/mb Not above or equal (CF=1) 4/5
OF 93 SETNB r/mb Not below (CF=0) 4/5
OF 97 SETNBE r/mb Not below or equal (CF=0 and ZF=0) 4/5
OF 93 SETNC r/mb Not carry (CF=0) 4/5
OF 95 SETNE r/mb Not equal (ZF=0) 4/5
OF 9E SETNG r/mb Not greater (ZF=1 or SF<>OF) 4/5
OF 9C SETNGE r/mb Not greater or equal (SF<>OF) 4/5
OF 9D SETNL r/mb Not less (SF=OF) 4/5
OF 9F SETNLE r/mb Not less or equal (ZF=0 and SF=0OF) 4/5
OF 91 SETNO r/mb Not overflow (OF=0) 4/5
OF 9B SETNP r/mb Not parity (PF=0) 4/5
OF 99 SETNS r/mb Not sign (SF=0) 4/5
OF 95 SETNZ r/mb Not zero (ZF=0) 4/5
OF 90 SETO r/mb Overflow (OF=1) 4/5
OF 9A SETP r/mb Parity (PF=1) 4/5
OF 9A SETPE r/mb Parity even (PF=1) 4/5
OF 9B SETPO r/mb Parity odd (PF=0) 4/5
OF 98 SETS r/mb Sign (SF=1) 4/5

OF 94 SETZ r/mb Zero (ZF=1) 4/5

The Instructions 253

Flags

NT|IOPL|OF | DF | IF | TF | SF } ZF AF PF CF
0 0 0 1
Pseudocode

IF set condition is met THEN
Set operand byte to 1
ELSE
Clear operand byte to 0
END IF

Operation

These instructions are used to save a current condition for later use.
They test the state of one or more of the flag bits. If the condition (listed in the
above table) is met then the destination byte is set to one; otherwise the
destination byte is cleared to zero. Note that these instructions are similar to
the conditional jumps (Jcc) except that no transfer of control occurs.

Exceptions Modes Reasons

#GP(0) P Result in nonwritable segment

#GP(0) P Illegal memory effective address in CS, DS, ES,
FS, or GS segments

#SS5(0) P Illegal address in SS segment

#PF(fc) PV Page fault
INT(13) RV Some part of operand is outside of address range
0 to OFFFFH

User Notes

Many of the sets are meant for use with unsigned numbers, while others
are meant for comparisons of signed numbers. The way to tell the difference

254

The 80386 instruction Set

is. that the use of “above” and “below” indicates unsigned comparisons;
“greater” and “less” refer to the use of signed numbers.

A close examination of the instruction table for conditional sets reveals
that there are often several mnemonics for the same opcode (and therefore
conditional test). The reason for this redundancy is that the same state of the
flags can mean different things based on the context of the instruction. For
example, a conditional set often appears after a CMP or SUB has been
executed. The set then compares the two operands of the previous instruc-
tion and a SETE (set equal) might be appropriate. On the other hand, right
after a DEC instruction the same opcode with the SETZ (set zero) mnemonic
could be used to check if the count has reached zero. We recommend
choosing your set mnemonics carefully so that they indicate the meaning of
your comparisons.

The SETcc instructions are often used for setting up tables based on the
results of several comparisons or computations. This is particularly useful in
compiler writing and other applications that require handling nested levels
of conditions.

Another good use for these instructions is for the implementation of
Boolean (or logical) variables.

Example

MOV ECX5 ; Sets up operand for compare.
CMP ECX7 ; Compares the 5 with the 7.
SETLE AL ; AL will be set to 1.

The Instructions

255

STC Set Carry Flag 8086
- —

Opcode Format Clocks

F9 STC 2

Flags

NT | IOPL | OF | DF | IF SF | ZF AF PF CF
0 0 1
Pseudocode

Set the Carry Flag to 1.

Operation

STC simply sets the Carry Flag to 1.

Exceptions

None

User Notes

STC has several uses. Perhaps the most prevalent is when the Carry Flag
is being used for storing data within a program or even passing parameters
between programs, in which case STC and CLC together condition the flag
as needed. Another is when doing arithmetic operations; STC followed by

256 The 80386 Instruction Set

ADC or SBB simulates a carry or borrow by an earlier instruction. Still
another is when doing logical operations such as rotates; an STC followed
by a rotate is a useful way to change the value in a register.

Example

STC ; Sets CF.

The Instructions 257

STD Set Direction Flag 8086
|

Opcode Format Clocks

FD STD 2

Flags

NT | IOPL | OF | DF | IF | TF | SF | ZF AF PF CF
0 1 0 0 1
Pseudocode

Set the Direction Flag to 1.

Operation

STD simply sets the Direction Flag to 1.

Exceptions

None

User Notes

The Direction Flag controls the direction of string operations. When DF
is set the index registers SI and/or DI are decremented after each repeatofa
string operation. This is the “reverse” direction, and is useful when each

258

The 80386 Instruction Set

characterin the string is stored in successively lower numbered locations in
memory and the string is being processed first character first. It’s also useful
when the string is stored starting in low memory and heading toward high
and is being processed last character first.

Example

STD ; Sets DF.

The Instructions 259

STI Set Interrupts Enabled Flag 8086
|

Opcode Format Clocks
FB STI 3
Flags

NT | IOPL | OF | DF | IF | TF | SF | ZF AF PF CF
0 1 0 0 1
Pseudocode

Set the Interrupt Flag to 1.

Operation

STI sets the Interrupt Flag to 1, permitting interrupts after the next
instruction if it does not clear the Interrupt Flag. However, there are some
complicationsin 80286 and 80386 Protected Mode. CLI can fail if the current

privilege level of the program executing the STI is larger (less privileged)
than the I/O Privilege Level bits in the Flags register.

Exceptions Modes Reasons

#GP(0) P Current privilege is greater than IOPL

User Notes

STI is used to allow interrupts after they've been turned off by a CLI
instruction, or at the start of a program to ensure that interrupts are enabled.

260

The 80386 Instruction Set

Although the privilege restrictions on STI are burdensome, they're
necessary; if an operating system is timesharing between several programs it
must be able to protect them from interrupts when needed. If your operating
system allows access to Protected Mode it's important to understand how it

handles privilege levels before attempting to control interrupts from within
your program.

Example

STI ; Sets IF.

The Instructions 261

STOS Store String 8086

Opcode Format Clocks Single Clocks Repeated
AA STOSB 4 5+5+N
AB STOSW 4 5+5xN

. AB STOSD 4 5+5xN

The “N” in the “Clocks Repeated” column stands for the number of repeti-
tions (from (E)CX).

Flags

NT | IOPL | OF | DF | IF | TF | SF | ZF AF PF CF

Pseudocode

IF operand size is 8 bits THEN

Store byte from AL into byte at ES{(E)DI]
ELSE IF operand size is 16 bits THEN

Store word from AX into word at ES{(E)DI]
ELSE (* operand size is 32 bits *)

Store dword from EAX into dword at ES;{(E)DI]
END IF
IF DF = 0 THEN

Add size of operands (in bytes) to (E)DI
ELSE

Subtract size of operands (in bytes) from (E)DI
END IF

262

The 80386 Instruction Set

Operation

STOS is just like a MOV from AL or AX to the place in memory pointed
to by ESDI, but it also automatically adjusts DI after the move. If the
Direction Flag is 0 DI is incremented; otherwise it’s decremented. If a byte
was moved the index is adjusted by 1; if a word, by 2; if a dword, by 4.

Exceptions Modes Reasons

#GP(0) P Result in a nonwritable segment

#GP(0) P Illegal memory effective address in CS, DS, ES,
FS, or GS segments

#SS(0) P Illegal address in SS segment

#PF(fc) PV Page fault

INT(13) RV Some part of operand is outside of address range
0 to OFFFFH

User Notes

STOS can’t be used with REPE or REPZ since it doesn’t condition any
flags; using the REP prefix will cause the character in AL to be copied into
successive positions in a string. Thisis a good way to fill a string with a given
character.

LODS and STOS can be used together to transfer a string from DS to ES,
with any needed conditional tests or changes put in between LODS and
STOS.If a string of known length is to be moved unchanged, then MOVS will
do the same thing faster.

Example
CLD ; Ensures direction is forward.
XOR EAXEAX ; Sets EAX to zero.
LES EDIBIGARRAY ; Sets up destination of store, ES:{EDI].
MOV ECX,1000 ; Sets up repeat count for store.

REP STOSD ; Fills BIGARRAY with 1000 dword zeros.

The Instructions 263

SUB Subtract 8086
|
Opcode Format Clocks
2Cib SUB AL,ib 2
2D iw SUB AXjiw 2
2D id SUB EAX,id 2
80 [5] ib SUB r/mb,ib 2/7
81 [5] iw SUB r/mw,iw 2/7
81 [5]id SUB r/md,id 2/7
83 [5] ib SUB r/mw,ib 2/7
83 [5] ib SUB r/md,ib 2/7
28 [r] SUB r/mb,rb 2/7
29 [r] SUB r/mw,rw 2/7
29 [r] SUB r/md,rd 2/7
2A [1] SUB rb,r/mb 2/6
2B [r] SUB rw,r/mw 2/6
2B [r] SUB rd,r/md 2/6
Flags
NT | 1oPL | OF [DF | IF [TF [SF | ZF AF PF CF
0) S]1S]10]S|O}S |1 S
Pseudocode

IF (source operand has fewer bits than destination operand) THEN
sign-extend source operand

END IF

Subtract source operand from destination, place result in destination
operand.

264

The 80386 Instruction Set

Operation

SUB subtracts the second operand from the first operand. The first
operand is overwritten by the result, while the second operand is
unchanged. A good translation of a SUB instruction into English might be,
“Subtract operand number 2 from operand number 1.”

Exceptions Modes Reasons

#GP(0) P Result in a nonwritable segment

#GP(0) P Illegal memory effective address in CS, DS, ES,
FS, or GS segments

#S5(0) P Illegal address in SS segment

#PF(fc) PV Page fault
INT(13) RV Some part of operand is outside of address range
; 0 to OFFFFH

User Notes

The SUB instruction is used when doing single subtraction operations,
or one SUB can be done before a series of SBB instructions to do multibyte,.
multiword, or multidword subtractions (to let the Carry bit automatically
propagate as needed through the series of differences).

Understanding how the flags work for SUB can be very important,
especially since the result of one of the flags after a subtraction is often used
to decide whether to make a jump, or even as a parameter in a subroutine
call. SBB (above) works just like SUB but uses the value in the Carry bit.

Example

MOV AX1329 ;Loads a 1329 (531 hex) into AX.

MOV BX373 ;Loads a 373 (175 hex) into BX.

SUB AXBX ; AX now contains 956 (3BC hex) the difference
; between 1329 and 373.

The Instructions 265

TEST Logical Compare 8086

Opcode Format Clocks
A8 ib TEST AL,ib 2
A9 iw TEST AXiw 2
A9id TEST EAX,id 2
F6 [4] ib TEST r/mb,ib 2/5
F7 [4] iw TEST r/mw,iw 2/5
F7 [4] id TEST r/md,id 2/5
84 [r] TEST r/mb,rb 2/5
85 [r] TEST r/mw,rw 2/5
85 [r] TEST r/md,rd 2/5
84 [r] TEST rb,r/mb 2/5
85 [1] TEST rw,r/mw 2/5
85 [r] TEST rd,r/md 2/5
Flags
NT | IOPL | OF | DF | IF | TF | SF | ZF AF PF CF
0 0 S|1S|O O S |1 0
Pseudocode
* REPEAT

IF a bitin the destination operand is 1 and the corresponding bitin
the source operand is 1 THEN
set the bit in the result (kept internally in the 386) to 1
ELSE
clear the bit in the result (kept internally in the 386) to 0
END IF
UNTIL all bits in the operands are checked
Set the flags based on the internal result

266

The 80386 Instruction Set

Operation

TEST carries out a Boolean or “logical” AND on its two operands, but
does not store the result anywhere. Instead, the only output is that the
applicable flags are set or reset (“conditioned”) according to the AND’s
result. AND is explained in detail above.

TEST can only be used with two operands of the same size (same
number of bits); otherwise the comparison would be meaningless for some
of the bits in the longer operand.

Exceptions Modes Reasons

#GP(0) P Illegal memory effective address in CS, DS, ES,
FS, or GS segments

#S5(0) P Illegal address in SS segment

#PF(fc) PV Page fault

INT(13) RV Some part of operand is outside of address range
0 to OFFFFH

User Notes

TEST is often used to test whether a single bit is set. This is done by
comparing the number in question with an immediate value that has a
single bit set. If the bit is set the Zero Flag will have a 1 in it after the test;
otherwise it will have a 0. The new 80386 bit-test. commands can do the
same comparison more directly but slightly more slowly (3 cycles vs. 2).

Example

MOV AX9563H ; Loads a hex number into AX.
TEST AXO0C6A5H ; Sets flags: SF=1, ZF=0, PF=1.

The Instructions 267

WAIT Wait for Coprocessor 8086
L

Opcode Format Clocks
9B WAIT 6*
*This is the minimum value, applicable if the BUSY signal is already
inactive.
Flags
NT | IOPL | OF | DF | IF | TF | SF | ZF AF PF CF

0 0 0 1

Pseudocode

WHILE the BUSY pin is active DO
ENDDO

Operation

The WAIT instruction is used to synchronize the 80386 with an 80287 or
80387 numeric coprocessor. These coprocessors are used to speed certain
numeric computations, particularly floating point operations. The copro-
cessors work in parallel with the 80386. When the program on the 80386
needs the results from one of these computations it must wait until the
coprocessor is finished. While the coprocessor is working it keeps an active
signal on the 80386’s BUSY pin; when it finishes it makes that signal inactive.
The WAIT instruction simply does nothing until it detects that the BUSY
signal is inactive. Then execution proceeds to the next instruction. The
80386 program is thus assured that the desired result is ready for use.

268

The 80386 Instruction Set

Exceptions Modes Reasons

#NM PRV The task switched flag in the machine status
word is set
#MF PRV The ERROR# input pin is asserted (unmasked

numeric error detected)

User Notes

Instructions for the numeric coprocessors are not covered in this book,
but we have included WAIT because it controls the 80386 and not the
COProcessor.

Example

WAIT ; Waits for numeric coprocessor to finish.

The Instructions 269

XCHG Exchange 8086

Opcode Format Clocks
90-+r XCHG AXrw 3
90+r XCHG rw,AX 3
90+r XCHG EAXrd 3
90+r XCHG rd EAX 3
86 [r] XCHG rb,r/mb 3/5
86 [r] XCHG r/mb,rb 3/5
87 [1] XCHG rw,r/mw 3/5
87 [1] XCHG r/mw,rw 3/5
87 [1] XCHG rd,r/md 3/5
87 [1] XCHG r/md,rd 3/5
Flags
NT |IOPL| OF | DF | IF | TF | SF | ZF AF PF CF
0 0 0 1
Pseudocode

Move the value of the destination operand to an internal register.

Replace the destination operand with the value of the source operand.

Replace the source operand with the value of the destination operand
(from the internal register).

Operation

XCHG swaps the contents of its two operands in a single instruction.
Without XCHG the same operation would require three MOV instructions
(and an extra register for temporary storage) or a PUSH, MOV, POP
sequence. In addition, the bus LOCK signal is asserted during this instruction

270

The 80386 Instruction Set

regardless of whether the LOCK prefix was used or not. This means that the
data transfers cannot be interrupted by any other device using the system
bus.

Exceptions Modes Reasons

#GP(0) P At least one of the operands is in a nonwritable
segment

#GP(0) P Illegal memory effective address in CS, DS, ES,
FS, or GS segments '

#S5(0) P Illegal address in SS segment

#PF(fc) PV Page fault

INT(13) RV Some part of operand is outside of address range 0
to OFFFFH

User Notes

Perhaps the most common use of XCHG is to provide a means of
interprocess synchronization. Because the XCHG is always locked, each of
two independent processes (perhaps on different processors) can use it to
access a variable in memory that they share without worrying about conten-
tion from the other. For example, suppose two tasks need to have access to
the same output buffer. A word can be dedicated as a flag to indicate the
buffer’s availability. A zero could indicate the buffer was available and
a one could indicate that one of the tasks was using the buffer. Before storing
any data in the buffer each task must first load one into a register, XCHG that
register with the Buffer Flag, and test the register for zero. If the register is zero
then the task may use the buffer safely, knowing the Buffer Flag contains a
one and the other task will not attempt to use it. If the XCHG were notlocked
then the situation could arise where both tasks “thought” they had safe
access to the buffer. Finally, when the task finishes its use of the buffer it
must store a zero back into the Buffer Flag.

Most sort algorithms require that two elements of the array be
exchanged when they are found to be out of order. With XCHG the number
of instructions required to accomplish this can be reduced from four to
three. An additional benefit is that only one register is required instead of
two. In fact, at the expense of two clocks, no registers need to be modified.
The example below illustrates this technique.

The Instructions 271

Example

XCHG AXDATA1 ; AX now contains DATA1 and vice versa.

XCHG AXDATA2 ;DATAZ2 now contains original DATA1, AX has
; original DATA2.

XCHG AXDATA1 ;AXhasitsoriginal value, DATA1 contains origi-
; nal DATA2.

272 The 80386 Instruction Set

XLAT Translate String 8086
. |

Opcode Format Clocks
D7 XLAT 5
Flags

NT | IOPL | OF | DF | IF | TF | SF | ZF AF PF CF
0 0 0 1
Pseudocode

Move the byte at DS{(E)BX + unsigned AL] to AL.

Operation

XLAT is used to change a table index into a table value. It is only useful
for byte-valued tables of 256 bytes or less in length. However, this is a very
common usage. XLAT expects the table’s base address to be in (E)BX and the
table offset to be in AL. The instruction then stores the byte at that table
offset into AL.

Exceptions Modes Reasons

#GP(0) P Illegal memory effective address in CS, DS, ES,
FS, or GS segments

#SS(0) P Illegal address in SS segment

#PF(fc) PV Page fault

INT(13) RV Some part of operand is outside of address range
0 to OFFFFH

The Instructions 273

User Notes

The most commonly cited use for XLAT is the conversion of one
character code to another. The programmer builds a 256-byte table contain-
ing the values of the target character code, and the XLAT instruction then
provides a quick and easy way to do the conversion.

Perhaps a more commonly useful example of XLAT is what we call a
“character classification application.” This technique can be used by com-
pilers, assemblers, or any other program that has input consisting of charac-
ter strings that must be interpreted. An XLAT table is built containing
character classification codes. Forinstance: all upper case letters getcode 1,
all lower case letters get code 2, all digits get code three, etc. An XLAT
instruction and a few simple compares and conditional jumps can easily
determine the type of character and perform the desired processing. As an
alternative to the compares, a jump table could be used.

Example

TABLE25 DB 0,25,50,75,100,125,150,175,200,225,250
; multiples of 25.

.CMP AL,IO ; Our table only handles

; multiples up to 10.
JA TOOBIG ; So, let’s handle it in some other
; way.
LDS BXTABLE25 ; Sets up table address for XLAT.
XLAT ; Fast multiply by 25 for small

; unsigned numbers.

274 The 80386 Instruction Set

XOR

Exclusive Or 8086

Opcode Format Clocks
34 ib XOR AL,ib 2
35 iw XOR AXjiw 2
35 id XOR EAX,id 2
80 [6] ib XOR r/mb,ib 2/7
81 [6] iw XOR r/mw,iw 2/7
81 [6] id XOR r/md,id 2/7
30 [1] XOR r/mb,rb 2/7
31 [r] XOR r/mw,rw 217
31 [1] XOR r/md,rd 2/7
32 [1] XOR rb,r/mb 2/6
33 [r] XOR rw,r/mw 2/6
33 [r] XOR rd,r/md 2/6
Flags
NT | 1oPL | OF | DF | IF [TF | SF | ZF AF PF CF
0 0 S|1S|]o]| O] S |1 0
Pseudocode
REPEAT

IF a bitin the destination operand is the same as the corresponding
bit in the source operand THEN

ELSE

END IF
UNTIL all bits in the destination operand are checked

clear the bit in the destination operand to 0

set the bit in the destination operand to 1

The Instructions 275

Operation

XOR carries out a Boolean or “logical” XOR on its two operands and
leaves the resultin the leftmost operand. This operation is depicted in Figure
4-4,which gives “truth tables” for all logical operations. A 1 can be regarded
as T or True, while a 0 corresponds to F or False. A logical XOR takes two
bits and calculates a result using this rule: if one and only one input bit
is 1, then the output bit is 1; otherwise the output bit is 0. The instruction
XOR simply does this same operation on all the bits in each of two
operands; the leftmost bit in one operand is compared to the leftmost bit
in the other, then the two bits one position to the right are compared,
until all the bit pairs have been compared.

Alogical XOR is called an “eXclusive OR” since it “excludes” the case
where both statements are true. The closest English equivalent to an XOR is
to say, “She’s rich or thin, but not both.” In this case you have two chances to
be incorrect, if the person is neither rich nor thin, or the person is both rich
and thin.

XOR can only be used with two operands of the same size (same
number of bits); otherwise the comparison would be meaningless for some
of the bits in the longer operand.

Exceptions Modes Reasons

#GP(0) P Result in a nonwritable segment

#GP(0) P Illegal memory effective address in CS, DS, ES,
FS, or GS segments

#SS(0) P Illegal address in SS segment

#PF(fc) PV Page fault

INT(13) RV Some part of operand is outside of address range
0 to OFFFFH

User Notes

XOR is used to do bit tests and comparisons; many of these can also be
done by using the bit-test instructions that are new on the 80386. A register-
to-immediate bit test takes 3 cycles versus 2 for a similar XOR, so the XOR is
only more efficient if no other supporting instructions are needed to set up
or decipher the comparison results.

276 The 80386 Instruction Set

Example

MOV AX5963H ;Loads a hex number into AX.
XOR AXG6CA5H ; AX now contains 35C6 hex, SF=0, ZF=0, PF=1.

Muititasking 279

operating system, controlled by a “hypervisor” or control program that
handles task switches, priority levels, etc. Virtual 8086 Mode is imple-
mented this way (see Chapter 6). The hypervisor can have 80386-based
applications programs run directly under it, and can host multiple
8086-style applications and operating systems with the programs never
“knowing” they’re being swapped in and out.

Multiuser systems can be implemented by letting each user run as a
separate task (in any of the forms listed above). The processor switches
among the different tasks so fast that each user thinks he or she has sole
control of the computer. It's also possible to let each of the users have
multitasking at his or her terminal, but this can lead to processor
overload. The number of tasks that can run at once without obvious
strain depends on the type of hard disk, memory, and other peripherals
with which the processor must interact, as well as the timing require-
ments of each task.

80386 Support for Multitasking

Several data structures, stored in a standard form for quick handling,
are recognized by the 80386 and a special register, the Task Register (TR),
points to the current task. Using these elements the 80386 can switch
from one task to another in 268 clocks (about 17 microseconds on a 16
MHz system). If no actual work was done between switches, this would
allow nearly 60,000 task switches per second (although operating system
overhead adds to this figure), which means that many task switches can
be made per second while still allowing plenty of time for actually
executing programs.

The software structures are listed below.

1. There is a special kind of segment called a Task State Segment
(TSS), which is always at least 26 dwords long. The TSS has room
for copies of all the 80386’s registers, including EFlags and EIP,
the instruction pointer. It also contains a 16-bit pointer to the
previous TSS, which is kept in case of a return to that TSS. This
is useful when a subordinate task (like an exception handler) has
been called by another task and must return control to the caller
when finished.

2. There is also a special Task State Segment descriptor. All seg-
ments have descriptors that give needed information about the
task, including its location, size, and privilege level. For a TSS
descriptor the LIMIT or length must be at least 103 bytes (104 if

280

Protected Mode

an I/0 permission map is used; a pointer to it is stored in the last
word of the TSS). Longer LIMITs allow bigger TSS’s to be used,
with the user defining the values in the additional bytes. Also
worth noting is that TSS’s aren’t reentrant; if a task is busy (as
indicated by the Busy bit in the TSS descriptor), it can’t be started
again.

. Finally, there is a Task Gate Descriptor. The task gate is a short

data structure that allows access to a TSS (other gates allow
access to other data structures). Figure 5-1 shows the format of the
Task Gate Descriptor. The DPL is the privilege level of the task
gate. The procedure that accesses the task gate must operate at a
privilege level as low or lower than that of the task gate. If the
access is allowed, the selector allows the task state segment to be
accessed without further protection checking. This means that a
procedure that couldn’t normally access a given TSS can reach it
via a task gate. Unlike TSS’s, the Task Gate Descriptor can be in a
local data table and visible to some procedures (including inter-
rupt and exception handlers) but not others. This allows flexible
access to a task, which can have several task gates, each accessible to
different procedures and each with a different privilege level, but all
sharing the same Selector field.

Besides the software structures, there is also a register dedicated to

multitasking, the TR register. The TR register is like an iceberg—most of it
is invisible. The upper 16 bits are the visible part; they contain a selector
that points to the current TSS descriptor. The hidden part holds a 16-bit
TSS base and a 16-bit TSS limit. The TSS acts as an on-processor cache
so these fields can be accessed quickly when the current TSS is referenced
by a program.

A task switch occurs when a JMP or CALL refers to a TSS descriptor

or a task gate, when an interrupt or exception points to a task gate, or
when the current task executes an IRET and the NT (Nested Task) flag is

31

23 15 7 0

(unused) PDPL00101 (unused)

SELECTOR (unused)

Figure 5-1. Task Gate Descriptor

282

Protected Mode

instruction pointer, stack base, index pointer, and data pointers can all
refer to the same 4 Gb area, allowing them to be intermixed at will. This
is not necessarily good for all applications, but it allows UNIX-type
operating systems (which generally use a flat memory model) to be
ported directly to 80386-based systems.

Linear Address Creation

Most applications programs use a variety of addressing modes to
access memory. These modes affect the final value of the offset used in
address calculations; this offset is called the Effective Address of an
operand in memory. The effective address is combined with the ap-
propriate segment base register to create a linear address. If paging isn't
on, the linear address is used to directly access memory.

In Real Mode the appropriate segment register is simply multiplied
by 16 (shifted left by 4 positions) and then added to the lower 16 bits of
the effective address to create a 20-bit address, just like on the 8086 or the
80286 in its Real Mode. The same technique is used for tasks running in
Virtual 8086 mode. In Protected Mode linear addresses can be up to 32
bits long and access up to 4 Gb of memory.

The segment registers are actually 64 bits long, but only the upper 16
bits are visible to programs. The 64-bit entry contains all the needed
protection and other information about the segment, and is called a
segment descriptor. It includes the actual base of the segment, which is a
quantity up to 32 bits wide that addresses 4 Gb of memory (the linear
address space). The linear address is calculated by adding the segment
base to the effective address, with no shifting.

The registers on the processor itself contain segment descriptors for
the segments that are in use by the currently executing task. However, an
80386 program may have many segments, and the processor itself may
be running several tasks at once. The segment descriptors stored in the
registers are actually only easy-to-access copies of the segment descrip-
tors stored in memory.

Segment Descriptors and Tables

The format of a segment descriptor is shown in Figure 5-2. The fields
within the descriptor are interpreted slightly differently for different types
of descriptors; the one described here is for code and data segments.

Segmentation 283

31 23 15 7 0
BASE G OOAVLLIMIT [P DPL 1 TYPE A BASE
31...24 19...16 23...16
BASE LIMIT
15...0 15...0

Figure 5-2. Segment Descriptor

Other types of segments are similar. Individual fields are listed below.

1.

3.

BASE. The base of the segment is a 32-bit-long field stored in
three separate pieces within the segment descriptor. The pieces
are concatenated to form a single 32-bit quantity.

. LIMIT. The limit is a 20-bit-long quantity stored in two separate

pieces within the segment descriptor. The two pieces are con-
catenated to form a single 20-bit quantity. Such a quantity can
normally only be used to address 1 Mb of memory, which would
limit segments to 1 Mb in length if not for the G bit.
GRANULARITY (G). When this bit is zero the limit is indeed a
maximum of 1 Mb, but if the G bit is one the limit is multiplied
by 4 K (the size of a page). The limit now says not that the
segment can only be a given number of bytes long, but that it can
only be a given number of pages long. This means that the limit
can only be checked to within the nearest page of the actual end
of the segment.

AVL. This bit determines whether the descriptor is available for
use by the operating system.

. PRESENT (P). This bit indicates whether the segment is actually

in memory. The bit is 1 and the segment is unavailable if
segment-based virtual memory is in use and the segment is
swapped out or in a space not mapped by the paging unit.
DESCRIPTOR PRIVILEGE LEVEL (DPL). These two bits indicate
the privilege level needed to access the descriptor, from 0 (highest)
to 3.

. TYPE. This 4-bit field is used differently by different types of descrip-

tors. It can specify, for instance, that a segment is executable,
readable, and/or writeable. For operating system segments this
field can specify a type of descriptor like LDT, TSS, or Gate, the
latter two of which have subtypes of their own.

ACCESSED (A). This bit is set if the descriptor is loaded into a
segment register.

284

Protected Mode

Descriptors are created and maintained by the operating system and
other systems software like compilers and linkers; all of them must work

" together to keep the descriptors updated correctly.

All descriptors are kept in memory-based tables. These tables can be
up to 8,192 (2'%) descriptors long. There is a single Global Descriptor
Table (GDT) containing descriptors of segments that can be accessed by
any task with a high enough privilege level to get at the segment, either
directly or via a gate. Usually operating system code is globally available.
Each task also has a Local Descriptor Table (LDT), which describes the
segments accessible only by that task; this would usually include a task’s
code and data. However, two tasks can share part or all of an LDT. For
example, a word processing program that creates a separate task to serve
as a print controller can let the new task access the code and data
needed for its job. ,

One of the interesting special topics that arises in connection with
segment descriptors is aliasing. When two or more descriptors name parts
of the linear address space that partially or completely overlap, they are
aliases of one another. A descriptor for a code segment, for instance,
might specify that the code is readable but not writeable. An alias
segment descriptor for the code segment might specify that the same area
was writeable, and the alias could then be used (either deliberately or
accidentally) to modify or overwrite the code, possibly causing problems.
Also, the operating system must keep track of the aliases; if the operating
system wants to delete a segment, for instance, it must delete or modify
all the descriptors that allow access to that part of memory.

PAGING

The paging capability of the 80386 is one of the most interesting and
novel aspects of the processor, yet it's completely a tool of the operating
system. Whereas the applications programmer at least can see part of the
segment registers that control segment addressing, paging is invisible to
the programmer. It's also new with the 80386, so there’s no base of
understanding for the 8086 or 80286 programmer to build on. Yet paging
is very much worth understanding, It will probably be the main tool used
to access large amounts of actual memory, and it is vital to the operation
of Virtual Mode, which will be the basis of both the multitasking systems

Paging 285

and the giant applications programs of the future. It's easy to learn
enough about paging to discuss and work around its implications intel-
ligently without actually writing operating system code. The information
in this section and below, plus information about your particular operat-
ing system, may be enough for many programmers.

An 80386 page is a 4 Kb-sized piece of memory (some other
computers use other page sizes) A page may start at any point in
memory, but for convenience’s sake pages are usually placed at ad-
dresses 4 Kb apart (page frames). The addresses of page frames are 0, 4
Kb, 8 Kb, 16 Kb, etc. Any data item that starts at one of these addresses is
said to be “aligned on a page boundary.” Addressing a page frame in the
4 Gb linear address space is made easier because only a 20-bit address
is needed; the last 12 of the total 32 bits in the address are all zeros. In
virtual memory pages are swapped between disk and memory as needed.
The 4 Kb sections on disk that hold pages are called page slots.

An 80386 system doesn’t have to use paging at all, and an 80386 in
Real Mode can’t use it. A bit in the Machine Status Word, inaccessible to
Real Mode and applications programs, allows paging to be on or off.
However, paging is an almost irresistible tool for the systems program-
mer, since (for one thing) it provides an easy way to assign almost any
actual address to replace the linear address calculated by a program.
Thus, most 80386 operating systems will do at least some paging.

Memory can also be only paged, not segmented, by working around
segmentation with the trick of putting everything in one large segment.
Paging can then be used for protection and privilege control. Segments
have their advantages too, especially for protection of all code or pieces
of data. A common memory model will probably use segments for
protection based on segments and paging for memory remapping and
virtual memory. Paging will be invisible to the applications programmer,
but it will affect the memory locations that a program resides in and
accesses.

Physical Address Creation

The Physical Address is the address that comes out of the paging
unit. When paging is not on (or even in many cases when it is on) the
Linear Address that goes into the paging unit is the same as the physical
address that comes out. However, while the process of translation is
complicated and not always used, it's worth understanding as it can
affect every aspect of the system.

286 Protected Mo_de

A physical address has three parts: a 10-bit DIR entry, a 10-bit PAGE
entry, and a 12-bit OFFSET (see Figure 5-3). These three fields are used
to generate a physical address in the following way:

1. The 32-bit CR3 register holds the address of the current Page
Directory. The low 12 bits of CR3 are always 0 because the Page
Directory always starts on a page boundary. The 10-bit DIR value
from the Linear Address points to the needed Page Directory
Entry.

2. The high 20 bits of the Page Directory Entry point to a Page Table;
12 low-order zeros are tacked on to make a full physical address
for the page-aligned table. The 10-bit PAGE value from the middle
of the Linear Address points to the needed Page Table Entry.

3. The high 20 bits of the Page Table Entry point to a page frame; 12
low-order zeros are tacked on to make a full linear address for the
page frame. The 12-bit OFFSET value from the low-order bits of
the Linear Address points to the needed location in memory.

Each page directory has up to 1024 entries, allowing that many page
tables. Each page table can point to as many as 1024 pages, each 4 Kb
long. This means that a single directory can address 1024 * 1024 * 4096
bytes, or 4 Gb (the entire physical address space of the 80386).

The Page Directory Entries (PDEs) and Page Table Entries (PTEs) are
almost identical. The page table can be thought of as a “page descriptor
table,” and the Page Table Entry as a “page descriptor,” if this helps keep
them straight. Figure 5-3 shows an entry like that found in either table. A
bit-by-bit breakdown is listed below.

1. PAGING ADDRESS (Bits 31...12). For a PDE this address points
to a Page Table; for a PTE it points to a page. The lower 12 bits of
the address are always 0’s, since both Page Tables and pages are
aligned on 4096-byte boundaries.

Bit
31 12 11... 8 7 6 5 4 3 2 1 0

Paging Address |OSRes|0 |O|D|A O |0 |U/

Figure 5-3. Page Directory Entry/Page Table Entry

288

Protected Mode

disk in effect becomes the main memory, and RAM (“real memory”) is a
holding area for the code and data currently in use by the processor. See
Figure 5-4 for an illustration of the relationship between these types of
memory.

The number of bits in the largest address that a processor can
construct determines the size of its virtual address space. On advanced
processors like the 80386 there are two different address sizes: a large
address determines the virtual address space or amount of memory the
programmer can use. A smaller address determines the real address
space, the amount of real memory that the processor can support. On the
80386 the address information in Paging Tables allows a virtual address
space of 64 Tb (over 64 trillion bytes). This is the same as 64,000 1
gigabyte CD ROM:s. (If one copy of every book ever printed were stored on
CD ROM, fewer than 64,000 disks would be needed.)

The real address space can be accessed directly with a 32-bit
address, with or without paging. This address size allows up to 4 Gb of
real memory to be accessed (over 4,000 times more than a 1 Mb system
has). However, these limits are beyond the reach of current hardware. In
practice real addresses are used to access RAM and virtual addresses are

Virtual Memory
Top

\ Disk Storage

Top

Real Memory

Top

\
4

/

0

Virtual Memory > =Disk Storage> = Real Memory

Figure 5-4. Relation of Virtual Memory to Disk Storage to Real Memory

Virtual Memory 289

used to access a virtual space no bigger than a hard disk. The virtual
addresses won’t use even the full 4 Gb of space allowed by a 32-bit
address. The larger virtual address spaces will be used for networked
systems and communications at first.

A simple form of virtual memory is already in use by large programs.
In this technique a core part of a program stays in memory at all times.
The rest of the program is divided up into pieces of about 64 Kb each. As
the user accesses different parts of the program, these 64-Kb chunks are
brought in from disk as needed. Each chunk is called an “overlay.”
However, dividing a program into overlays and managing the swapping
of them in and out of memory are big chores for the programmer.

In virtual memory every program, data file, etc. is seen as a series of
4 Kb “pages.” The real address space (RAM) is divided into a 4 Kb-wide
“page frames,” and the virtual address space (hard disk) is divided into 4
Kb-wide “page slots.” When needed by the user’s access of different parts
of a program, different pages are brought in from their page slots into
page frames in real memory, where they can be accessed. When memory
is full and another page is needed, an existing page frame is overwritten
(if it hasn’t been changed since coming into memory) or copied out to its
page slot on disk before being overwritten (if it has been changed). All
this takes place out of sight of the programmer; the programmer simply
accesses code and data at different virtual addresses and the processor
and operating system cooperate to bring the needed page into memory
when it’s actually needed.

How the 80386 Supports Virtual Memory

The following features are important in the 80386 support of virtual
memory:

1. The ability to access large address spaces.
2. The ability to translate virtual addresses into real addresses for
" accessing real (physical or RAM) memory.

3. The ability to cause an exception (instead of simply halting) if a
needed piece of code or data is not currently in memory (a “page
fault”).

4. Instructions that can be restarted if a page fault prevents the
instruction from completing.

290

Protected Mode

This is a lot for a processor to do, but much of the work is still left to
the operating system. When a page fault occurs the operating system
must get the needed page from disk and bring it into memory. If memory
is full it's the operating system that must write an existing page to disk, if
needed, and then overwrite it with the needed page.

There are several important issues surrounding virtual memory
which will directly affect the applications programmer. One is how much
real memory is needed to support a given amount of virtual memory. For
instance, will a system with 1 Mb of available RA