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Preface

I have always considered computers to be fun, computer programming to be
more fun, and computer simulation to be the most fun of all. 1 built my first
‘computer hardware, a cascaded decade counter, in 1945.

' I wrote my first program, machine language, of course, in 1953; and
took my first programmmg course in 1959 (written in SOAP II). In 1964 I quit
- my job as managing editor of Electronics magazine to teach scientific program-
ming (Lewiz) and data processing (Gecom) to industrial engineering students,
“ata 50% pay cut. In 1968, I joined the then new department of computer science -
at the Umversxty of Western Ontarto where 1 taught computer ﬂmulatlon as
well.

I never experienced the real Joy of programmmg untll 1978 when 1
acquired a TRS-80 model I personal computer and no longer had to run hat
in hand to ensconced computer-center bureaucrats to get computmg time or
disk space.

I am impatient with computer scxence teachers who take the fun out of
computing with abstract and arcane mathematical incantations, burdensome
loads of make-work, and highly opinionated but never validated notions about
- programming style—no more GOTOs, lots of comments, albeit meaningless
ones, and indentation to the nth power. I am also impatient with bright, upwardly
mobile kids who see a degree in computer science as a passport to a lifestyle of
cross-country skung, cheese fondues, and BMWs; and live for the day whe.‘n‘ they
collect their sheepskins and no longer have any damned programs to write.

. I am saddened each year as we turf out one or two of the keenest and

most innovative programmers because their programming style didn’t please
* some politically well positioned instructor, or because they fatled a math course
that has little or no relevance to their work.
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PREFACE

This book is intended to put some of the fun back into programming.
If you work through it while sitting at your personal computer, you'll learn the
essentials of computer simulation. Every principle is introduced by a program
whose results are reported as graphically as I was able to make them. You can
copy my programs or write your own. There may be bugs in my programs; if
not now, they’ll be there when the typesetters get through with them. Anyway,
it's all part of the learning experience; and consider how much satisfaction you'll
have when you prove you're a better programmer than I am.

You don’t have to put off using this book until you take a third, fourth,
or fifth year course in simulation. This book would go well with a first year
computer course. Everything you need to know is explained as you go along
and the exercises are a lot more fun than the dust-dry assignments you find so
boring. Working through this book will put you well on your way to successfully
writing and debugging the 200 odd programs you will have to write before
computer programming really becomes second nature to you and your first
inclination when you have a problem to solve, or nothing better to do, is to sit
down at the keyboard, fire up your PC, and do some creative programming.

The first eight chapters deal pretty much with waiting lines or queues
and you might get the idea that all simulation was good for was predicting how
long the line outside a theatre or sporting event is likely to be. Well, the simulation
of waiting lines is an important part of this art. They are truly pervasive in our
society where contention for ever diminishing stores of resources becomes keener
every year on all levels from interpersonal relationships to superpower feuds.
And waiting lines often exist within systems where their presence is not im-
mediately evident.

In Chapter Ten I try to put the uses of simulation into perspective by
discussing some of the simulation projects I have managed in the past twenty
years (Chapter Nine was written by a former student of mine. It describes a
simulation language he wrote—GPSS for microcomputers).

'T'd like to tell you what my graduate students did last year to show the
breadth of this subject:

Bill wrote a program simulating one termlnal of the US Ocean Surveil-
lance Information System, which was a main-frame (i.e., a “big” computer) sim-

‘ulation. A microcomputer version of it is described in Chapter Eight.

Ashok wrote the household simulator described in Chapter Ten. It used
census data to predlct the size and compos1tlon of households years into the
future.

Milan rewrote the police patrol simulator described in Chapter Ten (a

‘main-frame simulation) to make a training simulator for police dispatchers and

commanders. It now runs on an IBM/AT personal computer.

Laurie simulated an Ethernet local area network in the physiology re-
search laboratory. Among other things it tells how many word-processing users
can be allowed to work at any given time without causing undesired loss of
information from data-collection stations to which living subjects are connected.
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Nelson carried out an investigation of the US Data Encryption Standard
to see whether statistical tests could detect any suspicious patterns in the com-
position of the Substitution Boxes that might suggest that the National Security
Agency had inserted “trap doors” that would make the DES easy to break. He
didn’t find any. Formally, he found that at the 95% level of confidence he could
not reject the hypothesis that the S-boxes were randomly chosen permutations.

Kathy designed a simulator to test evacuation paths in a day-care center.
This simulation runs on a microcomputer. It does incorporate waiting lines:
when children line up at the exits. The user can type in the description of any
day-care center and the simulator will show how a given set of evacuation rules
would work. It will even show how to modify the rules in case the fire cuts off
one or more escape routes.
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Getting Started
~in Simulation
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GETTING STARTED IN SIMULATION

A s1mulauon isa procedure in which one system is substituted for another system
that it resembles in certain important aspects. As an example, consider a model
airplane suspended in a wind tunnel where it is used to simulate a full-sized
plane moving through the atmosphere so engineers can study its aerodynamic
characteristics. As is the case with most simulations, this one enables the persons
conducting the simulation to learn about the real system. They can do this
without having to build and fly a full-sized plane. This saves time and money
and avoids the risk of flying an unproven aircraft.

There are many other reasons for using simulated systems to study real
ones. The real ones may not exist; the airplane represented by the model in the
wind tunnel may only be in the first stages of design. ‘

It may be too expensive to work with the real system; perhaps the ex-
periments we are contemplating would damage it. In the real system, the changes
we want to study may take place too slowly or too fast to be observed conveniently.
When simulating the propagation of plant species on the shoreline of Lake
Huron, we study events occurring over a period of 400 years. When simulating
nuclear reactions, we study events taking place in millionths of a second.

There are some algorithms (that is, specific problem-solving methodol-
ogies) that require random choices to be made. A random-selection routine may
be included in packages for Factor Analysis, Linear Programming, or the Project
Evaluation and Review Technique.

Most important of all, the very act of studying a real system may change
it and render our observations about it invalid. Half a century ago at the Haw-
thorne Works of the Western Electric Company near Chicago, engineers wanted
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to find out whether changing working conditions would increase worker pro-
ductivity. In one experiment, they increased workplace illumination in stages
and observed that productivity went up. Then, just to make sure that there was
a genuine cause-and-effect relationship, they reduced the illumination in stages.
Surprisingly, productivity continued to increase. This situation has become known
as the “Hawthorne Effect.” As near as anyone can make out, productivity in-
creased mainly because the workers were so pleased that somebody was taking
an interest in them that they worked their hearts out. But, as far as the engineers
were concerned, the process of observation had contaminated the results.

In 1924, German physicist Werner Heisenberg expressed somewhat the
same idea when he formulated his “Uncertainty Principle.” Among other things,
it asserted that one cannot observe the location of a subatomic particle without
changing its momentum, nor can one observe its momentum without altering
its position. '

COMPUTER SIMULATION

The cheapest, most versatile, and convenient kind of simulation is one that is
carried out within a computer. We are talking specifically about “discrete, sto-
chastic, digital” simulation. It is discrete because it proceeds in steps; stochastic
because the element of chance is introduced by use of pseudorandom number
generators, and digital because the computers used are digital. (Nearly all com-
puters are digital today, but years ago most computers were analog in nature;
and they were widely used in certain kinds of simulation—but that is another
story.)

SIMULATION WITH PERSONAL COMPUTERS

The advent of the personal computer has dispelled one of the principal draw-
backs of computer simulation; that is, that the programs can sometimes take a
long time to develop significant results. This can be a problem when you have
to share a computer with other people; or, even worse, if you have to pay for
computer time by the minute. However, with a personal computer, you can start
the program before you go to bed; the results will be there in the morning.
Nobody will be upset with you, and it won’t cost a cent.

This book will introduce you to simulation on personal computers by
giving a step-by-step description of programs that illustrate important concepts
in simulation. Most of the programs were written on a Texas Instruments Profes-
sional computer running under the Microsoft Disk Operating System (MS/DOS).
They are written in Microsoft’s version of the BASIC programming language
(MS/BASIC). BASIC stands for Beginners’ All-purpose Symbolic Instruction
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Code; it was invented at Dartmouth College in the early 1960s. BASIC is today
the most widely used programming language, especially in the personal com-
“puting field. The programs that do not use bit-level graphics will run on any
-personal computer that is compatible with the IBM-PC. This includes the TI,
the Zenith/Heath personal computers, and many more. I shall assume that you
have already done some programming in BASIC. '
In this chapter, I want to accompllsh these goals:

"Show how to use random numbers to simulate a process.
- Review BASIC programniing.
Show how to interact with a user by menus.

Introduce two concepts of structured proqrammmg typing of variables, and
modular design.

5. Tell how to generate pseudorandom numbers.

Ll

I shall do this by belaboring a very simple program used for teaching
on the grade-school level. Even if you’re not a grade-school teacher or the parent
of a grade-school child, it may hold some interest for you. Gomputers are be-
coming better regarded as teaching tools, especially to give rapid tuition in the
use 'of complex programs such as Datababe Management Systems.

ARITHMETIC DRILL AND PRACTICE

The first program we shall examine is one I wrote to help my granddaughters
with their elementary arithmetic. I regard this program as a simulation in which
the computer takes the part of the teacher, who assigns problems, corrects the
students’ work, and encourages them in their efforts. Some people might call
this kind of program Computer-Aided Learning (CAL) or Computer-Assisted
Instruction (CAI); I wouldn’t argue. It just goes to emphasize the extensive scope
of simulation as a technique. It takes in CAL/CAI, some numerlcal computation
methods, some video games, and much more.,

Operation of the Program

Here’s how the program operates. It introduces itself and asks the stu-
dent to type his or her first name. Then the program addresses the student by
name and announces that it has some math questions for the student to work
out. The student is instructed to enter answers and afterward press either the
<ENTER> or the <RETURN> key. The student is then told to press either
<ENTER> or <RETURN> to advance the program.

; The program asks whether the student wishes to add, subtract, multiply,
or divide; and the student is told to type 1 for “add,” 2 for “subtract,” 3 for
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HELLO THERE
1M YOUR T1 PROFESSIONAL COMPUTER
PLEASE TYPE YOUR FIRST NAME 7 JACK

*% JACK *%
HERE ARE SOME MATH QUESTIONS FOR YOU TO WORK OUT.
- ENTER YOUR ANSWERS THEN PRESS (ENTER> OR <{RETURN3

WHEN YOU ARE READY, PRESS (ENTER> OR <RETURN} TO CONTINUE?

DO YOU WANT TO: ADD, SUBTRACT, MULTIPLY OR DIVIDE?
TO ADD, TYPE 1; SUBTRACT, 2; MULTIPLY, 3; DIVIDE, 47 1}

FIGURE 1-1 Introduction, instructions, and menu fqr arithmetic qri!l‘and_-prgctice program.

“multiply,” and 4 for “divide.” If the student types any character except 1, 2, 3,
or 4, the program will refuse it dnd abk the student to enter a correct number
(1, 2, 3, or 4). This way of presentmg alternative choices is called a “menu.’
Figure 1- 1 shows the introduction, instruction, and menu.

The operation of addition" entails addmg a varlable quantity called
TERM1%, an integer {(whole number) in the range 1 to 100; to TERM?%, an
‘integer in the range from 1 to 1,000. Variable TERM2% is selected so that it is
- always greater than TERM 1%, The character “%" is a type-declaration symbol
It signifies that the character type of these two varlables is “integer.” Figure
1-2 shows a correct and an incorrect addmon

Subtraction entails subtracting TERM1% from TERM?% .
Multiplication entails multiplying TERMI% by TERM2%.

Division entails dividing TERM2% by TERM1%. Here is where the
reqmremem that TERM 1% always exceed 1 pays off, since d1v1s1on by zero is a
big “no-no” in computing (the pmduct of 1/0 and any number is undefined i in
_mathematics).

~ The student is told to round off the quotient of TILR‘VI?% divided by

. TERM1% to two decimal places That s, if the third decimal place of the quotient

_is five or more, the student is suppqged to increase the value in the second
decimal place by one.
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*% ADDITION #*%

& 4+ &0 =7
? b8
RIGHT ittt
WANT MORE? TYPE (YESAY> OR <NO/NX? Y

DO YOU WANT TO: ADD, SUBTRACT, MULTIPLY OR DIVIDE?
TO ADD, TYPE 1; SUBTRACT, 2; MULTIPLY, 3; DIVIDE, 47 i

*% ADDITION =%

55 0+ 238 =7
? 292
WRONG !
THE RIGHT ANSWER IS5 293

WANT MORE? TYPE <YES/Y> OR <NO/MN>? Y

DO YOU WANT TO: ADD, SUBTRACT, MULTIPLY OR DIVIDE?
TG ADD, TYPE 1; SUBTRACT, 2; MULTIPLY, 3; DIVIDE, 47 C

FIGURE 1-2 Correct and incorrect examples of addition.

The problems are presented in the following form (the type-declaration
symbols are not shown on the display):

TERM1 + TERM2
TERMZ — TERMI1
TERM1 X TERM2
TERM2 / TERM1 =

? or

If student types in the correct answer, the program displays: “RIGHT
proceeds to display the correct answer.

The student is now asked, “Want more?” and instructed to type <YES>
or <Y> to get another question; or to type <NO> or <N>> to finish the exercise.
If the student types anything else, the program will refuse it and prompt for a
correct answer.

At the end of the exercise, the program divides the number of correct
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answers by the total number of questions presented. The resulting decimal is
rounded up to two places and reported as an integer percentage (that is, mul-
tiplied by 100).

Structure of the Program

The program is divided into a Main Program and eight subroutines.
Figure 1-3 is a complete listing of all 86 statements in the program.

FIGURE 1-3 Complete listing of arithmetic drill-and-practice program.

LIST -200 :
10 °© THIS PROGRAM PROVIDES DRILL AND PRACTICE IN ELEMENTARY ARITHMETIC
20 7

30 CL&: LOCATE 10,34: PRINT “HELLO THERE"

40 PRINT * I“M YOUR TI PROFESSIONAL COMPUTER®
S0 INPUT PLEASE TYPE YOUR FIRST NAME "; FIRSTNAMES
é 0 <z

70 CLS: PRINT® #*% "FIRSTNAME®" xx"

80 PRINT:PRINT"HERE ARE SOME MATH QUESTIONS FOR YOU TO WORK OUT.™

?0 PRINT:PRINT"ENTER YOQUR ANSWERS THEN PRESS <ENTER?> OR <{RETURN>"

100 PRINT:PRINT"WHEN YOU ARE READY, PRESS (ENTERY OR <{RETURN> TO CONTINUE";
110 INPUT X

120 -

130 GOSUB 230 ° CALCULATE ALL THE RIGHT ANSWERS

140 PRINT:PRINT:PRINT "DQ YQU WANT TO: ADD, SUBTRACT, MULTIPLY OR DIVIDE?"
150 FLAG$="" 7 RESET COMMAND FLAG

140 INPUT "TO ADD, TYPE 1; SUBTRACT, 23 MULTIPLY, 3; DIVIDE, 4"; FLAGS

185 IF FLAG#="1" OR FLAGS="2" OR FLAGH="3" OR FLAGH="4" THEN 170 ELSE 150
170 CODEX=UAL(FLAG$) ~ CONVERT COMMAND FLAG TO A COMMAND CODE

180 ON CODEX GOSUB 3290,470,550,430 - SELECT STUDENT PROBLEM

190 ¢

200 FLAGH="" * RESET COMMAND FLAG

Qk

LIST 210-400

210 PRINT:INPUT “WANT MORE? TYPE {YES/Y> OR <NO/N>"; FLAGS

215 IF FLAGH="NO" OR FLAGH="N" OR FLAGH="YES" 0OR FLAGH="Y" THEN 220 ELSE 200
ZZ0 IF FLAGH="MO" OR FLAGH="N" THEN 820 ELSE 130

230 -

240 © RANDOMIZATION AND CALCULATION SUBROUTINE

250 RANDOMIZE TIME © SEED THE RANDOM NUMBER GENERATOR

240 ¢ FROM THE REAL TIME CLOCK

270 ¢ THIS ROUTINE CALCULATES THE RIGHT ANSWERS

280 NUMBERY=NUMBERX+1  THIS STEP COUNTS TOTAL TRIES

290 TERMIX=INT(RND*100>+1 - TERMI I8 A RANDOM INTEGER FROM 1 TO 100
300 TERM2V=INT{(RND*1000>+1 * TERMZ IS A RANDOM INTERGER FROM 1 TQ 1000
310 © TERM 1 MUST BE LESS THAN TERM2 .
320 IF TERMIY)=TERMZ2K OR TERMIN¥=0 THEN 290 ° GET ANCQTHER PAIR OF RANMDOM NUMBERS
330 ADDM=TERMIX+TERMZ2Y ~ ADDITION

340 SUBTY=TERMZX-TERMiX ° SUBTRACTION

350 MULTH=TERMI¥*TERM2X < MULTIPLICATION

240 DIVD!I=INT(CCTERM2X/TERMLM)+.0050%100)7100 © DIVISION

370 ¢ THE QUOTIENT IS ROUNDED UF TO TWO DECIMAL PLACES

B0 RETURM

3%0 7

400 7 STUDENT ADDITION SUBROUTINE

[al4

ok
LIST 410-~800
410 CORRECT=ADDY * SAVE THE RIGHT AMSWER
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420 CLS:PRINT:PRINT:PRINT"*% ADDITION =% .
420 PRINT:PRINT:FRINT" *TERMIA" + "TERMZZK* = 7 "
440 INPUT ANSK .

450 IF ANSY=ADDY THEN GOSUB 720 ELSE GOSUB 770
440 RETURN '

470 -

480 ¢ STUDENT SUBTRACTION SUBROUTINE

490 CORRECT=SUBTY ’ SAVE RIGHT ANSWER

S00 CLS:PRINT:FRINT:PRINT" %% SUBTRACTION #x"

510 PRINT:PRINT:PRINT" "TERM2X" - "TERMIX" = ? °©
S20 INPUT ANSX

530 IF ANSY=SUBTX THEM GOSUB 720 ELSE GOSUB 770
T40 RETURN ‘

S50 -

S&0 ¢ STUDENT MULTIPLICATION SUBROUTINE

570 CORRECT=MULT# ° SAVE THE RIGHT ANSWER

580 CLS:PRINT:PRINT:PRINT"*% MULTIPLICATION *#"
590 PRINT:PRINT:PRINT" "TERMIX® X "TERM2X* = 7 "
400 INPUT ANGH

Ok ’

0k

LIST 610~800

£10 IF ANS#=MULT# THEN GOSUB 720 ELSE GOSUB 770
420 RETURN

430 7

440 ‘ STUDENT DIVISION SUBROUTINE

650 CORRECT=DIVD! ¢ SAVE RIGHT ANSWER

840 CLS:PRINT :PRINT:PRINT" %% DIVISION *x*

&70 PRINT "<{<ROUND OFF YOUR ANSWERS TO 2 DECIMAL PLACES>>"
480 PRINT:PRINT:PRINT" *TERM2X" ~ "TERMIX® = 7 ©
690 INPUT ANS!

700 IF ANS!=DIVUD! THEN. GOSUB 720 ELSE GOSUB 770
710 RETURN

7z0 ¢ '

730 / CORRECT ANSWER SUBROUTINE

740 RIGHT#=RIGHTY+1 - INCREMENT COUNT OF RIGHT ANSWERS
750 PRINT "RIGHT titt: o

760 RETURN

770 ¢

780 ¢ WRONG ANSWER SUBROUTINE

790 PRINT "WRONG 1" ;

800 PRINT "THE RIGHT ANSWER IS "CORRECT

Ok

oK

LIST 810~

210 RETURN

820 -

830 ¢ EXIT SUBROUTINE

840 SCOREX=INT((RIGHTX/NUMBERX)*100+.,5)
350 PRINT:PRINT *YOUR SCORE IS "SCOREX
840 EMD

Ok

FIGURE 1-3 (continued)

The Main Program handles most of the dialogue between the student
and the computer, and it calls up the subroutines. The principal parts of the
Main Program are:

Program introduces itself and asks the student’s first name (statements 30-50).
Addresses the student by name and gives basic instructions (statements 70—110).
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Calls a subroutine to calculate the right answer, gets the student’s choice of
arithmetic operation, and calls the appropriate subroutine to implement it (state-
ments 130-180).

Gets the student’s choice of whether to continue or quit (statements 200—-220).
In the former case, it recycles to statement 130; in the latter case, it calls the
Exit Subroutine.

The subroutines are: (1) Randomization and Calculation, (2) Student
Addition, (3) Student Subtraction, (4) Student Multiplication, (5) Student Divi-
sion, (6) Correct Answer, (7) Wrong Answer, and (8) Exn

1. The Randomization: and Calculation Subroutme (statements 240-380) contains
these parts: :

>> It “seeds” the random number generator (statements 250—260)—more
about this later.

2>8>0 Counts the total number of questions that have been asked (statement
)-
>> Chooses appropriate values for TERM1% and TERM2% (statements
290—320)—more about this later.
© >> Calculates the right answer for addition (statement 330).
>>  Calculates the right answer for subtraction (statement 340).
>>  Calculates the right answer for multiplication (statement 350).

>> Calculates the right answer for division (statement: 360)—rn0re about
this later.

2. Student Addition Subroutme (statements 400—460) stores the correct answer
for addition, displays the question, accepts the student’s answer, and branches
to the Correct Answer or Wrong Answer Subroutine, depending upon whether
the student’s answer was right or wrong.

3. Subtraction Subroutine (statements 480-540) is directly analogous to the Student
Addition Subroutine.

4. Student Multiplication Subroutine (statements 560—620) is directly analogous
to the Student Addition Subroutine.

- 5. Student D1v1smn Subroutme (statements 640-710) is analogous. to the Student
Additioni Subroutine except that i it instructs the sttudent to round the answer up
to two decimal places

6. Correct Answer Subroutiné (statements 730-760) increments the count of right
answers and displays the “Right !I!!!” message.

7. Wrong Answer Subroutine (statements 780—810) displays the “Wrong !!” mes-
sage and the COITCCC answer.

8. Exit Subroutlne (statements 830 860) calculates the student’s score, displays it,
and termmates the program

Meaning of the Prog‘ffam'variables

The following variables are used in this program:

FIRSTNAMES$ a string (alphanumeric) variable used to hold the first name of the
user. The symbol “$” is another type-declaration symbol; it denotes a string
variable.
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X a dummy variable “INPUT” when either the <ENTER> or <RETURN>
key is pressed to advance the program.

FLAG$ a string variable used to hold menu choices. It is reset to <NULL>,
signified by "” before a choice is made. When selecting arithmetic operations,
the contents can be 1, 2, 3, or 4. When selecting “CONTINUE” or “QUIT,” the
contents can be YES or Y, or NO or N. It is generally preferable to use a string
variable to give commands to a program rather than a numeric variable. One
reason is that a string variable can be reset to null, and then any printable
character or sequence of characters can be used as a command; a number must
be reset to zero, and this precludes us from using zero as a command symbol.

CODE% the numerical equivalent of the string values 1, 2, 3, or 4 created by
using the function VAI(FLAG$). CODE% transfers control to the selected sub-
routine by means of the commind “ON CODE% GOSUB 390, 470, 550, 630”.

NUMBER% an integer representing the total number of math questions pre-
sented.

TERM1% an integer greater than 0 and less than 101; it assumes the role of the
addend in addition, the minuend in subtraction, the multiplier in multiplication,
and the divisor in division.

TERM2% an integer greater than 0 and less than 1001, and always greater than
TERM1%; it assumes the role of the augend in addition, the subtrahend in
subtraction, the multiplicand in multiplication, and the dividend in division.

ADDY% the actual sum in addition.
SUBT% the actual difference in subtraction.

MULT# the actual product in multiplication. The type-declaration symbol “#”
signifies that this variable is a double-precision real variable. This kind of type
declaration is used here to preserve integer format despite the fact that it is
possible that a product may exceed 32767, the upper size limit for an integer
in this version of BASIC.

pIvD! the actual quotient in division, it is always rounded up to two decimal
places. Here the type-declaration symbol “!” signifies that it is a single-precision
real variable. This allows for the fact that decimals will be obtained in quotients.

CORRECT a data location used to store the actual answer corresponding to the
arithmetic operation chosen by the student. It is declared by default to be a
single-precision real variable because it may have to hold integers (ADD% and
SUB%), double-precision real variables (MULT#), and single-precision real var-
iables (DIVD!). However, no tests for equality can be made with CORRECT it
is used for display purposes only.

ANS% the answer entered by the student when doing addition, subtraction, or
multiplication.
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ANs! the answer entered by the student when doing division, it is rounded up
to two decimal places; hence its type-declaration symbol shows it to be a single-
precision real variable.

RIGHT% an integer representing the number of correct answers.

SCORE the student’s grade on the exercise. Itis the quotient of RIGHT % divided
by NUMBER%, rounded up by first multiplying by 100 then adding 0.5, and
made into an integer by using the function INT(Argument)—where “Argu-
ment” is a general term for any number you want to-make into an integer.

Program Implementation

There are two important steps in this program. The first is central to
the subject of simulation; the second is crucial to making an arithmetic drill-
and-practice program work.

Central to the subject of simulation is the process of generatmg random
numbers. Indeed, the fact that this program can tirelessly generate different
arithmetic problems without repeating itself (unless you run the program for a
very long time indeed) is what makes it a simulation of a live teacher rather than
a substitute for an exercise book in which the problems are all set down in
advance.

In subsequent chapters, you will learn many things about random num-
bers; for now, it is sufficient to say that they are supposed to possess two attri-
butes: (1) the chance of producing any number in the range of interest is identical
to that of producing any other number, and (2) the appearance or nonappear-
ance of any number in no way affects the chance of the appearance or non-
-appearance of any other number.

We are going to get our random numbers by using a function called
RND that is built into the BASIC programming subsystem. It produces random
numbers in the form of single-precision real variables in the range 0 to 1.
Practically speaking, they are decimals having 7 or fewer digits (usually 6). To
see how it works, RUN this program (see Figure 1—4):

10 CLS

20 FORI=1 TO 100
30 PRINT RND;

40 NEXT I

Notice that we produced a few odd-looking numbers, such as 5.532474E-
02. This is an example of exponential, or so-called “scienti[lc,’f notation. It is
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THIS PROGRAM PRINTS 100 RANDOM NUMBERS
BETWEEN ZERO AND ONE

L1213501  .651881 .BE8B4&11 7297425 .798853 7.347B05E-02 .4903128
4545189  .1072498 9505102 .7038703 .5318641 .9711414 .320932% .9561278
.9345151  .5349348 5444215 4712188 .7025723 .7407752 .4448748 | .4539404
,3341433 ,158853 73462702 .5428795 .42596% S.544812E-02 .74B2481
J5135342 .544048 ,741044% .8418574 23145 .4442414 .1285592 .4847701
5.532474E-02  .3429986  .5712436 .9PP01088 290153 .4577815 .93%91122
L379971  .8903414 7978898 .9447458 3230751 (412834 (4249843 7317343
L2193842 2202445 ,7437411 .4825124 7159321 .9P339718 .2824577 .5154851
L4724479 .187325 .4834971  .40P0708 - 1769807 .3286581 .244%03 .5478376
LB115254 .1244871 9.027124E-03 7.263118E-02 ,1476447 .7126173  .525154
LP328978  .612104% 555288 7191259 .4350108 .1024807 - .3421974 .8341478
.P123946 4527998 .1938278 .B215128 .5734507 ,8491585 .1143708 .9810245
.5B14818 4153483 6949517 .8518325 .3816174 .2284811 4.473521E-02

. 3529371

Ok

ok

LIST

10 CLS

20 PRINT "THIS PROGRAM PRINTS 100 RANDOM NUMBERS "
30, PRINT "BETWEEN ZERO AND ONE

40 PRINT: PRINT

50 FOR I = 1 TO 100

&0 PRINT RND

70 NEXT 1

nk

FIGURE 1-4 Generation of pseudo-randem numbers ifi the range zero o one.

the way BASIC displays very small or very large numbers. The E-02 (charac-
teristic) represents the base numbeér 10 raised to the —2 power, or .01, and is
to be multiplied by the rest of the number (mantissa). Very simply, you move
the decimal point N places to the left for a negative exponent (E—N) and N
places to the right for a positive exponent (E+N) In thls case, the value is
05532474,

We do not want numbers in the range 0 to 1; we want numbers in the
range 1 to 100. However, so we can see changes take place within the sequence
of 100 numbers we are displaying, let’s employ one of the principles of simulation
and multiply by 10 instead of 100. RUN this program (see Figure 1-5):

10 CLS

20 FOR I=1 TO 100
30 PRINT RND*10;
40 NEXT I
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THIS PROGRAM PRINTS 100 R&MDOM MNUMBERS
BETWEEN ZERO AND TEN

1.213501 &.51861 8.488411 7.297625 7.98853 .734P805 4.903128 4.545189
1.072495 9.505102 7.038703 35.318641 9.7114814 3,20932%9 ¢.561278 #.345151
5.349367 5.644214 4,712188 7.025723 7.407752 4.448748 4.539408 3.341433
1.56853 7.342702 5.428794 4.2594%1 .5544811 7.46824B1 5.135342 5.440479
7.41064% £.618574 2.3145 4.4424815 1.285592 4.84%701 5532473 3.529986
5.712436 9.901087 2.90153 4.5776815 9.391128 3.79971 B8.P03415 7.9788%8
?.487657 B.230751 4.12838 4,249843 7.317343 2.193842 2.202445 7.437411
4.820128 7.159322 9.33%718 2.424577 5.166851 4.724479 1.37325 4.834%71
6.090706 1.7469807 3.2846581 2.44903 5.498376 8.115254 1.244871
?.027124E-02 .7243118 1.476467 7.124174 35.25154 9.328979 4&.121049
5.55248 7.191259 4.350107 1.024807 3.421%74 8.341479 F.123%946 4.527998
1.938278 8.215128 5.734507 8.4%158% 1.143708 9.810246 S.816818 4.153484
4.949518 8.518325 2.814174 2.284811 ;48473521 3.929371
Ok

ok
LIST

10 CLS ;

20 PRINT "THIS PROGRAM PRINTS 106 RANDOM NUMBERS *
30 PRINT "BETWEEN ZERO AND TEN "

40 PRINT: PRINT

S0 FOR I = 1 TO 100 .

&0 PRINT RND % 103

70 NEXT 1

oK

FIGURE 1-5  Generation of pseudo-random numbers in the range zero to ten.

‘We are still generating decimal numbets, and we want Whole numbers,
or integers. We can correct this defect by using the INT or “integerize” function
‘of the BASIC language. RUN this program (see Figure 1-6):
10 CLS
20 FOR I=1 TO 100
30 PRINT INT(RND%10);
40 NEXT I

Notice now that the numbers lie in the fange 0 to 9 and not in the range
1 to 10. This is because the INT function just chops off the decimal part of a
‘number. If we used this subroutine in our arithmétic drill-and-practice program,
we would get an error message every time we tried to divide by 0. To fix things,
‘RUN this program (Figure 1-7):

10 CLS

20 FOR I=1 TO 100

30 PRINT INT(RND%10) +1;
40 NEXT I
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THIS PROGRAM PRINTS 100 RANDOM INTEGERS
BETWEEN ZERO AND NINE

1 6 & 7 7 0 4 4 1 ¢ 7 5 ¢ 3 % % 8% 5 & 7 7 & 4 3 1 7
5 4 0 7 5 5 7 & 2 4 1 4 0 3 5 % 2 6 ¢ 3 8 7 % 3 4 4
7 2 2 7 & 7 % 2 5 4 1 4 & 1 3 2 3 8 1 0 0 1 7 85 9 &
5 7 4 t 3 8 ¢ 4 1 8 5 8 I ? 5 & & 8 3 2 0 3
Ok .

ok

LIST -

10 CLS

20 PRINT *"THIS PROGRAM PRINTE 100 RANDOM INTEGERE *
30 PRINT “BETWEEM ZERO AND NINE "

40 FRINT: PRINT

S50 FOR 1 = 1 TO 100

A0 PRINT IMT(RND % 103

70 NEXT 1

Qi

FIGURE 1-6 Generation of pseudorandom integers in the range zero to nine.

To obtain TERM1%, we multiply RND by 100, apply the INT function
to convert the result to integer form, and add 1. To obtain TERM2%, we multiply
RND by 1,000, apply the INT subroutine to convert the result to integer form,
and add 1. Then we test to be sure that TERM2% is larger than TERM1%. If
it isn’t, we loop back and pick two other random numbers and try again until
it is.

RUN the last program twice and compare the two sequences of integers.
They are both the same! If we were to incorporate this subroutine in our
drill-and-practice program, we would produce the same sequence of
TERM1%:TERM2% pairs every time we ran it, diminishing its value as a tool
for instruction. This is because every random-number generator has to contain
a starting number called the “seed.” The seed is built into the random function
of the programming language. Unless you change the seed when you generate
a sequence of random numbers, you will get the same sequence every time.

These random number sequences are finite in length but they are very
long; so one way to reseed a random-number generator is to preexercise it. You
could set up a loop:

FOR I=1 to NUMBER: R=RND: NEXT I
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THIS FROGRAM PRINTS 100 RANDOM INTEGERS
BETWEEN ONE AND TEN
TYPE RUM NUMBER 2 1

z2 7 % 8 8t 5 5 2 0 & & 10 4 t0 {0 & & ? &8 B 7 B 4 2
g 4 5 1 8 & & 8 7 3 5 2 S5 1 4 ¢é 0 3 7 106 4 % & 10 4
5 5 & 3 3 8 7 & 0 ¥ & 5 2 5 7 2 4 323 & 9 2 1 1 2 8 &
10 7 & B 5 2 4 9 10 5 2 % & % 2 10 & 7 7 9 4 3 1 4

0K

THIS PROGRAM PRINTE 100 RANDOM INTEGERS

BETWEEN OME AND TEN

TYPE RUN NUMBER 7 2

2 7 % 8 & { 5 5 2 108 & 10 4 10 10 & & F 8 8 7 5 4 2
2 4 5 1 8 & & &8 7 3% 5 2 5 1 4 & 10 3 7 1 4 ¢ 8 10 4
5 5 &8 3 3 8 7 8 {0 3 & 5 2 5 7 2 4-3 6 % 2 1 1 2z 8 &
160 7 4 8 5 2 4 9 10 5 2 ¢ & % 2 10 & 7 7 % 4 3 1 4

0K

0K

LIST

10 CLs

20 PRINT "THIS PROGRAM PRINTS 100 RANDOM INTEGERS "
30 PRINT "BETWEEN OME AND TEN

40 INFUT "TYPE RUN NUMBER "X

S0 PRINT: PRINT

&0 FOR I = {1 TO 100

70 PRINT INT(RND = 10) + 1

80 NEXT 1

QK

FIGURE 1-7 Generation of pseudo-random integers in the range one to ten without re-
seeding the generator.

And use an INPUT NUMBER statement to decide how far into the sequence
to go for each execution of the program.

An easier way to seed the random-number generator is to use the built-
in function RANDOMIZE. It automatically requests you to provide as a seed,
an integer in the range — 32768 to 32767. For best—that is, “most nearly ran-
dom”—results, these seed values should themselves be random numbers.

Now, even though you can generate true random numbers by consulting
a book, published in 1955 by the RAND (Research and Development) Corpo-
ration called One Million Random Numbers and 100,000 Normal Deviates, or by
rolling six speaal ten-sided Japanese dice that have a different digit inscribed
on each face, it is a nuisance to have to do so and then keep feeding those
random seed numbers to the program.

If you become really involved in simulation, you may want to purchase
a hardware generator of true random numbers. It is a circuit board that can fit
into one of the unused slots of your personal computer. The circuit consists of
a pulse oscillator feeding into a counter. The oscillator is started and stopped
in a completely random manner by pulses from a small and harmless radioactive
source. The random numbers are the numbers of oscillator pulses counted
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between start-stop pulses from the source. The card cost about $600 in 1985.
Remember, however, that if you want to repeat an experiment, you have to
make a file of the random numbers you use, because no two sequences are ever
alike.

A way to get different pseudorandom number sequences is to make a
call to the computer’s internal clock. You can do this by writing the code RAN-
DOMIZE TIME, where TIME simply calls the current value of the computer’s
real-time clock (as contrasted with any simulated-time clocks). RUN this program
twice (Figure 1-8):

10 CLS
50 RANDOMIZE TIME

30 FOR I=1 TO 100

40 PRINT INT(RND%10)+1;
50 NEXT I

FIGURE 1-8 Generation of pseudorandom integers in the range one to ten with reseeding
of the generator.

THIS PROGRAM PRINTS 100 RANDOM INTEGERS

BETWEEN ONE AND TEN
AND RE-SEEDS THE RANDOM NUMBER GENERATOR

TYPE RUN NUMBER 7 1

& &4 2 ¥ 8 8 10 8 7 6 2 1 7 &8 5 8 2 3 5 8 é 2 6.7 % 1
¢ 7 51 8 ¢ 5 4 6 3 10 % 3 2 1 3 9 3 10 2 & 3 7 9 8 2
g ¢ 3 5 1 10 2 8 4 3 ¢ 3 & 7 8B 6 % 3 10 3 23 &t 3 2 8
& & 18 4 5 6 5 5 3 4 t+ 5 1 2 4 23 2 2 10 4 10 8

0k

THIS PROGRAM PRINTS 100 RANDOM INTEGERS

BETWEEN OME AND TEN

AND RE-SEEDS THE RANDOM NUMBER GENERATDR

TYPE RUN NUMBER ? 2
4 & 2 6 % 9 10 % 8 3 5 4 { S 1 & 7 2 10 5 8 2 % 10 4
10 8 ¢ 4 5 4 ¢ 5 8 7 {0 1 4 2 46 1 % &6 8 2 6 5 5 1 2 8
1 5 4 1 2 4 10 10 % &6 8 3 7 1 &1 6 1 4 1 2 &6 4 3 1 3

-4 9 4 4 4 4 g % 8 ¢ B 3 7 t 8 2 10 7 5 2 2 8 4

0k

Ok

LIST

10 CLS

20 PRINT "THIS PROGRAM PRINTS 100 RANDOM INMTEGERS *
30 PRINT "BETWEEN ONE AND TEN *

40 PRINT "AND RE-SEEDS THE RaANDOM NUMBER GENERQTOR“
S50 INPUT "TYPE RUN NUMBER "X

&0 PRINT: PRINT

70 RANDOMIZE TIME

80 FOR I = 1 TO 100

P0 PRINT INT(RND * 10) + 1

100 NEXT I

Qi
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This is the way things were under MS/DOS 1.0. Under MS/DOS 2.12
or higher, TIME is not available. Instead we have to work with a system variable
called TIMES$ that displays real time in the form HH:MM:SS. We can obtain
TIME in its old form by inserting this line of code:

TIME=VAL(RIGHT$(TIME$,2) ) +VAL(MID$ (TIME$, 4,2))
+VAL(LEFT$ (TIME$, 2) ) '

Now, about the operation of division: Although it is easy to compare to
integers for equality, it is theoretically impossible to compare two real numbers
for equality (that is, numbers with nonzero values to the right of the decimal
point). If you wish to make such a comparison, you must speafy exactly how
many decimal places you are going to allow.

For this reason, we specify two decimal places of accuracy. We instruct
the student to enter answers that way, and we internally multiply our quotients
by 100, integerize them, then divide them by 100. o

Furthermore, to ensure consistency between the student’ s answers and
the program’s answers, we must exphcate the rounding convention: We shall
increase the value of the number in the second decimal place by 1 if the value
of the number in the third decimal place is 5 or more. We implement this rule
by instructing the student to input answers in this form; we implement the rule
on the part of the computer by adding .005 to the quotient before domg any
part of the integerization procedure. The addition of .005 will always increase
the value of the second decimal place if the value of the third decimal place is
5 or more. The integerization procedure then merely throws away all decimal
places to the right of the second place irrespective of their value.

EVALUATING INTEGRALS

One of the first practical uses of computer simulation was evaluatmg elliptical
integrals in several dimensions. This work played a central role in the devel-
opment of nuclear weapons in the mid-1950s. The task involved finding the
area bounded by several surfaces having hxghly complex shapes ‘This task defied
solution by analytical means.

We shall illustrate the principle employed by using simulation to find
an approximate value for PI. Let’s imagine a quarter circle inscribed within a
unit square. The area of the square is 1 X 1, or 1. The area of the inscribed
unit quarter circle is given by:

A=PIXR2/4="PI/4

We are going to approximate the area of the circle by throwing dots
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randomly onto the square and counting how many fall within the quarter circle.
The approximate area of the quarter circle is then:

A = COUNT /POINTS

where POINTS is the total number of dots thrown at the square and COUNT
is the number of dots falling within the quarter circle. This program does it for
us:

10 ' TITLE: EVALUATING PI BY SIMULATION

20 CLS: RANDOMIZE TIME

30 INPUT "ENTER TOTAL NUMBER OF POINTS"™; POINTS
40 FORTI = 1 TO POINTS :
50 X = RND: Y = RND :

60 IF SQR (X2 + Y"2) <= 1 THEN COUNT = COUNT + 1
70 NEXT I

80 AREA = COUNT / POINTS

90 PRINT "APPROXIMATE VALUE OF PI IS " 4 » AREA
100 END

Statement 50 selects the horizontal (X) and vertical (Y) coordinates of a
point in the square bounded by the lines

Y=0,Y=1landX =0,X =1

Statement 60 determines whether or not the point lies within the quarter circle;
that is, whether the line from the origin (0,0) is less than or equal to the radius
(1). Statement 90 evaluates PI in terms of the area of the quarter circle as
determined by simulation.

The results of several simulation runs are:

Number of Points Value of Pl
10 3.20
100 2.92
1,000 3.07
10,000 3.16
160,000 3.14

This is a poor way to evaluate PI. It takes a very long (in fact, an ex-
ponentially long) time to converge on a value with useful precision. There are
better ways to evaluate PI, of course (one algorithm is based on a famous problem
called Buffon’s Needle). The point of this exercise is to demonstrate how sim-
ulation can be used to find areas or volumes. It is not as economical as analytic
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methods, or even other numerical methods (such as the Trapezoid Rule); but
it can be used when these other methods, for one reason or another, cannot be
used. Incidentally, the code name of the project in which this technique was
used was “Monte Carlo”; since then, all applications of simulations have some-
times been called Monte Carlo methods. (Actually, the Monte Carlo project
focused upon reducing the variance of the estimates of the values of definite
elliptical integrals.)

SUMMARY

In this chapter we have defined simulation in general, and computer simulation
in particular, and suggested several reasons why simulation is so widely used.
We have shown some of the advantages of using personal computers for sim-
ulation.

We have used a Computer Aided Learning sequence to illustrate some
of the tools of simulation. These include:

1. Generation of random-number sequences, including the procedure of seeding
the random-number generator. -

2. Conducting a dialogue with a computer program. This may include: use of
menus to present alternative choices, use of alphanumeric command strings,
and use of “guard” statements to prevent the uscr from entering undefined
command sequences.

3. Structuring a computer program so that the main program contains user—com-
puter dialogue and control sequences, while the actual work of the program is
done by subroutines called from the main program.

4. The definition and type declaration of all program variables for easy reference
by the programmer; this and the preceding attribute of structuring the program
make programs easy to modify, and most simulation programs require a great
deal of modification before they accurately represent the real system under
study.

5. We have shown some of the problems involved in comparing numeric values
within a computer and some ways to attack these problems; this is a key feature
in simulation programs.

Our final example showed how simulation can be used to perform the
calculus operation of integration; that is, finding the area under a curve. This
was one of the first accomplishments of computer simulation.

In the next chapter, we shall illustrate the use of random processes in
a computer game, another popular kind of simulation. Then, after a closer look
at the process of generating both random and pseudo- (false) random sequences,
we shall introduce the most widely used forms of experimental simulation.






— CHAPTER TWO

Playing Games
- with Simulation




22 PLAYING GAMES WITH SIMULATION

A common pejorative observation by theoreticians is that simulationists are just
playing games. 1 gladly acknowledge that simulationists play games; in fact, one
of the pleasures of simulation is that the whole field is a game. In this chapter,
we are going to play some typical games. Games have an important place in the
world of simulation. Many computer systems come with a “game package” as
part of the software to entice users into becoming familiar with system commands
and operating procedures. Programmers of games are the highest-paid members
of our profession (with six-figure incomes in some cases). Unlike other pro-
grammers, who may get sued for using their own work out of context, these
programmers get substantial royalties. Sober-sided students and instructors are,
of course, free to skip this chapter.

CLIMB THE LADDER

You may have watched the popular television game show “The Price is Right.”
In one of its subgames, the contestant’s answers are depicted by an Alpine yodeler
climbing an incline at a rate determined by the magnitude of the sum of the
prices he or she has guessed. At some point, the sum may exceed a maximum
unknown to the contestant; the yodeler then appears to fall over a precipice at
the top of the incline, signifying that the contestant has exceeded the maximum
and therefore lost the game.

In “Ladder,” the incline is constructed using the byte graphics capability
of MS/BASIC. Let’s regard the screen as a 25-by-80 matrix with the upper-left-
hand corner having the coordinates 1, 1 and the lower-right-hand corner having
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‘thecoordhnnes?ﬁ,SO.()urinchnesuntsat23,46,andthe;necﬂﬁceisat1,69.
A complete listing of the 35 statements of the program is shown in Fig-
ure 2—1.

The player is asked to press the <RETURN> key to climb. Each time
the player presses the key, the incline grows by a random number in the range
1 to 23. If the first random number is 23, the player has 23 added to the overall
score and the first round of play terminates with the player’s being proclaimed
the winner. See Figure 2—2 for a winning round.

If the player goes over the cliff, the entire count, which, of course,
exceeds 23, is subtracted from the player’s score (see Figure 2-3).

If the player chooses to quit climbing before going over the cliff, the
player wins and the score is equal to the rung of the ladder occupied when
<QUIT> was pressed. This is what happened in Figure 2-2.

There is a “guts and glory” component of this game. Suppose the player
~climbs five rungs on the first try. If he or she quits, the score is +5. If the player
presses <RETURN> for another ascent and climbs, say, six rungs more, the
total score is (5 + 6) X 2, or 22; that is, the number of rungs climbed in that
round times the number of ascents in the round.

In the program, statement 10 seeds the random-number generator from
the real-time clock. Statements 20—30 start a round of play; they reset C$, the
command flag, to null; set SUM, the rung counter, to zero; set S, the ascent
counter, to zero; and set N to 23, forming a 23-rung ladder. The command

FIGURE 2-1 Program listing for “Climb the Ladder.”
10 CLS

20 RANDOMIZE

38 Ce="":CLS

35 PRINT: PRINT

40 PRINT"*%%x%x%x%%% WELCOME TO ‘CLIMB THE LADDER’ #*®%x¥x%x%%x”
43 PRINT: PRINT: PRINT

S50 PRINT*WHEN ‘7?7 APPEARS, TYPE *RETURN’ TO CLIMB; ‘@° TO QUIT.”"
40 PRINT:PRINT

70 N=25:5UM=0:5=0

80 INPUT C$

¥0 IF C#="Q" THEN 220

100 R=INT(RND*24)+1

110 SUM=SUM+R; 5=8+1

120 IF SUM>24 THEN 210

130 IF SUM=24 THEN 220

140 Y=N-R

150 FOR I=N TO Y STEP -1

160 LOCATE 1,461

170 PRINT CHR$(220)

180 NEXT 1

190 N=Y

200 GOTO 80

205 S=0: SK=GK~8UM: PRINT: PRINT

210 PRINT"OOPS!!!! YOU FELL OFF!!!! YDUR SCORE IS "SK
215 GOTO 230 "

220 C#="":8K=8K+8UM*S:PRINT :PRINT

225 PRINT"YOU WIN!!!! YOUR SCORE 15 “SK:8=0:60T0 230

230 PRINT:PRINT:PRINT: INPUT; "WANT MORE? TYPE ‘Y’ ";C%

240 IF Cs$="Y" THEN 30 ELSE END



24

PLAYING GAMES WITH SIMULATION

XEXEXAXXERRXKEEE WELCOME TO “CLIMB THE LADDER’ #EXEEKXKEKENX

WHEN ‘QUESTION-MARK® APPEARS, TYPE ‘RETURNY TG CLIMB; G’ TO QUIT

YOU WINIIY!D YOUR SCORE 18 76 *

WANT MORE? TYPE "Y’'7 Y *

FIGURE 2—-2 Instructions; and the display of a good climb.

KEY OFF gets rid of the function key menu that may be displayed on line 25
of your screen.

Statements 40—150 are a dialogue with the computer. The player is
welcomed to the game and told to press <RETURN?> to ascend the ladder and
<Q> to quit the round. When <Q> is pressed, control is transferred to the
“WIN” subroutine along with the cumulative score left over from the last round
of play. Statement 80 is a timing loop that gives the player an opportunity to
read the legend before statements 90 and 110 blank it out. The blankmg out is
done so the game display will not be interrupted.

Statement 160 generates a random number in the range 1 to 23; state-
ment 170 computes the number of rungs climbed and the number of ascents
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* FIGURE 2-3 Climb in which the
% player falls over
* the.precipice.

- DOPS!!!! YOU FELL OFFf!11! YDUR SCORE 1S 41
WANT MORE? TYPE “Y’? ¥ *

A

in the current round. Statements 180 and 190 set “WIN” or “LOSS” flags de-
pending upon whether the first random number drawn is exactly 23 (WIN) or
if the cumulative number of rungs climbed has exceeded 23 (LOSS).

In statement 200, quantity Y is the complement of R and reflects the
fact that the top of the ladder is actually at line 1 on the screen. Statements 210—
250 print the ladder, and statement 260 sets ladder height N to the height
attained in the current ascent. In statements 270 and 280, ﬂags transfer control
to either the “WIN” or the “LOSS” subroutine.

In the “LOSS” subroutine (statements 300—-310), the rungs “climbed” -
in the current round (always more than 23) are subtracted from the player’s
score in the game. In the “WIN” subroutine (statements 320-330), the rungs
climbed in the current round are multiplied by the nurmber of ascents in the
current round and added to the player’s cumuldtlve score in the game. Both
subroutines display the player’s score.

Statement 340 asks whether the player wants to continue the game and
loops back to statement 20 if the answer is “Y”; otherwise the game ends.

In the program shown here, the rungs of the ladder are depicted by
asterisks; if your personal computer has sufficient graphics capability, you may
want to depict them using CHR$(220). “ASCII” character #220 is a huge square;
but it doesn’t print out on my printer.

BUZZ-WORD GENERATOR

The next program is called “U-2—A—GURU.” It slyly pokes fun at the sheeplike
mentality of some computer scientists who go ape over the latest fad from
Switzerland, the Netherlands, or wherever. Who knows—it could make you rich
and famous, or at least win you some favorable recognition at the next depart-
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mental wine-and-cheese party. Figure 2—4 is a listing of the 30 statements of
this program.

Statements 10 to 110 tell you that with this program, a sweat shirt three
sizes too big, and a scraggly beard or granny glasses or both, depending on
gender and/or preference, you too can become a guru.

Statements 120 to 220 load three ten-component vectors with string
constants. The first two contain adjectives; the last contains nouns.

Statements 230 and 300 set up a WHILE-WEND loop; if we're going
to be gurus, we might as well start off by banishing the despicable GOTO
statement. This loop terminates when it recognizes string-constant <Q> in lo-
cation Flag$. It gets there if, in statement 290, the user presses <Q> to end this
madness.

Statement 240 is a FOR-NEXT loop that selects an index into each of
the three vectors using the RND function. Statement 250 creates a string variable

FIGURE 2-4 Program listing for the buzzword generator “U—2-A-GURU.”

513

LIST ~200

10 7~ U~2-A-GURU
20 7

30 ° COMPUTER SCIENCE BUZZWORD GEMERATOR

40 < ALL YOU NEED 18:

S0 ¢4 (1) A SCRAGGLY BEARD (OR GRANNY GLASSES)
60 ¢ (2) A SWEATSHIRT THREE SIZES TOO LARGE
70 7 (3) THIS PROGRAM

80 © AND YOU CAN ILLUMINATE,

90 7 PONTIFICATE, AND

100 “INTELLECTUALLY MASTURBATE.
i1a -

420 CLS: RANDOMIZE TIME

130 DATA ABSTRACT ,AEYNCHRONOUS,DISTRIBUTED, FAULT~-TOLERANT , INTEGRATED
140 DATA INTERACTIVE,NORMALIZED ,OPTIMIZED,REAL-TIME, STRUCTURED

150 DATA COGNITIVE,CONVOLUTED, INVERTED MON-LINEAR,RECURSIVE

140 DATA RELATIONAL,STOCHASTIC,SYSTOLIC,TESSELATED ,UNDECIDABLE

170 DATA ALGORITHM,ARCHITECTURE ,AUTOMATA, DATABASE , INTERFACE

180 DATA NETWORK, PARADIGHM, REPRESENTATION, SIMULATION, SYNTAX

190 FOR I=1 TO 10: READ ADJECTIVE!$(I): NEXT I

200 FOR I=1 TO 10: READ ADJECTIVE2$(I)>: NEXT I

Ok

Ok

LIST 200~

200 FOR I=1 TO 10: READ ADJECTIVEZ2#(I1): NEXT 1

210 FOR I=1 TO 10: READ NOUN$CI): NEXT I

220 -

230 WHILE FLAGS(>"Q"

240 FOR I=1 TO S:IX{I)=INT(RND*#10)+1: NEXT I .

250 DISPLAY$="THE “+ADJECTIVEI$(IX(1)+"  "+ADJECTIVE2S(IX(2))+" *
ANOUNS (IX(3h o+ "

260 LOCATE 13,15: PRINT

270 LOCATE 10,15: PRINT "TODAY'S ACADEMIC FAD IS: °

280 LOCATE 13,15: PRINT DIGPLAYS

290 LOCATE 14,15: INPUT *"PRESS <(Q> TO END THIS MADNESS"; FLAGS

300 WEND

OK
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Display$ that is the concatenation of the three selected strings with appropriate
spacing and punctuation. Statements 260 to 280 display the results, identifying
them as “today’s academic fad.”

For example, the random numbers 5, 6, 2 vgenerate the message:

INTEGRATED RELATIONAL ARCHITECTURE
4,7, 1 generates:
F'AULT-—TOLERANT STOCHASTIC ALGORITHM

And on and on and on, through 1,000 possible master’s-thesis topics. Figure
2—5 shows two more outputs from the program.

‘ Incidentally, all computer scientists are not humorless or self-important.
Our resident systems guru (our systems programmer) installed this program on
the faculty UNIX system, so that it delivers its latest academic fad every time a
user signs on.

TODAY S ACADEMIC FAD I8:
THE REAL-TIME NON-LINEAR ARCHITECTURE.

PRESS <Q» TO END THIS MADNESS?

TODAY’S ACADEMIC FAD 18:

FIGURE 2-5 Two "academic
fads"” produced
by the buzzword

PRESS <Q> TO END THIS MADNESS? generator.

THE DISTRIBUTED CONVOLUTED DATABASE.
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WHEEL GAMES

The next program is called “LANTICTY.” I wrote it for a friend who likes to
visit the casinos in Atlantic City. It combines two popular wheel games: roulette
and wheel-of-fortune. It worked so well for him that he developed a two-person
system for playing roulette with it and claims he has made at least a $20 profit
on every trip since.

Roulette

There are 38 numbers around the periphery of a roulette wheel. A play
of the game ends when a bouncing metal ball is trapped in a numbered pocket
as the rotating wheel slows down. The numbers are 00, 0, 1, . . . 36. The numbers
1,3,5,7,9, 12, 14, 16, 18, 19, 21, 23, 25, 27, 30, 32, 34, and 36 are colored
red. The rest are colored black, except 0 and 00, which are green. You can bet
on numbers for a payoff of 85 to 1; on red or black for even money; or on odd/
even also for even money. Observe that the value of a bet on the field of numbers—
that is, return times odds—is (35+1) X 1/38, or .947. The value of a bet on
red/black is (1+1) X 18/38, or .947.

This program has 135 lines of code. They are listed in Figure .2—6.
However, we are going to forego a boring line-by-line description of it and

ok
LIST -200

10 ‘
20 ¢ INITIALIZATION
20 ¢

40 RANDOMIZE TIME
S0 DIM ROULT$(38) ,REDS(18) ,BLACKS (18) \WHEEL$(54)
40 FOR I=1 TO 38:READ ROULTSI):NEXT I

© 70 FOR I=1 TO 18:READ REDS(I):NEXT I

80 FOR I=1 TO 18:READ BLACK$(I1) :NEXT I
90 FOR I=1 TO S4:READ WHEEL$(I):NEXT I

100 CONTROL$="?

110 ¢ o :

120 - INTRODUCTION & SIZE OF BANKROLL

136 ¢

140 CLS:LOCATE 10,20

150 PRINT "%x% WELCOME TO ‘LANTIC CITY ®xx"

160 PRINT:INPUT * PLEASE ENTER THE AMOUNT OF YOUR BANKROLL";CAPITAL
170 ~

180 ¢ CHOICE OF GAME -- ROULETTE/WHEEL-OF~FORTUNE

190 ~ 3

200 CLE:LOCATE 10,20

Ok

Ok

LIST 210-400

210 PRINT "#%% SELECT YOUR GAME w%xx"

220 CHOICES$="*

230 PRINT:INPUT" TYPE: R=‘RQULETTE’, OR W=~ NHEEL OF-FORTUNE’ * ; CHOICE$
240 IF CHOICE$="R" THEN 270

250 IF CHOICES="W" THEN &40 ELSE 220

FIGURE 2-6 Prografn listing for the wheel games “Lanticty.”
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240 -

270 REM *%% ROULETTE

280

250 SELECT NUMBERS 00-34 OR RED/BLACK; PLACE BET

200

310 WHILE CONTROLS <> Q"

320 CLS:LOCATE 10,20

330 PRINT "xxx PLACE YOUR BET 2aah

340 GAMES$="" :

350 WHILE BAMES<>"1" AND GAMES(>"2"

340 PRINT:INPUT'TYPE <1> TO PLAY NUMBERS: TYPE <2> FOR REDIBLACK';GAME$
370 PRINT :NUMBR$="" :RETN$=""

380 IF GAME$="1" THEN INPUT"TYPE THE NUMBER YOU MAVE CHOSEN";NUMBR$
390 IF GAME$="2¢ THEN INPUT*TYPE THE COLOR YOU HAVE CHOSENY;RETN$
400 WEND )

oK

oK

LIST 410-400

410 AMOUNT=0:PRINT : INPUT * TYPE THE AMOUNT YOU WISH To BET",&MBUNT
420

430 ¢ DETERMINE OUTCOME OF PLAY

440 - :

450 NBASE=38

460 GOSUB 980

470 RANDE$="GREEN"

480 FOR I=1 TO 18

490 IF ROULT$(RESULT)Y=RED$(I1)> THEN RANDB$="RED"

500 IF ROULT$(RESULT)=BLACK$(I> THEN RANDBS$="BLACK"

510 NEXT 1

520

530 ¢ REPDRT OUTCOME i
840 ¢ B ‘ : . )
550 PRINT " THE BALL STOPPED ON "ROULT$(RESULT)>" WHOSE COLOR 1§ "RANDBS
5460 PAYOFF=0:1F RANDB$=RETN$ THEN PAYOFF=AMOUNT:GOSUB 1290 -

570 IF ROULT$(RESULT)=NUMBR$ THEN PAYOFF=AMOUNT*35:GOSUB 1290

580 IF PAYOFF=0" THEN GOSUB 1250

590

s0b - CONTINUE OR QUIT

ok

Ok

LIST 410-800

410 . o

820 PRINT:INPUT' TYPE <@> TO GQUIT"; CONTROL$

430 WEND

440 GOSUB 1030

650 7 .

440 REM *#% WHEEL-OF-FORTUNE

&70 ¢

&80 WHILE CONTROL$<>"Q"

690 ¢ : : ,

700 < CHODOSE NUMBER <1,2,5,1o,29,45§; PLACE BETS

7i0 - :

720 CLS:LOCATE 10,20

230 PRINT "#%x PLACE YOUR BET w#xx"

740 NUMBR$="" :AMOUNT=0

750 PRINT:INPUT " TYPE THE NUMBER YOU HAVE CHOSEN" jNUMBRS

760 PRINT:INPUT " TYPE THE AMOUNT YDU WISH TO BET® ;AMOUNT

770

786 - DETERMINE OUTCOME OF PLAY

790 ¢

800 NBASE=Sq

oK

FIGURE 2~6 (continued)
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Ok

LIST 810-1000

810 GOSUB %40

820 -

830 7 REPORT QUTCOME

840 -

850 PAYOFF=0

880 PRINT " THE WHEEL STOPPED ON "WHEEL$(RESULT?
870 IF WHEEL${RESULT)=NUMBR® THEN PAYOFF=AMOUNT*VAL (WHEEL$(RESULT)) :60SUB 1270
880 IF PAYOFF=0 THEN GOSUB 1250

890 -

200 4 CONTINUE OR QUIT

710

P20 PRINT:INPUTY TYPE <G> TO QUIT";CONTROLS$
$30 WEND '

940 GOSUBR 1030

g50 7

760 REM *%x RANDOM-NUMBER SUBROUTINE

P70 7

P80 RESULT=INT(NBASE*RND)+1

P70 RETURN

1000 ¢

Ok

Ok

LIST 1010-1170

1010 REM #x% FINISH-UP ROUTINE

1020 -

1030 CLS:LOCATE 10,20

1040 IF CAPITAL <0 THEN 1040

1030 PRINT "YOU ARE LEAVING WITH $"CAPITAL". DO YOU REQUIRE A CAB?"1END

1060 DEBT=ABS{(CAPITAL)

1070 PRINT "YOU OWE US %"DEBT". DD YOU LIKE TO WALK?" :END

1080 ~

1090 REM %= ROULETTE ARRAY (38>

1100 ~ .

1110 DQTQ"O","Z","14“,"35“,"23","4","ié",“33","21","6",718","31","1?","8",”12"

1120 DATA" 29", %257 ,"14" ,"27","00", 1", "13" "3&","24" ,"3" ,*15" ,"34" ,"22" ,"5" ,"17"

1130 DATA "32%,"20","7","11","30" ,"2&","9" ,"22"

1140 REM =x* ROULETTE RED 18

1150 DATA "14°,"23%,%14", 2%, " 18", 19", "12% ,"25" 279, 71" "34" ,%3",%34" ,"5*,
BEEU LT, VB0,V ‘.

1140 REM %% ROULETTE BLACK (18>

1170 DATA "2","35','4","33”,"5","31",“8",“29"g‘lﬁ",“13","24“,”15“,"22","17“,
20", ML, Y247, 428"

214

Ok

LIST 1171~

11721 7

1180 REM *#% WHEEL-OF-FORTUNE ARRAY (54>

1181 -

1190 DATA ni®,uSw ngs nfu ofge ungs upn wEn wqn spn uiw ugge
1200 DATA "1%,%2% ,W1" #5% wpu wgn wyge niw W5 wgw w3 wgn
1210 DATA "20%,"{¥ wpr op% WgN ugn wqn ayqe wga wpn eme ugw
1220 DATA "2¢,"1" ,"45" 2% u5u upe egn mpn nfw ngge ey aon
1280 DATA "f»,"2%,"1" nage, g v2v

1240

1250 “EVALUATION

1240 7

1270 PRINT:PRINT " SORRY, YOU LOSE.":CAPITAL=CAPITAL-AMOUNT
1280 PRINT " YOU HAVE $"CAPITAL"LEFT.":RETURN

1290 PRINT:PRINT " YOU WIN $"PAYOFF :CAPITAL=CAPITAL+PAYOFF
1300 PRINT " YOU HAVE $"CAPITAL"LEFT."

1310 RETURMN

Ok .

FIGURE 2-6 (continued)
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‘ (;j START

RE-SEED

TOTAL-TIME

UNTIL TIME =
TOTAL-TIME

MODULE 1 MODULE 2
INTERMEDIATE
RESULTS
QuIT
PLAY PLAY
FINISH
END

FIGURE 2~7 Flow chart of “Lanticty.”

instead look at its logic flow chart. The logic flow chart is shown in Fig-
ure 2-~7. :

The first symbol is an oval (computer people sometimes call it a bologna,
an apt characterization of some programs), signifying “start.” The next is a
processing element (rectangle) that initializes the program. It seeds the random-
number generator and reads in the complete roulette array, the roulette array
of red numbers, the roulette array of black numbers, and the wheel-of-fortune
array.
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x%% WELCOME TO ‘LANTIC CITY #x*  FIGURE 2-8 Piayer is wel-

. e . R _ - comed to the ¢a-
PLEASE ENTER THE AMOUNT OF YOUR BANKROLL? 20 sino: declares his

bankroll; and
elects to play
Roulette.

#%# SELECT YOUR GAME *#%

TYPE: R=‘ROULETTE’, OR W=’WHEEL-OF~FORTUNE-? R

The next block 1§ an iniput element (parallelogram), and it accepts from
the keyboard the size of the player’s bankroll in dollars. Then there is a decision
element (lozenge), signifying that the player must type either “R” to select rou-
lette or “W” to select wheel-of-fortune. Both the roulette and wheel-of-fortune
subprograms are encapsulated in WHILE-WEND loops that terminate when the
player types “Q” in resporise to an invitation to quit.

Flgure 28 illustrates the start of a round cfplay. The player is welcomed
to the casino, declares a bankroll of $20, and elects to play roulette.

The next element ini the roulette subprogram is a decision about whether
to play the field of numbers or to play red/black. It s Jimplemented by a WHILE-
WEND loop to guard against impr Oper responses. The player is asked to select
a number or a colot depending upon the mode of play he or she has elected;
these choices are depicted as input elements (parallelograms). Irrespective of
mode selection, the player i§ next asked to input the amount of his or her bet.

Play is simulated in the “determine outcome” (RESULT) processing ele-
ment (rectangle) by passing 38 as the multiplier to the random-number-gen-
erann*subrounne,sh0Vn1asa.hexagon Color is set to green in the event that
either 0 or 00 comes up. The random number is indexed into the red and black
arrdys in 4 FOR-N EXT loop to determine whether the color should be changed.

The “réport outcome” (REPORT) block compares the randomly gen-
erated number or color with that selected by the player, multiplies by the ap-
proprlate payoff factor, and displays the result on the screen. Control is then
transferred to an evaluatiori subroiitine at one of two entry points, depending
upori whether the player has won or lost. Winnings are added to the player’s
bankroll; losses are subtracted.

In Flgure 2-9, the player first bets $10 on number 35 and loses when
the wheel stops on 0. Then the player bets $10 on black and wins $10 when the
wheel stops on riumber 10; black.
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®¥% PLACE YOUR BET wxs v FIGURE 2-9 Roulette piayer
n numbers
TYPE <1 TO PLAY NUMBERS; TYPE (2> FOR RED/BLACK? 1 '::j“i”‘fns it
TYPE THE NUMBER YOU HAVE CHOSEN? 35 colors. ™

TYPE THE AMOUNT YOU WISH TO BET? 10
THE BalL STOPPED ON 0 NHOSE COLUR Is GREEN

SORRY, YOU LDSE.
You HAUE 3 10 LEFT.

TYPE <@>» TO QUIT?

#%% PLACE YOUR BET #%%x
TYPE <1> TO PLAY NUMBERS; TYPE <2} FOR RED/BLACK? 2
TYPE THE COLOR YOU HAVE CHOSEN? BLACK

TYPE THE AMGUNT YOU WISH TO BET7 10
THE BALL STDPPED ON 35 NHGSE COLOR IS BLACK

YOU WIN $ 10
YGU HAUE $- 20 LEFT.

TYPE <G> TO QuUIT? @

ok YQU ARE LE?UING WITH ¢ 20 . DO YOU REGUIRE A CAB?

FIGURE 2-10 Player leaves the casino with a positive (or zero) bankroll.

The player may type “Q” to quit, in which case control is transferred to
a “finish-up” subroutine. If the player has money left (or a zero balance), the
house asks if he or she’ de51res a cab (see Fi igure 2— 10); a player who owes money
to the house is asked if he or she likes to walk——a subtle hint to pay up if the
player wants to continue walkmg (The player would ﬁnd it dlfﬁcult to walk on
two br oken legs)

' Wheel;gf-lfortung

There are 54 numbers around the perlphery of the wheel of-fortune.
They are distributed as follows:

23 1s

16 2s.
7 bs
4 10s
2 20s




34

PLAYING GAMES WITH SIMULATION

#¥x  WELCOME TO "LANTIC CITY *%¥  EFIGURE 2-11 Player is wel-

comed to the ca-
sino; declares
his bankroll; and
elects to play
Wheel-of-For-
tune.

PLEASE ENTER THE AMOUNT OF YOUR BANKROLL? 10

#%% SELECT YOUR GAME %%

TYPE: R=‘ROULETTE’, OR W="WHEEL-OF-FORTUNE’? W

You pick a number, and if the ball falls on it, you get a payoff of 45, 20, 10, 5
2, or 1 to 1. Observe that the values of the bets are:

(I + 1) x 23/564 = .853

(1 +2) x 16/54 = .889
(1 +5) x 7/54 = 778
(1 +10) X 4/54 = 815
(1 + 20) x 2/54 = 778
(1 +45) x 1/54 = .853

The wheel-of-fortune subprogram is much like roulette. The player is
asked to select a number and place a bet. The “determine outcome” processing
block passes the multiplier 54 to the random-number subroutine. The random
number is used to index into the wheel-of-fortune array and thus obtain the
simulated stopping point for the ball, which is also the payoff multiplier.

In Figure 2—11, the player is welcomed to the house, declares a bankroll
of $10, and elects to play wheel-of-fortune.

The “report outcome” block displays the results on the screen and calls
the evaluation subroutine that adjusts the amount of the player’s bankroll, de-
pending upon whether he or she lost or won, and by how much. The termination
routine is the same as in the case of roulette. In Figure 2—12, the player first
bets on number/payoff 20 and loses his or her bankroll. Then, playing with the
house’s money, he or she bets on number/payoff 45 and loses again. In Figure
2-13, we see the player leaving, having been given a subtle hint to pay up or
else.
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*#%% PLACE YOUR BET *%x FIGURE 2-12 Player loses

twice at Wheel-

TYPE THE NUMBER YOU HAVE CHOSEN? 20 of-Fortune.

TYPE THE AMOUNT YOU WISH TO BET? 10
THE WHEEL STOPFED ON 1

SORRY, YOU LOSE.
YOU HAVE % 0 LEFT.

TYPE £GQ> TO QUIT?

#%% PLACE YOUR BET #*¥%%
TYPE THE NUMBER YOU HAVE CHOSEN? 45

TYPE THE AMOUNT YQOU WISH TO BET? 10
THE WIEEL STORPED ON 10

SORRY, YOU LOSE.
YOU HAVE $-10 LEFT.

TYPE <@» TOQ QUIT?

you OWE us ¢ 10 . DO YOU LIKE TO WALK?
Ok .
FIGURE 2-13 Player leaves the casino in debt to the house.

COMPUTER CLUE

The last random-number game in this sampling of computer games is a version
of the popular Parker Brothers board game Clue. It differs from it in two
important aspects: It is played against the computer instead of head-to-head
with other players, and it is not a board game.
You probably recall that the original game simulates the plot of a classic
English murder mystery. The game board simulates an English country house
populated with stock characters out of Agatha Christie. There are six suspects,
six murder weapons, and nine rooms in which the crime can be committed. To
win, a player must move into the room that is the scene of the crime and correctly
announce “whodunit” and with which weapon. '
The correct triple combination of suspect—weapon—room is established
. at the start of the game by blind draws from decks of 6 suspect cards, 6 weapon
cards, and 9 room cards. The three cards are sealed in an envelope. In addition,
all players get an equal share of the remaining card triples so each one knows
at least one combination that is not correct. There are elements of both skill and
luck involved in maneuvering one’s playing piece over the two-dimensional board
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in response to successive rolls of the dice so as to cover all the rooms before the
other players do. Each player is given a status board to record and thus. eliminate
the incorrect solutions. Even though no one knows the correct solution, together
the players are able to eliminate all incorrect ones.

In the computer game, the correct triple combination is selected by
random-number draws. There is no playing board, so a substitution of skills is

‘made. We take away the manual status -board and substitute an electronic one,

a screen display of the incorrect triples the player has already guessed. Figure
2-14 is a complete listing of the program (125 statements).

‘ The player starts out with a free look at the status display that reveals
one incorrect triple, and is awarded 300 points. Each wrong guess costs the

LIST -200

20 ‘ THIS PROGRAM SIMULATES THE POPULAR GAME OF *CLUE" (C-CIRCLE PARKER BROS bl
30 © THE GAME IS PLAYED AGAINST THE COMPUTER, NOT "HEAD-TO-HEAD®

50 “TITLE PANEL

70 CLS: LOCATE 1,1: FOR I=1 TO 80: PRINT "#";:NEXT I

80 LOCATE 1,1: FOR I=1 TO 1%: PRINT "#":iNEXT I

90 FOR I=1 TO 19: LOCATE 1+1,80: PRINT "%":NEXT I

100 LOCATE 20,1t FOR I=1 TO 80: PRINT ®*%"j;iNEXT I

110 LOCATE 5,26: PRINT "WELCOME TO ’COMPUTER CLUE II1’*

120 LOCATE 9,1%: PRINT "COPYRIGHT C~CIRCLE BY JOHN M, CARROLL 1984~
130 LOCATE 13,30: PRINT "ALL RIGHTS RESERVED"

140 LOCATE 22,1: INPUT "TYPE <RETURN> OR <ENTER> TO CONTINUE ":X

140 < INTRODUCTORY PANEL

170 -

180 CLS: LOCATE 1,1: FOR I=1 TO 80: PRINT "#"j:NEXT I
190 LOCATE 1,1: FOR I=1 TO 1%: PRINT “#"iNEXT I

200 FOR I=1 TD 19: LOCATE 1+1,80: PRINT """ :NEXT I

ok

LIST 210-400 .

210 LOCATE 20,1: FOR I=1 TO 80: PRINT "%";:NEXT I

220 LOCATE 5,21: PRINT "w¥%*x RULES OF COMPUTER CLUE 11 o
230 LOCATE 8,26: PRINT "EACH GUESS COSTS 10 POINTS *

240 LOCATE 11,17: PRINT "EACH LOOK AT THE *STATUS BOARD’ COSTS 5 POINTS®
250 LOCATE 14,29: PRINT "A PERFECT SCORE IS 300"

gea LOCATE 22,1: INPUT "TYPE (RETURN> OR ENTER) TO CONTINUE "X
70 ¢

280 - HDUSEKEEPING MODULE

290 '

300 DIM SUSPECT.NAME$(&), SUSPECT.ARRAY$(&)

310 DIM ROOM.NAME$(9), ROOM.ARRAY$(®)

320 DIM WEAPON.NAMES(S), WEAPON.ARRAYS(S)

330

340 ‘ READ CLUE Nansq

350 :

360 FOR 1 = 1 TO &: READ SUSPECT.NAME$CI): NEXT I

370 DATA *COLONEL MUSTARDSEED " ,°PROF. PLUMCAKE "

880 DATA "SCARLETT O°HORROR™ " ,"MR. GREENSLEEVES "
350 DATA "MRS. WHITEFISH ",’MRS. PETCOCK .
400 < ‘ : D

Ok

FIGURE 2-14 Program listing for “Computer Qlug nr
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oK - .
CLIST 410-600
410 FOR 1=1 TQ 93 READ ROOM.NAME$CI): NEXT I
420 DATA "KITCHEN : *,*LIVING ROOM ~ *,"DINING ROOM
430 DATA *BEDROOM W DENG "L TPATIO
440 DATA “GAME ROOM ", “LIBRARY ", "BALLROOM
450 - ‘
360 -
470 FOR I=1 TQ 6: READ WEAPON.NAME$(I): NEXT I
480 DATA "REVOLUER " UPYPE WRENCH »
490 DATA “CHANDELIER ", " GARROTE »
500 DATA "BLACKJACK ", "BUTCHER’S KNIFE "
510
520 * COPY CLUES & THEIR CODES FDR FUTURE REFERENCE
530
540 CLS: LOCATE 1,1: FOR 1-: TO . 80: PRINT *x";sNEXT 1
550 LOCATE 1,1: FOR I=1'TO 19 PRINT "% :NEXT I :
560 FOR I=1 TO. 19: LOCATE1+1,80: PRINT "%" :NEXT 1
570 LOCATE 20,1: FOR I=1 TO 80: PRINT "%";:NEXT I
580 LOCATE 3,17: PRINT "*»xxx THESE ARE YOUR CLUES & THEIR CODES *¥xsx®
590 FOR 1=1 TO &: LOCATE 4+1,4i PRINT SUSPECT.NAMESCI) I1: NEXT I
800 FOR I=1 TO 9: LOCATE 4+1,30: PRINT ROOM.NAMES (1) "1+ NEXT 1
ok
oK

LIST &410-800

810
420
430
640 *
450
880 7
870

- 680

490
700
210
720
730
740
7250
780
770

780 ¢

790
800
Ok

FOR I=1"TO &: LOCATE 4+1,55: PRINT WEAPON.NAME$CIY I:NEXT I
LOCATE 146,161 PRINT “TYPE {SHIFT-PRINT> OR {SHIFT~ F123 TO MAKE A COPY"
LOCATE 22 1z INPUT "TYPE (RETURN) OR~ (ENTER) T CDNTINUE #aX

v GENERATE THE CGRRECT SOLUTIDN & AN INITIAL GUESS EOR THE PLAYER

DIM SOLUTIONC(3)

RANDOMIZE TIME

SOLUTIONC1)=TNT(RND#&+1)

INDEX=INT(RND*&+13 :

TE INDEX <> SOLUTIONC(1) THEN SUSPECT. ARRAY%(INDEX)="X“ ELSE 700
SOLUTIONC2)=INT(RND*%+{)  * '
INDEX=INT(RND#%+1" :

IFE INDEX <> SOLUTIONC(2> THEN ROOM ARRAYs(XNDEX)=“X” ELSE 730
SOLUTIONC(3)=INT(RND#&+1)

INDEX=INT(RND®&+1) = "

IF INDEX <> SOLUTION(3) THEN WEAPON.ARRAY$(INDEX)="X" ELSE 740

“ MAIN CONTROL SWITCH

4

Ok
LIST 810-1000

810
820
830

-840

850

840
8va -

g80
890
900
%10
220
?30
?48
2350

Cg=rn
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CLS: LOCATE 10,17: INPUT "TYRE <0 TO VIEW ’STﬁTUS BOQRD' {1> TO GUESS";C%

IF C$="0" THEN 850
IF Cg="1" THEN 980 ELSE BIQ

7 DISPLAY THE “STATUS BGQRD”

PENéLTY=PEN§LTY+5
CLS: PRINT *>>3*

FOR I=1 TO &:LBCATE I,4: PRINT 1" "SUSFECT .NAME$C(I) SUSPECT .ARRAYS (I ) tNEXT I

PRINT “">>>»"

FOR 1=1 TO 9:LOCATE &+1,4: PEINT 1" "ROOM.NAME$(I) ROOM.ARRAY$(I): NEXT I

PRINT *»33° )
FOR I=1 TO &: LDCATE 15+41,4:PRINT 1" "WEAPON.NAME$(I) WEAPON.ARRAYS(I1)
NEXT 1 : J

FIGURE 2-14 (continued).
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960 LOCATE 23,1: INPUT "PRESS (RETURN> OR <ENTER> TO CONTINUE ";X
970 GOTO 810

980

990 - ACCEFT THE PLAYER"S GUESS AND DISPLAY IT

1000 ~

Ok

1010 PENALTY=PENALTY+10
-~ 1020 Cs=""

1030 CLS: LOCATE 5,6

1040 INPUT *TYPE THE CODE NUMBERS OF YOUR GUESSES: <(SUSPECT>, <ROOM>, <{WEAPON> *

3 SUSPECT, ROOM, WEAPON

1050 LOCATE 10,27: PRINT SUSPECT.NAME$(SUSFECT» "DID IT*

1040 LOCATE 13,21: PRINT "IN THE "ROOM.NAME$(ROOM?

1070 LOCATE 14,31: PRINT "WITH A "WEAPON.NAMES (WEAPON>

1080 IF SUSPECT<>SOLUTION(1)> THEN SUSPECT.ARRAY$(SUSPECT)="X"

1090 IF ROOM<>SOLUTIONC2> THEN ROOM.ARRAY®(ROOM)=*X"

1100 IF WEAPON<>SOLUTIONC(3) THEN WEAPON.ARRAYS (WEAPON)="X" '

1110 LOCATE 22,1: INPUT "PRESS <RETURN}> OR <ENTER> TO CONTINUE ";X

1120 6070 1130 )

1130 -

1140 7 TEST WHETHER OR NOT THE PLAYER’S GUESE I8 CORRECT

1150 ~

1140 IF SUSPECT=SOLUTIONC!) AND ROOM=SOLUTION(Z) AND WEAPON=SOLUTION(3)
THEN 117¢ ELSE 810
1170 7
1180 - REPORT THAT PLAYER'S GUESS IS CORRECT & TERMINATE A ROUND OF PLAY
1196
1200 CLS: LOCATE 5,19: PRINT "CONGRATULATIONS, YOU HAVE SOLVED THE CASE!*
0K

Ok

LIST 1210~

1210 LOCATE 10,32: PRINT "YOUR SCORE I8 " 315-PENALTY

1220 LOCATE 15,18: PRINT "TYPE <RETURN) OR <ENTER> TO END THIS ROUND*
1230 LOCATE 20,21: INPUT "THEN PRESS <F2> TO PLAY ANOTHER ROUND ";X
1240 PRINT: PRINT

1250 END

Ok

FIGURE 2-14 (continued)

player 10 points, and each look at the status board costs 5 points. The player
tries to get the highest possible score—300.

The first panel welcomes the player to “Computer Clue” and contains
a copyright notice (see Figure 2—15).

The introductory panel (also Figure 2—15) sets out the rules of the game:
cost of a guess, cost to view the status board, and value of a perfect game.

The housekeeping module dimensions the suspect, room, and weapon
arrays. Each category has two arrays associated with it. One holds the name; the
other is initially blank but holds an “X” after the name has been incorrectly
guessed. k

The next module reads the names of the suspects:

Colonel Mustardseed
Professor Plumcake
Mr. Greensleeves
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ﬁ****************************************%**********************iﬁ**************

WELCOME TO -COMPUTER CLUE 11

COPYRIGHT C-CIRCLE BY JOHN M. CARROLL 1984

ALL RIGHTS RESERVED

Wk ok k ok ok ok ok kK K K K Kk K Kk K K

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

HEEERREREEEERFEEERFFEAFEEEEREAEX AR AR R AR R LR AR A EXE AR EAEERERER R REERRERERRRERS

TYPE <RETURN> OR <ENTER> TO CONTINUE ?

HEFEXREEREREXEREEERREEFEEREREEEERXEERRRFEE SR EEEEREERREXEFREREEEFRERRFEEEEEXERERRR D

**x%% RULES OF COMPUTER CLUE I1 %%x%x

EACH GUESS COSTS 10 POINTS

*
*
*
*
*
»*
*
*
. *
EACH LOOK AT THE ‘STATUS BOARDY COSTS 8 POINTS =
*
*
A PERFECT SCORE I8 300 #

*

*

»

*

*

*

k % 3k Kk %k ok ok Kk ok k ok ok ok ok & ok ok ok Xk

FREXREEBER AR ELEEEREEEELEF AR R EEEER LI LR XL REREX TR ER R EX B R R AR RE R ERERE R ERERERXRERER

TYPE <RETURN> OR <ENTER}> TO CONTINUE ?
FIGURE 2-15 Copyright notice and rules of the game.

Scarlett O’Horror
Mrs. Whitefish
Mrs. Petcock

and the rooms:

kitchen
bedroom
game room
living room
den

library
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dining room
patio
ballroom

and the weapons:

revolver
chandelier
blackjack

pipe wrench
garrote
butcher’s knife

The next panel, shown in Figure 2-16, invites the player to use the
screen print utility to copy the list of clues (SHIFT-PRINT for TI computers;
SHIFT-F12 for Heath/Zenith computers). The suspects and weapons are num-
bered 1 to 6; the rooms are numbered 1 to 9. The reason for copying the panel
is that the player will be required to enter guesses as sequences of three numbers
and will need to refer to the panel.

FIGURE 2—16 Schedule of clues and master control switch.

***********ﬁ**ﬁ*****************************************************************

* *
* #x¥x» THESE ARE YOUR CLUES & THEIR CODES #%¥% *
* *
% COLONEL MUSTARDSEED 1 KITCHEN 1 REVOLVER 1 %
» PROF. PLUMCAKE - 2 LIVING ROOM 2 PIPE WRENCH 2 &
% SCARLETT 0°HORROR 3 DINING ROOM 3  CHANDELIER 3 =
* MR. GREENSLEEVES 4 BEDROOM 4 BARROTE 4 =
% MRS. WHITEFISH' 5 DEM 5 BLACKJACK 5 x
¥ MRS, PETCOCK &  PATIO é  BUTCHER’S KNIFE & =
x GAME ROOM 7 *
® LIBRARY &8 *
* BALLROOM 9 *
* . *
* ; 4
* TYPE <SHIFT~PRINT> OR <SHIFT-F12) TO MAKE A COPY *
* B ! *
* *
* ®
********ﬁ*************************#*********************i***********************

TYPE (RETURN> OR <ENTER? TO CONTINUE ?

TYPE <0> TO VIEW “STATUS BBARD; <1> TO GUESS?
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The next routine generates the correct solution by choosmg a random
integer in the range 1-6, another in the range 1-9, and a third in the range
1-6 after the generator has been reseeded by the real-time clock. The routine
chooses another set of numbers and tests to make sure they all differ from the
correct solution. The first set is stored in a three-component solution vector.
The second set is used to index into the category arrays and mark a solution
with X’s; this is the player’s initial and free guess.

~ The main control switch (see Figure 2=16) allows the player to choose
to inspect the status board <0>; the first look is free. Or the player can guess
<1>.

The status board, shown in Figure 217, lists the suspects’ names arid

FIGURE 2-17 Prograr status board and results of a guess at the solution.
3y COLONEL MUSTARDSEED
PROF. PLUMCAKE X
SCARLETT 0”HORROR

MR. GREENSLEEVES

MRS. WHITEFISH

MRS. PETCOCK

KITCHEN

LIVING ROOM

DINING ROOM

BEDROOM

DEN X
PATIOD

GAME ROOM

LIBRARY.

BALLROOM

REVOLVER

PIPE WRENCH - X
CHANDEL IER

GARROTE

. BLACKJ&CK

BUTCHER’S KNIFE

O OBt N = 0 00~ OVUE S Q) B e O U1 D DR

PRESS <RETURNS OR <ENTER> TO CONTINUE %

TYPE THE CODE NUMBERS OF YOUR GUESSES: {SUSPECTS, <ROOM>, <WEAPON> » 1,1;1

COLONEL MUSTARDSEED DID IT
IN THE KITCHEN

WITH A REVOLVER

PRESS (RETURNS OR <ENTER> TO CONTINUE »
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CONGRATULATIONS, YOU HAVE SOLVED THE CASE! FIGURE 2-18 Congratulatory
) display when a
player wins the

game.

YOUR BCORE 1& 240
TYFE {RETURN> OR <ENTER> TO END THIS ROUND
THEN PRESS <F2> TO PLAY ANDTHER ROUND ?

the array, with X’s to denote incorrect choices; likewise for rooms and weapons.
The player types <RETURN> or <ENTER> to go back to the main control
switch. ‘

If the player chooses to guess, he or she must enter a set of three numbers
denoting choice of suspect, room, and weapon. If all choices are correct, the
program branches to the report routine that congratulates the player, displays
the score, and invites the player to start another round by pressing the proper
function key for RUN. If the guess is incorrect, the program returns to the main
control switch. Figure 2—17 shows a guess; Figure 218 is the congratulatory
panel, which appears after a correct guess.

The perceptive reader will notice that there is an easy way to win at
Computer Clue: Since only the incorrect choices are marked with an X, any choice
made by the player that is not so marked is correct. Thus the player can incre-
mentally ascertain the parts of the solution rather than having to guess the three
parts at one time. This kind of attack can be helpful in breaking cryptograms
and guessing other people’s computer passwords!

EEREEXEEXEEXEXREXREX RS EEX X XXX XA EERFFRXEARRERXR XN XX AR XFXEEE XXX EREXERRXEXRER XXX XS ERE

#%%%% WELCOME TO “"SPYCATCHER” =x®%x
COPYRIGHT C-CIRCLE 1%84
BY JOHN M. CARROLL

*

*

*

*

*

*

-*

*

* ALL RIGHTS RESERVED
. !
%*

*

*

*

L3

*

k3

EEEXEEEXEXEEERFE RS EELEF R LS XN RN E R R AR EREEEXELFRE X AR EREFEE B AR LR IR EE R AR ERE R R TR LR

>>TYPE <RETURN> OR <ENTER> TO CONTINUE ?
FIGURE 2-19 Title panel for “Spycatcher.”
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**%%% THESE ARE YOUR CLUES =xx*x

PRESS [SHIFT/F12]1 TO MAKE A COPY

i i 2 z 2 3

4 4 5 5 & BLUE

7 GREEN 8 IVORY ? RED

10 YELLOW i1 BE&RD 12 GOATEE
13 LONG~HAIR 14 MUSTACHE 18 SIDERURNE
1é BOMB 17 KMIFE 18 PISTOL
19 RIFLE 20 SHOTGUN 21 BOMBER
22 COMPUTER 232 FRIGATE 24 MISSILE
25 RADAR 2é BULGARIAN 27 CZECH
28 HUNGARIAN 2% POLE 30 RUSSTAN
3

#%%%% MAKE A COPY3; THEN TYFPE “ENTER® TO SEE MNARRATIVE CLUES?

FIGURE 2—-20 Possible entries for the game solution board. Entry 31 will cancel a previous
" bad choice. :

SPY-CATCHER

The last game is one I regard as my premier program in this area. Most people
find it to be a lot of fun even though it doesn’t have anything to do with random
numbers. I tried it on some real spy-catchers I taught in a course called “Com-
puters for Investigators” (the students were from the Naval Investigative Service,
Army Counter-Intelligence Corps, Secret Service, and U.S. Marshal Service),
and it really held their interest.

Figure 2—19 is the usual title panel. Figure 2—20 is a list of “clues” that
must be entered in their proper places on the game board. Figure 2—-21 lists
what we know about five spies who live next door to one another.

FIGURE 2-21 What we know about five spies who live next door to each other.

1. THERE ARE FIVE HOUSES.

2. THE HUNGARIAN LIVES IN THE RED HOUSE.

3. THE SPY IN THE THIRD HOUSE WEARS A& GOATEE.

4, THE POLE I8 TRYING TO STEAL PLANS FOR & FRIGATE.

S. THE CZECH 15 ARMED WITH & RIFLE.

4. THE RUSSIAN LIVES IN THE FIRST HOUSE.

7. THE SPY WITH THE BOMB IS TRYING TD STEAL PLANS FOR & MISSILE.

8. THE SPY WEARING THE BEARD 15 ARMED WITH & SHOTGUN.

$. THE SPY IN THE YELLOW HOUSE HAS A& KNIFE.

10. THE 5PY WEARING SIDEBURNS LIVES IN THE YELLOW HOUSE.

11. THE RUSSIAN LIVES NEXT DOOR TO THE BLUE HOUSE.

12. THE BULBARIAN HAS & MUSTACHE.

13. THE GREEN HOUSE I8 IMMEDIATELY LEFT OF THE IVORY HOUSE.

14, & KNIFE IS HIDDEN IN THE HOUSE NEXT TO THE SPY WHO IS
TRYING TO STEAL PLANS FOR & RADAR.

15, THE 8PY TRYING TO STEAL PLANS FOR A BOMBER LIVES NEXT
DDOR TO THE HOUSE WHERE & PISTOL 18 HIDDEN.

16. THE SPY TRYING TD STEAL PLANS FOR & BOMBER LIVES MEXT DDOR
TO THE SPY TRYING TD STEAL FLANS FOR A RADAR.

17. THE RED HOUSE 18 ON THE BLUE HOUSE’S RIGHT..

18. THE SPY TRYING TO STEAL A BOMBER LIVES IN THE GREEN HOUSE.

-~> WHICH SPY HAS LONG-HAIR?

~~3 WHO 1S TRYING TO STEAL PLANS FOR @& COMPUTER?

#%%%% MAKE A COPY; THEN TYPE “ENTER’ TO CONTINUE?
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FORMAT FOR SOLUTION BOARD

THESE ARE THE COLUMN DESIGNATIONS:

! 1 ! 2 ! 3 ! 4 ! 5 H é !

! ! ! P : ! !

'HOUSE NUMBER!HOUSE COLOR {DESCRIPTION !WESPON TOBJECTIVE  'NATIONALITY !
! ! ‘ ! ' : v
EACH LINE C1.E. 1, 7, 13, 19 & 211 DESIGNATES & HOUSE

ENTER SQUARE NUMBER AND CLUE NUMBER (I.E. ‘CONTENTS‘) WHEN PROMPTED
ENTER “BRUARE = 31/ TO.ESCAPE PROGReM, :
ENTER ‘CONTENTS = 31 TO ERASE A BAD CHOICE.

»xxx% MAKE A& COPY; THEN TYPE ‘ENTER’ TO CONTINUE?
FIGURE 2-22 Format for the game solution board and instructions for playing the game.

Figure 2—22 is the format of the game board. Figure 2—23 is the game
board with all the easy entries filled in. Figure 2—24 is the source code listing.
The game is an exercise in using the process of elimination, and I'll leave the
rest of the solution to you.

SUMMARY
In this chapter we have seen examples of how a random- number generator can

function as the heart of five games. The first was called Climb the Ladder, and
involved some elementary computer graphics. The second was a ‘buzz-word

FIGURE 2-23 éamé solution board with the easy choices fiited in.
; - Cig

1 - ! tg
ENTER SOUARE NUMBER? ! ! »
1 ! ! 1 : I RUSSIAN
! ! v [ !
-t ! ! t !
7 L e IS V] (IR vz
i [ . ! 8
2 ! BLUE ! ! ; p
v ¢ ! t !
! e ! ! fome
13 114 LS 1S t17 1oig
! : . ! 1 !
3 : ! GOATEE ! ! !
! ! 1 ! !
- b I a— —olt S H T e e
15 v 20 (31 122 v 23 {24
! : ! [ !
4 ! ! ! ! 5
! ! i i !
[ t- : L !
25 (-7 vo27 oza 1 oze 130
: ! ! ! !
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Ok
LIST ~200
10 ®=0
20 GUSUB 1280
20 LOCATE. 5,22:PRINT "*x%%% WELCOME TO <SPYCATCHER' ®#ssxv
40 LOCATE 7,27:PRINT "COPYRIGHT C-CIRCLE 1984"
S0 LOCATE 5,31:PRINT "BY JOHN M. CARROLL®
&0 LOCATE 11,30:PRINT "ALL RIGHTS RESERVED"
70 GOSUB 1340
80 CLS
P0 LOCATE 5,14
100 PRINT"*#x#% THESE ARE YOUR CLUES #xxx
110 LOCATE 7,14: PRINT"FRESS [SHIFT/F12] TO MAKE A COFY"
120 PRINT:PRINT ,
130 DIM CLUES$C31) ,MARRATIVES (25)
140 FOR I=1 TO 31:READ CLUES(I) :NEXT I
150 FOR I=1 TO 31:PRINT I° “CLUE$(I),:NEXT I
140 PRINT:PRINT ‘
170 INPUT*® #%%%% MAKE A COPY; THEN TYPE /ENTER’ TO SEE NARRATIVE CLUES" ;X
180 FOR I={ TO 23:READ NARRATIVE®(I) iNEXT 1
190 CLE , )
200 FOR I=1 TO 2B:PRINT NARRATIVES(D) :NEXT I
ok
210 INPUT® *x%£% MAKE A COPY; THEN TYPE “ENTER/ TD CONTIMUE" ;X
220 CLS ; .
230 LDOATE 5,22:PRINT "FORMAT FOR SOLUTION BOARD"
240 PRINT:PRINT : _
2850 PRINT" THESE ARE THE COLUMM DESIGNATIONS:*
280 PRINT «
270 PRINT"! 1 ! z ' 3 L 4 ! 5 !
& 1o
280 PRINT"! ' ! z ! !
1 .
290 PRINT" !HOUSE NUMBER!HOUSE COLOR !DESCRIPTION 'WEAPON TOBJECTIVE  INATI
DNALITY !° ;
300 PRINT ! : ! ! ' !
P
210 PRINT . _ : . :
220 PRINT® EACH LINE [I.E. 1, ?; i3, 1% & 211 DESIGNATES & HOUSE"
330 PRINT:PRINT - , » o
240 PRINT® ENTER SOUARE NUMBER AND. CLUE NUMBER (1,E. ‘CONTENTS’) WHEN PROMPT
ED* . ;
350 PRINT® ENTER “SOUARE = 317 T0.ESCAPE PROGRAM."
360 PRINT" ENTER ‘CONTENTS = 31° TO .ERASE & BAD CHOICE."
370 PRINT :PRINT
oK
380 INPUT" #xdxx MAKE & COPY3 THEN TYPE YENTER’ TO CONTINUE" ;X
390 CLS

400 SOSUBR 4%0

410 LOCATE 2,1: PRINT" H
420 LOCATE 2,1:INPUT;"ENTER SQUARE NUMBER" ;L

430 IF L>30 THEN 480 .
440 LOCATE 2,1 :FPRINT".

450 LOCATE 2,1:INPUT; ENTER CONTENTE! 3X

420 OM L GOSUE 440,470 ,480,490,700,710,720,730, 546,750,740, 770,780, 790,800, 8

i0,820,830,840;850,940,870,880,890,%00,%10,%20,730, 740,950
4?D GQTD 410

480 CLS:END

470 CLES

FIGURE 2-24 Source code listing of “Spycatcher.”
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500 FOR I=5 TO 20 STEP &
=10 FOR J=1 TO &0

520 LOCATE 1,J

530 PRINT"-"

540 NEXT J,1

550 FOR I=1 TO 22

540 FOR J=13 TO &5 STEP 12
S7P0 LOCATE I,J

=500 PRINT®!®

ak

LIST S90-7%0

SF0 OMEXT J,1

&00 FOR I=1 TO 21 STEP §

10 FOR J=1 TO &é STEP 13

S20 LOCATE 1,0

S30 X=X+ PRINT X

240 NEXT J,1

S50 RETURM

&0 LOCATE 3,2:FRINT CLUES{X) tRETURN
70 LOCATE 3,135:PRINT CLUES{X) :RETURN
A80 LOCATE 3,28:PRINMT CLUESOXD :RETURN
AP0 LOCATE 3,91 :1PRINT CLUES(X» tRETURN
700 LOCATE 2,54:PRINT CLUE®(X) :RETURN
FI0 LOCATE 3,487 :PRINT CLUESXy 1RETURM
720 LOCATE 8,Z:FRINT CLUESO) sRETURN
730 LOCATE 8,15:PRINT CLUER(X) :RETURM
740 LOCATE 2,28:PRINT CLUE#®{x}:RETURN
750 LOCATE &,41:PRINT CLUE$(X) :RETURN
F&0 LOCATE 2,54:PRINT CLUES(X) :RETURN
FPO0 LOCATE 8,47 :PRINT CLUES (X :RETURN
780 LOCATE 13,Z:PRINT CLUE®CK) sRETURN
FRO LOCATE 13,15:PRINT CLUE$OO tRETURN
Ok

LIST &00~1000

200 LOCATE 132,28:FRINT CLUE® O tRETURM
10 LOCATE 13,41 :PRINT CLUE#(X) :RETURNM
220 LOCATE 132,54:PRIMNT CLUES(X: :RETURN
230 LOCAHTE 13,47 :PRINT CLUE$(X) :RETURN
840 LOCATE 18,2:PRINT CLUE$(X) :RETURN
250 LOCATE 18,15:PRINT CLUE#(X) :RETURN
240 LOCATE (8,28:PRINT CLUE®(X) 1RETURN
B70 LOCATE 18,41 :PRINT CLUE$(X):RETURN
280 LOCATE 18,54:PRIMT CLUE#(X) :RETURN
BF0 LOCATE 18,487 :1FRINT CLUE${X? :RETURN
P00 LOCATE 22,2:PRINT CLUEROX) tRETURN
P10 LOCATE 22,15:FRINT CLUE$(X) tRETURN
720 LOCATE £2,28:PRINT CLUE$(X):RETURN
#20 LOCKTE 22,41 :PRINT CLUES(X: :RETURN

F40 LOCATE 22,54:PRIMNT CLUES{X) iRETURN

FEO LOCATE 22,87 :PRINT CLUES(X2 :RETURM

780 DATA

=70 DaTa "1 "z R w g v "

a0 DAaTa "BLUE ", "GREEN " T IVORY " "RED YL UYELLOW *

PO DATA "BEARD U PEOATEE " TLOMG-HAIR" , "MUSTACHE ", " S1DERURNS"

1000 DATa "BOME "y TENIFE Y, UPISTOL "W "RIFLE YLUGHOTGEUN ¢
Ok

kK

LIST 1010-1200

1010 DATA "BOMBER YL UCOMPUTER ° ,"FRIGATE ", °MISSILE ", "RaDAR "
1020 DATA "BULGARIAN" ,"CZECH " THUNGARI&N®  "POLE "L URUSSIAM "

FIGURE 2-24 (continued)



1030
1040
1050
100
1670
1080
1090
1100
1110
1120
1130
1140
11580
1140
1170
1180
1170
1200
Ok

0ok

LIBT
1210
1220
1230
1240
1250
1240
1270
1280
1290
1300
1310
1320
13220
1340
1350
1340
Ok
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DATH "

DAaTa "1, THERE ARE FIVE HOUSES.”

DaTa "2, THE HUNGARIAM LIVES IMN THE RED HOUSE."

UayTi "3, THE SPY IM THE THIRD HOUSE WEARS & GOATEE."

DATA "4, THE POLE I8 TRYIMG TO STEAL PLAME FOR A FRIGATE.™

D&Ta "D, THE CZECH I8 ARMED WITH & RIFLE."

DATA "é. THE RUSSIAM LIVES IN THE FIRST HOUSE."

DATA "7, THE SPY WITH THE BOME 18 TRYING TO STESL PLANS FOR A MISSILE."
DAaTa "8, THE 8PY WEARING THE BEARD IS ARMED WITH A SHOTGUN.®

DATA "%, THE SPY IN THE YELLOW HOUSE HAS & KNIFE."

DAaTA 10, THE SPY WEARING SIDEBURNS LIVES IN THE YELLOW HOUSE."

CATA "11. THE RUSSIAN LIVES MEXT DDOR TO THE BLUE HOUSE."

DaTa "12. THE BULGARIAN HAS A MUSTACHE."

DaTd "13. THE GREEN HOUSE IS IMMEDIATELY LEFT OF THE IVORY HDUSE."
DATA "14, A KNIFE 15 HIDDEN IM THE HOUSE NEXT TQ THE SPY WHO Ig®

DaTa © TRYING TO STEAL PLANS FOR A RADAR."

DaTa "15. THE SPY TRYING TO STEAL PLANS FOR A BOMBER LIVES NEXT"
1210~

oAaTE " DOOR TO THE HOUSE WHERE A FISTOL IS HIDDEN.”

DaTa "1é. THE SPY TRYING TO STEAL PLANS FOR A& BOMBER LIVES NEXT DOQOR"
DATA © TO THE SPY TRYING TO STEAL PLAMS FOR A RADAR."

DATA "17. THE RED HOUSE I8 ON THE BLUE HOUSE’S RIGHT."

DATA "1&. THE SPY TRYING TO STEAL & BOMBER LIVES IN THE GREEN HOUSE.”
DATA " --> WHICH SPY HAS LONG~HAIR?"

DATA " —-> WHO IS TRYING TO STEAL PLANS FOR & COMPUTER?®

‘THIS MODULE FRAMES A SCREEN

CLS: FOR I=1 TO 80: PRINT"®";: NEXT I

FOR I=2 TO 18: PRINT"*": NEXT 1
FOR I=1 TO 80: PRINT"®"3: MEXT I
FOR I=2 TO 18: LOCATE I,80: MEXT I

RETURN

‘THIS MODULE ADUANCES THE PROGRAM

LOCATE 21,203

RETLRN

INPUT® > >TYPE <RETURN} OR <{EMTER> TO CONTINUE "3 X

FIGURE 2-24 (continued)

47

generator. The third and fourth were the gambling games Roulette and Wheel-
of-Fortune. The fifth was a computer version of the board game Clue. The last
was called Spy-catcher, and was included purely for your amusement. Inciden-
tally, it was adapted from an Operation Research problem that used to be used
at New York University to help cull Ph.D. candidates.
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RANDOM NUMBERS

We have seen that a sequence of random numbers is a necessary component of
any probabilistic simulation. We have said that randomness implies that any
number in the range of interest has an equal chance of appearing each time,
and that the appearance of any number in no way affects the chance of that
number or any other number’s appearing. Technically, we say that random
numbers must be uniformly distributed, and must not be serially correlated.
When numbers follow some distribution other than a uniform one, such as the
Poisson distribution, for example, they are properly spoken of as random var-
iates, not random numbers.

TRUE RANDOM NUMBERS

Truly random numbers are the product of mechanical or electrical processes.
Even then the producing system may favor some numbers more than others.
Technically we say that the generator may be biased. This bias is the result of
physical imperfections in the generator. For example, if we were to record the
results of plays of a roulette wheel, we could produce a random sequence of the
numbers from 00 to 36 prov1dcd the wheel were perfectly balanced; otherwise
we would observe a bias in the sequence such that one or more numbers would
tend to appear more often than others.
There are a lot of other fun ways to generate random-number sequences.
Rolling a fair die will generate numbers in the range 1 to 6. A classical way to
generate random-number sequences is the top-hat method. You take, say, 100
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poker chips and mark each with a unique number from 0 to 99. Then shake
them well in a tall silk hat or any convenient receptable and pull one out. Record
the number, replace the chip, shake the hat, and draw again. It is slow going,

" but that is the way researchers laid the bases of the science of statistics in the
eighteenth and nineteenth centuries.

In principle, you can generate a random-number sequence by randomly
interrupting any uniform process; this is what happens when the ball falls into
a slot as a roulette wheel begins to slow down. This exemplifies one of the modern
methods for generating random numbers: You can use pulses from the decay
of a radioactive isotope to open and close an electronic gate between an oscillator
and a counter, then record the number of pulses that reach the counter while
the gate is open.

PROGRAM TO GENERATE TRUE RANDOM NUMBERS

The following BASIC program lets you simulate a random-number generator
on your personal computer:

10 CLS
20 FORI = 1 TO 100
30 A% = INKEY$: IF A$ = " " THEN 50
40 PRINT I
50 NEXT I
- 60 GOTO 20

Statements 20 and 50 generate the numbers from 1 to 100 at the rate
of a million operations or more every second; statement 60 makes the counting
repetitive. In statement 30, the program scans the keyboard (INKEY$), and
stores the character currently being transmitted in storage location A$. If no
character is being sent (that is, A$ = " " or null)), program control is transferred
to the NEXT statement of the FOR-NEXT loop and counting continues. We
can therefore regard the counting loop as a continuous process.

This process is interrupted whenever location A$ is found to contain
any character. In this case, control is transferred to statement 40 and the program
prints the current value of index I; that is, the value of the count when the
counting process was interrupted. The act of striking a character on the keyboard
can be regarded as a random process because of the great disparity in speed
between manual typing and execution of the count loop. Figure 3—1 shows a
screen full of random numbers generated this way.

Theoretically it is impossible to generate random numbers by any purely
arithmetic process (algorithm) except one that calculates the value of an irrational
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LIST

10"+ PROGRAM TO GENERATE TRUE RANDOM NUMBERS
20 - IN THE RANGE 1 TO 100

30 CLS: KEY OFF ~

40 FOR 1 = 1°TQ 100

50 A% = INKEY$: IF A% = "% THEN 70
&0 PRINT 13 N
70 NEXT 1

86 GOTO 40

B -

FIGURE 3~1 Program for generating true random numbers and a screen full of its product.

number, such as PI or the square root of two, to, say, a million or more decimal
places

Most arithmetic processes for generating random numbers are recursive
in nature; the numbers in a so-called random sequence are generated by per-
formmg a predetermined set of operations on the last one selected. For this
reason, it cannot be asserted that the numbers are truly independently chosen.
Therefore, they are called pseudo- or false random numbers. However, every-
quy uses them as though they were truly random, and, as we shall see, many
sequences of pseudorandom numbers pass the standard statistical tests for ran:
domness.

Let’s examine the random properties of the bullt-m BASIC function
RND. RUN this program: ‘

10 CLS: KEY OFF
20 RANDOMIZE TIME
30 FOR I=1 TO 100
40 LOCATE INT(RND#25) +1, INT(RND*80) +1: PRINT "«";
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50 NEXT I
60 IF X=0 THEN 60

The first statement clears the screen and turns off the function-key menu
in line 25 so the whole screen is available for display. Statement 20 seeds the
random-number generator from the real-time clock. Statements 30 and 50 are
a FOR-NEXT loop that will generate 100 random points.

Statement 40 selects the coordinates of a point on the 25-by-80-character
matrix of the screen by generating two pseudorandom integers. Then it prints
an asterisk at that point. Statement 60 is an infinite loop; it prevents the program
from ending and therefore stops the BASIC interpreter from printing “OK”
and spoiling the appearance of the display. To stop the program, mmultaneously
depress the keys SHIFT and BREAK/PAUSE.

There are 2,000 possible points in the character matrix, RUN the pro-
gram with the limit of the FOR-NEXT loop set to 1,000 and observe how the
matrix fills up, Figure 3—2 is a distribution of 100 random points. Flgure 3-3
is a distribution of 1,000 points.

You can generate a denser matrix using your personal computer’s graph-

FIGURE 3-2 Program for generating random dot patterns and a pattern contamlng 100

dots.
* * *
* * *
* * * *
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* * *
* * * * ® *
* * % * *
* * ¥ * * X
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* ® * * * ®
*
* *¥ *% *
* * ¥ *
® * * *% *
* * *
*
* *
* *
EE I * * * %
* *»
* * % * *
0Ok
LIST

10 © PROGRAM TO GENERATE 100 RANDOM DOTE

20 CL8: KEY OFF

30 RAMDOMIZE TIME

40 FOR I = 1 TG 100

50 LOCATE INT{(RND % 25) + 1, INT(RMD * 80> + 1: PRINT "#*";
&0 MEXT 1

F0OIF X = @ THEN 70

Ok :
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LIST

10 ¢ PROGRAM TO GENERATE 1000 RANDOM DOTS

20 CLS: KEY OFF

B0 RAMDOMIZE TIME

40 FOR I = 1 TO 10600

S0 LOCATE INTO(RND * 2353 + 1, INT(RND % 80) + 1: PRINT %%
&0 MNEXT I

70 IF X = 0 THEM 70

Ok

FIGURE 3-3 Program for generating random dot patterns and a pattern containing 1,000
dots.

ical capability. Unlike the 25-by-80—character matrix, the graphics matrix of the
TI/PC measures 300 by 720. RUN this program for 100, 1,000, and 10,000
points:

10 CLS: KEY OFF

20 RANDOMIZE TIME

30 INPUT "ENTER NUMBER OF POINTS: ", NUMBER
40 WHILE COUNT < NUMBER

50 COUNT=COUNT +1: LOCATE 1,1

60 X=TINT (RND*720)+1: Y=INT(RND*300) +1
70 PSET (X,Y)

80 WEND

100 PRINT NUMBER; "POINTS"

110 IF COUNT=NUMBER THEN 110
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Statement 30 invites you to enter the number of points you want to
display. Statements 40 and 80 are a WHILE-WEND loop that helps computer
scientists avoid using the “infamous” GOTO. Graphic coordinates X and Y are
selected at random, and statement 70 prints a small dot at the location selected.

Random pattern showing 100 dots created using the POINT X,Y command.
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andom‘patten shing 10, dots. The ranmcolo?ng i achieved uin tstme'nt: ' o
COLOR INT (8*RND)+1). - R

Pattern consisting of 100 randomly selected and coiored‘graphicsv characters.
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Pattern consisting of 300 random graphics characters. Character selection is made using
the statement: PRINT CHR$(127 + INT(128+RND) + 1).

e display matrix is 80 by 25.
Bi: .

57
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MID-SQUARE RANDOM-NUMBER GENERATOR

The first algorithm for generating pseudorandom numbers was the mid-square
method. It was used in the mid-1950s, when the principal use of simulation was
in designing thermonuclear weapons. It works this way: Take, say, a four-digit
integer; multiply it by itself; chop off the two low-order digits and the two (at
most) high-order digits. Report the resulting four-digit number as the first ran-
dom number in the sequence, and use it to generate the next one. -

This program implements the mid-square algorithm:

10 CLS: INPUT "ENTER 4-DIGIT SEED NUMBER"; S#
20 FORI = 1TO 100
30 X# = S# » S#

.40 X# = INT(X# / 100)

50 X# = X# — INT(X# / 10000) % 10000: PRINT X#;
60 S# = X#

70 NEXT I

Statement 10 clears the screen and invites the user to type in a four-
digit number as a “seed” to start the process. Statement 20 sets up a FOR-NEXT
loop to generate 100 pseudorandom numbers. Statement 30 squares the seed;
note that we are using double-precision arithmetic. If the seed were 2061, X#
would now be equal to 4247721.

In statement 40 we remove the low-order digits, 21, by dividing by 100
and retaining the integer quotient. Statement 50 is a modulo or division-re-
maindering operation employed to get rid of the high-order digit, 4. If there
were two high-order digits in an eight-digit square (instead of one high-order
digit in this seven-digit square), this operation would get rid of both of them.
We divide 42477 by 10000, retaining the integer quotient of 4; multiply by 10000;
and subtract 40000 from 42477, leaving the mid-square of 2477. This value is
reported as the first random number in the sequence, and in statement 60 is
set equal to S# in order to generate the second member of the sequence.

The problem with this pseudorandom-number generator (PNG) is that
the sequence is very short—only 34 numbers, and then the mid-square degen-
erates to 0. With very few exceptions, mid-square sequences either degenerate
to 0, converge on a constant (the seed 2500 never departs from that value), or

. cycle forever through a short loop (the seed 7777 ends up in the cycle 2100,

4100, 8100, 6100, . . .). Sequences that are usable—say, on the order of 100,000
or more numbers—can be created using longer seed numbers.

Figure 3—4 shows three degenerate mid-square sequences. The first
degenerates to zero; the second degenerates to 7600; and the last degenerates
to a repeating short cycle: 2100, 4100, 8100, and 6100.



ENTER A FOUR-DIGIT SEED NUMBER ? 2041

2477 1355 8360 8894 1388 9245 8402 5934
3225 4004 480 2304 3084 5110 1121 2588
5129 30646 40023 240 574 33817 24 5 0 O
6 0 0 0 0 0 O 0 0 0 0 0 0 0 0 0
0 0 & 0 0C 0 0 00 0 0 0 0 0 0 0
0
aly
ENTER A FOUR-DIGIT SEED NUMBER ? 1357
8414 7933 2502 2600 7800 7&00 7800 7400
7400 7400 7400 7400 74800 74800 7800 74800
7600 7800 7400 7800 7800 780G 7400 7600
7400 7800 7600 7400 PE00 TFE00 FE00 7400
7600 76400 7400 7800 7400 7600 7400 Fe0O
7400 7&00 7800 7400 7800 7400 7400 7400
7400 7400 7800 7F&00 700 P00 7400 P00
7400 7400 7400 7400 7400 Fe00 7400 7400
[e14

ENTER A FOUR-DIGIT SEED NUMBER ? 1379

2360
5842
0 0
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7400
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7600
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7600
7600
7400

5496
1404
o 0

[ e
oo

7400
7400
7600
7600
7400
7400
7400

4444

$748

i}
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7400
7400
7400
7400
7a00
7400
7400
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7491

4138

2}

1]
a 0
o o

7400
7400
7600
7400
7600
74600
7400

1150
1230
o 0

o 0
g 0

7400
7&00
7600
7400
7600
7400
7600

384
8100
4100
2100
4100
8100

8147 37346 $S¥6 4&FR7  PSBO. 7744 27RE  81F8
8044 280 784 4144 7733 7992 8720

2700 2900 4100 8100 4100 2100 4100

2100 4100 8100 &100 2100 4100 8100

4100 8100 4100 2100 4100 8100 4100

8100 4100 2100 4100 3100 4100 2100

6100 2100 4100 8100 4100 2100 4100

2100 4100 8100 4100

P016 2882 3059 3574 7734
8449 7239 4031 2489 1951
1474 1726 9790 8441 2504
4100 2100 4100 8100 4100
2100 4100 8100 4100 2100
4100 8100 4100 2100 4100
8100 4100 2100 4100 82100
6100 2100 4100 8100 4100

Ok

Qk

LIST

10 7 MID-SGUARE PSEUDD-RANDOM

NUMBER GENERATOR

SEED MUMBER "

S#

20 CLS: KEY OFF

30 INPUT * ENTER A& FOUR-DIGIT

40 FOR I = 1 TO {ag

S0 X# = SH = S8

&0 XE = INTI(X# ~ 100

FO X# = X# - INT(X# / 10000) = 10000
80 PRINT xX#;

70 SH = X#

100 MEXT I

ok

FIGURE 3-4 Mid-square generator program and examples of its output degenerating to
0, to 7600, and to a repeating short sub-set.

0
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An acceptable mid-square generator for 35-bit mainframe computers is:

X(1) = (9653042877)2 (mod 67108864)/512

MULTIPLICATIVE CONGRUENTIAL (MC) GENERATORS

Today most pseudorandom-number generators use the multiplicative congruen-
tial algorithm, also called the method of power residues. You start with a prime
number to use as the modulus M (the divisor in a division-remaindering oper-
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ation); a multiplier A that must be relatively prime to the modulus, and any seed
X(0).

X(1) = A * X(0) mod M

By multiplying the seed by the multiplier and taking the remainder when
divided by the modulus, you produce the first member of the pseudorandom
sequence X(1), whlch is also the replacement for the seed in generating the next
member.

To illustrate how this algorithm works, tdke 13 as the modulus, 2 as the
multiplier, and 1 as the seed:

1*2 =2mod 13 = 2
2%#2 =4mod 13 = 4 A
4%2 =8mod 13 =8
8%2 = 16mod 13 = 3
3%2 = 6mod 13 =6
6+*2 = 12mod 13 = 12
12%2 = 24 mod 13 = 11
11#*2 = 22mod 13 = 9
9%2 =18mod 13 = 5
5% 2 = 10mod 13 = 10
10 %2 = 20 mod 13 = 7
7%2 = 14mod 13 = 1

The cycle continues forever. What you have done is to shuffle the num-
bers from 1 to 12. You can never generate 0, nor can you generate 13. In this
problem, the number 12 has a special name; it is called the Euler function. It
is one less than the modulus. Of course, this sequence is very short; it is no better
than the mid-square sequence. However, if the number chosen as the modulus
is very large, the pseudorandom-number sequence acquires the properties of a
true random-number sequence. :

FULL-PERIOD MC GENERATORS

‘To get a full cycle of M-1 pseudorandom numbers, the multiplier A must be a
primitive (prime) root of the modulus. Primitive roots of large numbers are not
that easy to find. The definition of a primitive root is circular: A primitive root
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is a number that, when used as a multlpher in a pseudorandom-number gen-
erator, produces a sequence of length M-1 without repetition.

The important parameters are the multiplier A and the modulus M.
The seed X(0) is not important, because the sequence can begin at any point.
One of the earliest generators used A=23 and M=2"35 + 1 (34,359,738,369).
The problem with this generator is that it has high first-order serial autocor-
relation, as do all MC generators with low values of A; the value should be on
the order of the square root of M.

With 36-bit mainframe computers such as the DEC System 10, the values
are: A=3125 and M=2"35 — 31 (34,359,738,337). The modulus is the largest
prime number less than the value of a full-length register filled with ones.

With 32-bit mainframe computers such as the IBM System.370/30XX
models, the values are A=16807 and M=2"31 — 1 (2,147, 483 ()47)

Other values that have been used are: A=7"11 (366,714,004) and M =229
+ 1(536,790,913); and A =13"13 (455,470,314) and M=2"31 — 1 (2,147,483,647). .

PARTIAL-PERIOD MC GE‘NERATORS

If you can’t find a suitable primitive root, you can use a multiplicative congruen-
tial generator with the following specifications:

M = 2°L where L is the full length of a computer register in bits
A = 8*K + or — 3 where L is any integer, and
A is approximately equal to the square root of M.

Unfortunately, this is not a full-period generator. If you start with an
even seed, you will produce no odd numbers and your cycle length will only be
M/8. If you start with an odd seed, you will produce no even numbers and your
cycle length will be M/4.

MIXED MULTIPLICATIVE
CONGRUENTIAL (MMC) GENERATORS

You can improve things by using a mixed multiplicative generator: .
X1 = (0)*A + C (mod M)

where C is any. prime less than or equal to A (usually 1); and

A =4¥K+1and 27T +1

where K is any integer and T is any integer >= 2.
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The MMC generator produces a sequence of length M. Its first-order
(Pearson product-moment) serial autocorrelation for pairs can be found from:

tho = (1/A) — (6*C)/(A*M) * (1 — (C/M) + or — (A/M)

so keep C small and A on the order of the square root of M. F or both these
generators, serial autocorrelation for triples is bad.

ARITHMETIC CONGRUENTIAL GENERATOR

Another kind of PNG is the arithmetic congruential generator. Here:

X(L+1) = X(L—1) + X(L) (mod M)
1
Just start with two random integers, add them to get the third number, add the
third number to the second to get the fourth, and so on. The cycle length (also
called “period”) is K+2*(L —1) where K is some integer. The serial autocorre-
lation can be quite high for high-order lags (see page 115).

SHIFT REGISTER GENERATORS

A digital circuit known as a maximal-length linear-shift register (MLLSR) can
be used as a PNG. However, I have found that it tends to produce sequences
with-extremely high first-order serial autocorrelation.

A 34-stage MLLSR employs feedback that XORs stages 1, 8, 33, and 34.
It generates a sequence of 17,179,869,183 pseudorandom numbers.

SUMMARY OF PN GENERATORS

In summary, the best PNG is a multiplicative one that uses a primitive root of
the modulus as a multiplier. Preferably, the multiplier should be on the order
of the square root of the modulus (to minimize first-order serial autocorrelation).
Most built-in pseudorandom-number-generating functions use at least two gen-
erators: one fills a matrix (two-way table) with random numbers; the other
(maybe two) makes random selections from the table. Some computers have
hardware generators. They operate on the principle of random pulses gating a
high-frequency oscillator into a pulse counter. Some don’t use radioactive iso-
topes as the source of the random pulses because these substances may be ex-
pensive and dangerous. They may use fluorescent tubes or heating elements.
This program uses the 3125/34359738337 multiplier/modulus combi-
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nation, which is used on some 36-bit-word mainframes, such as the Digital Equip-
ment Corporation’s System 10:

10 CLS: INPUT "ENTER SEED"; SEED#

20 M# = 34359738337

30 A# = 3125#

40 FORI = 1 TO 100

50 R# = SEED# * A# — INT(SEED# % A# / M#) « M#

60 N = R# / (M# — 1): PRINT USING " . ######;"; N;
70 SEED# = R#

80 NEXT I

Statement 10 clears the screen and invites the user to enter a seed num-
ber. The seed determines the starting place in the pseudorandom-number se-
quence; any number will do.

Statements 20 and 30 insert the modulus and multiplier as double pre-
cision constants. Statements 40 and 80 set up a FOR-NEXT loop to generate
100 random numbers. In statement 50, the seed is multiplied by the multiplier.
The operation of division-remaindering is performed as was done in the mid-
square algorithm, and in statement 70 the seed is set to the value of the first
number generated in order to generate the next number. Statement 60 differs
from our presentation of the mid-square algorithm. The 100 random numbers
are printed out, ten to a line, in conventional format: as six-place decimals
normalized by dividing each member of the sequence by the Euler function
(Modulus — 1). Figure 3—5 shows the results of using a multiplicative con-
gruential pseudorandom-number generator.

TESTING GENERATORS FOR RANDOMNESS

We are going to use two classical tests for randomness to compare the 3125/
34359738337 multiplicative congruential algorithm with the RND function built
into the MS/BASIC subsystem. The first test is to determine whether or not the
numbers of a sequence are uniformly distributed; that is, whether every number
has an equal chance of being chosen.

The second test is for serial autocorrelation between adjacent pairs of
numbers; it tells whether or not the appearance of one number affects the chance
of another one’s appearing next. There are many other tests for randomness.
Sometimes the serial autocorrelation test is set up so that instead of just com-
paring adjacent pairs of numbers, it will compare numbers separated by 1, 2,
3, ... up to as many as 19 or more intervening numbers. I have found these
two tests to be sufficient for most practical purposes.
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ENTER SEED 7 123456 ; y , ,
L011228 ,088306 955081 429462 068434 .857208 774229 .715801 .877917 .470802
L754503 071632 850283 .135442 .320145 .454084 843225 577544 .BRI027 ,P57447
L339908 212226 205684 782744 (634415 .7P4255 .ZPL088 (274324 248745 828392
\725243 .448245 745677 740735 .795419 485180 .184833 .853124 (012863 .177743
572156 (984003 2358164 747215 .544305 202271 .094487 521574 .919491 .410011
.283204 012213 .184945 ,452377 479077 .1146470 ,948024 .0804%98 .555942 .317285
.514288 .150914 .405853 291953 351931 .784508 .S584355 .358842 .381479 .121532
.787007 (396028 .587435 .360379 .185580 .937993 .228644 .513522 .PH7292 537442
.504254 043098 .4808%7 .B01541 814710 .217307 .083165 .889571 .P09959 .622918
LS17811 458809 (774586 .749411 .409323 .134498 931324 328593 .351809 .403120

oK

Ok

LIST | )

10 * MULTIPLICATIVE CONGRUENTIAL PSEUDO-RANDOM NUMBER GENERATOR
20 CLE: KEY OFF

20 INPUT "ENTER SEED "; SEEDH

40 ¢ ; ;

50 ¢ BUILT~IN GENERATOR

&0 MHS34359738337#

70 AH=31254

a0

S0 FOR I = 1 TO 100

100 R# = SEEDH # A# — INTCSEED# * A / M#) » M#
110 N = R# # (M# - 1)1 PRINT USING * .HH#EEH"; N;
120 SEED# = R#

130 NEXT 1

oK

FIGURE 3-5 Multiplicative coﬁgjr‘uential generator and an example of its output.
Uniformity Test

_The test for uniformity generates 500 numbers in the range from zero
to one. (If you are wondering how a multiplicative congruential generator can
possibly produce the value zero, it would be a very low number that rounds off
to zéro in the sixth decimal place.) It classifies the numbers as to whether they
are less than or equal to 1/10, less than or equal to 1/5, 3/10, 2/5, 1/2, 8/5, '7/10,
4/5, 9/10, or 1. Then it plots a bar chart, or histogram, by printing an asterisk
for each number in each class. If the 500 numbers generated were distributed
among these 10 classes with perfect uniformity, there would be 50 asterisks in
each of the 10 bars.

Test Evaluation by Chi-Squared

When comparing two generators, it is cotivenient to use a single iumber

that captures the essence of the histogram. One such number is the statistic

called chi-square. This is computed by subtracting the number of asterisks in
each bar from the number we expect will be there (that is, 50), squaring the
difference, additig the results from each of the ten bars, and dividing the sum
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of squares by the expectation (50). There are tables of chi-square that will tell
us how good our results are. The acceptable value of chi-square for a given test
depends upon the number of classes (expressed as “degrees of freedom”) and
the confidence we wish to place in our results. A test like this has 9 (10 classes
minus 1) degrees of freedom; and at the 95 percent level of confidence (that
means there will be 1 chance in 20 that our results are wrong) the acceptable
value of chi-square is 16.9.

In our plovram statement 10 sets up a ten- component array to hold
the count of numbers in each class. Statement 20 obtains a seed from the com-
puter’s real-time clock. Statements 30 and 140 establish a FOR-NEXT loop that
generates 500 random numbers. Statement 40 branches to a subroutine that
generates a random number. Statements 60 to 80 constitute a FOR-NEXT loop
that classifies each random number into one of the ten groups. Statements 100
to 160 display the results. Statements 120 to 140 are a FOR-NEXT loop that
prints the asterisks of each bar. Statement 150 is a FOR—NEXT loop that cal-
culates the value of chi- -square.

- Figure 3—6 shows the frequency distribution of pseudorandom numbers
produced by a muluphcatlve congruential generator and a listing of the 28
statements of the analysis program.

When we compared the RND and MC generators, we found thdt both
generators produced a relatlvely flat or uniform distribution; from a statistical
‘point of view, anything better would be suspect. The value of chi- -square is 4.12
for the algorithm and 3.76 for the built-in' generator; both are well below the
criterion value of 16.9. One could jump to the conclusion that the built-in gen-
erator is better than the algorithm. Figure 3—7 dlsplays the results of this test.

In fact, we don’t yet have enough ev1dence for such a conclusion in this
test alone. However, I have run alarge number of tests and the built-in generator
always produces the lower value of chi- squared However, the test for uniformity
is only a necessary test for randomness, not a sufficient one. The sequence .1,
2,.8,4,.5,.6,.7,.8,.9,1,...would produce a perfectly flat distribution whose
value of chl-square would be 0. It could hardly be regarded as a sequence of
random numbers

Maximum Test

Here’s an interesting point: If you divide the sequence into groups of
two numbers, three numbers, ...or N numbers, select the largest number in
each group, and multiply it by 1tself as many times as there are numbers in the
group, the resultmg sequence of numbers should be umformly distributed. This
test works not just for numbers but for their 1nd1v1dual digits as well if the
underlying sequence is truly random
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*%%%% DISTRIBUTION OF RANMDOM NUMBERES xxxxx
Rt ] ¥XAEEEREERFXBEEXRRERREREEEEREREFREREEERFERRERER
R4t 2 2EAXEREEREEAFEFRERBEEXEERFERFERBLRXEE A LR AR B E LR ER AL XXX RLEXXFRRRR RN
Rt 3 XXX EREEERERREEFRFEEEEF LT EXREX XXX LR X AR E AR X XA EXE XXX
Fit 4 SEEXEEFEREREXREXEXRFEXALEFRXERNEEREEEE SR U RBRXRXXEXREXREXRXE
Rt .5 XE4EXEEXEEXREREAEXBAFEEXRERREREREEXELRERXR
R{+ ,4 ZEEXEXEFEEXEEERXRERFEXEAEEXFBXRELEE XXX RRRIXERRRER XK %
Ré+ 7 XEREEREXEAFREEXEEEEEREELXAERLHFEREREEERES
Fit 8 ¥AEXERFEFAFXREEEEXEFXFXEERLEX XXX XX XX XFXF XXX XXX LR X R R ERXXRREE
Rt .9 RERREZEXEXERFEXERRERFEXERERFEAREREXREREERERERERXRERE RS

R+ | ¥EEFEERREEBEFEXRIRRERERARELREREEFEREERRHER
CHI SOUARED= 12,948
0Ok

Ok

LIST ~190

10 DIM CL0s

20 SEEDH=TIME

30 FOR J=1 TO 300

40 GOSUB 180

S0 K=H

&0 FOR I=1 TO 10

FOOIF X{={1/103 THEN C(I)=C{I13+1:GOTQ 90

80 MNEXT I

S0 NEXT J

100 CLS ’
110 LOCATE 1,19: PRINT "#x%%x DISTRIBUTION OF RANDOM NUMBERS *xxxx"
120 FOR I=1 TG 10

130 LOCATE 1+1%2,1: PRINT "R<+"1/103: FOR J=1 TO C(I): PRINT "#%";: NEXT J
140 MEXT 1

150 FOR I=1 TO 10: CHI.SQ=CHI.SQ+(C{I)~S00%{C{I>=850)-50: NEXT I
140 LOCATE 2Z2,1: PRINT "CHI SQUARED="CHI.SQ

170 END

180 M#=34359738337#

190 AH=31258

Ok

ok

LIST 200-

200 7 SEEEERFEEEREEER AR R E B AR EERENER X R B AR LR R AR SRR R X LR R RREREN
210 © TRY THESE &:M PAIRS:

280 7 23:3435973834% 2125 :2438F7IB3B? 14807:2147483847

230 7 3&4714004:53£770913 455470314:2147483447

240 1 EXEXXXFEBEXRFEFEE I e Y R T T
250 R#=SEEDH*AH-INT(SEEDH#*AE/MHE #MH

280 N=RHSCM¥-12

270 SEEDH=R#

280 RETURM

kK

FIGURE 3-6 Program for plotting the frequency distribution of pseudo-random numbers
and calculating chi-squared for its goodness-of-fit to a uniform distribution;
with an example of its output.
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#%x%% DISTRIBUTION OF RAMDOM MUMBERS s#x#%
EERREEE AR RN AR RN AR R RN EF AR ERERERERE AR EFER XN RSB RRRRRRERRRRER

EEEREXEXERRERERERSR EFEEEXEERLEREBEEZEREEREEERERX

D OEEFEEFEEFFEEEERXELEEEZFEERLERLEERFERZE XXX EE R R RES

EEEEEFEFEELEAXEELEE R XX FEEZLEXEZEFEXREEEXFXERFEXERER
*******i***********************i*****%%**%***** .
EREEEEFEEFEEXEEXREEREEREXFEFEERXE XL REXEERE XXX ERRERE
****************************************%%****i**
EREEEEEEREEEEEEEXEEFEXEEFXEERERERE R BB LR U EEEREXFRXEEREES

******************************************i***&*%

] ¥REFEREEEEERRXEBEREFR RN AR AR REEERREREREEXRERR R T
SOUARED= 4,12

.1
.2
.5
.4
.5
&

.7
.8

4

®%%x% DISTRIBUTION OF RANDOM MNUMBERS ®x*%
EEEXFEFEXFEEEEREREF XXX XV FEXEXFEERE XXX EXREREERERES
EXEXFEFLEFREXRRER AR REFEEX RIS EEREREXEEXER
EXEEKEEREEEXEEXRFEREEREREE XL EEAEBERFXEEREEEREREE R 2%
EEAEEF BRI AR S EEREEEEEEA BRI AR F R R E AR R R EEREERF R SR EE R
**********************************************%****%
EEREERERREE SRS ARG REEEEREE XL TR AR AR E R LR RREERRERN
*******%******************i**f*****i**i************
EREREREEESRRE B BB EL LR RS ER AR RE RS EREREE R LA X R XX ERER

EEERRREEREFEEEEEREELEEEREEAEFREE LR R X R LSRR R ERERERE R R R KRR RRN

R{F | HAAXEEERREREE XA F R AR R R R LR AR R R R R LR R AR RRRX
CHI SGUARED= 3.74

oK

FIGURE 3-7 Comparative results of tests for uniformity on a multiplicative congruential

generator, and the built-in BASIC random-number function.

TESTING GENERATORS FOR AUTOCORRELATION

67

If we were to generate the sequence of numbers 1, 2, 3,4, 5,6,7,8,9,0, 1, 2,
..., it would easily pass the test for uniformity even though the numbers are
far from random. The reason they are not random is that they are not inde-
pendent. The appearance of one number—say, 1 —means that the next number
will be 2, and so on. We call this defect “serial autocorrelation” of adjacent pairs
of numbers.

The test for serial autocorrelation is a more rigorous one than the test
for uniformity. In its classical form the test makes use of a 10 by 10 matrix

(checkerboard). The rows and columns both represent the classifications 1/10,
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1/5, ... 9/10, 1, as used in the uniformity test. However, the rows will contain
the counts of the first member of each overlapping pair of random numbers;
the columns will contain the counts of the second member of each pair. For
example, if the first number of a pair is .42 and the second number is .68, the
count stored in the cell found at the intersection of the fifth row and the seventh
column would be increased by one. Displaying the results as a histogram would
demand 100 bars, one for each square of the checkerboard.

Since we can’t display 100 bars on a 25-by-80 screen, we have made some
simplifications in this test. We use only three classifications: less than or equal
to 1/3, less than or equal to 2/3, and less than or equal to 1. Thus we can get by
with only 9 bars instead of 100. We shall generate 396 numbers, providing for
an expectation of 44 asterisks in each bar. (We want a short bar because the
legend is long, since it has to express both the row and column limits.)

‘ Figure 3—8 lists the analysis program for serial autocorrelation and shows
the results of a test on an MC generator.

In the program, statement 10 obtains the seed of the random number
generator from the real-time clock; lines 320 to 420 are the random-number
generator; statements 110—120 and 120-130 call it to get a pair of random
numbers. Statements 20—50 and 290—-310 set up and label the histogram display.

Statements 50 and 250 set up a FOR-NEXT loop that will generate,
classify, and print histograms of 396 pairs of random numbers. Statements 80—

100 are a FOR-NEXT loop that classifies the first member of each random-

number pair into one of three equal classes. Statements 130-140 do the same
for the second member of the pair. Statements 90, 140, and 160 map the three-
by-three checkerboard into a linear histogram of nine bars in which R1 cycles
through all three classes while R2 advances in value 1/3 for each cycle of R1.
Statements 170-190 are a FOR-NEXT loop that counts the pairs in the nine

FIGURE 3-8 Program for plotting the results of the checkerboard test for serial autocor-
refation and calculating chi-squared; with an example of its output.

LIST -210

10 SEED#=TIME ,

20 FOR I=1 TO 9: READ K$(I>: NEXT I
30 FOR I=1 TO 9: READ L$(IY: NEXT I
40 FOR I=1 TO 3: READ M{I): NEXT I
50 FOR I=1 TO 396

&0 GOSUB 300

70 X=N

80 FOR J=1 TO 3

90 IF X<¢=J/3 THEN cz J: GOTO 110
100 NEXT J -

110 GOSUB 300

120 X=N -

130 FOR J=1 TO 3

140 IF X<=J/3 THEN C2=M(J): GOTO 140
150 NEXT J

160 IX=C1+C2~1

170 FOR K=1 TO 9

180 IF K=IX THEN CCKI=C(K)+1

190 NEXT K

200 NEXT I ‘ ‘
g;a CLS: LOCATE 2,14: PRINT *#xx%% RANDOM NUMBER SERIAL AUTDCORRELATION ®%%xx"
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LIST 220-

230 FOR I=1 TO 9

230 LOCATE 2+1%2,1: PRINT "RIL="K$(I)* AND R2 {(="L$(I)" "

240 FOR J=1 TO C(IY: PRINT "*";iNEXT J -

250 NEXT I

250 FOR I=1 TO 9: CHI.SG=CHI,S@+(CCI)~44)%(C(I1)~44)/44: NEXT I
270 PRINT: PRINT "CHI' SQUARED="CHI.SQ

280 END C '

290 DAT "-33“,"-67,"1-0";"-33";"-67","1-0" 'sen u é?" ny.gn
300 DATA ".33",".33",%.33",".47",".67",".67","1.0","1.0","1.0"
310 DATA 1,4,7 : C '

320 M#=34359738337#

330 AN=31258 :

340 ¢ ********'ﬁ*************ﬁ*********%*******************************
350 ¢ TRY THESE @:M PAIRS:

360 ¢ 23:34359738369 3125:34359738337 1480712147483647

370 ¢ 366714004:538790913 455470314:2147483647

3e0 *******************************ﬁ******ﬁ*********!***************
390 R#=SEEDH*AH-INT ( SEEDE*AH/MHE) XMH

400 N=R#/(M#-1)

410 SEED#=R#

420 RETURN

oK

#xx%% RANDOM NUMBER SERIAL AUTOCORRELATION #*¥xx¥
R1<=.33 AND RZ <(=,33 RXEEERERRERERERELRRAARERRFRRRERRRERRHERRES
Ri¢=.82 AND RZ <=.33 bt S dd bttt LAl b b b it il
R1<=1.0 AND R2 <=.33 EEREARLEEEEXXRRRREEARERERERRERRERELXRERER
Ri<{=,33 aND R2 {=,47 ERRERREREERREEERXEREERRRRRELRL R REER KA R K
. R14{=.67 AND R2 (=.67 ***************************?****
Ri<=1.0 ANG RZ (=47 ¥EXREXRERRXFRERERRRERRRRERERERERRHREREREREER LR R R AR
R1<{=.33 AND R2 {(=1.0 ¥%EEEEEEEXLRXXRARLXRRXRBEREXEXEXRXRKLEXRLRLR
RIC=.E7 AND R2 (1.0 #RXXERERXFXNERRERRERERRERRERRERARRRARERERER KR ER KB AR XX RERERE

gg<;1 W0 AND RZ (=1.,0 *%RERXFRXXXRREEREXREXXRERLELXREREXRERRERKKRR
CHI SQUARED= 10.18182 )
Ok '

FIGURE 3-8 (continued)

classes, while statements 230 and 240 print the bars. Statements 260 and 270
calculate and display the value of chi- squared

In this example there are nine minus two, or seven, dcgrees of freedom
(because there are two variables, R1 and R2, instead of j justR, asin the last test).
The criterion value of chi-squared for seven degrees of freedom and 95 percent
kconﬁdence is 14.1. The value for the sequence produced by the algorithm is

5.23, while the value for the built-in generator is 9.68; both are comfortably

within acceptable limits. Usually I find the built-in generator does better than
the algorithm, but this is a statistical test, and some variation is to be expected.
Figure 3-9 dlsplays the results of this test.

In some cases you may want to test for serial autocorrelation of pairs of
numbers separated by one or more intervening numbers, which are called “lags.”
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#x%¥% RANDOM NUMBER SERIAL AUTQCORRELATION %®®%x
R14=,33 AMND RZ <=,33 ®EXEXRZEEERXAXXEXXFREEXBXNEEXREREXRLEERRRRSR
Ri<=,47 AND RZ (=.33 S¥i sy iiiifiissiiiiisin iR i i sy s duiasy
Fi<=1.0 AND R2 (=,30 i ¥ssiiXiiif@iiiiiiiiissdninninsnss
RI{=.332 AND RZ {=,87 S%2E5riXXX¥SEFXRRFRREARSEREREEFES XSS EF LR XA ERARERXRXNERE
RI{=.47 AND RZ {=.47 FERESXXREXRAFXEFXRXXRRXERXLZEXEXRXXXLEHERE
‘R1<=1.0 AND R2 (.87 ZAEXREXFXFXIEEXREREREXFXFREEX XXX EXER XX XNERRRARR
R1{=,33 AND R2 <=1.0 ******************************************
R1{=.47 AND R2 {=1.0 *5¥XSFXXXARXAFAERRXRXEXRRFERREXARERESRER RS
R1<=1.0 AND RZ {=1.0 SE¥%¥¥XEXEERXAXRERXRARFARRERERARXEXEERERIRNARRHRR

CHI SGUARED= §5.2272732
214

#exxx RANDOM NUMBER SERIAL AUTOCURRELATION *xx=x
R14=,33 AND RZ £{=.33 ¥XEXAEEEFXXEXEXXEXREXEREXEXBEERREXBRERRRSH
R1{=,47 AND RZ <(=,33 X5 £E5iiXiRaaiiiiiisiiiisinsnsnsnins
R1£<=1.0 AND R2 {=.33 X£$EXXRAEXEEERERZREFXREERERFEXEREEXEE XXX R XXX R ERELERES

R1{=.33 AND R AT EEEEEEREREFEAEEEEEFEEEREEREEXRRRNS

r
o~
i

Ri<=,87 &ND R2 {=.&7 ERERRAXELREEEERERERKE KRR REF R AR CREERERER

R1<=1.0 AND F2 (=,47 $EXEXXEFXEEEEEXFENXERRAXA XXX AEFEXERBHERXEHRRERERBRE
R1<=,32 AND RZ <{=1.0 SEsXssSiixiliXXiisisaii@is i iiiirii s il risensass
Rl{=,47 AND RZ (=] 0 ¥ 2%XEXENXEAARRXXEXXEEEEEEEXRREEXERRNHRE

RI{=1.0 AND FR2Z {=1.0 SEXEsrldXffir i iy d iRt iR X s s iR e s aissses
CHI SGUARED= ¢.481818
QK

FIGURE 3—-9 Comparative results of tests for serial autocorrelation on a multiplicative con-
gruential generator and the built-in BASIC random-number function.

The sequence: 1,5, 2,8,3,7,4,1,5,7,6,0,7,5,8,4,9, 2,0, ... illustrates
serial-autocorrelation lag one. Tests can be made of serial autocorrelation of
overlapping pairs lag 0, 1, 2, ... 19, 20, and even more. Moreover, tests can
also be made for serial autocorrelation of overlapping triples; here we would
require a matrix with 10 x 10 x 10, or 1,000, cells.

RUNS TESTING

Another family of tests looks at runs of numbers in a random sequence. A run
is a sequence of one or more numbers that does something specific. There are
two kinds of runs of interest in testing numbers for randomness: runs up or
down, and runs above and below the median. The sequence: 7, 2, 5, 8, 3 contains
a run-up of three numbers. The sequence: 2, 6, 8, 7, 4 contains a run above the
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median (that is, 5) of three numbers. The science of combinatorics tells us how
many runs of each kind we may expect to find in a sequence of numbers that
are truly random.

The expected number of runs of length K in a sequence of length N is
given by:

EX = [2/(K+3)] # [N%(K'2 + 3+K+1) — (K'8+3+K'2 ~ K —4)]

as long as Kis <= N — 2. The expected number of runs of length N — 1 is
2/N!

In a sequence of 1,000 random numbers we may expect to find:

417 runs of 1
183 runs of 2
53 runs of 3
11 runs of 4
2 runs of 5

1 run of 6 or more

We should expect that half of each group would be runs above the
median, and half would be runs below the median. Similarly, we should expect
half to be runs-up, and half to be runs-down. A run of length 1 is regarded as
a run-up when it terminates a run-down; and as a run-down when it terminates
a run-up.

POKER TEST

Not only can we test the numbers of the sequence; we can also test the digits
comprising these numbers. One of these tests involves regarding every sequence
of five digits as a poker hand: 77059 would be a pair; 44881 would be two pair;
33327 would be three-of-a-kind; 55533 would be a full house; and 99992 would
be four-of-a-kind. Unlike real poker, five-of-a-kind is an acceptable, albeit rare,
hand (and not a fight). The order of the “cards” within a “hand” is unimportant;
we disregard straights, and there are no flushes or royals. Combinatorists can
predict how many hands of each kind should occur in a perfectly random se-
quence. Of course, gamblers were able to do this long before combinatorists
even knew they were combinatorists.

In 10,000 random and independent (not overlapping groups of five
digits each) poker hands, you may expect to find:

3,024 with five different digits
5,040 pairs
1,080 two-pairs

720 three-of-a-kinds
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90 full houses
45 four-of-a-kinds
1 five-of-a-kind

GAP TEST

Another test for the randomness of the digits making up our numbers is the
gap test. We take each of the ten digit types 0 to 9 at a time and go through a
sample of our supposedly random sequence (say, 1,000 numbers) and count the
digits that intervene between each appearance of the dlglt we are testing; in
other words, we count the gaps between zeros, ones, twos, . . . nines. For example,
when looking at nines: 99 is a gap of 0; 92472159 is a gap of 6. Combinatorists

“can tell us how many gaps of each length we can expect to find in a given-sized

sample of numbers if the digits are in fact random.
In 1,000 gaps, we should expect to find:

271 gaps of 0, 1, or 2
198 gaps of 3, 4, or 5
144 gaps of 6, 7, or 8
105 gaps of 9, 10, or 11
86 gaps of 12, 13, or 14
56 gaps of 15, 16, or 17
41 gaps of 18, 19, or 20
29 gaps of 21, 22, or 23
22 gaps of 24, 25, or 26
16 gaps of 27, 28, or 29
11 gaps of 30, 31, or 32
9 gaps of 33, 34, or 35
6 gaps of 36, 37, or 38
4 gaps of 39, 40, or 4]
3 gaps of 42, 43, or 44
3 gaps of 45, 46, or 47
1 gap of 48, 49, or 50

Of course the expected frequencies of the lengths of gap are the same
for all digits.

YULE TEST

Another test for the randomness of the digits of a number is the Yule test (which
has nothing to do with Christmas holidays). Add up the four least significant
digits of 5,000 numbers. The sums will range in value from 0 to 36. The expected
occurrence frequencies of the possible sums (for chi-squared testing) are:
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Sum Occurrences ' Sum  Occurrences
0 1 19 - 330
1 2 20 316
2 5 21 296.
3 10 22 270
4 17 23 240
5 28 .24 207
6 42 25 174
7 60 26 141
8 83 27 110
9 110 28 83
10 141 29 60
11 174 30 42
12 208 31 28
13 240 32 17
14 270 33 10
15 296 34 5
16 316 35 2
17 330 36 1
18 335

BIT-WISE TESTING

Tests for uniformity, correlation, and digit randomness can be combined by
regarding a sample of a random-number sequence as a bit matrix measuring
32-by-10,000. Thetre are four tests: (1) longitudinal count of ones, (2) longltu—
dinal count of overlapping pairs of ones and zeros, (3) lateral count of pairs of
ones and zeros in adjacent columns, and (4) lateral count of ones and zeros in
columns separated by a column. These tests are used in Europe on one-time-
tape cryptographic aids.
We shall illustrate with a sequence of ten numbers in the range 0 to 31.

NUMBER 16 8 4 2 1
27 1 1 0 1 1
12 0 1 1 0 0
28 1 1 1 0 0
3 0 0 0 1 1
23 1 0 i 1 1
3 1 1 1 1 1
20 1 0 1 0 0
9 0 1 0 0 1
26 1 1 0 1 0
0 0 0 0 1

1. The longitudinal counts of ones are: 16=6, 8=6,4=5,2=5, and 1=6. For the
complete test the counts should lie between 4,950 and 5,050.



74

RANDOM NUMBERS

2. The longitudinal counts of 1—~1 and 0—0 pairs are: 16=2, 8=4, 4=5, 9=4,
and 1=3. For the complete test the counts should lie between 4,900 and 5,100.

8. The lateral counts of 1—1 and 0—0 pairs in adjacent columns are: 1-2=7,
2—4=4, 4—-8=5, 8—~16=06, and 16— 1=4. For the complete test all lateral
counts should lie between 4,800 and 5,200.

4. The lateral counts of 1—1 and 0—0 pairs in columns lagged 1 are: 1-4=3,
2—-8=5,4-16=7,and 16—-2=7.

SUMMARY

In this chapter we have discussed the concept of randomness and described
some ways true random numbers can be produced. One of these, randomly
interrupting a counting loop by signals from the computer keyboard, was pre-
sented as a computer program.

We explained the difference between true random numbers and pseu-
dorandom numbers produced by algorithms. We presented a program imple-
menting the mid-square algorithm, which was the first technique used, and
pointed out the deficiencies of this method.

Finally, we presented a program for generating random numbers by the
multiplicative congruential algorithm and a table of acceptable multipliers and
moduli. We showed two tests for randomness: one for goodness of fit to a
uniform distribution and the other for absence of serial autocorrelation. These
tests present their results graphically, in the form of histograms, and by calcu-
lating the chi-square statistic. We used these tests to compare a popular algorithm
with the built-in MS/BASIC RND function. The results strongly suggest that it
is not worthwhile to program your own pseudorandom-number generator. The
built-in function does as well if not better.

We also presented without examples some of the more esoteric tests for
randomness, including tests not just for the randomness of numbers in a se-
quence but also for the randomness of the digits making up the individual
numbers. ‘



CHAPTER FOUR

Time-Oriented
Simulation
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TIME-ORIENTED SIMULATION

An important use of computer simulation programs is in studying the dynamics
of waiting-line queues. (The application is the waiting line: the queue is a specific
data structure.) Waiting-line queues are often observed in real life. One example
would be a line of people waiting to buy airline tickets; another, a line of cars
stopped for a red traffic light; or a line of television sets in a repair shop waltlng
for attention from the technicians.

There are many other applications for simulation; a sampling of these
is presented in Chapter Ten. However, applications of simulation to queuing
systems are useful from a tutorial peint of view for three reasons: (1) Many
complex systems contain queues as subsystems. (2) A queue is a simple system,
in which the dynamics of simulation are clearly evident. (3) Some queuing systems
have analytic solutions, so the accuracy of a simulation can be assessed.

The components of a waiting-line queue are:

. A population from which custoniers are drawn
. The waiting-line queue itself

. The service facility

. A population into which customers return

e 00 NO b

Two attributes determine the properties of a waiting-line queue: arrival
rate and service rate. The arrival rate is the average number of customers who

join the waiting lineé per second, minute, hour, or whatever unit of time is

convenient. The service rate is the average number of customers who are served
per unit time in the service facility. Another way to express these attributes is
by their reciprocals: the average time between customer arrivals, and the average
service time.
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One reason for studying a waiting-line queue is to determine the loading
on the service facility. If the service facility is idle too much of the time, the
facility is uneconomical and may be redundant where alternative facilities are
available.

Back in 1920, an engineer named Erlang studied waiting-line queues of
telephone calls in Copenhagen, Denmark. He found that the ideal loading on
‘the telephone-switching facility was to be busy 70 percent of the time; it’s a
compromise between customer disaffection caused by too much waiting and

unwarranted spending for additional facilities. In the telephone-switching model
at 70 percent loading, customers are seldom unable to get a dial tone when they
want to use the phone.

Installation of resources to bring loading lower—say, to zero-—would
‘not benefit the customer. The cost of these resources would eventually be passed
on to the customer, who would derive little or no benefit from them:

Another reason for studying waiting lines is to determine the average
length of the queue. A knowledge of the average, or maximum, length of a
“queue is necessary to provide adequate waiting rooms for travelers and medical
patients, large enough toll plazas in front of tunnels and bridges for waiting
lines of cars, and sufficient storage space for equipment awaiting repair.

- The length of waiting lines is important to business. Too long a waiting
line may discourage prospective customers. The absence of a waiting line may
suggest that the service offered is not worth waiting for. '

The time a customer has to wait in line is another matter of concern. If
the waiting time is excessive, the service facility may lose business t6 facilities
that can offer service more promptly. Even if the waiting line is composed of
employees rather than customers, such as the lines that form at tool cribs or
copying machines, the lines are undesirable because the time the employees
spend waiting is unproductive. It may be desirable in a study to separate the

. waiting time spent in line from that spent in the service facility, since the service
time may be unavoidable even if service facilities were to be duplicated to such
an extent that nobody had to queue up at all.

To make a study complete, you will have to account for all of the arrivals:
those who have been served, the one(s) left in the service facility at the end of
the study, and those still waiting in line at the end of the study.

There are two kinds of waiting-line simulation pr()grams time-oriented
and event-oriented. The time-oriented simulation examines the system during
sequential equal slices of time. The event-oriented simulation examines only
major events, especially arrivals, and jumps over the time between them. This
chapter will deal with time-oriented simulations. :

The programming logic behind time-oriented sithulations is easier to
understand than the logic of event-oriented simulations. However, the slice of
time must be sufficiently short that the events occurring within it can be regarded
as happening simultaneously. This means that the program may have to cycle
unproductively most of the time, especially if customers tend to arrive in bunches.
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(%:) START F

RESEED RNG St=0

ENTER TOTAL TIME | EQ=EQ + 1
40

GET ARRIVALS

TA = TA + AR Q=Q-1

Sl =1
280 GET SERVICE TIME
160

ST = NST

FIGURE 4-1 Logic flow chart of a time-oriented simulation.

PROGRAM LOGIC

Figure 4—1 is the logic flow chart of a time-oriented simulation program. Figure
4-2 is a listing of the 39 statements of the program.

After reseeding the random-number generator, the program asks the
user to enter the total number of time units to be simulated. It then establishes
an all-encompassing FOR-NEXT loop that will execute as many iterations as the
user selected, one for each unit of time.

Now the program calls the arrival generator to see how many customers
arrive during the current time unit (“Get Arrivals”). We shall discuss the prob-
lems associated with arrival and service-time generators in Chapter Six. The
number of arrivals is returned from the arrival generator in a field called AR-
RIVALS and is added to a field called TOTAL.ARRIVALS.

The ARRIVALS are then figuratively placed on the waiting-line queue
by adding them to a field called QUEUE (“Put Arrivals on Work Queue”).

We test to see whether a customer is currently receiving service (“Test
for Service Complete”). The service time to be received by the current customer
is stored in a field called SERVICE. TIME, which is decremented one unit each
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2
250
ST = ST~ 1
S TS =TS + 1
TQ=TQ + Q
280 »
DISPLAY

DONE

~ SUMMARIZE

END FIGURE 4-1 (continued)

time the program executes an iteration until it is equal to zero. If SERV-
ICE.TIME is greater than zero, it means that a customer is currently receiving
service. ,

If SERVICE.TIME is determined to be greater than zero, control is
transferred to statement 250, SERVICE-TIME is decremented one time unit,
and TOTAL.SERVICE.TIME is incremented by one time unit. All customers
in the QUEUE remain there; and QUEUE is added to TOTAL.QUEUE, which
is the total number of time units spent in the waiting line by all customers who
had to wait. Then the program branches to the “Display Results” subroutine,
which depicts what transpired during the iteration, which then terminates.

If SERVICE. TIME is equal to zero, a test is performed to see whether
a customer who has been served is still in the service facility (“Test for Service
Just Completed”). This test involves seeing if the SERVICE.INDICATOR is
equal to one or zero. If it is equal to one, meaning a customer has just completed
service and is still in the service facility, two things are done: The SERV-
ICE.INDICATOR is reset to zero, and the EXIT.QUEUE is incremented by
one, effectively removing the customer from the service facility. If the SERV-
ICE.INDICATOR is equal to zero, the program skips around the two previous
statements and goes directly to statement 160 (“Fill the Service Facility”).

Before filling the service facility, it is necessary to see whether or not
there is anybody waiting (“Test for No Queue”). If QUEUE is equal to zero, it
is a “do nothing” iteration, and the program branches directly to statement 280,
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ok

LIST -Zoo

10 7 TIME ORIENTED SIMULATION

20 RANDOMIZE TIME

30 CLS: INPUT "ENTER TOTAL TIME TO BE SIMULATED ";TOTAL.TIME
40 FOR I={ TO TOTAL.TIME

S0 ¢ GET ARRIVALS

&0 GOSUB 440 ° ARRIVAL GEMERATOR

70 TOTAL .ARRIVALS=TOTAL .ARRIVALS+ARRIVALS
80 ‘Y PUT ARRIVALS OM WORK GUEUE

#0 QUEUE=QUEUE+ARRIVALS

100 © TEST FOR SERVICE COMPLETE

110 IF SERVICE.TIME>Q0 THEN 230

1200 - TEST FOR SERVICE JuST COMPLETED
130 IF SERVICE.INDICATOR=0 THEN 140
140 SERVICE.INDICATOR=0

150 EXIT.QUEUE=EXIT.GUEUE+1

160 © FILL THE SERVICE FACILITY.

170 ¢ TEST FOR NO GUEUE

180 IF QUEUE=0 THEM Z&80

190 QUEUE=QUEUE~-1

200 ¢

Ok

LIST 210-390 :
210 SERVICE.INDICATOR=1
220 ° GET SERVICE TIME
230 GOSUB 500 © SERVICE TIME GENERATOR
240 SERVICE.TIME=NEW.SERVICE.TIME
250 SERVICE.TIME=SERVICE.TIME-1
240 TOTAL.SERVICE.TIME=TOTAL.SERVICE.TIME+1
270 TUOTAL.QUEUE=TOTAL . QUEUE+RUEUE
280. “GOSUB 320
290 NEXT I
300 GOSUB 580
310 END _
320 © DISPLAY RESULTS
330 CLS: LOCATE 1,14: PRINT "sx¥x% RESULTS OF TIME-ORIENTED SIMULATION *%%x%"
340 LOCATE 3,1: PRINT "TIME PERIOD #"1' OF"TOTAL:TIME
350 LOCATE 5,5: PRINT "WORK QUELE wyy
FOR J=1 TO QUEUE: PRINT "#";: MEXT J
360 LOCATE 5,75: PRINT GQUELE
370 1F SERVICE.INDICATOR=1 THEN FLAGS="%" ELSE FLAGE=""
380 LOCATE 10,5: PRINT "SERVICE FACILITY "j:
PRINT FLAGS
390 LOCATE 10,75: PRINT SERVICE.INDICATOR
oK ~

400 LOCATE 15,5: PRINT "EXIT alEUE "y
FOR J=1 TO EXIT.QUEUE: PRINT "#*j: NEXT J
410 LOCATE 15,75: PRINT EXIT.QUEUE ,
420 LOCATE 20,5: INPUT "TYPE <RETURN> DR <ENTER> TO CONTINUE ";X
430 RETURN
440 ¢ ARRIVAL GENERATOR
450 X=RND o
460 IF X<=.4 THEN ARRIUALS=1 ELSE ARRIVALS=0
470 ‘IF X<{=.9 THEN ARRIVALS=1: GOTO 4%0
480 “ARRIVALS=2
490 “RETURN ‘ .
500 ¢ SERVICE-TIME GENERATOR
510 X=RND R
520 IF X<=.5 THEN NEW.SERVICE.TIME=1 ELSE NEW.SERVICE.TIME=2
530 /IF X<{=.7 THEN NEW.SERVICE.TIME=2: GOTO 570
540 “IF X<=.8 THEN NEW.SERVICE.TIME=3: GOTO 570

FIGURE 4-2 Program listing of a time-oriented simulation.
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550 ‘IF X<¢=.9 THEN NEW.SERVICE.TIME=4: GOTO 570

560 “NEW.SERVICE.TIME=S

570 RETURN

580 ¢ SUMMARIZE RESULTS

590 CLS ,

400 LOCATE 1,25: PRINT "#%¥%% SUMMARY OF RESULTS s*%x%x"
oK

Qk

LIST &10~

410 LOCATE 4,1: PRINT "ARRIVAL RATE="TOTAL.ARRIVALS-TOTAL.TIME

420 LOCATE 4,40:; PRINT "SERVICE RATE="EXIT.QUEUE/TOTAL.SERVICE.TIME
&30 LOCATE 7,1: PRINT "ARRIVAL TIME="TOTAL.TIME/TOTAL.ARRIVALS

440 LOCATE 7,40: PRINT "SERVICE TIME="TOTAL.SERVICE.TIME/EXIT.QUELE
450 LOCATE 10,1: PRINT "TOTAL QUEUE="TOTAL .QUEUE

440 LOCATE 10,40: PRINT "AVERAGE QUEUE="TOTAL.QUEUE-TOTAL.TIME

470 LOCATE 13,1: PRINT "AVERAGE WAIT="TOTAL.QUEUE/TOTAL.ARRIVALS
480 LOCATE 13,40:PRINT"FACILITY LOADING="TOTAL.SERVICE.TIME/TOTAL.TIME
490 LOCATE 14,1: PRINT "BUSY TIME="TOTAL.SERVICE.TIME

700 LOCATE 16,40: PRINT "IDLE TIME="TOTAL.TIME-TOTAL.SERVICE.TIME
710 LOCATE l?,l: PRINT - "TOTAL ARRIVALS="TOTAL.ARRIVALS

720 LOCATE 19,40: PRINT "TOTAL SERVICES="EXIT.GUEUE

730 LOCATE 22,1: PRINT "LEFT IN QUEUE="GQUEUE

740 LOCATE 22,40: PRINT "LEFT IN SERVICE="SERVICE.INDICATOR

730 RETURN

Qk

FIGURE 4-2 (continued)

which calls a subroutine to display the results of the iteration and hence to
statement 290, the NEXT I statement, to terminate it.

If QUEUE is greater than zero, QUEUE is decremented by one, effec-
tively putting a customer into the service facility. Then we set the SERV-
ICE.INDICATOR equal to one to indicate that the service facility is occupied.
We call the service time subroutine and obtain a value of NEW.SERVICE.TIME
that we set equal to the SERVICE.TIME for the customer. SERVICE.TIME is
decremented by one to take into account the service received during the first
time unit in the service fac111ty, TOTAL.SERVICE.TIME is incremented by one,
and the customers waiting in the QUEUE are added to TOTAL.QUEUE. The
program branches to display results and then the iteration terminates.

After all the predetermined time units have simulated, the program
branches to a subroutine called “Summarize Results” and then ends.

This is a demonstration program, so after every | iteration— that is, time
interval—the “Display Results” subroutine runs to show the current condition
of the waiting-line system: The subroutlng shows the results of each iteration of
the time-oriented simulation. It is labeled with the iteration number and the
total number of iterations to be performed; for example, “Time Period #1 of
20” (see Figure 4-3).

The waiting line (called. “Work Queue™) is shown as a series of asterisks,
one for each customer who had to wait for this time period. The display would
show one asterisk for each customer waiting when the period began, plus one
for each new arrival, minus the one who goes into the service facility, if anyone
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ENTER TOTaAL TIME TO BE SIMULATED 7 20

xxx¥% RESULTS OF TIME-ORIENTED SIMULATION #xxxs
TIME PERIOD # 8 OF 20

WORK BRUEUE % 1
SERVICE FACILITY * \ 1
EXIT QUELE %% 2

TYPE <RETURN> OR <ENTER> TO CONTINUE ?

**#xx SUMMARY OF REGULTS #=x%x

ARRIVAL RATE= .4 SERVILCE RATE= .3
ARRIVAL TIME= 2.5 SERVICE TIME= 2
TOTal QUEUE= & AVERAGE QUEUE= .15
AVERAGE WAIT= .375 FACILITY LOADING= .7
BUSY TIME= 14 IDLE TIME= &

TOTAL ARRIVALS= 8 ) ‘ TOTAaL SERVICES= 7
gﬁFT IN QUEUE= 0 LEFT IN SERVILE= |

FIGURE 4-3 Steps in running a time-oriented simulation; establishing the total time of the
simulation; reporting the results of each iteration; and summarizing the resuits
of the simulation run. ‘

does. The number of customers in the waiting line is shown at the right of the
row of asterisks.

The next line of the display depicts the current condition of the service
facility. If the facility is engaged, a single asterisk is displayed with the number
1 on the right. If the service facility is empty, no asterisk is shown and a 0 is
displayed on the right.

The last line shows the exit queue. A row of asterisks symbolically rep-
resents those customers who have already received service, and the number is
displayed on the right. The sum of the three lines—Ilength of waiting line,
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customer currently receiving service, and the exit queue—add up to the total
‘number of arrivals up to and including the time period shown.

The “Summarize Results” subroutine runs after the last iteration and
tells what happened during the run (Figure 4-3). In a simulation experiment
there are usually several runs. The following quantities are displayed:

ARRIVAL RATE This, you recall, is one of the two main parameters of a waiting-
line simulation. It is what we call an exogenous variable; that is, a quantity that
is fed in by the user. All the same, we calculate it by dividing TOTAL. TIME
(another exogenous variable) into TOTAL.ARRIVALS. We do this to check on
the program and give the user confidence that the random-number generator
is truly simulating what the user wants it to simulate. Actually, if the calculated
arrival rate is different than that which the user programmed into the arrivals
generator, it nearly always means that the simulation run was not long enough
for the law of averages to work out. Speaking technically, we would say that the
waiting-line system had not yet reached a “steady state.” This would be taken
as an indication that the simulation run was not long enough.

SERVICE RATE This is another exogenous variable. We recalculate it as a check
on our work and the work of the program, and especially to see whether the
simulation run is long enough for the system to attain a steady state. We divide
EXIT.QUEUE (all those who have completed service) by TOTAL.
SERVICE.TIME. This neglects the customer still in service, but over the length
of a typical simulation run, the error introduced is negligible.

ARRIVAL TIME This is simply the reciprocal of ARRIVAL RATE, and is in-
cluded for the benefit of users who prefer to think of time rather than rate.
Actually, in time-oriented simulations, it is most common to speak of arrival rate
rather than arrival time.

SERVICE TIME This is simply the reciprocal of SERVICE RATE. In time-ori-
ented simulations, it is most common to speak of service time rather than service
rate.

TOTAL QUEUE This is the total number of customer periods spent waiting in
line, or the total time wasted. Sometimes we program in an additional probe.
and report the maximum queue; that is, the longest queue observed during any
single time period. This latter figure would be important in establishing the
number of seats required in a waiting room, for example. TOTAL.QUEUE is
known as an endogenous variable because its value is determined solely by events
that occur within the waiting-line system.

AVERAGE QUEUE This is the number of customers we may expect to see wait-
ing during any time period. It is found by dividing TOTAL. TIME into
TOTAL.QUEUE. This quantity is a measure of how busy the service facility
appears to be.
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AVERAGE WAIT This tells how long each customer may expect to wait for service.
It is the best measure of customer dissatisfaction arising from the inability of
the service facility to process customers fast enough to fulfill their expectations.
It is found by dividing TOTAL.QUEUE by TOTAL.ARRIVALS.

BUSY TIME This measures the productive time of the service facility. It is simply
TOTAL. SERVICE.TIME. Sometimes users find it convenient to divide BUSY
TIME by TOTAL.TIME and express it as a percentage. A result between 70
and 80 percent busy usually denotes an efficient system.

IDLE TIME 'This is the unproductive time of the system, when the service facility
is doing nothing, waiting for customers to arrive. It is just the difference between
BUSY TIME and TOTAL.TIME. Sometimes idle time represents an oppor-
tunity for 1mpr0vement The service facility might be eliminated if it is idle too
much of the time, or it could be assxgned to perform other duties while waiting
for customers. An example is assigning tape librarians in a computer center to
clean tapes while waiting for operators to make withdrawals or returns of mag-
netic media.

' The next four quantities audit the performance of the simulation run
and strengthen the confidence of the user in the results:

TOTALARRIVALS The total number of simulated customers entermg the system.

TOTAL SERVICES The total number of customers completing service during the
sunulatlon run; final contents of the EXIT.QUEUE.

LEFTINQUEUE The number of customers left in the waiting line (that is, quantity
QUEUE) when the simulated time expires.

LEFT IN SERVICE The number of customers left in the service facility when the
simulated time expires (in this case, 1 or 0, the final condmon of the service
mdlcamr)

f

RESULTS

To obtain some results from this simulation, we have to assign some values to
arrlval rate and service time. We shall set the arrival rate initially at .4 arrival
per tlme period. The following subroutine will do this:

X=RND
IF X<=.4 THEN ARRIVALS=1 ELSE ARRIVALS =0
RETURN

We shall set the service time equal to 1.5 time units; which is the same
as saying the service rate is equal to .67. Since the service rate significantly exceeds
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the arrival rate, we would expect there to be little waiting. (When the arrival
rate exceeds the service rate, the length of the queue t tends to mﬁnlty ) We shall
use the following subroutine:

X=RND

IF X<=.5 THEN NEW.SERVICE.TIME=1
o ELSE NEW.SERVICE.TIME=2

RETURN

The fundamental relationships between waiting line variables state that:

QUEUE =ARRIVAL.RATE+AVERAGE.WAIT
SYSTEM.WAITING. TIME =AVERAGE WAIT + SERVICE TIME

QUEUE +SERVICE.INDICATOR =
ARRIVALRATE#SYSTEM.WAITING.TIME

If we run the simulation for 1,000 time periods, we find:

ARRIVAL.RATE=.429 (Should be .4)
ARRIVAL.TIME=2.33 (Should be 2.5)
SERVICE.RATE= .67  (Should be .67)
SERVICE.TIME=1.50 (Should be 1.50)

TOTAL . QUEUE =250

AVERAGE. QUEUE= .25

AVERAGE.WAIT =58

BUSY. TIME =642 IDLE, TIME =358
FACILITY.LOADING=.64

TOTAL . ARRIVALS =429 TOTAL . SERVICES =429
LEFT.IN.QUEUE=0 LEFT.IN.SERVICE=0

The calculated length of queue is:
QUEUE=.43%.58= .25
The total time in the system is:

SYSTEM.WAITING.TIME= .58+1.50 = 2.1
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The total number of customers in the system is:

QUEUE+SERVICE.INDICATOR = .43%2.1 = .9
Figuring this another way:

QUEUE+SERVICE.INDICATOR = QUEUE +
SERVICE.INDICATOR % FACILITY.LOADING =
.26 + 1%.64= .89

because the service indicator is set to one only 64 percent of the time. So our
simulation produces results in agreement with those expected.

Note that the results are not in complete agreement. For example, the
arrival rate was input at .4 per unit time and the average arrival rate came out
to be .43. This is characteristic of a random process. You would expect that after
the simulation program runs for a large number of iterations, the average results
would converge to a value and we would find that the system was in a steady
state. In the case of this example, this is not true. Let’s see what happens as the
simulation program starts up. : ‘

We shall run the program for. 5, 10, ... 45, 50 iterations and tabulate
the calculated arrival and service rates, average length of queue, and facility
loading:

ITERATION ARRIVAL.RATE SERVICE.RATE AVERAGE.QUEUE LOADING

5 .80 .50 .20 .80
10 .50 : : .57 10 .70
15 40 .56 .00 .60
20 45 .63 15 .75
25 .32 .67 .04 .48
30 A7 .65 .06 73
35 .43 .70 .06 57
40 .45 .59 .33 .68
45 47 .67 1 .67

50 .46 .65 22 .64

All we can really say is that the system approaches the expected value
and then oscillates around it, achieving a kind of dynamic equilibrium. The
condition of dynamic equilibrium becomes clearer if we look at simulations
varying in length from 100 to 500 time units:
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ITERATION . ARRIVAL.RATE SERVICE.RATE AVERAGE.QUEUE LOADING
100 42 70 20 60
200 39 68 ; 18 56
300 42 68 29 62
400 42 68 17 61

500 37 68 : 17 55

Since we are randomly reseeding the random-number generator, it is
highly unlikely that you could ever reproduce these results. The “best” answer
‘would be found by taking, say, 500 iterations as the run length, repeating the
experiment several times, and averaging the results. The number of times you
should repeat it can be found by statistics; it depends upon the spread you
observe in the values in which you are interested and the confidence you wish
to place in the results.

Now let’s see what happens when we run a series of 500-iteration sim-
ulations holding the service rate at a nominal .67 and increasing the arrival rate
in steps of .05. We would expect that an increasingly long queue would form
as the service facility becomes increasingly unable to handle the influx of cus-

tomers:
ARRIVAL.RATE A.R. (CALC) S.R. (CALC) AVERAGE.QUEUE
40 37 .68 A7
45 46 71 22
- 50 A7 67 49
55 51 69 34
.60 56 ' 66 1.20
65 66 67 3.91
.70 70 71 3.55
75 .76 68 17.10

When the arrival rate exceeds the service rate, the waiting-line system
is said to be unstable. The queue will just grow and grow, and many customers
will never get served at all.

EXAMPLE

A certain factory has a large number of bench-welding machines. On 70 percent
of the work days none of the bench welders fail. On 20 percent of the days, one
welder fails. On 10 percent of the days, two fail.

Inoperable machines are taken to a repair shop. On average, 30 percent
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of them are fixed in one day, 40 percent are fixed in two days, 10 percent are
fixed in three days, 10 percent are ﬁxed in four days, and 10 percent are fixed
in five days.

Determine the average number of machines out of service at a time.
How much space must be provided for storage of broken machines outside of
the repair shop? What is the average loading on the repair shopp Run the
simulation for five years of simulated time.

First we calculate the average arrival and service rates to see whether
the problem has a solution (i.e., is not unstable).

ARRIVAL.RATE = 0+.7+ 1.2+ 2% 1= .40
SERVICE.RATE = 1/(1%,3+ 2%, 4+3* 1+4%1+5%1)= 4

Since the service rate is greater than the arrival rate, the problem has a solution;
that is, a finite queue.

We write the arrival and service generators by using a cumulatlve dis-
tribution function of the given empirical distribution:

X=RND
IF X<=.'7 THEN ARRIVALS=0: RETURN .
IF X<=.9 THEN ARRIVALS=1: RETURN
ARRIVALS =2 “

RETURN

X=RND

IF X<= .3 THEN NEW.SERVICE.TIME=1: RETURN

IF X<=.7 THEN NEW.SERVICE.TIME=2: RETURN
IF X<= .8 THEN NEW.SERVICE. TIME=3: RETURN
IF X<=.9 THEN NEW.SERVICE.TIME=4: RETURN
NEW.SERVICE.TIME=5

RETURN

Tokeep track of the maximum value of QUEUE, we insert this statement
into the program right after the one that accumulates TOTAL. QULUE

TOTAL. QUEUE=TOTAL . QUEUE + QUEUE
IF QUEUE>BIG.QUEUE THEN BIG.QUEUE =QUEUE

We add the value of BIG.QUEUE to the “Summarize Results” subroutine
and, since there i is room at the end of the line, we document TOTAL. TIME:

LOCATE 24, 1: PRINT "MAXIMUM QUEUE="BIG, QUEUE
LOCATE 24,40: PRINT "LENGTH OF RUN="TOTAL . TIME
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We find that the average number of machines out of service at a time
would be:

MACHINES.IN.REPAIR.SYSTEM=ARRIVAL .RATE+
( AVERAGE . WAIT + SERVICE.TIME) =
41%(9.7+2.28) =4.90r5

Space would have to be left to accommodate 14 machines awaiting repair.
The average loading on the service facility is .92.

SUMMARY

In this chapter we have concentrated upon the logicil design and operational
characteristics of the time-oriented or time-slice simulation. This is the easiest
kind of simulated queuing system program to understand, although it can be
expensive in terms of running time.

For example, in simulating a traffic light, the time increment might be
seconds and the time of interest might be four hours. Each run would therefore
require 14,400 iterations. In a tool-crib simulation, the time increment might be
five seconds and the time of interest might be seven hours; each run would
require 5,040 iterations. These experiments would typically require 20 runs to
converge on a credible answer.

We introduced the major components of a waiting-line system and ex-
plained how the behavior of the system is determined by the interaction between
the arrival rate and the service rate.

We listed some of the characteristics of waiting-line systems that may be
determined by simulation: service-facility loading, average length of queue, and
average waiting time, and discussed why they are important to system developers
and users.

After differentiating between time-oriented and event-oriented simu-
lations, we discussed in detail the programming logic of the time-oriented sim-
ulation.

The arrival- and service-time generators of the program were configured
to produce simple uniform distributions. Then the program was used to present
a step-by-step picture of the operation of the waiting-line system and to validate
the fundamental relationships of waiting lines.

We showed how the system converged fairly rapidly on average values
of variables after start-up but how it tends to oscillate about the mean values in
a kind of dynamic equilibrium. We also demonstrated the meaning of an unstable
system by observing how the system behaved when the arrival rate exceeded the
service rate.

Finally, we used the program to solve a problem in planning industrial
repair facilities.






CHAPTER FIVE

Event-Oriented
Simulation
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Unlike the time-oriented simulation in which the program looks sequentially at
very small increments of time, the evernt-oriented simulation fixates upon arrivals
of customers. It processes the customer as far as it is able until it encounters a
previous customer still in the system; then the customer must wait until the
desired service facility is free.

However, when there are long waits between customers, the program
skips over the times during which there are no arrivals. In many situations,
customers tend to arrive in bunches; in those instances, the event-oriented sim-
ulation can depict system behavior much more efficiently than can time-oriented
simulation. Some examples of situations in which customers arrive in bunches
are: employees lining up at tool cribs when jobs tend to be dispatched at the
start of shifts, at office copying machines when deadlines coincide, or at office
canteens during coffee breaks; warplanes returning to an airfield or aircraft
carrier after a mission; customer arrivals at banks during rush hours; cars ar-
riving at a traffic light after having been bunched by a previous traffic light;
and transport trucks arriving at a truck stop or weigh station (they tend to travel
in “convoys,” as CB listeners know).

We are going to examine a program that produces a simple event-ori-
ented simulation. As in the case of our time-oriented program, this one will have
a single servicé facility and all customers will arrive from the same population.
Moreover, all customers will be served on 4 first-come, first-served basis; and
the service they receive will be the same except for variation in the time it takes
to render it. ,

Since the event-oriented simulation is conceptually more difficult than
the time-oriented simulation, we will use a logic-flow diagram to explain the
workings of the program. Figure 5-1 is the logic-flow diagram.
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There are five paths in this program that accommodate the possible states of
the system:

PATH #1 A customer arrives, finds the service facility empty, and goes directly
into service with no waiting.

PATH #2 Service is completed for a customer. The customer leaves the service
facility and joins the exit queue or pool of serviced customers, but there is no
customer waltlng Path #2 sets the stage for Path #1.

PATH#3 A customer arrives to find the service facility occupled The customer
must join the waiting-line queue.

PATH #4 A customer completes service, leaves the service facility, and joins the
pool of serviced customers. However, unlike Path #2, other customers are wait-
ing, and one of them goes into the service facility.

PATH #5 The total elapsed simulated time equals or exceeds the predetermined
time of the simulation run. The program displays the results of the run and
terminates.

As in the case of the time-oriented simulation, there are three exogenous,
or input, varlables

1. ARRIVAL.TIME, which is generated by a subroutine that utilizes the RND
function ’

2. SERVICE.TIME, which is also generated by a random number subroutine

3. TOTAL.TIME, which is typed in by the user '

There are four variables that are used to switch control of the program
~among the five paths:

1. ARRIVAL.ALARM is the simulated time remaining until the arrival of the next
customer.

2. SERVICE. ALARM is the simulated time remaining for the customer Currendy
receiving service.:

3. SERVICE.INDICATOR is a bmary variable that tells whether the service facility
is currently occupied (1) or vacant (0).

4. QUEUE is the number of customers currently making up the waltlng line.

The values of ARRIVAL.ALARM and SERVICE.ALARM are comi-
pared to tell whether the service facility is current]y busy or idle. If SERV-
ICE.ALARM is less than ARRIVAL.ALARM, the service fac1hty isidle. If SERV-
ICE.ALARM is greater than ARRIVAL.ALARM, the service facility is busy. If
the service facility is idle, then a customer will enter from the queue prowded
QUEUE is greater than zero (Path #4); or program control will be switched to
Path #2 if there is no queue. This, in turn, sets the system up so the next customer
arriving can go directly into service (Path #1). During a traverse of Path #2,
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FIGURE 5-1 Logic flow diagram of an event-oriented simulation.

SERVICE.ALARM is arbitrarily set equal to ARRIVAL.ALARM in order to
switch program control to Path #1.

If the service facility is busy, which is indicated by SERVICE.
ALARM greater than or equal to ARRIVAL.ALARM and SERV-
ICE.INDICATOR equal to 1, then newly arriving customers must join the wait-
ing-line queue (Path #3). However, if SERVICE.ALARM has been arbitrarily
set equal to ARRIVAL.ALARM, then SERVICE.INDICATOR will be equal to
0, control will be switched to Path #1, and a newly arriving customer will go
directly into the service facility (Path #1). '

The service-time generator is called when a customer enters the service
facility either directly (Path #1) or from the waiting-line queue (Path #4). In
both cases, the SERVICE.ALARM is incremented by the amount of SERV-
ICE.TIME returned from the service-time generator; and the TOTAL.
SERVICE.TIME is also incremented by the new value of SERVICE. TIME.

Although we can use the ARRIVAL.ALARM to keep track of total elapsed
time, we cannot use SERVICE.ALARM to keep track of total elapsed service
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DISPLAY PATH 4 -
é AA j ‘

AA = AA + AT 50

550

DISPLAY PATH 3 PATH 5 l—‘ ?

DISPLAY PATH 5

SUMMARIZE

ﬁ) 440
PATH 4 END RUN

POOL = POOL + .1
SA = SA + ST
TST = TST + ST

WT = WT + Qx ST

FIGURE 5~1 (continued)

time, because we arbitrarily equate it to ARRIVAL.ALARM in Path #2; that’s
the reason for storing total elapsed service time in TOTAL.SERVICE. TIME.

The arrival-time generator is called whenever the current arrival is dis-
posed of by either being admitted directly into the service facility (Path # 1), or
being placed on the waiting-line queue (Path #3). The new value of AR-
RIVAL.TIME returned from the generator is added to ARRIVAL.ALARM,
and the count ARRIVALS is incremented by one.

Whenever comparison of SERVICE.ALARM with ARRIVAL.ALARM
indicates that a service has been completed (Paths #2 and #4), the customer
that has received it is symbolically kicked out of the service facility by incre-
menting the variable POOL by one. ‘

~ When a customer joins the queue (Path #3), the total number of cus-
tomers who had to wait (TOTAL.QUEUE) is incremented by one. Each time a
customer leaves the waiting line to enter the service fac1hty (Path #4), the total
time customers spend waiting in line (WAITING.TIME) is increased by adding
to it the product of the SERVICE.TIME of the customer just entering the service
facility and the number of customers who have to wait for that customer (QUEUE).
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Not so obvious is the fact that this computation does not include part
of the waiting time of a new arrival who joins the waiting—line queue during the
time a customer is being serviced. This discrepancy is taken care of in Path #3
by addmg to WAITING.TIME the difference between SERVICE.ALARM and
ARRIVAL.ALARM.

PATH DISPLAYS

Since this is a teaching program, it has been configured to show the condition
of the waiting-line system after the traversal of each program path. The display
subroutine labels which path has been followed. It displays an asterisk for each
customer who has arrived up to the time depicted, one for each customer cur-
rently in the waiting line, a single asterisk if the service facility is currently
occupied, and one for each customer for whom service is complete (POOL or
Exit Queue). The display also shows the current value of the ARRIVAL.ALARM
(total elapsed time) and the TOTAL.TIME, so the user can tell how long the
simulation run has to go. Figure 5—2 shows the state of the system after a traversal
of path #1. Figure 5—3 shows system state after traversing Path #2. Figure
54 shows the system after Path #3, and Figure 5—5 after Path #4.

The results of the simulation run are dlsplayed after the display for Path
#5 (see Figure 5+6). The calculated values of ARRIVAL.RATE and AR-
RIVAL.TIME and of SERVICE.RATE and SERVICE.TIME are shown to in-
dicate how closely the simulation is approaching a steady state (that is, how closely
the calculated values approach the input parameters of the random generators).

The results display also accounts for all customer arrivals: TO-

FIGURE 5-2 Demonstrahon program showmg the state of the system after fonowmg Path
#1.

x%xx% RESULTS OF EVENT-ORIENTED SIMULATION xxx#x

FOLLOWING PATH #1 = ENTRY TO SERVICE FACILITY

ARRIVALS FeRRERS =
WORK GUEUE o
SERVICE INDICATOR * : 1
FACILITY OUTPUT  sxxxwx ‘ 6

ARRIVAL ALARM= 17:22116 X 20 TOTAL TIME

TYPE (RETURN> OR (ENTER> TD ADVANCE PROGRAM ?
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#%%%% RESULTS OF EVENT-ORIENTED SIMULATION ERERR

FOLLOWING PATH #2 - LEAVE SERVILCE FACILITY EMPTY

ARRIVALS EHEEREEE 7
WORK QUEUE : o
SERVICE INDICATOR 0

FACILITY QUTPUT  #xxxxsx - r
ARRIVAL ALARM= 17.22114 X 20 TOTAL TIME

TYPE {RETURN}> OR <EMTER> TO aADVANCE FROGRAM ?

FIGURE 5-3 State of an event-oriented simulation system after following Path #2.

TAL.ARRIVALS, TOTAL.SERVICES, LEFT.IN. QUEUE, and
LEFT.IN.SERVICE. This is ‘principally an audltmg function.

We report TOTAL. QUEUE. This is the number of customers who had
to wait. Unlike the tlme-orlented simulation, this | program does not dump every
arrival on the queue, so it is easy to differentiate between those customers who
had to wait and those who went directly into the service fac1hty We also report
AVERAGE.QUEUE, Wthh is equal to WAITING TIME d1v1ded by AR-
RIVAL.ALARM. :

We report AVERAGE.WAIT, which is equal to WAITING. TIME
divided by ARRIVALS (this effectlvely includes those customers who went di-
rectly into service and sets then‘ wamng txmes to zero) We also report

FIGURE 5-4 State of an event-oriented simulation system after following Path #3.

#%x¥%% RESULTS OF EUENf—DRIENTEp SIMULATION *xxxx

FOLLOWING PATH #3 - JOIN WORK QUEUE

ARRIVALS EREEKRR é
WORK QUEUE . 1
SERVICE INDICATOR * 1

FACILITY OUTPUT *xxx v "
ARRIVAL ALARM= 15.37126 X 20 TOTAL TIME

TYPE <{RETURN}> OR (ENTER> TO ADVANCE PROGRAM ?
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#¥¥%% RESULTS OF EVENT-ORIENTED SIMULATION *%exe

FOLLOWING PATH #4 - ENTER SERVICE FACILITY FROM QUEUE

ARRIVALS P22 212 &
WORK GUEUE a
SERVICE INDICATOR * 1
FACILITY OUTPUT %% ) . 5

ARRIVAL aALARM= 15.37126 X 20 TOTAL TIME

TYPE <RETURN> OR <ENTER> TO ADVANCE PROGRAM ?

FIGURE 5-5 State of an event-oriented simulation system after following Path #4.

MEAN.TIME.IN.QUEUE, which is equal to WAITING.TIME divided by
TOTAL.QUEUE. '
Finally, we determine the loading on the service facility. We report
BUSY.TIME, which is the same thing as TOTAL.SERVICE. TIME; and
IDLE.TIME, which is the difference between TOTAL.TIME and
TOTAL.SERVICE. TIME. FACILITY.LOADING is, of course, BUSY.TIME
divided by TOTAL.TIME. Figure 5—7 lists all 110 statements of the program.

FIGURE 5-6 Summary of the results of a simulation run,

*#%%% RESULTS OF SIMULATION *#x#x

ARRIVAL RATE= .4 SERVICE RATE= .35147903
ARRIVAL TIME= 2.3 SERVICE TIME= 1.94253%
TOTAL QUEUE= 4 AVERAGE QUEUE= .1577324
AVERAGE WAIT= .4149846 MEAN TIME IN QUEUE= .833%4%3
BUSY TIME= 13,39777 IDLE TIME= 4.40223

FACILITY LOADING= 8758886

TOTAL ARRIVALS= 8 TOTAL SERVICES= 7

LEFT IN QUEUE= O LEFT IN SERVICE= |

0K



EVENT-ORIENTED SIMULATION

Ok

LIST -200

10 7 EVENT-ORIENTED SIMULATION

20 FOR I=1 TO S: READ PATH.NAME®(I): NEXT I

30 RANDUMIZE TIME

40 CLS: INPUT "ENTER LENGTH OF SIMULATIOM "; TOTAL.TIME
S0 IF SERVICE.ALARM < ARRIVAL.ALARM THEN 210

&0 'IF SERVICE.INDICATOR=1 THEN 320

70 7

80 7 DIRECT ENTRY OF AN ARRIVAL INTO AN EMPTY SERVICE FACILITY
20 SERVICE.INDICATOR=1

100 GOSUB 410 Y GET SERVICE TIME FOR THIS ARRIVAL

110 TOTAL.SERVICE.TIME=TOTAL.SERVICE.TIME+SERVICE.TIME
120 SERVICE.ALARM=SERVICE.ALARM+SERVICE.TIME

130 GOSUB &30  GET TIME UNTIL NEXT ARRIVaL

140 ARRIVAL .ALARM=ARRIVAL .ALARM+ARRIVAL . TIME

150 ARRIVALS=ARRIVALS+1

140 CLS: LOCATE 4,5: PRINT "FOLLOWING PATH #"PATH.NAME$(1)
170 GOSUB 890 “ DISPLAY RESULTS

180 IF ARRIVAL.ALARMX>TOTAL.TIME THEN 550

190 GOTO S0

200 ¢

Ok

ok

LIST 210-400

210 7 TEST QUEUE

220 IF QUEUE>0 THEN 440

280 -

240 TEMPTYING THE SERVICE FACILITY WITH NOBODY WAITING
250 SERVICE.INDICATOR=0

260 SERVICE.ALARM=ARRIVAL .ALARM

270 POOL=POOL+! ~ EXIT FROM SERVICE FACILITY

280 CLS: LOCATE 4,5: PRINT "FOLLOWING PATH #"PATH.NAME$(2)
290 GOSUB &70 © DISPLAY RESULTS

300 GOTO 350 ¢ SYSTEM 1§ SET UP FOR A DIRECT ENTRY

310

220 - SERVICE FACILITY ENGAGED, ARRIVAL JOINS WORK QUEUE
330 QUEUE=QUEUE+1

340 TOTAL.QUEUE=TOTAL .QUEUE+1 -

350 WAITING.TIME=WAITING.TIME+(SERVICE.ALARM-ARRIVAL .ALARM)
340 GOSUB &850 ’ GET TIME TO NEXT ARRIVAL

370 ARRIVAL .ALARM=ARRIVAL .ALARM+ARRIVAL . TIME

380 ARRIVALS=ARRIVALS+1

390 CLS: LOCATE 4,5: PRINT "FOLLOWING PATH #"PATH.NAMES(3)
400 GOSUB 490 “ DISPLAY RESULTS

oK

aK

LIST 410~400

410 IF ARRIVAL.ALARM>TOTAL.TIME THEN 530

420 GOTO S0

430 ¢

440 ¢ EMPTYING THE SERVICE FACILITY, ARRIVAL ENTERE FROM GUEUE
450 GUEUE=QUEUE-1

440 GOSUB 410 ° GET SERVICE TIME .

470 TOTAL,SERVICE.TIME=TOTAL.SERVICE.TIME+SERVICE.TIME

480 SERVICE.ALARM=SERVICE .ALARM+SERVICE.TIME

490 WAITING.TIME=WAITING.TIME+QUEUE*SERVICE.TIME

500 POOL=POOL+1

510 CLS: LOCATE 4,5: PRINT "FOLLOWING PATH #"PATH.NAME$(4)

FIGURE 5-7 Program listing for an event-oriented simulation.

99
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520 GOSUB 690 * DISPLAY RESULTS

530 GOTO 50

540 ¢

550 ¢ FINISH UP

560 CLS: LOCATE 4,5: PRINT "FOLLOWING PATH #"PATH.NAME$(S)
570 GOSUB 60 / DISPLAY RESULTS

580 GOSUB $20 ° SUMMARIZE RESULTS

590 END

&0g0 7

oK

oK

LIST &10-800 :

410 “ SERVICE TIME SUBROUTINE

620 SERVICE.TIME=RND*3

430 RETURN

&40

£50 ¢ ARRIVAL TIME SUBROUTINE

660 ARRIVAL .TIME=RND*S

470 RETLRN

480 7

450 ¢ DISPLAY SUBROUTINE

700 IF SERVICE.INDICATOR=1 THEN FLAGS="#" ELSE FLAGS=""
710 LOCATE 1,1&: PRINT "sxx%x RESULTS OF EVENT-ORIENTED SIMULATION xxxss"
720 LOCATE 7,5: PRINT "ARRIVALS "y

730 FOR I=1 TO ARRIVALS: PRINT "#°j: NEXT I

740 LOCATE 7,75: PRINT ARRIVALS

750 LOCATE 10,5: PRINT "WORK GUELE "y

740 FOR I=1 TO QUEUE: PRINT "#";: NEXT I

770 LOCATE 10.,75: PRINT. GUEUE

780 LOCATE 13,5: PRINT "SERVICE INDICATOR ";: PRINT FLAGS
790 LOCATE 13,75: PRINT SERVICE.INDICATOR

800 LOCATE 16,5: PRINT °“FACILITY OUTPUT “:

oK :

Ok

LIST 810~1000 )

510 FOR I=1 TO POOL: PRINT "#";: NEXT I

920 LOCATE 16,75: PRINT POOL : ’ s

220 LOCATE 19,5: PRINT "ARRIVAL ALARM="ARRIVAL.ALARMY X "TOTAL.TIME" TOTAL TIME®
840 LOCATE 22,5: INPUT "TYPE <RETURN} OR <EMNTER> TO ADVANCE PROGRAM "X

850 RETURN

840 DATA "1 - ENTRY TO SERVICE FACILITY "
§70 DATA "2 - LEAVE SERVICE FACILITY EMPTY “
280 DATA "3 ~ JOIN WORK GUEUE "

820 DATA "4 - ENTER SERVICE FACILITY FROM QUEUE"

700 DATA "3 - END OF SIMULATION RUN

210 '

P20 ¢ RESULTS SUBROUTIME

30 CLS

240 LOCATE 1,23: PRINT "*##x#% RESULTS OF SIMULATION *sxxx"
?50 LOCATE 4,;1: PRINT "ARRIVAL RATE="ARRIVALS/TOTAL.TIME

?é0 LOCATE 4,40: PRINT "SERVICE RATE="POOL/TOTAL.SERVICE.TIME
$70 LOCATE 7,1: PRINT "ARRIVAL TIME="TOTAL.TIME/ARRIVALS

280 LOCATE 7,40: PRINT *SERVICE TIME="TOTAL.SERVICE.TIME/POOL
790 LOCATE 10 1: PRINT "TOTAL QUEUE="TOTAL.QUEUE

1000 LOCATE 10 40: PRINT "AVERAGE QUEUE="WAITING.TIME/BRRIVAL. ALﬁRM
oK

FIGURE 5-7 (continued)
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ok

LIST 1010~ ~ :

1010 LOCATE 13,1: PRINT "AVERAGE WAIT="WAITING.TIME/ARRIVALS

1020 LOCATE 13,40: PRINT "MEAN TIME IN GUEUE="WAITING.TIME/TOTAL.QUELE
1030 LOCATE 16,1t PRINT *BUSY TIME="TOTAL.SERVICE.TIME °

1040 LOCATE 16,401 PRINT "IDLE TIME="TOTAL.TIME-TOTAL.SERVICE.TIME
1050 LOCATE 17,1: PRINT "FACILITY LOADING="TOTAL.SERVICE. TIME/TOTAL . TIME
1040 LOCATE 19,1: PRINT "TOTAL ARRIVALS="ARRIVALS
1070 LOCATE 19,40: PRINT "TOTAL SERVICES="POOL

1080 LOCATE 22,1: PRINT "LEFT IN GUEUE="QUEUE

1090 LOCATE 22,40: PRINT "LEFT IN' SERVICE="SERVICE.INDICATOR

{100 RETURN ' ‘ ' Be e

Dk C

FIGURE 5-7 (continued)

COMPARISON OF RESULTS

We ran the event-oriented simulation program with inputs Comparable to those
of the time-oriented simulation program. You may recall that the arrival rate
for the- tlme-orlented simulation was .4 arrivals per unit time. In the event-
oriented simulation, we used this arrival generator:

' ARRIVAL TIME SUBROUTINE
ARRIVAL.TIME=RNDx5
RETURN

This subroutine generates a decimal value of time between arrivals that
can range from 0 to 5. Statlstxcally the expected value will be 2.5, which would
produce an average arrival rate of .4. This procedure involves randomly sam-
plmg from a uniform distribution.

We use this subrounne to generate a service rate of .67;

' SERVICE TIME GENERATOR
SERVICE. TIME =RND*3
RETURN

This subroutine generates a decimal value of service time that can range
from 0 to 3. The expec[ed value is 1.5; which produces an average service rate
of .67.

We ran the event-oriented simulation for 1,000 units of sunulated time.
(Note that when you want to make a long run with-a teachmg program, you carn
save a lot of time and trouble by * ‘commenting out” the path-by-path results;
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just use the BASIC screen-editing capability to insert apostrophes after the line
number of the statements that call or label the path-results display.)

Comparison of Resulits of Time- and Eveni-Oriented Simulations

QUANTITY TIME-ORIENTED EVENT-ORIENTED
ARRIVAL.RATE 43 A1
ARRIVALTIME 2.33 2.47
SERVICE.RATE 67 .68
SERVICE.TIME 1.50 1.48
TOTAL.ARRIVALS 429 405
TOTAL.SERVICES: 429 404
LEFT.IN.QUEUE 0 0
LEFT.IN.SERVICE 0 1
TOTAL.QUEUE 250 o169
AVERAGE.QUEUE 25 .24
AVERAGE.WAIT 58 .59
BUSY.TIME . 642 . 597.84
IDLE.TIME 358 402.16
FACILITY.LOADING .64 .60

These results are all within the range of expected statistical variation in
random processes; they indicate that results are independent of whether time-
oriented or event-oriented simulation programs are used. The choice is usually
dictated by considerations of efficiency. Frequency of arrivals is usually not a
consideration, because the time slice can be chosen to accommodate as much or
as little time between arrivals as may be required. Rather, the event-oriented
simulation is clearly superior from the standpoint of efficiency when customers
tend to arrive in tight bunches with long periods in between.

EXAMPLES

FORTUNE TELLER The first example concerns simulating the waiting line outside
a fortune teller’s tent at a county fair. The average time between customer arrivals
is 25 minutes plus or minus 7 minutes. The fortune teller takes 25 minutes plus
or minus 15 minutes to predict the customer’s future. Simulate the flow of 50
customers through the fortune teller’s tent.

We simulate the customer. arrival time with a uniform distribution. The
25 plus or minus 7 minutes corresponds to a-uniform distribution between 18



EVENT-ORIENTED SIMULATION 103

and 32 minutes. We can simulate this distribution by making a random choice
between 0 and 14 and adding 18 to it:

ARRIVAL.TIME=RND%14+18

We simulate the service-time distribution by making random choices
between 0 and 30 and adding 10.

SERVICE. TIME=RND%30 + 10

To simulate 50 customers when customers arrive 25 minutes apart, we
shall require 50 X 25, or 1,250 minutes.
The principal results from running this simulation are:

AVERAGE QUEUE = 1.75 CUSTOMERS
AVERAGE WAIT = 42.22 MINUTES
FACILITY LOADING = .99

As a check on our work, we find that the average time between customer
arrivals was 24.1 minutes, the average service time was 25.8 minutes, and there
were b4 arrivals. .

We observe that the fortune teller was busy almost all the time, but
people would have to really believe in prognostication to wait on average three
quarters of an hour to have their fortunes told.

BLOOD BANK Donors arrive at a blood clinic every 600 seconds plus or minus
600 seconds. There is a single bed, and it takes between 150 and 450 seconds
to give blood. Simulate the flow of 1,000 donors through the clinic.

We generate arrivals with the statement:

ARRIVAL.TIME=RND%1200
We generate services (that is, giving blood) with the subroutine:

SERVICE.TIME =RND*300 + 150

With an average interarrival time of 600 seconds to generate 1,000 ar-
rivals will require 600,000 seconds; this establishes the value of TOTAL.TIME.
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The results are:

AVERAGE . QUEUE = 0.1
AVERAGE . WAIT = 59.5
FACILITY.LOADING = .48

As a check on our work, we find that the average time between arrivals
is 619 seconds, the average service time is 299 seconds, and 970 donors arrived
at the clinic. '

Here facility loading is less than 50 percent and donors wait less than a
minute.

CATALOG ORDER COUNTER Customers arrive at a catalog service counter with

a mean time between arrivals of 1,000 seconds plus or minus 1,000 seconds.

The clerk serves the customers with an average service time of 700 seconds plus

or minus 700 seconds. Simulate the activity at this counter for 200 customers.
We simulate the arrival of customers with the subroutine:

ARRIVAL.TIME =RND*2000
We simulate customer service with the subroutine:
SERVICE.TIME=RND=*1400

The simulation of 200 customers will require 51mulat1ng 1,000 x 200
= 200,000 seconds.
The results are:

.54

AVERAGE. QUEUE =
AVERAGE . WAIT = 544
FACILITY.LOADING = .71

Checking our work, we find that the mean interarrival time is 1,005
seconds, average service time is 720, and there were 199 arrivals, (Interarrival
time is a short way of saying time between arrivals; even if it is less meaningful,
it is more commonly used in simulation literature.) k

Here we have a moderately loaded facility. Waiting lines were short but
waiting time was significant, because customer service took a long tme even
though there was a considerable time between arrivals.
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TICKET COUNTER Customers arrive at a ticket counter with a mean interarrival
time of 125 seconds plus or minus 125 seconds. It takes an average of 50 seconds
to serve a customer, and the spread of service time is 25 seconds. Simulate the
servicing of 1,000 customers.

We simulite customer arrivals with the subroutine:

ARRIVAL.TIME=RND; *250
We simulate customeér service time with the subroutine:
SERVICE.TIME=RND%50 +25

We require a simulation run of 125 X 1,000, or 125,000 seconds to
- generate 1,000 arrivals.
The results are:

AVERAGE.QUEUE = 0.06
AVERAGE . WAIT =7.17
FACILITY.LOADING = .39

Checkmg on our work: Average interarrival time is 128 seconds, average
service time is 49.7 seconds, and there were 974 customer arrivals.

We observe a lightly loaded facility with short waiting lines and short
waiting time.

SUMMARY

This chapter has dealt with event-oriented simulations that move in time from
arrival to drrival and simulate the processing of each arrival, rather than sim-
ulating all the activity in each of a large number of small, sequential time slices.
The event-oriented approach is efficient when simulating systems in which cus-
tomers tend to arrive in bunches.

We discussed the logic of an event-oriented computer simulation pro-
gram, and reran a problem we had solved using the time-oriented computer
simulation program to demonstrate that one can achieve comparable results
using either approach.

We then solved four elementary waiting-line problems using the event-
oriented simulation program: a fortune teller, blood-donor clinic, catalog sales
couiiter, and a ticket counter.
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DISTRIBUTICN FUNCTIONS

We have seen that the factors that determine how a queuing system behaves are
the times between customer arrivals and the service times, or the recnprocals of
these quantities: the arrivals per unit time and the services per unit time. Their
values for any particular customer are governed by chance, or, to put it in
technical language, are stochastically determined.

BERNOULL!I PROBABILITY

A stochastic determination is made according to a probability law. So far, we
have considered three probability laws. The first was the Bernoulli case. Here
the probability that an event will occur—for example, that a customer will arrive
during the next time slice—remains constant.

With a probability of .4, we can predict that, on average, a customer will
arrive during four out of ten time slices. We found it was easy to simulate the
Bernoulli case: We just drew a random number, and if it was less than or equal
to .4, we said a customer would arrive during the next time slice; if the random
number was greater than .4, we said no customer would arrive during the next
time slice. Obviously, the Bernoulli law works best when choosing arrivals per
unit time in a time-oriented simulation:

UNIFORM PROBABILITY

The uniform-probability law states that all values in a given range are equally
likely to occur. Suppose we say that service times are uniformly distributed
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_between 40 and 100 seconds. This means we will not see a service completed in

less than 40 seconds or one that takes longer than 100 seconds. On the average,
a service will take 70 seconds. This is the median value. It is found by adding
the low value to the high value and dividing the sum by 2.

We simulate a unlform-probablhty law by scaling our random numbers
from the standard range of 0 to 1 up or down to whatever range we want to
simulate. Say that range is 100 minus 40, or 60. We multlply our random number
by the range (60) and add the offset from 0, which, in this case, is 40. The
uniform distribution can be used to select service times in a time-oriented sim-
ulation or to select either service timeés or times between arrivals i an event-
oriented simulation. When we invoke the uniform-probability law we are assum-
ing that all events designated by numbers ranging from A on the low side to B
on the high side are equally likely. It models the condition of ignorance; as we
learn more about a system, we shall be able to model it using a distribution that
better describes its behavior. You can use Figure 6—1 to generate and display a
uniform distribution. You will be asked to enter parameters A and B and the
range over which you wish to display the resulting histogram.

EMPIRICAL DISTRIBUTION

When we construct a probability law based upon experimental observation, we
construct an empirical distribution. This is the best possible simulation of our
experiment. However, how well it represents the general case depends entirely

" upon the generality of the experimental situation. In our example of the bench-

welder repair shop, experimental evidence showed that during the time period
when observations were conducted, no welders failed on 70 percent of working

days. Whether this can be taken as a general rule for the factory in question,
for similar factories, or for factories in general depends upon many factors. For

example: Are the welders old or new? Heavily used or not? Well maintained or
poorly maintained? Are the operators experienced or inexperienced?

Recall that we simulated the distributions per unit time by adding the
probabilities from the left and solving in terms of our random-number draws.
We chose a random number and asked if it was less than or equal to .70, .80,
.90, or 1.0 (the last decision was made implicitly). Depending upon the outcome
of these decisions, we asserted that there were to be 0, 1, 2, or 3 arrivals during
the next time period. :

We used the same approach to select service times. We added the prob-
abilities .30, .40, .10, .10, and .10, obtaining the cumulative values .30, .70, .80,
.90, and 1.0. Then we made a random draw and identified the lowest cumulative
value greater than that draw. This enabled us to assert whether the repair time
for the next welder was 1, 2, 3, 4, or 5 days.

The general approach to working with an empirical distribution is called
the integral inverse, which is how one would describe mathematically the ap-
proach we have been using. The procedure of adding values from the left is
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g—;:g . UNIFORM DISTRIBUTION FIGURE 6-1 Program to gener-
30 CLS: KEY OFF ate and plot a uni-

40 INPUT "ENTER PARAMETER A"; A form distributior.
50 INPUT "ENTER PARAMETER B"; B

40 EX=(A+B)/2

70 STDX=(B-A)/SGR¢12)

80 LOCATE 1,30: PRINT "EX="EX

90 LOCATE 2,30: PRINT *STND DEV="STDX

100 DIM S¢20), D(20)

110 TIME=VAL(RIGHT$(TIMES,2))+UAL(MID$(TIMES,4,2))
120 TIME=TIME+UAL(LEFT$(TIMES,2))

130 RANDOMIZE TIME

140 LOCATE 1,55: INPUT “ENTER RANGE "j; RANGE
150 FOR 1=1 TO 20

160 SCI)=RANGE*1/20

170 NEXT -1

180 FOR I=1 TO 100

190 GOSUB 320

200 FOR J=1 TO 20

210 IF R<{=S(J) THEN D{J)=D(Jy+1: GOTO 230
220 NEXT J

230 NEXT 1

240 LOCATE 3,1

250 FOR I=1 TO 20

240 PRINT USING *#u4#.## ";S(1);

270 FOR J=1 TO DCI)

280 PRINT*%";

290 NEXT J: PRINT

300 NEXT 1

310 END

320 ‘ SUBROUTINE UNIFORM

330 R=A+(B-A)*RND

340 RETURN

called integration in calculus. Statistically speaking, we form a cumulative dis-
tribution function. When we solve the probability law in terms of our random-
number draw, we algebraically take the inverse of the law.

You can simulate any theoretical distribution this way. If you have the
explicit cumulative distribution function, just solve for F(X) at incremental values
of X covering the range of interest and connect the X, F(X) points with straight
lines. Draw a random number, which will of course be in the range of F(X), and
use the corresponding value of X as your random variate.

NORMAL DISTRIBUTION

There are two probability laws that describe most of the behavior that can be
observed in real-life situations. There are many other laws derived from them.
These other laws are used where finer precision is needed in a simulation. The
basic laws are those of normal probability and exponential probability.

The normal distribution has many names. It is called the Gaussian dis-
tribution, after the mathematician who first described it; it is also known as the
bell curve, because of its shape. The normal distribution is used to depict the
distribution of such things as heights of male or female adults; numerical results
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of academic tests; dimensions of parts made on a machine; lifetimes of things
subject to wearing out, such as light bulbs, automobiles, or people; slaughter
weights of cattle or pigs; acre yields of grain; or, in two dimensions, the spread
_of bullets around a target bull’s eye. (This is more properly called a Rayleigh
distribution.)

The easiest way to describe the normal distribution is to call it the dis-
tribution of the sums of uniformly distributed random numbers. In the ante-
diluvian days before computers, teachers used to illustrate this fact by assigning
students the task of adding up every group of four of the last four digits of
telephone numbers on two pages taken at random from a city telephone directory
and plotting the sums as a histogram. We are fortunate; we can let our personal
computer do it for us:

10 CLS: RANDOMIZE TIME
20 ' THIS PROGRAM PLOTS A HISTOGRAM
30 ' OF THE NORMAL DISTRIBUTION
40 INPUT "INPUT NUMBER OF UNIFORM DISTRIBUTIONS TO
ADD "; RANGE
50 CLS: DIM BAR(10)
60 FOR I=1 to 1000
70 GOSUB 170 ' GET AN OCCURRENCE IN THE RANGE 0-1
80 X=INT(X*10+1)
90 BAR(X) =BAR(X) =BAR(X) +1
100 NEXT I '
110 FOR I=1 TO 10
120 LOCATE I%2,1: PRINT BAR(I)
130 LOCATE I«2,10: FORJ=1 TO INT(BAR(I)/10)+1: PRINT
"x":: NEXT J '
140 NEXT I
150 LOCATE 23, 15: PRINT"DISTRIBUTION OF THE SUM OF "
RANGE " UNIFORM DISTRIBUTIONS"
160 END
170 ' SUBROUTINE UNIFORM
180 X=0
190 FOR K=1 TO RANGE
200 X=X +RND
210 NEXT K
220 X=X/RANGE
230 RETURN
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FIGURE 6-2 Histogram of a uniform frequency distribution.

The program adds a selected number of values from a uniform distri-
bution and plots 4 histogram of the sums. In statement 30 we choose the number
of samples to add, and call that number RANGE. The program produces 1,000
sums. The sums are generated in a subroutine beginning with statement 160.
We scale the sum back into the range 0 to 1 by dividing it by RANGE. Then we
scale it into the range 1 to 10, integerize it, and assign it to one of the ten bars
of a histogram; we make a count of the number of sums assigned to each bar
and plot the histogram by printing one asterisk for every ten occurrences.

If we run the program and set RANGE equal to 1, we generate the same
kind of distribution we encountered in Chapter Three when we were experi-
menting with the uniform distribution (see Figure 6—2).

7 However, if we set RANGE equal to 2, we generate a triangular distri-
bution (Figure 6—3). When we set RANGE equal to 4, the histogram is a tra-
pezoid, but it is beginning to assume the characteristic shape of'the bell curve
(Figure 6—4). With RANGE equal to 12, the distribution becomes a true normal
distribution with a mean equal to 5 (because of our scaling rules) and a standard
deviation equal to 1 (see Figure 6-5).

We can use this approach, called convolution, to generate random draws
from any normal distribution we desire; we only need to know the mean and
the standard deviation of the particular normal distribution we want to simulate.
The routine is:

' NORMAL DISTRIBUTION
SUM=0

FORI=1TO 12

SUM = SUM +RND
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FIGURE 6~3 Histogram of two uniform frequency distributions added together, observation
"by observations (i.e., convolved), to make a triangular distribution.

NEXT I
NORMAL = (SUM—6) STD . DEV + MEAN
RETURN

When we add 12 random numbers in the range 0 to 1, the result can
range from 0 to 12. We want to scale this into a standard normal distribution;
this distribution has, by definition, a mean equal to 0 and a standard deviation
equal to 1. We make the mean equal 0 by subtracting 6 from each sum. The

FIGURE 6—4 Four unjform frequency distributions added together to produce a trapezoidal
distribution that is approximately normal.
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FIGURE 6-5 Twelve uniform frequency distributions added together to produce a truly
normal distribution.

fact that we used 12 random draws takes care of making the standard deviation
equal to 1. ‘
The mean of a uniform distribution is given by:

MEAN = (B + A)/2

In the case of our random numbers, B=1and A=0, so the mean equals
.5. Since we are adding 12 distributions, the mean of the resulting distribution
is equal to 12 X "5, or 6.

The variance of a uniform distribution is given by:

VARIANCE = (B — Ay2/12

In the case of our random numbers, the variance equals Y49, Since we
are adding 12 distributions, the variance of the resulting distribution is equal to
1. The standard deviation is defined as the square root of the variance and is
also equal to 1.

We then fatten (or narrow) the spread of our distribution by multiplying
each observation by STD.DEV, the standard deviation of the distribution we
desire to simulate. We then translate our simulated distribution along the X-
axis by adding MEAN to every observation, where MEAN is the mean of the
distribution we want to simulate. NORMAL, the result returned by the subrou-
tine, is one observation from the distribution we want.

We can do many things with this distribution, depending upon the system
we want to simulate. We can squeeze it, stretch it, translate it left or right along
the horizontal axis; and we can truncate it or chop off regions in the tail that
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}?g ¢ NORMAL DISTRIBUTION FIGURE 6-6 Program to gener-
30 CLS: KEY OFF ate and plota
40 INPUT YENTER EX"j; EX norme.al d!strubut‘ion
50 INPUT "ENTER STDX"; STDX by using the prin-
60 DIM S(20), D(20) ‘ ciple of the cen-
70 TIME=VAL(RIGHT®(TIMES,2) > +VAL{MID$(TIMES$,4,23) tral limit theorem
80 TIME=TIME+VAL(LEFT$(TIMES,2)) (ie., the tendency
90 RANDOMIZE TIME

100 LOCATE 1,40: INPUT "ENTER RANGE *; RANGE of sample means
110 FOR I=1 TO 20 Or sums 1o ap-
120 S{1)=RANGE*1/20 proach normality).
130 NEXT-1I

140 FOR I=1 TO 100
150 GOSUB 280

160 FOR J=1 TO 20

170 IF R<=8(J) THEN D(J)=D(J)+1: GDTO 190
180 NEXT J

190 NEXT 1

200 LOCATE 3,1

210 FOR 1=1 TO 20

220 PRINT USING®###.4# ";S(1);
230 FOR J=1 TO DCI)

240 PRINT"**;

250 NEXT J: PRINT

260 NEXT 1

270 END

280 ‘ SUBROUTINE NORMAL

290 SUM=0

300 FOR II=1 TO 12

310 SUM=SUM+RND

320 NEXT I1

330 R=STDX*{SUM-8)+EX

340 RETURN

make no sense in our simulation, such as negative numbers if we are simulating
the time to accomplish a task.

There are at least three ways to generate a normal distribution. We have
just described a method, one that makes use of the central-limit theorem. Figure
6—6 will generate and display a normal distribution using this technique. You
must enter the mean (EX for expectation), standard deviation (STDX), and range
of display. Figure 6—7 shows a normal distribution with a mean of 10 and a
standard deviation of 3 plotted over a range of 20. '

The direct method of generating a normal distribution makes use of
sines, cosines, and logarithms. The program in Figure 6—8 implements this
method, and the result is plotted in Figure 6—9. It can be faster than the central-
limit technique, because two observations are produced in each call to the gen-
erating routine. However, in the program shown, one of these is discarded.

If you are interested in modeling normally distributed events that occur
rarely, such as a high water level in a river that exceeds the height of the
protecting levee, you will want to make sure that the tails of your distribution
are faithfully reproduced. Teichroew’s approximation, implemented by the pro-
gram in Figure 6—10, makes use of a polynomial to correct the shape of the
tails. A distribution produced by it is shown in Figure 6—11. Note how all three
methods produce similar results, as shown by Figures 6—7, 6-9, and 6-11.
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FIGURE 6~7 Normal distribution produced by the central-limit technique.

FIGURE 6-8 Program to generate and plot a norma| distribution using the direct method,
which involves using Ioganthms smes and cosines.

10 * NORMAL DISTRIBUTION —-- DIRECT APPROACH
201 . -

30 TWOP1=4.2832

40 CLS: KEY OFF

50 INPUT "ENTER EX*; EX

40 INPUT *ENTER STDX"; STDX

70 DIM'S(20), D(20)

80 TIME=UAL(RIGHT#(TIMES,2))+UAL(MIDS(TIMES,d,2))
90 TIME—TIHE+UGL£LEFT$(TIME$ 20

100 RANDOMIZE TIME ~

110 LOCATE 1,40: INPUT "ENTER RANGE "; RANGE
120 FOR 1=1 To 20 SRR e
130 SCI1)=RANGE*1/20

140 NEXT 1

150 FOR I=1 TO 100

140 GOSUB 290

170 FOR J=1 TO 20

180 IF"R<=8(J> THEN D(J)=D(J)+1: GOTO 200

190 NEXT J ‘

200 NEXT I

210 LOCATE 3,1

220 FOR I=1 TO 20

230 PRINT USING"H##.## ";5¢1);

240 FOR J=1 TO DCID |

250 PRINT*x";

260 NEXT J: PRINT

270 NEXT 1

280 ' END

290 /° SUBROUTINE NORMAL

300 IF RND >=.5 THEN 320

310 R=STDX*SOR(~2%LOGCRND) ) *COS(TWOPI *RND) +EX: GOTO 330
320 R=STDX*SOR(~2%LOG(RND) ) #SINCTWOPI *#RND) +EX
330 RETURN
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FIGURE 6-9 Normal distribution produced by the direct method.
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FIGURE 6-10 Program to generate and plot a normal distribution uéing Teichroew's ap-
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proximation.
“ TEICHROEW'S AFPPROXIMATION TO THE MNORMAL DISTRIBUTION

CLS: KEY OFF
INPUT "ENTER EX®; EX .
INPUT "ENTER STDX"; STDX
DIM 8¢(20), D20
TIME=VAL(RIGHT$(TIMES,2) )+VAL(MID$(TIME®,4,2))
TIME=TIME+VAL(LEFT$(TIME%,2)>)
RANDOMIZE TIME
LOCATE 1,40: INPUT "ENTER RANGE "; RANGE

110 FOR I=1 TO 20
120 SCI)=RANGE*I/20
130 NEXT I

140 FOR I=1 TO 1060
130 GOSUB 280

160 FOR J=1 TO 20

170
180
190
200

IF R<=S(J) THEN D(H)=D(J)+1: GOTD 190
NEXT J :
NEXT 1

LOCATE 3,1

210 FOR I=1 TO 20

220 PRINT USING"##H#.8# ";S(I1);
230 FOR J=1 TO D(ID

240 PRINT™#*";

250 NEXT J: PRINT

260 NEXT 1

270 END

280 ¢ SUBROUTINE TEICHROEW
290 'SUM=0

300 FOR II=1 TO 12

310 SUM=SUM+RND

320 NEXT Il

330 Y=(SUM-6>/4

340 Z=Y#(3.949846138#+Y*Y (. 25324087848+Y*Y (. 07455427124

+Y¥Y(8.35594BE-03+Y¥Y( .02789F776#>))))

350 R=STDX*Z+EX :
360 RETURN

17
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ENTER EX? 10 ' ‘ ENTER RAMGEE 7 Z0
ENTER STDX? 3
ad

.00
.00
LO0 *%
SO0
00 sxEx
00 Exxxsx
O EEEEEEXEEEER
SO0 EEXEEREXEXERE
0 #FEEFEEEEEEREEEEER
O wxEEzesEissces
SO0 ®ssxxrrxex
LU0 sneissens
00 xEEExx
L0 EExEs
L0 EEExEw
00
.00

1#7.00

20.00
akK

R RN A

P,
03 b e

[N
o O U 2

._.
w

FIGURE 6-11 Normal distribution produced using Teichroew's approximation.

LOGNORMAL DISTRIBUTION

The normal distribution can be regarded as the result of the additive interaction
of several independent uniform distributions. If these distributions interact mul-
tiplicatively, then the proper model is the lognormal distribution. A program
for generating and displaying a lognormal distribution is given in Figure 6-12,
and a histogram generated by it is shown in Figure 6-13.

» Notice that in this distribution there is no negative region and the values
tend to bunch up on the left and tail off to the right. This distribution has been
used to model the distribution of particles by size, companies by capitalization,
and the frequency of appearance of words in texts. It fits the same general class
of models as does the exponential distribution (which will be discussed in the
next section), but in some cases gives a better fit to empirical data.

Accurately representing system behavior by appropriate statistical dis-
tributions is the essence of simulation modeling. The best way to gain skill in
doing this is to experiment on your own with the generating programs in this
chapter.

Because the normal distribution is a continuous function, its use in wait-
ing-line simulations is restricted to simulations of intervals of time; simulating
events per unit time requires use of a discrete distribution. Actually, arrival times
are usually simulated best by one of the family of exponential distributions.

EXPONENTIAL DISTRIBUTION

The exponential distribution is useful when you want to simulate a system in
which the vast majority of events take place in a relatively short time, while there
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S LOGNORM&L DISTRIBUTION
ELS: KEY OFF

INPUT "ENTER EX"; EX

INPUT "ENTER STDX"; 8TDX
STOv=8RR{LOG{ { (ETDX*ETDXI A EXSEX) 2 +1) ) )
EY=LOG{EX) —  S#LOG{ ({STDR=ETDX ) A {EX=EX) ) +1)
LOCATE 1,30: PRINT "EY="EY
LOCATE 2,30: PRINT "8TND DEV="ETDY
DIM 8205, D200
TIME=VAL{RIGHT$(TIMES, 2) ) +VAL(MIDS(TIMES,4,2) 3 +UALILEFT${TIMES$, 2>
RANDOMIZE TIME

LOCATE 1,55: INPUT "ENTER RANGE "; RANGE
FOR I=1 TO 20

S{1)=RANGE*1/20

NEXT 1

FOR I=1 TO 100

sOsUB 270

FOR J=1 TO 20

IF R<=8{J) THEN D{JI)=D{J3+1: GOTO 210
NEXT J ‘

NEXT I

LOCATE 3,1

FOR I=1 TO 20

PRINT USING*###.88 "315C1)3: FOR J=1 TO D{Id: PRINT"#";: NEXT J: PRINT
MEXT I .

EMND.

S SUBROUTINE LOGMORMaL

SUM=0

FOR II=1! TO 12
SUM=SUM+RND
R=EXF{EY+8TDY*{SUM~&2)
NEXT I1I

RETLIRM

FIGURE 6-12 Program to generate and plot a lognormal distribution.

119

are a few that can take a very long time indeed. Typical examples are: the
lifetimes of some electronic parts, the times between the arrivals of vehicles on
a highway, and the times to serve customers on the teller line in a bank (most
people are served quickly, but the little old lady ahead of you is depositing the
day’s receipts from a penny-candy store—and she didn’t even roll her pennies!).

FIGURE 613 Lognormal distribution illustrating its positive skew.
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We can plot histograms of exponential distributions using the same pro-
gram as we used to plot normal distributions with a couple of changes:

30 ' OF AN EXPONENTIAL DISTRIBUTION
40 INPUT " ENTER MEAN " ; MEAN

150 LOCATE 23, 15: PRINT"NEGATIVE EXPONENTIAL
DISTRIBUTION WITH MEAN = "MEAN

170 ' SUBROUTINE EXPONENTIAL
180 X= —LOG(RND ) *MEAN

190 IF X > 1 THEN 170

200 RETURN

In this program, statement 190 constrains values to the range 0 to 1

because the subroutine can generate values outside of this range. Figures 614,

6—15, 616, and 6-17 show exponential distributions (or portions of them)
~‘having means equal to .1, .5, 1.0, and 5.0.

FIGURE 6-14 Histogram of a negative exponential frequency distribution having a‘mean

of 0.1.
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FIGURE 6-15 Negative exponential frequency distribution having a mean of 0.5.

The derivation of the formula for generating exponentially distributed
random variates is a good example of the integer-inverse process.

The frequency function of the negative exponential distribution is given
by: : ‘

f(x) = A*e’(—A*X) where A=1/M and e = 2.7183 ,

Integrating this expression from 0 and X, we obtain:

CUM.PROB = 1 - e"(A*X)

FIGURE 6-16 Negative exponential distribution having a mean of 1.0.
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FIGURE 6-17 Exponential distribution (truncated) having a mean of 5.0.

~ We can regard 1 — CUM.PROB as a random number, so we have:

"~ (A*¥X) = RND

We take the inverse by taking the natural logarithm of each side and
solving for X:

LOG (e - (A*X)) = LOG(RND)
—X/M = LOG(RND)
X = —M*LOG(RND)

If you run the program several times, varying MEAN from .1 to 5, you
will observe that the shape of the curve changes from being sharply concave
upward to being slightly concave downward. For high values of MEAN, the
general shape looks something like that of the normal distribution except that
it is bunched up at the left and stretched out on the right. It is, in fact, a plot
of the function:

Y = e(—M*X)

which is where the name negative exponential comes from.
Figure 618 is a program that generates and plots exponential dis-
tributions.
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10 ‘ EXPONENTIAL DISTRIBUTION FIGURE 6-18 Program to gen-
2 s KEY OFF erate and plot a
40 INPUT *"ENTER MEAN"; EX negative exXpo-
50 DIM $¢20), D(20) nential distribu-
&0 TIME=VAL(RIGHT$(TIME®,2) ) +VAL(MIDS(TIMES ,4,2)) tion.

70 TIME=TIME+VAL(LEFT$(TIMES,2))
80 RANDOMIZE TIME

90 LOCATE 1,30: PRINT "STND DEV="EX

180 LOCATE 1,55: INPUT "ENTER RANGE "; RANGE
116 FOR I=1 TO 20

120 SC(I)=RANGEx1/20

130 NEXT I

140 FOR I=1 TO 100

150 GOSUB 290

140 FOR J=1 TO 20

170 IF R{=8¢J) THEN DCII=DCJ>+1: GOTD 190
180 NEXT J

190 NEXT I

200 LOCATE 3,1

210 FOR I=1 TO 20

220 PRINT USING "H##.H# ";SC1);

230 FOR J=1 TO DCI)

240 PRINT"*";

250 NEXT J: PRINT

260 NEXT 1

270 END

280 - SUBROUTINE EXPONENTIAL

290 R=—EX*LOGCRND)

300 RETURN

ELEMENTARY QUEUING THEORY

There exists in a branch of mathematics called Queuing Theory. an analytic
solution for a waiting-line system in which both the times between customer
arrivals and the service times can be represented by exponential distributions.
If we call the arrival rate L and call the service rate U, the average length of
the waiting line, Q, is given by:

Q = L'2/UxU - L)

Notice that if the arrival rate equals or exceeds the service rate (that is,
if customers arrive faster than they can be served), the length of the waiting line
becomes either infinite or negative; this means that the system is unstable and
there is no analytic answer.

You can check out the analytic solution using the event-oriented simu-
lation program. If we say that the mean time between arrivals (1/L) is 120 seconds
and the mean service time (1/U) is 90 seconds, queuing theory tells us that the
average length of the waiting line should be 2.25.

If we run the simulation program for 200,000 seconds, we find that
there are 1,633 arrivals, the mean time between arrivals is 122.5 seconds, the
mean service time is 92.2 seconds, and the average queue length is 2.11. If we
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run it for 500,000 seconds (almost 6 days in real time), we have 4,227 arrivals,
arrival time is 118.3 seconds, service time is 90.6 seconds, and queue length is
2.29. This suggests that the value returned by the simulation program will even-
tually converge upon the analytic solution.

POLLACZEK-KHINTCHINE EQUATION

Queuing theory also provides a solution to the case in which the service times
are distributed according to some probability law other than the exponential
distribution. In this formula we make use of a quantity R, which is equal to L/
U; and the standard deviation S of the service time distribution:

Q=(L'2%S2+R2)/2%(l - R

We shall check out this solution with our event-oriented simulation pro-
gram using the NORMAL SUBROUTINE to obtain the service times. We shall
let the MEAN equal 90 seconds and the STANDARD DEVIATION equal 10
seconds. The formula tells us that the average length of queue should be 1.14

customers.
10 : GAMMA FUNCTION An alternative way to generate
20 the grammar distribution function

30 DIM FX(22), FFX{22)

40 CLS: KEY OFF

50 LOCATE 1, !

40 INPUT "ENTER SHAPING PARAMETER ‘A’ (A > -1) "; A

70 LOCATE 2, 1

80 INPUT "ENTER SHAPING PARAMETER ‘B’ (B > 0). "; B

90 GOSUB 210 ’ GAMMA FUNCTION SUBROUTINE

100 FOR I=1 TO 22

110 FXCID = CCCBA A+ IRFAYA (=10 %(1°A)
*#(2.718282°(~1/B))

120 FFX=FFX+FX<I1): FFX(I)=FFX

130 NEXT 1

140 FOR I = 1 TO 22

150 IF FX(I13<.00005 THEN 200

160 LOCATE 1+2, 1

170 PRINT USING "## *;I1;

180 PRINT USING " #.#8HH"; FXC(I); FFX(D)

190 NEXT 1

200 END

210 © GAMMACA+L) = A!

220 FA = 1

230 IF A = 0 THEN 280

240 IF A = 1 THEN 280

250 FOR II = 1 TO A

260 FA = FAXII

270 NEXT 11

280 RETURN

in Figure 6—19.

Running the event-oriented simulation program for 200,000 seconds,
we obtain 1,660 arrivals, a mean interarrival time of 120.5 seconds, a mean
service time of 90.4 seconds, and an average queue length of 1.07. If we run it
for 500,000 seconds, service time is 90.4 seconds, and queue length is 1.23. The
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simulated value appears to be converging on the analytic value but not nearly
as fast as in the purely exponential case.

There is a whole family of probability distributions related to the ex-
ponential that are used in special applications. These include the hyper-
exponential—that is, one with two means; the Weibul distribution, which is used
in Reliability Theory; and the Erlang distribution, which is actually the sum of
several exponential distributions. The exponential distribution is used in deriving
‘the beta distribution, whu:h is used to model a Bernoulli case in which the
probability: varies.

These experiments should convince you that, just as it is usually easier
to find areas and volumes by geometry or calculus rather than by simulation,
you should resort to simulation to solve waiting-line problems only if:

1. You are dealing-with an oddball problem for which there is no analytic solution.
"~ 2. Your problem is extremely complex.
3. You don’t know enough about queuing theory to solve it..

The ideal approach is to select the best of both worlds. Simplify your
problem or, as we say, “skeletonize” it, until you can get an approximate solution
using queuing theory; then simulate using the analytic solution as a guide to
how many iterations of the simulation program it wﬁl take to converge on an
acceptably precise answer.

GAMMA (CHI-SQUARED) DISTRIBUTION

The gamma distribution may be fitted to many skewed distributions of empirical
data. It has the following distribution function: '

£(X) = (A"K#x"(K — Iyrexp(— A*X))/ (K — 1)!

where A and K are shaping parameters. The mean is given by:

EX=K/A

STDX =SQR(K)/A

When K is an integer, the gamma distribution is called an Erlang dis-
tribution. This distribution is derived from the exponential distribution in a way
similar to that by which the normal distribution was derived from the uniform
distribution: by adding up a certain number of observations.

The two shaping parameters of this gamma distribution are A, the re-
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ciprocal of the mean of the exponential distributions from which it is made; and
K, the number of observations from exponential distributions going to make up
one observation from the gamma distribution.

If the times between arrivals of vehicles on a lightly traveled highway
are exponentially distributed with a mean of two minutes and every fifth vehicle
is determined to be a truck, then the times between arrivals of trucks would be
modeled by a gamma distribution with A equal to .5 and K equal to 5.

However, the gamma distribution is more commonly used to fit normally
appearing distributions that are skewed or flattened. These include distributions
of times to accomplish tasks. They exist only in the positive domain and are
often skewed to the right, because some people will take a very long time to do
a job if you let them.

Figure 6—19 generates and plots an Erlang gamma distribution. It does
not add the exponential observations; instead it takes the logarithm of their
product, which is an equivalent procedure. Figure 6—20 is 2 gamma distribution
with A equal to .5 and K equal to 3.

Another way to generate gamma distributions is to add up the squares
of random observations from a standard normal distribution. The result is called
the chi-squared distribution. Its mean is equal to M, the number of squared

%0 ‘ GAMMA DISTRIBUTION

30 CLS: KEY OFF

40 INPUT *ENTER PARAMETER A"; A

50 INPUT *"ENTER PARAMETER K"; K

60 EX=K/A: STDX=SAR(K/(A%A))

70 LOCATE {,30: PRINT *EX="EX

80 LOCATE 2,30: PRINT "STND DEV="STDX

90 DIM 5¢(20), D(20)

100 TIME=VAL(RIGHT$(TIME$,2))
+UAL(MID$(TIME®,4,2) ) +VAL(LEFT$(TIME$,2))

110 RANDOMIZE TIME )

120 LOCATE 1,55: INPUT *"ENTER RANGE *; RANGE

130 FOR I=1 TO 20

140 S(1)=RANGE*1/20

150 NEXT 1

180 FOR I=1 TO 100

170 GOSUB 280

180 FOR J=1 TO 20

190 IF R<=S(J> THEN D(J>=D¢J)+1: GOTO 210

200 NEXT J

210 NEXT 1

220 LOCATE 3,1

230 FOR I=1 TO 20

240 PRINT USING"###.8# *;S¢I);

250 FOR J=1 TO DCI>: PRINT*%";: NEXT J: PRINT

260 NEXT 1

270 END

280 ‘ SUBROUTINE GAMMA

290 TR=1

300 FOR 11=1 TO K : FIGURE 6-19 Program to gen-

310 TR=TR*RND

320 R=-LOG(TR)/A erate and plot a

330 NEXT II gamma (Erlang)

340 RETURN distribution.
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ENTER PARAMETER A7 .5 EX= & ENTER RANGE ? 10

ENTER PARAMETER K? 3 STHD DEV= 3.444102
0.50
1,00 *=

- 1.50 »%sxx

2.00 %%
2:30 =%
3,00 *Exx%x
B.50 ®ExREEX
4,00 xxxx%
4.50 = )
5,00 ¥XEXEXRE
5,50 =%*
6.00 RREEXRXEREX
4.50 mxuxx
7. .00 EXXXEERE
7,50 *xx
B.,00 **%x%
§.30 %
?.00 %%
?.50 =
10.00 =%

0k

FIGURE 6-20 Histogram of a gamma distribution,

normal deviates going into one chi-squared observation; its standard deviation
is SQR(2xM). Actually the chi-squared distribution is a special case of the gamma
distribution in which A is equal to .5 and K is equal to M/2.

Figure 6—21 is a program that generates and plots a chi-squared dis-
tribution. Figure 6-22 is a chi-squared distribution equivalent to the gamma
distribution shown in Figure 6—20.

BETA DISTRIBUTION

The beta distribution is also exponentially derived. It exists only between the
limits of zero and one. It is often used to model a variable rate, such as the
proportion of defective parts coming off an assembly line. The proportion is
often very high on Monday, when assembly workers are recovering from a
weekend. It may also be high on Friday, when the workers have their minds on
holidays rather than business. The lowest percent defective occurs on Wednes-
day. It is said that members of the Ford family always order “Wednesday” cars
as their personal vehicles.
The beta distribution follows the probability law:

£(X)=((A+B— DI+ (A— D*(1—X)" (B— 1)(A—1)I*B - 1)!

where the mean is given by:

EX=A/(A+B)
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10 © CHI-SQUARED DISTRIBUTION

20 ¢

30 CLS: KEY OFF

40 INPUT "ENTER PARAMETER M ";M

50 EX=M: STDX=SQR(Z%M)

&0 LOCATE 1,35: PRINT "EX="EX

70 LOCATE 2,35: PRINT "STND DEU="STDX
80 DIM S(20), D(20)

90 TIME=UAL(RIGHTS(TIMES,2))+VAL(MIDEC(TIMES,4,2))
100 TIME=TIME+UAL(LEFT$(TIMES,2))

110 RANDOMIZE TIME

120 LOCATE 1,55: INPUT "ENTER RANGE "; RANGE
130 FOR I=1 TO 20

140 SC1)>=RANGE*1/20

150 NEXT I

140 FOR I=1 TO 100

170 GOSUB 300

180 FOR J=1 TO 20

190 IF R{=S(J) THEN D(J)=D(J>+1: GOTO 210
200 NEXT J

210 NEXT 1

220 LOCATE 3,1

230 FOR I=1 TO 20

240 PRINT USING"#8#.88 ";8C1);

250 FOR J=1 TO D(ID

240 PRINT*%";

270 NEXT J: PRINT

280 NEXT 1

290 END

300 ‘- SUBROUTINE CHI-SQUARED

310 R=0 . )

320 FOR JJ=1 TO M

330 SUM=0

340 FOR II=1 TO 12

350 SUM=SUM+RND

260 NEXT I1I

370 R=R+(SUM-8)%(SUM-§>

380 NEXT JJ

390 RETURN

FIGURE 6-21

Program to gen-
erate and plot a
chi-squared dis-
tribution. '

FIGURE 6-22 Histogram of a chi-squared distribution that is equivalent to the gamma

distribution shown in Figure 6—20.

ENTER RANGE 7 10

ENTER PARAGMETER M 7 & EX= &
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0.50
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7.50 ®ex
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and the variance (STNX"2) by:
VX = EX*B/(A+B+ 1)*(A+B)

The beta distribution can be generated as the ratio of two gamma dis-
tributions having identical values of A (.1 works well) and parameters K1 and
K2 such that K=KI1+K2 is the parameter of (X1+X2). The beta variable is
given by:

X =X1/(X1+X2)

Gamma parameters K1 and K2 correspond to beta parameters A and B.

I have used the beta distribution to help expert informants quantify
quahtatlve estimates. The experts were asked to estimate whether a certain effect
was “high,” “medium,” or “low”; to hedge their estimate as being “high,” “me-
dium,” or “low”; and to state whether their confidence in their estimate was
“high,” “medium,” or “low.”

I used these qualitative estimates to select shapmg parameters from 27
sets of pairs and to construct beta distributions characteristic of the expert’s
qualitative estimate. I then sampled from the distribution depicting the expert’s
qualitative estimate and displayed these beta variates to the expert until the
expert chose one that he thought best quantified his estimate.

The following table gives the parameters of the beta distributions used
to represent the different qualitative estimates. The codes for the qualitative
estimates are: H=high, M=medium, and L=1ow. They are given m the order:
PRIMARY estimate, HEDGE, and CONFIDENCE.

”

CODE EX Y O PARAMETER A - PARAMETER B
HHH o1 007 10 1
HHM .90 008 9 1
HHL 89 .009 8 1
HMH .88 012 7 1
HMM .86 015 6 1
HML 83 019 5 1
HLH 75 014 9 3
HLM 75 .021 6 2
CHLL 75 038 3 1
" MHH 63 014 10 6
MHM 64 017 7 4
MHL 63 026 5 3
MMH 50 012 10 4
MMM 50 014 9 g
MML 50 017 7 7
MLH 375 014 6 10
MLM .385 017 5 8

continued
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CODE EX VX PARAMETER A PARAMETER B
MLL 375 .026 3 5
LHH 250 014 3 9
LHM 222 017 2 7
LHL .250 .038 1 3
LMH 125 012 1 7
LMM 142 015 1 6
LML 167 .020 1 5
LLH 091 .006 1 10
LLM 100 .008 1 9
LLE A1 .009 1 8

Figure 6-23 is a program to generate and display beta distributions.
You will be asked to enter three estimates each of which may by H, M, or L.
Figure 6—24 is an optimistic estimate (H, H, H); note how the points are piled
up on the right (bottom). Figure 6—25 is a pessimistic estimate (L, L, H) and
points are piled up on the left. Figure 6—26 is a middling estimate (M, M, M)
and points are spread out through the midrange of the distribution.

POISSON DISTRIBUTION

If you want to use time-oriented simulation programs and are dealing with a
waiting-line system in which the times between customer arrivals are exponen-
tially distributed, it may be useful to use the discrete version of the exponential
distribution, which is called the Poisson distribution. The Poisson distribution
provides us with the probabilities of observing 0, 1, 2, .. . N events within some
selected slice of time. One of its first applications was in representing the probable
number of Prussian cavalry troopers killed each year by being kicked in the head
by a horse. Like the remainder of distributions to be described, the Poisson
distribution is discrete, as contrasted with the continuous ones we have been
examining.

The Poisson distribution has been used to model the number of typo-
graphical errors on a newspaper page, the number of fatal accidents per year
per mile of highway, the number of flaws per square yard of carpet, the number
of inclusions per square foot of tin-plated steel, or the number of crimes per
hour per census tract. ,

The probability of X events per unit (unit time or whatever) is given by
the formula:

px) = € -X*L"X /Xl '

where e is the Naperiah or natural logarithm base equal to 2.718282 ..., L is
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BETA DISTRIBUTION
CLS: KEY OFF
DIM 30200, DE20Y, AL27Y, B(E7)
EOR I=1 TO 27: RE&D &:I13: NEXT I
FOR I=1 TO 27: RE&D BC(I): NEXT 1
DATA 9,8,7.6,5,8,8,5,5,7,4,4,%,8,8,5,4,2,0,
DATA 0,0,0,0,0,0,2:1,0,5.3,2,9,808.7:7 8,5,
TIME=UAL(RIGHTSCTIMES , 233 VAL (MIDE(TIMES | 4,2)
RANDIOMIZE TIME

FOR I=1 TO 20: SCId=1/20: MEXT I

PRINT "EMNTER ESTIMATES: PRIMARY; HEDGE; COMFIDENCE: ©
INPUT "TYPE: H, M, L";&%, B, C%

IF #$="H" THEM a=1

IF a$="M" THEM A=10

IF A%="L" THEM A=1%

IF B$="H" THEN B=0

IF B$="M® THEN B=3

IF B$="L" THEN B=&

IF C$="H" THEM =0

IF C$="M" THEN
IF C$="L" THEN O

IK=A+B+C

FOR I=1 TO 100

GOSUB 340

FOR J=1 TO 20

IF R<=S5{Jy THEM D{Ji=D(Jd+1: GOTO 280

NEXT J

NEXT 1

LOCATE 3,1

FOR I=1 TQ 20

PRINT USING"###.8#8% ";S(Iy3: FOR J=1 TO D{I>: PRINT"#"3;: NEXT J: FRINT
NEXT 1 .

END

¢ SUBROUTIME BETA

KAl TR +1

GOSUE 430

ML=G

K= TR +BCIRD +2

GOSUB 430

DE=G

R=NU/DE

RETURM

SUBROUTINE GAMMA

Th=1

FOR Il=1 TO K

TR=TR*RND
LOGCTRYA10
MEXT 11

RETURN

Z2,1,0
28,2

EFT&(TIME®,E)

I:OQ

a
7
)

I'".t:tCJ

[l
*
]

.0,
16,0
Ry

FIGURE 6—23 Program that generates and plots a beta distribution to help informants

quantify qualitative estimates on a zero to one scale.
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the mean or expected value of the probability (p) of X events occurring in the
selected slice of time or space, and X! stands for “X factorial”; that is:

When X =

Xl=1#2=* ., %X

0, X!is defined as being equal to 1. Note that here, with a discrete

distribution instead of a continuous one, we are still talking about a probability
function p(X) rather than a frequency function f(X).
Actually, the Poisson formula helps us to create an array of probabilities,
which we then handle the same way we handled the empirical probabilities in
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our introduction to time-oriented simulation; that is, we cumulate the proba-
bilities and apply 2 “less than or equal to” criterion to each random number
drawn. The following program allows us to see several different arrays of Poisson
probabilities:

10 CLS: PRINT " POISSON PROBABILITY
LAW": PRINT: PRINT '
20 INPUT "ENTER MEAN "; MEAN
30 INPUT "ENTER RANGE "; RANGE
40 DIM COUNT (RANGE) , CUMPROB(RANGE)
50 FOR X=0 TO RANGE
60 GOSUB 200 ' FACTORIAL SUBROUTINE
70 PROB= (2.718282)"—~MEAN) + (MEAN'X) /F‘ACTORIAL
80 CUMPROB (X) =LASTPROB +PROB
90 LASTPROB = CUMPROB (X)
100 NEXT X
110 FORK=1 TO 100
120 X=RND
130 FOR J=0 to RANGE
140 IF R <= CUMPROB(J) THEN COUNT(J) =COUNT(J) +1:GOTO
160
150 NEXT J,K
160 FOR I=1 TO RANGE
170 LOCATE I+3,5: PRINT USING "## ";I; :FORJ=1 TO
COUNT(I):PRINT "#"; :NEXT J
180 NEXT I
190 END
200 ' FACTORIAL SUBROUTINE
210 FACTORIAL=0
220 IF X=0 THEN RETURN
230 IF X=1 THEN RETURN
240 FOR I=1TO X
250 FACTORIAL = FACTORIAL*I
260 NEXT I
270 RETURN
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FIGURE 6-24

FIGURE 6-25

Histogram of a
beta distribution
depicting ex-
treme optimism:
high primary ex-
pectation,
skewed high,
and held with
high confidence.

Histogram of a
beta distribution
depicting ex-
treme pessi-
mism: low pri-
mary expect-
ation, skewed
low, and held

- with high confi-

FIGURE 6-26

dence.

Histogram of a
beta distribution
depicting uncer-
tainty: middling
expectation, no
skew, and held
with medium
confidence.
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POISSON DISTRIBUTION FIGURE 6-27 Histogram of a
Poisson fre-
ENTER MEAN & 1 quency distribu-
EMTER RANGE ? 12 tion having a
mean of 1.
EEEEEREZEXEXERERREEEREZEEREREEXL
EXXEXEEEXEXER FEEXEEEEFEEEEE XL XA X EE R X XEXE
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EEXEEEEE
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The input quantity MEAN is the average probability; RANGE is the
largest possible number of occurrences in a time slice.

Statements 50 to 100 are a FOR-NEXT loop that gets the cumulative
probability of each number of occurrences from none to RANGE. Statement 60
“calls the FACTORIAL SUBROUTINE (statements 200 to 270) that recursively
computes the value of X!. Statement 70 computes the probability of exactly X
arrivals in a time slice. Statements 80 and 90 compute the cumulative probability
of X arrivals in a time slice; that is, the probability of X or fewer arrivals.

Statements 110 to 160 draw 100 random numbers and, regarding each
of them as a probability, classify them as to whether the draw would denote 0,
1, 2, ... or RANGE arrivals. An appropriate increment is made to one of the
components of the COUNT vector. Statements 170 to 190 print and annotate
the histogram for each value of X. Figures 6—27, 6—28, 6—29, and 6—30 show
Poisson distributions having means of 1, 3, 6, and 9. '

You can check out this program by reproducing the cumulated entries
from a table of Poisson probabilities, which can be found in any statistics text

POISSON DISTRIBUTION

ENTER ME&M ? 3
ENTER RANGE 7 12

[
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e FIGURE 6-28 Poisson fre-
11 quency distribu-
1z tion having a
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mean of 3.
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ENTER MEAN 7 &
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FIGURE 6-29 Poisson distribu-
tion having a
mean of 6.
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or handbook. For example, if MEAN equals 3, RANGE equals 12, and the

probabilities are:

ARRIVALS PER

UNIT TIME PROB CUMULATIVE PROB
0 0498 .0498
| 1494 1992
2 2240 4232
3 2240 8472
4 1680 8152
5 1008 9160
6 0504 9664
7 0216 9880
8 .0081 19961
9 0027 .9988

10 0008 9996
11 .0002 9998
12 .0001 9999

POISSON DISTRIBUTION

ENTER MEAN 7 @
EMTER RAMNGE ? 13

]

1

2

3 %

4

5 XEXERXER

6 EEXERERR

7 OEREEREERR

B REEEEXXEXXEERN
P OEEXEAEAEEREERRXERR
10 HEXERXERERREX

11 REEXREXREEEER
12 %%xxxx
13 =%
19 ®xExExs
15 =
Ok

FIGURE 6-30 Poisson distribu-
tion with a mean
of 8.
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10 © POISSON DISTRIBUTION

20 CL%: KEY OFF

30 INPUT "ENTER EX"; EX

40 LOCATE 1,30: PRINT "STND DEV=" SGRCEX)

50 DIM 5(20), D200

&0 TIME=UAL(RIGHT$(TIMES,2)) +UALIMID$(TIMES,4,2) ) +UaL{LEFTSCTIMES, 20 )
70 RANDOMIZE TIME

30 LOCATE 1,55: INPUT "ENTER RANGE "; RANGE
S0 FOR I=1 TO 20

100 S13=RANGE*]1/20

110 NEXT I

120 FOR I=1 TO 100

130 GOSUB 230

140 FOR J=1TO 20

150 IF R{=5(J} THEM D(Jy=D(Jy+1: GOTO 170
140 NEXT J

170 NEXT 1

180 LOCATE 3,1

190 FOR I=1 TO 20 .
200 PRINT USING"H##.#8 ";8¢105: FOR J=1 TO D{Iy: PRINT"#";: NEXT J: PRINT
210 NEXT 1

230 END

230 ¢ SUBROUTINE POISSON

240 R=0

PE0 B=EXP(~EX)

240 TR=1

270 TR=TR*RND

280 IF TR-B <0 THEN 290 ELSE R=R+1: GOTO 270
270 RETURN

FIGURE 6-31 Program to generate and plot a Poisson distribution.

If you want to write a Poisson subroutine for a time-oriented simulation,
calculate the CUMPROB vector in advance, store the results in your service-
time subroutine, and use them just as we used the empirical arrival-rate distri-
bution in Chapter Four. Figure 6—31 will generate and plot a Poisson distri-
bution.

NEGATIVE BINOMIAL DISTRIBUTION

When Bernoulli trials are repeated until K successes occur, the random variate
X signifying the number of failures that occur will follow a negative binomial
distribution. When K is an mteger this distribution is called a Pascal distribution.
When K is equal to one, it is called a geometric distribution.

The next three probability functions make use of the binomial coetfi-
cient. In its simplist form it is expressed as “N CHOOSE X.” Operationally it
corresponds to:

NI/X!#N - X)!

The probability function of the negative binemial distribution incor-
pmmmdmhmmmkmﬂhanmme%m1m+X—UCHOOﬁﬁ(lMﬁmG
tion is given by:

p(X)=((K+X— DHYX!=(K - )*P'K*Q'K
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where P is the proportion of desired outcomes in the universe under consid-
eration and Q) is equal to 1 —P. The mean is given by: -

EX =KQ/P

and the variance is given by:

VX =KQ/P*2

Figure 6~32 is a program to generate and plot a Pascal distribution.
Figure 6-33 is the plot of a geometric distribution (K= 1) with P equal to .5.
The geometric distribution turns out to describe the distribution of queuel lengths
in the case of exponential times between arrivals and exponential service times.
I have also used it to describe the distribution of the occurrence frequencies of
some word types and the distribution of sensitive documents among different
security classifications. Figure 6—34 shows a Pascal distribution with P equal to
.5 and K equal to 3.

ég : PASCAL (GEOMETRIC) DISTRIBUTION
20 CLS: KEY OFF

40 INPUT "ENTER PARSMETER F";F
. 50 INPUT ®"ENTER PARAMETER K";K

40 G=1-P: EX=(K*Q)/P

70 UX={KxD)/{P*P)

80 LOCATE 1,35: PRINT "EX="EX

20 LOCATE 2,35: PRINT *"STND DEV="SQR(UX)

100 DIM S(20), D{(20)

110 TIME=VAL(RIGHT${TIMES,2))+VAL(MID$(TIMES,4,2))

120 TIME=TIME+VALCLEFTS$(TIME%,2))

130 RANDOMIZE TIME

140 LOCATE 1 ,55: INPUT "ENTER RANGE '; RANGE

150 FOR I=1 TU 20

140 S(I1X>=RANBGE*I1/20

170 NEXT I

180 FOR I=1 TO 100

190 GOSUB 320

200 FOR J=1 TOQ 20

210 IF R(=S(J) THEN D(IO=D<(J)+1: 60TO 230

220 NEXT J

230 NEXT 1

240 LOCATE 3,1

250 FOR I=i TD 20

2460 PRINT USING"H#H##.## ";5(1);

270 FOR J=1 TO D(I}

280 PRINT" %"

290 NEXT J: PRINT

300 NEXT I

310 END

320 ‘Y SUBROUTINE PASCAL

330 TR=1

340 QR=LOG(R®) FIGURE 6-32 Program to gen-
350 FOR I1=1 TO K erate and plot a
g?g ;g;RT?ND negative binom-
380 R=LOG(TR)/GR ial (Pascal) distri-
390 RETURN bution:
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ENTER PARAMETER P? .S Ex= 1 _ENTER RANGE 7 20
ENTER PARAMETER K? 1 STND DEV= 1.414214
1,00 ¥EEEREREEEREEREEEREREEERERXRERERREEREXERRRR

2.00 EEREEXEXXEXXXXXXRZEEXRERES
B.00 XEERXEEEREREXREERE
4,00 %xxxxxx
5.00 =x%x
6.00 %%
7.00
8.00 %
¢.00
10.00
11.00
12.00
13.00
14.00
15.00
16.00
17.00
18.00
19.00
20.00
Ok

FIGURE 6-33 Pascal distribution with K=1. Also known as the geometric distribution.

BINOMIAL DISTRIBUTION

When random samples are taken N at a time from an infinitely large population
having a proportion P of desired characteristics (e.g., red balls, as opposed to
white ones; or defective parts in a quality-control application), the distribution
of the number of successes in each draw X is given by the binomial. In the case

FIGURE 6-34 Pascal distribution that is the sum (convolution) of three geometric distri-

butions.
ENTER PARAMETER P? .5 EX= 3 ENTER RANGE ? 20
ENTER PARAMETER K? 3 STHND DEV= Z.44%94%
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of a finite population, samples should be returned and the population randomly
mixed before another draw is made; this is called sampling with replacement.
The probability function is given by:

where X=0,1,2,...Nand Q=1-P, and the coefficient is N CHOOSE P. The
mean is given by:

EX=N*P
and the variance is given by:

VX =N#P+Q

Figure 6—35 is a program that generates and plots binomial distributions.
Figure 6—36 is one of them with P=.5 and N=10.

%3 f BINOMIAL DISTRIBUTION

30 CLS: KEY OFF

40 INPUT "ENTER PARAMETER PY;P

50 INPUT "ENTER PARAMETER N" N

&40 EX=N#*P

70 @=1-P: UX=N*PxQ

80 LOCATE 1,35: PRINT "EX="EX

0 LOCATE 2,35: PRINT "STND DEV="SQR{VX)
100 DIM 5{20), D(20)

110 TIME=VAL(RIGHT®(TIMES$,2))

120 TIME=TIME+VAL(MIDS(TIME®,4,2))

130 TIME=TIME+VAL(LEFTS${TIME$,2))

140 RANDOMIZE TIME

150 LOCATE 1,35: INPUT "ENTER RANGE "j; RANGE
180 FOR I=1 TO 20

170 SCIX=RANGE*1.-20

i80 NEXT I .

190 FOR I=1 TO 100

200 60sSUB 320

210 FOR J=1 TO 20

220 IF R<{=S(J) THEN D(J)=D{J)+1: GOTO 240
230 NEXT J

240 NEXT 1

250 LOCATE 3,1

260 FOR I=1 TO 20

270 PRINT USING"###.H## ";58(1);

280 FOR J=1 TO DC(I)

290 PRINT"#"3: NEXT J: PRINT

300 NEXT 1

310 END

320 7 SUBROUTINE BINOMIAL

330 R=0

340 FOR I1=1 TO N FIGURE 6-35 Program to gen
350 IF RND~P <=0 THEN R=R+1 erate and plot
340 NEXT 11 ' the binomial dis-
270 RETURN tribution.
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EMTER PARAMETER MN? 10 STHD DEV= 1.58113?

oo o=

.50

00 %x

S0

SO0 EERREEEEEEREREFRRRER
.50

SO0 %EEZEXEREZERREES %
L850 |

D0 SREEEXEEEFERFREEERD

G0

00 mExas 35 3 FEEERERE
L S0

0 =zZxxxxxx

=it}

00 wxxEx

.20

00 =

.50

.00

© 0 N0 B D SN N G LT OB D () 00 R R e

)
F e

FlGURE 6~36 Histogram of a binomial distribution.

HYPERGEOMETRIC DISTRIBUTION

If the population with initial proportion P of desired events from which samples
of size N are to be taken is of finite size M and samples are taken without
replacement, the appropriate probability distribution to describe the distribution
of successes X is the hypergeomemc distribution.

Its probability function is the product of two binomial coefficients: M#P

CHOOSE X and M*Q CHOOSE (N - X) dlwded by a third, M GHOOSE N.
The complete expression is:

pX) = (M=#Pl/X1#(M*P — X))x(M*Q!/ (N — X)#(M=*Q — N + X)1})/(M!/NI+(M — N)!
The mean is given by:

EX=N=P

and the variance is given by:

VX = ((M~=N)/(M— 1))*N(P+Q)

Figure 6—37 is a program that generates and displays hypergeometric
distributions. Figure 6—38 is one such distribution that differs from the one
shown in the binomial case in that the population is finite. An error trap has
been incorporated in the program to intercept attempts to divide by zero that

may occur if the sample size and/or the number of trials is too great for the
population size. »
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10 ¢ HYPERGEOMETRIC DISTRIBUTION FIGURE 6-37 Program to gen-

20
erate and plot a
30 ON ERROR GOTO 450 hypergeon?etric

40 CLS: KEY OFF

50 INPUT "ENTER PARAMETER P";P distribution.
60 INPUT "ENTER PARAMETERS M AND N*; M,N
70 EX=NxP

80 G=1-P: UX=N*P*@*({M-N)>/(M-1)>
90 LOCATE 1,35: PRINT “EX="EX

100 LOCATE 2,35: PRINT "STND DEV="SGR(VX)
110 DIM 8(20), D(20)

120 TIME=VAL (RIGHT$(TIMES,2))+VAL(MID$(TIMES,4,2))
130 TIME=TIME+VAL(LEFT$(TIMES,2))

140 RANDOMIZE TIME

150 LOCATE 1,55: INPUT "ENTER RANGE "; RANGE
160 LOCATE 2,55: INPUT “ENTER TRIALS "; TRIALS
170 FOR I=1 TO 20 :
180 SCI)=RANGE*1/20

190 NEXT 1

200 FOR I=1 TO TRIALS

210 GOSUB 340

220 FOR J=1 TO 20

230 IF R<=S{(J) THEN D(J)=D(J)+1: GOTO 250
240 NEXT J

250 NEXT 1

260 LOCATE 3,1

270 FOR I=1 TO 20

280 PRINT USING"##H#.H# *;S(1);

290 FOR J=1 TO DCI)

300 PRINT"%";

310 NEXT J: PRINT

320 NEXT 1

330 END -

340 - SUBROUTINE HYPERGEOD

350 R=0

340 FOR Il=1 TO N

370 IF RND-P >0 THEN 400

380 S=11 R=R+1

390 BOTD. 410

400 §=0

410 P=E(MXP-S)/(M~1)

420 M=M-1 .

430 NEXT 11

440 RETURN

450 PRINT *TOO MANY TRIALS!®

SUMMARY

We have introduced the three most important probability distributions used in
simulation modeling: the normal, exponential, and Poisson. We have presented
programs that will display the appearance of them and can be used in simulation
programs to generate random observations from them.

We presented and compared three different ways to generate the normal
distribution: the central limit technique, the direct method, and Teichreow’s
approximation.

Then we introduced two exponentially derived distributions: the gamma
and the beta. We discussed the chi-squared distribution and demonstrated that
it can be equivalent to the gamma. We explained that the gamma we generated
was actually a special case known as the Erlang distribution.
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FIGURE 6-38 Hypergeometric distribution equivalent to the binomial distribution in Figure
6-36 with sampling without replacement from a finite population.

We discussed three discrete distributions in addition to the Poisson: the
negative binomial, binomial, and hypergeometric. We explained that the negative
binomial we were generating was actually a special case called the Pascal distri-
bution, and introduced the geometric distribution as a special case of the Pascal.

As a final word of advice about selection of probability distributions for
simulation modeling: when you set out to model a process, first generate em-
pirical probability laws governing the important parts of the process such as the
arrival times and service times. Then compare these distributions with at least
the three most common theoretical distributions. You can use the chi-squared
test for goodness-of-fit, as we did when testing random-number generators for
uniformity, and thereby confirm your guess as to whether your empirical dis-
tribution really conforms to a theoretical one.

If your empirical distribution does appear to fit a theoretical distribution
and the circumstances of the case suggest that it may, in fact, describe the
underlying process, then you will improve the generality of the results of a
simulation experiment, and consequently the range of applicability of your work,
by using a theoretical distribution in your simulation programs rather than the
empirical one.




CHAPTER SEVEN

Complex
Waiting Lines
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Thus far we have been simulating the simplest problem relating to waiting-line
queues: Customers arrive from an infinitely large, homogeneous, and stable
population; they queue up in a single waiting line; are served on a first-come,
first-served basis; receive service from a single server whose operational char-
acteristics are stable; and leave the system permanently. If the times between
arrivals are exponentially distributed in the event-oriented case, or if the arrivals
per unit time are Poisson distributed in the time-oriented case, it is not necessary
to simulate at all. A simple analytic solution exists, as we saw in the last chapter.

However, nothing in real life is that simple. A number of complications
can and do arise. Some can be handled analytically, but the solutions are not
simple and sometimes involve making assumptions that may not be realistic in
all cases.

FINITE POPULATIONS

Even the bench-welder example we used in Chapter Four is oversimplified. We
assumed an infinite population, which is not realistic. There are just so many
welders in a factory. We assumed that once a welder was fixed, it did not return
to the repair queue again. Anybody who owns an automobile, a TV set, or a
home computer knows that things that break and are fixed seldom stay fixed.
Moreover, the failure rate is different the second, third, and so forth time
around. The service time varies as well. It may become shorter as the repair
person becomes familiar with the idiosyncrasies of a particular unit, or the repair




COMPLEX WAITING LINES 145

time may become longer as the repair person runs.out of “quick fixes” and has
to undertake major rebuilding steps.

We may have to construct a data base to store the history of every item
in the shop. Instead of just calling an arrival-rate subroutine to find out how
many units failed on a particular day, we may have to interrogate the record of
every one of, say, 500 units. .

For each unit, we might consult the data base to obtain the number of
prior failures, the time since the last repair, and how long that repair took. We
might use these facts to obtain a probability of failure for that particular machine,
and then draw a random number to determine which machmes did in fact
malfunction on the day being simulated.

We would obtain, for each failed unit, a probability of the number of
days to repair using the same historical data and draw a second random number
to determine how long the repair in question actually takes. In this kind of
simulation, every machine in the repair queue will be tagged with a service time
before it enters the repair facility.

FINITE QUEUES

The waiting line may be finite; that is, have an upper limit imposed upon it.
Consider a barbershop that has only five places for waiting customers to sit. The
queue can be regarded as having a maximum length of five because people
seldom queue up outside a barbershop; they leave and come back some other
time when they anticipate the place will not be so busy. When a waiting-line
system has a finite queue, we must check the length of the queue before a
customer is allowed to join it. we must also write logical functions to take care
of customers who are not allowed to join it: Do they join another queue, for
-example, outside the shop? Go away and never return? Return after some sto-
chastically determined time interval?

An important case of a finite queue is the buffer. A buffer is used to
decouple two queing systems in series when the output of one system is not
perfectly matched to the input of the next; this is the usual case. Many times
the objective of a simulation experiment is to determine the optimal size of a
buffer, which is, in fact, the waiting line before the second of two sequential
service facilities.

One example is in a brewery, where the operation of capping bottles is
followed by the operation of packaging them into six-packs, twelves, or twenty-
fours. If the buffer, which in this case is a long metal table with guardrails, is
too large, then valuable manufacturing space is wasted. If the buffer is too small,
there will be pileups of bottles, accompamed by breaking glass, spilled beer, a

_ big cleanup job, and expensive down-time on the production line.
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QUEUE DISCIPLINE

In our queuing examples we have tacitly assumed a first-come, first-served queue
discipline. This assumption is not always correct. Nowhere is this more evident
than in time-sharing computer systems. A form of last-come, first-served queue
discipline is practiced because users newly signing on are frequently served
before those who have been computing for some time. This is'done because the
vast majority of users have such short jobs that they can be served in one “quan-
tum,” or elementary time unit. Thus, many users can be satisfied at the expense
of a few. ,

In inventory systems, the usual discipline is last in, first out, or LIFO.
The reverse of this discipline—first in, first out, or FIFO—is used when prices
are rising rapidly. This arrangement makes profits as stated in accounting rec-
ords agree with actual cash flow, because sales are closely related to the current
cost of goods sold.

A common form of queue discipline depends upon some system of
priorities: women and children first into the lifeboats when a ship sinks; officers
first in a military chow line; triaging emergency medical patients (treating first
those who require treatment and have the best chance for recovery); emergency
vehicles have the right of way; police respond first to major crimes in progress.

Simulation of a priority queing system requires that arrivals be generated
that have attached to them the attributes upon which the queue priority depends.
These attributes may be assigned according to the proportions in which they
occur and cooccur in the customer population. The priorities will be expressed
in terms of logic rules, and the indicated priority will be assigned to each arrival.
After each arrival it may be necessary to sort the queue by priority tag and by
arrival time within priority class. Thus, each queue member may have to be
tagged with arrival time as well as priority.

Priority queues are a form of preemption of those with the lower prior-
ities. In some systems, absolute preemption occurs. Here the customer currently
receiving service is booted out of the service facility when a preempting customer
arrives. An example exists in the case of a port with one pier. If a cargo vessel
is being unloaded and a passenger ship arrives, the freighter is towed out to a
buoy and moored there until the passenger ship has been unloaded.

MULTIPLE POPULATIONS

Obviously, all customers are not created equal. Some will possess special needs;
for example, some customers entering a bank may be doing so to open a new
account, and this service is very different from that usually rendered on the
teller line. Some customers may possess particular entitlements such as queue
priorities because they are special in some way, such as military officers in chow
lines.
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Therefore the universe of customers,»which is sometimes known as the
calling population, may consist of several subpopulations. It may be necessary
to create these subpopulations and to establish rules for sampling from them.
The proportions of the subpopulations may vary depending upon the simulated
time of day. '

STATE DETERMINED SERVICE

In queuing theory the term state refers to the number of customers in the waiting
line. In some systems the number of customers in the waiting line affects the
service time. Usually it speeds it up because the server is working under pressure
and omits some of the usual pleasantries of conversation. This can be represented
in program logic by selecting a service-time multiplier between zero and one
whose magnitude depends upon the length of the waiting line.

In some systems, line length can increase service time when the server
becomes fatigued. To simulate this effect you would have to use a formula that
added a variable that incorporated information about how long the system had
been operating and allowed the service-time multiplier to exceed one.

WAITING-LINE BEHAVIOR

Another factor that tends to nullify the cost advantage of analytic solutions is
that customers in waiting lines do not always behave predictably. Although few
of us surrender to the impulse to strangle the creep who engages the server in
a long and pointless conversation, some balk, some renege, and others jockey;
we shall discuss jockeying in the next section.

Balking means that the customer takes one look at the length of the
waiting line and decides to go to another store, use an automatic-teller machine,
or put off that haircut until next month. This kind of behavior can be described
by assigning a balking probability whose magnitude depends upon the length
of the queue and drawing a random number to determine whether or not a
customer balks.

Reneging is similar to balking except that the customer initially joins the
waiting line and then becomes tired of waiting and leaves. The probability of
reneging is usually determined by the values of two variables: how long the
customer has waited and how many customers are ahead.

MULTIPLE SERVICE FACILITIES

Many, if not most, waiting-line systems have more than one service facility. You
can observe this in any large bank, airline ticket concourse, or supermarket. The
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existence of multiple servers opens many design choices. You can have a separate
queue in front of each service facility. This gives rise to a queue-behav1or phe-
nomenon called _]ockeylng, where impatient customers wait in one line for a
while, then leave to join another that they perceive is shorter or moving faster.

Banks and airlines often eliminate jockeying by making customers form
a single queue and go to the first free server when they get to the head of the
line. I have simulated both the single queue and multiple queues using various
logical descriptions of the jockeying behavior. Overall, I have found that neither
arrangement has any effect on total customer throughput, although the multiple-
queue situation leads to wider differences in individual waiting times.

Another design variation is to differentiate between the kinds of service
offered by the different facilities. This approach is very common. We observe
lines at bridge toll plazas for “Trucks & Campers” and for “Exact Change Only”;

“in airline ticket concourses there are lines marked “Purchase Tickets Only” and

“Ticketed Passengers with Baggage”; and supermarkets have express lines for
“1 to 6 Items” and “7 to 12 Items.” Customers still try to join the line that they
perceive affords them the greatest advantage, however. A supermarket manager
in Cambridge, Massachusetts, claimed this happened in his store because MIT
students couldn’t read and Harvard students couldn’t count.

Figure 7-1 is a logic flow chart of a program that simulates a waiting-
line system with two servers; the program is modularized so that any number
of servers can be simulated. The multiple-server program has a separate queue

(;) START

RE-SEED END LOOP

TOTAL-TIME SUMMARIZE

UNTIL TIME = END HUN

TOTAL-TIME -

GET AR

Q1: Q2 GT

0
13 160 390 360
MODULE 1 MODULE 2 FIGURE 7-1 Logic flow chart of

a program simu-
lating a waiting-

INTERMEDIATE line system, with

RESULTS two servers in

parallel.
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before each facility. It consists of two time-oriented simulation modules that
process two customers at one time; thus, it simulates a computer system with
parallel processors. Modularization of the service-facility routine permits cre-
ating networks of many facilities in parallel and in series. This capability is useful
when simulating a metalworking factory in which jobs are routed to different
kinds of machines according to predetermined sequences and in which there
exist several machines of each type.

Figure 7-2 is a listing of the multiple-server program ' The program
consists of a main section (statements 10 to 120) and six subroutines. Two of
the subroutines (statements 130 to 350 and 360 to 600) are identical time-oriented
simulation modules. On a hardware system with parallel computing capabilities,
these modules could execute simultaneously on separate processors.

LIST -200 :

10 - TIME ORIENWTED SIMULATION

20 RANDOMIZE TIME

B0 CLS: INPUT "ENTER TOTAL TIME TO BE SIMULATED ";TOTAL.TIME
40 FOR I=!{ 70 TOTAL.TIME

S0 7 GET ARRIVALS

40 GOSUB 940 ° ARRIVAL GENERATOR

70 TOTAL .ARRIVALS=TOTAL .ARRIVALS+ARRIVALS

80 IF QUEUEL<=QUEUEZ2 THEN GOSUB 130: GOSUB 320: GOTO 100
70 GOSUB 1480: GOSUB 340

100 NEXT 1 .

110 GQSUB 780

120 END

120 7 MODULE #1

140 © PUT ARRIVALS OM WORK QUEUE

150 QUEUEI=QUELIE1+ARRIVALS

140 ¢ TEBT FOR NO QUEUE

170 IF QUEUE(=0 THEN 2?0

175 7 TEST 'FOR SERVICE COMPLETE

180 IF SERVICE.TIMEL X0 THEN 310

170 ' TEST FOR SERVICE JUST COMPLETED
200 IF SERVICE.IMDICATORI=0 THEN 220
ok

0k

LIST 210-400

210 EXIT.QUEUE=EXIT.QUEUE+1

220 ¢/ FILL THE SERVICE FACILITY

230 GUEUEL=GUEUE]-1

240 IF GQUEUE1=0 THEN NO.WAIT=NO.WAIT+!
250 SERVICE.INDICATORI=1

240 ¢ GET SERVICE TIME

270 GOSUB 1020 ° SERVICE TIME GENERATOR
280 SERVICE.TIME1=NEW.SERVICE.TIME

zp0 - TEST FOR SYSTEM EMPTY

300 IF SERVICE.TIMEL>D THEN 310 ELSE 340
310 SERVICE,TIME!I=SERVICE.TIME1-1

320 TOTAL.SERVICE,TIME=TOTAL .SERVICE.TIME+]
320 TOTAL.GUEUE=TOTAL.GUEUE+QUEUEL
340 GOSUB 410

250 RETURN

340 . MODULE #2

370 ¢ PUT ARRIVALS ON WORK GUEUE

380 QUEUEZ=QUEUEZ+ARRIVALS

250 ¢ TEST FOR NO GUEUE

400 IF QUEUEZ=0 THEN 540

oK ~

FIGURE 7-2 Program listing of a waiting-line simulation with two parallel servers.
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Ok

LIST 410-400

410

420

“a30
440
450
440
470
480
4%0
500
510
520
530
s40
550
540
570
580
590
&00
ok

Qk

‘ TEST FOR SERVICE COMPLETE
IF SERVICE.TIMEZ>0 THEN 3540
° TEEST FOR SERVICE JUST COMPLETED
IF SERVICE.INDICATOR2=0 THEN 470
BERMICE. IMNDICATORZ=0
EXIT,QUEUE=EXIT,.QUEUE+1

FILL THE SERVICE FACILITY
GUELEZ=QUEUEZ-1
IF QUEUEZ=0 THEN NO.WAIT=NO.WAIT+1
SERVICE. INDICATORZ=1
7 GET SERVICE TIME |
GOSUB 1020 - SERVICE TIME GENERATOR
SERVICE . TIMEZ=NEW.3ERVICE.TIME
© TEST FOR SYETEM EMPTY
IF SERVICE.TIMEZ2>0 THEN S5&0 ELSE 590
SERVICE.TIMEZ=SERVICE . TIMEZ~1
TOTAL . SERVICE . TIME=TOTAL . 3ERVICE. TIME+1
TOTAL . QUEUESTOTAL . QUEUE+QUEUEZ
GDEUR &10
RETURM

LIST &10-770

&1
S20
&30
&40

&80
&&0

&70
480
&0
roa
710
720
730
740

P50
7a0
77O
Ok

oK

DISPLAY RESULTS
CL3: LOCATE 1,14: PRINT "w*»##% RESULTS OF TIME~ORIENTED SIMULATION x*#xx%"
LOCATE 3,1: PRINT "TIME PERIOD #"I" OF°TOTAL.TIME
LOCATE 5,5: PRINT "WORK QUELE #1 "y
FOR J=1 TO QUEUEL; PRINT "#"j3: NEXT J
LOCATE 5,75: PRINT QUEUET
LOCATE 7,5: PRINT "WORK GUEUE #2 R
FOR J=1 TO QUEUEZ: PRINT "#";:NEXT J
LOCATE 7,73: PRINT GQUEUEZR
IF SERVICE.INDICATORI=1 THEM FLAGI$="%" ELZE FLAGI$=""
LOCATE 10,5: PRINT "SERVICE FACILITY #1";: PRINT FLAGL$
LOCATE 10,75: PRINT SERVICE.INDICATORI
IF SERVICE.INDICATOR2=1 THEN FLAG2%="%" ELSE FLAGZ%=""
LOCATE 12,5: PRINT "SERVICE FACILITY #2";: PRINT FLAG2%
LOCATE 12,75: PRINT SERVICE.INDICATORZ
LOCATE 15,5: PRINT "EXIT QUEUE Y
FOR J=1 TO EXIT.QUEUE: PRINT "#"3;: NEXT J
LOCATE 15,75: PRINT EXIT.GQUELE
LOCATE 20,5: IMPUT "T¥PE <(RETURN)> OR <ENTER> TO CONTINUE "X
RETURN

LIST 780~%70

780
790
200
810
820
830
2440
850
B&0
a70
880
2850
700
710

‘ SUMMARIZE RESULTS

CLs

LOCATE 1,29: PRINT "=#x%xx SUMMARY OF RESULTS =®®xx®

LOCATE 4,1: PRINT "ARRIVAL RATE="TUTAL.ARRIVALS/TOTAL.TIME
LOCATE 4,40: PRINT "SERVICE RATE="EXIT.QUEUE-TOTAL.SERVICE.TIME
LOCATE 7,1 PRINT "ARRIVAL TIME="TOTAL.TIME/TOTAL.ARRIVALS
LOCATE 7,40: PRINT "SERVICE TIME="TOTAL.SERVICE.TIME/EXIT.QUEUE
LOCATE 10,1: PRINT "TOTAL QUEUE="TOTAL.QUEUE

LOCATE 10,40: PRINT "AVERAGE QUEUE="TOTAL.QUEUE/TOTAL.TIME
LOCATE 13,1: PRINT "AVERAGE WAIT="TOTAL.RBUEUE/TOTAL.ARRIVALS
LOCATE 13,40:PRINT"MEAN TIME IN QUEUE="TOTAL . QUEUE/{ TOTAL . ARRIVALS-NO.WAIT)
LOCATE 16,1t PRINT "BUSY TIME="TOTAL.SERVICE.TIME

LOCATE 14,40: PRINT *IDLE TIME="TOTAL.TIME-TOTAL.SERVICE.TIME
LOCATE 19,1: PRINT "TOTAL ARRIVALS="TOTAL.ARRIVALS

FIGURE 7-2 (continued)
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720 LOCATE 1%,40: PRINT *TOTAL SERVICES="EXIT.QUEUE

#30 LOCATE 22,1: PRINT "LEFT IN QUEUE="QUELEL+QUEUEZ2

240 LOCATE 22,40: PRINT "LEFT IN SERVICE="SERVICE.INDICATOR!+SERVICE.INDICATOR2
250 RETURN :

960 ¢ ARRIVAL GENERATOR

P70 X=RND
QK
Ok
LIST 980-

$80 IF X<=.7 THEN ARRIUALS=0: GOTO 1010

50 IF X<=.9 THEM ARRIVALS=1: GOTO 1010

1000 ARRIVALS=Z

1010 RETURN

1020 © SERVICE-TIME GENERATOR

1030 X=RND

1040 IF X<{=.3 THEN NEW.SERVICE.TIME=1: GOTO 1090
1050 IF X<=.7 THEN NEW.SERVICE.TIME=2: GOTO 1090
1040 IF X<=,8 THEMN NEW.SERVICE.TIME=3: GOTO 1090
1070 IF X<=.9 THEN NEW.SERVICE.TIME=4: GOTO 10%0
1080 NEW.SERVICE.TIME=S

10%0 RETURN

ok ’

FIGURE 7-2 (continued)

The display subroutine (statements 610 to 770) graphically shows the
conditions of both waiting-line queues and both service facilities at the end of
every time slice. It also shows the condition of a combined exit queue. For long
simulation runs, this subroutine should be “commented out.”

The summary subroutine (statements 780 to 950) reports the results of
each simulation run. It calculates arrival rate and time and service rate and time.
It reports combined queue statistics; that is, queue statistics that regard the
separate queues in front of each service facility as a single queue. It reports
service-facility loading, and total arrivals and services also on a consolidated
basis.

The program has only one arrival generator (statements 960 to 1010)
and one service-time generator (statements 1020 to 1090), although it could just
as well have had a separate pair of generators for each simulation module, or
more if we were interested in simulating different conditions. The generators
both produce empirically distributed values. The arrival generator has a de-
signed mean arrival rate of 0.4 per day (or whatever you care to define the time
slice to be——interarrival time is 2.5). The service-time generator has a designed
mean service time of 2.3 (service rate is .435). Thus the system is stable inasmuch
as the service rate exceeds the arrival rate.

There are two entries to both simulation modules. The first entries are
the starting statements (130 and 360, respectively). The second entries (state-
ments 160 and 390) bypass the instructions that place the current arrival on the
waiting-line queue.

The main program randomizes the generators, then accepts an input
message establishing the total time of the current simulation run. This parameter
becomes the extent of a FOR-NEXT loop. The main program next calls the
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arrival generator and adds the value of the returned variable to the count of
TOTAL.ARRIVALS. Then it tests whether QUEUE #1 is less than or equal to
QUEUE #2. If this test is true, the main program makes a normal entry to the
first simulation module and, upon returning from the first simulation module,
makes the bypass entry to the second module. This sequence of instructions
establishes the queuing logic for the two servers: An arrival always joins the
shortest queue, and in case the queues are equal, joins QUEUE #1. If the test
of queue length is false, the main program makes a bypass entry to the first
simulation module and upon return makes a normal entry to the second sim-
ulation module. After exiting the FOR-NEXT loop, the main program calls the
summary report module and terminates.

The service-time generators are called from within the simulation mod-
ules, making it easy to install separate service-time generators and thus provide

“differentiated services (such as an express checkout and a normal checkout if

we were writing a supermarket simulation). Just before returning to the main
program, each simulation module can call the display subroutine so the user can
have a step-by-step graphical representation of the simulation. Each simulation
module updates common exit statistics and common counts of TOTAL.QUEUE
and TOTAL.SERVICE. TIME.

We programmed the generators of the single time-oriented simulation
program the same way that the generators of the two-server program were
programmed, and made several comparative runs with these results:

SINGLE-SERVER PROGRAM

Days Arr Rate Svec Rate Avg Queue Loading Arrivals
10 5 3. 1.1 .90 5
100 47 2.25 2.11 .99 47
~ 1,000 43 2.31 7.82 : .99 426
10,000 4 2.28 4.05 .92 4044

TWO-SERVER PROGRAM

Days Arr Rate Svc Rate Avg Queue Loading Arrivals
10 2 5. 3 5 2
100 .37 2.54 .33 .84 37
1,000 4 2.29 49 .91 398
10,000 4 2.31 .51 .92 3990

You can see the dramatic reduction in average queue length, which
means a reduction in the time customers waste waiting in line, and a consequent
increase in both the number of customers that can be served and in customer
satisfaction. These improvements come at the cost of adding a second server.
The more servers, the better the service.
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However, in all systems there is a design trade-off between service level
and slack resources—in this case, employing more servers than we really need.
Usually the trade-off is resolved in economic terms. The question is: Can we
make enough money from the increased throughput of customers to pay the
cost of additional servers and return some predetermined increase in overall

, proﬁl, called our return on investment?

Return on investment is the usual criterion in determining design choices
for stores, factories, and service-oriented establishments such as barbershops,
banks, and ticket counters. In designing systems that have to respond to life-
threatening emergencies, such as those for fire protection, police protection,
national defense, air-traffic control, hospital emergency rooms, and flood con-
trol, different assessment criteria may be employed.

Here it has become popular to use Risk Analysis. We establish an Annual
Loss Expectancy (ALE) based upon the probability of a threat (such as a flood),
our current vulnerability to it, and the value of assets threatened by it. Then we
try to balance the ALE against the annualized cost of countermeasures (for
instance, a new dam).

Intangible items such as loss of life are usually evaluated on the basis of
how much somebody could successfully sue you for if the loss occurred. This
leads to inequities such as evaluating an American life at $200,000 and the life
of a resident of India at $2,500 or less.

SUMMARY

In this chapter we have paid attention to the complexities that exist in simulations
of real-life waiting-line systems.

The first of these was that calling populations are finite rather than
infinite. We may run out of customers; or our customers may return for repeated
services, at which times their needs may be conditioned by the services they have
previously received.

Then we considered the fact that waiting-line queues may have imposed
on them an upper limit of length, as is the case with waiting rooms, bridge toll
plazas, theater lobbies, and, espeaally, buffer areas between two or more se-
quential production processes.

We observed that queuing dlsc1phne is not always first-come, first-served.
It may be just the reverse, or it may be determined by a sometimes complex
system of priorities. These may be conditioned upon the innate characteristics
of each customer or determined by the current state or past history of the waiting-
line system itself.

We considered the existence of two or more subpopulations within the
calling populations, the proportions of which may vary depending upon the
time of day, week, or year or other exogenous or endogenous factors. These
subpopulations may be entitled to different priorities and require different kinds
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of services—such as express customers versus regular customers in a super-
market.

We noted that the size and sometimes the composition of the waiting
line can influence the performance of the servers for either good or bad.

The performance of waiting-line systems can also be influenced by the
behavior of customers waiting in line. They can balk (refuse to join the line),
renege (quit the line), or jockey (leave one line and join another).

Finally, we presented a time-oriented simulation in modular form. This
permits one to simulate multiple servers working in parallel, as tellers in a bank;
multiple servers rendering service in sequence, such as production operations
in a factory; or combinations of these arrangements.




CHAPTER EIGHT
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One of the most useful applications of simulation on personal computers turns
on the ability of a programmer to reproduce the essential characteristics of
mainframe simulations so as to carry out operational or training exercises. We
shall examine two examples: a program that predicts hourly crime occurrences
in a city of 300,000 people, and one that simulates shadowing a hostile submarine.
The first can be used to give police watch commanders some idea of what they
may expect on the basis of historical statistics. The second is a pursuit game that
gives some training in relating transverse Mercator map projections quickly to
latitude and longitude.

POLICE SIMULATION

The police simulation derives from a study we did in London, Canada, to ra-
tionalize police patrol-car areas. The original study is described in Chapter Ten.
Our input consisted of crime-occurrence reports that had been collected in
computer-readable form. Over a three-year period we detected a stability in the
hourly, daily, and monthly pattern of the occurrences of criminal incidents.

On an hourly basis, crime seems to peak in the early evening and drop
off in the early-morning hours. We were able to fit our historical data with a
curve of the form:

HOURLY EVENTS = (SIN(HOUR=#.130927 ~ 1.4724))"2

where the variable HOUR is given as a 24-hour clock. Figure 8~1 shows the
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 DISTRIBUTION OF CRIMINAL INCIDENTS BY HOUR OF DAY FIGURE 8~1 Dmnmunmmm

: ; ts
EEEEEEEEERREREREEERREEEEERERNER criminal inciden

% EREFERERREEAERERREEREREE . by hour of day
B EEEEEREEAEAEEERERE derived by fitting
4 REEEERAEARRK : a curve to empiri-
S REREXEE cal data.

& wEx

7

g

k

10 =%x

11 #xxs¥xx .

12 S%AEXEEREEENER

13 XSXEEBXRXEEXEXXFES

14 EEEXREEAZEAXERERFXRFAEXXERER

15, FEFEFREFXXFREEEXERERXXEERRLERE X

18 SEEXEEEBAEREXRLEERFEAXEXECXXREREERREREER

17 REEFERAXEEEXRERAFEXEEREF XX HREEREREFEREXRRRRS

18 FEEAERERRAERREEEERX AR EREERREEERR AR EERREEREH

17 FEEEEREEEEEXARAEER XA ERREF R XX EFERERERF AR FERERRS
U L T e T T T R I T S I F AT PR R
2] O EFEREEAEEEEXRREXRER SRR EEXERERERERER R ER R RRRER
22 ERAREEEXAERXEXEXEARFEEXEEESREEERERFXEREEERNERE

23 EREEAREREXEXRERFEREREFEEERRRRERRERERERRRRH

L2 REEREAREAEBREAEKERERRREEERERERERER SRR

‘distribution of 'incid'ents on an_hourly basis—1 is set equal to 50 for display
purposes.

On a daily basis, crime appears to rise steadlly from a low on Sunday to
a maximum on Sdturddy ‘We were able to fit our historical data with a straight
line:

'DAILY’ EVENTS DAY.OF.WEEK/7

where DAY.OF.WEEK equals 1 for Sunday and 7 for Saturday. Figure 8-2
shows the distribution of incidents on a day-of-week basis.

On a monthl) ‘hasis, crime seems to decline in the winter and peak in
August. We were able to f1t our hlstorlcal data with a curve of the form:

MONTHLY EVENTS ABS(SIN(MONTH* 261854 — 32362))

where months are numbered beginning with January = 1. Figure 8—3 shows
" the distribution of incidents on a monthly basis. }

We obtained a base crime rate by dividing the number of crimes forecast
for the current year by 8,760, the number of hours in a year (8,784 if it is a
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DISTRIBUTION OF CRIMINAL INCIDENTS BY MONTH OF YE&R  FIGURE 8-3 Distribution of
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leap year). The number of crimes forecast is usually obtained by plotting a line
of regression based upon experience in, say, the past three years.
We multiplied the base rate by:

MULTIPLIER = HOURLY EVENTS + DAILY EVENTS + MONTHLY EVENTS

and normalized the result by multiplying by .6470435, so that the sum of events
for all the hours of the year equaled the yearly forecast.

The only randomization we did was to use a random-number draw to
decide, with a probability of .5, whether to integerize or round up the number
of crimes forecast in each hour.

The simulation consists of a main program and four subroutines: an
initialization (“housekeeping”) subroutine, one that establishes the starting time
of the simulation, another that generates hourly occurrences, and an annotation
subroutine. Figure 8—4 is a logic flow chart for this simulation program. Figure
8—5 is a complete listing.

The housekeeping subroutine is called first. It clears the screen, initial-
izes the random-number generator, and loads three vectors. The FIRST.DAY
vector contains the number of the day of the week for January 1, 1984 to January
1, 1995. (For example, New Year’s Day 1985 falls on a Tuesday, so FIRST.DAY(2)
is equal to 3.) The index is equal to current year minus the base year of 1983.

The DAYS.IN.MONTH vector is used to convert Year/Month/Day dates
(YY,MM,DD) to Month/Day (MM,DDD) dates. These are called “Julian dates”
here, perpetuating a common misnomer. (Another date representation, called
Julian, keeps dates in days since the beginning of the Christian era. This format
simplifies date arithmetic and can be converted easily to American style: MM/
DD/YY, European style: DD/MM/YY, or international standard: YY/MM/DD.)
The vector contains the cumulative days in the month for each month of the
year—in a normal year, January = 0, February = 31, March = 59, and so on.
In a leap year, March = 60. There are 24 components; the first 12 are selected
for a normal year, the last 12 for a leap year. The DAY.OF WEEK string vector
contains the names of the days of the week, as opposed to their numbers.

The main program asks the user to enter the forecast number of oc-
currences for the year to be simulated (OCCUR), and the date and time at which
the simulation is to start (YY, MM, DD, HH); then it calls the “Julian” date
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START FIGURE 8-4 Logic flow chart of
crime-occurrence

) simulation.

RE-SEED )

READ DATA

ANNUAL INCIDENTS
TIME, DATE

CONVERT
DATE - TIME

Q

PRINT L__)
DATE-TIME END RUN
GENERATE
INCIDENTS
\ DISPLAY
INCIDENTS

subroutine. This subroutine first finds the INDEX. Then it tests whether the
current year is a leap year or not (that is, whether or not it is evenly divisible by
4. We're not going to worry about the year 2000 in this book; we’ll save that for
the second edition.) If the current year is a leap year, we equate an offset for
the DAYS.IN.MONTH vector to 12; otherwise it is 0. The offset is called ADD.
The subroutine calculates the hourly crime rate (RATE) for either a
normal year or a leap year. Then it lives up to its name and calculates the Julian
date; this is simply the value of the DAYS.IN.MONTH vector indexed by the
month number (MONTH) plus the offset (ADD), added to the day (DAY).
The Julian subroutine determines which day of the week (DAY.OF WEEK)
it is by adding the current-year component of the FIRST.DAY vector less one
to the Julian date modulo, then taking the sum module-7. It determines which
hour of the year (HOUR.INDEX) it is by adding the Julian date less one times
24 to the starting time (HOUR). Then control is returned to the main program.
The main program then enters a WHILE-WEND loop that is terminated
when FLAGS is set equal to “Q,” for QUIT. For each iteration of the loop, it
increments the HOUR.INDEX, calls the Crime Occurrence subroutine, and calls
the Annotation subroutine. The main program terminates with the loop.
The Occurrence subroutine uses the functions of curves fitted to his-
torical statistical data to calculate the number of crimes expected to occur during
the current simulated hour.
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QK

LIET —-4%0

10 GOSUB S00 < HOUSEKEEPING SUBROUTINE

20 INPUT "ENTER anNUAL NUMBER OF OCCURRENCES ":i OCCUR

30 INPUT "ENTER DATE/TIME: ¥Y, MM, DD, HH *; YEA&R, MONTH, D&Y, HOUR
40 GOSUB 700 © DATE CONVERSION SUBROUTINE

S50 WHILE FLABS <> "¢

&40 INPUT "TO ADUANCE PROGRaM TYPE “RETURN’ OR “EMTER’: TYPE ‘@7 TO @UIT"; FLAGS
70 PRINT

20 HOUR.INDEX = HOUR.INDEX+1

?0 GOSUB 1000 © CRIME OCCURRENCE SUBROUTIME

100 GOSUEB 2000 ¢ ANNOTATION SUBROUTINE

110 WEND

120 END

130 -

Ok

Ok

LIST S00-900

500 ¢ HOUSEKEEPING SURROUTIME

510 CLS:. R&NDOMIZE TIME

520 DIM FIRST.DAY(10),DAYS.IN.MONTHIZ24) ,DAY. OF JJEEKS( 7
530 FOR I=1 TO 10:RESD FIRST.DAY(I2:MEXT I

540 FOR I=1 TO 24:READ DAYS.IM.MOMTHCI Y iNEXT I

550 FOR I=1 TO 7:READ DAY.OF JWEEK$(I) iNEXT I

540 DATA 1,3,4,5,6,1,2,3,4,6

570 DeTe 0,31,5%,90,120,151,181,212,243,275,304,334

5280 DATA 0,31,40,%1,122,152,182,2158,244,274,305,335

S5%0 DaTé " SUNDAY™ , "MOMDAY ", "TUESDAY " , "WEDNESD: 7 " THURSDAY * , "FRIDAY" , "SATURD&Y ™
400 RETURN

700 ¢ DATE CONMERSION SUBROUTINE

710 INDEX=YEAR-83

F20 IF YEARA4-INT(YEAR-4)=0 THEM aDD=12 ELSE ADD=0

725 RATE=0CCUR/ { (ADD/12)%24+8740)

TR0 RATE=O0CCURS ((ADD/ 12 %24+87400

740 JULIGN.DATE=DAYS. IN.MONTHCADD+MONTH Y + DAY

730 DAY .OF.WEEK=(FIRST.Lv{ INDEX? -1 +JULIAN. DATE MOD 7y MOD 7
740 HOUR. INDEX={JULIAM.DATE~1 ) #24+HOUR

770 RETURN

Ok

ke

LIST 1000-

1000 4 CRIME OCCURRENCE SUBROUTINE

1010 HOUR=(HOUR.INDEX MOD 24)

1020 HOUR.EVENT=(SIN(HOUR#®, 1G0F27-1,047241)°2

1030 JULIAN, DATE=INT (HOUR . INDEX./24)

1040 DAY .OF JWEEK=( {FIRST.D&aY ( INDEXI -1 +JULIAN.DATE MOD 7) MOD 7)+1
1050 DAY, EVENT=DAY . OF \WEEK/7

1040 FOR I=1+ADD TO 12+ADD

1070 IF JULIAN.DATE{(DAYS.IN.MONTHCIY+1) THEN MONTH=I-ADD-1:60T0 1090
1080 NEXT 1

1090 MOMTH. EVENT=ABS¢SIMN{MONTH® . 241 854~ , 523420 )

1100 EVENT={HOUR, EVENT+DAY , EVENT+MONTH . EVENT 3 #. 4470435

1110 CRIME=EUVENT*RATE

1120 IF RND »=.5 THEN. CRIME=INT{CRIME+.S5) ELSE CRIME=INT(CRIME)
1125 PRINT "CRIMES = “CRIME

1130 RETURN

2000 ©  ANMOTATION SUBROUT IME

2010 PRINT "/ JULIANY DATE I1S: 1%°YEAR"/"JULIAN.DATE" "HOUR® ;00"
2020 PRINT"DAY 0OF WEEK IS "DaY.OF WEEKS (D&Y . OF JWEEKD

2030 PRINT*HOUR INDEX 18:"HOUR.INDEX

2040 RETURN

ok

'FIGURE 8-5 Complete program listing of crime-occurrence simulation.
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EMTER aNNUAL NUMBER OF OQCCURRENCES 7 80000
ENTER DATE-TIME: YY, MM, DD, HH 7 85,02,01,1%
TO ADUANCE PROGRAM TYPE “RETURMY OR “ENTER‘; TYPE @ TO QUIT?

CRIMES = 12

STULTIANY DATE IS: 1% 85 ~ 31~ 20 :100

DAY OF WEEK IS FRIDAY

HOUR IMDEX 18: 744

TO ADVANCE PROGRAM TYPE “RETURMNZ OR “ENTER®; TYPE ‘@’ TO QUIT?

CRIMEE = {2 )

COOJULIAMNY DATE I8: 1% 8% 7 31 21 :00

DAY OF WEEK 18 FRIDAY

HOUR INDEX 1S: 745

TG ADVANCE PROGRAM TYPE “RETURN-.OR “ENTER’; TYPE “Q° TO QUIT?

CRIMES = 12

“JULIANY DATE IS: 19 85 / 31 / 22 :00

Dy OF WEEK 185 FRIDAY

HOUR INDEX I8: 7&é

TO ADVANCE PROGRaM TYPE “RETURNY OR “ENTER“; TYPE “Q° TO QUIT?

FIGURE 8-6 - Output from crime-occurrence simulation showing control statements.

The Annotation subroutine prints out the Julian date, hour (on a 24-
hour clock), day of the week, and hour of the year (HOUR.INDEX).

- Thus the program starts at the time the user enters and, using the total
annual criminal occurrences for that year, generates the number of crimes for
that year. This program can be augmented by logic statements that differentiate
the occurrences by offense and by geographical area, provided historical statistics
are available from which appropriate logic rules can be written. Figures 8—6
and 8-7 are examples of output from this program.

The program can support people-machine simulations for training watch
commanders and communications personnel. It can also provide input to sim-
ulations whose objective would be rationalizing patrol-area assignments, de-

FIGURE 8~7 Additional output from crime-occurrence simulation.

CRIMES = ¢

TJULIANY DATE I8: 19 85 7 32 ~ 2 :00

DAY OF WEEK IS SATURDAY

HOUR IMDEX I8: 770 )

TO ADUANCE PROGRAM TYFE “RETURN’ OR ‘EMTER’; TYPE ‘@7 TO QUIT?

CRIMES = 8
TJULIANY DATE 18: 1% 85 / 32 ~ 3 :00
- DAY OF WEEK I8 SATURDAY
-HOUR INDEX I8: 771
TO ADVANCE PROGRAM TYPE “RETURN’ OR ‘ENMTER”; TYPE @7 TO QUIT?

CRIMES = 7

SJULTIANY DATE IS: (% 85 ~ 32 7 4 :00

DAYy OF WEEK IS5 SATURDAY

HOUR INDEX I&: 772

TO ADVANCE PROGRAM TYPE “RETURN® OR “ENTER’; TYPE &7 TO QUIT?

CRIMES = &

CJULIANT DATE IS: 1% 8% / 32 /5 :00

Dey OF WEEK IS SATURDAY '

HOUR INDEX IS8: 773 .

- TO ADVANCE FROGRAM TYPE “RETURMN® OR “ENTER”; TYPE “@° TO QUIT?
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p]()yment of backup forces, and rules of engagement to cover patrol areas when
the primary unit is busy.

Up until now these simulations have demanded the use of mainframe
computers, because of the voluminous statistical data required. However, new
models of personal computers with megabyte main memories and 20-megabyte
hard-disk secondary storage will overcome these deficiencies. Of course, exe-
cution time may be a problem if an interpreted language, such as BASIC is
employed. Compilers are now available, however, for BASIC and other popular
personal-computer languages. These compilers offer a ten-to-one advantage in
execution time. Their use does restrict the portability of programs among dif-
ferent makes of personal computers.

SUBMARINE PURSUIT

The next, and last, example is primarily a pursuit game, although it ‘possesses
some tutorial qualities. It is a skeletonized version of a program one of my
students wrote in a graduate course in simulation. The program was intended
to simulate one console of the U.S. Navy’s Ocean Surveillance Information Sys-
tem (OSIS).

OSIS is a major command, control, and intelligence system with facilities
in Spain; Japan; Pearl Harbor, Hawaii; and Norfolk, Virginia that the Navy uses
to keep track of worldwide ocean traffic. It has eight sites, with four consoles at
each one. We simulated one of these to see whether we could improve the
autocorrelator program. This is a computer program that OSIS uses to link up
new contact sightings with preexisting tracks of vessels or aircraft. Our simulation
was done on a Digital Equipment Corp. System 1091 equipped with Tektronics
graphic terminals. My skeletonized version is much less grand, but it does present
some of the elements of computer graphics in a simulation context. Figure
8-8 is a logic flow chart of the simulation. Figure 8-9 is a complete program
listing.

The program we shall examine presents a display that is 720 nautical
miles from east to west and 300 nautical miles from north to south. The scale
is one pixel (the elementary unit of computer graphics) equals one nautical mile.
The southwest corner is 29 degrees (deg) north latitude, 82 degrees west lon-
gitude. The northwest corner is 34 deg N, 82 deg W. The southeast corner is
29 deg N, 67.54 W; and the northeast corner, taking into account the Mercator
correction for the earth’s spherical surface, is 34 deg N, 68.29 W. Annotations
are shown in yellow.

The dlsplay depicts the shoreline of the southeastern United States from
Norfolk, Virginia, to Daytona, Florida, although the graphical routines are suf-
ficiently generalized that other features can be programmed in if desired. The
coastal region is “painted” green; the black screen represents the ocean.

The program only handles two ships: a frigate based at Norfolk, rep-
resented by a blue circle; and a hostile submarine, represented by a red circle.
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CONVERT CORNER
COORDINATES

DISPLAY
SHORELINE

DISPLAY BASE
(1ST TIME)

DISPLAY CORNER
COORDINATES

DISPLAY HOSTILE
CONTACT

INPUT CHASE
COORDINATES

CONVERT CHASE
COORDINATES

FIGURE 8-8 Logic flow chart of -

naval anti-subma-
rine warfare simu-
lation.

The initial location of the submarine is determined by two random-number
draws. Actually, a random course of ten positions is preloaded before an en-
gagement begins. The logical rules of movement for both ships provide for a
100-mile guard band along the left-hand margin of the display, to keep the ships
from driving up US highway 13 or doing something equally silly. Furthermore,
the hostile ship cannot move more than 100 miles north or south, east or west,
at one time; that is, no more than 141.4 miles in a straight line. The friendly
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Lig
10
20
30
40
S0
40
70
30
20
100
110
120
130
140
150
140
170
180
190
200
201
Ok

T 201 .
CLS: FOR I=1 TO 80: PRINT “#";:NEXT I
LOCATE 2,1: FOR I=1 TO 19: PRINT "%": NEXT I
FOR I=1 TO 19: LOCATE 1+1,80: PRINT "#": NEXT I
LOCATE 20,1: FOR I=1 TO 80: PRINT "#%"j;: NEXT I
LOCATE 4,22: PRINT “x¥s%x WELCOME TO < SUBCATCHER’ #%xxx"
LOCATE €,2%: PRINT "COPYRIGHT C-CIRCLE 1984° ,
LOCATE 12,31: PRINT "BY JOHN M. CARROLL®
LOCATE 16,31: PRINT "ALL RIGHTS RESERVED"
LOCATE 22,1: INPUT "TYPE <RETURM> OR <ENTER> TO ADVANCE PROGRAM " 35X
CLS: FOR I=1 TO 80: PRINT "#*°j;:NEXT I
LOCATE. 2,1: FOR I=1 TO 19: PRINT "%%: NEXT I
FOR I=1 TO 19: LOCATE 1+1,80: PRINT "#%: NEXT I
LOCATE 20,1: FOR I=1 TO 80: PRINT "#°3: NEXT I
LOCATE 4,221 PRINT "THIS PROGRAM SIMULATES PURSUIT OF A"
LOCATE 8,32: PRINT "HOSTILE SUBMARINE"
LOCATE 12,29: PRINT "OFF THE U.S. COASTLINE® ‘
LOCATE 14,24: PRINT "FIELD IS 720 X 300 NAUTICAL MILES®
LOCATE 22,1: IMPUT "TYPE <RETURM> OR <ENTER> TO ADVAMCE PROGRAM ® ;X
CLS: FOR I=1 TO 80: PRINT "#®;:iNEXT I

LIST 202-323

202 LOCATE 2,1: FOR I=1 TO 1%: PRINT "*": NEXT I

203 FOR I=1 TO 19: LOCATE 1+1,80: PRINT "#": NEXT I

204 LOCATE 20,1: FOR I=1 TO 80: PRINT "%";: NEXT I

205 LOCATE 4,18: PRINT "MOVE THE FRIGATE {(BLUE DOT) FROM NORFOLK BY"
206 LOCATE 8,25: PRINT “"BY ENTERING ITS LATITUDE AND®

207 LOCATE 12,29: PRINT "LONGITUDE AFTER STEAMING IN A"

208 LOCATE 146,22: PRINT "STRAIGHT LINE FOR 100 NaAUTICAL MILES"

20% LOCATE 22,1: INPUT "TYPE <RETURN}> OR <ENTER> TO ADVANCE PROGRAM "X

210
220
220
240
250
260
270
280
290
200
310
320

REM INITIALIZATION

CLS:DIM X8(168),¥S8(14) ,XC100),YC(100) (XH(100) ,YH(I0M)
W=1 iM=1

FOR I=1 TO 18:READ YS{I):NEXT I

FOR I=1 TO 1&:READ XS{I)NEXT I
RANDOMIZE TIME :

GOSUB %40°GET HOSTILE TRACK

GOBUB 710°FIX GEOGRAPHICAL COORDINATES
GOSUR 4307 DRAW SHORELINE

GOSUB 5507 SHOW HOME BASE

GOSUB 890°PRINT GEOGRAPHICAL COORDINATES
GOSUB 128507 8HOW HOSTILE CONTACT

32T FOR I=1 TO 3000: NEXT .l

Ok

LIST 330-810

320
340
440
450
440
470
480
490
;C%
500
510
520
530
540
S50

FIGU

REM CHASE HOSTILE CONTACT

LOCATE 10,25: INPUT"ENTER LATEST POSITION <{LATITUDE,LONGITUDE>";Y.X

YP=CYN-Y ) #40 i XP=(XW=-X) *COS{Y*.017454) %40.03

IF YPLO OR YP>Z9% OR XP<O0 OR XP>71%, THEN GOSUB 1100

IF SAR(ABS(YP-YTIN) ) *2+ABS(XP-XC(NY>*2)>200 THEN GOSUB 1100

GOSUB 1180 '

LOCATE 24,1 :INPUT*TO GET ANOTHER CONTACT TYPE <{2>;TO SEE TRACKS <1»3;QUIT<O»*

IF C#="0" THEM CLS: END
IF C#="2" THEN 290

IF Ce="1" THEN GUOSUEB 1320
GOTO 420

END

¢

RE 8~9 Complete program fisting of naval anti-submarine warfare simulation.
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540 IF N>1 THEN 410
570 XB=110:YB=40

580 CIRCLE (XB,YR),S,!
590 PAINT (XB,YB>,1,1
400 XC(1)I=XB:YCL1)=YB
610 RETURN

o ;

LIST &20-820

&20

430 REM DRAW SHORELINE

$40 CLEYCOLOR 6,0,0,32

&80 FOR I=1 TO 15

£&60 LINE (XE(I3,YS(I»I-(XE{I+1),¥YS{I+13),4

70 NEXT I

480, PAINT (0,0:,4,4

490 RETURN

oo -

710 REM ROUTINE TO GET LATITUDE & LOMGITUDE OF DISPLAY

720 CLS: FOR I=1 TO 80: PRINT "#";:NEXT I

P30 LOCATE 2,1: FOR I=1 TO 19: PRINT "*": MNEXT I

740 FOR I=1 TO 1%: LOCATE 1+],80: PRINT "#%": NEXT I

FS0LOCATE 20,15 FOR I=1 TO 80: PRINT "#%"j;: MEXT I .

FAO LOCATE 4,1%: PRINT "BUILT~IN MAP SHGWS SOUTHEASTERN COAST OF THE u.st
770 LOCATE &,23: PRINT *ROUGHLY NORFOLK, VA TO ORLANDD, FAY

780 LOCATE 12,23: PRINT "ENTER 2% DEG N ¥ 82 DEG W (27,82)2"

790 LOCATE 14,24; PRINT "A8 THE SOUTHWESTERM CORNER OF MAP®

200 LOCATE 22,13 INPUT “TYPE <RETURN> OR <EMTER> TO ADVANCE PRUGR&M “'X
810 CLS: LOCATE 10,5

820 INFUT"ENTER La&TITUDE & LONGITUDRE OF SW CORNER IN DECIMAL EEGREES“;YS,KM
Qk

ak

LIST 830-1020

230 YN=YS+5

840 XSE=XW-11.99/COS(YE*.017454)

850 XME=XW-11.,97/COG(YN®,017454)

860 CLS:COLOR 4,0,0,32

270 RETURN ‘

880

90 REM PRINT COORDINATES

200 LOCATE 2,17:PRINT YN"N;"XW"W"

910 LOCATE 2,55:PRINT YN'N;"XNE"W"

920 LOCATE 22,1:PRINT YS"Nj"XW* 4"

930 LOCATE 22,55:PRINT Y&'N;"XSE"W"

240 RETURN .

50 7

40 REM HOSTILE TRACK

70 FOR I=1 TO 10

80 XH{I)=RND¥71% (
P90 IF XH{IY<=100 THEN XH{I)=XH(I>+100
1000 IF I=) THEN 1020 ;
1010 IF ABSCXHIIY~XH(I-15)>100 THEN 980
1020 NEXT I

ok ,

Ok

LIST 10301220 ;

1030 FOR I=1 TO 10

1040 YH(I»=RND*Z?%

1050 IF I=1 THEN 1070 .
1060 IF ABS(YHUID-YH(I-12)>100 THEN 1040

FIGURE 8-9 (contmued)
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1070 NEXT 1

1080 RETURN

1090 7

1100 REM POSITION OUT OF BOUNDS

1110 LOCATE 15,1

1120 INPUT"POSITION OUT OF BOUNDS; TYPE <1 TO CONTINUE, <0> TO QUIT"j;C$
1130 IF C$="0" THEN END

1140 IF Cs="1" THEN M=M-1:GOSUB &430: GDQUB 290 :6O5UR 1280:60TC 340
1150 GOTO 1120

1140 RETURMN

1170 -

1120 REM GOOD POSITION

11?0 GOSUB 8%0

1200 CIRCLE (XP,YPJ),5,1

1210 PAINT (XP,YP),1,1

1220 N=N+1gXCOMI=XP:1YC(NI=YP

Ok

1230 RETURN

1240 ¢

1250 REM HOSTILE CONTACT

1240 GOSUB. 890

1270 CIRCLE CXHMY ,YHC(MY) 5,2

1280 PAINT (XHC(M) ,YH(M))>,2,2

1290 M=M+1

1300 RETURN

1310 ¢ :

1320 REM PRINT TRACKS

1330 GOSUB &30

1340 GOSUB 8%0

1350 FOR I=1 TO N-1

1360 LINE (XCCI),YOCID)=(XCCI+1Y,YC{I+1)) 1
1870 NEXT 1

1380 FOR I=1 TO M-2

1390 LINE (XH(ID,YHCID)~CXHCI#1) ,YHCI+1)),2
1400 NEXT 1

1410 RETURN

1420 -

1430 DATA 0,20,40,40,80,100,120,140,140,180,200,220,240,260,280,299
1440 DATA 100,95,85,90,75,40,55,40,35,22,18,15,10,7,5,0
0k i

FIGURE 8-9 (continued)

ship has an advantage. It can move up to 200 miles. The main program first
calls a screen with program title and copyright notice (statements 20—100; see
Figure 8—10). Then look at Figure 8—11, a screen that gives the objective of the
exercise (statements 120—200); and finally Figure 8—12, a screen that gives the
rules for playing it (statements 201-209).

Then the main program initializes itself (statements 210-260). It sets
up three pairs of vectors. One (XS, YS) holds the coordinates of 16 points used
to draw the shoreline. The other two pairs save the positions of the hostile
submarine (XH, YH) and of the defending frigate (XC, YC). The initialization
routine sets to 1 the movement counters for the hostile cratt (M) and the friendly
craft (N). It reads in the shoreline vectors and seeds the random-number gen-
erator from the real-time clock.

Next the main program calls two subroutines that can also be regarded
as part of the initialization process. The Hostile Track subroutine (statements
960—-1080) preloads the random positions of the hostile submarine. In addition
to observing the shoreline guard band (statement 990), this subroutine keeps
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EEXEEKEERE L XSS ELEEEXEREFEEEREEEE XV XX RSV EFEERELFE R R LK X ER KB EX R LA BRXEARAFXRAEEEXEEES

x¥x%% WELCOME TO “SUBCATCHER” #¥xxx
COPYRIGHT C-CIRCLE 1984
BY JOHN M. CARROLL

ALl RIGHTS RESERVED

% oK K % K ¥ R ok K K K R ¥ Rk k¥

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

EREEEEEEERERRREEERREERE AR ERE R R R LA REREREFEREEREREFEERRRRRERE R R REREARRRRRRERR
TYPE <RETURN> OR <{ENTER> TO ADVANCE PROGRAM ?

FIGURE 8-10 Cops?right and welcoming panel.

the submarine within the surveillance area by multiplying the E-W random
number by 719 miles (statement 980) and multiplying the N-S random number
by 299 miles (statement 1040). It observes the 100-mile orthogonal-movement
limitation as well (statements 1010 and 1060).

The Fix Geographical Coordinates subroutine (statements 710—870) is
included in case you want to program in some other location. It presents a panel,
Figure 8—13, that orients the user (statements 720-800);. and another, Figure
8—14, that accepts the latitude and longitude of the southwest corner of the
display (statements 810—820), converts latitude and longitude to positions on
the Mercator projection map (statements 840—850); and colors the annotation
(statement 860).

Statements 290 to 540 make up the heart of this simulation. Statements
290 1o 325 set up the problem display, which consists of a map with latitude and

FIGURE 8-11 Introductory panel of “Subcatcher.”

EREREFEFEELEEEFEEEEXEREERRFEXEFSUEX X XXX SRR X RS EERFRLE AR BEEEREFXENNLEREERSEEXERREERELE

* *
* *
* THIS PROGRAM SIMULATES PURSUIT OF A *
* *
* *
* .
* HOSTILE SUBMARINE *
¥ *
x *
* *
* OFF THE U.S. COASTLINE *
% . *
* *
» *
* FIELD IS 720 X 300 NaAUTICAL MILES . *
* : -
* *
* *
FEFREEEEEREEXFEEEEERREEEEEEEREEEEEA L X ERRERE R R EE RS E L ER LIRS REEAF XX ETRRERAEER RN SN2

TYPE <(RETURN> OR (ENTER> TO ADUANCE PROGRAM 7
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****i*************%******i***********i*****ﬁ****************************!*E*****

MOVE THE FRIGATE (BLUE DOT) FROM NORFOLK BY

BY ENTERING ITS LATITUDE AND

LONGITUDE AFTER STEAMING IN A

STRAIGHT LINE FOR 100 NAUTICAL MILES

¥ K O K Kk K K ok R Kk & ok ¥k

*
*
*
*
*
*
*
*
*
*
*
*
*
*®
*
*
*
*
*

EEEEEREREERE R R LR LR LR R R EEERRR RN XL R R R AR RREREXREAEREFEXRE R R R E R RE R LSRR
TYPE <RETURN> OR <ENTER> TO ADVANCE PROGRAM ?

FIGURE 8-12 Instructions for playing "Subcatcher.”

longitude annotated in each corner, the shoreline, the frigate at its home base,
and the hostile submarine somewhere offshore. This involves calling the sub-
routines Draw Shoreline (statements 630—690); Show Home Base (statements
550-610); Print Geographical Coordinates (statements 890—940); Show Hostile
Contact (statements 1250—1300); and a timing loop for program synchronization
(statement 325). The Show Home Base subroutine is executed only during the
first iteration of an engagement. The Chase Hostile Contact routine (statements
340- 480) carries out the actual operation; and statements 490-530 make up
the main control switch. These displays are shown in photographs of the color
monitor screen.

The Draw Shoreline subroutine simply draws a line connecting the 16
points in vectors XS and S, and paints the enclosed area green.

The Show Home Base subroutine is by-passed if N, the movement counter

IGURE 8-13 Geographical orientation of naval anti-submarine warfare simulation.

****i********i*****************************************************************

BUILT-IN MAP SHOWS SOUTHEASTERN COAST OF THE U.S.
ROUGHLY NORFOLK, VA TD ORLANDOD, FA
‘ENTER 29 DEG N X 82 DEG W (29,82)

AS THE SOUTHWESTERN CORNER OF MAP

Kok K Nk Kk kK K K R K ok K ok R kX K

ERRREEEEREREREEEREXERARAERRERERA SRR XEEEREERERELXEENRERXERXRR XL RRXRRRRERRERR RN XXX

TYPE (RETURN> OR <ENTER> TO ADVANCE PROGRAM 7
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ENTER LATITUDE & LONGITURE OF SW CORNER IM DECIMAL DEGREES? 29,82

FIGURE 8-14 Entering latituge and longitude of southwestern corner of map display.

for the frigate, is greater than one; that is, on every iteration in an engagement
except the first. The subroutine draws a blue circle at graphical coordinates 110,
60; corresponding roughly to 33 deg N, 79.8 deg W. It enters the X, Y coor-
dinates of the home base as the first component of the fnendly craft’s movement
history vectors (XC, YC).

The Print Geographical Coordinates subroutine prints the pairs of val-
ues: YN (Y-NORTH), XW (X~=WEST); YS (Y—~SOUTH), XW; YN, XNE
(X—~NORTHEAST); and YS, XSE (X SOUTHEAST) obtained m the Geo-
graphical Coordinates subroutine.

The Show Hostile Contact subroutine unstacks the first set of preloaded
coordinates from the XH, YH vectors using the subscript M (hostile-craft move-
ment counter), draws a red circle at that point, and increments M by one.

ACTUAL ENGAGEMENT

The Chase Hostile Contact routine (statements 240 to 530) invites the user to
enter the latitude and longitude of where the frigate is supposed to be at the
end of the iteration (statement 440). Ideally, this should be directly over the
submarine. If the user is sufficiently skilled in relating map position to latitude
and longitude, it should then be possible to “shadow” the submarine by staying
directly over it no matter what maneuvers it executes.

The hardest part of the exercise is 1n1t1ally catching the intruder, who
may be more than 200 miles away. Moreover, it is not easy to relate map position
to latitude and longitude, since there is no grid on the map.

The program converts the latitude and longltud(, to map coordmatcs
(statement 450). Then it checks to see whether the point selected is on the map
(statement 460), and whether the pomt is less than or equal to 200 miles from
the last posmon of the fr 1end1y vessel (statement 470) If either of these checks
fails, control is transferred to the Posnmn«()ut—Of Bounds subroutine (state-
ments 1100 to 1160). If the point fulfills both criteria, control is transferred to
the Good Posmon subroutme (stdtements 1180 to 1230)

The Good Posmon subroutmc mcrements counter N, pushes the point’s
coordinates onto ‘the : XC and YC Vectors, and pamts a blue circle at that point.
Control is returned \ «the master w1tch (Statement 490).

Thc master swn;éh has thré positions: 0, 1, and 2. Position 0 concludes
7 ) 1 transfers control to the Print Tracks
subroutine’ (staternents 1320 to 14‘10 Posmon 2 tr; ansfers control back to state-
ment 290. It causes another iteration dlsplaymg the map and moving the hostile
submarine to: the next prestored random- ‘position. If rione of these answers is

selected, control is returned to statement 490 and the user is invited to respond
dgam
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Start of an engagement. The coastline is shown in green. Home base (Norfolk, VA) is a blue
circle. The initial position of the hostile submarine is shown as a red circle. The first position
taken by the friendly frigate-is shown as a blue circle.

End of the engagement. The frigate is shown closing with the submarine.
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This display recails and displays all the tracks made by the frigate and the submarine during
an engagement.

If the selected point is determined to be out of bounds, the Position-
-Out-Of-Bounds subroutine handles things differently. A message: “Position out

of bounds” is displayed and the user is invited to enter the response “0” to quit
or “1” to try again. If the user elects to try again, the M counter is decremented
by one to make the hostile submarine execute its last maneuver again. Then
three subroutines are called: Draw Shoreline, Print Geographical Coordinates,
and Show Hostile Contact; and control is transferred to statement 340 so the
user can execute the Chase Hostile Contact routine again. Notice that we don’t
have to decrement the N counter, because the Out-Of-Bounds position never
was stacked on the XC, YC vectors.

If the user elects the “Print Tracks” option, the Print Tracks subroutine
first redraws the shoreline and then reprints the geographical coordinates. The
subroutine then reads out the XC and YC vectors, drawing blue lines from
XC(I), YCI@), to XC(I+1), YC(I+1). Then it reads out the XH and YH vectors,
drawing red lines from XH(I), YH(I) to XH(I+ 1), YH(I+1)—but stops one
location short of the current value of M to put the counters back into step. Upon
returning to the main program, the engagement is terminated.

MAKING MOUNTAINS

It often is convenient to include a terrain display in a simulation. Random-
number techniques can be used to generate randomly different terrain displays.
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Our first example involves using Fourier synthesis (makmO~ a complex wave form
out of the sumis- of sine and/or cosine waves) to generate the ridge line of a
mountain’ range

This is part of an arullery trammg snnulator that we shall describe in
Chapter Ten. The program is written in the dlalect of BASIC used by the Tandy
TRS-80 Computcrs . ,

10 G RND(SO) ‘THIS RANDOMIZES THE PATTERN
20 ! COMMENT ouT STEP 1o TO GET THE SAME ‘
PATTERN EVERY TIME e :
30 FORX = 1,To, 127 1 TRS 80 GRAPHICS USE A 128
X 80 PIXEL DISPLAY <L SR o
40Y = 24

, 3 *SIN(X*S 28/90) + 2% } :
SIN(S*X*G 28/90 +0+ 15{ 2 % SIN(5%X%6. 28/90 ~ 50)
SIN(7xX*6.28/90). + 30) _fSIN(z*x*s 28/90) '
50 IFY < 19 THEN 90 |
60 IF Y > 37 THEN 90
CT0Y(X) =Y
80 SET (X,Y)
90 NEXT X

FIGURE 8-15 Equilateral triangle divided into 3 levels of fractiles: 4 triangles. In the lower
left apex is shown how we get 16 and 64 triangles.




SIMULATION EXAMPLES 173

FIGURE 8~16 Three-dimensional picture of mountainous terrain produced by randomized
fractiles of a triangle.

A complex three-dimensional terrain pattern can be generated using
the geometric concept of fractiles. This concept is illustrated in Figure 8§—15.

We start with an equilateral triangle and connect the midpoints of the
three sides. This gives us 4 equilateral triangles and we have descended one level
of fractiles. Now we can descend another level and do the same thing to each
of our 4 equilateral triangles, to obtain 16 triangles. By descending to the third
level, we obtain 64 triangles. These little triangles are fractiles of the big one we
started with.

Now we bring simulation into the picture. Instead of drawing our lines
that subdivide triangles from the midpoints of the sides of the bigger ones, we
use our random-number generator to pick a random point on each side. The
result is not the regular geometric pattern we had before, but one that, after
we add some random shading and/or color, produces the simulated aerial pho-
tograph of mountainous terrain shown in Figure 8—16.

The program to generate pictures like this (every picture will be differ-

FIGURE 8-17 Basic program for producing three-dimensional pictures by randomized
fractiles.

20 DIM D(&4,32)
IO INPUT "Number of levels >y "jLE
40 D8 = 21 FOR N = 1 TO LE

4% D8 = D8 + 2 ~ (N — 1) NEXT N
S0 MX = DB ~ 1:MY = MX / 2:VPI = 3.1416
S5 RH = VFI & 30 / 180:VWT = RH ¥ 1.2

&0, FOR N = 1 TO LE:L = 10000 / 1.8 ~ N

70 FRINT " Warking on level “iN

80 IR = MX / 2 ™ MiGK = IB % 2

85 REM ¥¥X aAssign heights along X in array kX
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F0  BOSUE 150

95 REM ¥XX¥ Assign heights along Y in array XXX
100 BOSUER 220

105 REM XXX Assign heights along diagonal in array XxX
111G GOSUR 290

120 NEXT N

130 BOTO &40: REM XXk Draw Xx¥

140 REM ¥ Heights along X XX¥

150 FOR YE = O TO MX -~ 1 STEP 8K

160 FDR XE = IB + YE TO MX STEF 8K

170 AX XE -~ IBrAY = YE: GOSUR 370

175 D1 DiAX = XE + IB: GOSUR 370:D2 = D

180 D = (DI + D2) /7 2+ RND XL /72 ~L /7 4
185 AX = XEiAY = YE: GOSUB 420

190 NEXT XE

200 NEXT YE: RETURN

210 REM % Heights along Y %

220 FOR XE = MX TOD 1 BTEF ~ 8k

230 FOR YE = IR TO XE STEF 3k

240 AX = XE:AY = YE + IB: BOSUR 370

245 D1 = D:AY = YE - IB: BOSUR 370:D2 = D

230 D = (D1 + D2) / & + RND L/ 2~-L /4
255 AX = XE:AY = YE: BOSUER 420

260 NEXT YE

270 NEXT XE: RETURN

2B0 REM % Heights along diagonal X

290 FOR XE = 0 TO MX ~ 1 STEF 8K

00 FOR YE = IE TO MX ~ XE STEP BK

310 AX = XE + YE ~ IB:AY = YE -~ IB: GOSUR 2Z70:D1 = D
F2O AX = XE + YE + IB:AY = YE + IB: GOSUB 370:D2 = D
B30 AX = XE + YE:AY = YE

F3Z2 D = (D1 + D2) 7 2 + RND XL/ 2~L /A

334 GOSUER 420

340 NEXT YE

IGO0 NEXT XE: RETURNM

I60 REM  ¥%¥ return data from array ¥¥x%

E70 IF &Y * MY THEN 390

3IBO VBY = AY:BX = AX: BOTO 400

I90 VBY = MX + 1 - AYYBX = MX - AX

400 D = D(EX,VBY): RETURN

410 REM Xx¥ Put data into array X¥¥

420  IF &Y » MY THEN 440

430 VBY = AY:RX = AX: BOTO 450

440 YBY = MX + 1 ~ AY:BX = MX - AX

450 DIEX,VRY) = Di RETURN

460  REM %% Put in sea level here XXX

470 IF X0 <r = 999 THEN 500

ABO  IF ZZ ¢ © THEN GOBUR 1070:22 = 2Z:2Z = O: GOTO &R0
490  GOSUR 1090: GOTO 610

500 IR 22 > O AND ZZ > O THEN 610

510 IF Z2 < O AND ZZ < O THEN 22 = ZZI:Z2Z = 0: BOTO 6320

520 W3 = 227 / (2Z - ZI2)

522 X3 = (X2 - XX) ¥ W3 + XX
524 Y3 = (YD ~ YY) X W3 + YY
526 23 = 0

530 ZT = ZZ:YT = YY:XT = XX

540 IF ZZ » O THEN 590

G80 REM Xk going into water Xxx

560 ZZ = IZiYY = Y3:XX = XT: BOSUB 9850

570 BGOSUR 1070:ZZ = O:YY = YT:XX = XT:Z2 = IT: GOTO 620
80 REM XXX comming up out of water XkX

BY0 ZZ = I3:YY = YE:1XX = X3: BOSUR 950

600 BOBUR 1090:22 = ZTiYY = YTiXX = XT

610 Z2 = IZ

620 X2 = XX:YZ = YY: RETURN

&30 REM XXX display here ¥X¥

635 REM %X set up plotting device or screen ¥Xx
640 GOBUE 1110

FIGURE 8-17 ({(continued)




SIMULATION EXAMPLES

445 REM X¥¥ scaling factors ¥¥X

650 X5 = .04:Y8 = .04:Z8 = .04 ]
&60 FOR AX = 0 TO MX:XO0 = - 929: FOR AY = 0 TO AX
&70  BOSUB 370

&72 ZZ = D

674 YY = AY / MX % 10000

676 XX = AX / MX % 10000 -~ YY / 2

680 BOSUR F40: NEXT AY: NEXT AX

&90 FOR AY = O TO MX:XD = - 999 FOR AX = AY 7O MX
700 BOSUB E7Q

702 12 = D

704 YY = AY 7/ MX % 10000

T0&6 XX = AX / MX X 10000 - YY / 2

710 GOBUR 940: NEXT AX: NEXT AY

720 FOR EX = O TO MX:X0 = - 99%: FOR EY = O TO MX -~ EX
730 AX = EX + EY

7EZ AY = EY: BOSUR 370

736 11 =D

738 YY = AY / MX X 10000

740 XX = AX / MX ¥ 10000 ~ YY / 2

7435 GOSUB 940: NEXT EY: NEXT EX

750  GOTO 1130: REM %X Done plotting goto end loop X%
760 REM XXk rotate kXX

770 IF XX <» O THEN BOO

780 IF YY <= 0O THEN RA = -~ VPI / 2: GOTOD 820

790 RA = VFI / 2: GOTD B20

800 RA = ATN (YY / XX)

810

IF XX < O THEN RA = RA + VPRI

820 R1 = RA + RH:RD = 8SBR (XX X XX + YY ¥ YY)

830
840
850

XX = RD ¥ CO8 (R1Y:yY = RD ¥ SIN (R1)
RETURN :

REM %%¥ Tilt down XX

860 RD = SER (ZZ % IZ + XX ¥ XX)

870

IF XX =0 THEN RA = VF1 / 2: BOTD 900

880 RA = ATN (ZZ / XX)

890

IF XX < O THEN RA = RA + VPI

FO0 R1 = RA ~ WT

?1Q
20
IO
F40

XX = RD ¥ CD8 (K1) + XX:ZZ = RD ¥ SIN (R1)
RETURN '
REM x¥% Move or plot to (XP,YP) XxXx¥

BOSUER 470

PBO XX = XX ¥ XB:YY = YY ¥ Y¥YS:IZ = ZI % I8

P60

70

80

285

720

1000
1010
1020
1030
1040
1045
1050
1060
1064
1070
1075
1080
1090
109G
1100
1110
1112
1115
1120
1130
1140

BOSUR 770 REM XXX rotate XXX
GOSUB 860: REM X¥kX Tilt up XXX
IF X0 = ~ 999 THEN FR$ = "M"
IF X0 <> =~ 999 THEN PR% = "D"

XP o= INT (YY) + CXs¥YP = INT (21}

GOBUR 1030
RETURN
REM ¥%X Flot line here X&%
XF o= XP ¥ (&2E:YF = 33.14 ~ 660 k YP
IF PR$ = "M" THEN X8 = XF:¥Y8 = YP:X0 = X
IF Y8 » 179 OR YB < O OR YP > 179 OR YP < O THEN RETURNM
LINE (X8,Y8)~(XF,YP),CL
REM %kX switch to sea colour XXX
X8 = XP:¥8 = YF: RETURN
CLo= 1
RETURN
REM XXX switch to land colour X¥x
CL = 3
RETURN
REM $¥x Setup plotting device or screen kXX
SCREEN I
COLOR 0,1
RETURN
REM X%X End looooop XXk
INFUT A%
END

FIGURE 8-17 (continued)

175
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ent, as long as you reseed the random-number generator) is given in Figure
8—17. It is written in MS/BASIC for IBM/PC graphics.

SUMMARY

We have examined two simulation programs that were skeletonized from main-
frame simulations to run on personal computers.

The first simulated the occurrence of criminal incidents in a medium-
sized city. The main point of this program was the rationalization of time to
correspond to curves fitted to historical statistics.

The second program simulated a two-vessel encounter. Its main point
was the creation of a colored map upon which to carry out the engagement.

In both cases, the personal computer was turned into a convenient train-
ing system based upon a person-machine simulation.

Then we presented two ways to use random-number techmques to pro-
duce randomly different terrain representations: One uses Fourier synthesis to
create the line of a mountain ridge; the other uses fractiles to create a three-
dimensional picture of mountains, and islands if desired.
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GPSS FOR PERSONAL COMPUTERS

Most users of computer simulation programs today use special simulation lan-
guages, of which there are a large number. Three popular ones are SIMULA,
SIMSCRIPT, and GPSS. Some of these languages are available only on main-
frame computers, and sometimes on only certain makes and/or models. Others
are available on personal computers.

GPSS, which stands for General Purpose Systems Simulator, is a widely
used simulation language. It was originally an IBM product, but its instruction
set has been implemented on many different computers. At the University of
Western Ontario, we use a version written by David Martin, of the Department
of Computer Science systems support group; it was originally called GPSS-10 to
suggest that it ran on the Digital Equipment Corporation (DEC) PDP-10. A later
version of this program, written with C. Bruce Richards, is called GPSSR (re-
vised).

Bruce Richards, a former student of mine, has written and is marketing
a version of GPSSR that runs on personal computers compatible with the IBM-
PC. It is called GPSSR/PC.

GPSSR/PC is a General Purpose Simulation System that runs under
MDOS-V2.0. The MDOS operating system is supplied for the IBM/PC line of
personal computers. Many other personal computers are compatible with the
IBM/PC and can also run GPSSR/PC.

GPSSR/PC concepts do not vary from other popular GPSS implemen-
tations. It has been designed to be a substantial subset of both GPSS/360 on IBM
systems and GPSS10 on DEC systems 10 and 20. These two systems were used
as guidelines to produce a language that is familiar to GPSS users and compatible
with most textbooks.
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INTRODUCTION TO GPSS

by C. Bruce Richards
Department of Computer Science
The University of Western Ontario
London, Ontario, Canada

INTRODUCTION TO GPSS

Unlike a conventional general-purpose programming language such as FOR-
TRAN or PASCAL, GPSS does not have a sequential flow of control. Concep-
tually there may be numerous portions of a GPSS program being executed
simultaneously. GPSS is event-oriented, and at any given moment in simulated
time, numerous different events may take place: It is natural to think of them
as happening at one instant in time.

This concept of concurrency may be explained with a car-wash example.
At one instant it is possible that one car is leaving the car wash, another is

-entering, and yet another is joining the queue waiting outside. (These are events.)

The basic element in the multiple flow of control in GPSS is the “trans-
action.” Transactions flow through a model sequentially from block to block in
much the same manner that the flow of control in a FORTRAN program passes
from statement to statement. The main difference is that a GPSS model can
have many transactions flowing through it simultaneously, while a FORTRAN
program has only one element in its flow of control.

The flow of control in a conventional program starts at the begining of
the program and continues sequentially from there. A transaction in a GPSS
program starts at a GENERATE block and continues into the system. The single
flow of control in a conventional program continues until the program comes
to its logical conclusion and is halted. A GPSS transaction passes from block to
block until it reaches a TERMINATE, which removes the transaction from the
model. However, this does not necessarily halt the model. Execution of the model
is halted only after a specified number of transactions have been terminated.

There may be numerous GENERATE blocks in a GPSS program. This
gives rise to the concept of multiple starting locations, with many transactions
leaving GENERATE blocks in the same simulated time interval. It is also possible
for many transactions to leave a GENERATE block before any reaches a TER-
MINATE block. This results in a model having possibly only one GENERATE
block but many active transactions moving simultaneously.

Novice GPSS programmers often have the misconception that a trans-
action transfers from the TERMINATE block back to the GENERATE block
that it originated from, similar to a FORTRAN-style GOTO. This is not the case.
Transactions leaving a GENERATE block are completely independent from the
transactions being removed by a TERMINATE block.
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CASE STUDY | (CAR WASH)

Scenario

Johnny Canuck, owner of the Great Polish—Sparkling Shine Car Wash,
wants to increase his profits. It seems a little risky to build an extension to his
facility without knowing beforehand how large it should be. He feels that adding
more capacity would increase his throughput, but if it is too large the facilities
would be underutilized, thereby decreasing profits.

Analysis

The first step in designing a simulation is to specify the goals and ob-
jectives. To make a decision regarding the expansion of the car-wash facilities,
information pertaining to queue lengths and waiting times, along with facility
utilization, should suffice.

Identification of the different components and control points of the
system in question with respect to the foregoing information requirements is
the next phase. Obviously the main component of our system is the washing
mechanism. In the current car wash this is a facility that can wash one car at a
time. Another, possibly less obvious, component is the lineup of cars waiting to
enter the car wash, better known as a queue. This queue does not directly affect
the operation of the car wash, but resultant information regarding queue lengths
and waiting times is invaluable when studying the model. The rate at which cars
to be washed join the queue and the time it takes to wash a car are the third
and fourth components. _

Next, the appropriate times and rates must be measured. The two tim-

ings that are important in this system are the rate at which cars arrive and the
length of time needed to wash a car. A measure of actual queue lengths will be
useful for model validation.
, The arrival rate is best calculated by measuring the elapsed time between
successive arrivals (the interarrival rate). The number of cars arriving per time
unit can be useful if an appropriate time unit is chosen (traffic seldom arrives
at a constant rate). By measuring the interarrival times, we can calculate the
average, minimum, and maximum interarrival times. Using this information, a
uniformly distributed random interarrival rate can be very easily programmed
into the model with GPSS. GPSS is structured such that this is the distribution
of choice in GENERATE and ADVANCE blocks.

Raw Data

By analyzing the raw data in Tables 9—1 and 9-2, we may derive the
following system characteristics. The average time between arrivals at the wash
is 5.2 minutes. The shortest time interval is 1.4 minutes and the longest is 9.0
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Table 9—-1 'Interarrival Times (Minutes) of
Consecutive Arrivals

44 3.6 23 52
6.8 54 5.9 6.1
45 49 53 1.7
75 42 83 | 35
33 6.3 6.0 75
25 2.0 9.0 35
7.1 25 5.0 4.4
6.3 1.4 8.2 3.2
5.0 75 2.7 4.1
4.0 35 5.6 2.0
5.0 46 7.7 8.9
5.8 6.8 5.7 5.6
8.8 5.9 8.7 75

minutes. To simplify things, the interarrival times could be stated as 5 plus or

~ minus 4 minutes. The time a car spends inside the car wash is between 3.2 and
4.9 minutes, with an average time of 4.1 minutes. Similarly, this time spread

could be stated as 4 plus or minus 1 minute.
The observed queue lengths can be summarized as a maximum length
of 12 and an average length of 6.8 cars.

Simulation

GPSS has entities and block definitions to represent the different types
of components in a system. The manner in which transactions are to enter the
model (in our example, cars entering the car-wash system) is represented by the
GENERATE block. The different options of the GENERATE block allow the
programmer to specify the rate at which transactions are to enter the system.
The first subfield (field A) specifies the mean mterarrwal time, and the next
subfield (field B) is the spread of times.

The GPSS statements QUEUE and DEPART respectively insert and
remove transactions from the specified queue. The QUEUE entity type also
generates queue statistics by automatically accumulating pertinent mformzmon
about the queue’s behavior.

Equipment entities ' may be represented by a FACILITY or a STORAGE.
A STORAGE entity may be defined to contain a maximum of one or many

Table9—2 Random Sample of Car-wash Times
(Minutes) Observed During the
Same Time Period as Table 9—1

4.2 35 3.6 45
4.0 4.2 3.2 4.9
37 4.0 35 34
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Table9-3 Random Sample of Car-wash Queue
Lengths Observed During the Same
Time Period as Table 9-1

3 7 6 7
6 5 3 2
9 12 8 7
7 9 11 8

transactions. A FACILITY may contain only one at a time. The single car wash
in our example will be represented by a FACILITY. The SEIZE and RELEASE
statements cause a transaction to gain control of the specified facility if the facility
is free, and relinquish control when finished.

A time delay is represented by an ADVANCE block. The time delay
may be constant or variable, depending on the options used. ADVANCE 4,1
represents a random time delay uniformly distributed between 3 and 5 units in
duration. This time delay may represent the length of time that a transaction
keeps control of a piece of equipment (i.e., the time it takes to wash a car).

The TERMINATE block removes transactions from the model. As a
transaction enters a TERMINATE block, it is conceptually destroyed. We are
no longer interested in a car after it exits the car wash. Therefore it is terminated.
Figure 9—1 relates the activities of the car-wash system to the different GPSS
blocks.

Verification and Validation

Verification that the GPSS program matches the designed model is of
utmost importance. This is similar to program debugging. In GPSS the inter-
active debugger allows the user to single-step through a model to check trans-
action flow. Other debugger features allow examination of entities and setting
of break points in the model. (Further information can be found in the reference
manual.)

Once the GPSS program is running correctly, the model should be val-
idated. Model validation involves tests to determine if samples of simulated
output statistics belong to the same population as the actual system statistics.
Figure 9-2 shows the actual output of a GPSS simulation run. By comparing
the output to the performance of the actual system it is possible to determine
if the model is simulating the car wash correctly. If, for example, the queue
lengths in the model and the actual car wash bear no resemblance to one another,
it is possible that there is still a bug in the GPSS program or the model design
is incorrect. '

Three possible causes of an incorrect model are: oversimplification, in-
valid data analysis, or insufficient raw data. Oversimplification may be caused
by using too crude a time measure or by combining too many components of
the actual system into one entity in the model. Not obtaining enough raw data
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may result in a sample that is not a true representation of the real system. Poor
data analysis may result in an incorrect assumption regarding the distribution
of timings. What may at first appear to be a uniform distribution may actually
be a normal distribution.

Figure 9—2 contains the output of our GPSS car-wash simulation. The
information that is of interest to us is the automatically generated statistics re-
garding queue length and facility utilization. The .78 utilization means that in
our model the carwash was busy 78 percent of the time. This does not mean
the actual car wash is this busy. The maximum and average queue lengths of 5

FIGURE 9-1 Car wash simulation using GPSS.

1. Car arrives every 1 to 9 minutes. GENERATE 5,4

2, Car enters lineup waiting for wash.
f WASH |
) A

(o O (OO
= @ ~ @ SEIZE WASH
3. Car enters wash facility and DEPART WASH
departs queue.
WASH
Ay )
A o
I i
& O NONTHA
! ‘\‘
4. Car spends 3 - 5 minutes in carwash. ADVANCE 4, 1
WASH
yay pay
)
® (-]
5. Car exits wash freeing the facility. RELEASE WASH
‘ WASH
Fay ya)
e Wrear % D | B
(o—O (o—© o—©0

6. Car leaves system. TERMINATE 1
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GPSSR/PC V1.1
carwashl.LST=carwashl.aps

$-FEB~- 1985

18:26 PAGE

LINE BLOCK
1 *
2 * CAR WASH EXAMPLE 1
3 *
4 D RMUL.T 31415
] WASH EGU 1 “$WASH EGUATED TO A NUMERIC VALUE
-] SIMULATE
Z 1 GENERATE 5,49 sCAR ENTERS SYSTEM
=] 2 BUEUE wasH CAR LINES UP FOR WASH
k4 3 SEIZE WASH sCAR GAINS COMTROL OF WASHER
ic 4q DEPART WASH $CAR LEAVES LINEUP
11 S ADVANCE 4,1 STIME TO WASH CAR
12 & RELEASE WASH FCAR EXITS WASHER
13 -7 TERMINATE 1 sCAR EXITS SYSTEM
14 START 1000 RUN MODEL FOR 1000 TERMINATIONS
13 END
SYMBOL. VALUE SYMBOL VALUE
s S
WASH 1
GPSSR/PC V1.1 P-FEB-198% 183126 PAGE 2
carwashl . LST=carwashi.gps
RELATIVE CLOCK 3112 ABSOLUTE CLOCK 5112
BLOCK CQUNTS
BLOCK CURRENT TOTAL BLOCK CURRENT TOTAL BLOCK CURRENT TOTAL
1 1 1002 2 1 1001 3 [o] 1000
4 Q 1000 -] e} 1000 & ] 1000
7 o] 1000
FACILITY AVERAGE NUMBER AVERAGE SEIZING PREEMPTING
UTILIZATION ENTRIES TIME/TRAN TRANS.NO. TRANS. NO.
1 0.78 1000 3.99
QUEUE MAXIMUM AVERAGE TOTAL ZERO PERC. AVERAGE SAVERAGE TABLE CURRENT
CONTENT CONTENT ENTRIES ENTRIES ZERO TIME/TR TIME/TR NUMBR CONTENT
1 -1 0.34 1001 513 51.28 1.724 3.56 1

FIGURE 9-2 GPSS output listing with (default) queue and facility statistics.

and .34 do not appear to be close to our observed queue lengths. There may

be a problem in our model.

CASE STUDY PART Il

Scenario

The observed queue lengths are substantially longer than those gener-
ated by the GPSS model. What is wrong? :
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] FIGURE 9-3 Histogram of inter-
I ) arrival rates (ap-
proximately nor-
T g T mal),

Analysis

A further analysis of the interarrival-rate data produces the conclusion
that the distribution is not uniform. The first step toward a better understanding
-of the interarrival distribution is to create a frequency table (Table 9-4).
The relative frequency represents the percentage of cars that arrive in
that range of times. A histogram of the raw data (Figure 9-3) visually dem-
~ onstrates the similarity between the observed data and a normal distribution.
Two different simulations, one with the observed distribution of inter-
arrival times and the other based on a normal distribution, will be run. A standard
normal distribution has a mean of 0 and a standard deviation of 1. The standard
deviation is a statistic representing the measure of spread in the data. The
standard deviation of the observed interarrival rates is 2.

' Simulation
" The GPSS block GENERATE 5,4 (Figure 9-2) creates one transaction

' every one to nine time units with equal probability (i.e., uniform distribution).
To modify the program to use a different distribution, a FUNCTION is required.

Table 9-4 Frequency Table of Interarrival Times

" CUMULATIVE

INTERARRIVAL OBSERVED RELATIVE RELATIVE
TIME FREQUENCY FREQUENCY . FREQUENCY
1=2 2 .038 .038
2-3 6 113 151
3-4 6 13 264
4-5 8 152 416
5-6 12 .226 642
67 6 113 755
7-8 6 113 - ‘ .868
8-9 6 113 C .981
9-10 1 019 : . 1.00
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The GENERATE block may reference a predefined function to specify the
arrival rate. ,

A function is defined with a FUNCTION statement and is referenced
via the FN standard numeric attribute (SNA). (There are a number of SNAs in
GPSS that can be used to reference information pertaining to the different
entities in the model.)

To produce a random interarrival time, one of the random-number
generators will be declared to be the independent variable for this function. The
actual shape of the function is described by a function-follower statement.

INTERVL  FUNCTION  RN$2,CS

The preceding function statement declares INTERVL to be a continuous
function using random-number generator 2 as the independent variable and
having 9 points in the definition.

.038,1/.151,2/.264,3/.416,4
.642,5/.755,6/.868,7/.981,8/1,9

Note that in the foregoing function-follower statement, a slash (/) separates pairs
of values. The first value of each pair is the cumulative relative frequency,
and the second is the lower limit of the corresponding range of times from
Table 9-4. ]

The function-follower statement contains 9 pairs of values that define
the curve of the function. The value of RN$2 is compared to the first value of
each pair until a match or the correct interval between two points is found. If
the independent value lies between two defined points, an interpolation is per-
formed to calculate the value to be used. For example, if the random number
is between .038 and .151, the interarrival rate will be between two and three
time units. The probability of the random number’s falling into the range .038
to .151 is equal to the relative frequency of this range 11.3 percent.

Itis possible to define either a discrete (histogram) or continuous (smooth
curve) function to represent any desired distribution.

GENERATE FN$INTERVL

In the preceding GENERATE block, the function INTERVL specifies
the interarrival rate. .

FN$INTERVL is a function standard numeric attribute. Each reference
to FN$INTERVL will return a value that depends on the random number RN$2
specified in the function definition.
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18:43 PAGE 1

LINE BLOCK
1 *
2 * CAR WASH EXAMPLE 2A
3 *
4 WASH EQU 1 $WASH EGUATED TO A NUMERIC VALUE
-] INTERVL. EBU 1
&
7 INTERVL FUNCTION RNS2,C9
8 «038,1/.151,2/.264,3/.416,4
% .642,8/.755,46/.868,7/.981,8/71,9
10 *
11 SIMULATE .
12 1 GENERATE FNSINTERVL j§CAR ENTERS SYSTEM
13 2 RUEUE WASH jCAR LINES UP FOR WASH
14 3 SEIZE WASH $CAR GAINS CONTROL OF WASHER
15 q DEFART WASH $ CAR LEAVES LINEUP
18 S ADVANCE 4,1 iTIME TO WASH CAR
12 6 RELEASE WASH $CAR EXITS WASHER
18 7 TERMINATE i $CAR EXITS SYSTEM
19 START 1000 $RUN MODEL FOR 1000 TERMINATIONS
20 END
SYMBOL VALUE . SYMBOL VALUE
2 1 23 3 3 mERI A IR
INTERVL 1 WASH 1
GPSSR/PC V1.1 9-FEB-198% 18:43 PAGE 2
carwashb.LST=carwashb.gps
RELATIVE CLOCK 3993 ABSOLUTE CLODCK 3993
BLOCK COUNTS .
BLOCK CURRENT TOTAL BLOCK CURRENT TOTAL BLOCK CURRENT TOTAL
1 1 1029 2 28 1028 3 1] 1000
q o 1000 -1 o] 1000 & o] 1000
7 (] 1000
FACILITY AVERAGE NUMBER AVERAGE SEIZING PREEMPTING
UTILIZATION ENTRIES TIME/TRAN TRANS.NO. TRANS . NO.
1 1.00 1000 3.98
QUEUE MAXIMUM AVERAGE . TOTAL ZERD PERC. AVERAGE SAVERAGE TABLE CURRENT
CONTENT CONTENT ENTRIES ENTRIES ZERD TIME/TR TIME/TR NUMBR CONTENT
1 35 16.72 1028 12 1.17 64.95 &5.72 28

FIGURE 9~-4 GPSS program using empiricaily distributed interarrival rates.

In the second model a standard normal function will be used to ap-
proximate the-distribution of observed interarrival times.

NORM FUNCTION RN$2,C12

The preceding GPSS statement defines NORM to be a continuous func-
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tion using random-number generator 2 as its independent variable and having
12 points in the definition. h

.006,-2.5/.066, -1.5/.158, -1/.274, — .6/.420, - .2
.5,0/.579,.2/.725,.6/.841,1/.933,1.5/.993,2.5/1,3.5

The function NORM is defined to return a value between —2.5 and +3.5,
depending on the value between 0 and 1 of the independent variable RN$2.

By definition the standard normal distribution function has a mean of
0 and standard deviation of 1. To obtain a mean of 5 and a standard deviation
of 2, a variable is defined.

RATE FVARIABLE 2xFN$NORM+5

The foregoing variable-definition statement declares RATE to be a

" floating-point variable to multiply the function NORM by 2 and add 5. The

FIGURE 9-5 GPSS program listing using normaily distributed interarrival rates.

GPESR/PC V1.1 9-FEB~198% 18:36 PAGE 1
carwash2.LSTwcarwash2.gps
LINE BLOCK
1 *
2 * CAR WASH EXAMPLE 2B
3 * )
4 WASH EGU i WASH EQUATED TO
5 NORM EQU 1 A NUMERIC VALUE
& RATE EQU 1 ‘
7 *
8 NORM FUNCTION RN®2,C12
9 «006,-2.5/.066,~1.5/.158,-1/.2748,~-.6/.420,~.2
io «5,0/.879,.2/.725,.6/.841,1/.933,1.%5/.993,2.5/1,3.5
13 *
12 RATE FVARIABLE Z¥FNSNORM+3
13 *
i4 SIMULATE
1% 1 ' GENERATE . VSRATE ;CAR ENTERS SYSTEM
16 2 " RUEUE WASH  jCAR LINES UP FOR WASH
12 3 SEIZE WASH §CAR GAINS CONTROL OF WASHER
i8 4 DEPARY WASH 3 CAR LEAVES LINEUP
19 ] ADVANCE 4,1 ITIME TO WASH CAR
20 & RELEASE WASH JCAR EXITS WASHER
21 7 TERMINATE 1 $CAR EXITS SBYSTEM
22 START 1000 sRUN MODEL FOR 1000 TERMINATIONS
23 END
SYMBOL. VALUE SYMBOL VALUE
NORM 1 RATE i

WASH A
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BPSSR/PC. V1.1 9-FEB-1985 18:36 PAGE 2
carwash2.LST=c lruashz gp- '
 RELATIVE CLOCK, 4431 ‘ABSOLUTE CLOCK 4431
BLOCK COUNTS
BLOCK CURRENT TOTAL BLOCK CURRENT TOTAL BLOCK CURRENT TOTAL
R ! 1 1002 2 1 1001 3 o 1000
a [} 1000 s -] 1000 & o 1000
o [+] 1000 i
FACILITY & AVERAGE . NUMBER | AVERAGE SEIZING PREEMPTING
: UTILIZATION ENTRIES ‘TIME/TRAN. TRANS.NO. TRANS.NO,
1 . 0.%0 i 1000 3.98 i
"QUEUE MAXIMUM AVERAGE TOTAL 2ZERO - PERC. AVERAGE SAVERAGE TABLE CURRENT
s CONTENT ‘CONTENT ENTRIES ENTRIES ' ZERO TIME/TR TIME/TR NUMBR CONTENT

1 .. 4 0.44 1001 379 C37.886 C1.96 . 3.415 1

‘ ,FIGURE 9-5 (contmued)

mterarrlval rates of our model should now match the mean and spread of our
~observed data.
~ An FVARIABL]i uses ﬂoatmg-pomt arithmetic to return an 1nteger
value, whereas a VARIABLE does integer calculations to return an integer result.
Both ﬂoatmg-pomt and integer funcuons are referenced via the “V” standard
numeric attribute.

GENERATE V$RATE

The preceding generate statement uses the value returned by the var-
iable RATE as the interarrival time.

; Verificatio’n and Validatlon

A compeu ison of the queue statistics generated by the GPSS model (Fig-
ure 9—4) and the observed queue lengths (Table 9-3) reveals a discrepancy.
The simulation produced a maximum queue length of 85 and an average length
of 16.72. These values are substantially higher than those observed in the actual
system. The second simulation (Figure 9-5) produced very different queue

~ statistics. With a maximum queue length of 4 and average of 44, it appears that
" neither model simulates the desired system.

CAR WASH PART il
Scenario

A more in-depth analysis of the observed interarrival rates did not result
in a correct model. It is possible that the sample size of the data. is too small to
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produce a true representation of the actual system. The next step in solving the
problem would be a further analysis of the original system. This would involve
more data collection and a more detailed investigation of system traffic flow.

Analysis

The two components of the system that most obviously affect queue
lengths are arrival rate and service rate. If either of these timings is incorrect,
the model would be invalid. It may also be advantageous to collect more queue-
length data to ensure that our sample is a true representation of the system. It
would be a gross error to attempt to validate the model against invalid data.

Figure 9-6 is the resultant histogram, after the increase in interarrival-
rate observations. It does not resemble the distribution of our original data;
therefore, the. original sample was not a true representation. The new larger
sample of interarrival-rate data resembles an exponential distribution curve. A
simple arithmetic calculation results in a mean of 3.6 and a standard deviation
of 4.2. A system with an exponentially distributed interarrival rate will have a
Poisson-distributed arrival rate. A comparison between the cumulative distri-
bution of the empiral data and the chosen theoretical function should be done
to validate the choice. (These distributions are very common in traffic simulations
and are discussed in detail in most simulation textbooks.)

The more in-depth analysis of the car-wash system uncovered a traffic-
flow situation not previously taken into consideration. The previous model as-
sumed all cars remained in the queue and received a wash. In the actual system,
drivers did not wait if the queue was too long. (The maximum queue length in
which a driver would wait was 11 or 12 cars, oneself included.) The interarrival
rate incorporated into the model includes cars that left the system without getting
washed. Therefore, a test of the queue length must also be built into the model.

To help solve the original problem regarding expansion of the car wash,
the number of cars that leave because of queue length and the amount of time
spent by cars that receive a wash would be helpful.

Simulation

GPSS has readily available the procedures necessary to generate trans-
actions with an exponentially distributed interarrival rate. It is defined by a

FIGURE 9-6 Histogram of inter-
arrival rates
based on 1,000
observations {(ap-
‘proximately expo-
T T 1 T 1 nential).
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FUNCTION statement in much the same way that the normal function was
defined in the previous model.

EXPON FUNCTION RN2,Cl12
0,0/.2,.222/.4,.509/.6,.915/.75,1.38/.84,1.83
.9,2.3/.94,2.81/.96,3.2/.98,3.9/995,5.3/.999,7

The foregoing GPSS statements define EXPON to be an inverse negative ex-
ponential function with a mean of 1 using random-number generator 2 as the
independant variable. (Standard deviation and mean are equal in this distri-
bution.) This function will be referenced by .the generate block to produce
transactions with the desired Poisson-distributed arrival rates.

In the GENERATE (and ADVANCE) block, if field B is a function
reference, the departure time is the product of field A and field B.

GENERATE 4,FN$EXPON

In the preceding generate block, the values of function EXPON are multiplied
by 4 to produce an interarrival rate with a mean of 4 and a Standard Deviation.
of 4.

A decision mechanism must be built into the model to decide if a driver
waits for a car wash or leaves prematurely. Three GPSS statements for altering
a transactions flow through the model are: GATE, TEST, and TRANSFER.
The GATE block is used to test the status of entities, the TEST block is used to
compare two standard numeric attributes, and the TRANSFER block alters
transaction flow depending on the subfields specified.

A TEST block is used in the model to compare queue length against a
constant. If the queue is less than the specified value, the transaction enters the
queue; otherwise, the transaction’s flow will be altered such that it does not enter
the queue.

TEST L Q$WASH, 12, EXTTW

The preceding TEST block allows the current transaction to enter the
next block if the length of queue WASH is less than 12. If the queue is equal
to or greater than 12, the transaction is transferred to the block labeled EXITW.

Q$WASH is a standard numeric attribute whose value is the current
contents of the queue WASH.

The analysis of the system informed us that drivers do not become
frustrated and leave when the queue is exactly 12 cars long, but 11 or 12. In
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order to build this into the model, a VARIABLE will be used. Rather than
reference the constant 12 in the TEST block, an integer variable, whose value
is 11 or 12 based on a random number, will be incorporated.

LNGTH VARIABLE QBWASH< 11+ (RN$3*2) /1000

The precedmg GPSS statement defines an integer variable, labeled
LNGTH. The expression 11+ (RN$3%2)/1000 is evaluated on every reference
to the foregoing variable and compared to the current queue length. If the
queue length is less than the arithmetic expression, the result is true (1). The
foregoing expression will return the value 0 or 1, dependmg on the random
number generated and the current queue length RN$3 is a random integer
value between 0 and 999. A variable expression may contain SNA references
(including other variables) and constants combined with arithmetic, logical, and
boolean operators.

TEST_NE  VHLNGTH, O, EXITW

This modified TEST block references the variable LNGTH rather than
the constant 12. VSLNGTH is the standard numeric attribute whose value is
computed using the variable LNGTH. If VSLNGTH is equal to zero (false), the

" . tramsaction transfers to the block EXITW.

To facilitate calculating the total number of cars that do not wait for a

-.car wash, a means of accumulating and saving numeric information must be

employed. GPSS has two different entities demgned for this purpose: PARAM-
ETERS and SAVEVALUES,

Each transaction has a number of PARAMETERS associated with it. The
concept of a car’s having a luggage compartment that is attached to the car and
every car’s having its own unlque compartment is similar to the concept of every
transaction’s having its own unique parameters. If a transaction enters a block
that references a parameter, it is the parameter of that individual transaction
that is affected. The P standard numeric attribute is used to reference a param-
eter.

SAVEVALUES are a more global storage location. If a transaction enters
a block that references a particular SAVEVALUE, it is the same SAVEVALUE
that every other transaction that enters that block will access. The XH or XF
standard numeric attributes refer to half-word or full-word SAVEVALUES re-

“spectively. Unlike parameters, SAVEVALUES are not associated with individual
transactions. v
To total the number of transactions (cars) that do not queue up for a
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wash but exit the system, a global counter must be used. Each transaction that
~ does not wait must be able to access the same counter; therefore, a SAVEVALUE
is used to accumulate the total.

EXITW SAVEVALUE 1+,1

The GPSS statement labeled EXITW adds 1 to SAVEVALUE 1. Field
A specifies which SAVEVALUE is to be affected, and field B specifies the value 7
to be stored. If field A has a plus sign (+) following the SAVEVALUE number,
the value in field B is added to the current contents of the SAVEVALUE. If
field A is not followed by a sign, the field B value replaces the contents of the
savevalue. (A plus + or minus [ —] sign may be used in ﬁeld A to denote addition
or subtraction respectively.)

In order to obtain information regarding the total amount of time cars
spend to get a wash, a frequency-distribution table is defined. A distribution
table of any SNA may be obtained at any point in the model. The TABLE
statement describes what a table is to contain, and a TABULATE statement
specifies at what point in the model an entry is to be made 1nt0 the table.

1 TABLE M$1,15,5,12

Table 1 is defined to be a frequency distribution of transaction transit
times M$1. The first cell of the table accumulates transit times of 15 or less, and
subsequent cells have upper limits in increments of 5 for a maximum of 12 cells

~ total. :

TABULATE 1

The foregoing statement enters into Table 1 the amount of clock time
that has passed since the current transaction was generated. Field A of the
tabulate block identifies into which table an entry is to be made. What is entered
into the table is defined by the TABLE statement, not the TABULATE.

RMULT 31415,31415,31415

The RMULT statement initializes the seed of one or more of the 8
random-number generators in GPSS. The preceding statement sets the seeds of
RN$1, RN$2, and RN$3 to 31415.
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Verification and Validation

The simulated average queue length of 6.63 is close to the observed
average of 6.8, and the maximum lengths are equal. This would lead us to
believe that the model is valid. To be reasonably certain that the model simulates
the system correctly, a number of different simulation runs using a variety of
random-number seeds should be examined. Statistical tests (using the already
mentioned GPSS runs) designed to verify whether the model’s behavior and the
real system’s behavior belong to the same population group could prove or
disprove the model’s validity.

After the model’s correctness has been validated, it can be used to test

FIGURE 9-7 GPSS program and output listing using exponentially distributed interarrival
rates.

GPSSR/PC V1.1 9-FEB~- 1985 i8117 PAGE 1

carvwash3.LST=carwash3.gps
LINE BL.OCK
1 *
2 * CAR WASH EXAMPLE 3
3 T *
4 RMULT 3I1413,3141%,31415
3 WASH EGU 1 SYMBOLS EQUATED TO
[ EXPON EQU 1 NUMERIC VALUES
7 LNGTH EQU 3
8 *
14 EXPON FUNCTION RN%2,C12
10 0,0/.2,.222/.4,.%0%/.6,.915/.75,1.38/.84,1.83
11 . Py 2.3/.94,2.81/,.96,3.2/.98,3.9/.995,5.3/.999,7
12 *
13 LNGTH VARIABLE BEWASH < 11+ (RNS3%2)/1000
14 *
15 1 TABLE M%1,13,5,12 TABLE TRANSIT TIMES
16 SIMULATE )
¥4 1 GENERATE 4,FNSEXPON CAR ENTERS SYSTEM
18 2 TEST_NE VSLNGTH, 0, EXITW
19 3 RUEUE WASH CAR LINES UP FOR WASH
20 4 SEIZE WASH . CAR GAINS CONTROL OF WASHER
23 S DEPART WASH CAR LEAVES LINEUP
22 & ADVANCE 4,1 TIME TO WASH CAR
23 z RELEASE WASH CAR EXITS WASHER
24 8 TABULATE 1
25 A\ d TERMINATE 1 CAR EXITS SYSTEM
26 10 EXITW SAVEVALUE 1+,1 COUNT CARS THAT DON'T WAIT
27 11 . TERMINATE 1
28 START 1000 RUN FOR 1000 TERMINATIONS
29 END

SYMBOL VALUE SYMBODL VALUE
EXITW 10 EXPON 1

LNGTH 1 WASH 1
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GPSSR/PC V1.1 9-FEB-1985 17:34 PAGE 2
carwash3,.LST=carwashI.gps .
RELATIVE CLOCK 3588 ABSOLUTE CLOCK 3558
BLOCK COUNTS
BLOCK CURRENT TOTAL BLOCK CURRENT TOTAL BLOCK CURRENT TOTAL
1 1 1011 2 ] 1010 3 10 827
L] ] 867 = [»] 867 & [+] 862
z o] B&7 8 o] 8&7 9 [+ 867
10 (o] 133 11 o] 133
FACILITY AVERAGE NUMBER AVERAGE SEIZING PREEMFPTING
UTILIZATION ENTRIES TIME/TRAN TRANS.NO. TRANS.NO.
1 .98 8&7 4,02
BUEUE MAXIMUM AVERAGE TOTAL ZERD PERC. AVERAGE SAVERAGE TABLE CURRENT
CONTENT CONTENT ENTRIES ENTRIES ZERO TIME/TR TIME/TR NUMBR CONTENT
1 12 6.63 82?7 13 1.48 26.%1 27.31 . 10

CONTENTS OF (NOMNZERO) FULLWORD SAVEVALUES

XF Loc VALUE LOC VALUE LOC VALUE Loc VALUE
1 133
i
GPSSR/PC  Vi.1 9-FEB-1985 17:34 PAGE 3

carwash3.LSTecarwashl. gps

TABLE NO. 1
ENTRIES IN TABLE MEAN ARGUMENT STANDARD DEVIATION SUM OF ARGUMENTS
B&? 31i.00 13.28 26881.0

UPPER OBSERVED PER CENT CUMULATIVE CUMULATIVE MULTIPLE DEVIATION
LIMIT FREGUENCY OF TOTAL PERCENTAGE REMAINDER OF MEAN FROM MEAN

15 137 15.80 15.80 84.20 0.48- ~1.20
20 82 .46 25.26 74.74 0.65 ~0.83
25 78 %.00 34.26 65.74 0.81 -0.45
30 *3 10.73 44.98 55.02 0.97 -0.08
35 83 9.57 54,56 a4%.44 1.13 0.30
40 135 T 13,57 70.13 29.687 1.29 0.68
4% 136 15,69 85.81 14,19 1.45 1.0%
50 100 11.53 97.35 2.65% 1.61 1.43
5% 23 2.65 100.00 0.00 1.77 1.81

REMAINING VALUES ARE ZERO

FIGURE 9-7 (continued)

system changes. In the car-wash example, it could be tested with more than one
washer or a faster washer. Changes in arrival rates could also be tested in an-
ticipation of future traffic flow.

Once a valid model has been developed, it becomes very simple and
inexpensive to test different ideas. A new car wash is vastly more expensive than
a run of a GPSS model.
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APPENDIX A

The following is a brief descrlptlon of different GPSSR/PC statements divided
into funcuonal categories.

Queue

A queue is used to measure the time delay of transactions waiting for
an entity to become available. A transaction may join a queue prior to seizing a
facility or entering a storage in order to produce statistics on output regarding
the amount of time transactions spent waiting.

Statement ' Meaning
QUEUE start measuring time delay
- DEPART stop measuring time delay

Table

A frequency-distribution table may be created using any standard nu-
meric value. A special queue table may be defined to measure queue-delay times.

Statement Meaning

QTABLE define a queue table
TABLE . define a distribution table

TABULATE add entry to a distribution table
Decisions and Flow Alteration

The transaction flow through a model may be altered unconditionally

“or be conditional on the state of the model.

Statement Meaning
GATE check entity status
LOOP iterate through a portion of model
TEST compare two SNA values
TRANSFER ‘GOTO block
TRANSFER SBR goto subroutine
TRANSFER P return from subroutine

Create and Destroy a Transaction

A transaction is the basic entity that flows through the system. A com-
munications message, a railway train, or an assembly-line part may be repre-
sented via a transaction.
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Statement G Meaning
GENERATE create a transaction
JOBTAPE transation from a disk file
TERMINATE destroy a transaction

~ Also see Assembly Set, which follows Changing Values.

Changing Values

Values may be stored in transaction parameters and SAVEVALUES.
SAVEVALUES are global storage locations available for all transactions, and
parameters are local areas associated with each individual transaction.

e Stafement : o k ‘Meaning
SAVEVALUE augment SAVEVALUE
ASSIGN augment parameter

~ Assembly Set

A single transaction may be split into many transactions, which may be
rejoined into a single transaction. Members of a set may be synchronized in the
‘model by being gathered at one point or being matched with members of the

" same set at different points in the model.

Statement Meaning
ASSEMBLE combine members of set onto one transaction
GATHER members wait for one another before proceeding
MATCH synchronize members at two different blocks
SPLIT create many transactions from one
Time Delay

A transaction may be stopped at a specific point in the model for a
period of time. This time may represent transmission time or time to complete
a process. A time distribution may be specified via a function.

Statement ' Meaning

ADVANCE transaction stops for a period of time

Alternate Queue Strategy

By default, GPSS deals in a first-in, first-out strategy. A user chain may

“be used to create a last-in, first-out or a priority-queue discipline. Model efficiency
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may also be improved by placing transactions onto a user chain. User-chain
transactions are not on the future-events chain, thereby decreasing the computer
time necessary to process the future-events chain.

Statement Meaning
LINK add transaction to chain
"UNLINK take transaction off chain

Debugging Model

A transaction’s process through the model may be traced from block to
block. The contents of any standard numeric attribute may also be printed out
at specific points in the model. GPSSR/PC’s interactive mode allows a more
dynamic look at the model during execution, to help locate problems.

Statement Meaning
PRINT output SNA contents
TRACE follow transaction through model

UNTRACE turn off tracing of a transaction




CHAPTER TEN
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This chapter will depart from the pattern of using programming examples to
illustrate principles of simulation and will describe a few actual applications. One
reason for not discussing all of the programs that implement these applications
is that many of the programs are large—1,000 lines of source code is a small
simulation. Another reason is that many of the program routines, such as
random-number generators, probability functions, and queues, have already
been covered, and a large application often consists of an aggregation of these
elementary steps plus a great many mundane routines for handling input and
output of data.

Most of the examples covered so far have had to do with finding out
how tast people or things can be moved through a waiting line. That is because
competition for limited resources is a predominant feature of modern life. Some
of the applications in this chapter will deal with waiting lines, although their
presence may not be immediately apparent. Other applications will have nothing
to do with them.

PART 1—INDUSTRIAL APPLICATION

Case 1—How to Find Defects
in Printed Wiring Boards [1]

DOA—*“Dead on Arrival.” Too often that describes computers or other kinds
of electronic hardware.

Usually the reason why is trivial: a glob of solder where it shouldn’t be,
a missing or faulty part, or an unsoldered connection. Or we have the legendary
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$1.25 part that causes a space mission to abort, or provokes a false alarm about
incoming intercontinental ballistic missiles.

Generally the assemblies that fall have been glVCIl a 100 percent in-
spection. Then how come the defects weren’t found in the factory?.

We were doing an in-depth study of factory testing practices for a major
electronics company and had to know what percentage of faulty products human
inspectors were allowing to escape. This knowledge would help decide whether
we had to tolerate a certain proportion of defective products, train our inspectors
better, or automate the human inspectors out of the process.

Role of Simulation

We had to take our study out of the factory because the International
Brotherhood of Electrical Workers objected to it. We couldn’t take the product
out of the plant and test it elsewhere because the National Security Agency
objected (we were making government cry ptographic equipment). So we had to
resort to simulation. We wound up using two kinds of simulation: iconic sim-

ulation to model the process and computer»bdsed stochastlc simulation to make

the icons,

lconic Simulation

T he product was nine-layer printed circuit boards measuring 4.5 by 4.8
inches. They were made from individual printed circuits that were inspected
under lar ge magnifying glasses and then pressed together with interleaved sheets
of plastic,

Printed circuit patterns are made up of pads to which connections are
made and traces that connect the pads. Four things could go wrong: cracks that
totally severed a trace or pad; pinholes where etchant had eaten away parts of
pads or traces; notches that were like plnﬁoles, only worse; and spurs where
pads or traces were shorted together because the etchant hadn’t removed enough
copper. ‘

The icons were full-sized photographs of perfect printed circuit boards
~ (taken from the masks) on which artists had added cracks, pinholes, notches,

~and spurs.

The iconic simulation consisted of setting up a dummy production line
in a local technical high school and finding out how many defects the students,
who were given the usual factory training by supervmom would catch and how

many would get by them.

Computer Simulation

The computer simulation told the artist what and how many defects to
draw and where to draw them, so as to reproduce the actual situation in the
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factory. We knew from having a sample of 90 boards checked out in the engi-
neering laboratory that there were on average .322 defects per board.

We assumed defects were Poisson-distributed among boards. This gave
us the following distribution:

Number of Defects Percent of Boards

70.00
24.90
4.52
0.54
0.03
0.01

SO Q0 N0 w0 O

The lab had observed that the four types of defect occurred with this

distribution:
Kind of Defect Percent of Defects
crack 60
pinhole 20
notch 15
spur 5

To locate the defects after random draws had determined how many
defects a board would contain and what kind they should be, we covered just
the traces and pads with a pattern of 1/10-inch squares and numbered each one
on a transparent overlay of the photo. For example, for one type of board there
were 609 squares; for another, 503. We assumed the defects were uniformly
distributed on the boards, so in the first case we located defects by making
random draws in the range 1 to 609. The computer printed out instructions to
the artist that were later used to score the performance ot the students pre-
tending to be inspectors.

Results

On average, the students (there were eight of them) accepted 10 percent
of the defective boards as being good. Moreover, they rejected 3 percent of the
good boards as being bad. As a consequence, we started development of auto-
matic test equipment in which a platen with spring-loaded fingers would make
contact with every trace and pad, while a computer program would test for
either connectivity or isolation between each pair of fingers. This equipment
caught all the cracks and spurs, but the pinholes and notches remained as in-
cipient defects. We tried blowing them out with 800-volt D.C. pulses. It worked
sometimes on notches and large pinholes, but most of these defects remain a
source of potential failure.
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Case 2—What'’s the Cost of Bad TV Sets? [2]

Ouwr client’s competitor offered a six-month warranty on parts and labor for his
line of TV sets. Our client went him one better and offered a full year’s warranty.
He budgeted $2 million to cover the cost but after three months became alarmed
and called us in for an estimate. We wrote a simulation model in which we “built”
a year’s production of TV sets with defects in them such as our prior experience
would lead us to predict and totaled up the cost of warranty. It came to $15
million. The client was not happy. By year’s end he was even more unhappy.
The actual cost came to $17 million. Next year he moved his TV-manufacturing
operations to Taiwan.

The set consisted of eight phenolic circuit boards, four ceramic modules,
and individual parts, such as VHF and UHF tuners, a built-in antenna, picture
tube, power transformer, and picture-tube yoke. We simulated building the
boards and modules, then assembling the TV chassis from boards, modules, and
other parts. To avoid boring repetition, we shall describe how we simulated
building a module. Building a chassis is a similar operation; the modules are
regarded as basic parts of the chassis. The idea is to predict which TV sets will
leave the factory with defects that will cause them to fail within the warranty
period. :

Simulating the Building of Modules

To make a module, say 10 basic parts are selected. Each has a probability
of being defective (about 1.5 percent). Every module with a defective basic part
is tagged as defective by the simulation program.

Modules may also be defective because of workmanship errors. The
probability of a workmanship error is about 10 percent, but the rate tends to
vary depending on the day of the week and other factors. This variation in rate
can be described by a beta distribution. The beta distribution ranges from zero
to one. It has two shapmg parameters, A and B, that are related to the mean
and variance in a somewhat complicated way. We produced approprlate distri-
butions by simulation: holdmg the mean and allowing the variance to vary while
displaying the plot and plckmg those that seemed most appropriate for different
days of the week and times of day.

We sampled from the appropriate beta distribution to get a percent
defective, then made random draws to see whlch modules should be tagged as
defective. :

Testing the Modules

The module next is exposed to the testing operation. There is a 2 percent
chance that a good module will be labeled bad and go on to the troubleshooting



204  APPLICATIONS OF SIMULATION

function, and a 14 percent chance that a bad module will be labeled good and
go on to the chassis-assembly step.

The first time a troubleshooter sees a particular module, there is a 50
percent chance he or she will incorrectly diagnose the problem.

After troubleshooting, the module goes to the repair person. There is
a 10 percent chance that the repalr person will fail to fix the problem and a 2
percent chance that the repair work will ruin the. module so that it has to be
scrapped '

The module now goes back through the testing operanon and modules
‘labeled bad go back to the troubleshooter. Now the troubleshooter has a 30
percent chance of failing to diagnose the problem correctly. The third time the
troubleshooter sees the same module ‘the diagnosis w1ll be correct.

‘Resu lts

Overall, we found that 3 percent of the modules that found their way
into chassis were defective and 11 percent of the TV sets shipped from the
factory contained defects serious enough to impel the customer to claim on the
warranty agreement. (In 1974 these TV sets were probably the best ones made
in the United States. By way of comparison, the engineering lab determined

* that the worst Japanese sets were 10 percent defective; the best Japanese sets
were less than 2 percent defective.) :

PART 2—SIMULATION IN EM'ERGENCY PLANNING
Case 1—Restructuring Police'Patroi Zohes [3] ‘

The ObJeCtIVC of this study was to redraw the boundaries of 29 police patrol
zones in a cn:y of 226,000 people so as to minimize drlvmg time when answering
calls for service, thereby leaving more time for crime-repression patrollmg
We redrew the zones this way: ‘The smallest political unit of the city was
the Polling Sub-Division, an area in which an average of 430 people live. There
~ are 524 of them. Statistics on incidents requlrmg police response are kept by
PSD. Our redrawing program took each PSD in turn as the center of a patrol
zone and added adjacent PSDs around it until a zone was formed that produced
roughly 3241 incidents a year (1/29 of the 94,000 occurrmg annually in the city).
For every PSD we counted the number of zones in which it appeared.
Then for every zone we totaled the counts of the PSDs it contained. We retained
the 29 zones out of 524 that had the lowest overlap and resolved any remaining
overlap manually. Now we had to use simulation to find out whether the new
boundaries would result in less driving time when answering calls for service.
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Frequency and Location of Incidents

We knew the annual number of incidents per PSD (call it Y(p)), so we
could divide it by 8760 hours in a year and use it as the mean of a Poisson

_distribution to simulate hour by hour how many incidents occurred in that PSD;

by doing this for all 524 PSDs we could simulate incidents throughout the city.
This would not be realistic, however, because incident occurrence is highly time-
dependent; and it would take a great deal of computer time to simulate every
hour of, say, ten years.

Incident occurrence depends upon month of the year.

Month Incidents
January 8,400
February 7,500
March 7,400
April 6,700
May 6,900
June 6,800
July 7,200
August 9,000
September 8,800
October 8,600
November 8,500

December 8,300

Incident occurrence also depends upon the hour of the day.

Hour Incidents

24:00 4,800
01:00 4,400
02:00 3,300
03:00 2,400
04:00 1,000
05:00 900
06:00 700
07:00 1,900
08:00 3,800
09:00 3,900
10:00 3,800
11:00 4,400
12:00 4,800
13:00 4,300
14:00 3,400
15:00 4,300
16:00 4,900

17:00 5,100
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Hour Incidents
18:00 5,500
19:00 5,500
20:00 5,700
21:00 5,400
22:00 5,000
23:00 4,800

And incident occurrence depends upon the day of the week.

Day Incidents
Sunday 11,500
Monday : 12,000
Tuesday 12,500
Wednesday 12,400
Thursday 13,600
Friday 15,900
Saturday 16,100

We used the technique of Fourier synthesis to express these data as three
wave forms, each developed as a constant plus the sum of six cosine terms and
five sine terms. We added the wave forms:

K(t) = (F(month)+ F(hour)+ F(day))/3

The values of K for each hour of the year () were multiplied by the
Poisson means Y(p) for each PSD to correct for time-dependent changes in
incident-occurrence frequency:

lambda(t,p) = K(t)=Y(p)/8760

To reduce the length of the simulation, we first made a histogram out
of the K function.

Range of K Number of Hours
b5to .6 80
.6t0.7 300
7t0.8 700
8t0.9 1,000
9tol 1,700

ltwl.1 2,600
1.1to0 1.2 1,900
1.2t0 1.3 400
1.3t0 14 80

In each class interval we drew a 1 percent random sample. This gave us
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a total sample of 88 hours that would represent a whole year for the purpose
of comparing two patrol-zone designs.

Duration of Incidents

We knew the distribution of length of incidents.

Length in Minutes Number of Incidents

0 to 30 36,000
30 to 60 33,000
60 to 90 16,000
90 to 120 5,000
120 to 150 2,000
150 to 180 1,000
180 to 210 500
210 to 240 200
240 to 300 100
300 to 360 100
Over 360 100

For each hour of the simulation we simulated two hours and only counted
the last hour to wash out any start-up bias. We located each of the 29 patrol
cars by drawing for each zone a random number in the range of the number
of PSDs in the zone and assumed the car to be at the geographical center of the
PSD selected. We sampled every PSD using the Poisson distribution with the
appropriate time-adjusted mean to find out how many incidents occurred. We
assumed the incident to occur at the geographical center of the PSD. Then we
made random draws on 1 to 60 to determine when each incident began. Finally,
we made a random draw from the incident-duration distribution to find out
how long each incident would last.

Servicing Incidents

We used data obtained in a prior study to determine driving speed. We
assumed the speed to be normally distributed, with a mean of 17.7 miles per
hour and a standard deviation of 5.8 mph. In servicing incidents we first sent
the zone car. We knew the distance from its current location to the incident and
obtained its speed by sampling from the driving-speed distribution. We posted
the car as being unavailable for the duration of the incident plus driving time.

When the zone car was unavailable we serviced subsequent incidents in
the zone by sending the nearest out-of-zone car.

Results

We averaged the results from ten simulation runs and found the new
patrol-zone layout reduced the average driving time from six to four minutes.
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This allowed officers to spend 45 percent of their time on repressive patrol,
rather than 44 percent. Inasmuch as this fell short of the 50 percent repressive-
patrol time targeted by the department, these results were used to substantiate
a recommendation for additional personnel and vehicles to permit assigning
second and third cars to particularly active zones at peak incident periods.

Case 2—Deciding Where to Put a Fire Station [4]

This case involved simulating the operation of a municipal fire department. One
application of the simulator was determining how to relocate resources to get
better fire protection. The city is the same one we studied in the police patrol-
zone problem. There are nine fire stations and 15 pieces of active apparatus.
On average there were 3,351 fires a year for the three years on which our data
are based.

Because of the relatively few incidents as compared with the police sit-
uation, we decided to simulate ten full years of activity and average the results
instead of resorting to importance sampling. We used a time-oriented simulation
with 15-minute intervals. Our basic Y(t) is therefore equal to 3351/4%24+365, or
0.1 fire every quarter hour. : ‘ ‘

Time Dependence of Fires

Fires are distributed in time according to the month of the year.

Month Number of Fires
January 247
February 237
March 276
April 320
May . 305
June 289
July 336
August 288
September 271
October 276
November 247
December - 258

Fire occurrences also depend upon the time of day.

Time Number of Fires

24:00 161
1:00 136
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Time Number of Fires
2:00 135
3:00 96
4:00 70
5:00 56
6:00 41
7:00 51
8:00 69
9:00 - 80

10:00 106

11:00 115

12:00 142

13:00 ‘ 143

14:00 163

15:00 156

16:00 181

17:00 199

- 18:00 197

19:00 192

20:00 214

21:00 238

22:00 214

23:00 196

We shall normalize fire-occurrence frequencies with respect to their
expected value. We illustrate this in the case of the day-of-week distribution
where the expected value is 3,351/7, or 479.

Day of Week  Number of Fires  Normalized Value

Sunday 461 .96
Monday 473 .99
Tuesday 437 91
Wednesday 473 99
Thursday 456 95
Friday 497 1.04
Saturday 554 1.16

Frequencies are adjusted with respect to time to obtain Poisson means.

lambda(t) = Y(t)xN(month)+N(hour)+=N(day)

For example, between 21:00 and 22:00 on a Saturday in July, the city-wide
Poisson mean for each of the four 15-minute periods is .1%1.2%1.7%1.16, or .237;
while between 6:00 and 7:00 on a Tuesday in February, the city-wide Poisson
mean for each of the four 15-minute periods is .1%.85%.29+.91, or .02.
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Geographical Distribution of Fires

The probabilistic geographical distribution of fires by district (the area
served from a station) is:

Station Number Percent of Fires

000 IO Ut OO N —
3}

Multiple-Alarm Fires

So far, the problem of fire simulation is similar to that of the police—
perhaps easier, because there are fewer incidents. However, in more than
one third of fires, more than one station responds. Moreover, the needs for
apparatus are highly specific. The probability distribution of station calls is:

Number of Stations Called Number of Fires

1 2,078
2 536
3 562
4 160
5 12
6 [y

or more 3

Duration of Fires

The duration of a fire is related to the number of stations called.
Durations are exponentially distributed. The relationship between mean dura-
tion and number of stations called is:

Number of Stations Called Mean Duration in Minutes

1 21.2
2 31.9
3 33.2
4 35
5 39.1
6 or more 50

In addition, there is a small probability that a fire will take a very long
time to extinguish (as when a tire warehouse burned down). To simulate such
a fire, we draw a random number, and if it exceeds 0.99933, we make a random
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draw from an exponential distribution having a mean of 80 and add it to 300
minutes.

Station Backup and Substitution

Responding to multiple alarms is by no means as easy as sending an
engine from the nearest station; a particular kind of apparatus may be needed.
We created a backup matrix by entering how many times in three years each
station was backed up by every other station and put these data on a percentage
basis. For example, station #1 was backed up by station #3 27 percent of the
time; by #5, 21 percent; by #4, 18 percent; by #9, 9 percent; by #6, 8 percent;
by #8, 7 percent; by #2, 6 percent; and by #7 in 4 percent of fires in which
station #1 was called first. ,

To simulate which station or stations backed up the one called first (that
is, the one in whose district the fire occurred), we made a random draw from
the cumulative distribution of backup probabilities in the appropriate row of
the backup matrix. If we found the chosen station was engaged, we made another
draw and so on until the requirements were satisfied or until we determined
that the required resources were not available.

Driving-Time Distributions

We had no data on how fast a fire engine goes. However, we had very
accurate data on how long it took a fire company to reach a fire scene. We
plotted these data and found that there was a different distribution for each
fire district but that they all were approximately normal.

Fire Station  Driving-Time Mean (Minutes)  Standard Deviation

1 3.9 2.8
2 5.2 2.6
3 3.8 2.2
4 4.3 2.5
5 3.4 1.7
6 5.2 2.7
7 4.6 2

8 5.3 2.7
9 4.7 2.3

Implementation

To implement the simulation, we first wrote an Events file; then we ran
it against a Simulate program. The following steps were used to create the Events
file:

1. If not end of simulation, then :-.
2. Advance clock 15 minutes.
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W~ 00

SRR I

<o

11.
12.
13.
14.
15.

[l A

—_ 0O O 00 T O Ot

[Ra—

13.
14.
15,
16.

. If new month, get N(month).
. If new day, get N(day).

If new hour, get N(hour).

. Calculate lambda.

Sample Poisson distribution; get number of fires.

. For each fire, get geographical location (district).
. For each fire, get number of stations called.
. If not a long-duration fire :-.

Get mean duration.

Sample exponential distribution; get actual duration.
If a long-duration fire, get duration.

Write fire parameters to Event file.

If end of simulation, close Events file.

The Simulate program calculates three negative measures of merit:

. Resources unavailable :- neither a station called nor a substitute is available.
. Interference :- a station called is already engaged and a substitute must be called.
. Primary interference :- the first (or only) station called is engaged and a substitute

must be called. These events are tagged as to. the district in which they occur.

The Simulate program proceeds as follows:

. If not end of Events file :-.

. Advance file one record.

. If district company not engaged :-. ,

. Sample appropriate driving-time distribution. (The normal driving-time dis-

tributions are regarded as truncated, since negative driving time would be
meaningless.)

. Post selected company engaged for duration + driving time.

. If selected company engaged, select substitute.

. Increment interference count.

. Increment primary interference count.

. If selected company not engaged :-.

. Perform steps 4 and 5; jump to step 12.

. If substitute company engaged, and no companies left, increment resources-

lacking count; otherwise, perform steps 6—9.

. For each backup company required :-.

Select backup company.

Perform steps 6, 7, and 9.

If no more resources available or required, return to step 1.
At end of Events file, report outcome.
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Results

The results of ten year-long runs were:

1. Incidents of resources unavailable, 1.6 per year.
2. Total incidents of interference, 467.3 per year.
3. Incidents of primary interference, 188.2 per year.

Fire Station Yearly Primary Interference

61.4
27.3
17.2
5.9
10.0
2.7
25.7
6.9
36.3

00T CUR OO N -

These results were useful in mdkmg a decision about how to improve
fire protection in district #7. One proposal was to move station #2 into district
#7; the other was to build a new station, effectively dividing the district in two.

It is apparent that moving company #2 would put a heavier burden on
company #1 and exacerbate an already bad situation in the city’s core area. This

supported the option of building a new station.

Case 3—Modeling a Hospital Emergency Department [5]

This simulation models the emergency department of a 421-bed hospital. The
department handles 25,000 patients annually. The simulation model was used
to forecast the effects of increased demand or augmented facilities. This is
essentially a waiting-line model. The (negative) measure of merit is patient wait-
ing time. Our empirical data were gathered by a study of 100 percent of patient
records for one month-and 10 percent of patient records for five months. The
department consisted of a resuscitation room with three trauma beds and six
treatment/examination rooms. It is staffed around the clock by two doctors and
four nurses.

Patient Arriva]s

The frequency of patient arrivals was found to be independent of the
month of the year but highly dependent in a complex manner on time of day
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and day of the week. We modeled patient arrivals by exponential distributions
of times between arrivals. We divided the week into 84 two-hour periods each
with its own mean in minutes between arrivals:

DAY

TWO-HOUR PERIODS

Sun
Mon
Tue
Wed
Thu
Fri
Sat

24-2 -4 -6 -8 ~10 -12 -14 -16 -18 -20 -22 -24

24 60 60 60 30 12 8 12 12 12 13 17
60 120 120 60 24 10 12 15 17 19 17 17
40 120 120 60 40 15 20 17 17 13- 20 24
30 120 120 120 24 17 13 13 15 12 15 15
60 60 120 60 20 20 20 17 24 15 13 24
24 120 120 60 20 15 15 15 17 17 15 40
30 40 120 120 40 8 12 11 17 12 11 20

The smaller the number, the busier the hospital.

Patient Service Time

We performed a stepwise linear regression of patient histories against

total patient service time. This resulted in an equation with seven terms that
were added and used to predict each patient’s service time in minutes.

PO bt

No ok w

Class of patient: Critical=42.12; Urgent=41.16; Other=40.14
Age of patient in years times .144

Hematology test done? 33.84 if YES; 0 if NO

X rays taken? 37.92 if YES; 0 if NO

Microbiology test done? 7.68 if YES; 0 if NO

Patient admitted to hospital? —2.22 if YES; 0 if NO

Subtract minutes since last patient arrived times .12

Patients’ Characteristics

were:!

The probabilities of a patient’s belonging to one of the three classes

Critical 9%
Urgent 53 %
Other 38%

Patients’ ages followed a truncated (no negative ages) normal distribu-

tion, with a mean of 29 years and a standard deviation of 15 years.
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The probabilities that tests were performed were:

Class  Hematology Xray Microbiology

Critical 60% 45% 5%
Urgent 20% 30% 17%
Other 10% 20% 2%

The probabilities that patients would be admitted to hospital depended
upon their class. ‘

Critical 80%
Urgent 20%
Other 2%

Utilization of Facilities

Use of emergency-department facilities depended upon the class of the
patient. Patients used either one of the examination/treatment rooms or one of
the trauma beds in the resuscitation room. The probabilities of using trauma
beds were:

Critical 67%
Urgent 15%
Other none

The time doctors spend with patients also depended on class.

Critical 25 + or — 10 minutes
Urgent 20 + or — 10 minutes
Other 15 + or — 10 minutes

The time nurses spend with patients depended on class.

Critical 60 + or — 20 minutes
Urgent 15 + or - 10 minutes
Other 10 + or — 5 minutes

implementation

This simulation was written in GPSS, which was appropriate, since it was
event-oriented. We kept a clock to determine which mean to use with the ex-
ponential distribution of time between arrivals. When a patient arrived, we made
a random draw from the cumulative empirical distribution of class probabilities
to find whether the patient would be classed as critical, urgent, or other. Using
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that information, we determined the tests to be performed and the requirements
for hospital facilities. Then we sampled the age distribution and substituted
values into the regression equation to find the patient’s total service time.

We posted either a trauma bed or an examination room as engaged for
the patient’s entire stay in the emergency department and posted a doctor and
a nurse as busy for a length of time determined by a draw from the appropriate
uniform distribution. We kept track of the time patients had to wait because
needed resources were not available.

We ran the simulation under four sets of conditions:

1. Current demand.

2. Ten years at a 1.8 percent annual growth rate in patient service demand.
3. A sustained 50 percent increased demand for service.

4. A bus crash at 18:00-Sunday, bringing 55 additional patients.

Results

We found that under existing conditions, acceptable service could be
rendered with the following schedule:

7:00-15:00 k 2 doctbrs, 4 nurses
15:00-23:00 2 doctors, 4 nurses
23:00-7:00 1 doctor, 2 nurses

The existing level of service can be maintained with present staff and
facilities for ten years of 1.8 percent annual growth of the service area population.

To cope with a 50 percent increase in work load, one more examination/
treatment room would be needed; and the following schedule:

7:00—-15:00 2 doctors, 6 nurses
15:00-23:00 2 doctors, 6 nurses
23:00-7:00 1 doctor, 2 nurses

Handling a disaster like the one postulated would require that one doctor
and three nurses be on call. Also, five more trauma beds and five more exam-
ination beds would be needed. Five sets of portable resuscitation equipment
could be used in existing examination rooms. The examination beds could be
set up in a large room (possibly in the pharmacy area) with curtain separators.

PART 3—SOCIOLOGICAL SIMULATION
PREDICTING SIZE OF HOUSEHOLDS [6]

Long-range planners often find it more useful to tie predictions of future pop-
ulation size to the size and composition of households rather than to raw pop-
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ulation statistics that deal with people as individuals. Clearly, household-size
information is vital to land developers and manufacturers of consumer durable
goods such as washing machines and refrigerators.

~ This simulation works on data available from the census bureau and
projects it into the future by applying the expected rates of birth, death, and
marriage. We worked with Canadian data, but our technique can be used any-
‘where comparable census data are available.

We knew that between 1851 and 1971, the size of the average Canadian
household declined from 6.2 persons to 3.42 persons. The 1976 census reported
it at 3.2 persons; the 1981 census reported 2.75 persons. Our task was to estimate
the average size of the Canadian household in 1991.

Input Data

Our source of data was the Public Use Files that Statistics Canada makes

~ available for research. They are 1-in-10,000 samples of the national census strat-

ified on a provincial basis. The most important of these tapes to us was the

Household Census Data tape for 1971. It contained information about 601
households consisting of a total of 2,054 persons.

Our game plan was to follow these two thousand people and their de-
scendants for 20 years, simulating births, marriages, and deaths, as well as the
. occasional importation of a bride or groom. To do this we first had to create a

~ file listing for each person: sex, age in completed years, place in the household
(that is, head, spouse, Chlld or other person), and a tag hnkmg that person to
a household.

The household file did not give the sex of children and other persons.
Moreover, it gave their ages only in five-year classes. Only the sex of the spouse
was given. We had to simulate the missing data.

We assigned gender to children and other persons by assuming a
485/515 chance of their being male or female. We assigned ages in single years

~of completed age by assuming a uniform age distribution within the given five-
year age brackets. To get the age of spouse, we consulted another public use
census file: the Provincial Family File. Here the ages of both spouses were given.
We determined that the age difference between wife and husband was normally
distributed with a mean of —4.35 years and a standard deviation of 3.06 years.
For each household, we sampled from this distribution and applied the result
to the given age of the head of household to obtain the age of spouse.

Implementation

Our simulation was time-oriented. For each year, we exposed each in-
dividual to the sex- and age-specific probabilities of death, birth, and marriage.
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We obtained these probabilities from Canadian census data. The simulation
consisted of these steps:

Expose each person to mortality.

If dead, cancel individual’s record: report —1 person.

Expose each married female 15 to 50 to married fertility.
Expose each single female 15 to 50 to single fertility (about 1/10 married fertility).
If birth results, create an individual’s record, determine gender.
Expose new individual to newborn mortality.

If dead, cancel individual’s record; otherwise, report +1 person.
Expose each single female to female nuptiality.

If nubile, add to marriage roster.

10. Expose each single male to male nuptiality.

11. If nubile, add to marriage roster.

12. Apply criteria to match females to males.

13. If match found, create new household; adjust bride’s family; adjust groom’s
family.

Ll R\

© @ N o o

14. Otherwise, import a bride (or groom); create new household; adjust groom’s
(or bride’s) family; report +1 person.

We matched couples by making a draw from our age-difference distri-
bution for each prospective groom in turn and. picked the bride whose age was
closest to the groom’s age minus the selected age difference. For the leftover
brides, we imported grooms and assigned them ages from our age-difference
distribution. We similarly imported brides if there were leftover grooms.

After matching couples, we adjusted the households they came from by
subtracting out the spouses and any children belonging to them, to form a new
household.

For each simulated year, we cycled through the file of individuals. After-
ward we updated our household file by using the tags in each person’s record.
Then we calculated household statistics describing size and composition.

We did this for 20 simulated years for each run. We made ten runs and
calculated the mean and standard error of our statistics.

Results

Our simulation suggested that by 1991 the average Canadian household
will consist of 2.3 persons. Moreover, by doing this kind of simulation instead
of just extrapolating a curve of household size, we can not only forecast average
household size but also predict how many households of 1, 2, . . . to 10 or more
persons will exist and how many of these people will be children of various ages
or other persons. This is far more useful planning information than household
size alone.
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OTHER SIMULATIONS
Training Fire Dispatchers [7}]

We turned the fire-department resource-allocation simulation into a “video
game” for training fire-department dispatchers. 1t was written with graphical
displays and runs on a microcomputer.

The relative locations of fire districts are shown as a three-by-three
matrix display. They are identified by large Arabic numerals. Stylized symbols
show the location of fire stations within districts, and fires, when they occur. A
legend at the top of the display shows date and time, legends in each cell give
the status of that district’s fire company, and a legend at the bottom gives the
number of companies needed to fight the current fire. Figure 10—1 shows the
display. ,

The game begins at a selected date and time and proceeds in fifteen-
minute increments. There is no backup matrix; the dispatcher must assign com-
panies. The objective of the game is to minimize fire loss in dollars.

The heaviest penalty is incurred if the driving time of the first company
called is longer than it could be. This is because any delay during the first critical

FIGURE 10-1 Display for fire-dispatch simulator.
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minutes of a fire will greatly exacerbate the ultimate damage. The penalty is
calculated by this formula:

Loss = Value = {1/(1 +99 * exp [ — Driving-time = .17])}

This equation is derived from the well-known logistic, or Pearl-Reed,
curve of growth. :
Value is found from this equation:

Value = Man—property-value-in-district!* log (Random-number)

This means a heavier penalty will be exacted if the student dispatcher
lets a fire in a rich neighborhood get out of control despite the fact that more
lives may be lost if the same adverse event occurs in a poor neighborhood. This
may not be nice, but it is reality; and that’s what sunulatlon is all about—depicting
reality. ‘

Driving time is found by sampling from the driving-time distribution of
every district through which the first company called must drive and adding
these random variates.

The second kind of penalty is incurred when the dispatcher fails to
assign enough companies. The effect of this penalty is to tie up the companies
assigned for a longer time than would be required if the needed resources had
been assigned. To get fire-fighting time under penalty conditions, we first sample
from the time distribution appropriate to the total number of companies re-
quired. Then we sample from the time distribution appropriate to the number
of companies not available and add these two random variates.

Increasing fire-fighting time will make apparatus unavailable for sub-
sequent fires. This situation will be reflected in property loss because in sub-
sequent fires the closest company is unlikely to be free and driving time of the
first company called will therefore be increased. To find the number of fires in
each fifteen-minute period, we sample from a Poisson distribution whose mean
is found from the equation:

lambda = .1 % N(month) * N(day) = N(hour) % leﬁcultv—factor

The dlfficulty factor is a number greater than one that the student selects.
This feature enables the student to test his skill as he becomes more proficient.
(The masculine pronoun reflects the fact that fire dispatchers in this city are
male, unlike police dispatchers. The job is used to give continuing employment
to firefighters injured in the line of duty.) Figure 10-2 is a listing of the source
code of the program. - '

Training Artillery Gunners [8]

T hi‘s working game was designed to train gunners in the use of graphical
firing tables (GFT). A GFT is a special slide rule that helps gunners aim their
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A0 7

.20 'FIRE DISPATCH SIMULATION

30 'COPYRIGHT 1982

40 'BY JOHN M. CARROLL .

50 'ALL RIGHTS RESERVED

55 CLS .

60 PRINT CHRS${23):PRINT:PRINT:PRINT

70 PRINT"WELCOME TO FIRE DISPATCH"

72 PRINT:PRINT" COPYRIGHT 1982"

75 PRINT:PRINT" BY JOHN M, CARROLL"

77 PRINT:PRINT" ALL RIGHTS RESERVED"

78 FOR I=l TO 1000:NEXT I:CLS

85 PRINT:PRINT" INTRODUCTION"

86 PRINT:PRINT"==>ENTER STARTING DATE IN FORMAT YY/MM/DD/HA."
87 PRINT ’ ‘

88 PRINT "==>YOU WILL SEE A MAP OF 9 FIRE DISTRICTS SHOWING"
89 PRINT "THE STATUS OF EACH FIRE COMPANY, THE LOCATION OF A"
90 PRINT "FIRE AND THE NUMBER OF COMPANIES NEEDED TO FIGHT IT."
91 PRINT ’

92 PRINT"==>SELECT COMPANIES WHEN ASKED; ENTER AS '1,2,3,...""
95 PRINT:PRINT"==>WHEN YOU SEE THE SYMBOL '?', TYPE 'ENTER'.”
97 C$=""PRINTANPUT"==>TYPE 'C' TO CONTINUE; 'Q' TO QUIT™;CS

98 IF C$="Q" THEN 4000

99 IF C$<O"C" THEN 97

100 °

110 * INDEX

120 ' 900 INITIALIZATION

130 ' 'L000 DIMENSIONS

140 ' 2000 READ DATA

150 ' 3000 MAIN

160 ' 7800 END-OF-SIMULATION SUBROUTINE

170 * 7900 END~OF-PERIOD SUBROUTINE

180 ' 8000 END-OF-FIRE SUBROUTINE

190 ' 8100 FIRE LOSS SUBROUTINE

200 ' 8200 PROPERTY VALUE SUBROUTINE

210 ' 8300 FIRE DURATION SUBROUTINE »
220 ' 8400 FIRE-DURATION PARAMETER SUBROUTINE
230 ' 8500 EXPONENTIAL SUBROUTINE

240 ' 8600 DRIVING TIME SUBROUTINE

250 ' 8700 NORMAL SUBROUTINE

[
'
'
'
'
[
'
'
'
'
1
[
'
'

260 ' 8800 DRIVING-TIME PARAMETERS SUBROUTINE
'
'
]
[
'
'
'
'
[
'
[
[
'

270 ' 8900 RESOURCE AVAILARBILITY SUBROUTINE
280 ' 3000 RESOURCE ASSIGNMENT SUBROUTINE
290 ' 9100 NUMBER~OF-ALARMS SUBROUTINE
300 ' 9200 FIRE-LOCATION SUBROUTINE

310 ' 9300 POISSON SUBROUTINE

320 ' 9400 GRAPHICAL SUBROUTINE

330 ' 9600 POISSON MEAN SUBROUTINE

340 ''9700 MONTH-OF-YEAR SUBROUTINE

350 * 9800 DAY-OF-WEEK SUBROUTINE

360 ' 9900 HOUR-OF-DAY SUBROUTINE

370 '10000 DATA

500 '

510 GLOSSARY

520 'AA MULTIPLE-ALARM VECTOR PP AVERAGE FIRES/15 MINUTES
525 'C$ COMMAND STRING '

530 'CA$ # DISTRICTS CROSSED R RANDOM VARIATE

535 'CC ENDING PERIOD R ASSIGNMENT VECTOR

537 'p$. STARTING DAY

540 'DD DURATION-ALARM VECTOR  R$ ASSIGNMENT INPUT

550 'DM MEAN DRIVING TIME VEC RD RESOURCE-DURATION VECTOR
560 'DS DRIVING .TIME STD DEV V RL RESOURCE-LOCATION VECTOR

570 'DT DRIVING TIME S POISSON SUMMATION

573 'DY SIMULATION LENGTH (DAYS)

580 'EX STAT EXPECTATION " SD STAT STD DEVIATION

590 'FA # ALARMS SL STATION LOCATION VECTOR
600 'FD FIRE DURATION SN NORMAL SUMMATION

FIGURE 10-2 Program listing of the fire-dispatch simulator.
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610 'PF POISSON FACTORIAL 85 STARTING PERIOD

620 'FL FIRE LOCATION V FIRE LOSS

630 'FP POISSON MEAN . VM MEAN PROPERTY VALUE VECTOR
640 'FT TOTAL PIRES VT TOTAL FIRE LOSS

650 'H CURRENT HOUR W CURRENT DAY

660 'H$ STARTING HOUR WW DAY-OF-WEERK VECTOR
670 'HH HOUR-OF-DAY VECTOR WWS DAY NAME VECTOR
680 'HH$ HOUR NAME VECTOR X HORIZONTAL COORDINATE
690 'I OUTER COUNTER Y VERTICAL COORDINATE
700 ‘Il WNER COUNTER Y$ STARTING YEAR

710 'J FIRE COUNTER YY MONTH-OF-YEAR VECTOR
720 'LC STATION CONDITION VEC YY$ MONTH NAME VECTOR
730 'LF FIRE SYMBOL VECTOR YR CURRENT MONTH

740 'LL FIRE-LOCATION VECTOR 2% CURRENT PERIOD
750 'LS STATION-LOCATION VECTOR

760 'M$ STARTING MONTH

770 'ME EXPONENTIAL VARIATE

780 'MN NORMAL VARIATE

790 'NN POISSON VARIATE

800 'NS STATION NAME VECTOR

810 'PF PENALTY FACTOR

900 !

910 ' INITTALIZ ATION

920 CLEAR 1000:RANDOM:CLS

1000 '

1010 ' DIMENSION STATEMENTS

1020 ' DATA ARRAYS

1030 DIM Y Y(12),WW(7),HH(24),LL(9),A A(9),DD(9),DH(9),DS(9)
1032 pIM VM(9),LS(9),LC(9),LF(9),NS(9)

1034 DIM YY$(12),WWS(7),HHS(24),SL(9)

1040 ' WORKING-STORAGE ARRAYS

1050 pIM R(18),RL(9),RD(9)

2000 *

2010 ' READ DATA ARRAYS

2020 FOR I=1 TO 12:READ YY(I:NEXT T

2030 POR I=l TO 7:READ WW(I)NEXT I

2040 FOR =1 TO 24:READ HH(D:NEXT I

2050 FOR I=l TO 9:READ LL(ILNEXT I

2060 FOR I=1 TO 9:READ AA(ID:NEXT I

2070 FOR I=l TO %:READ DD(IINEXT I

2080 FOR I=1 TO 92:READ DM(I:NEXT I

2090 FOR I=1 TO 9:READ DS{:ENEXT I

2100 FOR I=1 TO 9:READ VM(I):NEXT I

2110 FOR I=l TO 9%:READ LSI:NEXT I

2120 FOR I=1 TO 9:READ LC(I:NEXT I

2130 FOR I=l TO 9:READ LF@E:NEXT I

2140
2150 READ PP
2160 '

2170 FOR I=1 TO 9:READ NS(D:NEXT I

2180 FOR I=l TO 12:READ YYS$(I:NEXT I

2190 FOR I=1 TO 7:READ WWS(D:NEXT I

2200 FOR I=1 TO 24:READ HHSILENEXT I

2210 POR I=l TO 9%:READ SL{I:NEXT I

3000 ° )

3010 ' START

3020 'GET SIMULATED STARTING TIME (SS)

3030 PRINT:PRINT:PRINT:PRINT:PRINT:PRINT:PRINT

3040 INPUT"ENTER STARTING TIME AS YY/MM/DD/HH";Y$
3050 M$=MIDS(YS,4,2):DS$=MID$(Y$,7,2):HS=MIDS(Y$,10,2)
3060 SS=(VAL(MS$)-1)*2920HVAL(DS)-1)*(VAL(HS)-1)*4
3070 *

3080 'SET TIME PERIOD OF SIMULATION (CC)

3090 PRINTINPUT"ENTER PERIOD OF SIMULATION IN DAYS™DY
3100 CC=DY*96+8S

3200 N=8S

3205 N=N+1:7=N

FIGURE 10-2 (continued)
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8140
8200
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8220

APPLICATIONS OF SIMULATION

IF N>=CC THEN 3995
¥

GOSUB 9900 'GET HOUR-OF-DAY (H)

GOSUB 9800 'GET DAY-OF-WEEK (W)

GOSUB 9700 'GET MONTH-OF-YEAR (YR)

GOSUB 9600 'GET POISSON MEAN FOR 15-MIN PERIOD (¥P)
GOSUB 9300 'GET NUMBER OF FIRES THIS PERIOD {NF)
IF NF=0 THEN 3205

FOR J=1 TO NF 'HANDLE FIRES FOR CURRENT PERIOD
GOSUB 9200 'GET FIRE LOCATION (FL)

GOSUB 9100 'GET NUMBER OF ALARMS (FA)

GOSUB 9400 'PRINT FIRE MAP SHOWING CURRENT FIRE
PRINT@896,Y YS(YR)" "WWS(W)" "HHS(H)" LOCATION= "FL"
PRINT@940,"ALARMS= "FA

PRINTRI60,"ENTER FIRE-COMPANY ASSIGNMENTS ==>";
LINE INPUT RS

GOSUB 9000 'GET RESOURCE ASSIGNMENTS (R)

GOSUB 8900 'CHECK AVAILABILITY (RL)

GOSUB 8800 'GET DRIVING-TIME PARAMETER (CAS)
GOSUB 8600 'GET DRIVING TIME (DT)

GOSUB 8400 'GET FIRE-DURATION PARAMETER (RD)
GOSUB 8300 'GET FIRE DURATION (FD)

GOSUB 8200 'GET MEAN VALUE OF PROPERTY THREATENED (VM)
GOSUB 8100 ‘GET FIRE LOSS (V) )

GOSUB 8000 'END-OF-FIRE (Z,FT,FL,FA,FD,V)

INPUT X

NEXT J

GOSUB 7900 'END-OF-PERIOD (RD,RL)

GOTO 3205 .

GOSUB 7800 'END-OF-SIMULATION (SS,CC,FT,VT)

END

1

'END~OF-SIMULATION SUBROUTINE (SS,CC,FT,VT)
CLS:PRINT:PRINT:PRINT:PRINT:PRINT .
PRINT"SIMULATION FROM PERIOD # "SS" TO PERIOD # "CC
PRINT:PRINT"NUMBER OF FIRES = "FT" PROPERTY LOSS = "VT
PRINT .

PRINT" . THE END":PRINT
RETURN

'

'END-OF~PERIOD SUBROUTINE (RD,RL)

FOR I=l TO 9:RD{D=RD(D-15

IF RD(I<0 THEN RD{I)=0

IF RD(D=0 THEN RL(D=0

NEXT I

RETURN

1

'END OF FIRE SUBROUTINE (Z,FT,FL,FA,FD)
FI=FT+1:VT=VT+V
CLS:PRINT:PRINT:PRINT:PRINT:PRINT
PRINT® FIRE AUDIT"L:PRINT
PRINT"PERIOD #= "%;" FIRE #= "FT;" LOCATION= "FL
PRINT " # OF ALARMS= "FA
PRINT"DURATION= "FD" FIRE LOSS= "V
PRINT

FOR I=l TO 18:R(D=0:NEXT I

RETURN

]

'FIRE-LOSS SUBROUTINE (V)

EX=VM:GOSUB 8500
V=ME-((ME*100%(2.172828[(-DT)))/14)

IF V<0 THEN v=1000

RETURN

v

'PROPERTY-VALUE-PARAMETERS SUBROUTINE (VM)
VM=VM(FL)

FIGURE 10-2 (continued)
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8240 RETURN

8300 '

8310 'FIRE-DURATION SUBROUTINE (FD)

8320 EX=RD:GOSUB 8500

8325 FD=DT+ME+PF*ABS(ME~RD)

8330 FOR I=1 TO FAMdF R{I)=0 THEN 8350

8335 FOR II=1 TO 9

8340 IF I=R(I) THEN RD{ID=FD

8345 NEXT II ‘

8350 NEXT I

8360 RETURN

8400 *

8410 'FIRE-DURATION-PARAMETER SUBROUTINE (RD)

8420 RD=DD(FA)

8440 RETURN

8500 '

8510 'EXPONENTIAL-DISTRIBUTION SUBROUTINE (ME)

8520 ME=(~EX)*LOG(RND(0))

8530 RETURN

8600 '

8610 'DRIVING-TIME SUBROUTINE (DT)

8615 DT=0

8620 EX=DM(R{1)):SD=DS(R{1)):GOSUB 8700:DT=MN

8630 IF CA$="1" THEN 8670

8640 EX=DM{FL):SD=DS(FL):GOSUB 8700:DT=DT+MN

8650 IF CAS$="2" THEN 8670

8660 EX=DM(1);SD=DS(1):GOSUB 8700:DT=DT+MN

8670 RETURN

8700 '

8710 'NORMAL-DISTRIBUTION SUBROUTINE (MN)

8720 SN=0:FOR I=1 TO 12

8730 SN=SN+RND(0)

8740 NEXT I

8750 MN=SD*{SN-6}+EX

8760 IF MN<=0 THEN 8720

8770 RETURN

8800 '

8810 'DRIVING-TIME-PARAMETERS SUBROUTINE {CAS)

8820 CAS=""IF R(1l)=FL THEN CAS$="1":GOTO 8850

8822 TF R(l)=1 OR FL=1 THEN CAS$="2":GOTO 8850

8826 IF (R{1)=6.0R R{(1)=8 OR R(1)=5) AND (FL=6 OR FL=8 OR FL=5)
THEN CA$="2":GOTO 8850

8827 IF (R(1)=5 OR R(1)=7 OR R(1)=4) AND (FL=5 OR FL=7 OR FL=4)
THEN CAS$="2":G0TO 8850

8828 IF (R(1)=4 OR R{1)=2 OR R(1)=9) AND (FL=4 OR FL=2 OR FL=9)

. THEN CA$="2%GOTO 8850

8830 IF (R(1)=9 OR R{1)=3 OR R(1)=6) AND (FL=9 OR FL=3 OR FL=6)
THEN CA$="2":G0TO 8850

8840 CAS="3"

8850 RETURN

8900 '

8910 'AVAILABILITY SUBROQUTINE (PF)

8920 PF=0:FOR I=l TO FA :

8930 IF R{I)=0 THEN PP=PF+l

8940 NEXT I

8945 IF R(1)=0 THEN DT=300:GOTO 3400

8950 RETURN

9000 *

9010 'FIRE-COMPANY ASSIGNMENT SUBROUTINE (R)

9020 FOR I=s1 TO LEN(RS)

9030 R(D=VAL(MID$(RS{I*2-1),1))

9035 FOR II=1 TO 9 . )

9040 IF I=R(NS(D) AND RD(ID<>0 THEN R(D=0:G0TO 9060

9050 IF RL(IM=0 THEN RL(I)=FL

9060 NEXT 1T

9065 NEXT I

9070 RETURN

FIGURE 10-2 (continued)
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'WUMBER OF ALARMS SUBROUTINE (FA)
R=RND(0)

FOR I=9 TO 1 STEP -1

IF R>=AA(D) THEN NEXT I ELSE FA=L
RETURN

1)

'"PIRE-LOCATION SUBROUTINE (FL)
R=RND(0)

FOR I=9 TO -1l STEP -1
IF R>=LL(I) THEN NEXT I ELSE FL=L
RETURN

[

'POISSON SUBROUTINE (NF)
S=0:R=RND{0)

FOR I=l TO 100

NF=I-1

IF NF<>0 THEN 9360

FF=1:GOTO 9370

FP=NF*FF
NN=((2,718282[(-FP))*{FP[NF))/FF:S=S+NN
IF S>=R THEN RETURN ELSE NEXT I
. AtS

' GRAPHICAL (DRAW-FIRE-MAP) SUBROUTINE
CLS:Y=0:FOR X=0 TO 127:SET{X,YhNEXT X

¥=15:FOR X=0 TO 127:SET(X,Y:NEXT X

¥=30:FOR X=0 TO 127:8ET(X,Y):NEXT X

Y=47:FOR X=0 TO 127:SET(X,Y:NEXT X

X=0:FOR ¥=0 TO 47:SET(X,Y:NEXT ¥

X=42:FOR Y=0 TO 47:SET(X,Y:NEXT ¥

X=84:FOR Y=0 TO AT:SET{X,Y:ENEXT Y

X=127:FOR Y¥=0 TO 47:SET(X,Y:ENEXT ¥

FOR =1 TO 9

PRINT@LS(D,NS(D" "CHR$(188)CHRS$(188)CHRS(191)
NEXT I

PRINT @ LF(SL(FL)),CHR$(185)CHR$(182)" * . PA
FOR I=l TO 9 )

IF RD(NS(D)=0 THEN PRINTQLC(),” FREE @ "NS(D:GOTO 9570
PRINT@LC(D," BUSY @ "RL(NS()

NEXT T

RETURN

L]

'POISSON-MEAN SUBROUTINE (FP)
FP=PP*Y Y(Y R)*WW(W)*HH(H)
RETURN

]

'MONTH~OF-YEAR SUBROUTINE (YR)

¥ R=(INT(%/2920)+1)-IN'T((IN'T(Z/2920)+1)/12)*12
IF YR=0 THEN YR=12

RETURN

1

'DAY-OF-WEEK SUBROUTINE (W)
W=(INT(Z2/96)+1)-INT((INT(Z/96)+1)/7)*7
IF W=0 THEN W=7

RETURN

1]

'HOUR-OF-DAY SUBROUTINE (H)
H=(INT(Z/8)+1)-INT{INT(Z/4)1+1)/24)%24
IF H=0 THEN H=24

RETURN

10000 *
.'10010 ' DATA STATEMENTS

10020 ' MONTH-OF-YEAR VECTOR @ 12 (YY)
10030 DATA .8848,.8490,.9887,1.1463,1,0925,1,0352,1,2036
10035 DATA 1.0316,.9787,.8848,.9241

10040 ' DAY-OF-WEEK VECTOR @ 7 (WW)

10050 DATA .9880,.9129,.9880,.9526,1.0382,1.1573,.9630

FIGURE 10~2 (continued)
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10060 ' HOUR-~OF-DAY VECTOR @ 24 (HH)

10070 DATA ,9740,.9669,,6876,,5013,.4011,.2936,,3653,.4942

10072 DATA ,5730,.7592,.8236,,1.0170,.1.0241,1,1674,1.1173

10075 DATA 1,2963,,1,4252,1.4109,1.3751,1.5327,1.7046,1.5327

10077 DATA 1.4038,1.1531

10080 ' LOCATION-OF-FIRE VECTOR @ 9 (LL)

10090 DATA 1.0,.8175,.6798,.5802,.5021,.3942,,339,.2193,.1418

10100 ' MULTIPLE-ALARM VECTOR @ 9 (AA)

10110 pATA 1.0,.3797,.2197,.052,.0042,.0005,.0004,,0001,.0

10120 ' DURATION-VS-ALARM FUNCTION TABLE @ 9 (DD)

10130 DATA 21.,19,31.94,33.24,35.03,39.09,50.,300.,300.,300.

10140 ' DRIVING-TIME MEANS BY DISTRICT @ 9 {DM)

10150 DATA 3.904,5.1887,3.767,4.2998,3,.3973,5.1726,4,562

10152 DATA 5.3022,4.7064

10160 "' DRIVING-TIME STANDARD DEVIATIONS BY DISTRICT @ 9 (DS)
10170 DATA 2.76,2.5943,2,1748,2.4825,1.6987,2,7017,2.0402

10172 DATA 2.5512,2,2756

10180 * PROPERTY-VALUE MEANS BY DISTRICT @ 9 (VM)

10190 DATA 93881,63579,70923,57647,70923,74587,63821,82060

10191 DATA 63821

10200 ' MAP LOCATIONS OF FIRE STATIONS @ 9 (LS)

10210 DATA 65,87,109,385,407,429,705,725,749

10220 ' MAP LOCATION OF FIRE-STATION CONDITION FLAGS @ 9 (LC)
10230 DATA 130,152,174,450,472,494,770,792,814

10240 ' MAP LOCATION OF FIRE SYMBOLS @ 9 (LF)

10250 DATA 73,95,117,393,415,437,713,735,757

10260 ' AVERAGE NUMBER OF FIRES PER 15-MINUTE PERIOD (PP)
10270 DATA .0956335 :

10280 ' NUMERICAL DESIGNATIONS OF FIRE STATIONS @ 9 (NS)
10290 DATA 8,5,7,6,1,4,3,9,2

10300 ' NAMES OF MONTHS OF THE YEAR @ 12 (YYS)

10310 DATA "JANUARY","FEBRUARY","MARCH","APRIL","MAY","JUNE"
10312 DATA "JULY","AUGUST","SEPTEMBER","OCTOBER","NOVEMBER"
10314 DATA "DECEMBER"

10320 ' NAMES OF DAYS OF THE WEEK @ 7 (WW$)

10330 DATA "MONDAY","TUESDAY","WEDNESDAY","THURSDAY","FRIDAY"
10332 DATA "SATURDAY","SUNDAY"

10340 ' NUMERICAL DESIGNATIONS OF HOURS OF THE DAY @ 24 (HHS)
10350 DATA "01:00","02:00","03:00","04:00","05:00","06:00"

10352 DATA "07:00","08:00","09:00","10:00","11:00","12:00"

10354 DATA "13:00","14:00%,"15:00%,"16:00","17:00","18:00"

10356 DATA "19:00","20:007,"21:00%,"22:00","23:00","24:00"

10360 ' MAP LOCATION EQUIVALENTS OF FIRE STATIONS @& 9 (SL)
10370 DATA 5,9,7,6,2,4,3,1,8

FIGURE 10-2 (continued)

cannons. The idea was to implement it on a cheap microcomputer that could
be placed in the day rooms of barracks where trainees were billeted.

There are several variables in aiming a cannon:

First, what kind of cannon is it? We simulated a 155-millimeter self-
propelled howitzer.

"~ Second, what is the mode of fire? It could be direct, meaning the ele-
vation is less than 45 degrees; or it could be high-angle, meaning the elevation
is greater than 45 degrees and, of course, less than 90 degrees. We simulated
high-angle fire. Different GFTs exist for different cannons and modes of fire.

Third, what is the charge; that is, how much propellant is used? We
simulated only charge #3.

Fourth, what is the site; that is, the difference in elevation between the
cannon and the target? We assumed no difference.
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Fifth, what is the range? We simulated ranges between 4,000 and 6,000
yards by adding random draws on 0-2,000 to 4,000 yards.

Sixth, what is the chart deflection; that is, the bearing of the target from
the initial direction of the cannon as shown on topographical charts? Incidentally,
artillerymen measure bearings in artillery mils. There are 6,400 mils in a circle.
We simulated chart deflection as 2,400 mils plus a random number drawn on
0-1,600.

The trainee had to use the GFT to calculate cannon elevation (called
“quadrant”) and actual deflection; both of these are nonlinear functions.

The game display consists of a horizontal gunline at the bottom of the
screen with a stylized cannon at the midpoint. A jagged ridge line divides the
screen vertically to simulate intervening high terrain. The target is a stylized
tank at the top of the screen. Chart deflection and range are shown in a legend
(see Figure 10-3).

The trainee enters quadrant and deflection from the GFT. The program
calculates the correct values by interpolating between end values on the GFT
using Newton’s divided-difference polynomials. Then the program shows the
trainee the effects of fire. ‘

A parabolic arc is traced out on the screen. If the round misses, a white
dot appears where the simulated shell landed: short, long, left, right, or some
combination. If the round hit the target; a white glob obliterates it. The trainee
gets another shot if he misses the target. After a hit, the trainee is given the
option of getting another target or quitting the game. In addition to getting the
results of each shot, the trainee gets a summary of hits and misses at the end of
the exercise. Figure 10—4 is the program.

FIGURE 10-3 Display for the artillery fire-direction simulator showing a hit.

CH DF=2733
CH RG=3173
- S5I=0+N INC Sl
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100 'HIGH ANGLE

110 'COPYRIGHT 1981 BY JQHN M CARROLL

120 *ALL RIGHTS RESERVED

130 'CONTACT: BORGHAN REGISTERED

140 'RR#4, KOMOKA, ONTARIO, CANADA NOL 1RO

150 * .

200 'A. SIMULATOR IN VIDEO-GAME FORMAT FOR TRAINING
210 'ARTILLERYMEN IN FIRE-DIRECTION CONTROL USING
220 'A GRAPHICAL FIRING TABLE

230 ' ' ,

300 'RUNS ON A RADIO SHACX MICROCOMPUTER TRS-80
310 'MODEL 1 LEVEL 2 WITH ONE DISK DRIVE AND

320 '16,000 BYTES OF RANDOM-ACCESS MEMORY

500

]
501 ' FExEX  GLOSSARY  Hkkr
510 ' A=CONTINUE(CMD) T=COUNTER
520 ' B$=BRANCH(STR) IS=INTTTA LS(STR)
530 ' C$=COMMAND(SW) M=RIGHT HOR LIMIT
540 ' CD=CHART DEFLECTION N=LEFT HOR LIMIT
550 ' CG=CHARGE,GIVEN NS=NAME(STR)
560 ' CH=CHARGE P=REPEAT(CHMD)
570 ' D=CORRECTED DEFLECTION  Q=QUIT(CMD)
580 ' DF=DEFLECTION OD=QUADRANT
590 ' DR=DRIFT R$=RANR(STR)
600 ' E=MISS RG=RANGE }
610 ' EF$=EFFECT(SW & STR) S=INTERMEDIATE VARIABLE
620 ' EL=ELEVATION SI$=SITE(STR,DUMMY)
630 ' G=TERRAIN RANDOMIZER Y=VERT COORDINATE
650 ' H=HIT Y(X)=VERT COORD,STORED
660 ' H$=ANOTHER SHOT{(SW) Z=TRY AGAIN
1000 *

1001 'MASTER CONTROL PROGRAM

1005 RANDOM:DIM Y(128)

1200 GOSUB 2000 'SIGN-IN

1210 IF C$="A" THEN CS$="":CLS:GOTOC 1300

1220 IF C$="Q" AND (H+E)>0 THEN C$="":CLS:GOTO 1900
1230 IF C$="Q" THEN CLS:END

1300 GOSUB 3000 'PROBLEM DESCRIPTION

1310 IF C$="A" THEN C$="":CLS:GOTO 1400

1320 IF C$="0" AND (H+E)>0 THEN C$="":CLS:GOTO 1900
1325 IF C$="Q" THEN CLS:END

1330 IF C$="P" THEN C$="":CLS:COTO 1200

1400 GOSUB 4000 'MRAW HIGH TERRAIN

1410 IF C$="A" THEN CS="":CLS:GOTO 1500

1420 IF C$="Q" AND (H+E)>0 THEN C$="":CLS:GOTO 1900
1425 IF C$="Q" THEN CLS:END .

1430 IF C$="P" THEN CS$="":CLS:GOTO 1300

1500 GOSUB 5000 '"TARGET DISPLAY

1518 IF C$="A" THEN C$="":CLS:GOTO 1600

1520 IF C$="Q" AND (H+E)>0 THEN C$="":CLS:GOTO 1900
1525 IF C$="Q" THEN CLS:END

1530 IF C$="P" THEN C$="":CLS:G0TO 1400

1600 GOSUB 6000 'ENTER FIRING DATA

1610 IF C$="A" THEN C$="":CLS:G0TO 1700

1620 IF C$="Q" AND (H+E)>0 THEN C$="":CLS:GOTO 1900
1625 IF C$="Q" THEN CLS:END :

1630 IF C$="P" THEN C$="":CLS:GOTO 1500

1700 GOSUB 7000 'EVALUATE FIRING

1750 GOSUB 5000 'TARGET DISPLAY-MODIFIED

1755 IF HX$="ANOTHER SHOT" THEN 1600

1800 GOSUB 8000 'EFFECT OF FIRE

1810 IF CS="A" OR C$="Q" THEN C8$="":CLS:GOTO 1900
1820 IF C$="P" THEN C3$="":CLS:GOTO 1750

1900 GOSUB 9000 'SCORE ON EXERCISE

1910 IF CS$="A" THEN CS$="";EVS$="":EF$="":CLS:GOTO 1500
1920 IF C$<"2" THEN GOTO 1950

1925 C$=""EF$=""EVS="":HX$="ANOTHER SHOT":CLS:GOTO 1750

. FIGURE 10-4 Program listing for the artillery fire-direction simulator.




1930
1940
1950

2000

2001
2005
2010
2020
2030
2040
2050
2060
2070
2080
2100
2200

3000 *

3001
3020
3030
3032
3034
3036

3040

3050
3060

. 3080

3090

3092

3094
3100
3200

4000 '

4001
4010

4015,

4020
4025
4030
4045
4050
4065
4067

4070
4080

4085

4090
4100
4110
4200
4300
5000 *
5001
5100
5105
5107
5110
5120
5130
5140
5200
5210
5220
5230
5250
5300
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¥ C$="Q" THEN C$="";CLS:GOTO 1950 :
IF C$="P" THEN CS$=""HXS$="BACKUP":CLS:GOTO 1800

GOTO 9500 'TERMINATION

'SIGN-IN

CLS

PRINT CHR$(23)

PRINT:PRINT:PRINT

PRINT" WELCOME TO HIGH~ANGLE" .
PRINT" C CIRCLE 1981 BY JOHN M CARROLL™PRINT -
PRINT" PLEASE SIGN IN"
PRINT:INPUT"NAME,INITIALS";NS,I$

PRINT:INPUT"RANK,BRANCH";RS,BS

PRINTANPUT'"TYPE'A'TO CONTINUE,'Q'TO QUIT";CS$
IF C$="A" OR CS$="0" THEN 2200 ELSE 2080
RETURN

'PROBLEM DESCRIPTION

PRINT:PRINT

PRINT"THIS GAME WILL TEST YOUR SKILL IN DIRECTING FIRE "
PRINT"FOR THE M-109 SELF-PROPELLED 155-MM HOWITZER WHEN *

PRINT"FIRING AT INTERMEDIATE RANGES WITH INTERVENING "
PRINT"HIGH TERRAIN.

PRINT

PRINT" YOU WILL NEED YOUR GFT 155AMIHEM107.'!
PRINT". USE THE MANUFACTURER'S CURSOR."
PRINT:PRINT:PRINT". GOOD HUNTING!"

PRINT ’ )

PRINT

INPUT"TYPE'A'TO CONTINUE,'Q'TO QUIT,'P'TO BACKUPR";CS

IF C$="A" OR C$="Q" OR C$="P" THEN 3200 ELSE 3090

RETURN

'DRAW HIGH TERRAIN

PRINT:PRINT" AT EASE, SOLDIER"

PRINT ) ‘ :

PRINT" IN SIX DAYS GOD CREATED HEAVEN AND EARTH"
PRINT

PRINT" IT TAKES US 40.89 SECONDS TO MAKE THE WICHITA MTS"

G=RND(30)

‘FOR X=1 TO 127

Y=28-3*SIN(X *6,28/90)+2*SIN(3* X #6,28/90+G+15)
Y=Y425SIN(5*X 46.28/90~30)+SIN(T*X *6.28/90+30)
4068 'Y

Y=Y +3*SIN(2%X *6.,28/90)

IF ¥<19 THEN 4100 'SET UPPER BOUND ON MGUNTAD@
TP Y>37 THEN 4100 'SET LOWED BOUND ON MOUNTAINS
Y(X)=Y

SET(X,Y}

NEXT X

INPUT"TYPE'A'TO CONTINUE,Q'TO QUIT,'P'TO BACKUP";C$
IF C$="A" OR C$="0" OR C$="P" THEN 4300 ELSE 4110
;RETURN

'"GAME DISPLAY

JGUNLINE AND HOWITZER

FOR X=1 TO 127:¥=47:SET(X,Y):NEXT X

FOR X=62 TO 67:FOR Y=46 TO 44 STEP -L:SET(X,Y:NEXT Y,X
FOR %X=64 TO 65

FOR Y=47 TO 41 STEP -1

SET{X,Y)

NEXT ¥,X

INTERVENING HIGH TERRAIN

FOR ¥X=1 TO 127

IF ¥{X)=0 THEN 5250 'AVOID FALSE %EROS
SET(X,¥(X))

NEXT X

'TARGET (TANK)

FIGURE 10-4 (continued)
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5310
5320
5330
5340
5350
5400
5405
5407
5408
5410
5500
5510
5520
5550
5600
5610
5700
6000
6001
6010
6015
6020
6030
6040
6050
6060
6100
6200
6210
6300
7000
7001
7010
7020
7100
7110
7115
7200
7210
7220
7230
7240
7250
7260
7300
7305
7310
7315
7317
7320
7330
7340
7400
7500
7510
7520
7530
7700
7710
7900
8000
8001
8005
8100
8110
8120
8130

0 TO 68:SET(X,Y:NEXT
1 TO 68:SET(X,Y:NEXT
0 TO 75:SET(X,Y):NEXT
Y=5:FOR X=53 TO 75:SET(X,Y):NEXT
¥Y=6:FOR X=54 TO T4:SET(X,¥):NEXT
'GET CHART DATA

'CHECK EVALUATE FLAG

IF EVS="EVALUATE" OR HX$="ANOTHER SHOT" THEN 5500
'"MODIFICATION TO SUBROUTINE

GOSUB 10000 'GET RANDOMIZED TARGET DATA

PRINT@128,"CH DF="CD

PRINT@192,"CH RG="RG

PRINT @ 256,"SI="ST$

IF EV$="EVALUATE" THEN RETURN 'MODIFICATION TO SUBROUTINE
INPUT"TYPE'A'TO CONTINUE,'Q'TO QUIT,'P'TO BACKUP";CS

IF C$="A" OR C$="Q" OR C$="P" THEN 5700 ELSE 5600

RETURN

¥

KD D XK K

'FIRE DIRECTION

CLS:PRINT:PRINT"CH DF="CD,"CH RG="RG,"S[="SI$"

PRINT

PRINT:PRINT" *%k%% YOUR FIRE DIRECTION v
PRINT:PRINT:INPUT"ENTER CHARGE";CH ‘
PRINT:PRINTAINPUT"ENTER DEFLECTION";DF
PRINT:PRINT:INPUT"ENTER QUADRANT™QD

PRINT ]

INPUT™A'= CONTINUE,'Q'= QUIT,'Z'= REDO,'P'= BACKUP";C$
IF C$="z" THEN 6000

IF C$="A" OR C$="Q" OR C$="P" THEN 6300 ELSE 6100
RETURN

1]

'EVALUATION

EV$="EVALUATE"'SET MODIFICATION MODE IN SUBROUTINE 5000
HX$="" 'RESET 'ANOTHER SHOT' SWITCH

'CHARGE ‘

IF CH<>CG THEN EF$="WRONG CHARGE-USE CHARGE 3™:GOTO 7700
'LINE 7700 IS MISS COUNTER

'DEFLECTION

S8=(5500~R G)/250 :
DR=55+8*6HS*(S~1))/2+{S*(S~1)*(S~2)*(5~-3)*.7)/24
D=CD+DR

IF DF=D THEN 7300

IF DF-1>D THEN EF$="LEFT™:GOTO 7700

IF DF+1<D THEN EF$="RIGHT":GOTO 7700
'QUADRANT

IF RG>5220 THEN 7315 ELSE 7310
EL=1117+,126*RG~.000024*RG*RG:GOTO 7320
EL=1085+S%*33+5*(S-1)*4/2+5*%(S~1)*(S-2)/6
EL=EL+S*(S-1)*(s-2)*(5-3)/24

IF QD=EL THEN 7400

IF QD~1>EL THEN EF$="SHORT ROUND™:GOTO 7700
IF OD+1<EL THEN EF$="LONG ROUND":GOTO 7700
'SITE-—RESERVED FOR EXPANSION OF GAME
'SCORE A HIT

EF$="STEEL ON TARGET!"

H=H+1

GOTO 7900

'SCORE A MISS

E=E+1

RETURN

1

'EFFECT OF FIRE

IF HX$="BACKUP"” THEN 8905:0MIT TRAJECTORY DRAWINC
'DRAW PROJECTLE TRAJECTORY

FOR Y=41 TO 7 STEP -1
X=64.8389-.859335%Y+.0204604*Y*Y

SET(X,Y)

FIGURE 10-4 (continued)




8140
8150
8200
8210
8300
8310
8320
8330
8400

8410°

8420
8430
8500
8510
8520
8530
8600
8610
8620
8630
8700

‘8710

8720
8730
8740
8750
8760
8770
8780
8790
8800
8900
8905
8910
8915
8920
8925
8930
8935
8940
8945
8950
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9010
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9025
9030
9040
9045
9050
9060
9070
9080
9090
9500 '
9501
9510
9520
9525
9527
9530
9540
9550
9560
9600
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NEXT ¥

HX$=""

'WRONG CHARGE

IF EF$="WRONG CHARGE-USE CHARGE 3" THEN 8900
'LEFT

IF EF$<O"LEFT" THEN 8400

'DRAW LEFT IMPACT
SET(48,3):GOTO 8900

'RIGHT

IF EF$<>"RIGHT" THEN 8500
'DRAW RIGHT IMPACT
SET(80,3):GOTO 8900

'"LONG ROUND

IF EF$<>"LONG ROUND" THEN 8600
'DRAW LONG ROUND IMPACT
SET(65,0):G0OTO 8900

'SHORT ROUND

IF EF$<>"SHORT ROUND" THEN 8700
'DRAW SHORT ROUND
SET(65,8):GOTO 8900

'ON TARGET

'DRAW ON TARGET IMPACT
N=56:M=70

FOR Y=1 TO 3 ‘
N=N-2:M=M+2

FOR X=N TO M

SET(X,Y):NEXT X,Y

FOR Y=4 TO 6

N=N+2:M=M-2

FOR X=N TO M

SET(X,Y):NEXT X,Y

FOR I=1 TO 500:NEXT I

HX$=""

'EFFECT OF FIRE PANEL

CLS:PRINT:PRINT:PRINT:PRINT

PRINT" EFFECT OF FIRE"

PRINT:PRINT

PRINT" "R$", THE EFFECT OF YOUR SHOT WAS"
PRINT:PRINT" "EFS$

PRINT:PRINT:PRINT

INPUT"TYPE'A'TO CONTINUE,’Q'TO QUIT,'P'TO BACKUP";C$
IF C$="A" OR C$="Q" OR C$="P" THEN 8970 ELSE 8945
RETURN

1

'SCORE ON EXERCISE

PRINT:PRINT:PRINT:PRINT

PRINT" SCORE ON EXERCISE"

PRINT

PRINT" * "R$" "I$" "N$", "B$": YOUR SCORE IS"

PRINT:PRINT" "H" HITS" .
PRINT" " : "E" MISSES" ’
PRINT" "H+E" ROUNDS FIRED"

PRINT:PRINT: PRINT PRINT

INPUT"'A'—NEW TARGET,'2'=sTRY AGAIN,'Q'=QUIT,'P'=BACKUP";C$
IF C$=" A OR C$="Q" OR C$="2" OR C$="P" THEN 9090 ELSE 9070
RETURN

'TERMINATION

PRINT:PRINT:P RINT:PRINT

PRINT" gOOD-BYE "R$" "N$

PRINT" . WE HOPE YOU ENJOYED PLAYING 'HIGH ANGLE'™
PRINT: : i

PRINT"" IF YOU DID, PLEASE TELL. YOUR FRIENDS ABOUT IT"

PRINT:PRINT:PRINT"IF YOU WANT TO PLAY ANOTHER ROUND,"
PRINT"TYPE. 'RUN' AFTER THE WORD 'READY' APPEARS."
PRINT;PRINT
END

FIGURE 10-4 (continued)
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10000 '

10001 'CHART DATA
10100 ‘CHARGE

10110 CG=3

10200 'CHART DEFLECTION
10210 CD=2400+RND(1600)
10300 'RANGE

10310 RG=4500+RND{1000)
10400 'SITE

10410 SI$="D/N INC SI"
10500 RETURN

FIGURE 10-4 (continued)

Psychological Testing [9] and Risk Analysis [10]

Simulation can be used in psychological investigation. One example of
its use is trying to evaluate various strategies for coaching witnesses to make
better quantitative estimations. The ability of knowledgeable informants to make
acccurate estimates is especially important in risk analysis. [10] ;

The plan was to set a task for the subjects, use different coaching strat-
egies, and then see what difference, if any, the various kinds of coaching made
in their performances.

The task we set was to estimate the number of white squares displayed
in a random pattern against a blue background. The display persisted for one
second. Each subject got to see 12 different low-density screens (14 to 83 squares)
and 12 high-density screens (107 to 879 squares). These are displayed in figures
10-5 and 10-6.

FIGURE 10-5 Low-density screen for the risk-estimation simulator.
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FIGURE 10-6 High-density screen for the risk-estimation simulator.

The patterns were generated with random numbers of squares by a
program running on an IBM Personal Computer. The program also gave in-
structions to the subjects, accepted their estimates of the number of squares,
calculated the difference between the subjects’ estimates and the number of
squares displayed, and formatted the data for transmission to a mainframe
computer, where they were processed by conventional statistical packages.

We made four runs. The first was a control run; the subjects were given
no help estimating 24 low-density screens and 24 high-density screens except to
tell them that the maximum number of squares would be less than 900. In the
other runs, the subjects performed half the tests on their own and were coached
for the second half.

The first coaching strategy was to ask the subject to estimate the number
of squares in one quadrant of the pattern, after which the program multiplied
this answer by four. This strategy was called disaggregation.

The second strategy asked the subject to estimate the largest and smallest
number of squares that could be in the pattern currently being displayed. The
program added these estimates and divided by two. This strategy was called
range estimation.

The third strategy was like the second except that the subject was also
asked to give the best estimate of the number of squares The program combined
these three estimates as follows:

Final-estimate = (High-estimate + 4 * Best-estimate + Low-estimate)/6
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You may recognize this technique. It is used in the planning of projects
and is called the Project Evaluation and Review Technique, or PERT for short.

Our results were interesting, to say the least. The control runs showed
no improvement with practice. Disaggregation results were the same as the
control runs. This could mean either that disaggregation doesn’t work or that
subjects mentally disaggregete whether asked to do so or not.

Range and PERT both made performance worse on low-density screens.
We rationalized that the subjects who made accurate estimates of the number
of squares on low-density screens did so by counting them rapidly and that
coaching interfered with their natural strategy while contributing no improve-
ment.

On high-density screens, the range strategy made the subject’s perform-
ance worse, while the PERT strategy made it significantly better. The psychol-
ogist I worked with hasn’t as yet developed a theory to explain these results.
Pragmatically, however, we know that PERT has a good track record for helping
people come up with accurate estimates of various things (but usually of time
needed to complete a job). We wondered why range was so bad; what successful
strategy was it displacing? We questioned some of the subjects, and they told us
that although they couldn’t count the squares on high-density squares, they could
count the places where squares should have been but weren’t—if the screen was
sufficiently dense.

Manufacturing Synthetic Text [11]
and Classified Files [12]

Many times you need a body of text (corpus) having certain character-
istics with respect to content or format. It may be inconvenient or expensive to
put the desired corpus into machine-readable form and a suitable corpus may
not be readily available as a by-product of other operations such as word pro-
cessing. One answer is to create synthetic text by simulation.

I developed this system when a very snarky lady at the National Science
Foundation said they were not going to spend any money keypunching text for
somebody like me. I have used it in two projects. The first was to select the best
mathematical criterion for identifying key words for the automatic indexing of
~documents. The second was to evaluate the consequences of using cryptography
to enforce a multi-level security regime on a relational data base. Multi-level
secure systems rely on the hardware and/or software of a trusted computing
base to handle information having two or more levels of classification [12].

In the key-word selection study, we faced the problem that when one
uses real text, reviewers tend to question the judgmental decisions as to what
are key words. Using totally synthetic text circumvents some of these arguments.

We posited that documents are made up of three kinds of words: (a)
common words, (b) uncommon words, and (c) key words. Moreover, there are
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three kinds of key words: high-frequency, medium-frequency, and low-fre-
quency.
We created several hundred documents, each having about 1,100 words.
Common words make up roughly 80 percent of a document. To choose
them we listed the 200 most common words in order of their normalized-oc-
~currence frequencies and made a cumulative frequency distribution of those
frequencies. All we then had to do was to make 800 random draws from the
distribution and add the common words thus selected to our synthetic document.
Uncommon words make up about 20 percent of a document. Here we
created synthetic words. We used the cumulative-occurrence frequency of letters
of the alphabet as initial characters of words to choose the initial letters of our
200 uncommon words. Then we used a table of cumulative digraphic-occurrence
frequencies to choose the remaining letters. This can be regarded as a Markov
process. Once you choose the initial character, you make a random draw, enter
‘the digraph table in the column corresponding to the initial letter, and find out
which letter (or space) follows it. Of course, the resulting product is gibberish,
but it looks a lot like English, and the words most assuredly are very uncommon.
Key words were chosen by a double Poisson process. We made random
draws from a list of 500 key words appropriate to the desired subject matter
(say, descriptors chosen by the Association for Computing Machinery). To find
out how many key words to select in each subclass, we made random draws from
each of three Poisson distributions having different means (high-frequency
mean = 16; medium-frequency mean = 8; low-frequency mean =4). Note that the
Poisson means are geometrically distributed. We determined how many times
each of these key words should occur by sampling from one of three Poisson
distributions (high-frequency mean =8; medium-frequency mean=4; low-fre-
quency means = 2). On average, our synthetic documents contained 1,131 words.
We selected the top N words recalled by our mathematical selection
criterion and called them key words. We picked out the K actual key words on
this list and computed the recall/precision ratio: K/N. The effectiveness of the
selection criteria tested ranged from .23 to .72.

CONCLUSIONS

The foregoing examples are representative of applications of simulation that I
have published during more than 20 years of practice. Unpublished work in-
cluded designing a quality-control (QC) system for a new TV factory in Ten-
nessee (the QC system worked very well, but the plant closed after two years
because wage costs couldn’t match those in East Asia): simulating 400 years of
propagation of plant species on the shoreline of Lake Huron; simulation of
various tank attacks over a particular piece of terrain, given several different
defense strategies; simulation of target detection by hunter-killer submarines,
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given several different distributions of hydrophones on and around the hull;
bottling of beer; inventory of a hardware distributor; an epidemic model de-
picting the spread of a venereal disease; and a competitive-species model showing
the results of coexisting trout and whitefish populations in a Manitoba lake; and
many more. - ' - o

My conclusion is simply that simulation works: It is often the quickest
way to converge on a solution that will save your client money. Furthermore,
most simulations can be skeletonized so that they easily run on a personal com-
. puter. My early work was done on a mainframe computer with 8,000 words of
memory and four tape handlers. I'm writing this on a micro with 256,000 words
of memory and 5,360,000 words of disk storage; and I have a machine in the
office with twice the main memory, more than four times the disk space, and
graphical capabilities I never dreamed of twenty years ago.
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A Behavior, waiting-line, 147, 148

Annual Loss Expectancy (ALE), 153 Bell curve. See Normal distribution

. R R Bernoulli probability, 108
Applications of mmglatlon, 199236 Beta distribution, 125, 127—30, 131
emergency planning, 204-16

industrial. 200—204 Binomial distribution, 138—40, 142
manufacturing synthetic text and classified files, negative, .136*38

93435 Bit-wise testing, 73—74
Buffer in queue system, 145

psychological testing and risk analysis, 23234 Buzz-word generator, 25-27

sociological, prediction of household size, 216—

18
training, 219-32 C
Arithmetic congruential generator, 62
Arithmetic drill and practice program, 4—17 Car wash simulation, 180-95
implementation of, 1117 Central limit theorem, 115, 116
meaning of variables in, 9~11 Chi-square, test evaluation by, 64—65, 66
operation of, 4~7 Chi-squared distribution, 12527, 128
structure of, 7—9 Classified files, manufacturing, 23435
Artillery gunners, training simulations for, 220~  Climb the Ladder game, 22—-25
32 Computer-Aided Learning (CAL), 4
Assembly set statement in GPSS for personal Computer-Assisted Instruction (CAI), 4
computers, 197 Computer Clue (game), 35—43
\ Computer simulation, 3—4
B Concurrency, concept of, 179
i Control, flow of, 179
Balking behavior, 147 Convolution, 112
BASIC programming language, 3—4 Crime occurrence simulation, 156—62
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- D

Debugging GPSS model, 198
Defects in printed wiring boards, simulation to
find, 200-202
Discipline, queue, 146
Distribution functions, 107-42
Bernoulli probability, 108
beta, 125, 127-30, 131
binomial, 138-40, 142
elementary Queuing Theory and, 12324
empirical, 109-10
Erlang, 125, 126
exponential, 118-23, 125, 190, 191
gamma (chi-square), 12527, 128
geometric, 136
hyperexponential, 125
hypergeometric, 140—41
Kolmogorov-Smirnoff equation, 124-25
lognormal, 118, 119
negative binomial, 136—38
normal, 110-~18
Pascal, 136
Poisson, 130-36, 190, 191, 205, 207 235
uniform, 112, 113, 114
uniform probablhty, 108— 9
Weibul, 125

E

Emergency planning, simulation in, 204-16
Empirical distribution, 109-10
Engagement in submarine pursuit simulation,
169-71
Erlang distribution, 125, 126
Event-oriented simulation, 77, 91105, 124
comparison of results to time-oriented simu-
lation, 1013
examples of, 92
logic of, 93-96 :
path displays in, 96— 101
Examples, simulation, 15576
event-oriented, 1025
making mountain terrain, 171-76
police, 156—62, 2048
of submarine pursuit, 162—71
time-oriented, 87—-89
Exponential distribution, 118—23, 125, 190, 191
Exponential notation, 1112

F

FIFO (first in, first out), 146, 197

Files, manufacturing classified, 23435

Finite queues, 145

Fire dispatchers, training simulation for, 219-26
Fire station, deciding where to put, 208—13
Flow of control in GPSS, 179

Fourier synthesis, 172, 206

Fractiles, 172, 17376

Frequency table, 185

Full-period MC generators, 60—61

G

Games, 2247
buzz-word generator (U-2-A-GURU), 25-27
Climb the Ladder, 22-25
Computer Clue, 35-43
Spy-catcher, 43—47
wheel, 28-35
roulette, 28—33
wheel-of-fortune, 3335
Gamma distribution, 12527, 128
Gap test, 72
Gaussian distribution. See Normal d1str1butmn
Generators, random number See Random num-
bers
Geometric distribution, 136
GPSS model of hospital emergency department,
215
GPSS (General Purpose Systems S1mulator) for
personal computers, 177-98
case studies of car wash, 180—-95
introduction to, 179
statements divided by function for, 19698
verification and validation of programs, 182—
84, 189, 194-95
Graphical firing tables (GFT), 220-27

H

Hawthorne effect, 3
Heisenberg, Werner, 3
Hospital emergency department, modeling, 213~

16
Household size, sociological simulation predict-
ing, 216—18

Hyperexponential distribution, 125
Hypergeometric distribution, 140—41




Iconic simulation, 201
Industrial application, 200— 204
Integral inverse, 109-10
Integrals, evaluating, 17-19
INT function, 13 .

Investment, return on, 153

J
Jockeying behavior, 148

K

Kolmogorov-Smirnoff equation, 124—25

L

LANTICTY (game), 28-35
LIFO (last in, first out), 146, 197
Logic flow chart
of event-oriented simulation, 93— 96
of naval anti-submarine warfare simulation, 163
of roulette game, 31
of time-oriented simulation, 7884
.- of waiting-line system with multiple service fa-
cilities, 148
Lognormal distribution, 118, 119

M

Martin, David, 178
Maximum test of randomness, 65
Menu, 5
Mid-square random-number generator, 58—59
Mixed multiplicative- congruential (MMC) gen-
erators, 61-62
Mountain terrain in simulation, 171-76
Multiplicative congruential (MC) generators, 59—
63, 64 ‘
full-period, 60-61
mixed, 6162
partial-period, 61

N

Negative binomial distribution, 136—38
Negative exponential distribution, 120, 121-23
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Normal distribution; 110-18
direct method of generating, 115, 116-17
Teichroew’s approximation to, 115, 11718

(¢}
Ocean Surveillance informatibn Syétem (OSIS)
of U.S. Navy, 162

One Million Random Numbers and 100,000 Normal
Deviates (RAND Corp.), 15

P

Partial-period MC generators, 61

Pascal distribution, 136

Path displays in event—orlented snnulauon 96—
101

Personal computers, simulation with, 3—4. See also
GPSS (General Purpose Systems Simula-

_ tor) for persotial computers

PERT; 234

PNG, 58—63, 64 B

Poisson distribution, 130-36, 190, 191, 205, 207,
235

Poker test, 71-72

Police simulations, 156-62

for restructuring patrol zones, 204—8

- Populations assumed in waiting-line queues, 144—

47

Power residues, method of. See Multlphcatne
congruentlal (MC) generators

Printed wiring boards, snnulatlon to find defects

in, 200—-202
Priority queues, 146, 197
Probability

Bernoulli, 108

beta distribution, 12730

binomial distribution, 139

empirical distribution, 109-10

exponential distribution, 118-23 "

hypergeometric distribution, 14041

negative binomial distribution, 136—38

normal distribution, 11018

Poisson distribution, 13036

uniform, 108-9

Project Evaluation and Revxew Technique (PERT),

234 ,
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Pseudorandom-number generators (PNG), 11—
16, 58—63, 64
Psychological testing, simulation for, 232-34

Q

Queues. See Waiting-line queues

Queue statement in GPSS for -personal com-
puters, 196

Queuing Theory, elementary, 123-24

R

RANDOMIZE function, 15
RANDOMIZE TIME, 16
Random numbers, 49-74
attributes of, 11
to generate terrain displays, 171-76
pseudorandom numbers, generation of, 11—
16, 58—63, 64
testing generator for autocorrelation, 63, 67~
70
testing generators for randomness, 6374
bit-wise testing, 73—74
gap test, 72
poker test, 71-72
runs testing, 70—71
Yule test, 72—73
true, 50-57
Return on investment, 153
Richards, C. Bruce, 178
Risk analysis, 153, 23234
RND function, 11
Roulette game, 28—33
Runs testing, 70-71

5

“Scientific” notation, 11-12
Serial autocorrelation test, 63, 67-70
Service facilities in waiting-line systems, multinie,
14753
Service in queuing theory, state determined; 147
Shift register generators, 62
Simulation
computer, 3—4
defined, 2
See also specific simulations

Sociological simulation predicting household size,
216—18

Spy-catcher (game), 4347

Standard deviation, defined, 114

State determined service in queuing theory, 147

Stochastic determination, 108

Submarine pursuit simulation, 162—-69

Synthetic text, manufacturing, 23435

T

Table statement in GPSS for personal computers,
196
Teichroew’s approximation to normal distribu-
tion, 115, 11718 '
Terrain display in simulation, 171-76
Tests and testing
bit-wise, 7374
gap, 72
of generators for autocorrelation, 67-70
of generators for randomness, 6374
poker, 71-72
psychological, simulation for, 232—34
runs, 70-71
Yule, 7273
Text, manufacturing synthetic, 234~35
Time delay statement in GPSS for personal com-
puters, 197
Time-oriented simulation, 75—89, 130, 149, 217—
18
comparison of event-oriented simulation re-
sults to, 101-3
example of, 87—-89
logic flow chart of, 78—84
results of, 8487
Training simulations
for artillery gunners, 220—32
for fire dispatchers, 219-26
Transactions in GPSS, 179, 196-97
True random numbers, 50-57
program to generate, 51~57
TV sets, simulation of production of defective,
2034
Type-declaration symbol, 5

U

U-2-A-GURU (game), 25-27
“Uncertainty Principle”, 3




Uniform distribution, 112, 113, 114

Uniformity test, 64—67

Uniform probability, 108-9

User-chain transactions statement in GPSS for
personal computers, 198

A

Value statement in GPSS for personal computers,
197

Verification and validation of GPSS program, 182-
84, 189, 194-95

v

Waiting-line queues, 76—105
attributes determining the properties of, 76
car wash simulation, 180-95 '
complex, 143-54
finite populations of, 144—45
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finite queues, 145
multiple populations, 146—47
multiple service facilities, 147-53
queue discipline, 146
state determined services, 147
waiting-line behavior and, 147, 148
components of, 76
event-oriented simulation of, 77, 91-105, 124
modeling hospital emergency department, 213—
16
reasons to study, 77
time-oriented simulation of, 75—-89, 130, 149
Weibul distribution, 125
Wheel games, 28-35
roulette, 2833
wheel-of-fortune, 33-35

Y
Yule test, 7273






