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Preface 

I have always considered computers to be fun, computer programming to be 
more fun, and computer simulation to be the most fun of all. I built my first 
computer hardware, a cascaded decade counter, in 1945. 

l wrote my first program, machine language, of course, in 1953; ahd 
took my first programming ctnirse in 1959 (written in SOAP II). In 1964 I quit 
my job as managing editor of Electronics rriagazine to teach scientific program
ming (Lewiz) and data processing (Gecom) to industrial engineering students, 
at a 50% pay cut. In 1968, I joined the then new department of computer science 
at the University of Western Ontario, where I taught computer simulation as 
~• I 

I never experienced the real joy of programming until 1978 when I 
acquired a TRS-80 model I personal computer and no longer had to run hat 
in hand to ensconced computer-center bureaucrats to get computing time or 
disk space. 

I am impatient with computer science teachers who take the fun out of 
tomputing with abstract and arcane mathematical incantations, burdensome 
loads of make-work, and highly opinionated but never validate~ notions about 
programming style-no more GOTOs, lots of comments, albeit meaningless 
ones, and indentation to the nth power. I am also impatient with bright, upwardly 
mobile kids who see a degree in computer science as a passport to a lifestyle of 
cross-country skiing, cheese fondues, and BMWs; and live for the day when they 
collect their sheepskins and no longer have any damned programs to write. 

I am saddened each year as we turf out one or two of the keenest arid 
most innovative programmers because their programming style didn't please 
some politically well positioned instructor, or because they failed a math course 
that has little or no relevance to their work. 

ix 



x PREFACE 

This book is intended to put some of the fun back into programming. 
If you work through it while sitting at your personal computer, you'll learn the 
essentials of computer simulation. Every principle is introduced by a program 
whose results are reported as graphically as I was able to make them. You can 
copy my programs or write your own. There may be bugs in my programs; if 
not now, they'll be there when the typesetters get through with them. Anyway, 
it's all part of the learning experience; and consider how much satisfaction you'll 
have when you prove you're a better programmer than I am. 

You don't have to put off using this book until you take a third, fourth, 
or fifth year course in simulation. This book would go well with a first year 
computer course. Everything you need to know is explained as you go along 
and the exercises are a lot more fun than the dust-dry assignments you find so 
boring. Working through this book will put you well on your way to successfully 
writing and debugging the 200 odd programs you will have to write before 
computer programming really becomes second nature to you and your first 
inclination when you have a problem to solve, or nothing better to do, is to sit 
down at the keyboard, fire up your PC, and do some creative programming. 

The first. eight chapters deal pretty much with waiting lines or queues 
and you might get the idea that all simulation was good for was predicting how 
long the line outside a theatre or sporting event is likely to be. Well, the simulation 
of waiting lines is an important part of this art. They· are truly pervasive in our 
society where contention for ever diminishing stores of resources becomes keener 
every year on all levels from interpersonal relationships to superpower feuds. 
And waiting lines often exist within systems where their presence is not im
mediately evident. 

In Chapter Ten I try to put the uses of simulation into perspective by 
discussing some of the simulation projects I have managed in the past twenty 
years (Chapter Nine was written by a former student of mine. It describes a 
simulation language he wrote-GPSS for microcomputers). 

I'd like to tell you what my graduate students did last year to show the 
breadth of this subject: 

Bill wrote a program simulating one terminal of the US Ocean Surveil
lance Information System, which was a main-frame (i.e., a "big" computer) sim
ulation. A microcomputer version of it is described in Chapter Eight. 

Ashok wrote the household simulator described in Chapter Ten. It used 
census data to predict the size and composition· of households years into the 
future. · 

Milan rewrote the police patrol simulator described in Chapter Ten (a 
main-frame simulation) to make a training simulator for police dispatchers and 
commanders. It now runs on an IBM/AT personal computer. 

Laurie simulated· an Ethernet local area network in the physiology re
search laboratory. Among other things it tells how many word-processing users 
can be allowed to work at any given time without causing undesired loss of 
information from data-collection stations to which living subjects are connected. 
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Nelson carried out an investigation of the US Data Encryption Standard 
to see whether statistical tests could detect any suspicious patterns in the com
position of the Substitution Boxes that might suggest that the National Security 
Agency had inserted "trap doors" that would make the DES easy to break. He 
didn't find any. Formally, he found that at the 95% level of confidence he could 
not reject the hypothesis that the S-boxes were randomly chosen permutations. 

Kathy designed a simulator to test evacuation paths in a day-care center. 
This simulation runs on a microcomputer. It does incorporate waiting lines: 
when children line up at the exits. The user can type in the description of any 
day-care center and the simulator will show how a given set of evacuation rules 
would work. It will even show how to modify the rules in case the fire cuts off 
one or more escape routes. 
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Getting Started 
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• Simulation 1n 
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2 GETIING STARTED IN SIMULATION 

A simulatio_n is a procedure in which one system is substituted for another system 
that it rese;nbles in certain important aspects. As an example, consider a model 
airplane suspended in a wind tunnel where it is used to simulate a full-sized 
plane moving through the atmosphere so engineers can study its aerodynamic 
characteristics. As is the case with most simulations, this one enables the persons 
conducting the simulation to learn about the real system. They can do this 
without having to build and fly a full-sized plane. This saves time and money 
and avoids the risk of flying an unproven aircraft. 

There are many other reasons for using simulated systems to study real 
ones. The real ones may not exist; the airplane represented by the model in the 
wind tunnel may only be in the first stages of design. 

It may be too expensive to work with the real system; perhaps the ex
periments we are contemplating would damage it. In the real system, the changes 
we want to study may take place too slowly or too fast to be observed conveniently. 
When simulating the propagation of plant species on the shoreline of Lake 
Huron, we study events occurring over a period of 400 years. When simulating 
nuclear reactions, we study events taking place in millionths of a second. 

There are some algorithms (that is, specific problem-solving methodol
ogies) that require random choices to be made. A random-selection routine may 
be included in packages for Factor Analysis, Linear Programming, or the Project 
Evaluation and Review Technique. 

Most important of all, the very act of studying a real system may change 
it and render our observations about it invalid. Half a century ago at the Haw
thorne Works of the Western Electric Company near Chicago, engineers wanted 
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to find out whether changing working conditions would increase worker pro
ductivity. In one experiment, they increased workplace illumination in stages 
and observed that productivity went up. Then, just to make sure that there was 
a genuine cause-and-effect relationship, they reduced the illumination in stages. 
Surprisingly, productivity continued to increase. This situation has become known 
as the "Hawthorne Effect." As near as anyone can make out, productivity in
creased mainly because the workers were so pleased that somebody was taking 
an inter.est in them that they worked their hearts out. But, as far as the engineers 
were concerned, the process of observation had contaminated the results. 

In 1924, German physicist Werner Heisenberg expressed somewhat the 
same idea when he formulated his "Uncertainty Principle." Among other things, 
it asserted that one cannot observe the location of a subatomic particle without 
changing its momentum, nor can one observe its momentum without altering 
its position. 

COMPUTER SIMULATION 

The cheapest, most versatile, and convenient kind of simulation is one that is 
carried out within a computer. We are talking specifically about "discrete, sto
chastic, digital" simulation. It is discrete because it proceeds in steps; stochastic 
because the element of chance is introduced by use of pseudorandom number 
generators, and digital because the computers used are digital. (Nearly all com
puters are digital today, but years ago most computers were analog in nature; 
and they were widely used in certain kinds of simulation-but that is another 
story.) 

SIMULATION WITH PERSONAL COMPUTERS 

The advent of the personal computer has dispelled one of the principal draw
backs of computer simulation; that is, that the programs can sometimes take a 
long time to develop significant results. This can be a problem when you have 
to share a computer with other people; or, even worse, if you have to pay for 
computer time by the minute. However,.with a personal computer, you can start 
the program before you go to bed; the results will be there in the morning. 
Nobody will be upset with you, and it won't cost a cent. 

This book will introduce you to simulation on personal computers by 
giving a step-by-step description of programs that illustrate important concepts 
in simulation. Most of the programs were written on a Texas Instruments Profes
sional computer running under the Microsoft Disk Operating System (MS/DOS). 
They are written in Microsoft's version of the BASIC programming language 
(MS/BASIC). BASIC stands for Beginners' All-purpose Symbolic Instruction 
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Code; it was invented at Dartmouth College in the early 1960s. BASIC is today 
the mos~ widely used programming language, especially in the personal com-

. puting field. The programs that do not. use bit-level graphics will run on any 
personal computer that is compatible with the IBM-PC. This includes the TI, 
the Zenith/Heath personal computers, and many more. I shall assume that you 
have already done some programming in BASIC. 

In this chapter, I want to accomplish these goals: 

1. Show how to use random numbers to simulate a process. 
2. Review BASIC programming. 
3. Show how to interact with a user by menus. 
4. Introduce two concepts of structured programming: typing of variables, and 

modular design. 
5. Tell how to generate pseudorandom numbers. 

I shall do this by belaboring a very simple program used for teaching 
on the grade-school level. Even if you're not a grade-school teacher or the parent 
of a grade-school child, it may hold some interest for you. Computers are be
coming better regarded as teaching tools, especially to giye rapid tuition in the 
use of complex programs such as Database Management Systems. 

ARITHMETIC DRILL AND PRACTICE 

T~e first program we shall examine is one I wrote to help my granddaughters 
with their elementary arithmetic. I regard this program as a simulation in whic:h 
the computer takes the part of.the teacher, who assigns problems, corrects the 
students' work, and encourages them in their efforts. Some people might call 
this kind of program Computer-Aided Learning (CAL) or Computer-Assisted 
Instruction (CAI); I wouldn't argue. Itjust goes to emphasize theextensiye scope 
of simulation as a technique. It takes in CAL/CAI, some numerical computation 
mt;;thods, some video games, and much more. 

Operation of the Program 

Here's how the program operates. It introdu(:e~ itself and asks the stu
dent to type his or her first name. Then the program addresses the student by 
name and announces that it has some math questions for the• student to work 
put. The student is instructed to enter answers and afterward press either the 
<;ENTER> or the <RETURN> key. The student is then told to press either 
<ENTER> or <RETURN> to advance the progn1m. 

The program asks whether the student wishes to add, subtract, multiply, 
or divide; and the student is told to type 1 for ''add," 2 for ''subtract," 3 for 
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HELLO THERE ~ 

** JACK ** 

I~M YOUR TI PROFESSIONAL COMPUTER 
PLEASE ·.TYPE YOUR FIRST·. NAME '? JACK 

HERE ARE SOME MATH QUESTIONS FOR YOU TO WRRK OUT-. 

r§NTER YOUR ANSWERS THEN PRESS <ENTER>. OR <RETURN~ 

WHEN YOU ARE READY, PRESS <ENTER> O~ <~ETU~> TO CONTIN.UE? 

DO YOU WANT TO: ADD, SUBTRACT, MULTIP~Y OR DIVIPE? 
TO ADD, TYPE 1; SUBTRACT, 2; MULTIPLY~ 3; QIVIDE, 4? 1 

FIGURE ~-1 Introduction, instructioris, an~ meou f()r arithni~tic drill-~md~practice program. 

"multiply," and 4 for '~divide." If the student types any character except l, 2, 3, 
or 4, the program will refuse it £lP:H ~~¥ q1e stuqent t~ ~nter a cm;:req numqer 
(1, 2, 3, or 4). This way of presentip.g alternative choices is called fl. "menu." 
Figure 1-1 shows the ip.tro9uction, i11§tructiop., and :pienu. . 

The operation of additiqp. entails addin_g a v;iriable qµ~nt!ty ~alle,d 
TE:RMl %, an integer (whqle num9er) in the nmge l to 100; to TERM2%, an 
integer in the range frpm 1 to l,QOO. VariableTERl\12% is selected so that it is 
always greater than TERM I,%~ The .. char~cter "% 'i \~ a type-declaration symbol. 
It signifies· that the character type.·· of these two yariables is :~int~ger." Figure 
1--2 shows a correct and a11 incpr:rect 'additiqn. · 

Subtraction entail~ subtracting TERMl % from TERM2%. 
Multiplication entails multiplyiqg T'f:RM 1 % by TERM2%. 

Division entails dividing TE:ij.M2% h,y TERMl %. Here is where the 
requirement that TERM 1 % always exceed 1 pays off, since divisiqn by zero is a 
big "no-no" in computing (the prodl\(:t of 1/0 and a11y number i~ updefined in 
mathematics). · · 

The student is tolq to roup.d qff the qµotient of TfiRM2% diviped by 
TERM 1 % to two decimal places! Th~n i&, \f the third decimal place of the quotient 
is five or more, the student is suppq8:eq to increase the value in the ·second 
decimal place by one. 
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** ADDITION ** 

6 + 60 ? 
? 66 
RIGHT!!!!! 

WANT MORE? TYPE <YES/Y> OR <NO/N>? Y 

DO YOU WANT TO: ADD, SUBTRACT, MULTIPLY OR DIVIDE? 
TO ADD, TYPE 1; SUBTRACT, 2; MULTIPLY, 3; DIVIDE, 4? 1 

** ADDITION ** 

55 + 238 = ? 
? 292 
WRONG ! ! 
THE RIGHT ANSWER IS 293 

WANT MORE? TYPE <YES/Y> OR <NO/N>? Y 

DO YOU WANT TO: ADD, SUBTRACT, MULTIPLY OR DIVIDE? 
TO ADD, TYPE 1; SUBTRACT, 2; MULTIPLY, 3; DIVIDE, 4? ~ 

FIGURE 1-2 Correct and incorrect examples of addition. 

The problems are presented in the following form (the type-declaration 
symbols are not shown on the display): 

TERMl + TERM2 ? 

TERM2 TERMl ? 

TERMl x TERM2 ? or 
TERM2 / TERMl ? 

If student types in the correct answer, the program displays: "RIGHT 
!!!!!" If the answer is wrong, the program displays: "WRONG !!" and then 
proceeds to display the correct answer. 

The student is now asked, "Want more?" and instructed to type <YES> 
or <Y> to get another question; or to type <NO> or <N> to finish the exercise. 
If the student types anything else, the program will refuse it and prompt for a 
correct answer. 

At the end of the exercise, the program divides the number of correct 
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answers by the total number of questions presented. The resulting decimal is 
rounded up to two places and reported as an integer percentage (that is, mul
tiplied by 100). 

Structure of the Program 

The program is divided into a Main Program and eight subroutines. 
Figure 1-3 is a complete listing of all 86 statements in the program. 

FIGURE 1-3 Complete listing of arithmetic drill-and-practice program. 

LIST -200 
10 ' THIS PROGRAM PROVIDES DRILL AND PRACTICE IN ELEMENTARY ARITHMETIC 
20 , 
30 CLS: LOCATE 10 ,36: PRINT "HELLO THERE'~ 
40 PRINT " I'M YOUR TI PROFESSIONAL COMPUTER" 
50 INPUT 11 PLEASE TYPE YOUR FIRST NAME "; FIRSTNAME$ 
60 ; 
70 CLS: PRINT" ** "FIRSTNAME$" **" 
80 PR I NT: PR I NT 11 HERE ARE SOME MATH QUESTIONS FOR YOU TO WORK OUT. "· 
90 PRINT:PRINT"ENTER YOUR ANSWERS THEN PRESS <ENTER> OR <RETURN>" 
100 PRINT:PRINT"WHEN YOU ARE READY, PRESS <ENTER> OR <RETURN> TO CONTINUE": 
110 INPUT X . . 
120 , 
130 GOSUB 230 ' CALCULATE ALL THE RIGHT ANSWERS 
140 PRINT: PRINT: PRINT II DO YOU WANT TO: ADD' SUBTRACT' MULTI PLY OR onn DE?" 
150 FLAG$="" " RESET COMMAND FLAG 
160 INPUT "TO ADD, TYPE 1; SUBTRACT, 2; MULTI PLY, 3; DIVIDE, 4"; FLAG$ 
165 IF FLAG$="1" OR FLAG$="2" OR FLAG$="3" OR FLAG$="4" THEN 170 ELSE 150 
170 CODEX=VAL(FLAGS> ' CONVERT COMMAND FLAG TO A COMMAND CODE 
180 ON CODEX GOSUB 390,470,550,630 '.SELECT STUDENT PROBLEM 
190 , 
200 FLAG$="" ' RESET COMMAND FLAG 
OK 

LI ST 210-400 
210 PRINT:INPUT "WANT MORE? TYPE <YES/Y> OR <NO/N>"; FLAG$ 
215 IF FLAG$="NO" OR FLAG$= 11 N" OR FLAG$= 11 YES 11 OR FLAG$= 11 Y 11 THEN 220 ELSE 200 
220 IF FLAG$= 11 N0 11 OR FLAG$= 11 N11 THEN 820 ELSE 130 
230 , 
240 ' RANDOMIZATION AND CALCULATION SUBROUTINE 
250 RANDOMIZE TIME.' SEED THE RANDOM NUMBER GENERATOR 
260 ' FROM THE REAL TIME CLOCK 
270 ' THIS ROUTINE CALCULATES THE RIGHT ANSWERS 
280 NUMBERX=NUMBER%+1 ' ·rHIS STEP COUNTS TOTAL TRIES 
290 TERM1%=INT<RND*100)+1 ' TERM1 IS A RANDOM INTEGER FROM 1 TO 100 
300 TERM2%=INT<RND*1000)+1 ' TERM2 IS A RANDOM INTERGER FROM 1 TO 1000 
310 ·' TERM 1 MUST BE LESS THAN TERM2 
320 IF TERM1%>=TERM2X OR TERMlX=O THEN 290 ' GET ANOTHER PAIR OF RANDOM NUMBERS 
330 ADD%=TERM1%+TERM2X ' ADDITION 
340 SUBT%=TERM2X-TERMD·: ' SUBTRACT! ON 
350 MULT#=TERM1%*TERM2X ' MULTIPLICATION 
360 DIVD!=INT<<<TERM2%/TERM1%)+.005)*100)/100 ' DIVISION 
370 ' THE QUOTIENT IS ROUNDED UP TO TWO DECIMAL PLACES 
380 RETURN 
390 , 
40 0 ' STUDEt'-IT ADD IT I ON SUB ROUT I NE 
OK 

OK 
LI ST 410-600 
410 CORRECT=ADDX ·' SAVE THE RIGHT ANSWER 
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420 CLS:PRINT:PRINT:PRINT 11 ** ADDITION ** 11 

430 PRINT:PRINT:PRINT 11 "TERMlX 11 + 11 TERM2/; 11 = ? II 

440 INPUT ANS/. 
450 IF ANSX=ADOX THEN GOSUB 720 ELSE GOSUB 770 
460 RETURN 
470 , 
480 ' STUDENT SUBTRACTION SUBROUTINE 
490 CORRECT=SUBTY. ' SAVE RIGHT ANSWER 
500 CLS:PRINT:PRINT:PRINTn** SUBTRACTION **" 
510 PRINT:PRINT:PRINT" 11 TERM2X 11 

- "TERM1X" = ? " 
520 INPUT ANSX 
530 IF ANSX=SUBT:t: THEN GOSUB 720 ELSE GOSUB 770 
540 RETURN 
550 , 
560 ' STUDENT MULTI PL! CAT ION SUB ROUT I NE 
570 CORRECT=MULT# ' SAVE THE RIGHT ANSWER 
580 CLS: PRINT: PRINT: PRINT"** MULTI PLICATION **" 
590 PRINT:PRINT:PRINT" "TERMlY. 11 x "TERM2~-:" = ? II 

600 INPUT ANS# 
01< 

01< 
LI ST 610-800 
610 IF ANS#=MULT# THEN GOSUB 720 ELSE GOSUB 770 
620 RETURN 
630 , 
640 ' STUDENT DIVISION SUBROUTINE 
650 CORRECT=DIVD! ' SAVE RIGHT ANSWER 
660 CLS:PRINT:PRINT:PRINT"** DIVISION **" 
670 PRINT "«ROUND OFF YOUR ANSWERS TO 2 DECIMAL PLACES»" 
680 PRINT:PRINT:PRINT" ;'TERM2X" / "TERMlX" = ? 0 

690 lNPUT ANS! 
700 IF ANS!=DIVD! THEN GOSUB 720 ELSE GOSUB ?70 
710 RETURN . 
720 , 
730 ' CORRECT ANSWER SUBROUTINE 
740 RIGHTX=RIGHTX+l ' INCREMENT COUNT OF RIGHT ANSWERS 
750 PRINT "RIGHT ! ! ! ! ! II • 

760 RETURN 
770 , 
780 ' WRONG ANSWER SUBROUTINE 
790 PRINT "WRONG ! ! 11 

800 PRINT "THE RIGHT ANSWER ~S "CORRECT 
01< 

01< 
LIST 810-
810 RETURN 
820 , 
830 ' EXIT SUBROUTINE 
84Q SCORE"/.=INT((RIGHTY./NUMBER/.)*100+.5) 
850 PRINT:PRINT 1'YOUR SCORE IS "SCORE/. 
860 END 
01< 

FIGURE 1,.,..3 (continued) 

The Main Program handles most of the dialogue between the student 
and the computer, and it calls up the subroutines. The principal parts of the 
Main Program are: 

Program introduces itself and asks the student's first name (statements 30.,...50). 
Addresses the student by name and gives basic instructions (statern~nts 70-110). 
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Calls a subroutine to calculate the right answer, gets the student's choice of 
arithmetic operation, and calls the appropriate subroutine to implement it (state
ments 130-180). 
Gets the student's choice of whether to continue or quit (statements 200-220). 
In the former case, it recycles to statement 130; in the latter case, it calls the 
Exit Subroutine. 

The subroutines are: ( 1) Randomization and Calculation, (2) Student 
Addition, (3) Student Subtraction, (4) Student Multiplication, (5) Student Divi
sion, (6) Correct Answer, (7) Wrong Answer, and (8) Exit. 

1. The Randomization and Calculation Subroutine (statements 240-380) contains 
these parts: 

>> It "seeds" the random-number generator (statements 250-260)-more 
about this later. 
>> Counts the total number of questions that have been asked (statement 
280). 
>> Chooses appropriate values for TERMl % and TERM2% (statements 
290-320)-more about this later. 
>> Calculates the right answer for addition (statement 330). 
>>' Calculates the right answer for subtraction (statement 340). 
>> Calculates the right answer for multiplication (statement 350). 
>> Calculates the right answer for division (statement 360)-more about 
this later. 

2. Student Addition Subroutine (statements 400-460) stores the correct answer 
for addition, displays the question, accepts the student's answer, and branches 
to the Correct Answer or Wrong Answer Subroutine, depending upon whether 
the student's answer was right or wrong. 

3. Subtraction Subroutine (statements 480-540) is directly analogous to the Student 
Addition Subroutine. 

4. Student :M\tltiplication ·Subroutine (statements 560-620) is directly analogous 
to the Swdent Addition Subroutine; 

·.'. >, :"··, .:. :• ,_''.·I - ·: 

5. S~mieht l)Msiori Subroutirl~ (sta~ements 640-710) is analogous to the Student 
Nlditiort;Su~rbutirte excep~ithat it instructs the student to round the answer up 
to two dedm~l places. ' 

6. Correct Ans'retSubroutine (statements 730-760) increments the count of right 
answers and;:displao/$ the "l{ight !!!!!"message. 

7. Wfong Answer·Subroutine:(stat~mehts 780-810) displays the "Wrong!!" mes
st:tge and the correct answer. 

8. Exit Subrptitlne '(s(atement;s S30~860) calculates the student's score, displays it, 
and terminates the! ptograrh. 

Meaning of the Program Variables 

The following variables are tised in this program: 

FIRSTNAME$ ~·string (alphanumeric) variable used to hold the first name of the 
user. The symbol "$" is another type-declaration symbol; it denotes a string 
variable. 
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x a dummy variable "INPUT" when either the <ENTER> or <RETURN> 
key is pressed to advance the program. 

FLAG$ a string variable used to hold menu choices. It is reset to <NULL>, 
signified by '"'before a choice is made. When selecting arithmetic operations, 
the contents can be l, 2, 3, or 4. When selecting "CONTINUE" or "QUIT,'~ the 
contents can be YES or Y, or NO or N. It is generally preferable to use a string 
variable to give commands to a program rather than a. numeric variable. One 
reason is that a string variable can be reset to null, and then any printable 
character or sequence of characters can be used as a command; a number must 
be reset to zero, and this precludes us from using zero as a command symbol. 

CODE% the numerical equivalent of the string values 1, 2, 3, or 4 created by 
using the function VAL(FLAG$). CODE% transfers control to the selected sub
r9utine by means of the command "ON CODE% GOSUB 390, 470, 550, 630". 

NUMBER% an integer representing the total number of math .questions pre
sented. 

TERMI % an integer greater than 0 and less than 101; it assumes the role of the 
addend in addition, the minuend in subtraction, the multiplier in multiplication, 
and the divisor in division. 

TERM2% an integer greater than 0 and less than 1001, and always greater than 
TERMl %; it assumes the role of the augend in addition, the subtrahend in 
subtraction, the multiplicand in multiplication, and the dividend in division. 

ADD% the actual sum in addition. 

SUBT% the actual difference in subtraction. 

MULT# the actual product in multiplication. The type-declaration symbol"#" 
signifies that this variable is a double-precision real variable. This kind of type 
declaration is used here to preserve integer format despite the fact that it is 
possible that a product may exceed 32767, the upper size limit for an integer 
in this version of BASIC. 

DIVD! the actual quotient in division, it is always rounded up to two decimal 
places. Here the type-declaration symbol"!" signifies that it is a single-precision 
real variable. This allows for the fact that decimals will be obtained in quotients. 

CORRECT a data location used to store the actual answer corresponding to the 
arithmetic operation chosen by the student. It is declared by default to be a 
single-precision real variable because it may have to hold integers (ADD% and 
SUB%), double-precision real variables (MULT#), and single-precision real var
iables (DIVD!). However, no tests for equality can be ma.de with CORRECT; it 
is used for display purposes only. 

ANS% the answer entered by the student when doing addition, subtraction, or 
multiplication. 
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ANS! the answer entered by the student when doing division, it is rounded up 
to two decimal places; hence its type-declaration symbol shows it to be a single
precision real variable. 

RIGHT% an integer representing the number of correct answers. 

SCORE the student's grade on the exercise. It is the quotient of RIGHT% divided 
by NUMBER%, rounded up by first multiplying by 100 then adding 0.5, and 
made into an integer by using the function INT(Argument)-where "Argu
ment" is a general term for any number you want to-make into an integer. 

Program Implementation 

There are two important steps in this program. The first is central to 
the subject of simulation; the second is crucial to making an arithmetic drill
and-practice program work. 

Central to the subject of simulation is the process of generating random 
numbers. Indeed, the fact that this program can tirelessly generate different 
arithmetic problems without repeating itself (unless you run the program for a 
very long time indeed) is what makes it a simulation of a live teacher rather than 
a substitute for an exercise book in which the problems are all set down in 
advance. 

In subsequent chapters, you will learn many things about random num
bers; for now, it is sufficient to say that they are supposed to possess two attri
butes: (1) the chance of producing any number in the range of interest is identical 
to that of producing any other number, a:µd (2) the appearance or nonappear
ance of any number in no way affects the chance of the appearance or non
appearance of any other number. 

We are going to get our random numbers by using a function called 
RND that is built into the BASIC programming subsystem. It produces random 
numbers in the form of single-precision real variables in the range 0 to 1. 
Practically speaking, they are decimals having 7 or fewer digits (usually 6). To 
see how it works, RUN this program (see Figure 1-4): 

10 CLS 
20 FOR I 1 TO 100 
30 PRINT RND; 

40 NEXT I 

Notice that we produced a few odd-looking numbers, such as 5.532474E-
02. This is an example of exponential, or so-called "scientific," notation. It is 
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THIS PROGRAM PRINTS 100 RANDOM NUMBERS 
BETWEEN ZERO AND ONE 

.1213501 .651861 .86S8611 .7297625 .798853 7.369805E-02 .4903128 

.4545189 .1072496 .9505102 .7038703 .5318641 .9711614 .3209329 .9561278 

.9345151 .5349368 .5644215 .6712188 .7025723 .7407752 .6668768 .4539406 

.3341433 ,156853 .7362702 .5428795 .425969 5.544812E-02 .7682681 

.5135362 .564048 .7410649 .6618574 .23145 .4642614 .1285592 .4849701 
5.532474E~02 .3629986 .5712636 .9901088 .290153 .6577815 .9391122 
.379971 .8903414 .7978898 .9467658 .3230751 .412836 .4249863 .7317363 
.2193842 .2202465 .7637411 .6825126 .7159321 .9339718 .2624577 .5166851 
.4724479 .137325 .483697i .6090706 .1769807 .3286581 .244903 .5698376 
.8115254 .1244871 9.027124E~03 7.263118E-02 .1676467 .7126173 .525154 
.9326978 .6121049 ~sss2e0 .71912s9 ,4350100 .1024007 .3421974 .s341678 
.9123946 .4527998 .1938278 .8215128 .5736507 .8491585 .1143709 .9810265 
.5816818 .6153483 .6949517 .8519325 .3816174 .2284811 6.673521E-02 
.3529371 

OK 

ok 
LIST 
10 CLS 
20 PRINT "THIS PROGRAM PRI.t'.ffS 100 RANDOM NUMBERS 11 

30 PRINT "BETWEEN ZERO AND ONE II 

40 PRINT: PRINT 
50 FOR I = 1 TO 100 
60 PRINT.RND; 
70 NEXT I 
QI< 

FIGURE 1-4 Generation of pseudo-random numbers in the range zero to one. 

the way BASIC displays very small or very large numbers. The E-02 (charac
teristic) represents the base number 10 taised to the 2 power, or .01, and is 
to be multiplied by the rest of the number (mantissa). Very simply, you move 
the decimal point N places. to the left for a negative exponent (E - N) and N 
places to the right for a positive exponent {E + N). In this case, the value is 
.05532474. 

We do not want numbers in the range 0 to 1; we want numbers in the 
range 1 to 100. However, so we can see changes take place within the sequence 
of 100 numbers we are displaying, let's employ one of the principles of simulation 
and multiply by lo instead of 100. RUN this program (see Figure 1-5): 

10 OLS 

20 FOR I=l TO 100 
30 PRINT RND*lO; 
40 NEXT I 
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1.213501 6.51861 8.688611 7.297625 7.98853 .7369805 4.903128 4.545189 
1.072496 9.505102 7.038703 5.318641 9.711614 3.209329 9.561278 9.345151 
5.349367 5.644214 6.712188 7.025723 7.407752 6.668768 4.539406 3.341433 
1.56853 7.362702 5.428796 4.259691 .5544811 7.682681 5.135362 5.640479 
7.410649 6.618574 2.3145 4.642615 1.285592 4.849701 .5532473 3.629986 
5.712636 9.901087 2.90153 6.577815 9~391123 3.79971 8.903415 7.978898 
9.467657 3.230751 4.12836 4.249863 7.317363 2.193842 2.202465 7.637411 
6.825126 7.159322 9.339718 ~.6245~7 5.166851 4.724479 1.37325 4.836971 
6.090706 1.769807 3.286581 2.44903 5.698376 8.115254 1.244871 
9.027124E-02 .7263118 1.676467 7.126174 5~25154 9.326979 6.121049 
5.55268 7.191259 4.350107 1•024807 3.421974 8.341679 9.123946 4.527998 
1.938278 8.215128 5.736507 8.491585 1.143708 9.810266 5.816818 6.153484 
6.949518 8.518325 3~816174 2.284811 i6673521 3.529371 

Ok 

01< 
LIST 
10 CLS 
20 PRINT "THIS PROGRAM PRINTS 100 RANDOM NUMBERS " 
90 PRINT "BETWEEN ZERO AND TEN " 
40 PRINT: PRINT 
50 FOR I = 1 TO 100 
60 PRINT RND * 10; 
70 NEXT I 
01< 

FIGURE 1-5 Generation of pseudo-random numbers in the range zero to ten. 

We are still generating decimal riumbets, and we want whole numbers, 
or integers. We can correct this defect by using the INT or "integerize" function 
of the BASIC language. RUN this program (see Figure 1-6): 

10 CLS 

20 FOR I= 1 TO 100 

30 PRINT INT ( RND*10) ; 

40 NEXT I 

Notice now that the numbers lie in the range 0 to 9 and not in the range 
1 to 10. This is because the INT function just chops off the dedmal part of a 
number. Ifwe used this subroutine in our arithmetic drill-and-practice program, 
we would get an error message every time we tried to divide by 0. To fix things, 
RUN this program (Figure 1-7): 

10 CLS 
20 FOR I'= 1 TO 100 
30 PRINT INT ( RND*10 ) + 1; 

40 NEXT I 
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THIS PROGRAM PRINTS 100 
BETWEEN ZERO AND NINE 

1 6 
5 4 
7 2 
5 7 

Ok 

Ok 
LIST 
10 CLS 

8 
0 
2 
4 

7 7 0 4 
7 5 5 7 
7 6 7 9 
1 3 8 9 

4 
6 
2 
4 

RANDOM INTEGERS 

1 9 7 5 9 3 9 9 5 
2 4 1 4 0 3 5 9 2 
5 4 1 4 6 1 3 2 5 
1 8 5 8 1 9 5 6 6 

20 PRINT "THIS PROGRAM PRINTS 100 RANDOM INTEGERS " 
30 PRINT "BETWEEN ZERO AND NINE 11 

40 PRINT: PRINT 
50 FOR I = 1 TO 100 
60 PRINT INTCRND * 10>; 
70 NEXT I 
OK 

5 6 
6 9 
8 1 
8 3 

FIGURE 1-6 Generation of pseudorandom integers in the range zero to nine. 

7 7 6 4 3 1 7 
3 8 7 9 3 4 4 
0 0 1 7 5 9 6 
2 0 3 

To obtain TERMl %, we multiply RND by 100, apply the INT function 
to convert the result to integer form, and add 1. To obtain TERM2%, we multiply 
RND by 1,000, apply the INT subroutine to convert the result to integer form, 
and add 1. Then we test to be sure that TERM2% is larger than TERMl %. If 
it isn't, we loop back and pick two other random numbers and try again until 
it is. 

RUN the last program twice and compare the two sequences of integers. 
They are both the same! If we were to incorporate this subroutine in our 
drill-and-practice program, we would produce the same sequence of 
TERMl %:TERM2% pairs every time we ran it, diminishing its value as a tool 
for instruction. This is because every random-number generator has to contain 
a starting number called the "seed." The seed is built into the random function 
of the programming language. Unless you change the seed when you generate 
a sequence of random numbers, you will get the same sequence every time. 

These random number sequences are finite in length but they are very 
long; so one way to reseed a random-number generator is to preexercise it. You 
could set up a loop: 

FOR I= l to NUMBER: R=RND: NEXT I 
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THIS PROGRAM PRINTS 100 RANDOM INTEGERS 
BETWEEN ONE AND TEN 
TYPE RUN NUMBER ? 1 

2 7 9 8 8 5 5 2 10 8 6 10 
8 6 5 1 8 6 6 8 7 3 5 2 5 
5 5 8 3 3 8 7 8 10 3 6 5 2 
10 7 6 8 5 2 4 9 10 5 2 9 

OK 

THIS PROGRAM PRINTS 100 RANDOM INTEGERS 
BETIAIEEN ONE AND TEN 
TYPE RUN NUMBER '? ~ 

6 

2 7 9 8 8 1 5 5 2 10 8 6 10 
8 6 
5 5 
10 7 

OK 

Ok 
LIST 
10 CLS 

5 
8 

6 

1 8 6 6 
3 3 8 7 

8 5 2 

8 7 3 5 2 5 
8 10 3 6 5 2 

4 9 10 5 2 9 6 

4 10 10 
1 4 6 10 

5 7 2 4 
9 2 10 

4 10 10 
1 4 6 10 

5 7 2 4 
9 2 10 

20 PRINT "THIS PROGRAM PRINTS 100 RANDOM INTEGERS " 
30 PRINT "BETWEEN ONE AND TEN " 
40 INPUT "TYPE RUN NUMBER ";X 
50 PRINT: PRINT 
60 FOR I = 1 TO 100 
70 PRINT INT<RND * 10) + 1; 
80 NEXT I 
OK 

6 6 7 8 
3 7 10 4 
3 6 9 2 

6 7 7 9 

6 6 7 8 
3 7 10 4 
3 6 9 2 

6 7 7 9 

FIGURE 1-7 Generation of pseudo-random integers in the range one to ten without re
seeding the generator. 

8 7 5 4 2 
9 8 10 4 

1 1 2 8 6 
4 3 1 4 

8 7 
.,. 
~· 4 2 

9 8 10 4 
1 1 2 8 6 

4 3 1 4 

And use an INPUT NUMBER statement to decide how far into the sequence 
to go for each execution of the program. 

An easier way to seed the random-number generator is to use the built
in function RANDOMIZE. It automatically requests you to provide as a seed, 
an integer in the range -32768 to 32767. For best-.that is, "most nearly ran
dom" -results, these seed values should themselves be random numbers. 

Now, even though you can generate true random numbers by consulting 
a book, published in 1955 by the RAND (Research and Development) Corpo
ration called One Million Random Numbers and 100,000 Normal Deviates, or by 
rolling six special ten-sided Japanese dice that have a different digit inscribed 
on each face, . it is a nuisance to have to do so and then keep feeding those 
random seed numbers to the program. 

If you become really involved in simulation, you may want to purchase 
a hardware generator of true random numbers. It is a circuit board that can fit 
into one of the unused slots of your personal computer. The circuit consists of 
a pulse oscillator feeding into a counter. The oscillator is started and stopped 
in a completely random manner by pulses from a small and harmless radioactive 
source. The random numbers are the numbers of oscillator pulses counted 
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between start-stop pulses from the source. The card cost about $600 in 1985. 
Remember, however, that if you want to repeat an experiment, you have to 
make a file of the random numbers you use, because no two sequences are ever 
alike. 

A way to get different pseudorandom number sequences is to make a 
tall to the computer's internal clock. You can do this by writing the code RAN
DOMIZE TIME, where TIME simply calls the current value of the computer's 
real-time clock (as contrasted with any simulated-time clocks). RUN this program 
twice (Figure 1-8): 

10 CLS 
20 RANDOMIZE TIME 

30 FOR I=l TO 100 

40 PRINT INT (RND*10) + 1; 

50 NEXT I 

FIGURE 1-8 Generation of pseudorandom integers in the range one to ten with reseeding 
of the generator. 

THIS PROGRAM PRINTS 100 RANDOM 
BETWEEN ONE AND TEN 
AND RE-SEED'S THI:: RANDOM NUMBER 
TYPE RUN NUMBER ? 1 

6 6 2 9 8 8 10 8 7 6 
9 7 5 1 8 9 5 4 6 3 
8 9 3 5 1 10 2 8 4 3 
6 6 10 4 5 6 5 5 3 4 

OK 

THIS PROGRAM PRINTS 100 RANDOM 
BETWEEN ONE AND TEN 
AND RE-SEEDS THE RANDOM NUMBER 
TYPE RUN NUMBER 

4 6 
10 8 
1 5 
4 9 

Ok 

Ok 
LIST 
10 CLS 

3 6 9 
6 4 5 

4 1 2 
4 4 4 

? 2 

9 10 9 8 3 
4 9 5 8 7 

4 10 10 9 
4 s 9 8 9 

6 

INTEGERS 

GENERATOR 

2 1 7 8 5 8 2 
10 9 3 2 1 3 9 

9 3 6 7 8 6 9 
1 5 1 2 4 3 2 

INTEGERS 

GENERATOR 

5 4 1 5 1 6 7 
10 1 4 2 6 1 9 

8 3 7 1 6 1 6 
8 3 7 1 8 2 10 

20 PRINT "I.HIS PROGRAM PRINTS 100 RANDOM INTEGERS 11 

30 PRINT "BETWEEN.ONE AND TEN II 

40 PRINT "AND RE-SEEDS THE RANDOM NUMBER GENERATOR" 
50 INPUT "TYPE: RUN NUMBER 11 ;X 
60 PRINT: PRINT 
70 RANDOMIZE TIME 
BO FOR I ~ 1 TO 100 
90 PRINT INT<RND * 10) + 1; 
1.00 NEXT I 
Ok 

3 5 8 6 
3 10 9 6 
3 10 3 3 
2 10 4 10 

2 10 5 8 
6 8 2 6 
1 4 1 3 

7 5 2 2 

2 6 7 9 1 
3 7 9 a 2 
6 1 3 2 6 

8 

2 9 10 6 
5 5 1 2 8 
6 4 3 1 3 

8 4 
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This is the way things we,re ~nder MS/DOS 1.0. Under MS/DOS 2.12 
or higher, TIME is not available. Instead we have to work with a system variable 
called TIME$ that displays real time in the form f:lH:MM:SS. We can obtain 
TIME in its.old form by inserting this line of code: 

TIME= VAL (RIGHT$ (TIME$, 2) ) + V ~L {MID$ (TIME$, 4 .,2) ) 

+VAL(LEFT$(TIME$,2)) 

Now, about the operation of division: Although it is easy to compare to 
integers for equality, it is theoretically impossible to compare two real numbers 
for equality (that is, numbers with nonzero values to the right of the decimal 
point). If you wish to make such a comparison, you must specify exactly how 
many decimal places you are going to allow. 

For this reason, we specify two decimal places of accuracy. We instruct 
the student to enter answers that way, and we internally multiply our quotients 
by 100, integerize them, then divide them by 100. 

'Furthermore, to ensure consistency between the student's answers and 
the program's answers, we must explicate the rounding convention: We shall 
increase the value of the number in the second decimal place by I if the value 
of the number in the third decimal place is 5 or more. We implement this rule 
by instructing the student to input 4nswers in this form,; we implement the rule 
on the part of the computer by adding .005 to the quotient before doing any 
part of the integerization procedure. The addition of .005 will ahyay~ increase 
the value of the second decimal place if the value of the third decimal place is 
5 or more. The integerization procedure then merely throws away a,ll decil!lal 
places to the right of the second place irrespective of their value. 

EVALUATING INTEGRALS 

One of the first practical uses of computer simulation was evaluating elliptical 
integrals in several dimensions. This work played a central role in the devel
opment of nuclear weapons in the mid-l 950s. The task involved finding the 
area bounded by several surfaces having highly complex shapes. This task defied 
solution by analytical means, 

We shall illustrate the principle employed by using simulation to find 
an approximate value for PL Let's imagine a quarter circle inscribed within a 
unit square. The area of the square is I x 1, or 1. The area of the inscribed 
unit quarter circle is given by: · 

A = PI x R"2 I 4 PI I 4 

We are going to approximate the area of the circle by throwing dots 
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randomly onto the square and counting how many fall within the quarter circle. 
The approximate area of the quarter circle is then: 

A= COUNT I POINTS 

where POINTS is the total number of dots thrown at the square and COUNT 
is the number of dots falling within the quarter circle. This program does it for 
us: 

10 ' TITLE: EVALUATING PI BY SIMULATION 
20 CLS : RANDOMIZE TIME 

30 INPUT "ENTER TOTAL NUMBER OF POINTS"; POINTS 
40 FOR I = 1 TO POINTS 
50 X RND: Y RND 

60 IF SQR ( r2 + Y"2 ) < = 1 THEN COUNT COUNT + 1 

70 NEXT I 
80 AREA COUNT / POINTS 

90 PRINT "APPROXIMATE VALUE OF PI IS " 4 * AREA 
100 END 

Statement 50 selects the horizontal (X) and vertical (Y) coordinates of a 
point in the square bounded by the lines 

Y 0, Y = l, and X = 0, X = I 

Statement 60 determines whether or not the point lies within the quarter circle; 
that is, whether the line from the origin (0,0) is less than or equal to the radius 
(1). Statement 90 evaluates PI in terms of the area of the quarter circle as 
determined by simulation. . 

The results of several simulation runs are: 

Number of Points 

IO 
100 

1,000 
10,000 

100,000 

Value of Pl 

3.20 
2.92 
3.07 
3.16 
3.14 

This is a poor way to evaluate PI. It takes a very long (in fact, an ex
ponentially long) time to converge on a value with useful precision. There are 
better ways to evaluate Pl, of course (one algorithm is based on a famous problem 
called Buffon's Needle). The point of this exercise is to demonstrate how sim
ulation can be used to find areas or volumes. It is not as economical as analytic 
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methods, or even other numerical methods (such as the Trapezoid Rule); but 
it can be used when these other methods, for one reason or another, cannot be 
used. Incidentally, the code name of the project in which this technique was 
used was "Monte Carlo"; since then, all applications of simulations have some
times been called Monte Carlo methods. (Actually, the Monte Carlo project 
focused upon reducing the variance of the estimates of the values of definite 
elliptical integrals.) 

SUMMARY 

In this chapter we have defined simulation in general, and computer simulation 
in particular, and suggested several reasons why simulation is so widely used. 
We have shown some of the advantages of using personal computers for sim
ulation. 

We have used a Computer Aided Learning sequence to illustrate some 
of the tools of simulation. These include: 

1. Generation of random-number sequences, including the procedure of seeding 
the random-number generator. 

2. Conducting a dialogue with a computer program. This may include: use of 
menus to present alternative choices, use of alphanumeric command strings, 
and use of "guard" statements to prevent the use; from entering undefined 
command sequences. 

3. Structuring a computer program so that the main program contains user-com
puter dialogue and control sequences, while the actual work of the program is 
done by subroutines called from the main program. 

4. The definition and type declaration of all program variables for easy reference 
by the programmer; this and the preceding attribute of structuring the program 
make programs easy to modify, and most simulation programs require a great 
deal of modification before they accurately represent the real system under 
study. 

5. We have shown some of the problems involved in comparing numeric values 
within a computer and some ways to attack these problems; this is a key feature 
in simulation programs. 

Our final example showed how simulation can be used to perform the 
calculus operation of integra'tion; that is, finding the area under a curve. This 
was one of the first accomplishments of computer simulation. 

In the next chapter, we shall illustrate the use of random processes in 
a computer game, another popular kind of simulation. Then, after a closer look 
at the process of generating both random and pseudo- (false) random sequences, 
we shall introduce the most widely used forms of experimental simulation. 





-- CHAPTE~ TWO---
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A common pejorative observation by theoreticians is that simulationists are just 
playing games. I gladly acknowledge that simulationists play games; in fact, one 
of the pleasures of simulation is that the whole field is a game. In this chapter, 
we are going to play some typical games. Games have an important place in the 
world of simulation. Many computer systems come with a "game package" as 
part of the software to entice users into becoming familiar with system commands 
and operating procedures. Programmers of games are the highest-paid members 
of our profession (with six-figure incomes in some cases). Unlike other pro
grammers, who may get sued for using their own work out of context, these 
programmers get substantial royalties. Sober-sided students and instructors are, 
of course, free to skip this chapter. 

CLIMB THE LADDER 

You may have watched the popular television game show "The Price is Right." 
In one of its subgames, the contestant's answers are depicted by an Alpine yodeler 
climbing an incline at a rate determined by the magnitude of the sum of the 
prices he or she has guessed. At some point, the sum may exceed a maximum 
unknown to the contestant; the yodeler then appears to fall over a precipice at 
the top of the incline, signifying that the contestant has exceeded the maximum 
and therefore lost the game. 

In "Ladder," the incline is constructed using the byte graphics capability 
of MS/BASIC. Let's regard the screen as a 25-by-80 matrix with the upper-left
hand corner having the coordinates 1, 1 and the lower-right-hand corner having 
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the coordinates 25, 80. Our incline starts at 23, 46, and the precipice is at 1, 69. 
A complete listing of the 35 statements of the program is shown in Fig
ure 2-1. 

The player is asked to press the <RETURN> key to climb. Each time 
the player presses the key, the incline grows by a random number in the range 
1 to 23. If the first random number is 23, the player has 23 added to the overall 
score and the first round of play terminates with the player's being proclaimed 
the winner. See Figure 2-2 for a winning round. 

If the player goes over the cliff, the entire count, which, of course, 
exceeds 23, is subtracted from the player's score (see Figure 2-3). 

If the player chooses to quit ·climbing before going over the cliff, the 
player wins and the score is equal to the rung of the ladder occupied when 
<QUIT> was pressed. This is what happened in Figure 2-2. 

There is a "guts and glory" component of this game. Suppose the player 
climbs five rungs on the first try. If he or she quits, the score is +5. If the player 
presses <RETURN> for another ascent and climbs, say, six rungs more, the 
total score is (5 + 6) x 2, or 22; that is, the number of rungs climbed in that 
round times the number of ascents in the round. 

In the program, statement 10 seeds the random-number generator from 
the real-time clock. Statements 20-30 start a round of play; they reset C$, the 
command flag, to null; set SUM, the rung counter, to zero; set S, the ascent 
counter, to zero; and set N to 23, forming a 23-rung ladder. The command 

FIGURE 2-1 Program listing for "Climb the Ladder." 

10 CLS 15 / 
20 RANDOMIZE 
30 C$= 11 •:CLS 
35 PRINT: PRINT 
40 PRINT•*********** WELCOME TO /CLIMB THE LADDER' ***********" 
45 PRINT: PRINT: PRINT 
50 PRINT 0 WHEN '?' APPEARS, TYPE 'RETURN' TO CLIMB; 'Q' TO QUIT." 
60 PRINT:PRINT 
70 N=25:SUM=O:S=O 
80 INPUT C$ 
90 IF C$=•Q• THEN 220 
100 R=INT<RND*24)+1 
110 SUM=SUM+R:S=S+l 
120 IF SUM>24 THEN 210 
130 IF SUM=24 THEN 220 
140 Y=N-R 
150 FOR I=N TO Y STEP -1 
160 LOCATE I,46-1 
170 PRINT CHRS<220) 
180 NEXT I 
190 N=Y 
200 GOTO 80 
205 S=O: SK=SK-SUM: PRINT: PRINT 
210 PRINT"OOPS! ! ! ! YOU FELL OFF!!!! YOUR SCORE IS 11 SK 
215 GOTO 230 
220 C$="":SK=SK+SUM*S:PRINT:PRINT 

PRINT"YOU WIN!!!! YOUR SCORE IS "SK:S=O:GOTO 230 
PRINT:PRINT:PRINT:INPUT;•WANT MORE? TYPE 'Y'•;C$ 

240 IF C$=•y• THEN 30 ELSE END 
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**************** WELCOME TO 'CLIMB THE LADDER' *~*********** 

WHEN "QUESTION-HARK ... APPEARS, TYPE 'R,ETURN' T(! CLIMB; 'GI' TO QUIT 

YOU WIN!!!! YOUR SCORE IS 76 * 
WANT MORE? TYPE 'Y"? Y 

* 
* 

* 
* 

* 
* 

* 
* 

* 
* 

* 
* 

* 
* 

* 

* 
* 

* 

FIGURE 2-2 Instructions; anq the display of a good climp. 

KEY OFF gets riq pf th~ function key menu that may h,~ <#splayed on line 25 
of your screen. 

Statements 40-150 are a dialogue with the computer. The player is 
welcomed to the game and told to press <RETURN> to ascend the la,dder and 
<Q> to quit th~ round. When <Q> is pressed, control is transferred, to the 
"WIN" subroutine along with the cumulative score left over from the last rol.lp.d 
of play. Statement 80 is a timing loop that gives the player an opportunity to 
read th~ legend before statements 90 and 110 blank it out. The blanking out is 
done so the game. display will not be interrupted. 

Statement 160 generates a random number in the rq.p.ge 1 to 23; state:
ment 170 computes the number of rungs climbed and the number of ascents 



* 
* 

* 

* 
* 

* 
* 

* OOPS!!!! YOU FELL OFF!!!! YOUR SCORE IS 41 

* 
* 

* 

* 
* 

* 
* 

* 
* 

* 
* 

* 
* 
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* FIGURE 2-3 Climb in which the 
player falls over 
the precipice. 

in the current round. Statements 180 and 190 set "WIN" or "LOSS" flags de
pending upon whether the first random number drawn is exactly 23 (WIN) or 
if the cumulative number of rungs climbed has exceeded 23 (LOSS). 

In statement 200, quantity Y is the complement of R and reflects the 
fact that the top of the ladder is actually at line 1 on the screen. Statements 210-
250 print the ladder, and statement 260 sets ladder height N to the height 
attained in the current ascent. In statements 270 and 280, flags transfer control 
to either the "WIN" or the "LOSS" subroutine. 

In the "LOSS" subroutine (statements 300-310), the rungs "climbed" 
in the current round (always more than 23) are subtracted from the player's 
score in the game. In the "WIN" subroutine (statements 320-'--330), the rungs 
climbed in the current round are multiplied by the number of ascents in the 
current round and added to the. player's cumulative score in the. game. Both 
subroutines display the player's score. 

Statement 340 asks whether the player wants to continue the game and 
loops back to statement 20 if the answer is "Y"; otherwise the game ends. 

In the program shown here, the rungs of the ladder are depicted by 
asterisks; ·if your personal computer has sufficient graphics capability, you may 
want to depict them using CHR$(220). "ASCII'' character #220 is a huge square; 
but it doesn't print out on my printer. 

BUZZ-WORD GENERATOR 

The next program is called "U-2-A-GURU." It slyly pokes fun at the sheeplike 
mentality of some computer scientists who go ape over the latest fad from 
Switzerland, the Netherlands, or wherever. Who knows-it could make you rich 
and famous, or at least win you some favorable recognition at the next depart-



26 PLAYING GAMES WITH SIMULATION 

mental wine-and-cheese party. Figure 2-4 is a listing of the 30 statements of 
this program. 

Statements 10 to 110 tell you that with this program, a sweat shirt three 
sizes too big, and a scraggly beard or granny glasses or both, depending on 
gender and/or preference, you too can become a guru. 

Statements 120 to 220 load three ten-component vectors with string 
constants. The first two contain adjectives; the last contains nouns. 

Statements 230 and 300 set up a WHILE-WEND loop; if we're going 
to be gurus, we might as well start off by banishing the despicable GOTO 
statement. This loop terminates when it recognizes string-constant <Q> in lo
cation Flag$. It gets there if, in statement 290, the user presses <Q> to end this 
madness. 

Statement 240 is a FOR-NEXT loop that selects an index into each of 
the three vectors using the RND function. Statement 250 creates a string variable 

FIGURE 2-4 Program listing for the buzzword generator "U-2-A-GURU." 

Ok 
LI ST -200 
10 ' U-2-A-GURU 
20 , 
30 ·' COMPUTER SCI ENCE BUZZWORD GENERATOR 
40 ' ALL YOU NEED IS: 
50 ' (1) A SCRAGGLY BEARD <OR GRANNY GLASSES> 
60 ' (2) A SWEATSHIRT THREE SIZES TOO LARGE 
70 ' (3) THIS PROGRAM 
80 ' AND YOU CAN ILLUMINATE, 
90 ' PONTIFICATE, AND 
100 'INTELLECTUALLY MASTURBATE, 
110 , 
120 CLS: RANDOMIZE TIME 
130 DATA ABSTRACT,ASYNCHRONOUS,DISTRIBUTED,FAULT-TOLERANT,INTEGRATED 
140 DATA INTERACTIVE,NORMALIZED,OPTIMIZED,REAL-TIME,STRUCTURED 
150 DATA COGNITI\..1E, CON\..'OLUTED, INVERTED ,NON-LINEAR, RECURS!t. 1E 
160 DATA RELATIONAL, STOCHASTIC, SYSTOLIC, TESSELA"rED, UNDECIDABLE 
170 DATA ALGORITHM,ARCHITECTURE,AUTOMATA,DATABASE,INTERFACE 
180 DATA NETWORK,PARADIGM,REPRESENTATION,SIMULATION,SYNTAX 
190 FOR !=1 TO 10: READ ADJECTIVE1$(l): NEXT I 
200 FOR I=l TO 10: READ ADJECTIVE2$<I): NEXT I 
OK 

Ok 
LIST 200-
200 FOR 1=1 TO 10: READ ADJECTIVE2$(l): NEXT I 
210 FOR I=l TO 10:. READ NOUN$< I>: NEXT I 
220 , 
230 WHILE FLAG$<>"Q" 
240 FOR I=1 TO 3:IX(I)=INT<RND*10)+1: NEXT I 
250 DISPLAY$= 11 THE "+ADJECTIVE1$( IX< 1) )+". "+ADJECT'IVE2$( IX(2) )+ 11 II 

+NOUN$( IX( 3)) +II. II 

260 LOCATE 13, 15: PRINT II 

270 LOCATE 10,15: PRINT "TODAY'S ACADEMIC FAD IS: 11 

280 LOCATE 13 1 15: PRINT DISPLAY$ 
290 LOCATE 16,15: INPUT •PRESS <Q> TO END THIS MADNESS"; FLAG$ 
300 WEND . 
OK 
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Display$ that is the concatenation of the three selected strings with appropriate 
spacing and punctuation. Statements 260 to 280 display the results, identifying 
them as "today's academic fad." 

For example, the random numbers 5, 6, 2 generate the message: 

INTEGRATED RELATIONAL ARCHITECTURE 

4, 7, 1 generates: 

FAULT-TOLERANT STOCHASTIC ALGORITHM 

And on and on and on, through 1,000 possible master's-thesis topics. Figure 
2-5 shows two more outputs from the program. 

Incidentally, all computer scientists are not humorless or self-important. 
Our resident systems guru (our systems programmer) installed this program on 
the faculty UNIX system, so that it delivers its latest academic fad every time a 
user signs on. 

TODAY'S ACADEMIC FAD IS: 

THE REAL-TIME NON-LINEAR ARCHITECTURE. 

PRESS <Q> TO END THIS MADNESS? 

TODAY/S ACADEMIC FAD IS: 

THE DISTRIBUTED CONVOLUTED DATABASE. 

PRESS <Q> TO END THIS MADNESS? 

FIGURE 2-5 Two "academic 
fads" produced 
by the buzzword 
generator. 
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WHEEL GAMES 

The next program is called "LANTICTY." I wrote it for a friend who likes to 
visit the casinos in Atlantic City. It combines two popular wheel games: roulette 
and wheel-of-fortune. It worked so well for him that he developed a two-person 
system for playing roulette with it and claims he has made at least a $20 profit 
on every trip since~ 

Roulette 

There are 38 numbers around the periphery of a roulette wheel. A play 
of the 'game ends when a bouncing metal ball is trapped in a numbered pocket 
as the rotating wheel slows down. The numbers are 00, 0, l, ... 36. The numbers 
1, 3, 5, 7, 9, 12, 14, 16, 18, 19, 21, 23, 25; 27, 30, 32, 34, and 36 are colored 
red. The rest are colored black, except 0 and 00, which are green. You can bet 
on numbers for a payoff of 35 to l; on red·ot black for even money; or on odd/ 
even also for even money. Observe that the value of a bet on the field of numbers
that is, return times odds-is (35+1) x 1/38, ot .947. The value of a bet on 
red/black is (1+1) x 18/38, or .947. 

This program has 135 lines of code. They are listed in Figure 2-6. 
However, we are going to forego a boring line-by-line description of it and 

OK 
LI ST -200 
10 , 
20 ; INITIALIZATION 
30 ·' 
40 RANDOMIZE TIME 
50 DIM ROULT$(38),RED$(18),8LACK$(18>,WHEEL$<S4> 
60 FOR 1=1 TO 38:READ ROULT$<I>:NEXT I 
70 FOR 1=1 TO lS:READ RE0$(l):NEXT I 
80 FOR I=l TO 18:READ BLACK$(l):NEXT 
90 FOR I= 1 TO S4: REi::iD WHEEL$ ( I ) : NEXT 
100 CONTROL$=" 11 

110 , 
120 ' INTRODUCTION & SIZE OF BANKROLL 
130 ,f 

140 CLS:LOCATE 10,20 
150 PRINT "*** WELCOME TO 'LANTIC CITY ***" 
160 PRINT:INPUT " PLEASE ENTER THE AMOUNT OF YOUR BANKROLL";CAPITAI.:. 
170 , 
180 ' CHOICE OF GAME -- ROULETTE/WHEEL-OF-FORTUNE 
190 , 
200 CLS:LOCATE 10,20 
OK 

01< 
LIST 210-400 
210 PRINT "*** SELE:'.CT YOUR GAME ***" 
220 CHOI CE$=" 11 

230 PRINT:INPUT" TYPE: R="'ROULETTE"", OR W=""WHEEL-OF-FORTUNE'";CHOICES 
240 IF CHO I CE$= II R II THEN 270 
250 IF CHOICE$="W" THEN 660 ELSE 220 

FIGURE 2-6 Program listing for the wheel games "Lanticty." 



260 , 
270 REM *** ROULETTE 
280 , 
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290 ' SELECT NUMBERS 00-36 OR RED/BLACK; PLACE BET 
300 , 
310 WHILE CONTROL$0"Q" 
320 CLS:LOCATE 10,20 
330 PRINT"*** PLACE YOUR BET***" 
340 GAME$= II II 

350 WHILE GAME$0" 1" AND GAMES0"2" 
360 PRINT:INPUT"TYPE <1> TO PLAY NUMBERS; TYPE <2> FOR REO/BLACK";GAMES 
$70 PRINT:NUMBR$= 1111 :RETN$= 1111 

380 IF GAME$= 11 1" THEN INPUT"TYPE THE NUMBER YOU HAVE .CHOSEN";NUMBR$ 
390 IF ~AMES="2" THEN INPUT"TYPE THE COLOR YOU HAVE CHOSEN•;RETN$ 
400 WEND 
01< 

Ok 
LIST 410-600 
410 AMOUNT=O: PRINT: INPUT " TYPE THE AMOuNT YOU WI SH TO BET" ;AMOUNT 
420 , 
430 ' DETERMINE OUTCOME OF PLAY' 
440 ,, 
450 NBASE=38 
460 GOSUB 960 
470 RANDBS= 11 GREEN 11 

480 FOR 1=1 TO 18 
490 IF ROUL TfH RESULT> =RED$ ( I ) THEN RAN OBS=" REO" 
500 IF ROULT$<RESULT>=BLACK$<I > THEN RANDBS="BLACK" 
510 NEXT I 
520 ; 
530 ' REPORT OUTCOME 
540 I' 

550 PR I NT " THE BALL STOPPED ON "ROUL T$ <RESULT> 11 WHOSE COLOR IS •i RANDS$ 
$60 PAYOFF=O:lF. RAND8$=RETN$ THEN PAYOFF=AMOLINT:GOSUB 1290. 
570 IF ROULTS<RESULT)=NUMBRS THEN PAYOFF~AMOUNT*35:GOSUB 1290 
580 IF PAYOFF=O THEN GOSUB 1250 
590 , 
~00 ' CONTINUE OR QUIT 
OK 

tlk 
LIST 610-800 
610 
020 PRINT: INPUT" TYPE <Cl> TO QUIT"; CONTROL$ 
630 WEND 
640 GOSUB 1030 
650 
660 REM *** WHEEL-OF-FORTUNE 
670 
680 WHILE CONTROL$<>"Q" 
690 
700,. CHOOSE NUMBER <1,2,5,10,20,45>; PLACt:: BETS 
710 
720 CLS:LOCATE 10,20 
730 PRINT "*** PLACE YOUR BET ***" 
740 NUMBRS=" 11 :AMOUNT=O 
750 PRINT:INPUT" TYPE THE NUMBER YOU HAVE CHOSEN";NUMBR$ 
760 PRINT: INPUT 11 TYPE THE AMOUNT YOU WI SH TO BET" ;AMOUNT 
770 
780 ,. DETERMINE OUTCOME OF PLAY 
790 
800 NBASE=54 
01< 

FIGURE 2-'6 (continued) 
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OK 
LIST 810-1000 
810 GOSUB 960 
820 , 
830 ' REPORT OUTCOME 
840 ' 

PAYOFF=O 
PRINT 11 THE WHEEL STOPPED ON •wHEEL$<RESULT) 

870 IF WHEEL$(RESULT>=NUMBR$ THEN PAYOFF=AMOUNT*VAL<WHEEL$(RESULT>>:GOSUB 1290 
880 IF PAYOFF=O THEN GOSUB 1250 
890 ' 
900 ' CONTINUE OR QUIT 
910 , 
920 PRINT: INPl,llT" TYPE <Q> TO QUIT"; CONTROL$ 
930 WEND I 

940 GOSUB 1030 
950 ·' 
960 REM *** RANDOM-NUMBER SUBROUTINE 
970 ' 
980 RESULT=INT<NBASE*RND>+l 
990 RETURN 
1000 , 
Ok 

01< 
LI ST l 010-11 70 
1010 REM *** FINISH-UP ROUTINE 
1020 , 
1030 CLS :LOCATE 10, 20 
1040 IF CAPITAL <O THEN 1060 
1050 PRINT "YOU ARE LEAVING WITH $"CAPITAL". DO YOU REQUIRE A CA8? 11 1END 
1060 DEBT=ABS<CAPITAL> 
1070 PRINT "YOU Ot..IE US $"DEBT". DO YOU LIKE TO WALK?" :END 
1080 , 
1090 REM *** ROULETTE ARRAY (38) 
1100 , 
1110 DATA"0", 0 2" "14","35","23","4","16","33 11 ,"21","6","18","31","19","8 11

,
11 12" 

1120 DATA" 29" 'II 'II 16" ' 11 27" 'II 00 II' II 1" 'II 13" 'u 36" 'II 24" ' 11 3 11 'II15"'"34" 'u 22" 'II 5" '" 17" 
1130 DATA "32"; II 20 II'" 7" 'II 11" ' 11 30" '" 26" ' .. 9" 'u 22 11 

1140 REM*** ROULETTE RED <18) 
1150 DATA II 14" 'II 23" 'II l 6 11 

'" 21" 'u 18" 'u 19" 'II 12 11 
'" 25" 'ff 27" '" 1" '" 36" '" 3" 'ff 34" 'II 5"' 

"32","7","30","9" 
1160 REM*** ROULETTE BLACK <18) 
1170 DATA .. 2" '" 35" ' .. 4" ' 11 33 11 

'II 6 11 
'

11 31 11 
'

11 8 11 
'II 29", II 1.0. 'II 13", "24" '" 15" ' .. 22" 'II 17"' 

"20","11","26","28" 
OK 

OK 
LIST 1171-
11 71 J' 

1180 REM ***WHEEL-OF-FORTUNE ARRAY (54) 
1181 , 
1190 DATA 
1200 DATA 
1210 DATA 
1220 DATA 
1230 DATA 
1240 , 

"1","5","2","1","10","1","2","5 11
,

11 1","2·, 11 1 11
,

11 45" 
U 1Uf112u 'H 1ti'ff511 'U 2" 'U 1JI'If10 II' II 1tiJti511 !!I II 111 'H 211 !I tt 1 U 

II 20 II I H 111 I II 2" I II 111 I ff 5 II I II 211 l n 1 JI I II l 0 JI ' II 111 ' II 2 II ! II 5 U I II 1 U 

ff 2 11 
' ff 1 " ' • 45 ff ' n 2. ' II 5" ' II 2" ' II 1 n ; n 2" ' "l • ' • 1 0" ' " 1 .. ' II 2" 

"1","2Jl,"1","20","1Jl,ll2" 

1250 'EVALUATION 
1260 , 
12?0 PRINT:PRINT 
1280 PRINT II YOU 
1290 PRINT:PRINT 
1300 PRINT " YOU 
1310 RETURN 
OK 

" SORRY, YOU LOSE." :CAPITAL=CAPITAL-AMOUNT 
HAVE $"CAPITAL"LEFT. 11 :RETURN 
" YOU WIN $ 11 PAYOFF:CAPITAL=CAPITAL+PAYOFF 
HAVE $ 11 CAPITAL"LEFT. n 

FIGURE 2-6 (continued) 



QUIT 

PLAY 

FIGURE 2-7 Flow chart of "Lanticty." 
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START 

RE-SEED 

TOTAL·TIME 

UNTIL TIME= 
TOTAL·TIME 

GET AR 

INTERMEDIATE 
RESULTS 

PLAY 
FINISH 

END 

instead look at its logic flow chart. The logic flow chart is shown in Fig
ure 2-7. 

The first symbol is an oval (computer people sometimes call it a bologna, 
an apt characterization of some programs), signifying "start." The next is a 
processing element (rectangle) that initializes the program. It seeds the random
number generator and reads in the complete roulette array, the roulette array 
of red numbers, the roulette array of black numbers, and the wheel-of-fortune 
array. 
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*** WELCOME TO 'LANTIC CITY *** 
PLEASE ~tER THE AMOUNT OF YOUR BANKROLL? 20 

*** SELECT YOUR GAME *** 
TYPE: ~1:2' RdULEfTE ·' , OR W= 'WH~EL-OF;..f:'ORflJNE' ? R 

FIGURE 2-8 Player is wel
comed to the 
sino; declares 
bankroll; and 
elects to play 
Roulette. 

The next blotk is an input element (parallelogram), and it accepts from 
the keyboard the size of the player's bankroll in dbllars. Then there is a decision 
element (lozenge), signifying thatthe player must type either "R'' to select rou
l~tte or "W" to select wheel-of~fortune. Both the roulette and wheel-of-fortune 
subprograms ate encapsulated ili WHILE· WEND loops that terminate when the 
player types "Q'' in resportse to an invitation to quit. 

Figure illustrates the start of a round ~fj blay. The player is welcomed 
w the casino, dedares a bankroll df $20, and elects w play roulette. 

The ti.ext element in the roulette subprogram iS a decision about whether 
to play the field of numbers dt to play red/black. lt is implemented by a WHILE
WEND loop to guard against improper responses. player is asked to select 
a number or a colot depending upon the mode of play he or she has elected; 
these choices are depicted as input eletrients (parallelograms). Irtespective of 
mode selection, the player i~ next askM to input the amount of his or her bet. 

Play is simulated In the "determine outcome" (RESULT) processing ele
ment (rectangle) by passing 38 as the multiplier to the random-number-gen
erator subroutine; shown as a hexagon. Color is set to green in the event that 
either 0 or OQ comes up .. }'he random number is indexed into the red and black 
arrays in a FOR-NEXT loop to determine whether the color should be changed. 

The outtbmejj (REPORT) block compares the randomly gen-
erated number or color with that selected by the player; multiplies by the ap
propriate p;:tyoff fador, and displays the result on the screen. Control is then 
trMsferred to an evaluatiori subrotitin.e at one of two entry points, depending 
tipoti whether the player has woh or lost. Winnings are added to the player;s 
bankroll; losses subtracted. 

In Figure the ptayer first bets $10 on number 35 and loses when 
the wheel stops on 0. Then the player bets $10 on black and wins $10 when the 
wheel stops ot1 number 1 O, black. 
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*** PLACE YOUR BET *** 
TYPE <1> TO PLAY NUMBERS; TYPE <2> FOR. RED/BL~CK? 1 

TYPE THE NUMBER YOU HAVE CHOSEN? 35 

TYPE THE AMOUNT YOU WISH TO BET? 10 
THE BALL STOPPED ON 0 W~OSE CQL~R IS GREEN 

SORRY, YOU LOSE. 
YOU HAVE$ 10 LEFT. 

TYPE <Q> TO QUIT? 

*** PLACE YOUR BET *** 
TYPE <1> TO PLAY NUMBERS; TYPE <2> FO~ RED/BLACK? 2 

TYPE THE COLOR YOµ HAVE CHOSEN? BL~CK 

TYPE THE AMOUNT YOU WISH TO ~ET? 10 
THE BALL STOPPED ON 35 WHOSE COLOR BLACK 

YOU WIN $ 10 
YOU HAVE$ 20 LEFT. 

TYPE <Q> TQ QUIT? Q 

f!~URE i-9 Roulette player 
loses on nurrlbers 
and'wins on 
colors. 

Ok 
YOU ARE LEf:::iVING WITH$ 20 • DO YOU REQU1RE A CAB? 

FIGURE 2-10 Player leaves the c~sinq with a pos,it!~~ (°'r zero) ba.nkroll. 

The player may type "Q" to quit, ip. which case control is transferred t'1 
a "finish~u,p" subroutine. If th~ play~r has~ m<mey left (or a z~rq 'balaqce),: tµ'¢ 
hous,~ ask.s if he or she.~esires a pab (~~~ figu·r~ 2-lO); (). plciyer.who owe~nioney 
to the ho~se is asked .if q.e m she lik~s tQ 'walk~(l s,ubtl~ })int to pay up if tl1~ 
player wants to cpntinue walking crne P!<'.1yer wmi!~ 'find. it 'diffi~ult to w~Ik or 
t'Yo hrol<,en le$s), · · · 

Wheel:"'of-Fortune .. :.r:· 

There are 54 numbers around th~ p~riphery of the wheel-of-fortune. 
They are distributed as follows: · · ·· · 

23 ls 
16 2s 
7 5s 
4 10s 
~ 20s 
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*** WELCOME TO 'LANTIC CITY *** 
PLEASE ENTER THE AMOUNT OF YOUR BANKROLL? 10 

*** SELECT YOUR GAME *** 
TYPE: R=' ROULETTE·', OR W='WHEEL-OF-FORTUNE'? W 

FIGURE 2-11 Player is wel
comed to the ca
sino; declares 
his bankroll; and 
elects to play 
Wheel-of-For
tune. 

You pick a number, and if the ball falls on it, you get a payoff of 
2, or 1 to 1. Observe that the values of the bets are: 

20, 10, 5, 

(1 + 1) x 23/54 = .853 

(1 + 2) x 16/54 = .889 

(1 + 5) x 7/54 = .778 

(1 + 10) x 4/54 = .815 

(1 + 20) x 2/54 = .778 

(1 + 45) x 1154 = .853 

The wheel-of-fortune subprogram is much like roulette. The player is 
asked to select a number and place a bet. The "determine outcome" processing 
block passes the multiplier 54 to the random-number subroutine. The random 
number is used to index into the wheel-of-fortune array and thus obtain the 
sin:iulated stopping point for the ball, which is also the payoff multiplier. 

In Figure 2-11, the player is welcomed to the house, declares a bankroll 
of $10, and elects to play wheel-of-fortune. 

The "report outcome" block displays the results on the screen and calls 
the evaluation subroutine that adjusts the amount of the player's bankroll, de
pending upon whether he or she lost or won, and by how much. The termination 
routine is the same as in the case of roulette. In Figure 2-12, the player first 
bets on number/payoff 20 and loses his or her bankroll. Then, playing with the 
house's money, he or she bets on number/payoff 45 and loses again. In 
2-13, we see the player leaving, having been given a subtle hint to pay up or 
else. 



*** PLACE YOUR BET *** 

TYPE THE NUMBER YOU HAVE CHOSEN? 20 

TYPE THE AMOUNT YOU WISH TO BET? 10 
THE WHEEL STOPPED ON 1 

SORRY, YOU LOSE. 
YOU HAVE$ 0 LEFT. 

TYPE <Q> TO QUIT? 

*** PLACE YOUR BET *** 

TYPE THE NUMBER YOU HAVE CHOSEN? 45 

TYPE THE AMOUNT YOU WISH TO BET? 10 
THE 1.tJHEC:L STOPPED ON 1 0 

SORRY, YOU LOSE. 
YOU HA!,,1E $-1 0 LEFT. 

TYPE <Q> TO QUIT? 
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FIGURE 2-12 Player loses 
twice at Wheel
of-Fortune. 

YOU OWE US $ 1 0 • DO YOU LI KE TO WALK? 
OK 

FIGURE 2-13 Player leaves the casino in debt to the house. 

COMPUTER CLUE 

The last random-number game in this sampling of computer games is a version 
of the popular Parker Brothers board game Clue. It differs from it in two 
important aspects: It is played against the computer instead of head-to-head 
with other players, and it is not a board game. 

You probably recall that the original game simulates the plot of a classic 
English murder mystery. The game board simulates an English country house 
populated with stock characters out of Agatha Christie. There are six suspects, 
six murder weapons, and nine rooms in which the crime can be committed. To 
win, a player must move into the room that is the scene of the crime and correctly 
announce "whodunit" and with which weapon. 

The correct triple combination of suspect-weapon-room is established 
at the start of the game by blind draws from decks of 6 suspect cards, 6 weapon 
cards, and 9 room cards. The three cards are sealed in an envelope. In addition, 
all players get an equal share of the remaining card triples so each one knows 
at least one combination that is not correct. There are elements of both skill and 
luck involved in maneuvering one's playing piece over the two-dimensional board 
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in response to successive rolls of the dice so as to cover all the rooms before the 
other players do. Each player is given a status board to record and thuseliminate 
the incorrect solutions. Even though no one knows the correct solution, together: 
the players are able to eliminate all incorrect ones. 

In the computer game, the correct triple combination is sel~ct~d by 
random-number draws. There is no playing board, so a substitution of skills is 
made. We take away the manual ~tatus board and substitute an electrqnic one, 
a screen display of the incorrect tr:iples the player has already guessed. Figure 
2-14 is a complete listing of the program (125 statements). 

The player starts out with a free look at the stat4s display that reveals 
one incorrect triple, and is awarded 300 points. Each wrong guess costs the 

01< 
LIST -200 
10 ; 
20 ' THIS PROGRAM SIMULATES THE POPULAR GAME OF "CLUE" (C-CIRCLE PARKER BROS.) 
30 ' THE GAME IS PLAYED AGAINST IHE COMPUTER, NOT "HEAD-TO-HEAD'i 
40 , 
50 ·'TITLE PANEL 
60 , 
70 CLS: LOCATE 1, 1: FOR 1=1 TO 80: PRINT "*";:NEXT I 
80 LOCATE 1, 1: FOR 1=1 TO 19: P~lNT "*":NEXT I 
90 FOR 1=1 TO 19: LOCATE 1+I,80: PRINT "*":NEXT I 
100 LOCATE 20,1: FOR I=l TO 80: PRINT "*";:NEXT I 
110 LOCATE 5,26: PRINT "WELCOME TO "COMPUTER CLUE !!'" 
120 LOCATE 9,19: PRINT "COPYRIGHT C-CIRCLE BY JOHN M. CARROLL 1984" 
130 LOCATE 13,30: PRINT "ALL RIGHTS RESERVED" 
140 ~OCATE 22,1: INPUT "TYPE <RET~RN> OR <ENTER> TO CONTINU~ n;x 
150 
160 ' INTRODUCTORY PANEL 
170 , 
180 CLS: LOcATE 1,1: FOR 1=1 TO 80: PRINT "*";:NEXT I 
190 LOCATE 1,1: FOR 1=1 TO 19: PRINT "*":NEXT I 
200 FO~ 1=1 TO 19: LOCATE 1+1 ,80: PRINT "*":NEXT I 
01< 

01< 
LI ST 210-400 
210 
220 
230 
240 
250 
260 
270 
280 
:290 
300 
310 
320 
330 
S/40 
350 
360 
370 
qSO 
390 
400 
01( 

LOCATE 20, 1: FOR I=l TO 80 1 PRINT "*";:NEXT I 
LOCATE 5,21: PRINT "***** RULES OF COMPUTER CLUE II *****" 
LOCATE 8,26: PRINT "EACH GUESS CO$TS 10 POINfS " 
LOCATE 11,17:. PRINT "EACH LOOK AT THE 'STATUS BOARD' COSTS 5 POINTS" 
LOCATE 14,29: PRINT "A PERFECT SCORE IS 300" 
LOCATE 22, 1: INPUT "TYPE. (RETURN> OR <ENTER> TO CON"FINUE ";X , . 

' HOUSEKEEPING MODULE , 
DIM SLISPECT.NAME$(6), SUSPECT.ARRAY$(6) 
DIM ROOM.NAME$(9), ROOM.ARR/1Y$(9) 
DIM WEAPON.NAME$(6), WEAPON.ARRAY$(6) , 
" READ CLUE NAMES 
/ 

FOR I= 1 TO 6: READ SUSP~CT.NAME$<I>: NEXT I 
DATA "COLONEL·MUSTARDSEED ","PROF. flLUMCAKE 
DATA "SCARLETT O'HORROR. ","MR. GREENSLEEVE$ 
~TA "MRS. WHITEFISH ","MRS. P~TCOCK 

FIG.URIE ~-14 Program listing for "Computer Qiu~ 11." 
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OK 
LIST 410-600 
410 FOR I=1 TO 9: READ 
420 DATA "KITCHEN 
430 DATA •BEDROOM 
440 DATA "GAME' ROOM 
450 , 
460 , 

ROOM.NAME$(!): NEXT I 
II•. "LIVING ROOM 
'0 j"OEN"' 
II' "LIBRARY 

470 FOR l=l TO 6: READ WEAPON.NAME$<!~: NEXT 
4so DATA 11 REVOLVER 

1 
",\•· PtPe· WRENCH 

490 DAT~ II CHANDELi ER II 'II ~RROTE 
500 DATA •BLACK.JACK ","BUTCHER·'S KNIFE 
510 , 
520 ' COPY CLUES & THE~R 
530 , 

~OR ~l,fT~RE REFEREN~E 

540 CLS: LQCATE 1,1: FOR 1=1 TO 80: PRINT "*";:NEX1 
550 LOCATE. 1, 1: FOR ·I=1'' TO' 19 i PRINT •:*'.':NEXT I 
560 FOR l=l TO. 19: LOCAkE 1+I 180: PRINT "*":NEXT .I 
570 LOCATE 20, 1: 'FOR '1i=1 TO 80: PRINT "*";:NEXT I 

","DINING ROOM 
11 ,"eATIO 
R ' II BALLROOM 

580 LOCATE 3,17: PRINT "*****THESE ARE YOUR CLUE~ & THEIR CODES 
590 FOR 1=1 TO 6: LOCA;rE 4+·1 ,4:. PRINT SUSPECT .NAME$( I) I: NEXT 
600 f=OR I=1 TO 9: LO~AtE 4+ I, 39: PRINT ROOM .NAME$( I> I: NEXT I 
01< 

Ok 
LI ST 610-800 
610.FOR I.=1 TO 6: LOCATE 4+1,55: PRINT WEAPON.NAME$(!) !:NEXT I 
620 LOCATE 16,19: PRINT "TYPE <SHIFT-PRINT> OR <SHIFT-F12) TO MAKE A COPY-
630 t.OCATE 22, 1: INPUT• "TYP.E <RETURN> OR ·<E~TER( TO' CQNTINU~ ~ ;X 
640 ,. . . ' 

650 ' GENERATE THE COR~ECT SOLUTION & ~ INITIAL GUE~S ~OR THE PLAYER 
660 , 
670 CIM SOLU!l0N(3) 
680 RANDOMIZE TIME 
690 SOLCITI ONU >='INT< RND*6t 1) 
700 I'NDEX=INT< RND*6+ 1 > 
~~~ ~~L~~~~~<~;=i~~~~~;!~)"t:t:'~N SUSPfCT.ARRAYS<INDEX>="X" ELSE ('.00 

730 INDEX=INT<RND*9+f> 
740 p=, INDEX 0 SOLUTION<?> Tt;!l:!N ROOM .ARRAYS< INDEX>="X 0 ELSE 730 
750 SOLuTION<3>=INT<'RND*6,.;'1 > 
760 INQEX=INT( RND*6+ 1) .,. 
770 lF .INDEX 0 SOLUTIO!~H~> i'.HEN WEAPON.ARRAYS<INDEX>="X" ELSE 760 780 , .. " ... ~. 

790 , ~AIN CONTRQL ~ITC~ 
809 ~ 

OK 

OK 
LI ST ~10-1000 
810 C$= 1111 

j320 CLS: LOCAl'E 10 , 1 7: INPUT, '' l"Yfi>E < O> TO VIEW 'STA'fUS BO~RQ; < 1 > TO GUESS" ; C'~ 
830 IF CS="O" THEN 8:50 ··•' 
840 IF C$= 8 1° THEN 9SQ ELSE ~10 
850 
860 ' DISPLAY THE "STATUS BOARD" 
870 
880 PENALTY=PENALTY+~ 
890 CLS: PRINT II»~" 
900 FOR I=l TO 6:LOCATE J,4;PRINT I" "SUSPECT.NAME$<P ?US,PE;CT.ARRAY'S<J):NEXT 
91 0 PR I NT II ) » . . . ... . 
920 FOR I=l T:O 9: LOCATE 6+ I' 4: PRINT I" II ~O()M .NAME•< I) R09~ ·~RRAY$( l); NEXT 
930 PRINT II>>>" . , . . 
940 FOR 1=1 TO 6: LOCATE 15+ I ,4: PRINT I 11 ''WEAPON .NAME$( I) WEAPON .ARRAYS< I) 
9~0 NEXT I 

FIGUR~ 2-14 (continued) 
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960 LOCATE 23,1: INPUT "PRESS <RETURN> OR <ENTER> TO CONTINUE ";X 
970 GOTO 810 
980 ; 
990 ; ACCEPT THE PLAYER'S GUESS AND DISPLAY IT 
1000 ; 
01< 

1010 PENALTY=PENALTY+lO 
1020 C$="" 
1030 CLS: LOCATE 5,6 
1040 INPUT "TYPE THE CODE NUMBERS OF YOUR GUESSES: <SUSPECT>, <ROOM>, <WEAPON> " 

; SUSPECT, ROOM, WEAPON 
1050 LOCATE 10,27: PRINT SUSPECT.NAMES<SUSPECT) "DID IT" 
1060 LOCATE 13,31: PRINT "IN THE "ROOM.NAME$(R00M) 
1070 LOCATE 16,31: PRINT 0 WITH A "WEAPON.NAMES<WEAPON> 
1080 IF SUSPECT<>SOLUTION(l) THEN SUSPECT.ARRAYS<SUSPECT)="X" 
1090 IF ROOM<>SOLUTION(2) THEN ROOM.ARRAY$<ROOM>=•X 11 

1100 IF WEAPONOSOLUTION(3) THEN V.IEAPON.ARRAYS<WEAPON)="Xu 
1110 LOCATE 22, 1: INPUT "PRESS <RETURN> OR <ENTER> TO CONTINUE ";X 
1120 GOTO 1130 
1130 , 
1140 " TEST WHETHER OR NOT THE PLAYER'S GUESS IS CORRECT 
1150 , 
1160 IF SUSPECT=SOLUTION(l) AND ROOM=SOLUTION\2) AND WEAPON=SOLUTION(3) 

THEN 1170 ELSE 810 
1170 ; 
1180 ; REPORT THAT PLAYER'S GUESS IS CORRECT & TERMINATE A ROUND OF PLAY 
1190 ' 
1200 CLS: LOCATE 5,19: PRINT "CONGRATULATIONS, YOU HAVE SOLVED THE CASE!" 
01< 

01< 
LIST 1210-
1210 LOCATE 10,32: PRINT "YOUR SCORE IS " 315-PENALTY 
1220 LOCATE 15,18: PRINT "TYPE <RETURN> OR <ENTER> TO END THIS ROUND" 
1230 LOCATE 20,21: INPUT "THEN PRESS <F2> TO PLAY ANOTHER ROUND •;x 
1240 PRINT: PRINT 
1250 END 
Ok 

FIGURE 2-14 (continued) 

player 10 points, and each look at the status board costs 5 points. The player 
tries to get the highest possible score-300. 

The first panel welcomes the player to "Computer Clue" and contains 
a copyright notice (see Figure 2-15). 

The introductory panel (also Figure 2-15) sets out the rules of the game: 
cost of a guess, cost to view the status board, and value of a perfect game. 

The housekeeping module dimensions the suspect, room, and weapon 
arrays. Each category has two arrays associated with it. One _holds the name; the 
other is initially blank but holds an "X" after the name has been incorrectly 
guessed. 

The next module reads the names of the suspects: 

Colonel Mustardseed 
Professor Plurncake 
Mr. Greensleeves 
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******************************************************************************** 
* * * 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

WELCOME TO 'COMP~!ER CLUE II/ 

COPYRIGHT C-CIRCLE BY JOHN M. CARROLL 1984 

ALL RIGHTS RESERVED 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* ******************************************************************************** 

TYPE <RETURN> OR <ENTER> TO CONTINUE ? 

******************************************************************************** 
* * 
* * 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

***** RULES OF COMPUTER CLUE II ***** 

EACH GUESS COSTS 10 POINTS 

EACH LOOK AT THE 'STATUS BOARD' COSTS 5 POINTS 

A PERFECT SCORE IS 300 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

*********************************~********************************************** 

TYPE <RETURN> OR <ENTER> TO CONTINUE ? 

FIGURE 2-15 Copyright notice and rules of the game. 

Scarlett O'Horror 
Mrs. Whitefish 
Mrs. Petcock 

and the rooms: 

kitchen 
bedroom 
game room 
living room 
den 
library 
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dining room 
patio 
ballroom 

and the weapons: 

revolver 
chandelier 
blackjack 
pip<:? wrench 
garrote 
butcher's k:q.ife 

The next panel, shown in Figure 2-16, invites the player to use the 
screen print utility to copy the list of clues (SHIFT-PRINT for TI computers; 
SHIFT-Fl2 for Heath/Zenith computers). The suspects and weapons are num
b~r~<i l to 6; the rooms are numbered 1 to 9. The reason for copying the panel 
is that the player will be required to enter guesses as sequences of three numbers 
an? will need to ref er to the panel. 

FIGURE 2-;-16 Schedule of clues and master control switch. 

******************************************************************************** 
~ . . . '* 
* ***** THESE ARE YOUR CLUES & THEIR CODES ***** * 
* * * COLONEL MUSTARDSEED 1 KITCHEN 1 REVOLVER 1 * 
* PROF. PLUM CAKE 2 LIVING ROOM 2 PIPE WRENCH 2 * * SCARLETT O'HORROR 3 DINING ROOM 3 CHANDELIER 3 * * MR. GREENSLEEVES 4 BEDROOM 4 GARROtE 4 '!€" 

* MRS. WHITEFISH 5 DEN 5 BLACKJACK 5 * 
* M~S. PETCOCK 6 PATIO 6 BUTCHER"S KNIFE 6 * 
* GAME ROOM 7 * 
* L;IBRARY s * 
* BALLROOM 9 * 
* * * ~ 

* TYPE <SHIFT-PRINT> OR <SH!FT-F12> TO MAKE A COPY * 
* * * * 
* ~ 
**********************~***~*~*****t**~*****,*********~*************************** 

TYPE <RET~RN> OR <ENTER~ TO CQNTINUE ? 

TYPE <O? T!Jl VIEW 'STATUS BOARD; <1> TO GUESS? 
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The next routine generates the correct solution by choosirtg a random 
integer in the range l""-6, another in the rartge l-'9, and a third in the range 
1-6 after the generator has been reseeded by the teal-time dock. The routine 
chooses another set of numbers and tests to make sure they all differ from the 
correct solution. The first set is stored in a three~compohent solution vector. 
The second set is used to index into. the category arrays and mark a solution 
with X's; this is the player's initial and free guess. 

The main control switch (see Figure 2;;__16) allows the player to choose 
to inspect the status board <0>; the first look is free. Or the player tan guess 
<I>. 

The status board, shown ill Figure 2-" 17, lists the suspects' names arid 

FIGURE 2-17 Program status board and results of a guess at the solution. 

»> 1 COLONEL MUSTAROSEED 
2 PROF. PLUMCAKE x 
3 SCARLETT O'HORROR 
4 MR. GREENSLEEVES 
5 MRS. WHITEFISH 
6 MRS. PETCOCK 

>» 1 KITCHEN 
2 UVlNG ROOM 
3 DIN ING ROOM 
4 BEDROOM 
~ DEN x 
.6 PATIO 
7 GAME ROOM 
a 1...IBRARY 
9 BALLROOM 

))) 1 REVOLVER 
2 PI PE WREt--lCH x 
3 CHANDELIER 
4 GARROTE 
5 BLACKJACK 
6 BUTCHER'S KNIFE 

PRESS <RE'.TU~> OR <ENTER> TO CONTINUE ? 

iYPE THE CODE NUMBERS OF YOUR GUESSES: (SUSPECT>, <~OOM>, <WEAPON>? 1,1;1 

tOL..ONEL MUSTA~DSEED DID IT 

IN THE KITCHEN 

WITH A REVOLVER 

PRESS <Retu~N> OR <S-.iTER> to CONTINUE ? 
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CONGRATLILATIONS, YOU HAVE SOLVED THE CASE! FIGURE 2-18 Congratulatory 

YOUR SCORE IS 240 

TYPE <RETURN> OR <ENTER> TO END THIS ROUND 

THEN PRESS <F2> TO PLAY ANOiHER ROUND ? 

display when a 
player wins the 
game. 

the array, with X's to denote intorrect choices; likewise for rooms and weapons. 
The player types <RETURN> or <ENTER> to go back to the main control 
switch. 

If the player chooses to guess, he or she must enter a set of three numbers 
denoting choice of suspect, room, and weapon. If all. choices are correct, the 
program branches to the report routine that congratulates the player, displays 
the score, and invites the player to start another round by pressing the proper 
function key for RUN. If the guess is incorrect, the program returns to the main 
control switch. Figure 2-17 shows a guess; Figure 2-18 is the congratulatory 
panel, which appears after a correct guess. 

The perceptive reader will notice that there is an easy way to win at 
Computer Clue; Since only the incorrect choices are marked with an X, any choice 
made by the player that is not so marked is correct. Thus the player can incre
mentally ascertain the parts of the solution rather than having to guess the three 
parts at one time. This kind of attack can be helpful in breaking cryptograms 
and guessing other people's computer passwords! 

******************************************************************************** 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

***** l.JELCOME TO "SPYCATCHER/ ***** 

COPYRIGHT C-CIRCLE 1984 

BY JOHN M. CARROLL 

ALL RIGHTS RESERVED 

******************************************************************************** 

>>TYPE <RETURN> OR <ENTER> TO CONTINUE ? 

FIGURE 2-19 Title panel for "Spycatcher." 
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***** THESE ARE YOUR CLUES ***** 

PRESS [SHIFT/F12J TO MAKE A COPY 

1 1 2 2 3 3 
4 4 5 5 6 BLUE 
7 GREEN 8 IVORY 9 RED 
10 YELLOW 11 BEARD 12 GOATEE 
13 LONG-HAIR 14 MUSTACHE 15 SIDEBURNS 
16 BOMB 17 KNIFE 18 PISTOL 
19 RIFLE 20 SHOTGUN 21 BOMBER 
22 COMPUTER 23 FRIGATE 24 MISSILE 
25 RADAR 26 BULGARIAN 27 CZECH 
28 HUNGARIAN 29 POLE 30 RUSSIAN 
31 

***** MAKE A COPY; THEN TYPE /ENTER/ TO SEE NARRATIVE CLUES? 

FIGURE 2-20 Possible entries for the game solution board. Entry 31 will cancel a previous 
bad choice. 

SPY-CATCHER 

The last game is one I regard as my premier program in this area. Most people 
find it to be a lot of fun even though it doesn't have anything to do with random 
numbers. I tried it on some real spy-catchers I taught in a course called "Com
puters for Investigators" (the students were from the Naval Investigative Service, 
Army Counter-Intelligence Corps, Secret Service, and U.S. Marshal Service), 
and it really held their interest. 

Figure 2-19 is the usual title panel. Figure 2-20 is a list of "clues" that 
must be entered in their proper places on the game board. Figure 2-21 lists 
what we know about five spies who live next door to one another. 

FIGURE 2-21 What we know about five spies who live next door to each other. 

1. THERE ARE FIVE HOUSES. 
2. THE HUNGARIAN LIVES IN THE RED HOUSE. 
3. THE SPY IN THE THIRD HOUSE WEARS A GOATEE. 
4. THE POLE IS TRYING TO STEAL PLANS FOR A FRIGATE. 
5. THE CZECH IS ARMED WITH A RIFLE. 
6, THE RUSSIAN LIVES IN THE FIRST HOUSE. 
7. THE SPY WITH THE BOMB IS TRYING TO STEAL PLANS FOR A MISSILE. 
8. THE SPY WEARING THE BEARD IS ARMED WITH A SHOTGUN. 
9. THE SPY IN THE YELLOW HOUSE HAS A KNIFE. 
1 0 . THE SPY WEAR I NG SI DE BURNS LIVES IN THE YELLOW HOUSE. 
11. THE RUSSIAN LIVES NEXT DOOR TO THE BLUE HOUSE. 
12. THE BULGARIAN HAS A MUSTACHE. 
13. ·rHE GREEN HOUSE IS IMMEDIATELY LEFT OF THE IVORY HOUSE. 
14. A KNIFE IS HIDDEN IN THE HOUSE NEXT TO THE SPY WHO IS 

TRYING TO STEAL PLANS FOR A RADAR. 
15. THE SPY TRYING TO STEAL PLANS FOR A BOMBER LIVES NEXT 

DOOR TO THE HOUSE WHERE A PISTOL IS HIDDEN. 
16. THE SPY TRYING TO STEAL PLANS FOR A BOMBER LIVES NEXT DOOR 

TO THE SPY TRYING TO STEAL PLANS FOR A RADAR. 
17. THE RED HOUSE IS ON THE BLUE HOUSE/S RIGHT. 
18. THE SPY TRYING TO STEAL A BOMBER LIVES IN THE GREEN HOUSE. 
--> WHICH SPY HAS LONG-HAIR? 
--> WHO IS TRYING TO STEAL PLANS FOR A COMPUTER? 

***** MAKE A COPY; THEN TYPE /ENTER; TO CONTINUE? 
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FORMAT FOR SOLUTION BOARD 

THESE ARE THE COLUMN DESIGNATIONS: 

2 3 4 

!HOUSE NUMBER!HOUSE COLOR !DESCRIPTION !WEAPON 
I 

5 

OBJECTIVE 

EACH LINE tI .E. i' 7, d, 19 & 21J DESIGNATl::S A HOUSE 

6 

NATIONALITY 

ENTER SQUARE NUMBER AND. CLUE NUMBER (J.E. 'CONTENTS') WHEN PROMPTED 
ENTER 'SQUARE= 31' TO ESCAPE .!:>ROGRAM. 
ENTER 'CONTENTS= 31' TO ERASE A BAD CHOibE. 

***** MAKE A COPY; THEN TYPE 'ENTER~ TO CONTINUE? 
FIGURE 2-22 Format for the game soluti.on board and instructions for playing the game. 

Figure 2-2~ is the format of the game board. Figure 2-23 is the game 
hoard with all the easy entries filled in. Figtire 2-24 is the source code listing. 
The game is an exercise in using the process of elimination, and I'll leave the 
rest of the solution to you. 

SUMMARY 

In this chapter we have seen examples of how a random-number generafor can 
function as the heart of five games. The first was called Climb the Ladder, and 
involved some elementary computer graphics. The second was a buzz-word 

FIGURE 2-23 solution board with the easy choices filled in. 

1 ! 2 
ENTER SQUARE NUMBER? 

! 3 ! 4 

1 

5 6 

RUSSIAN 

7 s 9 10 11 12 

2 BLUE 

---------...!.-- ------------ ---------~-- --------~·--
13 14 15 16 17 19 

3 GoATEE 

------------ ------------ -~---~----~~ ------------ ------------ -·--~----------19 20 21 23 24 

4 

------------ ------------ -~-------~-- --~--------- ------------ -----~---------25 26 27 28 29 30 
5 
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01< 
LIST -200 
10 X=O 
20 GOSUB 1280 
30 LOCATE 5,22:PRINT "***** l..JELCOME TO 'SPYCATCHER" *****" 
40 LOCATE 7,29:PRINT "COPYRIGHT C-CIRCLE 1984" 
50 LOCATE 9,31 :PRINT "BY JOHN M. CARROLL'' 
60 LOCATE 11, 30: PRINT "ALL RIGHTS RESER\,IED" 
70 GOSUB 1340 
80 CLS 
90 LOCATE 5,16 
100 PRINT"***** THESE ARE YOUR CLUES *****" 
110 LOCATE 7,16:.PRINT"PRESS [SHIFT/F12l TO MAKE A COPY" 
120 PRINT:PRINT 
130 DIM CLUE$(31) ,NARRATI'JE$(25) 
140 FOR 1=1 TO 31:READ CLUE$(l):NEXT I 
150 FOR I=1 TO 31:PRINT I" "CLUEtHD,:NEXT 
160 PRINT:PRINT , 
1 70 INPUT" ***** MAKE A COPY; THEN T\'PE 'ENTER' TO SEE NARRAT I l.IE CLU!::S" ; X 
180 FOR I=l TO 23:READ NARRATIVE$<I>:NEXT I 
190 CLS 
200 FOR !=1 TO 23:PRINT NARRATIVE$(l):NEXT I 
01< 

210 
220 
230 
240 
250 
260 
270 

INPUT" ***** MAKE A COPY; THEN TYPE 'ENTER' TO CONTINUE" ;X 

6 
280 

CLS . 
LOCATE 5,23:PRlNT "FORMAT FOR SOLUTION BOARD" 
PRINT:PRINT 
PRINT" THESE ARE THE COLUMN DESIGNATIONS: 11 

PRINT 
PRINT"! 

! If 

PRINT"! 
111 

4 5 

290 PRINT"!HOUSE NUMBER!HOUSE'. COLOR !DESCRIPTION !WEAPON 
ONALITY ! II 

! OBJECTI'v1E 

300 PRINT"! 
! H 

310 PRINT 
320 PRINT" EACH LINE CLE. 1, 7~ 13, 19 & 21J DESIGMATES P.i HOUSE" 

PRINT:PRINT 
PR I NT 11 ENTER SQUARE NUMBER AND CLUE NUMBER < I , E. ·'CONTENTS' ) WHEN PROMPT 

ED" 
350 PRINT 11 ENTER 'SQUARE= 31 1 TO.ESCAPE PROGRAM." 
360 PR I NT II ENTER I CONTENTS = 31 / TO ERASE A BAO CHO l t:E. II 

370 PRINT:PRINT 
OK 

INPUT" **~** MAKE A COPYi THEN TYPE ·'ENTER' TO CONiINUE" ;X 
CLS 
GOSUB 490 

410 LOCATE 2,l:PRINT" 
420 LOCATE :2, 1 : rnPUT; "ENTER SQUARE NUMBER" ; L 
430 IF L>30 THEN 480 
440 LOCATE 2,i:PRINT" 
450 LOCATE 2 .• 1: INPUT; ''ENTER CONTENTS~ . . . ... ·. · .. 
460 ON L GOSUB 660,670 680,690,700,71 ,720,730,740,750,760,770,780, 
10,820,830,840;850,860 ,880,890,900,910,920,930, 940,950 
470 GOTO 410 
480 CLS:END 
490 CLS 

FIGURE 2-24 Source code listing of "Spycatcher." 
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500 FOR 1=5 TO 20 STEP 5 
510 FOR J=1 TO 80 
520 LOCATE I,J 
530 PRINT"-" 
540 NEXT J, I 
550 FOR I=l TO 22 
560 FOR J=13 TO 65 STEP 13 
570 LOCATE I,J 
580 PRINT"!" 
OK 

LI ST 590-790 
590 MEXT c.T • I 
600 FOR I=l TO 21 STEP 5 
610 FOR J=l TO 66 STEP 13 
620 LOCATE I,J 
6:E:O X=X+ 1: PRINT 
640 MEXT 1.T , I 
650 RETURN. 
~ .. 50 LOCATE 3,2:PRINT CLUE$00 :RETURN 
670 LOCATE 3,15:PRINT CLUE$(X):~:ETURN 
680 LOCATE 3,28:PRINT CLUE-$00 :RETURN 
690 LOCATE 3~41:PRINT :RETURN 
700 LOCATE 3,54:PRINT :RETURN 
710 LOCATE 3~67:PRINT CLUE$(X):RETURN 
720 LOCATE 8, 2: PRINT CLUE$(X): RETURt·,1 
730 LOCATE 8~ 15:PRINT CLUE$(X) :RETURN 
740 LOCATE 8, 28: PRINT CLUE$00: RETURN 
750 LOCATE 8,41:PRINT CLUE$(X):RETURN 
7~.0 LOCATE 8,54:PRINT CLUE$(X) :RETURN 
770 LOCATE 8,67:PRINT CLUE$00 :RETURN 
780 LOCATE 13,2:PRINT CLUE$(X):RETURN 
7'7'0 LOCATE 13 ~ 15: PRINT CLUE$(X) : RETURN 
Ok 

LI ST 800-1000 
800 LOCATE 13,28:PRINT CLUE·$(X) :RETURN 
810 LOCATE 13,41 :PRINT CLUE·$(X) :RETUPN 
820 LOCATE 13, 54: PP INT CLUE$00 : RETURN 
830 LOCATE 1 .67:PRINT CLUE$(X):RETURN 
840 LOCATE 1 PRINT CLUE$(X):RETURN 
850 LOCATE 1 15:PRINT CLIJE·$(X) :RETURN 
860 LOCATE 18, PRINT CLUE$(X):RETURN 
870 LOCATE 18~41 :PRINT CLUE$(X):RETURN 
880 LOCATE 18, 54: PRH·ff CLUE$(X): RETURN 
87'0 LOCATE 18,67:PRINT CLUE$(X) :RETURN 
900 LOCATE 22,2:PRINT CLIJE$(X):RETURN 
'?10 LOCATE 22,15:PRINT CLUE$(X):RETURN 
·no LOCATE 22' 28: PRINT CLUE$00 : RETURr~ 
'?30 LOCATE 22, 41: PRINT C:LUE$(X): RETURN 
940 LOCATE 22, 54: PRINT CLIJE$C{) : RETURN 
950 LOCATE 22, 6 7: PR I i'lT CLUE$ CO : RETURN 
960 ·'DATA 
970 DATA "1 
980 DATA "BLUE 
990 DATA "BEARD 
1000 DATA "BOMB 
OK 

Ok 
LIST 1010-1200 

'u 2 
II' "GREEN 
","GOATEE 
","KNIFE 

11,113 ","4 ","5 
","IVORY ","RED ","YELLOW 
","LONG-HAIR","MUSTACHE ","SIDEBURNS" 
II' "PISTOL "'"RIFLE II. "SHOTGUN 

1010 DATA ·.BOMBER " , "COMPUTER ","FRI GATE , "MISSILE 11
, "RADAR 

1020 DATA "BULGARIAN","CZECH ","HUNGARIAN","POLE ","RUSSIAN 

FIGURE 2-24 (continued) 



1030 DATA II 

1040 
1050 
1060 
1070 
1080 
1090 
1100 
1110 
1120 
1130 
1140 
1150 
1160 
1170 
1 
1 
1200 
01< 

Ok 

DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 

LIST 1210-

"1. 
"2. 
u3. 
"4. 
u5. 
"6. 
"7. 
II 

10. 
II 11 • 
II 12 • 
II 13, 
:: 14. 

"15. 
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THERE ARE FIVE HOUSES." 
THE HUNGARIAN L p,JES IN THE RED HOUSE. " 
THE SPY IN THE THIRD HOUSE WEARS A GOATEE." 
THE POLE IS TRYING TO STEAL PLANS FOR A FRIGATE." 
THE CZECH IS ARMED WITH A RIFLE." 
THE RUSSIAN UVES IN THE FIRST HOUSE." 
THE SPY WITH THE BOMB IS TRYING TO STEAL PLANS FOR A MISSILE." 
THE SPY 1_,JEARH~G THE BEARD IS ARMED vJITH A SHOTGUN." 
THE SPY IN THE YELLOW HOUSE HAS A KNIFE." 

THE SPY 1.JJEARING SIDEBURNS Lll-JES IN THE YELLOW HOUSE." 
THE RUSS I AN LI IJES NEXT DOOR TO THE BLUE HOUSE, " 
THE BULGARIAN HAS A MUSTACHE." 
THE GREEN HOUSE IS IMMEDIATELY LEFT OF THE I'v10RY HOUSE." 
A KNIFE IS HIDDEN IN THE HOUSE NEXT TO THE SPY WHO IS" 
TRY I NG TO STEAL PLANS FOR A RADAR. " 
THE SPY TRYING TO STEAL PLANS FOR A BOMBER LIVES NEXT" 

1210 DATA " DOOR TO THE HOUSE l.o,IHERE A PISTOL IS HIDDEN." 
1220 DATA "16. THE SPY TRYING TO STEAL PLANS FOR A BOMBER LIVES NEXT DOOR" 
1230 DATA " TO THE SPY TRYING TO STEAL PLANS FOR A RADAR." 
1240 DATA "17. THE RED HOUSE IS ON THE BLUE HOUSE;S RIGHT." 
1250 DATA "18. THE SPY TRYING TO STEAL A BOMBER LIVES IN THE GREEN HOUSE." 
1260 DATA " --> WHICH SPY HAS LONG-HAIR?" 
1270 DATA " --> WHO IS TRYING TO STEAL PLANS FOR A COMPUTER?" 
1280 'THIS MODULE FRAMES A SCREEN 
1290 CL.$: FOR I=l TO 80: PRINT"*";: NEXT 
1300 FOR 1=2 TO 18: PRINT"*": NEXT I 
1310 FOR 1=1 TO 80: PRINT"*";: NEXT I 
1320 FOR I=2 TO 18: LOCATE I,80: NEXT I 
1330 RETURN . 
1340 "THIS MODULE ADVANCES THE PROGRAM 
1350 LOCATE 21 ,20: INPUT" »TYPE <RETURN> OR <ENTER> TO CONTINUE "; X 
1360 RETURN 
Ok 

FIGURE 2-24 (continued) 

generator. The third and fourth were the gambling games Roulette and Wheel
of-Fortune. The fifth was a computer version of the board game Clue. The last 
was called Spy-catcher, and was included purely for your amusement. Inciden
tally, it was adapted from an Operation Research problem that used to be used 
at New York University to help cull Ph.D. candidates. 





--------CHAPTE~ TH~EE------. 

Random 
Numbers 
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We have seen that a sequence of random numbers is a necessary component of 
any probabilistic simulation. We have said that randomness implies that any 
number in the range of interest has an equal chance of appearing each time, 
and that the appearance of any number in no way affects the chance of that 
number or any other number's appearing. Technically, we say that random 
numbers must be uniformly distributed, and must not be serially correlated. 
When numbers follow some distribution other than a uniform one, such as the 
Poisson distribution, for example, they are properly spoken of as random var
iates, not random numbers. 

TRUE RANDOM NUMBERS 

Truly random numbers are the product of mechanical or electrical processes. 
Even then the producing system may favor some numbers more than others. 
Technically we say that the generator may be biased. This bias is the result of 
physical imperfections in the generator. For example, if we were to record the 
results of plays of a roulette wheel, we could produce a random sequence of the 
numbers from 00 to 36 provided the wheel were perfectly balanced; otherwise 
we would observe a bias in the sequence such that one or more numbers would 
tend to appear more often than others. 

There are a lot of other fun ways to generate random-number sequences. 
Rolling a fair die will generate numbers in the range I to 6. A classical way to 
generate random-number sequences is the top-h(lt method. You take, say, 100 
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poker chips and mark each with a unique number from 0 to 99. Then shake 
them well in a tall silk hat or any convenient receptable and pull one out. Record 
the number, replace the chip, shake the hat, and draw again. It is slow going, 
but that is the way researchers laid the bases of the science of statistics in the 
eighteenth and nineteenth centuries. 

In principle, you can generate a random-number sequence by randomly 
interrupting any uniform process; this is what happens when the ball falls into 
a slot as a roulette wheel begins to slow down. This exemplifies one of the modern 
methods for generating random numbers: You can use pulses from the decay 
of a radioactive isotope to open and close an electronic gate between an oscillator 
and a counter, then record the number of pulses that reach the counter while 
the gate is open. 

PROGRAM TO GENERATE TRUE RANDOM NUMBERS 

The following BASIC program lets you simulate a random-number generator 
on your personal computer: 

10 CLS 
20 FOR I = 1 TO 100 

30 A$ = INKEY$ : IF A$ " "THEN 50 

40 PRINT I 

50 NEXT I 

60 GOTO 20 

Statements 20 and 50 generate the numbers from 1 to 100 at the rate 
of a million operations or more every second; statement 60 makes the counting 
repetitive. In statement 30, the program scans the keyboard (INKEY$), and 
stores the character currently being transmitted in storage location A$. If no 
character is being sent (that is, A$ 11 11 or null)), program control is transferred 
to the NEXT statement of the FOR-NEXT loop and counting continues. We 
can therefore regard the counting loop as a continuous proc~ss. 

This process is interrupted whenever location A$ is' found to contain 
any character. In this case, control is transferred to statement 40 and the program 
prints the current value of index I; that is, the value of the count when the 
counting process was interrupted. The act of striking a character on the keyboard 
can be regarded as a random process because of the great disparity in speed 
between manual typing and execution of the count loop. Figure 3-1 shows a 
screen full of random numbers generated this way. 

Theoretically it is impossible to generate random numbers by any purely 
arithmetic process (algorithm) except one that calculates the value of an irrational 
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31!i 
87 
4'? 
26 
58 
44 
52 
68 
38 
57 
23 
83 
32 
14 
22 
37 
31 
19 
24 
3' 
88 
35 
26 
76 

OK 
LIST 

8 

91 
73 
90 
74 
77 
86 
61 
39 
62 
66 
38 
2 
33 
90 
27 
55 
40 
f 
31 

92 
42 
27 
23 

51 2 
17 2 
31 73 
22 62 
71 10 
7 61 
96 97 
40 99 

47 
18 

47 54 
12 21 

36 ·70 
11 18 
33 36 
64 
5 

26 29 
39 44 

13 87 
63 86 
48 53 
31 40 
72 23 

54 6 58 
42 95 38 

17 58 1 
10 90 36 
73 23 57 

72 18 71 
46 47 87 
63 16 64 
79 5 

49 

27 
85 
25 36 

24 
87 

44 
34 

54 69 
20 29 

93 100 4 
58 31 
3:i? 56 
82 7 41 

6 58 2 54 1 48 
79 29 65 9 55 
51 92 33 78 21 

83 32 75 31 94 
3 36 89 22 68 

23 77 88 40 74 
90 67 6 13 86 
65 23 10 40 10 

15 30 45 59 80 
56 63 69 1 
80 95 9 

44 45 47 49 
5 13 22 31 48 
43 22 60 67 74 
29 34 41 49 54 
61 74 85 92 99 

45 47 48 52 53 
37 38 44 80 57 

74 34 62 69 75 
34 40 . 22 41 48 

10 15 18 26 82 
32 53 62 71 78 
65 72 76 96 2 

10 •. 42 71 99 43 

'1 O; / PROGRAM TO GENERATE TRUE RANDOM NUMBERS 
20 F IN THE RANGE 1 TO 100 
80 CLS: KEY OFF. 
40 FOR I = 1 ·To 100 
50 A$ = INKEY$: IF A$ = 11

" THEN 70 
60 PRINT I; 
i'O NEXT I 
80 GOTO 40 
OK 

97 43 . .,.-. ... .:. 8:3 25 79 95 42 
97 39 83 31 77 17 62 3 

66 9 54 1 47' 90 35 84 
34 87 40 7 58 5 56 2 

2 44 100 27 72 81 26 85 
22 73 84 29 30 66 18 l '? 
32 72 5 51 87 18 99 93 

65 10 55 74 87 100 17 
93 14 31 40 48 49 53 54 
18 27 34 40 47 54 63 96 
4 1 25' 32 41 52 61 74 
96 l 13 18 26 27 28 
49. 63 74 81 88 93 1 6 

81 90 95 82 94 2 10 17 
15 28 41 50 58 63 77 
5 1 76 ei 12 19 22 

55 46 77 82 91 100 7 
79 88 95 1 6 14 96 11 

78 79 "BO 85 70 81 93 99 
55 61 '66 71 46 65 79 84 

6 13 26 32 39 46 13 28 
85 64 75 83 92 99 80 1 

4 10 '19 26 35 44 52 65 
77 56 75 90 1 17 30 64 

FIGURE 3-1 Program for gen~rating true random numbers and a screen full ~tits product. 

number, such as PI or the square root of two, to, say, a million or more decimal 
ph:tces. 

Most arithmetic prqcesses for generating random q.µmbers are recursive 
in natqre; the Ill.l;mbers in a s~:>-called randorn sequence are generated by per
forming a preqete1;'ffiin':!d s~t of operations on the last one selected. For t4is 
reas0n, ·it cannot pe assci,rted ·that the numbers are truly independently chosen. 
Therefore, they are c~lled pseudo,.. or false random nµrµbers. However, every
body µses them €!S though they were truly randorn, and, as we shall see, many 
seque:q.:es of pseudo:randqm nµmberl') pass the standard statistical tests for ran" 
dmnness. 

Let's examine the random properties of the built-in BASIC function 
RND. RUN t4is prpgram: .. 

10 CLS: KEY OFF,' 
20 RANDOMIZE TIME 
30 FOR I= 1 TO 100 
40 LOCATE INT(RND~25) +l, ;INT.(RND*80) +l: PRINT"*"; 
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50 NEXT I 

60 IF X=O THEN 60 

The first statement clears the screen and turns off the function-~ey menu 
in line 25 so the whole screen is available for display. Statement 20 seeds tht; 
random-number generator from the real-time clock. Statements 30 qnd 50 an: 
a FOR-NEXT loop that will generate 100 random points. 

Statement 40 selects the coordinates of a point on the 25-by-80-charact~r 
matrix of the screen by generating two pseudorandom integers. Then it prints 
an asterisk at that point. Statement 60 is an infinite loop; it prevents the program 
from ending and therefore stops the BASIC interpreter from printing "OK" 
and spoiling the appearance of the display. To stop the program, simultaneously 
depress the keys SHIFT and BREAK/PAUSE. 

There are 2,000 possible points in the cparacter matrix: RUN the pro
gram with the limit of the FOR-NEXT loop set to 1,000 and observe how the 
matrix fills up~ Figure 3.,...2 is a distribution of 100 rangpm points. Figure 3-3 
is a distribution of 1,000 points. ' 

You can generate a denser matrb~: using your personal compute,r's graph-

FIGURE 3-2 Program for generating random dot patterns and a pattern containing 100 
dots. ' ,. 

* * * 
* * * 

* * * * 
* * * 

* * * 
* * * * * * 

* * ** * * 
* * ** * ** 

* * ** * 
* * 

* * * 
* * * * 

* * * * * * 
* 

* ** *~ * 
* * * * 

* * * ** * 
* * * 

* * 
* * 

** * * * 
* * * * * * * 

* * 
* * ** * * 

01< 
LIST 
10 , PROGRAM TO GENERATE 100 RANDOM DOTS 
:20 CLS: KEY OFF 
30 RANDOMIZE TIM!='. 
40 FOR I = 1 TO 100 
50 LOCATE INT<RND * 25) + 1 ' INT<RND * 80) + 1 ; PRINT "*fl; 
60 NEXT I 
70 IF X = 0 THEN 70 
Ok 
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** 
*** 
* 

** 

** 
* ** 

** 
** * 

** 
* ** ** 
** * * 

** *** ** ** * ** 
* * * *** ** ** * 

*** * * * *** * 
* * * * * * * * * ** * * * 

* * *** * * * 
* 

*** * 
* *** 

* ** ** 
** ** 

** ** ***** 
* ** 

**** 

** ~ * * ** * *** 
* ** ** * *** ** * * 

*** * *** * * ** 
* * ** * * ** ** * 

* * *** * ** * 
*** 

* ** 
* * **** *** * 

*** * * *** 

* 

***** * * ** * 
** * 

* 
* * * ** *** 

** * ***** * 
** ** * * 

******* 
** 

** ** * ** * 
****** 

** *** * 
** * 

* *** 
** * ** 

*** ** 
* ** ** * * * 

** ** * ** * 
* 

* 
**** * 
* * 

** 
* 

* *** 
* * 

* 
* * 
* ** 

* * * ** **** * 
*** *** ** ** *** ** 

* * * * * * * ** *** 
*** *** ** * * 

**** ** * * * * * *** * 
* 

** **** * ** * 
* * *** * * * 

* ** 

* *** ***** 
** * * * 
* * ** * * *** * * ** * * 

* * * ** 
*** ** * ** ** * * ***** * * * * 

** * 
* * * 

* 
* 

* * * '*** * * *** *** ** * * * * ** 
** ** **** * ** * ** **** 
* *** * 

* *** *** * **** * 
** ** * ** * * * ** 

* ** * * ** ** 
* * *** ** 

* ** 
** 

* * 
* 

*** 
*** ** 

* * ***** * * ** * * * * 
** ** ** ** * *** * * *** 

* ** * * * * *** * * ** * ** 
* 

**** *** **** * 
** * *** * 

** * * * 
** * * 

*** * 
*** *** * * * * * 

* "" 
** * ** ** * ** * 

* * ** ** * ***** * * 
* * * * * * **** ** * * * 
* ** ** * 

Ok 
LIST 

** * * * **** * *** 

10 ' PROGRAM TO GENERATE 1000 RANDOM DOTS 
20 CLS: KEY OFF 
30 RANDOMIZE TIME 
40 FOR I = 1 TO 1000 

* * 
* 

* 
*** * 

* 

50 LOCATE !NT<RND * 25) + 1 ~ INT<RND * 80) + 1: PRINT "*"; 
60 NEXT I 
70 IF X = 0 THEN 70 
Ok 

**** 

** * 
** * 

FIGURE 3-3 Program for generating random dot patterns and a pattern containing 1,000 
dots. 

** 
* * 
**** 
* 

* 
** 
* * ** 

* 
* 

** 

* 

ical capability. Unlike the 25-by-80-character matrix, the graphics matrix of the 
TI/PC measures 300 by 720. RUN this program for 100, 1,000, and 10,000 
points: 

10 CLS: KEY OFF 

20 RANDOMIZE TIME 
30 INPUT "ENTER NUMBER OF POINTS: " NUMBER 

40 WHILE COUNT < NUMBER 

50 COUNT COUNT+ 1: LOCATE 1, 1 

60 X INT ( RND*720 ) + 1 : Y =INT ( RND*300 ) + 1 

70 PSET (X, Y) 

80 WEND 
100 PRINT NUMBER; "POINTS" 

llO IF COUNT NUMBER THEN llO 
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Statement 30 invites you to enter the number of points you want to 
display. Statements 40 and 80 are a WHILE-WEND loop that helps computer 
scientists avoid using the "infamous" GOTO. Graphic coordinates X and Y are 
selected at random, and statement 70 prints a small dot at the location selected. 

Random pattern showing 100 dots created using the POINT X,Y command. 

Random pattern showing 1,000 dots. The display matrix is 720 by 300. 
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PEt.ttern consisting of 100 randomly selected and colored graphics characters. 
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Pattern consisting of 300 random graphics characters. Character selection is made using 
the statement: PRiNT CHR$(127+INT(128*RND)+1 ). 

Pattern consisting of 1,000 random graphics characters. The display matrix is 80 by 25. 
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MID-SQUARE RANDOM-NUMBER GENERATOR 

The first algorithm for generating pseudorandom numbers was the mid-square 
method. It was used in the mid-l 950s, when the principal use of simulation was 
in designing thermonuclear weapons. It works this way: Take, say, a four-digit 
integer; multiply it by itself; chop off the two low-order digits and the two (at 
most) high-order digits. Report the resulting four-digit number as the first ran
dom number in the sequence, and use it to generate the next one. 

This program ill}plements the mid-square algorithm: 

10 CLS: INPUT "ENTER 4-DIGIT SEED NUMBER"; S# 
20 FOR I = 1 TO 100 

30 X# = S# * S# 
,40 X# = INT(X# / 100) 
50 X# = X# INT ( X# / 10000) * 10000: PRINT X#; 
60 S# X# 
70 NEXT I 

Statement 10 clears the screen and invites the user to type in a four
digit number as a "seed" to start the process. Statement 20 sets up a FOR-NEXT 
loop to generate 100 pseudorandom numbers. Statement 30 squares the seed; 
note that we are using double-precision arithmetic. If the seed were 2061, X# 
would now be equal to 424 7721. 

In statement 40 we remove the low-order digits, 21, by dividing by 100 
and retaining the integer quotient. Statement 50 is a modulo or division-re
maindering operation employed to get rid of the high-order digit, 4. If there 
were two high-order digits in an eight-digit square (instead of one high-order 
digit in this seven-digit square), this operation would get rid of both of them. 
We divide42477 by 10000, retaining the integer quotient of 4; multiply py 10000; 
and subtract 40000 from 424 77, leaving the mid-square of 24 77. This value is 
reported as the first random number in the sequence, and in statement 60 is 
set equal to S# in order to generate the second member of the sequence. 

The problem with this pseudorartdom-number generator (PNG) is that 
the sequence is very short-only 34 numbers, and then the mid-square degen
erates to 0. With very few exceptions, mid-square sequences either degenerate 
to 0, converge on a constant (the seed 2500 never departs from that value), or 
cycle forever through a short loop (the seed 7777 ends up in the cycle 2100, 
4100, 8100, 6100, ... ). Sequences that are usable-say, on the order of 100,000 
or more numbers-can he created using longer seed numbers. 

Figure 3-4 shows three degenerate mid-square sequences. The first 
degenerates to zero; the second degenerates to 7600; and the last degenerates 
to a repeating short cycle: 2100, 4100, 8100, and 6100. 
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ENTER A FOUR-DIGIT SEED NUMBER ? 2061 
2477 1855 8860 8896 1888 9265 8402 
3225 4006 480 2304 3084 5110 1121 
5129 3066 4003 240 576 3317 24 5 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 

01< 

ENTER A FOUR-DIGIT SEED NUMBER ? 1357 
8414 7953 2502 2600 7600 7600 7600 
7600 7600 7600 7600 7600 7600 7600 
7600 7600 7600 7600 7600 7600 7600 
7600 7600 7600 7600 7600 7600 7600 
7600 7600 7600 7600 7600 7600 7600 
7600 7600 7600 7600 7600 . 7600 7600 
7600 7600 7600 7600 7600 7600 7600 
7600 7600 7600 7600 7600 7600 7600 

01< 

ENTER A FOUR-DIGIT SEED NUMBER ? 1379 
9016 2882 3059 3574 7734 8147 3736 
8469 7239 4031 2489 1951 8064 280 
1474 1726 9790 8441 2504 2700 2900 
6100 2100 4100 8100 6100 2100 4100 
2100 4100 8100 6100 2100 4100 8100 
4100 8100 6100 2100 4100 8100 6100 
8100 6100 2100 4100 8100 6100 2100 
6100 2100 4100 8100 6100 2100 4100 

01< 

OK 
LIST 

5936 
2566 
0 0 

0 0 
0 0 

7600 
7600 
7600 
7600 
7600 
7600 
7600 
7600 

2360 
5843 
0 0 

0 0 
0 0 

7600 
7600 
7600 
7600 
7600 
7600 
7600 
7600 

5696 
1406 
0 0 

0 0 
0 0 

7600 
7600 
7600 
7600 
7600 
7600 
7600 

4444 
9768 
0 0 

0 0 
0 0 

7600 
7600 
7600 
7600 
7600 
7600 
7600 

7491 
4138 
0 0 

0 0 
0 0 

7600 
7600 
7600 
7600 
7600 
7600 
7600 

1150 
1230 
0 0 

0 0 
0 0 

7600 
7600 
7600 
7600 
7600 
7600 
7600 

9576 6997 9580 7764 2796 8176 
784 6146 7733 7992 8720 384 

4100 8100 6100 2100 4100 8100 
8100 6100 2100 4100 8100 6100 
6100 2100 4100 8100 6100 2100 
2100 4100 8100 6100 2100 4100 
4100 8100 6100 2100 4100 8100 
8100 6100 

10 ,. MID-SQUARE PSEUDO-RANDOM NUMBER GENERATOR 
20 CLS: KEY OFF 
30 INPUT " ENTER A FOUR-DIGIT SEED NUMBER "; S# 
40 FOR I = 1 TO 100 
50 X# = S# * S# 
60 X# = INT<X# / 100) 
70 X# = X# - INT<X# / 10000) * 10000 
80 PRINT X#; 
90 S# '= X# 
100 NEXT I 
OK 

FIGURE 3-4 Mid-square generator program and examples of its output degenerating to 
0, to 7600, and to a repeating short sub-set. 

0 

An acceptable mid-square generator for 35-bit mainframe computers is: 

X(l) (9653042877r2 (mod 67108864)/512 

MULTIPLICATIVE CONGRUENTIAL (MC) GENERATORS 

Today most pseudorandom-number generators use the multiplicative congruen
tial algorithm, also called the method of power residues. You start with a prime 
number to use as the modulus M (the divisor in a division-remaindering oper-
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ation); a multiplier A that must be relatively prime to the modulus, and any seed 
X(O). 

X(l) A * X(O) mod M 

By multiplying the seed by the multiplier and taking the remainder when 
divided by the modulus, you produce the first member of the pseudorandom 
sequence X(l), which is also the replacement for the seed in generating the next 
member. 

To illustrate how this algorithm works, take 13 as the modulus, 2 as the 
multiplier, and 1 as the seed: 

1 * 2 = 2 mod 13 2 

2*2 4 mod 13 = 4 

4*2 8 mod 13 = 8 

8 * 2 = 16 mod 13 = 3 

3 * 2 = 6 mod 13 6 

6 * 2 = 12 mod 13 12 

12 * 2 24 mod 13 = 11 

11 * 2 = 22 mod 13 = 9 

9 * 2 = 18 mod 13 = 5 

5 * 2 = 10 mod 13 10 

10 * 2 20 mod 13 7 

7 * 2 = 14 mod 13 = 1 

The cycle continues forever. What you have done is to shuffle the num
bers from 1 to 12. You can never generate 0, nor can you generate 13. In this 
problem, the number 12 has a special name; it is called the Euler function. It 
is one less than the modulus. Of course, this sequence is very short; it is no better 
than the mid-square sequence. However, if the number chosen as the modulus 
is very large, the pseudorandom-number sequence acquires the properties of a 
true random-number sequence. 

FULL-PERIOD MC GENERATORS 

To get a full cycle of M-1 pseudorandom numbers, the multiplier A must be a 
primitive (prime) root of the modulus. Primitive roots of large numbers are not 
that easy to find. The definition of a primitive root is circular: A primitive root 
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is a number that, when used as a multiplier in a pseudorandom-number gen
erator, produces a sequence of length M-1 without repetition. 

The important parameters are the multiplier A and the modulus M. 
The seed X(O) is not important, because the sequence can begin at any point. 
One of the earliest generators used A=23 and M 2"35 + 1 (34,359,738,369). 
The problem with this generator is that it has high first-order serial autocor
relation, as do all MC generators with low values of A; the value should be on 
the order of the square root of M. 

With 36-bit mainframe computers such as the DEC System .10, the values 
are: A= 3125 and M = 2A35 31 (34,359; 738,337). The .modulus is the largest 
prime. number less than the value of a full-length register filled with ones. 

With 32-bit mainframe computers such as the IBM System 370/30XX 
models, the values are A= 16807 and M=2"31 1 (2,147,483,647). 

Other values that have been used are: A=7"ll (366,714,004) and M 2"29 
+ 1 (536,790,913); and A= 13"13 (455,470,314) and M:::i: 2"31 - 1 (2,147,483,647). 

PARTIAL-PERIOD MC GENERATORS 

If you can't find a suitable primitive root, you can use a multiplicative ctmgruen
tial generator with the following specifications: 

M = 2"L where L is the full length of a computer register in bits 
A S*K + or - 3 where Lis any integer, and 
A is approximately equal to the square root of M. 

Unfortunately, this is not a full-period generator. If you start with ari 
even seed, you will produce no odd numbers and your cycle length will only be 
M/8. If you start with an odd seed, you will produce no even numbers and your 
cycle length will be M/4. 

MIXED MULTIPLICATIVE 
CONGRUENTIAL (MMC) GENERATORS 

You can improve things by using a mixed multiplicative generator: 

X(l) X(O)*A + C (mod M) 

where C is any prime less than or equal to A (usually l); and 

A 4*K+ 1 and 2'T+ 1 

where K is any integer and T is any integer > = 2. 
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The MMC generator produces a sequence of length M. Its first-order 
(Pearson product-moment) serial autocorrelation for pairs can be found from: 

rho = (I/A) - (6*C)/(A*M) * (1 - (C/M) + or - (A/M) 

so keep C small and A on the order of the square root of M. For both these 
generators, serial autocorrelation for triples is bad. 

ARITHMETIC .CONGRUENTIAL GENERATOR 

Another kind of PNG is the arithmetic congruential generator. Here: 

X(L+ I) = X(L-1) + X(L) (mod M) 

1 
Just start with two random integers, add them to get the third number, add the 
third number to the second to get the fourth, and so on. The cycle length (also 
called "period") is K*2"(L 1) where K is some integer. The serial autocorre
lation can be quite high for high-order lags (see page 115). 

SHIFT REGISTER GENERATORS 

A digital circuit known as a maximal-length linear-shift register (MLLSR) can 
be used as a PNG. However, I have found that it tends to produce sequences 
with extremely high first-order serial autocorrelation. 

A 34-stage MLLSR employs feedback that XORs stages l, 8, 33, and 34. 
It generates a sequence of 17,179,869,183 pseudorandom numbers. 

SUMMARY OF PN GENERATORS 

In summary, the best PNG is a multiplicative one that uses a primitive root of 
the modulus as a multiplier. Preferably, the multiplier should be on the order 
of the square root of the modulus (to minimize first-order serial autocorrelation). 
Most built-in pseudorandom-number-generating functions use at least two gen
erators: one fills a matrix (two-way table) with random numbers; the other 
(maybe two) makes random selections from the table. Some computers have 
hardware generators. They operate on the principle of random pulses gating a 
high-frequency oscillator into a pulse counter. Some don't use raP.ioactive iso
topes as the source of the random pulses because these substances may be ex
pensive and dangerous. They may use fluorescent tubes or heating elements. 

This program uses the 3125/34359738337 multiplier/modulus combi-
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nation, which is used on some 36-bit-word mainframes, such as the Digital Equip
ment Corporation's System 10: 

10 CLS : INPUT II ENTER SEED II ; SEED# 

20 M# = 34359738337 

30 A#= 3125# 

40 FOR I = 1 TO 100 

50 R# = SEED#* A# - INT(SEED# *A#/ M#) * M# 

60 N = R# I ( M# 1) : PRINT USING II • ######;II; N; 
70 SEED# R# 

80 NEXT I 

Statement 10 clears the screen and invites the user to enter a seed num
ber. The seed determines the starting place in the pseudorandom-number se
quence; any number will do. 

Statements 20 and 30 insert the modulus and multiplier as double pre
cision constants. Statements 40 and 80 set up a FOR-NEXT loop to generate 
100 random numbers. In statement 50, the seed is multiplied by the multiplier. 
The operation of division-remaindering is performed as was done in the mid
square algorithm, and in statement 70 the seed is set to the value of the first 
number generated in order to generate the next number. Statement 60 differs 
from our presentation of the mid-square algorithm. The 100 random numbers 
are printed out, ten to a line, in conventional format: as six-place decimals 
normalized by dividing each member of the sequence by the Euler function 
(Modulus - 1). Figure 3-5 shows the results of using a multiplicative con
gruential pseudorandom-number generator. 

TESTING GENERATORS FOR RANDOMNESS 

We are going to use two classical tests for randomness to compare the 3125/ 
34359738337 multiplicative congruential algorithm with the RND function built 
into the MS/BASIC subsystem. The first test is to determine whether or not the 
numbers of a sequence are uniformly distributed; that is, whether every number 
has an equal chance of being chosen. 

The second test is for serial autocorrelation between adjacent pairs of 
numbers; it tells whether or not the appearance of one number affects the chance 
of another one's appearing next. There are many other tests for randomness. 
Sometimes the serial autocorrelation test is set up so that instead of just com
paring adjacent pairs of numbers, it will compare numbers separated by 1, 2, 
3, ... up to as many as 19 or more intervening numbers. I have found these 
two tests to be sufficient for most practical purposes. 
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SNTER SEED ? 123456. 
.011228 
.754903 
.339908 
.725263 
.572156 
.283204 
.514288 
• 787007 
.506254 
.6i7S11 

01< 

OK 
LIST 

.098306 .955091 

.071632 .850293 

.212226 .205684 

.448245 .765677 

.986003 .258166 

.012213 .164945 

.150914 .605853 

.396028 .587635 

.!:143098 .680897 

.658809 .776566 

.629462 

.135462 

.762764 

.740735 

.?'67215 

.452377 

.291953 

.360379 

.801541 

.769411 

.069434 .857208 .776229 .715801 

.320145 .454036 .863225 .577546 

.636415 .796255 .2<;:16088 .274326 

.795419 .695180 .186833 .853124 

.546305 .:202271 .096481 .521574 

.679077 .116470 .968026 .080498 

.3519S1 .794$08 .596355 .358842 

.185580 .937993 .2213644 .513522 

.816710 .217307 .083165 .889571 
~4093:23 .134698 .931324 .388593 

1 0 ' MULTI PL I CAT I VE CClNGRUENTJ AL PSEUOO-RANMM NUMBER GENERAiOR 
20 CL$: KEY OFF 
~o INPUT "ENTER SEED 11 

; see:ott 
40 ' 
50 ' BUILT-IN GcNERATOR 
60 M#~34359738337# 
70 A#=3125# ao , 
90 FOR I ~ 1 TO 100 
100 R# = SEED# * A# INT<SEED# * A# / M#) * M# 
110 N = R# / <Mfi - 1): PRINT USING 11 .######"; N; 
120 SEED# = R# 
130 NEXT I 
01< 

FIGURE 3-5 Multiplicative congruential generator and an example of its output 

Uniformity Test 

.877917 .490802 

.831027 .959469 

.268745 .8:2839:2 

.01:2963 .197943 

.919491 .410011 
;555942 .317285 
.381479 .121532 
.'757292 .537442 
.909959 .622918 
.351809 .403120 

The test for uniformity generates 500 numbers in the range from zero 
to one: (If you are wondering how a multiplicative congruential generator can 
possibly produce the value zero, it wbuld be a very low nmnlJer that rounds off 
to zero in the sixth decimal place.) It classifies the numbers as to whether they 
are less than or equal to 1/10, less than or equal to 115, 3/10, 2/5, 1/2; 3/5, 7/10, 
4/5, 9/10, or 1. Then it plots a bar chart, or histogram, by printing an asterisk 
for each number in each class. If the 500 numbers generated were distributed 
among these 10 classes with perfect uniformity, there would be 50 asterisks in 
each of the 10 bars. 

Test Evaluation by Chi-Squared 

When comparing two generators, it is convenient to use a single number 
that capt:ures the essence of the histogram. One such rtl.lmber is the statistic 
called chiisquare. This is computed by subtracting the number of asterisks in 
each bar from the number we expect will be there (that is, 50), squaring the 
difference, adding the results from each of the teh bars, and dividing the sum 
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of squares by the expectation (50). There are tables of chi-square that will tell 
us how good our results are. The acceptable value of chi-square for a given test 
depends upon the number of dasses (expressed as "degrees of freedom") and 
the confidence we wish to place in our results. A test like this has 9 ( 10 classes 
minus 1) degrees of freedom; and a,t th~ 95 percent level of confidence (that 
means there will be 1 chance in 20 that 'our results q,re wrong) the acceptable 
value of chi-square is 16.9. · 

In our program, statemeµt 10 set.~ up a ten-component array to hold 
the count of numbers in each class. Statement 20 obtains a seed from the com
puter's real-time clock. Staterµents 30 apd 140 establish a FOR-NEXT loop that 
generates 500 random numbers. Statefilent 40 branches to a subroutine that 
generates a random nurp_ber. St~tements 60 to 80 con~titute a FOR-NEXT loop 
that classifies each randoll1 number into one of the ten groups. Statements 100 
to 160 display the results. Statements 120 to 140 are a FOR-NEXT loop that 
print~ the asterisks of each for. Statement 150 is a FQR~NEXT loop that cal-
culates the. value of chi-square. · ·· · ·· · 

Figure 3-6 shows the frequency distriqution of pseudorandom numbers 
produced· by a multiplicative congruential generator and a ·listing of the 28 
statements of the analysis program. 

When we compared ·th.e RNP and MC generators, we found that both 
geµerc:1tors produced a relatively :flat or 4niform di~tribqtion; from a statistical 
point of view, anything better would pe suspect. The yalue of chi-square is 4.12 
for the· algorithm and 3. 76 for the built-in generator; bot}i are well below the 
criterion value of 16.9. dne could jump to the. conclusion that the built-in gen
erator is better than. the algorithm. Figure ff is plays the results of this test. 

In ~act, we don't yet have enough ~vidence for such a conclusion in this 
test alone. Hpwever, I have n.~n a large numb~r of tests a11.d the built-in generator 
~lways produces the lower value of chi-sqyared. However, the test for uniformity 
is only a n~(:essary test for r,andomness, not a ~ufficient one. The sequence .1, 
~2, .3, .4, .5~ .(), .7, .8, ~9, I, ... woqld produce a pe.rfectly flat distribution whose 
value of c~i-square would be 0. It couid hardly be regarded as a sequence of 
random numbers. 

Maximum Test 

Here's an interesting point: If you divide the sequence into groups of 
two numbers, three nu:rµb~rs, .. ~ or N µumbers, select the largest number in 
e~ch group, aqci multiply it by itself as many times as there are numbers in_ the 
group, the resulting sequence of mp::nqe:rs shoµld be uniformly distributed. This 
test works not just for number~ but for their individual digits as well if the 
underlying s~quence is truly random: 
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***** DISTRIBUTION OF RANDOM NUMBERS ***** 

R<+ .1 *********************************************** 

R<+ .2 **************************************************************** 

R<+ .3 ************************~************************** 

R<+ .4 ******************************************************** 

R<+ .5 *************************************** 

R<+ .6 **************************************************** 

R<+ .7 ************************************** 

R<+ .8 ********************************************************** 

R<+ .9 ***************************************************** 

R<+ 1 ****************************************** 
CHI SQUARED= 12.96 
OK 

Ok 
LIST -190 
10 DIM COO) 
20 SEED#=TIME 
30 FOR J=1 TO 500 
40 GOSUB 180 
50 X=N 
60 FOR I=1 TO 10 
70 IF X<=<I/10) THEN C<D=C<D+l:GOTO 90 
80 NEXT I 
90 NEXT J 
100 CLS 
110 LOCATE 1,19: PRINT "***** DISTRIBUTION OF RANDOM NUMBERS *****" 
120 FOR I=1 TO 10 
130 LOCATE 1+1*2,1: PRINT "R<+"I/10;: FOR J=1 TO C<D: PRINT"*";: NEXT .J 
140 NEXT I 
150 FOR 1=1 TO 10: CHI.SQ=CHI.SQ+(C(l)-50)*<C<I>-50)/50: NEXT I 
160 LOCATE 22,1: PRINT "CHI SQUARED="CHI.SQ 
170 END 
180 M#=34359738337# 
190 A#=3125# 
Ok 

OK 
LIST 200-
200 ' ************************************************************* 
210 TRY THESE A:M PAIRS: 
220 23:34359738369 3125: 16807:2147483647 
230 / 366714004:536790913 455470314: 47483647 
240 ' ************************************************************* 
250 R#=SEED#*A#-INT(SEED#•A#/M#)*M# 
260 N=R#/(M#-1) 
270 SEED#=R# 
280 RETURN 
Ok 

FIGURE 3-6 Program for plotting the frequency distribution of pseudo-random numbers 
and calculating chi-squared for its goodness-of-fit to a uniform distribution; 
with an example of its output. 
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***** DISTRIBUTION OF RANDOM NUMBERS ***** 

R<+ .1 ************************************************************** 

R<+ .2 *********************************************** 

R<+ .3 ******************************************** 

R<+ .4 ************************************************** 

R<+ .5 *********************************************** 

R<+ .6 ************************************************* 

R<+ .7 ************************************************* 

R<+ .8 **************************************************** 

R<+ .9 ************************************************* 

R<+ 1 *************************************************** 
CHI SQUARED= 4.12 
OK 

***** DISTRIBUTION OF RANDOM NUMBERS ***** 

R<+ .1 ************************************************* 

R<+ .2 **************************************** 

R<+ .3 ************************************************** 

R<+ .4 ******************************************************* 

R<+ .5 **************************************************** 

R<+ .6 ************************************************ 

R<+ .7 *************************************************** 

R<+ .8 ************************************************ 

R<+ .9 ********************************************************* 

R<+ 1 ************************************************** 
CHI SQUARED= 3.76 
OK 

FIGURE 3-7 Comparative results of tests for uniformity on a multiplicative congruential 
generator, and the built-in BASIC random-number function. 

TESTING GENERATORS FOR AUTOCORRELA1"10N 

If we were to generate the sequence of numbers 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 
... , it would easily pass the test for uniformity even though the numbers are 
far from random. The reason they are not random is that they are not inde
pendent. The appearance of one number-say, I-means that the next number 
will be 2, and so on. We call this defect "serial autocorrelation" of adjacent pairs 
of numbers. , 

The test for serial autocorrelation is a more rigorous one than the test 
for uniformity. In its classical form the test makes use of a 10 by 10 matrix 
(checkerboard). The rows and columns both represent the classifications 1110, 



68 RANDOM NUMBERS 

1/5, ... 9/10, 1, as used in the uniformity test. However, the rows will contain 
the counts of the first member of each overlapping pair of random numbers; 
th~ columns will contain the counts of the second member of each pair. For 
example, if the first number of a pair is .42 and the second number is .68, the 
count stored in the cell found at the intersection of the fifth row and the seventh 
column would be increased by one. Displaying the results as a histogram would 
demand 100 bars, one for each square of the checkerboard. 

Since we can't display 100 bars on a 25-by-80 screen, we have made some 
simplifications in this test. We use only three classifications: less than or equal 
to 113, less than or equal to 2/3, and less than or equal to 1. Thus we can get by 
with only 9 bars instead of 100. We shall generate 396 numbers, providing for 
aµ expectation of 44 asterisks in each bar. (We want a short bar because the 
legend is long, since it has to express both the row and column limits.) 

Figure 3-8 lists the analysis program for serial autocorrelation and shows 
the results of a test on an MC generator. 

In the program, statement 10 obtains the seed of the random number 
generator from the real-time clock; lines 320 to 420 are the random-number 
generator; statements 110-120 and 120-130 call it to get a pair of random 
numbers. Statements 20-50 and 290-310 set up and label the histogram display. 

Statements 50 and 250 set up a FOR-NEXT loop that will generate, 
classify, and print histograms of 396 pairs of random numbers. Statements 80-
100 are a FOR-NEXT loop that classifies the first member of each random"'." 
number pair into one of three equal classes. Statements 130-140 do the same 
for the second member of the pair. Statements 90, 140, and 160 map the three
by-three checkerboard into a linear histogram of nine bars in which Rl cycles 
through all three classes while R2 advances in value 1/3 for each cycle of Rl. 
Statements 170-190 are a FOR-NEXT loop that counts the pairs in th~ nine 

FIGURE 3-8 Program for plotting the results of the checkerboard test for serial autocor
relation and calculating chi-squared; with an example of its output. 

LIST -210 
10' SEED#=TIME 
20 FOR I=! TO 9: READ K$<I>: NEXT I 
30 FOR I=1 TO 9: READ L$(l): NEXT I 
40 FOR I=l TO 3: READ M<I>: NEXT I 
50 FOR !=1 TO 396 
60 GOSUB 300 
70 X=N 
80 FOR J=l TO 3 
90 IF X<=J/3 THEN Cl=J: GOTO 110 
100 NEXT J 
110 GOSUB 300 
120 X=N 
130 FOR J=l TO 3 
140 IF X<=J/3 THEN C2=M<J>: GOTO 160 
150 NEXT J 
160 IX=C1+C2-1 
170 FOR K=1 TO 9 
!SO IF l<=IX THEN C(l<)'=C<t<>+1 
190 NEXT I< 
200 NEXT I 
21.0 Ci..S: LOCATE 2,16: PRINT "***** RANPOM NUMBER SERIAL AUTOCORRELATION *****" 
Ok 



LIST 220-
220 FOR I=l TO 9 
230 LOCATE 2+1*2,1: PRINT "R1<="KS<I>" AND R2 <="L$(I> 11 11

; 

240 FOR J=1 TO C< I) : PRINT II*'' i :NEXT J 
250 NEXT I 
260 FOR I=l TO 9: CHI.SQ=CHI.SQ+(C(l)-44)*(C(I)-44)/44: NEXT 
270 PRINT: PRINT "CHI SQUARED="CHI.SQ 
280 END 
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290 DATA II 'II. 67" '" 1. 0 H ' ... 33" 'II. 67"·, "1. 0 II' II. 33" 'II. 67" '" 1. 0 II 
300 DATA" 1".33",".33",".67 11 , 1~.67",",67u,"1•0",'1 l.0 11 , 11 1.0" 
310 DATA 1.,4,7 ·. . . ' ' . . . 
320 M#=34359738337# 
330 A#=3125# 
340 , **************************************************************** 
350 ' TRY THESE A:M PAIRS: 
360 , 23:34359738369 3125:34359738337 16807:2147483647 
370 , 366714004:536790913 455470314,:2147483647 
380 , **************************************************************** 
390 R#=SEED#*A#-INT<SEED#*A#/M#)*M# 
400 N=R#/(M#-1) 
410 SEED#=R# 
420 RETURN 
Ok 

***** RANDOM NUMBER SERIAL AUTOCORRELATION ****~ 

Rl<=.33 AND R2 <=.33 ****************************************** 

Rt<=. 67. AND R2 <=<. 33 *****************,*********************** 

R1<=1.0 AND R2 <=.33 **************************************~~* 

Rl<=.~3 AND R2 <=.67 *****~**~*********************************** 

R1<=i:,67 AND R2 <=.67 ******************************** 

R1<=1.0 AND R2 <=.67 ******¥******************************************** 

R1<=.33 AND R2 <=1.0 *******************************:************* 

Rl<~.67 AND R2 <=1.0 *********************************************************** 

R1<:::1.0 AND R2 <=1.0 ******ilr************************************ 
CHI SQUARED= 10.18182 
Ok , 

FIGURE: 3.,.,.a (continued) 

classes, while statements 630 and f 40 print the bars. Statements 260 and 270 
calculate and display the value qf chi..,squared. · 

In this example there ar~ nine minus two, or seven, degrees of freedom 
(because there are two variables, Rl and R2, instead of just R, as in the last test). 
The criterion value of chi-squared for seven degrees of freedom and 95 percent 
confidence is 14.1. The value for the sequ,ence produced by the algorithm i& 
5.23, while the value for the built-in generator is 9.68; both are comfortably 
within acceptable limits. Usually I finc:l the built-in generator does better than 
the algorithm, but this is a statistical test, and some variation is to be expected. 
Figure 3-:-9 displays the results of this te~t. 

In some cases you may want to test for seriaf autocorrelation of pairs of 
numbers separated by one or more intervening numbers, which are called "lags." 
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***** RANDOM NUMBER SERIAL AUTOCORRELATION ***** 

Rl<=.33 AND R2 <=.33 ******************************************* 

R1<=.67 AND R2 <=.33 ******************************************** 

R1<=1.0 AND R2 <=.33 ************************************ 

Rt<=.33 AND R2 <=.67 ********************************************~********** 

Rl<=.67 AND R2 <=.67 **************************************** 

R1<=1.0 AND R2 <=.67 ********************************************** 

Rl<=.33 AND R2 <=1.0 ****************************************** 

R1<=.67 AND R2 <=1.0 ****************************************** 

Rl<=l.O AND R2 <=1.0 ************************************************ 
CHI SQUARED= 5.227273 
Ok 

***** RANDOM NUMBER SERIAL AUTOCORRELATION ***** 

Rl<=.33 AND R2 <=.33 ***************************************** 

R1<=.67 AND R2 <=.33 ************************************* 

R1<=1.0 Af'.ID R2 <=.33 ***************************************************** 

Rl<=.33 AND R2 <=.67 ********************************* 

Rl<=.67 AND R2 <=.67 ******************************************~ 

R1<=1 .0 AND R2 <=.67 **************************************************** 

Rl<=.33 AND R2 <=J.O ************************************************ 

Rl<=.67 AND R2 <=1.0 ************************************** 

R1<=1.0 AND R2 <=1,0 *************************************************** 
CHI SQUARED= 9.681818 
OK 

FIGURE 3-9 Comparative results of tests for serial autocorrelation on a multiplicative con
gruential generator and the built-in BASIC random-number function. 

The sequence: 1, 5, 2, 8, 3, 7, 4, 1, 5, 7, 6, 0, 7, 5, 8, 4, 9, 2, 0, ... illustrates 
serial-autocorrelation lag one. Tests can be made of serial autocorrelation of 
overlapping pairs lag 0, l, 2, ... 19, 20, and even more. Moreover, tests can 
also be made for serial autocorrelation of overlapping triples; here we would 
require a matrix with 10 x 10 x 10, or 1,000, cells. 

RUNS TESTING 

Another family of tests looks at runs of numbers in a random sequence. A run 
is a sequence of one or more numbers that does something specific. There are 
two kinds of runs of interest in testing numbers. for randomness: runs up or 
down, and runs above and below the median. The sequence: 7, 2, 5, 8, 3 contains 
a run-up of three numbers. The sequence: 2, 6, 8, 7, 4 contains a run above the 
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median (that is, 5) of three numbers. The science of combinatorics tells us how 
many runs of each kind we may expect to find in a sequence o[ numbers that 
are truly random. 

The expected number of runs of .length K in a sequence of length N is 
given by: 

as long as K is <= N 
2/N! 

2. The expected number of runs of length N 

In a sequence of 1,000 random numbers we may expect to find: 

417 runs of 1 
183 runs of 2 
53 runs of 3 
11 runs of 4 
2 runs of 5 
1 run of 6 or more 

I is 

We should expect that half of each group would be runs above the 
median, and half would be runs below the median. Similarly, we should expect 
half to be runs-up, and half to be runs-down. A run oflength 1 is regarded as 
a run-up when it terminates a run-down; and as a run-down when it terminates 
a run-up. 

POKER TEST 

Not only can we test the numbers of the sequence; we can also test the digits 
comprising these numbers. One of these tests involves regarding every sequence 
of five digits as a poker hand: 77059 would be a pair; 44881 would be two pair; 
33327 would be three-of-a-kind; 55533 would be a full house; and 99992 would 
be four-of-a-kind. Unlike real poker, five-of-a-kind is an acceptable, albeit rare, 
hand (and not a fight). The order of the "cards" within a "hand" is unimportant; 
we disregard straights, and there are no flushes or royals. Combinatorists can 
predict how many hands. of each kind should occur in a perfectly random se
quence. Of course, gamblers were able to do this long before combinatorists 
even knew they were combinatorists. 

In 10,000 randorp and independent (not overlapping groups of five 
digits each) poker hands, you may expect to find: 

3,024 with five different digits 
5,040 pairs 
1,080 two-pairs 

720 three-of-a-kinds 
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GAP TEST 

90 full houses 
45 four-of-a-kinds 

1 five-of-a-kind 

Another test for the randomness of the digits making up our numbers is the 
gap test. We take each of the ten digit types 0 to 9 at a time and go through a 
sample of our supposedly random sequence (say, 1,000 numbers) and count the 
digits that intervene between each appearance of the digit we are testing; in 
other words, we count the gaps between zeros, ones, twos, ... nines. For example, 
when looking at nines: 99 is a gap of O; 92472159 is a gap of 6. Combinatoris~s 
can tell us how many gaps of each length we can expe~t to find in a given-sized 
sample of numbers if the digirs are in fact random. 

In 1,000 gaps, we should expect to find: 

271 gaps of 0, 1, or 2 
198 gaps of 3, 4, or 5 
144 gaps of 6, 7, or 8 
105 gaps of 9, 10, <:>r 11 
86 gaps of 12, 13, or 14 
56 gaps ofl5, 16, or 17 
41 gaps of 18, 19, or 20 
29 gaps of 21, 22, or 23 
22 gaps of 24, 25, or 26 
16 gaps of 27, 28, or 29 
11 gaps of 30, 31, or 32 
9 gaps of 33~ 34, or ~5 
6 gaps of 36, 37, or 38 
4 gaps of 39, 40, or 41 
3 gaps of 42, 43, or 44 
3 gaps of 45, 46, or 47 
1 gap of 48, 49, or 50 

Of course the expected frequencies of the leµgth& of gap are the same 
for all digits. 

YULE Tf;ST 

Another test for the randomness of the digits of a number is the Yule test (which 
has nothing to do with Christmas holidays). Aqd µp the foµr least signifi~ant 
digits of 5,000 numbers. The su111s will range in valµe from 0 to 36. The expected. 
occurren(:e frequencies of the possible sums (for chi-squared testing) are: 
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Sum Occurrences Sum Occurrences 

0 1 19 330 
1 2 20 316 
2 5 21 296 
3 10 22 270 
4 17 23 240 
5 28 24 207 
6 42 25 174 
7 60 26 141 
8 83 27 110 
9 110 28 83 

IO 141 29 60 
11 174 30 42 
12 208 31 28 
13 240 32 17 
14 270 33 10 
15 296 34 5 
16 316 35 2 
17 330 36 1 
18 335 

BIT-WISE TESTING 

Tests for uniformity, correlation, and digit randomness can be combined by 
regarding a sample of a random-number sequence· as a bit matrix measuring 
32-by-10,000. There are four tests: (1) longitudinal count of ones, (2) longitu
dinal count of overlapping pairs of ones and zeros, (3) lateral count of pairs of 
ones and zeros in adjacent columns, and (4) lateral count of ones and zeros in 
columns separated by a column. These tests are used in Europe on one-time
tape cryptographic aids. 

We shall illustrate with a sequence of ten numbers in the range 0 to 31. 

NUMBER 

27 
12 
28 
3 

23 
31 
20 

9 
26 

1 

1t3 

1 
0 
1 
0 
1 
1 
1 
0 
1 
0 

8 

1 
0 
0 
1 
0 
1 
1 
0 

4 2 

0 1 1 
1 0 0 
1 0 0 
0 1 1 
r 1 1 
1 1 1 
1 0 0 
0 0 1 
0 1 0 
0 0 1 

1. The 10ng1.tudinal counts of ones are: 16 6, 8=6, 4=5, 2=5, and 1 =6. For the 
complete test the couiits should lie between 4,950 and 5;050. 
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SUMMARY 

2. The longitudinal counts of 1-1and0-0 pairs are: 16 2, 8 4, 4=5, 2=4, 
and 1 3. For the complete test the counts should lie between 4,900 and 5,100. 

3. The lateral counts of 1 1 and 0 0 pairs in adjacent columns are: 1 - 2 7, 
2 4=4, 4-8=5, 8-16=6, and 16-1 4. For the complete test all lateral 
counts should lie between 4,800 and 5,200. 

4. The lateral counts of 1 - 1 and 0- 0 pairs in columns lagged 1 are: 1 -4 = 3, 
2-8=5, 4 16=7, and 16 2 7. 

In this chapter we have discussed the concept of randomness and described 
some ways true random numbers can be produced. One of these, randomly 
interrupting a counting loop by signals from the computer keyboard, was pre
sented as a computer program. 

We explained the difference between true random numbers and pseu
dorandom numbers produced by algorithms. We presented a program imple
menting the mid-square algorithm, which was the first technique used, and 
pointed out the deficiencies of this meth9d. 

Finally, we presented a program for generating random numbers by the 
multiplicative congruential algorithm and a table of acceptable multipliers and 
moduli. We showed two tests for randomness: one for goodness of fit to a 
uniform distribution and the other for absence of serial autocorrelation. These 
tests present their results graphically, in the form of histograms, and by calcu
lating the chi-square statistic. We used these tests to compare a popular algorithm 
with the built-in MS/BASIC RND function. The results strongly suggest that it 
is not worthwhile to program your own pseudorandom-number generator. The 
built-in function does as well if not better. 

We also presented without examples some of the more esoteric tests for 
randomness, including tests not just for the randomness of numbers in a se
quence but also for the randomness of the digits making up the individual 
numbers. 



--CHAPTER FOUR--. 

Time-Oriented 
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An important use of computer simulation programs is in studying the dynamics 
of waiting-line queues. (The application is the waiting line: the queue is a specific 
data structure.) Waiting-line queues are often observed in real life. One example 
would be a line of people waiting to buy airline tickets; another, a line of cars 
stopped for a red traffic light; or a line of television sets in a repair shop waiting 
for attention from the technicians. 

There are many other applications for simulation; a sampling of these 
is presented in Chapter Ten. However, applications of simulation to queuing 
systems are useful from a tutorial point of view for three reasons: (1) Many 
complex systems contain queues as subsystems. (2) A queue is a simple system, 
in which the dynamics of simulation are clearly evident. (3) Some queuing systems 
have analytic solutions, so the accuracy of a simulation can be assessed. 

The components of a waiting-line queue are: 

1. A population from which customers are drawn 
2. The waiting-line queue itself 
3. The service facility 
4. A population into which customers return 

Two attributes determine the properties of a waiting-line queue: arrival 
rate and service rate. The arrival rate is the average number of customers who 
join the waiting line per second, minute, hour, or whatever unit of time is 
convenient. The service rate is the average number of customers who are served 
per unit time in the service facility. Another way to express these attributes is 
by their reciprocals: the average time between customer arrivals, and the average 
service time. 
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One reason for studying a waiting-line queue is to determine the loading 
on the service facility. If the service facility is idle too much of the time, the 
facility is uneconomical and may be redundant where alternative facilities are 
available. 

Back in 1920, an engineer named Erlang studied waiting-line queues of 
telephone calls in Copenhagen, Denmark. He found that the ideal loading on 
the telephone-switching facility was to be busy 70 percent of the time; it's a 
compromise . between customer disaffection caused by too much waiting and 
unwarranted spending for additional facilities. In the telepho11;e-:switching model 
at 70 percent loading, customers are seldom unable to get a dial tone when they 
want to use the phone. 

Installation of resources to bring loading lower-say, to zerd..;:._would 
not benefit the customer. The cost of these resources would eventually be passed 
on to the customer, who would derive little or no benefit from thenL 

Another reason for studying waiting lines is to determine the average 
length of the queue. A knowledge of the average, or maximum, length of a 
queue is necessary to provide adequate waiting rooms for travelers and medical 
patients, large enough toll plazas in front of tunnels and bridges for waiting 
lines of cars, and sufficient storage space for equipment awaiting :repair. 

The length of waiting lines is important to business. Too long a waiting 
line may discourage prospective· customers. The absence of a waiting line may 
suggest that the service offered is not worth waiting for. 

The time a customer has to wait in line is another matter df concern. If 
the waiting tin:ie is excessive, the service facility may lose business t6 facilities 
that can offer service more promptly. Even if the waiting line is composed of 
employees rather than customers, such as the lines that form at tool cribs or 
copying machines, the lines are undesirable because the time the employees 
spend waiting is unproductive. It may be desirable in a study to separate the 

. waiting time spent in line from that spent in the service facility, sirice tlie service 
time may be unavoidable even if service facilities were to be duplicated to such 
an extent that nobody had to queue up at all. 

To make a study complete, you will have to account for all of the arrivals: 
those who have been served, the one(s) left in the service facility at the end of 
the study, and those still waiting in line at the end of the study~ 

There are two kinds of waiting-line simulation programs: time-oriented 
and event-oriented. The time-oriented simulation examines the system during 
sequential equal slices of time. The event-oriented simulation examines only 
major. event~, especially arrivals, and jumps over the time between them. This 
chapter will deal with time-oriented simulations. 

The programming logic behind time-oriented simulations is easier to 
understand than the logic of event-oriented simulations. However, the slice of 
time must be sufficiently short that the events occurring within it can tie regarded 
as happening simultaneously. This means that the program may have to cycle 
unproductively most of the time, especially if customers terid to arrive in bunches. 
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START 

RESEED ANG SI= O 

ENTER TOTAL TIME EQ = EQ + 1 

40 
160, 

GET ARRIVALS 280 

TA= TA+ AR Q = Q - 1 

Q = Q +AR SI= 1 

250 
GET SERVICE TIME 

160 
ST= NST 

FIGURE 4-1 Logic flow chart of a time-oriented simulation. 

PROGRAM LOGIC 

Figure 4-1 is the logic flow chart of a time-oriented simulation program. Figure 
4-2 is a listing of the 39 statements of the program. 

After reseeding the random-number generator, the program asks the 
user to enter the total number of time units to be simulated. It then establishes 
an all-encompassing FOR-NEXT loop that will execute as many iterations as the 
user selected, one for each unit of time. 

Now the program calls the arrival generator to see how many customers 
arrive during the current time unit ("Get Arrivals"). We shall discuss the prob
lems associated with arrival and service-time generators in Chapter Six. The 
number of arrivals is returned from the arrival generator in a field called AR
RIVALS and is added to a field called TOTAL.ARRIVALS. 

The ARRIVALS are then figuratively placed on the waiting-line queue 
by adding them to a field called QUEUE ("Put Arrivals on Work Queue"). 

We test to see whether a customer is currently receiving service ("Test 
for Service Complete"). The service time to be received by the current customer 
is stored in a field called SERVICE.TIME, which is decremented one unit each 
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250 

ST= ST- 1 

TS =TS+ 1 

TO= TO+ 0 

280 

DISPLAY 

40 

SUMMARIZE 

FIGURE 4-1 (continued) 

time the program executes an iteration until it is equal to zero. If SERV
ICE.TIME is greater than zero, it means that a customer is currently receiving 
service. 

If SERVICE.TIME is determined to be greater than zero, control is 
transferred to statement 250, SERVICE-TIME is decremented one time unit, 
and TOTAL.SERVICE.TIME is incremented by one time unit. All customers 
in the QUEUE remain there; and QUEUE is added to TOT AL.QUEUE, which 
is the total number of time units spent in the waiting line by all customers who 
had to wait. Then the program branchesto the "Display Results" subroutine, 
which depicts what transpired during the iteration, which then terminates. 

If SERVICE.TIME is equal to zero, a test is performed to see whether 
a customer who has been served is still in the service facility ("Test for Service 
Just Completed"). This test involves seeing if the SERVICE.INDICATOR is 
equal to one or zero. If it is equal to one, meaning a customer has just completed 
service and is still in the service facility, two things are done: The SERV
ICE.INDICATOR is reset to zero, and the EXIT.QUEUE is incremented by 
one, effectively removing the customer from the service facility. If the SERV
ICE.INDICATOR is equal to zero, the program skips, around the two previous 
statements and goes directly to statement 160 ("Fill the Service Facility"). 

Before filling the service facility, it is necessary to see whether or not 
there is anybody waiting ("Test for No Queue"). If QUEUE is equal to zero, it 
is a "do nothing" iteration, and the program branches directly to statement 280, 
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Ok 
LI ST -200 
10 TIME ORIENTED SIMULATim 
20 RANDOMIZE TIME 
:30 CLS: H..JPUT 11 ENTER TOTAL TI ME TO BE SIMULATED 11 

; TOTAL, TI ME 
40 FOR I=l TO TOTAL.TIME 
50 ' GET ARRIVALS 
60 GOSUB 440 ·' ARRIVAL GENERATOR 
70 TOTAL. ARR I VALS=TOTAL. ARR I t.,.'ALS+ARR I '.JALS 
80 ' PUT ARRIVALS ON klORK QUEUE 
'7'0 QUEUE=QUEUE+ARRPJALS 
100 ' TEST FOR SERiJI CE COMPLETE 
110 IF SERVICE.TIME>O THEN 250 
120 ' TEST. FOR SERVICE JUSi COMPLETED 
130 IF SE Rt) I CE. I ND I CATOR=O THEN 160 
140 SERlJI CE, INDI CATOR=O 
150 EXIT.QUEUE=EXIT.QUEUE+l 
160 ' FILL THE SERVICE FACILITY 
170 ' TEST FOR NO QUEUE 
180 IF QUEUE=O THEN 280 
190 QUEUE=QUEUE-1 
200 , 
Ok 

LI ST 210-390 
210 SER'-JICE.INDICATOR=1 
220 GET SERVICE TIME 
230 GOSUB 500 ' SERVICE TIME GENERATOR 
240 SERVI CE , TI ME=NEW. SER'·.J I CE.TI ME 
250 SERVICE.TIME=SERVICE.TIME-1 
260 TOTAL. SERVI CE. TIME=TOTAL. SERlJI CE. TIME+ 1 
270 TOTAL.QUEUE=TOTAL.QUEUE+QUEUE 
280 'GOSUB 320 
290 NEXT I 
300 GOSUB 580 
310 END 
320 ' DISPLAY RESULTS 
330 CLS: LOCATE 1,16: PRINT"***** RESULTS OF TIMl::-ORIENTED SIMULATION*****" 
340 LOCATE 3,1: PRINT "TIME PERIOD #"I" OF"TOTAL,TIME 
350 LOCATE 5~5: PRINT "WORK QUEUE ";: 

FOR J=l TO QUEUE: PRINT"*":: NEXT J 
360 LOCATE 5,75: PRINT QUEUE . 
370 IF SERVI CE. IND1 CATOR=l THEN FLAG$="*" ELSE FLAG$=" 11 

380 LOCATE 10,5: PRINT "SERVICE FACILITY 11
;: 

PRINT FLAG$ 
390 LOCATE 10,75: PRINT SERVICE.INDICATOR 
OK 

400 LOCATE 15,5: PRINT "EXIT QUEUI:: II;: 
FOR J=l TO EXIT. QUEUE: PRINT II*";: NEXT J 

410 LOCATE 15,75: PRINT EXIT.QUEUE 
420 LOCATE 20,5: INPUT "TYPE <RETURN> OR <ENTER> TO CONTINUE 11 ;X 
430 RETURN 
440 ' ARRIVAL GENERATOR 
450 X=RND 
460 IF X<=. 4 THEN ARRivALS=l ELSE. ARRIVALS=O 
470 'IF X<=.9 THEN ARRIVALS=l: GOTO 490 
480 'ARRIVALS=2 
490 ·'RETURN 
500 ' SERVICE-TIME GENERATOR 
510 X=RND 
520 IF X<=.5 THEN NEW.SERVICE;TIME=l ELSE NEW.SERVICE.TIME=2 
530 'IF X<=.7 THEN NEW.SERVICE.TIME=2: GOTO 570 
540 'IF X<=.8 THEN NEW~St::RViCE.TIME=3: GOTO 570 

FIGURE 4-2 Program listing of a time-oriented simulation. 



550 'IF X<=.9 THEN NEW.SERVICE.TIME=4: GOTO 570 
560 'NEW.SERVICE.TIME=5 
570 RETURN 
580 ' SUMMARIZE RESULTS 
590 CL.S 
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600 J_OCATE 1,25: PRINT"***** SUMMARY OF RESULTS*****" 
OK 

Ok 
LIST 610-
610 LOCATE 4,1: PRINT "ARRIVAL RATE="TOTAL.ARRIVALS/TOTAL.TIME 
620 LOCATE 4,40: PRINT "SERVICE RATE="EXIT.QUEUE/TOTAL.SERVICE.TIME 
630 LOCATE 7~1: PRINT "ARRIVAL TIME="TOTAL.TIME/TOTAL.ARRIVALS 
640 LOCATE 7,40: PRINT "SERVICE TIME="TOTAL.SERVICE.TIME/EXIT.QUEUE 
650 LOCATE 10,1: PRINT "TOTAL QUEUE="TOTAL.QUEUE 
660 LOCATE 10,40: PRINT "AVERAGE QUEUE="TOTAL.QUEUE/TOTAL.TIME 
670 LOCATE 13,1: PRINT "AVERAGE WAIT="TOTAL.QUEUE/TOTAL.ARRIVALS 
680 LOCATE 13,40:PRINT"FACILITY LOADING= ... TOTAL.SERVICE.TIME/TOTAL.TIME 
690 LOCATE 16~1: PRINT "BUSY TIME="TOTAL.SERVICE.TIME 
700 LOCATE 16,40: PRINT "IDLE TIME="TOTAL.TIME-TOTAL.SERVICE.TIME 
710 LOCF!TE 19,1: PRINT "TOTAL ARRIVALS="TOTAL.ARRIVALS 
720 LOCATE 1 9, 40 :. PR I NT "TOTAL SERVICES=" EXIT. QUEUE 
730 LOCA"rE 22, 1: PRINT "LEFT IN QUEUE="Q!.JEUE 
740 LOCATE 22,,;p: PRINT "LEFT IN SERVICE="SERVICE.INDICATOR 
750 RETURN 
OK 

FIGURE 4-2 (continued) 

which calls a subroutine to display the results of th~ iteration anq hence to 
statement 290, the NEXT I statement, tp terminate it. 

If QUEUE is greater t]lan zero, QUEUE is decremented by one,. effec
tiyely putting a customer into the service facility. Then we set the SERV
ICE.INDICATOR equ~l to one to indicate th~J the service facility is occupied: 
We call the service time subroutine and obtain a value of NEW.SERVICE.TIME 
that we set equal to the SERVICE.TIME for the customer. SERVICE.TIME is 
decremented by one to take into account the service received during the first 
time unit in the service facility, TOT .A-L~SERY~CE.TIME; is incremented by on~, 
and the customers waiting in the QUEUE are added to TOTAL.QUEUE. The 
program branches to display results· and then the iteration terminates. 

After all the predetermined time units have simulated, the program 
branches to a subroutine <;alled "Sulllmarize Results" and then ends. 

This is a demonstration program, so after every iteration~ that is, tirp.e 
interval-the "Display Restdts" subroutine runs to show the current condition 
of the waiting-line system. The subrouting shows the res.ults of each iteration of 
the time-oriented simulation. It is. labeled with the iteration number and the 
total number of iteratio~s to be performed; for example, "Time Period # 1 of 
20" (see Figure 4-3). 

The waiting line (called "Work Qyeue") is shown as a series of asterisks, 
one for each customer who had to wait for this time period. The display would 
show one asterisk for each customer waiting when the period began, plus one 
for each new arrival, minus the one who gqes into the service facility, if anyone 
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ENTER TOTAL TIME TO BE SIMULATED ? 20 

***** RESULTS OF TIME-ORIENTED SIMULATION ***** 
TIME PERIOD # 8 OF 20 

WORK QUEUE * 

SERVICE FACILITY * 

EXIT QUEUE ** 

TYPE <RETURN> OR <ENTER> TO CONTINUE ? 

***** SUMMARY OF RESULTS ***** 

ARRIVAL RATE= .4 SERVICE RATE= .s 

ARRilJAL TIME= 2.5 SERVI CE TIME= 2 

TOTAL QUEUE= 3 AVERAGE QUEUE= .15 

AVERAGE WA IT= .375 FACILITY LOADING= .7 

BUSY TIME= 14 IDLE TIME= 6 

TOTAL ARRIVALS= 8 TOTAL SERVICES= 7 

LEFT IN QUEUE= 0 LEFT IN SERVICE= 1 
01< 

FIGURE 4-3 Steps in running a time-oriented simulation; establishing the total time of the 
simulation; reporting the results of each iteration; and summarizing the results 
of the simulation run. 

2 

does. The number of customers in the waiting line is shown at the right of the 
row of asterisks. 

The next line of the display depicts the current condition of the service 
facility. If the facility is engaged, a single asterisk is displayed with the number 
I on the right. If the service facility is empty, no asterisk is shown and a 0 is 
displayed on the right. 

The last line shows the exit queue. A row of asterisks symbolically rep
resents those customers who have already received service, and the number is 
displayed on the right. The sum of the three lines,.-length of waiting line, 
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customer currently receiving service, and the exit queue-add up to the total 
number of arrivals up to and including the time period shown. 

The "Summarize Results" subroutine runs after the last iteration and 
tells what happened during the run (Figure 4-3). In a simulation experiment 
there are usually several runs. The following quantities are displayed: 

ARRIVAL RATE This, you recall, is one of the two main parameters of a waiting
line simulation. It is what we call an exogenous variable; that is, a quantity that 
is fed in by the user. All the same, we calculate it by dividing TOTAL.TIME 
(another exogenous variable) into TOTAL.ARRIVALS. We do this to check on 
the program and give the user confidence that the random-number generator 
is truly simulating what the user wants it to simulate. Actually, if the calculated 
arrival rate is different than that which the user programmed into the arrivals 
generator, it nearly always means that the simulation run was not long enough 
for the law of averages to work out. Speaking technically, we would say that the 
waiting-line system had not yet reached a "steady state." This would be taken 
as an indication that the simulation run was not long enough. 

SERVICE RATE This is another exogenous variable. We recalculate it as a check 
on our work and the work of the program, and especially to see whether the 
simulation run is long eno~gh for the system to attain a steady state. We divide 
EXIT.QUEUE (all those who have completed service) by TOT AL. 
SERVICE.TIME. This neglects the customer still in service, but over the length 
of a typical simulation run, the error introduced is negligible. 

ARRIVAL TIME This is simply the reciprocal of ARRIVAL RA TE, and is in
cluded for the benefit of users who prefer to think of time rather than rate. 
Actually, in time-oriented simulations, it is most common to speak of arrival rate 
rather than arrival time. 

SERVICE TIME This is simply the reciprocal of SERVICE RATE. In time-ori
ented simulations, it is most common to speak of service time rather than service 
rate. 

TOTAL QUEUE This is the total number of customer periods spent waiting in 
line, or the total time wasted. Sometimes we program in an additional probe 
and report the maximum queue; that is, the longest queue observed during any 
single time period. This latter figure would be important in establishing the 
number of seats required in a waitingroom, for example. TOTAL.QUEUE is 
known as an endogenous variable because its value is determined solely by events 
that occur within the waiting-line system. 

AVERAGE QUEUE This is the number of customers we may expect to see wait
ing during any time period. It is found by dividing TOTAL.TIME into 
TOT AL.QUEUE. This quantity is a measure of how busy the service facility 
appears to be. 
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AVERAGE WAIT This tells how long each customer may expect to wait for service. 
It is th~ best measure of customer dissatisfaction arising from the inability of 
the service facility to process customers fast enough to fulfill their expectations. 
It 'is found by dividing TOT AL.QUEUE by TOTAL.ARRIVALS. 

BU$Y TI:l\.{E This measures the productive time of the service facility. It is simply 
i.;OTAL.SERVICE.TIME. Sometimes users find it convenient to divide ~USY 
TIME by TOT AL.TIME and express it as a percentage. A result between 70 
and &O percent busy usually denotes an efficient system. 

~DLE TIME Thi~ is the unproductive time of the system, when the service fa~ility 
is doing nothing, waiting for customers to arrive. It is just the difference between 
BUSY: TIME and TOT AL.TIME. Sometimes idle time represents an oppor
tunity for improvement. The service facility might be eliminated if it is idle too 
mµ.ch of the time, or it could be assigned to perform other duties while waiting 
for ·customers. An example is assigning tape librarians in a computer center to 
clean tapes while waiting for operators to make withdrawals or returns of mag-. 
nedc media. 

·The m~xt four quantities audit the performance of the simulation run 
~md stre:µgth~n the confidence of the user in the results: 

T()T.J\LARRIV.ALS The total number of simulated customers entering the system. 

TPT;\~ ~~RVICES The total number of customers completing service during the 
simµlatioI1 rm1; final contents of the EXIT.QUEUE. 

LEFT IN: QUEUE The number of customers left in the waiting line (that is, quantity 
QUEUE) when the simulated time expires. 

LEFT IN SERVICE The number of customers left in the service facility when the 
simufated time expires (in this case, I or 0, the final condition of the service 
iqdicator). 

RE~µLTS 

To obtain some results from this simulation, we have to assign some values to 
arriva,l rate ,a,nd service time. We shall set the arrival rate initially at .4 arrival 
p~~ time period. The following subroutine will do this: 

X=RND 
IF . 4 THEN ARRIVALS= 1 ELSE ARRIVALS 0 

R~TU~N 

We shall set the service time equal to 1.5 time units; which is the same 
a~ saying the service rate is equal to .67. Since the service rate significantly exceeds 
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the arrival rate, we would expect there to be little waiting. (When the arrival 
rate exceeds the service rate, the length of the queue tends to

0

infinity.) We shal! 
use the following subrout~ne: 

X RND 

IF X < = . 5 THEN NEW. SERVI CE. TIME= 1 

ELSE NEW. SERVI CE . TIME = 2 

RETURN 

The fundamental relationships between waiting line variables state that: 

QUEUE= ARRIVAL.RA TE*AVERAGE.WAIT 
SYSTEM.WAITING.TIME= AVERAGE.WAIT+ SERVICE.TIME 
QUEUE+ SERVICE.INDICATOR= 

ARRIVAL.RA TE*SYSTEM.WAITING. TIME 

If we run the simulation for 1,000 time periods, we find: 

ARRIVAL. RATE= . 429 

ARRIVAL. TIME= 2 . 33 

SERVICE.RATE=.67 

SERVICE. TIME= 1. 50 

TOTAL. QUEUE= 250 

AVERAGE.QUEUE= .25 

AVERAGE. WAIT=58 

BUSY. TIME= 642 

(Should be .4) 
(Should be 2.5) 
(Should be .67) 
(Should be 1.50) 

:rnq:: ~ TIME= 358 

FACILITY.LOADING=.64 

TOTA!... ARRIVALS= 429 TOTAL. SERVICES= 429 

LEFT. IN. QUEUE= 0 LEFT. IN. SERVICE= 0 

The calculated length of queue is: 

QUEUE .43*.58= .25 

The total ti~e in the system is: 

SYSTEM. WAITING. TIME 7 . 98 + 1. 50 = 2. 1 
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The total number of customers in the system is: 

QUEUE+SERVICE. INDICATOR = .43*2 .1 . 9 

Figuring this another way: 

QUEUE+SERVICE. INDICATOR= QUEUE+ 

SERVICE. INDICATOR * FACILITY. LOADING 
. 25 + 1* . 64 = . 89 

because the service indicator is set to one only 64 percent of the time. So our 
simulation produces results in agreement with those expected. 

Note that the results are not in complete agreement. For example, the 
arrival rate was input at .4 per unit time and the average arrival rate came out 
to be .43. This is characteristic of a random process. You would expect that after 
the simulation program runs for a large number of iterations, the average results 
would converge to a value and we would find that the system was· in a steady 
state. In the case of this example, this is not true. Let's see what happens as the 
simulation program starts up. 

We shall run the program for 5, 10, ... 45, 50 iterations and tabulate 
the calculated arrival and service rates, average length of queue, and facility 
loading: 

ITERATION ARRIVAL.RATE SERVICE.RATE AVERAGE.QUEUE LOADING 

5 .80 .50 .20 .80 
10 .50 .57 .10 .70 
15 .40 .56 .00 .60 
20 .45 .53 .15 .75 
25 .32 .67 .04 .48 
30 .47 .55 .06 .73 
35 .43 .70 .06 .57 
40 .45 .59 .33 .68 
45 .47 .67 .11 .67 
50 .46 .65 .22 .64 

All we can really say is that the system approaches the expected value 
and then oscillates around it, achieving a kind of dynamic equilibrium. The 
condition of dynamic equilibrium becomes dearer if we look at simulations 
varying in length from 100 to 500 time units: 
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ITERATION ARRIVAL.RA TE SERVICE.RATE AVERAGE.QUEUE LOADING 

100 .42 .70 .20 .60 
200 .39 .68 .18 .56 
300 .42 .68 .29 .62 
400 .42 .68 .17 .61 
500 .37 .68 .17 .55 

Since we are randomly reseeding the random-number. generator, it is 
highly unlikely that you could ever reproduce these results. The "best" answer 
would be found by taking, say, 500 iterations as the run length, repeating the 
experiment several times, and averaging the results. The number of times you 
should repeat it can be found by statistics; it depends upon the spread you 
observe in the values in which you are intereste.d and the confidence you wish 
to place in the results. 

Now let's see what happens when we run a series of 500-iteration sim
ulations holding the service rate at a nominal .67 and increasing the arrival rate 
in steps of .05. We would expect that an incr~asingly long queue would form 
as the service facility becomes increasingly unable to handle the influx of cus
tomers: 

ARRIVAL.RA TE A.A. (CALC) S.R. (CALC) AVERAGE.QUEUE 

.40 .37 .68 .17 

.45 .46 .71 .22 

.50 .47 .67 .49 

.55 .51 .69 .34 

.60 .56 .66 1.20 

.65 .66 .67 3.91 

.70 .70 .71 3.55 

.75 .76 .68 17.10 

When the arrival rate exceeds the service rate, the waiting-line system 
is said to be unstable. The queue will just grow and grow, and many customers 
will never get served at all. 

EXAMPLE 

A certain factory has a large number of bench-welding machines. On 70 percent 
of the work days none of the bench welders fail. On 20 percent of the days, one 
welder fails. On 10 percent of the days, two fail. 

Inoperable machines are taken to a repair shop. On average, 30 percent 



88 TIME-ORIENTED SIMULATION 

of them are fixed in one day, 40 percent are, fixed in two days, 10 percent are 
fixed in three days, I 0 percent are fixed in four days, and I 0 percent are fixed 
in five days. 

Determine the average number of machines out of service at a time. 
How much space must be provided for storage of broken machines outside of 
the repair shop? Wpat is the average loading on ihe rt!pair shop? Run the 
simulation for five years of simulated time. · 

First we calculate the average arrival and stffvice rates to see wheth~r 
the problem has a solution (i.e., is not unstable). 

ARRIVAL.RA TE= 0*.7 +I *.2 + 2*. l = .40 

SERVICE.RATE 1/(1*.3+2*.4+3*.1+4*.1+5*.l)= .43 

Since the service rate is greater than the arrival rate, the problem has a solutio:q; 
that is, a finite queue. · " 

We write the arrival and service generators by using a cumulative dis
tribution functio11 of the giyen empirical qistribution: 

X=RND 
IF X < = . 7 THEN ARRIVALS= 0 : RETURN . 

.1 • ' 

IF X<=. 9 THEN ARRIVALS 1: RETURN 
ARRIVALS=2 
RETURN 

X=RND 
IF X < = . 3 THEN NEW. SERVI CE~ TlME = 1 : RETURN 
IF X<=. 7 THEN NEW. SERVICE. TIME=2: RETURN 
IF X<= .8 THEN NEW.SERVICE.TIME=3: RETURN 
IF X<=. 9 THEN NEW·. SERVICE. TIME 4: RETURN 

NEW . SERVI CE • Til\1~ == 5 
RETURN 

To keep track of the maximum value of QUEUE, we insert this statement 
into the prograrp.right after the one that accumulates TOT ALQUEU]£: 

TOT AL. QUEUE= TOT AL. QUEUE+ QUEUE 
IF QUEUE> BIG. QUEUE THEN BIG. QUEUE QUEUE 

We add the value of BIG.QUEUE to the "Summa.rize Results" subrqutine 
and, since there. is room at the end of the line, we document TOT AL.TIME: 

LOCATE 24, 1: PRINT "MAXIMUM QUEUE= "BIG, QUEUE 
LOCATE 24,40: PRINT "LENGTH OF RUN "TOTAL.TIME 
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We find that the average number of machines out of service at a time 
would be: 

MACHINES.IN.REPAIR.SYSTEM=ARRIVAL.RATE* 
(AVERAGE.WAIT+SERVICE.TIME) 
.41*(9.7+2.28) = 4.9 or 5 

SUMMARY 

Space would have to be left to accommodate 14 machines awaiting repair. 
The average loading on the service facility is . 92. 

In this chapter we have concentrated upon the logical design and operational 
characteristics of the time-oriented or time-slice simulation. This is the easiest 
kind of simulated queuing system program to understand, although it can be 
expensive in terms of running time. 

For example, in simulating a traffic light, the time increment might be 
seconds and the time of interest might be four hours. Each run would therefore 
require 14,400 iterations. Jn a tool-crib simulation, the time increment might be 
five seconds and the time of interest might be seven hours; each run would 
require 5,040 iterations. These experiments would typically require 20 runs to 
converge on a credible answer. 

We introduced the major components of a waiting-line system and ex
plained how the behavior of the system is determined by the interaction between 
the arrival rate and the service rate. 

We listed some of the characteristics of waiting-line systems that may be 
determined by simulation: service-facility loading, average length of queue, and 
average waiting time, and discussed why they are important to system developers 
and users. 

After differentiating between time-oriented and event-oriented simu
lations, we discussed in detail the programming logic of the time-oriented sim
ulation. 

The arrival- and service-time generators of the program were configured 
to produce simple uniform distributions. Then the program was used to present 
a step-by-step picture of the operation of the waiting-line system and to validate 
the fundamental relationships of waiting lines. 

We showed how the system converged fairly rapidly on average values 
of variables after start-up but how it tends to oscillate about the mean values in 
a kind of dynamic equilibrium. We also demonstrated the meaning of an unstable 
system by observing how the system behaved whert the arrival rate exceeded the 
service rate. 

Finally, we used the program to solve a problem in planning industrial 
repair facilities. 





-- CHAPTE~ FIVE--

Event -Oriented 
Simulation 



92 EVENT-ORIENTED SIMULATION 

Unlike the time-oriented simulation in which the program looks sequentially at 
very small increments of time, the event-oriented simulation fixates upon arrivals 
of customers. It processes the customer as far as it is able until it encounters a 
previous customer still in the system; then the customer must wait until the 
desired service facility is free. 

However, when there are long waits between customers, the program 
skips over the times during which there are no arrivals. In many .situations, 
customers tend to arrive in bunches; in those instances, the event-oriented sim
ulation can depict system behavior much more efficiently than can time-oriented 
simulation. Some examples of situations in which customers arrive in bunches 
are: employees lining up at tool cribs when jobs tend to be dispatched at the 
start bf shifts, at office copying machines when deadlines coincide, or at office 
canteens during coffee breaks; warplanes returning to an airfield or aircraft 
carrier after a mission; customer arrivals at banks during rush hours; cars ar
riving at a traffic light after having been bunched by a previous traffic light; 
and transport trucks arriving at a truck stop or weigh station (they tend to travel 
in "convoys," as CB listeners know). 

We are going to examine a program that produces a simple event-ori
ented simulation. As ill the case of our time-oriented program, this one will have 
a singIC service facility and all customers will arrive from the same population. 
Moreover, all customers will be served on a first-come, first-served basis; and 
the service they receive will be the same except for variation in the time it takes 
to render it. 

Since the event-oriented simulation is conceptually more difficult than 
the tirrie-oriertted simulation, we will use a logic-flow diagram to explain the 
workings of the program. Figure 5-1 is the logic-flow diagram. 
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PROGRAM LOGIC 

There are five paths in this program that accommodate the possible states of 
the system: 

PATH #1 A customer arrives, finds the service facility empty, and goes directly 
into service with no waiting. 

PATH #2 Service is completed for a customer. The customer leaves the service 
facility and joins the exit queue or pool of serviced customers, but there is no 
customer waiting. Path #2 sets the stage for Path # 1. 

PATH #3 A customer arrives to find the service facility occupied. The customer 
must join the waiting-line queue. 

PATH #4 A customer completes service, leaves the service fadlity, and joins the 
pool of serviced customers. However, unlike Path #2, other customers are wait
ing, and one of them goes into the service facility. 

PATH #5 The total elapsed simulated time equals or exceeds the predetermined 
time of the. simulation run. The program displays the results of the tun and 
terminates. 

As in the case of the time-oriented simulation, there are three exogenous, 
. or input, variables: 

1. ARRIVAL.TIME, which is generated by a subroutine that utilizes the RND 
function 

2. SERVICE.TIME, which is also generated by a random number subtoutirte 
3. TOTAL.TIME, which is typed in by the user 

There are four variables that are used to switch control of the program 
among tqe five paths: 

1. ARRIVAL.ALARM is the simulated time remaining until the arrival of the next 
customer. 

2. SERVICE.ALARM is the simulated time remaining for the customer currently 
receiving service. 

3. SERVICE.INDICATOR is a binary variable thattells whether the service facility 
is currently occupied (1) or vacant (0). 

4. QUEUE is the number of customers currently making up the waiting line. 

The values of ARRIVAL.ALARM and SERVICE.ALARM are com
pared to tell whether the service fac:ility is currently busy or idle. If SERV
I CE.ALARM is less than ARRIVAL.ALARM, the service facility is idle. If SERV
ICE.ALARM is greater than ARRIVAL.ALARM, the service facility is busy. If 
the service facility. is idle, then a· customer will enter from the queue provided 
QUEUE is greater than zero (Path #4); or program control will be switched to 
Path #2 if there is no queue. This, in turn, sets the system up so the next cdstomer 
arriving can go directly into service (Path #1). During a traverse of Path #2, 
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READ DATA DISPLAY PATH 1 

50 550 

[) 

210 

440 
320 

SI =0 
SA= M 
POOL = POOL + 1 

TST = TST +ST DISPLAY PATH 2 

SA= SA+ ST 

[) 

M = M +AT 0=0+1 
AR= AR+ 1 TO= TO+ 1 

WT = WT + (SA - M) 

FIGURE 5-1 Logic flow diagram of an event-oriented simulation. 

SERVICE.ALARM is arbitrarily set equal to ARRIVAL.ALARM in order to 
switch program control to Path # 1. 

If the service facility is busy, which is indicated by SERVICE. 
ALARM greater than or equal to ARRIVAL.ALARM and SERV
ICE.INDICATOR equal to 1, then newly arriving customers must join the wait
ing-line queue (Path #3). However, if SERVICE.ALARM has been arbitrarily 
set equal to ARRIVAL.ALARM, then SERVICE.INDICATOR will be equal to 
0, control will be switched to Path #1, and a newly arriving customer will go 
directly' into th~ service facility (Path # 1 ). 

The service-time generator is called when a customer enters the service 
facility either directly (Path #1) or from the waiting-line queue (Path #4). In 
both cases, the SERVICE.ALARM is incremented by the amount of SERV
I CE. TIME returned from the service-time generator; and the TOT AL. 
SERVICE.TIME is also incremented by the new value of SERVICE.TIME. 

Although we can use the ARRIVAL.ALARM to keep track of total elapsed 
time, we cannot use SERVICE.ALARM to keep track of total elapsed service 



50 

M = M +AT 
AR= AR+ 1 

DISPLAY PATH 3 

550 

Q=Q+1 

WT=WT+QxST 
POOL= POOL +.1 
SA= SA+ ST 
TST = TST +ST 

FIGURE 5-1 (continued) 
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DISPLAY PATH 4 

DISPLAY PATH 5 

SUMMARIZE 

END RUN 

time, because we arbitrarily equate it to ARRIVAL.ALARM in Path #2; that's 
the reason for storing total elapsed service time in TOTAL.SERVICE.TIME. 

The arrival-time generator js called whenever the current arrival is dis
posed of by either being admitted directly into the service facility (Path# 1), or 
being placed on the waiting-line queue (Path #3). The new value of AR
RIVAL. TIME returned from the generator is added to ARRIVAL.ALARM, 
and the count ARRIVALS is incremented by one. 

Whenever comparison of SERVICE.ALARM with ARRIVAL.ALARM 
indicates that a service has been completed (Paths #2 and #4), the customer 
that has received it is symbolically kicked out of the service facility by incre
menting the variable POOL by one. 

When a customer joins the queue (Path #3), the total number of cus
tomers who had to wait (TOT AL.QUEUE) is incremented by one. Each time a 
customer leaves the waiting line to enter the service facility (Path #4), the total 
time customers spend waiting in line (WAITING.TIME) is increased by adding 
to it the product of the SERVICE.TIME of the customer just entering the service 
facility and the number of customers who have to wait for that customer (QUEUE). 



Not so obvious is the fact that this computation does not include part 
of the waiting time of a new arrival who joins the waiting-line queue during the 
time a customer is being serviced. This discrepancy is taken care of in Path #3 
by adding to WAITING.TIME the difference between SERVICE.ALARM and 
ARRIVAL.ALARM. 

PATH DISPLAYS 

Since this is a teaching program, it has been configured to show the condition 
of the waiting .. line system after the traversal of each program path. The display 
subroutine labels which path has been followed. It displays an asterisk for each 
customer who has arrived up to the time depicted, one for each customer cur
rently in the waiting line, a single asterisk if the service facility is currently 
occupied, and one for each customer for whom service is complete (POOL or 
Exit Queue). The display also shows the current value Qf the ARRIVAL.ALARM 
(total elapsed time) and the TOTAL.TIME, so the user can tell how long the 
simulation run has to go. Figure 5-2 shows the state of the system after a traversal 
of path #1. Figure 5~3 shows system state after traversing Path #2. Figure 
5...::4 show~ the system .after Path #3, and Figqre 5-5 after Path #4. 

The results of the simulation run are displayed after the display for Path 
#5 (see Figure 5""""6). The calculated values of ARRIVAL.RA TE and AR
RIVAL.TIME and of SERVICE.RATE and SERVICE.TIME are shown to in
dicate how closely the simulation is approaching a steady state (that is, how closely 
the calculated values approach the input parameters of the random generators). 

The results display also accounts for all customer arrivals: TO-

FIGURE s-2 Demonstration program showing the state of tM system after following Path 
#1. 

*°**** RESULTS OF EVENT-ORIENTl::D SIMULATION ***** 

FOLLOWING PATH #1 ~ ENTRY TO SERVI CE FACI UTY 

ARRIVALS ******* 
WORK QUEUE 

SERVICE INDICATOR * 

FACILITY OUTPUT ****** 

ARRIVAL ALARM"" 17;22116 X 2o TOTAL TIME 

i'YPE <~!:!TURN> OR {S:NTER> Tri ADVANCE PROGRAM ? 

7 

0 

6 
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***** RESULTS OF EVENT-ORIENTED SIMULATION ***** 

FOLLOWING PATH #2 - LEAVE SERVICE FACILITY EMPTY 

ARRIVALS ******* 7 

WORK QUEUE 0 

SERVICE INDICATOR ·o 

FACILITY O_UTPUT *'!!'~**** 7 

ARRIVAL ALARM= 17.22116 X 20 TOTAL TIME 

TYPE <RETURN> OR <ENTER> TO ADvANCE PROGRAM ? 

FIGURE 5-3 State of an event-oriented simulation system after following Patti 

T AL.ARRIVALS, TOT AL.SERVICES, LEFT.IN .QUEUE, and 
LEFT.IN.SERVICE. This is principally an· aµditing >function. 

We report TOTAL.q_UE~TE. This is fhe number of customers who had 
to wait. Unlike the time-oriented simulation, this progralll does npt gump every 
arrival on the queue, so ~t is easy to differentiate betwee,µ tho~e custo:rtuers who 
had to wait and those ,who \Vent.directly ir~to the seryice facility. w~ also report 
AVERAGE.QUEUE, which is equal to .. WAITI;c..Jp.TI.ME div~dedQy AR-
RIVAL.ALARM. . 

We report AVERAGE.WAIT, which is equal to WAITI~~.TIME 
divided by ARRIVALS (this effectively includes those cust~mers -who went ·di:· 
reedy into service and sets their waitipg times· to zer?)· We also report 

FIGURE 5-4 State of an event-ori~nted simula,tion system after following Path #3. 

***** RESULTS OF EVENT-ORIENTED SIMULATION ***** 

FOLLOWING PATH #3 - JOIN WORK QUEUE 

ARRIVALS *****~ 

l40RK QUEUE * 

SERVICE I~DICATOR * 

FA~ILITY OUTPUT **** 

ARRIVAL ALARM= 15.37126 X 20 TOTAL TIME 

TYPE <RETURN> OR <ENTER> TO ADVANCE PROGRAM ? 

6 

4 
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***** RESULTS OF EVENT-ORIENTED SIMULATION ***** 

FOLLOWING PATH #4 - ENTER SERVICE FACILITY FROM QUEUE 

ARRIVALS ****** 6 

WORK QUEUE 0 

SERVICE INDICATOR * 

FACILITY OUTPUT ***** 5 

ARRIVAL ALARM= 15.37126 X 20 TOTAL TIME 

TYPE <RETURN>. OR <ENTER> TO ADVANCE PROGRAM ? 

FIGURE 5-5 State of an event-oriented simulation system after following Path #4. 

MEAN.TIME.IN.QUEUE, which is equal to WAITING.TIME divided by 
TOT AL.QUEUE. 

Finally, we determine the loadinK on the service facility. We report 
BUSY.TIME, which is the same thing as TOTAL.SERVICE.TIME; and 
IDLE.TIME, which is the difference between TOTAL.TIME and 
TOTAL.SERVICE.TIME. FACILITY.LOADING is, of course, BUSY.TIME 
divided by TOT AL. TIME. Figure 5-7 lists all 110 statements of the program. 

FIGURE 5-6 Summary of the results of a simulation run. 

***** RESULTS OF SIMULATION ***** 

ARRIVAL RATE= .4 

ARRIVAL TIME= 2.5 

TOTAL QUEUE= 4 

AVERAGE WAIT= .4169846 

BUSY TIME= 13.59777 
FACILITY LOADING= .6798886 

TOTAL ARRIVALS= 8 

LEFT IN QUEUE= 0 
OK 

SERVICE RATE= .5147903 

SERVICE TIME= 1.942539 

AVERAGE QUEUE= .1577324 

MEAN TIME IN QUEUE= .8339693 

IDLE TIME= 6.40223 

TOTAL SERVICES= 7 

LEFT IN SERVICE= 1 



GK 
LI ST -200 
10 ' EVENT-ORIENTED SIMULATION 
20 FOR 1=1 TO 5: READ PATH.NAME$(!): NEXT I 
30 RANDOMIZE TIME 

EVENT-ORIENTED SIMULATION 99 

40 CLS: INPUT "ENTER LENGTH OF SIMULATION "; TOTAL.TIME 
50 IF SERVICE.ALARM < ARRIVAL.ALARM THEN 210 
60 IF SERVICE.INOICATOR=l THEN 320 
70 , 
80 / DIRECT ENTRY OF AN ARRIVAL INTO AN EMPTY SERVICE FACILITY 
90 SERVICE.INDICATOR=l 
100 GOSUB 610 ' GET SERVICE TIME FOR THIS ARRIVAL 
110 TOTAL.SERVICE.TIME=TOTAL.SERVICE.TIME+SERVICE.TIME 
120 SERVICE.ALARM=SERVICE.ALARM+SERVICE.TIME 
130 GOSUB 650 / GET TIME UNTIL NEXT ARRIVAL 
140 ARRIVAL.ALARM=ARRIVAL.ALARM+ARRIVAL.TIME 
150 ARRIVALS=ARRIVALS+1 
160 CLS: LOCATE 4,5: PRINT "FOLLOWING PATH tt"PATH.NAME$(1) 
170 GOSUB 690 ' DISPLAY RESULTS 
180 IF ARRIVAL.ALARM>TOTAL.TIME THEN 550 
190 GOTO 50 
200 , 
Ok 

Ok 
LI ST 210-400 
210 ' TEST QUEUE 
220 IF QUEUE>O THEN 440 
230 , 
240 'EMPTYING THE SERVICE FACILITY WITH NOBODY WAITING 
250 SERVICE.INDICATOR=O 
260 SERVICE.ALARM=ARRIVAL.ALARM 
270 POOL=POOL+1 ' EXIT FROM SERVICE FACILITY 
280 CLS: LOCATE 4,5: PRINT "FOLLOWING PATH #"PATH.NAME$(2) 
290 GOSUB 690 ' DISPLAY RESULTS 
300 GOTO 50 ' SYSTEM IS SET UP FOR A DIRECT ENTRY 
310 , 
320 ' SERVICE FACILITY ENGAGED, ARRIVAL JOINS WORK QUEUE 
330 QUEUE=QUEUE+l 
340 TOTAL.QUEUE=TOTAL.QUEUE+l 
350 WAITING.TIME=WAITING.TIME+<SERVICE.ALARM-ARRIVAL.ALARM) 
360 GOSUB 650 / GET TIME TO NEXT ARRIVAL 
370 ARRIVAL.ALARM=ARRIVAL.ALARM+ARRIVAL.TIME 
380 ARRIVALS=ARRIVALS+l 
390 CLS: LOCATE 4,5: PRINT "FOLLOWING PATH #"PATH.NAME$(3) 
400 GOSUB 690 ' DISPLAY RESULTS 
Ok 

Ok 
LIST 410-600 
410 IF ARRIVAL.ALARM>TOTAL.TIME THEN 550 
420 GOTO 50 
430 ' 
440 ' EMPTYING THE SERVICE FACILITY~ ARRIVAL ENTERS FROM QUEUE 
450 QUEUE=QUEUE-1 
460 GOSUB 610 ' GET SERVICE TIME 
470 TOTAL.SERVICE.TIME=TOTAL.SERVICE.TIME+SERVICE.TIME 
480 SERVICE.ALARM=SERVICE.ALARM+SERVICE.TIME 
490 WAITING.TIME=WAITING.TIME+QUEUE*SERVICE.TIME 
500 POOL=POOL+l 
510 CLS: LOCATE 4,5: PRINT •FOLLOWING PATH # 11 PATH.NAME$(4) 

FIGURE 5-7 Program listing for an event-oriented simulation. 
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520 GOSUB 690 ' DISPLAY RESULTS 
530 GOTO 50 
540 ; 
550 ' FINISH UP 
560 CLS: LOCATE 4,5: PRINT "FOLLQl...!ING PATH #"PATH.NAME$(5) 
570 GOSUB 690 ' DISPLAY RESULTS 
580 GOSUB 920 ' SUMMARIZE RESULTS 
590 END 
600 , 
OK 

OK 
LI ST 610-800 
610 ' SERVICE TIME SUBROLITINE 
620 SERVICE.TIME=RND*3 
630 RETURN 
640 , 

' ARRIVAL TIME SUBROUTINE 
ARRIVAL.TIME=RND*5 

670 RETURN 
680 , 
690 ,. DISPLAY SUBROUTINE 

IF SERVICE.JNDICATOR=1 THEN FLAG$="*" ELSE FLAG$="" 
0 LOCATE 1,16: PRINT"***** RESULTS OF EVENT-ORIENTED SIMULATION*****" 

720 LOCATE 7,5: PRINT "ARRIVALS "; 
730 FOR I=l TO ARR!VALS: PRINT"*";: NEXT I 
740 LOCATE 7,75: PRINT ARRIVALS 
750 LOCATE 10,5: PRINT "ltJORK QUEUE 11

; 

760 FOR I=1 TO QUEUE: PRINT"*";: NEXT I 
770 LOCATE 10-, 75: PRINT QUEUE 
780 LOCATE 13,5: PRINT "SERVICE INDICATOR";: PRINT FLAG$ 
790 LOCATE 13,75: PRINT SERVICE.INDICATOR 
800 LOCATE 16,5: PRINT "FACILITY OUTPUT ": 
OK 

Ok 
LI ST 810-1000 
810 FOR I=1 TO POOL: PRINT"*";: NEXT I 
820 LOCATE 16,75: PRINT POOL 
830 LOCATE 19 ,5: PRINT "ARRIVAL ALARM="ARRIVAL.ALARM'i X "TOTAL. TIME" TOTAL TIME" 
840 LOCATE 22,5: INPUT "TYPE <RETURN> OR <ENTER> TO ADVANCE PROGRAM ";X 
850 RETURN 
860 DATA "1 - ENTRY TO SERVICE FACILITY 
870 DATA "2 - LEAVE SERVICE FACILITY EMPTY 
880 DATA 11 3 - JOIN WORK QUEUE 
890 DATA 11 4 - ENTER SERt.,IICE FACILITY FROM QUEUE" 
900 DATA 11 5 - END OF SIMULATION RUN 
910 , 
92Q ~ RESULTS SUBROUTINE 
930 Cj..S 
940 LOCATE 1,23: PRINT"***** RESIJLTS OF SIMULATION*****" 
950 LOCATE 4;1: PRINT "ARRIVAL RATE="ARRIVALS/TOTAL.TIME 
960 LOCATE 4,40: PRINT "SERVICE RATE="POOL/TOTAL.SERVICE.TIME 
970 LOCATE 7, 1: PRINT "ARRIVAL TIME="TOTAL. TIME/ARRIVALS 
980 LOCATE 7,401 PRINT "SERVICE TlME="TOTAL.SERVICE.TIME/POOL 
990 LOCATE i 0 ' 1 : PR I NT II TOTAL QUEUE= II TOTAL. QUEUE . 
1000 LOCATE 10,40: PRINT "AVERAGE QUEUE="WAITING.TIME/ARRIVAL.ALARM 
OK 

FIGURE 5-7 (continued) 
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01< 
LIST 1010-
1010 LOCATE 13, 1: PRINT "AVERAGE WAIT="WAITING. TIME/ARRIVALS 
1020 LOCATE 13,40: PRINT "MEAN TIME IN QUEUE:i:"WAITI~G.TIME/TOTAL.QUEUE 
1030 LOCATE 16, h PRINT "BUSY TIME="TOTAL.SERVICE.TIME . 
1040 LOCATE 16,40: PRINT "IDLE TIME="TOTAL.TIME-TOTAL.SERVICE.TIME 
1050 LOCATE 17,1: PRINT "FACILITY LOADING="TOTAL.SERVJCE.TIME/TOTAL.TIME 
1060 LOCATE 19,1: PRINT "TOTAL ARRIVALS="ARRIVALS 
1070 LOCATE 19,40: PRINT "TOTAL SERVICES="POOL 
1080 LOCATE 22,1: PRINT "LEFT IN QUEUE="GIUEUE 
10?0 LOCATE 22,40: PRINT "LEFT IN' SERVICE= ... SERVICE.INDICATOR 
110d RETURN . , , . ' 

01< 

~IG~Rl; 5-7 (continued) 

COMPARISON PF RESULTS 

We ran the event-oriented simulation program with inputs comparable to those 
of the time-oriented simulation program. You may recall that the arrival rate 
for the iime;.oriented simulation was .4 arrivals per unit time. In the event
oriented simulation, we used this arrival generator: 

' ARRIVAL TIME SUBROUTINE 
ARRIVAL. TIME= RND*5 
RETURN 

This subroutin~ generates a decimal value of time be~ween arriyals that 
can range from 0 to 5~ Sfat~sticali}r the expected value will be 2.5, which would 
produce an average arrival rate of A. This procedure involves randomly sam
pling from a uniform distribution: · ·· 

We ase t~is sµbrou~ine to generate a service rate of :67; 

' SERVI CE TIME GENERATOR 
9ERVICE. TIME;::: RND*.3 
RETURN 

This subroutine generates a decimal value of service time that can range 
from 0 to 3. The expected vah+e is l,5; which produces Gl-I.l avera$e §ervice rate 
of .67. , ' ·· . 

We ran the event .. oriented simulation for 1,000 µ.nits of simulated tim~. 
(Note that when y9u wapt to mak·e a long run with a teachin,g progpm, you can 
save a lot of time and trouble by "commenting ouC the path-by:path results; 
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just use the BASIC screen-editing capability to insert apostrophes after the line 
number of the statements that call or label the path-results display.) 

Comparison of Results of Time- and Event-Oriented Simulations 

QUANTITY TIME-ORIENTED EVENT-ORIENTED 

ARRIVAL.RATE .43 .41 
ARRIVAL.TIME 2.33 2.47 

SERVICE.RATE .67 .68 
SERVICE.TIME 1.50 I .48 

TOT AL.ARRIVALS 429 405 
TOTAL.SERVICES 429 404 
LEFT.IN.QUEUE 0 0 
LEFT.IN.SERVICE 0 1 

TOTAL.QUEUE 250 169 
AVERAGE.QUEUE .25 .24 
AVERAGE.WAIT .58 .59 

BUSY.TIME 642 597.84 
IDLE.TIME 358 402.16 
FACILITY.LOADING .64 .60 

These results are all within the range of expected statistical variation in 
random processes; they indicate that results are independent of whether time
oriented or event-oriented simulation programs are used. The choice is usually 
dictated by considerations of efficiency. Frequency of arrivals is usually not a 
consideration, because the time slice can be chosen to accommodate as much or 
as little time between arrivals as may be required. Rather, the event-oriented 
simulation is clearly superior from the standpoint of efficiency when customers 
tend to arrive in tight bunches with long periods in between. 

EXAMPLES 

FORTUNE TELLER The first example concerns simulating the waiting line outside 
a fortune teller's tent at a county fair. The average time between customer arrivals 
is 25 minutes plus or minus 7 minutes. The fortune teller takes 25 minutes plus 
or minus 15 minutes to predict the customer's future. Simulate the flow of 50 
customers through the fortune teller's tent. 

We simulate the customer arrival time with a uniform distribution. The 
25 plus or minus 7 minutes corresponds to a uniform distribution between 18 
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and 32 minutes. We can simulate this distribution by making a random choice 
between 0 and 14 and adding 18 to it: 

ARRIVAL. TIME= RND* 14 + 18 

We simulate the service-time distribution by making random choices 
between 0 and 30 and adding 10. 

SERVICE. TIME= RND*30 + 10 

To simulate 50 customers when customers arrive 25 minutes apart, we 
shall require 50 x 25, or 1,250 minutes. 

The principal results from running this simulation are: 

AVERAGE QUEUE = 1. 75 CUSTOMERS 

AVERAGE WAIT 42. 22 MINUTES 

FACILITY LOADING . 99 

As a check on our work, we find that the average time between customer 
arrivals was 24. l minutes, the average service time was 25.8 minutes, and there 
were 54 arrivals. 

We observe that the fortune teller was busy almost all the time, but 
people would have to really believe in prognostication to wait on average three 
quarters of an hour to have their fortunes told. 

BLOOD BANK Donors arrive at a blood clinic every 600 seconds plus or minus 
600 seconds. There is a single bed, and it takes between 150 and 450 seconds 
to give blood. Simulate the flow of 1,000 donors through the clinic. 

We generate arrivals with the statement: 

ARRIVAL. TIME= RND* 1200 

We generate services (that is, giving blood) with the subroutine: 

SERVICE. TIME RND*300+150 

With an average interarrival time of 600 seconds to generate 1,000 ar
rivals will require 600,000 seconds; this establishes the value of TOTAL.TIME. 
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The results are: 

AVERAGE.QUEUE 0.1 
AVERAGE.WAIT 59.5 
FACILITY.~OADING = .48 

As a ch~ck on our work, we find that the average time between arrivals 
is 619 seconds, the average service time is 299 seconds, and 970 donors arrived 
at the clinic. 

Here facility loading is less than 50 percent and donors wait less than a 
minute. 

CATALOG ORDER COUNTER Customers arrive at a catalog service counter with 
a mean time between a~rivals of 1,000 seconds plus or minus 1,000 seconds. 
The clerk serves the customers with an average service time of 700 seconds plus 
or minus 700 seconds. Si:qmlate the activity at this counter for 200 customers. 

We simulate the arrival of customers with the subroutine: 

ARRIVAL.TIME RND*2000 

We simulate customer service with the subroutine: 

SERVIC~. TIME= RND* 1400 

The simulation of 200 customers will require simulating 1,000 X 200 
200,000 s~conds. 

The results are: 

AVERAG]l;.QUEUE 
AVERAGE.WAIT 
FACILITY.LOADING 

.54 
544 

.71 

Checking our work, we find that the mean interarrival time is l ,Q05 
seco:nds, average service time is 720, and there were 199 arrivals~ (Intera:rrival 
time is a short way of saying time between arrivals; even if i~ is less meaningful, 
it is mqre commonly used in sirn_ulation literature.) · 

Here we have a moderately loaded facility. Waitipg lines were short but 
waiting time was significant, because customer service took a long tim~ even 
though there was a considerable time between arrivals. 
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TiCKET COUNTER Customers arrive at a ticket cou:htet with a mean interarrival 
time of 125 seconds plus or minus 125 seconds. It takes an average of 50 seconds 
to serve a customer; and the spread of service time is 25 seconds. Simulate the 
servicing of 1,000 customers. 

We simulate customer arrivals with the subroutine: 

ARRIVAL. TIME=RND; *250 

We simulate customer service time with the subroutine: 

SERVICE. TIME= RND*50 + 25 

We requite a simulation run of 125 x 1,000, or 125,000 seconds to 
generate 1,000 arrivals. 

The results are: 

AVERAGE.QUEUE 
AVERAGE.WAIT 

0.06 
= 7.17 

FACILITY.LOAbING = .39 

Checking on our work: Average interarrival time is 128 seconds, average 
service time is 49.7 seconds~ and there were 974 customer arrivals. 

We observe a lightly loaded facility with short waiting lines and short 
waiting time. 

SUMMARY 

This chapter has dealt with event-oriented simulations that move in time from 
arrival to. arrival and simulate the processing of each arrival, rather than sim
ulating all the activity in each of a large number of small, sequential time slices. 
The event-oriented approach is efficient when simulating systems in which cus
tomers tend to artive in bunches. 

We discussed the logic of an event-oriented computer simulation pro
gram, and reran a problem we had solved using the time-oriented computer 
simulation program to demonstrate that one can achieve comparable results 
using either approach. 

We then solved four elementary waiting-line problems using the event
orierited simulation prbgratn: a fortune teller, blood-donor clinic, catalog sales 
counter, and a ticket counter. 
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We have seen that the factors that determine how a queuing system behaves are 
the times between customer arrivals and the service times, or the reciprocals of 
these quantities: the arrivals per unit time and the services per unit time. Their 
values for any particular customer are governed by chance, or, to put it in 
technical language, are stochastically determined. 

BERNOULLI PROBABILITY 

A stochastic determination is made according to a probability law~ So far, we 
have considered three probability laws. The first was the Bernoulli case. Here 
the probability that an event will occur-for example, that a customer will arrive 
during the next time slice-remains constant. 

With a probability of .4, we can predict that, on average, a custbmer will 
arrive during four out of ten time slices. We found it was easy to simulate the 
Bernoulli case: We just drew a random number, and if it was less than or equal 
to .4, we said a customer would arrive during the next time slice; if the random 
number was greater than .4, we said no customer would arrive during the next 
time slice. Obviously, the BernouHi law works best when choosing arrivals per 
unit time in a time-oriented simulation. 

UNIFORM PROBABILITY 

The uniform-pr()bability law states that all values in a given range are equally 
likely tb occur. Suppose we say that service times are uniformly distributed 
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between 40 and 100 seconds. This means we will not see a service completed in 
less than 40 seconds or one that takes longer than 100 seconds. On the average, 
a service will take 70 seconds. This is the median value. It is found by adding 
the low value to the high value and dividing the sum by 2. 

We simulate a uniform-probability law by scaling our random numbers 
from the standard range of 0 to 1 up of down to whatever range we want to 
simulate. Say that range is 100 minus 40, or 60. We multiply our random number 
by the range (60) and add the offset froin 0, which, in this case, is 40. The 
uniform distribution can be used to select service times in a time-oriented sim
ulation or to select either service times or times between arrivals in an event .. 
oriented simulation. When we invoke the uniform-probability law we are assum
ing that all events designated by numbers ranging from A on the low side to B 
on th~ high side are equally likely. It models the condition of ignorance; as we 
learn more about a system, we shall be able to model it using a distribution that 
better describes its behavior. You can use Figure 6-1 to generate and display a 
uniform distribution. You will be asked to enter parameters A· and B and the 
range over which you wish to display the resulting histogram. 

EMPIRICAL DISTRIBUTION 

When we construct a probability law based upon experimental observation, we 
construct an empirical distribution. This is the best possible simulation of our 
experiment. However, how well it represents the general case depends e_ntirely 
upon the generality of the experimental situation. In our example of the bench
welder repair shop, experimental evidence showed that during the tiine period 
when observations were conducted, no welders failed on 70 percent of working 
days. Whether this can be taken as a general rule for the factory in question, 

_for similar factories, or for factories in general depends upon rriany factors. For . 
example: Are the welders oldor new? Heavily used or not? Well maintained or 
poorly maintained? Are the operators experienced or inexperienced? 

Recall that we simulated the distributions per unit time by adding the 
probabilities from the left and solving in terms of our random-number .draws. 
We chose a random number and asked if it was less than or equal to . 70, .80, 
.90, or 1.0 (the last decision was made irhplicitly). Depending upon the outcome 
of these decisions, we asserted that thete were to be 0, 1, 2, or 3 arrivals during 
the next time period. 

We used the same approach to select service times. We added the prob
abilities .30, .40, .10, .10, and .10, obtaining the cumulative value$ .30, .70, .80, 
.90, and 1 .O. Then we made a random draw and identified the lowest cumulative 
value greater than that draw. This enabled us to assert .whether the repair time 
for the next welder was 1, 2, 3, 4, or 5 days. 

The general approach to working with an empirical distribution is called 
the integral inverse, which is how one would describe mathematically the ap
proach we have been using. The procedure of adding values from the left is 
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10 ~ l.NIFORM OISTRIBUTIOl'-I 
20 " 
30 CLS: KEY OFF 
40 INPUT •ENTER PARAMETER A•; A 
50 INPUT •ENTER PARAMETER e•; B 
60 EX=<A+B)/2 
70 STDX=<B-Al/SQRC12> 
80 LOCATE 1,30: PRINT •ex=•EX 
90 LOCATE 2,30: PRINT 8 STND DEV= 8 STDX 
100 DIM SC20>, DC20) 
110 TIME=VAL<RIGHT$CTIME$,2))+VAL<MID$CTIME$,4,2>> 
120 TIME=TIME+VAL<LEFTS<TIME$,2)) 
130 RANDOMIZE TIME 
140 LOCATE 1,55: INPUT •ENTER RANGE •; RANGE 
150 FOR 1=1 TO 20 
160 S<I>=RANGE*I/20 
170 NEXT I 
180 FOR I=t TO 100 
1 90· GOSUB 320 
200 FOR J=l TO 20 
210 IF R<=S<J> THEN D<J>=D<J>+t: GOTO 230 
220 NEXT J 
230 NEXT I 
240 LOCATE 3,1 
250 FOR I=l TO 20 
260 PRINT USING •HMM.MM •;S<I>; 
270 FOR J=l TO D<I> 
280 PRINT•*•; 
290 NEXT J: PRINT 
300 NEXT I 
310 END 
320 ~ SUBROUTINE l.NIFORM 
330 R=A+<B-A>*RND 
340 RETURN 

FIGURE 6-1 Program to gener
ate and plot a uni
form distribution. 

called integration in calculus. Statistically speaking, we form a cumulative dis
tribution function. When we solve the probability law in terms of our random
number draw, we algebraically take the inverse of the law. 

You can simulate any theoretical distribution this way. If you have the 
explicit cumulative distribution function, just solve for F(X) at incremental values 
of X covering the range of interest and connect the X, F(X) points with straight 
lines. Draw a random number, which will of course be in the range of F(X), and 
use the corresponding value of X as your random variate. 

NORMAL DISTRIBUTION 

There are two probability laws that describe most of the behavior that can be 
observed in real-life situations. There are many other laws derived from them. 
These other laws are used where finer precision is needed in a simulation. The 
basic laws are those of normal probability and exponential probability. 

The normal distribution has many names. It is called the Gaussian dis
tribution, after the mathematician who first described it; it is also known as the 
bell curve, because of its sh'ape. The normal distribution is used to depict the 
distribution of such things as heights of male or female adults; numerical results 
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of academic tests; dimensions of parts made on a machine; lifetimes of things 
subject to wearing out, such as light bulbs, automobiles, or people; slaughter 
weights of cattle or pigs; acre yields of grain; or, in two dimensions, the spread 

. of bullets around a target bull's eye. (This is more properly called a Rayleigh 
distribution.) 

The easiest way to describe the normal distribution is to call it the dis
tribution of the sums of uniformly distributed random numbers. In the ante
diluvian days before computers,, teachers used to lnustrate this fact by assigning 
students the task of adding up every group of four of the last four digits of 
telephone numbers on two pages taken at random from a city telephone directory 
and plotting the sums as a histogram. We are fortunate; we can let our personal 
computer do it for us: 

10 CLS: RANDOMIZE TIME 

20 ' THIS PROGRAM PLOTS A HISTOGRAM 

30 ' OF THE NORMAL DISTRIBUTION 

40 INPUT "INPUT NUMBER OF UNIFORM DISTRIBUTIONS TO 
ADD II; RANGE 

50 CLS: DIM BAR( 10) 

60 FOR I 1 to 1000 

70 GOSUB 1 70 ' GET AN OCCURRENCE IN THE RANGE 0-1 

80 X INT(X*lO+l) 
90 BAR ( X ) = BAR ( X ) =BAR ( X ) + 1 

100 NEXT I 

110 FOR I= 1 TO 10 

120 LOCATE 1*2, 1: PRINT BAR( I) 

130 LOCATE 1*2, 10: FOR J = 1 TO INT(BAR( I) /10) + 1: PRINT 

"*";: NEXT J 
140 NEXT I 

150 LOCATE 23, 15: PRINT"DISTRIBUTION OF THE SUM OF " 

RANGE " UNIFORM DISTRIBUTIONS" 
160 END 

170 ' SUBROUTINE UNIFORM 

180 x 0 
190 FORK= 1 TO RANGE 
200 X X+RND 
210 NEXT K 

220 X X/RANGE 
230 RETURN 
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96 ********** 
109 *********** 
95 ********** 
88 ********* 
101 *********** 
102 *********** 
94 ********** 
108 *********** 
117 ************ 
90 ********** 

DISTRIBUTION OF THE SUM OF 1 UNIFORM DISTRIBUTIONS 
Ok 

FIGURE 6-2 Histogram of a uniform frequency distribution. 

The program adds a selected number of values from a uniform distri
bution and plots a histogram of the sums. In statement 30 we choose the number 
of samples to add, and call that number RANGE. The program produces 1,000 
sums. The sums are generated in a subroutine beginning with statement 160. 
We scale the sum back into the range 0 to 1 by dividing it by RANGE. Then we 
scale it into the range 1 to 10, integerize it, and assign it to one of the ten bars 
of a histogram; we make a courit of the number, of sums assigned to each bar 
and plot the histogram by printing one asterisk for every ten occurrences. 

Ifwe ruh the program and set RANGE equal to 1, we generate the same 
kind of distribution we encountered in Chapter Three when we were experi
menting with the uniform distribution (see Figure 6-2). 

However, if we set RANGE equal to 2, we generate a triangular distri
bution (Figure 6-3). When we set RANGE equal to 4, the histogram is a tra
pezoid, but it is beginning to assume the characteristic shape of the bell curve 
(Figure 6-4). With RANGE equal to 12, the distribution becomes a true normal 
distribution with a mean equal to 5 (because of our scaling rules) and a standard 
deviation equal to 1 (see Figure 6-5). 

We can use this approach, called convolution, to generate random draws 
from any normal distribution we desire; we only need to know the mean and 
the standard deviation of the particular normal distribution we want to simulate. 
The routine is: 

' NORMAL DISTRIBUTION 

SUM=O 

FOR I= 1TO12 

SUM= SUM+ RND 



DISTRIBUTION FUNCTIONS 113 

21 *** 
58 ****** 
92 ********** 
155 **************** 
160 ***************** 
204 ********************* 
150 **************** 
79 ******** 
59 ****** 
22 *** 

DISTRIBUTION OF THE SUM OF 2 UNIFORM DISTRIBUTIONS 
OK 

FIGURE 6-3 Hi8-togram of two uniform frequency distributions added together, pbseNation 
by obseNations (i.e., convolved), to make a triangular distribution. 

NEXT I 

NORMAL = (SUM - 6) *STD . Dl!:V +MEAN, 

RETURN 

When we add 12 ranqom numbers in the range 0 t,o 1, the re&ult can 
range from 0 to 12. We want to scale this into a standard normal distribution; 
this distribut~on has, by definition, a mean equ~l to 0 and a standard deviation 
equal to L We make tpe met:tn equal Q by subtracting 6 from each su~. The 

FIGURE 6-4 Four uniform frequency distrib!Jtions addetj together to produce a trapezoidal 
distribution that is approximat<?IY normal. 

* 
10 ** 

54 ****** 

175 ****************** 

242 **********************~** 

252 ************************** 

178 ****************** 

76 ******** 

1~ ** 

0 * 

OISTRIBUTJQN OF THE SUM OF 4 41\!IFORM DISTRIBUTIONS 
OK 
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0 * 
0 * 

11 ** 
114 ************ 

358 ************************************ 

415 ****************************************** 

95 ********** 

7 * 
0 * 
0 * 

DISTRIBUTION OF THE SUM OF 12 UNIFORM DISTRIBUTIONS 
OK 

FIGURE 6-5 Twelve uniform frequency distributions added together to produce a truly 
normal distribution. 

fact that we used 12 random draws takes care of making the standard deviation 
equal to 1. 

The mean of a uniform distribution is given by: 

MEAN = (B +A)/ 2 

In the case of our random numbers, B = 1 and A= 0, so the mean equals 
.5. Since we are adding 12 distributions, the mean of the resulting distribution 
is equal to 12 x .5, or 6. 

The variance of a uniform distribution is given by: 

VARIANCE (B At2 / 12 

In the case of our random numbers, the variance equals 1/12. Since we 
are adding 12 distributions, the variance of the resulting distribution is equal to 
1. The standard deviation is defined as the square root of the variance and is 
also equal to 1. 

We then fatten (or narrow) the spread of our distribution by multiplying 
each observation by STD.DEV, the standard deviation of the distribution we 
desire to simulate. We then translate our simulated distribution along the X
axis by adding MEAN to every observation, where MEAN is the mean of the 
distribution we want to simulate. NORMAL, the result returned by the subrou
tine, is one observation from the distribution we want. 

We can do many things with this distribution, depending upon the system 
we want to simulate. We can squeeze it, stretch it, translate it left or right along 
the horizontal axis; and we can truncate it or chop off regions in the tail that 
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30 CLS: KEY OFF 
40 INPUT 0 ENTER EX 0

; EX 
50 INPUT ·ENTER STDx•; STDX 
60 DIM 5<20), 0(20) 
70 TIME=VAL< RI GHT$<TIME$ ,2>) +VAL<MI D$<TIME$, 4, 2> > 
80 TIME=TIME+VAL<LEFT$<TIME$,2)) 
90 RANDOMIZE TIME 
100 LOCATE 1,40: INPUT "ENTER RANGE 0

; RANGE 
110 FOR 1=1 TO 20 
120 S(I>=RANGE*I/20 
130 NEXTI 
140 FOR I=t TO 100 
150 GOSUB 280 
160 FOR J=t TO 20 
170 IF R<=S<J> THEN D<J>=D(J)+l: GOTO 190 
180 NEXT J 
190 NEXT I 
200 LOCATE 3, 1 
210 FOR I=1 TO 20 
220 PRINT USING•Mtt#.ff# 0 ;S<I>; 
230 FOR J=1 TO 0(1) 
240 PR I NP*• ; 
250 NEXT J: PRINT 
260 NEXT I 
270 END 
280 ; SUBROUTINE NORMAL 
290 SUM=O 
300 FOR II=l TO 12 
310 SUM=Slt1+RND 
320 NEXT I I 
330 R=STDX*(Slt1-6>+EX 
340 RETURN 
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FIGURE 6-6 Program to gener
ate and plot a 
normal distribution 
by using the prin
ciple of the cen
tral limit theorem 
(i.e., the tendency 
of sample means 
or sums to ap
proach normality). 

make no sense in our simulation, such as negative numbers if we are simulating 
the time to accomplish a task. 

There are at least three ways to generate a normal distribution. We have 
just described a method, one that makes use of the central-limit theorem. Figure 
6-6 will generate and display a normal distribution using this technique. You 
must enter the mean (EX for expectation), standard deviation (STDX), and range 
of display. Figure 6-7 shows a normal distribution with a mean of 10 and a 
standard deviation of 3 plotted over a range of 20. 

The direct method of generating a normal distribution makes use of 
sines, cosines, and logarithms. The program in Figure 6-8 implements this 
method, and the result is plotted in Figure 6-9. It can be faster than the central
limit technique, because two observations are produced in each call to the gen
erating routine. However, in the program shown, one of these is discarded. 

If you are interested in modeling normally distributed events that occur 
rarely, such as a high water level in a river that exceeds the height of the 
protecting levee, you will want to make sure that the tails of your distribution 
are faithfully reproduced. Teichroew's approximation, implemented by the pro
gram in Figure 6-10, makes use of a polynomial to correct the shape of the 
tails. A distribution produced by it is shown in Figure 6-11. Note how all three 
methods produce similar results, as shown by Figures 6-7, 6-9, and 6-11. 
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ENTER EX? 10 
ENTER STDX? 3 

1.00 * 
2.QO 
3.00 ** 
4.00 ** 
5.00 ** 
6,00 
7.00 
8.0Ci 
9~00 

10 ;oo 
ti .oo 
12.00 
t 3. oci 
14.00 **** 
15.00 ******** 
16.0!) **** 
17.00 
18.00 
19.00 
20.00 

Ok' 

ENTER RANG~ ? 20 

FIGURE 6-7 Normal distribution. produced by t~e centn:~J-limit technique. 

FIGURE 6:-8 Program to generate anq plot a nermal distribution using the direct method, 
which involves usirig logarithms, sines, and 

10 ' NORMAL DISTRIBUTION -- DIRECT APPROACH 
20 , 
30 TWOPl=6.2832 
40 CL.:S: KEY OFF 
50 INPUT •ENTER ~· ; EX 
60 INPUT •ENTER STDX • ; STOX 
70 DIM-SC20>, D<20> 
80 TI~E=VAL<RIGHT$(TIME$,2))+VAL<MJO$(TIME$,4,2)) 
90 TIME=TIME+VAL<LEFT$CTJf".IE$,2~) 
100 RANl)OMI ZE ·TIME . 
110 LOCATE 1 , 40: INPUT • i;NTER ~£?~ • ; RANGE 
120 FOR 1:1 TO 20 
130 SCI>=RANGE*l/20 
140 NEXT I 
1~0 FOR I=1 TO 100 
160 GOSUB 290 
17Q FOR J=l TO 20 
180 IF''R(=S<J> THEN DCJ>=D<J>+l: GOTO 200 
190 NEXT J 
200 NEXT. I 
?10 LO~T~ 3,1 
220 FOR 1=1 TO 20 
230 PRINT USING 8 MM#.I# •;S<I>; 
240 FOR J=t TO D<I> 
250 RRINT• *• ; 
260 NEXT J: PRINT 
270 NEXT I 
2SO END 
290 ,. SUBROUTINE NORMAL 
300 IF RND >=.5 THEN 320 
310 R=STDX*SQR(-2*LOG<RND>>*COS<TWOPI*RND>+EX: GOTO 330 
320 R=STDX*SQR<-2*LOG<RND>>-*sIN<TWOPI*RND>+EX 
830 RETURN 
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ENTER EX? 10 
ENTER STDX? 3 

LOO 

ENTER RANGE ·? 20 

2.00 
3.00 * 
4.00 * 
5.00 
6.00 ***** 
7.00 **** 
8.00 ********* 
9.00 ********** 

10.00 *************** 
11.00 ************** 
12.00 *********** 
13.00 ******* 
14.00 ********** 
15.00 *** 
16.00 ***** 
17.00 *** 
18.00 ** 
19.00 
20.00 

Ok 

FIGURE 6-9 Normal distribution produced by the direct method. 

FIGURE 6-10 Program to generate and plot a normal distribution using Teichroew's ap-
proximation. 

10 ' TEICHROEW'S APPROXIMATION TO THE NORMAL DISTRIBUTION 
20 , 
30 CLS: KEY OFF 
40 INPUT •ENTER EX•; EX 
50 INPUT w ENTER STox· ; STDX 
60 DIM 8(20>, 0(20) 
70 TIME=VAL<RIGHTifHTIME$,2) HVAL<MID$(TIME$,4,2> > 
80 TIME=TIME+VAL<LEFT$(TIME$,2)) 
90 RANDCl1IZE TIME 
100 LOCATE 1,40: INPUT •ENTER RANGE•; RANGE 
110 FOR I=l TO 20 
120 S<I>=RANGE*I/20 
130 NEXT I 
140 FOR I=l TO 100 
150 GOSUB 280 
160 FOR J=t TO 20 
170 IF R<=S<J> THEN D<J>=D<J)+l: GOTO 190 
180 NEXT J 
190 NEXT I 
200 LOCATE 3, l 
210 FOR 1=1 TO 20 
220 PRINT USING•BBB.B# 0 ;S<I>; 
230 FOR J=1 TO D<I> 
240 PRINT"*•; 
250 NEXT J: PRINT 
260 NEXT I 
270 END 
280 ,' SUBROUTINE TEICHROEW 
290 SUM=O 
300 FOR II=1 TO 12 
310 SUM=SUM+RND 
320 NEXT II 
330 Y=<SUM-6)/4 
340 Z=Y*(3.949846138#+Y*Y<.252408784B+Y*Y<.076542912B 

+Y*Y(8.355968E-03+Y*Y(.029899776#))))) 
350 R=STDX*Z+EX 
360 RETURN 
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ENTER 
E~-lTER 3 

1. 00 
2.00 
3.00 
4.00 ** 
5.00 
6.00 **** 
7.00 ***** 
8.00 ************ 
9.00 *********** 

10.00 ***************** 
11.00 ************** 
12.00 ********* 
13.00 ********* 
14.00 ****** 
15.00 ***** 
16.DO ****** 
l 7. 00 
18.00 
1 '7.00 
20.00 

01< 

ENTER RANGE ? 20 

FIGURE 6-11 Normal distribution produced using Teichroew's approximation. 

LOGNORMAL DISTRIBUTION 

The normal distribution can be regarded as the result of the additive interaction 
of several independent uniform distributions. If these distributions interact mul
tiplicatively, then the proper model is the lognormal distribution. A program 
for generating and displaying a lognormal distribution is given in Figure 6-12, 
and a histogram generated by it is shown in Figure 6-13. 

Notice that in this distribution there is no negative region and the values 
tend to bunch up on the left and tail off to the right. This distribution has been 
used to model the distribution of particles by size, companies by capitalization, 
and the frequency of appearance of words in texts. It fits the same general class 
of models as does the exponential distribution (which will be discussed in the 
next section), but in some cases gives a better fit to empirical data. 

Accurately representing system behavior by appropriate statistical dis
tributions is the essence of simulation modeling. The best way to gain skill in 
doing this is to experiment on your own with the generating· programs in this 
chapter. 

Because the normal distribution is a continuous function, its use in wait
ing-line simulations is restricted to simulations of intervals of time; simulating 
events per unit time requires use of a discrete distribution. Actually, arrival times 
are usually simulated best by one of the family of exponential distributions. 

EXPONENTIAL DISTRIBUTION 

The exponential distribution is useful when you want to simulate a system in 
which the vast majority of events take place in a relatively short time, while there 



10 ' LOGNORMAL DISTRIBUTION 
20 Ci...S: KEY OFF 
30 INPUT II ENTER EX II ; EX 
40 INPUT "ENTER STDX"; STDX 
50 STDY=SQR( LOG( ( ( s·rox*STDX)/( EX*EX)) + 1)) 
60 EY=LOG<EX)-.5*LOG<<<STDX*STDX)/(EX•EX))+1) 
70 LOCATE 1'30: PRH-ff II EY=" EY 
80 LOCATE 2,30: PRINT "STND DE1,J= 11 STDY 
90 DIM 8(20), 0(20) 
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100 TIME=VAL< RI GHT$<TIME$, 2)) +VAL<MID$<TIME$, 4, 2)) +VAL< LEFT$<TIME$, 2)) 
110 RANDOMIZE TIME 
120 LOCATE 1 , 55: INPUT "ENTER RANGE " ; RANGE 
130 FOR I=1 TO 20 
140 S<I>=RANGE•I/20 
150 NEXT I 
160 FOR I=l TO 100 
170 GOSUB 270 
180 FOR J=1 TO 20 
190 IF R<=S(J) THEN D(J)=D(J)+l: GOTO 210 
200 NEXT J 
210 NEXT I 
220 LOCATE 3, 1 
230 FOR I=1 TO 20 
240 PRINT USING"###.## ";S<D;: FOR .J=1TCt0(1): PRINT"*";: NEXT J: PRINT 
250 NEXT I 
260 END 
270 ·' SUBROUTINE LOGNORMAL 
280 SUM=O 
290 FOR II=I TO 12 
300 SUM=SUM+RND 
310 R=EXP<EY+STDY*<SUM-6)) 
320 NEXT I I 
330 RETURN 

FIGURE 6-12 Program to generate and plot a lognormal distribution. 

are a few that can take a very long time indeed. Typical examples are: the 
lifetimes of some electronic parts, the times between the arrivals of vehicles on 
a highway, and the times to serve customers on the teller line in a bank (most 
people are served quickly, but the little old lady ahead of you is depositing the 
day's receipts from a penny-candy store-and she didn't even roll her pennies!). 

AGURE 6-13 Lognormal distribution illustrating its positive skew. 

ENTER EX? 5 EY= 1 • 535228 
ENTER STDX? 2 STND DEV= .3852531 

1.00 
2.00 * 
3.00 ******** 
4.00 ************************** 
5.00 ********************** 

.oo ******************** 
7.00 ********** 
8.00 ***** 
9.00 *** 

10.00 * 
11.00 ** 
12.00 
t:3;00 ** 
14.00 
15.00 
16.00 
J 7.00 
18.00 
19.00 
20.00 

Of< 

ENTER RANGE ? 20 
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We can plot histograms of exponential di~tributions using the same pro
gram as we used to plot normal distributions with a couple of changes: 

30 ' OF AN EXPONENTIAL DISTRIBUTION 
40 INPUT II ENTER MEAN II ; MEAN 

150 LOCATE 23, 15: PRINT"NEGATIVE EXPONENTIAL 

DISTRIBUTION WITH MEAN = "MEAN 

170 ' SUBROUTINE EXPONENTIAL 

180 X = - LOG ( RND) *MEAN 

190 IF X > 1THEN170 

200 RETURN 

In this program, statement 190 constrains values to the range 0 to 1 
because the subroutine can generate values outside of this range. Figures 6-14, 
6-15, 6-16, and 6-17 show exponential distributions (or portions of them) 
having means equal to .1, .5, 1.0, and 5.0. 

FIGURE 6-14 Histogram of a negative exponential frequency distribution having a mean 
of 0.1. 

634 **************************************************************** 

236 ************************ 

90 ********** 

20 *** 

15 ** 

3 * 

* 
* 

0 * 

0 * 

NEGATIVE EXPONENTIAL DISTRIBUTION WITH MEAN= .1 
01< 
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196 ******************** 
175 ****************** 
152 **************** 
101 *********** 
101 *********** 
84 ********* 
62 ******* 
59 ****** 
37 **** 
33 **** 

NEGATIVE EXPONENTIAL DISTRIBUTION WITH MEAN = .5 
OK 

FIGURE 6-15 Negative exponential frequency distribution having a mean of 0.5. 

The derivation of the formula for generating exponentially distributed 
random variates is a good example of the integer-inverse process. 

The frequency function of the negative exponential distribution is given 
by: 

f(x) A*eA(-A*X) where A= l/M and e = 2.7183 

Integrating this expression from 0 and X, we obtain: 

CUM.PROB I 

FIGURE 6-16 Negative exponential distribution having a mean of 1.0. 

148 *************** 

153 **************** 

125 ************* 

98 ********** 

104 *********** 

83 ********* 

78 ******** 

88 ********* 

55 ****** 

68 ******* 

NEGATIVE EXPONENTIAL DISTRIBUTION WITH MEAN 
01< 
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128 ************* 

94 ********** 
99 ********** 

103 *********** 
101 *********** 

106 *********** 
86 ********* 

97 ********** 
84 ********* 

102 *********** 

NEGATIVE EXPONENTIAL DISTRIBUTION WITH MEAN = S 
OK 

FIGURE 6-17 Exponential distribution (truncated) having a mean of 5.0. 

We can regard 1 - CUM.PROB as a random number, so we have: 

e" (A*X) RND 

We take the inverse by taking the natural logarithm of each side and 
solving for X: 

LOG (e"-(A*X)) LOG(RND) 

- X/M LOG(RND) 

X = M*LOG(RND) 

If you run the program several times, varying MEAN from .1 to 5, you 
will observe that the shape of the curve changes from being sharply concave 
upward to being slightly concave downward. For high values of MEAN, the 
general shape looks something like that of the normal distribution except that 
it is bunched up at the left and stretched out on the right. It is, in fact, a plot 
of the function: 

which is where the name negative exponential comes from. 
Figure 6-18 is a program that generates and plots exponential dis

tributions. 
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20 ,. 
30 CLS: KEY OFF 
40 INPUT •ENTER MEAN•; EX 
50 DIM S(20>, D<20> 
60 TIME=VAL<RIGHT$(TIMES,2>>+VAL(MIO$<TIME$,4,2>> 
70 TIME=TIME+VAL<LEFT$(TIME$,2)) 
80 RANDOMIZE TIME 
90 LOCATE 1,30: PRINT "STND DEV="EX 
100 LOCATE 1,55: INPUT "ENTER RANGE"; RANGE 
110 FOR 1=1 TO 20 
120 S<I>=RANGE*I/20 
130 NEXT I 
140 FOR I=1 TO 100 
150 GOSUB 290 
160 FOR J=l TO 20 
170 IF R<=S(J) THEN D<J>=D<J>+1: GOTO 190 
180 NEXT J 
190 NEXT I 
200 LOCATE 3,1 
210 FOR I=l TO 20 
220 PRINT USING"###.## •;S<I>; 
230 FOR J=1 TO D<I> 
240 PRINT•*•; 
250 NEXT J: PRINT 
260 NEXT I 
270 END 
280 ' SUBROUTINE EXPONENTIAL 
290 R=-EX*LOG<RND> 
300 RETURN 

ELEMENTARY QUEUING THEORY 
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FIGURE 6-18 Program to gen
erate and plot a 
negative expo
nential distribu
tion. 

There exists in a branch of mathematics called Queuing Theory an analytic 
solution for a waiting-line system in which both the times between customer 
arrivals and the service times can be represented by exponential distributions. 
If we call the arrival rate L and call the service rate U, the average length of 
the waiting line, Q, is given by: 

Q L'2 I U*(U L) 

Notice that if the arrival rate equals or exceeds the service rate (that is, 
if customers arrive faster than they can be served), the length of the waiting line 
becomes either infinite or negative; this means that the system is unstable and 
there is no analytic answer. 

You can check out the analytic solution using the event-oriented simu
lation program. If we say that the mean time between arrivals (l/L) is 120 seconds 
and the mean service time ( l/U) is 90 seconds, queuing theory tells us that the 
average length of the waiting line should be 2.25. 

If we run the simulation program for 200,000 seconds, we find that 
there are 1,633 arrivals, the mean time between arrivals is 122.5 seconds, the 
mean service time is 92.2 seconds, and the average queue length is 2.11. If we 



124 DISTRIBUTION FUNCTIONS 

run it for 500,000 seconds (almost 6 days in real time), we have 4,227 arrivals, 
arrival time is 118.3 seconds, service time is 90.6 seconds~ and queue length is 
2.29. This suggests that the value returned by the simulation program will even
tually converge upon the analytic solution. 

POLLACZEK-KHINTCHINE EQUATION 

Queuing theory also provides a solution to the case in which the service times 
are distributed according to some probability law other than the exponential 
distribution. In this formula we make use of a quantity R, which is equal to LI 
U; and the standard deviation S of the service time distribution: 

Q (L"2 * S"2 + RA2) I 2 * (1 R"2) 

We shall check out this solution with our event-oriented simulation pro
gram using the NORMAL SUBROUTINE to obtain the service times. We shall 
let the MEAN equal 90 seconds and the STANDARD DEVIATION equal 10 
seconds. The formula tells us that the average length of queue should be 1.14 
customers. 

1 0 ' GAl"l1A FUNCTI ON 
20 , 
30 DIM FX(22), FFX(22) 
40 CLS: KEY OFF 
50 LOCATE 1 , 1 
60 INPUT •ENTER SHAPING PARAMETER 'A' <A > -1) •; A 
70 LOCATE 2, 1 
BO INPUT •ENTER SHAPING PARAMETER '8' <8 > 0) ff; 8 
90 GOSUB 210 ' GAl'+'IA FUNCTION SUBROUTINE 
10.0 FOR 1=1 TO 22 
110 FX<I> = (((8A(A+l))*FA)A(-1))*(IAA) 

*(2.718282A(-l/8)) 
120 FFX=FFX+FX<I>: FFX<I>=FFX 
130 NEXT I 
140 FOR I = 1 TO 22 
150 IF FX<I><.00005 THEN 200 
160 LOCATE 1+2, 1 
170 PRINT USING 8 ## u;I; 
180 PRINT USING • tt.tHHt# 0

; FX< I); FFX< I) 
190 NEXT I 
200 END 
210 ' GAH'1A<A+1> =A! 
220 FA = 1 
230 IF A = 0 THEN 280 
240 IF A = 1 THEN 280 
250 FOR II = 1 TO A 
260 FA = FA* II 
270 NEXT II 
280 RETURN 

An alternative way to generate 
the grammar distribution function 
in Figure 6-19. 

Running the event-oriented simulation program for 200,000 seconds, 
we obtain 1,660 arrivals, a mean interarrival time of 120.5 seconds, a mean 
service time of 90.4 seconds, and an average queue length of 1.07. If we run it 
for 500,000 seconds, service time is 90.4 seconds, and queue length is 1.23. The 
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simulated value appears to be converging on the analytic value but not nearly 
as fast as in the purely exponential case. 

There is a whole family of probability distributions related to the ex
ponential that are used in special applications. These include the hyper
exponential-that is, one with two means; the Weibul distribution, which is used 
in Reliability Theory; and the Erlang distribution, which is actually the sum of 
several exponential distributions. The exponential distribution is used in deriving 
the beta distribution, which is used to model a Bernoulli case in which the 
probability varies. 

These experiments should convince you that, just as it is usually easier 
to find areas and volumes by geometry or calculus rather than by simulation, 
you should resort to simulation to solve waiting-line problems only if: 

l. You are dealing with an oddball problem for which there is no analytic solution. 
2. Your problem is extremely complex. 
3, You don't know enough about queuing theory to solve it. 

The ideal approach is to select the best of both worlds. Simplify your 
problem, or, as we say, "skeletonize" it, until you can get an approximate solution 
using queuing theory; then simulatt:: using the analytic solution as a guide to 
how many iterations of the simulation program it will take to converge on an 
acceptably precise answer .. 

GAMMA (CHI-SQUARED) DISTRIBUTION 

The gamma distribution, may be fitted to many skewed distributions of empirical 
data. It has the following distribution function: 

f(X) = (AAK*x"(K- l)*exp(-A*X))/ (K-1)! 

where A and Kare shaping parameters. The mean is given by: 

EX=K/A 

The standard deviation is given by: 

STDX = SQR(K)/ A 

When K is an integer, the gamma distribution is called an Erlang dis
tribution. This distribution is derived from the exponential distribution in a way 
similar to that by which the normal distribution was derived from the uniform 
distribution: by adding up a certain number of observations. 

The two shaping parameters of this gamma distribution are A, the re-
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ciprocal of the mean of the exponential distributions from which it is made; and 
K, the number of observations from exponential distributions going to make up 
one observation from the gamma distribution. 

If the times between arrivals of vehicles on a lightly traveled highway 
are exponentially distributed with a mean of two minutes and every fifth vehicle 
is determined to be a truck, then the times between arrivals of trucks would be 
modeled by a gamma distribution with A equal to .5 and K equal to 5. 

However, the gamma distribution is more commonly used to fit normally 
appearing distributions that are skewed or flattened. These include distributions 
of times to accomplish tasks. They exist only in the positive domain and are 
often skewed to the right, because some people will take a very long time to do 
a job if you let them. 

Figure 6-19 generates and plots an Erlang gamma distribution. It does 
not add the exponential observations; instead it takes the logarithm of their 
product, which is an equivalent procedure. Figure 6-20 is a gamma distribution 
with A equal to .5 and K equal to 3. 

Another way to generate gamma distributions is to add up the squares 
of random observations from a ·standard normal distribution. The result is called 
the chi-squared distribution. Its mean is equal to M, the number of squared 

~8 ; GAt+fA DISTRIBUTION 

30 CLS: KEY OFF 
40 INPUT •errER PARAMETER A•; A 
50 INPUT •ENTER PARAMETER K•; K 
60 EX=K/A: STDX=SQR(K/(A*A>> 
70 LOCATE 1,30: PRINT •EX=•EX 
80 LOCATE 2,30: PRINT ·sTNo oEV=·sTDX 
90 DIM S<20>, 0(20> 
100 TIME=VAL<RIGHT$<TIME$,2)) 

+VAL<MID$<TIME$,4,2>>+VAL<LEFT$<TIME$,2)) 
110 RANDOMIZE TIME 
120 LOCATE 1,55: INPUT •ENTER RANGE•; RANGE 
130 FOR I=1 TO 20 
140 S<I>=RANBE*I/20 
150 NEXT I 
160 FOR I=l TO 100 
170 GOSUB 280 
180 FOR J=l TO 20 
190 IF R<=S<J> THEN D<J>=D<J>+l: GOTO 210 
200 NEXT J 
210 NEXT I 
220 LOCATE 3, 1 
230 FOR I=l TO 20 
240 PRINT USING.BBB.## •;S<I>; 
250 FOR J=l TO D<I>: PRINT•*•;: NEXT J: PRINT 
260 NEXT I 
270 ENO 
280 ' SUBROUTINE GAMMA 
290 TR=l 
300 FOR 11=1 TO K 
310 TR=TR*RND 
320 R=-LOGCTR)/A 
330 NEXT I I 
340 RETURN 

FIGURE 6-19 Program to gen
erate and plot a 
gamma (Erlang) 
distribution. 



ENTER PARAMETER A? .5 
ENTER PARAMETER K? 3 

0.50 
1.00 ** 
1.50 ***** 
2.00 ** 
2150 ** 
3.00 ****** 
3.50 ******* 
4.00 ***** 
4.50 * 
5.00 ******** 
5.50 *** 
6.00 ********** 
6.50 ***** 
7.00 ******** 
7.50 *** 
8.00 ***** 
8.50 * 
9.00 ** 
9 •. 50 * 

10.00 ** 
01< 

EX= 6 
STND DEV= 3.464102 

FIGURE 6-20 Histogram of a gamma distribution. 
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ENTER RANGE ? 10 

normal deviates going into one chi-squared observation; its standard deviation 
is SQR(2*M). Actually the chi-squared distribution is a special case of the gamma 
distribution in which A is equal to .5 and K is equal to M/2. 

Figure 6-21 is a program that generates and plots a chi-squared dis
tribution. Figure 6-22 is a chi-squared distribution equivalent to the gamma 
distribution shown in Figure 6-20. 

BETA DISTRIBUTION 

The beta distribution is also exponentially derived. It exists only between the 
limits of zero and one. It is often used to model a variable rate, such as the 
proportion of defective parts coming off an assembly line. The proportion is 
often very high on Monday, when assembly workers are recovering from a 
weekend. It may also be high on Friday, when the workers have their minds on 
holidays rather than business. The lowest percent defective occurs on Wednes
day. It is said that members of the Ford family always order "Wednesday" cars 
as their personal vehicles. 

The beta distribution follows the probability law: 

f(X) ((A+ B- l)!*A(A- l)*(l xr (B-1))/(A- l)!*(B- l)! 

where the mean is given by: 

EX=A/(A+B) 
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10 " CHI-SQUARED DISTRIBUTION 
20 ,. 
30 CLS: KEY OFF 
40 INPUT •ENTER PARAMETER M •;M 
50 EX=M: STDX=SQR(2*M) 
60 LOCATE 1,35: PRINT "EX="EX 
70 LOCATE 2,35: PRINT •sTNP DEIJ=•STDX 
ao PIM S<20), D<20) 
90 TIME=VAL<RIGHT$<TIME$,2)>+VAL<MI0$(TJME$,4,2>> 
100 TIME=TIME+VAL<LEFT$<TlME$,2)) 
110 RN-.IDOMI Z.E TIME 
120 LOCATE 1,55: INPUT "ENTER RANGE"; RN-.IGE 
130 FOR 1=1 TO 20 
140 S<I>=RN-JGE*I/20 
150 NEXT I 
160 FOR 1=1 TO 100 
170 GOSUB 300 
180 FOR J=1 TO 20 
190 IF R<=S<J> THEN D<J>=O<J>+l: GOTO 210 
200 NEXT J 
210 NEXT I 
220 LOCATE 3, 1 
230 FOR 1=1 TO 20 
240 PRINT USING" fHt#. ## "; S< I) ; 
250 FOR J=l TO D<i> 
260 PRINT•*•; 
270 NEXT J: PRINT 
280 NEXT I 
290 END 
300 ' SUBROUTINE CHI-SQUARED 
310 R=O . 
320 FOR .JJ=t TO M 
330 SUM=O 
340 FOR 11=1 to 12 
350 SUM=SUM+RND 
360 NEXT II 
370 R=R+<SUM-6>*<SUM-6> 
380 NEXT JJ 
390 RETURN 

FIGURE 6-21 Program to gen
erate and plol a 
chi-squared dis
tribution. 

FIGURE 6-22 Histogram of a chi-squared distribution that is equivalent to the gamma 
distribution shown in Figure 6-20. 

ENTER PARAMETER M ? 6 

0 .so 
EX= 6 ENTER RANGE ? 10 

1.00 * 
1.SO ** 
2.00 **** 
2.50 ***** 
3.00 ***** 
3;50 ******** 
4.00 * 
4.50 ***** 
5.oo ****** 
5.50 ****** 
6.00 *********** 
6.50 ******** 
7.00 ****** 
7.50 *** 
8.00 **** 
8.50 **** 
9.00 * 
9.50 ** 

10.00 *** 
Ok 

STND DEV= 3.464102 
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and the variance (STNX"2) by: 

VX= EX*B/(A+B+ l)*(A+B) 

The beta distribution can be generated as the ratio of two gamma dis
tributions having identical values of A (.1 works well) and parameters Kl and 
K2 such that K= Kl+ K2 is the parameter of (Xl + X2). The beta variable is 
given by: 

X = Xl/(Xl + X2) 

Gamma parameters K 1 and K2 correspond to beta parameters A and B. 
I have used the beta distribution to help expert informants quantify 

qualitative estimates. The experts were asked to estimate whether a certain effect 
was "high," "medium," or "low"; to hedge their estimate as being "high," "me
dium," or "low"; and to state whether their confidence in their estimate was 
"high," "medium," or "low." 

. I used these qualitative estimates to select shaping parameters from 27 
sets of pairs and to construct beta distributions characteristic of the expert's 
qualitative estimate. I then sampled from the distribution depicting the expert's 
qualitative estimate and displayed these beta variates to the expert until the 
expert chose one that he thought best quantified his estimate. 

The following table gives· the parameters of the beta distributions used 
to represent the different qualitative estimates. The codes for the qualitative 
estimates are: H =high, M =medium, and L =low. They are given in the order: 
PRIMARY estimate, HEDGE, and CONFIDENCE. 

CODE EX vx PARAMETER A PARAMETER B 

HHH .91 .007 · 10 1 
HHM .90 .008 9 1 
HHL .89 .009 8 1 
HMH .88 .012 7 1 
HMM .86 .015 6 1 
HML .83 .019 5 1 
HLH .75 .014 9 3 
HLM .75 .021 6 2 
HLL .75 .038 3 1 

MHH .63 .014 10 6 
MHM .64 .017 7 4 
MHL .63 .026 5 3 
MMH .50 .012 10 4 
MMM .50 .014 9 9 
MML .50 .017 7 7 
MLH .375 .014 6 10 
MLM .385 .017 5 8 

continued 
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CODE EX vx PARAMETER A PARAMETER B 

MLL .375 .026 3 5 

LHH .250 .014 3 9 

LHM .222 .017 2 7 

LHL .250 .038 1 3 

LMH .125 .012 1 7 

LMM .142 .015 1 6 

LML .167 .020 5 

LLH .091 .006 10 

LLM .100 .008 9 

LLL .111 .009 8 

Figure 6-23 is a program to generate and display beta distributions. 
You will be asked to enter three estimates each of which may by H, M, or L. 
Figure 6-24 is an optimistic estimate (H, H, H); note how the pofots are piled 
up on the right (bottom). Figure 6-25 is a pessimistic estimate (L, H) and 
points are piled up on the left. Figure 6-26 is a middling estimate (M, M, M) 
and points are spread out through the midrange of the distribution. 

POISSON DISTRIBUTION 

If you want to use time:..oriented simulation programs and are dealing with a 
waiting-line system in which the· times between customer arrivals are exponen
tially distributed, it may be useful to use the discrete version of the exponential 
distribution, which is called the Poisson distribution. The Poisson distribution 
provides us with the probabilities of observing 0, 1, 2, ... N events within some 
selected slice of time. One of its first applications was in representing the probable 
number of Prussian cavalry troopers killed each year by being kicked in the head 
by a horse. Like the remainder of distributions to be described, the Poisson 
distribution is discrete, as contrasted with the continuous ones we have been 
examining. 

The Poisson distribution has been used to model the number of typo
graphical errors on a newspaper page, the number of fatal accidents per year 
per mile of highway, the number of flaws per square yard of carpet, the number 
of inclusions per square foot of tin-plated steel, or the number of crimes per 
hour per census tract. 

The probability of X events per unit (unit time or whatever) is given by 
the formula: 

where e is the Naperian or natural logarithm base equal to 2.718282 ... , L is 



10 ·' BETA DI STRI BUTI ON 
20 CLS: t<EY OFF 
:30 DIM 8<:20), D< 20), A< 27>, B< 27) 
40 FOR I=l TO 27: READ A< I): NE:x:T 
50 FOR 1=1 TO 27: READ 8(1): NEXT 
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60 DATA 9, 8, 7, 6, 5, 4, 8, 5, 2, 9, 6, 4, 9, 8, 6, 5, 4, 2, 0, 0, 0, 0, 0, 0, 2, 1 , 0 
70 DATA 0, 0, 0, 0, 0, 0, 2, 1 , 0, 5, 3, 2, 9, 8, 6, 9, 7, 4, 9, 8, 7, 6, 5, 4, 8, 6, 2 
80 TIME=VAL< l''.I GHT$<TIME·$, 2)) +VAL<MI D$<TIME$, 4, 2)) +VAL< LEFT$<TIME$, 2)) 
90 RANDOMIZE TIME 
100 FOR I=1 TO 20; SO )=I/20: NE:x:T I 
110 PRINT "ENTER ESTIMATES: PRIMAR'f; HEDGE; CONFIDENCE: " 
120 INPUT "TYPE: H, L" ;A$, 8$, C-$ 
130 IF A$=" H" THEN 
140 IF A$="M" THEN A=lO 
150 IF A$="L" THEN A=l'? 
160 IF 8$=" H" THEN 8=0 
170 IF 8$= 11 M11 THEl'-l 8=:3 
180 IF 8$="L" THEN 8=6 
190 IF C$=" H" THEN C=O 
200 IF C$="M" THEN C=1 
210 IF C-$=" L" THEN C=2 
220 IK=A+B+C 

FOR I=! TO 100 
GOSUB 340 

250 FOR J'=1 TO 20 
260 IF R<=S(J) THEN D(J)=Do'.J)+1: GOTO 280 
270 NEXT J 
280 NEXT I 
290 LOCATE 3, 1 
300 FOR I=1 TO 20 
:310 PRINT USING"###.## ";Sn>;: FOR ,J=1TO0(! 
320 NEXT I 
330 END 
340 ·' SUBROUTINE BETA 
350 K=A<IK)+1 
360 GOSUB 430 
:370 NU=G 
380 K=A<IK)+B<IK)+2 
:390 GOSUB 430 
400 DE=G 
410 R=NU/DE 
420 RETURN 
430 ' SUBF!OUTil'·lE GAMMA 
440 TR=1 
450 FOR II=l TOK 
460 TR=TR•RND 
470 G=-LOGi'.TR)/10 
480 NE)<T I I 
490 RETURN 

PRINT"•";: NEXT J: PRINT 

FIGURE 6-23 Program that generates and plots a beta distribution to help informants 
quantify qualitative estimates on a zero to one scale. 

the mean or expected value of the probability (p) of X events occurring in the 
selected slice of time or space, and X! stands for "X factorial''; that is: 

X! 1 * 2 * ... *X 

When X = 0, X! is defined as being equal to 1. Note that here, with a discrete 
distribution instead of a continuous one, we are still talking about a probability 
function p(X) rather than a frequency function f(X). 

Actually, the Poisson formula helps us to create an array of probabilities, 
which we then handle the same way we handled the empirical probabilities in 
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our introduction to time-oriented simulation; that is, we cumulate the proba
bilities and apply a "less than or equal to" criterion to each random number 
drawn. The following program allows us to see several different arrays of Poisson 
probabilities: 

10 CLS: PRINT" POISSON PROBABILITY 

LAW": PRINT: PRINT 

160 

20 INPUT "ENTER MEAN " ; MEAN 

30 INPUT "ENTER RANGE " ; RANGE 

40 DIM COUNT (RANGE) , CUMPROB (RANGE) 

50 FOR X 0 TO RANGE 

60 GO SUB 200 ' FACTORIAL SUBROUTINE 

70 PROB ( 2. 718282 r-MEAN) + ( MEAWX )/FACTORIAL 

80 CUMPROB ( X) LAST PROB +PROB 

90 LASTPROB CUMPROB ( X) 

100 NEXT X 

110 FORK= l TO 100 

120 X=RND 

130 FOR J = 0 to RANGE 

140 IF R <= CUMPROB ( J) THEN COUNT ( J) COUNT ( J) + 1: GOTO 

150 NEXT J ,K 

160 FOR I 1 TO RANGE 

170 LOCATE I+3,5:PRINT USING"##" ;I; :FORJ=l TO 

COUNT ( I) : PRINT "*" ; : NEXT J 

180 NEXT I 

190 END 

200 ' FACTORIAL SUBROUTINE 

210 FACTORIAL 0 

220 IF X = 0 THEN RETURN 

230 IF X l THEN RETURN 

240 FOR I 1 TO X 

250 FACTORIAL= FACTORIAL* I 

260 NEXT I 

270 RETURN 



ENTER ESTIMATES: PRIMARf; HEDGE~ cm·ffIDENCE: 

DK 

0 .10 
0 .15 
0.20 
0.25 
0.30 

, 1'·1, L? H,H,H 

0 ,:35 * 
0.40 ** 
0.45 **** 
0.50 *** 
0.55 ***** 
0.60 **** 
0.65 ****** 
0. 70 **** 
0.75 ***** 
0.80 ****** 
0.85 ******** 
0.90 ******** 
0.95 ***** 
1 .oo ****** 

ENTER ESTIMATES: PRIMARY; HEDGE; CONFIDENCE: 
TYPE: H, M, L? L,L,H 

0.05 ** 

OK 

0.10 *************** 
0.15 *************** 
0.20 ******** 
0.25 *********' 
0.30 ************ 
0.35 ********** 
0.40 ****** 

.45 ****** 
0.50 * 
0.55 ** 
0.60 *** 
0.65 **** 
0 .. 70 * 
0. 

0.85 *** 
0.90 * 

.·:;·5 
1 .oo 

ENTER ESTIMATES: PRIMARY: HEDGE; CONFIDENCE: 
TYPE: H. M, L? M,M,M 

0.05 

Ok 

0. l 0 
0 .15 
0.20 **:*** 
0.:25 ** 
0.30 ***** 
0.35 **************** 
0.40 ************* 
0.45 ****** 
0.50 ********* 
0.55 ************* 
0 .60 *** 
0.65 ****** 
0.70 *** 
0.75 ****** 
0.80 ****** 
0.85 
0 .90 
0.95 * 
Loo 
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FIGURE 6-24 Histogram of a 
beta distribution 
depicting ex
treme optimism: 
high primary ex
pectation, 
skewed high, 
and held with 
high confidence. 

FIGURE 6-25 Histogram of a 
beta distribution 
depicting ex
treme pessi
mism: low pri
mary expect
ation, skewed 
low, and held 
with high confi
dence. 

FIGURE 6-26 Histogram of a 
beta distribution 
depicting uncer
tainty: middling 
expectation, no 
skew, and held 
with medium 
confidence. 
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ENTEF: MEAN ? 1 
ENTER RANGE ? 12 

POISSON DISTRIBUTION 

0 ******************************* 

FIGURE 6-27 Histogram of a 
Poisson fre
quency distribu
tion having a 
mean of 1. 

1 ******************************************** 
2 *************** 
3 ******** 
4 ** 
5 
6 
7 
8 
$• 

10 
11 
12 

Ok 

The input quantity MEAN is the average probability; RANGE is the 
largest possible number of occurrences in a time slice. 

Statements 50 to 100 are a FOR-NEXT loop that gets the cumulative 
probability ofeach number of occurrences from none to RANGE. Statement 60 
calls the FACTORIAL SUBROUTINE (statements 200 to 270) that recursively 
computes the value of X!. Statement 70 computes the probability of exactly X 
arrivals in a time slice. Statements 80 and 90 compute the cumulative probability 
of X arrivals in a time slice; that is, the probability of X or fewer arrivals. 

Statements 110 to 160 draw 100 random numbers and, regarding each 
of them as a probability, classify them as to whether the draw would denote 0, 
1, 2, ... or RANGE arrivals. An appropriate increment is made to one of the 
components of the COUNT vector. Statements 170 to 190 print and annotate 
the histogram for each value of X. Figures 6-27, 6-28, 6-29, and 6-30 show 
Poisson distributions having means of l, 3, 6, and 9. 

You can check out this program by reproducing the cumulated entries 
from a table of Poisson probabilities, which can be found in any statistics text 

POISSON DISTRIBUTION 

ENTER MEAN ? 3 
ENTER RANGE ? 1.2 

OK 

0 * 
1 **************** 
2 ***************** 
3 *************************** 
4 ********************** 
5 ******* 
6 ******* 
7 ** 
8 * 
9 

10 
11 
12 

FIGURE 6-28 Poisson fre
quency distribu
tion having a 
mean of 3. 
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ENTER MEAN ? 6 
ENTER RANGE ? 12 

OK 

0 

1 * 
2 ** 
3 ********** 
4 ********** 
5 ************** 
6 ********************* 
7 ******************** 
8 ******* 
9 ***** 

10 ******* 
11 * 
12 ** 
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FIGURE 6-29 Poisson distribu
tion having a 
mean of 6. 

or handbook. For example, if MEAN equals 3, RANGE equals 12, and the 
probabilities are: 

ARRIVALS PER 
UNIT TIME PROB 

0 .0498 
1 .1494 
2 .2240 
3 .2240 
4 .1680 
5 .1008 
6 .0504 
7 .0216 
8 .0081 
9 .0027 

10 .0008 
11 .0002 
12 .0001 

POISSON DISTRIBUTION 

ENTER MEAN ? 9 
EMTER RANGE ? 15 

0 
1 
2 
3 * 
4 
5 ******** 
6 ******** 
7 ********* 
8 ************** 
9 ****************** 

10 ************ 
11 ************ 
12 ****** 
13 ** 
14 ******* 
15 * 

OK 

CUMULATIVE PROB 

FIGURE 6-30 Poisson distribu
tion with a mean 
of 9. 

.0498 

.1992 

.4232 

.6472 

.8152 

.9160 

.9664 

.9880 

.9961 

.9988 

.9996 

.9998 

.9999 
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10 ·' POISSON DISTRIBUTION 
20 CLS: KEY OFF 
30 INPUT fl ENTER EX fl ; EX 
40 LOCATE 1,30: PRINT "STND DEV=" SQR<E>O 
50 DIM 8(20), 0<20) 
60 TIME=VAL< RI GHT$<TIME$, 2)) +VAL<MID$<TIME$, 4 ,2)) +VAL< LEFT$<TIME"$; 2)) 
70 RANDOMIZE TIME 
80 LOCATE 1 INPUT "ENTER RANGE"; RANGE 
90 FOR I=l 20 
100 S(!)=RANGE*I/20 
110 NEXT I 
120 FOR I=l TO 100 
130 GOSUB 230 
140 FOR J=l TO 20 
150 IF R<=S(J) THEN D(J)=D(J.)+1: GOTO 170 

NEXT ._r 
NEXT I 

180 LOCATE 3, 1 
190 FOR I=1 TO 20 
200 PRINT USING"###.## ";S(I);: FOR J=l TO 0(1): PRINT"*";: NEXT .J: PRINT 
210 NEXT 1 
220 END 
230 ·' SUBROUTINE PO I SSOM 
240 R=O 
250 B=EXP(-EX) 
260 TR=1 
270 TR=TR*RND 
280 IF TR-B <O THEN 290 ELSE R=R+1: GOTO 270 
290 RETURN 

FIGURE 6-31 Program to generate and plot a Poisson distribution. 

If you want to write a Poisson subroutine for a time-oriented simulation, 
calculate the CUMPROB vector in advance, store the results in your service
time subroutine, and use them just as we used the empirical arrival-rate distri
bution in Chapter Four. Figure 6-31 will generate and plot a Poisson distri
bution. 

NEGA1WE BINOMIAL DISTRIBUTION 

When Bernoulli trials are repeated until K successes occur, the random variate 
X signifying the·number of failures that occur will follow a negative binomial 
distribution. When K is an integer, this distribution is called a Pascal distribution. 
When K is equal to one, it is called a geometric distribution. 

The next three probability functions make use of the binomial coeffi
cient. In its simplist form it is expressed as "N CHOOSE X." Operationally it 
corresponds to: 

N!/X!*(N - X)! 

The probability function of the negative binomial distribution incor
porates the binomial coefficient in the form: (K + X 1) CHOOSE X. The func
tiOn is given by: 
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where P is the proportion of d~sired outc()mes in the qniverse under c:onsid .. 
eration and Q is equal to l ~ P. The mean is given by: 

EX:=;KQ/P 

and the variance is given by: 

VX=;;KQ/P'2 

Figqre 6~32 is a program to generate and plot a Pascal distril}ution. 
Figure 6-33 is the plot of a geometric distribution (K 1) with P equal to .5. 
The geometric distribution turns out to describ.e the distribution of queue lengths 
in the case of exponential times between arrivals and e;xponential service times. 
I have also used it to describe the distribution of the occurrence frequencies of 
some word types and the distribution of sensitive documents among different 
security classifications. Figure 6-34 shows a Pascal distribution with P equal to 
.5 and K equal to 3. 

10 " PASCAL <GEOMETRIC> DISTRIBUTION 
20 .. 
30 Cl-S: KEY OFF 
40 INPUT "ENTER PARAMETER P";P 
50 INPUT "ENTER PARAMETER K";K 
60 G=t-P: EX=<K*Q)/P 
70 VX=<K*Q)/(P*P> 
80 LOCATE 1 ,35: PRINT •ex::=•EX 
90 LOCATE 2,35: PRINT •sTND DEV=•SQR<VX> 
100 DIM S<20>, DC20) 
110 TIME=VAL<RIGHT$CTIMES,2) >+VAL<MI~~TIME$,4,2) > 
120 TIME=TIME+VAL<LEFTs<TIMES,2)) 
130 RANDOMlZE TIME 
140 LOCATE 1 ,55: INPUT "ENTER RANGE •; RANGE 
150 FOR 1=1 TO 20 
160 S<I>=RANGE*I/20 
170 NEXT I 
18Q FOR 1=1 TO 100 
190 GOSllB 320 
200 FOR J=1 TO 20 
210 IF R<=S(J) THEN D<J>=D<J>+t: GOTO 230 
220 NEXT J 
230 NEXT I 
240 LOCATE ~, 1 
250 FOR 1=1 TO 20 
26Q PRINT USING"###.## •;S<I>; 
270 FOR J=l TO D<I> 
280 PRINT 0 *•; 
290 NEXT J: PRINT 
300 NEXT I 
310 END 
320 ' SUBROUTINE PASCAL 
330 TR=l 
340 QR=LOGCQ) 
350 FOR II=l TOK 
360 TR=TR*RND 
370 NEXT I I 
380 R=LOG<TR)/QR 
390 RETURN 

FIGURE 6-32 Program to gen
erate and plot a 
negative binom
ial (Pascal) distri
bution. 
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ENTER PARAMETER P? .5 EX= 1 ENTER RANGE ? 20 
ENTER PARAMETER K? 1 STND DEV= 1.414214 

1.00 ******************************************* 
2.00 ************************** 
3.00 ***************** 
4.00 ******* 
5.00 **** 
6.00 ** 
7.00 
8.00 * 
9.00 

10.00 
11. 00 
12.00 
13.00 
14.00 
15.00 
16.00 
17.00 
18.00 
i 9.00 
20.00 

01< 

FIGURE 6-33 Pascal distribution with K == 1. Also known as the geometric distribution. 

BINOMIAL DISTRIBUTION 

When random samples are taken N at a time from an infinitely large population 
having a proportion P of desired characteristics (e.g., red balls, as opposed to 
white ones; or defective parts in a quality-control application), the distribution 
of the number of successes in each draw X is given by the binomial. In the case 

FIGURE 6-34 Pascal distribution that is the sum (convolution) of three geometric distri
butions. 

ENTER PARAMETER P? .5 
ENTER PARAMETER K? 3 

1.00 ** 
2.00 ********** 
3.00 *************** 
4.00 ***************** 
s.oo **************** 
6.00 ************* 
7.00 ******** 
8.00 ******** 
9.00 ***** 

10.00 ** 
11.00 **** 
12.00 

'13.00 
14.00 
15.00 
16.00 
17.00 
18.00 
19.00 
20.00 

01< 

EX= 3 ENTER RANGE ? 20 
STND DEV= 2.44949 



DISTRIBUTION FUNCTIONS 139 

of a finite population, samples should be returned and the population randomly 
mixed before another draw is made; this is called sampling with replacement. 

The probability function is given by: 

where X 0, 1, 2, ... N and Q = 1- P, and the coefficient is N CHOOSE P. The 
mean is given by: 

EX=N*P 

and the variance is given by: 

VX=N*P*Q 

Figure 6-35 is a program that generates and plots binomial distributions. 
Figure 6-36 is one of them with P= .5 and N 10. 

~8 ~ BINOMIAL DISTRIBUTION 

30 CLS: KEY OFF 
40 INPUT "ENTER PARAMETER P";P 
50 INPUT •ENTER PARAMETER N°;N 
60 EX=N*P 
70 Q=1-P: VX=N*P*Q 
80 LOCATE 1,35: PRINT 0 EX=·EX 
90 LOCATE 2,35: PRINT "STND DEV="SQRCVX> 
100 DIM S<20>, 0<20) 
110 TIME=VAL<RIGHT$<TIME$,2)) 
120 TIME=TIME+VAL<MIO$<TIME$,4,2)) 
130 TIME=TIME+VAL<LEFT$(TIME$,2>> 
140 RANDOMIZE TIME 
150 LOCATE 1,55: INPUT "ENTER RANGE u; RANGE 
160 FOR 1=1 TO 20 
170 S<I>=RANGE*I/20 
180 NEXT I 
190 FOR 1=1 TO 100 
200 GOSUB 320 
210 FOR J=1 TO 20 
220 IF R<=S(J) THEN D<J>=D<J>+l: GOTO 240 
230 NEXT J 
240 NEXT I 
250 LOCATE 3, 1 
260 FOR I=l TO 20 
270 PRINT USING•###.## •;S<I>; 
280 FOR J=l TO D<I> 
290 PRINT 0 *u;: NEXT J: PRINT 
300 NEXT I 
310 ENO 
320 ~ SUBROUTINE BINOMIAL 
330 R=O 
340 FOR 11=1 TON 
350. IF. RND-P <=O THEN R=R+l 
360 NEXT I I 
370 RETURN 

FIGURE 6-35 Program to gen
erate and plot 
the binomial dis
tribution. 
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ENTER PARAMETER P? .5 
ENTER PARAMETER N? 10 

0.50 
1. 00 * 

** 
******************* 

********************** 
4.50 
5.00 ******************* 
5.50 
6.00 *********************** 
6.50 
7.00 ******** 
7.50 
8.00 ***** 
8.50 
9.00 * 
9.50 

10.00 
Ok 

EX= 5 ENTER RAl'-JGE ? 1 0 
STND DEV= 1.581139 

FIGURE 6,.-36 Histogram of a binomial distribution. 

HVPERGEOMETRIC DISTRIBUTION 

If the population with initial proportion P of desired events from which samples 
of size N are to be taken is of finite size M and samples are taken without 
replacement, the appropriate probability distribution to describe the distribution 
of successes' X is the hypergeometric distribution. 

Its probability function is the product of two binomial coefficients: M*P 
CHOOSE X and M*Q CHOOSE (N-X); divided by a third, M CHOOSE N. 
The complete expression is: 

p(X) ((M*P!/X!*(M*P-X)!)*(M*Q!/ (N -X)l*(M*Q-N + X)!)/(M!/N!*(M-N)! 

The mean is given by: 

EX=N*P 

and the variance is given by: 

VX=((M-N)/(M- l))*N(P*Q) 

Figure 6-37 is a program that generates and displays hypergeometric 
distributions. Figure 6-38 is one such distribution that differs from the one 
shown in the binomial case in that the population is finite. An error trap has 
been incorporated in the program to intercept attempts to divide by zero that 
may occur if the sample size and/or the number of trials is too great for the 
population size. 



10 ' HYPERGEOMETRIC DISTRIBUTION 
20 , 
30 ON ERROR GOTO 450 
40 CLS: KEY OFF 
50 INP!JT "ENTER PARAMETER P";P 
60 INPUT •ENTER PARAMETERS MAND Na; M,N 
70 EX=N*P 
80 Q=l-P: VX=N*P*Q*<<M-N)/(M-1)) 
90 LOCATE 1,35: PRINT 0 EX="EX 
100 LOCATE 2,35: PRINT 0 STND DEV=•SQR<VX> 
110 DIM 8(20>, D<20) 
120 TIME=VAL<RIGHT$(TIME$,2))+VAL<MID$(TIME$,4,2>> 
130 TIME=TIME+VAL<LEFT$<TIME$,2)) 
140 RANDOMIZE TIME 
150 LOCATE 1,55: INPUT •ENTER RANGE•; RANGE 
160 LOCATE 2,55: INPUT "ENTER TRIALS "; TRIALS 
170 FOR 1=1 TO 20 
180 S<I>=RANGE*I/20 
190 NEXT I 
200 FOR 1=1 TO TRIALS 
210 GOSUB 340 
220 FOR J=1 TO 20 
230 IF R<=S<J> THEN D<J>=D(J)+1: GOTO 250 
240 NEXT J 
250 NEXT I 
260 LOCATE 3, 1 
270 FOR 1=1 TO 20 
280 PRINT USING•###.## •;S<I>; 
290 FOR J=l TO D< I> 
300 PRINT"*•; 
310 NEXT J: PRINT 
320 NEXT I 
330 END 
340 ' SUBROUTINE HYPERGEO 
350 R=O 
360 FOR:Jl=1 TON 
370 IF RND-P >O THEN 400 
380 S= f: R'=R+ 1 
390 GOTO. 410 
400 S=O 
410 ~<M*P-S)/(M-1) 
420 M=M .... 1 
430 NEXT II 
440 RETURN 
450 PRif\IT ·Too MANY TRIALS!• 

SUMMARY 
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FIGURE 6-37 Program to gen
erate and plot a 
hypergeometric 
distribution. 

We have introduced the three most important probability distributions used in 
simulation modeling: the normal, exponential, and Poisson. We have presented 
programs that will display the appearance of them and can be used in simulation 
programs to generate random observations from them. 

We presented and compared three different ways to generate the normal 
distribution: the central limit technique, the direct method, and Teichreow's 
approximation. 

Then we introduced two exponentially derived distributions: the gamma 
and the beta. We discussed the chi-squared distribution and demonstrated that 
it can be equivalent.to the gamma. We explained that the gamma we generated 
was actually a special case known as the Erlang distribution. 
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ENTER PARAMETER P? • 5 EX= 5 ENTER RANGE ? 1 0 
ENTER PARAMETERS MAND N? 1100,10 STND DEV= 1.574651 ENTER TRIALS? 100 

0 .50 
1.00 * 
1.50 
2.00 *** 
2.50 
3.00 ************* 
3.50 
4.00 ********************* 
4.50 
5.00 ************************** 
5.50 
6.00 ***************** 
6.50 
7.00 ************** 
7.50 
8.00 *** 
8.50 
9.00 ** 
9.50 

10.00 
OK 

FIGURE 6-38 Hypergeometric distribution equivalent to the binomial distribution in Figure 
6-36 with sampling without replacement from a finite population. 

We discussed three discrete distributions in addition to the Poisson: the 
negative binomial, binomial, and hypergeometric. We explained that the negative 
binomial we were generating was actually a special case called the Pascal distri
bution, and introduced the geometric distribution as a special case of the Pascal. 

As a final word of advice about selection of probability distributions for 
simulation modeling: when you set out to model a process, first generate em
pirical probability laws governing the important parts of the process such as the 
arrival times and service times. Then compare these distributions with at least 
the three most common theoretical distributions. You can use the chi-squared 
test for goodness-of-fit, as we did when testing random-number generators for 
uniformity, and thereby confirm your guess as to whether your empirical dis
tribution really conforms to a theoretical one. 

If your empirical distribution does appear to fit a theoretical distribution 
and the circumstances of the case suggest that it may, in fact, describe the 
underlying process, then you will improve the generality of the results of a 
simulation experiment, and consequently the range of applicability of your work, 
by using a theoretical distribution in your simulation programs rather than the 
empirical one. 



--CHAPTER SEVEN ---

Complex 
Waiting Lines 
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Thus far we have been simulating the simplest problem relating to waiting-line 
queues: Customers arrive from an infinitely large, homogeneous, and stable 
population; they queue up in a single waiting line; are served on a first-come, 
first-served basis; receive service from a single server whose operational char
acteristics are stable; and leave the system permanently. If the times between 
arrivals are exponentially distributed in the event-oriented case, or if the arrivals 
per unit time are Poisson distributed in the time-oriented case, it is not necessary. 
to simulate at all. A simple analytic solution exists, as we saw in the last chapter. 

However, nothing in real life is that simple. A number of complications 
can and do arise. Some can be handled analytically, but the solutions are not 
simple and sometimes involve making assumptions that may not be realistic in 
all cases. 

FINITE POPULA"rlONS 

Even the bench-welder example we used in Chapter Four is oversimplified. We 
assumed an infinite population, which is not realistic. There are just so many 
welders in a factory. We assumed that once a welder was fixed, it did not return 
to the repair queue again. Anybody who owns an automobile, a TV set, or a 
home computer knows that things that break and are fixed seldom stay fixed. 
Moreover, the failure rate is different the second, third, and so forth time 
around. The service time varies as well. It may become shorter as the repair 
person becomes familiar with the idiosyncrasies of a particular unit, or the repair 



COMPLEX WAITING LINES 145 

time may become longer as the repair person runs. out of "quick fixes" and has 
to undertake major rebuilding steps. 

We may have .to construct a data base to store the history of every item 
in the shop. Instead of just calling an arrival-rate subroutine to find out how 
many units failed on a particular day, we niciy have td interrogate the record of 
every one of, say, 500 units. 

For each unit, we might consult the data base to obtain the number of 
prior failures, the time since the last repair, and how long that repair took. We 
might use these facts to obtain a probability of failure for that particular machine, 
and then draw a random number to determine which machines did in fact 
malfunction on the day being simulated. 

We would obtain, for each failed unit, a probability of the number of 
days to repair using the same historical data and draw a second random number 
to determine how long the repair in question actually takes. In this kind of 
simulation, every machine in the repair queue will be tagged with a service time 
before it enters the repair facility. 

FINITE QUEUES 

The waiting line may be finite; that is, have an upper limit imposed upon it. 
Consider a barbershop that has only five places for waiting customers to sit. The 
queue. can be regarded as having a maximum length of five because people 
seldom queue up outside a barbershop; they leave and come back some other 
time when they anticipate the place will not be so busy. When a waiting-line 
system has ·a finite queue, we must check the length of the queue before a 
customer is allowed to join it. we must also write logical functions to take care 
of customers who are not allowed to join it: Do they join another queue, for 
example, outside the shop? Go away and never return? Return after some sto
chastically determined time interval? 

Animportantcase of a finite queue is the buffer. A buffer is used to 
decouple two queing systems in series when the output of one system is not 
perfectly matched to the input of the next; this is the usual case. Many times 
the objective of a simulation experiment is to determine the optimal size of a 
buffer, which is, in fact, the waiting line before the second of two sequential 
service facilities. 

One example is in a brewery, where the operation of capping bottles is 
followedby the operation of packaging them into six-packs, twelves, or twenty
fours .. If the buff er, which in this case is a long metal table with guardrails, is 
too large, then valuable manufacturing space is wasted. If the buffer is too small, 
there will be pileups of bottles, accompanied by breaking glass, spilled beer, a 
big cleanupjob, and expensive down-time on the production line. 
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QUEUE DISCIPLINE 

In our queuing examples we have tacitly assumed a first-come, first-served queue 
discipline. This assumption is not always correct. Nowhere is this more evident 
than in time-sharing computer systems. A form of last-come, first-served queue 
discipline is practiced because users newly signing on are frequently served 
before those who have been computing for some time. This is done because the 
vast majority of users have such short jobs that they can be served in one "quan.:. 
tum," or elementary time unit. Thus, many users can be satisfied at the expense 
of a few. 

In inventory systems, the usual discipline is last in, first out, or LIFO. 
The reverse of this discipline-first in, first out, or FIFO-is used when prices 
are rising rapidly. This arrangement makes profits as stated in accounting rec
ords agree with actual cash flow, because sales are closely related to the current 
cost of goods sold. 

A common form of queue discipline depends upon some system of 
priorities: women and children first into the lifeboats when a ship sinks; officers 
first in a military chow line; triaging emergency medical patients (treating first 
those who require treatment and have the best chance for recovery); emergency 
vehicles have the right of way; police respond first to major crimes in progress. 

Simulation of a priority queing system requires that arrivals be generated 
that have attached to them the attributes upon which the queue priority depends. 
These attributes may be assigned according to the proportions in which they 
occur and cooccur in the customer population. The priorities will be expressed 
in terms of logic rules, and the indicated priority will be assigned to each arrival. 
After each arrival it may be necessary to sort the queue by. priority tag and by 
arrival time within priority class. Thus, each queue member may have to be 
tagged with arrival time as well as priority. 

Priority queues are a form of preemption of those with the lower prior
ities. In some systems, absolute preemption occurs. Here the customer currently 
receiving service is booted out of the service facility when a preempting customer 
arrives. An example exists in the case of a port with one pier. If a cargo vessel 
is being unloaded and a passenger ship arrives, the freighter is towed out to a 
buoy and moored there until the passenger ship has been unloaded. 

MULTIPLE POPULATIONS 

Obviously, all customers are not created equal. Some will possess special needs; 
for example, some customers entering a bank may be doing so to open a new 
account, and this service is very different from that usually rendered on the 
teller line. Some customers may possess particular entitlements such as queue 
priorities because they are special in some way, such as military officers in chow 
lines. 
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Therefore the universe of customers, which is sometimes known as the 
calling population, may consist of several subpopulations. It may be necessary 
to create these subpopulations and to establish rules for sampling from them. 
The proportions of the subpopulations may vary depending upon the simulated 
time of day. 

STATE DETERMINED SERVICE 

In queuing theory the term state refers to the number of customers in the waiting 
line. In some systems the number of customers in the waiting line affects the 
service time. Usually it speeds it up because the server is working under pressure 
and omits some of the usual pleasantries of conversation. This can be represented 
in program logic by selecting a service-time multiplier between zero and one 
whose magnitude depends upon the length of the waiting line. 

In some systems, line length can increase service time when the server 
becomes fatigued. To simulate this effect you would have to use a formula that 
added a variable that incorporated information about how long the system had 
been operating and allowed the service-time multiplier to exceed one. 

WAITING-LINE BEHAVIOR 

Another factor that tends to nullify the cost advantage of analytic solutions is 
that customers in waitinglines do not always behave predictably. Although few 
of us surrender to the impulse to strangle the creep who engages the server in 
a long and pointless conversation, some balk, some renege, and others jockey; 
we shall discuss jockeying in the next section. 

Balking means that the customer takes one look at the length of the 
waiting line and decides to go to another store, use an automatic-teller machine, 
or put off that haircut until next month. This kind of behavior can be described 
by assigning a balking probability whose magnitude depends upon the length 
of the queue and drawing a random number to determine whether or not a 
customer balks. 

Reneging is similar to balking except that the customer initially joins the 
waiting line and then becomes tired of waiting and leaves. The probability of 
reneging is usually determined by the values of two variables: how long the 
customer has waited· and how many customers are ahead. 

MULTIPLE SERVICE FACILITIES 

Many, if not most, waiting-line systems have more than one service facility. You 
can observe this in any large bank, airline ticket concourse, or supermarket. The 
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existence of multiple servers opens many design choices. YOU can have a separate 
queue in front of each service facility. This gives rise to a queue.:.behavior phe
nomenon. called jockeying, where impatient customers wait in one line for a 
while, then leave to join another that they perceive is shorter or moving faster. 

Banks and airlines often eliminate jockeying by making customers form 
a single queue and go to the first free server when they get to the head of the 
line. I have simulated both the single queue and multiple queues using various 
logical descriptions of the jockeying behavior. Overall, I have found that neither 
arrangement has arty effect on total customer throughput, although the multiple
queue situation leads to wider differences in individual waiting times. 

Another design variation is to differentiate between the kinds of service 
offered by the different facilities. This approach is very common. We observe 
lines at bridge toll plazas for "Trucks & Campers" and for "Exact Change Only"; 
in airline ticket concourses there are lines marked "Purchase Tickets Only" and 
"Ticketed Passengers with Baggage"; and supermarkets have express lines for 
"l to 6 Items" and "7 to 12 Items." Customers still try to join the line that they 
perceive affords them the greatest advantage, however. A supermarket manager 
in Cambridge, Massachusetts, claimed this happened in his store because MIT 
students couldn't read and Harvard students couldn't count. 

Figure 7-1 is a logic flow chart of a program that simulates a waiting
line system with two servers; the program is modularized so that any number 
of servers can be simulated. The multiple-server program has a separate queue 

START 

RE-SEED 

TOTAL·TIME 

UNTIL TIME= 
TOTAL·TIME 

GETAR 

INTERMEDIATE 
RESULTS 

END LOOP 

SUMMARIZE 

END RUN 

FIGURE 7-1 Logic flow chart of 
a program simu
lating a waiting
line system, with 
two servers in 
parallel. 
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before each facility. It consists of two time-oriented simulation modules that 
process two customers at one time; thus, it simulates a computer system with 
parallel processors. Modularization of the service-facility routine permits cre
ating networks of many facilities in parallel and in series. This capability is useful 
when simulating a metalworking factory in which jobs are routed to different 
kinds of machines according to predetermined sequences and in which there 
exist several machines of each type. 

Figure 7-2 is a listing of the multiple-server program., The program 
consists of a main section (statements 10 to 120) and six subroutines. Two of 
the subroutines (statements 130 to 350 and 360 to 600) are identical time-oriented 
simulation modules. On a hardware system with parallel computing capabilities, 
these modules could execute simultaneously on separate processors. 

LIST -200 
10 ,. TIME ORIENTED SIMULATION 
20 RANDOMIZE TIME 
30 CLS: INPUT "ENTER TOTAL TIME TO BE SIMULATED 11 ;TOTAL.TIME 
40 FOR I=1 TO TOTAL.TIME 
50 ' GET ARRIVALS 
60 GOSUB 960 ·' ARRIVAL GENERATOR 
70 TOTAL .ARRIVALS=TOTAL •. ARRIVALS+ARRIVALS 
80 IF QUEUE1<=QUEUE2 THEN GOSUB 130: GOSUB 390: GOTO 100 
90 GOSUB 160: GOSUB 360 
100 NEXT I 
110 GOSUB 780 
120 END 
130 ' MODULE #1 
140 ,. PUT ARRIVALS ON WORK QUEUE 
150 QUEUE1=QUEUE1+ARRIVALS 
160 ' TEST FOR NO QUEUE 
170 IF QUEUE1=0 THEN 290 
175,, TEST·FOR SERVICE COMPLETE 
180 IF SERVICE.TIMEl>O THEN 310 
190 ' TEST FOR SERVICE JUST COMPLETED 
20 0 IF SERlJ I CE. I ND I CAT OR 1 =O THEN 220 
01< 

OK 
LI ST 210-400 
210 EXIT.QUEUE=EXIT.QUEUE+l 
220 ' FILL THE SERVICE FACILITY 
230 QUEUE1=QUEUE1-1 
240 IF QUEUE1=0 THEN NO.WAIT=NO.WAIT+1 
250 SERVICE.INDICATOR1=1 
260 ' GET SERVI CE TI t'1E 
270 GOSUB 1020 ' SERt.,JICE TIME GENERATOR 
280 SERVICE.TIMEl=NEW.SERVICE.TIME 
290 ' TEST FOR SYSTEM EMPTY 
300 IF SERVICE.TIMEDO THEN 310 ELSE 340 
310 SERVI CE. TIME1=SERt.JI CE. TIME1-1 

TOTAL.SERVICE.TIME=TOTAL.SERVICE.TIME+l 
TOTAL.QUEUE=TOTAL.QUEUE+QUEUEl 

340 GOSUB 610 
350 RETURN 
360 "' MODULE #2 
370 ,. PUT ARRIVALS ON V..IORK QUEUE 
380 QUEUE2=QUEUE2+ARR I l.JALS 
390 ·' TEST FOR NO QUEUE 
400 IF QUEUE2=0 THEN 540 
01< 

FIGURE 7-2 Program listing of a waiting-line simulation with two parallel servers. 
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OK 
LI ST 410-600 
410 ' TEST FOR SERVICE COMPLETE 
420 IF SERt.JICE.TIME2>0 THEN 560 

· 430 ·' TEST FOR SERVI CE JUST COMPLETED 
440 IF SE.RVICE. INDICATOR2=0 THEN 470 
450 SER\,1ICE. INDICATOR2=0 
460 EXIT.QUEUE=EXIT.QUEUE+1 
470 ,. FI LL THE SERt,,'I CE FACILITY 
480 QUEUE2=QUEIJE2-1 
490 IF QUEUE2=0 THEN NO.WAIT=NO.WAIT+l 
500 SERVICE. It-lDI CATOR2=1 
510 ' GET SERVICE TIME 
520 GOSUB 1020 ' SERVICE TlME GENERATOR 
530 SERt.)l CE. TIME2=NEW. SERVI CE. TIME 
540 ' TEST FOR SYSTEM EMPTY 
550 IF SERVICE.TIME2>0 THEN 560 ELSE 590 
560 SERVICE.TIME2=SERVICE.TIME2~1 
570 TOTAL.SERVICE.TIME=TOTAL.SERVICE.TIME+l 
580 TOTAL.QUEUE=TOTAL.QIJEUE+QUEUE2 
590 GOSUB 610 
600 RETURN 
OK 

OK 
LIST 610-770 
610 ·' DI SPLAY RESULTS 
620 CLS: LOCATE 1,16: PRINT"***** RESULTS OF TIME-ORIENTED SIMULATION*****" 
630 LOCATE 3,1: PRINT "TIME PERIOD #"I" OF"TOTAL.TIME 
640 LOCATE 5,5:. PRINT "WORK QUEUE #1 ";: 

FOR J=l TO QUEUEl: PRINT"*";: NEXT J 
650 LOCATE 5,75: PRINT QUEUE1 
660 LOCATE 7,5: PRINT "WORK QUEUE #2 ";: 

FOR J=l TO QUEUE2: PRINT "*";:NEXT J 
670 LOCATE 7,75: PRINT QUEIJE2 
680 IF SERVICE.INDICATOR1=1 THEN FLAG1$="*" ELSE FLAG1$='"' 
690 LOCATE 10,5: PRINT "SERVICE FACILITY tU";: PRINT FLAG1$ 
700 LOCATE 10,75: PRINT SERVICE.INDICATOR1 
710 IF SERVICE.INDICATOR2=1 THEN FLAG2$="*" ELSE FLAG2$="" 
720 LOCATE 12,5: PRINT "SERVICE FACILITY #2 11

;: PRINT FLAG2$ 
730 LOCATE 12,75: PRINT SERVICE.INDICATOR2 
740 LOCATE 15~5: PRINT "EXIT QUEUE ";: 

FOR J=1 TO EXIT. QUEUE: PRINT 11 *" ; : NEXT J 
750 LOCATE 1 : PRINT EXIT .QUEUE 
760 LOCATE 20 • IMPUT "TYPE <RETURN> OR <ENTER> TO CONTINUE • ;X 
770 RETURN 
Ok 

OK 
LI ST 780-970 
780 ' SUMMARIZE RESULTS 
790 CLS 
800 LOCATE 1,25: PRINT"***** SUMMARY OF RESULTS*****" 
810 LOCATE 4, 1: PRINT "ARRIVAL RATE="TOTAL.ARRIVALS/TOTAL. TIME 
820 LOCATE 4,40: PRINT "SERVICE RATE="EXIT.QUEUE/TOTAL.SERVICE.TIME 
830 LOCATE 7,1: PRINT "ARRIVAL TIME="TOTAL.TIME/TOTAL.ARRIVALS 
840 LOCATE 7,40: PRINT "SERVICE TIME="TOTAL.SERVICE.TIME/EXIT.QUEUE 
850 LOCATE 10,1: PRINT "TOTAL QUEUE="TOTAL.QUEUE 
860 LOCATE 10,40: PRINT "AVERAGE QUEUE="TOTAL.QUEUE/TOTAL.TIME 
870 LOCATE 13,1: PRINT "AVERAGE WAIT="TOTAL.QUEUE/TOTAL.ARRIVALS 
880 LOCATE 13,40:PRINT"MEAN TIME IN QUEUE="TOTAL.QUEUE/<TOTAL.ARRIVALS-NO.WAIT) 
890 LOCATE 16,1: PRINT "BUSY TIME="TOTAL.SERVICE.TIME 
900 LOCATE 16~40: PRINT "IDLE TIME="TOTAL.TIME-TOTAL.SERVICE.TIME 
910 LOCATE 19,1: PRINT "TOTAL ARRIVALS="TOTAL.ARRIVALS 

FIGURE 7-2 (continued) 
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'?20 LOCATE 19,40: PRINT "TOTAL SERVICES="EXIT.QUEUE 
930 LOCATE 22~1: PRINT "LEFT IN QUEUE="QUEUE1+QUEUE2 
940 LOCATE 22,40: PRINT "LEFT IN SERVICE="SERVICE.IMDICAT.OR1+SERVICE.INDICATOR2 
950 RETURN 
960 ' ARRIVAL GENERATOR 
970 X=RND 
01< 

OK 
LIST 980-
980 IF X<=.7 THEN ARRIVALS=O: GOTO 1010 
990 IF X<=.9 THEN ARRIVALS=!: GOTO 1010 
1000 ARRIVALS=2 
1010 RETURN 
1020 ' SERVICE-TIME GENERATOR 
1030 X=RND 
1040 IF X<=.3 THEN NEW.SER\.,,IICE.TIME=l: GOTO 1090 
1050 IF X<=.7 THEM NEW.SERVICE.TIME=2: GOTO 1090 
1060 IF X<=.8 THEN NEW.SERVICE.TIME=3: GOTO 1090 
1070 IF X<=.9 THEN NEW.SERVICE.TIME=4: GOTO 1090 
1080 NEW.SERVICE.TIME=5 
1090 RETURN 
Ok . 

FIGURE 7-2 (continued) 

The display subroutine (statements 610 to 770) graphically shows the 
conditions of both waiting-line queues and both service facilities at the end of 
every time slice. It also shows the condition of a combined exit queue. For long 
simulation runs, this subroutine should be "commented out." 

The summary subroutine (statements 780 to 950) reports the results of 
each simulation run. It calculates arrival rate and time and service rate and time. 
It reports combined queue statistics; that is, queue statistics that regard the 
separate queues in front of each service facility as a single queue. It reports 
service-facility loading, and total arrivals and services also on a consolidated 
basis. 

The program has only one arrival generator (statements 960 to 1010) 
and one service-time generator (statements 1020 to 1090), although it could just 
as well have had a separate pair of generators for each simulation module, or 
more if we were interested in simulating different conditions. The generators 
both produce empirically distributed values. The arrival generator has a de
signed mean arrival rate of 0.4 per day (or whatever you care to define the time 
slice to be-interarrival time is 2.5). The service-time generator has a designed 
mean service time of 2.3 (service rate is .435 ). Thus the system is stable inasmuch 
as the service rate exceeds the arrival rate. 

There are two entries to both simulation modules. The first entries are 
the starting statements (130 and 360, respectively). The second entries (state
ments 160 and 390) bypass the instructions that place the current arrival on the 
waiting-line queue. 

The main program randomizes the generators, then accepts an input 
message establishing the total time of the current simulation run. This parameter 
becomes the extent of a FOR-NEXT loop. The main program next calls the 
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arrival generator and adds the value of the returned variable to the count of 
TOTAL.ARRIVALS. Then it tests whether QUEUE #1 is less than or equal to 
QUEUE #2. If this test is true, the main program makes a normal entry to the 
first simulation module and, upon returning from the first simulation module, 
makes the bypass entry to the second module. This sequence of instructions 
establishes the queuing logic for the two servers: An arrival always joins the 
shortest queue, and in case the queues are equal, joins QUEUE # 1. If the test 
of queue length is false, the main program makes a bypass entry to the first 
simulation module and upon return makes a normal entry to the second sim
ulation module. Aftei: exiting the FOR-NEXT loop, the main program calls the 
summary report module and terminates. 

The service-time generators are called from within the simulation mod
ules, making it easy to install separate service-time generators and thus provide 

·differentiated services (such as an express checkout and a normal checkout if 
we were writing a supermarket simulation). Just before returning to the main 
program, each simulation module can call the display subroutine so the user can 
have a step-by-step graphical representation of the simulation. Each simulation 
module updates common exit statistics and common counts of TOT AL.QUEUE 
and TOTAL.SERVICE.TIME. 

We programmed the generators of the single time-oriented simulation 
program the same way that the generators of the two-server program were 
programmed, and made several comparative runs with these results: 

SINGLE-SERVER PROGRAM 

Days Arr Rate Svc Rate Avg Queue Loading Arrivals 

10 .5 3. 1.1 .90 5 
100 .47 2.25 2.11 .99 47 

1,000 .43 2.31 7.82 .99 426 
10,000 .4 2.28 4.05 .92 4044 

TWO-SERVER PROGRAM 

Days Arr Rate Svc Rate Avg Queue Loading Arrivals 

10 . 2 5 . .3 .5 2 
100 .37 2.54 .33 .84 37 

1,000 .4 2.29 .49 .91 398 
10,000 .4 2.31 .51 .92 3990 

You can see the dramatic reduction in average queue length, which 
means a reduction in the time customers waste waiting in line, and a consequent 
increase in both the number of customers that can be served and in customer 
satisfaction. These improvements come at the cost of adding a second server. 
The more servers, the better the service. 
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However, in all systems there is a design trade-off between service level 
and slack resources-in this case, employing more servers than we really need. 
Usually the trade-off is resolved in economic terms. The question is: Can we 
make enough money from the increased throughput of customers to pay the 
cost of additional. servers and return some predetermined increase in overall 
profit, called our return on investment? 

Return on investment is the usual criterion in determining design choices 
for stores, factories, and service-oriented establishments such as barbershops, 
banks, and ticket counters. In designing systems that have to respond to life
threatening emergencies, such as those for fire protection, police protection, 
national defense, air-traffic control, hospital emergency rooms, and flood con
trol, different assessment criteria may be employed. 

Here it has become popular to use Risk Analysis. We establish an Annual 
Loss Expectancy (ALE) based upon the probability of a threat (such as a flood), 
our current vulnerability to it, and the value of assets threatened by it. Then we 
try to balance the ALE against the annualized cost of countermeasures (for 
instance, a new dam). 

Intangible items such as loss of life are usually evaluated on the basis of 
how much somebody could successfully sue you for if the loss occurred. This 
leads to inequities such as evaluating an American life at $200,000 and the life 
of a resident of India at $2,500 or less. 

SUMMARY 

In this chapter we have paid attention to the complexities that exist in simulations 
of real-life waiting-line systems. 

The first of these was that calling populations are finite rather than 
infinite. We may run out of customers; or our customers may return for repeated 
services, at which times their needs may be conditioned by the services they have 
previously received. 

Then we considered the fact that waiting-line queues may have imposed 
on them an upper limit of length, as is the case with waiting rooms, bridge toll 
plazas, theater lobbies, and, especially, buffer areas between two or more se
quential production processes. 

We observed that queuing discipline is not always first-come, first-served. 
It may be just the reverse, or it may be determined by a sometimes complex 
system of priorities. These may be conditioned upon the innate characteristics 
of each customer or determined by the current state or past history of the waiting
line system itself. 

We considered the existence of two or more subpopulations within the 
calling populations, the proportions of which may vary depending upon the 
time of day, week, or year or other exogenous or endogenous factors. These 
subpopulations may be entitled to different priorities and require different kinds 
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of services-such as express customers versus regular customers in a super
market. 

We noted that the size and sometimes the composition of the waiting 
line can influence 'the performance of the servers for either good or bad. 

The performance of waiting-line systems can also be influenced by the 
behavior of customers waiting in line. They can balk (refuse to join the line), 
renege (quit the line), or jockey (leave one line and join another). 

Finally, we presented a time-oriented simulation in modular form. This 
permits one to simulate multiple servers working in parallel, as tellers in a bank; 
multiple servers rendering service in sequence, such as production operations 
in a factory; or combinations of these arrangements. 
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One of the most useful applications of simulation on personal computers turns 
on the ability of a programmer to reproduce the essential characteristics of 
mainframe simulations so as to carry out operational or training exercises. We 
shall examine two examples: a program that predicts hourly crime occurrences 
in a city of 300,000 people, and one that simulates shadowing a hostile submarine. 
The first can be used to give police watch commanders some idea of what they 
may expect on the basis of historical statistics. The second is a pursuit game that 
gives some training in relating transverse Mercator map projections quickly to 
latitude and longitude. 

POLICE SIMULATION 

The police simulation .derives from a study we did in London, Canada, to ra
tionalize police patrol-car areas. The original study is described in Chapter Ten. 
Our input consisted of crime-occurrence reports that had been collected in 
computer-readable form. Over a three-year period we detected a stability in the 
hourly, daily, and monthly pattern of the occurrences of criminal incidents. 

On an hourly basis, crime seems to peak in the early evening and drop 
off in the early-morning hours. We were able to fit our historical data with a 
curve of the form: 

HOURLY EVENTS = (SIN(HOUR*-130927 - 1.4724))"2 

where the variable HOUR is given as a 24-hour clock. Figure 8-1 shows the 
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FIGURE 8-1 Distribution of 
criminal incidents 
by hour of day 
derived by fitting 
a curve to empiri
cal data. 

distribution of incidents on anhourly basis- I is set equal to 50 for display 
purposes. 

On a daily basis, crime appears to rise steadily from a low on Sunday to 
a maximum on Saturday. We were able to fit our his.torical data with a straight 
line: · 

DAILYEVENTS = DAY.OF.WEEK/7 

where DAY.OF.WEEK equals 1 for Sunday and 7 for Saturday. Figure 8-2 
shows the distribution of incidents on a day-of-week basis. 

On a monthly basis, crime seems to decline in the winter and peak in 
August. We

1
were .able to fit our historical data with a curve of the form: 

MONTHLY EVENTS=ABS(SIN(MONTH*.261854 - .52362)) 

where months are numbered beginning with January L Figure 8-3 shows 
the distribution of incidents on a monthly basis. 

We obtained a base crime rate by dividing the number of crimes forecast 
for the current year by 8, 760, the number of hours in a year (8, 784 if it is a 

DISTRIBUTION OF CRIMINAL INCIDENTS BY DAY OF WEEK 

1 ******* 
2 ************** 
3 ********************* 
4 **************************** 
5 *********************************** 
6 ****************************************** 
7 ************************************************** 

FIGURE 8-2 Distribution of 
criminal occur
rences by day of 
week. 
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DISTRIBUTION OF CRIMINAL INCIDENTS BY MONTH OF YEAR 

1 ************ 
2 
3 ************ 
4 ************************* 
5 *********************************** 
6 ******************************************* 
7 ************************************************ 
8 ************************************************** 
9 ************************************************ 
10 ******************************************* 
11 *********************************** 
12 ************************ 

FIGURE 8-3 Distribution of 
criminal occur
rences by month 
of year. 

leap year). The number of crimes forecast is usually obtained by plotting a line 
of regression based upon experience in, say, the past three years. 

We multiplied the base rate by: 

MULTIPLIER= HOURLY EVENTS+ DAILY EVENTS+ MONTHLY EVENTS 

and normalized the result by multiplying by .6470435, so that the sum of events 
for all the hours of the year equaled the yearly forecast. 

The only randomization we did was to use a random-number draw to 
decide, with a probability of .5, whether to integerize or round up the number 
of crimes forecast in each hour. 

The simulation consists of a main program and four subroutines: an 
initialization ("housekeeping") subroutine, one that establishes the starting time 
of the simulation, another that generates hourly occurrences, and an annotation 
subroutine. Figure 8-4 is a logic flow chart for this simulation program. Figure 
8-5 is a complete listing. 

The housekeeping subroutine is called first. It clears the screen, initial
izes the random-number generator, and loads three vectors. The FIRST.DAY 
vector contains the number of the day of the week for January 1, 1984 to January 
1, 1993. (For example, New Year's Day 1985 falls on a Tuesday, so FIRST.DAY(2) 
is equal to 3.) The index is equal to current year minus the base year of 1983. 

The DAYS.IN.MONTH vector is used to convert Year/Month/Day dates 
(YY,MM,DD) to Month/Day (MM,DDD) dates. These are called "Julian dates" 
here, perpetuating a common misnomer. (Another date representation, called 
Julian, keeps dates in days since the beginning of the Christian era. This format 
simplifies date arithmetic and can be converted easily to American style: MM/ 
DD/YY, European style: DD/MM/YY, or international standard: YY/MM/DD.) 
The vector contains the cumulative days in the month for each month of the 
year-in a normal year, January = 0, February = 31, March = 59, and so on. 
In a leap year, March 60. There are 24 components; the first 12 are selected 
for a normal year, the last 12 for a leap year. The DAY.OF.WEEK string vector 
contains the names of the days of the week, as opposed to their numbers. 

The main program asks the user to enter the forecast number of oc
currences for the year to be simulated (OCCUR), and the date and time at which 
the simulation is to start (YY, MM, DD, HH); then it calls the "Julian" date 
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FIGURE 8-4 Logic flow chart of 
crime-occurrence 
simulation. 

subroutine. This subroutine first finds the INDEX. Then it tests whether the 
current year is a leap year or not (that is, whether or not it is evenly divisible by 
4. We're not going to worry about the year 2000 in this book; we'll save that for 
the second edition.) If the current year is a leap year, we equate an offset for 
the DAYS.IN.MONTH vector to 12; otherwise it is 0. The offset is called ADD. 

The subroutine calculates the hourly crime rate (RATE) for either a 
normal year or a leap year. Then it lives up to its name and calculates the Julian 
date; this is simply the value of the DAYS.IN .MONTH vector indexed by the 
month number (MONTH) plus the offset (ADD), added to the day (DAY). 

The Julian subroutine determines which day of the week (DAY.OF.WEEK) 
it is by adding the current-year component of the FIRST.DAY vector less one 
to the Julian date modulo, then taking the sum module-7. It determines which 
hour of the year (HOUR.INDEX) it is by adding the Julian date less one times 
24 to the starting time (HOUR). Then control is returned to the main program. 

The main program then enters a WHILE-WEND loop that is terminated 
when FLAG$ is set equal to "Q," for QUIT. For each iteration of the loop, it 
increments the HOUR.INDEX, calls the Crime Occurrence subroutine, and calls 
the Annotation subroutine. The main program terminates with the loop. 

The Occurrence subroutine uses the functions of curves fitted to his
torical statistical data to calculate the number of crimes expected to occur during 
the current simulated hour. 
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OK 
LIST -490 
10 GOSUB 500 $ HOUSEKEEPING SUBROUTINE 
20 INPUT "ENTER ANNUAL NUMBER OF OCCURRENCES": OCCUR 
30 INPUT "ENTER DATE/TIME: YY, MM, DD, HH 11

; YEAR, MONTH, DAY, HOUR 
40 GOSUB 700 ·' DATE CONVERSIOt-J SUBROUTINE 
50 WHILE FLAG$ <> "Q" 
60 INPUT "TO ADVANCE PROGRAM TYPE 'RETURW OR ·"ENTER'= TYPE 'Q'° TO QUIT": FLAG$ 
70 PRINT 
80 HOUR. INDEX = HOUR. INDEX+ 1 
90 GOSUB 1000 ·' CRIME OCCURRENCE SUBROUTINE 
100 GOSUB 2000 ' ANNOTATION SUBROUTINE 
110 vJEND 
120 END 
130 I 

OK 

OK 
LI ST 500-900 

HOUSEKEEPING SUBROUTINE 
0 CLS: RANDOMIZE TIME 

520 DIM FIRST.DAY<10) DAYS.IN.MONTH(24>,DAY.OF.vJEEK$(7) 
530 FOR I=l TO 10: FIRST.DAYCI>:NEXT I 
540 !=1 TO 24:READ DAYS.IN.MCINTHCI>:NEXT I 
550 !=1 TO ?:READ DAY .OF .L.JEEK$( I) :NE)(T I 
560 DATA 1,3,4,5,6,1 ,2,3,4,6 
570 DATA 0,81,59,90,120,151,181,212,243,275,304,334 
580 DATA 0 31 60 91,122,152,182,213,244,276,305,335 
590 DATA " , "MONDAY", "TUESDAY", "WEDNESDA • i," THURSDAY'', "FRI DA.'("," SATURDAY" 
600 RETURN 
700 ' DATE CONt.JERSION SUBROUTINE 
710 INDEX=YEAR-83 
720 IF YEAR/4-INT('(EAR/4)=0 THEl'·I ADD=12 ELSE ADD=O 
725 RATE=OCCUR/((ADD/12)*24+8760) 
730 RATE=OCCUR/( <ADD/12H:24+8760) 
740 .JULIAN. DATE=DAYS. IN .MONTH<ADD+MOt'-JTH)+DAY 
750 DAY.OF.WEEK=<FIF:ST.DAY<INDEX)-1+JULIAN.DATE MOD 7) MOD 7 
760 HOUR. INDEX=( JULIAN. DATE-1) *24+HOUR 
770 RETURN 
Ok 

Ok 
LI ST 1000-
100 (I ' CR I ME OCCURRENCE SLIBROUT I NE 
l 01 (I HOUR=( HOUR. Il'mEx MOD 24) 
1020 HOUR.EVENT=CSIN<HOUR•.130927-1.04724))A2 
1030 JULIAN.DATE=lNT<HOUR. INDE>V24) 
1040 DAY.OF.WEEK=«FIRST.DAY<INDEX)-1+JULIAN.DATE MOD MOD 7)+1 
1050 DAY. E!.JE~~T=DAY. OF .t,JEEK/7 
1060 FOR I=l+ADD TO 12+ADD 
1070 IF JULIAN .DATE« DAYS. IN .MONTH< I)+ 1) THEN MOt-..JTH=I-ADD-1: GOTO 1090 
1080 NEXT I 
1090 MONTH. El,>ENT=ABS( SIN<MONTH*. 2c.1854- .523c.2)) 
1100 EVENT=< HOUR. EVENT+DAY. E'v1ENT+MONTH. EVENT)*· 6470435 
1110 CRIME=EVENT*RATE 
1120 IF RND >=,5 THEN CRIME=INT<CRIME+.5) ELSE CRIME=INT(CRIME) 
1125 PRINT "CRIME.S ="CRIME 
1130 RETURN 
2000 ANNOTATION SUBROUTINE 
2010 PRINT "·'JULIAN' DATE IS: 19 11 YEAR 11

/
11 JULIAN.DATE 11 /"HOUR":OO" 

2020 PRINT"DAY OF l.JEEK IS "DAY.OF.t,.JEEK$<DAY.OF.WEE~O 
2030 PRINT" HOUR INDEX IS: 11 HOUR, INDEX 
20 40 RETLIRN 
Ok 

FIGURE 8-5 Complete program listing of crime-occurrence simulation. 
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TO ADVANCE PROGRAM TYPE ... RETURN' OR 'ENTER,.; TYPE 'Q·' TO QUIT? 

CRIMES = 12 
·'JULIAN' DATE IS: 19 85 / 31 / 20 :00 
DAY OF WEEK IS FRIDAY 
HOUR INDEX IS: 764 
TO ADVANCE PROGRAM TYPE 1 RETURN' OR ,. ENTER·· ; TYPE ·' Q 1 TO QUIT? 

CRIMES = 12 
·'JULIAN' DATE IS: 19 85 / 31 / 21 :00 
DAY OF WEEK IS FRIDAY 
HOUR INDEX IS: 765 
TO ADVANCE PROGRAM TYPE 'RETURN ... ~ OR ··ENTER ... ; TYPE ... Q, TO QUIT? 

CRIMES = 12 
·'JULIAN" DATE IS: 19 85 / 31 / 22 :00 
DAY OF WEEK IS FRIDAY 
HOUR INDEX IS: 766 
TO ADVAN'CE PROGRAM TYPE ,. RETURt·Y OR ·'ENTER ... ; TYPE ,. Q' TO QUIT? 

FIGURE 8-6 Output from crime-occurrence simulation showing control statements. 

The Annotation subroutine prints out the Julian date, hour (on a 24-
hour clock), day of the week, and hour of the year (HOUR.INDEX). 

Thus the program starts at the time the user enters and, using the total 
annual criminal occurrences for that year, generates the number of crimes for 
that year. This program can be augmented by logic statements that differentiate 
the occurrences by offense and by geographical area, provided historical statistics 
are available from which appropriate logic rules can be written. Figures 8-6 
and 8-7 are examples of output from this program. 

The program can support people-machine simulations for training watch 
commanders and communications personnel. It can also provide input to sim
ulations whose objective would be rationalizing patrol-area assignments, de-

FIGURE 8-7 Additional output from crime-occurrence simulation. 

CRIMES = 9 
·'JULIAN' DATE IS: 19 85 / 32 / 2 :00 
DAY OF WEEK IS SATURDAY 
HOUR INDEX IS: 770 
TO ADVANCE PROGRAM TYPE 'RETURN·' OR ·'ENTER" ; TYPE 'Q' TO QUIT? 

CRIMES = 8 
,.JULIAN' DATE IS: 19 85 / 32 / 3 :00 
DAY OF WEEK IS SATURDAY 
HOUR INDEX IS: 771 
TO ADVANCE PROGRAM TYPE RETURN' OR 'ENTER·'; T"YPE ·' Q" TO QUIT? 

CRIMES = 7 
'JULIAW DATE IS: 19 85 / 32 / 4 :00 
DAY OF WEEK IS SATURDAY 
HOUR INDEX IS: 772 
TO ADVANCE PROGRAM TYPE 'RETURl'V OR 'ENTER·' ; TYPE 'Q'. TO QUIT? 

CRIMES = 6 
·',JULIAN' DATE IS: 19 85 / 32 / 5 :00 
DAY OF WEEK IS SATURDAY 
HOUR INDEX IS: 773 
TO ADVANCE PROGRAM TYPE 'RETURN' OR 'ENTER·'; TYPE 'Q' TO QUIT? 
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ployment of backup forces, and rules of engagement to cover patrol areas when 
the primary unit is busy. 

Up until now these simulations have demanded the use of mainframe 
computers, because of the voluminous statistical data required. However, new 
models of personal computers with megabyte main memories and 20-megabyte 
hard-disk secondary storage will overcome these deficiencies. Of course, exe
cution time may be a problem if an interpreted language, such as BASIC is 
employed. Compilers are now available, however, for BASIC and other popular 
personal-computer languages. These compilers offer a ten-to-one advantage in 
execution time. Their use does restrict the portability of programs among dif
ferent makes of personal computers. 

SUBMARINE PURSUIT 

The next, and last, example is primarily a pursuit game, although it ,possesses 
some tutorial qualities. It is a skeletonized version of a program one of my 
students wrote in a graduate course in simulation. The program was intended 
to simulate one console of the U.S. Navy's Ocean Surveillance Information Sys
tem (OSIS). 

OSIS is a major command, control, and intelligence system with facilities 
in Spain; Japan; Pearl Harbor, Hawaii; and Norfolk, Virginia that the Navy uses 
to keep track of worldwide ocean traffic. It has eight sites, with four consoles at 
each one. We simulated one of these to see whether we could improve the 
autocorrelator program. This is a computer program that OSIS uses to link up 
new contact sightings with preexisting tracks of vessels or aircraft. Our simulation 
was done on a Digital Equipment Corp. System 1091 equipped with Tektronics 
graphic terminals. My skeletonized version is much less grand, but it does present 
some of the elements of computer graphics in a simulation context. Figure 
8-8 is a logic flow chart of the simulation. Figure 8-9 is a complete program 
listing. 

The program we shall examine presents a display that is 720 nautical 
miles from east to west and 300 nautical miles from north to south. The scale 
is one pixel (the elementary unit of computer graphics) equals one nautical mile. 
The southwest corner is 29 degrees (deg) north latitude, 82 degrees west lon
gitude. The northwest corner is 34 deg N, 82 deg W. The southeast corner is 
29 deg N, 67 .54 W; and the northeast corner, taking into account the Mercator 
correction for the earth's spherical surface, is 34 deg N, 68.29 W. Annotations 
are shown in yellow. 

The display depicts the shoreline of the southeastern United States from 
Norfolk, Virginia, to Daytona, Florida, although the graphical routines are suf
ficiently generalized that other features can be programmed in if desired. The 
coastal region is "painted" green; the black screen represents the ocean. 

The program only handles two ships: a frigate based at Norfolk, rep
resented by a blue circle; and a hostile submarine, represented by a red circle. 
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CONVERT CORNER 
COORDINATES 

DISPLAY 
SHORELINE 

DISPLAY BASE 
(1ST TIME) 

DISPLAY CORNER 
COORDINATES 

DISPLAY HOSTILE 
CONTACT 

INPUT CHASE 
COORDINATES 

CONVERT CHASE 
COORDINATES 

FIGURE 8-8 Logic flow chart of 
naval anti-subma
rine warfare simu
lation. 

The initial location of the submarine is determined by two random-number 
draws. Actually, a random course of ten positions is preloaded before an en
gagement begins. The logical rules of movement for both ships provide for a 
100-mile guard band along the left-hand margin of the display, to keep the ships 
from driving up US highway 13 or doing something equally silly. Furthermore, 
the hostile ship cannot move more than 100 miles north or south, east or west, 
at one time; that is, no more than 141.4 miles in a straight line. The friendly 
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LIST -201 
10 ; 
20 CLS: FOR 
30 LOCATE 
40 FOR I=1 
50 LOCATE 20 
60 LOCATE 4 
70 LOCATE 
80 LOCATE 

1=1 TO 80: PRINT II*" ; :NEXT I 
1 : FOR 1=1 TO 19: PRINT II*" : NEXT I 

19: LOCATE 1+1 ,80: PRINI "*": NEXT I 
1: FOR 1=1 TO 80: PRINT "*" : NEXT I 

PRINT "***** WELCOME TO 
PRINT "COPYRIGHT C-CIRCLE 1984" 

31: PRINT "BY JOHN M. CARROLL" 
PRINT ''ALL RIGHTS RESERVED" 

*****" 

90 LOCATE 
100 LOCATE 
110 , 

1: INPUT "TYPE <RETURN> OR <ENTER> TO ADVANCE PROGRAM ";X 

120 CLS: FOR I=l TO 80: PRINT 11 *";:NEXT I 
130 LOCATE. 2, 1: FOR I=1 TO 19: PRINT 11 *": NEXT I 
140 FOR I=1 TO 19: LOCATE 1+1 ,80: PRINT "*": NEXT I 
150 LOCATE 20 1: FOR 1=1 TO 80: PRINT"*";: NEXT I 
160 LOCATE 4 PRINT "THIS PROGRAM SIMULATES PURSUIT OF A" 
170 LOCATE PRINT "HOST! LE SUBMARINE" 
180 LOCATE PRINT "OFF THE U.S. COASTLINE" 
190 LOCATE PRINT "FIELD IS 720 X 300 NAUTICAL MILES" 
200 LOCATE INPUT "TYPE <RETURN> OR <ENTER> TO ADVANCE 
201 CLS: FOR TO 80: PRINT "*";:NEXT I 
01< 

LI ST 202-325 
202 LOCATE 2,1: FOR I=l TO 19: PRINT"*": NEXT I 
203 FOR I=l TO 19: LOCATE 1+ I, 80: PRINT "*": NEXT I 
204 LOCATE 20,1: FOR I=l TO 80: PRINT"*";: NEXT I 

PROGRAM II ;X 

205 LOCATE 4, 1 B: PRINT "MOVE THE FRI GATE (BLUE DOT> FROM NORFOLK BY" 
206 LOCATE 8 PRINT "BY ENTERING ITS LATITUDE AND" 
207 LOCATE 1 ,25: PRINT "LONGITUDE AFTER STEAMING IN A" 
208 LOCATE 16,22: PRINT "STRAIGHT LINE FOR 100 NAUTICAL MILES" 
209 LOCATE 22,1: INPUT "TYPE <RETURN> OR <ENTER> TO ADVANCE PROGRAM ";X 
210 REM INITIALIZATION 
220 CLS:DIM XS(16),YS<16),XC<100),YC<lOO>,XH(l00),YH(l00> 
230 N=l :M=l 
240 FOR I=l TO 16:READ YS<I>:NEXT I 
250 FOR I=1 TO 16:READ XS<I):NEXT I 
260 RANDOMIZE TIME 
270 GOSUB 960'GET HOSTILE TRACK 
280 GOSUB 710'FIX GEOGRAPHICAL COORDINATES 
290 GOSUB 630'DRAW SHORELINE 
300 GOSUB 550'SHOW HOME BASE 
310 GOSUB 890'PRINT GEOGRAPHICAL COORDINATES 
320 GOSUB 1250'SHOW HOSTILE CONTACT 
325 FOR I=l TO 3000: NEXT I 
Ok 

LI ST 330-610 
330 , 
340 REM CHASE HOSTILE CONTACT 
440 LOCATE 10,25:INPUT"ENTER LATEST POSITION <LATITUDE,LONGITUDE>";Y,X 
450 YP=<YN-Y)*60:XP=<XW-X>*COS<Y*.017454)*60.03 
460 IF YP<O OR YP>299 OR XP<O OR XP>719, THEN GOSUB 1100 
470 IF SQR(A8S(YP-YC(N))A2+ABS<XP-XC(N))A2))200 THEN GOSUB 1100 
480 GOSUB 1180 
490 LOCATE 24,l:INPUT"TO GET ANOTHER CONTACT TYPE <2>;TO SEE TRACKS <l>;QUIT<O>" 
;C$ 
500 IF C$="0" THEN CLS: END 
510 IF C$=" 2" THEN 290 
520 IF C$="1" THEN GOSUB 1320 
530 GOTO 490 
540 END 
550 ; 

FIGURE 8-9 Complete program listing of naval anti-submarine warfare simulation. 



560 IF N>l THEl'l 610 
570 XB=110:Y8=60 
580 CIRCLE <XB,YB> ,1 
590 PAINT <XB,YB>, ,1 
600 XCC1>=XB:YC<1>=YB 
610 RETURN 
OK 

LI ST 620-820 
620 ; 
630 REM DRAW SHORELINE 
640 CLS:~OLOR 6,0,0,32 
650 FOR I=l TO 15 
660 LINE <XS<I>,YS<I>>-<XS<I+l>,YSCI+l>>,4 
670 NExT I 
.~80 PAINT (Q ,0) ,4,4 
690 RETURN 
700 
710 REM ROUTINE TO GET LATITUDE & LONGITUDE OF DI SPLAY 
720 CLS: FOR I=1TO80: PRINT "*";.:NEXT I 
730 LOCATE 2,1: FOR I=l TO 19: PRINT"*": NEXT I 
740 FOR I=l TO 19: LOCATE 1+I,80: PRINT "*": NEXT I 
750 LOCATE 20, 1: FOR I=.1 TO 80: PRINT "*";: NEXT I 
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760 LOCATE 4,15: PRINT ."BUILT-IN MAP SHOWS SOUTHEASTERN COAST OF THE U.S." 
770 LOCATE 8,23: PRINT "ROUGHLY NORFOLK, VA TO ORLANDO, FA" 
780 LOCATE 12,23: PRINT "ENTER 29 DEG N X 82 DEG W <29,82>" 
790 LO.CATE 16,24: PRINT "AS THE SOUTHvJESTERN CORNER .OF MAP" 
800 LOCATE 22, 1: INPUT "TYPE <RETURN> OR <ENTER> TO ADVANCE PROGRAM ";X 
810 CLS: LOCATE 10,5 
820 INPUT" ENTER .LATITUDE & LONGITUDE OF SW CORNER IN DECIMAL DEGREES" ;YS ,)((,J 

OK 

OK 
LI ST 830-1020 
830 YN=YS+5 
840 XSE=XW-11.99/COS<YS*.017454) 
850 XNE=XW-11.99/COSCYN*.017454) 
860 CLS:COLOR 6,0,o,si 
870 RETURN 
880 ; 
890 REM PRINT COORDINATES 
900 LOCATE 2, 1 7: PRINT YN"N; "XW"~J" 
910 LOCATE 2,55:PRINT YN"N;"XNE"W" 
920 LOCATE 22,l:PRINT YS 11 N; 11 XliJ 11 W11 

930 LOCATE 22.55:PRINT YS"N;"XSE"W" 
940 RETURN . . 
950 .. 
960 REM HOSTILE TRACK 
970 FOR I=! TO ~O 
980 XH(J)=RN0*719 
990 IF XH<IH=100 THEN XH<D=XH<D+lOO 
1000 I.F I=l THEN 1020 
1010 IF ABS<XH<I>-XH<I-U»lOO THEN 980 
1020 NEXT I 
OK 

OK 
LI ST 1030-1220 
1030 FOR I=l TO 10 
1040 YH(l)=RND*299 
1050 IF !=1 THEN 1070 
1060 IF ABS<YH<I)-YH<I-1)))100 THEN 1040 

FIGURE 8-9 (continued) 
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1070 NEXT I 
1080 
1090 
1100 
1110 
1120 
1130 
1140 
1150 
1160 
1170 
1180 
1190 
1200 
1210 
1220 
OK 

RETURN , 
REM POSITION OUT OF BOUNDS 
LOCATE 15,1 
INPUT"POSITION OUT OF BOUNDS; TYPE <1> TO CONTINUE, <O> TO QUIT";C$ 
IF C$="0" THEN END 
IF C$="1" THEN M=M-l:GOSUB 630:GOSUB 890:GOSUB 1250:GOTO 340 
GOTO 1120 
RETURN , 
REM GOOD POSITION 
GOSUB 890 
CIRCLE <XP,YP>,5,1 
PAINT <XP,YP),1,1 
N=N+ 11:XC<N>=XP :YC<N>=YP 

1230 RETURN 
1240 ·' 
1250 REM HOSTILE CONTACT 
1260 GOSUB.890 
1270 CIRCLE <XH<M>,YH<M>>,5,2 
1280 PAINT <XH<M>,YH(M)),2,2 
1290 M=M+l 
1300 RETURN 
1310 , 
1320 REM PRINT TRACKS 
1330 GOSUB 630 
1340 GOSUB 890 
1350 FOR I=l TO N-1 
1360 LINE CXCCI>,YCCI>>-<XCCI+l>,YCCI+l>>,1 
1370 NEXT I 
1380 FOR I=l TO M-2 
1390 LINE <XH( I), YH< I) >-<XHC I+ 1), YHC I+ 1)) , 2 
1400 NEXT I 
1410 RETURN 
1420 , 
1430 DATA 0,20,40,60,S0,100,120,140 1ao,200,220,240,260,280,299 
1440 DATA 100,95,85,90,75,60,55,40, 18,15,10,7,5,0 
OK 

FIGURE 8-9 (continued) 

ship has an advantage. It can move up to 200 miles. The main program first 
calls a screen with program title and copyright notice (statements 20-100; see 
Figure 8-10). Then look at Figure 8-11, a screen that gives the objective of the 
exercise (statements 120-200); and finally Figure 8-12, a screen that gives the 
rules for playing it (statements 201-209). 

Then the main program initializes itself (statements 210-260). It sets 
up three pairs of vectors. One (XS, YS) holds the coordinates of 16 points used 
to draw the shoreline. The other two pairs save the positions of the hostile 
submarine (XH, YH) and of the defending frigate (XC, YC). The initialization 
routine sets to 1 the movement counters for the hostile craft (M) and the friendly 
craft (N). It reads in the shoreline vectors and seeds the random-number gen
erator from the real-time dock. 

Next the main program calls two subroutines that can also be regarded 
as part of the initialization process. The Hostile Track subroutine (statements 
960-1080) preloads the random positions of the hostile submarine. In addition 
to observing the shoreline guard band (statement 990), this subroutine keeps 
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******************************************************************************** 
* * 
* * 
* ***** WELCOME TO 'SUBCATCHER·' ***** * 
* * 
* * 
* * 
* COPYRIGHT C-CIRCLE 1984 * 
* * 
* * 
* * 
* BY JOHN M. CARROLL * 
* * 
* * 
* * 
* ALL RIGHTS RESER'-)ED * 
* * 
* * 
* * 
******************************************************************************** 

TYPE <RETURN> OR <ENTER> TO ADVANCE PROGRAM ? 

FIGURE 8-10 Copyright and welcoming panel. 

the submarine within the surveillance area by multiplying the E-W random 
number by 719 miles (statement 980) and multiplying the N-S random number 
by 299 miles (statement 1040). It observes the 100-mile orthogonal-movement 
limitation as well (statements 1010 and 1060). 

The Fix Geographical Coordinates subroutine (statements 710-870) is 
included in case you want to program in some other location. It presents a panel, 
Figure 8-13, that orients the user (statements 720-800);. and another, Figure 
8-14, that accepts the latitude and longitude of the southwest corner of the 
display (statements 810-820), converts latitude and longitude to positions on 
the Mercator projection map (statements 840-850); and colors the annotation 
(statement 860). 

Statements 290 to 540 make up the heart of this simulation. Statements 
290 to 325 set up the problem display, which consists of a map with latitude and 

FIGURE 8-11 Introductory panel of "Subcatcher." 

******************************************************************************** 
* * 
* * 
* THIS PROGRAM SIMULATES PURSUIT OF A * 
* * 
* * 
* * 
* HOSTILE SUBMARINE * 
* * 
* * 
* * 
* OFF THE U.S. COASTLINE * 
* * 
* * 
* * 
* FIELD IS 720 X 300 NAUTICAL MILES * 
* * 
* * 
* * 
******************************************************************************** 

TYPE <RETURN> OR <ENTER> TO ADVANCE PROGRAM ? 
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******************************************************************************** 
* * * * 
* MOVE THE FRIGATE \BLUE DOT) FROM NORFOLK BY * 
* * 
* * 
* * 
* BY ENTERING ITS LATITUDE AND * 
* * * * 
* * * LONGITUDE AFTER STEAMING IN A * 
* * 
* * 
* * 
* STRAIGHT LINE FOR 100 NAUTICAL MILES * * * * * 
* * 
******************************************************************************** 
TYPE <RETURN> OR <ENTER> TO ADVANCE PROGRAM ? 

FIGURE 8-12 Instructions for playing "Subcatcher." 

longitude annotated in each corner, the shoreline, the frigate at its home base, 
and the hostile submarine somewhere offshore. This involves calling the sub
routines Draw Shoreline (statements 630-690); Show Home Base (statements 
550-610); Print Geographical Coordinates (statements 890-940); Show Hostile 
Contact (statements 1250-1300); and a timing loop for program synchronization 
(statement 325). The Show Home Base subroutine is executed only during the 
first iteration of an engagement. The Chase Hostile Contact routine (statements 
340-480) carries out the actual operation; and statements 490-530 make up 
the main control switch. These displays are shown in photographs of the color 
monitor screen. 

The Draw Shoreline subroutine simply draws a line connecting the 16 
points in vectors XS and S, and paints the enclosed area green. 

The Show Home Base subroutine is by-passed if N, the movement counter 

FIGURE 8-13 Geographical orientation of naval anti-submarine warfare simulation. 

******************************************************************************** 
* * 
* * 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

BUILT-IN MAP SHOWS SOUTHEASTERN COAST OF THE U.S. 

ROUGHLY NORFOLK, VA TO ORLANDO, FA 

ENTER 29 DEG N X 82 DEG W (29,82> 

AS THE SOUTHWESTERN CORNER OF MAP 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* ******************************************************************************** 

TYPE <RETURN> OR <ENTER> TO ADVANCE PROGRAM ? 
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Ef'.lTER LATITUDE & l..ONGITUOS: oi;:: SW CORNER IN OECIMAL. DEGREES? ~9,ei 

FIGURI; 8-14 Entering latitude and longitude of SOL1thwestern corner of map display, 

for the frigate, is greater than one; that is, on every iteration in an engagement 
except the first. The subroutine draws a blue circle at graphical <:oordinates 110, 
60; corresponding roughly to 33 deg N, 79.8 deg W, It enters the X, Y coor
dinates of the home base as the first <:omponent of the friendly craft's movement 
history vectors (XC, YC). 

The Print Geographical CqorP.inates subroutine prints the pairs of val,. 
ues: YN (Y-NORTH), XW (XC7WEST); YS (Y,.....SOUTH), XW; YN, XNE 
(X NORTHEAST); and YS, XSE (X-SOUTHEAST) obtained in the Geo
graphical Coordinates subroutine. 

The Show Hostile Contact subroutine unstacks the first set of preloaded 
<:;oordinates from the XH, YH vectors using the subscript M (hostile~(:raft rnove
ment counter), draws a red circle at that point, and increments M by one. 

ACTUAL ENGAGEMENT 

The Chase Hostil~ Contact routine (statements 240 to 530) invites the user to 
enter the latitude and longitude of where the frigate is supposed to be at the 
end of the iteration (statement 440). Ideally, this should be directly over the 
submarine. If the user is sufficiently skilled in relating map position to latitude 
and longitude, it should then be possible to "shadow" the submarine by staying 
directly over it no matter what maneuvers it execute~. 

The hardest part of the exercise is initially catching the intruder, who 
may be more than 200 miles away. Moreover, it is pot easy to relate map position 
to latitude and longitude, since there is no grid on the map. 

The program ·converts ·the latitude and longitµde to map coordinates 
(statement 450). Then it checks to see whether the point selected is on the map 
(statement460), and whether t4~:point is le$s than or equal to 200 miles from 
the last position of the friendly ves~el(statenient 470). If either of these checks 
fails, control is 'transferred to t~e· Positkm.-Out-bf-Bounds subroutine (state
ments 1100 to .1160)7 Ift~e point fulfills both criteria, control is transferred to 
the Good Posi'tionspbr~utir1e (statements 1180 to 1230). 

The G?od:H~si~ipn· subr<?11;tine
1

increments cdunter N, pushes the point's 
coordinates onto the.X(J. and Y9 yectprs, and paints a blue circle .at that point. 
Control is.returnedtothe rnasterswitth ($tatement490). 

Th~inaster. switch has d~re'e pbsitiOps: 0, 1, and· 2. Position 0 concludes 
the engag~.me;n~ immediately. Posltio:Q., 1 transfers control to the· Print Tracks 
subroutine (stateme11ts · 1320 to 141 O)JPositton 2 transfers control back to state
ment 290. It causes another iteration displaying the mapand moving the hostile 
submarine t? t~e next prestorfd ~.andolll . positi<:m. If none of these answers is 
selected, control is returned to statement 4~JO and the user is invited to respond 
agam. 
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Start of an engagement. The coastline is shown in green. Home base (Norfolk, VA) is a blue 
circle. The initial position of the hostile submarine is shown as a red circle. The first position 
taken by the friendly frigate is shown as a blue circle. 

End of the engagement. The frigate is shown closing with the submarine. 
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This display recalls and displays all the tracks made by the frigate and the submarine during 
an engagement. 

If the selected point is determined to be out of bounds, the Position
Out-Of-Bounds subroutine handles things differently. A message: "Position out 
of bounds" is displayed and the user is invited to enter the response "O" to quit 
or "l" to try again. If the user elects to try again, the M counter is decremented 
by one to make the hostile submarine execute its last maneuver again. Then 
three subroutines are called: Draw Shoreline, Print Geographical Coordinates, 
and Show Hostile Contact; and control is transferred to statement 340 so the 
user can execute the Chase Hostile Contact routine again. Notice that we don't 
have to decrement the N counter, because the Out-Of-Bounds position never 
was stacked on the XC, YC vectors. 

If the user elects the "Print Tracks" option, the Print Tracks subroutine 
first redraws the shoreline and then reprints the geographical coordinates. The 
subroutine then. reads out the XC and YC vectors, drawing blue lines from 
XC(I), YC(I), to XC(I + 1), YC(I + 1). Then it reads out the XH and YH vectors, 
drawing red)ines from XH(I), YH(I) to XH(I + 1), YH(I + 1)-but stops one 
location short of the current value of M to put the counters back into step. Upon 
returning to the main program, the engagement is terminated. 

MAKING MOUNTAINS 

It often is convenient to include a terrain display in a simulation. Random
number techniques can be used to generate randomly different terrain displays. 
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Our first example involves u~ing Fourier synthesis (making a complex wave form 
out of the ~.urns of sine and/or cosine waves) to generate the ridge line of a 
mountain range; 

This is part of an artillery-training simulator that we shall describe in 
Chapter Teri. The program is written in the dialect ofBASICused by the Tandy 
TRS.,.80 computers:· 

10 G RND(30) 'THIS RANDOMIZES THE PATTERN 
20 '.COMMENT OUT STEP 10-·TQ GET THE SAME 

PATTERN EVERY TIME 

30 FOR x 
"'' ' ' 

l'T0.127·-1 TRS~so·GRAPHICS USE.Al28 

X 80 PIXEL DISPLAY 

, _}m.Y == 2s'.~ ) 4stN(X*6 .28/90) + 2 * 

SIN(3*X*6.·?:S/90-+ G -t- 15) :2 * SIN(5*.X~6.28/90 
SIN ( 7*X~6. 28/90} .+ .30) + 3 *'SIN (2*X*6(~·28/90) 

50 IF;' ·y g 19 THEN ~O 

60 IF Y > 37 THEN90 

70 Y(X) Y 

80 SET (X, Y) 

90 NEXT X 

FIGURE 8-15 Equilateral triangle divided into 3 levels of fractiles: 4 triangles. In the lower 
left apex is shown how we get 16 and 64 triangles. 

30)· + 
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FIGURE 8-16 Three-dimensional picture of mountainous terrain produced by randomized 
fractiles of a triangle. 

A complex three-dimensional terrain pattern can be generated using 
the geometric concept of fractiles. This concept is illustrated in Figure 8-15. 

We start with an equilateral triangle and connect the midpoints of the 
three sides. This gives us 4 equilateral triangles and we have descended one level 
of fractiles. Now we can descend another level and do the same thing to each 
of our 4 equilateral triangles, to obtain 16 triangles. By descending to the third 
level, we obtain 64 triangles. These little triangles are fractiles of the big one we 
started with. 

Now we bring simulation into the picture. Instead of drawing our lines 
that subdivide triangles from the midpoints of the sides of the bigger ones, we 
use our random-number generator to pick a random point on each side. The 
result is not the regular geometric pattern we had before, but one that, after 
we add some random shading and/or color, produces the simulated aerial pho
tograph of mountainous terrain shown in Figure 8-16. 

The program to generate pictures like this (every picture will be differ-

FIGURE 8-17 Basic program for producing three-dimensional pictures by randomized 
fractiles. 

20 DIM 0(64,32> 
30 INPUT "Number of levels >> ";LE 
40 OS = 2: FOR N = 1 TO LE 
45 DS = DS + 2 A CN - 1): NEXT N 
50 MX = DS - l:MY = MX I 2:VPI = 3.1416 
55 RH = VPI * 30 I 180:VVT = RH * 1.2 
60 FOR N = 1 TO LE: L = 10000 I 1. 8 ..... N 
70 PRINT " Working on level ";N 
80 IB = MX I 2 A N:SK = IB * 2 
85 REM *** Assign heights along X in array *** 
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90 GOSUB 150 
95 REM *** Assign heights along Y in array *** 
100 GOSUB 220 
105 REM *** Assign heights along diagonal in array *** 
110 GOSUB 290 
120 NEXT N 
130 GOTO 640: REM *** Draw *** 
140 REM * Heights along X *** 
150 FOR YE 0 TO MX - 1 STEP SK 
160 FOR XE IB + YE TO MX STEP SK 
170 AX = XE - IB:AY ::: YE: GOSUB 370 
175 D1 = D:AX = XE + IB: GOBUB 370:02 = D 
180 D = <D1 + 02) I 2 + RNO * L I 2 - L I 4 
185 AX = XE:AY = YE: GOSUB 420 
190 NEXT XE 
200 NEXT YE: RETURN 
210 REM * Heights Y * 
220 FOR XE = MX TD ·- SK 
230 FOR YE = IB TO STEP SK 
240 AX = XE:AY = YE + IBt GOSUB 370 
245 Dl = D:AY ::::: YE - IB: GOSUB 370:D2 = D 
250 D = CDl + D2> I 2 + RND * L I 2 - L I 4 
255 AX = XE:AY = YE: GOSUB 420 
260 NEXT YE 
270 NEXT XE: RETURN 
280 REM * Heights a.long diagonal * 
290 FOR XE = 0 TO MX - 1 STEP SK 
300 FOR YE IB TO MX - XE STEP SK 
310 AX XE + YE - IB:AY YE - IB: GOSUB 370:01 D 
320 AX = XE + YE + IB:AY = YE + IB: GOSUB 370:D2 D 
330 AX = XE + YE:AY YE 
332 D = (01 + D2> I 2 + RND * L I 2 - L I 4 
334 GOSUB 420 
340 NEXT YE 
350 NEXT XE: RETURN 
360 REM *** return data from array *** 
370 IF AY > MY THEN 390 
380 VBY = AY:BX = AX: GOTO 400 
390 VBY = MX + 1 - AYdBX = MX - AX 
400 D = D(BX,VBY)c RETURN 
410 REM *** Put data into array *** 
420 IF AV > MY THEN 440 
430 VBY = AY:BX == AX: GOTO 450 
440 VBY = MX + 1 - AY:BX = MX - AX 
450 D<BX,VBY> = D: RETURN 
460 REM *** Put in sea level here *** 
470 IF XO <> - 999 THEN 500 
480 IF ZZ < 0 THEN BOSUB 1070:Z2 == ZZ:ZZ 0: GOTO 620 
490 GOSUB 1090: SOTO 610 
500 IF Z2 > 0 AND ZZ > 0 THEN 610 
510 IF Z2 < 0 AND ZZ < 0 THEN Z2 = ZZ:ZZ O: GOTO 620 
520 W3 ZZ I CZZ - Z2> 
522 X3 <X2 - XX> * W3 + XX 
524 (Y~ - VY) t W3 + VY 
526 (l 

530 ZT ZZ:YT = YY:XT = XX 
540 IF ZZ > 0 THEN 590 
550 REM *** going into water *** 
560 ZZ = Z3:YY = Y3:XX = X3: GOSUB 950 
570 GOSUB 1070:ZZ O:YY = YT:XX = XT:Z2 ZT: GOTO 620 
580 REM *** comming up out of water *** 
590 ZZ = Z3:YY = Y3:XX = X3: GOSUB 950 
600 GOSUB 1090: ZZ = ZT: YY = YT: XX = XT 
610 Z2 = ZZ 
620 X2 = XX:Y2 = YY: RETURN 
630 REM *** display here *** 
635 REM ** set up plotting device or screen *** 
640 GOSUB 1110 

FIGURE 8-17 (continued) 



645 REM *** scaling factors *** 
650 XS= .04:VS = .041ZS .04 
660 FOR AX = 0 TO MX:XO = - 999: FOR AV= 0 TO AX 
670 GOSUB 370 
672 ZZ ::::: D 
674 YV :::: AV I MX * 10000 
676 XX = AX I MX * 10000 - YY I 2 
680 GOSUB 940: NEXT AV: NEXT AX 
690 FOR AY = 0 TO MX:XO - 999: FOR AX = AV TO MX 
700 GOSUB 370 
702 ZZ = D 
704 VY = AY I MX * 10000 
706 XX = AX I MX * 10000 - VY I 2 
710 GOSUB 940: NEXT AX: NEXT AY 
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720 FOR EX = 0 TO MX:XO - 999: FOR EV 0 TO MX - EX 
730 AX EX + EV 
732 AV EY: GOSUB 370 
736 ZZ D 
738 VY AV I MX * 10000 
740 XX AX I MX * 10000 - VY I 2 
745 GOSUB 940: NEXT EY: NEXT EX 
750 GOTO 1130: REM *** Done plotting goto end loop ** 
760 REM *** rotate *** 
770 IF XX <> 0 THEN 800 
780 IF VY <= 0 THEN RA = VPl I 2: GOTO 820 
790 RA ::::: VPI I 2: GOTO 820 
800 RA = ATN <VY I XX> 
810 IF XX < 0 THEN RA = RA + VPI 
820 R1 = RA + RH:RD = SQR <XX * XX + VY * VY> 
830 XX =RD* COS CRl>:YY = hD * SIN CRl> 
840 RETURN 
850 REM *** Tilt down ** 
860 RD SQ~ CZZ * ZZ + XX * XX) 
870 IF XX = 0 THEN RA = VPI I 2: GOTO 900 
880 RA = ATN CZZ I XX> 
890 IF XX < 0 THEN RA = RA + VPI 
900 Rl = RA - VVT 
910 XX = RD * COS <R1> + XX:ZZ = RD * SIN <Rl) 
920 RETURN . 
930 REM *** Move or plot to <XP,YP> *** 
940 60SUB 470 
950 XX = XX * XS:YY = VY * YS:ZZ = ZZ * ZS 
960 GOSUB 770: REM *** rotate *** 
970 GOSUB 860: REM *** Tilt up *** 
980 IF XO = - 999 THEN PR$ = "M" 
985 IF XO <> - 999 THEN PR$ = "D" 
990 XP = INT CYY> + CX:YP = INT <ZZ> 
1000 GOSUB 1030 
1010 RETURN 
1020 REM *** Plot line here *** 
1030 XP = XP * .625:YP = 33.14 - .663 *VP 
1040 IF PR$= ~M" THEN XS= XP:YS = YP:XO = X 
1045 IF Y8 > 179 OR YB < 0 OR VP > 179 OR VP <· 0 THEN RETURN 
1050 LINE (X8,Y8>-<XP,VP>,CL 
1060 REM *** switch to sea colour *** 
1064 XS = XP:YS = YP: RETURN 
1070 CL == 1 
1075 RETURN 
1080 REM *** switch to land colour *** 
1090 CL = 3 
1095 RETURN 
1100 REM *** Setup plotting device or screen *** 
1110 SCREEN 1· 
1112 COLOR 0,1 
1115 RETURN 
1120 REM *** End looooop *** 
1130 INPUT A$ 
1140 END 

FIGURE 8-17 (continued) 
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ent, as long as you reseed the random-number generator) is given in Figure 
8-17. It is written in MS/BASIC for IBM/PC graphics. 

SUMMARY 

We have examined two simulation programs that were skeletonized from main
frame simulations to run on personal computers. 

The first simulated the occurrence of criminal incidents in a medium
sized city. The main point of this program was the rationalization of time to 
correspond to curves fitted to historical statistics. 

The second program simulated a two-vessel encounter. Its main point 
was the creation of a colored map upon which to carry out the engagement. 

In both cases, the personal computer was turned into a convenient train
ing system based upon a person-machine simulation. 

Then we presented two ways to use random-number techniques to pro
duce randomly different terrain representations: One uses Fourier synthesis to 
create the line of a mountain ridge; the other uses fractiles to create a three
dimensional picture of mountains, and islands if desired. 
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Most users of computer simulation programs today use special simulation lan
guages, of which there are a large number. Three popular ones are SIMULA, 
SIMSCRIPT, and GPSS. Some of these languages are available only on main
frame computers, and sometimes on only certain makes and/or models. Others 
are available on personal computers. 

GPSS, which stands for General Purpose Systems Simulator, is a widely 
used simulation language. It was originally an IBM product, but its instruction 
set has been implemented on many different computers. At the University of 
Western Ontario, we use a version written by David Martin, of the Department 
of Computer Science systems support group; it was originally called GPSS-I 0 to 
suggest that it ran on the Digital Equipment Corporation (DEC) PDP-10. A later 
version of this program, written with C. Bruce Richards, is called GPSSR (re
vised). 

Bruce Richards, a former student of mine, has written and is marketing 
a version of GPSSR that runs on personal computers compatible with the IBM
PC. It is called GPSSR/PC. 

GPSSR/PC is a General Purpose Simulation System that runs under 
MDOS-V2.0. The MDOS operating system is supplied for the IBM/PC line of 
personal computers. Many other personal computers are compatible with the 
IBM/PC and can also run GPSSR/PC. 

GPSSR/PC concepts do not vary from other popular GPSS implemen
tations. It has been designed to be a substantial subset of both GPSS/360 on IBM 
systems and GPSSlO on DEC systems 10 and 20. These two systems were used 
as guidelines to produce a language that is familiar to GPSS users and compatible 
with most textbooks. 
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INTRODUCTION TO GPSS 

by C. Bruce Richards 
Department of Computer Science 
The University of Western Ontario 

London,. Ontario, Canada 

Unlike a conventional general-purpose programming language such as FOR
TRAN or PASCAL, GPSS does not have a sequential flow of control. Concep
tually there may be numerous portions of a GPSS program being executed 
simultaneously. GPSS is event-oriented, and at any given moment in simulated 
time, numerous different events may take place: It is natural to think of them 
as happening at one instant in time. 

This concept of concurrency may be explained with a car-wash example. 
At one instant it is possible that one car is leaving the car wash, another is 
entering, and yet another is joining the queue waiting outside. (These are events.) 

The basic element in the multiple flow of control in GPSS is the "trans
action." Transactions flow through a model sequentially from block to block in 
much the same manner that the flow of control in a FORTRAN program passes 
from statement to statement. The main difference is that a GPSS model can 
have many transactions flowing through it simultaneously, while a FORTRAN 
program has only one element in its flow of control. 

The flow of control in a conventional program starts at the begining of 
the program and continues sequentially from there. A transaction in a GPSS 
program starts at a GENERA TE block and continues into the system. The single 
flow of control in a conventional program continues until the program comes 
to its logical conclusion and is halted. A GPSS transaction passes from block to 
block until it reaches a TERMINATE, which removes the transaction from the 
model. However, this does not necessarily halt the model. Execution of the model 
is halted only after a specified number of transactions have been terminated. 

There may be numerous GENERA TE blocks in a GPSS program. This 
gives rise to the concept of multiple starting locations, with many transactions 
leaving GENERA TE blocks in the same simulated time interval. It is also possible 
for many transactions to leave a GENERA TE block before any reaches a TER
MINATE block. This results in a model having possibly only one GENERA TE 
block but many active transactions moving simultaneously. 

Novice GPSS programmers often have the misconception that a trans
action transfers from the TERMINATE block back to the GENERATE block 
that it originated from, similar to a FORTRAN-style GOTO. This is not the case. 
Transactions leaving a GENERA TE block are completely independent from the 
transactions being removed by a TERMINATE block. 
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CASE STUDY I (CAR WASH) 

Scenario 

Johnny Canuck, owner of the Great Polish-Sparkling Shine Car Wash, 
wants to increase his profits. It seems a little risky to build an extension to his 
facility without knowing beforehand how large it should be. He feels that adding 
more capacity would increase his throughput, but if it is too large the facilities 
would be underutilized, thereby decreasing profits. 

Analysis 

The first step in designing a simulation is to specify the goals and ob
jectives. To make a decision regarding the expansion of the car-wash facilities, 
information pertaining to queue lengths and waiting times, along with facility 
utilization, should suffice. 

Identification of the different components and control points of the 
system in question with respect to the foregoing information requirements is 
the next phase. Obviously the main component of our system is the washing 
mechanism. In the current car wash this is a facility that can wash one car at a 
time. Another, possibly less obvious, component is the lineup of cars waiting to 
enter the car wash, better known as a queue. This queue does not directly affect 
the operation of the car wash, but resultant information regarding queue lengths 
and waiting times is invaluable when studying the model. The rate at which cars 
to be washed join the queue and the time it takes to wash a car are the third 
and fourth components. 

Next, the appropriate times and rates must be measured. The two tim
ings that are important in this system are the rate at which cars arrive and the 
length of time needed to wash a car. A measure of actual queue lengths will be 
useful for model validation. 

The arrival rate is best calculated by measuring the elapsed time between 
successive arrivals (the interarrival rate). The number of cars arriving per time 
unit can be useful if an appropriate time unit is chosen (traffic seldom arrives 
at a constant rate). By measuring the interarrival times, we can calculate the 
average, minimum, and maximum interarrival times. Using this information, a 
uniformly distributed random interarrival rate can be very easily programmed 
into the model with GPSS. GPSS is structured such that this is the distribution 
of choice in GENERA TE and ADVANCE blocks. 

Raw Data 

By analyzing the raw data in Tables 9-1 and 9-2, we may derive the 
following system characteristics~ The average time between arrivals at the wash 
is 5.2 minutes. The shortest time interval is 1.4 minutes and the longest is 9.0 



Table 9-1 lnterarrival Times (Minutes) of 
Consecutive Arrivals 

4.4 3.6 2.3 5.2 
6.8 5.4 5.9 6.1 
4.5 4.9 5.3 1.7 
7.5 4.2 8.3 3.5 
3.3 6.3 6.0 7.5 
2.5 2.0 9.0 3.5 
7.1 2.5 5.0 4.4 
6.3 1.4 8.2 3.2 
5.0 7.5 2.7 4.1 
4.0 3.5 5.6 2.0 
5.0 4.6 7.7 8.9 
5.8 6.8 5.7 5.6 
8.8 5.9 8.7 7.5 
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minutes. To simplify things, the interarrival times could be stated as 5 plus or 
minus 4 minutes. The time a car spends inside the car wash is between 3.2 and 
4.9 minutes, with an average time of 4.1 minutes. Similarly, this time spread 
could be stated as 4 plus or minus 1 minute. 

The observed queue lengths can be summarized as a maximum length 
of 12 and an average length of 6.8 cars. 

Simulation 

GPSS has entities and block definitions to represent the different types 
of components in a system. The manner in which transactions are to enter the 
model (in our example, cars entering the car-wash system) is represented by the 
GENERA TE block. The different options of the GENERA TE block allow the 
programmer to specify the rate at which transactions are to enter the system. 
The first subfield (field A) specifies the mean interarrival time, and the next 
subfield (field B) is the spread of times. 

The GPSS statements QUEUE and DEPART respectively insert and 
remove transactions from the specified queue. The QUEUE entity type also 
generates queue statistics by automatically accumulating pertinent information 
about the queue's behavior. 

Equipnu~nt entities may be represented by a FACILITY or a STORAGE. 
A STORAGE entity may be defined to contain a maximum of one or many 

Table 9-2 Random Sample of Car-wash Times 
(Minutes) Observed During the 
Same Time Period as Table 9-1 

4.2 3.5 3.6 4.5 
4.0 4.2 3.2 4.9 
3.7 4.0 3.5 3.4 
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Table9-3 Random Sample of Car-wash Queue 
Lengths Observed During the Same 
Time Period as Table 9-1 

transactions. A FACILITY may contain only one at a time. The single car wash 
in our example will be represented by a FACILITY. The SEIZE and RELEASE 
statements cause a transaction to gain control of the specified facility if the facility 
is free, and relinquish control when finished. 

A time delay is represented by an ADVANCE block. The time delay 
may be constant or variable, depending on the options used. ADVANCE 4,1 
represents a random time delay uniformly distributed between 3 and 5 units in 
duration. This time delay may represent the length of time that a transaction 
keeps control of a piece of equipment (i.e., the time it takes to wash a car). 

The TERMINATE block removes transactions from the model. As a 
transaction enters a TERM IN A TE block, it is conceptually destroyed. We are 
no longer interested in a car after it exits the car wash. Therefore it is terminated. 
Figure 9-1 relates the activities of the car-wash system to the different GPSS 
blocks. 

Verification and Validation 

Verification that the GPSS program matches the designed model is of 
utmost importance. This is similar to program debugging. In GPSS the inter
active debugger allows the user to single-step through a model to check trans
action flow. Other debugger features allow examination of entities and setting 
of break points in the model. (Further information can be found in the reference 
manual.) 

Once the GPSS program is running correctly, the model should be val
idated. Model validation involves tests to determine if samples of simulated 
output statistics belong to the same population as the actual system statistics. 
Figure 9-2 shows the actual output of a GPSS simulation run. By comparing 
the output to the performance of th~ actual system it is possible to determine 
if the model is simulating the car wash correctly. If, for example, the queue 
lengths in the model and the actual car wash bear no resemblance to one another, 
it is possible that there is still a bug in the GPSS program or the model design 
is incorrect. 

Three possible causes of an incorrect model are: oversimplification, in
valid data analysis, or insufficient raw data. Oversimplification may be caused 
by using too crude a time measure or by combining too many components of 
the actual system into one entity in the model. Not obtaining enough raw data 
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may result in a sample that is not a true representation of the real system. Poor 
data analysis may result in an incorrect assumption regarding the distribution 
of timings. What may at first appear to be a uniform distribution may actually 
be a normal distribution. 

Figure 9-2 contains the output of our GPSS car-wash simulation. The 
information that is of interest to us is the automatically generated statistics re
garding queue length and facility utilization. The . 78 utilization means that in 
our model the carwash was busy 78 percent of the time. This does not mean 
the actual car wash is this busy. The maximum and average queue lengths of 5 

FIGURE 9-1 Cafwash simulation using GPSS. 

1. Car arrives every 1 to 9 minutes. 

2. Car enters lineup waiting for wash. 

~~~61 
3. Car enters wash facility and 

departs queue. 

4. Car spends 3 - 5 minutes in carwash. 

WASH I 

GENERATE 5,4 

QUEUE WASH 

I SEIZE WASH 
DEPART WASH 

ADVANCE 4, 1 

ZSIWASHl6 

5. Car exits wash freeing the facility. RELEASE WASH 

6. Car leaves system. TERMINATE 1 
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GPSSR/PC Vl.1 
carwashl.LST•carwashl.gps 

9-FEB-1985 18:26 PAGE 1 

LINE BLOCK 

* 2 * CAR WASH EXAMPLE 1 
3 * 4 RMULT 31415 
5 WASH EQU ·I WASH EQUATED TO A NUMERIC VALUE 
6 SIMULATE 
7 GENERATE 5,4 ;CAR ENTERS.SYSTEM 
8 2 QUEUE WASH ;CAR LINES UP FOR WASH 
9 3 SEIZE WASH ;CAR GAINS CONTROL OF WASHER 
10 4 DEPART WASH ;CAR LEAVES LINEUP 
11 5 ADVANCE 4, 1 ;TIME TO WASH CAR 
12 6 RELEASE WASH ;CAR EXITS WASHER 
13 7 TERMINATE ;CAR EXITS SYSTEM 
14 START 1000 ;RUN MODEL FOR 1000 TERMINATIONS 
15 END 

SYMBOL VALUE SYMBOL VALUE 

WASH 

GPSSR/PC Vl.1 
carwash1.LST•carwashl.gps 

9-FEB-198S 18:26 PAGE 2 

RELATIVE CLOCK S112 ABSOLUTE CLOCK :5112 

BLOCK COUNTS 
BLOCK CURRENT TOTAL BLOCK CURRENT 

1002 2 
4 0 1000 :5 0 
7 0 1000 

FACILITY AVERAGE NUMBER 
UTILIZATION ENTRIES 

0.78 1000 

QUEUE MAXIMUM AVERAGE TOTAL ZERO 
CONTENT CONTENT ENTRIES ENTRIES 

1 S 0,34 1001 S13 

TOTAL BLOCK CURRENT TOTAL 

1001 3 0 1000 
1000 6 0 1000 

AVERAGE SEIZING PREEMPTING 
TIME/TRAN TRANS.NO. TRANS.NO. 

3.99 

PERC. AVERAGE SAVERAGE TABLE CURRENT 
ZERO TIME/TR TIME/TR NUMBR CONTENT 

Sl.2:5 1.74 3.S6 1 

FIGURE 9-2 GPSS output listing with (default) queue and facility statistics. 

and .34 do not appear to be close to our observed queue lengths. There may 
be a problem in our model. 

CASE STUDY PART II 

Scenario 

The observed queue lengths are substantially longer than those gener
ated by the GPSS model. What is wrong? 
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Analysis 

FIGURE 9-3 Histogram of inter
arrival rates (ap
proximately nor
mal). 

A further analysis of the interarrival-rate data produces the conclusion 
that the distribution is not uniform. The first step toward a better understanding 
of the interarrival distribution is to create a frequeqcy table (Table 9-4)'. 

The relative frequency represents the percentage of cars that arrive in 
that range of times. A histogram of the raw data (Figure 9-3) visually d~m
onstrates the similarity between the observed data and a normal distribution. 

Two different simulations, one with the observed distribution of inter
arrival times and the other based on a normal distribution, will be run. A standard 
normal distribution has a mean of 0 and a standard deviation of l. The standard 
deviation is a statistic representing the measure of spread in the data. The 
standard deviation of the observed interarrival rates is 2. 

Simulation 

The GPSS block GENERA TE 5,4 (Figure 9-2) creates one transaction 
every one to nine time units with equal probability (i.e., uniform distribution). 
To modify the program to use a different distribution, a FUNCTION is required. 

Table 9-4 Frequency Table of lnterarrival Times 

INTERARRIVAL 
TIME 

1-2 
2-3 
3-4 
4-5 
5-6 
6-7 
7-8 
8-9 
9-10 

OBSERVED 
FREQUENCY 

2 
6 
6 
8 

12 
6 
6 
6 
1 

RELATIVE 
FREQUENCY 

.038 

.113 

.113 

.152 

.226 

.113 

.113 

.113 

.019 

CUMULATIVE 
RELATIVE 

FREQUENCY 

.038 

.151 

.264 

.416 

.642 

.755 

.868 

.981 
1.00 
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The GENERA TE block may reference a predefined function to specify the 
arrival rate. 

A function is defined with a FUNCTION statement and is referenced 
via the FN standard numeric attribute (SNA). (There are a number of SNAs in 
GPSS that can be used to reference information pertaining to the different 
entities in the model.) 

To produce a random interarrival time, one of the random-number 
generators will be declared to be the independent variable for this function. The 
actual shape of the function is described by a function-follower statement. 

INTERVL FUNCTION RN$2,C9 

The preceding function statement declares INTERVL to be a continuous 
function using random-number generator 2 as the independent variable and 
having 9 points in the definition . 

. 038,1/.151,2/.264,3/.416,4 

.642,5/.755,6/.868,7/.981,8/1,9 

Note that in the foregoing function-follower statement, a slash(/) separates pairs 
of values. The first value of each pair is the cumulative relative frequency, 
and the second is the lower limit of the corresponding range of times from 
Table 9-4. 

The function-follower statement contains 9 pairs of values that define 
the curve of the function. The value of RN$2 is compared to the first value of 
each pair until a match or the correct interval between two points is found. If 
the independent value lies between two defined points, an interpolation is per
formed to calculate the value to be used. For example, if the random number 
is between .038 and .151, the interarrival rate will be between two and three 
time units. The probability of the random number's falling into the range .038 
to .151 is equal to the relative frequency of this range 11.3 percent. 

It is possible to define either a discrete (histogram) or continuous (smooth 
curve) function to represent any desired distribution. 

GENERATE FN$INTERVL 

In the preceding GENERA TE block, the function INTERVL specifies 
the interarrival rate. • 

FN$INTERVL is a function standard numeric attribute. Each reference 
to FN$INTERVL will return a value that depends on the random number RN$2 
specified in the function definition. 
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GPSSR/PC Vl.1 
carwashb.LST•carwashb.9p• 

'1-FEB-198S 18:43 PAGE 1 

LINE BLOCK 

* 2 * CAR WASH EXAMPLE 2A 
3 * 4 WASH EQU IWASH E&UATED TO A NUMERIC VALUE 
s INTERVL E61U 1 
6 * 7 INTERVL FUNCTION RNS2,C9 
8 .039,11.1S1,2/.264,3/.416,4 ., .642,S/.7SS,6/.868,7/.981,8/1,9 
10 * 11 SIMULATE 
12 GENERATE FNSINTERVL JCAR ENTERS SYSTEM 
13 2 GIUEUE WASH ;CAR LINES UP FOR WASH 
14 3 SEIZE WASH ;CAR GAINS CONTROL OF WASHER 
lS 4 DEPART WASH JCAR LEAVES LINEUP 
16 s ADVANCE 4,1 JTIME TO WASH CAR 
17 6 RELEASE WASH ;CAR EXITS WASHER 
18 7 TERMINATE ICAR EXITS SYSTEM 
19 START 1000 ;RUN MODEL FOR 1000 TERMINATIONS 
20 END 

SYMBOL VALUE SYMBOL VALUE 

INTERVL WASH 

GPSSR/PC V1.1 
carwashb.LST•carwashb.9ps 

9-FEB-198S 18:43 PAGE 2 

RELATIVE CLOCK 3993 ABSOLUTE CLOCK 3993 

BLOCK COUNTS 
BLOCK CURRENT TOTAL BLOCK CURRENT 

1 1029 2 28 
4 0 1000 s 0 
7 0 1000 

FACILITY AVERAGE NUMBER 
UTILIZATION ENTRIES 

1.00 1000 

QUEUE MAXIMUM AVERAGE TOTAL ZERO 
co~~ENT CONTENT ENTRIES ENTRIES 

3S 16.72 1028 12 

TOTAL BLOCK CURRENT TOTAL 

1028 3 0 1000 
1000 6 0 1000 

AVERAGE SEIZING PREEMPTING 
TIME/TRAN TRANS.NO, TRANS.NO. 

3.98 

PERC. AVERAGE SAVERAGE TABLE CURRENT 
ZERO TIME/TR TIME/TR NUMBR CONTENT 
1.17 64.9S 65,72 28 

FIGURE 9-4 GPSS program using empirically distributed interarrival rates. 

In the second model a standard normal function will be used to ap
proximate the distribution of observed interarrival times. 

NORM FUNCTION RN$2,Cl2 

The preceding GPSS statement defines NORM to be a continuous func-
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tion using ra:q.dom-number generator 2 as its independent variable and having 
12 points in the definition. · · 

.006, -2.5/.066, -1.5/.158, -1/.274, - .6/.420, .2 

.5,0/.579, .2/.725, .6/~841,1/.933,1.5/.993,2.5/1,3.5 

The function NORM is defined to return a value between 2.5 and + 3.5, 
depending on.the value between 0 and 1 of the independent variable RN$2. 

By definition the standard normal distribution function has a mean of 
0 and standard deviation of 1. To obtain a mean of 5 and a standard deviation 
of 2, a variable is defined. 

RATE FVARIABLE 2*FN$NORM+5 

The foregoing variable-definition statement declares RA TE to be a 
floating-point variable to multiply the function NORM by 2 and add 5. The 

FIGURE 9-5 GPSS program listing using normally distributed interarrival rates. 

GPSSR/PC Vl.1 
carwash2.LST•carwash2.gps 

9-FEB-19SS 18:36 PAGE 1 

LINE BLOCK 

1 
2 
3 
4 
s 
6 
7 
B 
9 
10 
11 
12 
13 
14 
U5 
16 
17 
18 
19 
20 
21 
22 
23 

1 
2 
3 
4 
s 
6 
7 

SYMBOL 

NORM 
WASH 

* * 
* WASH 
NORM 
RATE 

* NORM 

* RATE 

* 

CAR WASH EXAMPLE 28 

EQU 
EQU 
EGIU 

1 
1 
1 

WASH EGIUATED TO 
A NUMERIC VALUE 

FUNCTION RN•2,C12 
.006,-2.S/,066,-1.S/.1SS,-11.274,-,6/.420,-.2 
.S,O/.S79,.21.72S,.61.B41,1/,933,1.Sl.993,2.S/1,3.S 

FVAfUABLE 

SIMULATE 
GENERATE 
GIUEUE 
SEIZE 
DEPART 
ADVANCE 
RELEASE 
TERMINATE 
START 
END 

VALUE 

2*FNSNORM+S 

VSRATE ;CAR ENTERS SYSTEM 
WASH JCAR LINES UP FOR WASH 
WASH JCAR GAINS CONTROL OF WASHER 
WASH ;CAR LEAVES LINEUP 
4,1 ITIME TO WASH CAR 
WASH ;CAR EXITS WASHER 
1 JCAR EXITS SYSTEM 
1000 IRUN MODEL FOR 1000 TERMINATIONS 

SYMBOL VALUE 

RATE 1 
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GPSSR/PC Vl.1 
carwash2.LST•carwash2.gps 

9-FEB-19&~ 18:36 PAGE 2 

RELATIVE CLOCK 44~1 ABSOLUTE CLOCK 

BLOCK COUNTS 
BLOCK CURRENT TOTAL BLOCK CURRENT TOTAL BLOCK CURRENT TOTAL 

1 1 1002 2 1 
4 0 1000 ~ 0 
7 0 1000 

FACILITY AVERAGE NUMBER 
UTILIZATION ENTRIES 

1 0.90 1000 

QUEUE MAXIMUM AVERAGE TOTAL ZERO 
CONTENT CONTENT ENTRIES ENTRIES 

1 4 0.44 1001 379 

FIGUAE 9.:...5 (continued) 

1001 
1000 

3 
6 

0 
0 

1000 
1000 

AVERAGE SEIZING PREEMPTING 
TIME/TRAN TRANS.NO. TRANS.NO. 

3.9& 

PERC. 
ZERO 

37.86 

AVERAGE '5AVERAGE TABLE CURRl!iNT 
TIME/TR TIME/TR NUMBR CONTENT 

1.96 3.1S 1 

interarrival rates of our model should now match the mean and spread of our 
observed data. 

An FVARIABLE 'uses floating-point arithmetic to return an integer 
value, whereas a VARIABLE does integer calculations to return an integer result. 
Both floating-point and integer functions are referenced via the "V" standard 
numeric attribute~ 

GENERATE V$RATE 

The preceding generate statement uses the value returned by the var
iable RA TE as the interarrival time. 

Verification and Validation 

A comparison of the queue statistics generated by the GPSS model (Fig
ure 9-4) and the observed queu~ lengths (Table 9-3) reveals a discrepancy. 
The simulation produced a maximum queue length of 35 and an average length 
of 16. 72. These values are substantially higher than those observed in the actual 
system. The second simulation (Figure 9-5) produced very different queue 
statistics. With a maximum queue length of 4 and average of .44, it appears that 
neither model simulates the desired system. 

CAR WASH PART Ill 

Scenario 

A more in-depth analysis of the.observed interarrival rates did not result 
in a correct model. It is possible that the sample size of the data is too small to 
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produce a true representation of the actual system. The next step in solving the 
problem would be ·a further analysis of the original system. This would involve 
more data collection and a more detailed investigation of system traffic flow. 

Analysis 

The two components of the system that most obviously affect queue 
lengths are arrival rate and service rate. If either of these timings is incorrect, 
the model would be invalid. It may also be advantageous to collect more quepe
length data to ensure that our sample is a true representation of the system. It 
would be a gross error to attempt to validate the model against invalid data. 

Figure 9-6 is the resultant histogram, after the increase in interarrival
rate observations. It does not resemble the distribution of our original data; 
therefore, the. original sample was not a true representation. The new larger 
sample of interarrival-rate data resembles an exponential distribution curve. A 
simple arithmetic calculation results in a mean of 3.6 and a standard deviation 
of 4.2. A system with an exponentially distributed interarrival rate will have a 
Poisson-distributed arrival rate. A comparison between the cumulative distri
bution of the empiral data and the chosen theoretical function should be done 
to validate the choice. (These distributions are very common in traffic simulations 
and are discussed in detail in most simulation textbooks.) 

The more in-depth analysis of the car-wash system uncovered a traffic
flow situation not previously taken into consideration. The previous model as
sumed all cars remained in the queue and received a wash. In the actual system, 
drivers did not wait if the queue was too long. (The maximum queue length in 
which a driver would wait was 11 or 12 cars, oneself included.) The interarrival 
rate incorporated into the model includes cars that left the system without getting 
washed. Therefore, a test of the queue length must also be built into the model. 

To help solve the original problem regarding expansion of the car wash, 
the number of cars that leave because of queue length and the amount of time 
spent by cars that receive a wash would be helpful. 

Simulation 

GPSS has readily available the procedures necessary to generate trans:
actions with an exponentially distributed interarrival rate. It is defined by a 

FIGURE 9-6 Histogram of inter
arrival rates 
based on 1,000 
observations (ap
proximately expo
nential). 
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FUNCTION statement in much the same way that the normal function was 
defined in the previous model. 

EXPON FUNCTION RN2,Cl2 
0,0/.2, .222/.4, .509/.6, .915/.75,1.38/.84,1.83 
.9,2.3/.94,2.81/.96,3.2/.98,3.9/995,5.3/.999,7 

The foregoing GPSS statements define EXPON to be an inverse negative ex
ponential function with a mean of 1 using random-number generator 2 as the 
independant variable. (Standard deviation and mean are equal in this distri
bution.) This function will be referenced by the generate block to produce 
transactions with the desired Poisson-distributed arrival rates. 

In the GENERA TE (and APV ANCE) block, if field B is a function 
reference, the departure time is the product of field A and field B. 

GENERATE 4,FN$EXPON 

In the preceding generate block, the values of function EXPON are multiplied 
by 4 to produce an interarrival rate with a mean of 4 and a Standard Deviation 
of 4. 

A decision mechanism must be built into the model to decide if a driver 
waits for a car wash or leaves prematµrely. Three GPSS statements for altering 
a transactions flow through the model are: GATE, TEST, and TRANSFER. 
The GA TE block is used to test the status of entities, the TEST block is used to 
compare two standard numeric attributes, and the TRANSFER block alters 
transaction flow depending on the subfi~lds specified. 

A TEST block is used in the model to compare queue length against a 
constant. If the queue is less than the specified value, the transaction enters the 
queue; otherwise, the transaction's flow will be altered such that it does not enter 
the queue. 

TEST L Q$WASH,12,EXITW 

The preceding TEST block allows the current transaction to enter the 
next block if the length of queue WASH is less than 12. If the queue is equal 
to or greater than 12, the transaction is transferred to the block labeled EXITW. 

Q$W ASH is a standard numeric attribute whose value is the current 
contents of the queue WASH. 

The analysis of the system informed us that drivers do not become 
frustrated and leave when the queue is exactly 12 cars long, but 11 or 12. In 
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order to build this into the model, a VARIABLE will be 1:J:Sed. Rather than 
reference the constant 12 in the TEST block, an integer variabk, whose value 
is 11 or 12 based on a random number, will be incorporated. 

LNGTH VARIABLE Q$WASH< 11 + ( RN$3*2) /1000 

The preceding GPSS statement defines an integer variable, labeled 
LNGTH. The expression 11 + (RN$3*2)/1000 is evaluated on every reference 
to the foregoing variable and compared to the current queue length. If the 
queue length is less than the arithmetic expression, the result is true (1). The 
foregoing expression will return the value · 0 or 1, depending on the random 
number generated and the current queue length, RN$3 is a random integer 
value between 0 and 999. A variable expression may contain SNA references 
(including other va.riables) and constants combined with arithmetic, logical, and 
boolean operators. 

V$LNGTH,O,EXITW 

This modified TEST block references the variableLNGTH rather than 
the constant 12. V$LNGTH is the standard numeric attribute whose value is 
computed using the variable LNG TH. If V$LNGTH is equal to zero (false), the 
transaction transfers to the block EXITW. 

To facilitate calculating the total number of cars that do not wait for a 
car wash, a means of accumulating and saving numeric information must be 
employed. GPSS has two different entities designed for this purpose: PARAM
ETERS and SAVEVALUES. 

Each transaction has a number of PARAMETERS' associated with it. The 
concept of a car's having a luggage compartment that is attached to the car and 
every car's having its own unique compartment is similar to the concept of every 
transaction's having its own unique parameters. If a transaction enters a block 
that references a parameter, it is the parameter of that individual transaction 
that is affected. The P standard numeric attribute is used to reference a param
eter. 

SAVEV ALUES are a more global storage location. If a transaction enters 
a block that references a particular SAVEV ALUE, it is the same SAVEV ALUE 
that every other transaction that enters that block will access. The XH or XF 
standard numeric attributes refer to half-word or full-word SAVEV AL:UES re
spectively. Unlike parameters, SAVEV ALUES are not associated with individual 
transactions. 

To total the number of transactions (cars) that do not queue up for a 
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wash but exit the system, a global counter must be used. Each transaction that 
does not wait must be able to access the same counter; therefore, a SAVEV ALUE 
is used to accumulate the total. 

EXITW SAV~VALUE l+, 1 

The GPSS statement labeled EXITW adds 1 to SAVEVALUE 1. ,Field 
A specifies which SAVEV ALUE is to be affected, and field B specifies the value 
to be stored. If field A has a plus sign ( +) following the SAVEV ALUE number, 
the value in field B is added to the current contents of the SAVEVALUE. If 
field A is not followed by a sign, the field B value replaces the contents of the 
savevalue. (A plus + or minus [ - ] sign may be used in field A to denote addition 
or subtraction respectively.) 

In order to obtain information regarding the total amount of time cars 
spend to get a wash, a frequency-distribution table is defined. A distribution 
table of any SN A may be obtained at any point in the model. The TABLE 
statement describes what a table is to contain, and a TAB ULA TE statement 
specifies at what point in the model an entry is to be made into the table. 

1 TABLE M$1,15,5,12 

Table 1 is defined to be a frequency distributi.on of transaction· transit 
times M$ l. The first cell of the table accumulates transit times of 15 or less, and 
subsequent cells have upper limits in increments of 5 for a maximum of 12 cells 
total. 

TABULATE 1 

The foregoing statement enters into Table 1 the amount of clock time 
that has passed since the current transaction was generated. Field A of tne 
tabulate block identifies into which table an entry is to be made. What is entered 
into the table is defined by the TABLE statement, not the TAB {]LA TE. 

RMULT 31415,31415,31415 

The RMUL T statement initializes the seed of one or more of the 8 
random-number generators in GPSS. The preceding statement sets the seeds of 
RN$1, RN$2, and RN$3 to 31415. 
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Verification and Validation 

The simulated average queue length of 6.63 is close to the observed 
average of 6.8, and the maximum lengths are equal. This would lead us to 
believe that the model is valid. To be reasonably certain that the model simulates 
the system correctly, a number of different simulation runs using a variety of 
random-number seeds should be examined. Statistical tests (using the already 
mentioned GPSS runs) designed to verify whether the model's behavior and the 
real system's behavior belong to the same population group could prove or 
disprove the model's validity. 

After the model's correctness has been validated, it can be used to test 

FIGURE 9-7 GPSS program and output listing using exponentially distributed interarrival 
rates. 

GPSSR/PC V1.1 
ca~wash3.LST•ca~wash3.gps 

9-FEB-198!:5 18: 17 

LJNE BLOCK 

1 * 2 * CAR WASH EXAMPLE 3 
3 * 4 RMULT 3141!:5,3141!5,3141!:5 
s WASH EQU 1 SYMBOLS E61UATED TO 
6 EXP ON EQU 1 NUMERIC VALUES 
7 LNG TH EQU 
e * 9 EX PON FUNCTION RNS2,C12 
10 0,01.2,.2221.4,.S09/,6,.91Sl.75,1.3B/,84,1.83 
11 .9,2.3/.94,2.81/,96,3.2/.98,3.9/.995,5.3/,999,7 
12 * 13 LNGTH VARIABLE 61SWASH < 11+1RNS3*2>11000 ; 
14 * 15 1 TABLE MSl,15,S,12 TABLE TRANSIT TIMES 
16 SIMULATE 
17 GENERATE 4,FNSEXPON CAR ENTERS SYSTEM 
18 2 TEST_NE VSLNGTH,O,EXITW 
19 3 61UEUE WASH CAR LINES UP FOR WASH 

PAGE 1 

20 4 SEIZE WASH CAR GAINS CONTROL OF WASHER 
21 5 
22 6 
23 7 
24 B 
25 9 
26 10 
27 11 
28 
29 

EXITW 

SYMBOL 

EXITW 
LNG TH 

DEPART 
ADVANCE 
RELEASE 
TABULATE 
TERMINATE 
SAVE VALUE 
TERMINATE 
START 
END 

VALUE 

10 
l 

WASH 
4, 1 
WASH 
l 
1 
1+,1 
1 
1·000 

SYMBOL 

EXPDN 
WASH 

CAR LEAVES LINEUP 
TIME TO WASH CAR 
CAR EXITS WASHER 

CAR EXITS SYSTEM 
COUNT CARS THAT DON'T WAIT 

RUN FOR 1000 TERMINATIONS 

VALUE 

1 
1 
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GPSSR/PC v1.1 9-FEB-19S5 17:34 
carwash3.LST•carwash3.gps 

RELATIVE CLOCK 3!5!.58 ABSOLUTE CLOCK 3!5!.58 

BLOCK COUNTS 
BLOCK CURRENT TOTAL BLOCK CURRENT TOTAL BLOCK CURRENT 

1011 2 0 1010 3 10 
4 0 867 !5 0 867 6 0 
7 0 867 8 0 867 9 0 

10 0 133 11 0 133 

FACILITY AVERAGE NUMBER AVERAGE SEIZING 
UTILIZATION ENTRIES TIME/TRAN TRANS.NO. 

0.98 867 4.02 

QUEUE MAXIMUM AVERAGE TOTAL ZERO PERC. AVERAGE SAVER AGE 
CONTENT CONTENT ENTRIES ENTRIES ZERO TIME/TR TIME/TR 

12 6.63 877 13 1.48 26.91 27.;:U 

CONTENTS OF <NONZERO> FULLWORD SAVEVALUES 
XF LOC VALUE LOC VALUE LDC VALUE 

133 

GPSSR/PC Vl. 1 
carwash3.LST•carwash3.gps 

9-FEB-198!.5 17:34 

PAGE 2 

TOTAL 

877 
867 
867 

PREEMPTING 
TRANS.NO. 

TABLE CURRENT 
NUMBR CONT Iii.NT 

10 

LOC VALUE 

PAGE 3 

TABLE NO. 1 
ENTRIES IN TABLE 

867 
MEAN ARGUMENT 

31.00 
STANDARD DEVIATION 

13.28 
SUM OF ARGUMENTS 

26881.0 

UPPER OBSERVED PER CENT CUMULATIVE CUMULATIVE MULTIPLE DEVIATION 
LIMIT FREQUENCY OF TOTAL PERCENTAGE REMAINDER OF MEAN FROM MEAN 

H5 137 115.BO 1!.5.80 84.20 0.48· -1.20 
20 82 9.46 25.26 74.74 0.6!.5 -0.83 
25 78 9.00 34.26 6!.5.?4 o.e1 -0.4\'5 
30 93 10.73 44.98 !.5!.5.02 0.97 -o.oe 
3:5 83 9.!.57 \'54.!.56 4!.5.44 1.13 0.30 
40 135 ~5.57 '70.13 29.87 1.2'i 0.6S 
45 136 15.69 B!.5.81 14.19 1.45 1. 05 
!.50 100 11.53 97.35 2.65 1.61 1.43 
!.55 23 2.65 100.00 o.oo 1.77 1.Bl 

REMAINING VALUES ARE ZERO 

FIGURE 9-7 (continued) 

system changes. In the car-wash example, it could be tested with more than one 
washer or a faster washer. Changes in arrival rates could also be tested in an
ticipation of future traffic flow. 

Once a valid model has been developed, it becomes very simple and 
inexpensive to test different ideas. A new car wash is vastly more expensive than 
a run of a GPSS model. 
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APPENDIX A 

The following is a brief description of different GPSSR/PC statements divided 
into functional categories. 

Queue 

A queue is used to measure the time delay of transactions waiting for 
an entity to become available. A transaction may join a queue prior to seizing a 
facility or entering a storage in order to produce statistics on output regarding 
the amount of time transactions spent waiting. 

Table 

Statement 

QUEUE 
DEPART 

Meaning 

start measuring time delay 
stop measuring time delay 

A frequency-distribution table may be created using any standard nu
meric value. A special queue table may be defined to measure queue-delay times. 

Statement 

QTABLE 
TABLE 
TABULATE 

Meaning 

define a queue table 
define a distribution table 
add entry to a distribution table 

Decisions and Flow Alteration 

The transaction flow through a model may be altered unconditionally 
or be conditional on the state of the model. 

Statement 

GATE 
LOOP 
TEST 
TRANSFER 
TRANSFER SBR 
TRANSFER P 

Meaning 

check entity status 
iterate through a portion of model 
compare two SN A values 
GOTO block 
goto subroutine 
return from subroutine 

Create and Destroy a Transacti~n 

A transaction is the basic entity that flows through the system. A com
munications message, a railway train, or an assembly-line part may be repre
sented via a transaction. 



Statement 

GENERATE 
JOBTAPE 
TERMINATE 
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Meaning 

create a transaction 
transation from a disk file 
destroy a transaction 

Also see Assembly Set, which follows Changing Values. 

Changing Values 

Values may be stored in transaction parameters and SAVEV AL UES. 
SA VEV ALUES are global storage locations available for all transactions, and 
parameters are· 1ocal areas associated with each individual transaction. 

Statement 

SAVEVALUE 
ASSIGN 

Assembly Set 

augment SAVEV ALUE 
augment parameter 

. Meaning 

A single transaction may be split into many transactions, which may be 
rejoined into a single transaction. Members of a set may be synchronized in the 
model by being gathered at one point or being matched with members of the 
same set at different points in the model. 

Statement 

ASSEMBLE 
GATHER 
MATCH 
SPLIT 

Time Delay 

Meaning 

combine members of set onto one transaction 
members wait for one another before proceeding 
synchronize members at two different blocks 
create many transactions from one 

A transaction may be stopped at a specific point in the model for a 
period of time. This time may represent transmission time or time to complete 
a process. A time distribution may be specified via a function. 

Statement Meaning 

ADVANCE transaction stops for a period of time 

Alternate Queue Strategy 

By default, GPSS deals in a first-in, first-out strategy. A user chain may 
be used to create a last-in, first-out or a priority-queue discipline. Model efficiency 
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may also be improved by placing transactions onto a user chain. User-chain 
transactions are not on the future-events chain, thereby decreasing the computer 
time necessary to process the future-events chain. 

Statement 

LINK 
UNLINK 

Debugging Model 

Meaning 

add transaction to chain 
take transaction off chain 

A transaction's process through the model may be traced from block to 
block. The contents of any standard numeric attribute may also be printed out 
at specific points in the model. GPSSR/PC's interactive mode allows a more 
dynamic look at the model during execution, to help locate problems. 

Statement 

PRINT 
TRACE 
UNTRACE 

Meaning 

output SNA contents 
follow transaction through model 
turn off tracing of a transaction 
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2o0 APPLICATIONS OF SIMULATION 

This chapter will depart from the pattern of using programming examples to 
illustrate principles of simulation and will describe a few actual applications. One 
reason for not discussing all of the programs that implement these applications 
is that many of the programs are large-1,000 lines of source code is a small 
simulation. Another reason is that many of the program routines, such as 
random-number generators, probability functions, and queues, have already 
been covered, and a large application often consists of an aggregation of these 
elementary steps plus a great many mundane routines for handling input and 
output of data. 

Most of the examples covered so far have had to do with finding ,out 
how fast people or things can be moved through a waiting line. That is because 
competition for limited resources is a predominant feature of modern life. Some 
of the applications in this chapter will deal with waiting lines, although their 
presence may not be immediately apparent. Other applications will have nothing 
to do with them. 

PART 1-INDUSTRIAL APPLICATION 

Case 1-How to Find Defects 
in Printed Wiring Boards [1] 

DOA-"Dead on Arrival." Too often that describes computers or other kinds 
of electronic hardware. 

Usually the reason why is trivial: a glob of solder where it shouldn't be, 
a missing or faulty part, or an unsoldered connection. Or we have the legendary 
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$1.25 part that causes a space mission to abort, or provokesa false ahirm abou,t 
incoming intercontinental ballistic missiles. 

Generally the assemblies that fail have been given a 100 percent in
spection. Then how come the defects weren't foµnd in the factory? 

We were doing an in-depth study of faftory testing practices for fl. majpr 
electronics company and had to know what percentage of faulty products hmnan 
inspectors were allowing to esqipe. This knowled,ge would help decide whether 
we had to tolerate a certain proportion of defective products, train our inspectors 
better, or automate the huma:n inspectors out of the process. 

Role of Simulation 

We had to take our study out of the factory because the lnternationa~ 
Brotherhood of Electrical Workers object~d to it. We couldn't tal<.e the product 
out of the plant and test it elsewhere because the National Security Ageµcy 
objected (we were making government cryptographic equipment). So we had to 
resort to simulation. We wound up using two kiqds of simulation: iconic sim
ulation to model the process and computer-based stochastic simulation to make 
the icons. · 

Iconic Simulation 

The product was nine-layer printed circuit boards measl1ring 4.5 by 4.8 
inches'. They were made from individual printed circuits that were inspected 
under large magnifying glasses and then pressed together with interleaved sheet~ 
of plastic, 

Printed circuit patterns are made up of pads to which connections are 
made and traces that connect the pads. Four things could go wrong: cracks that 
totally severed a trace or pad; pinholes wh5re etchant had eaten away parts of 
pads or traces; notches that were like pinholes, only worse; and spurs where 
pads or traces were shorted together because the etchant hadn't removed enough 
copper. 

The icons were full-sized photographs of perfect printed circuit boards 
(taken from the masks) on which artists had added cracks, pinholes, notches, 
and spurs. 

The iconic simulation consisted of setting up a dummy production line 
in a local technical high school and finding out how many defects the students, 
who were given the usual factory training by supervisors, would catch and how 
many would get by them. 

Computer Simulation 

The computer simulation told the artist what and how many defects to 
draw and where to draw them, so as to reproduce the actual situation in the 
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factory. We knew from having a sample of 90 boards checked out in the engi
neering laboratory that there were on average .322 defects per board. 

We assumed defects were Poisson-distributed among boards. This gave 
us the following distribution: 

Number of Defects 

0 
I 
2 
3 
4 
5 

Percent of Boards 

70.00 
24.90 

4.52 
0.54 
0.03 
O.Ql 

The lab had observed that the four types of defect occurred with this 
distribution: 

Kind of Defect 

crack 
pinhole 
notch 
spur 

Percent of Defects 

60 
20 
15 
5 

To locate the defects after random draws had determined how many 
defects a board would contain and what kind they should be, we covered just 
the traces and pads with a pattern of 1/10-inch squares and numbered each one 
on a transparent overlay of the photo. For example, for one type of board there 
were 609 squares; for another, 503. We assumed the defects were uniformly 
distributed on the boards, so in the first case we located defects by making 
random draws in the range 1 to 609. The computer printed out instructions to 
the artist that were later used to score the performance of the students pre
tending to be inspectors. 

Results 

On average, the students (there were eight of them) accepted IO percent 
of the defective boards as being good. Moreover, they rejected 3 percent of the 
good boards as being bad. As a consequence, we started development of auto
matic test equipment in which a platen with spring-loaded fingers would make 
contact with every trace and pad, while a computer program would test for 
either connectivity or isolation between each pair of fingers. This equipment 
caught all the cracks and spurs, but the pinholes and notches remained as in
cipient defects. We tried blowing them out with 800-volt D.C. pulses. It worked 
sometimes on notches and large pinholes, but most of these defects remain a 
source of potential failure. 
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Case 2-What's the Cost of Bad TV Sets? [2] 

Our client's competitor offered a six-month warranty on parts and labor for his 
line of TV sets. Our client went him one better and offered a full year's warranty. 
He budgeted $2 million to cover the cost but after three months became alarmed 
and called us in for an estimate. We wrote a simulation model in which we ''built" 
a year's production of TV sets with defects in them such as our prior experience 
would lead us to predict and totaled up the cost of warranty. It came to $15 
million. The client was not happy. By year's end he was even more unhappy. 
The actual cost came to $17 million. Next year he moved his TV-manufacturing 
operations to Taiwan. 

The set consisted of eight phenolic circuit boards, four ceramic modules, 
and individual parts, such as VHF and UHF tuners, a built-in antenna, picture 
tube, power transformer, and picture-tube yoke. We simulated buildillg the 
boards and modules, then assembling the TV chassis from boards, modules, and 
other parts. To avoid boring repetition, we shall describe how we simulated 
building a module. Building a chassis is a similar operation; the modules are 
regarded as basic parts of the chassis. The idea is to predict which TV sets will 
leave the factory with defects that will cause them to fail within the warranty 
period. 

Simulating the Building of Modules 

To make a module, say 10 basic parts are selected. Each has a probability 
of being defective (about 1.5 percent). Every module with a defective basic part 
is tagged as defective by the simulation program. 

Modules may also be defective because of workmanship errors. The 
probability of a workmanship error is about 10 percent, but the rate tends to 
vary depending on the day of the week and other factors. This variation in rate 
can be described by a beta distribution. The beta distribution ranges from zero 
to one. It has. two shaping parameters, A and B, that are related to the mean 
and variance in a some\Vhat complicated way. We produced appropriate distri
butions by simulation: holding th~ rµean and allowing the variance to vary while 
displaying the plot and picking those that seemed most appropriate for different 
days of the week. and times of day. 

We sampled from the appropriate beta distribution to get a percent 
defective, th~n made random draws to see which modules should be tagged as 
defective. , 

Testing the Modules 

The module next is exposed to the testing operation. There is a 2 percent 
chance that a good module will be labeled bad and go on to the troubleshooting 
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function, and a 14 percent chance that a bad module will be labeled· good and 
go on to th~ chassis-assembly step. 

The first time a troubleshooter sees a particular module, there is a 50 
percent chance he or she will incorrectly diagnose the problem. 

After troubleshooting, the module goes to the repair. person. There is 
a 10 percent chance that the repair person wiU fail to fix the problem and a 2 
percent chance that the repair work will ruin the module, so· that it has to be 
scrapped. 

The module now goes back through the testing operation, and modules 
labeled bad go back to the troubleshoote.r. Now the troubleshooter has a 30 
percent chaqce of failing to diagnose the problem correctly. The third time the 
troubleshooter sees the same module, the diagnosis will be correct. 

Results 

Overall, we found that 3 percent of the modules that found their way 
into cha~sis were defective and 11 percent of the TV sets shipped from the 
factory contained defects serious enough to impel the customer to claim on the 
warranty agreement. (In 197 4 these TV sets were probably the best ol1es made 
in the United States. By way of comparison, the engineering lab determined 
that the worst Japanese sets were 10 percent defective; the best Japanese sets 
were less than 2 percent defective.) 

PART 2-SIMULATION IN EMERGENCY PLANNING 

Case 1-Restructuring Police Patrol Zon·es [3] 

The objective of this study was to redraw the boundaries o( 29 police patrol 
zones in a city of 226,000 people so as to minimize driving time when answering 
calls for service, thereby leaving more time for crime-repression patrolling. 

We redrew the zones this way: The smallest political unit of the city was 
the Polling Sub-Division, an area in which an average of 430 people live. There 
are 524 of them. Statistics on incidents requiring police response are kept by 
PSD. Our redrawing program took each PSD in turn as the center of a patrol 
zone and added adjacent PSDs around it until a zone was formed that produced 
roughly 3241 incidents a year ( 1129 of the 94,000 occurring annually in the city). 

For every PSD we counted the nur;nber of zones in which it appeared. 
Then for every zone we totaled the counts of the PSDs it contained. We retained 
the 29 zones out of 524 that had the lowest overlap and resolved any remaining 
overlap manually. Now we had to use simulation to find out whether the new 
boundaries would result in less driving time when answering calls for service. 



APPLICATIONS OF SIMULATION 205 

Frequency and Location of Incidents 

We knew the annual number of incidents per PSD (call it Y(p)), so we 
could divide it by 8760 hours in a year and use it as the mean of a Poisson 
distribution to simulate hour by hour how many incidents occurred in that PSD; 
by doing this for all 524 PSDs we could simulate incidents throughout the city. 
This would not be realistic, however, because incident occurrence is highly time
dependent; and it would take a great deal of computer time to simulate every 
hour of, say, ten years. 

Incident occurrence depends upon month of the year. 

Month 

January 
February 
March 
April 
May 
June 
July 
August 
September 
October 
November 
December 

Incidents 

8,400 
7,500 
7,400 
6,700 
6,900 
6,800 
7,200 
9,000 
8,800 
8,600 
8,500 
8,300 

Incident occurrence also depends upon the hour of the day. 

Hour Incidents 

24:00 4,800 
01:00 4,400 
02:00 3,300 
03:00 2,400 
04:00 1,000 
05:00 900 
06:00 700 
07:00 1,900 
08:00 3,800 
09:00 3,900 
10:00 3,800 
11:00 4,400 
12:00 4,800 
13:00 4,300 
14:00 3,400 
15:00 4,300 
16:00 4,900 
17:00 5,100 
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Hour Incidents 

18:00 5,500 
19:00 5,500 
20:00 5,700 
21:00 5,400 
22:00 5,000 
23:00 4,800 

And incident occurrence depends upon the day of the week. 

Day 

Sunday 
Monday 
Tuesday 
Wednesday 
Thursday 
Friday 
Saturday 

Incidents 

11,500 
12,000 
12,500 
12,400 
13,600 
15,900 
16,100 

We used the technique of Fourier synthesis to express these data as three 
wave forms, each developed as a constant plus the sum of six cosine terms and 
five sine terms. We added the wave forms: 

K(t) (F(month) + F(hour) + F(day))/3 

The values of K for each hour of the year (t) were multiplied by the 
Poisson means Y (p) for each PSD to correct for time-dependent changes in 
incident-occurrence frequency: 

lambda(t,p) K(t)*Y(p)/8760 

To reduce the length of the simulation, we first made a histogram out 
of the K function. 

Range of K 

.5 to .6 

.6 to .7 

.7 to .8 

.8 to .9 

.9 to 1 
1 to 1.1 
1.1 to l.2 
1.2 to l.3 
l.3 to l.4 

Number of Hours 

80 
300 
700 

1,000 
1,700 
2,600 
l,900 

400 
80 

In each class interval we drew a 1 percent random sample. This gave us 
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a total sample of 88 hours that would represent a whole year for the purpose 
of comparing two patrol-zone designs. 

Duration of Incidents 

We knew the distribution of length of incidents. 

Length in Minutes 

0 to 30 
30 to 60 
60 to 90 
90 to 120 

120 to 150 
150 to 180 
180 to 210 
210 to 240 
240 to 300 
300 to 360 
Over 360 

Number of Incidents 

36,000 
33,000 
16,000 
5,000 
2,000 
1,000 

500 
200 
100 
100 
100 

For each hour of the simulation we simulated two hours and only counted 
the last hour to wash out any start-up bias. We located each of the 29 patrol 
cars by drawing for each zone a random number in the range of the number 
of PSDs in the zone and assumed the car to be at the geographical center of the 
PSD selected. We sampled every PSD using the Poisson distribution with the 
appropriate time,..adjusted mean to find out how many incidents occurred. We 
assumed the incident to occur at the geographical center of the PSD. Then we 
made random draws on 1to60 to determine when each incident began. Finally, 
we made a random draw from the incident-duration distribution to find out 
how long each incident would last. 

Servicing Incidents 

We used data obtained in a prior study to determine driving speed. We 
assumed the speed to be normally distributed, with a mean of 17. 7 miles per 
hour and a standard deviation of 5.8 mph. In servicing incidents we first sent 
the zone car. We knew the distance from its current location to the incident and 
obtained its speed by sampling from the driving-speed distribution. We posted 
the car as being unavailable for the duration of the incident plus driving time. 

When the zone car was unavailable we serviced subsequent incidents in 
the zone by sending the nearest out-of-zone car. 

Results 

We averaged the results from ten simulation runs and found the new 
patrol-zone layout reduced the average driving time from six to four minutes. 
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This allowed officers to spend 45 percent of their time on repressive patrol, 
rather than 44 percent. Inasmuch as this fell short of the 50 percent repressive
patrol time targeted by the department, these results were used to substantiate 
a recommendation for additional personnel and vehicles to permit assigning 
second and third cars to particularly active zones at peak incident periods. 

Case 2-Deciding Where to Put a Fire Station [4] 

This case involved simulating the operation of a municipal fire department. One 
application of the simulator was determining how to relocate resources to get 
better fire protection. The city is the same one we studied in the police patrol
zone problem. There are nine fire stations and 15 pieces of active apparatus. 
On average there were 3,351 fires a year for the three years on which our data 
are based. 

Because of the relatively few incidents as compared with the police sit
uation, we decided to simulate ten full years of activity and average the results 
instead of resorting to importance sampling. We used a time-oriented simulation 
with 15-minute intervals. Our basic Y(t) is therefore equal to 3351/4*24*365, or 
0.1 fire every quarter hour. 

Time Dependence of Fires 

Fires are distributed in time according to the month of the year. 

Month 

January 
February 
March 
April 
May 
June 
July 
August 
September 
October 
November 
December 

Number of Fires 

247 
237 
276 
320 
305 
289 
336 
288 
271 
276 
247 
258 

Fire occurrences also depend upon the time of day. 

Time Number of Fires 

24:00 161 
1:00 136 
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Time Number of Fires 

2:00 135 
3:00 96 
4:00 70 
5:00 56 
6:00 41 
7:00 51 
8:00 69 
9:00 80 

10:00 106 
11:00 115 
12:00 142 
13:00 143 
14:00 163 
15:00 156 
16:00 181 
17:00 199 
18:00 197 
19:00 192 
20:00 214 
21:00 238 
22:00 214 
23:00 196 

We shall normalize fire-occurrence frequencies with respect to their 
expected value. We, illustrate this in the case of the day-of-week distribution 
where the expected, value is 3,35117, or 4 79. 

Day of Week Number of Fires Normalized Value 

Sunday 461 .96 
Monday 473 .99 
Tuesday 437 .91 
Wednesday 473 .99 
Thursday 456 .95 
Friday 497 1.04 
Saturday 554 1.16 

Frequencies are adjusted with respect to time to obtain Poisson means. 

lambda(t) = Y(t)*N(month)*N(hour)*N(day) 

For example, between 21 :00 and 22:00 on a Saturday in July, the city-wide 
Poisson mean for each of the four 15-minute periods is .1*1.2*1.7*1.16, or .237; 
while between 6:00 and 7:00 on a Tuesday in February, the city-wide Poisson 
mean for each of the four 15-minute periods is .1*.85*.29*.91, or .02. 
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Geographical Distribution of Fires 

The probabilistic geographical distribution of fires by district (the area 
served from a station) is: 

Station Number 

1 

Percent of Fires 

18 
2 
3 
4 
5 
6 
7 
8 
9 

14 
10 
8 

11 
6 

13 
8 

12 

Multiple-Alarm Fires 

So far, the problem of fire simulation is similar to that of the police
perhaps easier, because there are fewer incidents. However, in more than 
one third of fires, more than one station responds. Moreover, the needs for 
apparatus are highly specific. The probability distribution of station calls is: 

Number of Stations Called 

1 
2 
3 
4 
5 
6 or more 

Duration of Fires 

Number of Fires 

2,078 
536 
562 
160 

12 
3 

The duration of a fire is related to the number of stations called. 
Durations are exponentially distributed. The relationship between mean dura
tion and number of stations called is: 

Number of Stations Called Mean Duration in Minutes 

1 21.2 
2 31.9 
3 33.2 
4 35 
5 39.1 
6 or more 50 

In addition, there is a small probability that a fire will take a very long 
time to extinguish (as when a tire warehouse burned down). To simulate such 
a fire, we draw a random number, and if it exceeds 0.99933, we make a random 
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draw from an exponential distribution having a mean of 80 and add it to 300 
minutes. 

Station Backup and Substitution 

Responding to multiple alarms is by no means as easy as sending an 
engine from the nearest station; a particular kind of apparatus may be needed. 
We created a backup matrix by entering how many times in three years each 
station was backed up by every other station and put these data on a percentage 
basis. For example, station #1 was backed up by station #3 27 percent of the 
time; by #5, 21 percent; by #4, 18 percent; by #9, 9 percent; by #6, 8 percent; 
by #8, 7 percent; by #2, 6 percent; and by #7 in 4 percent of fires in which 
station # 1 was called first. 

To simulate which station or stations backed up the one called first (that 
is, the one in whose district the fire occurred), we made a random draw from 
the cumulative distribution of backup probabilities in the appropriate row of 
the backup matrix. Ifwe found the chosen station was engaged, we made another 
draw and so on until the requirements were satisfied or until we determined 
that the required resources were not available. 

Driving-Time Distributions 

We had no data on how fast a fire engine goes. However, we had very 
accurate data on how long it took a fire company to reach a fire scene. We 
plotted these data and found that there was a different distribution for each 
fire district but that they all were approximately normal. 

Fire Station Driving-Time Mean (Minutes) Standard Deviation 

1 3.9 2.8 
2 5.2 2.6 
3 3.8 2.2 
4 4.3 2.5 
5 3.4 1.7 
6 5.2 2.7 
7 4.6 2 
8 5.3 2.7 
9 4.7 2.3 

Implementation 

To implement the simulation, we first wrote an Events file; then we ran 
it against a Simulate program. The following steps were used to create the Events 
file: 

1. If not end of simulation, then :-. 
2. Advance clock 15 minutes. 
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3. If new month, get N(month). 
4. If new day, get N(day). 
5. If new hour, get N(hour). 
6. Calculate lambda. 
7. Sample Poisson distribution; get number of fires. 
8. For each fire, get geographical location (district). 
9. For each fire, get number of stations called. 

10. If not. a long-duration fire :-. 
11. Get mean duration. 
12. Sample exponential distribution; get actual duration. 
13. If a long-duration fire, get duration. 
14. Write fire parameters to Event file. 
15. If end of simulation, close Events file. 

The Simulate program calculates three negative measures of merit: 

1. Resources unavailable :- neither a station called nor a substitute is available. 
2. Interference :- a station called is already engaged and a substitute must be called. 
3. Primary interference:- the first (or only) station called is engaged and a substitute 

must be called. These events are tagged as to the district in which they occur. 

The Simulate program proceeds as follows: 

1. If not end of Events file :-. 
2. Advance file one record. 
3. If district company not engaged :-. 
4. Sample appropriate driving-time distribution. (The normal driving-time dis

tributions are regarded as truncated, since negative driving time would be 
meaningless.) 

5. Post selected company engaged for duration + driving time. 
6. If selected company engaged, select substitute. 
7. Increment interference count. 
8. Increment primary interference count. 
9. If selected company not engaged :-. 

10. Perform steps 4 and 5; jump to step 12. 
11. If substitute company engaged, and no companies left, increment resources-

lacking count; otherwise, perform steps 6-9. 
12. For each backup company required :-. 
13. Select backup company. 
14: Perform steps 6, 7, and 9. 
15,, If no more resources available or required, return to step I. 
f6. At end of Events file, report outcome. 
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Results 

The results of ten year-long runs were: 

1. Incidents of resources unavailable, 1.6 per year. 
2. Total incidents of interference, 467.3 per year. 
3. Incidents of primary interference, 188.2 per year. 

Fire Station 

I 
2 
3 
4 
5 
6 
7 
8 
9 

Yearly Primary Interference 

61.4 
27.3 
17.2 
5.9 

10.0 
2.7 

25.7 
6.9 

36.3 

These results were useful in making a decision about how to improve 
fire protection in district #7. One proposal was to move station #2 into district 
#7; the other was to build a new station, effectively dividing the district in two. 

It is apparent that moving company #2 would put a heavier burden on 
company #I and exacerbate an already bad situation in the city's core area. This 
supported the option of building a new station. 

Case 3-Modeling a Hospital Emergency Department [5] 

This simulation models the emergency department of a 42 l-bed hospital. The 
department handles 25,000 patients annually. The simulation model was used 
to forecast the effects of increased demand or augmented facilities. This is 
essentially a waiting-line model. The (negative) measure of merit is patient wait
ing time. Our empirical data were gathered by a study of I 00 percent of patient 
records for one month and 10 percent of patient records for five months. The 
department consisted of a resuscitation room with three trauma beds and six 
treatment/examination rooms. It is staffed around the clock by two doctors and 
four nurses. 

Patient Arrivals 

The frequency of patient arrivals was found to be independent of the 
month of the year but highly dependent in a complex manner on time of day 
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and day of the week. We modeled patient arrivals by exponential distributions 
of times between arrivals. We divided the week into 84 two-hour periods each 
with its own mean in minutes between arrivals: 

DAY TWO-HOUR PERIODS 

24-2 -4 -6 -8 -10 -12 -14 -16 -18 -20 -22 -24 

Sun 24 60 60 60 30 12 8 12 12 12 13 17 
Mon 60 120 120 60 24 10 12 15 17 19 17 17 
Tue 40 120 120 60 40 15 20 17 17 13 20 24 
Wed 30 120 120 120 24 17 13 13 15 12 15 15 
Thu 60 60 120 60 20 20 20 17 24 15 13 24 
Fri 24 120 120 60 20 15 15 15 17 17 15 40 
Sat 30 40 120 120 40 8 12 11 17 12 11 20 

The smaller the numoer, the busier the hospital. 

Patient Service Time 

We performed a stepwise linear regression of patient histories against 
total patient service time. This resulted in an equation with seven terms that 
were added and used to predict each patient's service time in minutes. 

I. Class of patient: Critical=42.12; Urgent=41.16; Other=40.14 
2. Age of patient in years times .144 
3. Hematology test done? 33.84 if YES; 0 if NO 
4. X rays taken? 37.92 if YES; 0 if NO 
5. Microbiology test done? 7.68 if YES; 0 if NO 
6. Patient admitted to hospital? - 2.22 if YES; 0 if NO 
7. Subtract minutes since last patient arrived times .12 

Patients' Characteristics 

The probabilities of a patient's belonging to one of the three classes 
were: 

Critical 9% 
Urgent 53% 
Other 38% 

Patients' ages followed a truncated (no negative ages) normal distribu
tion, with a mean of 29 years and a standard deviation of 15 years. 
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The probabilities that tests were performed were: 

Class 

Critical 
Urgent 
Other 

Hematology 

60% 
20% 
10% 

Xray 

45% 
30% 
20% 

Microbiology 

5% 
17% 
2% 

The probabilities that patients would be admitted to hospital depended 
upon their class. 

Critical 80% 
Urgent 20% 
Other 2% 

Utilization of Facilities 

Use of emergency-department facilities depended upon the class of the 
patient. Patients used either one of the examination/treatment rooms or one of 
the trauma beds in the resuscitation room. The probabilities of using trauma 
beds were: 

Critical 67% 
Urgent 15% 
Other none 

The time doctors spend with patients also depended on class. 

Critical 
Urgent 
Other 

25 + or - 10 minutes 
20 + or - 10 minutes 
15 + or 10 minutes 

The time nurses spend with patients depended on class. 

Critical 
Urgent 
Other 

Implementation 

60 + or - 20 minutes 
15 + or - 10 minutes 
10 + or - 5 minutes 

This simulation was written in GPSS, which was appropriate, since it was 
event-oriented. We kept a clock to determine which mean to use with the ex
ponential distribution of time between arrivals. When a patient arrived, we made 
a random draw from the cumulative empirical distribution of class probabilities 
to find whether the patient would be classed as critical, urgent, or other. Using 
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that information, we determined the tests to be performed and the requirements 
for hospital facilities. Then we sampled the age distribution and substituted 
values into the regression equation to find the patient's total service time. 

We posted either a trauma bed or an examination room as engaged for 
the patient's entire stay in the emergency department and posted a doctor and 
a nurse as busy for a length of time determined by a draw from the appropriate 
uniform distribution. We kept track of the time patients had to wait because 
needed resources were not available. 

We ran the simulation under four sets of conditions: 

I. Current demand. 
2. Ten years at a 1.8 percent annual growth rate in patient service demand. 
3. A sustained 50 percent increased demand for service. 
4. A bus crash at 18:00 Sunday, bringing 55 additional patients. 

Results 

We found that under existing conditions, acceptable service could be 
rendered with the following schedule: 

7:00-15:00 
15:00-23:00 
23:00-7:00 

2 doctors, 4 nurses 
2 doctors, 4 nurses 
1 doctor, 2 nurses 

The existing level of service can be maintained with present staff and 
facilities for ten years of 1.8 percent annual growth of the service area population. 

To cope with a 50 percent increase in work load, one more examination/ 
treatment room would be needed; and the following schedule: 

7:00-15:00 
15:00-23:00 
23:00-7:00 

2 doctors, 6 nurses 
2 doctors, 6 nurses 
1 doctor, 2 nurses 

Handling a disaster like the one postulated would require that one doctor 
and three nurses be on call. Also, five more trauma beds and five more exam
ination beds would be needed. Five sets of portable resuscitation equipment 
could be used in existing examination rooms. The examination beds could be 
set up in a large room (possibly in the pharmacy area) with curtain separators. 

PART 3-SOCIOLOGICAL SIMULATION 
PREDICTING SIZE OF HOUSEHOLDS (6) 

Long-range planners often find it more useful to tie predictions of future pop
ulation size to the size and composition of households rather than to raw pop-
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ulation statistics that deal with people as individuals. Clearly, household-size 
information is vital to land developers and manufacturers of consumer durable 
goods such as washing machines and refrigerators. 

This simulation works on data available from the census bureau and 
projects it into the future by applying the expected rates of birth, death, and 
marriage. We worked with Canadian data, but our technique can be used any
where comparable census data are available. 

We knew that between 1851 and 1971, the size of the average Canadian 
household declined from 6.2 persons to 3.42 persons. The 1976 census reported 
it at 3.2 persons; the 1981 census reported 2.75 persons. Our task was to estimate 
the average size of the Canadian household in 1991. 

Input Data 

Our source of data was the Public Use Files that Statistics Canada makes 
available for research. They are 1-in-l 0,000 samples of the national census strat
ified on a provincial basis. The most important of these tapes to us was the 
Household Census Data tape for 1971. It contained information about 601 
households consisting of a total of 2,054 persons. 

Our game plan was to follow these two thousand people and their de
scendants for 20 years, simulating births, marriages, and deaths, as well as the 
occasional importation of a bride or groom. To do this we first had to create a 
file listing for .each person: sex, age in completed years, place in the household 
(thatis, head, spouse, child, or other person), and a tag linking that person to 
a household. 

The household file did not give the sex of children and other persons. 
Moreover, it gave their ages only in five-year classes. Only the sex of the spouse 
was, given. We had to sinmlate the missing data. 

We assigned gender to children and other persons by assuming a 
485/515 chance of their being male or female. We assigned ages in single years 
of completed age by assuming a uniform . .age distribution within the given five
year age brackets. To get the age of spouse, we consulted another public-use 
census file: ·the Provincial Family File. Here the ages of both spouses were given. 
We determined that the age difference between wife and husband was normally 
distributed with a mean of 4.35 years and a standard deviation of 3.06 years. 
For each household, we sampled from this distribution and applied the result 
to the given age of the head of household to obtain the age of spouse. 

Implementation 

Our simulation was time-oriented. For each year, we exposed each in
dividual to the sex- and age-specific probabilities of death, birth, and marriage. 
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We obtained these probabilities from Canadian census data. The simulation 
consisted of these steps: 

1. Expose each person to mortality. 
2. If dead, cancel individual's record: report - 1 person. 
3. Expose each married female 15 to 50 to married fertility. 
4. Expose each single female 15 to 50 to single fertility (about 1/10 married fertility). 
5. If birth results, create an individual's record, determine gender. 
6. Expose new individual to newborn mortality. 
7. If dead, cancel individual's record; otherwise, report + 1 person. 
8. Expose each single female to female nuptiality. 
9. If nubile, add to marriage roster. 

10. Expose each single male to male nuptiality. 
11. If nubile, add to marriage roster. 
12. Apply criteria to match females to males. 
13. If match found, create new household; adjust bride's family; adjust groom's 

family. 
14. Otherwise, import a bride (or groom); create new household; adjust groom's 

(or bride's) family; report + 1 person. 

We matched couples by making a draw from our age-difference distri
bution for each prospective groom in turn and. picked the bride whose age was 
closest to the groom's age minus the selected age difference. For the leftover 
brides, we imported grooms and assigned them ages from our age-difference 
distribution. We similarly imported brides if there were leftover grooms. 

After matching couples, we adjusted the households they came from by 
subtracting out the spouses and any children belonging to them, to form a new 
household. 

For each simulated year, we cycled through the file of individuals. After
ward we updated our household file by using the tags in each person's record. 
Then we calculated household statistics describing size and composition. 

We did this for 20 simulated years for each run. We made ten runs and 
calculated the mean and standard error of our statistics. 

Results 

Our simulation suggested that by 1991 the average Canadian household 
will consist of 2.3 persons. Moreover, by doing this kind of simulation instead 
of just extrapolating a curve of household size, we can not only forecast average 
household size but also predict how many households of 1, 2, ... to 10 or more 
persons will exist and how many of these people will be children of various ages 
or other persons. This is far more useful planning information than household 
size alone. 
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o·rHER SIMULATIONS 

Training Fire Dispatchers [7] 

We turned the fire-department resource-allocation simulation into a "video 
game" for training fire-department dispatchers. It was written with graphical 
displays and runs on a microcomputer. 

The relative locations of fire districts are shown as a three-by-three 
matrix display. They are identified by large Arabic numerals. Stylized symbols 
show the location of fire stations within districts, and fires, when they occur. A 
legend at the top of the display shows date and time, legends in each cell give 
the status of that district's fire company, and a legend at the bottom gives the 
number of companies needed to fight the current fire. Figure 1O~1 shows the 
display. 

The game begins at a selected date and time and proceeds in fifteen
minute increments. There is no backup matrix; the dispatcher must assign com
panies. The objective of the game is to minimize fire loss in dollars. 

The heaviest penalty is incurred if the driving time of the first company 
called is longer than it could be. This is because any delay during the first critical 

FIGURE 10-1 Display for fire-dispatch simulator. 

8~ 5 ~ \) 1 7~ ~ 3 
BUSY@ 7 BUSY@ 7 BUSY@ 7 

6~ 1~ 4~ 
BUSY@ 7 FREE@ 1 FREE@4 

3~ 9~ 2~ 
FREE@3 FREE@9 FREE@4 

July Thursday 19:00 Locaf'ion: 5 Alarms: 1 
Enf'er Fire-Company Assignmenf's => 1 
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minutes of a fire will greatly exacerbate the ultimate damage. The penalty is 
calculated by this formula: 

Loss Value* {l/(1+99 *exp [-Driving-time* .17])} 

This equation is derived from the well-known logistic, or Pearl-Reed, 
curve of growth. 

Value is found from this equation: 

Value = Man-property-value-in-district* log (Random-number) 

This means a heavier penalty will be exacted if the student dispatcher 
lets a fire in a rich neighborhood get out of control despite the fact that more 
lives may be lost if the same adverse event occurs in a poor neighborhood. This 
may not be nice, but it is reality; and that's what simulation is all about-depicting 
reality. 

Driving time is found by sampling from the driving-time distribution of 
every district through which the first company called must drive and adding 
these random variates. 

The second kind of penalty is incurred when the dispatcher fails to 
assign enpugh companies. The effect of this penalty is to tie up the companies 
assigned for a longer time than would be required if the needed resources had 
been assigned. To get fire-fighting time under penalty conditions, we first sample 
from the time distribution appropriate to the total number of companies re
quired. Then we sample from the time distribution appropriate to the number 
of companies not available and add these two random variates. 

Increasing fire-fighting time will make apparatus unavailable for sub
sequent fires. This situation will be reflected in property loss because in sub
sequent fires the closest company is unlikely to be free and driving time of the 
first company called will therefore be increased. To find the number of fires in 
each fifteen-minute period, we sample from a Poisson distribution whose mean 
is found from the equation: 

lambda = .I * N(month) * N(day) * N(hour) *Difficulty-factor 

The difficulty factor is a number greater than one that the student selects. 
This feature enables the student to test his skill as he becomes more proficient. 
(The masculine pronoun reflects the fact that fire dispatchers in this city are 
male, unlike police dispatchers. The job is used to give continuing employment 
to firefighters injured in the line of duty.) Figure 10-2 is. a listing of the source 
code of the program. 

Training Artillery Gunners [8] 

This working game was designed to train gunners in the use of graphical 
firing tables (GFT). A GFT is a special slide rule that helps gunners aim their 
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20 'FIRE DISPATCB SIMULATION 
30 'COPYRIGHT 1982 
40 'BY JOHN r~. CARROLT_, 
50 'AT_,L RIGHTS RESERVED 
55 CLS 
60 PRINT CHR$(23):PRINT:PRINT:PRINT 
70 PRINT"WELCOME TO FIRE DISPATCH" 
72 PRINT:"PRINT" COPYRIGfIT 1982" 
75 PRINT:PRINT" BY JOHN M. CARROLL" 
77 PRINT:PRINT" ALL lUGBTS RESERVED" 
78 FOR I==l TO lOOO:NEXT I:CLS 
85 PRINT:PRINT" INTRODUCTION" 
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86 PRINT:PRINT"==>ENTER STARTING DATE IN FORMAT YY/MM/DD/HH." 
87 PRINT 
88 PRINT "==>YOU WILL SEE A MAP OF 9 FIRE DtSTRICTS SHOWING" 
89 PRINT "THE STATUS OF EACfl FIRE COMPANY, THE LOCATION OF A" 
90 PRINT "FIRE AND THE NUMBER OF COMPANIES NEEDED TO FIGHT IT." 
91 PRINT 
92 PRINT"==>SELECT COMPANIES WHEN ASKED~ ENTER AS '1,2,3, ••• '" 
95 PRINT:PRINT"==>WHEN YOU SEE THE SYMBOL '?', TYPE 'ENTER'." 
97 C$="":PRINT:INPUT"==>TYPE 'C' TO CONTINUE~ 'Q' TO QUI':t"'~C$ 
98 IF C$="Q" THEN 4000 
99 IF C$<>"C" THEN 97 
100 I 

110 I INDEX 
120 I 900 It\IITIA. r_.Iz A TIO N 
130 1 1000 DIMENSIONS 
140 1 2000 READ DATA 
150 I 3000 MAIN 
160 1 7800 END-OF-SIMULATION SUBROUTINE 
170 ' 7900 END-OF-PERIOD SUBROUTINE 
180 1 8000 END-OF-FIRE SUBROUTINE 
190 ' 8100 FIRE LOSS. SUBROUTINE 
200 ' 8200 PROPERTY VALUE SUBROUTINE 
210 ' 8300 FIRE DUR.l\TION SUBROUTINE 
220 '· 8400 FIRE-DURATION PARAMETER SUBROUTINE 
230 ' 8500 EXPONEl\JTil\.L SUBROUTINE 
240 ' 8600 DRIVING TIME SUBROUTINE 
250 ' 8700 NORMAL SUBROUTINE 
260 ' 8800 DR:tvrNG-TIME PARAMETERS SUBROUTINE 
270 1 8900 RESOURCE AVAILAAILITY SUBROUTINE 
280 ' 9000 RESOURCE ASSIGN.MENT SUBROUTINE 
290 ' 9100 NUMBER-OF-ALARMS SUBROUTINE 
300 ' 9200 FIRE-LOCATION SUBROUTINE 
310 1 9300 POISSON SUBROUTINE 
320 ' 9400 GRAPHICAL SUBROUTINE 
330 ' 9600 POISSON MEAN SUBROUTINE 
340 ' 9700 MONTH-OF-YEAR SUBROUTINE 
350 ' 9800 DAY-OF-WEEK SUBROUTINE 
360 I 9900 HOUR-OF-DA y SUBROUTINE 
370 '10000 DATA 
500 I 

510 ' GLOSSARY 
520 'AA MULTIPLE-ALARM VECTOR PP AVERAGE FIRES/15 MINUTES 
525 'C$ COMMA'.ND STRING 
530 'CA$ JI: DISTRICTS CROSSED R RANDOM VARIATE 
535 'CC ENDING PERIOD R ASSIGNMENT VECTOR 
537 'D$ STARTING DAY 
540 'DD DURATION-;ALARM VECTOR R$ ASSIGNMENT INPUT 
550 'DM MEAN DRIVING TIME VEC RD RESOURCE-DUR.l\TION VECTOR 
560 'DS DRIVING TIME STD DEV V RL RESOURCE-LOCATION VECTOR 
570 'DT D.RIVING TIME S POLSSON SUMMATION 
575 'DY SIMULATION LENGTH (DAYS) 
580 'EX STAT EXPECTATION SD STAT STD DEVIATION 
590 'FA JI: ALARMS SL STATION LOCATION VECTOR 
600 'FD FIRE DURATION SN NORMAr_, SUMMATION 

FIGURE 10-2 Program listing of the fire-dispatch simulator. 
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610 'FF POISSON FACTORIAL SS STARTING PERIOD 
620 'FL FIRE LOCATION V FIRE LOSS 
630 'FP POISSON MEAN VM MEAN PROPERTY VALUE VECTOR 
640 'FT TOT AL FIR ES VT TOT AL FIRE LOSS 
650 'H CURRENT HOUR W CURRENT DAY 
660 'H$ STARTING HOUR WW DAY-OF-WEEK VECTOR 
670 'HH ijOUR-OF-DAY VECTOR WW$ DAY NAME VECTOR 
680 'HH$ HOUR NAME VECTOR X HORIZONTAL COORDINATE 
690 'I OUTER COUNTER Y VERTICAL COORDINATE 
700 'II INNER COUNTER Y$ STARTING YEAR 
710 'J FIRE COUNTER YY MONTH-OF-YEAR VECTOR 
720 'LC STATION CONDITION VEC YY$ MONTR NAME VECTOR 
730 'LF FIRE SYMBOL VECTOR YR CURRENT MONTH 
740 'LL FIRE-LOCATION VECTOR Z CURRENT PERIOD 
750 'LS STATION-LOCATION VECTOR 
760 'M$ STARTING MONTH 
770 'ME EXPONENTIAL VARIATE 
780 'MN NORMAL VARIATE 
790 'NN POISSON VARIATE 
800 'NS STATION NAME VECTOR 
810 'PF PENALTY FACTOR 
900 I 

910 1 INITIALIZATION 
920 CLEAR lOOO:RANDOM:CLS 
1000 I 

1010 1 DIMENSION STATEMENTS 
1020 ' DATA ARRAYS 
1030 DIM YY(l2),WW(7),HH(24),LL(9),AA(9),DD(9),DM(9},DS(9) 
1032 DIM VM(9),LS(9),r ... c(9),LF(9),NS(9) 
1034 DIM YY${12),WW$(7),HH$(24),SL(9) 
1040 1 WORKING-STORAGE ARRAYS 
1050 DIM R(l8),RL(9),RD(9) 
2000 I 

2010 1 READ DATA ARRAYS 
2020 FOR I=l TO 12:READ YY(I):NEXT I 
2030 FOR I=l TO ?:READ WW(I):NEXT I 
2040 FOR I=l TO 24:READ HH(I):NEXT I 
2050 FOR I=l TO 9:READ LL(I):NEXT I 
2060 FOR I=l TO 9:READ AA(I):NEXT I 
2070 FOR I=I TO 9:READ DD(I):NEXT I 
2080 FOR I=l TO 9:READ DM(I):NEXT I 
2090 FOR I=l TO 9:READ DS(I):NEXT I 
2100 FOR I=l TO 9:READ VM(I):NEXT I 
2110 FOR I=l TO 9:READ LS(I):NEXT I 
2120 FOR I=l TO 9~READ LC(I):NEXT I 
2130 FOR I=l TO 9:READ LF.(I):NEXT I 
2140 I 

2150 READ PP 
2160 I 

2170 FOR I=l TO 9:READ NS(I):NEXT I 
2180 FOR I=l TO 12:READ YY$(I):NEXT I 
2190 FOR I=l TO 7:READ WW$(I):NEXT I 
2200 FOR I=l TO 24:READ HH$(I):NEXT I 
2210 FOR I=l TO 9:READ SL(I):NEXT I 
3000 I 

3010 I START 
3020 'GET SIMULATED STARTING TIME (SS) 
3030 PRINT:PRINT:PRINT:PRINT:PRINT:PRINT:PRINT 
3040 INPUT"ENTER STARTING TIME AS YY/MM/DD/HH";Y$ 
3050 M $=MID$(Y$,4,2):D$=MID$( YS,7 ,2):R$=MIO$(Y$,10,2) 
3060 SS=(VAL(M$)-1)*2920+(VAL(D$)-l)*(VAL(H$)-1)*4 
3070 I 

3080 'SET 'rIME PERIOD OF SIMULATION (CC} 
3090 PRINT:INPUT"ENTER PERIOD OF SIMULATION IN DA YS"1DY 
3100 CC=DY*96+SS 
3200 N=SS 
3205 N=N+l:Z=N 
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3210 IF N>=C C THEN 3995 
3220 I 

3230 GOSUB 9900 'GET HOUR-OF-DAY (H) 
3240 GOSUB 9800 'GET DAY-OF-WEEK (W) 
3250 GOSUB 9700 'GET MONTH-OF-YEAR (YR) 
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3260 GOSUB 9600 'GET POISSON MEAN FOR 15-MIN PERIOD (FP) 
3270 GOSUB 9300 •GET NUMBER OF FIRES THis PERIOD (NF) 
3285 IF NF=O THEN 3205 
3290 FOR J=l TO NF 'HANDLE FIRES FOR CURR!1!NT PERIOD 
3300 GOSUB 9200 'GET FIRE LOCATION (FL) 
3310 GOSUB 9100 'GET NUMBER OF ALARMS (FA) 
3320 GOSUB 9400 'PRINT FIRE MAP SHOWING CURRENT FIRE 
3325 PRINT@896,YY$(YR)" "WW$(W)" "HH$(H)" LOCATION= "FL" 
3327 PRINT@940,"ALARMS= "FA 
3330 PRINT@960,"ENTER FIRE-COMPANY ASSIGNMENTS ==>"; 
3340 LINE INPUT R$ 
3345 GOSUB 9000 'GET RESOURCE ASSIGNMENTS (R) 
3350 GOSUB 8900 'CHECK AVAILABILITY (RL) 
3360 GOSUB 8800 'GET DRIVING-TIME PARAMETER (CA$) 
3370 GOSUB 8600 'GET DRIVING TIME (DT) 
3380 GOSUB 8400 'GET FIRE-DURATION PARAMETER (RD) 
3390 GOSUB 8300 1GET FIRE DURATION (FD) 
3400 GOSUB 8200 'GET MEAN VALUE OF PROPERTY THREATENED (VM) 
3410 GOSUB 8100 'GET FIRE LOSS (V) 
3420 GOSUB 8000 'END-OF-FIRE (Z,FT,FL,FA,FD,V) 
3970 INPUT X 
3975 1

· 

3980 NEXT J 
3985 GOSUB 7900 'END-OF-PERIOD (RD,RL) 
3990 GOTO 3205 
3995 GOSUB 7800 'END-OF-SIMUL.ATION (SS,CC,FT,VT) 
4000 END 
7800 ' 
7810 'END-OF-SIMULATION SUBROUTINE (SS,CC,FT,VT) 
7820 C LS:P RINT:PRINT:P RINT:P RINT:P RINT 
7830 PRINT"SIMULATION FROM PERIOD # "SS" TO PERIOD # "CC 
7840 PRINT:PRINT"NUMBER OF FIRES = "FT" PROPE.RTY LOSS = "VT 
7845 PRINT 
7847 PRINT" THE END":PRINT 
7850 RETURN 
7900 I 

7910 'END-OF-PERIOD SUBROUTINE (RD,RL) 
7920 FOR I=l TO 9:RD(I)=RD(I)-15 
7930 IF RD(I)<O THEN RD(I)=O 
7940 IF RD(I)=O THEN RL(I)=O 
7950 NEXT I 
7970 RETURN 
8000 I 

8010 'END OF FIRE SUBROUTINE (Z,FT,FL,FA,FD) 
8020 FT=FT+l:VT=VT+V 
8030 C LS:P RINT:P RINT:P RINT:P RINT:P RINT 
8035 PRINT" FIRE AUDIT"l:PRINT 
8040 PRINT"PERIOD #= "Z:" FIRE #= "FT;" LOCATION= "FL 
8042 PRINT " # OF ALARMS= "FA 
8045 PRINT"DURATION= "FD" FIRE LOSS= "V 
8050 PRINT 
8090 FOR I=l TO 18:R(I)=O:NEX.T I 
8095 RETURN 
8100 I 

8110 'FIRE-LOSS SUBROUTINE (V) 
8120 EX=VM:GOSUB 8500 
8130 V=M E-((M E*l00*(2.l 72828[(-DT)))/14) 
8135 IF V<O THEN V=lOOO 
8140 RETURN 
8200 I 

8210 'PROPERTY-VALUE-PARAMETERS SUBROUTINE (VM) 
8220 VM=VM(FL) 

FIGURE 10-2 (continued) 
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8240 RETURN 
8300 I 

8310 'FIRE-DURATION SUBROUTINE (FD) 
8320 EX:=;RD:GOSUB 8500 
8325 FD=DT+ME+PF*ABS(ME-RD) 
8330 FOR I=l TO F A:IF R(I)=O THEN 8350 
8335 FOR lI=l TO 9 
8340 IF lI=R(I) THEN RD(lI)=FD 
8345 NEXT Ir 
8350 NEXT I 
8360 RETURN 
8400 I 

8410 'FIRE-DURATION-PARAMETER SUBROUTINE (RD} 
8420 RD=DD(FA} 
8440 RETURN 
8500 I 

8510 'EXPONENTIAL-DISTRIBUTION SUBROUTINE (ME) 
8520 ME=(-EX)*LOG(RND(O)) 
8530 RETURN 
8600 I 

8610 'DRMNG-TIME SUBROUTINE (DT) 
8615 DT=O 
8620 EX=DM(R(l}):SD=DS(R(l}):GOSUB 8700:DT=MN 
8630 IF. C A$="1" THEN 8670 
8640 EX=DM(FL}:SD=DS(FL):GOSUB 8700:DT=DT+MN 
8650 IF CA$="2" THEN 8670 
8660 EX=DM(l):SD=DS(l):GOSUB 8700:DT=DT+MN 
8670 RETURN 
8700 ' 
8710 'NORMAL-DISTRIBUTION SUBROUTINE (MN) 
8720 SN=O:FOR I=l TO 12 
8730 SN=SN+RND(O) 
8740 NEXT I 
8750 MN=SD*(SN-6)+EX 
8760 IF MN<=O THEN 8720 
8770 RETURN 
8800 I 

8810 'DRMNG-TIME-PARAMETERS SUBROUTINE (CA$) 
8820 C A$;="":IF R(l)=FL THEN C A$="1 ":GOTO 8850 
8822 IF R(l)=l OR FL=l THEN CA$="2":GOTO 8850 
8826 IF (R(1)=6.0R R(l)=8 OR R(l)=5) AND (FL=6 OR FL=8 OR FL=5) 

THEN CA$="2":GOTO 8850 
8827 IF (R1(1)=5 OR R(l)=7 OR R(l)=4) AND (FL=5 OR FL=7 OR FL=4) 

THEN CA$="2":GOTO 8850 
8828 IF (R{l)=4 OR R{1)=2 OR R(l)=9) AND (FL=4 OR FL=2 OR FL=9) 

THEN CA$="2":GOTO 8850 
8830 IF (R(l}=9 OR R(l)=3 OR R(l)=6) AND (FL=9 OR FL=3 OR FL=6) 

THEN CA$="2":GOTO 8850 
8840 c A$="3" 
8850 RETURN 
8900 I 

8910 'AVAILABILITY SUBROUTINE (PF} 
8920 PF=O:F 0 R I=l TO FA 
8930 IF R(I}=O THEN PF=PF+l 
8940 NEXT I 
8945 IF R(l)=O THEN DT=300:G OTO 3400 
8950 RETURN 
9000 I 

9010 'FIRE-COMPANY ASSIGNMENT SUBROUTINE (R) 
9020 FOR I=l TO LEN(R$) 
9030 R(I}=VAL(MID$(R$,(I*2-l),l)) 
9035 FOR lI=l TO 9 
9040 IF lI=R(NS(I)} AND RD(lI)<>O THEN R(I}=O:GOTO 9060 
9050 IF RL(lI)=O THEN RL(lI)=FL 
9060 NEXT II 
9065 NEXT I 
9070 RETURN 
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9100 ' 
9110 'NUMBER OF ALARMS SUBROUTINE (FA) 
9120 R=RND(O) 
9130 FOR I=9 TO 1 STEP -1 
9140 IF R>=AA(I) THEN NEXT I ELSE FA=I 
9150 RETURN 
9200 ' 
9210 SUBROUTINE (FL) 
9215 R=lRNI)COl 
9220 FOR TO 1 STEP -1 
9230 IF R>:=LL(I) THEN NEXT I ELSE FL=I 
9240 RETURN 
9300 f 

9310 'POISSON SUBROUTINE (NF) 
9320 S=O:R=RND(O) 
9330 FOR TO 100 
9335 NF=I-1 
9340 IF NF<>O THEN 9360 
9350 FF=l:GOTO 9370 
9360 FF=NF*FF 
9370 NN=((2. 718282[(-FP))*(FP[NF))/FF:S=S+NN 
9380 IF S>=R THEN RETURN ELSE NEXT I 
9400 I 

9410 ' (DRAW-FIRE-MAP) SUBROUTINE 
9420 X=O TO 127:SET(X,Y):NEXT X 
9430 Y=lS:FOR X=O TO 127:SET(X,Y):NEXT X 
9440 Y=30:FOR X=O TO 127:SET(X,Y):NEXT X 
9450 Y=47:FOR X=O TO 127:SET(X,Y):NEXT X 
9460 X=O:FOR Y=O TO 47:SET(X,Y):NEXT Y 
9470 Y=O TO 47:SET(X,Y):NEXT Y 
9480 Y=O TO 47:SET(X,Y):NEXT Y 
9490 X=l27:FOR Y=O TO 47:SET(X,Y):NEXT Y 
9500 FOR I=l TO 9 
9502 PRINT@LS(I),NS(I)" "CHR$(188)CHR$(188)CHR$(191) 
9505 NEXT I 

PRINT@LF(SL(FL)),CHR$(185)CHR$(182) 0 
" FA 

FOR I='1 TO 9 
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IF RD(NS(I))=O THEN PRINT@LC(I)," FREE @ "NS(I):GOTO 9570 
9560 PRINT@LC(I)," BUSY @ "RL(NS{I)) 
9570 NEXT I 
9580 RETURN 
9600 I 

9610 'POISSON-MEAN SUBROUTINE (FP) 
9620 FP=PP*YY(Y R)*WW(W)*HH(H) 
9630 RETURN 
9700 I 

9710 'MONTH-OF-YEAR SUBROUTINE (YR) 
9720 Y R=(INT(Z/2920)+ l)-INT((INT(Z/2920)+ 1)/12)*12 
9730 IF Y R=O THEN Y R=l2 
9740 RETURN 
9800 I • 

9810 'DAY-OF-WEEK SUBROUTINE (W) 
9820 W=(INT(Z/96)+ 1)-INT((INT( Z/96)+ 1)/7)*7 
9830 IF W=O . THEN W"=7 
9840 RETURN 
9900 I 

9910 'HOUR-OF-DAY SUBROUTINE (H) 
992.0 H=(INT(Z/4)+1)-INT((INT(Z/4)+1)/24)*24 
9930 Ir' H=O THEN H=24 
99itO 
10000 
10010 ' DATA STATEMENTS 
10020 ' .M10NTH-OF-YEAR VECTOR @ 12 (YY) 
10030 D AT,A .8848,.8490,.9887 ,1.1463,1.0925,1.0352,1.2036 
100.35· DATA 1.0316,.9787,.8848,.9241 
10040 I DAY-OF-WEEK VECTOR @ 7 (WW) 
10050 DATA .9880,.9129,.9880,.9526,1.0382,1.1573,,9630 
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10060 ' HOUR-OF-DAY VECTOR @ 24 (HH) 
10070 DAT A .9740,.9669,.6876,.5013,.4011,.2936,.3653,.4942 
10072 DATA .5730,. 7592,.8236,.1.0170,.1.0241,1.167 4,1.1173 
10075 DATA l.2963,.l.4252,l.4109,1.3751,1.5327 ,1.7046,1.5327 
10077 DATA 1.4038,1.1531 
10080 ' LOCATION~OF-FIRE VECTOR @ 9 (LL) 
10090 DAT A 1.0,.8175,.6798,.5802,.5021,.3942,.339,.2193,.1418 
10100 ' MULTIPLE-ALARM VECTOR @ 9 (AA) 
10110 DAT A 1.0,.3797 ,.2197 ,.052,.0042,,0005,.0004,.0001,.0 
10120 ' DURATION-VS-ALARM FUNCTION TABLE @ 9 {DD) 
10130 DATA 21.19,31.94,33.24,35.03,39,09,50.,300.,300,,300. 
10140 ' DRIVING-TIME MEANS BY DISTRICT @ 9 (DM) 
10150 DATA 3,904,5.1887 ,3.767 ,4.2998,3,3973,5.1726,4.562 
10152 DATA 5.3022,4.7064 
10160 ' DRIVING-TIME STANDARD DEVIATIONS BY DISTRICT @ 9 (DS) 
10170 DAT A 2. 76,2.5943,2.17 48,2,4825,1.6987,2. 7017 ,2.0402 
10172 DA.TA 2.6512,2.2756 
10180 ' !PROPERTY-VALUE MEANS BY DISTRICT @ 9 {VM) 
10190 D~TA 93881,63579,70923,57647,70923,74587,63821,82060 
10191 Oii.TA 63821 
10200 ' MAP LOCATIONS OF FIRE STATIONS @ 9 (LS) 
10210 DATA 65,87,109,385,407,429,705,725,749 
10220 ' MAP LOCATION OF FIRE-STATION CONDITION FLAGS @ 9 (LC) 
10230 DAT A 130,152,174,450,472,494,770,792,814 
10240 ' MAP LOCATION OF FIRE SYMBOLS @ 9 (LF) 
10250 DATA 73,95,117,393,415,437,713,735,757 
10260 ' AVERAGE NUMBER OF FIRES PER 15-MINUTE "PERIOD (PP) 
10270 DATA ,0956335 
10280 1 NUMERICAL DESIGNATIONS OF FIRE STATIONS @ 9 (NS) 
10290 DATA 8,5,7,6,1,4,3,9,2 
10300 ' NAMES OF MONTHS OF THE YEAR @ 12 (YY$) 
10310 DATA "JANUARY","FEBRUARY","MARCH"/APRIL","MA Y","JUNE" 
10312 DATA "JULY"," AUGUST",''SEPTEMBER ","OCTOBER","NOVEMBER 11 

10314 DATA "DECEMBER" 
10320 ' NAMES OF DAYS OF THE WEEK @ 7 (WW$) 
10330 DATA "MONDAY","TUESDAY","WEDNESDAY","THURSDAY","FRIDAY" 
10332 DATA "SATUROAY","SUNOAY" 
10340 ' NUMERICAL DESIGNATIONS OF HOURS OF THE DAY @ 24 (HH$) 
10350 DATA "01:00","02:00" ,"03:00","04:00","05:00","06:00" 
10352 DAT A "07:00" 1 "08:00" ,"09:00", "10:00", "11:00" 1 "12:00" 
10354 DAT A "13:00", "14:00", "15:00", "16:00", 0 17 :00", "18:00" 
10356 DAT A "19:00", "20:00", "21:00", "22:00", "23:00", "24:00" 
10360 ' MAP LOCATION EQUIVALENTS OF FIRE STATIONS @ 9 (SL) 
10370 DATA 5,9,7,6,2,4,3,1,8 
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cannons. The idea was to implement it on a cheap microcomputer that could 
be placed in the day rooms of barracks where trainees were billeted. 

There are several variables in aiming a cannon: 
First, what kind of cannon is it? We simulated a 155-millimeter self

propelled howitzer. 
Second, what is the mode of fire? It could be direct, meaning the ele

vation is less than 45 degrees; or it could be high-angle, meaning the elevation 
is greater than 45 degrees and, of course, less than 90 degrees. We simulated 
high-angle fire. Different GFTs exist for different cannons and modes of fire. 

Third, what is the charge; that is, how much propellant is used? We 
simulated only charge #3. 

Fourth, what is the site; that is, the difference in elevation between the 
cannon and the target? We 'assumed no difference. 
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Fifth, what is the range? We simulated ranges between 4,000 and 6,000 
yards by adding random draws on 0-2,000 to 4,000 yards. 

Sixth, what is the chart deflection; that is, the bearing of the target from 
the initial direction of the cannon as shown on topographical charts? Incidentally, 
artillerymen measure bearings in artillery mils. There are 6,400 mils in a circle. 
We simulated chart deflection as 2,400 mils plus a random number drawn on 
0-1,600. 

The trainee had to use the GFT to calculate cannon elevation (called 
"quadrant") and actual deflection; both of these are nonlinear functions. 

The game display consists of a horizontal gunline at the bottom of the 
screen with a stylized cannon at the midpoint. A jagged ridge line divides the 
screen vertically to ,simulate intervening high terrain. The target is a stylized 
tank at the top of the screen. Chart deflection and range are shown 1n a legend 
(see Figure 10-3). 

The trainee enters quadrant and deflection from the GFT. The program 
calculates the correct values by interpolating between end values on the GFT 
using Newton's divided-difference polynomials. Then the program shows the 
trainee the effects of fire. 

A parabolic arc is traced out on the screen. If the round misses, a white 
dot appears where the simulated shell landed: short, long, left, right, or some 
combination. If the round hit the target; a white glob obliterates it. The trainee 
gets another shot if he misses the target. After a hit, the trainee is given the 
option of getting another target or quitting the game. In addition to getting the 
results of each shot, the trainee gets a summary of hits and misses at the end of 
the exercise. Figure 10-4 is the program. 

FIGURE 10-3 Display for the artillery fire-direction simulator showing a hit. 

CH DF=2733 
CH RG=5175 
Sl=D/N INC SI 
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100 'HIGH ANGLE 
110 ~COPYRIGHT 1981 ,BY JpHN M CARROLL 
120 'ALL RIGHTS RESERVED 
130 'CONTACT: BORGHAN REGLSTERED 
140 'RR#4, KOMOKA, ONTARIO, CANADA NOL lRO 
150 I 

200 'A SIMUf~ATO.R IN VI!J.EO-GAME FORMAT FOR TRAINING 
2i0 'ARTILLERYMEN IN FIRE-DIRECTION COf\ITROL USING 
220 'A GRAPHICAL Fiii.ING TABLE 
230 I 

300 'RUNS ON A S.HACT< MICROCOMPUTER TRS-80 
310 'MODEL 1 2 WITH ONF.: DISK DRIVE AND 
320 '16,000 RY_TES OP RANDOM-ACCESS MEMORY 
500 I 

501 • ***** GLOSSARY ***** 
510 I A=CONTINUE(CMD) 
520 I BS=BRANCH(STR) 
530 I C$=COMMAND(SW) 
540 I CD=CHART DEFLECTION 
550 I CG=CHARGE,GIVEN 
560 I CH=CHARGE 

I=COUNTER 
IS=INITIALS(STR) 

570 ' D=CORRECTED DEFLEC'rION 
580 I DF=DEFLECTION 

M=RIGHT flOR LIMIT 
N=LEF'T HOR LIMIT 

NS=NAME(STR) 
P=REPEAT(CMD) 

0=QUIT{CMD) 
QD=QUADR ANT 

R$=RANT<(STR) 590 I DR=DRIFT 
600 ' E=MISS 
610 ' EF$=EFFECT(SW & STR) 
620 ' EL=ELEVATION 
630 ' G=TERRAIN RANDOMIZER 
650 I H=HIT 
660 ' H$=ANOTHER SHOT(SW) 
1000 I 

RG=RANGE 
S=INTERMEDIATE VARIABLE 

SIS=SITE(STR,DUMMY) 
Y=VERT COORDINATE 

Y{X)=VERT COORD,STORED 
Z=TRY AGAIN 

1001 'MASTER CONTROL PROGRAM 
1005 RANDOM:DIM Y(128) 
1200 GOSUB 2000 'SIGN-IN 
1210. IF C$="A" THEN C$="":CLS:GOTO 1300 
1220 IF C$="Q" AND (H+E)>O THEN C$="":CLS:GOTO 1900 
1230 IF C$="Q" THEN CLS:END 
1300 GOSUB 3000 'PROBLEM DESCRIPTION 
1310 IF C$="A" THEN C$="":CLS:GOTO 1400 
1320 IF C$="Q" Mm (H+E)>O THEN C$="":CLS:GOTO 1900 
1325 IF C$="Q" THEN CLS:END 
1330 IF C$="P" THEN C$="":CLS:GOTO 1200 
1400 GOSUB 4000 'DRAW HIGH TERRAIN 
1410 IF C$=" A" THEN C$="":CLS:GOTO 1500 
1420 IF C$="Q" AND (H+E)>O THEN C$="":CLS:GOTO 1900 
1425 IF C$="Q" THEN CLS:END 
1430 IF C$="P" THEN CS="":CLS:GOTO 1300 
1500 GO SUB 5000 'TARGET DISPLAY 
1510 IF C$="A" THEN C$="":CLS:GOTO 1600 
1520 IF C$="Q" AND (H+E)>O THEN C$='"':CLS:GOTO 1900 
1525 IF C$="Q" THEN CLS:END 
1530 IF C$="P" THEN C$="":CLS:GOTO 1400 
1600 GOSUB 6000 'ENTER FIRING DATA 
1610 IF C$="A" THEN C$="":CLS:GOTO 1700 
1620 IF C$="Q" AND (H+E)>O THEN C$="":CLS:GOTO 1900 
1625 IF CS="Q" THEN CLS:END 
1630 IF C$="P" THEN C$="":CLS:GOTO 1500 
1700 GOSUB 7000 1EVALUATE FIRING 
1750 GOSUB 5000 'TARGET DLSPLAY-MODIFIED 
1755 IF HX$="ANOTHER SHOT" THEN 1600 
1800 GOSUB 8000 'EFFECT OF FIRE 
1810 IF C$="A" OR THEN CS="":CLS:GOTO 1900 
1820 IF C$="P" THEN 1750 
1900 GOSUB 9000 'SCORE ON EXERCISE 
1910 IF C$="A" THEN C$='"':EVS="":EF$="":CLS:GOTO 1500 
1920 IF CS<>"Z" THEN GOTO 1950 
1925 C$="":EF$="":EV$='"':HXS=" ANOTHER SHOT":CLS:G OTO 1750 

FIGURE 10-4 Program listing for the artillery fire-direction simulator. 



1930 Il" C$="0" THEN C$="":CLS:GOTO 1950 
1940 IF C$="P" THEN CS="":HX$="BACKUP":CLS:GOTO 1800 
1950 GOTO 9500 'TERMINATION 
2000 I 

2001 'SIGN-IN 
2005 CLS 
2010 PRINT CHR$(23) 
2020 PRINT:PRINT:PRINT 
2030 PRINT" WELCOME TO HIGH-ANGLE" 
2040 PRINT" C CIRCLE 1981 BY JOHN M CARROLL":PRINT 
2050 PRINT" PLEASB SIGN IN" 
2060 PRINT:INPUT"N AM E,INITIA LS":N$,I$ 
2070 PRINT:INPUT"R ANK,B RAN CH";R$,BS 
2080 PRINT:INPUT"TYPE'A'TO CONTINUE,'Q'TO QUIT":C$ 
2100 IF C$="A" OR CS="Q" THEN 2200 ELSE 2080 
2200 RETURN 
3000 I 

3001 'PROBLEM DESCRIPTION 
3020 PRINT:PRINT 
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3030 PRINT"THIS GAME WIJ_,f_, TEST YOUR SKILL IN DIRECTING FIRE " 
3032 PRINT"FOR THE M-109 SELF-PROPELLED 155-MM HOWITZER WHEN " 
3034 PRINT"FIRING AT INTERMEDIATE RANGES WITH INTERVENING " 
3036 PRINT"HIGH TERRAIN. " 
3040 PRINT 
3050 PRINT" 
3060 PRINT" 

YOU WILL NEED YOUR GFT 155AMIHEM107." 

3080 PRINT:PRINT:PRINT" 
3090 PRINT 
3092 PRINT 

USE THE MANUFACTURER'S CURSOR." 
GOOD HUNTING!" 

3094 INPUT"TYPE'A 1TO CONTINUE,'Q'TO QOIT,'P'TO BACXUP";C$ 
3100 IF C$="A" OR C$="Q" OR cs="P" THEN 3200 Ef,SE 3090 
3200 RETURN 
4000 ' 
4001 ;DRAW HIGH TERRAIN 
4010 PRINT:PRINT" AT EASE, SOLDIER" 
4015. PRINT 
4020 PRINT" 
4025 ·PRINT 

IN SIX DAYS GOD CREATED HEAVEN AND EARTH" 

4030 PRINT" IT TAKES US 40.89 SECONDS TO MAT<E THE WICHITA MTS" 
4045 G=RND(30) 
4050 FOR X=l TO 127 
4065 Y=28-3*SIN(X *6.28/90)+2*SIN(3*X *6.28/90+G+ 15) 
4067. Y=Y+2*SIN(5*X*6.28/90-30)+SIN(7*X*6,28/90+30) 
4068 Y=Y+3*SIN(2*X*6.28/90) 
4070 IF Y<l9 THEN 4100 'SET UPPER BOUND ON MOUNTAINS 
4080 IF Y>37 THEN 4100 'SET LOWED BOUND ON MOUNTAINS 
4085 Y(X)=Y 
4090 SET(X,Y) 
4100 NEXT X 
4110 INPUT"TYPE'A'TO CONTINUE,'Q'TO QUIT,'P'T() BA.CXUP";C$ 
4200 IF C$="A" OR C$="0" OR C$="P" THEN 4300 ELSE 4l10 
4300 RETURN 
5000 I 

5001 'GAME DISPLAY 
5100 'GUNLINE AND HOWITZER 
5105 F,OR X=l TO 127:Y::::47:SET(X,Yl:NEXT X 
5107 FOR X=62 TO 67:FOR Y=46 TO 44 STEP -l:SET(X,Yl:NEXT Y,X 
5110 FOR X=64 TO 65 
5120 FOR Y=47 TO 41 STEP -1 
513,0 SET(X,Y) 
5140 N;EXT Y,X 
5200 'INTERVENING HIGH TERRAIN 
5210 FOR X=l TO 127 
5220 IF Y(X.)=0 THEN 5250 'AVOID FALSE ZEROS 
5230 SET(X,Y(X)) 
5250 NEXT X 
5300 "L'ARGET (TANT<) 

FIGURE 10-4 (continued) 
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5310 Y=2:FOR X=60 TO 68:SET(X,Y):NEXT X 
5320 Y=3:FOR X=51 TO 68:SET(X,Y):NEXT X 
5330 Y=4:FOR X=60 TO 75:SET(X,Y):NEXT X 
5340 Y=5:FOR X=53 TO 75:SET(X,Y):NEXT X 
5350 Y=6:FOR X=54 TO 74:SET(X,Y):NEXT X 
5400 'GET CHART DATA 
5405 'CHECK EVALUATE FLAG 
5407 IF EV$="EVALUATE" OR HX$="ANOTHER SHOT" THEN 5500 
5408 'MODIFICATION TO SUBROUTINE 
5410 GOSUB 10000 'GET RANDOMIZED TARGET DATA 
5500 PRINT@l28,"CH DF="CD 
5510 PRINT@l92,"CH RG="RG 
5520 P RINT@256,"SI="SI$ 
5550 IF EV$="EVALUATE" THEN RETURN 'MODIFICATION TO SUBROUTINE 
5600 INPUT"TYPE'A'TO CONTINUE,'Q'TO QUIT,'P'TO BACKUP";C$ 
5610 IF C$="A" OR C$="Q" OR C$="P" THEN 5700 ELSE 5600 
5700 RETURN 
6000 I 

6001 'FIRE DIRECTION 
6010 CLS:PRINT:PRINT"CH DF="CD,"CH RG="RG,"SI="SI$' 
6015 PRINT 
6020 PRINT:PRINT" ***** YOUR FIRE DIRECTION *****" 
6030 PRINT:PRINT:INPUT"ENTER CHARGE";CH 
6040 PRINT:PRINT:INPUT"ENTER DEFLECTION";DF 
6050 PRINT:PRINT:INPUT"ENTER QUADRANT";QD 
6060 PRINT 
6100 INPUT'" A'= CONTINUE,'Q'= QUIT,'Z'= REDO,'P'= BACKUP";C$ 
6200 IF C$="Z" THEN 6000 
6210 IF C$="A" OR C$="Q" OR C$="P" THEN 6300 ELSE 6100 
6300 RETURN 
7000 I 

7001 'EVALUATION 
7010 EV$="EVALUATE"""&ET MODIFICATION MODE IN SUBROUTINE 5000 
7020 HX$="" 'RESET 'ANQTHER SHOT' SWITCH 
7100 'CHARGE 
7110 IF CH<>CG THEN EF$="WRONG CHARGE-USE CHARGE 3":GOTO 7700 
7115 'LINE 7700 IS MISS COUNTER 
7200 'DEFLECTION 
7210 S=(5500...:RG)/250 
7220 DR=55+S*6+(S*(S-l))/2+(S*(S-l)*(S-2)*(S-3)*. 7)/24 
7230 D=CD+DR 
7240 IF DF=D THEN 7300 
7250 IF DF-l>D THEN EF$="LEFT":GOTO 7700 
7260 IF DF+l<D THEN EF$="RIGHT":GOTO 7700 
7300 'QUADRANT 
7305 IF RG>5220 THEN 7315 ELSE 7310 
7310 EL=lll7+.126*RG-.000024*RG*RG:GOTO 7320 
7315 EL=l085+S*33+S*(S-l)* 4/2+S*(S-l)*(S-2)/6 
7317 EL=EL+S*(S-l)*(S-2)*(8-3)/24 
7320 IF QD=EL THEN 7400 
7330 IF QD-l>EL THEN EF$="SHORT ROUND":GOTO 7700 
7340 IF QD+l<EL THEN EF$="LONG ROUND":GOTO 7700 
7400 'SITE---RESERVED FOR EXPANSION OF GAME 
7500 'SCORE A HIT 
7510 EF$="STEEL ON TARGET!" 
7520 H=H+l , 
7530 GOTO 7900 
7700 'SCORE A MISS 
7710 E=E+l 
7900 RETURN 
8000 I 

8001 'EFFECT OF FIRE 
8005 IF HX$="BACKUP" THEN 8905:0MIT TRAJECTORY DRAWINC 
8100 'DRAW PROJECTLE TRAJECTORY 
8110 FOR Y=41 TO 7 STEP -1 
8120 X=64.8389-.859335*Y +.0204604*Y*Y 
8130 SET(X,Y) 

FIGURE 10-4 (continued) 



8140 NEXT Y 
8150 HX$="" 
8200 'WRONG CHARGE 
8210 IF EF$="WRONG CHARGE-USE CHARGE 3" THEN 8900 
8300 'LEFT 
8310 IF EF$<>"LEFT" THEN 8400 
8320 'DRAW LEFT IMPACT 
8330 SET(48,3):GOTO 8900 
8400 'RIGHT 
8410' IF EF$<>"RIGHT" THEN 8500 
8420 'DRAW RIGHT IMPACT 
8430 SET(80,3):GOTO 8900 
8500 'LONG ROUND 
8510 IF EF$<>"LONG ROUND" THEN 8600 
8520 'DRAW LONG ROUND IMPACT 
8530 SET(65,0):GOTO 8900 
8600 'SHORT ROUND 
8610 IF EF$<>"SHORT ROUND" THEN 8700 
8620 'DRAW SHORT ROUND 
8630 SET(65,8):GOTO 8900 
8700 'ON TARGET 
8710 'DRAW ON TARGET IMPACT 
8720 N=56:M=70 
8730 FOR Y=l TO 3 
8740 N=N-2:M=M+2 
8750 FOR X=N TO M 
8760 SET(X,Y):NEXT X,Y 
8770 FOR Y=4 TO 6 
8780 N=N+2:M=M-2 
8790 FOR X=N TO M 
8800 SET(X,Y):NEXT X,Y 
8900 FOR I=l TO 500:NEXT I 
8905 HX$="" 
8910 'EFFECT OF FIRE PANEL 
8915 C LS:P RINT:P RINT:P RINT:P RINT 
8920 PRINT" EFFECT OF FIRE" 
8925 PRINT:PRINT 
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8930 PRINT" "R$", THE EFFECT OF YOUR SHOT WAS" 
8935 PRINT:PRINT" "EF$ 
8940 PRINT:PRINT:PRINT 
8945 INPUT"TYPE'A'TO CONTINUE,'Q'TO QUIT,'P'TO BACKUP":C$ 
8950 IF C$;="A" OR C$="Q" OR C$="P" THEN 8970 ELSE 8945 
8970 RETURN 
9000 I 

9001 'SCORE ON EXERCISE 
9010 PRINT:PRINT:PRINT:PRINT 
9020 PRINT"· SCORE ON EXERCISE" 
9025 PRINT 
9030 PRINT" "R$" "I$" "N$", "B$": YOUR SCORE IS" 
9040 PRINT:PRINT" "H" HITS" 
9045 PRINT" "E" MISSES" 
9050 PRINT" "H+E" ROUNDS FIRED" 
9060 P RINT:P RINT:P RINT:P RINT 
9070 INPUT11 'A'=NEW TARGET,'Z'=TRY AGAIN,'O'=QUIT,'P'=BACKUP":CS 
9080 IF C$=;:"A" OR C$=;:"0" OR C$="Z" OR C$="P" THEN 9090 ELSE 9070 
9090 RETURN . 
9500 I 

9501 'TERMWATION 
9510 PRINT!PRINT:PRINT:PRINT 
9520 PRINT" gOOD-BYE "R$" "N$ 
9525 PRINT" · WE HOPE YOU ENJOYED PLAYING 'HIGH ANGLE'" 
9527 PRINT 
9530 PRINT" IF YOU DID, PLEASE TELL YOUR FRIENDS ABOUT IT" 
9540 PRINT:PRINT:PRINT"IF YOU WANT TO PLAY ANOTHER ROUND," 
9550 PRINT"TYPE 'RUN' AFTER THE WORD 'READY' ,1\PPEARS." 
9560 PRINT:PRINT 
9600 END . . 

FIGURE 10-4 (continued) 
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10000 I 

10001 'CHART DATA 
10100 'CHARGE 
10110 CG=3 
10200 'CHART DEFLECTION 
10210 CD=2400+RND(l600) 
10300 'RANGE 
10310 RG=4500+RND(l000) 
10400 'SITE 
10410 SI$::::"D/N INC SI" 
10500 RETURN 

FIGURE 10-4 (continued) 

Psychological Testing [9] and Risk Analysis [10) 

Simulation can be used in psychological investigation. One example of 
its use is trying to evaluate various strategies for coaching witnesses to make 
better quantitative estimations. The ability of knowledgeable informants to make 
acccurate estimates is especially important in risk analysis. [10] 

The plan was to set a task for the subjects, use different coaching strat
egies, and then see what difference, if any, the various kinds of coaching made 
in their performances. 

The task we set was to estimate the number of white squares displayed 
in a random pattern against a blue background. The display persisted for one 
second. Each subject got to see 12 different low-density screens (14 to 83 squares) 
and 12 high-density screens (107 to 879 squares). These are displayed in figures 
10-5 and 10-6. 

FIGURE 10-5 Low-density screen for the risk-estimation simulator. 
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FIGURE 10-6 High-density screen for the risk-estimation simul;:itor. 

The patterns were generated with random numbers of squares by a 
program running on an IBM Personal Computer. The program also gave in
structions to the subjects, accepted their ~stimates of the number of squares, 
calculated the difference between the subjects' estimates and the number of 
squares displayed, and formatted the data for transmission to a mainframe 
computer, where they were processed by conventional statistical packages. 

We made four runs, The first was a control run; the subjects were given 
no help estimating 24 low-density screens and 24 high-density screens except to 
tell them that the maximum number of squares would be less than 900. In the 
other runs, the subjects performed half the tests on their own and were coached 
for the second half. 

The first coaching strategy was to ask the subject to estimate the number 
of squares in one quadrant of the pattern, after which the program multiplied 
this answer by four. This strategy was called disaggregation. 

The second strategy asked the subject to estimate the largest and smallest 
number of squares that could be in the pattern currently being displayed. The 
program added these estimates and divided by two. This strategy was called 
range estimation. 

The third· strategy was like the second except that the subject was also 
asked to give the best estimate of the number of squares. The program combined 
these three estimates as follows: 

Final-estimate (High-:estimate + 4 * Best-estimate + Low-estimate)/6 
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You may recognize this technique. It is used in the planning of projects 
and is called the Project Evaluation and Review Technique, or PERT for short. 

Our results were interesting, to say the least. The control runs showed 
no improvement with practice. Disaggregation results were the same as the 
control runs. This could mean either that disaggregation doesn't work or that 
subjects mentally disaggregete whether asked to do so or not. 

Range and PERT both made performance worse on low-density screens. 
We rationalized that the subjects who made accurate estimates of the number 
of squares on low-density screens did so by counting them rapidly and that 
coachinginterfered with their natµral strategy while contributing no improve
ment. 

On high-density screens, the range strategy made the subject's perform
ance worse, while the PERT strategy made it significantly better. The psychol
ogist I worked with hasn't as yet developed a theory to explain these results. 
Pragmatically, however, we know that PERT has a good track record for helping 
people come up with accurate estimates of various things (but usually of time 
needed to complete a job). We wond~red why range was so bad; what successful 
strategy was it displacing? We questioned some of the subjects, and they told us 
that although they couldn't count the squares on high-density squares, they could 
count the places where squares should have been but weren't-if the screen was 
sufficiently dense. 

Manufacturing Synthetic Text [11] 
and Classified Files [12] 

Many times you need a body of text (corpus) having certain character
istics with respect to content or format. It may be inconvenient or expensive to 
put the desired corpus into machine-readable form and a suitable corpus may 
not be readily available as a by-product of other operations such as word pro
cessing. One answer is to create synthetic text by simulation. 

I developed this system when a very snarky lady at the National Science 
Foundation said they were not going to spend any money keypunching text for 
somebody like me. I have used it in two projects. The first was to select the best 
mathematical criterion for identifying key words for the automatic indexing of 
documents. The second was to evaluate the consequences of using cryptography 
to enforce a multi-level security regime on a relational data base. Multi-level 
secure systems rely on the hardware and/or software of a trusted computing 
base to handle information having two or more levels of classification [ 12]. 

In the key-word selection study, we faced the problem that when one 
uses real text, reviewers tend to question the judgmental decisions as to what 
are key words. Using totally synthetic text circumvents some of these arguments. 

We posited that documents are made up of three kinds of words: (a) 
common words, (b) uncommon words, and (c) key words. Moreover, there are 
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three kinds of key words: high-frequency, medium-frequency, and low-fre
quency. 

We created several hundred documents, each having about 1, 100 words. 
Common words make up roughly 80 percent of a document. To choose 

them we listed the 200 most common words in order of their normalized-oc
currence frequencies and made a cumulative. frequency distribution of those 
frequencies. All we then had to do was to make 800 random draws from the 
distribution and add the common words thus selected to our synthetic document. 

Uncommon words make up about 20 percent of a document. Here we 
created synthetic words. We used the cumulative-occurrence frequency ofletters 
of the alphabet as initial characters of words to choose the initial letters of our 
200 uncommon words. Then we used a table of cumulative digraphic-occurrence 
frequencies to choose the remaining letters. This can be regarded as a Markov 
process. Once you choose the initial character, you make a random draw, enter 
the digraph table in the column corresponding to the initial letter, and find out 
which letter (or space) follows it. Of course, the resulting product is gibberish, 
but it looks a lot like English, and the words most assuredly are very uncommon. 

Key words were chosen by a double Poisson process. We made random 
draws from a list of 500 key words appropriate to the desired subject matter 
(say, descriptors chosen by the Association for Computing Machinery). To find 
out how many key words to select in each subclass, we made random draws from 
each of three Poisson distributions having different means (high-frequency 
mean= 16; medium-frequency mean 8; low-frequency mean=4). Note that the 
Poisson means are geometrically distributed. We determined how many times 
each of these key words should occur by sampling from one of three Poisson 
distributions (high-frequency mean= 8; medium-frequency mean= 4; low-fre
quency means= 2). On average, our synthetic documents contained 1,131 words. 

We selected the top N words recalled by our mathematical selection 
criterion and called them key words. We picked out the K actual key words on 
this list and computed the recall/precision ratio: KIN. The effectiveness of the 
selection criteria tested ranged from .23 to .72. 

CONCLUSIONS 

The foregoing examples are representative of applications of simulation that I 
have published during more than 20 years of practice. Unpublished work in
cluded designing a quality-control (QC) system for a new TV factory in Ten
nessee (the QC system worked very well, but the plant closed after two years 
because wage costs couldn't match those in East Asia): simulating 400 years of 
propagation of plant species on the shoreline of Lake Huron; simulation of 
various tank attacks over a particular piece of terrain, given several different 
defense strategies; simulation of target detection by hunter-killer submarines, 
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given several different distributions of hydrophones on and around the hull; 
bottling of beer; inventory of a hardware distributor; an epidemic model de
picting the spread of a venereal disease; and a competitive-species model showing 
the results of coexisting trout and whitefish populations in a Manitoba lake; and 
111any more. 

My conclusion is simply that simulation works: It is often the quickest 
way to converge on a solution that will save your client money. Furthermore, 
most simulations can be skeletonized so that they easily run on a personal com
pllte,r. My early work was done on a mainframe computer with 8,000 words of 
memory and four tape handlers. I'm writing this on a micro with 256,000 words 
of memory and 5,360,000 words of disk storage; and I have a machine in the 
office with twice the main memory, more than four times the disk space, and 
graphical capabilities I never dreamed of twenty years ago. 
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A 

Annual Loss Expectancy (ALE), 153 
Applications of simulation, 199-236 

emergency planning, 204-16 
industrial, 200-204 
manufacturing synthetic text and classified files, 

234-35 
psychological testing and risk analysis, 232-34 
sociological, prediction of household size, 216-

18 
training, 219-32 

Arithmetic congruential generator, 62 
Arithmetic drill and practice program, 4-17 

implementation of, 11-17 
meaning of variables in, 9-11 
operation of, 4-7 
structure of, 7-9 

Artillery gunners, training simulations for, 220-
32 

Assembly set statement in GPSS for personal 
computers, 197 

B 

Balking behavior, 14 7 
BASIC programming language, 3-4 

Behavior, waiting-line, 147, 148 
Bell curve. See Normal distribution 
Bernoulli probability, 108 
Beta distribution, 125, 127-30, 131 
Binomial distribution, 138-40, 142 

negative, 136-38 
Bit-wise testing, 73-74 
Buffer in queue system, 145 
Buzz-word generator, 25-27 

c 
Car wash simulation, 180-95 
Central limit theorem, 115, 116 
Chi-square, test evaluation by, 64-65, 66 
Chi-squared distribution, 125....:.27, 128 
Classified files, manufacturing, 234-35 
Climb the Ladder game, 22-25 
Computer-Aided Learning (CAL), 4 
Computer-Assisted Instruction (CAI), 4 
Computer Clue (game), 35-43 
Computer simulation, 3-4 
Concurrency, concept of, 179 
Control, flow of, 179 
Convolution, 112 
Crime occurrence simulation, 156-62 

239 



240 INDEX 

D 

Debugging GPSS model, 198 
Defects in printed wiring boards, simulation to 

find, 200-202 
Discipline, queue, 146 
Distribution functions, 107 -42 

Bernoulli probability, 108 
beta, 125, 127-30, 131 
binomial, 138-40, 142 
elementary Queuing Theory and, 123-24 
empirical, 109-10 
Erlang, 125, 126 
exponential, 118-23, 125, 190, 191 
gamma (chi-square), 125-27,, 128 
geometric, 136 
hyperexponential, 125 
hypergeometric, 140-41 
Kolmogorov-Smirnoff equation, 124-25 
lognormal, 118, 119 
negative binomial, 136-38 
normal, 110-18 
Pascal, 136 
Poisson, 130-36, 190, 191, 205, 207, 235 
uniform, 112, 113, 114 
uniform probability, 108-9 
Weibul, 125 

E 

,Emergency planning, simulation in, 204-16 
Empirical distribution, 109-10 
Engagement in submarine pursuit simulation, 

169-71 
Erlang distribution, 125, 126 
Event-oriented simulation, 77, 91-105, 124 

comparison of results to time-oriented simu-
lation, 101-3 

examples of, 92 
logic of, 93-96 
path displays in, 96-101 

Examples, simulation, 155-76 
event-oriented, 102-5 
making mountain terrain, 171-76 
police, 156-62, 204-8 
of submarine pursuit, 162-71 
time-oriented, 87-89 

Exponential distribution, 118-23, 125, 190, 191 
Exponential notation, 11-12 

F 

FIFO (first in, first out), 146, 197 
Files, manufacturing classified, 234-35 
Finite queues, 145 
Fire dispatchers, training simulation for, 219-26 
Fire station, deciding where to put, 208-13 
Flow of control in GPSS, 179 
Fourier synthesis, 172, 206 
Fractiles, 172, 173-76 
Frequency table, 185 
Full-period MC generators, 60-61 

G 

Carnes, 22-4 7 
buzz-word generator (U-2-A.,GURU), 25-27 
Climb the Ladder, 22-25 
Computer Clue, 35-43 
Spy-catcher, 43-47 
wheel, 28-35 

roulette, 28-33 
wheel-of-fortune, 33-35 

Gamma distribution, 125-27, 128 
Gap test, 72 
Gaussian distribution. See Normal distribution 
Generators, random number. See Random num-

bers 
Geometric distribution, ~ 36 
GPSS model of hospital emergency department, 

215 
GPSS (General Purpose Systems Simulator) for 

personal computers, 177-98 
case studies of car wash, 180-95 
introduction to, 1 79 
statements divided by function for, 196-98 
verification and validation of programs, 182-

84, 189, 194-95 
Graphical firing tables (GFT), 220-27 

H 

Hawthorne effect, 3 
Heisenberg, Werner, 3 
Hospital emergency department, modeling, 213-

16 
Household size, sociological simulation predict

ing, 216-18 
Hyperexponential distribution, 125 
Hypergeometric distribution, 140....:41 



Iconic simulation, 201 
Industrial application, 200-204 
Integral inverse, 109-10 
Integrals, evaluating, 17 -19 
INT function, 13 
Investment, return on, 153 

J 

Jockeying behavior, 148 

K 

Kolmogorov-Smirnoff equation, 124-25 

L 

LANTICTY (game), 28-35 
LIFO (last in, first out), 146, 197 
Logic flow chart 

of event-oriented simulation, 93-96 
of naval anti-submarine warfare simulation, 163 
of roulette game, 31 
of time-oriented simulation, 78-84 
of waiting-line system with multiple service fa

cilities, 148 
Lognormal distribution, 118, 119 

M 

Martin, David, 178 
Maximum test of randomness, 65 
Menu, 5 
Mid-square random-number generator, 58-59 
Mixed multiplicative· congruential (MMC) gen-

erators, 61-62 
Mountain terrain in simulation, 171....., 76 
Multiplicative congruential (MC) generators, 59-

63, 64 
full-period, 60-61 
mixed, 61-62 
partial-period, 61 

N 

Negative binomial distribution, 136-38 
Negative exponential distribution, 120, 121-23 
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Normal distribution, 110-18 
direct method of generating, 115, 116-17 
Teichroew's approximation to, 115, 117:....18 

0 

Ocean Surveillance. Information System (OSIS) 
of U.S. Navy, 162 

One Million Random Numbers and 100,000 Normal 
Deviates (RAND Corp.), 15 

p 

Partial-period MC generators, 61 
Pascal distriouiion, 136 
Path displays in event-oriented simulation, 96-

101 
Personal computers, simulatfon with, 3-4. See also 

GPSS (General Purpose Systems Simula
tor) for personal computers 

PERT, 234 
PNG, 58-63, 64 
Poisson distributiori; 130-36, 190, 191, 205, 207, 

235 
Poker test, 71-72 
Police simulations, 156....:.62 

for restructuring patrol zones, 204-8 
Populations assumed in waiting-line queues, 144-

47 
Power residues, method of. See Multiplicative 

congruential (MC)· generators 
Printed wiring boards, simulatioh to find defects 

in, 200-:202 
Priority queues, 146, 197 
Probability 

Bernoulli, I 08 
beta distribution, 127-30 
binomial distribution, 139 
empirical distribution, 109-10 
exponential distribution, 118-23 
hypergeometric distribution, 140-41 
negative binomial distribution, 136-38 
normal distribution, 110.,...18 
Poisson distribution, 130-36 
uniform, 108-9 

Project Evaluation and Review Technique (PERT), 
234 
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Pseudorandom-number generators (PNG), 11-
16, 58-63, 64 

Psychological testing, simulation for, 232-34 

Q 

Queues. See Waiting-line queues 
Queue statement in· GPSS for ,personal com

puters, 196 
Queuing Theory, elementary, 123-24 

R 

RANDOMIZE function, 15 
RANDOMIZE TIME, 16 
Random numbers, 49-7 4 

attributes of, 11 
to generate terrain displays, 171-76 
pseudorandom numbers, generation of, i 1-

16, 58-63, 64 
testing generator for autocorrelation, 63, 67 _,_ 

70 
testing generators for randomness, 63-7 4 

bit-wise testing, 73-74 
gap test, 72 
poker test, 71-72 
runs testing, 70-71 
Yule test, 72-73 

true, 50-57 
Return on investment, 153 
Richards, C .. Bruce, 178 
Risk analysis, 153, 232-34 
RND function, 11 
Roulette game, 28-33 
Runs testing, 70-71 

s 
"Scientific" notation, 11-12 
Serial autocorrelation test, 63, 67-70 
Service facilities in waiting-line systems, multinle, 

147-53 
Service in queuing theory, state determined; 14 7 
Shift register generators, 62 
Simulation 

computer, 3-4 
defined,2 
See also specific simulations 

Sociological simulation predicting household size, 
216-18 

Spy-catcher (game), 43-4 7 
Standard deviation, defined, 114 
State determined service in queuing theory, 14 7 
Stochastic determination, I 08 
Submarine pursuit simulation, 162-69 
Synthetic text, manufacturing, 234-35 

T 

Table statement in GPSS for personal computers, 
196 

Teichroew's approximation to normal distribu· 
tion, 115, 117-18 

Terrain display in simulation, 171-76 
Tests and testing 

bit-wise, 73-74 
gap, 72 
of generators for autocorrelation, 67-70 
of generators for randomness, 63-74 
poker, 71-72 
psychological, simulation for, 232-34 
runs, 70-71 
Yule, 72-73 

Text, manufacturing synthetic, 234-35 
Time delay statement in GPSS for personal com

puters, 197 
Time-oriented simulation, 75-89, 130, 149, 217-

18 
comparison of event-oriented simulation re-

sults to, 101-3 
example of, 87 -89 
logic flow chart of, 78-84 
results of, 84-87 

Training simulations 
for artillery gunners, 220-32 
for fire dispatchers, 219-26 

Transactions in GPSS, 179, 196-97 
True random numbers, 50-57 

program to generate, 51-57 
TV sets, simulation of production of defective, 

203-4 
Type-declaration symbol, 5 

u 
U-2-A-GURU (game), 25-27 
"Uncertainty Principle", 3 



Uniform distribution, 112, 113, 114 
Uniformity test, 64-67 
Uniform probability, 108-9 
User-chain transactions statement in GPSS for 

personal computers, 198 

v 
Value statement in GPSS for personal computers, 

197 
Verification and validation of GPSS program, 182-

84, 189, 194-95 

w 
Waiting-line queues, 76-105 

attributes determining the properties of, 76 
car wash simulation, 180-95 
complex, 143:..._54 

finite populations of, 144-45 

INDEX 243 

finite queues, 145 
multiple populations, 146-4 7 
multiple service facilities, 14 7 -53 
queue discipline, 146 
state determined services, 14 7 
waiting-line behavior and, 147, 148 

components of, 76 
event-oriented simulation of, 77, 91-105, 124 
modeling hospital emergency department, 213-

16 
reasons to study, 77 
time-oriented simulation of, 75-89, 130, 149 

Weibul distribution, 125 
Wheel games, 28-35 

roulette, 28-33 
wheel-of-fortune, 33-35 

y 

Yule test, 72-73 
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JOHN M. CARROLL 

If you want to have "fun" with your computer, while you're learning the 
principles of simulation, t~is book offers both a solid foundation in 
instruction and puts the enjoyment back into programming. 

The author shares many of the successful simulation projects-with a wide 
variety of applications-that have been designed using the methods 
contained herein: 

• A program simulating one terminal of the U.S. Ocean Surveillance 
Information System 

• A household simulator using census data to predict the size and 
composition of households years into the future 

• A training simulator for police dispatchers and commanders 

• A simulator that tests evacuation paths in a day-care center 

Sit down at your computer with Simulation Using Personal Computers at 
your side, and you'll see how fast you can learn to program creatively. With 
the help of step-by-step explanations, you'll learn to successfully write and 
debug 200 or more programs-more than enough practice toward your 
goal! 
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Englewood Cliffs, N.J. 07632 


