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incomes at: source 
put: (self tolalReceivedFrom: source) .4- amount. 

cashOnHand ~ cashOnHand 4,- amount 

s p e n d :  a m o u n t  for:  r e a s o n  
expenditures at: reason 

put: (self totalSpentFor: reason) + amount. 

cashOnHand ~ cashOnHand -- amount 

inquiries 

c a s h O n H a n d  
tcashOnHand 

t o t a l R e c e i v e d F r o m :  s o u r c e  
(incomes includesKey: source) 

ifTrue: [ t incomes at: source] 

ifFalse: I t0] 

t o t a l S p e n t F o r :  r e a s o n  
(expenditures includesKey: reason) 

ifTrue: [ texpenditures at: reason] 

ifFalse: [tO] 

private 

s e t l n i t i a l B a l a n c e :  a m o u n t  
cashOnHand - amount. 
incomes ~ Dictionary new. 
expenditures ~ Dictionary new 
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Begin a financial history with amount as 
the amoun t  of money on hand. 

Begin a financial history with 0 as the 
amoun t  of money on hand. 

FinancialHistory instance protocol 

transaction recording 

receive: amount from: source 

spend" amount  for: reason 

Remember  tha t  an amount  of money, 
amount, has been received from source. 

Remember  tha t  an amount  of money, 
amount, has been spent for reason. 

inquiries 

cashOnHand 

totalReceivedFrom: source 

totalSpentFor: reason 

Answer  the total amount  of money cur- 
rent ly  on hand. 

Answer  the total  amount  received from 
source, so far. 
Answer  the total amount  spent for 
reason, so far. 
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Preface 

Advances in the design and production of computer hardware have 
brought many more people into direct contact with computers. Similar 
advances in the design and production of computer software are re- 
quired in order that this increased contact be as rewarding as possible. 
The Smalltalk-80 system is a result of a decade of research into creat- 
ing computer software t h a t  is appropriate for producing highly func- 
tional and interactive contact with personal computer systems. 

This book is the first detailed account of the Smalltalk-80 system. It 
is divided into four major parts: 

Part  One an overview of the concepts and syntax of the program- 
ming language. 

Part  Two an annotated and illustrated specification of the sys- 
tem's functionality. 

Part  Three an example of the design and implementation of a 
moderate-size application. 

Part  Four a specification of the Smalltalk-80 virtual machine. 

The first part introduces the Smalltalk approach to information repre- 
sentation and manipulation. Five words--object, message, class, in- 
stance, and methodmmake  up the vocabulary with which Smalltalk is 
discussed. These terms are defined and the syntax of the Smalltalk-80 
programming language is introduced. 

The second part of the book contains specifications of the kinds of ob- 
jects already present in the Smalltalk-80 programming environment. 
New kinds of objects can be added by a programmer, but a wide variety 
of objects come with the standard system. The messages that can be 
sent to each kind of object are listed, commented upon, and illustrated. 

The third part of the book is an example of adding new kinds of ob- 
jects to the system. It describes the addition of an application to model 
discrete, event-driven simulations such as car washes, banks, or infor- 
mation systems. Some readers may find it useful to read the third part 
of the book immediately after reading the first part, referring to the 
specifications in the second part whenever the meaning of a 
Smalltalk-80 expression is not clear. 

The fourth part of the book specifies how the Smalltalk-80 virtual 
machine can be implemented. This virtual machine provides object-ori- 
ented storage, message-oriented processing and graphically-oriented in- 
teraction. It is primarily of interest to readers who wish to implement a 
Smalltalk-80 system, or to readers who wish to understand the imple- 
mentation of a message-oriented system in detail. 
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The Task of 
Book-Writing 

Writing this first book about the Smalltalk-80 system was a complex 
task, partially due to the sociology of the system's creation, and partial- 
ly due to the diverse kinds of information people require about such a 
system. We can divide the different reasons for the complexity of this 
task into four categories: 

• Smalltalk is a vision. 

• Smalltalk is based on a small number of concepts, but defined by 
unusual terminology. 

• Smalltalk is a graphical, interactive programming environment. 

• Smalltalk is a big system. 

S m a l l t a l k  is a 
v is ion 

In the early 1970's, the Xerox Palo Alto Research Center Learning Re- 
search Group began work on a vision of the ways different people might 
effectively and joyfully use computing power. In 1981 the name of the 
group was changed to the Software Concepts Group or SCG. The goal of 
SCG is to create a powerful information system, one in which the user 
can store, access and manipulate information so that  the system can 
grow as the user's ideas grow. Both the number and kinds of system 
components should grow in proportion to the growth of the user's 
awareness of how to effectively use the system. 

SCG's strategy for realizing this vision has been to concentrate on 
two principal areas of research: a language of description (a program- 
ming language)which serves as an interface between the models in the 
human mind and those in computing hardware, and a language of in- 
teraction (a user interface) which matches the human communication 
system to that of the computer. Smalltalk research has followed a two- 
to four-year cycle: create a system embodying current understanding of 
the software needs; implement applications that  test the system's abili- 
ty to support these applications; and finally, based on the resulting ex- 
perience, reformulate the understanding of software needs and redesign 
the programming language and/or the user interface. 

The Smalltalk-80 system marks the fifth time through this cycle. The 
research is still in progress. We hope that  presenting a detailed descrip- 
tion of the current research results will contribute to the community 
working towards SCG's vision. The continued unfolding of the research 
means that  the software system described in this book is literally a 
"moving target" and the information in this book represents only one 
station on a long track. Holding the train in the station long enough to 
write about it a book made the writing task complex. 
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P r e f a c e  

Smal l ta lk  has few 
concepts 

Smal l ta lk  is an 
environment 

Smal l ta lk  is a big 
system 

Smalltalk is based on a small number of concepts, but defined by un- 
usual terminology. Due to the uniformity with which the object-mes- 
sage orientation is carried out in the system, there are very few new 
programming concepts to learn in order to understand Smalltalk. On 
the one hand, this means that the reader can be told all the concepts 
quickly and then explore the various ways in which these concepts are 
applied in the system. These concepts are presented by defining the five 
words mentioned earlier that make up the vocabulary of Sma l l t a lku  
object, message, class, instance, and method. These five words are de- 
fined in terms of each other, so it is almost as though the reader must 
know everything before knowing anything. 

Smalltalk is a graphical, interactive programming environment. As 
suggested by the personal computing vision, Smalltalk is designed so 
that every component in the system that  is accessible to the user can be 
presented in a meaningful way for observation and manipulation. The 
user interface issues in Smalltalk revolve around the attempt to create 
a visual language for each object. The preferred hardware system for 
Smalltalk includes a high-resolution graphical display screen and a 
pointing device such as a graphics pen or a mouse. With these devices, 
the user can select information viewed on the screen and invoke mes- 
sages in order to interact with that information. 

One way to present the details of the Smalltalk-80 system would be 
to start with the user interface and to describe each facility for 
accessing objects. Such a presentation might begin with scenarios of the 
ways in which the programmer might interact with the system. Each 
scenario would be a snapshot of a dynamic system. In a linear, static 
way, the book would try to convey the dynamics of multiple access 
paths to a large and diverse amount of information. 

These aspects of the system are an important part of what Smalltalk 
provides as an applications development environment. However, in or- 
der to explain how this graphical user interface really works, the read- 
er first has to understand the programming language. Thus, this book 
inverts the presentation of the system by starting with the language it- 
self. Information about the system objects that support the user inter- 
face has been separated out and, except for the kernel graphics classes, 
is not presented in this book. Another book on the Smalltalk-80 user in- 
terface presents a detailed t reatment  of the implementation of these 
system objects (Smalltalk-80: The Interactive Programming Environ- 
ment by Adele Goldberg). 

The Smalltalk-80 system is made up of many components. It includes 
objects that  provide the functions usually attributed to a computer op- 
erating system: automatic storage management, a file system, display 
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handling, text and picture editing, keyboard and pointing device input, 
a debugger, a performance spy, processor scheduling, compilation and 
decompilation. There are a lot of kinds of objects to learn about. 

Smalltalk is built on the model of communicating objects. Large ap- 
plications are viewed in the same way as the fundamental units from 
which the system is built. The interaction between the most primitive 
objects is viewed in the same way as the highest-level interaction be- 
tween the computer and the user. Objects support modular i ty-- the  
functioning of any object does not depend on the internal details of oth- 
er objects. The complexity of the system is reduced by this minimization 
of interdependencies of system components. Complexity is further re- 
duced by grouping together similar components; this is achieved 
through classes in Smalltalk. Classes are the chief mechanism for ex- 
tension in Smalltalk. User-defined classes become a part of the system 
on an equal footing with the kernel classes of the system. Subclasses 
support the ability to factor the system in order to avoid repetitions of 
the same concepts in many different places. 

Managing complexity is a key contribution of the Smalltalk approach 
to software. The early examples of the language are very simple, taken 
from the kinds of programming exercises common in many program- 
ming language books. This is so examples can be short, illustrating one 
or two points. The value of Smalltalk may not be apparent in these ex- 
amples. After all, they can be done in other languages, and probably 
just as well. The value of Smalltalk becomes apparent when designing 
and implementing large applications, or when trying to make a modifi- 
cation to the system itself. For example, consider a dictionary, a fre- 
quently-used data structure in the Smalltalk-80 system. It is possible to 
design, implement, test, and install a new representation for dictionar- 
ies without in any way disrupting the running system. This is possible 
as long as the message interface upon which the functioning of other 
system objects depends is not destroyed. 

The Smalltalk-80 system supports a number of interesting design 
tools, notably classes and instances as units for organizing and sharing 
information, and subclassing as a means to inherit and to refine 
existing capability. Combined with the interactive way in which the 
program development process is carried out, the Smalltalk-80 system 
provides a rich environment for prototyping new applications and refin- 
ing old ones. 

Writing a book about such a rich system means that  some things 
must be left out. Again, we chose to omit in this first book the details of 
the programming interface and the way in which interactive graphical 
applications can be created. We focus on the language and the kernel 
classes of the system. 
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The T a s k  o f  
Book-Reading 

This book takes for granted a certain amount  of computer  literacy on 
the par t  of its reader. We assume that  the reader 

• knows why software systems are a good idea; 

• is a p rogrammer  or programming-language designer who knows at 
least one language well; 

• is familiar  with the idea of expression syntax and of evaluation of 
expressions by an interpreter;  

• is familiar  with sequencing of instructions in a computer,  control 
s t ructures  such as i teration and recursion, and the role of data 
structures;  

• is concerned with the need to have better  control of the represen- 
tat ion and manipulat ion of information in a computing system; 
and 

• is seeking new ideas for how to create a software (application) sys- 
tem that  supports the ability to express a software solution in a 
way tha t  is closely associated with the na tura l  expression of the so- 
lution. 

Par t  of this book is for programmers  interested in how to implement  
the language and its development environment  on a part icular  kind of 
hardware  system. Because of the  variety of hardware  systems on the 
market ,  the issue of "portabili ty" has been emphasized. Portabil i ty 
means tha t  only a small kernel of functionality must  actually be creat- 
ed for each hardware  system in order to realize a running  system. This 
book provides an example of how to a t ta in  such portability. 

Sharing the 
C r e d i t  

The Smalltalk-80 system is based on ideas gleaned from the Simula 
language and from the visions of Alan Kay, w h o  first encouraged us to 
t ry to create a uniformly object-oriented system. The current  embodi- 
ment  of these ideas is the result  of two related activities: research car- 
ried out at  the Xerox Palo Alto Research Center, and cooperation with 
a group of s ta lwart  part icipants  in a project to review the research re- 
sults. 

In August, 1980, several hardware  manufacturers  were invited to re- 
view the pages of our second a t t e m p t  to write a book about Small ta lk  
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and its latest realization. Our first a t tempt  described the Smalltalk-76 
system and was abandoned in response to our desire to create a more 
portable system for distribution outside the Xerox research centers. Our 
second at tempt  was a book that  was partially historical in nature, par- 
tially statements about a vision for personal computing, and partially 
functional specification for a new Smalltalk system. We thought we 
would entitle it Smalltalk Dreams and Schemes as a reflection of the 
dual purpose of our writing. The manufacturers  who patiently reviewed 
our material  were from Apple Computer, Digital Equipment Corpora- 
tion, Hewlett-Packard, and Tektronix. These companies were chosen be- 
cause they designed hardware systems. We hoped that, in reviewing the 
material, they would learn about our unusual software goals and would 
devote some time to the problem of creating hardware systems specifi- 
cally for Smalltalk-like systems. We knew that  hardware systems cur- 
rently on the market,  and even ones planned for the near  future, would 
have insufficient power to support our goals. Instead of designing soft- 
ware to fit the hardware we could buy, we decided to try to get the 
hardware designed to fit the software we wanted. 

The manufacturers  assigned personnel from their research laborato- 
ries to the task of reading the second version of the book. This book has 
benefited from much discussion and hard work on the part  of these re- 
viewers. The early part  of the book was completely rewrit ten as a result 
of their  constructive criticism. The reviewers are responsible for our 
continuing to try to complete the distribution process and for our com- 
pleting this book, but not for any faults in its ul t imate form. Each set of 
reviewers implemented the system at least once in order to test our 
specification of the Smalltalk-80 virtual machine. The current  specifica- 
tion reflects their careful review. 

As authors of this book, we took responsibility for creating the writ- 
ten description of the Smalltalk-80 system. But credit for the creation 
of the system goes to all the members of the Software Concepts Group. 
To these people, we state our debt, our thanks, and our love. Dan 
Ingalls manages the overall systems design and development effort. Pe- 
ter Deutsch on the Dorado, Glenn Krasner  on the Alto, and Kim 
McCall on the Dolphin (also called the Xerox 1100 Scientific Informa- 
tion Processor), contributed expertise to the virtual machine implemen- 
tations on the Xerox computers. User interface ideas, implementations, 
and management  of the release process were carried out by James 
Althoff (user interface development), Robert Flegal (design of the graph- 
ics editor), Ted Kaehler (while laboring over virtual memory problems), 
Diana Merry (our text guru), and Steve Putz (version management). 
Peggy Asprey, Marc Meyer, Bill Finzer, and Laura Gould, in trying to 
keep their  applications studies in pace with the system development, 
tested major changes. Copious reading of the manuscript  at various 
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stages of inception was done by Michael Rutenberg, Michael Madsen, 
Susanne Bodker, and Jay Trow. Editing assistance was given by Rachel 
Rutherford and Janet  Moreland. 

Chapter 18 on the Smalltalk-80 graphics kernel was revised from a 
paper written by Dan Ingalls for Byte magazine; Chapter 30 was initial- 
ly written by Larry Tesler. Graphical images in Chapters 18, 19, and 
20, were created by Robert Flegal (especially Figures 18.1 and 20.1), 
Dan Ingalls, and Adele Goldberg (especially Figures 20.2 and 20.3). 
Steve Putz offered valuable assistance in creating the images for Chap- 
ter 17. Images for the openings to Parts One and Two, and all images 
for the opening pages of Chapters 1 through 20, were created by Adele 
Goldberg. Images for Parts Three and Four, and all images for the 
opening pages of Chapters 21 through 30, were created by Robert 
Flegal. These images were created using the Smalltalk-80 graphics edi- 
tor in combination with a low-resolution image scanner designed by Jo- 
seph Maleson. 

To the participants in the review process, we also give our thanks. 
With them we have set an example of cooperative scientific exchange 
that  we hope will evolve and continue to grow. Encouragement to begin 
this project came from our laboratory manager, Bert Sutherland. Re- 
viewers and implementors were: from Apple, Rick Meyers and David 
Casseres; from Digital Equipment Corporation, Stoney Ballard, Eric Os- 
man, and Steve Shirron; from Hewlett-Packard, Alec Dara-Abrams, Joe 
Falcone, Jim Stinger, Bert Speelpenning, and Jeff Eastman; and from 
Tektronix, Paul McCullough, Allen Wirfs-Brock, D. Jason Penney, 
Larry Katz, Robert Reed, and Rick Samco. We thank their companies 
and administrators for their patience and willingness to depart from in- 
dustry standards, at least for one brief m o m e n t - - a t  Apple, Steve Jobs 
and Bruce Daniels; at Digital, Larry Samburg; at Hewlett-Packard, 
Paul Stoft, Jim Duley, and Ted Laliotis; and at Tektronix, Jack Grimes, 
and George Rhine. The folks from Tektronix prepared detailed reviews 
on audiotape, so we could not only see the errors of our ways, but hear 
them as well! 

It is our hope that  this book and its companion will facilitate the dis- 
tribution of the Smalltalk concepts in the computer community. If it 
succeeds, then that  success is shared by us with our colleagues at the 
Xerox Palo Alto Research Center. 

P o s t s c r i p t  o n  
t h e  P r o d u c t i o n  
of  T h i s  B o o k  

The original text for this book was supplied to the publisher on magnet- 
ic tape. The tape included formatting codes identifying the various 
types of textual entity in the manuscript. The actual format of each 
type of entity was supplied by the publisher. This process worked 
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smoothly thanks in large part to the efforts and patience of Eileen 
Colahan of the International Computaprint Corporation and Fran Ful- 
ton, our production editor, as well as the cooperation of Sue Zorn, Mar- 
shall Henrichs, and Jim DeWolf of Addison-Wesley. 

Many of the graphical images that represent Smalltalk-80 screen 
graphics and the Part and Chapter artwork were printed on the Plate- 
maker system developed by Gary Starkweather and the Imaging Sci- 
ences Laboratory of PARC. We would like to thank Gary, Eric Larson, 
and Julian Orr for making the Platemaker available to us. 

Adele Goldberg 
David Robson 
Palo Alto, California 
January, 1983 
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Objects and Messages 

An object represents  a component of the Small talk-80 software system. 
For example, objects represent  

• numbers  

• charac ter  strings 

• queues 

• dictionaries 

• rectangles 

• file directories 

• text editors 

• programs 

• compilers 

• computat ional  processes 

• financial histories 

• views of information 

An object consists of some private memory  and a set of operations. The 
na ture  of an object's operations depends on the type of component  it 
represents.  Objects represent ing numbers  compute ar i thmet ic  functions. 
Objects represent ing data  s t ructures  store and retr ieve information. Ob- 
jects represent ing positions and areas answer  inquiries about their  rela- 
tion to other positions and areas. 

A message is a request  for an object to carry  out one of its operations. 
A message specifies which operation is desired, but  not how tha t  opera- 
tion should be carried out. The receiver, the object to w h i c h t h e  message 
was sent, determines  how to carry  out the requested operation. For ex- 
ample, addition is performed by sending a message to an object repre- 
senting a number.  The message specifies tha t  the desired operation is 
addition and also specifies what  number  should be added to the receiv- 
er. The message does not specify how the addition will be performed. 
The receiver determines  how to accomplish the addition. Computing is 
viewed as an intrinsic capabili ty of objects tha t  can be uniformly in- 
voked by sending messages. 

The set of messages to which an object can respond is called its inter- 
face with the rest  of the system. The only way to interact  with an object 
is through its interface. A crucial property  of an object  is tha t  its pri- 
vate memory  can be manipula ted  only by its own operations. A c ruc ia l  
property of messages is tha t  they are the only way to invoke an object's 
operations. These properties insure tha t  the implementat ion of one ob- 
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ject cannot depend on the internal details of other objects, only on the 
messages to which they respond. 

Messages insure the modularity of the system because they specify 
the type of operation desired, but not how that operation should be ac- 
complished. For example, there are several representations of numeri- 
cal values in the Smalltalk-80 system. Fractions, small integers, large 
integers, and floating point numbers are represented in different ways. 
They all understand the same message requesting the computation of 
their sum with another number, but each representation implies a dif- 
ferent way to compute that sum. To interact with a number or any ob- 
ject, one need only know what messages it responds to, not how it is 
represented. 

Other programming environments also use obiects and messages to 
facilitate modular design. For example, Simula uses them for describing 
simulations and Hydra uses them for describing operating system facili- 
ties in a distributed system. In the Smalltalk-80 system, objects and 
messages are used to implement the entire programming environment. 
Once objects and messages are understood, the entire system becomes 
accessible. 

An example of a commonly-used data structure in programming is a 
dictionary, which associates names and values. In the Smalltalk-80 sys- 
tem, a dictionary is represented by an object that  can perform two oper- 
ations: associate a name with a new value, and find the value last 
associated with a particular name. A programmer using a dictionary 
must know how to specify these two operations with messages. Diction- 
ary objects understand messages that make requests like "associate the 
name Brett with the value 3" and "what is the value associated with 
the name Dave?" Since everything is an object, the names, such as 
Brett or Dave, and the values, such as 3 or 30, are also represented by 
objects. Although a curious programmer may want to know how associ- 
ations are represented in a dictionary, this internal implementation in- 
formation is unnecessary for successful use of a dictionary. Knowledge 
of a dictionary's implementation is of interest only to the programmer 
who works on the definition of the dictionary object itself. 

An important part of designing Smalltalk-80 programs is determin- 
ing which kinds of objects should be described and which message 
names provide a useful vocabulary of interaction among these objects. 
A language is designed whenever the programmer specifies the mes- 
sages that  can be sent to an object. Appropriate choice of objects de- 
pends, of course, on the purposes to which the object will be put and the 
granularity of information to be manipulated. For example, if a simula- 
tion of an amusement park is to be created for the purpose of collecting 
data on queues at the various rides, then it would be useful to describe 
objects representing the rides, workers who control the rides, the wait- 
ing lines, and the people visiting the park. If the purpose of the simula- 
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tion includes monitoring the consumption of food in the park, then 
objects representing these consumable resources are required. If the 
amount  of money exchanged in the park is to be monitored, then de- 
tails about the cost of rides have to be represented. 

In designing a Smalltalk-80 application, then, choice of objects is the 
first key step. There really is nothing definitive to say about the ~right 
way" to choose objects. As in any design process, this is an acquired 
skill. Different choices provide different bases for extending an applica- 
tion or for using the objects for other purposes. The skilled Smalltalk-80 
programmer is mindful that  the objects created for an application 
might prove more useful for other applications if a semantically com- 
plete set of functions for an object is specified. For example, a diction- 
ary whose associations can be removed as well as added is generally 
more useful than an add-only version. 

Classes  and  
I n s t a n c e s  

A class describes the implementation of a set of objects that  all repre- 
sent the same kind of system component. The individual objects de- 
scribed by a class are called its instances. A class describes the form of 
its instances' private memories and it describes how they carry out 
their operations. For example, there is a system class that  describes the 
implementation of objects representing rectangular areas. This class de- 
scribes how the individual instances remember the locations of their 
areas and also how the instances carry out the operations that  rectan- 
gular areas perform. Every object in the Smalltalk-80 system is an in- 
stance of a class. Even an object that  represents a unique system 
component is implemented as the single instance of a class. Program- 
ming in the Smalltalk-80 system consists of creating classes, creating 
instances of classes, and specifying sequences of message exchanges 
among these objects. 

The instances of a class are similar in both their public and private 
properties. An object's public properties are the messages that  make up 
its interface. Al l  instances of a class have the same message interface 
since they represent the same kind of component. An object's private 
properties are a set of instance variables that  make up its private mem- 
ory and a set of methods that  describe how to carry out its operations. 
The instance variables and methods are not directly available to other 
objects. The instances of a class all use the same set of methods to de- 
scribe their operations. For example, the instances that  represent rect- 
angles all respond to the same set of messages and they all use the 
same methods to determine how to respond. Each instance has its own 
set of instance variables, but they  general ly all have the same number 
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of instance variables. For example, the instances that  represent rectan- 
gles all have two instance variables. 

Each class has a name that  describes the type of component its in- 
stances represent. Class names will appear in a special font because 
they are part  of the programming language. The same font will be used 
for all text that  represents Smalltalk-80 expressions. The class whose 
instances represent character sequences is named String. The class 
whose instances represent spatial locations is named Point. The class 
whose instances represent rectangular areas is named Rectangle. The 
class whose instances represent computational processes is named Pro- 
cess. 

Each instance variable in an object's private memory refers to one 
object, called its value. The values of a Rectangle's two instance vari- 
ables are instances of Point that  represent opposing corners of its rect- 
angular  area. The fact that  Rectangles have two instance variables, or 
that  those instance variables refer to Points is strictly internal informa- 
tion, unavailable outside the individual Rectangle. 

Each method in a class tells how to perform the operation requested 
by a particular type of message. When that  type of message is sent to 
any instance of the class, the method is executed. The methods used by 
all Rectangles describe how to perform their operations in terms of the 
two Points representing opposing corners. For example, one message 
asks a Rectangle for the location of its center. The corresponding meth- 
od tells how to calculate the center by finding the point halfway be- 
tween the opposing corners. 

A class includes a method for each type of operation its instances can 
perform. A method may specify some changes to the object's private 
memory and/or  some other messages to be sent. A method also specifies 
an object that  should be returned as the value of the invoking message. 
An object's methods can access the  object's own instance variables, but 
not those of any other objects. For example, the method a Rectangle 
uses to compute its center has access to the two Points referred to by its 
instance variables; however, the method cannot access the instance 
variables of those Points. The method specifies messages to be sent to 
the Points asking them to perform the required calculations. 

A small subset of the methods in the Smalltalk-80 system are not 
expressed in the Smalltalk-80 programming language. These are called 
primitive methods. The primitive methods are built into the virtual ma- 
chine and cannot be changed by the Smalltalk-80 programmer. They 
are invoked with messages in exactly the same way that  other methods 
are. Primitive methods allow the underlying hardware and virtual ma- 
chine structures to be accessed. For example, instances of Integer use a 
primitive method to respond to the message +.  Other primitive meth- 
ods perform disk and terminal  interactions. 
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An Example 
Application 

Examples  are an impor tan t  par t  of the description of a p rogramming 
language and environment .  Many  of the examples used in this book are 
taken from the classes found in the s tandard  Small talk-80 system. Oth- 
er examples are taken  from classes tha t  might  be added to the system 
to enhance its functionality. The first par t  of the book draws examples 
from an application tha t  might  be added to the system to main ta in  sim- 
ple financial  histories for individuals, households, clubs, or small 
businesses. The full application allows information about financial 
t ransact ions to be entered and views of tha t  information to be 
displayed. Figure 1.1 shows a view of a financial history as it might  ap- 
pear  on a Small talk-80 display screen. The top two parts  of the view 
show two views of the amount  of money spent for various reasons. The 
next  v i ew  down shows how the cash-on-hand fluctuated over t ime as 
t ransact ions were made. 

At the bottom of the picture are two areas in which the user can 
type in order to add new expenditures  and incomes to the history. 
When new information is added, the three  views are automat ica l ly  
updated. In Figure 1.2, a new expendi ture  for food has been added. 

This application requires the addition of several classes to the sys- 
tem. These new classes describe the different kinds of view as well as 
the under lying financial history information. The class tha t  actual ly re- 
cords the financial information is named FinancialHisto~ and will be 
used as an example in the next  four chapters.  This example application 
will make  use of several classes a l ready in the system; it will use num- 
bers to represent  amounts  of money and strings to represent  the rea- 
sons for expenditures  and the sources of income. 

FinancialHistow is used to introduce the basic concepts of the 
Small talk-80 programming language because its functionali ty and im- 
plementat ion are easy to describe. The functionali ty of a class can be 
specified by listing the operations available through its message inter- 
face. FinancialHisto~ provides six operations: 

0 Create a new financial history object with a certain initial amount  
of money available. 

2. Remember  tha t  a certain amount  was spent for a par t icular  rea- 

0 

son. 

Remember  tha t  a certain amount  was received from a par t icular  
source. 

4. Find out how much money is available. 

5. Find out how much has been spent for a par t icular  reason. 

6. Find out how much has been received from a par t icular  source. 
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An implementation of these operations is specified in the class descrip- 
tion shown inside the front cover of this book. The form of class descrip- 
tions will be described in Chapters 3, 4, and 5. 

System Classes 

Arithmetic 

Data Structures 

Control Structures 

The Smalltalk-80 system includes a set of classes that  provides the 
standard functionality of a programming language and environment: 
arithmetic, data structures, control structures, and input/output facili- 
ties. The functionality of these classes will be specified in detail in Part  
Two of this book. Figure 1.3 is a diagram of the system classes present- 
ed in Part  Two. Lines are drawn around groups of related classes; the 
groups are labeled to indicate the chapters in which the specifications 
of the classes can be found. 

The Smalltalk-80 system includes objects representing both real and ra- 
tional numbers. Real numbers can be represented with an accuracy of 
about six digits. Integers with absolute value less than 252428s can be rep- 
resented exactly. Rational numbers can be represented using these inte- 
gers. There are also classes for representing linear magnitudes (like 
dates and times) and random number generators. 

Most of the objects in the Smalltalk-80 system function as data struc- 
tures of some kind. However, while most objects also have other 
functionality, there is a set of classes representing more or less pure 
data structures. These classes represent different types of collections. 
The elements of some collections are unordered while the elements of 
others are ordered. Of the collections with unordered elements, there 
are bags that  allow duplicate elements and sets that don't allow dupli- 
cation. There are also dictionaries that  associate pairs of objects. Of the 
collections with ordered elements, some have the order specified exter- 
nally when elements are added and others determine the order based 
on properties of the elements themselves. The common data structures 
of arrays and strings are provided by classes that  have associative be- 
havior (associating indices and elements) and external ordering (corre- 
sponding to the inherent ordering of the indices). 

The Smalltalk-80 system includes objects and messages that  implement 
the standard control structures found in most programming languages. 
They provide conditional selection similar to the if-then-else statements 
of Algol and conditional repetition similar to its while and until state- 
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ments. Objects representing independent processes and mechanisms for 
scheduling and synchronous interaction are also provided. Two classes 
are provided to support these control structures. Booleans represent the 
two truth values and blocks represent sequences of actions. Booleans 
and blocks can also be used to create new kinds of control structures. 

Programming 
Environment 

There are several classes in the Smalltalk-80 system that assist in the 
programming process. There are separate classes representing the 
source (human-readable) form and the compiled (machine-executable) 
form of methods. Objects representing parsers, compilers, and 
decompilers translate between the two forms of method. Objects repre- 
senting classes connect methods with the objects that use them (the in- 
stances of the classes). 

Objects representing organizational structures for classes and meth- 
ods help the programmer keep track of the system, and objects repre- 
senting histories of software modification help interface with the efforts 
of other programmers. Even the execution state of a method is repre- 
sented by an object. These objects are called contexts and are analogous 
to stack frames or activation records of other systems. 

Viewing and 
Interacting 

The Smalltalk-80 system includes classes of objects that can be used to 
view and edit information. Classes helpful for presenting graphical 
views represent points, lines, rectangles, and arcs. Since the Small- 
talk-80 system is oriented toward a bitmap display, there are classes for 
representing and manipulating bitmap images. There are also classes 
for representing and manipulating the more specific use of bitmap im- 
ages for character fonts, text, and cursors. 

Built from these graphical objects are other objects representing rect- 
angular windows, command menus, and content selections. There are 
also objects that  represent the user's actions on the input devices and 
how these relate to the information being viewed. Classes representing 
specific viewing and editing mechanisms constructed from these compo- 
nents provide views for classes, contexts, and documents containing text 
and graphics. The views of classes provide the fundamental mechanism 
to interact with the software in the system. Smalltalk-80 views and edi- 
tors are presented in a separate book. 

Communication 
The Smalltalk-80 system allows communication with external media. 
The standard external medium is a disk file system. Objects represent 
individual files as well as directories. If a connection to a communica- 
tions network is available, it can be accessed through objects as well. 
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S u m m a r y  of  
T e r m i n o l o g y  

object 

message 

receiver " 

interface 

class 

instance 

instance variable 

method 

primitive method 

FinancialHistory 
system classes 

A component of the Smalltalk-80 system represented by 
some private memory and a set of operations. 

A request for an object to carry out one of its operations. 

The object to which a message is sent. 

The messages to which an object can respond. 

A description of a group of similar objects. 

One of the objects described by a class. 

A part  of an object's private memory. 

A description of how to perform one of an object's opera- 
tions. 

An operation performed ,directly by the Smalltalk-80 virtu- 
al machine. 

The name of a class used as an example in this book. 

The set of classes that  come with the Smalltalk-80 system. 
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Chapter  1 introduced the fundamenta l  concepts of the Small talk-80 sys- 
tem. System components are represented by objects. Objects are in- 
stances of classes. Objects in teract  by sending messages. Messages cause 
methods to be executed. This chapter  introduces an expression syntax 
for describing objects and messages. The next  chapter  introduces a syn- 
tax for describing classes and methods. 

An expression is a sequence of characters  tha t  describes an object 
called the value of the expression. The syntax presented in this chapter  
explains which sequences of characters  form legal expressions. There 
are four types of expression in the Small talk-80 programming language. 

1. Literals describe certain constant  objects, such as numbers  and 
charac ter  strings. 

2. Variable names describe the accessible variables. The value of a 
variable name is the cur ren t  value of the var iab le  with tha t  name. 

3. Message expressions describe messages to receivers. The value of a 
message expression is determined by the method the message in- 
vokes. Tha t  method is found in the class of the receiver. 

4. Block expressions describe objects represent ing deferred activities. 
Blocks are used to implement  control structures.  

Expressions are found in two places, in methods and in text displayed 
on the screen. When a message is sent, a method from the receiver's 
class is selected and its expressions are evaluated. Pa r t  of the user in- 
terface allows expressions to be selected on the screen and evaluated. 
The details of selecting and evaluat ing expressions on the screen fall 
outside the scope of this book, since they are par t  of the user interface. 
Some examples, however, are given in Chapter  17. 

Of the four types of expression listed above, only the variable names 
are context-dependent.  An expression's location in the system deter- 
mines which charac ter  sequences are legal variable names. The set of 
variable names  available in a method's  expressions depends on the class 
in which the method is found. For example, methods in class Rectangle 
and methods in class Point have access to different sets of variable 
names. The variables available in a class's methods will be fully de- 
scribed in Chapters  3, 4, and 5. The variable names available for use in 
expressions on the screen depend on where the expressions are 
displayed on the screen. All other  aspects of the expression syntax are 
independent  of the expression's location. 

The syntax for expressions is summarized in the diagram that  ap- 
pears inside the back cover of this book. The rest of this chapter  de- 
scribes the four types of expression. 
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Literals  

Nu m be rs 

Five kinds of objects can be referred to by literal expressions. Since the 
value of a literal expression is always the same object, these expressions 
are also called l i teral  constants.  The five types of literal constant are: 

1. numbers 

2. individual characters 

3. strings of characters 

4. symbols 

5. arrays of other literal constants 

Numbers are objects that  represent numerical values and respond to 
messages that  compute mathematical  results. The literal representation 
of a number  is a sequence of digits that  may be preceded by a minus 
sign and/or  followed by a decimal point and another sequence of digits. 
For example, 

3 
30.45 
- 3  
0.005 
- 1 4 . 0  
13772 

Number  literals can also be expressed in a nondecimal base by preced- 
ing the digits with a radix prefix. The radix prefix includes the value of 
the digit radix (always expressed in decimal) followed by the letter ~r". 
The following examples specify numbers in octal with their correspond- 
ing decimal values. 

octal dec imal  

8r377 255 
8r153 107 
8r34.1 28.125 
8r--37 --31 

When the base is greater than ten, the capital letters starting with ~A" 
are used for digits greater than nine. The following examples specify 
numbers in hexadecimal with their corresponding decimal values. 
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hexadecimal decimal 

16r106 262 

16rFF 255 

16rAC.DC 172.859 
16r- l .C -1.75 

Number  literals can also be expressed in scientific notation by following 
the digits of the value with an exponent suffix. The exponent suffix in- 
cludes the letter ~e" followed by the exponent (expressed in decimal). 
The number specified before the exponent suffix is multiplied by the ra- 
dix raised to the power specified by the exponent. 

scientific notation decimal 

1.586e5 158600.0 

1.586e-- 3 0.001586 
8r3e2 192 
2rl 1 e6 192 

Characters 

Strings 

Characters are objects that  represent the individual symbols of an al- 
phabet. A character literal expression consists of a dollar sign followed 
by any character, for example, 

$a 

SM 
$ -  
$$ 
$1 

Strings are objects t h a t  represent sequences of characters. Strings re- 
spond to messages that  access individual characters, replace substrings, 
and perform comparisons with other strings. The literal representation 
of a string is a sequence of characters delimited by single quotes, for ex- 
ample, 

'hi' 
'food' 
'the Smalltalk-80 system' 

Any character  may be included in a string literal. If a single quote is to 
be included in a string, it must be duplicated to avoid confusion with 
the delimiters. For example, the string literal 
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Symbols 

Arrays 

"can " t "  

refers to a string of the five characters $c, $a, $n, $ ' ,  and St. 

Symbols are objects tha t  represent  strings used for names in the sys- 
tem. The literal representat ion of a symbol is a sequence of alphanu- 
meric characters  preceded by a pound sign, for example, 

:#:bill 
# M 6 3  

There will never be two symbols with the same characters; each symbol 
is unique. This makes it possible to compare symbols efficiently. 

An ar ray  is a simple data s t ructure  object whose contents can be refer- 
enced by an integer index from one to a number  tha t  is the size of the 
array. Arrays respond to messages requesting access to their  contents. 
The literal representat ion of an ar ray  is a sequence of other l i t e ra l s - -  
numbers,  characters,  strings, symbols, and a r r ays - -de l imi t ed  by paren- 
theses and preceded by a pound sign. The other literals are separated 
by spaces. Embedded symbols and arrays are not preceded by pound 
signs. An ar ray  of three numbers  is described by the expression 

#(1 2 3) 

An array  of seven strings is described by the expression 

# ('food" 'utilities' ' rent" 'household' 'transportation' 'taxes' 'recreation') 

An array  of two arrays and two numbers  is described by the expression 

# (('one' 1 ) (' not" "negative') 0 -- 1 ) 

And an ar ray  of a number,  a string, a character,  a symbol, and another  
ar ray  is described by the expression 

#(9  'nine' $9 nine (0 "zero' $ 0 ( ) ' e '  $f 'g' $h 'i')) 

V a r i a b l e s  The memory available to an object is made up of variables. Most of 
these variables have names. Each variable remembers  a single object 
and the variable's name can be used as an expression referring to tha t  
object. The objects tha t  can be accessed from a part icular  place are de- 
termined by which variable names are available. For example, the con- 
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Assignments 

tents of an object's instance variables are unavai lable to other objects 
because the names  of those variables can be used only in the methods 
of the object's class. 

A variable name is a simple identifier, a sequence of letters and dig- 
its beginning with a letter. Some examples of variable names are: 

index 
initiallndex 
textEditor 
bin14 
bin14Totai 
HouseholdFinances 
Rectangle 
IncomeReasons 

There are two kinds of variables in the system, distinguished by how 
widely they are accessible. Pr ivate  variables are accessible on ly  to a sin- 
gle object. Instance variables are private. Shared variables can be 
accessed by more than  one object. Pr ivate  variable names are required 
to have lowercase initial letters; shared variable names are required to 
have uppercase initial letters. The first five example identifiers shown 
above refer to private variables and the last three  refer to shared vari- 
ables. 

Another  capitalization convention evident in the examples above is 
tha t  identifiers formed by concatenat ing several words capitalize each 
word following the first one. This convention is not enforced by the sys- 
tem. 

A li teral  constant  will always refer to the same object, but  a variable 
name may refer to different objects at different times. The object re- 
ferred to by a variable is changed when an ass ignment  expression is 
evaluated. Assignments  were not listed earl ier  as a type of expression 
since any expression can become an ass ignment  by including an assign- 
ment  prefix. 

An ass ignment  prefix is composed of the name of the variable whose 
value will be changed followed by a left arrow (~-). The following exam- 
ple is a li teral expression tha t  has an ass ignment  prefix. It indicates 
tha t  the variable named quantity should now refer to the object repre- 
senting the number  19. 

quantity ~- 19 

The following example is a var iable-name expression with an assign- 
ment  prefix. It indicates tha t  the variable named index should refer to 
the same object as does the variable named initiallndex. 
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index ~ initiallndex 

Other  examples of ass ignment  expressions are: 

chapterName ~- 'Expression Syntax' 
flavors ~- #( 'van i l la '  'chocolate" 'butter pecan" "garlic') 

More than  one ass ignment  prefix can be included, indicating tha t  the 
values of several variables are changed. 

index ~- ini t ia l lndex ~- 1 

This expression indicates tha t  both the variables named index and 
initiallndex should refer to the number  1. Message expressions and block 
expressions can also have ass ignment  prefixes, as will be seen in the 
following sections. 

Pseudo-variable 
Name s  

A pseudo-variable name is an identifier tha t  refers to an object. In this 
way, it is s imilar  to a variable name. A pseudo-variable name is differ- 
ent  from a variable name in tha t  its value cannot  be changed with an 
ass ignment  expression. Some of the pseudo-variables in the system are 
constants; they always refer to the same objects. Three impor tan t  pseu- 
do-variable names are nil, true, and false. 

nil 

true 

false 

refers to an  object used as the  value  of a var iable  when  no 
o ther  object is appropr ia te .  Var iab les  t h a t  have  not been 
otherwise  init ial ized refer  to nil. 

refers  to an  object t h a t  represen ts  logical accuracy.  It  is 
used as an af f i rmat ive  response to a message mak ing  a 
s imple yes-no inquiry.  

refers to an object t h a t  represen ts  logical inaccuracy.  It  is 
used as a negat ive  response to a message mak ing  a simple 
yes-no inquiry.  

The objects named true and false are called Boolean objects. They repre- 
sent the answers to yes-no questions. For example, a number  will re- 
spond with true or false to a message asking whether  or not the number  
is grea ter  than  another  number.  Boolean objects respond to messages 
tha t  compute logical functions and perform conditional control struc- 
tures. 

There  are other pseudo-variables in the system (for example, self and 
super) whose values are different depending on where they are used. 
These will be described in the next  three  chapters.  
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Messages Messages  r e p r e s e n t  t h e  i n t e r a c t i o n s  b e t w e e n  the  c o m p o n e n t s  of the  
S m a l l t a l k - 8 0  sys tem.  A m e s s a g e  r eques t s  an  ope ra t ion  on t he  p a r t  of 

t he  receiver .  Some e x a m p l e s  of m e s s a g e  express ions  and  the  in te rac -  
t ions  t hey  r e p r e s e n t  follow. 

Messages  to n u m b e r s  r e p r e s e n t i n g  a r i t h m e t i c  ope ra t ions  

3--I-4 

index + 1 

index > limit 

theta sin 

quantity sqrt 

computes the sum of three and four. 

adds one to the number named index. 

inquires whether or not the number named index is greater 
than the number named limit. 

computes the sine of the number named theta. 

computes the positive square root of the number named 
quantity. 

Messages  to l i n e a r  d a t a  s t r u c t u r e s  r e p r e s e n t i n g  t he  add i t ion  or r e m o v a l  
of i n f o r m a t i o n  

list addFirst: newComponent 
adds the object named newComponent as the first element 
of the linear data structure named list. 

list removeLast removes and returns the last element in list. 

Messages  to assoc ia t ive  d a t a  s t r u c t u r e s  (such as d ic t ionar ies)  r ep re sen t -  

ing the  add i t ion  or r e m o v a l  of i n f o r m a t i o n  

ages at: "Brett Jorgensen" put: 3 
associates the string "Brett Jorgensen' with the number 3 
in the dictionary named ages. 

addresses at: 'Peggy Jorgensen" 
looks up the object associated with the string 'Peggy 
dorflensen' in the dictionary named addresses. 

Messages  to r e c t a n g l e s  r e p r e s e n t i n g  g r a p h i c a l  inqui r ies  and  calcula-  
t ions  

frame center answers the position of the center of the rectangle named 
frame. 

frame containsPoint: cursorLocation 
answers true if the position named cursorLocation is inside 
the rectangle named frame, and false otherwise. 
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frame intersect: clippingBox 
computes the rectangle that represents the intersection of 
the two rectangles named frame and clippingBox. 

Messages to financial history records represent ing t ransact ions and in- 
quiries 

HousehoidFinances spend: 32.50 on: 'utilities" 
informs the financial history named HouseholdFinances 
that $32.50 has been spent on utility bills. 

HouseholdFinances totalSpentFor: "food" 
asks HouseholdFinances how much money has been spent 
for food. 

Selectors and 
Arguments 

A message expression describes a receiver, selector, and possibly some 
arguments. The receiver and a rguments  are described by other expres- 
sions. The selector is specified literally. 

A message's selector is a name for the  type of interact ion the sender 
desires with the  receiver. For example, in the message 

theta sin 

the receiver is a number  referred to by the variable named theta and 
the selector is sin. I t  is up to the receiver to decide how to respond to 
the message (in this case, how to compute the sine function of its value). 

In the two message expressions 

3 + 4  

and 

previousTotal + increment 

the selectors are + .  Both messages ask the receiver to calculate and re- 
tu rn  a sum. These messages each contain an object in addition to the 
selector (4 in the first expression and increment in the second). The ad- 
ditional objects in the message are a rguments  tha t  specify the amount  
to be added. 

The following two message expressions describe the same kind of op- 
eration. The receiver is an instance of FinancialHistory and will r e tu rn  
the amoun t  of money spent  for a par t icular  reason. The a rgumen t  indi- 
cates the reason of interest.  The first expression requests the amount  
spent  for uti l i ty bills. 
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HouseholdFinances totalSpentOn: "utilities" 

The amount  spent for food can be found by sending a message with the 
same selector, but  with a different argument .  

HouseholdFinances totalSpentOn: "food" 

The selector of a message determines  which of the receiver's operations 
will be invoked. The a rgumen t s  are other  objects tha t  are involved in 
the selected operation. 

E] Unary Messages Messages without  a rguments  are called unary 
messages. For example, the money current ly  available according to 
HouseholdFinances is the value of the una ry  message expression 

HouseholdFinances cashOnHand 

These messages are called una ry  because only one object, the receiver, 
is involved. A unary  message selector can be any simple identifier. Oth- 
er examples of unary  message expressions are 

theta sin 
quantity sqrt 
nameString size 

E] Keyword Messages The general  type of message with one or more 
a rguments  is the keyword message. The selector of a keyword message 
is composed of one or more keywords, one preceding each argument .  A 
keyword is a simple identifier with a trai l ing colon. Examples of expres- 
sions describing single keyword messages are 

HouseholdFinances totalSpentOn: 'utilities' 
index max: limit 

A message with two a rguments  will have a selector with two keywords. 
Examples  of expressions describing double keyword messages are 

HouseholdFinances spend: 30.45 on: "food" 
ages at: 'Brett Jorgensen' put: 3 

When the selector of a mult iple keyword message is referred to inde- 
pendently,  the keywords are concatenated. The selectors of the last two 
message expressions are spend:on: and at:put:. There can be any num- 
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ber of keywords in a message, but  most messages in the system have 
fewer than  three. 

[~] Binary Messages There  is one other type of message expression 
tha t  takes a single argument ,  the binary message. A binary  message se- 
lector is composed of one or two nona lphanumer ic  characters.  The only 
restrict ion is tha t  the second charac ter  cannot be a minus sign. Binary 
selectors tend to be used for ar i thmet ic  messages. Examples of b inary 
message expressions are 

3 + 4  

t o t a l -  1 

total < = max 

Returning Values 
Small talk-80 messages provide two-way communication.  The selector 
and a rguments  t r ansmi t  information to the receiver about what  type of 
response to make. The receiver t ransmi ts  information back by re turn-  
ing an object tha t  becomes the value of the message expression. If a 
message expression includes an ass ignment  prefix, the object re turned  
by the receiver will become the new object referred to by the variable. 
For example, the expression 

sum ~- 3 + 4 

makes  7 be the new value of the variable named sum. The expression 

x ~- theta  sin 

makes the sine of theta be the new value of the variable named x. If the 
value of theta is 1, the new value of x becomes 0.841471. If the value of 
theta is 1.5, the new value of × becomes 0.997495. 

The number  referred to by index can be incremented by the expres- 
sion 

index ~ index + 1 

Even if no information needs to be communicated back to the sender, a 
receiver always re turns  a value for the message expression. Return ing  a 
value indicates tha t  the response to the message is complete. Some mes- 
sages are mean t  only to inform the receiver of something. Examples are 
the messages to record financial t ransact ions described by the following 
expressions. 

H o u s e h o l d F i n a n c e s  spend:  32.50 on: 'ut i l i t ies '  

H o u s e h o l d F i n a n c e s  receive: 1000 from: "pay" 
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Parsing 

The receiver of these messages informs the sender only tha t  it is fin- 
ished recording the transaction. The default value re turned in such 
cases is usually the receiver itself. So, the expression 

var ~- HouseholdFinances spend: 32.50 on: 'utilities' 

results in var referring to the same financial history 
Household Finances. 

as 

All of the message expressions shown thus far have described the re- 
ceiver and arguments  with literals or variable names. When the receiv- 
er or a rgument  of a message expression is described by another  
message expression, the issue of how the expression is parsed arises. An 
example of a unary  message describing the receiver of another  unary  
message is 

1.5 tan rounded 

Unary  messages are parsed left to right. The first message in the exam- 
ple is the unary  selector tan sent to 1.5. The value of tha t  message ex- 
pression (a number  around 14.1014) receives the unary  message 
rounded and re turns  the nearest  integer, 14. The number  14 is the val- 
ue of the whole expression. 

Binary messages are also parsed left to right. An example of a binary 
message describing the receiver of another  binary message is 

index + offset * 2 

The value re turned by index from the message + offset is the receiver 
for the binary message * 2. 

All binary selectors have the same precedence; only the order in 
which they are wri t ten matters.  Note tha t  this makes mathemat ica l  ex- 
pressions in the Smalltalk-80 language different from those in many  
other languages in which multiplication and division take precedence 
over addition and subtraction. 

Parentheses  can be used to change the order of evaluation. A mes- 
sage within parentheses is sent before any messages outside the paren- 
theses. If the previous example were wri t ten as 

index + (o f fse t .  2) 

the multiplication would be performed before the addition. 
Unary  messages take precedence over binary messages. If unary  

messages and binary messages appear  together, the unary  messages 
will all be sent first. In the example 
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frame width + border width.  2 

the value of frame width is the receiver of the binary message whose se- 
lector is + and whose a rgument  is the value of border width. The value 
of the + message is, in turn,  the receiver of the binary message * 2. 
The expression parses as if it had been paren thes izedas  follows: 

((frame width) + (border width)) * 2 

Parentheses  can be used to send binary messages before unary  mes- 
sages. The expression 

2 .  theta sin 

calculates twice the sine of theta, while the expression 

( 2 .  theta)sin 

calculates the sine of twice theta. 
Whenever  keywords appear  in an unparenthesized message, they 

compose a single selector. Because of this concatenation, there is no 
left-to-right parsing rule for keyword messages. If a keyword  message is 
to be used as a receiver or a rgument  of another  keyword message, it 
must  be parenthesized. The expression 

frame scale: factor max: 5 

describes a single two-argument  keyword message whose selector is 
scale:max:. The expression 

frame scale: (factor max: 5) 

describes two single keyword messages whose selectors are scale: and 
max:. The value of the expression factor max: 5 is the a rgument  for the 
scale: message to frame. 

Binary messages take precedence over keyword messages. When una- 
ry, binary, and keyword messages appear  in the same expression with- 
out parentheses,  the unaries are sent first, the binaries next, and the 
keyword last. The example 

bigFrame width: smallFrame width • 2 

is evaluated as if it had been parenthesized as follows: 

bigFrame width: ((smallFrame width) • 2) 
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Formatting 
Conventions 

In the following example, a unary message describes the receiver of a 
keyword message and a binary message describes the argument. 

OrderedCollection new add: value • rate 

To summarize the parsing rules: 

1. Unary expressions parse left to right. 

2. Binary expressions parse left to right. 

3. Binary expressions take precedence over keyword expressions. 

4. Unary expressions take precedence over binary expressions. 

5. Parenthesized expressions take precedence over unary expressions. 

A programmer is free to format expressions in various ways using 
spaces, tabs, and carriage returns. For example, multiple keyword mes- 
sages are often written with each keyword-argument pair on a different 
line, as in 

ages at: 'Brett Jorgensen' 
put: 3 

o r  

HouseholdFinances 
spend: 30.45 
on: "food" 

The only time that  a space, tab, or carriage return affects the meaning 
of an expression is when its absence would cause two letters or two 
numbers to fall next to each other. 

Cascading 
There is one special syntactic form called cascading that specifies multi- 
ple messages to the same object. Any sequence of messages can be 
expressed without cascading. However, cascading often reduces the need 
for using variables. A cascaded message expression consists of one de- 
scription of the receiver followed by several messages separated by 
semicolons. For example, 

OrderedCollection new add: 1; add: 2; add: 3 

Three add: messages are sent to the result of OrderedCollection new. 
Without  cascading, this would have required four expressions and a 
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variable. For example, the following four expressions, separated by peri- 
ods, have the same result as the cascaded expression above. 

temp ~ OrderedCoilection new. 
temp add: 1. 
temp add: 2. 
temp add: 3 

Blocks  Blocks are objects used in many of the control structures in the 
Smalltalk-80 system. A block represents a deferred sequence of actions. 
A block expression consists of a sequence of expressions separated by 
periods and delimited by square brackets. For example, 

[index ,- index + 1] 

o r  

[index ~-index + 1. 
array at: index put: O] 

If a period follows the last expression, it is ignored, as in 

[expenditures at: reason.] 

When a block expression is encountered, the statements enclosed in the 
brackets are not executed immediately. The value of a block expression 
is an object that  can execute these enclosed expressions at a later time, 
when requested to do so. For example, the expression 

actions at: 'monthly payments' 
put: [HouseholdFinances spend: 650 on: 'rent'. 

HousehoidFinances spend: 7.25 on: 'newspaper'. 
HouseholdFinances spend: 225.50 on: 'car payment'] 

does not actually send any spend:on: messages to HouseholdFinances. It 
simply associates a block with the string 'monthly payments'. 

The sequence of actions a block describes wi l l  take place when the 
block receives the unary message value. For example, the following two 
expressions have identical effects. 
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index ~ index + 1 

and 

[index ~ index + 1] value 

The object referred to by the expression 

actions at: 'monthly payments' 

is the block containing three spend:on: messages. The execution of the 
expression 

(actions at: 'monthly payments') value 

results in those three spend:on: messages being sent 
HouseholdFinances. 

A block can also be assigned to a variable. So if the expression 

to 

incrementBIock ~ [index ~- index + 1] 

is executed, then the expression 

incrementBIock value 

increments index. 
The object returned after a value message is sent to a block is the 

value of the last expression in the sequence. So if the expression 

addBIock ~- [index + 1] 

is executed, then another way to increment index is to evaluate 

index ~ addBIock value 

A block that  contains no expressions returns nil when sent the message 
value. The expression 

[] value 

has the value nil. 

Control Structures 
A control structure determines the order of some activities. The funda- 
mental  control structure in the Smalltalk-80 language provides that  a 
sequence of expressions will be evaluated sequentially. Many 
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nonsequential  control s t ructures  can be implemented with blocks. These 
control s t ructures  are invoked either by sending a message to a block or 
by sending a message with one or more blocks as arguments .  The re- 
sponse to one of these control s t ructure  messages determines the order 
of activities with the pat tern  of value messages it sends to the block(s). 

Examining the evaluation of the following sequence of expressions 
gives an example of the way blocks work. 

incrementBIock ~- [index ~ index + 1]. 
sumBIock ~- [sum + ( index .  index)]. 
sum ~- O. 
index ~- 1. 
sum ~ sumBIock value. 
incrementBIock value. 
sum ~- sumBIock value 

The 15 actions taken as a result  of evaluating this sequence of expres- 
sions are 

1. Assign a block to incrementBIock. 

2. Assign a block to sumBIock. 

3. Assign the number  0 to sum. 

4. Assign the number  1 to index. 

5. Send the message value to the block sumBIock. 

6. Send the m e s s a g e ,  1 to the number  1. 

7. Send the message + 1 to the number  0. 

8. Assign the number  1 to sum. 

9. Send the message value to the block IncrementBIock. 

10. Send the message + 1 to the number  1. 

11. Assign the number  2 to index. 

12. Send the message value to the block sumBIock. 

13. Send the message * 2 to the number  2. 

14. Send the message + 4 to the number  1. 

15. Assign the number  5 to sum. 

An example of a control s t ructure  implemented with blocks is simple 
repetition, represented by a message to an integer with timesRepeat: as 
the selector and a block as the argument .  The integer will respond by 
sending the block as many  value messages as its own value indicates. 
For example, the following expression doubles the value of the variable 
named amount four times. 

4 timesRepeat: [amount ~- amount + amount] 
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Conditionals 
Two common control s t ructures  implemented  with blocks are condition- 
al selection and conditional repetition. Conditional selection is s imilar  to 
the if-then-else s ta tements  in Algol-like languages and conditional repe- 
tition is similar to the while and until  s ta tements  in those languages. 
These conditional control s t ructures  use the two Boolean objects named 
true and false described in the section on pseudo-variables. Booleans are 
re turned  from messages tha t  ask simple yes-no questions (for example, 
the magni tude  comparison messages: <, - ,  < = ,  >, > - ,  ~ - ) .  

E] Conditional Selection The conditional selection of an activity is 
provided by a message to a Boolean with the selector ifTrue:ifFalse: and 
two blocks as arguments .  The only objects tha t  unders tand  
ifTrue:ifFalse: messages are true and false. They have opposite responses: 
true sends value to the first a rgument  block and ignores the second; 
false sends value to the second a rgument  block and ignores the first. 
For example, the following expression assigns 0 or 1 to the variable par- 
ity depending on whether  or not the value of the variable number is di- 
visible by 2. The binary message \ \  computes the modulus or 
remainder  function. 

(number  \ \  2) - 0 
ifTrue" [pari ty ~- O] 
i fFalse: [pari ty ~- 1] 

The value re turned  from i fT rue : i fFa lse  is the value of the block tha t  
was executed. The previous example could also be wri t ten 

parity ~- (number  \ \  2) - 0 i fTrue: [0] i fFa lse  [1] 

In addition to i fTrue: i fFalse:,  there  are two single-keyword messages 
tha t  specify only one conditional consequent. The selectors of these 
messages are ifTrue: and ifFalse:. These messages have the same effect 
as the ifTrue:ifFalse: message when one a rgument  is an empty  block. 
For example, these two expressions have the same effect. 

index < - l i m i t  
i fTrue: [total ~ total + (list at: index)] 

and 

index < = limit 
i fTrue: [total ~- total + (list at: index)] 
ifFalse" [] 

Since the value of an empty block is nil, the following expression would 
set lastElement to nil if index is grea ter  than  limit. 
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lastElement  ~ index > limit ifFalse: [list at: index] 

El Conditional Repetition The conditional repeti t ion of an activity is 
provided by a message to a block with the selector whileTrue: and an- 
other block as an argument .  The receiver block sends itself the message 
value and, if the response is true, it sends the other block value and 
then s tar ts  over, sending itself value again. When the receiver's re- 
sponse to value becomes false, it stops the repeti t ion and re turns  from 
the whileTrue: message. For example, conditional repeti t ion could be 
used to initialize all of the e lements  of an a r r ay  named list. 

index ~- 1. 
[ index < = list size] 

whi leTrue: [list at: index put: O. 
index ~ index + 1] 

Blocks also unders tand  a message with selector whileFalse: tha t  repeats  
the execution of the a rgumen t  block as long as the value of the receiver 
is false. So, the following expressions are equivalent  to the one above. 

index ~ 1. 
[ index > list size] 

whi leFalse: [list at: index put: O. 
index ~ - i ndex  + 1] 

Block Arguments 

The p rogrammer  is free to choose whichever message makes the intent  
of the repeti t ion clearest. The value re turned  by both whileTrue: and 
whileFalse: is always nil. 

In order to make  some nonsequential  control s t ructures  easy to express, 
blocks may take one or more arguments .  Block a rguments  are specified 
by including identifiers preceded by colons at the beginning of a block. 
The block a rguments  are separated from the expressions tha t  make  up 
the block by a vertical bar. The following two examples describe blocks 
with one argument .  

[ :array I total ~- total + array size] 

and 

[ :newElement  I 
index ~ index + 1. 
list at: index put: newElement ]  

A common use of blocks with a rguments  is to implement  functions to 
be applied to all elements of a data structure.  For example, many  ob- 
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jects representing different kinds of data  s t ructures  respond to the mes- 
sage do:, which takes a s ingle-argument  block as its argument .  The 
object tha t  receives a do: message evaluates the block once for each of 
the elements contained in the data  structure.  Each element  is made the 
value of the block a rgument  for one evaluation of the block. The follow- 
ing example calculates the sum of the squares of the first five primes. 
The result  is the value of sum. 

sum ~ 0. 
.~(2 3 5 7 11) d o : [ : p r i m e l  sum ,- sum + (pr ime,  prime)] 

The message collect: creates a collection of the values produced by the 
block when supplied with the elements of the receiver. The value of the 
following expression is an a r ray  of the squares of the first five primes. 

..~(2 3 5 7 11) co l lec t : [ :p r ime l  p r ime,  prime] 

The objects tha t  implement  these control s t ructures supply the values 
of the block a rguments  by sending the block the message value:. A 
block with one block a rgument  responds to value: b y s e t t i n g  the block 
a rgument  to the a rgument  of value: and then executing the expressions 
in the block. For example, evaluat ing the following expressions results 
in the variable total having the value 7. 

sizeAdder ~ [ :array I total ~ total + array size]. 
total ~ 0. 
sizeAdder value: @(a b c). 
sizeAdder value: @(1 2). 
sizeAdder value: # ( e  f) 

Blocks can take more than  one argument .  For example 

[ : x : y l  ( x , x )  + ( y , y ) ]  

o r  

[ :frame :clippingBox I frame intersect: clippingBox] 

A block must  have the same number  of block arguments  as the number  
of value: keywords in the message to evaluate it. The two blocks above 
would be evaluated by means of a two-keyword message with selector 
value:value:. The two arguments  of the message specify the values of the 
two block arguments ,  in order. If a block receives an evaluation mes- 
sage with a different number  of a rguments  from the number  of block 
arguments  it takes, an error will be reported. 
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S u m m a r y  o f  

T e r m i n o l o g y  
T h e  s y n t a x  of e x p r e s s i o n s  is  s u m m a r i z e d  i n s i d e  t h e  b a c k  c o v e r  of  t h i s  

b o o k .  

express ion 

literal 

symbol  

array 

variable  name 

ass ignment  

pseudo-variable  
name 

receiver 

message  selector 

message  argument  

unary message  

keyword  

keyword  message  

binary message  

cascading  

block 

block argument  

value 

value: 

ifTrue:if False: 

if False:if True: 

ifTrue: 

if False: 

whileTrue: 

A sequence of characters that  describes an object. 

An expression describing a constant, such as a number or a 
string. 

A string whose sequence of characters is guaranteed to be 
different from that  of any other symbol. 

A data structure whose elements are associated with inte- 
ger indices. 

An expression describing the current  value of a variable. 

An expression describing a change of a variable's value. 

An expression similar to a variable name. However, unlike 
a variable name, the value of a pseudo-variable name can- 
not be changed by an assignment. 

The object to which a message is sent. 

The name of the type of operation a message requests of its 
receiver. 

An object that  specifies additional information for an oper- 
ation. 

A message without arguments.  

An identifier with a trailing colon. 

A message with one or more arguments  whose selector is 
made up of one or more keywords. 

A message with one a rgument  whose selector is made up of 
one or two special characters. 

A description of several messages to one object in a single 
expression. 

A description of a deferred sequence of actions. 

A parameter  that  must  be supplied when certain blocks 
are evaluated. 

A message to a block asking it to carry out the set of ac- 
tions it represents. 

A keyword used in a message to a block that  has block ar- 
guments; the corresponding message asks the block to car- 
ry out its set of actions. 

Message to a Boolean requesting conditional selection. 

Message to a Boolean requesting conditional selection. 

Message to a Boolean requesting conditional selection. 

Message to a Boolean requesting conditional selection. 

Message to a block requesting conditional repetition. 
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whileFalse: 

do: 

collect: 

Message to a block requesting conditional repetition. 

A message to a collection request ing enumera t ion  of its el- 
ements.  

A message to a collection requesting t ransformat ion  of its 
elements.  



3 
Classes and Instances 

Protocol Descriptions 
Message Categories 

Implementation Descriptions 

Variable Declarations 
Instance Variables 
Shared Variables 

Methods 
Argument Names 
Returning Values 
The Pseudo-variable self 
Temporary Variables 

Primitive Methods 

Summary of Terminology 



40 
C l a s s e s  a n d  I n s t a n c e s  

Objects represent  the components of the Smalltalk-80 system the 
numbers,  data  structures,  processes, disk files, process schedulers, text 
editors, compilers, and applications. Messages represent  interactions be- 
tween the components of the Smalltalk-80 s y s t e m - - t h e  ari thmetic,  
data  accesses, control structures,  file creations, text manipulat ions,  
compilations, and application uses. Messages make an object's 
functionality available to other objects, while keeping the object's im- 
plementat ion hidden. The previous chapter  introduced an expression 
syntax for describing objects and messages, concentrat ing on how mes- 
sages are used to access an object's functionality. This chapter  intro- 
duces the syntax for describing methods and classes in order to show 
how the functionality of objects is implemented.  

Every Smalltalk-80 object is an instance of a class. The instances of a 
class all have the same message interface; the class describes how to 

• carry out each of the operations available through tha t  interface. Each 
operation is described by a method. The selector of a message deter- 
mines what  type of operation the receiver should perform, so a class 
has one method for each selector in its interface. When a message is 
sent to an object, the method associated with tha t  type of message in 
the receiver's class is executed. A class also describes what  type of pri- 
vate memory  its instances will have. 

Each class has a name tha t  describes the type of component its in- 
s tances  represent.  A class name serves two fundamental  purposes; it is 
a simple way for instances to identify themselves, and it provides a way 
to refer to the class in expressions. Since classes are components of the 
Smalltalk-80 system, they are represented by objects. A class's name 
automatical ly  becomes the name of a globally shared variable. The val- 
ue of tha t  variable is the object representing the class. Since class 
names are the names of shared variables, they must  be capitalized. 

New objects are created by sending messages to classes. Most classes 
respond to the unary  message new by creating a new instance of them- 
selves. For example, 

OrderedCollection new 

re turns  a new collection tha t  is an instance of the system class 
OrderedCollection. The new 0rderedCollection is empty. Some classes 
create instances in response to other messages. For example, the class 
whose instances represent  times in a day is Time; Time responds to the 
message now with an instance represent ing the cu r r en t  time. The class 
whose instances represent  days in a year  is Date; Date responds to the 
message today with an instance representing the current  day. When a 
new instance is created, it automatical ly shares the methods of the 
class tha t  received the instance creation message. 
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This chapter  introduces two ways to present  a class, one describing 
the functionali ty of the instances and the other descr ibing the imple- 
menta t ion  of tha t  functionality. 

1. A protocol description lists the messages in the instances'  message 
interface. Each message is accompanied by a comment  describing 
the operation an instance will perform when it receives tha t  type 
of message. 

2. An implementation description shows how the functionali ty de- 
scribed in the protocol description is implemented.  An implemen- 
tat ion description gives the form of the instances'  private memory 
and the set of methods tha t  describe how instances perform their  
operations. 

A third way to present classes is an interactive view called a system 
browser. The browser is part  of the programming interface and is used 
in a running  Smalltalk-80 system. Protocol descriptions and implemen- 
tat ion descriptions are designed for noninteract ive documentat ion like 
this book. The browser will be described briefly in Chapter  17. 

Protocol 
Descriptions 

A protocol description lists the messages understood by instances of a 
part icular  class. Each message is listed wi th  a comment  about its 
functionality. The comment  describes the operation tha t  will be 
performed when the message is received and what  value will be re- 
turned. The comment  describes what will happen, not how the opera- 
t i onwi l l  be performed. If the comment  gives no indication of the value 
to be returned,  then the value is assumed to be the receiver of the mes- 
sage. 

For example, a protocol description entry for the message to a 
FinancialHistory With the selector spend:for: is 

spend: amount for: reason Remember that an amount of money, amount, 
has been spent for reason. 

Messages in a protocol description are described in the form of message 
patterns, A message pat tern  contains a message selector and a set of ar- 
gument  names, one name for each a rgument  tha t  a message with tha t  
selector would have. For example, the message pat tern  

spend: amount for: reason 
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matches the messages described by each of the following three expres- 
sions. 

HouseholdFinances spend: 32.50 for: 'utilities" 
HouseholdFinances spend: cost-4- tax for: 'food' 
HousehoidFinances spend: 100 for: usualReason 

The a rgument  names are used in the comment  to refer to the argu- 
ments. The comment  in the example above indicates tha t  the first argu- 
ment  represents the amount  of money spent and the second a rgument  
represents what  the money was spent for. 

Message Categories 
Messages tha t  invoke similar operations are grouped together in catego- 
ries. The categories have names that  indicate the common functionality 
of the messages in the group. For example, the messages to 
FinancialHistory are grouped into three categories named transaction re- 
cording, inquiries, and initialization. This categorization is intended to 
make the protocol more readable to the user; it does not affect the oper- 
ation of the class. 

The complete protocol description for FinanciaiHistory is shown next. 

FinancialHistory protocol 

transaction recording 
receive: amount from: source 

spend: amount for: reason 

inquiries 
cashOnHand 

totalReceivedFrom" source 

totalSpentFor: reason 

Remember  tha t  an amoun t  of money, amount, 
has been received from source. 

Remember  tha t  an amoun t  of money, amount, 
has been spent  for reason. 

Answer  the total amoun t  of money cur ren t ly  
on hand. 

Answer  the total  amoun t  received from source, 
so far. 

Answer  the total amoun t  spent for reason, so 
far. 

initialization 
initialBalance: amount Begin a financial  his tory with amount as the 

amoun t  of money on hand. 

A protocol description provides sufficient information for a programmer  
to know how to use instances of the class. From the above protocol de- 
scription, we know tha t  any instance of FinancialHistory should respond 
to the messages whose selectors are receive:from:, spend:for:, 
cashOnHand, totalReceivedFrom:, totalSpentFor:, and initialBalance:. We 
can guess that when we f irst create an instance of a FinancialHistory, 
the message initialBalance: should be sent to the instance in order to set 
values for its variables. 
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Implementation 
Descriptions 

An implementation description has three parts. 

1. a class name 

2. a declaration of the variables available to the instances 

3. the methods used by instances to respond to messages 

An example of a complete implementation description for 
FinancialHistow is given next. The methods in an implementation de- 
scription are divided into the same categories used in the protocol de- 
scription. In the interactive system browser, categories are used to 
provide a hierarchical query path for accessing the parts of a class de- 
scription. There are no special character delimiters separating the vari- 
ous parts of implementation descriptions. Changes in character font and 
emphasis indicate the different parts. In the interactive system browser, 
the parts are stored independently and the system browser provides a 
structured editor for accessing them. 

class name 
instance variable names 

instance methods 

transaction recording 

FinancialHistory 
cashOnHand 
incomes 
expenditures 

rece ive :  a m o u n t  f rom: source  
incomes at: source 

put: (self totalReceivedFrom: source) -+. amount. 
cashOnHand ~- cashOnHand --t- amount 

spend:  a m o u n t  for: reason  
expenditures at: reason 

put: (self totalSpentFor: reason) -t- amount. 
cashOnHand ~ cashOnHand - amount 

inquiries 

c a s h O n H a n d  
tcashOnHand 

t o t a l R e c e i v e d F r o m :  source  
(incomes includesKey: source) 

ifTrue: [ t incomes at: source] 
ifFalse: [tO] 

to ta lSpentFor :  reason  
(expenditures includesKey: reason) 

ifTrue: [texpenditures at: reason] 
ifFalse: [tO] 
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initialization 

in i t i a lBa lance :  a m o u n t  
c a s h O n H a n d  ~- a m o u n t .  

i n c o m e s  ~ D i c t i o n a r y  n e w .  

e x p e n d i t u r e s  ~ D i c t i o n a r y  n e w  

This implementa t ion description is different from the one presented for 
FinancialHisto~ on the inside front cover of this book. The one on the 
inside front cover has an additional par t  labeled ~class methods" tha t  
will be explained in Chapter  5; also, it omits the initialization method 
shown here. 

Variable  
Dec larat ions  

The methods in a class have access to five different kinds of variables. 
These kinds of variables differ in terms of how widely they are avail- 
able (their scope) and how long they persist. 

There  are two kinds of private variables available only to a single ob -~ 

ject. 

1. Instance variables exist for the ent ire  lifetime of the object. 

2. Temporary variables are created for a specific activity and are 
available only for the durat ion of the activity. 

Instance variables represent  the cur rent  state of an object. Temporary  
variables represent  the t rans i tory  state necessary to carry  out some ac- 
tivity. Temporary  variables are typically associated with a single execu- 
tion of a method: they are created when a message causes the method 
to  be executed and are discarded when the method completes by re turn-  
ing a value. 

The three  other kinds of variables can be accessed by more than  one 
object. They are distinguished by how widely they are shared. 

3. Class variables are shared by all the instances of a single class. 

4. Global variables are shared by all the instances of all classes (that  
is, by all objects). 

5. Pool variablesare shared by the instances of a subset of the class- 
es in the system. 

The majori ty of shared variables in the system are ei ther  class vari- 
ables or global variables. The majori ty of global variables refer to the 
classes in the system. An instance of FinancialHiston/ named 
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HouseholdFinances was used in several of the examples in the previous 
chapters .  We used HouseholdFinances as if it were defined as a global 
variable name. Global variables are used to refer to objects tha t  are not 
parts  of other objects. 

Recall tha t  the names of shared variables (3-5) are capitalized, while 
the names of private variables (1-2) are not. The value of a shared vari- 
able will be independent  of which instance is using the method in 
which its name appears. The value of instance variables and 
temporaries  will depend on the instance using the method, that  is, the 
instance tha t  received a message. 

Instance Variables 
There are two types of instance variables, named and indexed. They dif- 
fer in terms of how they are declared and how they are accessed. A 
class may have only named instance variables, only indexed variables, 
or some of each. 

EJ Named Instance Variables An implementat ion description includes 
a set of names for the instance variables that  make up the individual 
instances. Each instance has one variable corresponding to each in- 
stance variable name. The variable declaration in the implementat ion 
description of FinancialHistory specified three instance variable names. 

instance variable names cash©nHand 
incomes 
expenditures 

An instance of FinancialHistory uses two dictionaries to store the total 
amounts  spent and received for various reasons, and uses another  vari- 
able to keep track of the cash on hand. 

• expenditures refers to a dictionary that  associates spending reasons 
with amounts  spent. 

• incomes refers to a dictionary tha t  associates income sources with 
amoun t s  received. 

• cashOnHand refers to a number  represent ing the amount  of money 
available. 

When expressions in the methods of the class use one of the variable 
names incomes, expenditures, or cashOnHand, these expressions refer to 
the value of the corresponding instance variable in the instance that  re- 
ceived the message. 

When a new instance is created by sending a message to a class, it 
has a new set of instance variables. The instance variables are initial- 
ized as specified in the method associated with the instance creation 
message. The default initialization method gives each instance variable 
a value of nit. 
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For example, in order for the previous example messages to 
HouseholdFinances to work, an expression such as the following must  
have been evaluated. 

HouseholdFinances ~ FinancialHistory new initialBalance: 350 

FinancialHistory new creates a new object whose three instance variables 
all refer to nil. The initialBalance: message to that  new instance gives 
the three instance variables more appropriate initial values. 

E~] Indexed Instance Variables Instances of some classes can have in- 
stance variables that  are not accessed by names. These are called 
indexed instance variables. Instead of being referred to b y  name, 
indexed instance variables are referred to by messages that  include in- 
tegers, called indices, as arguments .  Since indexing is a form of associa- 
tion, the two fundamental  indexing messages h a v e  the same selectors 
as the association messages to dict ionaries--at :  and at:put:. For exam- 
ple, instances of Array have indexed variables. If names is an instance of 
Array, the expression 

names at: 1 

re turns  the value of its first indexed instance variable. The expression 

names at: 4 put: 'Adele' 

stores the str ing 'Adele' as the value of the four th indexed instance 
variable of names. The legal indices run from one to the number of 
indexed variables in the instance. 

If the instances of a class have indexed instance variables, its vari- 
able declaration will include the line indexed instance variables. For exam- 
ple, par t  of the implementat ion description for the system class Array is 

class name Array 
indexed instance variables 

Each instance of a class that  allows indexed instance variables may 
have a different number  of them. All instances of FinanciaIHistory have 
three instance variables, but instances of Array may have any number  
of instance variables. 

A class whose instances have indexed instance variables can also 
have named instance variables. All instances of such a class will have 
the same number  of named instance variables, but  may have different 
numbers  of indexed variables. For example, a system class representing 
a collection whose elements are ordered, OrderedCollection, has indexed 
instance variables to hold its contents. An OrderedCollection might have 
more space for storing elements than is current ly being used. The two 
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named instance variables remember  the indices of the first and last ele- 
ment  of the contents. 

class name 
instance variable names 

indexed instance variables 

OrderedCol lection 
firsttndex 
lastlndex 

All instances of OrderedCo l lec t ion  will have two named variables, but 
one may have five indexed instance variables, another  15, another  18, 
and so on. 

The named instance variables of an instance of FinancialHistory are 
private in the sense tha t  access to the values of the variables is con- 
trolled by the instance. A class may or may not include messages giving 
direct access to the instance variables. Indexed instance variables are 
not private in this sense, since direct access to the values of the vari- 
ables is available by sending messages with selectors at: and at:put:. 
Since these messages are the only way to access indexed instance vari- 
ables, they must  be provided. 

Classes with indexed instance variables create new instances with 
the message new: instead of the usual message new. The a rgument  of 
new: tells the number  of indexed variables to be provided. 

list ~- Array new: 10 

creates an Array of 10 elements, each of which is initially the special ob- 
ject nil. The number  of indexed instance variables of an instance can be 
found by sending it the message size. The response to the message size 

list size 

is, for this example, the integer 10. 
Evaluatit!g each of the following expressions, in order, 

list ~- Array new: 3. 
list at: 1 put: 'one ' .  
list at: 2 put: ' two' .  
list at: 3 put: ' three" 

is equivalent to the single expression 

Shared Variables 

list ~- :#( 'one"  ' two '  ' three ' )  

Variables tha t  are shared by more than  one object come in groups 
called pools. Each class has two or more pools whose variables can be 
accessed by its instances. One pool is shared by all classes and contains 
the global variables; this pool is named Smalitalk. Each class a lso has a 
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pool which is only available to its instances and contains the class vari- 
ables. 

Besides these two manda to ry  pools, a class may access some other 
special purpose pools shared by several classes. For example, there  are 
several classes in the system tha t  represent  textual  information; these 
classes need to share  the ASCII charac ter  codes for characters  tha t  are 
not easily indicated visually, such as a carr iage re turn,  tab, or space. 
These numbers  are  included as variables in a pool named TextConstants 
tha t  is shared by the classes implement ing  text display and text  editing. 

If FinancialHistory had a class variable named SalesTaxRate and 
shared a pool d ic t ionary  whose name is FinancialConstants, the declara- 
tion would be expressed as follows. 

instance variable names 

class variable names 
shared pools 

cashOnHand 
incomes 
expenditures 
SalesTaxRate 
FinancialConstants 

SalesTaxRate is the  name  of a class variable, so it can be used in any 
methods in the class. FinancialConstants, on the other  hand, is the name 
of a pool; it is  the variables in the pool tha t  can be used in expressions. 

I n  order to declare a variable to be global (known to all classes and 
to the user 's  interact ive system), the variable name must  be inserted as 
a k e y  in the dict ionary Smalltalk. For example, to make  AIIHistories 
global, evaluate  the expression 

Smalltaik at: #AI IHis tor ies put: nil 

Then use an ass ignment  s t a t ement  to set the value of AliHistories. 

Methods  A method describes how an object will perform one of its operations. A 
method is made up of a message pa t te rn  and a sequence of expressions 
separated by periods. The example method shown below describes the 
response of a FinanciaiHistory to messages informing it of expenditures.  

spend: amount  for: reason 
expenditures at: reason 

put: (self totalSpentFor: reason) 4- amount. 
cashOnHand ~- cashOnHand-  amount 

The message  pat tern ,  spend: amount  for: reason, , indicates tha t  this 
method will be used in response to all messages with selector spend:for:. 
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The first expression in the body of this method adds the new amount  to 
the amount  already spent for the reason indicated. The second expres- 
sion is an assignment  tha t  decrements the value of cashOnHand by the 
new amount.  

Argument Names 

Returning Values 

Message pat terns  were introduced earlier in this chapter. A message 
pat tern  contains a message selector and a set of a rgument  names, one 
for each a rgument  tha t  a message with tha t  selector would have. A 
message pa t te rn  matches any messages tha t  have the same selector. A 
class will have only one method with a given selector in its message 
pattern.  When a message is sent, the method with matching message 
pat tern  is selected from the class of the receiver. The expressions in the 
selected method are evaluated one after another.  After all the expres- 
sions are evaluated, a value is re turned to the sender of the message. 

The a rgument  names found in a method's  message pat tern  are pseu- 
do-variable names referring to the arguments  of the actual message. If 
the method shown above were invoked by the expression 

HouseholdFinances spend" 30.45 for: "food' 

the  pseudo-variable name amount would refer to the number  30.45 and 
the pseudo-variable name reason would refer to the string ' f o o d '  dur- 
ing the evaluation of the expressions in t he  method. If the same method 
were invoked by the expression 

HouseholdFinances spend: coslt + tax for: 'food' 
i 

cost would be sent the message • tax and the value it returned would 
be referred to as amount in the ~ethod. If cost referred to 100 and tax 
to 6.5, the value of amount would be 106.5. 

Since a rgument  names are pseu~lo-variable names, they can be used 
to access values like variable names, but  their  values cannot be 
changed by assignment.  In the method for spend:for:, a s ta tement  of the 
form 

amount ~- amount ,  taxRate 

would be syntactically illegal since the value of amount cannot be 
reassigned. 

The method for spend:for: does not specify what  the value of the mes- 
sage should be. Therefore, the default value, the receiver itself, will be 
returned.  When another  value is to be specified, one or more re turn  ex- 
pressions are included in the method. Any expression can be turned 
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The Pseudo- 
variable se l f  

into a re turn  expression by preceding it with an uparrow (t). The value 
of a variable may be re turned as in 

t c a s h O n H a n d  

The value of another  message can be re turned as in 

t expend i tu res  at: reason 

A literal object can be re turned as  in 

tO 

Even an assignment  s ta tement  can be turned into a re turn  expression, 
as in 

l" init ial lndex ~- 0 

The assignment  is performed first. The new value of the variable is 
then returned.  

An example of the use of a re turn  expression is the following imple- 
mentat ion of totalSpentFor:. 

to ta lSpentFor :  reason 
(expenditures includesKey: reason) 

ifTrue: [texpenditures at: reason] 
ifFalse: [1'0] 

This method consists of a single conditional expression. If the expendi- 
ture reason is in expenditures, the associated value is returned;  other- 
wise, zero is returned.  

Along with the pseudo-variables used t o  refer to the a rguments  of a 
message, all methods have access to a pseudo-variable named self tha t  
refers to the message receiver itself. For example, in the method for 
spend:for:, the message totalSpentFor: is sent to the receiver of the 
spend:for: message. 

spend: a m o u n t  for: reason 
expenditures at: reason 

put: (self totalSpentFor: reason) + amount. 

cashOnHand ~- cashOnHand - amount 

When this method is executed, the first thing tha t  happens is that  
totalSpentFor: is sent to the same object (self) tha t  received spend:for:. 
The result  of that  message is sent the message ÷ amount, and the re- 
sult of tha t  message is used as the second a rgument  to at:put:. 
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The pseudo-variable self can be used to implement  recursive func- 
tions. For example, the message factorial is understood by integers in or- 
der to compute the appropriate  function. The method associated with 
factorial is 

factor ial  
self = 0 ifTrue: [1' 1]. 

self < 0 
ifTrue: [self error: "factorial inva l id ' ]  

i fFalse: [ t s e l f .  (self -- 1) factor ial ]  

The receiver is an I n teger .  The first expression tests to see if the receiv- 
er is 0 and, if it is, re turns  1. The second expression tests the sign of the 
receiver because, if it is less than  0, the programmer  should be notified 
of an error (all objects respond to the message error: with a report  that  
an error  has been encountered). If the receiver is greater  than  0, then 
the value to be re turned is 

s e l f ,  (se l f  - 1) factorial 

The value re turned is the receiver multiplied by the factorial of one less 
than  the receiver. 

Temporary 
Variables 

The a rgument  names and se l f  are available only during a single execu- 
tion of a method. In addition to these pseudo-variable names, a method 
may obtain some other variables for use during its execution. These are 
called temporary variables. Temporary  variables are indicated by in- 
cluding a temporary  variable declaration between the message pat tern 
and the expressions of a method. A temporary  declaration consists of a 
set of variable names between vertical bars. The method for spend:for: 
could be rewri t ten to use a temporary  variable to hold the previous ex- 
penditures. 

spend: amount  for: reason 
I p rev iousExpendi tures  I 
p rev iousExpendi tures  ~ self to ta lSpentFor:  reason. 

expendi tures at: reason 
put: prev iousExpendi tures  .-I- amount.  

cashOnHand  ~ cashOnHand  - amount  

The values of temporary  variables are accessible only to s ta tements  in 
the method and are forgotten when the method completes execution. 
All temporary  variables initially refer to nil. 

In the interactive Smalltalk-80 system, the programmer  can test al- 
gori thms that  make use of temporary  variables. The test can be carried 
out by using the vertical bar notation to declare the variables for the 
durat ion of the immediate evaluation only. Suppose the expressions to 
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be tried out include reference to the variable list. If the variable list is 
undeclared, an a t tempt  to evaluate the expressions will create a syntax 
error message. Instead, the programmer  can declare list as a temporary  
variable by prefixing the expressions with the declaration I list I. The 
expressions are separated by periods, as in the syntax of a method. 

I list l 
list ~- Array new: 3. 
list at: 1 put: "one'. 
list at: 2 put: ' four ' .  
list pr intStr ing 

The programmer  interactively selects all five l i ne s - - t he  declaration 
and the express ions- -and  requests evaluation. The variable list is avail- 
able only during the single execution of the selection. 

Primit ive  
Methods  

When an object receives a message, it typically just sends other mes- 
sages, so where does something really happen? An object may change 
the value of its instance variables when it receives a message, which 
certainly qualifies as ~something happening." But this hardly seems 
enough. In fact, it is not enough. All behavior in the system is invoked 
by messages, however, all messages are not responded to by executing 
Smalltalk-80 methods. There are about one hundred primitive methods 
tha t  the Smalltalk-80 vir tual  machine knows how to perform. Examples 
of messages tha t  invoke primitives are the + message to small integers, 
the at: message to objects with indexed instance variables, and the new 
and new: messages to classes. When 3 gets the message + 4, it does not 
execute a Small talk-80 method. A primitive method re turns  7 as the 
value of the message. The complete set of primitive methods is included 
in the fourth par t  of this book, which degcribes the virtual  machine. 

Methods tha t  are implemented as primitive methods begin with an 
expression of the form 

< pr imit ive ~ > 

where # is an integer indicating which primitive method will be 
followed. If the primitive fails to perform correctly, execution continues 
in the Smalltalk-80 method. The expression < primitive # > is followed 
by Smalltalk-80 expressions that  handle failure situations. 
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S u m m a r y  of  
T e r m i n o l o g y  

class 

instance 

instance variable 

protocol descrip- 
tion 

implementation 
description 

message pattern 

temporary vari- 
able 

class variable 

global variable 
pool variable 

Smalltalk 

method 

argument name 

self 

message category 
primitive method 

An object tha t  describes the implementa t ion of a set of 
s imilar  objects. 

One of the objects described by a class; it has memory  and 
responds to messages. 

A variable available to a single object for the ent ire  life- 
t ime of the object; instance variables can be named or 
indexed. 

A description of a class in te rms of its instances '  public 
message protocol. 

A description of a class in te rms of its instances '  private 
memory  and the set of methods tha t  describe how in- 
stances perform their  operations. 

A message selector and a set of a rgument  names,  one for 
each a rgumen t  tha t  a message with this s e l ec to r  must  
have. 

A variable created for a specific activity and available only 
for the durat ion oI tha t  activity. 

A variable  shared by all the instances of a single class. 

A variable shared by all the instances of all classes. 

A variable shared by the instances of a set of classes. 

A pool shared by all classes tha t  contains the  global vari- 
ables. 

A procedure describing how to perform one of an object's 
operations; it is made up of a message pat tern,  t emporary  
variable  declaration, and a sequence of expressions. A 
method is executed when a message matching its message 
pa t te rn  is sent to an instance of the class in which the 
method is found 

Name  of a pseudo-variable available to a method only for 
the durat ion of tha t  method's  execution; the value of the 
a rgumen t  names are  the a rguments  of the message tha t  
invoked the method. 

When used in a method, indicates tha t  the value of the 
next  expression is to be the value of the method. 

A pseudo-variable referring to the receiver of a message. 

A group of methods in a class description. 

An operation periormed directly by the Small talk-80 virtu- 
al machine; it is not described as a sequence of 
Small ta lk-80 expressions. 
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Every object in the  Smal l ta lk-80 sys tem is an ins tance  of a class. All in- 
s tances of a class r epresen t  the  same kind of sys tem component .  For ex- 
ample,  each ins tance  of Rectangle represents  a r ec t angu la r  a rea  and 
each ins tance  of Dictionary represen ts  a set of associations between 
names  and values. The fact t ha t  the  ins tances  of a class all r ep resen t  
the  same kind of component  is reflected both in the  way the ins tances  
respond to messages  and in the form of the i r  ins tance  variables.  

• All ins tances  of a class respond to the same set of messages a n d  
use the same set of methods  to do so. 

• All ins tances  of a class have  the same n u m b e r  of n a m e d  ins tance 
var iables  and  use the same names  to refer to them.  

• An object can have  indexed ins tance  var iables  only if all ins tances  
of its class can have i n d e x e d  ins tance variables.  

The class s t ruc tu re  as described so far does not explici t ly provide for 
any  intersect ion in class membersh ip .  Each object is an ins tance  of ex- 
act ly one class. This s t ruc tu re  is i l lus t ra ted  in Figure  4.1. In the  figure, 
the  smal l  circles r epresen t  ins tances  and the boxes represen t  classes. If 
a circle is wi th in  a box, then  it represen ts  an ins tance  of the class rep- 
resented  by the box. 

O O 

O 

O 

Figure 4.1 

O O 

Lack of in tersect ion in class membersh ip  is a l imi ta t ion  on design in an 
object-oriented sys tem since it does not allow any  shar ing  between class 
descript ions.  We migh t  wan t  two objects to be subs tan t ia l ly  similar ,  but  
to differ in some par t i cu la r  way. For example,  a f loating-point  n u m b e r  
and an in teger  are  s imi lar  in the i r  abi l i ty to respond to a r i thmet i c  mes- 
sages, but  are  different  in the way they  represen t  numer ic  values. An 
ordered collection and a bag are  s imi lar  in t ha t  they are  conta iners  to 
which e lements  can be added and from which e lements  can be removed, 
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but they are different in the precise way in which individual elements 
are accessed. The difference between otherwise similar objects may be 
externally visible, such as responding to some different messages, or it 
may be purely internal, such as responding to the same message by ex- 
ecuting different methods. If class memberships are not allowed to over- 
lap, this type of partial similarity between two objects cannot be 
guaranteed by the system. 

The most general way to overcome this limitation is to allow arbi- 
t rary intersection of class boundaries (Figure 4.2). 

Figure 4.2 
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We call this approach multiple inheritance. Multiple inheritance allows 
a situation in which some objects are instances of two classes, while 
other objects are instances of only one class or the other. A less general 
relaxation of the nonintersection limitation on classes is to allow a class 
to include all instances of another class, but not to allow more general 
sharing (Figure 4.3). 
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Figure 4.3 
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We call this approach subclassing. This follows the terminology of the 
programming language Simula, which includes a similar concept. 
Subclassing is strictly hierarchical; if any instances of a class are also 
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instances of another  class, then all instances of tha t  class must  also be 
instances of the other class. 

The Small talk-80 system provides the subclassing form of inher i tance 
for its classes. This chapter  describes how subclasses modify their  
superclasses, how this affects the association of messages and methods, 
and how the subclass mechanism provides a f ramework for t h e  classes 
in the system. 

Subclass 
Descriptions 

A subclass specifies tha t  its instances will be the same as instances of 
another  class, called its superclass, except for the differences tha t  are 
explicitly stated. The Small talk-80 p rogrammer  always creates a new 
class as a subclass of an existing class. A system class named Object de- 
scribes the similarit ies of all objects in the system, so every class will at 
least be a subclass of Object. A class description (protocol or implemen- 
tation) specifies how its instances differ from the instances of its super- 
class. The instances of a superclass can not be affected by the existence 
of subclasses. 

A subclass is in all respects a class and can therefore have subclasses 
itself. Each class has one superclass, a l though many  classes may share 
the same superclass, so the classes form a tree structure.  A class has a 
sequence of classes from which it inheri ts  both variables and methods. 
This sequence begins with its superclass and continues with its super- 
class's superclass, and so on. The inher i tance chain continues through 
the superclass relat ionship until  Object is encountered.  Object is the 
single root class; it is the only class without  a superclass. 

Recall tha t  an implementa t ion  description has three basic parts: 

1. A class name 

2. A variable declaration 

3. A set of methods 

A subclass must  provide a new class name for itself, but  it inheri ts  both 
the variable declarat ion and methods of its superclass. New variables 
may be declared and new methods may be added by the subclass. If in- 
stance variable names are added in the subclass variable declaration, 
instances of the subclass will have more instance variables than  in- 
stances of the superclass. If shared variables are added, they will be ac- 
cessible to the instances of the subclass, but not to instances of the 
superclass. All variable names added must  be different from any de- 
clared in the superclass. 
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If a class does not have indexed ins tance  variables,  a subclass can de- 
clare t h a t  its ins tances  will have indexed variables;  these indexed vari- 
ables will be in addit ion to any  inher i t ed  n a m e d  ins tance  variables.  If a 
class has  indexed ins tance  variables,  its subclasses mus t  also have 
indexed ins tance  variables;  a subclass can also declare  new n a m e d  in- 
s tance variables.  

If a subclass adds a method  whose message p a t t e r n  has  the same se- 
lector as a method  in the  superclass,  its ins tances  will respond to mes- 
sages wi th  t h a t  selector by execut ing the  new method.  This is called 
overriding a method.  If a subclass adds a method  wi th  a selector not 
found in the  methods  of the  superclass,  the  ins tances  of the  subclass 
will respond to messages not unders tood by ins tances  of the  superclass.  

To summar ize ,  each par t  of an  imp lemen ta t i on  descript ion can be 
modified by a subclass in a different  way: 

1. The class n a m e  must  be overridden.  

2. Var iables  may be added. 

3. Methods may be added or overridden.  

An Example  
S u b c l a s s  

An imp lemen ta t i on  description includes an entry,  not shown in the  pre- 
vious chapter ,  t ha t  specifies its superclass.  The following example  is a 
class created as a subclass of the  FinancialHistory class in t roduced in 
Chapter 3. Instances of the subclass share the function of FinancialHistory 
for s tor ing informat ion  about  m o n e t a r y  expendi tures  and receipts. They 
have the addi t ional  function of keeping t rack  of the expendi tures  t ha t  
are  tax  deductible. The subclass provides the m a n d a t o r y  new class 
name  (DeductibleHistory), and adds one ins tance var iable  and four meth-  
ods. One of these methods  (initialBalance:) overrides a method  in the su- 
perclass. 

The class description for DeductibleHistory follows. 

class name 
superclass 
instance variable names 
instance methods 

DeductibleHistory 
Financial History 
deductibleExpenditures 

transaction recording 

spendDeduct ib le :  amount  for: reason 
self spend: amount for: reason. 
deductibleExpenditures ,- 

deductibleExpenditures + amount 
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spend: amount for: reason deducting: deduct ib leAmount  
self spend: amount for: reason. 
deductibleExpenditures ,- 

deductibleExpenditures + deductibleAmount 

inquiries 

totalDeductions 
t deductibleExpenditures 

initialization 

initialBalance: amount 
super initialBalance: amount. 
deductibleExpenditures ~ 0 

In order to know all the messages understood by an instance of 
DeductibleHistory, it is necessary to examine the protocols of 
DeductibleHistory, FinancialHistory, and Object. Instances of 
DeductibleHistory have four var iab les-- three inheri ted from the super- 
class FinancialHistory, and one specified in the class DeductibleHistory. 
Class Object declares no instance variables. 

F igure 4.4 indicates that DeductibleHistory is a subclass of 
FinancialHistory. Each box in this diagram is labeled in the upper left 
corner with the name  of class it represents. 

Figure 4.4 

Object 

FinancialH istory 

0 

DeductibleH istory 

0 
0 

0 
0 

0 

Instances of DeductibleHistory can be used to record the history of enti- 
ties that  pay taxes (people, households, businesses). Instances of 
FinancialHistory can be used to record the history of entities that  do not 
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pay taxes (charitable organizations, religious organizations). Actually, 
an instance of DeductibleHistory could be used in place of an instance of 
FinancialHistory without  detection since it responds to the same mes- 
sages in the same way. In addition to the messages and methods 
inheri ted from FinancialHistory, an instance of Deduct ib leHistory can re- 
spond to messages indicating tha t  all or par t  of an expendi ture  is de- 
ductible. The new messages available are spendDeductible:for:, which is 
used if the total amount  is deductible; and spend:for:deducting:, which is 
used if only par t  of the expendi ture  is deductible. The total  tax deduc- 
tion can be found by sending a DeductibleHistory the message 
totalDeductions. 

Method 
Determinat ion  

When a message is sent, the methods in the receiver 's class are 
searched for one with a matching  selector. If none is found, the methods 
in tha t  class's superclass are  searched next. The search continues up 
the superclass chain until  a matching method is found. Suppose we 
send an ins tance  of Deduct ib leHistory a message with selector 
cashOnHand. The search for the appropria te  method to execute begins 
in the class of the receiver, DeductibleHistory. When it is not found, the 
search continues by looking at DeductibleHistory's superclass, 
FinancialHistory. When a method with the selector cashOnHand is found 
there,  tha t  method is executed as the response to the message. The re- 
sponse to this message is to re tu rn  the value of the instance variable 
cashOnHand. This value is found in the receiver of the message, tha t  is, 
in the instance of Deduct ib leHistory.  

The search for a matching method follows the superclass chain, ter- 
minat ing  at class Object. If no matching method is found in any class in 
the superclass chain, the receiver is sent the message 
doesNotUnderstand:; the a rgumen t  is the offending message. There  is a 
method for the selector doesNotUnderstand: in Object tha t  reports the 
error  to the programmer.  

Suppose we send an instance of DeductibleHistory a message with se- 
lector spend:for:. This method is found in the supei'class FinancialHistory. 
The method, as given in Chapter  3, is 

spend: a m o u n t  for: reason 
expenditures at: reason 

put: (self totalSpentFor: reason) + amount. 
cashOnHand ~ cashOnHand - amount 

The values of the instance variables (expendi tures and cashOnHand)  are 
found in the receiver of the message; the instance of DeductibleHistory. 
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The pseudo-variable self is also referenced in this method;  self repre- 
sents the DeductibleHistory instance tha t  was the receiver of the mes- 
sage. 

Messages to sel f  

When a method contains a message whose receiver is self, the search 
for the method for tha t  message begins in the instance's  class, regard- 
less of which class contains the method containing self. Thus, when the 
expression self totalSpentFor: reason is evaluated in the me thod  for 
spend:for: found in FinancialHistory, the search for the method associat- 
ed with the message selector totalSpentFor: begins in the class of self, 
i.e., in  DeductibleHistory. 

Messages to self will be explained using two example classes named 
One and Two. Two is a subclass of One and One is a subclass of Object. 
Both classes include a method for the message test. Class One also in- 
cludes a method for the message result1 tha t  re turns  the result  of the 
expression self test. 

, .  

class name On e 

superclass Object 
instance methods 

tes t  
t l  

resu l t  1 
t self test 

class name Two 

superclass One 

instance methods 

tes t  
t2 

An instance of each class will be used to demonst ra te  the method deter- 
minat ion for messages to self. example1 is an instance of class One and 
example2 is an instance of class Two. 

example1 ~- One new. 
example2 ~- Two new 

The relat ionship between One and Two is shown in Figure 4.5. In addi- 
tion to labeling the boxes in order to indicate class names, several of 
the circles are also labeled in order to indicate a name referr ing to the 
corresponding instance. 
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Object 
One ! 

0 0 

Two 

0 ¢  

~examplel 

--example2 

The following table shows the results of evaluat ing various expressions. 

Messages to super  

expression result 

example1 test 1 
example1 result1 1 
example2 test 2 
example2 result1 2 

The two result1 messages both invoke the same method, which is found 
in class One. They produce different results because of t h e  message to 
self contained in tha t  method. When result1 is sent to example2, the 
search for a matching method begins in Two. A method is not found in 
Two, so the search continues by looking in the superclass, One. A method 
for result1 is found in One, which consists of one expression, T self test. 
The pseudo-variable self refers to the receiver, exarnple2. The search for 
the response to test, therefore, begins in class Two. A method for test is 
found in Two, which re turns  2. 

An additional pseudo-variable named super is available for use in a 
method's  expressions. The pseudo-variable super refers to the receiver 
of the message, just  as serf does. However, when a message is sent to 
super, the search for a method does not begin in the receiver's class. In- 
stead, the search begins in the superclass of the class containing the 
method. The use of super allows a method to access methods defined in 
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a superclass  even if the  methods  have been overr idden in subclasses. 
The use of super as Other t h a n  a receiver  (for example,  as an argu- 
ment),  has no different  effect from using self; the use of super only af- 
fects the ini t ial  class in which messages are looked up. 

Messages to super will be explained using two more  example  classes 
n a m e d  Three and Four. Four is a subclass of Three, Three is a subc lass  
of the  previous example  Two. Four overrides the method  for the mes- 
sage test. Three contains  methods  for two new messagesmresu l t2  re- 
tu rns  the resul t  of the  expression self result1, and result3 r e tu rns  the 
resul t  of the  expression super test. 

class name Three 
superclass Two 
instance methods 

resul t2  
f self result1 

resul t3  
1' super test 

class name Four 
superclass Three 
instance methods 

test  
t4 

Ins tances  of One, Two, Three, and Four can all respond to the messages 
test  and result1. The response of ins tances  of Three and Four to mes- 
sages i l lus t ra tes  the effect of super (Figure 4.6). 

4' 

example3 ~-Three new. 
example4 ~- Four new 

An a t t e m p t  to send the messages result2 or result3 to example1 o r  
example2 is an  er ror  since ins tances  of One or Two do not unde r s t and  
the messages result2 or result3. 

The following table shows the resul ts  of sending various messages.  

expression result 

example3 test 2 
example4 result1 4 
example3 result2 2 
example4 result2 4 
example3 result3 2 
example4 result3 2 
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Figure 4.6 
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When test is sent to example3, the method in Two is used, since Three 
doesn't override the method, example4 responds to result1 with a 4 for 
the same reason that  example2 responded with a 2. When result2 is 
sent to example3, the search for a matching method begins in Three. 
The method found there returns the result of the expression self result1. 
The search for the response to result1 also begins in class Three. A 
matching method is not found in Three or its superclass, Two. The 
method for result1 is found in One and returns the result of self test. 
The search for the response to test once more begins in class Three. 
This time, the matching method is found in Three's superclass Two. 

The effect of sending messages to super will be illustrated by the re- 
sponses of example3 and exarnple4 to the message result3. When result3 
is sent to example3, the search for a matching method begins in Three. 
The method found there returns the result of the expression super test. 
Since test is sent to super, the search for a matching method begins not 
in class Three, but in its superclass, Two: The method for test in Two 
returns a 2. When result3 is sent to example4, the result is still 2, even 
though Four overrides the message for test. 

This example highlights a potential confusion: super does not mean 
start  the search in the superclass of the receiver, which, in the last ex- 
ample, would have been class Three. It means start  the search in the 
superclass of the class containing the method in which super was used, 
which, in the last example, was class Two. Even if Three had overridden 
the method for test by returning 3, the result of exarnple4 result3 would 
still be 2. Sometimes, of course, the superclass of the class in which the 
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method containing super is found is the same as the superclass of the 
receiver. 

Another  example of the use of super is in the method for 
initialBalance in DeductibleHistory. 

in i t ia lBa lance:  a m o u n t  
super initialBalance: amount. 
deductibleExpenditures ~ 0 

This method overrides a method in the superclass FinancialHistory. The 
method in DeductibleHistory consists of two expressions. The first ex- 
pression passes control to the superclass in order to process the initial- 
ization of the balance. 

super initialBalance amount 

The pseudo-variable super refers to the receiver of the message, but in- 
dicates that the search for the method should skip DeductibleHistory 
and begin in FinancialHistory. In this way, the expressions from 
FinancialHistory do not have to be duplicated in DeductibleHistory. The 
second expression in the method does the subclass-specific initialization. 

deductibleExpenditures ~- 0 

If self were substituted for super in the initialBalance: method, it would 
result in an inf inite recursion, since every time initialBalance: is sent, i t  
will be sent again. 

Abstract 
Superclasses 

Abstract  superclasses are created when two classes share a par t  of their  
descriptions and yet nei ther  one is properly a subclass of the other. A 
mutua l  superclass is created for the two classes which contains their  
shared aspects. This type of superclass is called abstract because it was 
not created in order to have instances. In terms of the figures shown 
earlier,  an abst ract  superclass represents  the situation i l lustrated in 
Figure 4.7. Notice tha t  the abstract  class does not directly contain in- 
stances. 

As an example of the use of an abstract  Superclass, consider two clas- 
ses whose instances represent  dictionaries. One class, named 
SmallDictionary, minimizes the space needed to store its contents; the 
other, named FastDictionary, stores names and values sparsely and uses 
a hashing technique to locate names. Both classes use two parallel  lists 
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Figure 4.7 
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t h a t  contain  names  and associated values. SmallDictionary stores the 
names  and values contiguously and uses a s imple l inear  search to locate 
a name.  FastDictionary stores names  and values sparsely  and uses a 
hash ing  technique to locate a name.  Other  t han  the difference in how 
names  are  located, these two classes are  very  similar:  they  share  identi- 
cal protocol and they  both use paral le l  l i s t s  to store the i r  contents.  
These s imi lar i t ies  are represen ted  in an abs t rac t  superclass  named  
DualListDictionary. The re la t ionships  among  these th ree  classes is shown 
in Figure  4.8. 

Figure 4.8 
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The imp lemen ta t i on  descript ion for the abs t rac t  class, DualListDictionary 
is shown next. 
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class name DualListDictionary 
superclass Object 
instance variable names n ames  

values 

instance m e t h o d s  

accessing 

at: n a m e  

I index I 
index ~- self indexOf: name. 
index = 0 

ifTrue: [self error: "Name not found ' ]  
ifFalse: [tvalues at: index] 

at: n a m e  put: v a l u e  

I index I 
index ~- self indexOf: name. 
index = 0 

ifTrue: [index ~- self newlndexOf: name]. 
t values at: index put: value 

testing 

i nc ludes :  n a m e  
t(setf indexOf: name),~,= 0 

i s E m p t y  
tself size = 0 

initialization 

in i t i a l i ze  
names ~- Array new: 0. 
values ~- Array n e w 0  

This description of DualListDictionary uses only messages defined in 
DualListDictionary itself or ones a l ready described in this or in the previ- 
ous chapters.  The external  protocol for a DualListDictionary consists 
of messages at:, at:put:, includes:, isEmpty, a n d  initialize. A new 
DualListDictionary (actually an  instance of a subclass of DualListDictionary) 
is created by sending it the message new. It is then  sent the message ini- 
tialize so tha t  ass ignments  can be made to the two instance variables. 
The two variables are init ially empty  a r rays  (Array new: 0). 

Three  messages to self used in its methods  are not implemented  in 
DualL is tD ic t ionary- -s ize ,  indexOf:, and newlndexOf: .  Th is  is the reason 
t ha t  DualListDict ionary is cal led abstract .  I f  an ins tance were created, i t  
wou ld  not  be a:ble to respond successful ly  to a l l  o f  the necessary mes- 
sages. The two subclasses, Smal lDict ionary and FastDict ionary, mus t  im-  
p l emen t  the three  missing messages. The fact tha t  the search always 
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s tar ts  at  the class of the instance referred to by self means  tha t  a meth-  
od in a superclass can be specified in which messages are  sent  to self, 
but  the corresponding methods  are  found in the subclass. In this way, a 
superclass can provide a f r amework  for a method  tha t  is refined or ac- 
tua l ly  implemented  by the subclass. 

Smal lD ic t ionary  is a subclass of DualL is tD ic t ionary  t h a t  uses a m i n i m a l  
a m o u n t  of space to r ep resen t  the  associat ions,  b u t  m a y  t ake  a long  t i m e  

to find an association. It provides methods for the three  messages tha t  
were not implemented  in DualListDictionary~size, indexOf:, and 
newlndexOf:. It does not add variables.  

class name 
superclass 
instance methods 

accessing 

s ize  
t names size 

SmallDictionary 

DualListDictionary 

private 

i ndexOf :  n a m e  
1 to: names size do: 

[ : index 1 (names at: index) = name ifTrue: [Tindex]]. 

tO 

n e w l n d e x O f :  n a m e  

self grow. 
names at: names size put: name. 

1 names size 

g r o w  
I oldNames oldValues I 

otdNames ~ names. 

oldValues ~ values. 
names ~- Array new: names size --.t-. 1. 

values ~ Array new: values size 4- 1. 
names replaceFrom: 1 to: oldNames size with: oldNames. 

values replaceFrom: 1 to: oldVafues size with: oldValues 

Since names  are stored contiguously, the size of a Smal lD ic t ionary  is the 
size of its a r r ay  of names,  names. The index of a par t i cu la r  name  is de- 
t e rmined  by a l inear  search of the a r r ay  names.  If no ma tch  is found, 
the index is 0, Signalling failure in the search. Whenever  a new associa- 
tion is to be added to the dictionary,  the  method for newlndexOf: is used 
to find the appropr ia te  index. It assumes tha t  the  sizes of names  and 
values are  exactly the sizes needed to store thei r  cu r ren t  elements.  This 
means  no space is available for adding a new element.  The message 
grow creates two new Arrays tha t  are copies of the previous ones, with 
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one more e lement  at  the end. In the method for newlndexOf:, first the 
sizes of names  and values are increased and then the new name is 
stored in the new empty position (the last one). The method tha t  called 
on newlndexOf: has the responsibility for storing the value. 

We could evaluate the following example expressions. 

expression result 

ages ~- SmallDictionary new a new, uninitialized instance 
ages initialize instance variables initialized 
ages isEmpty true 
ages at: 'Brett' put: 3 3 
ages at: 'Dave' put: 30 30 
ages includes: 'Sam' false 
ages includes: 'Brett' true 
ages size 2 
ages at: 'Dave" 30 

For each of the above example expressions, we indicate in which class 
the message is found and in which class any messages sent to self are 
found. 

message selector message to self class of  method 

initialize 
at:put: 

includes: 

size 
at: 

Dual ListDictionary 
DualListDictionary 

indexOf: SmallDictionary 
newl ndexOf: SmallDictionary 

Dual ListDictionary 
indexOf: SmallDictionary 

SmallDictionary 
DualListDictionary 

indexOf: SmallDictionary 
error: Object 

FastDict ionary is another  subclass of DualListDictionary. It uses a hashing 
technique to locate names. Hashing requires more space, but takes less 
t ime than  a l inear  search. All objects respond to the hash message by 
re turn ing  a number.  Numbers  respond to the \ \ message by re turn ing  
their  value in the modulus of the argument .  
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class name FastDict ionary 

superclass Dual ListDict ionary 

instance methods 

accessing 

s i ze  

I size I 

size ~ 0. 

names do: [ :name I name notNil ifTrue: [size ~ size --t- 1]]. 

ts ize 

initialization 

i n i t i a l i z e  

names ~- Array new: 4. 

values ~- Array new: 4 

private 

i n d e x O f :  n a m e  

I index I 
index ~ name hash \ \  names size -.t- 1. 

[ (names at: index) = name] 

whi leFalse:  [ (names at: i ndex) isN i l  

ifTrue: [1' 0] 

ifFalse: [ index ~ index \ \  names size + 1]]. 

Tindex 

n e w l n d e x O f :  n a m e  

I index I 
names s i ze -  self size < = (names size / 4) 

ifTrue: [self grow]. 

index ~-- name hash \ \  names size + 1. 

[ (names at: i ndex ) i sN i l ]  

whi leFalse:  [ index ~ index \ \  names size -t- 1]. 

names at: index put: name. 

t index 

g r o w  

I o ldNames o ldValues I 

o ldNames  ~- names. 

o ldValues ~- values. 

names ~- Array new: names size * 2. 

values ~- Array new: values s i z e ,  2. 

1 to: o ldNames size do: 

[ : index I 

(o ldNames at: i ndex) i sN i l  

i fFalse: [self at: (o ldNames at: index) 

put: (o ldValues at: index)] ]  
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FastDictionary overrides DualListDictionary's implementat ion of initialize 
in order to create Arrays that  a l ready have some space allocated (Array 
new: 4). The size of a FastDictionary is.not s imply the size of one of i ts  
variables since the  Arrays always have empty entries. So the size is de- 
te rmined by examining each e lement  in the Array and counting the 
number  tha t  are not nil. 

The implementa t ion of newlndexOf: follows basically the same idea 
as tha t  used for SmallDictionary except tha t  when the size of an Array is 
changed (doubled in this case in the method for grow), each e lement  is 
explicitly copied from the old Arrays into the new ones so tha t  elements 
are rehashed. The size does not always have to be changed as is neces- 
sary in SmallDictionary. The size of a FastDictionary is changed only 
when the number  of empty locations in names falls below a minimum. 
The min imum is equal to 25% of the elements. 

names size - self size < = (names size / 4) 

Subclass 
Framework 
Messages  

As a ma t t e r  of p rogramming style, a method should not include mes- 
sages to self if the messages are nei ther  implemented by the class nor 
inheri ted from a superclass. In the description of DualListDictionary, 
three  such messages exis t - -s ize ,  indexOf:, and newlndexOf:. As we shall 
see in subsequent chapters,  the ability to respond to size is inheri ted 
from Object; the response is the number  of indexed instance variables. 
A subclass of DualListDictionary is supposed to override this method in 
order to r e tu rn  the number  of names in the dictionary. 

A special message, subclassResponsibility, is specified in Object. It is 
to be used in the implementa t ion of messages tha t  cannot be properly 
implemented in an abstract  class. Tha t  is, the implementat ion of size 
and indexOf: and newlndexOf:, by Smalltalk-80 convention, should be 

self subclassResponsibility 

The response to this message is to invoke the following method defined 
in class Object. 

subclassResponsibility 
self error: 'My subclass should have overridden one of my messages. 

In this way, if a method should have been implemented in a subclass of 
an abstract  class, the error  reported is an indication to the p rogrammer  
of how to fix the problem. Moreover, using this message, the program- 
mer  creates abstract  classes in which all messages sent to self are 
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i m p l e m e n t e d ,  a n d  in w h i c h  t h e  i m p l e m e n t a t i o n  is a n  i n d i c a t i o n  to t h e  

p r o g r a m m e r  of w h i c h  m e t h o d s  m u s t  be  o v e r r i d d e n  in t h e  subclass .  

By c o n v e n t i o n ,  if t h e  p r o g r a m m e r  dec ides  t h a t  a m e s s a g e  i n h e r i t e d  

f r o m  a n  a b s t r a c t  s u p e r c l a s s  s h o u l d  a c t u a l l y  not  be i m p l e m e n t e d ,  t he  ap- 

p r o p r i a t e  w a y  to o v e r r i d e  t h e  i n h e r i t e d  m e t h o d  is 

self shouldNotlmplement 

T h e  r e s p o n s e  to th i s  m e s s a g e  is to i nvoke  t h e  fo l lowing  m e t h o d  de f ined  

in class  Object .  

shouldNotlmplement 
self error: 'This message is not appropriate for this .object.' 

T h e r e  a r e  s e v e r a l  m a j o r  subc la s s  h i e r a r c h i e s  in t h e  S m a l l t a l k - 8 0  s y s t e m  

t h a t  m a k e  use  of t h e  idea  of c r e a t i n g  a f r a m e w o r k  of m e s s a g e s  whose  im- 

p l e m e n t a t i o n s  m u s t  be  c o m p l e t e d  in subc lasses .  T h e r e  a r e  c lasses  descr ib-  
ing  v a r i o u s  k inds  of co l lec t ions  (see C h a p t e r s  9 a n d  10). T h e  co l lec t ion  

c lasses  a r e  a r r a n g e d  h i e r a r c h i c a l l y  in o r d e r  to s h a r e  as m u c h  as poss ib le  
a m o n g  c lasses  de sc r ib ing  s i m i l a r  k inds  of col lect ions .  T h e y  m a k e  use  of 
the messages subclassResponsibility and shouldNotlmplement. Another  
e x a m p l e  of t h e  use  of subc la s ses  is t h e  hierarchy of l i n e a r  m e a s u r e s  a n d  

n u m b e r  c lasses  (see C h a p t e r s  7 a n d  8). 

Summary oI 
Terminology 

subclass A class that inherits variables and methods from an 
existing class. 

s u p e r c l a s s  The class from which variables and methods are inherited. 

Object The class that is the root of the tree-structured class hier- 
archy. 

o v e r r i d i n g  a m e t h o d  Specifying a method in a subclass for the same message as 
a method in a superclass. 

s u p e r  A pseudo-variable that refers to the receiver of a message; 
differs from self in where to start the search for methods. 

a b s t r a c t  c l a s s  A class that specifies protocol, but is not able to fully im- 
plement it; by convention, instances are not created of this 
kind of class. 

subclassResponsibility A message to report the error that a subclass should have 
implemented one of the superclass's messages. 

shouldNotlmplement A message to report the error that  this is a message 
inherited from a superclass but explicitly not available to 
instances of the subclass. 
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Since all Smalltalk-80 system components are represented b y  objects 
and all objects are instances of a class, the classes themselves must  be 
represented by instances of a class. A class whose instances are them- 
selves classes is called a metaclass. This chapter  describes the special 
properties of metaclasses. Examples il lustrate how metaclasses are used 
to support  instance creation and general class inquiries. 

In earlier versions of the Small talk system, there was only one 
metaclass, named Class. It corresponded to the c lass  organization 
depicted in Figure 5.1. As used in Chapter  4, a box denotes a class and 
a circle denotes an instance of the class in which it is contained. Where 
possible, the box is labeled with the name of the class it represents. 
Note that  there is one circle in the box labeled Class for each box in 
the diagram. 

Figure 5.1 
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This approach had the difficulty that  the message protocol of all classes 
was constrained to be the same since it was specified in one place. In 
particular,  the messages used to create new instances were the same for 
all classes and could not take any special initialization requirements  
into account. With a single metaclass, all classes respond to the mes- 
sage new or new: by re turning an instance whose instance variables all 
refer to nil. For most objects, nil is not a reasonable instance variable 
value, * so new instances have to be initialized by sending another  mes- 
sage. The programmer  must  ensure that  every time a new or new: is 
sent, another  message is sent to the new object so tha t  it will be proper- 
ly initialized. Examples of this kind of initialization were shown in 
Chapter  4 for SmallDictionary and FinancialHistory. 
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The Smalltalk-80 system removes the restriction that all classes have 
the same message protocol by making each class an instance of its own 
metaclass. Whenever a new class is created, a new metaclass is created 
for it automatically. Metaclasses are similar to other classes because 
they contain the methods used by their instances. Metaclasses are dif- 
ferent from other classes because they are not themselves instances of 
metaclasses. Instead, they are all instances of a class called Metaclass. 
Also, metaclasses do not have class names. A metaclass can be accessed 
by sending its instance the unary message class. For example, Rectan- 
gle's metaclass can be referred to with the expression Rectangle class. 

The messages of a metaclass typically support creation and initializa- 

tion of instances, and initialization of class variables. 

In i t ia l i zat ion  
of I n s t a n c e s  

Each class can respond to messages that request properly initialized 
new instances. Multiple metaclasses are needed because the initializa- 
tion messages are different for different classes. For example, we have 
already seen that Time creates new instances in response to the mes- 
sage now and Date creates new instances in response to the message 

today. :: 

Time now 
Date today 

These messages are meaningless to Point, the class whose instances rep- 
resent two-dimensional locations. Point creates a new instance in re- 
sponse to a message with selector x:y: and two arguments specifying the 
coordinates. This message is, in turn, meaningless to Time or Date. 

Point x: 100 y: 150 

Class Rectangle understands several messages that create new in- 
stances. A message with the selector origin:corner: takes Points repre- 
senting the upper left and lower right corners as arguments. 

Rectangle 
origin: (Point x: 50 y: 50) 
corner: (Point x: 250 y: 300) 

A message with the selector origin:extent: takes as arguments the upper 
left corner and a Point representing the width and height. The same 
rectangle could have been created by the following expression. 
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Rectangle 
origin: (Point x: 50 y: 50) 
extent: (Point x: 200 y: 250) 

In the Smalltalk-80 system, Class is an abstract  superclass for all of the 
metaclasses. Class describes the general na ture  of classes. Each 
metaclass adds the behavior specific to its single instance. Metaclasses 
may add new instance creation messages like those of Date, Time, Point, 
and Rectangle mentioned above, or they may redefine the fundamenta l  
new and new: messages in order to perform some default initialization. 

The organization of classes and instances in the system, as described 
so far, is i l lustrated in Figure 5.2. 

Figure 5.2 
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In this figure, we indicate classes Object, Metaclass, and Class, and 
metaclasses for each. Each circle within the box labeled Metaclass de- 
notes a metaclass. Each box within the box labeled Class denotes a sub- 
class of Class. There is one such box for each circle within the box 
labeled Metaclass. Each of these boxes contains a circle denoting its in- 
stance; these instances refer to Object or one of the subclasses of Object, 
but  not to metaclasses. 

An Example 
Metaclass 

Since there is a one-to-one correspondence between a class and its 
metaclass, their  descriptions are presented together. An implementa-  
tion description includes a part  entit led ~class methods" tha t  shows the 
methods added by the metaclass. The protocol for the metaclass is al- 
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ways found by looking at the class methods par t  of the implementat ion 
description of its single instance. In this way, messages sent to the class 
(class methods) and messages sent to instances of the class (instance 
methods) are listed together as par t  of the complete implementat ion de- 
scription. 

The following new version of the implementat ion description for 
FinancialHistory includes class methods. 

class name 
superclass 
instance variable names 

class methods 

FinancialHistory 
Object 
cashOnHand 
incomes 
expenditures 

instance creation 

in i t ia lBa lance:  a m o u n t  
t super new setlnitialBatance: amount 

n e w  
1"super new settnitialBalance: 0 

instance methods 

transaction recording 

r e c e i v e :  a m o u n t  f rom:  s o u r c e  
incomes at: source 

put: (self totalReceivedFrom: source) + amount. 
cashOnHand ~ cashOnHand + amount 

spend:  a m o u n t  for: reason  

expenditures at: reason 
put: (self totalSpentFor: reason) 4- amount. 

cashOnHand ~- cashOnHand - amount 

inquiries 

c a s h O n H a n d  
tcashOnHand 

t o t a l R e c e i v e d F r o m :  source  
(incomes includesKey: source) 

ifTrue: [tincomes at: source] 
ifFalse: [1'0] 

to ta lSpentFor :  r eason  
(expenditures includesKey: reason) 

ifTrue: [texpenditures at: reason] 
ifFalse: [TO] 
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private 

set ln i t ia lBa lance:  a m o u n t  
cashOnHand ~- amount. 
incomes ~ Dictionary new. 

expenditures ~ Dictionary new 

Three changes have been made to the implementat ion description. 

l e  

e 

e 

One category of class methods named instance creation has been 
added. The category contains methods for initiaiBalance: and new. 
By convention, the category instance creation is used for class 
methods tha t  re turn  new instances. 

The category of instance methods named initialization has been de- 
leted. It had included a method for initialBalance:. 

A category of instance methods named private has been added. 
The category contains one method for setlnitialBalance:; this meth- 
od contains the same expressions tha t  were in the deleted method 
for in i t ia lBalance:.  

This example il lustrates how metaclasses create initialized instances. 
The instance creation methods for initialBatance: and new do not have 
direct access to the instance variables of the new instance (cashOnHand, 
incomes, and expenses). This is because the methods are not a part  of 
the class of the new instance, but  ra ther  of the class's class. Therefore, 
the instance creation methods first create uninitialized instances and 
then send an initialization message, setlnitialBalance:, to the new in- 
stance. The method for this message is found in the instance methods 
par t  of FinancialHistory's implementat ion description; it can assign ap- 
propriate values to the instance variables. The initialization message is 
not considered part  of the external  protocol of FinancialHistory so it is 
categorized as private. It is typically only sent once and only by a class 
method. 

The old initialization message initialBalance: was deleted because the 
proper way to create a FinancialHistory is to use an expression such as 

Financ ia lH is tory  in i t ia lBalance: 350 

not 

Financ ia lH is tory  new in i t ia lBalance:  350 

Indeed, this second expression would now create an error since in- 
stances of FinancialHistory are no longer described as responding to 
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initialBalance:. We could have maintained the instance method 
initialBalance: and implemented the class method for initialBalance: to 
call on it, but we try not to use the same selectors for both instance and 
class methods in order to improve the readability of the implementation 
description. However, there would be no ambiguity if the same selector 
were used. 

M e t a c l a s s  
I n h e r i t a n c e  

Like other classes, a metaclass inherits from a superclass. The simplest 
way to structure the inheritance of metaclasses would be to make each 
one a subclass of Class. This organization was shown in Figure 5.2. 
Class describes the general nature of classes. Each metaclass adds be- 
havior specific to its instance. Metaclasses may add new instance cre- 
ation messages or they may redefine the fundamental new and new: 
messages to perform some default initialization. 

When metaclasses were added to the Smalltalk-80 system, one fur- 
ther step in class organization was taken. The metaclass subclass hier- 
archy was constrained to be parallel to the subclass hierarchy of the 
classes that  are their instances. Therefore, if DeductibleHistory is a sub- 
class of FinanciaIHistory, then DeductibleHistory's metaclass must be a 
subclass of FinanciaIHistory's metaclass. A metaclass typically has  only 
one instance. 

An abstract class named ClassDescription was provided to describe 
classes and their instances. Class and Metaclass are subclasses of 
ClassDescription. Since the superclass chain of all objects ends at Object 
and Object has no superclass, the superclass of Object's metaclass is 
Class. From Class, the metaclasses inherit messages that  provide proto- 
col for the creation of instances (Figure 5.3). 

The superclass chain from Class leads eventually to class Object. No- 
tice that  the hierarchy of boxes with the box labeled Object class is like 
that  of the hierarchy of boxes within the box labeled Object; this simi- 
larity illustrates the parallel hierarchies. A full description of this part 
of the system, including the relationship between Metaclass and its 
metaclass, is provided in Chapter 16. 

As an example of the metaclass inheritance hierarchy, consider the 
implementation of initialBalance: in FinancialHistory class. 

in i t ia iBalance:  amount  
T super new setlnitialBalance: amount 



82 
M e t a c l a s s e s  

Figure 5.3 
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This method creates a new instance by evaluating the expression super 
new; it uses the method for new found in the class methods of the su- 
perclass, not the class methods found in this class. It then sends the 
new instance the message setlnitialBalance: with the initial amount  of 
the balance as the argument.  Similarly, new is reimplemented as creat- 
ing an instance using super new followed by setlnitialBalance:. 

n e w  

rsuper new setlnitialBalance 0 



83 
Metaclass Inheri tance 

Figure 5.4 
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Where is the method for the message new sent to super actually found? 
The subclass hierarchy of the metaclasses parallels the hierarchy of 
their  instances. If one class is a subclass of another,  its metaclass will 
be a subclass of the other 's metaclass, as indicated in Figure 5.3. The 
parallel class and metaclass hierarchies for the FinancialHistory applica- 
tion are shown in Figure 5.4. 

If we evaluate the expression 

FinancialHistory initialBalance: 350 
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the search for the response to initialBalance: begins in FinancialHistory 
class, i.e., in the class methods for FinancialHistory. A method for that 
selector is found there. The method consists of two messages: 

1. Send super the message new. 

2. Send the result of 1 the message setlnitialBalance: 0. 

The search for new begins in the superclass of FinancialHistory class, 
that  is, in Object class. A method is not found there, so the search con- 
tinues up the superclass chain to Class. The message selector new is 
found in Class, and a primitive method is executed. The result  is an 
uninitialized instance of FinancialHistory. This instance is then sent the 
message setlnitialBalance:. The search for the response begins in the 
class of the instance, i.e., in FinancialHistory (in the instance methods). A 
method is found there which assigns a value to each instance variable. 

The evaluation of 

FinancialHistory new 

is carried out in a similar way. The response to new is found in 
FinancialHistory class (i.e., in the class methods of FinancialHistory). The 
remaining actions are the same as for initialBalance: with the exception 
of the value of the a rgument  to setlnitialBalance:. The instance creation 
methods must  use super new in order to avoid invoking the same meth- 
od recursively. 

Ini t ia l izat ion  of 
Class Var iab les  

The main use of messages to classes other than  creation of instances is 
the initialization of class variables. The implementat ion description's 
variable declaration gives the names of the class variables only, not 
their  values. When a class is created, the named class variables are cre- 
ated, but they all have a value of nil. The metaclass typically defines a 
method that  initializes the class variables. By convention, the class- 
variable initialization method is usually associated with the unary  mes- 
sage  initialize, categorized as class initialization. 

Class variables are accessible to both the class and its metaclass. The 
assignment of values to class variables can be done in the class meth- 
ods, ra ther  than  indirectly via a private message in the instance meth- 
ods (as was necessary for instance variables). 

The example DeductibleHistory, this time with a class variable that  
needs to be initialized, is shown next. DeductibleHistory is a subclass of 
FinancialHistory. It declares one class variable, MinimumDeductions. 
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class name  DeductibleHistory 
superclass FinancialHistory 
instance variable  names  deductibleExpenditures 
class variable names MinimumDeductions 

class methods 

i n s t a n c e  c rea t ion  

init ialBalance: amount  
I newHistory I 
newHistory ~ super initialBalance: amount. 
newHistory initializeDeductions. 
tnewHistory 

new 
I newHistory I 
newHistory ~- super initialBalance: 0. 
newHistory initializeDeductions. 
t newHistory 

class initialization 

initialize 
MinimumDeductions ~- 2300 

instance methods 

transaction recording 

spendDeductible:  amount  for: reason 
self spend: amount for: reason. 
deductibleExpenditures 

deductibleExpenditures -t- amount 
spend: amount for: reason deducting: deduct ib leAmount  

self spend: amount for: reason. 
deductibleExpenditures ~- 

deductibleExpenditures -I- deductibleAmount 

inquiries 

is l temizable 
l 'deductibleExpenditures > = MinimumDeductions 

totalDeduct ions 
1'deductibleExpenditures 

private 

ini t ial izeDeductions 
deductibleExpenditures ~ 0 

This version of DeductibleHistory adds five instance methods, one of 
which is isltemizable. The response to this message is true or false 
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depending on whether  enough deductions have been accumulated in or- 
der to itemize deductions on a tax report. The tax law specifies tha t  a 
min imum deduction of 2300 can be taken, so if the accumulat ion is less, 
the s tandard  deduction should be used. The constant,  2300, is referred 
to by the class variable MinimumDeductions. In order to successfully 
send an instance of DeductibleHistory the message isltemizable, the class 
variable MinimumDeductions must  be assigned its numeric  value. This is 
done by sending the class the message initialize before any instances are 
created. 

DeductibleHistory initialize 

This message only has to be sent once, after the class initialization mes- 
sage is first defined. The variable is shared by each new instance of the 
class. 

According to the above class description, a new instance of 
DeductibleHistory can be created by sending the class the messages 
initialBalance: or new, just  as for the superclass FinancialHistory. Suppose 
we evaluate the expression 

DeductibleHistory initialBalance: 100 

The determinat ion of which methods are actual ly followed in order to 
evaluate the expression depends on the class/superclass chain for 
DeductibleHistory. The method for initialBalance: is found in the class 
methods of DeductibleHistory. 

in i t ia lBalance:  amount  
I newHistory I 
newHistory ~ super initialBalance: amount. 
newHistory initializeDeductions. 
lnewHistory 

This method declares newHistory as a t emporary  variable. The first ex- 
pression of the method is an assignment  to the temporary  variable. 

newHistory ~ super initialBalance: amount 

The pseudo-variable super refers to the receiver. The receiver is the 
class DeductibleHistory; its class is its metaclass. The superclass of the 
metaclass is the metaclass for FinancialHistory. Thus we can find the 
method tha t  will be followed by looking in the class methods of 
FinancialHistory. The method is 

in i t ia lBalance:  amount  
;'super new setlnitialBalance: amount 
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We have already followed evaluation of this method. The response to 
new is found in Class. A new instance of the original receiver, 
DeductibleHistory, is created and sent the message setlnitialBalance:. The 
search for setlnitialBalance: begins in the class of the new instance, i.e., 
in DeductibleHistory. It is not found. The search proceeds to the super- 
class FinanciaiHistory. It is found and evaluated. Instance variables de- 
clared in FinancialHistory are assigned values. The value of the first 
expression of the class method for initialBalance: in DeductibleHistory, 
then, is a partial ly initialized new ins tance .  This new instance is 
assigned to the temporary  variable newHistory. 

newHistory is then sent the message initializeDeductions. The search 
begins in the class of the receiver, newHistory; the class is 
DeductibleHistory. The method is found. It assigns the value of the 
fourth instance variable to be 0. 

The third expression of the instance creation message re turns  the 
new instance. 

An al ternative way to implement  the class DeductibleHistory is pre- 
sented next. In this al ternat ive class description, the instance-creation 
class methods of FinancialHistory are not reimplemented.  Rather,  the 
private instance-method message setlnitialBalance: is overridden in or- 
der to account for the additional instance variable. 

class name 
superclass 
instance variable names 
class variable names 
class methods 

class initialization 

init ial ize 
MinimumDeductions ~ 2300 

DeductibleHistory 
FinancialHistory 
deductibleExpenditures 
MinimumDeductions 

instance methods 

transaction recording 

spendDeduct ib le:  amount  for: reason 
self spend: amount for: reason. 
deductibleExpenditures ~- 

deductibleExpenditures -I- amount 
spend: amount  for: reason deducting:  deduct ib leAmount  

self spend: amount for: reason. 
deductibleExpenditures ~- 

deductibleExpenditures -t-- deductibleAmount 

inquiries 

is l temizable  
l"deductibleExpenditures > = MinimumDeductions 
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tota lDeduct ions 
TdeductibleExpenditures 

private 

set lni t ia lBalance:  amount  
super setlnitialBalance: amount. 
deductibleExpenditures ~ 0 

Using this al ternat ive class description for DeductibleHistory, the evalu- 
at ion of the response to initialBalance: in 

DeductibleHistory initialBalance: 350 

is to search in DeductibleHistory class for initialBalance:. I t  is not found. 
Continue the search in the superclass, FinancialHistory class. I t  is found. 
The method evaluated consists of the expression 

super new setlnitiaiBalance: amount 

The method for new is found in Class. Search for setlnitialBalance: be- 
ginning in the class of the new instance, a DeductibleHistory. The meth- 
od for setlnitialBalance: is found in DeductibleHistory. The response of 
setlnitialBalance: in DeductibleHistory is to send the same message to su- 
per so that  the search for the method begins in FinancialHistory. It is 
found and three instance variables are assigned values. The second ex- 
pression of setlnitialBalance: in DeductibleHistory sets the fourth variable 
to 0. The result of the original message is a fully initialized instance of 
DeductibleHistory. 

Summary of 
Method 
Determination 

Determining the actual actions taken when a message is sent involves 
searching the methods in the class hierarchy of the receiver. The search 
begins with the class of the receiver and follows the superclass chain. If 
not found after searching the last superclass, Object, an error is report- 
ed. If the receiver is a class, its class is a metaclass. The messages to 
which a class can respond are listed in the implementat ion description 
in the par t  entit led ~class methods." If the receiver is not a class, then 
the messages to which it can respond are listed in its implementat ion 
description in the part  entit led '~instance methods." 

The pseudo-variable self refers to the receiver of the message tha t  in- 
voked the executing method. The search for a method corresponding to 
a message to self begins in the class of self. The pseudo-variable super 
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also refers to the receiver of the message. The search for a method cor- 
responding to a message to super begins in the superclass of the class in 
which the executing method was found. 

This ends the description of the Smalltalk-80 programming language. 
To use the system, the programmer must have general knowledge of 
the system classes. Part  Two gives detailed accounts of the protocol de- 
scriptions for each of the system classes and provides examples, often 
by presenting the implementation descriptions of system classes. Part  
Three introduces a moderate-size application. Before delving into the 
details of the actual system classes, the reader might want to skip to 
Part  Three to get a sense of what it is like to define a larger applica- 
tion. 

S u m m a r y  of. 
Termino logy  

metaclass 
Class 

Metaclass 

The class of a class. 

An abstract  superclass of all classes other  than  meta- 
classes. 

A class whose instances are classes of classes. 
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Par t  One provided an overview of the Smalltalk-80 language both 
from the semantic view of objects and message sending and from 
the syntactic view of the form that  expressions take. The 
Smalltalk-80 programmer must first understand the semantics of 
the language: that  all information is represented in the form of ob- 
jects and that  all processing is done by sending messages to ob- 
jects. Every object is described by a class; every class, with the 
exception of class Object, is a subclass of another  class. Program- 
ming in the Smalltalk-80 system involves the description of new 
classes o£ objects, the creation of instances of classes, and the se- 
quencing of messages to the instances. The Smalltalk,80 syntax 
defines three forms that  messages can take: unary, binary, and 
keyword messages. Successful use of the language requires that  
the programmer have a general knowledge of each of the basic 
kinds of objects in the system and of the messages that  can be sent 
to them. 



The semantics and syntax of the language are relatively simple. 
Yet the system is large and powerful due to the numbers of and 
kinds of available objects. There are eight significant categories of 
classes in the Smalltalk-80 system: kernel and kernel support, lin- 
ear measures, numbers, collections, streams, classes, independent 
processes, and graphics. The protocol of these kinds of objects is 
reviewed in 12 chapters of Part Two. In each of these chapters, the 
diagram of the class hierarchy given in Chapter 1 is re-presented 
in order to highlight the portion of the hierarchy discussed in that 
chapter. Three additional chapters in Part Two provide examples 
of Smalltalk-80 expressions and class descriptions. 

The classes in the Smalltalk-80 system are defined in a linear 
hierarchy. The chapters in Part Two take an encyclopedic ap- 
proach to reviewing class protocol: categories of messages are de- 
fined, each message is annotated, and examples are given. In 
presenting the protocol of a class, however, only those messages 
added by the class are described. The kcomplete message protocol is 
determined by examining the protocol specified in the class and in 
each of its superclasses. Thus it is useful to present the classes 
starting with a description of class Object and to proceed in a 
mostly depth-first manner so that inherited protocol can be under- 
stood in conjunction with the new protocol. 
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Comparing Objects 
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Magnitude 
Character 
Date 
Time 

Number 
Float 
Fraction 
Integer 

LargeNegativelnteger 
LargePositivelnteger 
Smalllnteger 

LookupKey 
Association 

Link 

Stream 
PositionableStream 

ReadStream 
WriteStream 

ReadWriteStream 
ExternalStream 

FileStream 

Random 

File 
FileDirectory 
FilePage 

UndefinedObject 
Boolean 

False 
True 

Process 

Collection 

SequenceableCollection 
LinkedList 

Semaphore 

ArrayedCollection 
Array 

Bitmap 
DisplayBitmap 

RunArray 
String 

Symbol 
Text 
ByteArray 

Interval 
OrderedCollection 

SortedCollection 
Bag 
M appedCollection 
Set 

Dictionary 
IdentityDictionary 

ProcessorScheduler 
Delay 
ShamdOueue 

Behavior 
C lassDescription 

Class 
MetaClass 

Point 
Rectangle 
BitBit 

CharacterScanner 

Pen 

DisplayObject 
DisplayMedium 

Form 
Cursor 
DisplayScreen 

InfiniteForm 
OpaqueForm 
Path 

Arc 
Circle 

Curve 
Line 
LinearFit 
Spline 
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Eve ry th ing  in the sys tem is an object. The protocol common to all ob- 
jects in the  sys tem is provided in the descript ion of class Object. This 
means  t h a t  any  a n d  every object created in the  sys tem can respond to 
the  messages defined by class Object. These are typical ly messages t ha t  
suppor t  reasonable  defaul t  behavior  in order to provide a s ta r t ing  place 
from which to develop new kinds of objects, e i ther  by adding new mes- 
sages or by modifying the  response to exist ing messages.  Examples  to 
consider when  examin ing  Object 's  protocol are  numer ic  objects such as 
3 or 16.23, collections such as "this is a string" or ~( th is is an array), nil 
or true, and class-describing objects such as Collection or Smalllnteger or, 
indeed, Object itself. 

The specification of protocol for class Object given in this chap te r  is 
incomplete.  We have  omit ted  messages pe r t a in ing  to message handl ing,  
special dependency relat ionships ,  and sys tem primit ives.  These are 
presented  in Chap te r  14. 

Test ing the 
Funct ional i ty  
of an Object  

Every object is an  ins tance of a class. An object 's funct ional i ty  is deter-  
mined  by its class. This funct ional i ty  is tes ted in two  ways: explicit  
n a m i n g  of a class to de t e rmine  w h e t h e r  it is the  class or the  superclass  
of the  object, and n a m i n g  of a message selector to de t e rmine  w h e t h e r  
the  object can respond to it. These re f lec t  two ways of t h ink ing  about  
the  re la t ionship  among  ins tances  of different  classes: in t e rms  of the 
c lass /subclass  h ie rarchy ,  or in t e rms  of shared  message protocols. 

Object instance protocol 

testing functionality 
class Answer the object which is the receiver's 

class. 
isKindOf: aClass Answer whether the argument, aClass, is a 

superclass or class of the receiver. 
isMemberOf: aClass Answer whether the receiver is a direct in- 

stance of the argument, aClass. This is the 
same as testing whether the response to send- 
ing the receiver the message class is the same 
as (= =) aClass. 

respondsTo: aSymbol Answer whether the method dictionary of the 
receiver's class or one of its superclasses con- 
tains the argument, aSymbol, as a message se- 
lector. 

Example  messages and the i r  corresponding resul ts  are  

expression result 

3 class 
(this is an array)isKindOf: Collection 

Smalllnteger 
true 
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#(this is an array) isMemberOf: Collection 
#(this is an array) class 
3 respondsTo: #isKindOf: 
,:#:(1 2 3)isMemberOf: Array 
Object class 

false 
Array 
true 
true 
Object class 

Comparing 
Objects 

Since all in format ion  in the  sys tem is represen ted  as objects, the re  is a 
basic protocol provided for tes t ing the ident i ty  of an object and for copy- 
ing objects. The impor t an t  comparisons  specified in class Object are  
equivalence and equal i ty  testing. Equivalence ( = = )  is the  test  of 
whe the r  two objects are  the same object. Equal i ty  (=)  is the  test  of 
w h e t h e r  two objects represen t  the  same component .  The decision as to 
wha t  it means  to be ¢'represent the  same component"  is made  by the re- 
ceiver of the  message; each new kind of object t ha t  adds  new ins tance  
var iables  typical ly  mus t  r e i m p l e m e n t  the  = message in order to specify 
which o f  its i n s t ance  var iables  should en te r  into the t e s t  of equali ty.  
For example,  equal i ty  of two a r r ays  is de t e rmined  by checking the size 
of the  a r r ays  and then  the equal i ty  of each of the e lements  of the  ar- 
rays; equal i ty  of t w o  number s  is de t e rmined  by tes t ing w h e t h e r  the  two 
number s  represen t  the  same value; and  equal i ty  of two bank  accounts  
migh t  rest  solely on the equal i ty  of each account  identif icat ion number .  

The message hash is a special pa r t  of the  compar ing  protocol. The re- 
sponse to hash is an  integer.  Any two objects t h a t  are  equal  mus t  re- 
t u rn  the same value for hash. Unequa l  objects m a y  or m a y  not r e tu rn  
equal  values for hash. Typically,  this in teger  is used as an index to lo- 
cate the  object in an  indexed collection (as i l lus t ra ted  in Chap te r  3). 
Any t ime = is redefined, hash m a y  also have to be redefined in order 
to preserve the  proper ty  t h a t  any  two objects t ha t  are  equal  r e tu rn  
equal  values for hash. 

Object instance protocol 

comparing 
anObject 

= anObject 

~ =  anObject 

~ anObject 

hash 

Answer whether the receiver and the argu- 
ment are the same object. 
Answer whether the receiver and the argu- 
ment represent the same component. 
Answer whether the receiver and the argu- 
ment do not represent the same component. 
Answer whether the receiver and the argu- 
ment are not the same object. 
Answer an Integer computed with respect to 
the representation of the receiver. 
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The  de fau l t  i m p l e m e n t a t i o n  of = is the  s a m e  as t h a t  of - - .  
Some  special ized c o mp a r i s o n  protocol  provides  a concise way  to tes t  

for i den t i t y  wi th  t he  object  nil. 

Object instance protocol 

testing 
isNil 
notNil 

Answer whether the receiver is nil. 
Answer whether the receiver is not nil. 

These  me s s a g e s  a re  ident ica l  to = = nil a n d  ~ nil, respect ive ly .  Choice 
of wh ich  to use  is a m a t t e r  of pe r sona l  style. 

Some obvious e x a m p l e s  a r e  

expression result 

nil isNil true 
true notNil true 
3 isNil false 
# ( a  b c) = # ( a  b c) true 
3 = (6/2) true 
#(1 2 3) class = = Array true 

Copying 
Objects 

T h e r e  a re  two ways  to m a k e  copies of an  object. The  d i s t inc t ion  is 
w h e t h e r  or not  t he  va lues  of t he  object 's  va r i ab l e s  a r e  copied. If t he  val- 
ues  a r e  not  copied, t h e n  t h e y  a re  s h a r e d  (shallowCopy); if t he  va lues  a re  
copied, t h e n  t h e y  a re  not  s h a r e d  (deepCopy).  

Object instance protocol 

copying 
copy 
shallowCopy 

deepCopy 

Answer another instance just like the receiver. 
Answer a copy of the receiver which shares 
the receiver's instance variables. 
Answer a copy of the receiver with its own 
copy of each instance variable. 

The  de fau l t  i m p l e m e n t a t i o n  of copy is shallowCopy. In subclasses  in 
wh ich  copying  m u s t  r e su l t  in a special  c o m b i n a t i o n  of s h a r e d  and  
u n s h a r e d  var iab les ,  t he  m e t h o d  assoc ia ted  wi th  copy is u sua l ly  re- 
i m p l e m e n t e d ,  r a t h e r  t h a n  the  m e t h o d  assoc ia ted  wi th  shal lowCopy or 

d e e p c o p y .  
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As an example, a copy (a shallow copy) of an Array refers to the same 
elements  as in the original Array, but  the copy is a different object. Re- 
placing an e lement  in the copy does not change the original. Thus 

expression result 

a ,- @ (" f irst" " s e c o n d '  " th i rd ' )  (" f irst" " second "  " th i rd ' )  

b ,- a copy  ( ' f i r s t '  ' s e c o n d '  ' t h i r d ' )  

a = b t rue 

a = = b fa lse 

(a at: 1) = =  (b at: 1) t rue 

b at: 1 put: " n e w F i r s t '  " newF i r s t '  

a = b fa lse 

a ,- "he l lo"  ' he l lo '  

b ,- a copy "he l l o '  

a = b true 

a = = b fa lse 

Figure 6.1 shows the relat ionship between shallow and deep copying. To 
fur ther  i l lustrate  the distinction between shailowCopy and deepCopy, 
take as an example a PersonneiNecord. Suppose it is defined to include 
the variable insurancePlan, an instance of class insurance. Suppose fur- 
ther  tha t  each instance of Insurance has a value associated with it rep- 
resent ing the limit on medical coverage. Now suppose we have created 
employeeRecord as a prototypical instance of a PersonneiRecord. By 
"prototypical" we mean  tha t  the object has all of the initial a t t r ibutes  
of any new instance of its class, so tha t  instances can be created by sim- 
ply copying it r a the r  than  sending a sequence of initialization messages. 
Suppose fur ther  tha t  this prototypical instance is a class variable o f  
PersonnelRecord and tha t  the response to creat ing a new 
PersonnelRecord is to make  a shallow copy of it; tha t  is, t h e  method as- 
sociated with the message new is T employeeRecord copy. 

Figure 6.1 

• • , 1 shallow 
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As a result  of evaluat ing the expression 

j o e S m i t h R e c o r d  ~- P e r s o n n e l R e c o r d  n e w  



99 
A c c e s s i n g  t h e  P a r t s  of a n  O b j e c t  

joeSmithRecord refers to a copy (in particular, a shallow copy) of 
ernployeeRecord. 

The prototype employeeRecord and the actual record joeSmithRecord 
share a reference to the same insurance plan. Company policy may 
change. Suppose PersonnelRecord understands the message 
changelnsuranceLimit: aNumber, which is implemented by having the 
prototypical instance of PersonnelRecord, empioyeeRecord, reset its in- 
surance plan limit on medical coverage. Since this insurance plan is 
shared, the result of evaluating the expression 

PersonnelRecord changelnsuranceLimit: 4000 

is to change the medical coverage of all employees. In the example, 
both the medical coverage referenced by employeeRecord and that  ref- 
erenced by its copy, joeSmithRecord, is changed. The message 
changelnsuranceLimit: is sent to the class PersonnelRecord because it is 
the appropriate object to broadcast a change to all of its instances. 

Access ing  the 
Parts  of an 
Object  

There are two kinds of objects in the Smalltalk-80 system, objects with 
named variables and objects with indexed variables. Objects with 
indexed variables may also have named instance variables. This distinc- 
tion is explained in Chapter 3. Class Object supports six messages in- 
tended to access the indexed variables of an object. These are 

Object instance protocol 

accessing 
at: index 

at: index put: anObject 

basicAt: index 

Answer the value of the indexed instance 
variable of the receiver whose index is the ar- 
gument,  index. If the receiver does not have 
indexed variables, or if the argument  is great- 
er than the number of indexed variables, then 
report an error. 

Store the argument,  anObject, as the value of 
the indexed instance variable of the receiver 
whose index is the argument,  index. If the re- 
ceiver does not have indexed variables, or if 
the argument  is greater  than the number of 
indexed variables, then report an error. An- 
swer anObject. 

Same as at: index. The method associated with 
this message, however, cannot be modified in 
any subclass. 
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basicAt: index put: anObject 

size 

basicSize 

Same as at: index put: anObject. The method 
associated with this message, however, cannot 
be modified in any subclass. 
Answer the receiver's number of indexed vari- 
ables. This value is the same as the largest le- 
gal index. 
Same as size. The method associated with this 
message, however, cannot be modified in any 
subclass. 

Notice tha t  the accessing messages come in pairs; one message in each 
pair  is prefixed by the word basic mean ing  tha t  it is a fundamenta l  sys- 
tem message whose implementa t ion  should not be modified in any  sub- 
class. The purpose of providing pairs is so tha t  the external  protocol, at:, 
at:put:, and size, can be overr idden to handle  special cases, while still 
ma in ta in ing  a way to get at the primit ive methods. (Chapter  4 includes 
an explanat ion of "pr imit ive"  methods,  which are methods implement-  
ed in the vi r tual  machine  for the system.) Thus in any  method in a hi- 
e rarchy  of class descriptions, the messages, basicAt:, basicAt:put:, and 
basicSize, can always be used to obtain the primit ive implementat ions .  
T h e  message basicSize can be sent  to any object; if the object is not 
variable length,  then  the response is 0. 

Instances of class Array are var iable- length objects. Suppose letters is 
the Array @(a b d f j rn p s). Then 

expression result 

letters size 8 
letters at: 3 d 
letters at: 3 put: @c c 
letters (a b c f j m p s) 

Printing and 
Storing Objects 

There  are various ways to create a sequence of characters  tha t  provides 
a description of an object. The description might  give only a clue as to 
the ident i ty of an object. Or the description might  provide enough infor- 
mat ion so tha t  a s imilar  object can be constructed. In the first case 
(printing), the description may or may not be in a well-formatted,  visu- 
ally pleasing style, such as tha t  provided by a Lisp pre t ty-pr in t ing  rou- 
tine. In the second case (storing), the description might  preserve 
informat ion shared with other  objects. 

The message protocol of the classes in the Small ta lk-80 system sup- 
port  pr in t ing  and storing. The implementa t ion  of these messages in 
class Object provides minimal  capability; most subclasses override the 
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messages  in order  to e n h a n c e  the  descr ipt ions  created.  The  a r g u m e n t s  
to two of the  messages  a re  ins tances  of a k ind  of Stream; S t r eams  are  
p re sen t ed  in C h a p t e r  12. 

Object instance protocol 

printing 
printString 

printOn: aStream 

Answer a String whose characters are a de- 
scription of the receiver. 
Append to the argument, aStrearn, a String 
whose characters are a description of the re- 
ceiver. 

storing 
storeString 

storeOn: aStream 

Answer a String representation of the receiver 
from which the receiver can be reconstructed. 
Append to the argument, aStrearn, a String 
representation of the receiver from which the 
receiver can be reconstructed. 

Each  of the  two kinds  of p r i n t i ng  is based on produc ing  a sequence  of 
c h a r a c t e r s  t h a t  m a y  be shown on a d isplay  screen,  w r i t t e n  on a file, or 
t r a n s f e r r e d  over a ne twork .  The  sequence  c rea t ed  by storeString or 
storeOn: should be i n t e r p r e t a b l e  as one or more  express ions  t h a t  can be 
eva lua t ed  in order  to r econs t ruc t  the  object. Thus ,  for example ,  a Set  of 
t h r ee  e lements ,  $a, $b, and  $c, m i g h t  p r in t  as 

Set ($a $b $c) 

while  it m i g h t  s tore as 

(Set new add: $a; add: $b; add: $c) 

Li te ra l s  can  use the  s a m e  r e p r e s e n t a t i o n  for p r i n t i ng  and  storing.  Thus  
the  String ' h e l lo 'wou ld  p r in t  and  s tore  as 'hello'. The  Symbol # n a m e  
pr in t s  as name,  bu t  s tores  as ~ n a m e .  

For  lack of more  in format ion ,  the  defau l t  i m p l e m e n t a t i o n  of 
printString is the  object 's class name;  the  defau l t  i m p l e m e n t a t i o n  of 
storeString is the  class n a m e  followed by the  ins t ance  c rea t ion  message  
basicNew, followed by a s e q u e n c e  of messages  to s tore  each ins tance  
var iable .  For  example ,  if a subclass  of Object, say class Example,  demon-  
s t r a t ed  the  defau l t  behavior ,  then ,  for eg, an  ins tance  of Example wi th  
no ins t ance  var iables ,  we would have  

expression result 

eg printString 
eg storeString 

• an Example' 
• (Example basicNew) ' 



102 
P r o t o c o l  f o r  A l l  O b j e c t s  

Error Handling The fact tha t  all processing is carried out by sending messages to ob- 
jects means  tha t  there  is one basic error  condition tha t  must  be han- 
dled by the system: a message is sent to an object, but the message is 
not specified in any class in the object's superclass chain. This error  is 
determined by the in terpre ter  whose reaction is to send the  original ob- 
ject the message doesNotUnderstand: aMessage.  The argument ,  
aMessage,  represents  the failed message selector and its associated ar- 
guments,  if any. The method associated with doesNotUnderstand: gives 
the user a report  tha t  the error  occurred .  How the report  is presented 
to the user is a function of the (graphical) interface supported by the 
system and is not specified here; a min imum requi rement  of an interac- 
tive system is tha t  the error  message be printed on the user 's output  
device and then the user be given the opportuni ty to correct the errone- 
ous situation. Chapter  17 i l lustrates the Small talk-80 system error  noti- 
fication and debugging mechanisms.  

In addition to the basic error  condition, methods might  explicitly 
want  to use the system error  handl ing mechanism for cases in which a 
test determines  tha t  the user program is about to do something unac- 
ceptable. In such cases, the method might  want  to specify an error  com- 
ment  tha t  should be presented to the user. A typical t h i n g  to do is to 
send the active instance the message error: aString, where the a rgumen t  
represents  the desired comment.  The default  implementa t ion  is to in- 
voke the system notification mechanism. The p rogrammer  can provide 
an a l ternat ive  implementa t ion  for error: tha t  uses application-depen- 
dent  error  reporting. 

Common error  messages are supported in the protocol of class Object. 
An error  message might  report  tha t  a system primitive failed, or tha t  a 
subclass is overriding an inheri ted message which it can not support  
and therefore the user should not call upon it, or tha t  a superclass 
specifies a message tha t  must  be implemented in a subclass. 

Object ins tance  protocol 

error handling 
doesNotUnderstand: aMessage 

error: aString 

primitiveFailed 

Report  to the  user  t ha t  the  receiver  does not 
unde r s t and  the a rgumen t ,  aMessage, as a 
message. 

Repor t  to the  user  t ha t  an er ror  occurred in 
the  context  of responding to a message to the 
receiver.  The  repor t  uses the a rgument ,  
aString, as par t  of the  e r ror  notif icat ion com- 
ment .  

Repor t  to the  user  t h a t  a method  
implemen ted  as a sys tem pr imi t ive  has  failed. 
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shouldNotl mplement 

subclassResponsibility 

Report to the user that, although the super- 
class of the receiver specifies that a message 
should be implemented by subclasses, the 
class of the receiver cannot provide an appro- 
priate implementation. 
Report to the user that a method specified in 
the superclass of the receiver should have 
been implemented in the receiver's class. 

A subc la s s  can  choose  to o v e r r i d e  t h e  e r r o r - h a n d l i n g  m e s s a g e s  in o r d e r  

to p r o v i d e  spec ia l  s u p p o r t  for c o r r e c t i n g  t h e  e r r o n e o u s  s i t u a t i o n .  Chap-  
t e r  13, w h i c h  is a b o u t  t h e  i m p l e m e n t a t i o n  of t h e  co l lec t ion  classes,  pro-  

v ides  e x a m p l e s  of t h e  use  of t h e  l as t  two  messages .  
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Linear Measures 

Class Magnitude 

Class Date 

Class Time 

Class Character 



Object 

Number 
Float 
Fraction 
Integer 

LargeNegativelnteger 
LargePositivelnteger 
Smalllnteger 

LookupKey 
Association 

Link 

Process 

Collection 

SequenceableCollection 
LinkedList 

Semaphore 

ArrayedCollection 
Array 

Bitmap 
DisplayBitmap 

RunArray 
String 

Symbol 
Text 
ByteArray 

Interval 
OrderedCollection 

SortedCollection 
Bag 
M appedCollection 
Set 

Dictionary 
I dentityDictionary 

Stream 
PositionableStream 

ReadStream 
WriteStream 

ReadWriteStream 
ExternalStream 

FileStream 

Random 

File 
FileDirectory 
FilePage 

UndefinedObject 
Boolean 

False 
True 

ProcessorScheduler 
Delay 
SharedQueue 

Behavior 
ClassDescription 

Class 
MetaClass 

Point 
Rectangle 
BitBit 

CharacterScanner 

Pen 

DisplayObject 
DisplayMedium 

Form 
Cursor 
DisplayScreen 

InfiniteForm 
OpaqueForm 
Path 

Arc 
Circle 

Curve 
Line 
LinearFit 
Spline 
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The Smal l ta lk-80  sys tem provides several  classes represen t ing  objects 
t h a t  measu re  someth ing  wi th  l inear  ordering. Real world examples  of 
such measu rab le  quant i t ies  are  (1) t empora l  quant i t ies  such as dates 
and t ime,  (2) spat ia l  quant i t ies  such as distance,  and (3) numer ica l  
quant i t ies  such as reals  and rat ionals .  

Class Magnitude IS one n u m b e r  less t han  ano the r  number?  Does one date  come after  an- 
o ther  date? Does one t ime  precede ano the r  t ime? Does a cha rac te r  come 
af ter  ano the r  one in the  a lphabet?  Is one dis tance the same or less t han  
ano the r  distance? 

The common protocol for answer ing  these queries  is provided in the 
class Magnitude. Magnitude provides the protocol for objects t ha t  have 
the  abi l i ty  to be compared  along a l inear  dimension.  Subclasses of class 
Magnitude include Date, Time, and  Number. Classes Character  (an ele- 
m e n t  of a string) and LookupKey (a key in a d ic t ionary  association) are 
also imp lemen ted  as subclasses of class Magnitude. Character  is interest-  
ing as an  example  of i m m u t a b l e  objects in the  sys tem and  so is intro- 
duced in this chapter ;  LookupKey is less in te res t ing  and is deferred 
unt i l  needed in the chap te r  on collections. A class Distance is not pro- 
vided in the ac tua l  Smal l ta lk-80  system. 

Magnitude instance protocol 

comparing 
< aMagnitude 

< = aMagnitude 

> aMagnitude 

> = aMagnitude 

between: min and: max 

Answer whether the receiver is less than the 
argument. 
Answer whether the receiver is less than or 
equal to the argument. 
Answer whether the receiver is greater than 
the argument. 
Answer whether the receiver is greater than 
or equal to the argument. 
Answer whether the receiver is greater than 
or equal to the argument, rain, and less than 
or equal to the argument, max. 

Al though  Magnitude inher i t s  from its superclass,  Object, the  message = 
for compar ing  the equal i ty  of two quant i f iable  objects, every kind of 
Magnitude mus t  redefine this  message. The method  associated wi th  = 
in class Magnitude is 

self subclassResponsibi l i ty 

If a subclass of Magnitude does not i m p l e m e n t  = ,  then  an a t t e m p t  to 
send the message to an ins tance  of the subclass resul ts  in the special er- 
ror  message t h a t  a subclass should have imp lemen ted  the  message, -as  
specified in its superclass.  
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An instance of a kind of Magnitude can also respond to messages tha t  
de termine  which of two objects tha t  can be l inear ly measured  is the 
larger  or the smaller.  

Magnitude instance protocol 

testing 
min: aMagnitude Answer the receiver or the argument, which- 

ever has the lesser magnitude. 
max: aMagnitude Answer the receiver or the argument, which- 

ever has the greater magnitude. 

Note tha t  protocol for the equal i ty  comparisons - - ,  ~ = ,  and ~ is 
inher i ted from class Object. Using Integers as the example kinds of 
Magnitudes, we have 

expression result 

3 < = 4 true 

3 > 4 false 

5 between: 2 and: 6 true 

5 between: 2 and: 4 false 

34 min: 45 34 

34 max: 45 45 

The p r o g r a m m e r  does not create instances of Magnitude, but  only of its 
subclasses. This is due to the fact tha t  Magnitude is not able to imple- 
men t  all of the messages it specifies, indeed, tha t  it implements  one or 
more of these messages by the expression self subclassResponsibility. 

Class D at e Now tha t  we have defined the general  protocol of Magnitudes, it is pos- 
sible to add addit ional  protocol tha t  supports  a r i thmet ic  and inquiries 
about  specific l inear  measurements .  The first re f inement  we will exam- 
ine is the subclass Date. 

An instance of Date represents  a specific day since the s tar t  of the 
Ju l ian  calendar.  A day exists in a par t icu lar  month  and year. Class 
Date knows about  some obvious information:  (1) there  are seven days in 
a week, each day having a symbolic name and an index 1, 2, ..., or 7; (2) 
there  are 12 months  in a year,  each having a symbolic name and an in- 
dex, 1, 2, ..., or 12; (3) months  have 28, 29, 30, or 31 days; and (4) a par- 
t icular  year  might  be a leap year.  

Protocol provided for the object, Date, supports  inquiries about  Dates 
in general  as well as about  a specific Date. Both Date and Time provide 
interes t ing examples of classes in the system for which special knowl- 
edge is a t t r ibu ted  to and accessible from the class itself, r a the r  t han  
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f r o m  i t s  i n s t a n c e s .  T h i s  " c l a s s  p r o t o c o l "  is s p e c i f i e d  in  t h e  m e t a c l a s s  of 

t h e  c lass .  L e t ' s  f i r s t  l ook  a t  t h e  c l a s s  p r o t o c o l  of D a t e  s u p p o r t i n g  g e n e r a l  

i n q u i r i e s .  

Date class protocol 

general inquiries 
dayOfWeek: dayName 

nameOfDay: daylndex 

indexOfMonth: monthName 

nameOfMonth: monthlndex 

Answer  the index in a week, 1, 2 . . . .  or 7, of 
the day named as the a rgument ,  dayName. 

Answer  a Symbol tha t  represents  the name of 
the day whose index is the a rgument ,  
daylndex, where  1 is Monday, 2, is Tuesday, 
and so on. 

Answer  the index in a year,  1, 2 . . . .  or 12, of 
the month  named as the a rgument ,  
monthName. 
Answer a Symbol that represents the name of 
the month whose index is the argument, 
monthlndex, where 1 is January, 2, is Febru- 
ary, and so on. 

dayslnMonth: monthName forYear: yearlnteger 
Answer the number of days in the month 
whose name is monthName in the year 
yearlnteger (the year must be known in order 
to account for a leap year). 

dayslnYear:  year lnteger  Answer the number of days in the year, 
yearlnteger. 

leapYear: year lnteger  Answer 1 if the year yearlnteger is a leap 
year; answer 0 otherwise. 

dateAndTimeNow Answer an Array whose first element is the 
current date (an instance of class Date repre- 
senting today's date) and whose second ele- 
ment is the current time (an instance of class 
Time representing the time right now). 

T h u s  w e  c a n  s e n d  t h e  f o l l o w i n g  m e s s a g e s .  

expression result 

Date dayslnYear: 1982 
Date dayOfWeek: #Wednesday 
Date name,OfMonth: 10 
Date leapYear:. 1972 

Date dayslnMonth: #February 
forYear: t 972 

Date dayslnMonth: #Feb 
forYear: 1971 

365 

3 

October  

1 (mean ing  it is a 

leap year)  

29 

28 

D a t e  is f a m i l a r  w i t h  t h e  c o m m o n  a b b r e v i a t i o n s  for  n a m e s  of m o n t h s .  
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T h e r e  a r e  four  messages  t h a t  can  be used to c r ea t e  an  ins t ance  of 
class Date. The  one c o m m o n l y  used in the  Sma l l t a lk -80  sys tem,  no tab ly  
for m a r k i n g  the  c rea t ion  da te  of a file, is Date today. 

Date class protocol 

instance creation 
today Answer an instance of Date representing the 

day the message is sent. 
fromDays: dayCount Answer an instance of Date that is dayCount 

number of days before or after January 1, 
1901 (depending on the sign of the argument). 

newDay: day month: monthName year: yearlnteger 
Answer an instance of Date that is day num- 
ber of days into the month named monthName 
in the year yearlnteger. 

newDay: dayCount year: yearlnteger 
Answer an instance of Date that is dayCount 
number of days after the beginning of the 
year yearlnteger. 

Four  e x a m p l e s  of i n s t ance  c rea t ion  messages  a re  

expression result 

Date today 
Date fromDays: 200 
Date newDay: 6 

month: # Feb 
year: 82 

Date newDay: 3 year: 82 

3 February 1982 
20 July 1901 
6 February 1982 

3 January 1982 

Messages  t h a t  can  be sen t  to an  i n s t ance  of Date a re  ca tegor ized  as 
accessing,  inquir ies ,  a r i t h m e t i c ,  and  p r i n t i n g  messages .  Access ing and  
inqui r ies  abou t  a p a r t i c u l a r  day  consist  of 

• t he  day index, m o n t h  index,  or yea r  

• t h e  n u m b e r  of seconds,  days, or m o n t h s  since some o the r  da te  

• t he  to ta l  days in the  da te ' s  m o n t h  or y e a r  

• t he  days left  in the  da te ' s  m o n t h  or y e a r  

• t he  f i rs t  day of t he  da te ' s  m o n t h  

• t he  n a m e  of t he  da te ' s  w e e k d a y  or m o n t h  

• t he  da te  of a p a r t i c u l a r  w e e k d a y  prev ious  to the  i n s t ance  

S imple  a r i t h m e t i c  is suppor t ed  in the  protocol  of class Date. 
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arithmetic 
addDays: dayCount Answer a Date that is dayCount number of 

days after the receiver. 
subtractDays: dayCount Answer a Date that is dayCount number of 

days before the receiver. 
subtractDate: aDate Answer an Integer that represents the number 

of days between the receiver and the argu- 
ment, aDate. 

Such a r i t hme t i c  is useful, for example ,  in order to compute  due dates 
for books in a l ib rary  or fines for la te  books. Suppose dueDate is an in- 
s tance of Date denot ing the  day a book was supposed to be r e tu rned  to 
the  l ibrary.  Then  

Date today subtractDate: dueDate 

computes  the n u m b e r  of days for which the  borrower  should be fined. If 
a book is being borrowed today and  it can be kept  out for two weeks, 
then  

Date today addDays: 14 

is the  due date  for the  book. If the  l ib ra r ian  wan t s  to quit  work 16 days 
before  Chr i s tmas  day, then  the  date  of the  last  day at  work is 

(Date newDay: 25 month: #December year: 1982) subtractDays: 16 

An a lgor i thm to de te rmine  the  fine a borrower  mus t  pay migh t  first 
compare  today 's  date wi th  the  due date  and then,  if the  due date has  
past,  de t e rmine  the fine as a 10-cent mul t ip le  of the n u m b e r  of days 
overdue. 

Date today < dueDate 
ifTrue: [fine ~- 0] 
ifFalse: [fine ~ 0.10 * (Date today subtractDate: dueDate)] 

Class Time An ins tance  of class Time represents  a pa r t i cu la r  second in a day. Days 
s t a r t  a t  midnight .  Time is a subclass of Magnitude. Like class Date, Time 
can respond to gene ra l  inquiry  messages  t ha t  are  specified in the class 
protocol. 
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Time class protocol 

general inquiries 
millisecondCIockValue 

millisecondsToRun: timedBIock 

timeWords 

totalSeconds 

dateAndTimeNow 

Answer the number  of milliseconds since the 
millisecond clock was last reset or rol led over 
to 0. 

Answer the number  of milliseconds 
timedBIock takes to r e tu rn  its value. 

Answer the seconds (in Greenwich Mean 
Time) since Jan.  1, 1901. The answer  is a four- 
e lement  ByteArray (ByteArray is described in 
Chapter  10). 

Answer  the total  seconds from Jan.  1, 1901, 
corrected for t ime zone and daylight  savings 
time. 

Answer  an Array whose first e lement  is the 
cur ren t  date (an instance of class Date tha t  
represents  today's date) and whose second ele- 
men t  is the cur ren t  t ime (an instance of class 
Time tha t  represents  the t ime right now). The 
resul t  of sending this message to Time is iden- 
tical to the result  of sending it to Date. 

The only non-obvious inquiry is millisecondsToRun: timedBIock. An ex- 
ample is 

Time millisecondsToRun: [Date today] 

where the result is the number of milliseconds it took the system to 
compute today's date. Because there is some overhead in responding to 
this message, and because the resolution of the clock affects the result, 
the careful programmer should determine the machine-dependent 
uncertainties associated with selecting reasonable arguments to this 
message. 

A new instance of Time can be created by sending Time the message 
now; the corresponding method reads the current  time from a system 
clock. Alternatively, an instance of Time can be created by sending the 
message fromSeconds: secondCount, where SecondCount is the number 
of seconds since midnight. 

Time class protocol 

instance creation 
now 

fromSeconds: secondCount 

Answer an instance of Time represent ing the 
second the message is sent. 

Answer an instance of Time tha t  is 
secondCount number  of seconds since mid- 
night. 

Accessing protocol for instances of class Time provide information as to 
the number of hours ~ (hours), minutes (minutes) and seconds (seconds) 
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t ha t  the  ins tance  represents .  
Ar i thmet i c  is also supported.  

Time instance protocol 

arithmetic 
addTime: timeAmount 

subtractTime: timeAmount 

Answer an instance of Time that is the argu- 
ment, timeAmount, after the receiver. 
Answer an instance of Time that is the argu- 
ment, timeAmount, before the receiver. 

In the  messages  given above, the  a r g u m e n t s  (timeAmount) may  be e i ther  
Dates or Times. For this  to be possible, the sys tem mus t  be able to con- 
ver t  a Date and a Time to a common uni t  of measu remen t ;  it converts  
t h e m  to seconds. In the case of Time, the  conversion is to the  n u m b e r  of 
seconds since midnight ;  in the  case of Date, the  conversion is to the 
n u m b e r  of seconds be tween  a t ime on J a n u a r y  1, 1901, and the same 
t ime in the  receiver 's  day. To suppor t  these methods,  ins tances  of each 
class respond to the conversion message  asSeconds .  

Time instance protocol 

converting 
asSeconds 

Date instance protocol 

Answer the number of seconds since midnight 
that the receiver represents. 

converting 
asSeconds Answer the number of seconds between a time 

on January 1, 1901, and the same time in the 
receiver's day. 

Ar i thmet i c  for Time can be used in ways analogous to t h a t  for Date. 
Suppose the a m o u n t  of t ime a person spends working  on a pa r t i cu la r  
project is to be logged so t h a t  a cus tomer  can be charged an hour ly  fee. 
Suppose the  person s ta r ted  work  at  startTime and worked cont inuously 
dur ing  the  day unt i l  r ight  now; the phone rings and the  cus tomer  
wan t s  to know today's  charges.  At  t ha t  moment ,  the bill at  $5.00 an 

hour  is 

(Time now subtractTime: startTime) hours * 5 

ignoring any  addi t ional  minu tes  or seconds. If a charge  for any fraction 
of an hour  over 30 minu tes  is to be charged as a full hour  then  an  addi- 

t ional  $5.00 is added if 

(Time now subtractTime: startTime) minutes > 30 
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Who is more productive, the worker  who finished the job with t ime 
logged at timeA or the worker  with t ime timeB? The answer is the first 
w o r k e r  if timeA < timeB. Comparing protocol is inheri ted from the 
superclasses Magnitude and Object. 

Suppose t imes are computed across days, for example, in computing 
the  t ime of a car in a four-day rally. If the first day of the ral ly s tar ted 
at  startTime on day startDate, then  the t ime for a car arr iving at the 
finish line r ight  now is computed as follows. 

Let the s ta r t  t ime be 6:00 a.m. 

startTime ~ Time fromSeconds: (60*60,6). 

on Februa ry  2, 1982 

startDate ~- Date newDay: 2 month: #Feb year: 82. 

The t ime tha t  has passed up to the s ta r t  of the cur rent  day is 

todayStart ~ (((Time fromSeconds: 0) addTime: Date today) 
subtractTime: startDate) 

subtractTime: startTime 

That  is, add all the seconds since Jan.  1, 1901, up to the s ta r t  of today 
and then subtract  all the seconds since Jan.  1, 1901, up to tee  s tar t  of 
the s ta r t  date. This is equivalent  to adding the number  of seconds in 
the number  of elapsed days, but then the p rogrammer  would have to do 
all the conversions. 

(Date today subtractDate: startDate), 24*60,60) 

By adding the cur rent  time, we have the elapsed rally t ime for the car. 

todayStart addTime: Time now 

Class Character Class Character is the third subclass of class Magnitude we shall exam- 
ine. It is a kind of Magnitude because instances of class Character form 
an ordered sequence about which we can make  inquiries such as wheth- 
er one charac ter  precedes (<)  or succeeds (>)  another  charac ter  alpha- 
betically. There are 256 instances of class Character in the system. Each 
one is associated with a code in an extended ASCII charac ter  set. 

Characters can be expressed l i terally by preceding the alphabetic 
charac ter  by a dollar sign ($); thus, $A is the Character represent ing the 
capital let ter  "A". Protocol for creat ing instances of class Character con- 
sists of 
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instance creation 
value: anlnteger Answer" an instance of Character whose value 

is the argument, anlnteger. The value is asso- 
ciated with an element of the ASCII character 
set. For example, Character value: 65 is a capi- 
tal '~A". 

digitValue: anlnteger Answer an instance of Character whose digit 
value is the argument, anlnteger. For example, 
answer $9 if the argument is 9; answer $0 for 
0; answer $A for 10, and $Z for 35. This meth- 
od is useful in parsing numbers into strings. 
Typically, only Characters up to $F are useful 
(for base 16 numbers). 

Class  protocol ,  t h a t  is, t h e  se t  of m e s s a g e s  to t h e  object  Charac te r ,  pro- 
v ides  a v o c a b u l a r y  for acces s ing  c h a r a c t e r s  t h a t  a r e  no t  e a s y  to d is t in-  

g u i s h  w h e n  p r in t ed :  b a c k s p a c e ,  cr, e sc ,  n e w P a g e  ( t h a t  is, f o r m  feed), 

s p a c e ,  a n d  tab. 
M e s s a g e s  to i n s t a n c e s  of C h a r a c t e r  s u p p o r t  acces s ing  t h e  ASCII  v a l u e  

a n d  t h e  d ig i t  v a l u e  of t h e  i n s t a n c e  a n d  t e s t i n g  t h e  t y p e  of c h a r a c t e r .  
T h e  on ly  s t a t e  of a C h a r a c t e r  is i ts  v a l u e  w h i c h  can  n e v e r  change .  Ob- 
j ec t s  t h a t  can  no t  c h a n g e  t h e i r  i n t e r n a l  s t a t e  a r e  ca l led  immutable ob- 
jects. This  m e a n s  t h a t ,  once  c r ea t ed ,  t h e y  a r e  n o t  d e s t r o y e d  a n d  t h e n  
r e c r e a t e d  w h e n  t h e y  a r e  n e e d e d  aga in .  R a t h e r ,  t h e  256 i n s t a n c e s  of 
C h a r a c t e r  a r e  c r e a t e d  a t  t h e  t i m e  t h e  s y s t e m  is i n i t i a l i zed  a n d  r e m a i n  
in t h e  sy s t em.  W h e n e v e r  a n e w  C h a r a c t e r  w h o s e  code is b e t w e e n  0 a n d  
255 is r e q u e s t e d ,  a r e f e r e n c e  is p r o v i d e d  to a n  a l r e a d y  e x i s t i n g  Charac-  

te r .  In  th i s  w a y  t h e  256 C h a r a c t e r s  a r e  un ique .  Bes ides  Cha rac t e r s ,  t he  
S m a l l t a l k - 8 0  s y s t e m  inc ludes  Sma l l l n t ege r s  a n d  S y m b o l s  a s  i m m u t a b l e  

objects .  

Character instance protocol 

accessing 
asciiValue 

digitValue 

testing 
isAIphaNumeric 

isDigit 
isLetter 
isLowercase 

isUppercase 

Answer the number corresponding to the 
ASCII encoding for the receiver. 

Answer the number corresponding to the nu- 
merical radix represented by the receiver (see 
the instance creation message digitValue: for 
the correspondences). 

Answer true if the receiver is a letter or a dig- 
it. 
Answer whether the receiver is a digit. 
Answer whether the receiver is a letter. 

Answer whether the receiver is a lowercase 
letter. 
Answer whether the receiver is an uppercase 
letter. 
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isSeparator Answer whether the receiver is one of the sep- 
arator characters in the expression syntax: 
space, cr, tab, line feed, or form feed. 

isVowel Answer whether the receiver is one of the 
vowels: a, e, i, o, or u, in upper or lowercase. 

I n s t ance  protocol also provides conversion of a charac ter  into upper- or 
lowercase (askowercase  and asUppercase)  and into a symbol (asSymbol). 

A simple alphabet ic  comparison demonst ra tes  the use of comparing 
protocol for instances of Character. Suppose we wish to know if one 
s t r ing of characters  precedes ano the r  s t r ing in the telephone book. 
Strings respond to the message at: to retr ieve the e lement  whose index 
is the a rgument ;  e lements  of Strings are Characters. Thus  ' a b c '  at: 2 is 
$b. In the following we assume we are specifying a method in class 
String whose message selector is min:. The method re tu rns  a String, ei- 
the r  the receiver of the message rain: or its a rgument ,  whichever  is col- 
lated first a lphabet ical ly.  

min: aSt r ing  
1 to: self size do: 

[ :index I 
(index > aString size)ifTrue: [taString]. 
(self at: index) > (aString at: index)ifTrue: [taString]. 
(self at: index) < (aString at: index)ifTrue: [tself]]. 

tself 

The a lgor i thm consists of two s ta tements .  The first is an i terat ion over 
each e lement  of the receiver. The i terat ion stops when ei ther  (1) the ar- 
gument ,  aStrinfl, no longer has a charac te r  with which to compare the 
next  charac te r  in the receiver (i.e., index > aString size); (2) the next  
charac te r  in self comes after  the next  charac ter  in aStrinfl (i.e., (self at: 
index) > (aString at: index)); or (3) the next  charac te r  in self comes be- 
fore the next  charac ter  in aString. As an example of (1), take the com- 
parison of ' abcd '  and 'abc '  which te rmina tes  when index = 4; the 
answer  is t ha t  'abc '  is first alphabetically.  For (2), suppose we compare  
'abde" with 'abce ' .  When  index = 3, $d > $c is true; the answer  is 

"abce'. For  (3), compare  "az" with "by" which te rmina tes  when index -- 1; 
the answer  is "az'. In the case tha t  the receiver has fewer characters  
t h a n  the  a rgument ,  even when the receiver is the initial subst r ing of 
the a rgument ,  the first s t a t ement  will complete and the  second state- 
men t  is evaluated; the resul t  is the receiver. An example is the compar- 
ison of 'abc '  and 'abcd' .  

Note t h a t  a r i thmet ic  on characters  is not supported. For example,  
the following expression is incorrect. 

a ~- $A + 1 

The er ror  occurs because a Character does not under s t and  the message + .  
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One of the major goals of the Smalltalk programming system is to ap- 
ply a single metaphor for information processing as uniformly as possi- 
ble. The Smalltalk metaphor, as described in earlier chapters, is one of 
objects that  communicate by sending messages. This metaphor is very 
similar to the one used in Simula for implementing simulation systems. 
One of the greatest challenges to the application of the Smalltalk meta- 
phor to all aspects of a programming system has been in the area of 
arithmetic. Simula used the object/message metaphor only for the 
higher level interactions in the simulations it implemented. For arith- 
metic, as well as most algorithmic control structures, Simula relied on 
the embedded Algol programming language with its built-in number 
representations, operations, and syntax. The contention that  even the 
addition of two integers should be interpreted as message-sending met 
with a certain amount  of resistance in the early days of Smalltalk. Ex- 
perience has demonstrated that  the benefits of this extreme uniformity 
in the programming language outweigh any inconvenience in its imple- 
mentation. Over  several versions of Smalltalk, implementation tech- 
niques have been developed to reduce the message-sending overhead for 
the most common arithmetic operations so that  there is now almost no 
cost for the benefits of uniformity. 

Objects that  represent numerical values are used in most systems 
done in Smalltalk (as with most other programming languages). Num- 
bers are natural ly used to perform mathematical  computations; they 
are also used in algorithms as indices, counters, and encodings of states 
or conditions (often called flags). Integral numbers are also used as col- 
lections of binary digits (bits) that  perform boolean masking operations 
with each other. 

Each different kind of numerical value is represented by a class. The 
number classes have been implemented so that  all numbers behave as 
if they were of the most general type. The actual class of a particular 
number  object is determined by how much of the full generality is 
needed to represent its value. Therefore the external protocol of all 
number objects is inherited from the class Number. Number has three 
subclasses: Float, Fraction, and Integer. Integer has three subclasses: 
Smalllnteger, LargePositivelnteger, and LargeNegativelnteger. Integral 
numbers provide further protocol to support treating the number as a 
sequence of bits. This protocol is specified in the class Integer. Num- 
bers in the system are instances of Float, Fraction, Smalllnteger, 
LargePositivelnteger, or LargeNegativelnteger. Classes Number and Inte- 
ger specify shared protocol, but they do not specify particular represen- 
tations for numeric values. Therefore no instances of Number or Integer 
are created. 

Unlike other objects that  may change their internal state, the only 
state of a number  is its value, which should never change. The object 3, 
for example, should never change its state to 4, or disastrous effects 
could occur. 
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Protoco l  of the  
N u m b e r  
Classes  

N u m b e r  de f ines  t h e  p ro toco l  of a l l  n u m e r i c  objects .  I t s  m e s s a g e s  s u p p o r t  

s t a n d a r d  a r i t h m e t i c  o p e r a t i o n s  a n d  c o m p a r i s o n s .  M o s t  of t h e s e  m u s t  be 

i m p l e m e n t e d  by s u b c l a s s e s  of N u m b e r  s ince  t h e y  d e p e n d  on t h e  a c t u a l  

r e p r e s e n t a t i o n  of va lues .  

T h e  p ro toco l  of a r i t h m e t i c  m e s s a g e s  cons i s t s  of t h e  u s u a l  b i n a r y  op- 

e r a t o r s  s u c h  as + ,  - ,  • a n d  /,  a n d  s e v e r a l  u n a r y  a n d  k e y w o r d  mes-  

sages  for c o m p u t i n g  t h e  a b s o l u t e  v a l u e  of a n u m b e r ,  t h e  n e g a t i o n  of a 

n u m b e r ,  or  t h e  i n t e g e r  q u o t i e n t  or  r e m a i n d e r  of a n u m b e r .  T h e  ca tego-  

ry  for a r i t h m e t i c  m e s s a g e s  is as  follows. 

Number instance protocol 

arithmetic 
+ a.Num.ber 

- aNumber 

. aNumber 

/ aNumber 

/ / a N u m b e r  

\ \  aNumber 

abs 

negated 

quo: aNumber 

rem: aNumber 

reciprocal 

Answer the sum of the receiver and the argu- 
ment, aNumber. 
Answer the difference between the receiver 
and the argument, aNumber. 

Answer the result of multiplying the receiver 
by the argument, aNumber. 
Answer the result of dividing the receiver by 
the argument, aNumber. Note that since as 
much precision as possible is retained, if the 
division is not exact, the result will be an in- 
stance of Fraction. 

Answer the integer quotient defined by divi- 
sion with truncation toward negative infinity. 

Answer the integer remainder defined by divi- 
sion with truncation toward negative infinity. 
This is the modulo operation. 

Answer a Number that is the absolute value 
(positive magnitude) of the receiver. 

Answer a Number that is the negation of the 
receiver. 

Answer the integer quotient defined by divi- 
sion with truncation toward zero. 

Answer the integer remainder defined by divi- 
sion with truncation toward zero. 

Answer 1 divided by the receiver. Report an 
error to the user if the receiver is 0. 

S o m e  e x a m p l e s  follow. 

expression result 

1 + 1 0  

5.6 -- 3 

5 - 2.6 

( - -4)  abs 

6 / 2  

11 

2.6 

2.4 

4 

3 
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(7/2), a Fraction with 
numerator 7 and de- 
nominator 2 
(1/7), a Fraction w i t h  

numerator 1 and de- 
nominator 7 

Ari thmetic messages tha t  re tu rn  integral quotients and remainders  
from a division operation follow two conventions. One convention trun- 
cates the resulting number  toward zero, the other toward negative in- 
finity. These are the same for positive results since zero and negative 
infinity are in the same direction. For negative results, the two conven- 
tions round in different directions. The protocol for Number provides for 
both conventions. 

The following table shows the relationships among the selectors. 

truncate toward 
result negative infinity truncate toward zero 

quotient / / quo: 
remainder  \ \  rem" 

Examples include: 

expression result 

6 quo: 2 3 

7 quo: 2 3 

( 7 q u o : 2 )  + 1 4 

7 quo: 2 + 1 2 

7 rem: 2 1 

7 / / 2  3 

7 \ \ 2  1 

7 \ \ 2 + 1  2 

- 7 q u o :  2 - 3 

- 7 rem: 2 -- 1 

- 7 / / 2  - 4  

- 7 \ \ 2  1 

The result  of quo:, rein:, o r / /  is always to re turn  a value whose sign is 
positive if the receiver and a rgument  have the same sign, and negative 
if their  signs are different. \ \  always produces a positive result. 

Additional mathemat ica l  functions are 



122 
N u m e r i c a l  C l a s s e s  

Number instance protocol 

mathematical functions 
exp 

In 
log: al),lumber 
floorLog: radix 

raisedTo: aNumber 

raisedTolnteger: anlnteger 

Answer a floating point number  that  is the 
exponential of the receiver. 

Answer the natural  log of the receiver. 

Answer the log base aNumber of the receiver. 

Answer the floor of the log base radix of the 
receiver, where the floor is the integer nearest  
the receiver toward negative infinity. 

Answer the receiver raised to the power of the 
argument,  aNumber. 

Answer the receiver raised to the power of the 

sqrt 

squared 

Some examples are 

argument ,  anlnteger, where the argument  
must  be a kind of Integer. 
Answer a floating point number  that  is the 
positive square root of the receiver. 

Answer the receiver multiplied by itself. 

expression result 

2.718284 In 1.0 
6 exp 403.429 
2 exp 7.38906 
7.38906 In 1.99998 (that is, 2) 
2 log: 2 1.0 
2 floorLog: 2 1 
6 log: 2 2.58496 
6 floorLog: 2 2 
6 raisedTo: 1.2 8.58579 
6 raisedTolnteger: 2 36 
64 sqrt 8.0 
8 squared 64 

P r o p e r t i e s  of  n u m b e r s  t h a t  d e a l  w i t h  w h e t h e r  a n u m b e r  is  e v e n  o r  o d d  

a n d  n e g a t i v e  o r  p o s i t i v e  c a n  b e  t e s t e d  w i t h  t h e  f o l l o w i n g  m e s s a g e s .  

Number instance protocol 

testing 
even 

odd 

negative 
positive 

strictlyPositive 
sign 

Answer whether  the receiver is an even num- 
ber. 

Answer whether  the receiver is an odd num- 
ber. 

Answer whether  the receiver is less than 0. 

Answer whether  the receiver is greater  than 
or equal to 0. 

Answer whether  the receiver is greater  than 0. 

Answer 1 if the receiver is greater  than 0, an- 
swer -1 if less than 0, else answer 0. 
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P r o p e r t i e s  of n u m b e r s  t h a t  dea l  w i t h  t r u n c a t i o n  a n d  r o u n d  off a r e  sup- 
pl ied by t h e  fo l lowing protocol.  

Number instance protocol 

truncation and round off 

ceiling 

floor 

truncated 

truncateTo: aNumber 

rounded 
roundTo: aNumber 

Answer the integer nearest the receiver to- 
ward positive infinity. 

Answer the integer nearest the receiver to- 
ward negative infinity. 

Answer the integer nearest the receiver to- 
ward zero. 

Answer the next multiple of the argument, 
aNumber, that is nearest the receiver toward 
zero. 

Answer the integer nearest the receiver. 
Answer the multiple of the argument, 
aNumber, that is nearest the receiver. 

W h e n e v e r  a Number  m u s t  be c o n v e r t e d  to an  Integer, t h e  message  

t runca ted  can  be used.  So we h a v e  

expression result 

16.32 ceiling 17 

16.32 floor 16 

- 16.32 floor - 17 

- 16.32 truncated - 16 

16.32 truncated 16 

16.32 truncateTo: 5 15 

16.32 truncateTo: 5.1 15.3 

16.32 rounded 16 

16.32 roundTo: 6 18 

16.32 roundTo: 6.3 18.9 

T h e  protocol  p rov ided  in class Number  inc ludes  va r ious  messages  for 
c o n v e r t i n g  a n u m b e r  in to  a n o t h e r  k ind  of object  or a d i f f e ren t  u n i t  of 

r e p r e s e n t a t i o n .  N u m b e r s  can  r e p r e s e n t  va r i ous  u n i t  m e a s u r e m e n t s  

such  as deg rees  a n d  rad ians .  T h e  fol lowing two m e s s a g e s  p e r f o r m  con- 

vers ions .  

Number instance protocol 

converting 

degreesToRadians 

radiansToDegrees 

So t h a t  

The receiver is assumed to represent degrees. 
Answer the conversion to radians. 

The receiver is assumed to represent radians. 
Answer the conversion to degrees. 

30 degreesToRadians = 0.523599 

90 degreesToRadians = 1.5708 
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Trigonometric and logarithmic functions a r e  included in the protocol 
for mathemat ica l  functions. The receiver for the tr igonometric func- 
tions cos, sin, and tan is an angle measured in radians; the result of the 
functions arcCos, arcSin and arcTan is the angle measured in radians. 

In the following examples, 30 degrees is given as 0.523599 radians; 90 
degrees is 1.5708 radians. 

expression result 

0.523599 sin 0.5 

0.523599 cos 0.866025 

0.523599 tan 0.57735 
1.5708 sin 1.0 

0.57735 arcTan 0.523551 

1.0 arcSin 1.5708 

When a kind of Integer is asked to add itself to another  kind of Integer, 
the result  re turned will na tura l ly  also be a kind of Integer. The same is 
t rue for the sum of two Floats; the class of the result  will be the same 
as the class of the operands. If the two operands are Srnalllntegers and 
the absolute value of their  sum is too large to be represented as a 
Srnalllnteger, the result  will be a LargePositivelnteger or a 
LargeNegativelnteger. The determinat ion of the appropriate class of re- 
sult  when the operands are of different classes is somewhat more com- 
plicated. Two design criteria are tha t  there be as little loss of 
information as possible and tha t  commutat ive operations produce the 
same result  regardless of which operand is the receiver of the message 
and which is the argument .  So for example, 3.1 , 4 will re turn  the 
same result  as 4 , 3 . 1 .  

The appropriate representat ion for the result  of operations on num- 
bers of different classes is determined by a numerical  measure of gener- 
ality assigned to each class. Classes said to have more general i ty will 
have a larger  number  for this general i ty measure. Each class must  be 
able to convert its instances into equal-valued instances of more general 
classes. The measure of general i ty is used to decide which of the oper- 
ands should be converted. In this way, the ar i thmetic  operations obey 
the law of commutat ivi ty  with no ]oss of numerical  information. When 
the differences between two classes of numbers  are only a mat te r  of 
precision (where "precision" is a measure of the information provided 
in a number), the more precise class is assigned a higher degree of gen- 
erality. We have arbi t rar i ly  assigned approximate numbers  a higher 
generali ty in cases where precision was not the issue (so, Float is more 
general than  Fraction). 

The generali ty hierarchy for the kinds of numbers  in the 
Smalltalk-80 system, with most general  listed first, is 
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Float 
Fraction 
LargePositivelnteger, LargeNegativelnteger 
Smalllnteger 

The messages in the Number protocol designed to support  the necessary 
coercions are categorized as "coercing" messages. 

Number instance protocol 

coercing 
coerce: aNumber 

generality 

Answer a number  represent ing the argument ,  
aNumber, tha t  is the same kind of Number as 
the receiver. This method must  be defined by 
all subclasses of Number. 

Answer the number  represent ing the  ordering 
of the receiver in the general i ty  hierarchy.  

retry: aSymbol coercing: aNumber 
An ar i thmet ic  operation denoted by the sym- 
bol, aSymbol, could not be performed with the 
receiver and the  argument ,  aNumber, as the 
operands because of the difference in repre- 
sentation. Coerce ei ther  the receiver or the ar- 
gument ,  depending on which has the lower 
generali ty,  and then t ry the ar i thmet ic  opera- 
tion again. If the  symbol is the equals sign, 
answer  false if the  a rgumen t  is not a Number. 
If the  generali t ies are the same, t h e n  
retry:coercing: should not have been sent, so 
report  an error  to the user. 

Thus if we try to evaluate 32.45 • 4, the multiplication of a Float by a 
Smalllnteger will result  in evaluat ing the expression 

32.45 retry: # ,  coercing: 4 

and the a rgument  4 will be coerced to 4.0 (Float has higher generali ty 
than  Smaillnteger). Then the multiplication will be carried out success- 

fu l ly .  
Defining a hierarchy of the numbers  in te rms of a numerical  mea- 

sure of general i ty works for the kinds of numbers  provided in the basic 
Smalltalk-80 system because the generali ty is transit ive for these kinds 
of numbers.  However, it does not provide a technique tha t  can be used 
for all kinds of numbers.  

Intervals (described in detail in Chapter  10) can be created by sending 
one of two messages to a number.  For each element of such an interval, 
a block can be evaluated with the element as the block value. 
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Number instance protocol 

intervals 
to: stop 

to: stop by: step 

to: stop do: aBIock 

to: stop by: step do: aBIock 

Thus if we evaluate 

Answer an Interval from the receiver up to the 
argument, stop, with each next element com- 
puted by incrementing the previous one by 1. 

Answer an Interval from the receiver up to the 
argument, stop, with each next element com- 
puted by incrementing the previous one by 
step. 

Create an Interval from the receiver up to the 
argument, stop, incrementing by 1. Evaluate 
the argument, aBIock, for each element of the 
Interval. 

Create an Interval from the receiver up to the 
argument, stop, incrementing by step. Evalu- 
ate the argument, aBIock, for each element of 
the Interval. 

a ~ - 0 .  

10 to: 100 by: 10 do: [ :each I a ~ a -4- each] 

the final value of a will be 550. 
If a is the a r r ay  ¢f:('one" 'two" ' three'  "four' "five'), then  each element  

of the a r ray  can be accessed by indices tha t  are in the interval  from 1 
to the size of the array.  The following expression changes each element  
so tha t  only the initial characters  are kept. 

1 to: a size do: [ :index I a at: index put: ((a at: index) at: 1)] 

The result ing a r ray  is @ ( ' o '  ' t '  ' t '  " f '  " f ' ) .  Note that ,  like an ar- 
ray, elements of a str ing can be accessed using the messages at: and 
at:put:. Messages to objects like strings and ar rays  are detailed in Chap- 
ters 9 and 10. 

Classes  Float 
and Fraction 

The classes Float and Fraction provide two representat ions of non-inte- 
gral values. Floats are representat ions of real numbers  tha t  may be ap- 
proximate; they represent  about 6 digits of accuracy with a range 
between plus or minus 10 raised to the power plus or minus 32. Some 
examples are 

8.0 
13.3 
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0.3 
2.5e6 
1 . 2 7 e - 3 0  
- 12.987654el  2 

Fractions are representat ions of rational numbers  tha t  will always be 
exact. All ar i thmetic  operations on a Fraction answer a reduced frac- 
tional result. 

Instances of Float can be created by literal notation in methods (for 
example, 3.14159) or as the result  of an ar i thmetic  operation, one argu- 
ment  of which is another  Float. 

Instances of Fraction can be created as a result  of an ar i thmetic  oper- 
ation if one of the operands is a Fraction and the other is not a Float. (If 
it were a Float, the result  would be a Float since the general i ty number  
of Float is higher than  tha t  of Fraction). Instances of Fraction can also be 
created when the mathemat ica l  division operation (/) is performed on 
two Integers and the result  is not integral. In addition, class protocol for 
Fraction supports sending a message of the form numerator: numlnteger 
denominator: denlnteger in order to create an instance. 

Float responds to the message pi to re turn  the corresponding con- 
stant.  It adds t runcat ion and round off protocol to re turn  the fraction 
and integer parts  of the receiver (fractionPart and integerPart), and it 
adds converting protocol to convert the receiver to a Fraction (asFraction). 
Similarly class Fraction adds converting protocol to convert the receiver 
to a Float (asFIoat). 

Integer Classes Class Integer adds protocol part icular  to integral  numbers.  It has three 
subclasses. One is class Smalllnteger, which provides a space-economical 
representat ion for a substantial  range of integral  values tha t  occur fre- 
quently in counting and indexing. The representat ion limits the range 
to a little less than  the magnitudes representable by a single ma- 
chine word. Large integers, which are represented by instances of 
LargePositivelnteger or kargeNegativelnteger depending on the sign of 
the integer, do not have a limit to their  magnitude. The cost in provid- 
ing the generali ty of large integers is longer computation time. Thus if 
the result  of an ar i thmetic  operation on a large integer is representable 
as a small integer, it will in fact be a small integer. 

In addition to the messages inheri ted from the class Number, class In- 
teger adds converting protocol (asCharacter, asFIoat and asFraction), fur- 
ther  print ing (printOn: aStream base: b, radix: baselnteger), and enumer- 
a t ingprotocol .  Thus 8 radix: 2 is 2r1000. 
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F o r  e n u m e r a t i n g ,  i t  is p o s s i b l e  to e v a l u a t e  a b l o c k  r e p e t i t i v e l y  a n  in- 

t e g r a l  n u m b e r  of t i m e s  u s i n g  t h e  m e s s a g e  t i m e s R e p e a t :  aBIock.  T a k e  as  

a n  e x a m p l e  

a ~-- 1. 
10 timesRepeat: [a ~ a + a] 

w h e r e  t h e  b l o c k  h a s  no  a r g u m e n t s .  T h e  r e s u l t i n g  v a l u e  of a is 2 l°, or  

1024. 
Class Integer provides factorization and d iv is ib i l i ty  protocol not speci- 

fied for numbers in genera]. 

Integer instance protocol 

factorization and divisibility 
factorial 

gcd" anlnteger 

Icm: anlnteger 

E x a m p l e s  a r e  

Answer the factorial of the receiver. The re- 
ceiver must not be less than 0. 

Answer the greatest common divisor of the re- 
ceiver and the argument, anlnteger. 
Answer the least common multiple of the re- 
ceiver and the argument, anlnteger. 

e x p r e s s i o n  r e s u l t  

3 factorial 6 
55 gcd: 30 5 
6 Icm: 10 30 

In  a d d i t i o n  to t h e  n u m e r i c a l  p r o p e r t i e s  of i n t e g e r s ,  s o m e  a l g o r i t h m s  

m a k e  u s e  of t h e  fac t  t h a t  i n t e g e r s  c a n  be  i n t e r p r e t e d  as  a s e q u e n c e  of 

bi ts .  T h u s  p r o t o c o l  for  b i t  m a n i p u l a t i o n  is spec i f i ed  in  Integer .  

Integer instance protocol 

bit manipulation 
allMask: anlnteger 

anyMask: anlnteger 

noMask: anlnteger 

bitAnd: anlnteger 

bitOr: anlnteger 

Treat the argument anlnteger as a bit mask. 
Answer whether all of the bits that are 1 in 
anlnteger are 1 in the receiver. 

Treat the argument anlnteger as a bit mask. 
Answer whether any of the bits that are 1 in 
anlnteger are t in the receiver. 

Treat the argument anlnteger as a bit mask. 
Answer whether none of the  bits that are 1 in 
anlnteger are 1 in the receiver. 

Answer an Integer whose bits are the logical 
and of the receiver's bits and those of the ar- 
gument anlnteger. 

Answer an Integer whose bits are the logical 
or of the receiver's bits and those of the argu- 
ment anlnteger. 



bitXor: anlnteger 

bitAt: index 

bitlnvert 

highBit 

bitShift: anlnteger 
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Answer an Integer whose bits are the logical 
xor of the receiver's bits and those of the ar- 
gument anlnteger. 
Answer the bit (0 or 1) at position index of the 
receiver. 
Answer an Integer whose bits are the comple- 
ment of the receiver. 
Answer the index of the high order bit of the 
binary representation of the receiver. 
Answer an Integer whose value (in two's-com- 
plement representation) is the receiver's value 
(in two's-complement representation) shifted 
left by the number of bits indicated by the ar- 
gument, anlnteger. Negative arguments shift 
right. Zeros are shifted in from the right in 
left shifts. The sign bit is extended in right 
shifts. 

Some e x a m p l e s  follow. Note  t h a t  t he  de fau l t  r ad ix  for p r i n t i n g  an  Inte- 

ger  is 10. 

expression resul t  

2rl 11000111000111 29127 
2r101010101010101 21845 
2rl 01000101000101 20805 
2r000111000111000 3640 
29127 allMask: 20805 true 
29127 allMask: 21845 false 
29127 anyMask: 21845 true 
29127 noMask: 3640 true 
29127 bitAnd: 3640 0 
29127 bitOr: 3640 32767 
32767 radix: 2 2rl 11111111111111 
29127 bitOr: 21845 30167 
30167 radix: 2 2rl 11010111010111 
3640 bitShift: 1 7280 

Class Random: 
A R a n d o m  
N u m b e r  
Generator  

M a n y  app l ica t ions  r equ i r e  r a n d o m  choices of n u m b e r s .  R a n d o m  num-  
bers  a re  useful ,  for example ,  in s ta t i s t i ca l  app l ica t ions  and  d a t a  encryp-  
t ion a lgor i thms .  Class Random is a r a n d o m  n u m b e r  g e n e r a t o r  t h a t  is 
inc luded  in the  s t a n d a r d  Sma l l t a lk -80  sys tem.  I t  provides  a s imple  way 
of ob t a in ing  a sequence  of r a n d o m  n u m b e r s  t h a t  will be un i fo rmly  dis- 
t r i b u t e d  over  the  i n t e rva l  be tween ,  bu t  not  including,  0.0 and  1.0. 

An i n s t ance  of class Random m a i n t a i n s  a seed f rom which  the  nex t  
r a n d o m  n u m b e r  is gene ra t ed .  The  seed is in i t ia l ized in a pseudo-ran-  
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dom way. An instance of Random is sent  the message next whenever  a 
new random n u m b e r  is desired. 

A r andom n u m b e r  genera tor  can be created with the expression 

rand ~- R a n d o m  new 

The expression 

rand next 

can then  be evaluated  whenever  a new random number  is needed. The 
response is a number  (Float) between 0.0 and 1.0. 

The implementa t ion  of next is based on Lehmer ' s  l inear  congruent ia l  
method as presented in Knuth ,  Volume 1 [D. E. Knuth ,  The Art of 
Computer Programming: Fundamental Algorithms, Volume 1, Reading, 
Mass: Addison Wesley, 1968]. 

n e x t  

I temp I 

"Lehmer's linear congruential method with modulus m = 2 raisedTo: 16, 
a = 27181 odd, and 5 = a \ \  8, c = 13849 odd, and c / m approxi- 

mately 0.21132" 

[seed ~ 13849 + (27181 * seed) bitAnd: 8r177777. 
temp ~ seed / 65536.0. 

temp = 0] whileTrue. 
ttemp 

It is also possible to send an instance of class Random the messages 
next: aninteger, to obtain an OrderedCollection of anlnteger n u m b e r  of 
r andom numbers ,  and nextMatcbFor: aNumber, to de te rmine  whe the r  
the next  r andom n u m b e r  is equal to aNumber. 

Suppose we wan t  to select  one of 10 integers,  1, ..., 10, using the ran- 
dom n u m b e r  genera tor  rand. The expression to be evaluated is 

(rand next * 10) t runcated + 1 

That  is, 

expression result 

rand next 

rand n e x t ,  10 

(rand n e x t ,  10) truncated 

(rand n e x t ,  10) truncated + 1 

a random number be- 
tween 0 and 1 
a random number be- 
tween 0 and 10 
an integer > = 0 and 
< = 9  
an integer > = 1 and 
< =  10 
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P r o t o c o l  for A l l  
C o l l e c t i o n  C l a s s e s  

Adding, Removing, and Testing Elements 

Enumerating E lements  
Selecting and Rejecting 
Collecting 
Detecting 
Injecting 

Instance Creation 

Conversion Among Collection Classes 



Object 

Magnitude 
Character 
Date 
Time 

Number 
Float 
Fraction 
Integer 

LargeNegativelnteger 
LargePositivelnteger 
Smalllnteger 

LookUpKey 
Association 

Link 

Process 

SequenceableCollection 
LinkedList 

Semaphore 

ArrayedCollection 
Array 

Bitmap 
DisplayBitmap 

RunArray 
String 

Symbol 
Text 
ByteArray 

Interval 
OrderedCollection 

SortedCollection 
Bag 
M a ppedCo I lect ion 
Set 

Dictionary 
IdentityDictionary 

Stream 
PositionableStream 

ReadStream 
WriteStream 

ReadWriteStream 
ExternaiStream 

FileStream 

Random 

File 
FileDirectory 
FilePage 

UndefinedObject 
Boolean 

False 
True 

ProcessorSchedu ler 
Delay 
SharedOueue 

Behavior 
ClassDescription 

Class 
MetaClass 

Point 
Rectangle 
BitBit 

CharacterScanner 

Pen 

DisplayObject 
DisplayMedium 

Form 
Cursor 
DisplayScreen 

InfiniteForm 
OpaqueForm 
Path 

Arc 
Circle 

Curve, 
,Line 
LinearFit 
Spline 



133 
Protocol for All Collection Classes 

A collection represents  a group of objects. These objects are called the 
elements of the  collection. For example, an Array is a collection. The 
Array 

..~( "word" 3 5 $G (1 2 3)) 

is a collection of five elements.  The first one is a String, the second and 
th i rd  are  Smalllntegers, the fourth e lement  is a Character, and the fifth 
i s  itself an Array. The first element,  the String, is also a collection; in 
this case, it is a collection of four Characters. 

Collections provide basic data  s t ructures  for p rogramming in the 
Small talk-80 system. Elements  of some of the collections are unordered 
and elements  of other collections are ordered. Of the collections with 
unordered elements,  Bags allow duplicate elements  and Sets do not al- 
low duplication. There  are also Dictionaries tha t  associate pairs of ob- 
jects. Of the collections with ordered elements,  some have the order 
specified external ly  when the elements  are added (OrderedCollections, 
Arrays, Strings) and others determine the order based on the elements 
themselves (SortedCollections). For  example, the common data  struc- 
tures of a r rays  and strings are provided by classes tha t  associate inte- 
ger indices and elements and tha t  have external  ordering corresponding 
to the ordering of the indices. 

This chapter  introduces the protocol shared by all collections. Each 
message described in this chapter  is understood by any kind of collec- 
tion, unless tha t  collection specifically disallows it. Descriptions of each 
kind of collection are provided in the next  chapter.  

Collections support  four categories of messages for accessing ele- 
ments: 

• messages for adding new elements 

• messages for removing elements  

• messages for testing occurrences of elements  

• messages for enumera t ing  elements  

A single e lement  or several e lements  can be added or removed from a 
collection. It is possible to test whether  a collection is empty or whether  
it includes a par t icular  element. It is also possible to determine the 
number  of t imes a par t icular  e lement  occurs in the collection. Enumer-  
ation allows one to access the elements  without  removing them from 
the collection. 



134 
P r o t o c o l  f o r  A l l  C o l l e c t i o n  C l a s s e s  

Adding, 
Removing, 
and Testing 
Elements 

The basic protocol for collections is specified by the superclass of all col- 
lection classes, named Collection. Class Collection is a subclass of class 
Object. The protocol for adding, removing, and testing elements follows. 

Collection instance protocol 

adding 
add: newObject 

addAIl: aCollection 

Include the argument ,  newObject, as one of 
the receiver 's  elements.  Answer newObject. 

Include all the elements  of the argument ,  
aCollection, as the receiver 's elements.  Answer 
aCollection. 

removing 
remove: oldObject Remove the argument, oldObject, from the re- 

ceiver's elements.  Answer oldObject unless no 
e lement  is equal to oldObject, in which case, 
report  tha t  an error  occurred. 

remove: oldObject ifAbsent: anExceptionBIock 
Remove the a rgument ,  oldObject, from the re- 
ceiver's elements.  If several of the elements 
are equal to oldObject, only one is removed. If 
n o e l e m e n t  is equal to oldObject, answer  the 
resul t  of evaluat ing anExceptionBIock. Other- 
wise, answer  oldObject. 

removeAIl: aCollection Remove each e lement  of the argument ,  
aCollection, from the receiver. If successful for 
each, answer  aCollection. Otherwise report  
tha t  an error  occurred. 

testing 
includes: anObject 

isEmpty 

occurrencesOf: anObject 

Answer whether  the argument ,  anOb]ect, is 
equal to one of the  receiver's elements.  

Answer whether  the receiver contains any el- 
ements.  

Answer  how many  of the receiver 's e lements  
are equal to the argument ,  anObject. 

In order to demonstrate the use of these messages, we introduce the col- 
lection ]otteryA 

(272 572 852 156) 

and the collection IotteryB 

(572 621 274) 

We will assume that these two collections, representing numbers drawn 
in a lottery, are instances of Bag, a subclass of Collection. Collection it- 
self is abstract in the sense that  it describes protocol for all collections. 
Collection does not provide sufficient representation for storing ele- 
ments and so it is not possible to provide implementations in Collection 
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of all of its messages. Because of this incompleteness in the definition of 
Collection, it is not useful to create instances of Collection. Bag is con- 
crete in the sense tha t  it provides a representat ion for storing elements 
a n d  implementat ions  of t h e  messages not implementable  in its super- 
class. 

All collections respond to size in order to answer the number  of their  
elements. So we can determine tha t  

iotteryA size 

is 4 and 

IotteryB size 

is 3. Then, evaluat ing the messages in order, we have 

expression result iotteryA if it changed 

IotteryA isEmpty 
IotteryA includes: 572 
IotteryA add: 596 
IotteryA addAIl:. IotteryB 

IotteryA occurrencesOf: 572 
IotteryA remove: 572 

false 
true 
596 
Bag (572 621 

274) 
2 
572 

IotteryA size 7 
IotteryA removeAIl: IotteryB Bag (572 621 

274) 
IotteryA size 4 

Bag (272 572 852 156 596) 
Bag (272 274 852 156 596 572 

572 621) 

Bag (272 274 852 156 596 572 
621) 

Bag (272 852 596 156) 

Note tha t  the add: and remove: messages answer the a rgument  ra ther  
than  the collection itself so tha t  computed a rguments  can be accessed. 
The message remove: deletes only one occurrence of the argument ,  not 
all occurrences. 

Blocks were introduced in Chapter  2. The message remove: oldObject 
ifAbsent: anExceptionBlock makes  use of a block in order to specify the 
behavior of the collection if an error  should occur. The a rgument  
anExceptionBIock is evaluated if the object referred to by oldObject is 
not an e lement  of the collection. This block can contain code to deal 
with the error  or simply to ignore it. For example, the expression 

IotteryA remove" 121 ifAbsent: [] 

does nothing when it is determined tha t  121 is not an e lement  of 
IotteryA. 
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The default  behavior  of the message remove: is to report  the  er ror  by 
sending the collection the message error: ' object is not in the col lect ion ' .  
(Recall t ha t  the message error: is specified in the protocol for all Objects 
and is therefore  unders tood by any collection.) 

Enumerating 
Elements 

Included in the instance protocol of collections are several enumera t i on  
messages tha t  support  the abili ty to list the e lements  of a collection and 
to supply each e lement  in the evaluat ion of a block. The basic enumera-  
tion message is do: aBIock. It takes a one-a rgument  block as its argu- 
men t  and evaluates  the block once for each of the e lements  of the 
collection. As an example,  suppose letters is a collection of Characters 
and we want  to know how m a n y  of the Characters are  a or A. 

count ~- 0. 
letters do: [ "each I each asLowercase = = $a 

ifTrue: [count ~- count + 1]] 

Tha t  is, i nc rement  the counter,  count, by 1 for each e lement  tha t  is an 
upper- or lowercase a. The desired result  is the final value of count. We 
can use the equivalence test  (=  = )  r a the r  t han  equali ty since objects 
represent ing  Characters are unique. 

Six enhancemen t s  of the basic enumera t ion  messages are specified in 
the protocol for all collections. The description of these enumera t ion  
messages indicates tha t  "a new collection like the receiver" is created 
for ga ther ing  the resul t ing information.  This phrase  means  t ha t  the 
new collection is an instance of the same class as tha t  of the receiver. 
For example,  if the receiver of the message select: is a Set or an Array, 
then  the response is a new Set or Array, respectively. In the 
Small ta lk-80 system, the only exception is in the implementa t ion  of 
class Interval, which r e tu rns  a new OrderedCollection, not a new Interval, 
from these enumera t i on  messages. The reason for this exception is tha t  
the e lements  of an Interval are created when  the Interval is first created; 
it is n o t  possible to store e lements  into an exist ing Interval. 

Collection instance protocol 

enumerating 
do: aBIock 

select: aBIock 

Evaluate the argument, aBIock, for each of 
the receiver's elements. 
Evaluate the argument, aBIock, for each of 
the receiver's elements. Collect into a new col- 
lection like that of the receiver, only those el- 
ements for which aBIock evaluates to true. 
Answer the new collection. 
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Rejecting 
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reject: aBIock 

collect: aBIock 

detect: aBIock 

Evaluate  the a rgument ,  aBIock, for each of 
the receiver 's elements. Collect into a new col- 
lection like tha t  of the receiver only those ele- 
ments  for which aBIock evaluates to false. 
Answer the new collection. 

Evaluate  the argument ,  aBIock, for each of 
the receiver 's elements.  Answer  a new collec- 
tion like tha t  of the receiver containing the 
values re tu rned  by the block on each evalua- 
tion. 

Evaluate  the argument ,  aBIock, for each of 
the receiver 's  elements.  Answer the first ele- 
ment  for which aBIock evaluates  to true. If 
none evaluates  to true, report  an error. 

detect: aBIock ifNone: exceptionBIock 
Evaluate the argument, aBIock, for each of 
the receiver 's  elements.  Answer the first ele- 
ment  for which aBIock evaluates  to true. If 
none evaluates  to true, evaluate  the argument ,  
exceptionBIock, exceptionBIock must be a 
block requir ing no arguments .  

inject: thisValue into: binaryBIock Evaluate  the  argument ,  binaryBIock, once for 
each e lement  in the receiver. The block has 
two arguments:  the  second is an e lement  from 
the receiver; the first is the value of the previ- 
ous evaluation of the block, s tar t ing with the 
argument ,  thisValue. Answer the final value of 
the block. 

Each enumerat ion message provides a concise way to express a se- 
quence of messages for testing or gather ing information about the ele- 
ments  of a collection. 

We could have determined the number  of occurrences of the character  
a or A using the message select:. 

(letters select: [ :each I each asLowercase = = $a]) size 

That  is, create a collection containing only those elements of letters that  
are a or A, and then answer the size of the resulting collection. 

We could also have determined the number  of occurrences of the 
character  a or A using the message reject:. 

(letters reject: [ :each I each asLowercase , ~  $a]) size 

That  is, create a collection by eliminating those elements of letters that  
are not a or A, and then answer the size of the resulting collection. 

The choice between select: and reject: should be based on the best ex- 
pression of the test. If the selection test is best expressed in terms of ac- 
ceptance, then select: is easier to use; if the selection test is best 
expressed in terms of rejection, then reject: is easier to use. In this ex- 
ample, select: would be preferred. 
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As another  example, assume employees is a collection of workers, 
each of whom responds to the message salary with his or her  gross 
earnings. To make  a collection of all employees whose salary is at  least 
$10,000, use 

o r  

employees select: [ :each I each salary > = 10000] 

employees reject: [ :each i each salary < 10000] 

Collecting 

The result ing collections are the same. The choice of which message to 
use, select: or reject:, depends on the way the p rogrammer  wishes to ex- 
press the criterion "at  least $10,000." 

Suppose we wish to create a new collection in which each e lement  is 
the sa lary  of each worker  in the collection employees. 

employees collect: [ :each t each salary] 

Detecting 

The result ing collection is the same size as employees. Each of the ele- 
ments  ~ of the new collection is the salary of the corresponding element  
of employees. 

Suppose we wish to find one worker  in the collection of employees 
whose salary is grea ter  than  $20,000. T h e  expression 

employees detect: [ :each ! each salary > 20000] 

will answer with tha t  worker,  if one exists. If none exists, then  employ- 
ees  will be sent the message error: "object is not in the collection' .  Jus t  
as in the specification of the removing messages, the p rogrammer  has 
the option to specify the exception behavior for an unsuccessful detect:. 
The next  expression answers one worker  whose salary exceeds $20,000, 
or, if none exists, answers nil. 

Injecting 

employees detect: [ :each I each salary > 20000] ifNone: [nil] 

In the message inject:into:, the first a rgumen t  is the initial value tha t  
takes par t  in determining the result; the second a rgument  is a two-ar- 
gument  block. The first block a rgumen t  names the variable tha t  refers 
to the result; the second block a rgumen t  refers to each element  of the 
collection. An example using this message sums the salaries of the 
workers in the collection employees. 

employees 
inject: 0 
into: [ :subTotal :nextWorker I subTotal + nextWorker salary] 
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where the initial value of 0 increases by the value of the salary for each 
worker in the collection, employees. The  result  is the final value of sub- 
Total. 

By using the message inject:into:, the programmer  can locally specify 
temporary  variable names and can avoid separate initialization of the 
object into which the result  is accumulated. For example, in an earlier 
expression tha t  counted the number  of occurrences of the Characters a 
and A in the collection letters, we used a counter, count. 

count  ,- O. 
letters do: [ :each I each asLowercase  = = $a 

ifTrue: [count ~- count + 1]] 

An al ternat ive approach is to use the message inject:into:. In the exam- 
ple expression, the result  is accumulated in count, count starts  at 0. If 
the next character  (nextElement) is a or A, then add 1 to count; other- 
wise add 0. 

letters inject: 0 
into: [ :count :nextElement  t 

count  + (nextElement  asLowerCase = = $a 
ifTrue: [1] 
ifFalse: [0])] 

Ins tance  
Creat ion 

In the beginning of this chapter, examples were given in which new col- 
lections were expressed as literals. These collections were Arrays and 
Strings. For example, an expression for creating an ar ray  is 

( 'f irst' ' second '  ' third') 

where each element  is a String expressed literally. 
The messages new and new: can be used to create instances of partic- 

ular kinds of collections. In addition, the class protocol for all collec- 
tions supports messages for creating instances with one, two, three, or 
four elements. These messages provide a shor thand notation for creat- 
ing kinds of collections tha t  are not expressible as literals. 

Collection class protocol 

instance creation 
with: anObject Answer an instance of the collection contain- 

ing anObject. 
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with: firstObject with: secondObject 
Answer an instance of the collection contain- 

' ing firstObject and secondObject as elements. 
with: firstObject with: secondObject with: thirdObject 

Answer an instance of the collection contain- 
ing firstObject, secondObject, and thirdObject 
as elements. 

with: firstObject with: secondObject with: thirdObject with: fourthObject 
Answer an instance of the collection, contain- 
ing firstObject, secondObject, thirdObject, and 
fourthObject as the elements. 

For example, Set is a subclass of Collection. To create a new Set with 
three elements that are the Characters s, e, and t, evaluate the expres- 
sion 

Set with: $s with: $e with: $t 

Note tha t  the rationale for providing these four instance creation mes- 
sages, no more and no fewer, is tha t  this number  satisfies the uses to 
which collections are  put in the system itself. 

Conversion 
A mong  
Collection 
Classes 

A complete description and unders tand ing  of the permissible conver- 
sions between kinds of collections depends on a presentat ion of all the 
subclasses of Collection. He re  we simply note tha t  five messages are 
specified in the converting protocol for all collections in order to con- 
vert the receiver to a Bag, a Set, an OrderedCollection, and a 
SortedCollection. These messages are specified in class Collection be- 
cause it is possible to convert any collection into any of these kinds of 
collections. The ordering of elements from any collection whose ele- 
ments  are unordered, when converted to a collection whose elements 
are ordered, is arbitrary.  

Collection instance protocol 

converting 
asBag 

asSet 

asOrderedCollection 

Answer a Bag whose elements are those of the 
receiver. 

Answer a Set whose elements are those of the 
receiver (any duplications are therefore elimi- 
nated). 

Answer an OrderedCollection whose elements 
are those of the receiver (ordering is possibly 
arbitrary). 
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asSortedCol lection 

asSortedCollection: aBIock 

Answer a SortedCollection whose elements are 
those of the receiver, sorted so that each ele- 
ment is less than or equal t o ( <  =) its succes- 
sors. 

Answer a SortedCollection whose elements are 
those of the receiver, sorted according to the 
argument aBIock. 

T h u s  if Iot teryA is a Bag  c o n t a i n i n g  e l e m e n t s  

272 572 852 156 596 272 572 

t h e n  

lotteryA asSet 

is a S e t  c o n t a i n i n g  e l e m e n t s  

852 596 156 572 272 

a n d  

IotteryA asSortedCollection 

is a SortedCollection c o n t a i n i n g  e l e m e n t s  o r d e r e d  ( t h e  f i r s t  e l e m e n t  is 

l i s t e d  as  t h e  l e f t m o s t  one)  

156 272 272 572 572 596 852 
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Hierarchy of the 
Collection Classes 

Class Bag 

Class Set 

Classes Dictionary and IdentityDictionary 

Class SequenceableCollection 

Subclasses of SequenceableCollection 
Class OrderedCollection 
Class SortedCollection 
Class LinkedList 
Class Interval 

Class ArrayedCollection 
Class String 
Class Symbol 

Class MappedCollection 

Summary of Conversions Among  Collections 



Object 

Magnitude 
Character 
Date 
Time 

Number 
Float 
Fraction 
Integer 

LargeNegativelnteger 
LargePositivelnteger 
Smalllnteger 

Process 

Collection 

Semaphore 

Bitmap 
DisplayBitmap 

Stream 
PositionableStream 

ReadStream 
WriteStream 

ReadWriteStream 
ExternalStream 

FileStream 

Random 

File 
FileDirectory 
FilePage 

UndefinedObject 
Boolean 

False 
True 

ProcessorScheduler 
Delay 
SharedQueue 

Behavior 
ClassDescription 

Class 
MetaClass 

Point 
Rectangle 
BitBit 

CharacterScanner 

Pen 

DisplayObject 
DisplayMedium 

Form 
Cursor 
DisplayScreen 

InfiniteForm 
OpaqueForm 
Path 

Arc 
Circle 

.Curve 
Line 
LinearFit 
Spline 



145 
Hierarchy  of the Collection Classes 

Figure 10.1 provides a road map for dist inguishing among the various 
collection classes in the system. Following the choices in the figure is a 
useful way to determine which kind of collection to use in an imple- 
mentat ion.  

One distinction among the classes is whether  or not a collection has 
a well-defined order associated with its elements.  Another  distinction is 
tha t  e lements  of some collections can be accessed through externally-  
known names  or keys. The type of key defines another  way of 
dist inguishing among kinds of collections. Some are integer indices, im- 
plicitly assigned according to the order of the elements; others are ex- 
plicitly assigned objects tha t  serve as lookup keys. 

One unordered collection with external  keys is a Dictionary. Its keys 
are typically instances of String or LookupKey; the comparison for 
matching keys is equali ty (=). Dictionary has a subclass, 
IdentityDictionary, whose external  keys are typically Symbols. Its com- 
parison for matching keys is equivalence (=  =). Elements  of a Bag or a 
Set are unordered and not accessible through external ly-known keys. 
Duplicates are allowed in a Bag, but  not allowed in a Set. 

All ordered collections are kinds of SequenceableCollections. Ele- 
ments  of all SequenceableCollections are accessible through keys tha t  
are integer  indices. Four  subclasses of SequenceableCollection support  
different ways in which to create the ordering of elements.  An addition- 
al distinction among the SequenceableCollection classes is whether  the 
e lements  can be any object or whether  they are restricted to be in- 
stances of a par t icular  kind of object. 

The order of elements  is determined external ly  for 
OrderedCollections, LinkedLists, and ArrayedCollections. For 
OrderedCollection and LinkedList, the programmer's sequence for adding 
and removing elements defines the ordering of the elements. An ele- 
ment  of an OrderedCoilection can be any object, while tha t  of a 
kinkedkist must  be a kind of kink. The different ArrayedCollections in 
the system include Array, String, and ByteArray. The elements  of an 
Array or a RunArray can be any kind of object, e lements of a String or of 
a Text must  be Characters ,  and those of a ByteArray must  be 
Smalllntegers between 0 and 255. 

The order of elements is determined in ternal ly  for Intervals and 
SortedCollections. For an Interval, the ordering is an ar i thmet ic  progres- 
sion tha t  is specified at the t ime the instance is created. For a 
SortedCollection, the ordering is specified by a sorting criterion deter- 
mined by evaluat ing a block known to the collection. Elements  of an 
Interval must  be Numbers; elements  of a SortedCollection can be any 
kind of object. 

In addition to the collection classes already mentioned, 
MappedCollection is a Collection tha t  represents  an indirect access path 
to a collection whose elements are accessible via external  keys. The 
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mapping from one set of external keys to the collection is determined at 
the time the MappedCollection is created. 

The remainder of this chapter explores each of the collection 
subclasses, describing any additions to the message protocols and pro- 
viding simple examples. 

Class Bag A Bag is the simplest kind of collection. It represents collections whose 
elements are unordered and have no external keys. It is a subclass of 
Collection. Since its instances do not have external keys, they cannot re- 
spond to the messages at: and at:put:. The message size answers the to- 
tal number of elements in the collection. 

A Bag is nothing more than a group of elements that behaves accord- 
ing to the protocol of all collections. The general description of collec- 
tions does not restrict the number of occurrences of an element in an 
individual collection. Class Bag emphasizes this generality by specifying 
an additional message for adding elements. 

Bag instance protocol 

adding 
add: newObject withOccurrences: anlnteger 

Include the argument, newObject, as an ele- 
ment of the receiver, an lnteger number of 
times. Answer the argument, newObject. 

Consider the example class Product which represents a grocery item 
and its price. A new Product may be created using the message of: name 
at: price, and the price of an instance is accessible by sending it the 
message price. Filling one's grocery bag may be expressed by 

sack ~- Bag new. 
sack add: (Product of: #steak at: 5.80). 
sack add: (Product of: #potatoes at: 0.50) withOccurrences: 6. 
sack add: (Product of: .#carrots at: 0.10) withOccurrences: 4. 
sack add: (Product of: #mi lk  at: 2.20) 

Then the grocery bill is determined by the expression 

amount ~ 0. 
sack do: [ :eachProduct I amount ~- amount + eachProduct price] 

o r  
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sack inject: 0 
into: [ :amount :eachProduct I amount + eachProduct price] 

to be $11.40. Note tha t  the messages add:, do:, and inject:into: to a Bag 
are inheri ted from its superclass, Collection. 

A Bag is unordered, so that ,  a l though enumerat ion  messages are sup- 
ported, the p rogrammer  cannot depend on the order in which elements 
are enumerated.  

Class Set Class Set represents collections whose elements are unordered and have 
no external  keys. Its instances cannot respond to the messages at: and 
at:put:. A Set is like a Bag except tha t  its elements cannot be duplicat- 
ed. The adding messages add the element  only if it is not already in the 
collection. Class Set is a subclass of class Collection. 

Classes 
Dictionary and 
i dentityDictionary 

Class Dictionary represents a set of associations between keys and val- 
ues. The elements of a Dictionary are instances of class Association, a 
simple data s t ructure  for storing and retrieving the members  of the 
key-value pair. 

An al ternat ive way of th inking about a Dictionary is tha t  it is a col- 
lection whose elements are unordered but have explicitly assigned keys 
or names. From this perspective, the elements of a Dictionary are arbi- 
t ra ry  objects (values) with external  keys. These al ternat ive ways of 
th inking about a Dictionary are reflected in the message protocol of the 
class. Messages inheri ted from class Collection--includes:, do:, and other 
enumera t ion  messages w are applied to the values of the Dictionary. 
That  is, these messages refer to the values of each association in the 
Dictionary, ra ther  than  to the keys or to the associations themselves. 

Messages inheri ted from class Object--at :  and at :put :mare applied to 
the keys of the Dictionary. The at: and at:put: paradigm is extended for 
the associations and the values by adding messages associationAt: and 
keyAtValue:. In order to provide additional control when looking up ele- 
ments  in a Dictionary, the message at:ifAbsent: is provided; using it, the 
p rogrammer  can specify the action to take if the element whose key is 
the first a rgument  is not found. The inherited message at: reports an 
error if the key is not found. 
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accessing 
at: key ifAbsent: aBlock Answer the value named by the argument, 

key. If key is not found, answer the result of 
evaluating aBIock. 

associationAt: key Answer the association named by the argu- 
ment, key. If key is not found, report an error. 

associat ionAt:  key ifAbsent: aBIock 
Answer the association named by the argu- 
ment, key. If key is not found, answer the re- 
su l t  of evaluating aBIock. 

keyAtValue: value Answer the name for the argument, value. If 
there is no such value, answer nil. Since val- 
ues are not necessarily unique, answer the 
name for the first one encountered in the 
search. 

keyAtValue: value ifAbsent: exceptionBIock 
Answer the key for the argument, value. If 
there is no such value, answer the result of 
evaluating exceptionBIock. 

keys Answer a Set containing the receiver's keys. 

va lues  Answer a Bag containing the receiver's values 
(includes any duplications). 

As an example of the use of a Dictionary, suppose opposites is a Diction- 
ary of word Symbols and their opposites. 

opposites ~- Dictionary new. 
opposites at: #ho t  put: #cold. 
opposites at: #push put: .#pull. 
opposites at: #stop put: #go.  
opposites at: #come put: ~go  

A l t e r n a t i v e l y ,  a n  e l e m e n t  c a n  be  a d d e d  u s i n g  t h e  m e s s a g e  add" b y  c r e -  

a t i n g  a n  A s s o c i a t i o n  a s  t h e  a r g u m e n t .  

opposites add: (Association key: ~front value: #back). 
opposites add: (Association key: # top  value: #bottom) 

The Dictionary, opposites, now consists of 

key value 

hot cold 
push pull 
stop go 
come go 
front back 
top bottom 
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We can  use the  tes t ing  protocol i nhe r i t ed  f rom class Collection to tes t  
the  va lues  in the  Dictionary. Notice t h a t  includes: tests  the  inclusion of a 
value,  not  a key. 

expression result 

opposites size 6 
opposites includes: .#cold true 
opposites includes: #hot false 
opposites occurrencesOf: :#go 2 
opposites at: ¢#stop put: #start start 

The  four th  e x a m p l e  indica tes  tha t ,  a l t hough  a key can a p p e a r  only once 
in a Dictionary, a va lue  can be associa ted wi th  any  n u m b e r  of keys. The  
last  e x a m p l e  re-associa tes  the  key # s t o p  wi th  a new value,  # s t a r t .  Ad- 
di t ional  messages  a re  provided in class Dictionary for tes t ing  associa- 
t ions and  keys. 

Dictionary instance protocol 

dictionary testing 
includesAssociation: anAssociation 

Answer whether the receiver has an element 
(association between a key and a value) that is 
equal to the argument, anAssociation. 

includesKey: key Answer whether the receiver has a key equal 
to the argument, key. 

T h e n  we can t ry  

expression result 

opposites true 
includesAssociation: 

(Association 
key: #come 
value: #go) 

opposites includesKey: #hot true 
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Similar ly ,  the  r emov ing  protocol specified in class Collection is ex tended  
to provide access by re fe rence  to associat ions  a n d  keys, as well  as to 
values.  However ,  the  message  remove: itself is not  a p p r o p r i a t e  for a Dic- 
tionary; in r emov ing  an  e lement ,  m e n t i o n  of the  key  is required.  

Dictionary instance protocol 

dictionary removing 
removeAssociation: anAssociation 

Remove the key and value association, 
anAssociation, from the receiver. Answer 
anAssociation. 

removeKey: key Remove key (and its associated value) from 
the receiver. If key is not in the receiver, re- 
port an error. Otherwise, answer the value as- 
sociated with key. 

removeKey: key ifAbsent: aBIock Remove key (and its associated value) from 
the receiver. If key is not in the receiver, an- 
swer the result of evaluating aBIock. Other- 
wise, answer the value named by key. 

For e x a m p l e  

expression result 

opposites 
removeAssociation: 

(Association 
key: #top 
value: #bottom) 

opposites removeKey: ,#hot 

The association whose 
key is # top  and val- 
ue is :#:bottom. oppo- 
sites has one less 
element. 

The association whose 

opposites 
removeKey: #cold 
ifAbsent: [opposites 

at: :# cold 
put: #hot] 

key is #ho t  and 
whose value is #cold. 
This association is 
removed from opposites. 
hot 

As a resu l t  of the  las t  example ,  the  associa t ion of # c o l d  wi th  :#:hot is 
now an e l e m e n t  of opposi tes .  

The  message  do: eva lua te s  its a r g u m e n t ,  a block, for each of the  Dic, 
t ionary ' s  values.  The  collection e n u m e r a t i n g  protocol, i nhe r i t ed  f rom 
class Collection, is aga in  ex tended  in order  to provide messages  for enu- 
m e r a t i n g  over the  associat ions  and  the  keys. Messages  suppor t ing  uses 
of reject: and  inject:into: a re  not  provided. 
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Dictionary instance protocol 

dictionary enumerating 
associationsDo: aBIock 

keysDo: aBIock 

Evaluate aBIock for each of the receiver's 
key/value associations. 

Evaluate aBIock for each of the receiver's 
keys. 

We thus have three possible ways of enumera t ing  over a Dictionary. 
Suppose newWords is a Set of vocabulary words tha t  a child has not yet 
learned. Any word in opposites is now part  of the child's repertoire and 
can be removed from newWords. Evaluat ing the following two expres- 
sions removes these words (the first removes the values, the second the 
keys). 

opposites do: [ :word I newWords remove: word ifAbsent: []]. 
opposites keysDo: [ :word I newWords remove: word ifAbsent: []] 

Note tha t  if a word from opposites is not in newWords, then nothing 
(no error report) happens. Alternatively, one expression, enumera t ing  
the Associations, can be used. 

opposites associationsDo: 
[ :each 1 

newWords remove: each key ifAbsent: []. 
newWords remove: each value ifAbsent: []] 

The accessing messages keys and values can be used to obtain collec- 
tions of the words in the opposites dictionary. Assuming the evaluation 
of all previous example expressions, then 

opposites keys 

re turns  the Set whose elements are 

push come front stop cold 

and 

opposites values 

re turns  the Bag whose elements are 

pull go back start hot 
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Class 
Sequenceable- 
Collection 

Class  S e q u e n c e a b t e C o l l e c t i o n  r e p r e s e n t s  co l lec t ions  w h o s e  e l e m e n t s  a r e  
o r d e r e d  a n d  a r e  e x t e r n a l l y  n a m e d  by  i n t e g e r  indices.  
S e q u e n c e a b l e C o l l e c t i o n  is a subc l a s s  of Collect ion a n d  p rov ides  t h e  pro-  
tocol  for  access ing ,  copying ,  a n d  e n u m e r a t i n g  e l e m e n t s  of a co l lec t ion  

w h e n  it  is k n o w n  t h a t  t h e r e  is a n  o r d e r i n g  a s soc i a t ed  w i t h  t h e  ele- 
m e n t s .  S ince  t h e  e l e m e n t s  a r e  o r d e r e d ,  t h e r e  is a we l l -de f ined  first a n d  
last e l e m e n t  of t h e  col lec t ion.  I t  is poss ib le  to a sk  t h e  i n d e x  of a p a r t i c u -  

l a r  e l e m e n t  (indexOf:) a n d  t h e  i n d e x  of t h e  b e g i n n i n g  of a s e q u e n c e  of 

e l e m e n t s  w i t h i n  t h e  co l lec t ion  ( indexOfSubCoilect ion:s tar t ingAt:) .  All  col- 
l ec t ions  i n h e r i t  m e s s a g e s  f r o m  class  Objec t  for  a cce s s ing  i n d e x e d  va r i -  

ables .  As de sc r ibed  in C h a p t e r  6, t h e s e  a r e  at:, at:put:, a n d  size. In  
add i t ion ,  S e q u e n c e a b l e C o l l e c t i o n s  s u p p o r t  p u t t i n g  a n  object  a t  al l  posi- 
t i ons  n a m e d  by  t h e  e l e m e n t s  of a Collect ion (atAil:put:), a n d  p u t t i n g  a n  
ob jec t  a t  a l l  pos i t ions  in t h e  s e q u e n c e  (atAIIPut:). S e q u e n c e s  of e l e m e n t s  
w i t h i n  t h e  co l lec t ion  can  be r e p l a c e d  by  t h e  e l e m e n t s  of a n o t h e r  collec- 
t ion  ( replaceFrom:to:wi th:  a n d  replaceFrom:to:with:s tar t ingAt:) .  

SequenceableCollection instance protocol 

accessing 
atAIl: aCollection put: anObject Associate each element of the argument, 

aCollection (an Integer or other external key), 
with the second argument, anObject. 

atAI1Put: anObject Put the argument, anObject, as every one of 
the receiver's elements. 

first Answer the first element of the receiver. Re- 
port an error if the receiver contains no ele- 
ments. 

last Answer the last element of the receiver. Re- 
port an error if the receiver contains no ele- 
ments. 

indexOf: anElement Answer the first index of the  argument, 
anElement, within the receiver. If the receiver 
does not contain anElement, answer 0. 

indexOf: anElement ifAbsent: exceptionBlock 
Answer the first index of the argument, 
anElement, within the receiver. If the receiver 
does not contain anElement, answer the result 
of evaluating the argument, exceptionBIock. 

indexOfSubCollection: aSubCollection startingAt: anlndex 
If the elements of the argument, 
aSubCollection, appear, in order, in the receiv- 
er, then answer the index of the first element 
of the first such occurrence. If no such match 
is found, answer 0. 

indexOfSubCollection: aSubCollection startingAt: anlndex 
ifAbsent: exceptionBIock Answer the index of the receiver's first ele- 

ment, such that that element equals the first 
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element of the argument, aSubCollection, and 
the next elements equal the rest of the ele- 
ments of aSubCollection. Begin the search of 
the receiver at the element whose index is the 
argument, anlndex. If no such match is found, 
answer the result of evaluating the argument, 
exceptionBIock. 

replaceFrom: start to: stop with: replacementCollection 
Associate each index between start and stop 
with the elements of the argument, 
replacementCollection. Answer the receiver. 
The number of elements in 
replacementCollection must equal stop-start + 1. 

replaceFrom: start to: stop with: replacementCollection startingAt: repStart 
Associate each index between start and stop 
with the elements  of the argument ,  
replacementCollection, starting at the element 
of replacementCollection whose index is 
repStart. Answer the receiver. No range 
checks are  performed, except if the receiver is 
the same as replacementCollection but repStart 
is not 1, then an error reporting that indices 
are out of range will occur. 

E x a m p l e s  of u s ing  t h e s e  access ing  messages ,  u s ing  i n s t a n c e s  of String, 

a r e  

expression result 

• aaaaaaaaaa" size 
' aaaaaaaaaa ' atAIl: (2 to: 10 by: 2) put: $b 
'aaaaaaaaaa" atAllPut: $b 

• This string • first 

' This string' last 

• ABCDEFGHIJKLMNOP' indexOf: $F 

'ABCDEFGHIJKLMNOP'  indexOf: $M ifAbsent: [0] 

'ABCDEFGHIJKLMNOP'  indexOf: $Z ifAbsent: [0] 

'The cow jumped'  indexOfSubCoilection: ' cow'  
startingAt: 1 

'The cow jumped" replaceFrom: 5 to: 7 with: •dog '  
'The cow jumped" replaceFrom: 5 to: 7 

with: ' the spoon ran'  startingAt: 5 

10 

' ababababab ' 

• bbbbbbbbbb ' 

ST 
$g 

6 

13 

0 

5 

• The dog jumped'  
• The spo jumped'  

A n y  of t h e s e  e x a m p l e s  could  be s i m i l a r l y  ca r r i ed  ou t  w i t h  an  i n s t a n c e  
of a n y  subc lass  of Sequenceab l eCo l l ec t i on ,  for example ,  w i t h  an  Array. 

Fo r  t h e  Array, @(The brown jug), r e p l a c e m e n t  of brown by black is car- 

r ied  ou t  by e v a l u a t i n g  t h e  exp re s s ion  

# ( T h e  brown jug) rep laceFrom:  2 to: 2 with: # ( b l a c k )  
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Notice  t h a t  the  last  a r g u m e n t  m u s t  be an  Array as well.  And not ice t h a t  

the  r e p l a c e m e n t  messages  do not  c h a n g e  the  size of t he  or ig ina l  collec- 
t ion ( the receiver) ,  a l t h o u g h  they  do a l t e r  t he  collection. It  m a y  be 
p r e f e r r a b l e  to p re se rve  the  o r ig ina l  by c r e a t i n g  a copy. The  copying pro- 
tocol of Sequenceab leCo l l ec t ions  suppor t s  copying a sequence  of ele- 
m e n t s  in the  collection, copying the  e n t i r e  collect ion wi th  p a r t  of it 
replaced,  copying t he  e n t i r e  col lect ion wi th  an  e l e m e n t  deleted,  or copy- 
ing t he  e n t i r e  col lect ion wi th  one or m o r e  e l e m e n t s  conca tena ted .  

SequenceableCollection instance protocol 

copying 
, aSequenceableCollection 

copyFrom: start to: stop 

copyReplaceAIl: oldSubCollection 

This is the concatenation operation. Answer a 
copy of the receiver with each element of the 
argument, aSequenceableCollection, added, in 
order. 

Answer a copy of a subset of the receiver, 
starting from element at index start until ele- 
ment at index stop. 
with: newSubCoilection 
Answer a copy of the receiver in which all oc- 
currences of oldSubCollection have been re- 
placed by newSubCollection. 

copyReplaceFrom: start to: stop with: replacementCollection 
Answer a copy of the receiver satisfying the 
following conditions: If stop is less than start, 
then this is an insertion; stop should be exact- 
ly start-1, start = 1 means insert before the 
first character, start = size + 1 means ap- 
pend after last character. Otherwise, this is a 
replacement; start and stop have to be within 
the receiver's bounds. 

copyWith: newElement Answer a copy of the receiver that is 1 bigger 
than the receiver and has newElement as the 
last element. 

copyWithout: oldElement Answer a copy of the receiver in which all oc- 
currences of oldElement have been left out. 

Using the replace and copy messages, a simple text  editor can be de- 
vised. The Smal] ta lk-80 system includes class String as wel l  as-class 
Text, the  l a t t e r  p rovid ing  suppor t  for assoc ia t ing  the  c h a r a c t e r s  in the  
String wi th  font  or e m p h a s i s  changes  in order  to mix  c h a r a c t e r  fonts, 
bold, italic, and  under l ine .  The  m e s s a g e  protocol  for Text is t h a t  of a 
Sequenceab leCol lec t ion  wi th  add i t iona l  protocol  for s e t t i ng  the  e m p h a -  
sis codes. For  i l l u s t r a t ion  purposes ,  we use an  i n s t ance  of class String, 
bu t  r e m i n d  the  r e a d e r  of t he  ana logous  app l ica t ion  of ed i t ing  messages  
for an  i n s t ance  of class Text. A s s u m e  t h a t  line is in i t ia l ly  an  e m p t y  
s t r i ng  

line ~- String new: 0 
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Then 

expression result 

line ~- line copyReplaceFrom: 1 
to: 0 
with: ' th is  is the first line tril" 

line ~- line copyReplaceAIl: ' tr i l '  
with: ' tr ial '  

line ~ line copyReplaceFrom: 
(line s ize+ 1) 

to: (line size) 
with: "and so on '  

line indexOfSubCollection: ' trial" 
startingAt: 1 

line ~- line copyReplaceFrom: 29 
to: 28 
with: ' ' 

' th is is the first line tr i l '  

' th is is the first line tr ial '  

' th is is the first line 
trialand so on '  

24 

' th is is the first line trial 
and so on '  

The last two messages of the copying protocol given above are useful in 
obtaining copies of an Array wi th  or wi thout  an element.  For example  

expression result 

-~(one two three) 
copyWith: .#four 

@(one two three) 
copyWithout: .#:two 

(one two three four) 

(one three) 

Because the e lements  of a SequenceableCollection are ordered, enu- 
mera t ion  is in order, s ta r t ing  wi th  the first e lement  and tak ing  each 
successive e lement  unt i l  the last. Reverse enumera t ion  is also possible, 
using the message reverseDo: aBIock. E n u m e r a t i o n  of two 
SequenceableCollect ions can be done together  so tha t  pairs of ele- 
ments,  one from each collection, can be used in evaluat ing  a block. 

SequenceableCollection instance protocol 

enumerating 
findFirst: aBIock Evaluate aBIock with each of the receiver's el- 

ements as the argument. Answer the index of 
the first element for which the argument, 
aBIock evaluates to true. 
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findLast: aBIock Evaluate aBIock with each of the receiver's el- 
ements as the argument. Answer the index of 
the last element for which the argument, 
aBIock evaluates to true. 

reverseDo: aBIock Evaluate aBIock with each of the receiver's el- 
ements as the argument, starting with the 
last element and taking each in sequence up 
to the first. For SequenceableCollections, this 
is the reverse of the enumeration for do:. 
aBIock is a one-argument block. 

with: aSequenceableCollection do: aBIock 
Evaluate aBIock with each of the receiver's el- 
ements along with the corresponding element 
from aSequenceableCollection. 
aSequenceableCollection must be the same 
size as the receiver, and aBIock must be a two- 
argument block. 

T h e  fo l lowing  e x p r e s s i o n s  c r e a t e  t h e  Dictionary, oppos i t e s ,  w h i c h  was  in- 

t r o d u c e d  in a n  e a r l i e r  e x a m p l e .  

opposites ,- Dictionary new. 
-~'(come cold front hot push stop) 

with: @(go hot back cold pull start) 
do: [ :key :value t opposites at: key put: value] 

T h e  Dictionary now has  six a s s o c i a t i o n s  as i ts  e l e m e n t s .  
A n y  S e q u e n c e a b l e C o l l e c t i o n  can  be  c o n v e r t e d  to a n  Array or  a 

MappedCoi lec t ion .  The  m e s s a g e s  a r e  asArray  a n d  mappedBy :  

a S e q u e n c e a b l e C o l l e c t i o n .  

S u b c l a s s e s  of 
Sequenceable- 
Collection 

Class 
OrderedCollection 

Subclasses of SequenceableCollection are OrderedCollection, LinkedList, 
Interval, and MappedCollection. ArrayedCollection is a subclass represent- 
ing a co l lec t ion  of e l e m e n t s  w i t h  a f ixed r a n g e  of i n t e g e r s  as e x t e r n a l  
keys .  Subc l a s se s  of ArrayedCol lec t ion  are ,  for  e x a m p l e ,  Array a n d  String. 

OrderedCollections a r e  o r d e r e d  by  t h e  s e q u e n c e  in w h i c h  objec ts  a r e  
a d d e d  a n d  r e m o v e d  f rom t h e m .  T h e  e l e m e n t s  a r e  access ib le  by  e x t e r n a l  

keys  t h a t  a r e  indices.  T h e  access ing ,  add ing ,  a n d  r e m o v i n g  p ro toco l s  a r e  
a u g m e n t e d  to r e f e r  to t h e  f i r s t  a n d  las t  e l e m e n t s ,  a n d  to e l e m e n t s  pre-  

ced ing  or  s u c c e e d i n g  o t h e r  e l e m e n t s .  
Orde redCo l l ec t ions  can  ac t  as stacks or queues. A s t a c k  is a s equen-  

t ia l  l ist  for w h i c h  a l l  a d d i t i o n s  a n d  de l e t i ons  a r e  m a d e  a t  one  e n d  of t h e  
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l is t  (ca l led  e i t h e r  t h e  " r e a r "  or  t h e  " f r o n t " )  of t h e  list.  I t  is o f t en  ca l l ed  

a last-in first-out queue .  

usual vocabulary 
©rderedCollection 
message 

push newObject addLast: newObject 
pop removeLast 
top last 
empty isEmpty 

A q u e u e  is a s e q u e n t i a l  l i s t  for w h i c h  a l l  a d d i t i o n s  a r e  m a d e  a t  one  end  

of t h e  l i s t  ( the  " r e a r " ) ,  b u t  a l l  d e l e t i o n s  a r e  m a d e  f rom t h e  o t h e r  end  

( the  " f ron t" ) .  I t  is o f t en  ca l l ed  a first-in first-out queue .  

usual vocabulary 
OrderedCollection 
message 

add newObject addLast: newObject 
delete removeFirst 
front first 
empty isEmpty 

T h e  m e s s a g e  add:  to a n  Orde redCo l l ec t i on  m e a n s  " a d d  t h e  e l e m e n t  as 

t h e  l a s t  m e m b e r  of t h e  c o l l e c t i o n "  a n d  remove :  m e a n s  " r e m o v e  t h e  

a r g u m e n t  as a n  e l e m e n t . "  T h e  m e s s a g e  p ro toco l  for Orde redCo l l ec t i ons ,  

in a d d i t i o n  to t h a t  i n h e r i t e d  f r o m  c lasses  Col lect ion a n d  

S e q u e n c e a b l e C o l l e c t i o n ,  follows. 

OrderedCollection instance protocol 

accessing 
after: oldObject 

before: oldObject 

adding 
add: newObject after: oldObject 

Answer the element after old0bject in the re- 
ceiver. If the receiver does not contain 
old0bject or if the receiver contains no ele- 
ments after oldObject, report an error. 

Answer the element before oldObject in the 
receiver. If the receiver does not contain 
oldObject or if the receiver contains no ele- 
ments before oldObject, report an error. 

Add the argument, new0bject, as an element 
of the receiver. Put it in the sequence just 
succeeding oldObject. Answer newObject. If 
oldObject is not found, then report an error. 
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Class 
S o r t e d C o l l e c t i o n  

add: newObject before: oldObject 

addAIIFirst: anOrderedCollection 

addAIILast: anOrderedCollection 

addFirst: newObject 

addLast: newObject 

removing 
removeFirst 

removeLast 

Add the argument, newObject, as an element 
of the receiver. Put it in the sequence just 
preceding oldObject. Answer newObject. If 
oldObject is not found, then report an error. 

Add each element of the argument, 
anOrderedCollection, at the beginning of the 
receiver. Answer anOrderedCollection. 

Add each element of the argument, 
anOrderedCollection, to the end of the receiv- 
er. Answer anOrderedCollection. 

Add the argument, newObject, to the begin- 
ning of the receiver. Answer newObject. 

Add the argument, newObject, to the end of 
the receiver. Answer newObject. 

Remove the first element of the receiver and 
answer it. If the receiver is empty, report an 
error. 

Remove the last element of the receiver and 
answer it. If the receiver is empty, report an 
error. 

Class SortedCollection is a subclass of OrderedCollection. The elements 
in a SortedCollection are ordered by a function of two elements. The 
function is represented by a two-argument block called the sort block. 
I t  is possible to add an element only wi th  the message add:; messages 
such as addLast: that  allow the programmer to specify the order of in- 
serting are disallowed for SortedCollections. 

An instance of class SortedCollection can be created by sending 
SortedCollection the message sortBIock:. The argument to this message 
is a block wi th two-arguments, for example, 

SortedCollection sortBIock: [ :a :b i a < = b ] 

T h i s  p a r t i c u l a r  b lock  is t h e  d e f a u l t  s o r t i n g  f u n c t i o n  w h e n  a n  i n s t a n c e  is 

c r e a t e d  s i m p l y  by  s e n d i n g  Sor t edCo l l ec t ion  t h e  m e s s a g e  new. T h u s  ex- 

a m p l e s  of t h e  four  w a y s  to c r e a t e  a So r t edCo l l ec t ion  a r e  

SortedCoilection new 
SortedCollection sortBIock: [ :a :b I a > b ] 
anyCollection asSortedCollection 
anyCollection asSortedCollection: [ :a :b I a > b ] 

I t  is poss ib le  to d e t e r m i n e  t h e  b lock  a n d  to r e s e t  t h e  b lock  u s i n g  two  ad- 

d i t i o n a l  acces s ing  m e s s a g e s  to i n s t a n c e s  of Sor tedCol lec t ion .  W h e n  t h e  

b lock  is c h a n g e d ,  t h e  e l e m e n t s  of t h e  co l l ec t ion  are ,  of course ,  r e - so r t ed .  

N o t i c e  t h a t  t h e  s a m e  m e s s a g e  is Sent  to t h e  c lass  i tself  (sortBlock:)  to 
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c r ea t e  an  i n s t ance  wi th  a p a r t i c u l a r  so r t ing  cr i te r ion ,  and  to an  in- 

s t ance  to change  its so r t ing  cr i te r ion .  

SortedCollection class protocol 

instance creation 
sortBIock: aBIock Answer an instance of SortedCollection such 

that its elements will be sorted according to 
the criterion specified in the argument, aBIock. 

SortedCollection instance protocol 

accessing 
sortBIock 

sortBlock: aBIock 

Answer the block that is the criterion for sort- 
ing elements of the receiver. 
Make the argument, aBIock, be the criterion 
for ordering elements of the receiver. 

Suppose  we wish to m a i n t a i n  an  a lphabe t i ca l  list of the  n a m e s  of chil- 

d ren  in a c lassroom.  

children ~- SortedCollection new 

The  in i t ia l  so r t ing  c r i t e r ion  is t he  de fau l t  block [ :a "b I a < = b]. The  
e l e m e n t s  of t he  collect ion can be Strings or Symbols  because ,  as we 
shal l  show presen t ly ,  these  k inds  of objects respond  to the  compar i son  

messages  < ,  > ,  < = ,  and  > = .  

expression result 

children add: :#:Joe Joe 
children add: .:.#:Bill Bill 
children add: #Alice Alice 
children SortedCollection 

(Alice Bill Joe) 
children add: :/¢Sam Sam 
children SortedCollection 

sortBIock: [ :a :b I a < b] (Sam Joe Bill Alice) 
children add: #Henrietta Henrietta 
children SortedCollection 

(Sam Joe Henrietta 
Bill Alice) 

The s ix th  message  in the  e x a m p l e  r eve r sed  the  o rde r  in which  e l e m e n t s  

a re  s to red  in the  collection, children. 
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LinkedList is another subclass of SequenceableCollection whose elements 
a re  expl ic i t ly  o rde red  by the  sequence  in which  objects a r e  added  and  

r e m o v e d  f rom them.  L i k e  OrderedCollect ion,  the  e l e m e n t s  of a 
LinkedList can be r e f e r r e d  to by e x t e r n a l  keys  t h a t  a r e  indices. Un l ike  

OrderedCollect ion,  w h e r e  t he  e l e m e n t s  m a y  be any  object, t he  e l e m e n t s  
of a LinkedList a r e  homogeneous ;  each  m u s t  be an  in s t ance  of class Link 
or of a subclass  of Link. 

A Link is a record  of a r e f e r ence  to a n o t h e r  Link. I ts  m e s s a g e  protocol 
consists  of t h r e e  messages .  The  s a m e  m e s s a g e  (nextLink:) is used to cre- 
a t e  an  i n s t ance  of Link wi th  a p a r t i c u l a r  re fe rence ,  and  to change  the  
r e f e r ence  of an  ins tance .  

LinkedList class protocol 

instance creation 
nextLink: aLink Create an instance of Link that references the 

argument, aLink. 

LinkedList instance protocol 

accessing 
nextLink 
nextLink: aLink 

Answer the receiver's reference. 
Set the receiver's reference to be the argu- 
ment, aLink. 

Since class Link does not  provide  a way to record  a r e f e rence  to the  ac- 
tua l  e l e m e n t  of the  collection,  it is t r e a t e d  as an  a b s t r a c t  class. T h a t  is, 
i n s t ances  of it a re  not  c rea ted .  R a t h e r ,  subclasses  a re  def ined t h a t  pro- 
vide the  m e c h a n i s m s  for s to r ing  one or m o r e  e l emen t s ,  and  ins t ances  of 
t he  subclasses  a re  c rea ted .  

Since LinkedList is a subclass  of Sequenceab leCol lec t ion ,  its ins tances  
can re spond  to t h e  accessing,  adding,  r emoving ,  and  e n u m e r a t i n g  mes-  
sages  def ined for all collections. A d d i t i o n a l  protocol  for LinkedList con- 
sists of 

LinkedList instance protocol 

adding 
addFirst: aLink 

addLast: aLink 

removing 
removeFirst 

removeLast 

Add aLink to the beginning of the receiver's 
list. Answer aLink. 
Add aLink to the end of the receiver's list. An- 
swer aLink. 

Remove the receiver's first element and answer 
it. If the receiver is empty, report an error. 

Remove the receiver's last element and answer 
it. If the receiver is empty, report an error. 
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An example  of a subclass of Link in the Smal l ta lk-80  sys tem is class 
Process.  Class Semaphore  is a subclass of LinkedList. These two classes 
are  discussed in Chap te r  15, which is about  mul t ip le  independent  pro- 
cesses in the system. 

The following is an example  of the  use of LinkedList. Link does not 
provide ins tance  informat ion  o ther  t han  a reference to ano the r  Link. So, 
as an  example ,  a ssume tha t  there  is a subclass of Link n a m e d  Entry. En- 
try adds the abi l i ty  to store one object. The ins tance  creat ion message 
for an Entry is for: anObject, and its accessing message is element.  

class name Entry 
superclass Link 
instance variable names e I e m e nt 
class methods 

instance creation 

for: anObject 
t self new setElement: anObject 

instance methods 

accessing 
element 

telement 
printing 

print,On= aStream 
aStream nextPutAIl: ' Entry for: ' ,  element printString 

private 
setElement: anObject 

element ~- anObject 

The  classes L inkedList  and Entry can t hen  be used as  fo l lows.  

expression result 

list ~- LinkedList new 
list add: (Entry for: 2) 
list add: (Entry for: 4) 
list addLast: (Entry for: 5) 
list addFirst: (Entry for: 1) 
list 

list isEmpty 
list size 

LinkedList 0 
Entry for: 2 
Entry for: 4 

Entry for: 5 
Entry for: 1 
LinkedList (Entry for: 1 

Entry for: 2 Entry 
for: 4 Entry for: 5) 

false 
4 
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list inject: 0 12 
into: [ :value :each I 

(each element) 
+ value] 

list last Entry for: 5 
list first Entry for: 1 
list remove: (Entry for: 4) Entry for: 4 
list removeF i rs t  Entry for: 1 
list removeLast Entry for: 5 
list first = = list last true 

Class I n t e r v a l  
Another  kind of SequenceableCollection is a collection of numbers  rep- 
resenting a mathemat ica l  progression. For example, the collection 
might  consist of all the integers in the interval  from 1 to 100; or it 
might  consist of all even integers in the interval  from 1 to 100. Or the 
collection might  consist of a series of numbers  where each additional 
number  in the series is computed from the previous one by mult iplying 
it by 2. The series might  s tar t  with 1 and end w i t h t h e  last number  
tha t  is less than  or equal to 100. This would be the sequence 1, 2, 4, 8, 
16, 32, 64. 

A mathemat ica l  progression is characterized by a first number,  a 
limit (maximum or minimum) for the last computed number,  and a 
method for computing each succeeding number.  The limit could be posi- 
tive or negative infinity. An ar i thmetic  progression is one in which the 
computat ion method is simply the addition of an increment.  For exam- 
ple, it could be a series of numbers  where each additional number  in 
the series is computed from the previous one by adding a negative 20. 
The series might  s tar t  with 100 and end with the last number  tha t  is 
greater  than  or equal to 1. This would be the sequence 100, 80, 60, 
40, 20. 

In the Smalltalk-80 system, the class of collections called Intervals 
consists of finite ar i thmetic  progressions. In addition to those messages 
inheri ted from its superclasses SequenceableCollection and Collection, 
class Interval supports messages for initialization and for accessing those 
values tha t  characterize the instance. New elements cannot be added or 
removed from an Interval .  

The class protocol of Interval consists of the following messages for 
creating instances. 

Interval class protocol 

instance creation 
from: startlnteger to: stoplnteger Answer an instance of class Interval, starting 

with the number startlnteger, ending with the 
number stoplnteger, and using the increment 
1 to compute each successive element. 
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from: startlnteger to: stoplnteger by: steplnteger 
Answer an instance of Interval, starting with 
the number startlnteger, ending with the num- 
ber stoplnteger, and using the increment 
steplnteger to compute each successive ele- 
ment. 

All messages appropriate to SequenceableCollections can be sent to an 
Interval. In addition, the instance protocol of Interval provides a message 
for accessing the increment  of the ar i thmetic  progression (increment). 

Class Number supports two messages tha t  provide a shor thand for 
expressing new Intervals--to: stop and to" stop by: step. Thus to create 
an Interval of all integers from 1 to 10, evaluate either 

Interval from: 1 to: 10 

o r  

1 to: 10 

To create an Interval s tar t ing with 100 and ending with 1, adding a neg- 
ative 20 each time, evaluate either 

Interval from: 100 to: 1 b y : - 2 0  

o r  

lOOto: 1 by: - 2 0  

This is the sequence 100, 80, 60, 40, 20. The Interval need not consist of 
Integers-- to  create an Interval between 10 and 40, incrementing by 0.2, 
evaluate either 

Interval from" 10 to: 40 by: 0.2 

o r  

10 tO" 40 by: 0.2 

This is the sequence 10, 10.2, 10.4, 10.6, 10.8, 11.0 .... and so on. 
Note tha t  we could provide the more general  case of a progression by 

replacing the numeric value of step by a block. When a new element is 
to be computed, it would be done by sending the current  value as the 
a rgument  of the message value: to the block. The computations of size 
and do: would have to take this method of computation into account. 
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The message do: to an Interval provides the function of the usual for- 
loop in a programming language. The Algol s tatement  

for i "= 10 step 6 unt i l  100 do 
begin 
< statements > 
end 

is represented by 

(10 to: 100 by: 6) do: [ :i I s tatements ] 

Numbers respond to the message to:by:do: as though the expression had 
been writ ten as given in the example. So that  iteration can be written 
without parentheses as 

10 to: 100 by: 6 do: [ :i I s tatements ] 

To increment by 1 every sixth numeric element of an OrderedCollection, 
numbers, evaluate 

6 to: numbers size 
by: 6 
do: [ :index I numbers at: index put: (numbers at: index) + 1] 

The Interval created is 6, 12, 18 . . . .  , up to the index of the last element 
of numbers. If the size of the collection is less than 6 (the supposedly 
first index), nothing happens. Otherwise elements at position 6, 12, 18, 
and so on, until the last possible position, are replaced. 

Class 
ArrayedCollection 

As stated earlier, class ArrayedCollection is a subclass of Collection. It 
represents a collection of elements with a fixed range of integers as ex- 
ternal  keys. ArrayedCollection has five subclasses in the Smalltalk-80 
system--Array, String, Text, RunArray, and ByteArray. 

An Array is a collection whose elements are any objects. It provides 
the concrete representation for storing a collection of elements that  
have integers as external keys. Several examples of the use of Arrays 
have already been given in this chapter. 

A String is a collection whose elements are Characters. Many exam- 
ples of the use of Strings have been given in this and in previous chap- 
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ters. Class String provides addit ional  protocol for initializing and 
comparing its instances. 

Text represents  a String tha t  has font and emphasis  changes. It is 
used in storing informat ion needed for creat ing textual  documents  in 
the Small ta lk-80 system. An instance of Text has two instance vari- 
ables, the String and an instance of RunArray in which an encoding of 
the font and emphasis  changes is stored. 

Class RunArray provides a space-efficient storage of data  tha t  tends to 
be constant  over long runs  of the possible indices. It stores repeated ele- 
ments  singly and then  associates with each single e lement  a number  
tha t  denotes the consecutive occurrences of the element.  For example,  
suppose the Text represent ing  the String 'He is a good boy.' is to be 
displayed with the word "boy" in bold, and fur ther  suppose tha t  the 
code for the font is 1 and for its boldface version is 2. Then the 
RunArray for the Text tha t  is associated with "He is a good boy." (a 
String of 17 Characters) consists of 1 associated with 13, 2 associated 
with 3, and 1 associated with 1. Tha t  is, the first 13 Characters are in 
font 1, the next  three  in font 2, and the last in font 1. 

A ByteArray represents  an ArrayedColJection whose elements  are inte- 
gers between 0 and 255. The implementa t ion  of a ByteArray stores two 
bytes to a i6-bit  word; the class supports  addit ional  protocol for word 
and double-word access. ByteArrays are used in the Small talk-80 system 
for s toring t ime in milliseconds. 

Class St r ing  

As stated earlier, the class protocol for String adds messages for creat ing 
a copy of ano ther  String (fromString: aString) or for creat ing a String 
from the Characters in a Stream (readFrom: aStream). The main  signifi- 
cance of this second message is tha t  pairs of embedded quotes are read 
and stored as one element,  the quote character .  In addition, class String 
adds comparing protocol like tha t  specified in class Magnitude. We in- 
t roduced some of these messages ear l ier  in the description of class 
SortedCollection. 

String instance protocol 

comparing 
< aString 

< = aString 

> aString 

Answer whether the receiver collates before 
the argument, aString. The collation sequence 
is ASCII with case differences ignored. 
Answer whether the receiver collates before 
the argument, aString, or is the same as 
aString. The collation sequence is ASCII with 
case differences ignored. 
Answer whether the receiver collates after the 
argument, aString. The collation sequence is 
ASCII with case differences ignored. 
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> = aString Answer whether the receiver collates after the 
argument, aString, or is the same as aString. 
The collation sequence is ASCII with case dif- 
ferences ignored. 

m a t c h :  a S t r i n g  Treat the receiver as a pattern that  can con- 
tain characters # and *. Answer whether the 
argument, aString, matches the pattern in the 
receiver. Matching ignores upper/lower case 
differences. Where the receiver contains the 
character #:, aString may contain any single 
character. Where the receiver contains ,, 
aString may contain any sequence of charac- 
ters, including no characters. 

s a m e A s :  a S t r i n g  Answer whether the receiver collates precisely 
with the argument, aString. The collation se- 
quence is ASCII with case differences ignored. 

W e  h a v e  n o t  a s  y e t  g i v e n  e x a m p l e s  of u s i n g  t h e  l a s t  t w o  m e s s a g e s .  

expression result 

' f i rs t  s t r i ng  • s a m e A s :  ' f i rs t  s t r i ng  • 

• F i rs t  S t r i ng  • s a m e A s :  ' f i rs t  s t r i ng  • 

• F i rs t  S t r i ng  • = ' f i rs t  s t r i ng  • 

' # i r s t  s t r i ng  • m a t c h :  • f i r s t  s t r i ng  • 

• • s t r i ng  • m a t c h :  " a n y  s t r i ng  • 

" , . s t "  m a t c h :  ' f i l e n a m e . s t '  

• f i rs t  s t r i ng  • m a t c h :  • f i r s t  , '  

t r ue  

t r u e  

f a l s e  

t r ue  

t r ue  

t r ue  

f a l s e  

S t r i n g s  c a n  be  c o n v e r t e d  to  a l l  l o w e r c a s e  c h a r a c t e r s  o r  a l l  u p p e r c a s e  

c h a r a c t e r s .  T h e y  c a n  a l s o  be  c o n v e r t e d  to  i n s t a n c e s  of c l a s s  S y m b o l .  

String instance protocol 

c o n v e r t i n g  

a s L o w e r c a s e  

a s U p p e r c a s e  

a s S y m b o l  

T h e r e f o r e  w e  h a v e  

Answer a String made up from the receiver 
whose characters are all lowercase. 

Answer a String made up from the receiver 
whose characters are all uppercase. 

Answer the unique Symbol whose characters 
are the characters of the receiver. 

expression result 

• f i rs t  s t r i ng  • a s U p p e r c a s e  

• F i rs t  S t r i ng  • a s L o w e r c a s e  

' F i rs t  • a s S y m b o l  

• F I R S T  S T R I N G "  

• f i rs t  s t r i ng  • 

F i rs t  
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Class Symbol  

Symbols are arrays  of Characters that  are guaranteed to be unique. 
Thus 

'a string' asSymbol = = 'a string' asSymbol 

answers true. Class Symbol provides two instance creation messages in 
its class protocol for this purpose. 

Symbol class protocol 

instance creation 
intern: aString 

internCharacter: aCharacter 

Answer a unique Symbol whose characters are 
those of aString. 
Answer a unique Symbol of one character, the 
argument, aCharacter. 

In addition, Symbols can be expressed literally using the character  ~ as 
a prefix to a sequence of Characters. For example, ¢/:dave is a Symbol of 
four Characters. Symbols print  without  this prefix notation. 

Class 
M appedCol lectio n 

Class MappedCollection is a subclass of Collection. I t  represents an ac- 
cess mechanism for referencing a subcollection of a collection whose el- 
ements are named. This mapping can determine a reordering or 
filtering of the elements of the collection. The basic idea is tha t  a 
MappedCollection refers to a domain and a map. The domain is a Col- 
lection tha t  is to be accessed indirectly through the external  keys stored 
in the map. The map is a Collection that  associates a set of external  
keys with another  set of external  keys. This second set of keys must  be 
external  keys that  can be used to access the elements of the domain. 
The domain and the map, therefore, must  be instances of Dictionary or 
of a Subclass of SequenceableCollection. 

Take, for example, the Dictionary of word Symbols, opposites, intro- 
duced earlier. 

key value 

come go 
cold hot 
front back 
hot cold 
push pull 
stop start 
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Suppose we create another  Dictionary of synonym Symbols for some of 
the keys of the entries in opposites and refer to it by the variable name 
alternates. 

key value 

cease stop 
enter come 
scalding hot 
shove push 

Then we can provide a MappedCollection by evaluating the expression 

words ~- MappedCollection collection: opposites map: alternates 

Through words, we can access the elements of opposites. For example, 
the value of the expression words at: # c e a s e  is start (i.e., the value of 
the key cease  in alternatives is stop; the value of the key stop in oppo- 
sites is start). We can determine which part  of opposites is referenced 
by words by sending words the message contents. 

words contents 

The result  is a Bag containing the symbols start go cold pull. 
The message at:put: is an indirect way to change the domain collec- 

tion. For example 

expression result 

words at: #scalding cold 
words at: #cease start 
words at: #cease continue 

put: #continue 
opposites at: #stop continue 

Summary of 
Conversions 
Among 
Collections 

In the sections describing the various kinds of collections, we have indi- 
cated which collections can be converted to which other collections. In 
summary,  any collection can be converted to a Bag, a Set, an 
OrderedCollection, or a SortedCollection. All collections except Bags and 
Sets can be converted to an Array or a MappedCoilection. Strings and 
Symbols can be converted into one another; but no collection can be 
converted into an Interval or a kinkedList. 
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Three examples of class descriptions are given in this chapter.  Each 
example makes use of the numeric  and collections objects available in 
the Small talk-80 system; each i l lustrates a different way to add func- 
t ionali ty to the system. 

Card games can be created in terms of random selection from a col- 
lection represent ing a deck of cards. The example class Card represents  
a playing card with a par t icular  suit and rank. CardDeck represents  a 
collection of such Cards; a CardHand is a collection of Cards for an indi- 
vidual player. Selecting cards from a CardDeck or a CardHand is carried 
out using example classes tha t  represent  sampling with replacement,  
SampleSpaceWithReplacement,  and sampling without  replacement,  
SampleSpaceWithoutReplacement.  A well-known programming problem, 
the d runken  cockroach problem, involves counting the number  of steps 
it takes a cockroach to randomly travel  over all the tiles in a room. The 
solution given in this chapter  represents  each tile as an instance of ex- 
ample class Tile and the bug as an instance of DrunkenCockroach. The 
third example in this chapter  is of a tree-like data  s t ructure  represent-  
ed by classes Tree and Node; a WordNode i l lustrates the way trees can 
be used to store strings represent ing words. 

Random 
Select ion and 
P lay ing  Cards 

The Smalltalk-80 class Random, which acts as a generator  for randomly 
selected numbers  between 0 and 1, was described in Chapter  8. Random 
provides the basis for sampling from a set of possible events; such a set 
is known as a sample space. A simple form of discrete random sampling 
can be obtained in which a random number  is used to to select an ele- 
ment  from a sequenceable collection. If the selected element  remains  in 
the collection, then  the sampling is done "with replacement"  - -  tha t  is, 
every e lement  of the collection is available each time the collection is 
sampled. Alternatively,  the sampled element  can be removed from the 
collection each t ime the collection is sampled; this is sampling "without  
replacement ."  

Class SampleSpaceWithReplacement represents  random selection 
with replacement  from a sequenceable collection of items. An instance 
of the class is created by specifying the collection of items from which 
random sampling will be done. This initialization message has selector 
data:. We then sample from the collection by sending the instance the 
message next. Or we can obtain anlnteger number  of samples by send ing  
the message next: anlnteger. 

For example, suppose we wish to sample from an Array of Symbols 
represent ing the names of people. 
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people ~- SampleSpaceWithReplacement 
data: #(sa l ly  sam sue sarah steve) 

Each t ime we wish to select a name from the Array, we evaluate  the ex- 
pression 

people next 

The response is one of the Symbols, sally, sam, sue, sarah, or steve. By 
evaluat ing  the expression 

people next: 5 

an OrderedCollection of five samples is selected. Instances of 
SampleSpaceWithReplacement  respond to messages isEmpty and size to 
test whe the r  any  e lements  exist in the sample space and how many  ele- 
ments  exist. Thus  the response to 

people isEmpty 

is false; and the response to 

people size 

is 5. 
An implementa t ion  of class SampleSpaceWithReplacement  is given 

next. Comments ,  delimited by double quotes, are given in each method 
to indicate its purpose. 

class n a m e  SampleSpaceWithReplacement 
superclass Object 
instance variable names data 

rand 
class methods 

instance creation 

data: aSequenceableCollection 
"Create an instance of SampleSpaceWithReplacement such that the ar- 
gument, aSequenceableCollection, is the sample space." 
t self new setData: aSequenceableCollection 

instance methods 

accessing 

next 
"The next element selected is chosen at random from the data collec- 
tion. The index into the data collection is determined by obtaining a 
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random number between 0 and 1, and normalizing it to be within the 
range of the size of the data collection." 
self isEmpty 

ifTrue: [self error: " no values exist in the sample space'].  
tdata at: (rand next ,  data size) truncated + 1 

next: anlnteger 
"Answer an OrderedColfection containing anlnteger number of selec- 
tions from the data collection." 
I aCollection I 
aCollection ~- OrderedCollection new: anlnteger. 
anlnteger timesRepeat: [aCollection addLast: self next]. 
taCollection 

testing 

isEmpty 
"Answer whether any items remain to be sampled." 
rself size = 0 

size 
"Answer the number of items remaining to be sampled." 
1' data size 

private 

setData: aSequenceableCollection 
"The argument, aSequenceableCollection, is the sample space. Create 
a random number generator for sampling from the space." 
data ~- aSequenceableCollection. 
rand ,- Random new 

The class  description declares tha t  each ins tance has two var iables  
whose names  are data and rand. The ini t ia l izat ion message,  data:, sends 
the new ins tance the  message setData: in which data is bound to a 
SequenceableCollect ion (the value of the  a r g u m e n t  of the  ini t ia l izat ion 
message) and rand is bound to a new ins tance of class Random. 

SampleSpaceWithReplacement is not a subclass of Collection because 
i t  imp lements  only  a smal l  subset of the messages to which Collections 
can respond. In response to the messages next and size to a 
SampleSpaceWithReplacement,  the messages at: and size are sent to the 
instance var iable data. This means tha t  any col lect ion tha t  can respond 
to at: and size can serve as the data f rom which  elements are sampled. 
A l l  SequenceableCollect ions respond to these two messages. So, for ex- 
ample, in addi t ion to an Array as i l lus t ra ted earl ier,  the data can be an 
Interval. Suppose we wish to s imulate the th row of a die. Then the ele- 
ments of the sample  space are the  positive integers  1 th rough  6. 
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die ~ SampleSpaceWi thRep lacement  data: (1 to: 6) 

A throw of the die is obtained by eva lua t ing  

die next 

The response from this  message is one of the Integers, 1, 2, 3, 4, 5, or 6. 
We could select a card from a deck of cards in a s imi lar  way if the  

collection associated wi th  the ins tance of SampleSpaceWithReplacement  
consists of e lements  represen t ing  playing cards. In order to play card 
games,  however,  we have to be able to deal a card out to a p layer  and 
remove it from the deck. So, we have to use r andom selection wi thout  
rep lacement .  

To i m p l e m e n t  r andom selection wi thout  rep lacement ,  we define the 
response to the  message next as removing the selected element .  Since 
all SequenceableCol lect ions  do not respond to the  message remove:, (for 
example,  Interval does not) we e i ther  mus t  check the a r g u m e n t  of the  
ini t ia l izat ion message or we mus t  convert  the  a r g u m e n t  to an accept- 
able kind of collection. Since all OrderedCollections respond to the two 
messages,  and since all collections can be converted to an 
OrderedCollection, we can ~use the conversion approach.  The method as- 
sociated wi th  setData: sends its a r g u m e n t  the message 
asOrderedCollection in order to accomplish the  goal. 

Class SampleSpaceWithoutReplacement  is defined to be a subclass of 
SampleSpaceWithReplacement .  The methods  associated wi th  the mes- 
sages next and setData: are  overridden; the r ema in ing  messages are  
inher i ted  wi thout  modification. 

class name 
superclass 
instance methods 

SampleSpaceWithoutReplacement 
SampleSpaceWithReplacement 

accessing 

next  
1data remove: super next 

private 

setData:  aCol lect ion 
data ~ aCollection asOrderedCollection. 
rand ~ Random new 

Notice t ha t  the  method  for next depends on the method  implemen ted  in 
the superclass  (super next). The superclass 's  method  checks to make  cer- 
ta in  t ha t  the sample  space is not empty  and then  randomly  selects an 
e lement .  After  de t e rmin ing  the selected element ,  the subclass 's method 
removes the  e l emen t  from data. The resul t  of the  remove: message is 
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the argument ,  so tha t  the result  of the message next to a 
SarnpleSpaceWithoutReplacement is the selected element.  

Now let's implement  a simple card game. Suppose the sample space 
data  for the card game are instances of a class Card where each Card 
knows its suit and rank.  An instance of Card is created by sending it 
the message suit:rank:, specifying the suit (heart,  club, spade, or 
diamond) and its r ank  (1, 2, ..., 13) as the two arguments .  A Card re- 
sponds to the messages suit and rank with the appropria te  information. 

class name Card 
superclass Object 
instance variable names suit 

rank 
class methods 

instance creation 

suit: aSymbol rank: anlnteger 
"Create an instance of Card whose suit is the argument, aSymbol, and 
whose rank is the argument, anlnteger." 
1self new setSuit: aSymbol rank: anlnteger 

instance methods 

accessing 

suit 
"Answer the receiver's suit. " 
tsuit 

rank 
" Answer the receiver' s rank." 
trank 

private 

setSuit: aSymbol rank: anlnteger 
suit ~- aSymbol. 
rank ~ anlnteger 

A deck of cards, cardDeck, is created by the following expressions. 

cardDeck ,- OrderedCol lect ion new: 52. 
# ( h e a r t  club spade diamond) do" 

[ :eachSuit I 
1 to: 13 d o  [ :n I cardDeck add" (Card suit: eachSuit rank: n)]] 

The first expression creates an OrderedCol lect ion for 52 elements. The 
second expression is an enumera t ion  of the ranks  1 through 13 for each 
of the four suits: heart ,  club, spade, and diamond. Each element  of the 
OrderedCollection is set to be a Card with a different suit and rank. 
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The ability to sample from this deck of cards is obtained by creating 
an instance of SampleSpaceWithoutReplacement with the card deck as 
the collection from which samples will be taken 

cards ~- S a m p l e S p a c e W i t h o u t R e p l a c e m e n t  data: ca rdDeck  

To deal a card, evaluate  the expression 

cards next  

The response to this message is an instance of class Card. 
Another  way to provide a deck of playing cards is i l lustrated in the 

description of example class CardDeck. The basic idea is to store a lin- 
ear  list of cards; next means  supply the first card in the list. A card can 
be re tu rned  to the deck by placing it at  the end or by insert ing it at  
some random position. The l inear list is made random by shuftlling-- 
tha t  is, randomly ordering the cards. 

In the implementa t ion of class CardDeck  provided next, we store an 
initial version of the deck of cards as a class variable. It is created using 
the expressions given earlier.  A copy of this variable is made as an in- 
stance variable whenever  a new instance is created; it is shuffled before 
cards are dealt  out. Each subsequent  shuffle of the deck uses the cur- 
rent  s tate of the instance variable, not of the class variable. Of course, 
the shuffling process, since it is based on the use of an instance of 
SampleSpaceWithoutReplacement,  is quite uniform. A simulat ion of real 
shuffling involves first splitting the deck approximately  in half and 
then inter leaving the two halves. The interleaving involves selecting 
chunks from one half and then the other half. Indeed, such a simula- 
tion may be more random than  an actual  person's shuffling; a person's 
shuffling ability might  be observable and predictable. 

Messages to a CardDeck, such as return:, next, and shuffle, are useful 
in creat ing card games. 

class name CardDeck 
superclass Object 
instance variable names card s 
class variable names InitialCardDeck 
class methods 

class initialization 

in i t ia l ize  
" Create a deck of 52 playing cards." 

InitiatCardDeck ~ OrderedCollection new: 52. 

#(hear t  club spade diamond) do: 

[ :aSuit I 
1 to: 13 

do: [ :n I InitialCardDeck add: (Card suit: aSuit rank: n)]] 
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instance creation 

n e w  

"Create an instance of CardDeck with an initial deck of 52 playing 
cards. " 

1"super new cards: InitialCardDeck copy 

instance methods 

accessing 

next 
" Deal (give out) the next card." 
1' cards removeFirst 

return: aCard 
" Put the argument, aCard, at the bottom of the deck." 
cards addLast: aCard 

shuffle 
I sample tempDeck I 

sample ~ SampfeSpaceWithoutReplacement data: cards. 
tempDeck ~- OrderedCollection new: cards size. 

cards size timesRepeat: [tempDeck addLast: sample next ] .  
self cards: tempDeck 

testing 

isEmpty 
"Answer whether any more cards remain in the deck." 
Tcards isEmpty 

private 

cards: aCollection 
cards ~- aCollection 

The class CardDeck must  be initialized by evaluat ing the expression 

CardDeck initialize 

In the implementat ion of CardDeck, cards is the instance variable and 
is therefore the deck of cards used in playing a game. To play a game, 
an instance of CardDeck is created 

CardDeck new 

and then each card is dealt  by sending this new instance the message 
next. When a card is put back in the deck, the CardDeck is sent the 
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message return:. Shuffling always shuffles whichever cards are current ly  
in the deck. If a full CardDeck is to be reused after a round of play, any 
cards taken from the deck must  be returned.  

Note the implementat ion of the message shuffle. A sample space 
without  replacement,  sample, is created for a copy of the cur rent  deck 
of cards. A new OrderedCollection, tempDeck, is created for storing ran- 
domly selected cards from this sample space. Sampling is done from 
sample for each possible card; each selected card is added to the 
tempDeck. Once all the available cards have been shuffled into it, 
tempDeck is stored as the cur rent  game deck. 

Suppose we create a simple card game in which there  are four play- 
ers and a dealer. The dealer deals out cards to each of the players. If at  
least one of the players has between 18 and 21 points, the game ends 
with the "prize" divided among each of these players. Points are count- 
ed by adding up the ranks  of the cards. A player with more than  21 
points is not dealt  new cards. 

Each player is represented by an instance of class CardHand tha t  
represents  a card hand. A CardHand knows the cards it is dealt and can 
determine its total point count (in response to the message points). 

class name CardHand 
superclass Object 
instance variable names cards 
class methods 

instance creation 

n e w  

1'super new setCards 

instance methods 

accessing 

take:  aCard  
" The argument, aCard, is added to the reciever." 
cards add: aCard 

re turnAI ICardsTo:  c a r d D e c k  
" P l a c e  all of the receiver's cards into the deck of cards referred to by 
the argument, cardDeck, and remove these cards from the receiver's 

hand. " 

cards do: [ :eachCard I cardDeck return: eachCard]. 
self setCards 
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inquiries 

points 
"Answer the sum of the ranks of the receiver's cards." 
t cards inject: 0 into: [ :value :nextCard I value + nextCard rank] 

private 

setCards 
cards ~- OrderedCollection new 

We create a Set of four players. Each player is represented by an in- 
stance of CardHand. The dealer 's cards are the gameCards. The dealer 
(that is, the programmer)  starts  by shuffling the deck; there is no win- 
ner  yet. There may be more than  one winner; winners will be listed in 
the Set, winners. 

players ~ Set new. 
4 timesRepeat: [players add: CardHand new]. 
gameCards ~ CardDeck new. 
gameCards shuffle 

As long as there is no winner, each player with less than  21 points is 
given another  card from the flameCards. Before dealing a card to each 
eligible player, the dealer looks to see if there are any winners by test- 
ing the points for each player. 

[ winners ~ players select: [ :each I each points between: 18 and: 21]. 
winners isEmpty and: [gameCards isEmpty not]] 

whileTrue: 
[players do: 

[ :each t 
each points < 21 ifTrue: [each take: gameCards next]] 

The condition for continuing to play is a block with two expressions. 
The first expression determines the winners, if any, The second expres- 
sion tests to see if there are any winners yet (winners isEmpty) and, if 
not, if there are any more cards to deal out (flameCards isEmpty not). If 
there are no winners and more cards, the game continues. The game 
consists of an enumerat ion of each player; each player takes another  
card (each take: gameCards next) only if the number  of card points is 
less than  21 (each points < 21). 

To play again, all cards have to be re turned to the game deck, which 
is then shuffled. 

players do: [ :each I each returnAIICardsTo: gameCards]. 
gameCards shuffle 

The players and dealer are ready to play again. 
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The Drunken  
Cockroach 
Problem 

We can use some of the collection classes to solve a well-known pro- 
g ramming  problem. The problem is to measure how long it takes a 
drunken  cockroach to touch each tile of a floor of square tiles which is 
N tiles wide and M tiles long. To slightly idealize the problem: in a giv- 
en ~step" the cockroach is equally likely to t ry  to move to any of nine 
tiles, namely the tile the roach is on before the step and the tiles imme- 
diately surrounding it. The cockroach's success in moving to some of 
these tiles will be limited, of course, if the cockroach is next to a wall of 
the room. The problem is restated as counting the number  of steps it 
takes the cockroach to land on all of the tiles at least once. 

One straightforward algori thm to use to solve this problem starts  
with an empty Set and a counter set to 0. After each step, we add to 
the Set the tile that  the cockroach lands on and increment  a counter of 
the number  of steps. Since no duplication is allowed in a Set, we would 
be done when the number  of elements in the Set reaches N*M. The so- 
lution would be the value of the counter. 

While this solves the simplest version of the problem, we might also 
like to know some additional information, such as how many  times each 
tile was visited. To record this information, we can use an instance of 
class Bag. The size of the Bag is the total number  of steps the cockroach 
took; the size of the Bag when it is converted to a Set is the total num- 
ber of distinct tiles touched by the cockroach. When this number  
reaches N 'M,  the problem is solved. The number  of occurrences of each 
tile in the Bag is the same as the number  of times the roach visited 
each tile. 

Each tile on the floor can be labeled with respect to its row and its 
column. The objects representing tiles in the solution we offer are in- 
stances of class Tile. A commented implementat ion of class Tile follows. 

class name Tile 
superclass Object 

instance variable names Iocation 
floorArea 

instance methods 

accessing 

location 
" Answer the location of the receiver on the floor." 

tlocation 

location: aPoint 

"Answer the location of the receiver on the floor." 

1location 

location: aPoint 
" S e t  the receiver' s location on the floor to be the argument, aPoint." 

location ~- aPoint 
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f loerArea= a R e c t a n g l e  

"Set the floor area to be the rectangular area represented by the argu- 
ment, aRectangle." 
floorArea ~-- aRectangle 

moving 

ne ighborAt :  de l t aPo in t  

"Create and answer a new Tile that is at the location of the receiver 
changed by the x and y amounts represented by the argument, 
deltaPoint. Keep the location of the newTile within the boundries of the 
floor area. " 
I newTile I 
newTile ~ Tile new floorArea: floorArea. 
newTile location ((location + deltaPoint max floorArea origin) 

min floorArea corner). 
tnewTile 

comparing 

= a f i l e  

" Answer whether the receiver is equal to the argument, aTile." 
t(aTile isKindOf: Tile) and' [location = aTile location] 

hash 
t location hash 

A Tile refers to its row and column locations, each of which mus t  be at  
least  1 and no la rger  t han  the width  or length  of the  floor. Therefore,  in 
addit ion to r e m e m b e r i n g  its location, a Tile mus t  r e m e m b e r  the  maxi-  
m u m  floor space in which it can be placed. A Tile can be sent  the  mes- 
sage neightborAt: aPoint in order to de t e rmine  a Tile at  one of the  
locations next  to it. This new Tile mus t  be at  a location wi th in  the 
boundarie~ of the  floor. 

The way we will s imula te  the cockroach's  walk  is to select a direction 
in t e rms  of changes in the  x-y coordinates of the  cockroach ' s  location. 
Given the location of the cockroach (tile x,y), there  are  9 tiles to which 
the  insect can move unless the tile is along one of the  edges. We will 
store the  possible changes  of x and y in an OrderedCollection t ha t  is the 
da ta  for r andom selection. The OrderedCollection will contain Points as 
e lements ;  the  Points are  direct ion vectors represen t ing  all the  possible 
combinat ions  of moves. We create  this collection by the  expressions 

Directions ,- OrderedCollection new: 9. 
( - 1  to" 1) do: [ : x  i ( - 1  to: 1) do: [ :y I Directions add: x@y]] 

Directions, then,  is a collection wi th  e lements  

- - 1@- -1 ,  - -1@0, - -1@1, 0 @ - - 1 , 0 @ 0 , 0 @ 1 ,  1@--1,  1@0, 1@,1 
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As par t  of the drunken  walk simulation, we will generate  a random 
number  for selecting an e lement  from this OrderedCollection of possible 
moves. As an a l ternat ive to using a random number  generator  directly, 
we could use the previous example 's  SampleSpaceWithReplacement 
with Directions as the sample space. 

Suppose the cockroach star ts  on the Tile tha t  is at  location 1 ® 1. 
Each t ime the cockroach is supposed to take a step, we obtain an ele- 
ment  from the collection, Directions. This e lement  is then the a rgument  
of the message neighborAt: to the Tile. In the following, assume Rand is 
an instance of class Random. 

tile neighborAt: 
(Directions at: ((Rand next * Directions size) t runcated + 1)). 

The result ing new tile location is the place where the cockroach landed. 
Each tile position has to be remembered  in order to be able to report  

on whether  every location has been touched and how many  steps were 
required. By storing each tile in a Bag, a tally is kept of the number  of 
t imes the cockroach landed in each location. So at  each step, a new tile 
is created tha t  is a copy of the previous tile. This new tile is changed 
according to the randomly selected direction and is added to the Bag. 
When the number  of unique elements of the Bag equals the total num- 
ber of tiles, the cockroach is done. 

Only two messages are needed in class DrunkenCockroach. One is a 
command to have the cockroach take a walk around a specific floor 
area  until  every tile on the floor has been touched. This is the message 
walkWithin:startingAt:. The second is an inquiry as to the number  of 
steps the cockroach has taken so far; this is the message numberOfSteps. 
We can also inquire about the number  of t imes the roach stepped on a 
par t icular  tile by sending the DrunkenCockroach the message 
timesSteppedOn:. The collection of direction vectors (as described earli- 
er) is created as a class variable of DrunkenCockroach; the random 
number  generator  Rand is also a class variable of DrunkenCockroach. 

class name DrunkenCockroach 
superclass Object 
instance variable names C u rre ntTit e 

tilesVisited 
class variable names Directions 

Rand 
class methods 

class initialization 

in i t ia l ize 
"Create the collection of direction vectors and the random number gen- 

erator." 
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Directions ~- OrderedCollection new: 9. 

( - 1  to: 1) d o : [ : x  I ( - 1  to: 1) do : [  :y I Directions add: x®y]] .  
Rand ~- Random new 

instance creation 

new 
1'super new setVariables 

instance methods 

simulation 

walkWithin: aRectangle startingAt: aPoint 
I numberTiles I 
tilesVisited ~- Bag new. 
currentTile location: aPoint. 
currentTile floorArea: aRectangte. 
numberTiles ~- (aRectangle width ---t- 1) . (aRectangle height + 1). 
tilesVisited add: currentTile. 
[tilesVisited asSet size < numberTfles] whileTrue' 

[currentTile ~- currentTile neighborAt: 

(Directions at: (Rand nex t .  Directions size) truncated + 1). 
tilesVisited add: currentTile] 

data 

numberOfSteps 
ltilesVisited size 

timesSteppedOn: aTile 
l'titesVisited occurrencesOf: aTile 

private 

setVariables 
currentTile ~- Tile new. 
tilesVisited ~- Bag new 

We can now send the following messages in order  to exper iment  with a 
d runken  cockroach. Initialize the class and create an instance. 

DrunkenCock roach  initialize. 
cock roach  ~- D runkenCock roach  new 

Obtain the results  of 10 exper iments  with a 5 by 5 room. 

results ~- OrderedCol lec t ion  new: 10. 
10 t imesRepeat :  

[ cockroach  walkWithin:  (1 @ 1 corner: 5 @ 5) start ingAt: (1 @ 1). 
results add: cock roach  numberOfS teps ]  
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The average of the 10 results is the average number  of steps it took the 
d runken  cockroach to solve the problem. 

(results inject: 0 into: [ :sum :exp I sum + exp]) / 10 

Note tha t  in the implementa t ion  of the DrunkenCockroach message 
walkWithin:startingAt:, the te rminat ion  condition is whether  the Bag, 
when converted to a Set, has N*M elements. A faster way to make this 
test would be to add the message uniqueElements to the class Bag so 
tha t  the conversion to a Set is not done each t ime through the itera- 
tion. 

(For those readers wishing to t ry this change, the method to be added 
to class Bag is 

uniqueElements 
1" contents size 

Then the message walkWithin:startingAt: can be changed so tha t  the ter- 
minat ion condition is tilesVisited uniqueEiements < numberTiles.) 

Traversing 
Binary Trees 

A tree is an impor tan t  nonl inear  data  s t ructure  tha t  is useful in com- 
puter  algorithms. A tree s t ruc ture  means tha t  there  is a branching re- 
lationship between elements.  There  is one e lement  designated as the 
root of the tree. If there  is only one element,  then it is the root. If there  
are more elements,  then  they are part i t ioned into disjoint (sub)trees. A 
binary tree is e i ther  the root only, the root with one binary (sub)tree, or 
the root together  with two binary (sub)trees. A complete description of 
the genealogy of tree s t ructures  is provided by Knu th  in Volume 1 of 
the Art of  Computer Programming. Here we assume the reader  is famil- 
iar with the idea so tha t  we can demonst ra te  how to specify the data 
s t ruc ture  as a Small talk-80 class. 

We will define a class Tree in a way tha t  corresponds to the defini- 
tion of LinkedList. Elements  of a Tree will be Nodes tha t  are like the 
Links of LinkedLists, able to make  connections to other elements. The 
Tree will reference the root node only. 

A node is simple to represent  as a Small talk-80 object with two in- 
stance variables, one refers to the left node and another  to the right 
node. We choose to t rea t  the order of the nodes to support  in-order tra- 
versal. Tha t  is, in enumera t ing  the nodes, visit the left subnode first, 
the root second, and the r ight  subnode third. If a node has no subnodes, 
then it is called a leaf We define the size of the node to be 1 plus the 
size of its subnodes, if any. Thus a leaf is a node of size 1, and a node 
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wi th  two leaves as subnodes  has  size 3. The  size of a t ree  is the  size of 
its root node. This  def ini t ion of size corresponds  to the  gene ra l  not ion of 
size for collections. 

Messages  to a Node give access to the  left node, the  r igh t  node, and  
the  las t  or end node. It is also possible to remove  a subnode  
( remove: i fAbsent : )  and  the  root (rest). 

class name Node 
superclass Object 
instance variable names leftNode 

rightNode 

class methods 

instance creation 

left: INode right: rNode 
"Create an instance of a Node with the arguments INode and rNode as 
the left and right subnodes, respectively." 

I newNode I 
newNode ,-- self new. 
newNode left: INode. 
newNode right: rNode. 
tnewNode 

instance methods 

testing 

isLeaf 
"Answer whether the receiver is a leaf, that is, whether it is a node with- 
out any subnodes."  
l'leftNode isNil & rightNode isNil 

accessing 

left 
t leftNode 

left: aNode 
leftNode ~- aNode 

right 
tr ightNode 

right: aNode 
rightNode ,- aNode 
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size 
i'1 + (leftNode isNit 

ifTrue: [0] 
ifFalse: [leftNode size]) 

::Jr- (rightNode isNil 
ifTrue: [0] 
ifFalse: [rightNode size]) 

end 
I aNode I 
aNode ~- self. 
[aNode right isNil] whileFalse: [aNode ~- aNode right]. 
taNode 

removing 

remove:  subnode i fAbsent:  except ionBIock  
" Assumes the root, self, is not the one to remove." 
self isLeaf ifTrue: [ texceptionBIock value]. 
leftNode = subnode 

ifTrue: [leftNode ~ leftNode rest. 1subnode]. 
rightNode = subnode 

ifTrue: [rightNode ~- rightNode rest. t subnode]. 
leftNode isNil 

ifTrue: [tr ightNode remove: subnode ifAbsent: exceptionBIock]. 
t leftNode 

remove: subnode 
ifAbsent: 

[rightNode isNil 
ifTrue: [exceptionBIock value] 
ifFalse: 

[rightNode remove: subnode 
ifAbsent: exceptionBlock]] 

rest  
leftNode isNil 

ifTrue: [tr ightNode] 
ifFalse: [leftNode end right: rightNode. 

tleftNode] 

enumerating 

do: aBIock 
leftNode isNil ifFalse: [leftNode do: aBIock]. 
aBIock value: self. 
rightNode isNil ifFalse: [rightNode do: aBIock] 
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If Node is a leaf, it is denoted by nil nil 

where 
left node right node 

then 

root 

left node ~ ~ / ~ ~  ~ ht node 

Enumeration uses in-order traversal, first applying the left subnode as 
the value of the block, then the root, and third the right subnode. The 
block must be defined for a block argument that  is a Node. 

Next  we provide a Tree as a k ind of SequenceableCollection whose ele- 
ments are Nodes. A Tree has one instance variable which we name root; 
root is ei ther nil or i t  is an instance of Node. As a subclass of 
SequenceableCollection, class Tree implements messages add: 
anElement, remove: anElement ifAbsent: exceptionBIock, and do: aBIock. 
Basically, the methods associated w i th  each of these messages checks to 
see whether  the tree is empty (root isNil) and, if not, passes the appro- 
pr iate message to root. The check on "empty"  is inher i ted from Collec- 
tion. The intention is that  the programmer who uses a tree structure 
accesses the elements of that structure only via a n  instance of class 
Tree. 

class name Tree 
superc]ass SequenceableCol lection 
instance variable names root 
instance methods 

testing 

isEmpty 
1' root isNil 

accessing 

first 
I save I 
self emptyCheck. 
save ~ root. 
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[save left isNil] whiteFalse: [save ~- save left]. 
tsave 

last 
self emptyCheck. 
1' root end 

size 
self isEmpty 

ifTrue: [1 0] 
ifFalse: [troot size] 

adding 

add: aNode 
tself addLast: aNode 

addFirst:  aNode 
"I f  the collection is empty, then the argument, aNode, is the new root; 
otherwise, it is the left node of the current first n o d e . "  
self isEmpty 

ifTrue: [1'root ~ aNode] 
ifFatse: [self first left: aNode]. 

taNode 
addLast:  aNode 

"I f  the collection is empty, then the argument, aNode, is the new root; 
otherwise it is the last element of the current root." 
self isEmpty 

ifTrue: [root ~ aNode] 
ifFalse: [self last right: aNode]. 

taNode 

removing 

remove:  aNode i fAbsent:  except ionBIock 
"First check the root. If not found, move down the tree checking each 

node." 
self isEmpty ifTrue: [ lexceptionBIock value]. 
root = aNode 

ifTrue: [root ~ root rest. 1"aNode] 
ifFalse: [1'root remove: aNode ifAbsent: exceptionBlock] 

removeFi rs t  
self emptyCheck. 
1self remove: self first ifAbsent: [] 

removeLast  
self emptyCheck. 
1'self remove: self last ifAbsent: [] 

enumerating 

do: aBIock 
self isEmpty ifFalse: [root do: aBIock] 
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Note tha t  the removing messages do not remove the subtree beginning 
with the node to be removed, only the node itself. 

A Binary 
Tree 

Word 
The definition of a Node, like tha t  of a Link, is all s t ruc ture  wi thout  
content.  We have left the content  of each Node to be specified by a sub- 
class. Suppose we wish to use a kind of Node to store words represented 
as Strings. We call this class WordNode. An instance of WordNode is 
created by sending WordNode the message for:, if no subnodes are speci- 
fled, or for:left:right: if the two subnodes are specified. So a WordNode il- 
lus t ra ted  as 

cat 

I 
is created by evaluat ing  the expression 

WordNode for: ' ca t '  

A WordNode tha t  looks like 

I 
dog 

i 

cat 

I ! 
goat 

! 

is created by evaluat ing  the expression 

WordNode for: ' ca t '  
left: (WordNode for: ' d o g ' )  
right: (WordNode for: ' g o a t ' )  

An implementa t ion  for the class WordNode follows. Notice tha t  equali ty 
(=)  is redefined to mean  tha t  the words in the Nodes are the same; this 
means  tha t  the inher i ted removing messages will remove a subnode if 
its word is the same as the word of the a rgument .  

class name WordNode 
superclass Node 
instance variable names word 
class methods 

instance creation 

for: aString 
t self new word aString 
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for: aStr ing left: INode right: rNode 
I newNode I 
newNode ~- super left INode right: rNode. 
newNode word  aString. 
tnewNode 

instance methods 

accessing 

word 
tword 

word: aStr ing 
word ~- aString 

comparing 

= a W o r d N o d e  
1(aWordNode isKindOf WordNode) and'. [word = aWordNode word] 

hash 
1' word hash 

A sequence of expressions follows to i l lustrate the use of WordNode. 
Note that  no effort is made in the definition of WordNode to support in- 
serting elements so tha t  each word collates alphabetically when the 
tree is traversed. An interested reader might add an insert: aWordNode 
message to WordNode tha t  maintains  the alphabetic sort. 

tree ~- Tree new. 

tree add: (WordNode for: 'cat ' )  

tree addFirst: (WordNode for: "frog') 

._• cat 

tree addLast: (WordNode for: 'horse'  left: (WordNode for: 'monkey ' )  right: nil) 

cat I I " 
frog 1 horse 

1 1  I ' t  l ,  I monkey 
I 
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tree addFirst: (WordNode for: 'ape') 

/ / / /  

m m  

L~~_i I cTt ! i "~r'e t 

tree remove" (WordNode for: "horse') 

, , ,  

I ave t 

[ cat 
frog ] [ [ [ ] 

tree remove: (WordNode for: 'frog') 

! 
ape 

__2__ 

oft ] 
i ~ m°Tkey t 
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Protocol for Streams 

Class Stream 

P o s i t i o n a b l e  S treams  
Class ReadStream 
Class WriteStream 
Class ReadWriteStream 

Streams  of G e n e r a t e d  E lements  

S treams  for Col lect ions  Without  Externa l  Keys  

Externa l  S treams  and  File S treams  



Object 

Magnitude 
Character 
Date 
Time 

Number 
Float 
Fraction 
Integer 

Large N ega t ivel n teg er 
LargePositivelnteger 
Smalllnteger 

LookupKey 
Association 

Link 

Process 

Collection 

SequenceableCollection 
LinkedList 

Semaphore 

Arra yedC ol iect ion 
Array 

Bitmap 
DisplayBitmap 

RunArray 
String 

Symbol 
Text 
ByteArray 

Interval 
OrderedCollection 

SortedCollection 
Bag 
MappedCollection 
Set 

Dictionary 
IdentityDictionary 

UndefinedObject 
Boolean 

False 
True 

ProcessorScheduler 
Delay 
SharedQueue 

Behavior 
ClassDescription 

Class 
MetaClass 

Point 
Rectangle 
BitBit 

CharacterScanner 

Pen 

DisplayObject 
DisplayMedium 

Form 
Cursor 
DisplayScreen 

InfiniteForm 
OpaqueForm 
Path 

Arc 
Circle 

Curve 
Line 
LinearFit 
Spline 
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The collection classes provide the basic data  s t ructure  for storing ob- 
jects together  as nonl inear  and l inear groups. The protocol for these 
classes makes  it possible directly to access (store and retrieve) individu- 
al elements. It also, through the enumera t ion  messages, supports 
noninterrupt ible  accessing of all of the elements,  in order. However, it 
does not support  intermingl ing the two kinds of accessing opera t ions- -  
enumera t ing  and storing. Nor does the collection protocol support  
accessing individual elements,  one at  a time, unless an external  position 
reference is separately maintained.  

Unless an easily computed external  name for each element  exists, in- 
terrupt ible  enumera t ion  of individual elements  can not be carried out 
efficiently. It is possible, for example, sequential ly to read elements of 
an OrderedCollection using a combination of first and after:, as long as 
the elements  of the collection are unique. An a l ternat ive  approach in- 
volves the collection itself remembering,  in some way, which element  
was last accessed. We call this the "position reference" in the discussion 
tha t  follows. The possibility of shared access to a sequence of elements, 
however, means  tha t  it is necessary to main ta in  a separate,  external  
memory  of the last e lement  accessed. 

Class Stream represents  the ability to main ta in  a position reference 
into a collection of objects. We use the phrase s t r eaming  over a collec- 
tion to mean  accessing the elements of a collection in such a way tha t  it 
is possible to enumera te  or store each element,  one at  a time, possibly 
intermingl ing these operations. By creating several Streams over the 
same collection, it is possible to main ta in  multiple position references 
into the same collection. 

There  are a number  of ways to main ta in  a position reference for 
s t reaming over a collection. A common one is to use an integer as an 
index. This approach  can be used for any collection whose elements are 
external ly  named by an integer. All SequenceableCollections fall into 
this category. As we shall describe later, such a Stream is represented 
in the Small talk-80 system by the class PositionableStream. A second 
way to main ta in  a position reference is to use a seed for a generator  of 
objects. An example of this kind of Stream in the Small talk-80 system is 
class Random which was already presented in Chapter  8. And a third 
way is to main ta in  a non-numerical  position reference, such as a refer- 
ence to a node in a sequence; this approach is i l lustrated in this chapter  
by an example class tha t  supports s t reaming over a linked list or a tree 
structure.  

Class Stream Class Stream, a subclass of class Object, is a superclass tha t  specifies the 
accessing protocol for s t reaming over collections. Included in this proto- 
col are messages for reading (retrieving) and wri t ing (storing) into the 
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collection, a l t h o u g h  not  all the  subclasses  of class S t ream can suppor t  
both  k inds  of access ing opera t ions .  The  basic r e a d i n g  message  is next; 
its response  is the  nex t  e l e m e n t  in the  collect ion t h a t  is r e f e renced  by 
the  St ream.  Given  the  abi l i ty  to access the  nex t  e l emen t ,  m o r e  g e n e r a l  
r e a d i n g  messages  can be suppor ted .  These  a re  next: anlnteger ,  which  re- 
sponds wi th  a collect ion of an ln teger  n u m b e r  of e l emen t s ;  nextMatchFor:  
anObject ,  which  reads  the  nex t  e l e m e n t  and  a n s w e r s  w h e t h e r  it is equal  
to the  a r g u m e n t ,  anObject;  and  contents ,  which  a n s w e r s  a collect ion of 

all of t he  e l emen t s .  

Stream instance protocol 

accessing--reading 
next 

next: anlnteger 

nextMatchFor: anObject 

contents 

Answer the next object accessible by the re- 
ceiver. 
Answer the next anlnteger number of objects 
accessible by the receiver. Generally, the an- 
swer will be a collection of the same class as 
the one accessed by the receiver. 
Access the next object and answer whether it 
is equal to the argument, anObject. 
Answer all of the objects in the collection 
accessed by the receiver. Generally, the an- 
swer will be a collection of the same class as 
the one accessed by the receiver. 

The basic wr i t i ng  message  is nextPut: anObject;  this  m e a n s  to s tore  the  
a r g u m e n t ,  anObject ,  as the  n e x t  e l e m e n t  accessible  by the  receiver .  If 
bo th  r ead  and  wr i t e  messages  a re  possible, a next m e s s a g e  fol lowing a 
nextPut: anElemen t  does not  r ead  the  e l e m e n t  j u s t  s tored,  bu t  r a t h e r  the  
one a f t e r  it in the  collection.  W r i t i n g  messages  also inc lude  nextPutAIl: 
aCollection, which  s tores  all  of t he  e l e m e n t s  in the  a r g u m e n t  into the  
collect ion accessed by the  receiver ,  and  next: an ln teger  put: anObject ,  
which  s tores  the  a r g u m e n t ,  anObject ,  as the  nex t  an ln teger  n u m b e r  of 
e l emen t s .  

Stream instance protocol 

accessing--writing 
nextPut: anObject 

nextPutAIl: aCollection 

next: anlnteger put: anObject 

The  r e a d i n g  and  wr i t i ng  messages  

Store the argument, anObject, as the next ele- 
ment accessible by the receiver. Answer 
anObject. 
Store the elements in the argument, 
aCollection, as the next elements accessible by 
the receiver. Answer aCollection. 
Store the argument, anObject, as the next 
anlnteger number of elements accessible by 
the receiver. Answer anObject. 

each  d e t e r m i n e  if a nex t  e l e m e n t  can 



197 
Class Stream 

be read or wr i t t en  and, if not, an  error  is reported.  The p r o g r a m m e r  
migh t  therefore  wish to de t e rmine  w h e t h e r  accessing is still feasible; 
this  is accomplished by sending the  Stream the message atEnd. 

Stream instance protocol 

testing 
atEnd Answer whether the receiver cannot access 

any more objects. 

N o n i n t e r r u p t e d  reading of e lements  t h a t  are  applied as a r g u m e n t s  to a 
block can be done by sending the  message do: aBIock, s imi lar  to the 
e n u m e r a t i n g  message suppor ted by the collection classes. 

Stream instance protocol 

enumerating 
do: aBIock Evaluate the argument, aBIock, for each of 

the remaining elements that can be accessed 
by the receiver. 

The imp lemen ta t i on  of this  enumera t i on  message depends on sending 
the  messages atEnd and next to the message receiver. We show this 
method  as an example  of the  use of these messages.  

do: aBIock 
[self atEnd] whileFalse: [aBIock value: self next] 

Each kind of Stream mus t  specify its ins tance creat ion messages.  In 
general ,  a Stream can not be created s imply by sending the  message 
new because the Stream mus t  be informed of w h i c h  collection it 
accesses and wha t  is its ini t ial  position reference. 

As a s imple example ,  let 's  assume t h a t  the  collection accessed by a 
Stream is an Array and t h a t  the  Stream is called accessor .  The contents  
of the  Array are the Symbols 

Bob Dave Earl Frank Harold Jim Kim Mike Peter Rick Sam Tom 

and the position reference is such tha t  Bob is the  next  accessible ele- 
ment .  Then  

expression result 

accessor next Bob 
accessor next Dave 
accessor false 

nextMatchFor: # Bob 
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accessor 
nextMatchFor: ~Frank 

accessor next 
accessor nextPut: @James 
accessor contents 

accessor 
nextPutAIl" 

#(Karl Larry Paul) 
accessor contents 

accessor next: 2 put: .:#:John 
accessor contents 

true 

accessor next 
accessor atEnd true 

Harold 
James 
(Bob Dave Earl Frank 

Harold James Kim 
Mike Peter Rick 
Sam Tom) 

(Karl Larry Paul) 

(Bob Dave Earl Frank 
Harold James Karl 
Larry Paul Rick Sam 
Tom) 

John 
(Bob Dave Earl Frank 

Harold James Karl 
Larry Paul John 
John Tom) 

Tom 

P o s i t i o n a b l e  
S t r e a m s  

In the introduction to this  chapter  we indicated three possible 
approaches tha t  a Stream might use in order to mainta in  a position ref- 
erence. The first one we will present  uses an integer index which is 
incremented each time the Stream is accessed. The Stream accesses only 
those kinds of collections whose elements have integers as external 
keys; these include all of the subclasses of SequenceableCollection. 

Class PositionableStream is a subclass of class Stream. I t  provides ad- 
dit ional protocol appropriate to Streams that  can reposition their  posi- 
tion references, but, it is an abstract  class because it does not provide 
an implementat ion of the inheri ted messages next and nextPut: anObject. 
The implementat ion of these messages is left to the subclasses of 
PositionableStream--ReadStream, WriteStream, and ReadWriteStream. 

A PositionableStream is created by sending the class one of two in- 
stance creation messages, on" aCollection or on" aCollection from" 
firstlndex to: lastlndex. The argument, aCollection, is the collection the 
Stream accesses; in the second case, a copy of a subco]]ection of 
aCollection is accessed, i.e., the one delimited by the two arguments 
firstlndex and lastlndex. 
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instance creation 
on: aCollection Answer an instance of a kind of 

PositionableStream that streams over the ar- 
gument, aCollection. 

on: aCollection from: firstindex to: last lndex 
Answer an instance of a kind of 
PositionableStream that streams over a copy of 
a subcollection of the argument, aCollection, 
from firstlndex to lastlndex. 

PositionableStream s u p p o r t s  a d d i t i o n a l  p r o t o c o l  fo r  a c c e s s i n g  a n d  t e s t -  

i n g  t h e  c o n t e n t s  of t h e  c o l l e c t i o n .  

PositionableStream instance protocol 

testing 
isEmpty Answer true if the collection the receiver 

accesses has no elements; otherwise, answer 
false. 

accessing 
peek 

peekFor: anObject 

upTo: anObject 

reverseContents 

Answer the next element in the collection (as 
in the message next), but do not change , the 
position reference. Answer nil if the receiver is 
at the end. 

Determine the response to the message peek. 
If it is the same as the argument, anObject, 
then increment the position reference and an- 
swer true. Otherwise answer false and do not 
change the position reference. 

Answer a collection of elements starting with 
the next element accessed by the receiver, and 
up to, not inclusive of, the next element that  
is equal to anObject. If anObject is not in the 
collection, answer the entire rest of the collec- 
tion. 

Answer a copy of the receiver's contents in re- 
verse order. 

S i n c e  a P o s i t i o n a b l e S t r e a m  is k n o w n  to  s t o r e  a n  e x p l i c i t  p o s i t i o n  r e f e r -  

e n c e ,  p r o t o c o l  for  a c c e s s i n g  t h a t  r e f e r e n c e  is s u p p o r t e d .  I n  p a r t i c u l a r ,  

t h e  r e f e r e n c e  c a n  be  r e s e t  to  a c c e s s  t h e  b e g i n n i n g ,  t h e  e n d ,  o r  a n y  o t h e r  

p o s i t i o n  of t h e  c o l l e c t i o n .  

PositionableStream instance protocol 

positioning 
position 

position: anlnteger 

Answer the receiver's current position refer- 
ence for accessing the collection. 

Set the receiver's current position reference 
for accessing the collection to be the argu- 
ment, anlnteger. If the argument is not within 
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reset 

setToEnd 

skip: anlnteger 

skipTo: anObject 

the bounds of the receiver's collection, report 
an error. 

Set the receiver's position reference to the be- 
ginning of the collection. 

Set the receiver's position reference to the end 
of the collection. 

Set the receiver's position reference to be the 
current position plus the argument, anlnteger, 
possibly adjusting the result so as to remain 
within the bounds of the collection. 

Set the receiver's position reference to be past 
the next occurrence of the argument, anObject, 
in the collection. Answer whether such an oc- 
currence existed. 

Class ReadStream 
C l a s s  ReadStream is a c o n c r e t e  s u b c l a s s  of PositionableStream t h a t  r e p -  

r e s e n t s  an accessor that  can only read elements from its collection. We 
can create an example simi lar to the previous one to demonstrate the 
use of the addit ional protocol provided in class PositionableStream and 
inheri ted by all ReadStreams. None of the nextPut:, next:put:, nor 
nextPutAIl: messages can be successfully sent to a ReadStream. 

accessor ~- 
ReadStream on: # (Bob  Dave Earl Frank Harold Jim Kim Mike 

Peter Rick Sam Tom) 

expression result 

accessor next Bob 
accessor true 

nextMatchFor: # Dave 
accessor peek Earl 
accessor next Earl 
accessor peekFor: #Frank true 
accessor next Harold 
accessor upTo: =#:Rick (Jim Kim Mike Peter) 
accessor position 10 
a c c e s s o r  skip: 1 t he  accessor  i tself  

accessor next Tom 
accessor atEnd true 
accessor reset the accessor itself 
accessor skipTo: #Frank true 
accessor next Harold 

Class WriteStream 
C l a s s  WriteStream is a s u b c l a s s  of PositionableStream r e p r e s e n t i n g  

accessors for wr i t ing  elements into a collection. None of the next, next:, 
nor do: messages can be successfully sent to a WriteStream. 
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WriteStrearns are used throughout  the Smalltalk-80 system as a part  
of the methods for pr int ing or storing a string description of any object. 
Each object in the system can respond to the messages printOn: aStream 
and storeOn: aStream. The methods associated with these messages con- 
sist of a sequence of messages to the argument ,  which is a kind of 
Stream tha t  allows writ ing elements into the collection it accesses. 
These messages are nextPut:, where the a rgument  is a Character, and 
nextPutAil:, where the a rgument  is a String or a Symbol. An example 
will i l lustrate this idea. 

Class Object pr int ing protocol, as described in Chapter  6, includes the 
message printString. An implementat ion of this message is 

printString 
1 aStream t 
aStream ~ WriteStream on: (String new: 16). 
self printOn: aStream. 
t aStream contents 

If a collection is sent the message printString, then the answer is a String 
tha t  is a description of the instance. The method creates a WriteStream 
tha t  the collection can store into, sends the message printOn: to the col- 
lection, and then responds with the contents of the resulting 
WriteStream. The message storeString to any object is similarly 
implemented in class Object, the difference being tha t  the second ex- 
pression consists of the message storeOn: aStream ra ther  than  printOn: 
aStream. 

The general  way in which collections print  a description of them- 
selves is to print  their  class name followed by a left parenthesis,  
followed by a description of each element separated by spaces, and ter- 
minated by a right parenthesis.  So if a Set has four e l e m e n t s - - t h e  
Symbols one, two, three, and four - - then  it prints  on a Stream as 

Set (one two three four ) 

An OrderedCollection with the same elements prints on a Stream as 

OrderedCol lect ion (one two three four ) 

and so on. 
Recall tha t  the definition of printOn: and storeOn: given in Chapter  6 

is tha t  any suitable description can be provided for printOn:i but  the de- 
scription created by storeOn: must  be a well-formed expression that,  
when evaluated, re-constructs the object it purports  to describe. 

Here is an implementat ion in class Collect ion for printOn:. 
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printOn: aStream 
aStream nextPutAIl: self class name. 
aStream space. 
aStream nextPut: $(. 
self do: 

[ :element I 
element printOn: aStream. 
aStream space]. 

aStream nextPut: $) 

N o t i c e  t h a t  t h e  m e s s a g e  space is s e n t  to t h e  W r i t e S t r e a m  ( a S t r e a m ) .  I t ,  

a n d  a n u m b e r  of o t h e r  m e s s a g e s  a r e  p r o v i d e d  in  c l a s s  W r i t e S t r e a m  to  

s u p p o r t  c o n c i s e  e x p r e s s i o n s  for  s t o r i n g  d e l i m i t e r s  i n t o  s u c h  S t r e a m s .  

T h e y  a r e  

WriteStream instance protocol 

character writing 
cr 

crTab 

crTab: anlnteger 

space 

tab 

T h u s  to  c o n s t r u c t  t h e  String 

"name city 

bob New York 
joe Chicago 

bill Rochester 

Store the r e tu rn  charac te r  as the next  ele- 
ment  of the receiver. 

Store the return character and a single tab 
character as the next two elements of the re- 
ceiver. 

Store the return character as the next ele- 
ment of the receiver, followed by anlnteger 
number of tab characters. 

Store the space character as the next element 
of the receiver. 

Store the tab character as the next element of 
the receiver. 

f r o m  t w o  c o r r e s p o n d i n g  Arrays, 

names ~- ~ (bob joe bill) 
cities ~- @ ( ' N e w  York" 'Chicago" ' Rochester ' )  

e v a l u a t e  t h e  e x p r e s s i o n s  
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aStream ~- WriteStream on: (String new: 16). 
aStream nextPutAIl: ' n a m e ' .  
aStream tab. 
aStream nextPutAIl: ' c i t y ' .  
aStream cr; cr. 
names with: cities do: 

[ :name :city I 
aStream nextPutAIl: name. 
aStream tab. 
aStream nextPutAIl: city. 
aStream cr] 

t h e n  the  des i red resu l t  is ob ta ined  by e v a l u a t i n g  aS t ream contents .  
Suppose a collection a l r e a d y  exists  and  we wish to append  f u r t h e r  in- 

fo rma t ion  into it by using St ream protocol. Class WriteStream suppor ts  
ins tance  c rea t ion  protocol t h a t  accepts  a collection and  sets the  posit ion 
re fe rence  for wr i t ing  to the  end. 

WriteStream class protocol 

instance creation 
with: aCollection Answer an instance of WriteStream accessing 

the argument, aCotlection, but positioned to 
store the next element at the end of it. 

with: aCollection from: firstlndex to: lastlndex 
Answer an instance of WriteStream accessing 
the subcollection of the argument, aCollection, 
from locaton firstlndex to iastlndex, but posi- 
tioned to store the next element at the end of 
the subcollection. 

Thus  if a String re fe r red  to as header  a l r e a d y  existed, con ta in ing  

"name city 

t hen  the  previous  e x a m p l e  String would be cons t ruc ted  by 

aStream ~ WriteStream with: header. 
names with: cities do: 

[ :name :city I 
aStream nextPutAIl: name. 
aStream tab. 
aStream nextPutAIl: city. 
aStream cr]. 

aStream contents 
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Class 
ReadWriteStream 

Class ReadWriteStream is a subclass of WriteStream tha t  represents  an 
accessor tha t  can both read and write elements  into its collection. It 
supports all the protocol of both ReadStream and WriteStream, as given 
above. 

Streams of 
Generated  
Elements  

Of the three ways to create a position reference for  s t reaming over a 
collection, the second way cited in the introduction to this chapter  was 
to specify a seed by which the next  elements of the collection can be 
generated. This kind of Stream only permits  reading the elements,  not 
writing. The reference, however, can be repositioned by reset t ing the 
seed. 

Class Random, introduced in Chapter  8, is a subclass of Stream tha t  
determines its elements based on an algori thm employing a number  as 
a seed. Random provides a concrete implementat ion for next and atEnd. 
Because the size of the collection is infinite, it never ends; moreover, 
Random can not respond to the message contents. It can respond to the 
message do:, but  the method will never end without  the programmer ' s  
purposeful intervention.  

The following is an implementa t ion of class Random; the reader  is 
referred to Chapters  11 and 21 for examples making  use of instances of 
the class. The implementat ions  for do: and nextMatchFor: anObject are 
inheri ted from class Stream. 

class name 

superclass 

instance variable names  

class methods 

instance creation 

Random 
Stream 
seed 

n e w  

1self basicNew setSeed 

instance methods 

testing 

a t E n d  
tfalse 

accessing 

n e x t  

1 temp I 
"Lehmer ' s  linear congruential method with modulus m = 2 raisedTo' 
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16, a = 27181 odd, and 5 = a \ x  8, c = 13849 odd, and c/m ap- 
proximately 0.21132" 

[seed ~- 13849 + (27181 * seed) bitAnd: 8r177777. 
temp ,-- seed / 65536.0. 
temp = 0] whileTrue. 

ttemp 

private 

setSeed 
"For pseudo-random seed, get a time from the system clock. It is a 
large positive integer; just use the lower 16 bits." 

seed ,- Time millisecondCIockValue bitAnd: 8r177777 

Another  possible example of a s t ream of generated elements are the 
probability distributions tha t  are presented in Chapter  21. The super- 
class ProbabilityDistribution is implemented as a subclass of Stream. The 
message next: anlnteger is inheri ted from Stream. Each kind of 
ProbabilityDistribution determines whether  it is "read-only" and, if so, 
implements  nextPut: as self shouldNotlmplement. Class SampleSpace, 
another  example in Chapter  21, maintains  a collection of data items 
and implements nextPut: anObject as adding to the collection. 

Streams for 
Collections 
Without 
External  Keys 

The third way to mainta in  a position reference for s t reaming over a col- 
lection cited in the introduction to this chapter  was to mainta in  a non- 
numerical  reference. This would be useful in cases where the elements 
of the collection cannot be accessed by external  keys or where such ac- 
cess is not the most efficient means to retrieve an element. 

St reaming over instances of class LinkedList provides an example in 
which the elements can be accessed by indexes as the external keys, but 
each such access requires a search down the chain of linked elements. 
It is more efficient to mainta in  a reference to a part icular  element in 
the collection (a kind of Link) and then to access the next element by re- 
questing the current  elements nextLink. Both reading and writing into 
the LinkedList can be supported by such a Stream. 

Suppose we create a subclass of Stream that  we call LinkedListStream. 
Each instance mainta ins  a reference to a LinkedList and a position ref- 
erence to an element in the collection. Since both reading and writing 
are supported, the messages next, nextPut:, atEnd, and contents must  be 
implemented. (Note tha t  these ~ four messages are defined in class 
Stream as self subclassResponsibi l i ty.)  A new ins tance of 

L inkedListStream is created by  sending i t  the message on: aLinkedList.  
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class name 

superclass 

instance variable names 

class methods 

LinkedListStream 

Stream 
collection 
currentNode 

instance creation 

on: aL inkedL is t  
tself basicNew setOn' aLinkedList 

instance methods 

testing 

atEnd 
1̀ currentNode isNil 

accessing 

next  
t saveCurrentNodel  
saveCurrentNode ~ currentNode. 
self atEnd 

ifFalse: [currentNode ~- currentNode nextLink]. 

lsaveCurrentNode 
nextPut:  aLink 

I index previousLink I 
self atEnd ifTrue: [1'collection addLast: aLink]. 
index ~- collection indexOf: currentNode. 

index = 1 
ifTrue: [collection addFirst: aLink] 
ifFalse: [previousLink ,-- collection at: index- 1. 

previousLink nextLink: aLink]. 
aLink nextLink: currentNode nextLink. 
currentNode ,- aLink nextLink. 

taLink 

private 

setOn: aL inkedL is t  
collection ~- aLinkedList. 
currentNode ~- aLinkedList first 

N o w  s u p p o s e  in  o r d e r  to d e m o n s t r a t e  t h e  use  of t h i s  n e w  k i n d  of 

S t r e a m  we  m a k e  up  a kinkedList  of nodes  t h a t  a r e  i n s t a n c e s  of c lass  

WordLink; c lass  Wordkink  is a subc l a s s  of Link t h a t  s t o r e s  a String or  a 

Symbol .  
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class name WordLink 
superclass Link 
instance variable names word 
class methods 

instance creation 

for: aString 
1'self new word aString 

instance methods 

accessing 

word 
tword 

word: aString 
word ~ aString 

comparing 

= aWordLink 
1'word = aWordLink word 

printing 

printOn: aSt ream 
aStream nextPutAIl' ' a WordLink for ' .  
aStream nextPutAIl word 

F r o m  the  above we can see t h a t  an  in s t ance  of WordLink for the  word 
@one  is c r ea t ed  by 

WordLink for: .#one 

Its p r in t  s t r ing  is 

' a WordLink for one '  

We can then create a LinkedList of WordLinks and then a 
LinkedListStream tha t  accesses this LinkedList. 

list ~ LinkedList new. 
list add: (WordLink for: #one) .  
list add: (WordLink for: # two) .  
list add: (WordLink for: # three) .  
list add: (WordLink for: # four) .  
list add: (WordLink for: #f ive) .  
accessor ~- LinkedListStream on: list 

T h e n  an  e x a m p l e  sequence  of messages  to a c c e s s o r  is 
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expression result 

accessor next 

accessor next 
accessor nextMatchFor: 

(WordLink for: @three) 

accessor nextPut: 
(WordLink for: #insert) 

accessor contents 

accessor next 
accessor atEnd 

a WordLink for one 
a WordLink for two 

true 

a WordLink for insert 

LinkedList 
(a WordLink for one 
a WordLink for two 
a WordLink for three 
a WordLink for insert 
a WordLink for five) 

a WordLink for five 
true 

Similarly, t ravers ing the nodes of a tree s tructure,  such as tha t  of class 
Tree given in Chapter  11, can be done b y  a kind of Stream tha t  main- 
tains a reference to a cur ren t  node and then accesses the next  e lement  
by accessing the cur rent  node's left tree, root, or r ight  tree. This kind of 
Stream is slightly more complicated to implement  than  tha t  for a 
kinkedkist because it is necessary to re ta in  knowledge of whether  the 
left or r ight  tree has been t raversed and back references to the father of 
t h e  cur ren t  node. The order of t raversal  of the tree s t ruc ture  can be 
implemented in the Stream, ignoring the method by which subtrees 
were added to the structure.  Thus, a l though we used in-order t raversal  
in the implementat ions  of class Tree and class Node, we can s t ream 
over a Tree with postorder t raversal  by implement ing the messages 
next and nextPut: appropriately.  

Externa l  
S treams  and  
File S treams  

The Streams we have examined so far make  the assumption tha t  the el- 
ements  of the collection can be any objects, independent  of representa-  
tion. For communicat ing with inpu t /ou tpu t  devices, such as a disk, 
however, this assumption is not valid. In these cases, the elements are 
stored as binary,  byte-sized elements  tha t  may prefer to be accessed as 
numbers,  strings, words (two bytes), or bytes. Thus we have a need to 
support  a mixture  of nonhomogeneous accessing messages for reading 
and writ ing these different-sized "chunks"  of information. 

Class ExternalStream is a subclass of class ReadWri teStream. I ts pur -  

pose is to add the nonhomogeneous accessing protocol. This includes 
protocol for positioning as well as accessing. 
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nonhomogeneous accessing 
nextNumber: n 

nextNumber: n put: v 

nextString 

nextStringPut: aString 

nextWord 

nextWordPut: anlnteger 

nonhomogeneous positioning 
padTo: bsize 

Answer the next n bytes of the collection 
accessed by the receiver as a positive Small- 
Integer or LargePositivelnteger. 
Store the argument, v, which is a positive 
Smaillnteger or LargePositivelnteger, as the 
next n bytes of the collection accessed by the 
receiver. If necessary, pad with zeros. 

Answer a String made up of the next elements 
of the collection accessed by the receiver. 

Store the argument, aString, in the collection 
accessed by the receiver. 

Answer the next two bytes from the collecton 
accessed by the receiver as an Integer. 

Store the argument, anlnteger, as the next two 
bytes of the collection accessed by the receiver. 

Skip to the next boundary of bsize characters, 
and answer how many characters were 
skipped. 

padTo: bsize put: aCharacter Skip--wr i t ing  the argument, aCharacter, into 
the collection accessed by the receiver in order 
to pad the collection--to the next boundary of 
bsize characters and answer how many char- 
acters were written (padded). 

padToNextWord Make the position reference even (on word 
boundary), answering the padding character, 
if any. 

padToNextWordPut: aCharacter Make the position reference even (on word 
boundary), writing the padding character, 
aCharacter, if necessary. 

skipWords:  nWords  Position after nWords number of words. 

wordPosit ion Answer the current position in words. 

wordPosition: wp Set the current position in words to be the ar- 
gument, wp. 

Class FileStream is a subclass of ExternaiStream. A l l  accesses to external 
files are done using an instance of FileStream. A FileStream acts as 
though i t  were accessing a large sequence of bytes or characters; the el- 
ements of the sequence are assumed to be Integers or Characters. The 
protocol for a FileStream is essentially that  of class ExternalStream and 
its superclasses. In addition, protocol is provided to set and to test  the 
s ta tus  of the sequence the FileStream is s t reaming  over. 

Classes ExternalStream and FileStream are provided in the 
Small ta lk-80 system as the f ramework  in which a file system can be 
created. Addit ional  protocol in class FileStrearn assumes tha t  a file sys- 
tem is based on a f ramework  consisting of a directory or dict ionary of 
files, where  a file is a sequence of file pages. The Small ta lk-80 system 
includes classes FileDirectory, File, and FilePage to represent  these struc- 
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tu ra l  par ts  of a file system. A FilePage is a record of da ta  t ha t  is 
uniquely  identified wi th in  its File by a page number .  A File is u n i q u e l y  

identified both by an a lphanumer i c  n a m e  and a serial  number ;  it main-  
ta ins  a reference to the FileDirectory which contains  the  File. And the  
FileDirectory is itself un ique ly  identified by the device or reserver" to 
which it refers. User  p rograms  typical ly  do not access a File or its 
FilePages directly; r a t h e r  they  access it as a sequence of charac te r s  or 
bytes th rough  a FileStream. Thus  the p r o g r a m m e r  can create  a 
FileStream as an accessor to a file using an  expression of the  form 

Disk file: "name.smalltalk' 

where  Disk is an  ins tance  of a FileDirectory. The FileStream can then  be 
sent  sequences of reading and  wr i t ing  messages as specified in the  pro- 
tocol of this chapter .  
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The protocol for the classes in the Collection h ierarchy was presented in 
Chapters  9 and 10. This chapter  presents the complete implementat ion 
of class Collection and the implementat ion of the basic protocol for in- 
stance creation, accessing, testing, adding, removing, and enumera t ing  
for each subclass of Collection. These implementat ions  make  effective 
use of a f ramework in class Collection tha t  is refined in its subclasses. 
Messages in Collection are implemented in a very general  way or as self 
subclassResponsibility. Messages are implemented as 

self subclassResponsibility 

if the method depends on the representat ion of the instances. Each sub- 
class must  override such messages to fulfill any  "subclass responsibili- 
ties." Subclasses may  override other messages, for efficiency purposes, 
with a new method tha t  takes advantage of the representat ion.  A sub- 
class may implement  some messages with 

self shouldNotlmplement 

which results in a report  tha t  the message should not be sent to in- 
stances of the class. For example, SequenceableCollections cannot re- 
spond to remove:ifAbsent:; therefore the method is implemented as self 
shouldNotlmplement. 

Class Collection E] Collection instance creation protocol In addition to the messages 
new and new:, an instance of a Collection can be created by sending any 
one of four messages made up of one, two, three, or four occurrences of 
the keyword with:. The messages new and new: are not re implemented 
in Collection; t h e y  produce an instance tha t  is an empty collection. Each 
of the other four instance creation methods is specified in Collection in 
a similar  way. Firs t  an instance is created (with the expression self new) 
and then the arguments ,  in order, are added to the instance. The new 
instance is re turned  as the result. The instance is created using self 
new, r a the r  than  super new or self basicNew, because a subclass of Col- 
lection might  re implement  the message new. Any subclass of Collection 
tha t  represents  fixed-size objects with indexed instance variables must  
re implement  the following instance creation messages since such a sub- 
class cannot  provide an implementat ion for new. 
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class name Collection 
superclass Object 
class methods 

instance creation 

with: anObje©t 
I newCollection I 
newCollection ~ self new. 
newCollection add: anObject. 
t newColtection 

with: firstObje©t with: secondObject 
I newCollection I 
newCollection ,- self new. 
newCollection add: firstObject. 
newCollection add: secondObject. 
t newCollection 

with: firstObject with: secondObject with: thirdObject 
I newCollection I 
newCollection ~ self new. 
newCollection add: firstObject. 
newCollection add: secondObject. 
newCollection add: thirdObject. 
tnewCollection 

with: firstObject with: secondObject with: thirdObject 
with: fourthObject 
I newColtection I 
newCollection ~ self new. 
newCollection add: firstObject. 
newCollection add: secondObject. 
newColtection add: thirdObject. 
newCollection add: fourthObject. 
tnewCollection 

The implementation of each of the instance creation messages depends 
on the ability of the newly-created instance to respond to the message 
add:. Class Collection cannot provide implementations of the following 
messages because they depend on the representation used by a subclass: 

add: anOb jec t  
remove:  anOb jec t  i fAbsent:  aBIock 
do: aBIock 

All other messages in the basic collection protocol are implemented in 
terms of these three messages. Each subclass must implement the three 
basic messages; each can then reimplement any others in order to im- 
prove its performance. 
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El Collection adding protocol The protocol for adding elements to a 
collection is implemented in class Collection as follows. 

adding 

add: anObject  
self subclassResponsibility 

addAIl: aCollection 
aOoltection do: [ :each I self add: each]. 
taCollection 

Notice that the implementat ion of addAIl: depends on both do: and add:. 
The order of adding elements from the argument, aCollection, depends 
on both the order in which the collection enumerates its elements (do:) 
and the m a n n e r  in which the elements are included into this collection 
(add:). 

El Collection removing protocol The messages remove: and removeAIl: 
are implemented in terms of the basic message remove:ifAbsent:, which 
must  be provided in a subclass. These methods report  an error  if the el- 
ement  to be removed is not in the collection. The method 
remove:ifAbsent: can be used to specify different exception behavior. 

removing 

remove: anObject  ifAbsent: excepUonBIock 
self subclassResponsibility 

remove: anObject  
self remove: anObject ifAbsent: [self errorNotFound] 

removeAIh aCollection 
aCollection do: [ :each I self remove: each]. 
taColleotion 

private 

errorNotFound 
self error: 'Object is not in the collection 

As usual, the category private refers to messages introduced to support  
the implementat ions  of other messages; it is not to be used by other ob- 
jects. Most error  messages tha t  are used more than  once will be speci- 
f ied  as private messages in order to create the l i teral  message str ing 
once only. 

[~] Collection testing protocol All the messages in the protocol for test- 
ing the status of a collection can be implemented in Collection. 
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testing 

isEmpty 
1' self size = 0 

includes: anObject 
self do: [ :each I anObject = each ifTrue: [1'true]]. 
1`false 

occurrencesOf: anObject 
I tally I 
tally ~- O. 
self do: [ :each I anObject = each ifTrue: [tally ~ tally + 1]]. 
t tal ly 

The implementat ions  of includes: and occurrencesOf: depend on the 
subclass's implementat ion of the basic enumera t ing  message do:. The 
block a rgument  of do: in the method for includes: terminates  as soon as 
an element  equal to the a rgument  is found. If no such element is found, 
the last expression (tfalse) is evaluated. The response to isEmpty and in- 
cludes: are Boolean objects, true or false. The message size is inherited 
from class Object, but  is re implemented in Collection because size, as 
defined in Object, is only nonzero for variable-length objects. 

accessing 

size 
I tally I 
tally ~ O. 
self do: [ :each I tally ~ tally + 1]. 
t tal ly 

This is a low-performance approach to computing the size of a collection 
which, as we shall see, is re implemented in most of the subclasses. 

[~] Collection enumerating protocol An implementat ion of all of the 
messages tha t  enumera te  the elements of collections, except do:, can be 
provided in class Collection. 

enumerating 

do: aBIock 
self subclassResponsibi l i ty  

collect: aBIock 
I newCol lect ion I 
newCollect ion ~ self species new. 
self do: [ :each I newCotlect ion add: (aBIock value: each)]. 
l 'newCollect ion 

detect: aBIock 
1self detect: aBIock ifNone: [self errorNotFound] 
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detect: aBIock ifNone: exceptionBIock 
self do: [ :each I (aBIock value: each)ifTrue: [Teach]]. 
texceptionBlock value 

inject: thisValue into: binaryBIock 
I nextValue I 
nextValue ~- thisValue. 
self do: [ :each I nextValue ~ binaryBIock value: nextValue value: each]. 
TnextValue 

reject: aBIock 
tself select: [ :element I (aBIock value: element) = =  false] 

select: aBIock 
I newCollection I 
newCollection ~ self species new. 
self do: [ :each I (aBIock value: each) ifTrue: [newCollection add: each]]. 
tnewCollection 

In the methods associated with collect: and select:, the message species 
is sent to self. This message was not shown in Chapter  9 because it is 
not par t  of the external  protocol of collections. It is categorized as pri- 
vate to indicate the intention for internal  use only. The message is 
implemented in class Object as re turn ing  the class of the receiver. 

private 

species 
1 self class 

Thus the expression 

self species new 

means ~'create a new instance of the same class as tha t  of the receiver." 
For some collections, it may not be appropriate to create a ~'similar" 

instance in this way; a new collection tha t  is like it may not be an in- 
stance of its class. Such a collection will override the message species. 
In particular,  an Interval responds tha t  its species is Array (because it is 
not possible to modify an Interval); the species of a MappedCol lec t ion  is 
the species of the collection it maps (since the MappedCollection is sim- 
ply acting as an accessor for tha t  collection). 

If a collection cannot create an instance by simply sending the class 
the message new, it must  re implement  messages collect: and select:. 
Since reject: is implemented in terms of select:, it need not be 
reimplemented.  

The method for inject:into: evaluates the block a rgument  once for 
each element in the receiver. The block is also provided with its own 
value from each previous evaluation; the initial value is provided as the 
a rgument  of inject:. The final value of the block is re turned as the value 
of the inject:into: message. 
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The reason for the introduction of two messages, detect: and 
detect:ifNone:, is s imilar  to the reason for the two removing messages, 
remove: and remove:ifAbsent:. The general  case (detect:) reports an er- 
ror if no e lement  meet ing the detection criterion is found; the program- 
mer  can avoid this er ror  report  by specifying an a l ternat ive  exception 
(detect: ifN one:). 

E] Collection converting protocol The protocol for converting from any 
collection into a Bag, Set, OrderedCollection, or SortedCollection is 
implemented in a s t ra ightforward w a y - - c r e a t e  a new instance of the 
target  collection, then add to it each element  of the receiver. In most 
cases, the new instance is the same size as the original collection. In the 
case of OrderedCollections, e lements  are added at the end of the se- 
quence (addLast:), regardless of the order of enumera t ing  from the 
source. 

converting 

asBag 
I aBag l  
aBag ~ Bag new. 
self do: [ :each I aBag add: each]. 
l'aBag 

asOrderedCollection 
I anOrderedCollection I 
anOrderedColtection ~ OrderedCollection new: self size. 
self do : [  :each t anOrderedCollection addLast: each]. 
1' anOrderedCollection 

asset 
I aSet l  
aSet ~- Set new: self size. 
self do: [ :each I aSet add: each]. 
taSet 

asSortedCollection 
i aSortedCollection I 
aSortedCollection ~ SortedCollection new: self size. 

aSortedCollection addAIl: self. 
t aSortedCollection 

asSortedCollection: aBIock 
I aSortedCollection I 
aSortedCollection ~- SortedCollection new: self size. 
aSortedCollection sortBIock: aBIock. 
aSortedCollection addAIl: self. 
l 'aSortedCollection 
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Collection printing protocol The implementat ions  of the printOn: 
and storeOn: messages in Object are overridden in Collection. Collec- 
tions pr int  in the form 

className (element element element ) 

Collections store themselves as an expression from which an equal col- 
lection can be constructed. This takes the form of 

o r  

o r  

((className new)) 

((className new) add: element; yourself) 

((className new) add: element; add: element; yourself) 

with the appropria te  number  of cascaded messages for adding each ele- 
ment,  depending on whether  the collection has no, one, or more ele- 
ments. The message yourself r e tu rns  the receiver of the message. It is 
used in cascaded messages to guaran tee  tha t  the result  of the cascaded 
message is the receiver. All objects respond to the message yourself; it is 
defined in class Object. 

The general  methods for pr int ing and storing are 

printing 

printOn: aStream 
I tooMany I 
tooMany ~- aStream position + self maxPrint. 
aStream nextPutAIl: self class name, " ( ' .  
self do: 

[ :element I 
aStream position > tooMany 

ifTrue: [aStream nextPutAll: ' ...etc...) ' . t self]. 
element printOn: aStream. 
aStream space]. 

aStream nextPut: $) 
storeOn: aStream 

I noneYet I 
aStream nextPutAtl: "(( ' .  
aStream nextPutAll: self class name. 
aStream nextPutAIl: 'new)'. 
noneYet ~- true. 
self do: 

[ :each I 
noneYet 

ifTrue: [noneYet ~ false] 
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ifFatse: [aStream nextPut: $;]. 
aStream nextPutAIt "add". 
aStream store: each]. 

noneYet ifFalse: [aStream nextPutAIl' " yourself ']. 
aStream nextPut' $) 

private 

maxPr in t  
1'5000 

These methods make use of instances of a kind of Stream tha t  acts as 
an accessor for a String. The method printOn: sets a threshold for the 
length of the String to be created; a long collection may print  as 

className (element element ...etc... ) 

The threshold is determined as the response to the message maxPrint 
which is set at 5000 characters.  Subclasses can override the private 
message maxPrint in order to modify the threshold. 

Note tha t  this technique of using a method ra ther  than  a variable is 
a way of providing a parameter  in a method. A variable cannot be used 
as the parameter  because the variable, to be accessible to all instances, 
would have to be a class variable. Subclasses cannot specify a class vari- 
able whose name is the same as a class variable in  one of its 
superclasses; thus if a subclass wants  to change the value of the vari- 
able, it will do so for instances of its superclass as well. This is not the 
desired effect. 

The print ing format  is modified in several subclasses. Array does not 
print  its class name; Intervals pr int  using the shor thand notation of the 
messages to: and to:by: to a Number. A Symbol prints its characters  
(without the ~ prefix of the literal form of a Symbol); a String prints its 
characters  delimited by single quotes. 

The storeOn: message is re implemented in ArrayedCollection and sev- 
eral of its subclasses because instances are created using new: aninteger 
ra ther  than  simply new. Arrays, Strings, and Symbols store in their  lit- 
eral forms. Intervals use the shor thand notation of messages to: and 
to:by:. MappedCollections store using the converting message mappedBy: 
tha t  is sent to the collection tha t  is indirectly accessed. 

S u b c l a s s e s  of 
Collection 

For each subclass of Collection, we show the methods tha t  implement  
the three required messages (add:, remove:ifAbsent:, and do:) and the 
messages in the adding, removing, testing, and enumera t ing  protocols 
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Class Bag  

tha t  are reimplemented.  New collection protocol for a par t icular  sub- 
class as specified in Chapter  9 will generally not be presented in this 
chapter. 

Bag represents an unordered collection in which an element can appear  
more than  once. Since the elements of Bags are unordered, the mes- 
sages at: and at:put: are re implemented to report  an error. 

Instances of Bag have an instance of Dictionary as a single instance 
variable named contents. Each unique element  of a Bag is the key of an 
Association in contents; the value of an Association is an Integer repre- 
senting the number  of times the element appears in the Bag. Removing 
an element  decrements the tally; when the tally falls below 1, the Asso- 
ciation is removed from contents. Bag implements  new, size, includes:, 
and occurrencesOf:. A new instance must  initialize its instance variable 
to be a Dictionary. The re implementat ion of size is made efficient by 
summing all the values of elements of contents. The arguments  of the 
testing messages are used as keys of contents. In implement ing in- 
cludes:, the responsibility for checking is passed to contents. In order to 
answer the query occurrencesOf: anObject, the method checks tha t  
anObject is included as a key in contents and then looks up the value 
(the tally) associated with it. 

class name Bag 
superclass Collection 
instance variable  names  contents 
class methods 

instance creation 

n e w  

1'super new setDictionary 

instance methods 

accessing 

at: index 
self errorNotKeyed 

at." index put." anObject  
self errorNotKeyed 

size 
I tally I , 
tally ~- 0 
contents do : [  :each I tally ~- tally -I- each]. 
ttally 

testing 

includes: anObjec t  
1'contents includesKey: anObject 
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occurrencesOf: anObject 
(self includes' anObject) 

ifTrue: [tcontents at: anObject] 
ifFalse: [tO] 

private 

setDictionary 
contents ~- Dictionary new 

(in Collection) 

private 

errorNotKeyed 
self error: 

self class name, "s do not respond to keyed accessing messages" 

To add an element is to add it once, but Bags can add multiple times. 
The implementation of add: calls on add:withOccurrences:. Removing an 
element checks the number of occurrences, decrementing the tally or 
removing the element as a key in contents if the tally is less than 1. 

adding 

add: newObject 
1self add: newObject withOccurrences: 1 

add: newObject withOccurrences." anlnteger 
contents at: newObject 

put: antnteger + (self occurrencesOf: newObject). 
l"newObject 

removing 

remove: oldObject ifAbsent: exceptionBIock 
I count I 
count ~ self occurrencesOf: oldObject. 
count = 0 ifTrue: [l exception Block value]. 
count = 1 

ifTrue: [contents removeKey: oldObject] 
ifFatse: [contents at: oldObject put: count -1 ] ] .  

toldObject 

Enumerating the elements of a Bag means selecting each element of 
the Dictionary and evaluating a block with the key of that element (i.e., 
the actual Bag element is the key of t h e  Dictionary). This has to be done 
multiple times, once for each occurrence of the element, as indicated by 
the value associated with the key. 
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enumerating 

do: aBIock 
contents associationsDo: 

[ :assoc I assoc value timesRepeat: [aBIock value: assoc key]] 

Class Set 

The elements of Sets are unordered like those of Bags, so the messages 
at: and at:put: produce an error  report.  A Set may not contain an ele- 
ment  more than  once, therefore, every insertion of an e lement  must,  in 
theory, check the ent ire  collection. To avoid searching all elements,  a 
Set determines  where in its indexed instance variables to s tar t  a search 
for a par t icular  e lement  by using a hashing technique. 

Each Set has an instance variable named tally. Mainta in ing this tal ly 
of the number  of elements  avoids the inefficiencies involved in deter- 
mining the size of the Set by counting every non-nil element.  Thus new, 
new:, and size are reimplemented;  the first two in order to initialize the 
variable tally and the last simply to respond with the value of tally. 

class name 
superclass 
instance variable names 

Set 
Collection 
ta y 

class methods 

instance creation 

n e w  

mself new: 2 
new: anlnteger  

t(super new: anlnteger) setTally 

instance methods 

accessing 

at: index 
self errorNotKeyed 

at: index put: anObject  
self errorNotKeyed 

size 
ttally 

private 

setTally 
tally ~ 0 

In the method for new:, super is used in order to avoid recursion. A pri- 
vate message of Set, findElementOrNil:, hashes the a rgument  to produce 
the index at which to begin the probe of the Set. The probe proceeds 
until  the argument ,  anObject, is found, or until  nil is encountered. The 
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response is the index of the last position checked. Then the test ing mes- 
sages are implemented as 

testing 

includes: anObject 
t(self basicAt: (self findElementOrNil: anObject)) ,~,,-~ nil 

occurrencesOf: anObject 
(self includes: anObject) 

ifTrue: [T 1] 
ifFalse: [t0] 

The number  of occurrences of any e lement  in the Set is never more 
than  1. The three basic messages must  make  use of basicAt: and 
basicAt:put: because Sets report  an error  if at: or at:put: is used. 

adding 

add: newObject 
I index I 
newObject isNil ifTrue: [TnewObject]. 
index ~- self findElement©rNil: newObject. 
(self basicAt: index)isNil 

ifTrue: [self basicAt: index put: newObject, tally ~ tally + 1]. 
tnewObject 

removing 

remove: oldObject ifAbsent: aBIock 
I index I 
index ~ self find: oldObject ifAbsent: [taBIock value]. 
self basicAt: index put: nil. 
tally ~- t a l l y -  1. 
self fixCotlisionsFrom: index. 
totdObject 

enumerating 

do: aBIock 
1 to: self basicSize do: 

[ :index I 
(self basicAt: index)isNil 

ifFalse: [aBIock value: (self basicAt: index)]] 

The p r i va te  message f ind:i fAbsent: cal ls on f indElementOrNi l : ;  i f  the ele- 
ment ,  o ldObject ,  is not found, the a rgument  aBIock is evaluated. In or- 
der to guaran tee  tha t  the hashing/probing  technique works properly, 
remain ing  elements  might  need to be compacted whenever  one is re- 
moved (fixCollisionsFrom:). These methods are good examples of when 
the accessing messages basicAt:, basicAt:put:, and basicSize must  
be used. 
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C l a s s  Dic t ionary  

A Dictionary is a col lect ion of Associat ions. Class Dictionary uses a 
hashing technique to locate its e lements  which is like tha t  of its super- 
class, Set, but  hashes on the keys in the Associations instead of on the 
Associations themselves. Most of the accessing messages for Dictionary 
are re implemented to t rea t  the values of the Associations as the ele- 
ments,  not the Associations themselves. 

Dictionary implements  at: and at:put:, but  redefines the a rgumen t  as- 
sociated with the keyword at: to be any key in the Dictionary (not neces- 
sari ly an Integer index). The a rgumen t  of includes: is the value of one of 
the Associations in the Dictionary, not one of the Associations them- 
selves. The message do: enumera tes  the values, not the Associations. 
The a rgument  to remove: is also a value, but this is an inappropria te  
way to delete from a Dictionary because elements  are referenced with 
keys. Ei ther  removeAssociation: or removeKey: should be used. Thus the 
messages remove: and rernove:ifAbsent: should not be implemented for 
Dictionary. 

Much of the work in the accessing protocol is done in private mes- 
sages, e i ther  those inheri ted from Set or similar  ones for finding a key 
(findKeyOrNil:). 

class name Dictionary 
superclass Set 
instance methods 

accessing 

at: key 
rsetf at: key ifAbsent: [self errorKeyNotFound] 

at: key put: anObject 
I index element I ~ 
index ~- self findKeyOrNil: key. 
element ~ self basicAt: index. 
element isNil 

ifTrue: 
[self basicAt: index put: (Association key: key value: anObject). 
tally ~ tally + 1] 
" element is an Association. The key already exists, change its 

value." 
ifFalse: 

[element value: anObject]. 
tanObject 

at: key ifAbsent: aBIock 
I index I 
index ,- self findKey: key ifAbsent: [taBIock value]. 
t(self basicAt: index) value 
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testing 

includes: anObject  
"Revert to the method used in Collection." 
self do: [ :each t anObject = each ifTrue: [ttrue]]. 
tfalse 

adding 

add: anAssociation 
I index element I 
index ~- self findKeyOrNil: anAssociation key. 
element ~ self basicAt: index. 
element isNil 

ifTrue: [self basicAt: index put: anAssociation. 
tally ~- tally + 1] 

ifFalse: [element value: anAssociation value]. 
1' anAssociation 

removing 

remove: anObject  ifAbsent: aBIock 
self shouldNotlmplement 

enumerating 

do." aBIock 
self associationsDo: [ :assoc I aBlock value: assoc value] 

private 

errorKeyNotFound 
self error: "key not found'  

Notice the similari ty between at:put: and add:. The difference is in the 
action taken if the element is not f o u n d - - i n  the case of at:put:, a new 
Association is created and stored in the Dictionary; in the case of add:, 
the argument ,  anAssociation, is stored so tha t  any shared reference to 
the Association is preserved. 

The message collect: is re implemented in order to avoid the problems 
of collecting possibly identical values into a Set which would result  in 
throwing away duplications. The message select: is re implemented in 
order to select Assoc ia t ions  by applying their  values as the arguments  
to the block. 

enumerating 

collect: aBlock 
I newColiection t 
newCollection ~ Bag new. 
self do: [ :each I newCollection add: (aBIock value: each)]. 

tt newCollection 
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select: aBIock 
I newCollection I 
newCollection ~- self species new. 
self associationsDo: 

[ each I 
(aBIock value each value)ifTrue' [newCollection add: each]]. 

tnewCollection 

IdentityDictionary overrides at:, at:put:, and add: in order to implement  
checking for identical keys instead of equal keys. An IdentityDictionary is 
implemented as two parallel  ordered collections of keys and values, 
ra ther  than  as a single collection of Associations. Thus do: must  also be 
reimplemented.  The implementat ion is not shown. 

Sequenceable-  
Col lect ions 

SequenceableCollection is the superclass for a l l  collections whose ele- 
ments are ordered. Of the messages we are examining, remove:ifAbsent: 
is specified as being inappropriate for SequenceableCollections in gen- 

era l ,  since the order of elements might  have been external ly specified 
and it is assumed tha t  they should be removed in order. Because 
SequenceableCollections are ordered, elements are accessed using at:; 
the implementat ion is provided in class Object. The message do: is 
implemented by accessing each element at  index 1 through the size of 
the collection. SequenceableCollections are created using the message 
new:. Therefore, collect: and select: must  be re implemented to create 
the new collection using new: ra ther  than  new. The methods for collect: 
and select: shown next use a WriteStrearn in order to access the new col- 
lection, and the message at: in order to access elements of the original 
collection. 

class name 
superclass 
instance methods 

SequenceableColfection 
Collection 

accessing 

size 
self subclassResponsibility 

removing 

remove:  o ldObject  i fAbsent:  anExcept ionBiock 
self shouldNotlmplement 

enumerating 

do: aBIock 
I index length I 
index ~ O. 
length ~- self size. 
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[(index ~ index + 1) < = length] 
whileTrue: [aBIock value: (self at: index)] 

collect: aBIock 
I aStream index length I 
aStream ~- WriteStream on: (self species new: self size). 
index ~- O. 
length ~- self size. 
[(index ~-index + 1) < = length] 

whileTrue: [aStream nextPut: (aBIock value: (self at: index))]. 
1 aStream contents 

select: aBlock 
I aStream index length I 
aStream ~ WriteStream on: (self species new: self size). 
index ~ O. 
length ~ self size. 
[(index ~ index + t) < = length] 

whileTrue: 
[(aBIock value: (self at: index)) 

ifTrue: [aStream nextPut: (self at: index)]]. 
t aStream contents 

Notice that  size is declared as a subclass responsibility in 
SequenceableCol lec t ion.  The m e t h o d  i n h e r i t e d  f r o m  the superclass Col- 
lection uses do: to e n u m e r a t e  and t he reby  coun t  each e lement .  B u t  the 
m e t h o d  for  do: as speci f ied in  Sequenceab leCol lec t ion  de te rm ines  the 
limit for indexing by requesting the size of the collection. Therefore, 
size must  be re implemented in order not to be stated in terms of do:. 

[~] Class kinkedList Elements of kinkedList are instances of Link or of 
one of its subclasses. Each kinkedList has two instance variables, a ref- 
erence to the first and to the last elements. Adding an element is as- 
sumed to be interpreted as adding to the end (addkast:); the method for 
addLast: is to make the element the next link of the current  last link. 
Removing an element means tha t  the element 's  preceding link must  
reference the element 's  succeeding link (or nil). If the element to be re- 
moved is the first one, then its succeeding link becomes the first one. 

class name 
superclass 
instance variable names 

instance methods 

accessing 

at: index 
I count ebement size I 
count ~ 1. 

LinkedList 
SequenceableCollection 
firstLink 
lastLink 
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element ~ self first. 

size ~ self size. 

[count > size] whileFalse: 

[count = index 

ifTrue: [1'element] 

ifFalse: [count ~ count + 1. 

element ~- element nextLink]]. 

1"self errorSubscriptBounds: index 

at: index put: e lement  
self error: ' D o  not store into a LinkedList using at:put: '  

adding 

add: aLink 
t self addLast: aLink 

addLast:  aLink 
self isEmpty 

ifTrue: [firstLink ~- aLink] 

ifFalse: [lastLink nextLink: aLink]. 
lastLink ~- aLink. 

taLink 

removing 

remove:  aLink i fAbsent:  aBlock 
I tempLink I 
aLink = = firstLink 

ifTrue: 

[firstLink ~ aLink nextLink. 

aLink = -- lastLink ifTrue: [lastLink ~- nil]] 
ifFalse: 

[tempLink ~ firstLink. 

[tempLink isNil ifTrue: [ taB lock  value]. 

tempLink nextLink - - =  aLink] 

whileFalse: [tempLink ~ tempLink nextLink]. 
tempLink nextLink: aL-ink nextLink. 

aLink = = lastLink ifTrue: [lastLink ~- tempLink]]. 
aLink nextLink: nil. 
1"aLink 

enumerating 

do= aBIock 
I aLink I 
aLink ~ firstLink. 

[aLink isNil] whileFalse: 

[aBtock value: aLink. 

aLink ~- aLink nextLink] 
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A nil l ink signals the end of the LinkedList. Thus the enumera t ing  mes- 
sage do: is implemented as a simple loop tha t  continues until  a nil is en- 
countered in the collection. 

El Class Interval Intervals are Sequenceab leCol lec t ions  whose ele- 
men ts  are computed. Therefore, messages for adding and removing can- 
not be supported. Since elements are not explicitly stored, all accessing 
(at:, size, and do:) requires a computation. Each method checks to see if 
the last e lement  computed is to be incremented (positive step) or 
decremented (negative step) in order to de termine  whether  the limit 
(stop) has been reached. 

class name 
superclass 
instance variable names 

class methods 

instance creation 

Interval 
SequenceableCol lection 
start 
stop 
step 

from: sta.rtlnteger to: stoplnteger 
1' self new 

setFrom: startlnteger 
to: stoplnteger 
by: 1 

from: start lnteger to: stopinteger by: steplnteger 
1' self new 

setFrom: startlnteger 
to: stoplnteger 
by: steplnteger 

instance methods 

accessing 

size 
step < 0 

ifTrue: [start < stop 
ifTrue: [tO] 
ifFatse: [tstop -- s ta r t / /  step + 1]] 

ifFalse: [stop < start 
ifTrue: [tO] 
ifFalse: [tstop - s ta r t / /  step + 1]] 

at: index 
(index > = 1 and: [index < = self size]) 

ifTrue: [tstart + (step . ( i n d e x -  1))] 
ifFalse: [self errorSubscriptBounds: index] 
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at: index put: anObjec t  
self error: ' you  cannot store into an Interval" 

adding 

add: n e w O b j e c t  
self error: ' elements cannot be added to an Interval '  

removing 

remove:  newObje©t  
self error: ' elements cannot be removed from an Interval '  

enumerat ing 

do: aBIock 
I aValue I 
aValue ~ start. 

step < 0 

ifTrue: [[stop < = aValue] 

whileTrue: [aBIock value: aValue. 

aValue ~- aValue + step]] 

ifFalse: [[stop > = aValue] 

whileTrue: [aBIock value: aValue. 

aValue ~ aValue + step]] 

collect: aBIock 
I nextValue i result I 

result ~- self species new: self size. 

nextValue ~- start. 

i~- 1. 
step < 0 

ifTrue: [[stop < = nextValue] 

whileTrue: 

[result at: i put: (aBIock value: nextValue). 

nextValue ~ nextVatue + step. 
i t - i +  1]] 

ifFalse: [[stop > = nextValue] 

whileTrue: 

[result at: i put: (aBIock value: nextValue). 

nextValue ~- nextValue -t- step. 

i ~--- i + 1]]. 
tresult 

private 

setFrom: s ta r t ln teger  to: s top in teger  by: s tep ln teger  
start ~- startlnteger: 

stop ~ stoplnteger. 

step ~- steplnteger 
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E~] ArrayedCollectionsmArray, ByteArray, String, Text, and Symbol 
ArrayedCollection is a subclass of SequenceableCollection; each 
ArrayedCollection is a variable-length object. A l l  instance creation 
methods are reimp]emented to use new:, not new. ArrayedCollections are 
f ixed-length so add: is disallowed; in its superc]ass, remove: was already 
disallowed and do: was implemented. On|y size, therefore, is 
implemented in ArrayedCol lection - -  i t  is a system pr imi t ive that  reports 
the number of indexed instance variables. 

Of the subclasses of ArrayedCollection, Array, and ByteArray do not 
re implement  any of the messages we are examining in this chapter.  
Accessing messages for Stringmat:,  at:put:, and s i z e m a r e  system primi- 
tives; in Text, all accessing messages are passed as messages to the in- 
stance variable string (which is an instance of String). Symbol disallows 
at:put: and re turns  String as its species. 

E] OrderedCollections and SortedCollections OrderedCollection stores 
an ordered, contiguous sequence of elements. Since OrderedCollections 
are expandable,  some efficiency is gained by allocating ext ra  space for 
the sequence. Two instance variables, firstlndex and lastlndex, point to 
the first and the last actual  elements in the sequence. 

The index into OrderedCollection is converted to be within the range 
of firstlndex to lastlndex for accessing messages (at: and at:put:) and the 
size is simply one more than  the difference between the two indices. 
Adding an e lement  is in terpreted to be adding to the end; if there  is no 
room at  the end, the collection is copied with additional space allocated 
(makeRoomAtLast is the private message tha t  does this work). The actu- 
al location for storing an e lement  is the computed index position after 
lastlndex. If an e lement  is removed, then the remaining elements must  
be moved up so tha t  elements  remain  contiguous (removelndex:). 

class name 
superclass 
instance variable names 

class methods 

OrderedCollection 
SequenceableCollection 
firstlndex 
lasttndex 

instance creation 

n e w  
1'self new: 10 

new:  a n l n t e g e r  
t(super new' anlnteger) setlndices 

instance methods 

accessing 

s ize  

tlastlndex - firstlndex -I- 1 



232 
Implementation of the Basic Collection Protocol 

at: anlnteger 
(anlnteger < 1 or: [anlnteger + f i r s t l n d e x -  1 > lastlndex]) 

ifTrue: [self errorNoSuchElement]  
ifFalse: [ tsuper  at: anlnteger + firstlndex - 1] 

at: anlnteger put: anObject 
I index I 
index ~- anlnteger truncated. 
(index < 1 or: [index + f i r s t l n d e x -  1 > las t lndex ] )  

ifTrue: [self errorNoSuchElement]  
ifFalse: [ tsuper  at: index + firstlndex - 1 put: anObject] 

adding 

add-: newObject 
1'self addLast: aLink 

addLast: newObject 
lastlndex = self basicSize ifTrue: [self makeRoomAtLast].  

lastlndex ~ lastlndex -4- 1. 
self basicAt: lastlndex put: newObject. 
tnewObject  

removing 

remove: eldObject ifAbsent: absentBiock 
t index I 
index ~- firstlndex. 
[index < = lastlndex] 

whileTrue: 
[oldObject = (self basicAt: index) 

ifTrue: [self removelndex: index. 
l 'oldObject] 

ifFalse: [index , - i n d e x  + 1]]. 
tabsentBIock value 

private 

setlndices 
f irstlndex ~- self b a s i c S i z e / / 2  max: 1. 
lastlndex ~ f i r s t t n d e x -  1 max: 0 

errorNoSuchElement 
self error: 

"attempt to index non-existent element in an ordered col lect ion" 

The enumerating messages do:, collect:, and select: are each 
reimplemented--do: in order to provide better performance than the 
method provided in SequenceableCollection. 
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enumerating 

de: aBIock 
I index I 
index ~- firstlndex. 
[index < = lastlndex] 

whileTrue: 
[aBIock value: (self basicAt: index). 
index ~ index + 1] 

collect: aBIock 
! newCol lect iont  
newCollection ~ self species new. 
self do: [ :each I newCollection add: (aBIock value: each)]. 
l"newCollection 

select: aBIock 
I newCollection ] 
newCollection ~ self copyEmpty. 
self do: [ :each I (aBIock value: each)ifTrue: [newCollection add: each]]. 
tnewCollection 

In the method for select:, the new collection is created by sending the 
original collection the message copyEmpty. This message creates a new 
collection with enough space allocated to hold all the elements of the 
original, al though all the elements might  not be stored. In this way, 
time taken in expanding the new collection is avoided. 

SortedCollection is a subclass of OrderedCollection. The message 
at:put: reports an error, requesting the programmer  to use add:; add: in- 
serts the new element according to the value of the instance variable 
sortBIock. The determinat ion of the position for insertion is done as a 
'%ubble sort." collect: is also reimplemented to create an 
OrderedCollection ra ther  than  a SortedCollection for collecting the val- 
ues of the block. The code is not shown; a bubble sort looks the same in 
Smalltalk-80 as it would in most programming languages. 

Instances of MappedCollection have two instance var iables- -domain 
and map. The value of domain is either a Dictionary or a 
SequenceableCollection; its elements are accessed indirectly through 
map. The message add: is disallowed. Both at: and at:put: are 
reimplemented in MappedCollection in order to support  the indirect ac- 
cess from map to the elements of domain. The size of a 
MappedCollection is the size of its domain. 

class name MappedCollection 
superclass Col lection 
instance variable names domain 

map 
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class methods 

instance creation 

collection: domainCollection map." mapCollection 
tsuper new setCollection: domainCollection map: mapCollection 

new 
self error: "use collection:map: to create a MappedCollection" 

instance methods 

accessing 

at: anlndex 
t domain at: (map at: anlndex) 

at: anlndex put: anObject  
1'domain at: (map at: anlndex) put: anObject 

size 
tmap size 

adding 

add: newObject  
self shouldNotlmplement 

enumerating 

do: aBIock 
map do: 

[ :mapValue I aBIock value: (domain at: mapValue)] 
collect: aBIock 

I aS t ream 1 
aStream ,- WriteStream on: (self species new: self size). 
se l fdo: [ :domainValue l  

aStream nextPut: (aBIock value: domainValue)]. 
t aStream contents 

select: aBIock 
I aStream I 
aStream ~- WriteStream on: (self species new: self size). 
self do: 

[ :domainValue I 
(aBIock value: domainValue) 

ifTrue: [aStream nextPut: domainValue]]. 
1' aStream contents 

private 

setCollection: domainCollection map: mapCollection 
domain ~ domainCollection. 
map ~ mapCollection 

species 
t domain species 
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Magnitude 
Character 
Date 
Time 

Number 
Float 
Fraction 
Integer 

LargeNegativelnteger 
LargePositivelnteger 
Smalllnteger 

LookupKey 
Association 

Link 

Process 

Collection 

SequenceableCollection 
LinkedList 

Semaphore 

ArrayedCollection 
Array 

Bitmap 
DisplayBitmap 

RunArray 
String 

Symbol 
Text 
ByteArray 

Interval 
OrderedCollection 

SortedCollection 
Bag 
M appedCollection 
Set 

Dictionary 
IdentityDictionary 

Stream 
PositionableStream 

ReadStream 
WriteStream 

ReadWriteStream 
ExternalStream 

FileStream 

Random 

File 
FileDirectory 
FilePage 

ProcessorScheduler 
Delay 
SharedQueue 

Behavior 
ClassDescription 

Class 
MetaClass 

Point 
Rectangle 
BitBit 

CharacterScanner 

Pen 

DisplayObject 
DisplayMedium 

Form 
Cursor 
DisplayScreen 

InfiniteForm 
OpaqueForm 
Path 

Arc 
Circle 

Curve 
Line 
LinearFit 
Spline 
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Class 
UndefinedObject 

The object nil represents  a value for uninitialized variables. It also rep- 
resents  meaningless results. It is the only instance of class 
UndefinedObject. 

The purpose of including class UndefinedObject in the system is to 
handle error messages. The typical error in evaluating Smal]talk-80 ex- 
pressions is tha t  some object is sent a message it does not understand.  
Often this occurs because a variable is not properly in i t ia l ized-- in  
many  cases, the variable name  tha t  should refer to some other object 
refers to nil instead. The error  message is of the form 

className does not understand messageSelector 

where className mentions the class of the receiver and 
messageSelector  is the selector of the erroneously-sent  message. 

Note, if nil were an instance of Object, then a message sent to it in 
error  would s tate  

Object does not understand messageSelector 

which is less explicit than  s tat ing tha t  an undefined object does not un- 
ders tand the message. At the price of a class description, it was possible 
to improve on the error  message. 

Tests to see if an object is nil are handled in class Object, but  
re implemented  in UndefinedObject. In class Object, messages isNil and 
notNii are implemented as 

isNil 
tfalse 

notNil 
ttrue 

In class UndefinedObject, messages isNil and notNil are implemented as 

isNil 
ttrue 

notNil 
tfatse 

so tha t  no conditional test in Object is required. 

Classes  Boolean, 
True, and False 

Protocol for logical values is provided by the class Boolean; logical val- 
ues are  represented by subclasses of Boo lean~True  and False. The 
subclasses add no new protocol; they re implement  many  messages to 
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h a v e  b e t t e r  p e r f o r m a n c e  t h a n  t h e  m e t h o d s  in  t h e  s u p e r c l a s s .  T h e  i d e a  

is s i m i l a r  to  t h a t  in  t e s t i n g  for  nil in  O b j e c t  a n d  U n d e f i n e d O b j e c t ;  t rue  

k n o w s  t h a t  i t  r e p r e s e n t s  l og i ca l  t r u t h  a n d  fa l se  k n o w s  t h a t  i t  r e p r e s e n t s  

l og i ca l  f a l s e h o o d .  W e  s h o w  t h e  i m p l e m e n t a t i o n  of s o m e  of t h e  c o n t r o l -  

l i n g  p r o t o c o l  to  i l l u s t r a t e  t h i s  idea .  

T h e  log ica l  o p e r a t i o n s  a r e  

Boolean instance protocol 

logical operations 
& aBoolean Evaluating conjunction. Answer true if both 

the receiver and the argument are true. 

I aBoolean Evaluating disjunction. Answer true if either 
the receiver or the argument is true. 

not. Negation. Answer true if the receiver is false, 
answer false if the receiver is true. 

eqv: aBoolean Answer true if the receiver is equivalent to the 
argument, aBoolean. 

xor: aBoolean Exclusive OR. Answer true if the receiver is 
not equivalent to aBoolean. 

T h e s e  c o n j u n c t i o n  a n d  d i s j u n c t i o n  o p e r a t i o n s  a r e  ~ ' e v a l u a t i n g "  - -  t h i s  

m e a n s  t h a t  t h e  a r g u m e n t  i s  e v a l u a t e d  r e g a r d l e s s  of t h e  v a l u e  of t h e  re-  

ce ive r .  T h i s  is in  c o n t r a s t  to  and:  a n d  or: in  w h i c h  t h e  r e c e i v e r  d e t e r -  
m i n e s  w h e t h e r  to  e v a l u a t e  t h e  a r g u m e n t .  

Boolean instance protocol 

controlling 
and: alternativeBIock Nonevaluating conjunction. If the receiver is 

true, answer the value of the argument; other- 
wise, answer false without evaluating the ar- 
gument. 

or: atternativeBlock Nonevaluating disjunction. If the receiver is 
false, answer the value of the argument; oth- 
erwise, answer true without evaluating the ar- 
gument. 

ifTrue: trueAIternativeBIock ifFalse: falseAIternativeBIock 
Conditional statement. If the receiver is true, 
answer the result of evaluating 
trueAIternativeBtock; otherwise answer the re- 
sult of evaluating falseAIternativeBIock. 

ifFalse: falseAIternativeBIock ifTrue: trueAIternativeBIock 
Conditional statement. If the receiver is true, 
answer the result of evaluating 
trueAIternativeBIock; otherwise answer the re- 
sult of evaluatting falseAIternativeBIock. 

ifTrue: trueAIternativeBIock Conditional statement. If the receiver is true, 
answer the result of evaluating 
trueAIternativeBIock; otherwise answer nil. 

ifFalse: falseAIternativeBIock Conditional statement. If the receiver is false, 
answer the result of evaluating 
falseAIternativeBIock; otherwise answer nil. 
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The arguments to and: and or: must be blocks in order to defer evalua- 
tion. Conditional statements are provided as messages ifTrue:ifFalse:, 
ifFalse:ifTrue:, ifTrue:, and ifFalse:, as already specified and exemplified 
throughout the previous chapters. The messages are implemented in 
the subclasses of class Boolean so that  the appropriate argument block 
is evaluated. 

In class True, the methods are 

ifTrue: t rueAI ternat iveBIock ifFalse: fa lseAi ternat iveBIock 
l'trueAIternativeBlock value 

ifFalse: fa lseAi ternat iveBIock ifTrue." t rueAI ternat iveBIock 
ttrueAtternativeBIock value 

ifTrue: t rueAI ternat iveBIock 
ttrueAIternativeBIock value 

ifFalse: fa lseAI ternat iveBIock 
tnil 

In class False, the methods are 

i fTrue: t rueAI te rna t iveBIock  ifFalse: fa lseAI te rnat iveBIock  
l ' falseAIternativeBIock value 

ifFalse: fa lseAI te rna t iveBIock  ifTrue: t rueAI te rna t iveBIock  
l ' fatseAIternativeBIock value 

i fTrue: t rueAI te rna t iveBIock  
tnil 

ifFalse: fa lseAI ternat iveBIock  
t falseAtternativeBiock value 

If x is 3, then 

x > 0 i fTrue: [x ~- x - 1] i fFalse: [x ~ x + 1] 

is interpreted as x > 0 evaluates to true, the sole instance of class True; the 
method for ifTrue:ifFalse: is found in class True, so the block [x ~- x - 1 ]  
is evaluated without further testing. 

In this way, the message lookup mechanism provides an effective im- 
plementation of conditional control with no additional primitive opera- 
tions or circular definitions. 

Addit ional  
P r o t o c o l  f o r  
C l a s s  O b j e c t  

Protocol for class Object, shared by all objects, was introduced in 
Chapter 6. Several categories of messages were not included in that 
early discussion. Most of these are part of Object's protocol to provide 
system support for message handling, dependence relationships, 
primitive message handling, and system primitives. 
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Dependence 
Relationships 
Among Objects 

I n f o r m a t i o n  in t h e  S m a l l t a l k - 8 0  s y s t e m  is r e p r e s e n t e d  by  objects .  T h e  

v a r i a b l e s  of objec ts  t h e m s e l v e s  r e f e r  to objects;  in t h i s  sense ,  objec ts  a r e  
exp l i c i t l y  r e l a t e d  or  d e p e n d e n t  on one  a n o t h e r .  Classes  a r e  r e l a t e d  to 

t h e i r  s u p e r c l a s s e s  a n d  m e t a c l a s s e s ;  t h e s e  c lasses  s h a r e  e x t e r n a l  a n d  in- 
t e r n a l  d e s c r i p t i o n s  a n d  a r e  t h e r e b y  d e p e n d e n t  on one  a n o t h e r .  T h e s e  
f o r m s  of d e p e n d e n c y  a r e  c e n t r a l  to t h e  s e m a n t i c s  of t h e  S m a l l t a l k - 8 0  

l a n g u a g e .  T h e y  c o o r d i n a t e  d e s c r i p t i v e  i n f o r m a t i o n  a m o n g  objects .  
A n  a d d i t i o n a l  k i n d  of d e p e n d e n c y  is s u p p o r t e d  in c lass  Object .  I ts  

p u r p o s e  is to  coordinate ac t iv i t i e s  a m o n g  d i f f e r e n t  objects.  Speci f ica l ly ,  
i ts  p u r p o s e  is to be  ab le  to l i nk  one  object ,  s ay  A, to one  or  m o r e  o t h e r  
objects ,  s ay  B, so B can  be  i n f o r m e d  if A c h a n g e s  in a n y  way.  U p o n  be- 
ing  i n f o r m e d  w h e n  A c h a n g e s  a n d  t h e  n a t u r e  of t h e  c h a n g e ,  B can  de- 

c ide to t a k e  s o m e  a c t i o n  s u c h  as  u p d a t i n g  its own  s t a tus .  T h e  concep t  of 
change a n d  update, t h e r e f o r e ,  a r e  i n t e g r a l  to t h e  s u p p o r t  of th i s  t h i r d  

k i n d  of objec t  d e p e n d e n c e  r e l a t i o n s h i p .  

T h e  p ro toco l  in c lass  Objec t  is 

Object instance protocol 

dependents access 
addDependent: anObject 

removeDependent: anObject 

dependents 

release 

change and update 
changed 

changed: aParameter 

update: aParameter 

broadcast: aSymbol 

Add the argument, anObject, as one of the re- 
ceiver's dependents. 

Remove the argument, anObject, as one of the 
receiver's dependents. 

Answer an OrderedCollection of the objects 
that are dependent on the receiver, that is, 
the objects that should be notified if the re- 
ceiver changes. 

Remove references to objects that may refer 
back to the receiver. This message is 
reimplemented by any subclass that creates 
references to dependents; the expression super 
release is included in any such 
reimplementation. 

The receiver changed in some general way; in- 
form all the dependents by sending each de- 
pendent an update: message. 

The receiver changed; the change is denoted 
by the argument, aParameter. Usually the ar- 
gument is a Symbol that is part of the depen- 
dent's change protocol; the default behavior is 
to use the receiver itself as the argument. In- 
form all of the dependents. 

An object on whom the receiver is dependent 
has changed. The receiver updates its status 
accordingly (the default behavior is to do 
nothing). 

Send the argument, aSymbol, as a unary mes- 
sage to all of the receiver's dependents. 
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broadcast: aSymboi with: anObject 
Send the argument, aSymbol, as a keyword 
message with argument, anObject, to all of the 
receiver's dependents. 

Take ,  as an  example ,  the  objects t h a t  model  t raff ic  lights. A typical  
t raff ic  l ight  a t  a s t r ee t  co rne r  is an  object wi th  t h r e e  lights,  each  a dif- 
f e ren t  color. Only  one of these  l ights  can  be ON a t  a given m o m e n t .  In 
th is  sense,  the  ON-OFF s t a tu s  of each  of the  t h r e e  l ights  is d e p e n d e n t  on 
the  s t a tu s  of the  o ther  two. T h e r e  a re  a n u m b e r  of ways  to c rea te  this  
re la t ionship .  Suppose we c rea t e  the  class Light as follows. 

class name Light 

superclass Object 

instance variable names status 

class methods 

instance creation 

setOn 
1'self new setOn 

setOff 
1"self new setOff 

instance methods 

status 

turnOn 
self isOff 

ifTrue: [status ~ true. self changed] 

turnOff 
self isOn 

ifTrue [status ~- false] 

testing 

isOn 
1'status 

isOff 
1" status not 

change and update 

update: aLight 
aLight = = self ifFalse: [self turnOff] 

private 

setOn 
status ~ true 

setOff 
status ~ false 
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The model is very simple. A Light  is ei ther on or off, so a status flag is 
kept as an instance variable; it is true if the Light is on, false if the Light 
is off. Whenever  a Light is turned on (turnOn), it sends itself the changed 
message. Any other status change is not broadcast to the dependents on 
the assumption tha t  a Light is turned off in reaction to turning on an- 
other Light. The default response to changed is to send all dependents 
the message update: self (i.e., the object tha t  changed is the a rgument  to 
the update: message). Then update: is implemented in Light to mean 
turn  off. If the parameter  is the receiver, then, of course, the update: is 
ignored. 

The class TrafficLight is defined to set up any number  of coordinated 
lights. The instance creation message with: takes as its a rgument  the 
number  of Lights to be created. Each Light is dependent on all other 
Lights. When the TrafficLight is demolished, the dependencies among its 
Lights are disconnected (the message inheri ted from class Object for 
disconnecting dependents is release; it is implemented in TrafficLight in 
order to broadcast the message to all Lights). 

class name TrafficLight 
superclass Object 
instance variable names lights 
class methods 

instance creation 

with: numberOfLights 
tself new lights: numberOfLights 

instance methods 

operate 

turnOn: l ightNumber 
(lights at: l ightNumber) turnOn 

initialize-release 

release 
super release. 
lights do: [ :eachLight I eachLight release]. 
lights ,- nil 

private 

lights: numberOfLights 
lights ~- Array new: (numberOfLights max: 1). 
lights at: 1 put: Light setOn. 
2 to: numberOfLights do: 

[ :index I lights at: index put: Light setOff]. 
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lights do: 
[ :eachLight ! 

lights do: 
[ :dependentLight I 

eachLight ,~,,~, dependentLight 
ifTrue: [eachLight addDependent: dependentLight]]] 

The private initialization method is lights: numberOfLights. Each light is 
created tu rned  off except for the first light. Then each light is connect- 
ed to all the other lights (using the message addDependent:). The simu- 
lated Traffickight operates by some round robin, perhaps timed, 
sequencing through each light, tu rn ing  it on. A simple example shown 
below creates the Traffickight with the first light on, and then turns  on 
each of the other lights, one at  a time. A simulation of a traffic corner 
might  include different models for controlling the lights. 

trafficLight ~- TrafficLight with: 3. 
trafficLight turnOn: 2. 
trafficLight turnOn: 3 

The message turnOn: to a TrafficLight sends the message turnOn to the 
designated Light. If the Light is current ly  off, then it  is set on and the 
message changed sent. The message changed sends update: to each de- 
pendent  Light; if a dependent  light is on, it is tu rned  off. 

A par t icular ly  impor tant  use of this dependency protocol is to sup- 
port having multiple graphical  images of an object. Each image is de- 
pendent  on the object in the sense that ,  if the object changes, the image 
must  be informed so tha t  it can decide whe ther  the change affects the 
displayed information. The user interface to the Small talk-80 system 
makes  liberal use of this support  for broadcasting notices tha t  an object 
has changed;  this is used to coordinate the contents of a sequence of 
menus of possible actions tha t  the user can take with respect to the 
contents of information displayed on the screen. Menus themselves can 
be created by linking possible actions together,  in a way similar  to the 
way we linked together the traffic lights. 

All processing in the Small talk-80 system is carried out by sending 
messages to objects. For reasons of efficiency, instances of class Mes- 
sage are only created when an error  occurs and the message state must  
be stored in an accessible structure.  Most messages in the system, 
therefore, do not take the form of directly creat ing an instance of Mes- 
sage and t ransmi t t ing  it to an object. 

In some circumstances, it is useful to  compute the message selector 
of a message transmission. For example, suppose tha t  a list of possible 
message selectors is kept  by an object and, based on a computation, one 
of these selectors is chosen. Suppose it is assigned as a value of a vari-  
able selector. Now we wish to t r ansmi t  the message to some object, say, 
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to receiver. We can not simply write the expression as 

receiver selector 

because this m e a n s - - s e n d  the object referred to by receiver the unary  
message selector. We could, however, write 

receiver perform: selector 

The result  is to t ransmi t  the value of the argument ,  selector, as the 
message to receiver. Protocol to support  this ability to send a computed 
message to an object is provided in class Object. This protocol includes 
methods for t ransmi t t ing  computed keyword as well as una ry  messages. 

Object instance protocol 

message handling 
perform: aSymbol Send the receiver the unary  message indicated 

by the argument ,  aSymbol. The a rgument  is 
the selector of the message. Report an error if 
the number  of arguments  expected by the se- 
lector is not zero. 

perform: a S y m b o l  with: a n O b j e c t  Send the receiver the keyword message indi- 
cated by the arguments.  The first argument ,  
aSymbol, is the selector of the message. The 
other argument ,  anObject, is the a rgument  of 
the message to be sent. Report an error  if the 
number  of arguments  expected by the selector 
is not one. 

perform: aSymbol with: firstObject with: secondObject 
Send the receiver the keyword message indi- 
cated by the arguments.  The first argument ,  
aSymbol, is the selector of the message. The 
other arguments,  firstObject and secondObject, 
are the arguments  of the message to be sent. 
Report an error if the number  of arguments  
expected by the selector is not two. 

perform: aSymbol with: firstObject with: secondObject with: thirdObject 
Send the receiver the keyword message indi- 
cated by the arguments.  The first argument ,  
aSymbol, is the selector of the message. The 
other arguments,  firstObject, secondObject, 
and thirdObject, are the arguments  of the mes- 
sage to be sent. Report an error if the number  
of arguments  expected by the selector is not 
three. 

perform: selector withArguments: anArray 
Send the receiver the keyword message indi- 
cated by the arguments.  The argument ,  selec- 
tor, is the selector of the message. The 
arguments  of the message are the elements of 
anArray. Report an error if the number  of ar- 
guments  expected by the selector is not the 
same as the size of anArray. 

One way in which this protocol can be used is as a decoder of user com- 
mands. Suppose for example tha t  we want  to model a very simple cal- 
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culator in which operands precede operators. A possible implementat ion 
represents  the calculator as having (1) the cur ren t  result, which is also 
the first operand, and (2) a possibly undefined second operand. Each op- 
era tor  is a message selector understood by the result. Sending the mes- 
sage clear, once,  resets the operand; sending the message clear when the 
operand is reset will reset the result. 

class name Calculator 

superclass Object 
instance variable names res u It 

operand 

class methods 

instance creation 

new 
1' super new initialize 

instance methods 

accessing 

result 
Vresult 

calculating 

apply: operator 
(self respondsTo: operator) 

ifFalse: [self error: ' operation not unders tood ' ] .  

operand isNil 
ifTrue: [result ~- result perform: operator] 

ifFalse: [result ,- result perform: operator with: operand] 

clear 
operand isNil 

ifTrue: [result ~ O] ' 

ifFalse: [operand ~ nil] 

operand: aNumber  
operand ~- aNumber 

private 

initialize 
result ~- 0 

An example i l lustrates the use of the class Calculator. 

hp ~ Ca lcu la to r  new 

Create hp as a Calcu la tor .  The instance variables are initialized with re- 
sult 0 and operand nil. 
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hp operand: 3 

Imagine the user has pressed the key labeled 3 and set the operand. 

hp apply: # + 

The user selects addition. The method for apply determines that  the op- 
erator  is understood and that  the operand is not nil; therefore, the re- 
sult is set by the expression 

result perform: operator with: operand 

which is equivalent to 

0 + 3  

The method sets result to 3; operand remains 3 so that  

hp apply: ~ + 

again adds 3, so the result is now 6. 

hp operand: 1. 
hp apply: # - .  
hp clear. 
hp apply: :#:squared 

The result  was 6, subtract  1, and compute the square; result  is now 25. 

System Primitive 
Messages 

There are a number  of messages specified in class Object whose purpose 
is to support  the needs of the overall system implementation.  They are 
categorized as system primitives. These are messages that  provide di- 
rect access to the state of an instance and, to some extent, violate the 
principle that  each object has sovereign control over storing values into 
its variables. However, this access is needed by the language interpret- 
er. It is useful in providing class descript ion/development utilities for 
the programming environment.  Examples of these messages are 
instVarAt: anlnteger and instVarAt: anlnteger put: anObject which retrieve 
and store the values of named instance variables, respectively. 

Object instance protocol 

system primitives 
become: otherObject Swap the instance pointers of the receiver and 

the argument, otherObject. All variables in 
the entire system that pointed to the receiver 
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instVarAt: index 

instVarAt: index put: value 

nextlnstance 

numberOfPointers 

refct 

will now point to the argument and vice ver- 
sa. Report an error if either object is a 
Smalilnteger. 
Answer a named variable in the receiver. The 
numbering of the variables corresponds to the 
order in which the named instance variables 
were defined. 
Store the argument, value, into a named vari- 
able in the receiver. The number of variables 
corresponds to the order in which the named 
instance variables were defined. Answer value. 
Answer the next instance after the receiver in 
the enumeration of all instances of this class. 
Answer nil if all instances have been enumer- 
ated. 
Answer the number of objects to which the re- 
ceiver refers. 
Answer the number of object pointers in the 
system that point at the receives ~. Answer 0 if 
the receiver is a Smalllnteger. 

P r o b a b l y  t h e  m o s t  u n u s u a l  a n d  ef fec t ive  of t h e  s y s t e m  p r i m i t i v e  mes-  
sages  is t h e  m e s s a g e  b e c o m e :  o therObjec t .  T h e  r e s p o n s e  to t h i s  m e s s a g e  
is to s w a p  t h e  i n s t a n c e  p o i n t e r  of t h e  r e c e i v e r  w i t h  t h a t  of t h e  a rgu -  
m e n t ,  o therObjec t .  An  e x a m p l e  of t h e  use  of t h i s  m e s s a g e  is f ound  in 
t h e  i m p l e m e n t a t i o n  of t h e  m e s s a g e  grow in s e v e r a l  of t h e  co l lec t ion  

classes.  T h e  m e s s a g e  grow is s e n t  w h e n  t h e  n u m b e r  of e l e m e n t s  t h a t  
can  be s t o r e d  in  a ( f ixed- leng th)  co l lec t ion  h a v e  to be i n c r e a s e d  w i t h o u t  

c o p y i n g t h e  col lec t ion;  copy ing  is u n d e s i r a b l e  b e c a u s e  al l  s h a r e d  refer -  
ences  to t h e  co l lec t ion  m u s t  be  p r e s e r v e d .  T h u s  a n e w  co l lec t ion  is cre- 
a ted ,  i ts  e l e m e n t s  s tored ,  a n d  t h e n  t h e  o r i g ina l  co l lec t ion  t r a n s f o r m s  

in to  (becomes)  t h e  n e w  one.  All  p o i n t e r s  to t h e  o r i g ina l  co l lec t ion  a r e  

r e p l a c e d  by p o i n t e r s  to t h e  n e w  one.  
T h e  fo l lowing  is t h e  m e t h o d  for grow as spec i f ied  in class  

SequenceableCol lect ion.  

grow 
I newCollection I 
newCollection ~ self species new: self size + self growSize. 
newCollection reptaceFrom: 1 to: self size with: self. 
1self become: newCollection 

growSize 
1"10 

Subc l a s se s  can  r e d e f i n e  t h e  r e s p o n s e  to t h e  m e s s a g e  growSize  in o r d e r  

to speci fy  a l t e r n a t i v e  n u m b e r s  of e l e m e n t s  by w h i c h  to e x p a n d .  
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False 
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The Smalltalk-80 system provides support  for multiple independent 
processes with three classes named Process, ProcessorScheduler, and 
Semaphore. A Process represents a sequence of actions tha t  can be car- 
ried out independently of the actions represented by other Processes.  A 
ProcessorScheduler schedules the use of the Smalltalk-80 virtual  ma- 
chine tha t  actually carries out the actions represented by the Processes  
in the system. There may be many Processes  whose actions are ready 
to be carried out and ProcessorScheduler determines which of these the 
vir tual  machine will carry out  at any part icular  time. A Semaphore al- 
lows otherwise independent  processes to synchronize their  actions with 
each other. Semaphores  provide a simple form of synchronous commu- 
nication that  can be used to create more complicated synchronized in- 
teractions. Semaphores  also provide synchronous communicat ion with 
asynchronous hardware  devices such as the user input  devices and 
real t ime clock. 

Semaphores  are often not the most useful synchronization mecha- 
nism. Instances of SharedQueue and Delay use Semaphores  to satisfy 
the two most common needs for synchronization. A SharedQueue pro- 
vides safe t ransfer  of objects between independent  processes and a De- 
lay allows a process to be synchronized with the real t ime clock. 

P r o c e s s e s  A process is a sequence of actions described by expressions and 
performed by the Smalltalk-80 vir tual  machine. Several of the process- 
es in the system monitor  asynchronous hardware  devices. For example, 
there are processes monitoring the keyboard, the pointing device, and 
the real t ime clock. There is also a process monitoring the available 
memory in the system. The most impor tant  process to the user is the 
one tha t  performs the actions directly specified by the user, for exam- 
ple, editing text, graphics, or class definitions. This user interface pro- 
cess must  communicate with the processes monitoring the keyboard 
and pointing device to find out what  the user is doing. Processes might 
be added tha t  update a clock or a view of a user-defined object. 

A new process can be created by sending the unary  message fork to a 
block. For example, the following expression creates a new process to 
display three clocks named EasternTime, MountainTime, and PacificTime 
on the screen. 

[EasternTime display. 
MountainTime display. 
PacificTime display] fork 
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The actions tha t  make  up the new process are described by the block's 
expressions. The message fork has the same effect on these expressions 
as does the message value, but  it differs in the w a y  the result  of the 
message is re turned.  When a block receives value, it waits to r e tu rn  un- 
til all of its expressions have been executed. For example, the following 
expression does not produce a value until  all three  clocks have been 
completely displayed. 

[EasternTime display. 
MountainTime display. 
PacificTime display] value 

The value re tu rned  from sending a block value is the value  of the last 
expression in the block. When a block receives fork, it re turns  immedi- 
ately, usually before its expressions have been executed. This allows the 
expressions following the fork message to be executed independent ly of 
the expressions in the block. For example, the following two expressions 
would r e s u l t  in the contents of the collection nameList being sorted in- 
dependent ly of the three  clocks being displayed. 

[EasternTime display. 
MountainTime display. 
PacificTime display] fork. 

alphabeticalList ~- nameList sort 

The ent ire  collection m a y  be sorted before any of the clocks are 
displayed or all of the clocks may be displayed before the collection be- 
gins sorting. The occurrence of ei ther  one of these extreme cases or an 
in termedia te  case in which some sort ing and some clock display are in- 
terspersed is determined by the way tha t  display and sort are writ ten.  
The two processes, the one tha t  sends the messages fork and sort, and 
the one tha t  sends display, are executed independently.  Since a block's 
expressions may  not have been evaluated when it re turns  from fork, the 
value of fork must  be independent  of the value of the block's expres- 
sions. A block re turns  itself as the value of fork. 

Each process in the system is represented by an instance of class Pro- 
cess.  A block's response to fork is to create a new instance of Process 
and schedule the processor to execute the expressions it contains. 
Blocks also respond to the message newProcess by creating and re turn-  
ing a new instance of Process, but  the vir tual  machine is not scheduled 
to execute its expressions. This is useful because, unlike fork, it provides 
a reference to the Process itself. A Process created b y  newProcess is 
called suspended since its expressions are not being executed. For exam- 
ple, the following expression creates two new Processes  but  does not re- 
sult in e i ther  display or sort being sent. 
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clockDisplayProcess ~- [ EasternTime display ] newProcess.. 
sortingProcess ~ [ alphabeticalList ~ nameList sort ] newProcess 

The actions represented  by one of these suspended Processes  can actu- 
ally be carr ied out by sending the Process the message resume. The fol- 
lowing two expressions would resul t  in display being sent to 
EasternTime and sort being sent  to nameList. 

clockDisplayProcess resume. 
sortingProcess resume 

Since display and sort would be sent  from different Processes ,  their  exe- 
cution may  be interleaved. Another  example of the use of resume is the 
implementa t ion  of fork in BlockContext. 

fork 
self newProcess resume 

A complementa ry  message, suspend, r e tu rns  a Process to the suspend- 
ed state in which the processor is no longer execut ing its expressions. 
The message terminate prevents  a Process  from ever runn ing  again, 
whe the r  it was suspended or not. 

Process instance protocol 

changing process state 
resume 
suspend 

terminate 

Allow the receiver to be advanced. 
Stop the advancement of the receiver in such 
a way that it can resume its progress later (by 
sending it the message resume). 
Stop the advancement of the receiver forever. 

Blocks also unders t and  a message with selector newProcessWith: tha t  
creates and re tu rns  a new Process  supplying values for block argu- 
ments.  The a r g u m e n t  of newProcessWith: is an Array whose elements  
are used as the values of the  block arguments .  The size of the Array 
should be equa l  to the n u m b e r  of block a rgumen t s  the receiver takes. 
For example,  

displayProcess ~ [ :clock I clock display ] 
newProcessWith: (Array with: MountainTime) 

The protocol of BlockContext tha t  allows new Processes to be created is 
shown on the following page. 
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BiockContext instance protocol 

scheduling 
fork 

newProcess 

newProcessWith: argumentArray 

Create and schedule a new Process for the ex- 
ecution of the expressions the receiver con- 
tains. 

Answer a new suspended Process for the exe- 
cution of the expressions the receiver con- 
tains. The new Process is not scheduled. 

Answer a new suspended Process for the exe- 
cution of the expressions the receiver contains 
supplying the elements of argumentArray as 
the values of the receiver's block arguments. 

Scheduling 
The Smalltalk-80 virtual machine has only one processor capable of 
carrying out the sequence of actions a Process represents. So when a 
Process receives the message resume, its actions may not be carried out 
immediately. The Process whose actions are current ly  being carried out 
is called active. Whenever the active Process receives the message sus- 
pend or terminate, a new active Process is chosen from those that  have 
received resume. The single instance of class ProcessorScheduler keeps 
track of all of the Processes  that  have received resume. This instance 
of ProcessorScheduler has the global name Processor. The active Pro- 
cess  can be found by sending Processor the message activeProcess. For 
example, the active Process can be terminated by the expression 

Processor activeProcess terminate 

Priorities 

This will  be the last expression executed in that  Process. Any expres- 
sions following it in a method would never be executed. Processor will 
also terminate  the active Process in response to the message 
terminateActive. 

Processor terminateActive 

Ordinarily, Processes are scheduled for the use of the processor on a 
simple first-come first-served basis. Whenever  the active Process re- 
ceives suspend or terminate, the Process that  has been waiting the long- 
est will become the new active Process. In order to provide more con- 
trol of when a Process will run, Processor uses a very simple priority 
mechanism. There are a fixed number  of priority levels numbered by 
ascending integers. A Process with a higher priority will gain the use 
of the processor before a Process with a lower priority, independent of 
the order of their  requests. When a Process is created (with either fork 
or newProcess), it will receive the same priority as the Process that  
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created it. The prior i ty  of a Process  can be changed by sending it the  
message priority: wi th  the pr ior i ty  as an a rgument .  Or the pr ior i ty  of a 
Process  can be specified when  it is forked by using the  message forkAt: 
wi th  the pr ior i ty  as an a rgumen t .  For example,  consider the  following 
expressions executed in a Process  a t  pr ior i ty  4. 

wordProcess ~- [[ '  now'  displayAt: 50@ 100] forkAt: 6. 
[" is" displayAt: 100 @ 100] forkAt: 5. 
• the" displayAt: 150 @ 100] 

newProcess. 
wordProcess priority: 7. 
• t ime'  displayAt: 200 @ 100. 

wordProcess resume. 
• for" displayAt: 250 @ 100 

The sequence of displays on the  screen would be as follows. 

time 
the time 

now the time 
now is the time 
now is the time for 

Prior i t ies  are  man ipu l a t ed  wi th  a message to Processes and a message 
to BlockContexts. 

Process instance protocol 

accessing 

priority: anlnteger 

BlockContext instance protocol 

Set the receiver's priority to be anlnteger. 

scheduling 
forkAt: priority Create a new process for the execution of the 

expressions the receiver contains. Schedule 
the new process at the priority level priority. 

The methods  in the Smal l ta lk-80 sys tem do not ac tua l ly  specify priori- 
ties wi th  l i teral  integers.  The appropr ia te  pr ior i ty  to use is a lways 
obtained by sending a message to Processor.  The messages used to ob- 
ta in  priori t ies are shown in the protocol for class ProcessorScheduler .  

One other  message to Processor  allows other  P rocesses  wi th  the 
same pr ior i ty  as the active Process  to gain access to the processor. The 
ProcessorScheduler  responds to the  message yield b y  suspending the ac- 
tive Process  and placing it on the end of the list of P rocesses  wai t ing 
at  its priority.  The first Process  on the list then  becomes the  active Pro- 
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cess. If t h e r e  a r e  n o  o t h e r  Processes a t  t h e  s a m e  p r i o r i t y ,  yield h a s  no  

effect .  

ProcessorScheduler instance protocol 

accessing 
activePriority 

activeProcess 

process state change 
terminateActive 

yield 

.priority names 
highlOPriority 

IowiOPriority 

systemBackgroundPriority 

timingPriority 

userBackgroundPriority 

userl nterruptPriority 

userSchedulingPriority 

Answer the priority of the currently running 
process. 

Answer the currently running process. 

Terminate the currently running process. 

Give other processes at the priority of the cur- 
rently running process a chance to run. 

o 

Answer the priority at which the most time 
critical input/output processes should run. 

Answer the priority at which most 
input/output processes should run. 

Answer the priority at which system back- 
ground processes should run. 

Answer the priority at which the system pro- 
cesses keeping track of real time should run. 

Answer the priority at which background pro- 
cesses created by the user should run. 

Answer the priority at which processes creat- 
ed by the user and desiring immediate service 
should run. 

Answer the priority at which the user inter- 
face processes should run. 

T h e  m e s s a g e s  to  ProcessorScheduler r e q u e s t i n g  p r i o r i t i e s  w e r e  l i s t e d  in  

a l p h a b e t i c a l  o r d e r  a b o v e  s i n c e  t h i s  is t h e  s t a n d a r d  for  p r o t o c o l  d e s c r i p -  

t i ons .  T h e  s a m e  m e s s a g e s  a r e  l i s t e d  b e l o w  f r o m  h i g h e s t  p r i o r i t y  to  low- 
e s t  p r i o r i t y  a l o n g  w i t h  s o m e  e x a m p l e s  of P r o c e s s e s  t h a t  m i g h t  h a v e  
t h a t  p r i o r i t y .  

timingPriority 

highlOPriority 

IowlOPriority 

userl nterruptPriority 

userSchedulingPriority 

The Process monitoring the real time clock 
(see description of class Wakeup later in this 
chapter). 

The Process monitoring the local network 
communication device. 

The Process monitoring the user input devices 
and the Process distributing packets from the 
local network. 

Any Process forked by the user interface that 
should be executed immediately. 

The Process performing actions specified 
through the user interface (editing, viewing, 
programming, and debugging). 
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systemBackgroundPriority 
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Any Process forked by the user interface that 
should be executed only when nothing else is 
happening. 

A system Process that should be executed 
when nothing else is happening. 

Semaphores The sequence of actions represented by a Process is carried out asyn- 
chronously with the actions represented by other Processes.  The func- 
tion of one Process is independent  of the function of another.  This is 
appropria te  for Processes  tha t  never  need to interact.  For example, the 
two Processes  shown below tha t  display clocks and sort a collection 
probably do not need to in teract  with each other at all. 

[EasternTime display. 
MountainTime display. 
PacificTime display ] fork. 

alphabeticalList ~- nameList sort 

However, some Processes tha t  are  substant ial ly  independent  must  in- 
teract  occasionally. The actions of these loosely dependent  Processes  
must  be synchronized while they interact.  Instances of Semaphore pro- 
vide a simple form of synchronized communicat ion between otherwise 
independent  Processes.  A Semaphore provides for the synchronized 
communicat ion of a simple (~1  bit of information) signal from one pro- 
cess to another.  A Semaphore  provides a nonbusy wait  for a Process 
tha t  a t tempts  to consume a signal t ha t  has not been produced yet. 
Semaphores  are the only safe mechanism provided for interact ion be- 
tween Processes.  Any other mechanisms for interact ion should use 
Semaphores  to insure their  synchronization. 

Communicat ion with a Semaphore  is init iated in one Process by 
sending it the message signal. On the other  end of the communication,  
another  Process waits to receive the simple communicat ion by sending 
wait to the same Semaphore.  It does not ma t t e r  in which order the two 
messages are sent, the Process  wait ing for a signal will not proceed un- 
til one is sent. A Semaphore will only re tu rn  from as many  wait mes- 
sages as it has received signal messages. If a signal and two waits are 
sent to a Semaphore,  it will not r e tu rn  from one of the wait messages. 
When a Semaphore receives a wait message for which no corresponding 
signal was sent, it suspends the process from which the wait was sent. 
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Semaphore instance protocol 

communication 
signal 

wait 

Send a signal through the receiver. If one or 
more Processes have been suspended trying 
to receive a signal, allow the one that has 
been waiting the longest to proceed. If no Pro- 
cess is waiting, remember the excess signal. 
The active Process must receive a signal 
through the receiver before proceeding. If no 
signal has been sent, the active Process will 
be suspended until one is sent. 

The processes t h a t  have been suspended will be resumed in the  same 
order  in which they were suspended. A Process ' s  pr ior i ty  is only t aken  
into account  by Processor  when  scheduling it for the  use of the proces- 
sor. Each Process  wai t ing  for a Semaphore  will be resumed on a first- 
come first-served basis, independent  of its priority. A Semaphore  allows 
a Process  to wai t  for a signal t h a t  has  not been sent  wi thout  using pro- 
cessor capacity. The Semaphore  does not r e t u r n  from wait unti l  signal 
has  been sent. One of the ma in  advan tages  of c rea t ing  an independen t  
process for a pa r t i cu la r  act ivi ty is that ,  if the  process requires  some- 
th ing  tha t  is not available,  o ther  processes can proceed while the  first 
process waits  for it to become available.  Examples  of things t ha t  a pro- 
cess may  require  and tha t  may  or may  not be avai lable  are  h a r d w a r e  
devices, user  events  (keystrokes or point ing device movements) ,  and 
shared  da ta  s t ructures .  A specific t ime of day can also be thought  of as 
someth ing  t h a t  migh t  be requi red  for a process to proceed. 

Mutual  Exclusion 
Semaphores  can be used to ensure  m u t u a l l y  exclusive use of cer ta in  fa- 
cilities by separa te  Processes .  For example,  a Semaphore  might  be used 
to provide a da ta  s t ruc tu re  tha t  can be safely accessed by separa te  Pro- 
cesses .  The following definit ion of a s imple first-in first-out da ta  struc- 
ture  does not have any  provision for m u t u a l  exclusion. 

class name 
superclass 
instance variable names 

class methods 

instance creation 

n e w  

1self new: 10 

n e w :  s i z e  

1"super new init size 

SimpleQueue 
Object 
contentsArray 
readPosition 
writePosition 
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instance methods 

accessing 

next  
I value I 
readPosit ion = wri tePosit ion 

ifTrue: [self error: ' emp ty  q u e u e ' ]  

ifFalse: [value ,-- contentsArray at: readPosit ion. 

contentsArray at: readPosit ion put: nil. 

readPosi t ion ~- readPosit ion --t- 1. 

tva lue]  

nextPut:  value 
writePosit ion > contentsArray size 

ifTrue: [self makeRoomForWri te ] .  

contentsArray at: wri tePosit ion put: value. 

wri tePosit ion ~ wri tePosit ion + 1. 

1value 

size 
"rwritePosition - readPosit ion 

testing 

isEmpty 
l 'writePosit ion = readPosi t ion 

private 

init: size 
contentsArray ~ Array new: size. 

readPosit ion ~- 1. 

wri tePosit ion ~- 1 

makeRoomForWr i te  
I con ten t sS i ze t  

readPosi t ion = 1 

ifTrue: [contentsArray grow] 

ifFalse: 

[contentsSize ~ wri tePosit ion - readPosit ion. 

1 to: contentsSize do: 

[ : index I 

contentsArray 

at: index 

put: (contentsArray at: index + readPosit ion - 1)]. 

readPosi t ion ~- 1. 

wri tePosit ion ~- contentsSize + 1] 

A S i m p l e Q u e u e  remembers  its contents in an Ar ray  named 
contentsArray and main ta ins  two indices into the contentsArray named 
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readPosition and writePosition. New contents are added at writePosition 
and removed at readPosition. The pr ivate message makeRoomForWrite 
is sent when there is no room at the end of contentsArray for remem- 
bering a new object. If contentsArray is completely ful l ,  its size is in- 
creased. Otherwise, the contents are moved to the f i rst  of contentsArray. 

The problem w i th  sending to a SimpleQueue from dif ferent Process- 
es is tha t  more than one Process at a t ime may be executing the meth- 
od for next or nextPut:. Suppose a SimpleQueue were sent the message 
next f rom one Process, and had just  executed the expression 

value ~- contentsArray at: readPosition 

when a higher  priori ty Process woke u p  and sent another  next message 
to the same SimpleQueue. Since readPosition has not been incremented,  
the second execution of the expresson above will bind the same object 
to value. The higher  priori ty Process will remove the reference to the 
object from contentsArray, increment  the readPosition and re tu rn  the 
object it removed. When the lower priori ty Process gets control back, 
readPosition has been incremented so it removes the reference to the 
next  object from contentsArray. This object should have been the value 
of one of the next messages, but  it is discarded and both next messages 
re tu rn  the same object. 

To ensure mutua l  exclusion, each Process must  wait for the same 
Semaphore  before using a resource and then signal the Semaphore 
when it is finished. The following subclass of SimpleQueue provides mu- 
tual  exclusion so tha t  its instances can be used from separate  Processes.  

class name 
superclass 
instance variable names 
instance methods 

SimpteSharedQueue 
SimpleQueue 
accessProtect 

accessing 

nex t  

t value I 
accessProtect wait. 
value ,- super next. 
accessProtect signal. 
tvalue 

nextPut :  v a l u e  
accessProtect wait. 
super nextPut: value. 
accessProtect signal. 
tvalue 
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private 

init: s ize 
super init: size. 
accessProtect ~ Semaphore new. 
accessProtect signal 

Since m u t u a l  exclusion is a common use of Semaphores,  they  inc lude a 
message for it. The selector of th is  message is critical:. The imp lemen ta -  
t ion  of critical: is as fol lows. 

crit ical:  aBIock 
I value I 
self wait. 
value ~ aBIock value. 
self signal. 
1"value 

A Semaphore used for m u t u a l  exclusion m u s t  s t a r t  out  wi th  one excess 
s ignal  so the  f irst  P rocess  m a y  e n t e r  the  cr i t ical  section. Class Sema-  
phore provides a special  in i t ia l iza t ion  message,  forMutualExclusion, t h a t  
signals the  new ins tance  once. 

Semaphore instance protocol 

mutual exclusion 
critical aBIock Execute aBIock when no other critical blocks 

are executing. 

Semaphore class protocol 

instance creation 
forMutualExclusion Answer a new Semaphore with one excess sig- 

nal. 

The i m p l e m e n t a t i o n  of S impleSharedQueue could be changed to read as 

follows. 

class name SimpleSharedQueue 
superclass SimpleQueue 
instance variable names accessProtect 
instance methods 

accessing 

next  
I value I 
accessProtect critical: [ value ,- super next ]. 
Tvalue 

nextPut:  va lue 
accessProtect critical: [ super nextPut: value ]. 

fvalue 
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private 

init: size 
super init: size. 
accessProtect ~ Semaphore forMutualExclusion 

Resource Sharing 
In order for two Processes to share  a resource, mutua l ly  exclusive ac- 
cess to it is not enough. The Processes  must  also be able to communi- 
cate about the availabil i ty of the resource. SimpleSharedQueue will not 
get confused by s imul taneous  accesses, but  if an a t t empt  is made to re- 
move an object from an empty SimpleSharedQueue, an error  occurs. In 
an envi ronment  with asynchronous Processes,  it is inconvenient to 
guaran tee  tha t  a t tempts  to remove objects (by sending next) will be 
made only after they have been added (by sending nextPut:). Therefore, 
Semaphores  are also used to signal the availabili ty of shared resources. 
A Semaphore represent ing a resource is signalled after each unit  of the 
resource is made available and waited for before consuming each unit. 
Therefore, if an a t t empt  is made to consume a resource before it has 
been produced, the consumer simply waits. 

Class SafeSharedQueue is an example of how Semaphores  can be 
used to communicate  about the availabili ty of resources. 
SafeSharedQueue is s imilar  to SimpleSharedQueue, but  it uses another  
Semaphore named valueAvailable to represent  the availabil i ty of the 
contents of the queue. SafeSharedQueue is not in the Small talk-80 sys- 
tem, it is described here only as an example. SharedQueue is the class 
tha t  is actual ly used to communicate  between processes in the system. 
SharedQueue provides functionali ty similar  to SafeSharedQueue's .  The 
protocol specification for SharedQueue will be given la ter  in this chap- 
ter. 

class name 
superclass 
instance variable names 

instance methods 

accessing 

SafeSharedQueue 
SimpleQueue 
accessProtect 
valueAvailable 

next  

I value I 
valueAvailable wait. 
accessProtect critical: [ value ~--- super next ]. 
tvalue 

nextPut:  va lue  
accessProtect critical: [ super nextPut: value ]. 
valueAvailable signall 
tvalue 
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private 

init: s ize  
super init: size. 
accessProtect ~ Semaphore forMutualExclusion. 
valueAvailable ~ Semaphore new 

Hardware 
Interrupts 

Instances of Semaphore are also used to communicate between hard- 
ware devices and Processes. In this capacity, they take the place of in- 
terrupts as a means of communicating about the changes of state that  
hardware devices go through. The Smalltalk-80 virtual machine is spec- 
ified to signal Semaphores on three conditions. 

• user event: a key has been pressed on the keyboard, a button has 
been pressed on the pointing device, or the pointing device has 
moved. 

• timeout: a specific value of the millisecond clock has been reached. 

• low space: available object memory has fallen below certain limits. 

These three Semaphores correspond to three Processes monitoring user 
events, the millisecond clock and memory utilization. Each monitoring 
Process sends wait to the appropriate Semaphore suspending itself until 
something of interest happens. Whenever the Semaphore is signalled, 
the Process will resume. The virtual machine is notified about .these 
three types of monitoring by primitive methods. For example, the 
timeout signal can be requested by a primitive method associated with 
themessage  signal:atTime: to Processor. 

Class Wakeup is an example of how one of these Semaphores can be 
used. Wakeup provides an alarm clock service to Processes by monitor- 
ing the millisecond clock. Wakeup is not in the Smalltalk-80 system; it 
is described here only as an example. Delay is the class that  actually 
monitors the millisecond clock in the Smalltalk-80 system. Delay pro- 
vides functionality similar to Wakeup's. The protocol specification for 
Delay will be given later in this chapter. 

Wakeup provides a message that  suspends the sending Process for a 
specified number of milliseconds. The following expression suspends its 
Process for three quarters of a second. 

Wakeup after: 750 

When Wakeup receives an after: message, it allocates a new instance 
which remembers the value of the clock at which the wakeup should 
occur. The new instance contains a Semaphore on which the active Pro- 
cess will be suspended until the wakeup time is reached. Wakeup keeps 
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all of its instances in a list sorted by their  wakeup times. A Process 
monitors the vir tual  machine 's  millisecond c lock  for the earliest  of 
these wakeup times and allows the appropria te  suspended Process to 
proceed. This Process is created in the class method for 
initializeTimingProcess. The Semaphore used to monitor  the clock is re- 
ferred to by a class variable named TimingSemaphore. The vir tual  ma- 
chine is informed tha t  the clock should be monitored with the following 
message found in the instance method for nextWakeup. 

Processor signal: TimingSemaphore atTime: resumptionTime 

The list of instances wait ing for resumption is referred to by a class 
variable named PendingWakeups. There  is another  Semaphore named 
AccessProtect  tha t  provides mutua l ly  exclusive access to 
PendingWakeups. 

class name 
superclass 
instance variable names 

class variable names 

class methods 

Wakeup 
Object 
alarmTime 
alarmSemaphore 
PendingWakeups 
AccessProtect 
TimingSemaphore 

alarm clock service 

after: millisecondCount 
(self new sleepDuration: millisecondCount) waitForWakeup 

class initialization 

initialize 
TimingSemaphore ~ Semaphore new. 
AccessProtect ~ Semaphore forMutuatExclusion. 
PendingWakeups ~ SortedCollection new. 
self initializeTimingProcess 

initializeTimingProcess 
[[true] 

whileTrue: 
[TimingSemaphore wait. 
AccessProtect wait. 
PendingWakeups removeFirst wakeup. 
PendingWakeups isEmpty 

ifFalse: [PendingWakeups first nextWakeup]. 
AccessProtect signal]] 

forkAt: Processor timingPriority 
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instance methods 

process delay 

waitForWakeup 
AccessProtect wait. 
PendingWakeups add self. 
PendingWakeups first = = self 

ifTrue: [self nextWakeup]. 
AccessProtect signal. 
alarmSemaphore wait 

comparison 

< otherWakeup 
t alarmTime < otherWakeup wakeupTIme 

accessing 

wakeupTime 
l'alarmTime 

private 

nextWakeup 
Processor signal: TimingSemaphore atTime: resumptionTime 

sleepDuration: millisecondCount 
alarmTime ~- Time millisecondCtockValue + millisecondCount. 
alarmSemaphore ~- Semaphore new 

wakeup 
alarmSemaphore signal 

Class 
SharedQueue 

Class S h a r e d Q u e u e  is t h e  s y s t e m  class whose  i n s t a n c e s  Prov ide  safe 
c o m m u n i c a t i o n  of objects  b e t w e e n  P r o c e s s e s .  B o t h  its protocol  a n d  its 

i m p l e m e n t a t i o n  a r e  s i m i l a r  to t h e  S a f e S h a r e d Q u e u e  e x a m p l e  s h o w n  

e a r l i e r  in th i s  chap t e r .  

SharedQueue instance protocol 

accessing 
next 

nextPut: value 

Answer with the first object added to the re- 
ceiver that has not yet been removed. If the 
receiver is empty, suspend the active Process 
until an object is added to it. 
Add value to the contents of the receiver. If a 
Process has been suspended waiting for an ob- 
ject, allow it to proceed. 
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ClassDelay A Delay al lows a Process to be s u s p e n d e d  for a specif ied a m o u n t  of 

t ime.  A Delay is c r e a t e d  by spec i fy ing  h o w  long it will s u s p e n d  t h e  ac- 

t ive  Process .  

halfMinuteDelay ~- Delay forSeconds: 30. 
shortDelay ~- Delay forMilliseconds" 50 

S i m p l y  c r e a t i n g  a Delay has  no effect  on t h e  p rogress  of t he  ac t ive  Pro- 
cess .  I t  is in r e sponse  to t h e  m e s s a g e  wait t h a t  a Delay s u s p e n d s  t h e  ac- 

t ive  P rocess .  T h e  fol lowing expres s ions  would  bo th  s u s p e n d  t h e  ac t ive  
P r o c e s s  for 30 seconds.  

halfMinuteDelay wait. 
(Delay forSeconds: 30) wait 

Delay class protocol 

instance creation 
forMiiliseconds: millisecondCount Answer with a new instance that will suspend 

the active Process for millisecondCount milli- 
seconds when sent the message wait. 

forSeconds: secondCount Answer with a new instance that will suspend 
the active Process for secondCount seconds 
when sent the message wait. 

untilMilliseconds: millisecondCount 
Answer with a new instance that will suspend 
the active Process until the millisecond clock 
reaches the value millisecondCount. 

general inquiries 
miilisecondCIockValue 

Delay instance protocol 

Answer with the current value of the millisec- 
ond clock. 

accessing 
resumptionTime Answer with the value of the millisecond 

clock at which the delayed Process will be re- 
sumed. 

process delay 
wait Suspend the active Process until the millisec- 

ond clock reaches the appropriate value. 

A t r iv ia l  clock can be i m p l e m e n t e d  w i t h  t h e  fol lowing express ion .  

[[true] whileTrue: 
[Time now printString displayAt: 100 @ 100. 
(Delay forSeconds: 1) wait]] fork 

T h e  c u r r e n t  t i m e  wou ld  be d i sp layed  on t h e  sc reen  once a second.  
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Magnitude 
Character 
Date 
Time 

Number 
Float 
Fraction 
Integer 

LargeNegativelnteger 
LargePositivelnteger 
Smalllnteger 

LookupKey 
Association 

Link 

Process 

Collection 

SequenceableCollection 
LinkedList 

Semaphore 

ArrayedCollection 
Array 

Bitmap 
DisplayBitmap 

RunArray 
String 

Symbol 
Text 
ByteArray 

Interval 
OrderedCollection 

SortedCollection 
Bag 
M appedCollection 
Set 

Dictionary 
IdentityDictionary 

Stream 
PositionableStream 

ReadStream 
WriteStream 

ReadWriteStream 
ExternalStream 

FileStream 

Random 

File 
FileDirectory 
FilePage 

UndefinedObject 
Boolean 

False 
True 

ProcessorScheduler 
Delay 
SharedQueue 
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Point 
Rectangle 
BitBit 

CharacterScanner 

Pen 

DisplayObject 
DisplayMedium 

Form 
Cursor 
DisplayScreen 

InfiniteForm 
OpaqueForm 
Path 

Arc 
Circle 

Curve 
Line 
LinearFit 
Spline 
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We have now introduced the protocol for most of the classes that  de' 
scribe the basic components of the Smalltalk-80 system. One notable ex- 
ception is the protocol for the classes themselves. Four classes--Behavior, 
ClassDescription, Metaclass, and Class~ in te rac t  to provide; the facili- 
ties needed to describe new classes. Creating a new class involves 
compiling methods and specifying names for instance variables, class 
variables, pool variables, and the class itself. 

Chapters 3, 4, and 5 introduced the basic concepts represented by 
these classes. To summarize from that  discussion, the Smalltalk-80 pro- 
grammer specifies a new class by creating a subclass of another class. 
For example, class Collection is a subclass of Object; class Array is a sub- 
class of ArrayedCollection (whose superclass chain terminates with 
Object). 

1; Every class is ultimately a subclass of class Object, except for Ob- 
ject itself, which has no superclass. In particular, Class is a sub- 
class of ClassDescription, which is a subclass of Behavior which is a 
subclass of Object, 

There are two kinds of objects in the system, ones that  can create in: 
stances of themselves (classes) and ones that  can not. 

2 .  Every object is an instance of a class. 

Each class is itself an instance of a class. We call the class of a class, its 
metaclass. 

3. Every class is an instance of a metaclass. 

Metaclasses are not referenced by class names as are other classes. In- 
stead, they are referred to by a message expression sending:the unary 
message ctass to the instance of the metaclass. For example, the 
metaclass of Collection is referred to as Collection class; the metaclass of 
Class is referred to as Class class. 

In the Smalltalk-80 system, a metaclass is created automatically 
whenever a new class is created. A metaclass has  only one instance. 
The messages categorized as "class methods" in the class descriptions 
are found in the metaclass of the class. This follows from the way in 
which methods are found; when a message is sent to an object, the 
search for the corresponding method begins in the class of the object. 
When a message is sent to Dictionary, for example, the search begins in 
the metaclass of Dictionary. If the method is not found in the metaclass, 
then the search proceeds to the superclass of the metaclass. In this case, 
the superclass is Set class, the metaclass for Dictionary's superclass. If 
necessary, the search follows the superclass chain to Object class. 
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In the diagrams in this chapter, all arrows with solid lines denote a 
subclass relationship; arrows with dashed lines an instance relationship. 
A ---> B means  A is an instance of B. Solid gray lines indicate the 
class hierarchy; solid black lines indicate the metaclass hierarchy. 

Figure 16.1 
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Since the superclass chain of all objects ends at Object as shown in Fig, 
ure 16.1, and Object has no superclass, the superclass of Object's 
metaclass is not determined by the rule of maintaining a parallel hier- 
archy. It is at this point that  Class is found. The superclass of Object 
class is Class. 

4. All metaclasses are (ultimately) subclasses of Class (Figure 16.2). 

Figure 16.2 
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Since metaclasses are objects, they too must be instances of a class. Ev- 
ery metaclass is an instance of Metaclass. Metaclass itself is an instance 
of a metaclass. This  is a point of circularity in the sys tem-- the  
metaclass of Metaclass must be an instance of Metaclass. 

5. Every metaclass is an instance of Metaclass (Figure 16.3). 

Figure 16.4 shows the relationships among Class, ClassDescription, Be- 
havior, and Object, and their respective metaclasses. The class hierarchy 
follows a chain to Object, and the metaclass hierarchy follows a chain 
through Object class to Class and on to Object. While the methods of 
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Figure 16.3 
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O b j e c t  support the behavior common to all objects, the methods of C l a s s  

a n d  M e t a c l a s s  s u p p o r t  t h e  b e h a v i o r  c o m m o n  to  a l l  c lasses.  

6. The methods of Class and its superclasses support the behavior 
common to those objects that  are classes. 

7. The methods of instances of Metaclass add the behavior specific to 
particular =classes. 

The correspondence between the class and metaclass hierarchies is 
shown in Figure 16.5, in which the part  of the number  hierarchy and 
the behavior hierarchy of the last two figures are combined. 

Figure 16.4 
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Figure 16.5 
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Class Behavior Class Behav iOr  defines the minimum state necessary for objects that 
have instances. In particular, Behavior defines the state used by the 
Smalttalk-80 interpreter. It provides the basic interface to the compiler. 
The state described by Behavior includes a class hierarchy link, a meth- 
od dictionary, and a description of instances in terms of the number 
and the representation of their variables. 

The message protocol for class Behavior will be described in four cat- 
egories--creating, accessing, testing, and enumerating. These categories 
and their subcategories, as outlined below, provide a model for thinking 
about the functionality of classes in the Smalltalk-80 system. 
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Outline of Protocol for All Classes 

c r e a t i n g  
• c r e a t i n g  a m e t h o d  d i c t i ona ry  
• c r e a t i n g  in s t ances  
• c r e a t i n g  a class h i e r a r c h y  

access ing  
• access ing  the  c o n t e n t s  of t he  m e t h o d  d ic t iona ry  
• access ing  in s t ances  a n d  var iables :  ins tance ,  class, a n d  pool 

• access ing  the  class h i e r a r c h y  

t e s t ing  
• t e s t i ng  t h e  c o n t e n t s  of t he  m e t h o d  d i c t i ona ry  
• t e s t ing  t h e  fo rm of t he  in s t ances  
• t e s t ing  the  class h i e r a r c h y  

e n u m e r a t i n g  
• e n u m e r a t i n g  subclasses  a n d  in s t ances  

[~] Behavior's Creating Protocol Th e  m e t h o d s  in a class descr ip t ion  
a r e  s to red  in a d i c t iona ry  we r e fe r  to as t he  method dictionary. I t  is also 
s o m e t i m e s  cal led a me s s a g e  d ic t ionary .  Th e  keys  in th i s  d i c t iona ry  a r e  
mes sage  selectors;  t he  va lues  a re  t h e  compi led  fo rm of m e t h o d s  (in - 
s t ances  of CompiledMethod). Th e  protocol  for c r e a t i n g  the  m e t h o d  dic- 

t i o n a r y  s u p p o r t s  compi l ing  m e t h o d s  as  well  as a d d i n g  the  assoc ia t ion  
b e t w e e n  a se lec tor  a n d  a compi led  me thod .  I t  also s u p p o r t s  access ing  
bo th  t he  compi led  a n d  n o n c o m p i l e d  (source) vers ions  of t h e  me thod .  

Behavior instance protocol 

creating method dictionary 
methodDictionary: aDictionary Store the argument, aDictionary, as the meth- 

od dictionary of the receiver. 

addSelector: selector withMethod: compiledMethod 
Add the message selector, selector, with the 
corresponding compiled method, compiled- 
Method, to the receiver's method dictionary. 

removeSelector: selector Remove the argument, selector (which is a 
Symbol representing a message selector), from 
the receiver's method dictionary. If the selec- 
tor is not in the method dictionary, report an 
error. 

compile: code The argument, code, is either a String or an 
object that converts to a String or it is a 
PositionableStream accessing an object that is 
or converts to a String. Compile code as the 
source code in the context of the receiver's 
variables. Report an error if the code can not 
be compiled. 
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compile: code notifying: requestor 
Compile the argument, code, and enter the 
result in the receiver's method dictionary. If 
an error occurs, send an appropriate message 
to the argument, requestor. 

recompile: selector Compile the method associated with the mes- 
sage selector, selector. 

decompile: selector Find the compiled code associated with the ar- 
gument, selector, and decompile it. Answer 
the resulting source code as a String. If the se- 
lector is not in the method dictionary, report 
an error. 

compileAII Compile all the methods in the receiver's 
method dictionary. 

compileAIISubclasses Compile all the methods in the receiver's 
subclasses' method dictionaries. 

Instances of classes are  created by sending the message new or new:. 
These two messages can be overr idden in the method dict ionary of a 
metaclass  in order  to supply special ini t ial izat ion behavior.  The purpose 
of any special ini t ial izat ion is to gua ran tee  tha t  an instance is created 
wi th  variables tha t  are themselves  appropr ia te  instances. We have 
demons t ra ted  this idea in m a n y  previous chapters.  Look, for example,  
at  the definition of class Random in Chapter  12; the method dict ionary 
of Random class (the class methods) contains an implementa t ion  for 
new in which a new instance is sent  the message setSeed;  this initial- 
ization guaran tees  t ha t  the r andom n u m b e r  genera t ion  a lgor i thm refers 
to a var iable  tha t  is an appropr ia te  kind of number .  

Suppose a class overr ides  the method for new and then  one of its 
subclasses wishes to do the same in order  to avoid the behavior  created 
by its superclass 's  change. The method for the first class might  be 

M Q W  

1'super new setVariables 

where the message setVariables is provided in the protocol for instances 
of the class. By sending the message new to the pseudo-variable super, 
the method for creat ing an instance as specified in class Behavior is 
evaluated;  the result ,  the new instance,  is then  sent  the message 
setVariables. In the subclass, it is not possible to utilize the message su- 
per new because this will invoke the method  of the first c lass- -prec ise-  
ly the method to be avoided. In order  to obtain the basic method  in 
Behavior for creat ing an instance,  the subclass mus t  use the expression 
self basicNew. The message basicNew is the pr imit ive instance creat ion 
message tha t  should not  be re implemented  in any subclass. In Behavior, 
new and basicNew are identical. A similar  pair  for creat ing variable- 
length objects, new: and basicNew:, are  also provided in the protocol of 
class Behavior. (Note, this technique of dual  messages is also used in 
class Object for accessing messages such as at: and at:put:.) 
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Behavior instance protocol 

instance creation 
new Answer an instance of the receiver with no 

indexed variables. Send the receiver the mes- 
sage new: 0 if the receiver is indexable. 

basicNew Same as new, except this method should not 
be overridden in a subclass. 

new:anlnteger Answer an instance of the receiver with 
anlnteger number of indexed variables. Report 
an error if the receiver is not indexable. 

basicNew: anlnteger Same as basicNew, except this method should 
not be overridden in a subclass. 

T h e  protocol  for c r e a t i n g  classes  inc ludes  m e s s a g e s  for p lac ing  t h e  class 

w i t h i n  t h e  h i e r a r c h y  of classes  in t he  sys tem.  Since th i s  h i e r a r c h y  is 

l inear ,  t h e r e  is on ly  a n e e d  to set  t he  supe rc l a s s  a n d  to add  or r e m o v e  

subclasses .  

Behavior instance protocol 

creating a class hierarchy 
superclass: aClass 

addSubclass: aClass 

removeSubclass: aClass 

Set the superclass of the receiver to be the ar- 
gument, aClass. 
Make the argument, aClass, be a subclass of 
the receiver. 
Remove the argument, aClass, from the 
subclasses of the receiver. 

A l t h o u g h  t h e  c r e a t i n g  protocol  for Behavior  m a k e s  it possible  to wr i t e  

exp re s s ions  for c r e a t i n g  a n e w  class  descr ip t ion ,  t h e  u s u a l  a p p r o a c h  is 
to t a k e  a d v a n t a g e  of t he  g r a p h i c a l  e n v i r o n m e n t  in w h i c h  t h e  

S m a l l t a l k - 8 0  l a n g u a g e  is e m b e d d e d ,  a n d  to p rov ide  a n  i n t e r f ace  in 

w h i c h  t h e  u s e r  fills ou t  g r a p h i c a l l y - p r e s e n t e d  fo rms  to specify i n fo rma-  

t ion  a b o u t  t h e  v a r i o u s  p a r t s  of a class. 

E] Behavior ' s  Accessing Protocol T h e  m e s s a g e s  t h a t  access t he  con- 
t e n t s  of a m e t h o d  d i c t i o n a r y  d i s t i n g u i s h  a m o n g  t h e  se lec tors  in t h e  

class 's  local ly specif ied m e t h o d  d ic t iona ry ,  a n d  those  in t h e  m e t h o d  dic- 

t i o n a r i e s  of t h e  class a n d  each  of its superc lasses .  

Behavior instance protocol 

accessing the method dictionary 
selectors 

allSelectors 

Answer a Set of all the message selectors 
specified in the receiver's local method diction- 
ary. 
Answer a Set of all the message selectors that 
instances of the receiver can understand. This 
consists of all message selectors in the receiv- 
er's method dictionary and in the dictionaries 
of each of the receiver's superclasses. 
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compiledMethodAt: selector 

sourceCodeAt: selector 

sourceMethodAt: selector 

Answer the compiled method associated with 
the argument, selector, a message selector in 
the receiver's local method dictionary. Report 
an error if the selector can not be found. 

Answer a String that  is the source code associ- 
ated with the argument, selector, a message 
selector in the receiver's local method diction- 
ary. Report an error if the selector can not be 
found. 

Answer a Text for the source code associated 
with the argument, selector, a message selec- 
tor in the receiver's local method dictionary. 
This Text provides boldface emphasis for the 
message pattern part of the method. Report 
an error if the selector can not be found. 

A n  i n s t a n c e  c a n  h a v e  n a m e d  i n s t a n c e  v a r i a b l e s ,  i n d e x e d  i n s t a n c e  v a r i -  

a b l e s ,  c l a s s  v a r i a b l e s ,  a n d  d i c t i o n a r i e s  of poo l  v a r i a b l e s .  A g a i n ,  t h e  dis-  

t i n c t i o n  b e t w e e n  l o c a l l y  s p e c i f i e d  v a r i a b l e s  a n d  v a r i a b l e s  i n h e r i t e d  f r o m  

s u p e r c l a s s e s  is m a d e  in  t h e  a c c e s s i n g  p r o t o c o l .  

Behavior instance protocol 

accessing instances and variables 
alllnstances 

someinstance 
• instanceCount 

instVarNames 

subclass lnstVarNames 

alllnstVarNames 

classVarNames 

allCiassVarNames 

sharedPools 

allSharedPools 

Answer a Set of all direct instances of the re- 
ceiver. 

Answer an existing instance of the receiver. 

Answer the number of instances of the receiv- 
er that currently exist. 

Answer an Array of the instance variable 
names specified in the receiver. 

Answer a Set of the instance variable names 
specified in the receiver's subclasses. 

Answer an Array of the names of the receiver's 
instance variables, those specified in the re- 
ceiver and in all of its superclasses. The Array 
ordering is the order in •which the variables 
are stored and accessed by the Smalltalk-80 
interpreter. 

Answer a Set of the class var iable  names 
specified locally in the receiver. 

Answer a Set of the names of the receiver's 
and the receiver's superclasses' class vari- 
ables. 

Answer a Set of the names of the pools (diction- 
aries) that  are specified locally in the receiver. 

Answer a Set of the names of the pools (diction- 
aries) that  are specified in the receiver and 
each of its superclasses. 
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Thus ,  for e x a m p l e ,  

expression result 

OrderedCollection instVarNames 
OrderedCollection 

subclasslnstVarNames 
SortedCollection 

alllnstVarNames 
String classVarNames 
String allClassVarNames 

Text sharedPools 

('firstlndex' ' lastlndex') 
Set (' sortBIock') 

(' firstlndex' 'lastlndex" 
' sortBIock') 

Set (StringBIter) 
Set (StringBiter 

DependentsFields 
ErrorRecursion ) 

a Set containing one 
element, TextConstants, 
a Dictionary 

T h e  access ing  protocol  inc ludes  m e s s a g e s  for o b t a i n i n g  col lec t ions  of t h e  

supe rc l a s se s  a n d  subc lasses  of a class. T h e s e  m e s s a g e s  d i s t i n g u i s h  be- 

t w e e n  a class 's  i m m e d i a t e  supe rc l a s s  a n d  subclasses ,  a n d  all  c lasses  in 

t he  class 's  supe rc l a s s  cha in .  

Behavior instance protocol 

accessing class hierarchy 
subclasses 

allSubclasses 

withAIISubclasses 

superclass 
allSuperclasses 

Thus ,  for  e x a m p l e  

Answer a Set containing the receiver's imme- 
diate subclasses. 
Answer a Set of the receiver's subclasses and 
the receiver's descendent's subclasses. 
Answer a Set of the receiver, the receiver's 
subclasses and the receiver's descendent's 
subclasses. 
Answer the receiver's immediate superclass. 
Answer an OrderedCollection of the receiver's 
superclass and the receiver's ancestor's 
superclasses. The first element is the receiv- 
er's immediate superclass, followed by its su- 
perclass, and so on; the last element is always 
Object. 

expression result 

String superclass 
ArrayedCollection subclasses 

• ArrayedCollection 
Set (Array ByteArray 

RunArray Bitmap 
String Text ) 
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ArrayedCollection 
allSubclasses 

ArrayedCollection 
withAIISubclasses 

ArrayedCollection 
allSuperclasses 

ArrayedCollection 
class allSuperclasses 

Set (Array ByteArray 
RunArray Bitmap 
String Text 
DisplayBitmap Symbol 
CompiledMethod ) 

Set 
(ArrayedCollection 
Array ByteArray 
RunArray Bitmap 
String Text 
DisplayBitmap Symbol 
CompiledMethod ) 

OrderedCollection 
(SequenceableCollection 
Collection Object ) 

OrderedCollection 
(SequenceableCollection 
class Collection class 
Object class Class 
CiassDescription 
Behavior Object ) 

D Behavior 's  Testing Protocol Tes t ing  protocol provides the  messages  
needed  to find out  i n fo rma t ion  about  the  s t r u c t u r e  of a class and  the  
form of its ins tances .  The  s t r u c t u r e  of a class consists  of its r e l a t ionsh ip  
to o the r  classes, its abi l i ty  to respond to messages ,  the  class in which  a 
message  is specified, and  so on. 

The  con ten t s  of a m e t h o d  d ic t ionary  can  be tes ted  to find out  which  
class, if any,  i m p l e m e n t s  a p a r t i c u l a r  message  selector,  w h e t h e r  a class 
can respond to a message ,  and  which  me thods  re fe rence  p a r t i c u l a r  vari-  
ables or l i terals .  These  messages  a re  all useful  in c rea t ing  a p rogram-  
ming  e n v i r o n m e n t  in which  the  p r o g r a m m e r  can explore  the  s t r u c t u r e  
and  func t iona l i ty  of objects in the  system.  

Behavior instance protocol 

testing the method dictionary 
hasMethods 

includesSelector: selector 

canUnderstand: selector 

Answer whether the receiver has any methods 
in its (local) method dictionary. 
Answer whether the message whose selector is 
the argument, selector, is in the local method 
dictionary of the receiver's class. 
Answer whether the receiver can respond to 
the message whose selector is the argument. 
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The selector can be in the method dictionary 
of the receiver's class or any of its super- 
classes. 

whichClasslncludesSelector: selector 
Answer the first class on the receiver's super- 
class chain where the argument, selector, can 
be found as a message selector. Answer nil if 
no class includes the selector. 

whichSelectorsAccess: instVarName 
Answer a Set of selectors from the receiver's 
local method dictionary whose methods access 
the argument, instVarName, as a named in- 
stance variable. 

whichSelectorsReferTo: anObject Answer a Set of selectors whose methods ac- 
cess the argument, anObject. 

scopeHas: name ifTrue: aBIock Determine whether the variable name, name, 
is within the scope of the receiver, i.e., it is 
specified as a variable in the receiver or in 
one of its superclasses. If so, evalaute the ar- 
gument, aBlock. 

T h u s ,  fo r  e x a m p l e  

expression result 

OrderedCollection 
includesSelector: 

:#addFirst: 
SortedCollection 

includesSelector: #size 
SortedCollection 

canUnderstand: #size 
SortedCollection 

whichClasslncludesSelector: 
#size 

OrderedCollection 
whichSelectorsAccess: 

#firstlndex 

true 

false 

true 

OrderedCollection 

Set 
(makeRoomAtFirst 
before: size 
makeRoomAtLast 
insert:before: 
remove:ifAbsent: 
addFirst: first 
removeFirst find: 
removeAIISuchThat: 
at: at:put: reverseDo: 
do: setlndices: ) 

T h e  l a s t  e x a m p l e  e x p r e s s i o n  is u s e f u l  in  d e t e r m i n i n g  w h i c h  m e t h o d s  

m u s t  b e  c h a n g e d  if a n  i n s t a n c e  v a r i a b l e  is r e n a m e d  o r  d e l e t e d .  I n  a d d i -  
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t i on  to t h e  m e s s a g e s  i n t e n d e d  for e x t e r n a l  access,  t h e  Se t  i n c l u d e s  al l  
m e s s a g e s  i m p l e m e n t e d  in s u p p o r t  of t h e  i m p l e m e n t a t i o n  of t h e  e x t e r n a l  
messages .  

T h e  t e s t i n g  p ro toco l  i n c l u d e s  m e s s a g e s  to a c lass  t h a t  t e s t  h o w  its  
v a r i a b l e s  a r e  s to red ,  w h e t h e r  t h e  n u m b e r  of v a r i a b l e s  is f i x e d - l e n g t h  or  
v a r i a b l e - l e n g t h ,  a n d  t h e  n u m b e r  of n a m e d  i n s t a n c e  va r i ab l e s .  

Behavior instance protocol 

testing the form of the instances 
isPointers 

isBits 

isBytes 

isWords 

isFixed 

isVariable 

instSize 

Answer whether the variables of instances of 
the receiver are stored as pointers (words). 
Answer whether the variables of instances of 
the receiver are stored as bits (i.e., not point- 
ers). 

Answer whether the variables of instances of 
the receiver are stored as bytes (8-bit inte- 
gers). 

Answer whether the variables of instances of 
the receiver are. stored as words. 

Answer true if instances of the receiver do not 
have indexed instance variables; answer false 
otherwise. 

Answer true if instances of the receiver do 
have indexed instance variables; answer false 
otherwise. 

Answer the number of named instance vari- 
ables of the receiver. 

So we h a v e  

expression result 

LinkedList isFixed true 
String isBytes true 
Integer isBits false 
Float isWords true 
OrderedCollection isFixed false 
OrderedCollection instSize 2 
oc ~- OrderedCollection OrderedCollection 

with: $a ($a $b $c ) 
with: $b 
with: $c 

oc size 3 

T h e  l a s t  fou r  e x a m p l e  l ines  s h o w  t h a t  i n s t a n c e s  of OrderedCollection 
a r e  v a r i a b l e - l e n g t h ;  t h e  i n s t a n c e  oc  ha s  t h r e e  e l e m e n t s .  In  add i t i on ,  in- 
s t a n c e s  of Orde redCol l ec t ion  h a v e  two  n a m e d  i n s t a n c e  va r i ab l e s .  

T h e r e  a r e  four  k i n d s  of c lasses  in t h e  s y s t e m .  Classes  t h a t  h a v e  



281 
Class Behav io r  

indexed  ins t ance  var iab les  a re  cal led variable-length and  classes t h a t  do 
not  a re  cal led fixed-length. The  var iab les  of all f ixed- length  classes a re  
s tored  as poin te rs  (word-sized references) .  The  var iab les  of var iable-  
l eng th  classes can  con ta in  pointers ,  bytes,  or words.  Since a po in te r  is a 
word-sized reference ,  an  object t h a t  conta ins  po in te r s  will a n s w e r  true 
w h e n  asked  w h e t h e r  it conta ins  words,  bu t  the  inverse  is not  a lways  

t h e  case. In i t ia l iza t ion  messages  specified in Class  and  i temized in a lat- 
e r  sect ion suppor t  c rea t ion  of each  k ind  of class. 

Behavior instance protocol 

testing the class hierarchy 

inheri tsFrom aClass 

kindOfSubclass 

Thus  

Answer whether the argument, aClass, is on 
the receiver's superclass chain. 
Answer a String that is the keyword that de- 
scribes the receiver as a class: either a regular 
(fixed length) subclass, a variableSubctass, a 
variableByteSubclass, or a variableWord- 
Subclass. 

expression result 

String inheritsFrom: Collection 

String kindOfSubclass 

Array kindOfSubclass 

Float kindOfSubclass 

Integer kindOfSubclass 

true 

' variableByteSubclass: ' 

' variableSubclass: " 

' variableWordSubclass: ' 

' subclass: ' 

[~] Behavior 's  Enumerating Protocol Messages  specified in class Be- 
havior also suppor t  l i s t ing out  p a r t i c u l a r  sets of objects associa ted  wi th  
a class and  app ly ing  each  as the  a r g u m e n t  of a block. This  e n u m e r a t i o n  
of objects is s imi la r  to t h a t  provided in the  collection classes, and  con- 
sists of e n u m e r a t i n g  over all subclasses,  superclasses ,  ins tances ,  and  in- 
s tances  of subclasses.  In addi t ion,  two messages  suppor t  se lec t ing those 
subclasses  or superc lasses  for wh ich  a block eva lua te s  to true. 

Behavior instance protocol 

enumerating 
allSubclassesDo: aBIock 

allSuperclassesDo: aBIock 

all lnstancesDo: aBIock 

Evaluate the argument, aBIock, for each of 
the receiver's subclasses. 
Evaluate the argument, aBIock, for each of 
the receiver's superclasses. 
Evaluate the argument, aBIock, for each of 
the current instances of the receiver. 
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allSubinstancesDo: aBIock 

selectSubclasses: aBIock 

selectSuperclasses: aBIock 

Evaluate the argument, aBIock, for each of 
the current instances of the receiver's 
subclasses. 
Evaluate the argument, aBIock, for each of 
the receiver's subclasses. Collect into a Set 
only those subclasses for which aBIock evalu- 
ates to true. Answer the resulting Set. 
Evaluate the argument, aBIock, with each of 
the receiver's superclasses. Collect into a Set 
only those superclasses for which aBIock eval- 
uates to true. Answer the resulting Set. 

As an  example ,  in o rde r  to u n d e r s t a n d  the  b e h a v i o r  of an  i n s t ance  of 
t he  col lect ion classes, it m i g h t  be useful  to know wh ich  subclasses  of 
Collection i m p l e m e n t  t he  add ing  message  addFirst:. W i t h  t h i s  in fo rma-  
t ion, t he  p r o g r a m m e r  can  t r a c k  down which  m e t h o d  is a c tua l l y  eva lua t -  
ed w h e n  the  message  addFirst: is sen t  to a collection. Th e  fol lowing ex- 
p ress ion  collects each  such  class in to  a Set  n a m e d  subs.  

subs ~ Set  new. 
Collection allSubclassesDo: 

[ :class I 
(class includesSelector: #addFirst:) 

ifTrue: [subs add: class]] 

The  s a m e  i n f o r m a t i o n  is accessible  f rom 

Collection selectSubclasses: 
[:class I class includesSelector: #addFirst:] 

Both  c r ea t e  a Set  of t he  t h r e e  subclasses  LinkedList, OrderedCollect ion,  
a n d  RunArray. 

The  fol lowing express ion  r e t u r n s  a col lect ion of the  superc lasses  of 
Smal l ln teger  t h a t  i m p l e m e n t  the  message  = .  

Smalllnteger selectSuperclasses: 
[ :class I class includesSelector: @=]  

The  response  is 

Set (Integer Magnitude Object ) 

Severa l  subclasses  of Collection i m p l e m e n t  the  me s s a g e  first. Suppose  we 
wish  to see a list of t he  code for each  i m p l e m e n t a t i o n .  Th e  fol lowing ex- 
press ions  p r i n t  t he  code on the  file whose  n a m e  is ' c lassMethods . f i rs t ' .  
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I aStream I 
aStream ~- Disk file: 'classMethods.first'. 
Collection allSubclassesDo: 

[ :class I 
(class includesSelector: #first) 

ifTrue: 
[class name printOn: aStream. 
aStream cr. 
(class sourceCodeAt: #first) printOn: aStream. 
aStream cr; cr]]. 

aStream close 

The result ing contents of the file is 

SequenceableCollection 
'first 

self emptyCheck. 
i" self at: 1' 

OrderedCollection 
'first 

self emptyCheck. 
1"self basicAt: firstlndex' 

Interval 
'first 

T start' 
LinkedList 
'first 

self emptyCheck. 
1"firstLink' 

The protocol described in the  next  sections is not general ly used by pro- 
grammers ,  but  may be of interest  to system developers. The messages 
described are typically accessed in the programming environment  by 
selecting items from a menu presented in a graphical ly-oriented inter- 
face. 

Although most of the facilities of a class are specified in the protocol 
of Behavior, a number  of the messages can not be implemented because 
Behavior does not provide a complete representat ion for a class. In par- 
ticular, Behavior does not provide a representat ion for instance variable 
names and class variable names, nor for a class name and a comment  
about the class. 

Representat ions for a class name, class comment,  and instance vari- 
able names  are provided in ClassDescription, a subclass of Behavior. 
ClassDescription has two subclasses, Class and Metaclass. Class de- 
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scribes the representa t ion for class variable names and pool v a r i a b l e s .  
A metaclass shares t h e  class and pool variables of its sole instance. 
Class adds additional protocol for adding and removing class variables 
and pool variables, and for creat ing the various kinds of subclasses. 
Metaclass adds an initialization message for creat ing a subclass of itself, 
tha t  is, a message for creat ing a metaclass for a new class. 

Class 
ClassDescription 

ClassDescription represents  class naming,  class commenting,  and nam- 
ing instance variables, This is reflected in additional protocol for 
accessing the name and c o m m e n t ,  and for adding and removing in- 
stance variables. 

ClassDescription,instance protocol 

accessing class description 
name 

comment 

comment: aString 

addlnstVarName: aString 

removelnstVarName: aString 

Answer a Strin 9 that is the name of the re- 
ceiver. 
Answer a String that is the comment for the 
receiver. 
Set the receiver's comment to be the argu- 
ment, aString. 
Add the argument, aString, as one of the re- 
ceiver's instance variables. 
Remove the argument, aString, as one of the 
receiver's instance variables. Report an error 
if aString is not found. 

ClassDescription was provided as a common superclass for Class and 
Metactass in order to provide fur ther  s t ruc tur ing  to the description of a 
class. This helps support  a general  program development environment.  
Specifically, ClassDescription adds s t ruc ture  for organizing the 
se lector /method pairs of the method dictionary. This organization is a 
simple categorization scheme by which the subsets of the dictionary a re  
grouped and named, precisely the way we have been grouping and 
naming  messages throughout  the chapters  of this book. ClassDescriPtion 
also provides the mechanisms for storing a full class description on an 
external  s t ream (a file), and the mechanisms by which any changes to 
the class description are logged. 

The classes themselves are also grouped into system category classifi- 
cations. The organization of the chapters  of this par t  of the book paral- 
lels tha t  of the system class categories, for example, magnitudes,  
numbers ,  collections, kernel  objects, ke rne l  classes, and kernel  support. 
Protocol for message and class categorization includes the following 
messages. 
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ClassDescription instance protocol 

organization of messages and classes 
category Answer the system organization category for 

the receiver. 
category: aString Categorize the receiver under the system cate- 

gory, aString, removing the receiver from any 
previous category. 

removeCategory: aString Remove each of the messages categorized un- 
der the name aString and then remove the 
category itself. 

whichCategorylncludesSelector:, selector 
Answer the category of the argument, selector, 
in the organization of the receiver's method 
dictionary, or answer nil if the selector can not 
be found. 

Given  a ca tegor iza t ion  of t he  messages ,  ClassDescr ipt ion is ab le  to sup- 
por t  a set  of messages  for copying  messages  f rom one m e t h o d  d ic t iona ry  
to a n o t h e r ,  r e t a i n i n g  or  c h a n g i n g  the  ca t egory  name .  Messages  to sup- 
por t  copying  consis ts  of 

copy: selector from: aClass 
copy: selector from: aClass classified: categoryName 
copyAIl: arrayOfSelectors from: class 
copyAIl: arrayOfSelectors from: class classified: categoryName 
copyAilCategoriesFrom: aClass 
copyCategory: categoryName from: aClass 
copyCategory: categoryName 

from: aClass 
classified: newCategoryName 

The  ca tegor i za t ion  s c h e m e  has  an  i m p a c t  on protocol  for compi l ing  
since a compi led  m e t h o d  m u s t  be placed in a p a r t i c u l a r  ca tegory .  Two 
message s  a re  provided:  compile: c o d e  classified: c a t e g o r y N a m e  and  
compile: c o d e  classified: ca tegoryNarne  notifying: requestor .  

We  also note ,  for t h e  nex t  example ,  t h a t  Behavior suppor t s  special  
p r i n t i n g  protocol  so t h a t  a r g u m e n t s  to the  compi l ing  messages  can  be 

computed .  These  a r e  

Behavior instance protocol 

printing 
classVariableString 

i nstanceVariableString 

Answer a String that contains the names of 
each class variable in the receiver's variable 
declaration. 
Answer a String that contains the names of 
each instance variable in the receiver's vari- 
able declaration. 
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sharedVariableString Answer a String that contains the names of 
each pool dictionary in the receiver's variable 
declaration. 

Take as an example the creation of a class named AuditTrail. This class 
should be just like LinkedList, except that removing elements should not 
be supported. Therefore, the class can be created by copying the 
accessing, testing, adding, and enumerating protocol of LinkedList. We 
assume that the elements of an AuditTrail are instances of a subclass of 
Link t h a t  suppor t s  s tor ing  the  aud i t  in format ion .  Firs t ,  let 's  c rea te  the  
class. We a s s u m e  t h a t  we do not  know in t e rna l  i n fo rma t ion  about  
LinkedList so t h a t  the  superc lass  n a m e  and  var iab les  m u s t  be accessed 
by send ing  messages  to LinkedList. 

LinkedList superclass 
subclass: .#AuditTrail 
instanceVariableNames: LinkedList instanceVariableString 
classVariableNames: LinkedList classVariableString 
poolDictionaries: LinkedList sharedPoolString 
category: 'Record Keeping'. 

AuditTrail is c r ea t ed  as a subclass  of wh icheve r  class is the  superc lass  for 
LinkedList (LinkedList superclass) .  Now we copy the  ca tegor ies  we a re  in- 
t e res ted  in f rom class LinkedList. 

AuditTrail copyCategory: #accessing from: LinkedList. 
AuditTrail copyCategory: #testing from: LinkedList. 
AuditTrail copyCategory: #adding from: LinkedList. 
AuditTrail copyCategory: #enumerating from: LinkedList. 
AuditTrail copyCategory: @private from: LinkedList. 

AuditTraii dec la red  two ins tance  va r i ab le  names ,  firstLink and  lastLink, 
and  copied messages  first, last, size, isEmpty, add:, addFirst:, and  addLast: .  
We also copied all the  messages  in the  ca tegory  private o n  the  as- 
sump t ion  t h a t  a t  leas t  one of t h e m  is needed  in the  i m p l e m e n t a t i o n  of 
the  e x t e r n a l  messages .  

Some messages  in ClassDescript ion t h a t  suppor t  s to r ing  the  class de- 
scr ipt ion on an  e x t e r n a l  s t r e a m  a re  

ClassDescription instance protocol 

filing 
fileOutOn: aFileStream 

fileOutCategory: categoryName 

Store a description of the receiver on the file 
accessed by the argument, aFileStream. 
Create a file whose name is the name of the 
receiver concatenated by an extension, '.st'. 
Store on it a description of the messages cate- 
gorized as categoryName. 
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fileOutChangedMessages: setOfChanges on: aFileStream 
The argument, setOfChanges, is a collection of 
class/message pairs that were changed. Store 
a description of each of these pairs on the file 
accessed by the argument, aFileStream. 

We can write a description of class AuditTrail on the file "AuditTrail.st" by 
evaluat ing the expression 

AuditTrail fileOutOn: (Disk file: 'AuditTrail.st') 

Class Metaclass The pr imary  role of a metaclass in the Smalltalk-80 system is to pro- 
vide protocol for initializing class variables and for creating initialized 
instances of the metaclass's sole instance. Thus the key messages added 
by Metaclass are themselves initialization messages - -one  is sent to 
Metaclass itself in order to create a subclass of it, and one is sent to an 
instance of Metaclass in order to create its sole instance. 

Metaclass class protocol 

instance creation 
subclassOf: superMeta Answer an instance of Metaclass that  is a sub- 

class of the metaclass, superMeta. 

name: newName 
environment: aSystemDictionary 
subclassOf: superClass 
instanceVariableNames: stringOflnstVarNames 
variable: variableBoolean 
words: wordBoolean 
pointers: pointerBoolean 
classVariableNames: stringOfCiassVarNames 
poolDictionaries: stringOfPoolNames 
category: categoryName 
comment: commentString 
changed: changed Each of these arguments,  of course, is needed 

in order to create a fully initialized class. 

The Smalltalk-80 programming envi ronment  provides a simplified way, 
using graphical interface techniques, in which the user specifies the in- 
formation to create new classes. 
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Class Class I n s t a n c e s  of C l a s s  d e s c r i b e  t h e  r e p r e s e n t a t i o n  a n d  b e h a v i o r  of objec ts .  

C l a s s  a d d s  m o r e  c o m p r e h e n s i v e  p r o g r a m m i n g  s u p p o r t  f a c i l i t i e s  to  t h e  

bas i c  o n e s  p r o v i d e d  in  B e h a v i o r  a n d  m o r e  d e s c r i p t i v e  f ac i l i t i e s  to  t h e  

o n e s  p r o v i d e d  in  C l a s s D e s c r i p t i o n ,  I n  p a r t i c u l a r ,  C l a s s  a d d s  t h e  r e p r e -  

s e n t a t i o n  for  c l a s s  v a r i a b l e  n a m e s  a n d  s h a r e d  (pool) v a r i a b l e s .  

Class instance protocol 

accessing instances and variables 
addClassVarName: aString 

removeClassVarName: aString 

addSharedPool: aDictionary 

removeSharedPooi: aDictionary 

classPool 

Add the argument, aString, as a class variable 
of the receiver. The first character of aString 
must be capitalized; aString can not already be 
a class variable name. 

Remove t h e  receiver's class variable whose 
name is the argument, aString. Report an er ~ 
ror if it is not a class variable or if it is still 
being used in a method of the class. 

Add the argument, aDictionary, as a pool of 
shared variables. Report an error if the diction- 
ary is already a shared pool in the receiver. 

Remove the argument, aDictionary, as one of 
the receiver's pool dictionaries. Report an er- 
ror if the dictionary is not one of the receiv- 
er's pools. 

Answer the dictionary of class variables of the 
receiver. 

initialize Initialize class variables. 

Additional a c c e s s i n g  m e s s a g e s  s t o r e  a description of t h e  c l a s s  on  a file, 
w h e r e  t h e  f i le  h a s  t h e  s a m e  n a m e  as  t h a t  of t h e  c l a s s  (fileOut), a n d  re-  

m o v e  t h e  c l a s s  f r o m  t h e  s y s t e m  ( r e m o v e F r o m S y s t e m ) .  

A v a r i e t y  of m e s s a g e s  fo r  c r e a t i n g  o n e  of t h e  f o u r  k i n d s  of s u b c l a s s e s  

in  t h e  s y s t e m  a r e  s p e c i f i e d  in  t h e  m e t h o d  d i c t i o n a r y  of C lass .  I n  add i -  

t ion ,  C l a s s  p r o v i d e s  a m e s s a g e  for  r e n a m i n g  a c l a s s  ( r e n a m e :  aStr ing);  

t h i s  m e s s a g e  is p r o v i d e d  in  C l a s s  r a t h e r  t h a n  in  C l a s s D e s c r i p t i o n  be-  

c a u s e  i t  is n o t  a n  a p p r o p r i a t e  m e s s a g e  to  s e n d  to  a m e t a c l a s s .  

Class instance protocol 

instance creation 
subclass: classNameString 

instanceVariableNames: stringlnstVarNames 
classVariableNames: stringOfCiassVarNames 
poolDictionaries: stringOfPoolNames 
category: categoryNameString 

Create a new class that is a fixed-length (reg- 
ular) subclass of the receiver. Each of the ar- 
guments provides the information needed to 
initialize the new class and categorize it. 
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Three other messages, like the one above except tha t  the first keyword 
is variableSubclass:, variableByteSubclass:, or variableWordSubclass, sup- 
por t  the creation of the other kinds of classes. Note also tha t  the system 
requires tha t  a subclass of a variable-length class be a variable-length 
class. When possible, the system makes the appropriate conversion; oth- 
erwise, an error is reported to the programmer.  

Suppose tha t  every time we created a new subclass, we wanted to in- 
stall messages for storing and retrieving the instance variables of tha t  
class. For example, if we create a class Record with instance variable 
names name and address, we wish  to provide messages name and ad- 
dress, to respond with the values of these variables, and name: argu- 
ment and address: argument, to set the values of these variables to the 
value of the message argument .  One way to accomplish this is to add 
the following method to the instance creation protocol of class Class. 

accessingSubclass: className 
instanceVariableNames: instVarString 
classVariableNames: classVarString 
poolDictionaries." stringOfPoolNames 
category: categoryName 

I newClassl 
newClass ~- self subclass: className 

instanceVariableNames instVarString 
classVariableNames classVarString 
poolDictionaries stringOfPoolNames 
category: categoryName. 

newClass instVarNames do 
[ aName I 

newClass compile: (aName, " 
1", aName) classified' #accessing. 

newClass compile: (aName, "' argument 
', aName, '~- argument. 
1argument" ) classified: #accessing]. 

1'newCtass 

The method creates the class as usual, then, for each instance variable 
name, compiles two methods. The first is of the form 

name 
tname 

and the second is of the form 

name: argument 
name ~- argument. 
Targument 
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So, if we create the class Record, we can do so by sending Object the 
following message. 

Object accessingSubclass: #Record 
instanceVariableNames: 'name address' 
classVariableNames: " "  

pooIDictionaries: " "  

category: 'Example'. 

The message is found in the method dictionary of Class, and creates the 
following four messages in the category accessing of class Record. 

accessing 

n a m e  
tname 

name:  a r g u m e n t  
name ~- argument. 
targument 

address  
taddress 

address:  a r g u m e n t  
address ~ argument. 
targument 
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This chapter  shows how a p rogrammer  adds new classes to the system 
and then tests and debugs their  behavior using the Small talk-80 pro- 
g ramming  environment .  The chapter  presents a scenario of how a pro- 
g r a m m e r  might  add class FinancialHistory to the system. FinancialHistory 
was used in the first par t  of this book as an example class. Its protocol 
and implementat ion descriptions can be found inside the front cover of 
this book. This example scenario is not intended as an exhaustive sur- 
vey of the Small talk-80 programming interface. It is intended as an 
overview tha t  provides motivation for the kinds of graphics support  de- 
scribed in subsequent chapters. 

A user and the Small talk-80 programming  envi ronment  interact  
through a bitmap display screen, a keyboard, and a pointing device. The 
display is used to present  graphical  and textual  views of information to 
the user. The keyboard is used to present  textual  informat ion  to the 
system. The pointing device is used to select information on the display 
screen. Small talk-80 uses an indirect pointing device called a mouse. A 
cursor on the screen shows the location cur rent ly  being pointed to by 
the mouse, The cursor is moved by moving the mouse over a flat sur- 
face. The mouse has three  buttons, which are used to make  different 
kinds of selection. 

Views  The display screen contains one or more rec tangular  areas called views. 
The views are displayed on a gray background and may overlap. Each 
view has a title shown at its upper  left corner. Figure 17.1 shows the 
Smal l ta lk  screen with two overlapping views on it. Their  titles are 
Workspace and System Browser. These two views contain only text; oth- 
er views might  contain pictures dr both text and ~ictures. 

The view toward the top of the figure is a workspace. It contains text 
tha t  can be edited o reva lua ted .  The view towards the bottom of the fig- 
ure is a system browser. It allows the class descriptions in the system to 
be viewed and edited. The arrow in the lower r ight  par t  of the browser 
is the cursor. It shows t h e  cur rent  location of the mouse. At the lower 
r ight  corner of each figure in this chapter  will be a small  rectangle con- 
taining three ovals a r ranged  side by side. These ovals r e p r e s e n t  the 
three  mouse buttons. When one of the but tons is pressed, the corre- 
sponding oval will be filled in. The buttons will be referred to as the left, 
middle, and right buttons, even though they may not be a r ranged side 
by side on some mice. 

A variety of information is typically visible on the Small talk-80 dis- 
play screen. In order to take some action, the user indicates what  par t  
of the visible information should  be affected. The general  activity of 
directing a t tent ion to a par t icular  piece of information is called selec- 
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Figure 17.1 

Text Selections 

tion. 'I'he system gives visual feedback to indicate the current selection. 
The most common feedback mechanism is to complement a rectangular 
area or the screen, changing black to white and white to black. To begin 
using ~he system, one of the views is selected. The selected view is indi- 
cated by complementing only its title. The selected view will be com- 
pletely displayed, obscuring the overlapping parts of any other views. In 
Figure 17.1, the browser is the selected view. 

A different view can be selected by moving the cursor into part of its 
rectangular frame that hasn't  been overlapped by other views, and then 
pressillg the left button on the mouse. In Figure 17.2, the workspace 
has been selected. Note that  the left mouse button is pressed. The 
worksl)ace now obscures the overlapped part of the browser. 

The Smalltalk-80 text editor provides the ability to select text and to 
perform editing operations on that selected text. For example, to re- 
place the sequence of characters the standard wi th  my special in the 
works:pace, the old characters are selected and then the new characters 
are typed. 
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Characters are selected using the left  mouse button. The cursor is posi- 
t ioned at one end of the selection and the mouse button is pressed (Fig- 
ure 17.3). 

The text selection is now e m p t y m i t  contains no characters. The posi- 
tion of an empty  selection is shown with a carat (an inverted ~'v"). The 

Figure 17.3 

Welcome to,~,he standard 8malltalk-80 system 
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carat is partially obscured by the cursor in Figure 17.3. While the 
mouse button remains pressed, the cursor is moved to the other end of 
the characters to be selected. The selected characters are shown in a 
complemented rectangle (Figure 17.4). 

When the button is released, the selection is complete (Figure 17.5). 
When characters are typed on the keyboard, they replace the selected 
characters. After typing the new characters, the selection is empty and 
positioned at the end of the new characters (Figure 17.6). 

Figure 17.4 

Figure 17.5 

Figure 17.6 
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M e n u  S e l e c t i o n s  

Another  kind of selection used in the user interface is called m e n u  se- 

lection. The middle and right  mouse buttons are used to select com- 
mands from one of two menus. When one of these buttons is pressed, a 
menu appears at  the location of the cursor. The menu obtained by 
pressing the middle but ton contains commands re levant  to the contents 
of the selected view. When the view contains editable text, as does the 
workspace, these commands relate  to text  manipulat ion.  The menu 
obtained by pressing the  r ight  but ton contains commands re levant  to 
the selected view itself. The middle-button menu  may be different in 
different views, but  the r ight-but ton menu  is always the same. 

Characters  can be deleted from a piece of text by selecting the char- 
acters and then invoking the cut  command from the middle-button 
menu. In the next  picture, the characters  special have been selected 
and the middle  but ton has been pressed. The menu  of commands rele- 
vant  to the contents of the view has appeared. While the but ton is held 
down, the cursor is moved to select the cut  command in the menu (Fig- 
ure 17.7). When the but ton is released, the selected command is carried 
out. In this example, the selected text is removed (Figure 17.8). 

Figure 17.7 

Figure 17.8 
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A text selection can be t reated as a Smalltalk-80 expression and 
evaluated. There are two commands in the middle-button menu to car- 
ry out such an operation, dolt and printlt. Selecting dolt simply evaluates 
the selected expression and discards the result ing value. Selecting printlt 
evaluates the selected expression and prints its value after the expres- 
sion. For example, after typing and selecting the expression Time now, 
printlt will pr int  out the result ing new instance of Time (Figure 17.9). 
The printed result  becomes the current  text selection (Figure 17.10). 
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Figure 17.9 

Figure 17.10 

W e l c o m e  t o  m y  8 m a l l t a l k - 8 0  s y s t e m  

T i m e  n o w i J m T ~ e I , , ~ m  

If the cursor is moved outside the menu before the but ton is released, 
no command is carried out. 

B r o w s e r s  A browser is a view of the classes in the Smalltalk-80 system. Existing 
classes are examined and changed using a browser. New classes are 
added to the system using a browser. A browser consists of five rectan- 
gular  subviews. Along the top are four subviews showing lists. Each list 
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may or may not have one of its items selected. The selected item in 
each list is complemented. The contents of the list cannot be edited 
through the view, they can only be selected. Below the four list 
subviews is a subview showing some text. That  subview is similar to the 
workspace, allowing the text to be edited. The selections in the four 
lists de termine  what  text is visible in the lower subview. When a selec- 
tion has been made in all four lists, the lower subview shows a 
Smalltalk-80 method. The method is found in a class determined by the 
selections in the two lists on the left. The method within tha t  class is 
determined by the selections in the two lists on the right. The browser 
in Figure 17.11 is showing the method used by Rectangles to respond to 
the message center. 
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Figure 17.11 

The classes in the system are organized into categories. The leftmost 
list in the browser shows the categories of classes in the system. When 
a category is selected, the classes in tha t  category are shown in the next 
list to the right. In the example, the category Graphics-Primitives is se- 
lected. That  category has four classes in it. When one of these classes is 
selected, its message categories are shown in the next list to its right. 
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Since Rectangle is selected, the categories in its instance protocol are 
displayed. At the bottom of the second list, two rectangular  areas are 
labeled instance and class. One of these will be selected at all times. If 
class is selected, then the next list to the right shows the categories of 
class messages; if instance is selected, the list shows the categories of in- 
stance messages. When a message category is selected, the selectors of 
messages in tha t  category are shown in the r ightmost  list. When one of 
these message selectors is selected, the corresponding method is 
displayed in the subview at the bottom of the browser. The method 
displayed can be edited and the old version can be replaced by the 
edited version, if desired. 

A selection is made in a list by placing the cursor over an item and 
then pressing and releasing the left mouse button. In Figure 17.12, an- 
other i tem is selected in the browser's r ightmost  list. Therefore, another  
method is presented in the lower text subview. 

..,.,.,_ _,.,.,.,,,,, . . . . . . . . . . . . . . . .  

C o l l e  - - t i o n s - : _ : ; e q u e r l (  - -  

C o II e,:: t i i:, n s - T e >:: t F'e n I 
C o I I e ,:: t io  n s - A r r a. y e ,: F',:, i n t ,:: o m p a r i n g 
(_-: El II e c t io n s -  8 u p p c I r t  ,::...,. u a. d ra. n g le re  c t a. n !ale fu r l  ,: 

I ~ I i  i l ] i [ I / ~ I I I l ~ I ~ I - ] ~ i  i I I  t e 2, t i n  g 
G r a. p h i c s - E:,i s p I,_~ y O i t r u rl c,~. t i o  n a. n,: 
G r a. l:' h ic s - Pa. t h s t r a. n s f o r rrl i n g 

G ra. IF' h ic s - :E; y rn b,_-, Is c o p y in g 
,:3 r,~. IF' h ic s - 'v'i e v,.,' s p r i n t i n g 
Gr ,_~.pr - , ics-Edi t i : i rs  I ~ l . l ~ l / ~ - ~  c:l,_~.ss I l l  p r e s s  p r i n t i n g  

b o t t o m O e n t e r  

b o t t o rl-i 

bll_l 1: t o rl-i: 

b o t t o rrl R i g I-i t 

b o t t o m Rig  h t :  

I:: e rl t ill r 

c i:l r rl Q r 

",&nsv,. , 'er t h e  p o i n t  a. t  t h e  c e n t e r  o f  t h e  I : ) o t t o r n  h o r i z o n t a . l  l i r le o f  t h e  

r e c : e i v e l ' . "  

¢ s e l f  c e n t e r  ::,:: @ z, e l f  b o t t o m  

hP. 
:~:~: 

iiiill 
Figure 17.12 
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If the left button is pressed and released while the cursor is over the 
i t em already selected, that item is deselected (Figure 17.13). 

, ' , - , - , -  - , - , - i - ,  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Collections-Sequen( 
Collections-Text Pen 
Collections-Arrayec Point 
Collections-Support Quadrangle rectangle func 

mr~ar~m, l lU in~ i~ i~  i ~  t e s tin g 
Graphics-Display 0 truncation an( 
Graphics-Paths transforming 
Graphics-Symbols copying 
Graphics-Views printing 
Graphics-Editors ~ press printing 

message selector" and argument names 
"comment stat ing purpose of message" 

~ area 
comparing bottom 

bottom: 
bottomC~nter 
bot t omL,~'ft 
bottomRight 
bottomRight: 
center- 
corner 

I temporary variable names I 
statements 

Figure 17.13 

When a message category is selected, but none of its message selectors 
have been selected in the rightmost list, the lower subview contains 
some text describing the various syntactic parts of a method. This text 
can be replaced with a new method to be added to the system. The new 
method will be added to the selected category. 

If a class category has been selected, but none of its classes has been 
selected, the lower subview contains some text describing the various 
parts of a class definition. This text is in the form of a message to a 
class (Object, in th i s  case) asking it to create a new subclass of itself 
(Figure 17.14). 
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Collections-Be ~I " . . . .  
Collections-Te I~ Pen -- 
Co l l ec t i ons -A r  ~i Point, . . . . .  
Co l lec t ions-Su ~ Quaoranq,~ 

i I f ~ l . l l I I i = l m m l  ~ R e C t a r u l e  
Graphics-Disp l  I~ . . . . . .  ~ . . . . .  
G raph i cs -Pa th  ~ 
Graph ics -Svml  i~l i 
Graphics-\."]e~.~ ~ L 
Graphics-Edi t , -  ~ ~ - -  ililili 

- " ~ class i ii!i 

Obiect  subclass', #NarneOfClass  iiilii 
instance'v 'ar iableNames:  ' inst \ . "arName "1 inst \ . "arName2'  iii!i 
c lass\,"ar iableNames: 'C:lass\."arName 1 Class'v 'arName2' iii{i! 
poolE:,ictionaries: " ii!?~ii 
cate.qorv:  'Graph ics-Pr imi t i ves '  iiiiiii 

Figure 17.14 
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Scrolling 
A view may not be large enough to show all of the information it 
might. For example, many of the lists viewed by the browser are too 
long to be completely displayed in the space available. The view can be 
positioned on different parts of the list by using a scroll bar. A scroll 
bar is a rectangular area that  appears to the left of the subview con- 
taining the cursor. The gray box in the scroll bar indicates which part 
of the total list is visible in the view. The height of the scroll bar repre- 
sents the length of the entire list. The part  of the scroll bar occupied by 
the gray box indicates the part  of the list that  is visible. 

Figure 17.15 

New Pro.iec ts 
Numer i c -Magn i t ude :  
Numer ic -Numbers  
C o l l e c t i o n s - A b s t r a c  
,3o l lec: t ions-Unorder  
Co l l ec t i ons -Sequen t  
C o l l e c t i o n s - T e x t  
C ollec t i o n s-,'A rra ye,: 
C o l l e c t i o n s - S u p p o r t  

Ob.iect subclass'  #NameOfJ( 

i n s t a n c e V a r i a b l e N a m e s  

By moving the mouse into the scroll bar, another part  of the list can be 
shown. This is called scrolling. When the cursor is in the right hall of 
the scroll bar, it takes the shape of an upward pointing arrow. If the 
left mouse button is pressed, the items in the list appears to move up in 
the subview and new items become visible at the bottom. When the 
cursor is in the left half of the scroll bar, its shape is a downward point- 
ing arrow; pressing the left button makes an earlier part of the list visi- 
ble. For example, the browser's leftmost list can be scrolled to show 
categories earlier in the list (Figure 17.15). 

Views containing text can also be scrolled if the view is too small to 
show all the text. 
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Class Definitions 
A new class can be added to the system by selecting a class category 
and editing the text describing the parts of a class definition. The 
FinancialHisto~, example will be added to the category named New 
P r o j e c t s .  

While text is being changed in the lower subview, it may not accu- 
rately represent a class definition or a method. The accept command in 
the middle-button menu is used to indicate that the editing has been 
completed and the class definition or method should be added to the 
system (Figures 17.16 and 17.17). 

ii!!iiil ii!!iil]iii!iiiiiiiiiiiiiiiiiii]iii]i]iiiiiiiiil iiii ili i iii iiiiili i!ii iiiiiiiii!iiii ili !iiiiiiiiiiil iii ilii !ii 
ii ili i iiiiil ili i~!!i~.i~i~!~i~i:i~i*i~i~:i~i:!%~i~i%iiiiiii i ili iil iii iiiiiiii iiii iiii ili iii iii I 
i~ iiii!iiii[iil i[ill ~ m ~ ~ i i i i i i i i i i i  i!ili!iiiiii i!i ii! ii~!iil i i!i i i i i i I :~: : :: : : : : : :~ ::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 

~i~!~iiiiii i i i ~  . . . . . . . . . . . .  
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!i i!! ~ i !!i iii i! Numer ic -Nun- ,bers  
i! i! i i i i i i i i i! i  Co ec : t i on~ -a .bs t rac  
iiiiiiiii!iiiiiii!ili Co l l ec t i on~ , -Uno rde r  ~.!~,_~.ir, 
iiiill i::ii! Co l l ec t i on~ . -£e  uen,: I u'n,:tE, 
ili{iiiiiiiiiiiiiiiii ,2, 011 e c r io  n s - T e ::,:: t c,3 p y 
iiiiiiiii[iiiiiii!ii[ Col lec  ti,:,ns-,a, rr,_~.ve,: OUt 
iii[iiiiiiii[iii[ii C o l l e c t  onc,-Sup ~-,_-,r-t p a s t e  
i - : ! i ! i i i l  ~i!i! i i i l  ' . . . .  
iii[[~i iiiii[iii[ii G r a p h i c s - P r i m i t i v e s  , dE, i t  
: : ! i i~ i i i~ i [ ! i ! i~ i ! : :  I I ! IilPql,~IB~lilllll~a~:~ c l a . ss  p r i n t l t  

f o r m  & t ii[ii ~ O b j e c t  subclass: # F i n a n c i a l H i s t o r y  
i[[[i ~ : i ns tance ' v ' a r i ab leNames :  ' c a s h O n H a n d  in,-_:or,-,es e:: , : :penditure~' I ~ . e ~  I 
iiii! W c lass ' v 'a r iab leNames :  " 
i!iii ~ poolE:,iction~ries: " sp,~.,,,,.'r, 
iiii ~ c~teq,_~,-v: 'Ne,.v P,-oiects' e!<I:,lain 

Figure 17.16 

Figure 17.17 

N u m e r i c - M a g n i t u d e  ~ no messages 
Numer ic  - N u m b e r s  

C o l l e c t i o n s - U n o r d e r [  
C o l l e c t i o n s - S e q u e n t  
C o l l e c t i o n s - T e x t  , 

C o l l e c t i o n s - S u p p o r t  

A O b . i e c t  subc lass :  # F i n a n c i a l H i s t o r y  

i i  

1001 I 
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The menu  tha t  appears  when the middle button is pressed is differ- 
ent  in each of the browser's subviews. In the subview showing the class- 
es in a category, the menu includes an item called definition. This com- 
mand  causes the class definition of an existing class to be displayed 
(Figures 17.18 and 17.19). 

This class definition can then be modified with the s tandard  text 
editing operations. Af te r  changing the text, accept must  be selected 
again in the middle-button menu. For example, an instance variable 
could be added to all Rectangles by adding its name to the appropriate  
place in the class definition. 

Figure 17.18 

iii!ii!iiiiiiiiii   iiiiiiiiiiiiiiiiiiiiiii{iiiiii!ii!l 

-: ~ . 5 5  '- L I  _ 

100 3 

Figure 17.19 

iill i! iiii!!iii!i!iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii iiiiiiiiiiiiiiii!iiiiiiiiiiiiii!iiiiiiiiiiiilili ii!iiiiiiil i!i!iii! iliiiii ! 
i! ili if! iii iil ~ m ~ m . . i  iiiiiiiiiiiiiiiii!i!i!i!i!i!i i i iiiii iii i iiiil i 
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ii!iiiiiiiii!~iiii Collections-Su| ~ printin~ 
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ii!i!ii~ii!iii~!~ii!i~ii!!l instance\,"ariableNames: 'origin corner ' 

c a t e g o r y :  'G rap  hie5 - Primi ti',,,'e 5' 

ions 

r o u t  
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Another i tem in the middle-button menu  for the class list is 
categories. When it is selected, the message categorization is shown in 
the bottom subview (Figures 17.20 and 17.21). 

iiiiiiiiiilllii~iiiiiiiiiiiiiiiiiiiiii!iii!iiii!iiiiiiiiiiiiiiiliiiiil o 
!!!iiiifitii!iiili !iiiiiiiiliil!iliii!iliiiiiiilii!iiiti -, , ,~_ 
!iiiifi//!Ii h . - - - m - -  m : : : : : : : : : :  ~*~o~o~ • 
i!!ii!ii!!iii!iill Numer ic-Magn ~ i l ~ l l J  f i leOut ) messages 
~!iiiii~i!i!iiiiiii~ii!i Numeric-Numb ~ . . . . . . . .  ; h ierarchy 
!!iiiiiiiiiiiiiiii[ii! Collections-,'Ab ~ def ini t i°n 
[iiiiii!ii!i!!ii!iiiii Col tect ions-Un ~ comment 

ii!i::iiiSiiiiiiiili Col lect ions-Te ~ remcwe 
iiiii!ii!!!iiiiii i!!! Col lect ions-Ar  
iiiiiii!iiiiiiiiii ~iil Col lect ions-Su I 
i[i[[ii[{iiiiiii[i[[i Graphic~-Primi ~ 
~i!ilii::il!l{iiill - ~ class 

Figure 17.20 

Figure 17.21 

i!ii!iiiiiii!i iiiiiii i {iiiiiii!iiiii{iiiiii!iiii!iiiiiiiiiiiiiiii!!iii!ii!! 

IW 

!iiiiii!i 
000  

The new class has a single, empty message  category called As yet 
unclassified. 
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The categorization can be changed by editing the text and selecting 
accept (Figures 17.22 and 17.23). Notice the change in the third subview 
from the left of Figure 17.23. There are now three categories, transac- 
tion r e c o r d i n g ,  i n q u i r i e s ,  a n d  p r i v a t e .  

i)) ~)i)))i)i))i))))))))))))i)i))i)))i)))i)))i)))ii)iii))ii))))))))i)))ii))!i))ii)))i))ii))))ii)))iiii)ii)ii)))))))i))))))i))i)) )) 
iii iiiiiiiiiii ! ~  . . . . . . . . . . . .  
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))i )i ))i il)))) N u m e ri c -  N u m b e r-~. . . . . . . . . . . . .  
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))) ))i))))))))))) C o l l e c t i o n s - T e x t  a.g._~lr, 
: .. :~i~:i:i: i .-'El -i 'q LIFI 3C ~i~i i~::iiiiii~i~i~ L.,L l l ec t l c  ns-, 'Arra\ , 'ec 

)))r'Ir ( ' t r a n s a c t i o n  reco rd inc l ' )  
::lass 

i~i , ~ " p r n t l t  ,4 M <, oqo, o.~,~ ~m m . ' format 

))) s p a w n !  

Figure 17.22 

Figure 17.23 
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ii ii!iliiiiii!!)ii C o l l e c t i o n s - U n o r d e r  
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i i!{)iii i G r a p h i c s - P r i m i t i v e s  . 

~ ' t r a n s a c t i o n  r -ecord ing ' )  
)) ( ' inquir ie_~')  

( 'p r - iva te"~ 
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p r i v a t e  

00 
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After a new class has been added to the system, methods can be add- 
ed by selecting categories and editing method templates (Figures 17.24 
and 17.25). 

Notice the change in the rightmost subview of Figure 17.25. The se- 
lector of the new method is added to the (previously empty) list and be- 
comes the current selection. 

iiiiiii!iiiiiiiiiiili! i iii!iiiiiii!iiiiiiiiiiiiiiii:iiiiiiiiiiiiiii!iiii 
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Figure 17.24 

Figure 17.25 
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Testing After the methods shown in Chapter 5 have been added to 
FinancialHistow, instances can be created and tested by sending them 
messages. First, a new global variable will be added to the system by 
sending the message at:put: to the dictionary of global variables whose 
name is Smalltalk. The first argument of at:put: is the name of the glob- 
al variable and the second is the initial value. This global variable will 
be used to refer to the instance being tested (Figure 17.26). 

I I 

Figure 17.26 

Welcome to my S m a l l t a l k - 8 0  sys tem 

Time n o w  10 :02 :45  am 
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Messages are sent to HouseholdFinances by typing expressions in the 
workspace and evaluating them by invoking the commands dolt or 
printlt (Figure 17.27). Several expressions can be selected and evaluated 
at one time. The expressions are separated by periods (Figure 17.28). 

....................  i,i,lil!iiii!iiiiiiiiiiiiiiii, liiiiiiiiiiii,,!iiiiiiiiiii !iii!iiiiiii!i!iiiiiiiii!iiiiiii!iiil  i:i i i .... ......  iiii i iiiii ii! ii!iiii!ii! iiiii  iiii iiiiiiiii i iiiiiii i!ii iiiii iiiiii ii i  i i  0 '°on0o 
i ; - ;  :i:i:i:i:Wi: 

::~i~!: W e l c o m e  t o  m~ 8 m a l l t a l k - 8 0  s y s t e m  c u t  
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:-;:~:~ ~ T i m e  n o w  1 0 : 0 2 : 4 5  an t  
~ : ~ : - : :  i ~ 1  

iiiii 
iiiiii M ..... 8 m a l l t a l k  a t :  # H o u s e h o l d F i n a n c e s  aCOel3' l : l  
;.:i~i! i ~ 1  
!!~!ii m p u t '  n i l  c a n c e l  l 
; ! ~ t : !  i ~1  _ 1 I __  _ ~ _ _ 
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I 

Figure 17.27 
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Figure 17.28 
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T i m e  n o w  1 0 : 0 2 ' 4 5  an t  
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p u t '  n i l  

H o u s e h o l d F i n a n c e s  ÷ F i n a n c i a l H i s t o r y  i n i t i a l B a  
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Selecting p r i n t l t  instead of d o l t  displays the result following the ex- 
pression (Figures 17.29 and 17.30). 

,u s e I-, old Fin a. n c: e s c: a. s h ,:TZ:, n H a i 

Figure 17.29 

W e l c o m e  to  my 8 m a l l t a l k - 8 0  s y s t e m  
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8 m a l l t a l k  at: # H o u s e h o l d F i n a n c e s  
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H o u s e h o l d F i n a n c e s  spend', 7 8 , 5 8  for', ' f o  

H o u s e h o l d F i n a n c e s  receive ' ,  8 2 0  f rom: 'p 

H o u s e h o l d F i n a n c e s  receive ' ,  2 2 , 1 5  from', 'i 

a. !.i:1a ~n 
undo  

i c o p y  i c e '  1 5 6 0 ,  
CUt 

p a s t e  
d o l t  

c a n c e l  

Figure 17.30 
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Inspectors 
An inspector is a view of an object's instance variables. An inspector is 
created by sending inspect to the object whose instance variables are to 
be viewed (Figure 17.31). 

After inspect has been sent, the user is prompted for a rectangular 
area in which to display the inspector. The shape of the cursor is 
changed to indicate that the upper left corner of the rectangular area 
should be specified (Figure 17.32). 

u s e h,:,l d Fi r,._~.r~,_-: e s inspe, 

Figure 17.31 

Figure 17.32 

i!i!i!!!i!i!!!!!!!!i!~! 
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iiiiiii   iiii!iiiii!i 

W e l c o m e  to  my :Bm,_~.lltalk-80 s y s t e m  

T ime  n o w  1 0 : 0 2 : 4 5  am 

, ~qa in  
S m a l l t a l k  a t :  #Househol idFinanc:e_z,  .~_~',~,:,do 

put', nil cop\, '  
H o u s e h o l d F i n a n c e s  • F i n a n c i a l H i s t  c u (  i a lBa lance ' ,  1 5 6 0 ,  

H o u s e h o l d F i n a n c e s  spend:  7 0 0  for p a s t e  

H o u ~ e h o l d F i n a n c e s  spend:  7 8 , 5 3  f IIt,,ill,l~l!!::l', 
- Drln~l"E 

, ~ , . - . i ,  I - ~ ,~  Househo ldF ,  n.~nce~ rece i ve :  I.-I~L 1"1 . . . .  ",,, , . . . . .  a. c c ~[_, ,. -" 
H o u s e h o l d F i n a n c e s  r 'eceive:  2 2 , 1 5  c a n c e l  n t e r e s t ' ,  

H o u s e h o l d F i n a n c e s  c a s h O n H a n d  1 6 2 3 , 6 2  

 i i!iiii! !iiii iii ii iii!i!i!i iiiii iiiii  iiii!ii   iiiii ! !iiiii!  i ii   i!iiii i i ii!iiii iiiiiii ! iiiii!iiii!i i i!i!i iii i iii!iiiiiii i 
W e l c o m e  to  n l r . T ' S m a l l t a i k - 8 0  s y s t e m  

I 

T ime n o w  1 0 : 0 2 : 4 5  am 

,Sma l l t a l k  a t :  # H o u s e h o l d F i n a n c e _ ~  

put', nil .- ~ _ 
H o u s e h o l d F i n a n c e s  " F i n a n c i a l H i s t u r v  i n i t i a l B a l a n c e :  1 5 6 u ,  

H o u s e h o l d F i n a n c e s  spend:  7 0 0  for-', ' r e n t ' ,  

H o u s e h o l d F i n a n c e s  spend:  7 8 , 5 3  for :  ' f o o d ' ,  

H o u s e h o l d F i n a n c e s  r ece i ve :  8 2 0  f rom:  ' p a y ' ,  

H o u s e h o l d F i n a n c e s  r-eceive: 22,  15 f rom: ' i n t e r e s t ' ,  
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The cursor is moved to the desired location and the left mouse button is 
pressed and held down. The shape of the cursor is changed again to in- 
dicate that the lower right corner of the rectangular area should now 
be specified. As long as the left mouse button remains pressed, the pro- 
spective new rectangular frame is displayed (Figure 17.33). 

When the button is released, the inspector is displayed in the select- 
ed area (Figure 17.34). 

The title of the inspector is the name of the inspected object's class. 

iiiiii!iiiiiiiiiii!!i i iiiiiii 
iii!iiiii!iiiii!i!iil w e l c o m e  to r, 
iiiiiii!iiiiiiiiiiiii T i m e  no,,,',,,' 1 O: 
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iiiiiiiiiiiii!iiiii![ put: 
iiiiiiiii!iii!iiiiii HouseholdFine 
!!iliiiiiiiiii!iiiiii Hou=~eholdFina 
i!iiiiiiiiiiiiiii[i!! Ho,JseholdFin,_~ 
~ i Z i ~  i Househ,_-,IdFin,_~ 
~ . ~ . " ~  HouseholdFin~ 

HouseholdFine 

iii•iiii•i•ii•iiii•ii••i!i•iiii•i•!i[i!ii•i•!i•i•••ii••i•i••!iiii••ii•!••i.•iii!i{iiiiiiii•!•i•iiiiiiiiiii•••••ii!•i•i•ii•iii!iii•i•iiiiiii•ii!ii!•i•i 
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Figure 17.33 

Figure 17.34 
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iii•ii•!iiiiiiiii•iiii••iiiiiiiiiiIiii•ii3iiiiiii•ii•ii!iiiiiiiiiiii••iiiiiii•ii!ii iIi i iii iIi}iiiiiiiiiiIiiii i iIiiiiiiiIiiii! i i iiiIiiiiiiiI!iiiiii i iI j     i I   i I i 
iiiiiiiiiiiiiiiiiiiiiiiii i! iiiiiii iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii iiiiiiiiii ]i i 

Welcome to n, / 
Time now 10 self / 

i i  

: _ cashOnl 1 
8malltalk at: ~nc°mes / 

put expendi 
HouseholdFin~ . . )O, 
HouseholdFine 
HouseholdFina 
HouseholdFin~ 
HouseholdFin~ 
HouseholdFin4 
HouseholdFinc. .~. 
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An inspector has two subviews. The left subview shows a list containing 
self and the names of the object's instance variables. When one of the 
elements of the list is selected, the corresponding value is printed in the 
subview to the right (Figures 17.35 and 17.36). The text that appears in 
the righthand subview is obtained as a result of sending printString to 
the selected object. Selecting the element self at the top of the list, 
prints the object being inspected (Figure 17.37). 

iiiiiii!i!iiiiiiiiiii iiii iiiii  iii! i i   iiii!iiii ii ii ii iii iiiiii{  iiiiiiii iiiii i iiiiiiiii i i i iiiiiiii!ii iiiii iiiiii! iiiii  iiiiiiiiiiiii  i iiiiiii i! iiii!iiiiiiiiiiii i !iiiiiiiiiiiiiii! iliiiii iii!iii!iiiiiiiiiiiiiii . . . . .  iiii!ii 
iiiiiiiii!!ii!~iiiiiiii Workspa c iiii!ii 

iliiiiiiiiiiiiii!iiiiil Time no :~_-:_::_~ se l f  i!iiiii 
!iiiiiiiiiiiii!iiiiiiil F__:"~ [ , ~ a m ~ B ~ ~  iiiii!i 

i!i!i!!!!!i!!!ii!i!!!ii 8 m a l l t a l  m incom,~: i:,i~i~i 
iiiiiii!!{iiiiiiii!iii! ~ e x p e n d i t u r e s  iiiiiii 
!{!ii{!i!i!iii!i!iiiii! ~ iii!!ii~i 
i!iiiiii!iiii!iiii!i!il Househo E .~0, !!!ii~::: 
ii!::i::!iiii':i::i::!-:!::i-:i Househo im il;:_i:.i 
ili!iiiii!iiiiii!!iiiii ~ i:~i~iii 
ii!iiii!iiiiiiiiiiiiiii Househo ~ i;ii!ii 
...... Househo ~ {!i!ii! 

Househo ."_~=r~[..=.~--.~ !::i::i!i ....... 
=- . . . . . . . . . .  

Househo Im :;::;_:_:; 

H o u s e h o .~..,K,,?.. iiii{~i 

10o0 

Figure 17.36 
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Figure 17.37 

Workspace 

iiiiiiiiiiii!iiiiiii~il Welcome 
iiiiiiiiiiiiiiiiiiiiiii Time no 

iiiiiiiiiiiiiiiiiiiiiil Househo 
iiiiiiiiiiiiiiiiiiiiiii aou_~ho 
iiiiiili!iiiiiiiiiiiiil Househo 
. . . . .  - I  Househo 
.}.=~L.~2 ~ "  = '_.~ ~' 1 Hou_~eho 

/ Househo 
Househo 

incomes 
expenditures 

a Financia.IHistory 

.~0, 

Error 
Reporting 

When an error  is encountered,  the process in which the error  occurred 
is suspended and a view of tha t  process is created. Suspended processes 
can be viewed in two ways, with notifiers and with debuggers. A notifier 
provides a simple description of the process at  the t ime of the error. A 
debugger provides a more detailed view and also the ability to change 
the state of the suspended process before resuming it. 

As an example of error  reporting, we will follow the addition and 
debugging of several new methods in FinancialHistory. The following 
methods contain several errors which will be "discovered" in the testing 
process. The intention of these new methods is to allow a 
FinancialHistory to give a s u m m a r y  report  of its state. 

report 
I reportStream I 
reportStream ,-- WriteStream on: (String new: 10). 
reportStream cr. 
reportStream nextPutAll: ' Expenses' .  
reportStream cr. 
self expenseReasons do: 

[ :reason I reportStream tab. 
reportStream nextPutAIl: reason. 
reportStream tab. 
reportStream nextPutAIl: (self totalSpentFor: reason). 
reportStream cr]. 
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reportStream nextPutAIl: " Incomes'.  
reportStream cr. 
self incomeSources do: 

[:source I reportStream tab. 
reportStream nextPutAIl: source. 
reportStream tab. 
reportStream nextPutAIl: (self totalReceivedFrom: source). 
reportStream cr]. 

t reportStream contents 
incomeSources 

1 incomes keys 
expenditureReasons 

1 expenditures keys 

A new category is added and the new methods typed in and accepted 
(Figure 17.38). 

After adding the new methods, the instance of FinancialHistory can be 
asked for a report by evaluating an expression in the workspace (Figure 
17.39), Instead of printing the report, a notifier appears on the screen 
(Figure 17.40). 

!iiii!iiiiiii!i!i iiiiiiii~i~i~iii~ii~ii~i!~~~iii~i~i~ii~!~ii!iiiiii!~ii~i~i!~ii~!!iii~i!~iiiii~i~i~i~ H o u s e h old Fin a n c e s s p e n d: 7 0 0 fo r: 're n t', 
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iiiiiiiiiiiiiiiii~ii~i~ Co l ec t i ons -Sequen (  

i!i~iiiii!~iiii~!iii iiii', Col lec t ions- ,&r ra  vec [ 
C o l l e c t i o n s - S u p p o r t  
Graph ics -Pr im i t  Yes ~ a qain ~i!~iiiiii 

[!i r e p o r t S t r e a m  nex tPutAI l :  reason, copv  i~i~iiil 
iiiii! r e p o r t S t r e a m  tab.  cut. !ii ili 
i!ili r e p o r t 6 t r e a m  nex tPutAI l :  (sel f  t o t a l S p e r  P;L:ltt e ason), i!i~!i~ 
ili~ii E~ report.Stre_~m cr] ii i 
i i i ! ~ i  r e p o r t S t r e a m  ~ ~ om'e p r in t l t  i lll iiili [~ nex tPutAI l :  ' lnc s', for-m.~t iiiii{::i:: 
iiiili ~1~ reportStream cr, ~!iillllllj~ll,l' [ [i[il 

ilii r-epor-tStream nex tPutAI l :  (sel f  to ta lRece ivedFrom:  source),  i~iii~[ 

[ii!i[!i -treportStream contents,, ~i~!~i~J 

Figure 17.38 
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Welc.ome to my Sm.~llt._~Ik-RO svster, ,  

Time no'.,.,,' 10:02 ' .45 an, 

8 m a l l t a l k  a t :  # H o u s e h o l d F i n a n c e s  
put :  nil 

Househo ldF inances  e Financia lHi  aga in  i t i a tBa lance '  1560.  
undo 

Househo ldF inances  spend: 7 0 0  f cop>, ' "  
Househo ldF inances  spend: 78.,53 cu t  od'. 
Househo ldF inances  rece ive:  8 2 0  p a s t e  ,ay ' ,  
Househo ldF inances  rece ive:  22.1 dol t  ' i n t e r e s t '  

HouseholdFinanc:es cashOnHand a c c e p t  2 
HouseholdFinance_~ inspec t  cance l  

:,u z.e 1-,,_-,I d Fin a r, c:e s te [...,,_- 

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii!i! 
• earn ne×tPutAI l ' ,  reason,  iiiiiiiiiiiiiiiiiiiii~iiiii!iiiii~iii::i~iiiiii 

Figure 17.39 
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iii!iiiiii!iiiiiiiiiiii ~,, . , , , ,  

iii:i:i:iii:i:i:i:i:i: ouos  . . . . .  : : -  - o o u  iiiiiiiii~iiiiiiiiiiiii . . . . .  _ F i n a n c i a l H i s t o r v ( O b  iect~.. ,  d o e ~ N o t U n d e r ~ t a n d .  . . . . .  

HouseholdFinan'ce5 inspec t  
Househo ldF inances  r e p o r t  

iiiiiiiii{iii~iiiiiiiiiiiii~!ii!!-:i."i~i~i~!~ :i 

• earn nex tPu tA I l :  reason,  iiiii!iiiiiiiiiiiii!iiiii~iiiii~iiiiiiiiiiiiiil 

Figure  17.40 
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A notifier is a simple view of a process suspended after an error. The 
notifier's title indicates the na ture  of the error. Notifiers are created by 
sending an object the message error:. The a rgument  of the message be- 
comes the title of the notifier. The notifier shown in Figure 17.40 indi- 
cates tha t  the message expenseReasons  was sent to an object that  did 
not unders tand  it. The list visible in the notifier shows part  of the state 
of the suspended process. 

The cause of this error is evident from the title of the notifier. The 
message added to FinancialHistory was expenditureReasons not 
expenseReasons. The not i f ier  and the erroneous process can be 
discarded by se|ecting the command close in the r ight  mouse-button 
menu (Figure 17.41). 

i! I i i i i I     ! i i i   iEi i i i [ iii IiiFPii Jji i iiiiiii!ii]iiiiiiii !  ii  ii [iii  i!i   i!!iiii!iii!i i iiiiiiii ii!iJiii!i!iiiiii ii!i iii!i  !i!!]ii iiiiiiii iiiii!i[i iii i![ii 
ii  iii 

Welcome to my Smalltalk-80 system 
Time now 10:02:45 am 

Sn,all, 

House FinancialHistory(Ob_iect)>>doesl\lnrl Ind~-stand: 560 
• under ' 

ii Hous e FinancialHistorx.,'>>. report rnove !i 
House Unde finedOb.iec:tbbDolt frame 
House Compiler>>evaluate:in:to:notifyicollapse 

i 

i 

~ . ~ . : ~  House StringHolderOontroller>:.'dolt 

House 
i 

HouseholdFinances inspect 
HouseholdFinances report 

~i!m nextPut,~il, t-eason. 

Figure 17.41 
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The mis spe l l ing  in report can be corrected in the  browser  (Figures 
17.42 and 17.43). 

iiiiiiiilil 

._. ~::::: 
~:i::: 
:,::: ::~::: ._ 

:m: 

C o II e c t io n s - 8 u p p~:, r t 
( 3 r . aph i cs -P r im i t i ves  

r e p o r t  

I r e p o r t S t r e a m  I 
r e p o r t S t r e a . m  ÷ W r i t e S t r e a . m  ,:,n: (:_=itring nev,,,': 11211), 

r e p o r t S t r e a . m  cr, 
repor t :=qt ream nextPut , 'AI l :  ' Expenses ' ,  

r e p o r t S t r e a m  c:r, 
se l f  e x p e n l ~ , . e a s o n s  do: 

[ : reas°MN r e p o r t S t r e a m  ta.b, 
repor t , ' :q t resm n e × t P u t A I l :  rea.sc, n, 

r e p o r t S t r e a m  tab ,  
r e p o r t S t r e a m  n e x t P u t A I l :  ( se l f  t o t a l ~ p e n t F o r :  r eason ) ,  

r e p o r t : S t r e a m  cr], 
r e p o r t S t r e a m  n e x t P u t A I l :  ' I ncomes ' ,  
r a r l r l r l - . ~ ' l ' r a ~  n'l i - ' r  

Figure 17.42 

Figure 17.43 

B 

i~i~i~ ,:_~,-.~. p h i,:: s-p,-i r,-,i t i'...' e s L , ' iiiiiiii 

i,i,ii i copy c:ut 10) ,  :~:~:~ r-el_,,:,r-tL=itrea.m ,- V,,,'rite:_:itrea.m c,n: r:Str-in p a s t e ,  i:iiiili 

iiiiii r~_~,,:,rt S ~.,-e,~ m c,-. i~ 
i i : : i : : i  repor-t:=_;tre,_~.rr~ rle::.::tPut,AIl: 'E::,::penses', pr in t l r ,  i i:.ii!i[~ 

~ :::::::: 
i~;~i! se l f  e::,::F, erii:titur%Fiea.s,:,r,s dCI: I_.,~,~Ni W !ii{iiii 

ii~:!~:! [ :,-e,_~s,:,r, I rep,:,rt::-,tre,_~.r,-, ~.,~.b. et i!'~!'~!'~', 
~?~iii r e p o r t :=-; t r-e a. rn n e ::,:: t F'u t ,A II s p a. v,,,' r, i iiii::ii 

iii~ii rep,:,rt:_=~tre,_~.rr, ta.b, -.. ::::::::::i::iiii:: 
i?:::::i r e p c ,  r t : : ; t r e , ~ . m  r i e : , : t P u l - , & , l l '  ( s e l f  t c ,  t ,9.1:=-;permtFc, r: r-e,_~.s,:,r,"l, ii 

........ 
i::i::ii I " e p O r t S  t r -e ,9. r r l  c . r ] ,  i i i  

...... .:.:.::':':'iiiii r e  Fi El r t :_~ t r - e  _~rrl rl e x t P i j  t ,,& I I : . .  ' I rl i:: c, rl-i e s ' ,  ::::::::i]iil]:::: 

...... ! o /  
iiiiii iiiiiiiiiiii iiiiiii iiiiiiiii' iiiiii'i ii~i iiii iiiiiiiii! ii'ii'iii iiiiiiiiii!ii'i'ii'i i iiiii ii iiii" ii ii ii i' i' ii'i iii' ii i iii'i'ii i, i ii~i,~iii 

After  f ix ing the  mis spe l l ing  in the  browser,  the  original  express ion  can 
be e v a l u a t e d  in the  workspace  aga in  (Figures  17.44 and 17.45). 

This  creates  a n o t h e r  notifier.  The  cause  of this  error is not  as obvi- 
ous. The  m e s s a g e  do: was  sent  to an object that  did not  u n d e r s t a n d  it. 
In order to learn more  about  the  error, a more  detai led v iew of the  sus- 
pended  process  can be obta ined by se lec t ing  the  c o m m a n d  debug in the  
midd le -but ton  menu .  
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Debuggers 
A debugger is a view of a suspended process tha t  reveals more details 
than  a notifier reveals. When debug is selected in a notifier's middle- 
but ton menu, a debugger is created viewing the same process the notifi- 
er viewed (Figure 17.46). After selecting debug, the user is prompted to 
supply a rec tangular  area  in which to display the debugger. The rectan- 
gle is specified in the same way tha t  the rec tangular  frame for a new 
inspector is specified (Figure 17.47). 

Figure 17.46 
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IOOO 
The debugger has six subviews. The top subview shows the same list 
tha t  was visible th rough the notifier. This list gives a par t ia l  history of 
the process in which the error  occurred. Each i tem corresponds to a 
message tha t  was sent and whose response is not yet completed. The 
i tem contains the name of the receiver 's class and the selector of the 
message, separated by " > > " .  The last i tem visible in the list, 
FinancialHistory>> report, indicates t h a t  an instance of FinancialHistory 
received the message report. This message was sent when the middle- 
button menu command printlt was selected while the expression 
HouseholdFinances report was the text selection. When one of the items 
in the debugger 's  upper list is selected, the method invoked by the cor- 
responding message is displayed in the subview immediate ly  below. 
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When a method is displayed, the last message  sent before the process 
was suspended is complemented.  Figure 17.48 shows that  the message  
do: was sent to t h e  result  of the expression self expenditureReasons.  
The next  i tem up on the list, Set  >> do:, indicates that  the receiver of 
do: was an instance of Set. The method invoked can be seen by 
se lect ing Set >> do: in the list. 
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Figure 17.48 

Figure 17.49 shows that  this method sent a message  to the object 1. The 
next  i tem up on the list, Smalllntefler(Number)>> to:do: shows that  the 
receiver was an instance of Smalllnteger. When the method invoked by 
a message  was found in a superclass  of the receiver's class, the name  of 
that  superclass  is included in parentheses  after the receiver's direct 
class. In the example ,  the method for to:do: was found in class Number. 
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Figure 17.49 

The top item on the list, Smalllnteger(Object)>>doesNotUnderstand:, 
shows the last thing that happened before the process was suspended- -  
an instance of Smalllnteger received the message doesNotUnderstand:. 
This message was sent by the system when the do: message was not 
found in Smalllnteger or in any of its superclasses. The 
doesNotUnderstand: message invoked a method that suspended the pro- 
cess and created the notifier viewing it. The second item from the top of 
the list, WriteStream(Stream)>> nextPutAIl:, indicates that the misunder- 
stood do: message was sent from the method for nextPutAIl: in class 
Stream. Figure 17.50 shows the debugger with that item selected. The 
method displayed shows that do: was sent to the object named 
aCollection, which was provided as the argument of nextPutAIl:. 

The lower four subviews of a debugger are used to find the value of 
the variables used in the method. They function like two inspectors. 
The leftmost subview shows a list of the receiver (self) and its instance 
variable names. The third subview from the left shows the argument 
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Figure 17.50 

names and temporary variable names. When a name is selected in ei- 
ther one of these lists, the value of the associated variable is shown in 
the subview to its right. To display the receiver of the do: message, 
aCollection is selected in Figure 17.50. 

The source of this error appears to be that the Stream was expecting 
a collection of e lements as the argument of nextPutAl]: and it got a num- 
ber, 700, instead. Selecting the next item down from the top list shows 
where the argument came from. The argument was the result of evalu- 
ating the  expression (self totalSpentFor: reason). In Figure 17.51, selec- 
tions have been made in the bottom subviews to display the values of 
the instance variable, expenditures, and the argument, reason. 

When text is selected and evaluated in the method displayed in the 
browser, the variable names are interpreted in that context. So the ar- 
gument  to nextPutAIl: can be found by re-executing the expression (self 
totalSpentFor: reason) and printing the result (Figure 17.52). 
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Figure 17.53 
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The result is 700, as expected (Figure 17.53). 
The report method had intended that the character representation of 

700 be appended to reportStream, but it appended the number itself in- 
stead. This bug is fixed by sending the number the message pdntStdng. 
The correction can be made in the debugger (Figure 17.54). Now the ex- 
pression can be evaluated again. The report is now successfully printed 
in the workspace (Figure 17.55). 
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Figure 17.55 

This completes the overview of the Smalltalk-80 programming inter- 
face. The ability to support this type of interaction with the user moti- 
vates the nature of many of the graphics classes discussed in 
subsequent chapters. 
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The Graphics Kernel 

Graphical Representation 

Graphical Storage 

Graphical Manipulation 
Source and Destination Forms 
Clipping Rectangle 
Halftone Form 
Combination Rule 

Classes Form and Bitmap 

Spatial Reference 
Class Point 
Class Rectangle 

Class BitBIt 

Line Drawing 

Text Display 

Simulation of BitBlt 
Efficiency Considerations 
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Graphical 
Representation 

Figure 18.1 shows a view of the display screen for a Smalltalk-80 sys- 
tem. It illustrates the wide range of graphical idiom available to the 
system. Rectangular areas of arbitrary size are filled with white, black, 
and halftone patterns. Text, in various typefaces, is placed on the 
screen from stored images of the individual characters. Halftone shades 
are "brushed" by the user to create freehand paintings. Moreover, al- 
though not shown on the printed page, images on the display can be 
moved or sequenced in time to provide animation. 

The example interaction with the system given in the previous chap- 
t e r  illustrated some of the ways in which objects can be observed and 
manipulated graphically. Meaningful presentation of objects in the sys- 
tem demands maximum control over the display medium. One ap- 
proach that  provides the necessary flexibility is to allow the brightness 
of every discernible point in the displayed image to be independently 
controlled. An implementation of this approach is a contiguous block of 
storage in which the setting of each bit is mapped into the illumination 
of a corresponding picture element, or pixel, when displaying the image. 
The block of storage is referred to as a bitmap. This type of display is 
called a bitmapped display. The simplest form of bitmap allows only 
two brightness levels, white and black, corresponding to the stored bit 
values 0 or 1 respectively. The Smalltalk-80 graphics system is built 
around this model of a display medium. 

Graphical 
Storage 

Images are represented by instances of class Form. A Form has height 
and width, and a bitmap, which indicates the white and black regions 
of the particular image being represented. Consider, for example, the 
man-shape in Figure 18.2. The height of the Form is 40, its width is 14, 
and its appearance is described by the pattern of ones and zeros (shown 
as light and dark squares) in its bitmap. The height and width of the 
Form serve to impose the appropriate ~ two-dimensional ordering on the 
otherwise unstructured data in the bitmap. We shall return to the rep- 
resentation of Forms in more detail later in this chapter. 

New Forms are created by combining several Forms. The freehand 
drawing in the center of Figure 18.1 is an example of a large Form that  
was created by combining and repeating several Forms that  serve as 
"paint brushes" in a Smalltalk-80 application system. The text in Fig- 
ure 18.1 is a structured combination of Forms representing characters. 

A Form can be presented to the display hardware as a buffer in 
memory of the actual data or of the image to be shown on a display 
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screen. Since the interface to the hardware is through a Form, there is 
no difference between combining images internally and displaying them 
on the screen. Animation can be displayed smoothly by using one Form 
as the display Form while the next image to be displayed is prepared in 
a second Form. As each image is completed, the two Forms exchange 
roles, causing the new image to be displayed and making the Form with 
the old image available for building yet another image in the sequence. 

The Forms used as buffers for data to be shown on the display screen 
are instances of class DisplayScreen, a subclass of Form. Contiguous 
storage of bits is provided by instances of class Bitmap. DisplayScreen's 
bitmap is an instance of DisplayBitmap, a subclass of Bitmap. 
DisplayScreen and DisplayBitmap provide protocol specific to the actual 
hardware and to the fact that  the Form represents the whole display 
screen rather than potential parts of it. 

Graphical 
Manipulation 

A basic operation on Forms, referred to as BitBlt, supports a wide range 
of graphical presentation. All text and graphic objects in the system are 
created and modified using this single graphical operation. The name 
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~BitBlt" derives from the generalization of data transfer to arbitrary bit 
locations, or pixels. One of the first computers on which a Smalltalk 
system was implemented had an instruction called BLT for block trans- 
fer of 16-bit words, and so ~bit block transfer" became known as BitBlt. 

Operations are represented by messages to objects. So BitBlt could 
have been implemented with a message to class Form. However, be- 
cause BitBlts are fairly complicated operations to specify, they are rep- 
resented by objects. These objects are instances of the class named BitBIt. 
The basic operation is performed by sending an appropriately initialized 
instance of BitBIt the message copyBits. The BitBlt operation is inten- 
tionally a very general operation, although most applications of it are 
graphically simple, such as ~move this rectangle of pixels from here to 
there." 

Figure 18.3 illustrates the process of copying a character of text  into 
a region on the display. This operation will serve to illustrate most of 
the characteristics of BitBlt that  are introduced in the remainder of 
this section. 

Source and 
Destination Forms 

The BitBlt copy operation involves two Forms, a source and a destina- 
tion. The source in the example in Figure 18.3 is a font containing a set 
of character glyphs depicted in some uniform style and scale, and 
packed together horizontally. The destination in the example is as- 
sumed to be a Form that  is used as the display buffer. Pixels are copied 
out of the source and stored into the destination. The width and height 
of the transfer correspond to the character size. The source x and y co- 
ordinates give the character's location in the font, and the destination 
coordinates specify the position on the display where its copy will ap- 
pear. 

Clipping Rectangle 
BitBlt includes in its specification a rectangular area which limits the 
region of the destination that  can be affected by its operation, indepen- 
dent of the other destination parameters. We call this area the clipping 
rectangle. Often it is desirable to display a partial window onto larger 
scenes, and the clipping rectangle ensures that all picture elements fall 
inside the bounds of the window. By its inclusion in the BitBlt primi- 
tive, the clipping function can be done efficiently and in one place, 
rather  than being replicated in all application programs. 

Figure 18.4 illustrates the result of imposing a clipping rectangle on 
the example of Figure 18.3. Pixels that would have been placed outside 
the clipping rectangle (the left edge of the ~'N" and half of the word 
~the") have not been transferred. Had there been other characters that  
fell above or below this rectangle, they would have been similarly 
clipped. 
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Halftone Form 
Often it is desirable to fill areas  with a regular  pa t te rn  tha t  provides 
the effect of gray tone or texture.  To this end, BitBlt provides for refer- 
ence to a thi rd  Form containing the desired pat tern.  This Form is re- 
ferred to as a halftone or mask. It is restricted to have height  and width 
of 16. When halftoning is specified, this pa t te rn  is effectively repeated 
every 16 units horizontal ly and vertically over the entire destination. 

There  are four ~modes" of supplying pixels from the source and half- 
tone controlled by supplying nil for the source form or the halftone 
form: 

0. no source, no halftone (supplies solid black) 

1. halftone only (supplies halftone pat tern)  

2. source only (supplies source pixels) 

3. source AND halftone (supplies source bits masked by halftone pat- 
tern) 

Figure 18.5 i l lustrates the effect of these four modes with the same 
source and dest ination and a regular  gray halftone. 

Figure 18.5 

mode 0 
all ones 

mode 1 mode 2 mode 3 
halftone only source only source AND halftone 

Combination Rule 
The examples above have all de termined the new contents of the desti- 
nat ion based onty on the source and halftone, storing directly into the 
destination. The previous contents of the destination can also be taken 
into account in determining the resul t  of the copying. 

There  are 16 possible rules for combining each source e lement  S with 
the corresponding destination e lement  D to produce the new destina- 
tion e lement  D'. Each rule must  specify a white or black result  for each 
of the four cases of source being white or black, and destination being 
white or black. 
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Figure 18.6 shows a box with four cells corresponding to the four 
cases encountered when combining source S and dest inat ion D. For in- 
stance, the cell numbered  2 corresponds to the case where the source 
was black and the dest inat ion was white. By appropria te ly  filling the 
four cells with white or black, the box can be made  to depict any combi- 
nation rule. The numbers  in the four cells map the rule as depicted 
graphical ly  to the integer value which selects tha t  rule. For example,  to 
specify tha t  the result  should be black wherever  the source or destina- 
tion (or both) was black, we would blacken the cells numbered  4, 2, and 
1. The associated integer for specifying tha t  rule is the sum of the 
blackened cell numbers ,  or 4 + 2 + 1 = 7. 

Figure 18.6 
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"f2111 

Destination Before 

D' Destination After 

Figure 18.7 i l lustrates four common combination rules graphically.  
In addition, each is described by a combination diagram, its integer rule 
number ,  and the actual  logical function being applied. The full set of 16 
combination rules appears  later  in the chapter  as par t  of the detailed 
s imulat ion of BitBlt. 

rule 3 rule 7 rule 1 rule 6 
D' = S D' = S O R D  D' = S A N D D  D' = S X O R D  

Figure 18.7 
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Classes  Form 
and Bitmap 

Figure 18.8 shows fur ther  information about the Form shown in Figure 
18.2. The width and height are stored as Integers. The actual pixels are 
stored in a separate object which is an instance of class Bitmap. Bitmaps 
have  almost no protocol, since their  sole purpose is to provide storage 
for Forms. They also have no intrinsic width and height, apar t  from 
tha t  laid on by their  owning Form, al though the figure retains this 
s t ructure  for clarity. It can be seen that  space has been provided in the 
Bitmap for a width of 16; this is a manifestat ion of the hardware  organi- 
zation of storage and processing into 16-bit words. Bitmaps are allocat- 
ed with an integral number  of words for each row of pixels. This row 
size is referred to as the raster size. The integral word constraint  on 
ras ter  size facilitates movement  from one row to the next within the op- 
eration of BitBlt, and during the scanning of the display screen by the 
hardware.  While this division of memory into words is significant at the 
primitive level, it is encapsulated in such a way tha t  none of the 
higher-level graphical components in the system need consider the is- 
sue of word size. 

Two classes, Rectangle and Point, are used extensively in working 
with stored images. A Point contains x and y coordinate values and is 
used to refer to a pixel location in a Form; a Rectangle contains two 
Poin ts - - the  top left corner and the bottom right c o r n e r m a n d  is used to 
define a rectangular  area of a Form. 

Class Form includes protocol for managing a rectangular  pa t tern  of 
black and white dots. The bi tmap of a Form can be (re)set by copying 
bits from a rectangular  area of the display screen (fromDisplay:), and the 
extent  and offset of the Form can be set (extent:, extent:offset:). Two 
messages provide access to the individual bits (vatueAt: and valueAt:put:). 
Constants for modes and masks are known to class Form and can be 
obtained by the following class messages of Form. 

Form instance protocol 

initialize-release 
fromDisplay: aRectangle 

accessing 

extent: aPoint 

Copy the bits from the display screen within 
the boundaries defined by the argument, 
aRectangle, into the receiver's bitmap. 

Set the width and height of the receiver to be 
the coordinates of the argument, aPoint. 

extent: extentPoint offset: offsetPoint 
Set the width and height of the receiver to be 
the coordinates of the argument, extentPoint, 
and the offset to be offsetPoint. 
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pattern 
valueAt: aPoint 

valueAt: aPoint put: bitCode 

Answer the bit, 0 or 1, at location aPoint with- 
in the receiver's bitmap. 

Set the bit at location aPoint within the re- 
ceiver's bitmap to be bitCode, either 0 or 1. 

Form class protocol 

instance creation 
fromDisplay: aRectangle 

mode constants 
erase 
over 
reverse 
under 

Answer a new Form whose bits are copied 
from the display screen within the boundaries 
define~,,] by the argument, aRectangle, into the 
receiver's bitmap. 

Answer the Integer denoting mode erase. 

Answer the Integer denoting mode over. 

Answer the Integer denoting mode reverse. 

Answer the Integer denoting mode under. 
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mask constants 
black 
darkGray 

J 

gray 
lightGray 
veryLightGray 

white 

Answer the Form denoting a black mask. 
Answer the Form denoting a dark gray mask. 
Answer the Form denoting a gray mask. 
Answer the Form denoting a light gray mask. 
Answer the Form denoting a very light gray 
mask. 
Answer the Form denoting a white mask. 

Spatial 
Reference 

Since the images represented by Forms are inherent ly  two-dimensional, 
image manipula t ion is simplified by providing objects represent ing two- 
dimensional locations and areas. Instances of class Point represent  loca- 
tions a n d  instances of class Rectangle represent  areas. 

Class Point 
A Point represents  an x-y  pair of numbers  usually designating a pixel 
in a Form. Points refer to pixel locations relative to the top left corner 
of a Form (or other  point of reference). By convention, x increases to the 
right and y down, consistent with the layout of text on a page and the 
direction of display scanning. This is in contrast  to the "r ight-handed" 
coordinate system in which y increases in the upward direction. 

A Point is typically created using the binary message @ to a Number. 
For example, the result  of evaluating the expression 

200 @ 150 

is a Point with x and y coordinates 200 and 150. In addition, the class 
protocol of Point supports the instance creation message x: xlnteger y: 
ylnteger. 

Point x: 200 y: 150 

represents the same location as 200@ 150. The instance protocol for 
Point supports  accessing messages and messages for comparing two 
Points. 
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accessing 
x 

x: aNumber 

Y 
y: aNumber 

Answer the x coordinate. 

Set the x coordinate to be the argument, 
aNumber. 

Answer the y coordinate. 

Set the y coordinate to be the argument, 
aNumber. 

comparing 

< aPoint 

< = aPoint 

> aPoint 

> = aPoint 

max: aPoint 

min: aPoint 

Answer whether the receiver is above and to 
the left of the argument, aPoint. 

Answer whether the receiver is neither below 
nor to the right of the argument, aPoint. 

Answer whether the receiver is below and to 
the right of the argument, aPoint. 

Answer whether the receiver is neither above 
nor to the left of the argument, aPoint. 

Answer the lower right corner of the rectan- 
gle uniquely defined by the receiver and the 
argument, aPoint. 

Answer the upper left corner of the rectangle 
uniquely defined by the receiver and the argu- 
ment, aPoint. 

W i t h  r e s p e c t  to  t h e  c o o r d i n a t e s  l a b e l e d  i n  F i g u r e  18.9, e x a m p l e  e x p r e s -  

s i o n s  a r e  

expression result 

(45@230) < (175@270) 

(45 @ 230) < (175 @ 200) 

(45@230) > (175@200) 

(175@270) > (45@230) 

(45 @ 230) max: (175 @ 200) 
(45 @ 230) min: (175 @ 200) 

true 

false 

false 

true 
175@230 
45 @ 200 

A r i t h m e t i c  c a n  be  c a r r i e d  o u t  b e t w e e n  t w o  Po in t s  o r  b e t w e e n  a Point  

a n d  a N u m b e r  (a s c a l i n g  fac to r ) .  E a c h  of t h e  a r i t h m e t i c  m e s s a g e s  t a k e s  

e i t h e r  a Point  o r  a N u m b e r  (a s c a l a r )  a s  a n  a r g u m e n t ,  a n d  r e t u r n s  a n e w  

Point  a s  t h e  r e s u l t .  T r u n c a t i o n  a n d  r o u n d  off m e s s a g e s ,  s i m i l a r  to  t h o s e  

for  N u m b e r s ,  a r e  a l so  p r o v i d e d  in  t h e  i n s t a n c e  p r o t o c o l  of Point .  

Point instance protocol 

arithmetic 

, scale Answer a new Point that is the product of the 
receiver and the argument, scale. 
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0 0  

F i g u r e  18.9 

• 45, 200 

• 45, 230 

* 45, 550 

• 175, 200 

• 175, 230 

• 175, 270 

• 300, 175 

640, 808 

+ delta 

- delta 

/ scale 

/ / s c a l e  

a b s  

truncation and round off 

rounded 

truncateTo: grid 

Answer  a new Point t ha t  is the  sum of the  re- 
ceiver and the a rgument ,  delta. 

Answer  a new Point t h a t  is the  d i f fe rence  of 
the  receiver  and the  a rgument ,  delta. 

Answer  a new Point t h a t  is the  quot ien t  of the  
receiver  and  the  a rgument ,  scale. 

Answer  a new Point t ha t  is the  quot ien t  (de- 
fined by division wi th  t runca t ion  toward  nega- 
tive infinity) of the  receiver  and  the  
a r g u m e n t ,  scale. 

Answer  a new Point whose x and y are  the  ab- 
solute values of the  receiver 's  x and  y. 

Answer  a new Point t ha t  is the  receiver 's  x 
and y rounded.  

Answer  a new Point t ha t  i s  the  receiver 's  x 
and y t r unca t ed  to the  a rgument ,  grid. 
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T h u s  

expression result 

(45 @ 230) + (175 @ 300) 
(45 @ 230) --I-- 175 
(45@230) - (175@300) 
(160@240) / 50 
(160@240) / /  50 
(160@240) / /  (50@50) 
((45@230) - (175@300)) abs 
(120.5 @ 220.7) rounded 
(160 @ 240) truncateTo: 50 

220@530 
220@405 
--130@--70 
(16/5)@(24/5) 
3@4 
3@4 
130@70 
121 @221 
150 @ 200 

V a r i o u s  o t h e r  o p e r a t i o n s  can  be p e r f o r m e d  on Points i n c l u d i n g  compu t -  

ing t h e  d i s t a n c e  b e t w e e n  two Points,  c o m p u t i n g  t he  dot  p r o d u c t  of two 

Points, t r a n s p o s i n g  a point ,  a n d  d e t e r m i n i n g  Points  w i t h i n  some  g r i d d e d  

range .  

Point instance protocol 

point functions 
dist: aPoint 

dotProduct: aPoint 

grid: aPoint 

normal 

transpose 

truncatedGrid: aPoint 

E x a m p l e s  a r e  

Answer the distance between the argument, 
aPoint, and the receiver. 
Answer a Number that is the dot product of 
the receiver and the argument, aPoint. 
Answer a Point to the nearest rounded grid 
modules specified by the argument, aPoint. 
Answer a Point representing the unit vector 
rotated 90 deg clockwise. 
Answer a Point whose x is the receiver's y and 
whose y is the receiver's x. 
Answer a Point to the nearest truncated grid 
modules specified by the argument, aPoint. 

expression result 

(45@230) dist: 175@270 
(160@240) dotProduct: 50@50 
(160 @ 240) grid: 50 @ 50 
(160 @ 240) normal 
(160 @ 240) truncatedGrid: 50 @ 50 
(175 @ 300) transpose 

136.015 
20000 
150 @ 250 
--0.83105 @ 0.5547 
150 @ 200 
300 @ 175 

Points a n d  R e c t a n g l e s  a r e  used  t o g e t h e r  as s u p p o r t  for g r a p h i c a l  ma-  
n ipu l a t i on .  A Rectangle c o n t a i n s  two Po in t s - -o r ig in ,  w h i c h  specifies t h e  



344 
The Graphics Kernel  

top left corner, and corner, which indicates the bottom right corner of 
the region described. Class Rectangle provides protocol for access to all 
the coordinates involved, and other operations such as intersection with 
other rectangles. Messages to a Point provide an infix way to create a 
Rectangle with the Point as the origin. 

Point instance protocol 

converting 
corner: aPoint 

extent: aPoint 

T h u s  (45@ 200) corner: 

Answer a Rectangle whose origin is the re- 
ceiver and whose corner is the argument, 
aPoint. 
Answer a Rectangle whose origin is the re- 
ceiver and whose extent is the argument, 
aPoint. 

(175 @ 270) represents the rec tangular  area 
shown earlier in the image of display coordinates. 

Class Rectang le  
Instances of Rectangle represent  rectangular  areas of pixels. Ari thmetic 
operations take points as a rguments  and carry out scaling and translat-  
ing operations to create new Rectangles. Rectangle functions create 
new Rectangles by determining intersections of Rectangles with Rec- 
tangles. 

In addition to the messages to Point by which Rectangles can be cre- 
ated, class protocol for Rectangle supports three messages for creating 
instances. These messages specify ei ther the boundaries of the rectan- 
gular  area, the origin and corner coordinates, or the origin and width 
and height of the area. 

Rectangle class protocol 

instance creation 
left: leftNumber right: rightNumber top: topNumber bottom: bottomNumber 

Answer a Rectangle whose left, right, top, and 
bottom coordinates are determined by the ar- 
guments. 

origin: originPoint corner: cornerPoint 
Answer a Rectangle whose top left and bottom 
right corners are determined by the argu- 
ments, originPoint and cornerPoint. 

origin: originPoint extent: extentPoint 
Answer a Rectangle whose top left corner is 
originPoint and width by height is extentPoint. 

The accessing protocol for Rectangle is quite extensive. It supports de- 
tailed ways of referencing eight significant locations on the boundary  of 
theRectangle .  These points are shown in Figure 18.10. 

Messages for accessing these positions have selectors with names like 
those shown in  the diagram. 
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top r ight  

center  

r ight  
center  

_ bo t tom bot tom l = 
left bot tom center  r ight  

Rectangle instance protocol 

accessing 
topLeft 

topCenter 

topRight 

rightCenter 

bottomRight 

bottomCenter 

bottomLeft 

leftCenter 

center 
area 

width 
height 
extent 

top 

right 

bottom 

left 

Answer the Point at the top left corner of the 
receiver. 

Answer the Point at the center of the receiv- 
er's top horizontal line. 

Answer the Point at the top right corner of 
the receiver. 

Answer the Point at the center of the receiv- 
er's right vertical line. 

Answer the Point at the bottom right corner of 
the receiver. 

Answer the Point at the center of the receiv- 
er's bottom horizontal line. 

Answer the Point at the bottom left corner of 
the receiver. 

Answer the Point at the center of the receiv- 
er's left vertical line. 

Answer the Point at the center of the receiver. 

Answer the receiver's area, the product of 
width and height. 

Answer the receiver's width. 

Answer the receiver's height. 

Answer the Point receiver's width ® receiver's ~ 
height. 

Answer the position of the receiver's top hori- 
zontal line. 

Answer the position of the receiver's right 
vertical line. 

Answer the position of the receiver's bottom 
horizontal line. 

Answer the position of the receiver's left ver- 
tical line. 
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origin 

corner 

Answer the Point at the top left corner of the 
receiver. 

Answer the Point at the bottom right corner of 
the receiver. 

Suppose  the  Rec tang le  r e f e r r ed  to as f rame is c r ea t ed  by the  express ion  

frame ~ Rectangle or ig in :  100 @ 100 extent: 150 @ 150 

t h e n  

expression result 

frame topLeft 100 @ 100 
frame top 100 
frame rightCenter 250@ 175 
frame bottom 250 
frame center 175 @ 175 
frame extent 150 @ 150 
frame area 22500 

Each  of the  Rectangle 's locat ions  can be modif ied by an  access ing mes- 
sage whose  keyword  is one of t he  posi t ions  n a m e d  in F igu re  18.10. In 
addi t ion,  the  wid th  and  h e i g h t  can be set  wi th  the  messages  width: and  
height:, respect ively .  Two messages  a r e  l is ted below t h a t  a re  c o m m o n l y  
used in the  i m p l e m e n t a t i o n  of t he  sy s t em p r o g r a m m i n g  in t e r face  in or- 
der  to r e se t  the  va r i ab les  of a Rectangle .  

Rectangle instance protocol 

accessing 
origin: originPoint corner: cornerPoint 

Set the points at the top left corner and the 
bottom right corner of the receiver. 

origin: originPoint extent: extentPoint 
Set the point at the top left corner of the re- 
ceiver to be originPoint and set the width and 
height of the receiver to be extentPoint. 

Rec t ang le  func t ions  c r ea t e  new Rectangles and  c o m p u t e  r e l a t i onsh ips  
b e t w e e n  two Rectangles .  

Rectangle instance protocol 

rectangle functions 
amountToTranslateWithin: aRectangle 

Answer a Point, delta, such that the receiver, 
when moved by delta, will force the receiver 
to lie within the argument, aRectangle. 
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areasOutside: aRectangle Answer a collection of Rectangles comprising 
the parts of the receiver which do not lie 
within the argument, aRectangle. 

expandBy: delta Answer a Rectangle that is outset from the re- 
ceiver by delta, where delta is a Rectangle, 
Point, or scalar. 

insetBy: delta Answer a Rectangle that is inset from the re- 
ceiver by delta, where delta is a Rectangle, 
Point, or scalar. 

insetOriginBy: originDeltaPoint cornerBy: cornerDeltaPoint 
Answer a Rectangle that is inset from the re- 
ceiver by originDeltaPoint at the origin and 
cornerDeltaPoint at the corner. 

intersect: aRec tang le  Answer a Rectangle that is the area in which 
the receiver overlaps with the argument, 
aRectangle. 

merge: aRec tang le  Answer the smallest Rectangle that contains 
both the receiver and the argument, 
aRectangle. 

F i g u r e  18.11 s h o w s  t h r e e  R e c t a n g l e s ,  A, B, a n d  C, c r e a t e d  as  fo l lows.  

A ~- 50 @ 50 corner:  200 @ 200. 
B ~- 120 ® 120 corner" 260 @ 240. 

C ~ 100 @ 300 corner:  300 @ 400 

50, 50 

120, 120 

200 200 

260, 240 

100, 300 

Figure  18.11 300, 400 
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Then expressions using these th ree  Rectangles  are  listed below. Notice 
t h a t  Rectangles  p r in t  in the  form originPoint corner: cornerPoint. 

expression result 

A amountToTranslateWithin" C 

A areasOutside: B 

C expandBy: 10 

C insetBy: 10 @ 20 

A intersect: B 

B merge: C 

50 @ 250 
OrderedCollection 

((50@50 corner: 200 
@ 120) (50 @ 120 
corner: 120 @, 200) ) 

90 @ 290 
corner: 310 @ 410 

110@320 
corner: 290 @ 380 

120@ 120 
corner: 200 @ 200 

100@ 120 
corner: 300 ® 400 

The tes t ing protocol for Rectangles  includes messages  to de t e rmine  
w h e t h e r  a Point or o ther  Rectangle  is conta ined wi th in  the  boundar ies  
of a Rectangle,  or w h e t h e r  two Rectangles  intersect .  

Rectangle instance protocol 

testing 
contains: aRectangle 

containsPoint: aPoint 

intersects: aRectangle 

Cont inu ing  the  above example  

Answer whether the receiver contains all 
Points contained by the argument, aRectangle. 
Answer whether the argument, aPoint, is 
within the receiver. 
Answer whether the receiver contains any 
Point contained by the argument, aRectangle. 

expression result 

A contains: B false 
C containsPoint: 200 @ 320 true 
A intersects: B true 

Like the messages  for a Point, the  coordinates of a Rectangle can be 
rounded to the  nea res t  integer.  A Rectangle  can be m o v e d  by some 
amount ,  t r ans l a t ed  to a pa r t i cu la r  location, and the  coordinates can be 
scaled or t r an s l a t ed  by some amount .  Rectangles  also respond to scaling 
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a n d  t r a n s l a t i n g  m e s s a g e s ;  t h e y  a r e  p a r t  of t h e  p r o t o c o l  for  a n y  ob j ec t  

t h a t  c a n  d i s p l a y  i t se l f  on  a d i s p l a y  m e d i u m .  

Rectangle instance protocol 

truncation and round off 
rounded 

transforming 
moveBy: aPoint 

moveTo: aPoint 

scaleBy: scale 

translateBy: factor 

Answer a Rectangle whose origin and corner co- 
ordinates are rounded to the nearest integer. 

Change the corner positions of the receiver so 
that its area translates by the amount defined 
by the argument, aPoint. 

Change the corners of the receiver so that its 
top left position is the argument, aPoint. 

Answer a Rectangle scaled by the argument, 
scale, where scale is either a Point or a scalar. 

Answer a Rectangle translated by the argu- 
ment, factor, where factor is either a Point or a 
scalar. 

F o r  e x a m p l e  

expression result 

A moveBy: 50 @ 50 

A moveTo: 200@300 

A scateBy: 2 

A translateBy: - 100 

100@ 100 
corner: 250 @ 250 

200@3OO 
corner: 350 @ 450 

400@600 
corner: 700@900 

100 @ 200 
corner: 250 @ 350 

C l a s s  B i tB I t  T h e  m o s t  b a s i c  i n t e r f a c e  to  B i t B l t  is t h r o u g h  a c l a s s  of t h e  s a m e  n a m e .  

E a c h  i n s t a n c e  of BitBIt c o n t a i n s  t h e  v a r i a b l e s  n e c e s s a r y  to  spec i fy  a 

B i t B l t  o p e r a t i o n .  A spec i f ic  a p p l i c a t i o n  of B i t B l t  is g o v e r n e d  b y  a l i s t  of 

p a r a m e t e r s ,  w h i c h  i n c l u d e s :  

destForm 

sourceForm 

hal f toneForm 

(destination form) a Form into which pixels will be stored 

a Form from which pixels will be copied 

a Form containing a spatial halftone pattern 
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combinationRule 

destX, destY, width, 
height 

clipX, clipY, 
clipWidth, 
clipHeight 

sourceX, sourceY 

an Integer specifying the rule for combining corresponding 

pixels of the sourceForm and destForm 

(destination area x, y, width, and height)Integers which 

specify the rectangular subregion to be filled in the desti- 

nation 

(clipping rectangular area x, y, width, and height) Integers 

which specify a rectangular area which restricts the affect- 

ed region of the destination 

Integers which specify the location (top left corner) of the 

subregion to be copied from the source 

The BitBIt class protocol consists of one message for creating instances; 
this message contains a keyword and argument  for each BitBlt variable. 
The BitBIt instance protocol includes messages for initializing the vari- 
ables and a message, copyBits, which causes the primitive operation to 
take place. It also contains a message, drawFrom: startPoint to: stopPoint, 
for drawing a line defined by two Points. 

BitBIt class protocol 

instance creation 
destForm: destination 

sourceForm: source 
halftoneForm: halftone 
combinationRule: rule 
destOrigin: destOrigin 
sourceOrigin: sourceOrigin 
extent: extent 
clipRect: clipRect Answer a BitBIt with values set according to 

each of the arguments, where rule is an Inte- 
ger; destination, source, and halftone are Forms; 
destOrigin, sourceOrigin, and extent are Points; 
and clipRect is a Rectangle. 

BitBIt instance protocol 

accessing 
sourceForm: aForm 

destForm: aForm 

mask: aForm 

combinationRule: anlnteger 

clipHeight: anlnteger 

clipWidth: anlnteger 

Set the receiver's source form to be the argu- 
ment, aForm. 
Set the receiver's destination form to be the 
argument, aForm. 

Set the receiver's halftone mask form to be 
the argument, aForm. 

Set the receiver's combination rule to be the 
argument, anlnteger, which must be an inte- 
ger between 0 and 15. 

Set the receiver's clipping area height to be 
the argument, anlnteger. 

Set the receiver's clipping area width to be 
the argument, anlnteger. 



clipRect 
clipRect: aRectangle 

clipX: anlnteger 

clipY: anlnteger 

sourceRect: aRectangle 

sourceOrigin: aPoint 

sourceX: anlnteger 

sourceY: anlnteger 

destRect: aRectangle 

destOrigin: aPoint 

destX: anlnteger 

destY: anlnteger 

height: anlnteger 

width: anlnteger 

copying 
copyBits 
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Answer the receiver's clipping rectangle. 

Set the receiver's clipping rectangle to be the 
argument ,  aRectangle. 
Set the receiver's clipping rectangle top left x 
coordinate to be the argument ,  anlnteger. 

Set the receiver's clipping rectangle top left y 
coordinate to be the argument ,  anlnteger. 

Set t h e  receiver's source form rectangular  
area to be the argument ,  aRectangle. 

Set the receiver's source form top left coordi- 
nates to be the argument ,  aPoint. 

Set the receiver's source form top left x coor- 
dinate to be the argument ,  anlnteger. 

Set the receiver's source form top left y coor- 
dinate to be the argument ,  anlnteger. 

Set the receiver's destination form rectangu- 
lar area to be the argument,  aRectangle. 

Set the receiver's destination form top left co- 
ordinates to be the argument ,  aPoint. 

Set the receiver's destination form top left x 
coordinate to be the argument ,  anlnteger. 

Set the receiver's destination form top left y 
coordinate to be the argument ,  anlnteger. 

Set the receiver's destination form height to 
be the argument ,  anlnteger. 

Set the receiver's destination form width to be 
the argument ,  anlnteger. 

Perform the movement  of bits from the source 
form to the destination form. Report an error 
if any variables are not of the right type (Inte- 
ger or Form), or if the combination rule is not 
between 0 and 15 inclusive. Try to reset the 
variables and try again. 

The state held in an instance of BitBIt allows multiple operations in a 
related context to be performed without the need to repeat all the ini- 
tialization. For example, when displaying a scene in a display window, 
the destination form and clipping rectangle will not change from one 
operation to the next. Thus the instance protocol for modifying individ- 
ual variables can be used to gain efficiency. 

Line Drawing Much of the graphics in the Smalltalk-80 system consists of lines and 
text. These entities are synthesized by repeated invocation of BitBIt. 
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The BitBit protocol includes the messages drawFrom: startPoint to: 
stopPoint to draw a line whose end points are the arguments ,  startPoint 
and stopPoint. 

BitBIt instance protocol 

line drawing 
drawFrom: startPoint to: stopPoint 

Draw a line whose end points are the argu- 
ments, startPoint and stopPoint. The line is 
formed by displaying copies of the current 
source form according to the receiver's half- 
tone mask and combination rule. 

By using BitBIt, one algori thm can draw lines of varying widths, differ- 
ent halftones, and any combination rule. To draw a line, an instance of 
BitBIt is initialized with the appropriate destination Form and clipping 
rectangle, and with a source tha t  can be any Form to be applied as a 
pen or "brush" shape along the line. The message drawFrom:to: with 
Points as the two arguments  is then sent to the instance. Figure 18.12 
shows a number  of different pen shapes and the lines they form when 
the BitBIt combination rule is 6 or 7. 

The message drawFrom: startPoint to: stopPoint stores the destX and 
destY values. Star t ing from these stored values, the line-drawing loop, 
drawLoopX: xDeita Y: yDeita, shown next, accepts x and y delta values 
and calculates x and y step values to determine points along the line, 
and then calls copyBits in order to display the appropriate image at 
each point. The method used is the Bresenham plotting algori thm (IBM 
Systems Journal, Volume 4, Number  1, 1965). It chooses a principal di- 
rection and mainta ins  a variable, p When p's sign changes, it is t ime 
to move in the minor  direction as well. This method is a na tura l  unit  to 
be implemented as a primitive method, since the computat ion is trivial 
and the setup in copyBits is  almost all constant  from one invocation to 
the next. 

The method for drawLoopX: xDelta Y: yDelta in class BitBIt is 

drawLoopX: xDelta Y: yDelta 
t dx dy px py p 1 
dx ~- xDelta sign. 
dy ~- yDelta sign. 
px ~ yDelta abs. 
py ~- xDelta abs. 
self copyBits. "first point" 
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py > px 

ifTrue: " '  more horizontal " 

[ p + -  p y / /  2. 

1 to: py do: 

[ : i l  destx ~ destx + dx. 

(p ,- p -  px) < 0 

ifTrue: [desty ~ desty + dy. p ~- p -Jr py]. 

self copyBits] ]  

ifFalse: " more ver t ica l "  

[p~- p x / / 2 .  

1 to: px do: 

[ : i l  desty ~ desty + dy. 

(p ~ p - p y )  < 0 

ifTrue: [destx ~ destx + dx. p ~ p -+- px]. 

self copyBits] ]  



354 
T h e  G r a p h i c s  K e r n e l  

Text Display One of the advantages derived from BitBlt is the ability to store fonts 
compactly and to display them using various combination rules. The 
compact storage arises from the possibility of packing characters hori- 
zontally one next to another (as shown earlier in Figure 18.3), since 
BitBIt can extract the relevant bits if supplied with a table of left x coor- 
dinates of all the characters. This is called a strike format from the ty- 
pographical term meaning a contiguous display of all the characters in 
a font. 

The scanning and display of text are performed in the Smalltalk-80 
system by a subclass of BitBlt referred to as CharacterScanner. This sub- 
class inherits all the normal state, with destForm indicating the Form 
in which text is to be displayed and sourceForm indicating a Form con- 
taining all the character glyphs side by side (as in Figure 18.3). In addi- 
tion CharacterScanner defines further state including: 

text. 
textPos 

xTable 

stopX 

except ions 

printing 

a String of Characters to be displayed 

an Integer giving the current position in text 

an Array of Integers giving the left x location of each char- 
acter in sourceForm 

an Integer that  sets a right boundary past which the inner 
loop should stop scanning 

an Array of Symbols that, if non-nil, indicate messages for 
handling the corresponding characters specially 

a Boolean indicating whether characters are to be printed 

Once an instance has been initialized with a given font and text loca- 
tion, the scanWord: loop below will scan or print text until some hori- 
zontal position (stopX) is passed, until a special character (determined 
from exceptions) is found, or until the end of this range of text (endRun) 
is reached. Each of these conditions is denoted by a symbolic code re- 
ferred to as stopXCode, except ions (an Array of Symbols) and 
endRunCode. 

scanword:  endRun  
I charlndex I 
[textPos < endRun] whiteTrue: 

[ " p i c k  character" charlndex ~- text at: textPos. 
" check exceptions" 
(exceptions at: charlndex) > 0 

ifTrue: [texceptions at: charlndex]. 
" left x of character in font" sourceX ~- xTable at: charlndex. 
"up to left of next char" 
width ~- (xTable at: charlndex+ 1) - sourceX. 
" p r i n t  the character" printing ifTrue: [self copyBits]. 



355 
Simulation of BitBIt 

" a d v a n c e  by width of character" destX ~- destX 4-- width. 
destX > stopX ifTrue' [tstopXCode]. " passed right boundary" 
" advance to next character" 
textPos,.- textPos+ 1]. 

textPos ~ textPos-  1. 
tendRunCode 

The check on exceptions handles many  possibilities in one operation. 
The space character  may have to be handled exceptionally in the case 
of text tha t  is padded to achieve a flush right margin. Tabs usually re- 
quire a computat ion or table lookup to determine their  width. Carriage 
re turn  is also identified in the check for exceptions. Character  codes be- 
yond the range given in the font are detected similarly, and are usually 
handled by showing an exceptional character,  such as a little l ightning 
bolt, so tha t  they can be seen and corrected. 

The printing flag can be set false to allow the same code to measure a 
line (break at a word boundary) or to find to which character  the cursor 
points. While this provision may seem over-general, two benefits (be- 
sides compactness) are derived from tha t  generality. First, if one makes 
a change to the basic scanning algorithm, the parallel functions of meas- 
uring, printing, and cursor t racking are synchronized by definition. Sec- 
ond, if a primitive implementat ion is provided for the loop, it exerts a 
threefold leverage on the system performance. 

The scanword: loop is designed to be amenable  to such primitive im- 
plementation;  tha t  is, the in terpreter  may intercept it and execute 
primitive code instead of the Smalltalk-80 code shown. In this way, 
much of the setup overhead for copyBits can be avoided at each charac- 
ter  and an entire word or more can be displayed directly. Conversely, 
the Smal l ta lk  text and graphics system requires implementat ion of only 
the one primitive operation (BitBlt) to provide full functionality. 

Simulat ion  of 
BitBIt 

We provide here a s imulat ion of an implementat ion of copyBits in a 
subclass of BitBIt referred to as BitBItSimulation. The methods in this 
s imulat ion are intentionally wri t ten in the style of machine code in or- 
der to serve as a guide to implementors.  No a t tempt  is made to hide the 
choice of 16-bit word size. Although the copyBits method is presented as 
a Smalltalk-80 method in BitBItSimulation, it is actually implemented in 
machine-code as a primitive method in class BitBIt; the simulation does 
the same thing, albeit slower. 
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class n a m e  

superclass  

ins tance  var iable  names  

class var iable  names  

class methods  

initialize 
"Initialize a table of bit masks" 

RightMasks ,- 

# ( 0  16rl 16r3 16r7 16rF 

BitBltSimulation 

BitBIt 

sourceBits sourceRaster 

destBits destRaster 

hatftoneBits 

skew skewMask 

mask 1 mask2 

preload nWords 
hDir vDir 

sourcelndex sourceDelta 

desttndex destDelta 

sx sy dx dy w h 

AllOnes RightMasks 

16r1F 16i3F 16r7F 16rFF 

16r1FF 16r3FF 16r7FF 16rFFF 

16r1FFF 16r3FFF 16r7FFF 16rFFFF). 

AflOnes ~ 16rFFFF 

ins tance  methods  

operations 

copyBits 
" sets w and h "  

self clipRange. 

(w < = 0  or: [h < =0] ) i fTrue:  [1self]. " null range 
self computeMasks. 

self checkOverlap. 

self calculateOffsets. 

self copyLoop 

private 

clipRange 
" clip and adjust source origin and extent appropriately" 
" f i r s t  in x "  

destX > = clipX 

ifTrue: [sx ~-- sourceX, dx ~ destX, w ~-- width] 

ifFalse: [sx ~ sourceX + ( c l i p X -  destX). 

w ~- width - (clipX - destX). 

dx ~- clipX]. 

(dx + w) > (clipX + clipWidth) 

ifTrue: [w ~ w -  ((dx + w) - (clipX 4--- clipWidth))]. 
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" then in y "  

destY > = cl ipY 

ifTrue: [sy ~ sourceY, dy ~ destY, h ~- height] 

ifFalse: [sy ~-- sourceY + c l i p Y -  destY. 

h ~ h e i g h t -  cl ipY + destY. 

dy ~ cl ipY]. 

(dy + h) > (cl ipY + cl ipHeight) 

ifTrue: [h ~- h - ((dy + h) - (cl ipY + cl ipHeight))].  

s x < 0  

ifTrue: [dx ~ dx - sx. w ~ w + sx. sx ~ 0]. 

sx -4-- w > sourceForm width 

ifTrue: [w ~ w -  (sx + w -  sourceForm width)]. 

s y < 0  

ifTrue: [dy ~ d y -  sy. h ~- h + sy. sy ~ 0]. 

sy ÷ h > sourceForm height 

ifTrue: [h ~ h - (sy + h -  sourceForm height)] 

Clipping first checks whether  the destination x lies to the left of the 
clipping rectangle and, if so, adjusts both destination x and width. As 
mentioned previously, the data to be copied into this adjusted rectangle 
comes from a shifted region of the source, so tha t  the source x must  
also be adjusted. Next, the r ightmost  destination x is compared to the 
clipping rectangle and the width is decreased again if necessary. This 
whole process is then repeated for y and height. Then the height and 
width are clipped to the size of the source form. The adjusted parame- 
ters are stored in variables sx, sy, dx, dy, w, and h. If either width or 
height is reduced to zero, the entire call to BitBIt can re turn  immediately. 

computeMasks 
I startBits endBits t 

" calculate skew and edge masks "  

destBits ~ destForm bits. 

destRaster ~ destForm width --1 / /  t6  + 1. 

sourceForm notNil 

ifTrue: [sourceBits ~ sourceForm bits. 

sourceRaster , -  sourceForm width - 1 / / 1 6  ÷ 1]. 

hal f toneForm notNil 
ifTrue: [half toneBits ~- hal f toneForm bits]. 

skew ~- (sx -- dx) bitAnd: 15. 

' "  how many bits source gets skewed to r ight"  

startBits ~- 16 - (dx bitAnd: 15). 

" how many bits in first wo rd "  

mask1 ~ RightMasks at: startBits + 1. 

endBits ~-- 1 5 -  ((dx + w - l ) b i t A n d :  15). 

" how many bits in last wo rd "  

mask2 ~ (RightMasks at: endBits + 1) bitlnvert. 
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s k e w M a s k  

( s k e w = 0  

ifTrue: [0] 

i fFalse: [R igh tMasks  at: 16 - skew  + 1]). 

" determine  number  of w o r d s  s tored per line; merge masks  if n e c e s s a r y "  

w < startBits 

ifTrue: [mask1 ~- mask1 bi tAnd: mask2.  

mask2  ~ 0. 

nWords  ~ 1] 

i fFalse: [nWords  ~- (w - startBits - 1) / /  16 + 2]. 

In prepara t ion  for the actual  t ransfer  of data, several pa ramete rs  are 
computed. Firs t  is skew, the horizontal offset of data  from source to des- 
tination. This represents  the number  of bits by which the data  will 
have.to be rotated after being loaded from the source in order to line up 
with the final position in the destination. In the example of Figure 18.3, 
skew would be 5 because the glyph for the charac ter  ~e" must  be 
shifted left by 5 bits prior to being stored into the destination. From 
skew, skewMask is saved for use in rotat ing (this is unnecessary for ma- 
chines with a rotate  word instruction). Then mask1 and mask2 are com- 
puted for selecting the bits of the first and last part ia l  words of each 
scan line in the destination. These masks would be 16r1FFF and 
16rFFC0 respectively in the example of Figure 18.3 since startBits= 13 
and endBits=6.  In cases such as this where only one word of each desti- 
nation line is affected, the masks are merged to select the range within 
tha t  word, here 16rl FC0. 

checkOverlap 
I t t  

" c h e c k  for poss ib le  over lap  of source  and des t i na t i on "  

hDir ~ vDir  ~- t. " d e f a u l t s  for no o v e r l a p "  

( sou rceForm = = des tForm and: [dy > = sy]) 

ifTrue: 

[dy > sy " have to start at b o t t o m "  

ifTrue: [vDir ~ - 1 .  sy ~- sy + h - 1. dy ~- dy --4- h - 1] 

i fFalse: [dx > sx " y ' s  are equal ,  but x ' s  are b a c k w a r d  " 

i fTrue: [hDir  ~- - 1. 

sx ~- sx + w -  1. 

" start at r igh t "  

dx ~- dx 4- w -  1. 

" and fix up m a s k s "  

s k e w M a s k  ~- s k e w M a s k  bit lnvert. 

t ~- mask1.  

mask1 ~- mask2.  

mask2  ~- t]]] 
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A check must  be made for overlapping source and destination. When 
source and destination lie in the same bitmap, there  is the possibility of 
the copy operation destroying the data  as it is moved. Thus when the 
data  is being moved downward, the copy must  s tar t  at the bottom and 
proceed upward. Similarly when there  is no vertical movement,  if the 
horizontal movement  is to the right, the copy must  s tar t  at  the r ight  
and work back to the left. In all other cases the copy can proceed from 
top to bottom and left to right. 

calculateOffsets 
'" check if need to preload buffer 
(i.e., two words of source needed for first word of destination)" 

p re load~ (sourceForm notNil) and: 
[skew ,--.,= 0 and: [skew < = (sx bitAnd: 15)]]. 

hDir < 0 ifTrue: [preload ~ preload = =  false]. 

" calculate starting offsets" 
sourcelndex ~- s y ,  sourceRaster + ( s x / /  16). 

destlndex ~ d y ,  destRaster + ( d x / /  16). 
" calculate increments from end of 1 line to start of next" 

sourceDetta ,- 
(sourceRaster ,  vDir) - 

(nWords + (preload ifTrue: [1] ifFalse: [0]) , hDir). 

destDelta ~- (destRaster ,  vDir) - (nWords , hDir) 

In cases where two words of source are needed to store the first word 
into the destination, a flag preload is set indicating the need to preload 
a 32-bit shifter prior to the inner  loop of the copy (this is an optimiza- 
tion; one could simply always load an ext ra  word initially). The offsets 
needed for the inner  loop are the s tar t ing offset in words from the 
source and destination bases; deltas are also computed for jumping from 
the end of the data  in one scanline to the s tar t  of data  in the next. 

inner loop 

copyLoop 
I prevWord thisWord skewWord mergeMask 

halftoneWord mergeWord word 1 
1 to: h do: " here is the vertical loop:"  

[:i l  
(halftoneForm notNit) 

ifTrue: 
[halftoneWord ~ halftoneBits at: (1 -i- (dy bitAnd: 15)). 

dy ,- dy + vDir] 

ifFalse: [hatftoneWord ,- AIIOnes]. 
skewWord ,- halftoneWord. 
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preload 

ifTrue: [prevWord ~ sourceBits at: sourcelndex + 1. 

" load  the 32-bit shif ter" 

sourcelndex ~- sourcetndex + hDir] 

ifFalse: [prevWord ~- 0]. 

mergeMask ~- mask1. 

1 to to: nWords do: "here  is the inner horizontal loop"  

[ :word I 

sourceForm notNil " if source is used"  

ifTrue: 

[prevWord ~- prevWord bitAnd: skewMask.  

thisWord ~ sourceBits at: sourcelndex -t- 1. 

" p i c k  up next wo rd "  

skewWord ~- 

prevWord bitOr: (thisWord bitAnd: skewMask bitlnvert). 

prevWord ~- thisWord. 

skewWord ~ (skewWord bitShift: skew) bitOr: 

(skewWord bitShift: skew - 16)]. 

" 16-bit rotate" 

mergeWord ~ self merge: (skewWord bitAnd: halftoneWord) 

with: (destBits at: dest lndex + 1). 

destBits 

at: dest lndex --t- 1 

put: ( (mergeMask bitAnd: mergeWord) 

bitOr: (mergeMask bitlnvert 

bitAnd: (destBits at: dest lndex + 1))). 

sourcelndex ~ sourcelndex --.t- hDir. 

dest lndex ~ dest lndex --I- hDir. 

word = (nWords - 1) 

ifTrue: [mergeMask ~ mask2] 

ifFalse: [mergeMask ~ AIIOnes]]. 

sourcelndex ~ sourcelndex -t- sourceDelta. 

dest lndex ~ dest lndex + destDelta] 

The outer,  or vertical, loop includes the overhead for each line, 
selecting the appropriate  line of halftone gray, preloading the shifter if 
necessary, and stepping source and destination pointers to the next 
scanline after the inner  loop. It should be noted here tha t  the reason 
for indexing the halftone pa t te rn  by the destination y is to el iminate 
~seams" which would occur if the halftones in all operations were not 
coordinated this way. 

The inner, or horizontal, loop picks up a new word of source, rotates 
it with the previous, and merges the result  with a word of the destina- 
tion. The store into the destination must  be masked for the first and 
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last part ial  words on each scanline, but in the middle, no masking is re- 
ally necessary. 

merge:  sourceWord with: dest inat ionWord 
"These are the 16 combination rules:" 
com binationRu!e = 0 

ifTrue: [tO]. 
combinationRule= 1 

ifTrue: [tsourceWord bitAnd: destinationWord]. 
combination Rule = 2 

ifTrue: [tsourceWord bitAnd: destinationWord bitlnvert]. 
combinationRule= 3 

ifTrue: [t sourceWord]. 
combinationRule= 4 

ifTrue: [tsourceWord bitlnvert bitAnd: destinationWord]. 

combinationRute = 5 
ifTrue: [1destinationWord]. 

combinationRule =6  
ifTrue:[l'sourceWord bitXor: destinationWord]. 

combinationRule= 7 
ifTrue: [l"sourceWord bitOr: destinationWord]. 

combination Rule = 8 
ifTrue: [tsourceWord bitlnvert bitAnd: destinationWord bitlnvert]. 

combination Rule = 9 
ifTrue: [1"sourceWord bitlnvert bitXor: destinationWord]. 

combinationRule = 10 
ifTrue: [l"destinationWord bitlnvert]. 

combinationRule = 11 
ifTrue: [tsourceWord bitOr: destinationWord bitlnvert]. 

combinationRule = 12 
ifTrue: [tsourceWord bitlnvert]. 

combinationRule= 13 
ifTrue: [tsourceWord bitlnvert bitOr: destinationWord]. 

combinationRule= 14 
ifTrue: [t sourceWord bitlnvert bitOr: destinationWord bittnvert]. 

combinationRule = 15 
ifTrue: [tAIIOnes] 

Efficiency 
Considerations 

Our experience has demonstrated the value of BitBIt 's generality. This 
one primitive is so central  to the programming interface tha t  any im- 
provement  in its performance has considerable effect on the interactive 
quality of the system as a whole. In normal use of the Smalltalk-80 sys- 
tem,  most invocations of BitBIt are either in the extreme microscopic or 
macroscopic range. 
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In the macroscopic range, the width of t ransfer  spans many  words. 
The inner  loop across a horizontal scan line gets executed many  times, 
and the operations requested tend to be simple moves or constant  
stores. Examples  of these are: 

clearing a line of text  to white 

clearing an ent i re  window to white 

scrolling a block of text  up or down 

Most processors provide a fast means  for block moves and stores, and 
these can be made to serve the applications above. Suppose we struc- 
ture  the horizontal loop of BitBIt as 

1. move left par t ia l  word, 

2. move many  whole words (or none), 

3. move r ight  part ia l  word (or none). 

Special cases can be provided for 2 if the operation is a simple store or 
a simple copy with no skew (horizontal bit offset) from source to desti- 
nation. In this way, most macroscopic applications of BitBit can be made 
fast, even on processors of modest power. 

The microscopic range of BitBIt is characterized by a zero count for 
the inner  loop. The work on each scanline involves at most two part ia l  
words, and both overall setup and vertical loop overhead can be consid- 
erably reduced for these cases. Because characters  tend to be less than  
a word wide and lines tend to be less than  a word thick, near ly  all text  
and line drawing falls into this category. A convenient way to provide 
such efficiency is to write a special case of BitBIt which assumes the mi- 
croscopic parameters ,  but goes to the general  BitBlt whenever  these are 
not met. Because of the statistics (many small operations and a few 
very large ones), it does not hur t  to pay the penal ty  of a false assump- 
tion on infrequent  calls. One can play the same tr ick with clipping by 
assuming no clipping will occur and runn ing  the general  code only 
when this assumption fails. 
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ExternalStream 

FileStream 

Random 

File 
FileDirectory 
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UndefinedObject 
Boolean 

False 
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ProcessorScheduler 
Delay 
SharedQueue 

Behavior 
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Class 
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Point 
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DisplayObject 
DisplayMedium 

Form 
Cursor 
DisplayScreen 

InfiniteForm 
OpaqueForm 
Path 
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Curve 
Line 
LinearFit 
Spline 
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As explained in the previous chapter, Forms represent images. Lines 
can be created by copying a Form to several locations in another Form 
at incremental distances between two designated points. Higher-level 
access to line drawing is provided by instances of class Pen. 

Pen is a subclass of BitBIt. As such, it is a holder for source and desti- 
nation Forms. The source Form can be colored black or white or differ- 
ent tones of gray, and copied into the destination Form with different 
combination rules, different halftone masks, and with respect to differ- 
ent clipping rectangles. The source Form is the Pen's writing tool or 
nib. The destination Form is the Pen's writing surface; it is usually the 
Form representing the display screen. 

In addition to the implementations inherited from BitBIt, a Pen has a 
Point that  indicates a position on the display screen and a Number that  
indicates a direction in which the Pen moves. A Pen understands mes- 
sages that  cause it to change its position or direction. When its position 
changes, the Pen can leave a copy of its Form at its former position. By 
moving the Pen to different screen positions and copying its Form to 
one or more of these positions, graphic designs are created. 

Several programming systems provide this kind of access to line 
drawing. In these systems, the line drawer is typically called a "turt le" 
after the one first provided in the MIT/BBN Logo language (Seymour 
Papert, MindStorms: Children, Computers and Powerful Ideas, Basic 
Books, 1980; Harold Abelson and Andrea diSessa, Turtle Geometry: The 
Computer as a Medium for Exploring Mathematics, MIT Press, 1981). 
The protocol for Pens supports messages that  are like the turtle com- 
mands provided in Logo. These consist of commands for telling the tur- 
tle to go some distance, turn  some amount, to place a pen in a down 
position, and to place a pen in an up position. When the pen is down 
and it moves, a trace of the turtle 's  path is created. The corresponding 
Pen messages are go: distance, turn: amount, down, and up. 

Multiple Pens can be created and their movement on the screen co- 
ordinated so that  the process of creating a graphical design can itself be 
graphically pleasing. The next section contains the protocol that  is pro- 
vided in class Pen. Subsequent sections give examples of designs that  
can be created by sending messages to Pens. 

Class Pen Instances of class Pen are created by sending Pen the message new. A 
Pen created this way can draw anywhere on the display screen; its ini- 
tial position is the center of the screen, facing in a direction towards 
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the  top of the  screen.  The  Pen is set  to d r a w  (i.e., it is down) wi th  a 
source  Form or nib  t h a t  is a 1 by 1 b lack  dot. 

T h e r e  a r e  two ways  to c h a n g e  the  source  Form of a Pen. One  way  is 
to send  the  Pen the  m e s s a g e  defaultNib: widthlnteger.  The  o t h e r  way  is 
to r e se t  the  source  Form by s end ing  the  Pen the  messages  it i nhe r i t s  
f rom its superc lass ,  BitBIt. For  example ,  t he  me s s a g e  sourceForm:  
c h a n g e s  t he  source  form, or t h e  me s s a g e  mask: c h a n g e s  the  h a l f t one  
f o r m  (the mask)  used  in d i sp lay ing  the  source  form. (Note t h a t  the  de- 
fau l t  m a s k  for d i sp lay ing  is black.) 

Pen instance protocol 

initialize-release 
defaultNib: shape 

T h u s  

A "nib" is the tip of a pen. This is an easy 
way to set up a default pen. The Form for the 
receiver is a rectangular shape with height 
and width equal to (1) the argument, shape, if 
shape is an Integer; or (2) the coordinates of 
shape if shape is a Point. 

bic ~- Pen new defaultNib: 2 

c rea t e s  a Pen wi th  a b lack  Form t h a t  is 2 bits wide by 2 bits high.  
The  access ing  protocol  for a Pen provides  access to the  Pen ' s  c u r r e n t  

d i rec t ion,  locat ion,  a n d  d r a w i n g  region.  The  d r a w i n g  reg ion  is r e f e r r e d  
to as t he  Pen ' s  frame. 

Pen instance protocol 

accessing 
direction 

location 
frame 

frame: aRectangle 

Answer the receiver's current direction. 270 is 
towards the top of the screen. 
Answer the receiver's current location. 
Answer the Rectangle in which the receiver 
can draw. 
Set the Rectangle in which the receiver can 
draw to be the argument, aRectangle. 

C o n t i n u i n g  to use t h e  example ,  bic, a n d  a s s u m i n g  t h a t  the  d isp lay  
sc reen  is 600 bits  wide  a n d  800 bits  high,  we have  

expression result 

bic direction 270 
bic location 300 @ 400 
bic frame: 

(50 @ 50 extent: 200 @ 200) 
bic location 300 @ 400 
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Notice t h a t  w h e n  the  Pen d i rec t ion  is t owards  the  top of the  display 
screen,  the  angle  is 270 degrees.  Notice also t h a t  the  Pen is c u r r e n t l y  
outs ide its d r a w i n g  region and  would  have  to be placed wi th in  the  Rec- 
tangle, 50@ 50 corner: 250 @ 250, before any  of its m a r k s  could be seen. 

The  " t u r t l e "  d r a w i n g  c o m m a n d s  a l t e r  the  Pen ' s  d r a w i n g  s tate ,  o r ien t  
its d r a w i n g  direct ion,  and  reposi t ion it. 

Pen instance protocol 

moving 
down 

up 

turn-degrees 

north 

go: distance 

goto: aPoint 

place: aPoint 

home 

Set the state of the receiver to "down" so that  
it leaves marks when it moves. 

Set the state of the receiver to '~up" so that  it 
does not leave marks when it moves. 

Change the direction that  the receiver faces 
by an amount  equal to the argument,  degrees. 

Set the receiver's direction to facing toward 
the top of the display screen. 

Move the receiver in its current  direction a 
number of bits equal to the argument,  dis- 
tance. If the receiver status is "down," a line 
will be drawn using the receiver's Form as the 
shape of the drawing brush. 

Move the receiver to position aPoint. If the re- 
ceiver status is '~down", a line will be drawn 
from the current position to the new one us- 
ing the receiver's Form as the shape of the 
drawing brush. The receiver's direction does 
not change. 
Set the receiver at position aPoint. No lines 
are drawn. 
Place the receiver at the center of the region 
in which it can draw. 

T h u s  we can p l a c e  bic in the  cen te r  of its f r a m e  by e v a l u a t i n g  the  ex- 
press ion 

bic home 

If we t h e n  ask  

bic location 

the  response  would be 150 @ 150. 
Suppose t h a t  we d rew a l ine wi th  a Pen and  t h e n  decided t h a t  we 

w a n t e d  to e rase  it. If the  l ine had  been  d r a w n  wi th  a b lack  Form, t hen  
we can e rase  it by d r a w i n g  over it wi th  a whi te  Form of a t  least  the  
s ame  size. Thus  

bic go" 100 
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draws the black line. Then 

bic white 

sets the drawing mask  to be all white (the message white is inheri ted 
from the protocol of BitBIt), and then 

bic go: - 100 

draws over the original line, erasing it. 
An exercise tha t  is common in the Logo examples is to create various 

polygon shapes, such as a square. 

4 timesRepeat: [bic go: 100. bic turn: 90] 

The following expression creates any polygon shape by computing the 
angle of tu rn ing  as a function of the number  of sides. If nSides is the 
number  of sides of the desired polygon, then 

nSides timesRepeat: [bic go" 100. bic turn: 360 / /nS ides ]  

will draw the polygon. We can create a class Polygon whose instances 
refer to the number  of sides and length of each side. In addition, each 
Polygon has its own Pen for drawing. In the definition tha t  follows, we 
specify tha t  a Polygon can be told to draw on the display screen; the 
method is the one described earlier.  

class name 
superclass 
instance variable names 

class methods 

instance creation 

n e w  

1' super new default 

Polygon 
Object 
drawingPen 
nSides 
length 

instance methods 

drawing 

d r a w  

drawingPen black. 
nSides timesRepeat: [drawingPen go length' turn: 360/ /  nSides] 



369 
Class Pen 

accessing 

l ength:  n 

length ~ n 
sides:  n 

nSides ~- n 

private 

d e f a u l t  
drawingPen ~ Pen new. 
self length: 100. 
self sides: 4 

Then a Polygon can be created and a sequence of polygons drawn by 
evaluating the expressions 

poly ~- Polygon new. 
3 to: 10 do: [ :sides I poly sides: sides, poly draw] 

The result is shown in Figure 19.1. 

Figure 19.1 
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Geometric 
Designs 

The Logo books mentioned earlier provide extensive examples of how to 
use this kind of access to line drawing in order to create images on a 
computer  display screen. We provide several examples of methods that  
can be added to a Pen so tha t  any Pen can draw a geometric design 
such as those shown in Figures 19.2 - 19.5. (Note: These methods are in 
the system as part  of the description of Pen so tha t  users can play with 
creating geometric designs.) 

Spirals 
The first design is called a spiral. A spiral is created by having the Pen 
draw incremental ly  longer lines; after each line is drawn, the Pen  turns  
some amount.  The lines drawn begin at length 1 and increase by 1 each 
t ime until  reaching a length equal to the first a rgument  of the message 
spiral:angle:. The second a rgument  of the message is the amount  the 
Pen turns  after drawing each line. 

spiral :  n ang le :  a 
1 to: n do: 

[ i  I self go  i. self turn: a] 

Each of the lines in Figure 19.2 was drawn by sending bic the message 
spiral:angle:, as follows. 

bicsp i ra l :  150 angle: 89 

Figure 19.2a 
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bic spiral: 150 angle: 91 

Figure 19.2b 

,. 

J .  

bic spiral: 150 angle: 121 

Figure 19.2c 
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bic home. 
bic spiral: 150 angle: 89. 
bic home. 
bic spiral: 150 angle: 91 

Figure 19.2d 

Dragon Curve 
Figure 19.3 is an image of a "dragon curve" of order 8 which was 
drawn in the middle of the screen by evaluat ing the expression 

bic ~ Pen new defaultNib: 4. 
bic dragon: 9 

The method associated with the message dragon: in class Pen is 

dragon:  n 
n = O  

ifTrue: [self go: 10] 
ifFalse: 

[ n > O  
ifTrue: 

[self dragon: n - 1. 
self turn: 90. 
self dragon' 1 - n] 

ifFalse: 
[self d r a g o n : - 1  - n. 
self turn: - 90 .  
self dragon: 1 + n]] 
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Dragon curves were discussed by Martin Gardner in his mathematical 
games column in Scientific American (March 1967, p. 124, and April 
1967, p. 119). Another discussion of dragon curves appears in Donald 
Knuth and Chandler Davis, '~Number Representations and Dragon 
Curves," Journal of Recreation Mathematics, Vol. 3, 1970, pp. 66-81 and 
133-149. 

Hilbert Curve 
Figure 19.4 is a space-filling curve attributed to the mathematician Da- 
vid Hilbert. A space-filling curve has an index; as the index increases to 
infinity, the curve tends to cover the points in a plane. The example is 
the result of evaluating the expression 

Pen n e w  hi lber t :  5 side" 8 

The index for the example is 5; at each point, a line 8 pixels long is 
drawn. The corresponding method for the message hilbert:side is 

h i l b e r t :  n s i d e :  s 

t a m 1  
n = 0 ifTrue: [ tse l f  turn: 180]. 

n > 0 ifTrue: [a ~ 90. 

m ~ n - 1 ]  

ifFalse: [a ~ - 9 0 .  

m ~ -  n +  1]. 
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Figure 19.4 

self turn: a. 

self hilbert: 0 - m side: s. 

self turn: a. 

self go: s. 

self hilbert: m side: s. 

self turn: 0 - a. 

self go: s. 

self turn: 0 - a. 

self hilbert: m side: s. 

self go: s. 

self turn: a. 

self hilbert: 0 -- m side: s. 

self turn: a 

A Hilbert  curve, where the source form is a different shape, creates a 
nice effect. Suppose the Form is three  dots in a row; this is a system 
cursor referred to as wait. The image i n  Figure 19.5 was created by 
evaluat ing the expressions 

bic  ~ Pen  n e w  s o u r c e F o r m :  C u r s o r  wa i t .  

b ic  c o m b i n a t i o n R u t e :  F o r m  under .  

b ic  h i lber t :  4 s ide:  16 
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Figure 19.5 

Expressions Cursor wait and Form under access a Form and a combina- 
tion rule, respectively, that are constants in the system and that are 
known to the named classes. Other such constants are listed in a sec- 
tion of the next chapter. The messages sourceForm: and 
combinationRule: are inherited by Pens from their superclass BitBlt. 

Commander  
Pen 

The next example is shown in Figure 19.6. Although we can not show 
the process by which the design was created, it is a nice example for 
the reader to try. The basic idea is to create an object that controls sev- 
eral Pens and coordinates their drawing a design. We call the class of 
this kind of object, Commander. A Commander is an array of Pens. 
Pens controlled by a Commander can be given directions by having the 
Commander enumerate each Pen and evaluate a block containing Pen 
commands. So if a Commander's Pens should each go: 100, for example, 
then the Commander can be sent the message 

do: [ :eachPen I eachPen go: 100] 

A Commander also responds to messages to arrange its Pens so that in- 
teresting designs based on symmetries can be created. The two mes- 

sages given in the description of Commander shown next are fanOut and 
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l ineUpFrom: startPoint to: endPoint. The first message a r ranges  the Pens 
so tha t  their  angles are evenly distr ibuted around 360 degrees. A 
Commander 's  Pens can be positioned evenly along a line using the mes- 
sage lineUpFrom:to:, where the a rguments  define the end points of the 
line. 

A description for Commander follows. The message new: is redefined 
so tha t  Pens are  stored in each e lement  of the Array. 

class name Commander 
superclass Array 
class methods 

instance creation 

new: numberOfPens 
I newCommander I 
newCommander , -super  new: numberOfPens. 
1 to: numberOfPens do: 

[: index 1 newCommander at: index put: Pen new]. 
tnewCommander 

instance methods 

distributing 

fanOut 
1 to: self size do: 

[ :index ! 
(self at: index) turn: (index - 1) , (360 / self size)] 

l ineUpFrom: startPoint to: endPoint 
1 to: self size do: 

[ :index I 
(self at: index) 

place: startPoint + (stopPoint- startPoint,( index- 1) / (self s i ze -  1))] 

The methods are useful examples of sending messages to instances of 
class Point. The image in Figure 19.6 was drawn by evaluat ing the ex- 
pressions 

bic ~- Commander  new: 4. 
bic fanOut. 
bic do: [ :eachPen i eachPen up. eachPen go: 100. eachPen down]. 
bic do: [ :eachPen I eachPen spiral: 200 angle: 121] 

The message do: to a Commander  is inheri ted from its Collect ion super- 
class. 
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Figure 19.6 

Another example of the use of a Commander is given in Figure 19.7. 
This image was created by using the message lineUpFrom:to:. It is a sim- 
ple sequence of spirals arranged along a line at an angle, created by 
evaluating the expressions 

bic ~- Commander new: 6. 
bic lineUpFrom: (300@ 150) to: (300@500). 
bic do: [ eachPen i eachPen spiral: 200 angle 121] 

E] Additional Protocol for Commander Pen An expanded description 
of Commander adds to Commander each message of the protocol of class 
Pen whose behavior changes position or orientation. This additional 
protocol supports the ability to send messages that  are part  of Pen's 
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Figure 19.7 
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protocol to the Commander. Each such message is implemented as 
broadcast ing the message to the elements  of the collection. In this way, 
messages to Commander take the same form as messages to any Pen, 
r a the r  than  tha t  of a do: message. With the class defined in this way, 
drawing sequences to a Commander appear  more like drawing se- 
quences to a Pen. Moreover, all the Pens commanded by a Commander 
draw in parallel; for example, all the spirals of Figures 19.6 or 19.7 
would grow at once. 

down 
self do: [ :each each down] 

up 

self do: [ :each each up] 
turn: degrees  

self do: [ :each 
north 

self do: [  :each each north] 
go: d istance 

set fdo: [ :each 
goto: aPoint  

self do: [ :each 
place: aPoint 

self do: [ :each 
home 

self do: [ :each each home] 
spiral: n angle: a 

1 to: n do: 
[: i  I self go: i. self turn: a] 

each turn: degrees] 

each go: distance] 

each goto: aPoint] 

each place: aPoint] 

With this additional protocol, Figure 19.6 can 
the expressions 

be drawn by evaluat ing 

bic ~- Commander new: 4. 
bic fanOut. 
bic up. 
bic go: 100. 
bic d o w n .  
bic spiral: 200 angle: 121 

and Figure 19.7 by the expressions 

bic ~ Commander new: 6. 
bic l ineUpFrom: (300 ® 150) to: (300 @ 500). 
bic spiral: 200 angle: 121 
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Class DisplayObject 

Class DisplayMedium 

Forms 
Other Forms 
Cursors 
The Display Screen 

Display Text 

Paths  

Image Manipulation with Forms 
Magnification 
Rotation 
Area Filling 
The Game of Life 
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Graphics in the Smalltalk-80 system begin with the specification of 
BitBIt. Supported by  Points, Rectangles, Forms, Pens, and Text, a wide 
variety of imagery can be created. The images in Figure 20.1 illustrate 
some of the graphical entities made possible by extending the use of 
these five kinds of objects. 

The more artistic images in Figures 20.2 and 20.3 were created using 
the additional display objects available in the Smalltalk-80 system. The 
methods used in creating these images are described later. This chapter 
describes the available kinds of display objects and the various ways to 
manipulate them. 

Class 
Disp layObjec t  

A Form is a kind of display object. There are others in the system. The 
way in which these objects are implemented is as a hierarchy of classes 
whose superclass is named DisplayObject. Form is a subclass in this hi- 
erarchy. 

A display object represents an image that has a width, a height, an 
assumed origin at 0@0, and an offset from this origin relative to which 
the image is to be displayed. All display objects are similar in their 
ability to copy their image into another image, to be scaled, and to be 
translated. They differ in how their image is created. 

There are three primary subclasses of DisplayObject. They are 
DisplayMedium, DisplayText, and Path. 

• DisplayMedium represents images that  can be '~colored" (that is, 
filled with a gray tone) and bordered (that is, their rectangular 
outline is colored). 

• DisplayText represents textual images. 

• Path represents images composed as collections of images. 

A Form is a subclass of DisplayMedium; it adds the bitmap representa- 
tion of the image. All DisplayObjects provide source information for im- 
ages; Forms provide both the source and the destination information. 

Class DisplayObject supports accessing messages for manipulating the 
various aspects of the image. 

DisplayObject instance protocol 

accessing 
width 

height 

extent 

Answer the width of the receiver's bounding 
box, a rectangle that represents the bound- 
aries of the receiver's image. 
Answer the height of the receiver's bounding 
box. 

Answer a Point representing the width and 
height of the receiver's bounding box. 
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offset 

offset: aPoint 
rounded 

DisplayObject also 

Answer a Point representing the amount by 
which the receiver should be offset when it is 
displayed or its position is tested. 
Set the receiver's offset. 
Set the receiver's offset to the nearest integral 
amount. 

provides th ree  kinds  of messages  t h a t  suppor t  
transforming an  image,  displaying the  image,  and  compu t ing  the  dis- 
play box, t h a t  is, a r e c t a n g u l a r  a r ea  t h a t  r ep resen t s  the  boundar ie s  of 
the  a r e a  for d isp laying  the  image.  

DisplayObject instance protocol 

transforming 
scaleBy: aPoint Scale the receiver's offset by aPoint. 
translateBy: aPoint Translate the receiver's offset by aPoint. 
align: alignmentPoint with: relativePoint 

Translate the receiver's offset such 
alignmentPoint aligns with relativePoint. 

display box access 
boundingBox 

that 

Answer the rectangular area that represents 
the boundaries of the receiver's space of infor- 
mation. 

displaying 
displayOn: aDisplayMedium 

at: aDisplayPoint 
clippingBox: clipRectangle 
rule: rulelnteger 
mask: aForm 

Display the receiver at location aDisplayPoint 
with rule, rulelnteger, and halftone mask, 
aForm. Information to be displayed must be 
confined to the area that intersects with 
clipRectangle. 

There  are  ac tua l ly  several  d isplaying messages  not  shown above. Alter-  
na t ive  d isplaying messages  progress ively  omi t  a keyword  (s tar t ing  f rom 
the las t  one) and  provide  defaul t  masks,  rules,  c l ipping rectangles ,  and  
positions, w h e n  needed.  Basical ly the  display screen itself is the  defaul t  
cl ipping rectangle ,  0@0 is the  defaul t  d isplay position, and  the  object 
t h a t  r ep resen t s  the  sys tem display screen, Display, (a global var iable)  is 
the  defaul t  d isplay medium.  

The message  displayAt: aDisplayPoint provides a genera l ly  useful  mes- 
sage w h e n  the  only p a r a m e t e r  not  defaul ted  is the  locat ion at  which  
the  image  is to be placed. The message  display assumes  t h a t  the  display 
locat ion is 0 ® 0. 

DisplayObject instance protocol 
displayAt: aDisplayPoint 

display 

Display the receiver at location aDisplayPoint 
with rule "over" or "storing"; halftone mask, a 
black Form; clipping rectangle the whose dis- 
play screen; onto the display screen (Display). 
Display the receiver at location 0@0. 
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These last two displaying messages are provided for textual  objects such 
as String and Text as well, so tha t  the p rogrammer  can place characters 
on the screen by evaluating an expression such as 

'This is text to be displayed' displayAt: 100@ 100 

Suppose locomotive is the Form tha t  looks like 

.LOCOMOTIVE 

then it can be displayed on the screen with top left corner at location 
50@ 150 by evaluat ing the expression 

locomotive dispiayAt: 50 @,150 

DISPLAY SCREEN 

5o,15o 
f 
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Class 
DisplayMedium 

DisplayMedium is a subclass of DisplayObject t h a t  r epresen t s  an object 
onto which  images  can b e  copied. In addit ion to those messages  
inher i ted  from its superclass,  DisplayMedium provides protocol for color- 
ing the  in ter ior  of images and placing borders  a round  the  display boxes 
of images.  The "colors" are  Forms tha t  are  a l ready  avai lable  in the  sys- 
tem. These are  black (the b i tmap  is all ones), white (all zeros), and vari- 
ous gray  tones, e i the r  gray, veryLightGray, lightGray, or darkGray 
(mixtures  of ones and zeros). Images  of these colors are  given below. All 
or port ions of the DisplayMedium's a rea  can be changed to one of these 
colors using the  following messages.  

DisplayMedium instance protocol 

coloring 
black 
black: aRectangle 

white 
white: aRectangle 

gray 
gray: aRectangle 

veryLightGray 

veryLightGray: aRectangle 

Change all of the receiver's area to black. 
Change the area of the receiver defined by the 
argument, aRectangle, to black. 
Change all of the receiver's area to white. 
Change the area of the receiver defined by the 
argument, aRectangle, to white. 
Change all of the receiver's area to gray. 
Change the area of the receiver defined by the 
argument, aRectangle, to gray. 
Change all of the receiver's area to very light 
gray. 
Change the area of the receiver defined by the 
argument, aRectangle, to very light gray. 

lightGray 
lightGray: aRectangle 

darkGray 
darkGray: aRectangle 

Change all of the receiver's area to light gray. 
Change the area of the receiver defined by the 
argument, aRectangle, to light gray. 
Change all of the receiver's area to dark gray. 
Change the area of the receiver defined by the 
argument, aRectangle, to dark gray. 

In the above messages,  the  origin of the  a rgumen t ,  aRectangle,  is in the 
coordinate  sys tem of the  receiver.  

Suppose picture is a kind of DisplayMedium t h a t  is 100 pixels in width  
and 100 pixels in height ,  and t h a t  box is an  ins tance  of Rectangle wi th  
origin at  30 @ 30 and width  and  he ight  of 40. Then  the  protocol for fill- 
ing the  subarea  of picture represen ted  by box is i l lus t ra ted  by the  fol- 
lowing sequence. 
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expression result 

picture black: box 

picture white: box 

picture gray: box 

m 
picture lightGray: box 

!iii!iiiiiii!iii!iil 
picture veryLightGray: box 

. . % ° . - . . . . . - . - . - . - .  

. . - . ° . - . . . . . % - . - . - .  

. ° ° ° ° °%°°° ° - ° ° ° ° ° ° °  
° ° ° ° . °%°° ° ° ° ° ° ° ° ° ° .  
. ° ° ° ° °%°°° ° ° ° ° ° - ° ° °  
° . ° ° . ° % ° ° ° ° ° . ° . ° ° ° °  
° °%%°°°°°° ° °%°°% 
°o%Oo%-o°oO.%%% 
-.%o.%OoO.OoOo%% 
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picture darkGray: box 

ilii~i ~iii 

P a r t  of an  i m a g e  can be filled wi th  a p a t t e r n  by s end ing  a 
DisplayMedium a m e s s a g e  to fill a p a r t i c u l a r  s u b - a r e a  wi th  a h a l f t o n e  
p a t t e r n .  The  o t h e r  color ing messages  use these  fi l l ing m e s s a g e s  in t h e i r  

i m p l e m e n t a t i o n .  

DisplayMedium instance protocol 
fill: aRectangle mask: aHalftoneForm 

Change the area of the receiver defined by the 
argument, aRectangle, to white, by filling it 
with the 16 x 16-bit pattern, aHalftoneForm. 
The combination rule for copying the mask to 
the receiver is 3 (Form over). 

fill: aRectangle rule: anlnteger mask: aHalftoneForm 
Change the area of the receiver defined by the 
argument, aRectangle, to white, by filling it 
with the 16 x 16 bit pattern, aHalftoneForm. 
The combination rule for copying the mask to 
the receiver is anlnteger. 

As an  example ,  t he  r e su l t  of e v a l u a t i n g  t h e  express ions  

box ~- 16 @ 16 extent: 64 ® 64. 
picture fill" box mask: locomotive 

w h e r e  locomotive is a 16x16-bit  Form, is 

The  r e su l t  of e v a l u a t i n g  the  sequence  of two express ions  

picture lightGray: box. 
picture fill: box rule: Form under mask: locomotive 
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Note tha t  in the above, the rule Form under refers to an Integer combi- 
nat ion rule. Messages to Form to access combination rules and halftone 
masks were defined in Chapter  18. 

Reversing an image means changing all the bits in the area tha t  are 
white to black and those tha t  are black to white. Ei ther  all or par t  of 
an image can be reversed. 

DisplayMedium instance Protocol 

reverse: aRectangle mask: aHalftoneForm 
Change the area in the receiver defined by the 
argument, aRectangle, so that, in only those 
bits in which the mask, aHalftoneForm, is 
black, white bits in the receiver become black 
and black become white. 

reverse:  a R e c t a n g l e  Change the area in the receiver defined by the 
argument, aRectangle, so that  white is black 
and black is white. The default mask is Form 
black. 

reverse  Change all of the receiver's area so that  white 
is black and black is white. 

The result  of 

picture reverse: box 

on the last image is 

Bordering means Coloring the outline of a rectangle. Bordering is done 
using a source Form and mask. Three messages provide methods for 
bordering an image. 
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DisplayMedium instance protocol 

bordering 
border: aRectangle widthRectangle: insets mask: aHalftoneForm 

Color an outline around the area within the 
receiver defined by the argument, aRectangle. 
The color is determined by the mask, 
aHalftoneForm. The width of the outline is de- 
termined by the Rectangle, insets, such that, 
origin x is the width of the left side, origin y 
is the width of the top side, corner x is the 
width of the right side, and corner y is the 
width of the bottom side. 

border: aRectangle width: borderWidth mask: aHalftoneForm 
Color an outline around the area within the 
receiver defined by the argument, aRectangle. 
The color is determined by the mask, 
aHaiftoneForm. The width of all the sides is 
borderWidth. 

border: aRectangle width: borderWidth 
Color an outline around the area within the 
receiver defined by the argument, aRectangle. 
The color is Form black. The width of all the 
sides is borderWidth. 

E x a m p l e s  a r e  

expression result 

picture 
border: box 
width: 8 

picture 
border: box 
width: 8 
mask: Form gray 



picture 
border: box 
widthRectangle: 

(4 ® 16 corner: 4 @ 16) 
mask: Form darkGray 
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picture 
border: box 
width: 16 
mask: locomotive 

The next sequence of images shows how bordering can be done by ma- 
nipulating the size of the rectangle used to designate which area within 
picture should be changed. 

expression result 

frame ~ 48 @ 48 extent: 16 @ 16. 
picture white. 
picture reverse: frame 

frame ~ frame expandBy: 16. 
picture 

fill: frame 
rule" Form reverse 
mask: Form black. 
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frame .- frame expandBy: 16. 
picture 

border: frame 
width: 16 
mask: locomotive 

picture 
border: frame 
width: 1 

Forms Class Form is the only subclass of DisplayMedium in the standard 
Smalltalk-80 system. It was introduced in Chapter 18 in which we de- 
fined messages that  provide access to constants representing masks and 
combination rules (modes). As an illustration of the use of Forms in cre- 
ating complex images, the following sequence of expressions creates the 
image shown at the beginning of this chapter as Figure 20.2. 

Suppose we have two Forms available, each 120 bits wide and 180 
bits high. We name them face25 and face75. These images were creat- 
ed using a scanner to digitize photographs of a gentleman when he was 
in his 20's and on the occasion of his 75th birthday. 
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The scanned images were scaled to the desired size and then com- 
bined with halftone masks in the following way. Two Arrays, each size 
8, contain references to the halftone masks (masks) and the Forms 
(forms) used in creating each part  of the final image. 

masks ~ Array new: 8. 
masks at: 1 put: Form black. 
masks at: 2 put: Form darkGray. 
masks at: 3 put: Form gray. 
masks at: 4 put: Form lightGray. 
masks at: 5 put: Form veryLightGray. 
masks at: 6 put: Form lightGray. 
masks at: 7 put: Form gray. 
masks at: 8 put: Form black. 
forms ~- Array new: 8. 
forms at: 1 put: face25. 
forms at: 2 put: face25. 
forms at: 3 put: face25. 
forms at: 4 put: face25. 
forms at: 5 put: face75. 
forms at: 6 put: face75. 
forms at: 7 put: face75. 
forms at: 8 put: face75 

The variable i is the initial index into the first halftone and first Form 
used in forming the first sub-image of each row. Each time a complete 
row is displayed, i is incremented by 1. Each row consists of 5 elements. 
The variable index is used to index 5 halftones and five Forms; index is 
set to i at the outset of each row. Thus the first row is made up by com- 
bining elements 1, 2, 3, 4, and 5 of masks and forms; the second row is 
made up by combining elements 2, 3, 4, 5, and 6 of masks and forms; 
and so on. The y coordinate of each row changes by 180 pixels each 
time; the x coordinate of each column changes by 120 pixels. 

0 to: 540 by: 180 do: 
[ :Y l  index ~ i. 

0 to: 480 by: 120 do: 
[ : x t  (forms at: index) 

displayOn: Display 
at: x@y 
clippingBox: Display boundingBox 
rule: Form over 
mask: (masks at: index). 

index ~-index + 1]. 
i t - i + 1 ]  
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Other  Forms  

Two other kinds of forms exist in the system, InfiniteForm and 
OpaqueForm. These two classes a r e  subclasses of DisplayObject, r a the r  
than  of DisplayMedium. They therefore do not share Form's inheri ted 
ability to be colored and bordered. InfiniteForm represen ts  a Form 
obtained by replicating a pa t te rn  Form indefinitely in all directions. 
Typically the overlapping views displayed in the Small talk-80 program- 
ming interface (as shown in Chapter  17) are placed over a light gray 
background; this background is defined by an InfiniteForm whose repli- 
cated pa t te rn  is Form gray. OpaqueForms represent  a shape as well as a 
figure Form. The shape indicates what  par t  of the background should be 
occluded in displaying the image, so tha t  pa t terns  other than  black in 
the figure will still appear  opaque. Instances of OpaqueForm support  
creat ing animations.  Nei ther  InfiniteForrn nor OpaqueForm adds new 
protocol. 

Cursors 
Form has two subclasses of interest,  class Cursor and class 
DisplayScreen. The Small talk-80 system makes  extensive use of Forms 
to indicate both the cur ren t  location of the hardware  pointing device 
and the cur ren t  s ta tus  of the system. A Form used in this way is re- 
ferred to as a cursor since its p r imary  purpose is to move over the 
screen in order  to locate screen coordinates. 

Instances of class Cursor are  Forms tha t  are 16 pixels wide and 16 
pixels high. Class Cursor adds three  new messages to the displaying pro- 
tocol t ha t  it inher i ts  from DisplayObject. 

Cursor instance protocol 

displaying 
show 

showGridded: gridPoint 

showWhile: aBIock 

Make the receiver be the current cursor 
shape. 
Make the receiver be the current cursor 
shape, forcing the location of cursor to the 
point nearest the location, flridPoint. 
While evaluating the argument, aBIock, make 
the receiver be the cursor shape. 

Several different cursors are  supplied with the s tandard  Small talk-80 
system. They a r e  shown in Figure 20.4 both small and enlarged in or- 
der to i l lustrate  their  bitmaps. The name of each cursor, given below its 
image, is the same as the message to class Cursor which accesses tha t  
par t icular  Cursor. For example, the following expression shows a cursor 
tha t  looks like eyeglasses on the screen while the system computes the 
factorial of 50. It then reverts  to showing the original cursor shape. 
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normal execute 

up 

I"" I.,,. 
down 

r-- [ ' - -  J 

origin corner 

_1 

read write 

+ I ES 
i 

crosshair move 

• 0 404 4 4 4  

Figure 20.4 marker wait 

Cursor read showWhile: [50 factorial] 

Changing the cursor shape is a very effective way of communicat ing 
with the user. At tent ion is always on the cursor, and changing its shape 
does not a l ter  the appearance of the display. 
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The Display 
Screen 

DisplayScreen is another subclass of Form. There is usually only one in- 
stance of DisplayScreen in the system. It is referred to as Display, a 
global variable used to handle general user requests to deal with the 
whole display screen. In addition to the messages it inherits from its 
superclasses, DisplayObject, DisplayMedium, and Form, DisplayScreen 
provides class protocol for resetting the width, height, and displayed im- 
age of the screen. 

The one case when multiple instances of DisplayScreen may exist is 
when (double-buffered) full screen animation is being done by alternat-  
ing which instance of DisplayScreen supplies bits to the display hard- 
ware. Typically, full screen animation is not used, rather,  animation is 
done within a smaller rectangular  area. A hidden buffer of bits is used 
to form the next image. Each new image is displayed by copying the 
bits to the rectangular  area using the copyBits: message of a BitBlt. 

D i s p l a y T e x t  The second subclass of DisplayObject is class DisplayText. An instance of 
Text provides a font index (1 through 10) and an emphasis (italic, bold, 
underline) for each character  of an instance of String. DisplayText con- 
sists of a Text and a TextStyle. A TextStyle associates each font index 
with an actual font (set of glyphs). In addition to representing this map- 
ping to the set of fonts, a DisplayText supports the ability to display the 
characters on the screen. It does not support the protocol needed to cre- 
ate a user interface for editing either the characters or the choice of 
fonts and emphasis; this protocol must be supplied by subclasses of 
DisplayText. 

Paths  A third subclass of DisplayObject is class Path. A Path is an 
OrderedCollection of Points and a Form that should be displayed at each 
Point. Complex images can be created by copying the Form along the 
trajectory represented by the Points. 

Class Path is the basic superclass of the graphic display objects that 
represent trajectories. Instances of Path refer to an OrderedCollection 
and to a Form. The elements of the collection are Points. They can be 
added to the Path (add:); all Points that are described by some criterion 
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c a n  be  r e m o v e d  f r o m  t h e  P a t h  ( r e m o v e A I I S u c h T h a t : ) ;  a n d  t h e  Po in t s  c a n  

be  e n u m e r a t e d ,  co l l e c t ed ,  a n d  s e l e c t e d  (do:,  col lec t ,  a n d  select :} .  

Path instance protocol 

accessing 
form 
form" aForm 

at: index 

at: index put: aPoint 

size 

Answer the Form referred to by the receiver. 

Set the Form referred to by the receiver to be 
aForm. 
Answer the Point that is the indexth element 
of the receiver's collection. 

Set the argument, aPoint, to be the indexth el- 
ement of the receiver's collection. 

Answer the number of Points in the receiver's 
collection. 

testing 
isEmpty Answer whether the receiver contains any 

Points. 

adding 
add: aPoint Add the argument, aPoint, as the last element 

of the receiver's collection of Points. 

removing 
removeAllSuchThat: aBIock Evaluate the argument, aBIock, for each Point 

in the receiver. Remove those Points for which 
aBIock evaluates to true. 

enumerating 
do: aBIock 

collect: aBIock 

select: aBIock 

Evaluate the argument, aBIock, for each Point 
in the receiver. 

Evaluate the argument, aBIock, for each Point 
in the receiver. Collect the resulting values 
into an OrderedCollection and answer the new 
collection. 

Evaluate the argument, aBIock, for each Point 
in the receiver. Collect into an Ordered- 
Collection those Points for which aBIock evalu- 
ates to true. Answer the new collection. 

A s  a n  e x a m p l e ,  w e  c r e a t e  a " s t a r "  Path, a n d  d i s p l a y  a d o t - s h a p e d  Form, 
referred to by the name dot, at each point on that Path. 

aPath ,- Path new form: dot. 
aPath add: 150 @ 285. 
aPath add: 400 @ 285. 
aPath add: 185 @ 430. 
aPath add: 280 @ 200. 
aPath add: 375 @ 430. 
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aPath add: 150 @ 285. 
aPath display 

The resulting image is shown as the first path in Figure 20.5. 

m 

m m 

m m 

Figure 20.5 
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There are three paths in Figure 20.5. 

• an instance of Path, created as indicated above 

• an instance of LinearFit, using the same collection of Points 

• an instance of Spline, using the same collection of Points 

A LinearFit is displayed by connecting the Points in the collection, in or- 
der. 

aPath ~- LinearFit new form: dot. 
aPath add: 150 @ 285. 
aPath add: 400 @ 285. 
aPath add: 185 @ 430. 
aPath add: 280 @ 200. 
aPath add: 375 @ 430. 
aPath add: 150 @ 285. 
aPath display 

The Spline is obtained by fitting a cubic spline curve through the Points, 
again, in order. The order in which the Points are added to the Path sig- 
nificantly affects the outcome. 

aPath ~ Spline new form: dot. 
aPath add: 150 @ 285. 
aPath add: 400 @ 285. 
aPath add: 185 @ 430. 
aPath add: 280 @ 200. 
aPath add: 375 @ 430. 
aPath add: 150 @ 285. 
aPath computeCurve. 
aPath display 

LinearFit and Spline are defined as subclasses of Path. In order to sup- 
port the protocol of DisplayObject, each of these subclasses implements  
the message displayOn:at:clippingBox:rule:mask:. 

Straight  lines can be defined in terms of Paths. A Line is a Path spec- 
ified by two points. An Arc is defined as a quar ter  of a circle. Instances 
of class Arc are specified to be one of the four possible quarters;  they 
know their  center Point and the radius of the circle. A Circle, then, is a 
kind of Arc tha t  represents all four quarters.  Again, in order to support  
the protocol of DisplayObject, each of these three classes (Line, Arc, and 
Circle) implements  the messages displayOn:at:clippingBox:rule:mask:. 

Class Curve is a subclass of Path. It represents a hyperbola tha t  is 
tangent  to lines determined by Points pl,  p2 and p2, p3, and tha t  passes 
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through Points p l and p3. The displaying message for Curve is defined 
as shown in the method below. 

displayOn: aDisplayMedium 
at: aPoint 
clippingBox: aRectangle 
rule: antnteger 
mask: aForm 

I p a p b k s p l  p2p31 ine  I 
line ~ Line new. 
line form: self form. 
self size < 3 ifTrue: [self error: "Curves are defined by three po in ts ' ] .  
p l ~ self at: 1. 
p2 ~- self at: 2. 
p3 ~ self at: 3. 
s ~ Path new. 
s add: p l .  
pa ~ p2 - p l .  
pb ~ p3 -- p2. 
k ~ 5 max: p a x a b s  + p a y a b s  -I- p b x a b s  + p b y a b s / /  20. 
"k is a guess as to how many line segments to use to approximate the 
curve."  
1 to: k do: 

[ : i l  s add: 
p a . i / / k  -I- p l . ( k - - i )  -t- ( p b . ( i - 1 ) / / k  4- p 2 . ( i - 1 ) ) / / ( k - 1 ) ] .  

s add: p3. 
1 to: s size do: 

[:il  
line at: 1 put: (s at: i). 
line at: 2 put: (s at : i  + 1). 
line displayOn: aDisplayMedium 

at: aPoint 
cl ippingBox: aRectangle 
rule: anlnteger 
mask: aForm] 

The algorithm was devised by Ted Kaehler. Basically the idea is to di- 
vide the line segments pl, p2 and p2, p3 into 10 sections. Numbering 
the sections as shown in the diagram, draw a line connecting point 1 on 
pl, p2 to point 1 on p2, p3; draw a line connecting point 2 on pl, p2 to 
point 2 on p2, p3; and so on. The hyperbola is the path formed from p l 
to p3 by interpolating along the line segments formed on the outer 
shell. 

Several curves are shown in Figure 20.6. The curves are the black 
lines; the gray lines indicate the lines connecting the points that  were 
used to define the curves. 
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Two Curves were used to create the image shown in Figure 20.3. The 
Form was one of the images of the gentleman used in Figure 20.2. 

Image 
Manipulation 
with Forms 

Magnification 

We have shown in Chapter 18 how BitBlt can copy shapes and how re- 
peated invocation can synthesize more complex images such as text and 
lines. BitBlt is also useful in the manipulation of existing images. For 
example, text can be made to look bold by ORing over itself, shifted 
right by one pixel. Just  as complex images can be built from simple 
ones, complex processing can be achieved by repeated application of 
simple operations. In addition to its obvious manisfestation in the 
DisplayObject protocol, the power of BitBIt is made available for manipu- 
lating images through such messages as copy:from:in:rule:. 

We present here four examples of such structural  manipulation: 
magnification, rotation, area filling, and the Game of Life. 

A simple way to magnify a stored Form would be to copy it to a larger 
Form, making a big dot for every little dot in the original. For a height 
h and width w, this would take h*w operations. The algorithm present- 
ed here (as two messages to class Form) uses only a few more than h 4- w 
operations. 

magnify: aRectangle by: scale 
I wideForm bigForm spacing I 
spacing ~ 0 ® O. 
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Figure 20.6 P l  
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wideForm ~- 
Form new 

extent: aRectangle width,  scale x @ aRectangle height. 
wideForm 

spread: aRectangle 
from: self 
by: scale x 
spacing: spacing x 
direction: 1 @ O. 

bigForm ~ Form new extent: aRectangle extent, scale. 
bigForm 

spread: wideForm boundingBox 
from: wideForm 
by: scale y 
spacing: spacing y 
direction: 0 @ 1. 

tbigForm 
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spread: rectangle 
from: aForm 
by: scale 
spacing: spacing 
direction: dir 

I slice sourcePt I 
slice ~ 0@0 corner: dir transpose * self extent -t- dir. 
sourcePt ~- rectangle origin. 

1 to: (rectangle extent dotProduct: dir) do: 

[ : i l  
" slice up original area" 
self copy: slice 

from: sourcePt 
in: aForm 
rule: 3. 

sourcePt ~ sourcePt --I--. dir. 
slice moveBy: d i r ,  scale]. 

1 to: sca le-  spacing - 1  do: 

[: i l  
" smear out the slices, leave white space" 
self copy: (dir corner: self extent) 

from: 0 @ 0 
in: self 
rule: 7] 

The magnification proceeds in two steps. First, it slices up the image 
into vertical strips in wideForm separated by a space equal to the mag- 
nification factor. These are then smeared, using the ORing function, 
over the intervening area to achieve the horizontal magnification. The 
process is then repeated from wideFo rm into bigForm,  with horizontal 
slices separated and smeared in the vertical direction, achieving the de- 
sired magnification. Figure 20.7 illustrates the progress of the above al- 
gorithm in producing the magnified ~7". 

Figure 20.7 

self wideForm WideForm bigForm bigForm 
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Rotation 
Another useful operation on images is rotation by a multiple of 90 de- 
grees. Rotation is often thought to be a fundamentally different opera- 
tion from translation, and this point of view would dismiss the 
possibility of using BitBlt to rotate an image. However, the first trans- 
formation shown in Figure 20.8 is definitely a step toward rotating the 
image shown; all that  remains is to rotate the insides of the four cells 
that  have been permuted. The remainder of the figure shows each of 
these cells being further subdivided, its cells being similarly permuted, 
and so on. Eventually each cell being considered contains only a single 
pixel. At this point, no further subdivision is required, and the image 
has been faithfully rotated. 

Each transformation shown in Figure 20.8 would appear to require 
successively greater amounts of computation, with the last one requir- 
ing several times more than h*w operations. The tricky aspect of the al- 
gorithm below is to permute the subparts of every subdivided cell at 
once, thus performing the entire rotation in a constant times log2(h) op- 
erations. The parallel permutation of many cells is accomplished with 
the aid of two auxiliary Forms. The first, mask, carries a mask that  se- 
lects the upper left quadrant of every cell; the second, temp, is used for 
temporary storage. A series of operations exchanges the right and left 
halves of every cell, and then another series exchanges the diagonal 
quadrants, achieving the desired permutation. 

ro ta te  
t mask temp quad all I 
all ~ self boundingBox. 
mask ,--- Form extent: self extent. 
temp ~- Form extent: self extent. 
mask white. "set up the first mask" 
mask black: (0@0 extent: mask ex ten t / /  2). 
quad ~ self w i d t h / / 2 .  
[quad > = 1] whileTrue: 

[" First exchange left and right halves" 
temp copy: all from: 0@0 in: mask rule: 3. 
temp copy: all from: O@quad negated in: mask rule: 7. 
temp copy: all from: 0@0 in: self rule: 1. 
self copy: all from: 0@0 in: temp rule: 6. 
temp copy: all from: quad@O in: self rule: 6. 
self copy: all from: quad@O in: self rule: 7. 
self copy: all from: quad negated@O in: temp rule: 6. 
"then flip the diagonals" 
temp copy: all from: 0@0 in: self rule: 3. 
temp copy: all from: quad@quad in: self rule: 6. 
temp copy: all from: 0@0 in: mask rule: 1. 
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Figure 20.8 
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Figure 20.9 

Figure 20.10 

self copy: all from: 0@0 in: temp rule: 6. 
self copy: all from: quad negated@quad negated in: temp rule: 6. 
"Now refine the mask" 
mask copy: all from: (quad//2)@(quad//2) in: mask rule: 1. 
mask copy: all from: 0@quad negated in: mask rule: 7. 
mask copy: all from: quad negated@0 in: mask rule: 7. 
quad ~ q u a d / / 2 ]  

Figure 20.9 traces the state of temp and self after each successive opera- 
tion. 
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In the Figure 20.9, the offsets of each operation are not shown, though 
they are given in the program listing. After twelve operations, the de- 
sired permutation has been achieved. At this point the mask evolves to 
a finer grain, and the process is repeated for more smaller cells. Figure 
20.10 shows the evolution of the mask from the first to the second stage 
of refinement. 

~i~ i AND Yi!l 
I !  I q 1 
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The algorithm presented here for rotation is applicable only to square 
forms whose size is a power of two. The extension of this technique to 
arbitrary rectangles is more involved. A somewhat simpler exercise is 
to apply the above technique to horizontal and vertical reflections about 
the center of a rectangle. 
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A useful operation on Forms is to be able to fill the interior of an 
outlined region with a halftone mask. The method given here takes as 
one a rgument  a Point tha t  marks  a location in the interior of the re- 
gion. A mark  is placed at this location as a seed, and then the seed is 
smeared (in all four directions) into a larger blob until  it extends to the 
region boundary. At each stage of the smearing process, the original 
Form is copied over the blob using the ~erase" rule. This has the effect 
of t r imming  any growth which would have crossed the region borders. 
In addition, after every ten smear cycles, the result ing smear  is com- 
pared with its previous version. When there  is no change, the smear  
has filled the region and halftoning is applied throughout .  

shapeFill: aMask interiorPoint: interiorPoint 
i dirs smearForm previousSmear all cycle noChange [ 
all ~- self boundingBox. 
smearForm ~ Form extent: self extent. 
"Place a seed in the interior" 
smearForm valueAt: interiorPoint put: 1. 
previousSmear ~ smearForm deepCopy. 
dirs ~- Array with: 1@0 with: - 1@0 with: 0@1 with: 0 @ -  1. 
cycle ,- 0. 
[ "  check for no change every 10 smears" 
(cycle ,- cycle --.t- 

[previousSmear 
1 ) \ \ 1 0  = 0 and 
copy  all 
f rom 0 @ 0 
in: smearForm 
rule Form reverse. 

noChange ~- previousSmear isAIIWhite. 
previousSmear copy' all from: 0@0 in' smearForm rule Form over. 
noChange]] 

whileFalse: 
[dirs do: 

[ d i r  I 
'" smear in each of the four directions" 
smearForm copy: all 

from: dir 
in smearForm 
rule: Form under. 

" After each smear, trim around the region border" 
smearForm copy: all f rom 0@0 in self rule Form erase]]. 

"Now paint the filled region in me with aMask"  
smearForm displayOn: self 

at  0@,0 
cl ippingBox self boundingBox 
rule' Form under 
mask aMask 



412 
Display Objects 

Figure 20.11 shows a Form with a flower-shaped region to be filled. Suc- 
cessive smears appear below, along with the final result. 

Figure 20.11 

The Game of  L ire 
Conway's Game of Life is a simple rule for successive populations of a 
bitmap. The rule involves the neighbor count for each cell how many 
of the eight adjacent cells are occupied. Each cell will be occupied in 
the next generation if it has exactly three neighbors, or if it was occu- 
pied and has exactly two neighbors. This is explained as follows: three 
neighboring organisms can give birth in an empty cell, and an existing 
organism will die of exposure with less than two neighbors or from 
overpopulation with more than three neighbors. Since BitBlt cannot 
add, it would seem to be of no use in this application. However BitBlt's 
combination rules, available in the Form operations, do include the 
rules for partial sum (XOR) and carry (AND). With some ingenuity and 
a fair amount of extra storage, the next generation of any size of 
bitmap can be computed using a constant number of BitBlt operations. 

n e x t L i f e G e n e r a t i o n  
t nbr l  nbr2 nbr4 carry2 carry4 all delta I 
nbrt ~ Form extent: self extent. 

nbr2 ~ Form extent: self extent. 

nbr4 ~ Form extent: self extent. 

carry2 ~- Form extent: self extent. 
carry4 ~ Form extent: self extent. 
all ~- self boundingBox. 
I to: 8 do: 

[ : i l  
" delta is the offset of the eight neighboring cel ls"  

delta ~- ( ( # ( - - 1  0 t 1 1 0  1 - 1 )  at: i)  

@ ( # (  1 - 1  - 1 0  1 1 1 0) at: i)). 
carry2 copy: all from: 0@0 in: nbr l  rule: 3. 

carry2 copy: all from: delta in: self rule: 1. " A N D  for carry into 2 "  
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nbri copy: all from: delta in: self rule: 6. "XOR for sum 1" 
carry4 copy: all from: 0@0 in: nbr2 rule: 3. 
carry4 copy: all from: 0®0 in: carry2 rule: 1. "AND for carry into 4" 

nbr2 copy: all from: 0@0 in: carry2 rule: 6. "XOR for sum 2" 
nbr4 copy: all from: 0@0 in: carry4 rule: 6]. 

"XOR for sum 4 (ignore carry into 8)" 
self copy: all from: 0@0 in: nbr2 rule: 1. 
nbrl  copy: all from: 0@0 in: nbr2 rule: 1. 
self copy: all from: 0@0 in: nbrl rule: 7. 
self copy: all from: 0@0 in: nbr4 rule: 4 
" compute next generation" 

As shown in Figure 20.12, the number of neighbors is represented using 
three image planes for the l 's bit, 2's bit and 4's bit of the count in bi- 
nary. The 8's bit can be ignored, since there are no survivors in that  
case, which is equivalent to zero (the result of ignoring the 8's bit). This 
Smalltalk-80 method is somewhat wasteful, as it performs the full carry 
propagation for each new neighbor, even though nothing will propagate 
into the 4-plane until at least the fourth neighbor. 
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Par t  Three is an example of modeling discrete, event-driven simu- 
lations in the Smalltalk-80 system. A simulation is a representa- 
tion of a system of objects in a real or fantasy world. The purpose 
of creating a computer  s imulat ion is to provide a f ramework in 
which to unders tand the simulat ion situation. In order to create 
the Smalltalk-80 simulations, we first describe a hierarchy of clas- 
ses tha t  represent  probability distributions. Various kinds of prob- 
ability distributions are used to determine arrival  t imes of objects, 
such as customers, into a simulation; they are also used to ran- 
domly select response or service t imes for workers in a simulation. 
The example class S i m u l a t i o n O b j e c t  represents  any kind of object 

A 



that  enters into a simulation in order to carry out one or more 
tasks; class Simulation represents the simulation itself and provides 
the control structures for admitting and assigning tasks to new 
SimulationObjects. 

The objects that  participate in event-driven simulations operate 
more or less independently of one another. So it is necessary to 
consider the problem of coordinating and synchronizing their ac- 
tivities. The Smalltalk-80 system classes, Process, Semaphore, and 
SharedQueue, provide synchronization facilities for otherwise inde- 
pendent simulation events. The framework of classes defined in 
this part support the creation of simulations that use consumable, 
nonconsumable, and/or renewable resources. They also provide a 
number of ways in which a programmer can gather statistics 
about a running simulation. 
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Probability Distributions 

Probability Distribution Framework 
Definitions 
Introductory Examples 
Class ProbabilityDistribution 
Class DiscreteProbability 
Class ContinuousProbability 

Discrete Probability Distributions 
The Bernoulli Distribution 
The Binomial Distribution 
The Geometric Distribution 
The Poisson Distribution 

Continuous Probability Distributions 
The Uniform Distribution 
The Exponential Distribution 
The Gamma Distribution 
The Normal Distribution 
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Probability 
Distribution 
Framework 

Applications, such as simulations,  often wish to obtain values associated 
with the outcomes of chance experiments .  In such experiments ,  a num- 
ber of possible questions might  be asked, such as: 

• W h a t  is the probabil i ty of a certain event  occurring? 

• Wha t  is the probabil i ty of one of several  events occurring? 

• W h a t  is the probabil i ty that ,  in the next  N trials, at  least one suc- 
cessful event  will occur? 

• How m a n y  successful events will occur in the next  N trials? 

• How m a n y  trials unti l  the next  successful event  occurs? 

Definit ions 
In the terminology of simulations,  a trial is a tick of the s imulated 
clock (where a clock tick might  represent  seconds, minutes,  hours ,  days, 
months,  or years,  depending on the uni t  of t ime appropr ia te  to the situ- 
ation). An event or success is a job arr ival  such as a car ar r iv ing to a car 
wash, a customer  ar r iv ing in a bank,  or a broken machine  arr iv ing in 
the repai r  shop. 

In the realm of statistics, the probabil i ty tha t  an event  will occur is 
typically obtained from a large n u m b e r  of observations of actual  trials. 
For example,  a long series of observat ions of a repair  shop would be 
needed in order to de termine  the probabil i ty of a broken machine  arriv- 
ing in t h e  shop dur ing a fixed t ime interval.  In general,  several events 
might  occur dur ing tha t  t ime interval.  The set of possible events is 
called a sample space. A probability function on a sample space is de- 
fined as an association of a numbe r  between 0 and 1 with each event  in 
the sample space. The probabil i ty or chance tha t  at  least one of the 
events in the sample space will occur is defined as 1; if p is the proba- 
bility tha t  event  E will occur, then  the probabil i ty tha t  E will not occur 
is defined as 1 - p. 

Sample  spaces are classified into two types: discrete and continuous. 
A sample space is discrete if it contains a finite n u m b e r  of possible 
events or an infinite n u m b e r  of events tha t  have a one-to-one relation- 
ship with the positive integers. For example,  the six possible outcomes 
of a throw of a die const i tute  a discrete sample space. A sample space is 
cont inuous if it contains an ordered, infinite numbe r  of events, for ex- 
ample, any  n umbe r  between 1.0 and 4.0. Probabil i ty  functions on each 
of these types of sample spaces are appropr ia te ly  named discrete proba- 
bility functions and continuous probability functions. 

A random variable is a real-valued function defined over the events 
in a sample space. The adjectives ~discrete" and ~continuous" apply to 
random variables according to the character is t ic  of thei r  range. The 
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probabil i ty function of a r andom variable is called a probability distri- 
bution; the values in the range of the function are the probabilit ies of 
occurrence of the possible values of the r andom variable. The density is 
a function tha t  assigns probabili t ies to allowed ranges of the random 
variable. Any function can be a density function (discrete or continuous) 
if it has only positive values and its integral  is 1. 

Another  useful function tha t  plays an impor tan t  role in s imulat ions 
is called the cumulative distribution function. It gives the probabil i ty 
tha t  the value of the random variable is within a designated range. For 
example, the cumulat ive  distr ibution function answers  the question: 
wha t  is the probabil i ty that ,  in the throw of a die, the side is 4 or less? 

The mean is defined as the average value tha t  the random variable 
takes on. The variance is a measure  of the spread of the distribution. It 
is defined as the average of the square of the deviations from the mean. 

Two examples of sample spaces are given here before enter ing into a 
detailed description of the Small ta lk-80 classes. Suppose the sample 
space is the possible outcomes of a toss of a die. The sample space con- 
sists of 

event  1:1 is th rown 
event  2 :2  is th rown 
event  3 :3  is th rown 
event  4 :4  is th rown 
event  5 :5  is th rown 
event  6 :6  is th rown 

Then, for this discrete probabil i ty distribution, the probabil i ty function 
for any  event  is 

f(event) = 1/6 

If X is a r andom variable over the sample  space, then  the probabil i ty 
dis tr ibut ion of X is g(X) such tha t  

g ( X = l )  = f ( e v e n t l ) =  1/6, ..., g ( X = 6 ) =  f ( even t6 )=  1/6. 

The densi ty of X is 1/6 for any  value of X. 
The cumulat ive  dis tr ibut ion function of X is 

c(a, b) = Xbag(X) 

For example,  

C(2,4) = g(X=2)  + g(X=3)  + g(X=4)  = 1/6 + 1/6 + 1/6 = 1/2 



420 
Probabil i ty Distributions 

As an example of a continuous probabili ty distribution, let the sample 
space be the t ime of day where the s tar t  of the day is t ime = 12:00 a.m. 
and the end of the day is t ime = 11:59:59.99... p.m. The sample space is 
the interval  between these two times. 

The probabili ty function is 

f(event) = probabili ty (event i _< t ime < eventj) 

where event i < eventj. The density of X is 

g(X = any specified time) = 0 

Suppose this is a 24-hour clock. Then the probabili ty that ,  upon looking 
at  a clock, the t ime is between 1:00 p.m. and 3:00 p.m., is defined by the 
cumulat ive distribution function 

c(1:00, 3:00) = ~ 3:00 1:0o g(X) 

g(X) is uniform over 24 hours. So 

Class 
P r o b a b i l i t y D i s t r i b u t i o n  

c(1:00, 3 :00 )=  c(1:00, 2 :00 )+  c(2:00, 3 :00 )=  1/24 ÷ 1/24 = 1/12. 

The superclass for probability distributions provides protocol for 
obtaining one or more random samplings from the distribution, and for 
computing the  density and cumulat ive distribution functions. It has a 
class variable U which is an instance of class Random. Class Random 
provides a simple way in which to obtain a value with uniform proba- 
bility distribution over the interval  [0,1]. 

L i ke  class Random, Probabi l i tyDistr ibut ion is a Stream t h a t  accesses el- 
ements  gene ra t ed  algorithmically.  Whenever  a random sampling is re -  
quired, the message next is sent to the distribution. 
PmbabitityDistribution implements  next by re turn ing  the result  of the 
message inverseDistribution: var, where the a rgument  var is a random 
number  between 0 and 1. Subclasses of ProbabilityDistribution must  im- 
plement  inverseDistribution: in order to map [0,1] onto thei r  sample 
space, or else they must  override the definition of next. The message 
next: is inheri ted from the superclass Stream. 

class name ProbabilityDistribution 
superclass Stream 
class variable names U 
class methods 

class initialization 

in i t ia l i ze  
" Uniformly distributed random numbers in the range [0,1]." 
U ,- Random new 



Class 
D i s c r e t e P r o b a b i l i t y  

421 
Probabili ty Distribution F r a m e w o r k  

instance creation 

n e w  

t self basicNew 

instance methods 

random sampling 

n e x t  

"This is a general random number generation method for any probability 
law; use the (0, 1) uniformly distributed random variable U as the val- 
ue of the law's distribution function. Obtain the next random value and 
then solve for the inverse. The inverse solution is defined by the sub- 
class. " 

1self inverseDistribution: U next 

probability functions 

d e n s i t y :  x 

" This is the density function." 
self subclassResponsibility 

d i s t r i b u t i o n :  a C e l l e c t i o n  

"This is the cumulative distribution function. The argument is a range of 
contiguous values of the random variable. The distribution is mathemati- 
cally the area under the probability curve within the specified interval." 
self subclassResponsibility 

private 

i n v e r s e D i s t r i b u t i o n :  x 

self subclassResponsibility 
c o m p u t e S a m p l e :  rn eu tOf :  n 

"'Compute the number of ways one can draw a sample without replace- 
ment of size m from a set of size n." 
m > n ifTrue: [t'0.0]. 
tn factorial / ( n -m)  factorial 

In order to initialize the class variable U, evaluate the expression 

Probabil i tyDistr ibution initialize 

Computing the number  of ways one can draw a sample without  replace- 
ment  of size m from a set of size n will prove a useful method shared by 
the subclass implementat ions  tha t  follow. 

The two types of probability distributions, discrete and continuous, are 
specified as subclasses of class ProbabilityDistribution; each provides an 
implementat ion of the cumulat ive distribution function which depends 
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on the densi ty  function. These imp lemen ta t ions  assume tha t  the  densi ty  
function will be provided in subclasses. 

class name 
superclass 
instance methods 

DiscreteProbabil i ty 
ProbabilityDistribution 

probability functions 

distribution: aCollection 
"Answer the sum of the discrete values of the density function for each 
element in the col lect ion."  

I t l  
t ~- 0.0. 

aCollection do: [ :i I t ~- t + (self density: i)]. 
tt 

Class 
C o n t i n u o u s P r o b a b i l i t y  

class name 
superclass 
instance methods 

ContinuousProbabil i ty 
ProbabilityDistribution 

probability functions 

distribution: aCollection 
"This is a slow and dirty trapezoidal integration to determine the area 
under the probability function curve y=densi ty (x)  for x in the specified 
collection. The method assumes that the collection contains numerically- 
ordered elements."  
I t aStream x l x2 y l y2 I 
t ~ 0.0. 

aStream ~- ReadStream on: aCollection. 
x2 ~ aStream next. 
y2 - self density: x2. 
[x l  ~ x2. x2 ~- aStream next] 

whileTrue: 

[y l  ~ y2. 

y2 ~ self density: x2. 
t ~  t +  ( ( x 2 - x l ) , ( y 2 + y l ) ) ] .  

t t .0 .5 

In order to i m p l e m e n t  the  various kinds of probabi l i ty  dis t r ibut ions as 
subclasses of class Disc re teProbab i l i t y  or Cont inuousProbab i l i t y ,  both the 
densi ty  function and the inverse dis t r ibut ion function (or a different  re- 
sponse to next) mus t  be implemented .  
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Discrete 
Probabi l i ty  
Distributions 

As an example of a discrete probability distribution, take the heights of 
a class of 20 students and arrange a table indicating the frequency of 
students having the same heights (the representat ion of height is given 
in inches). The table might  be 

measured height number of students 

60" 3 
62" 2 
64" 4 
66" 3 
68" 5 
70" 3 

Given this information, we might  ask the question: what  is the proba- 
bility of randomly selecting a s tudent  who is 5'4" tall? This question is 
answered by computing the density function of the discrete probability 
associated with the observed information. In particular,  we can define 
the density function in terms of the following table. 

height density 

60" 3/20 
62" 2/20 
64" 4/2O 
66" 3/20 
68" 5/20 
70" 3/20 

Suppose we define a subclass of DiscreteProbability which we name 
SampleSpace,  and provide the above table as the value of an instance 
variable of SampleSpace. The response to the message density: x is the 
value associated with x in the table (in the example, the value of x is 
one of the possible heights); the value of the density of x, where x is not 
in the table, is 0. The probability of sampling each element of the col- 
lection is equally likely, so the density function is the reciprocal of the 
size of the collection. Since there may be several occurrences of a data 
element, the probability must  be the appropriate sum of the probability 
for each occurrence. The implementat ion of the cumulative distribution 
function is inherited from the superclass. 
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class name 
superclass 
instance variable names 
class methods 

instance creation 

data: aCollect ion 
1self new setData: aCollection 

SampleSpace 
DiscreteProbability 
data 

instance methods 

probability functions 

density:  x 
"x  must be in the sample space; the probability must sum over all occur- 
rences of x in the sample space" 
(data includes: x) 

ifTrue: [t(data occurrencesOf: x) / data size] 
ifFalse: [tO] 

private 

inverseDistr ibut ion:  x 
t data at: (x.data size) truncated .-t- 1 

setData:  aCollect ion 
data ~ aCollection 

Suppose heights is an instance of SampleSpace.  The data  is an a r r ay  of 
20 elements,  the height  of each s tudent  in the example. 

heights ~- SampleSpace  data: 
¢/:(60 60 60 62 62 64 64 64 64 66 66 66 68 68 68 68 

68 70 70 70) 

Then we can ask heights the question, wha t  is the probabil i ty of ran- 
domly selecting a s tudent  with height  64, or wha t  is the probabil i ty of 
r andomly  selecting a s tudent  whose height  is between 60" and 64"? 
The answer  to the first question is the density function, tha t  is, the re- 
sponse to the message density: 64. The answer  to the second is the cu- 
mula t ive  distr ibution function; tha t  is, the answer  is the response to the 
message distribution: (60 to: 64 by: 2). 

: SampleSpace,  in m a n y  ways, r e sembles  a discrete uniform distribu- 
tion. In general,  a discrete uniform distr ibut ion is defined over a finite 
range of values. For example, we might  specify a uniform distr ibution 
defined for six values: 1, 2, 3, 4, 5, 6, represent ing  the sides of a die. The 
densi ty function, as the constant  1/6, indicates tha t  the die is eclair," 
i.e., the probabil i ty tha t  each of the sides will be selected is the same. 

We define four kinds of discrete probabil i ty distr ibutions tha t  are 
useful in s imulat ion studies. They are Bernoulli, Binomial, Geometric, 
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and Poisson. A Bernoulli  dis tr ibut ion answers  the question, will a suc- 
cess occur in the next  trial? A binomial  distr ibution represents  N re- 
peated, independent  Bernoulli  distributions,  where  N is grea ter  t han  or 
equal to one. It answers  the question, how m a n y  successes are there  in 
N trials? Taking  a slightly different point of view, the geometric  distri- 
but ion answers  the question, how m a n y  repeated, independent  Bernoul- 
li t r ials  are needed before the first success is obtained? A Poisson 
distr ibut ion is used to answer  the question, how m a n y  events occur in a 
par t icu lar  t ime interval? In part icular ,  the Poisson determines  the 
probabil i ty t ha t  K events will occur in a par t icu lar  t ime interval,  where 
K is g rea te r  t han  or equal to 0. 

A Bernoull i  dis tr ibution is used in the case of a sample space of two 
possibilities, each with a given probabil i ty of occurrence. Examples  of 
sample spaces consisting of two possibilities are 

• The throw of a die, in which I ask, did I get die side 4? The proba- 
bility of success if the die is fair is 1/6; the probabil i ty of failure is 
5/6. 

• The toss of a coin, in which I ask, did I get heads? The probabil i ty 
of success if the coin is fair is 1/2; the probabil i ty of failure is 1/2. 

• The draw of a playing card, in which I ask, is the playing card the 
queen of hearts? The probabil i ty of success if the card deck is stan- 
dard is 1/52; the probabil i ty of failure is 51/52. 

According to the specification of class Bernoulli, we create a Bernoulli  
dis t r ibut ion using expressions of the form 

Bernoulli parameter: 0.17 

In this  example,  we have created a Bernoulli  dis tr ibution with a proba- 
bility of success equal to 0.17. The probabil i ty of success is also referred 
to as the mean  of the Bernoulli  distribution. 

The parameter ,  prob, of a Bernoulli  dis tr ibution is the probabili ty 
tha t  one of the two possible outcomes will occur. This outcome is typi- 
cally referred to as the successful one. The pa rame te r  prob is a number  
between 0.0 and 1.0. The densi ty function maps  the two possible out- 
comes, 1 or 0, onto the pa rame te r  prob or its inverse. The cumulat ive  
distribution, inher i ted from the superclass, can only r e tu rn  values prob 
or 1. 

class name Bernoulli 
superclass DiscreteProbability 
instance variable names prob 
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class methods 

instance creation 

p a r a m e t e r :  a N u m b e r  

(aNumber between: 0.0 and: 1.0) 
ifTrue: [1"self new setParameter: aNumber] 
ifFalse: [self error: 'The probability must be between 0.0 and 1.0 ' ]  

instance methods 

accessing 

m e a n  
l'prob 

v a r i a n c e  
tprob , (1.0 - prob) 

probability functions 

d e n s i t y :  x 

" let 1 denote success" 
x = 1 ifTrue: [l'prob]. 
" "  let 0 denote failure" 
x = 0 ifTrue: [1 ' l .0-prob].  
self error: ' outcomes of a Bernoulli can only be 1 or O' 

private 

i n v e r s e D i s t r i b u t i o n :  x 
"Depending on the random variable x, the random sample is 1 or O, 
denoting success or failure of the Bernoulli trial." 

x < = prob 
ifTrue: [1' 1] 
ifFalse: [1'0] 

s e t P a r a m e t e r :  a N u m b e r  
prob ~ aNumber 

Suppose, at  some stage of playing a card game, we wish to de te rmine  
whe the r  or not the first d raw of a card is an ace. Then  a possible (ran- 
domly determined)  answer  is obtained by sampl ing  from a Bernoull i  
dis t r ibut ion with mean  of 4/52. 

(Bernoull i parameter: 4 /52)  next 

Let 's t race how the response to the message next is car r ied  out. 

The method  associated w i t h  the u n a r y  selector next is found in the 
method  d i c t i ona ry  of class Probabil i tyDistribution. The me thod  re tu rns  
the va lue of the expression self inverseDistribution: U next. T h a t  is, a 
uni formly  dis t r ibuted n u m b e r  be tween 0 and 1 is obtained (U next) in 
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order to be the a r g u m e n t  of inverseDis t r ibut ion: .  The method associated 
with the selector inverseDistribution: is found in the method dict ionary 
of class Bernoulli. This is the inverse dis t r ibut ion function, a mapping  
from a value prob of the cumula t ive  dis t r ibut ion function onto a value, 
x, such tha t  prob is the probabil i ty t ha t  the  random variable is less 
than  or equal to x. In a Bernoull i  distr ibution,  x can only be one of two 
values; these are  denoted by the  integers 1 and 0. 

In s imulat ions,  we use a Bernoull i  dis t r ibut ion to tell us whe the r  or not 
an event  occurs, for example,  does a car arr ive  in the next  second or 
will a machine  break  down today? The binomial  dis tr ibut ion answers  
how m a n y  successes occurred in N trials. The density function of a Ber- 
noulli  dis t r ibut ion tells us the probabil i ty of occurrence of one of two 
events. In contrast ,  the densi ty function of a binomial  answers  the ques- 
tion, wha t  is the probabil i ty t ha t  x successes will occur in the next  N 
trials? 

The binomial  d is t r ibut ion  represents  N repeated,  independent  Ber- 
noulli trials. It is the same as Bernoull i  for N = 1. In the description of 
class Binomia l ,  a subclass of class Bernoul l i ,  the addit ional  instance vari- 
able, N, represents  the n u m b e r  of trials. Tha t  is, given an instance of 
Binomial, the  response to the message next answers  the question, how 
m a n y  successes are there  in N trials? 

The probabil i ty function for the  binomial  is 

N! 

x! (N-x) !  
px (1--p)N-x 

where  x is the  number  of successes and p is the probabil i ty of success 
on each trial.  The notat ion ~!" represents  the ma themat i ca l  factorial 
operation. The first t e rms  can be reduced to comput ing the n u m b e r  of 
ways to obtain x successes out  of N trials, divided by the n u m b e r  of 
ways to obtain x successes out of x trials. Thus the implementa t ion  giv- 
en below makes  use of the method computeSample:  a outOf: b provided 
i n  t h e  superc lass  Probabi l i tyDis t r ibut ion.  

class name Binomial 

superclass Bernoufli 

instance variable names N 

class methods 

instance creation 

e v e n t s :  n m e a n :  m 

n truncated < = 0 ifTrue: [self error: 

1'self new events: n mean: m 

• number of events must be > 0 ' ] .  
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instance methods 

random sampling 

n e x t  

I t t  
"A surefire but slow method is to sample a Bernoulli N times. Since the 
Bernoulli returns 0 or 1, the sum will be between 0 and N." 
t ~ O .  
N timesRepeat: [t ~ t -I- super next]. 
Tt 

probability functions 

d e n s i t y :  x 
(x between: 0 and: N) 

ifTrue: [t((setf computeSample: x outOf: N) 
/ (self computeSample: x outOf: x)) 

, (prob raisedTo: x ) ,  ( (1.0-prob) raisedTo: N - x ) ]  
ifFalse: [1'0.0] 

private 

events=  n mean= m 

N ~- n truncated. 
self setParameter: m/N 
" setParameter: is implemented in my superclass" 

Let 's  use flipping coins as our example.  In five tr ials  of a coin flip, 
where  the  probabil i ty  of heads is 0.5, the Bernoull i  d is t r ibut ion with pa- 
r a m e t e r  0.5 represents  one trial,  i.e., one coin flip. 

sampleA ~- Bernoull i parameter: 0.5 

The resul t  of 

sampleA next 

is e i ther  1 or 0, answer ing  the question, did I get heads? 
Suppose instead we create  

sampteB ~ Binomial events: 5 mean: 2.5 

The resul t  of 

sampleB next 
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is a numbe r  between 0 and 5, answer ing  the question, how m a n y  heads 
did I get in 5 trials? 

The message 

sampleB density: 3 

is a n u m b e r  between 0 a n d 1 ,  answer ing  the question, wha t  is the prob- 
abili ty of get t ing heads 3 t imes in 5 trials? 

Suppose we wish to answer  the  question, how m a n y  repeated,  indepen- 
dent  Bernoulli  tr ials are needed before the first success is obtained? 
This new perspective on a Bernoull i  dis tr ibution is the geometric  distri- 
bution. As in the Bernoulli  and binomial  cases, the probabil i ty of a suc- 
cess is between 0.0 and 1.0; the mean  of the geometric is~the reciprocal 
of the success probability. Thus  if we create a geometric distr ibution as 

Geometric mean: 5 

then  the mean  is 5 and the probabil i ty of a success is 1/5. The mean  
mus t  be grea ter  than  or equal to 1. 

A geometric  dis tr ibut ion is more suitable for an event-driven simula- 
tion design t h a n  a Bernoulli  or binomial.  Instead of asking how m a n y  
cars arr ive in the next  20 seconds (a binomial  question), the geometric 
dis tr ibut ion asks, how m a n y  seconds before the next  car arrives, in 
event-driven simulations,  the (simulated) clock jumps  to the t ime of the 
next  event. Using a geometric  distr ibution,  we can de termine  when the 
next  event  will occur, set the clock accordingly, and then  carry  out the 
event, potent ial ly  ~saving" a grea t  deal of real time. 

The probabi l i ty  distr ibution function is 

p ( 1 - p )  x-1 

where  x is the numbe r  of tr ials required and p is the probabil i ty of suc- 
cess on a single trial. 

class name Geometric 
superclass Bernoulli 
class methods 

instance creation 

m e a n :  m 

t self parameter: l /m 
' "  Note that the message parameter: is implemented in the superclass" 
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instance methOds 

accessing 

m e a n  

1' 1.0 / prob 
v a r i a n c e  

1 (1.0-prob) / prob squared 

probability functions 

d e n s i t y :  x 

x > 0 ifTrue: [tprob . ((1.0- prob) raisedTo: x -1 ) ]  
ifFalse: [1"0.0] 

private ~ 

i n v e r s e D i s t r i b u t i o n :  x 

"Method is from Knuth, Vol. 2, pp.116-117" 
t(x In / ( l .0 -p rob) In )  ceiling 

Suppose, on the average,  two cars arr ive  at  a ferry landing every min- 
ute. We can express this  s ta t is t ical  informat ion  as 

sample ~- Geometric mean: 2 /60 

The densi ty  function can be used to answer  the question, wha t  is the 
probabi l i ty  t ha t  it will t ake  N t r ia ls  before the  next  success? For exam- 
ple, wha t  is the  probabi l i ty  t ha t  it will t ake  30 seconds before the next  
car  arrives? 

sample density: 30 

The cumula t ive  dis t r ibut ion function can be used to answer  the ques- 
tion, did the next  car  ar r ive  in 30 to 40 seconds? 

sample distribution: (30 to: 40) 

The Poisson 
Distribution 

Suppose the quest ion we wish to ask is, how m a n y  events  occur in a 
un i t  t ime  (or space interval)? The binomial  dis t r ibut ion considers the 
occurrence of two independen t  events,  such as drawing  a king of hear t s  
or a king of spades from a full deck of cards. There  are  r andom events,  
however,  t ha t  occur at  r andom points in t ime  or space. These events  do 
not occur as the outcomes of trials.  In these c i rcumstances ,  it does not 
make  sense to consider the probabi l i ty  of an event  happen ing  or not 
happening.  One does not ask how m a n y  cars did not ar r ive  at  a ferry or 
how m a n y  a i rp lanes  did not land at  the  airport;  the  appropr ia te  ques- 
t ions are  how m a n y  cars did arr ive  at  the  ferry and how m a n y  air- 
planes did land at  the  airport ,  in the next  uni t  of t ime? 
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In simulat ions,  the Poisson dis t r ibut ion is useful for sampl ing poten- 
tial demands  by customers for service, say, of cashiers, salesmen, tech- 
nicians, or Xerox copiers. Experience has shown tha t  the rate  at  which 
the service is provided often approximates  a Poisson probabil i ty law. 

The Poisson law describes the probabil i ty tha t  exactly x events occur 
in a uni t  t ime interval ,  when  the mean  ra te  of occurrence per uni t  t ime is 
the var iable  mu. For a t ime interval  of dt, the probabil i ty is mu*dt; mu 
must  be grea te r  t han  0.0. 

The probabil i ty function is 

a x e-a 

x! 

where  a is the mean  ra te  (or mu), e the base of na tu ra l  logari thms,  x is 
the n u m b e r  of occurrences, and ! the factorial notation.  

class name Poisson 

superclass DiscreteProbability 

instance variable names mu 

class methods 

instance creation 

m e a n :  p 

"p  is the average number of events happening per unit interval." 

p > O . O  
ifTrue: [tself new setMean: p] 

i fFalse [self error: 'mean must be greater than 0.0" ]  

instance methods 

accessing 

m e a n  

fmu 

v a r i a n c e  

fmu 

random sampling 

n e x t  

" how many events occur in the next unit interval?" 

I p n q  I 
p ~ mu negated exp. 

n , - O .  
q ~  1.0. 

[q ~- q , U next. 
q > = p ]  

whileTrue: [n ,- n +  1]. 
ln 



432 
Probabil i ty Distributions 

probability functions 

d e n s i t y :  x 
"the probability that in a unit interval, x events will occur'" 
x > = O  

ifTrue: [t((mu raisedTo: x) . (mu negated exp)) / x factorial] 
ifFalse: [1"0.0] 

private 

s e t M e a n :  p 
m u ~ p  

The response  to the message next answers the question, how many  
events occur in the next  unit  of t ime or space? The density function of x 
determines the probability that ,  in a unit  interval  (of t ime or space), x 
events will occur. The cumulat ive distribution function of x determines 
the probabili ty that ,  in a unit  interval,  x events or fewer will occur. 

Continuous 
Probability 
Distributions 

The Uniform 
Distribution 

A continuous random variable can assume any value in an interval  or 
collection of intervals. In the continuous case, questions similar  to those 
asked in the discrete case are asked and the continuous probability dis- 
t r ibutions show strong correspondence to the discrete ones. An example 
of a question one asks of a continuous probability distribution is, what  
is the probabili ty of obtaining a t empera tu re  at some moment  of time. 
Tempera tu re  is a physical property  which is measured on a continuous 
scale. 

We define four kinds of continuous probability distributions; they are 
uniform, exponential ,  gamma,  and normal  distributions. The uniform 
distribution answers the question, given a set of equally likely events, 
which one occurs? Given tha t  the underlying events are Poisson distrib- 
uted, the exponential  distribution is used to answer  the question, how 
long before the first (next) event occurs? The gamma  distribution is re- 
lated in tha t  it answers the question, how long before the Nth  event oc- 
curs? The normal  or Gaussian distribution is useful for approximat ing 
l imiting forms of other distributions. It plays a significant role in statis- 
tics because it is simple to use; symmetr ica l  about the mean; completely 
determined by two parameters ,  the mean and the variance; and reflects 
the distribution of everyday events. 

We have already examined the uniform distribution from the perspec- 
tive of selecting discrete elements from a finite sample space. The ques- 
t ion we asked was, given a set of equally likely descriptions, which one 
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to pick? In the continuous case, the sample  space is a cont inuum,  such 
as t ime or the interval  between 0 and 1. The class Uniform provided 
here extends the  capabili t ies of class Random by genera t ing  a r andom 
variable  wi th in  any in terval  as a response to the message next. 

class name Uniform 
superclass ContinuousProbability 
instance variable names startNumber 

stopNumber 
class methods 

instance creation 

f rom: begin  to: end 
begin > end 

ifTrue: [self error: ' i l legal interval ' ]  
ifFalse: [tself new setStart: begin toEnd: end] 

instance methods 

accessing 

m e a n  
1' (startNumber + stopNumber)/2 

v a r i a n c e  
l '(stopNumber - startNumber) squared / 12 

probability functions 

densi ty :  x 
(x between: startNumber and: stopNumber) 

ifTrue: [1' 1.0 / (stopNumber - startNumber) ] 
ifFalse: [1'0] 

private 

inverseDis t r ibu t ion :  x 
" x  is a random number between 0 and 1 " 
1'startNumber + ( x ,  ( s topNumber -  startNumber)) 

setStar t :  begin  toEnd:  end  
startNumber ~- begin. 
stopNumber ~ end 

Given tha t  the under ly ing  events are Poisson distr ibuted,  the exponen- 
tial dis t r ibut ion de termines  how long before the next  event  occurs. This 
is more  suitable for a s imula t ion  des ign  than  is Poisson in the same 
sense tha t  the geometric dis t r ibut ion was more  suitable t han  the  bino- 
mial, because we can j u m p  the s imula ted  clock set t ing to the next  oc- 
currence  of an event, r a the r  t han  stepping sequent ia l ly  th rough  each 
t ime unit.  
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As an example of sampling with an exponential, we might ask, when 
will the next car arrive? The density function of x is the probability 
that  the next event will occur in the time interval x, for example, what  
is the probability of the next car arr iving in the next 10 minutes? 

Exponential  is typically used in situations in which the sample dete- 
riorates with time. For example, an exponential is used to determine 
the probability tha t  a light bulb or a piece of electronic equipment  will 
fail prior to some time x. Exponential  is useful in these cases because 
the longer the piece of equipment  is used, the less likely it is to keep 
running. 

As in the case of a Poisson, the parameter  of the exponential distri- 
bution, mu, is in terms of events per unit  time, al though the domain of 
this distribution is t ime (not events). 

The probability function for the exponential distribution is 

x 
e - a  

where a is the mean rate (mu = l / a )  between occurrences. 

class name Exponential 
superclass ContinuousProbability 
instance variable names mu 
class methods 

instance creation 

m e a n :  p. 

" Since the exponential parameter mu is the same as Poisson mu, if we 
are given the mean of the exponential, we take reciprocal to get the 
probability parameter" 
1'self parameter: 1.0/p 

p a r a m e t e r :  p 

p > O . O  
ifTrue: [ tself  new setParameter: p] 
ifFalse: [self error: 

"The probability parameter must be greater than 0 .0 ' ]  

instance methods 

accessing 

m e a n  
t l . 0 /mu 

v a r i a n c e  

1" 1.0/(mu , mu) 
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probability functions 

d e n s i t y :  x 

x > 0 . 0  
ifTrue: [ tmu , (mu,x) negated exp] 
ifFalse: [t0.0] 

dis t r ibu t ion :  a n i n t e r v a l  

anlnterval stop < = 0.0 
ifTrue: [ t0.0] 
ifFalse: [t 1.0 - (mu , anlnterval stop) negated exp - 

(anlnterval start > 0.0 
ifTrue: [self distribution: 

(0.0 to: antnterval start)] 
ifFalse: [0.0])] 

private 

i n v e r s e D i s t r i b u t i o n :  x 
" implementation according to Knuth, Vol. 2, p. 114" 

l'x In negated / mu 
s e t P a r a m e t e r :  p 

m u , - p  

The Gamma 
Distribution 

A distribution related to the exponential  is gamma,  which answers the 
question, how long before the Nth  event occurs? For example, we use a 
g a m m a  distribution to sample how long before the Nth  car arrives at 
the ferry landing. Each instance of class Gamma represents  an Nth 
event and the probability of occurrence of tha t  Nth  event (inherited 
from the superclass Exponential). The variable N specified in class Gam- 
ma must  be a positive integer. 

The probabili ty function is 

x 

X k - 1  e-~ 

a k ( k -  1)! 

where k is grea ter  than  zero and the probabili ty pa ramete r  mu is 1/a. 
The second te rm of the denominator,  (k-l)!, is the gamma function 
when it is known tha t  k is grea ter  t han  0. The implementat ion given 
below does not make  this assumption. 

class name G a m m a 
superclass Exponential 

instance variable names N 

i 
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class methods 

instance creation 

e v e n t s :  k m e a n :  p 

k ~- k truncated. 
k > O  

.ifTrue: [ t(self  parameter: k/p) setEvents: k] 

ifFalse: [self error: ' the number of events must be greater than 0 ' ]  

instance methods 

accessing 

m e a n  

1'super m e a n .  N 
v a r i a n c e  

t super va r iance .  N 

probability functions 

d e n s i t y :  x 

l t l  
x > O . O  

ifTrue: [t ~- mu . x. 
t(mu raisedTo: N) / (self gamma: N) 

. (x raisedTo: N - I )  

. t negated exp] 
ifFalse: [1'0.0] 

private 

g a m m a :  n 

l t l  
t ~- n - -  1.0. 

1'self computeSample: t outOf: t 
s e t E v e n t s :  e v e n t s  

N ~ events 

The Normal  
Distribution 

The normal  distr ibution,  also called the Gaussian,  is useful for summa-  
rizing or approximat ing  other  distributions. Using the normal  distribu- 
tion, we can ask questions such as how long before a success occurs 
(similar to the discrete b inomial  distribution) or how m a n y  events occur 
in a cer tain t ime interval  (similar to the Poisson). Indeed, the normal  
can be used to approximate  a binomial  when the number  of events is 
very large or a Poisson when the mean  is large. However,  the approxi- 
mat ion is only accurate  in the regions near  the mean; the errors  in ap- 
proximat ion increase towards the tail. 

A n o r m a l  dis tr ibut ion is used when there  is a central  dominat ing  
value (the mean), and the probabil i ty of obtaining a value decreases 
with a deviation from the mean. If we plot a curve with the possible 
values on the x-axis and the probabilit ies on the y-axis, the curve will 
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look like a bell shape. This bell shape is due to the requi rements  tha t  
the probabilities are symmetr ic  about the mean,  the possible values 
from the sample space are infinite, and yet the probabilities of all of 
these infinite values must  sum to 1. The normal  distribution is useful 
when determining the probabili ty of a measurement ,  for example, when 
measur ing  the size of ball bearings. The measurements  will result  in 
values tha t  cluster about  a central  mean  value, off by a small amount.  

The parameters  of a normal  distribution are the mean  (rnu) and a 
s tandard  deviation (sigma). The s tandard  deviation must  be greater  
than  0. The probability function is 

1 x - - a 2  

where a is the pa ramete r  mu and b is the s tandard  deviation sigma. 

class name Normal 
superclass ContinuousProbabil i ty 

instance variable names 

class methods 

instance creation 

m u  

sigma 

m e a n :  a d e v i a t i o n :  b 

b > 0 . 0  
ifTrue [1`self new setMean: a standardDeviation: b] 

i fFalse [self er ror  ' standard deviation must be greater than 0 . 0 ' ]  

instance methods 

accessing 

m e a n  

lmu 

v a r i a n c e  

1" sigma squared 

random sampling 

n e x t  
"Polar method for normal deviates, Knuth vol. 2, pp. 104, 113" 

I v l v 2  s rand  u I 
rand ~- Uniform from: - 1 . 0  to: 1.0. 

[v l  ~ rand next. 

v2 ~- rand next. 
s ~ v l squared + v2 squared. 

s > = 1] whiteTrue. 

u ~ (- -2.0 , s In / s) sqrt. 

tmu + ( s i gma ,  v l  , u) 
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probabi l i ty  func t ions  

d e n s i t y :  x 

J t w o P i t  I 

twoPi ~- 2 .  3 .1415926536 .  

t ~ x - m u /  s igma. 

t ( - 0 . 5  . t squared)  exp / (s igma . twoPi sqrt) 

pr ivate 

s e t M e a n :  m s t a n d a r d D e v i a t i o n :  s 

m u ~ m .  

s igma ~- s 

In subsequent chapters, we define and provide examples of using class 
descriptions that support discrete, event-driven simulation. The proba- 
bility distributions defined in the current chapter will be used through- 
out the example simulations. 
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A simulation is a representat ion of a system of objects in a real or fan- 
tasy world. The purpose of creating a computer simulation is to provide 
a f ramework in which to unders tand the simulated situation, for exam- 
ple, to unders tand the behavior of a waiting line, the workload of 
clerks, or the timeliness of service to customers. Certain kinds of simu- 
lations are referred to as ~counter simulations." They represent  situa- 
tions for which there are places or counters in which clerks work. 
Customers arrive at a place in order to get service from a clerk. If a 
clerk is not available, the customer enters a waiting line. The first cus- 
tomer in the line is serviced by the next available clerk. Often a given 
simulation has several kinds of places and several customers, each with 
an agenda of places to visit. There are many  examples of such situa- 
tions: banks, car washes, barber  shops, hospitals, cafeterias, airports, 
post offices, amusement  parks, and factories. A computer  simulation 
makes it possible to collect statistics about these situations, and to test 
out new ideas about their  organization. 

The objects tha t  participate in a counter simulation operate more or 
less independently of one another.  So, it is necessary to consider the 
problem of coordinating or synchronizing the activities of the various 
simulated objects. They typically coordinate their  actions through the 
mechanism of message passing. Some objects, however, must  synchro- 
nize their  actions at certain critical moments; some objects can not pro- 
ceed to carry out their  desired actions without access to specific 
resources tha t  may be unavailable at a given moment.  The 
Smalltalk-80 system classes, Process, Semaphore, and SharedQueue, 
provide synchronization facilities for otherwise independent activities. 
To support  a general  description of counter simulations, mechanisms 
are needed for coordinating 

• the use of fixed-size resources, 

• the use of fluctuating resources, arid 

• the appearance of s imultanei ty in the actions of two objects. 

Fixed resources can either be consumable or nonconsumable. For exam- 
ple, jelly beans are consumable, fixed resources of a candy store; books 
are non-consumable resources of a library. Fluctuat ing resources are 
typically referred to as renewable or producer /consumer  synchronized. 
A store can model its supply of jelly beans as a fluctuating resource be- 
cause the supply can be renewed. One can also imagine a resource that  
is both renewable ~nd nonconsumable. Such a resource might be mod- 
eled in a simulation of car rentals: cars are renewable resources since 
new ones are manufactured and added to the available supply of cars to 
rent; the cars are also nonconsumable because a rented car is re turned 
to the dealer for use by other customers. Actually, most nonconsumable 
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resources are consumable, for example, l ibrary books eventual ly  become 
too ta t te red  for continued circulation; the renta l  cars eventual ly  get 
junked. ~Nonconsumable" means, minimally,  tha t  they are not 
consumed during the period of interest  in the simulation. 

When the actions of two objects in a simulation must  be synchro- 
nized to  give the appearance of carrying out a task together,  the two 
objects are said to be in a server /c l ient  relationship. For example, a 
doctor needs the cooperation of the pat ient  in order to carry  out an ex- 
amination.  The server is a coordinated resource; it is a s imulat ion ob- 
ject whose t asks  can only be carr ied out when one or more  clients 
request  the resource. 

An impor tan t  aspect of simulations is tha t  they  model si tuations tha t  
change over time; customers enter  and leave a bank; cars enter,  get 
washed, get dried, and leave a car wash; airplanes land, unload passen- 
gers, load passengers, and take off from airports. It is often the case 
tha t  these activities are t ime-related; at  certain times or with certain 
intervals  of time, events occur. Therefore, actions have to be synchro- 
nized with some notion of time. Often this notion of t ime is itself simu- 
lated. 

There  are a number  of ways in which to represent  the actions of sim- 
ulated objects with respect to real or s imulated time. In one approach, 
the clock runs in its usual manner .  A t e a c h  tick of the clock, all objects 
are given the opportuni ty to take any desired action. The clock acts as a 
synchronization device for the simulation, providing the opportunity to 
give the appearance of paral lel ism since the clock waits unti l  all actions 
appropriate  at  the given t ime are completed. Often, no actions will take 
place at  a given tick of the clock. 

Alternatively,  the clock can be moved forward according to the t ime 
at which the next  action will take place. In this case, the system is driv- 
en by the next  discrete action or event scheduled to occur. The imple- 
menta t ion  of a s imulat ion using this approach depends on main ta in ing  
a queue of events, ordered with respect to s imulated time. Each t ime an 
event  is completed, the next  one is taken from the queue and the clock 
is moved to the designated time. 

The simulations presented in this chapter  are based on this event- 
driven approach. They include simulations in which a collection of inde- 
pendent  objects exist, each with a set of  tasks to do (services or re- 
sources to obtain), and each needing to coordinate its activity's t imes 
with other  objects in the s imulated situation. 

This chapter  describes a f ramework in which such simulations can be 
developed. The class SimulationObject describes a general  kind of object 
tha t  might  appear  in a simulation, tha t  is, one with a set of tasks to do. 
The message protocol of the class provides a f ramework in which the 
tasks are carried out. An instance of class Simulation main ta ins  the sim- 
ulated clock and the queue of events. The specification of the arr ival  of 
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new objects into the system (objects such as customers) and the specifi- 
cation of resources (such as the clerks) are coordinated in this class. 

The next chapter, Chapter  23, deals with ways to collect the data 
generated in running  a simulation. Statistics gathering can be handled 
by providing a gene ra l  mechanism in subclasses of class Simulation 
and /or  class SimulationObject. Alternatively, each example simulation 
can provide its own mechanism for collecting information about its be- 
havior. 

Chapte r  24 describes example simulations that  make use of two 
kinds of synchronizations, shared use of fixed resources and shared use 
of f luctuating resources; Chapter  25 introduces additional support  for 
coordination between two simulation objects-- those want ing service 
and those providing service. 

A F r a m e w o r k  
for S imulat ions  

Simulation 
Objects 

This section contains a description of the classes tha t  provide the basic 
protocol for classes SimulationObject and Simulation. These classes are 
presented twice. First, a description of the protocol is given with an ex- 
planation of how to create a default example; second, an implementa-  
tion of these classes is given. 

Consider s imulat ing a car wash. Major components of a car wash are 
washing places, drying places, paying places, washers, dryers, cashiers, 
and vehicles of different sorts such as trucks and cars. We can classify 
these components according to behavior. Major classifications are: 
places, where workers are located and work is performed; workers, such 
as washers, dryers, and cashiers; and the vehicles tha t  are the custom- 
ers of the places. These classifications might  be t ransla ted into three 
classes of Small ta lk  objects: Place, Worker, and Customer. But each of 
these classes of objects is similar in tha t  each describes objects tha t  
have tasks to d o - - a  Customer requests service, a Worker gives service, 
and a Place provides resources. In particular,  a Place provides a waiting 
queue for the times when there are more customers than  its workers 
can handle. These similarities are modeled in the superclass 
SimulationObject, which describes objects tha t  appear  in a s imulated sit- 
uation; a SimulationObject is any object tha t  can be given a sequence of 
tasks to do. Each object defines a main sequence of activity tha t  is initi- 
ated when the object enters the simulation. For example, the activities 
of a car in a car wash are to request a washer, wait while being 
washed, request a dryer, wait while being dried, pay for the service, and 
leave. 

Class SimulationObject specifies a general  control sequence by which 
the object enters, carries out its tasks, and leaves the simulation. This 
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sequence consists of sending the  object the messages startUp, tasks, and 
finishUp. Ini t ial izat ion of descriptive variables  is specified as the re- 
sponse to message initialize. These messages are invoked by the method  
associated wi th  startUp. Response to the messages tasks and initialize are 
implemented  by subclasses of SimulationObject. 

SimulationObject instance protocol 

initialization 
initialize 

simulation control 
startUp 

tasks 

finishUp 

Initialize instance variables, if any. 

Initialize instance variables. Inform the simu- 
lation that the receiver is entering it, and 
then initiate the r~eceiver's tasks. 
Define the sequence of activities that the re- 
ceiver must carry out. 
The receiver's tasks are completed. Inform the 
simulation. 

There  are several  messages tha t  any  SimulationObject can use in order 
to describe its tasks. One is holdFor: aTimeDelay, where the argument 
aTimeDelay is some amount of simulated time for which the object de- 
lays fu r the r  action. The idea of this delay is to create  a period of t ime 
in which the object is p resumably  car ry ing  out some activity. 

We call the category of these messages, the modeler 's  task language 
to indicate tha t  these are  the  messages sent to a SimulationObject as 
par t  of ' the implementa t ion  of the message tasks. 

A s i m u l a t i o n  can contain  simple or static resources, like "jelly 
beans," t ha t  can be acquired by a s imulat ion object. Or a s imulat ion 
can consist of coordinated resources, t h a t  is, s imula t ion  objects whose 
tasks mus t  be synchronized wi th  the tasks of o ther  s imula t ion  objects. 
The task language includes messages for accessing each kind of re- 
source, e i ther  to get or to give the resource. 

There  are  3 kinds of messages  for static resources. There  are  2 mes- 
sages for get t ing an amount of the  resource named  resourceName.  They 
are 

acquire: amount ofResource: resourceName 
acquire: amount ofResource: resourceName withPriority: prioritylnteger 

There  is one for giving an amount of the resource named  resourceName, 

produce: amount of Resource: resourceName 

and one for giving up an acquired static resource, 

release: aStaticResource 
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There  are  also 3 kinds of messages for coordinated resources. The mes- 
sage for get t ing the resource named resourceName (here, the resource 
is a SimulationObject tha t  models a kind of customer, and the asker  is a 
server such as a clerk) is 

acquireResource: resourceName 

To produce the resource named resourceName (the asker  is a customer), 
the message is 

produceResource: resourceName 

and to give up an acquired resource (which is a SimulationObject whose 
task events can now be resumed), the message is 

resume: anEvent 

When a SimulationObject makes  a static resource request  
(acquire:ofResource: or request:), it can do so by stat ing the level of im- 
portance of the request.  The number  0 represents  the least impor tan t  
request, successively higher  numbers  represent  successively higher  lev- 
els of importance.  The message acquire:ofResource: assumes a priori ty 
level of 0; acquire:ofResource:withPriority: specifies par t icular  levels in 
its th i rd  argument .  

Two queries check whether  a static resource is in the s imulat ion and 
how much of the resource is available. These are resourceAvailable: 
resourceName, which answers whe ther  or not the s imulat ion has a re- 
source referred to by the String, resourceName; and inquireFor: amount 
ofResource: resourceName, which answers whe ther  there  is at  least 
amount of the resource remaining.  

When a SimulationObject is synchronizing its tasks with tha t  of an- 
other  SimulationObject, it might  be useful to know whether  such an ob- 
ject is available. Two additional inquiry messages support  finding out 
whe ther  a provider or requester  of a coordinated task is ava i l ab le - -  
numberOfProvidersOfResource: resourceName and numberOf- 
RequestersOfResource: resourceName. 

In addition, a message to a SimulationObject can request that the 
Simulation it is in stop running. This is the message stopSimulation. 

SimulationObject instance protocol 

task language 
holdFor: aTimeDelay Delay carrying out the receiver's next task 

until aTimeDelay amount of simulated time 
has passed. 
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acquire: amount ofResource: resourceName 
Ask the  s imula t ion  to provide a s imple re- 
source t h a t  is refer red  to by the String, 
resourceName.  If one exists, ask it to give the  
receiver  amount of resources. If one does not 
exist, notify the  s imula t ion  user  (programmer)  
tha t  an er ror  has  occurred.  

acquire: amount ofResource: resourceName withPriority: priorityNumber 
Ask the  s imula t ion  to provide a s imple re- 
source t h a t  is re fer red  to by the  String, 
resourceName. If one exists, ask it to give the  
receiver  amount  of resources,  t ak ing  into ac- 
count  t h a t  the  pr ior i ty  for acquir ing  the  re- 
source is to be set  as priorityNumber. If one 
does not  exist, notify the  s imula t ion  user  (pro- 
g rammer)  t h a t  an er ror  has  occurred. 

produce: amount ofResource: resourceName 
Ask the  s imula t ion  to provide a simple re- 
source t h a t  is refer red  to by the  String, 
resourceName.  If one exists, add to it amount  
more of its resources.  If one does not exist, 
c reate  it. 

release: aStaticResource The  receiver  has  been using the  resource re- 
ferred to by the a rgumen t ,  aSta t icResource .  It 
is no longer needed and can be recycled. 

inquireFor: amount ofResource: resourceName 
Answer  w h e t h e r  or not  the  s imula t ion  has  at  
least  a quant i ty ,  amount,  of a resource re- 
ferred to by the  String, resourceName.  

resourceAvailable: resourceName 
Answer  w h e t h e r  or not  the  s imula t ion  has  a 
resource re fer red  to by the  String, 
resourceName. 

acquireResource: resourceName Ask the simulation to provide a resource sim- 
ulation object that is referred to by the String, 
resourceName. If one exists, ask it to give the 
receiver its services. If one does not exist, no- 
tify the  s imula t ion  user  (programmer)  t h a t  an 
e r ror  has  occurred. 

produceResource: resourceName 
Have  the  receiver  act as a resource t h a t  is re- 
ferred to by the  String, resourceName. Wait  
for ano the r  SimulationObject t h a t  provides ser- 
vice to (acquires) this  resource.  

r e s u m e :  anEvent The receiver  has  been giving service to the  re- 
source refer red  to by the  a rgumen t ,  anEvent. 
The service is completed so t h a t  the  resource, 
a SimulationObject, can cont inue  its tasks. 

numberOfProvidersOfResource: resourceName 
Answer the number of SimulationObjects wait- 
ing to coordinate  its tasks  by ac t ing  as the  re- 
source refer red  to by the  String, r esourceName.  

numberOfRequestersOfResource: resourceName 
Answer the number of SimulationObjects wait- 
ing to coordinate  its tasks by acquir ing  the  re- 
source re fe r red  to by the  String, r e sourceName .  
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stopSimulation Tell the simulation in which the receiver is 
running to stop. All scheduled events are re- 
moved and nothing more can happen in the 
simulation. 

The examples we present in subsequent chapters i l lustrate each mes-  
sage in the modeler 's task language. 

Simulations 
The purpose of class Simulation is to manage the topology of simulation 
objects and to schedule actions to occur according to simulated time. In- 
stances of class Simulation mainta in  a reference to a collection of 
SimulationObjects, to the current  s imulated time, and to a queue of 
events waiting to be invoked. 

The unit  of t ime appropriate to the simulation is saved in an in- 
stance variable and represented as a floating-point number.  The unit  
might be milliseconds, minutes, days, etc. A simulation advances time 
by checking the queue to determine when the next event is scheduled 
to take place, and by setting its instance variable to the time associated 
with that  next event. If the queue of events is empty, then the simula- 
tion terminates.  

Simulation objects enter  a simulation in response to one of several 
scheduling messages such as 

scheduleArrivalOf: aSimulationObjectClass 
accordingTo: aProbabilityDistribution or 

scheduleArrivalOf: aSimulationObject at: aTimelnteger. 
These messages are sent to the simulation either at the time that  the 
simulation is first initialized, in response to the message 
defineArrivalSchedule, or as part  of the sequence of tasks that  a 
SimulationObject carries out. The second a rgument  of the first message, 
aProbabilityDistribution, is an instance of a probability distribution such 
as those defined in Chapter  21. In this chapter, we assume the avail- 
ability of the definitions given in Chapter  21. The probability distribu- 
tion defines the interval at which an instance of the first argument ,  
aSimulationObjectClass, is to be created and sent the message startUp. 

In addition, Simulation supports messages having to do with schedul- 
ing a part icular  sequence of actions. These are schedule: actionBIock at: 
timelnteger and schedule: actionBIock after: amountOfTime. 

In order to define the resources in the simulation, the modeler can 
send the simulation one or more of two possible messages. Either 

self produce: amount of: resourceName 

where the second argument ,  resourceName, is a String tha t  names a 
simple quantifiable resource available in the simulation; the first argu- 
ment  is the (additional) quant i ty  of this resource to be made available. 
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Or 

self coordinate: resourceName 

T h e  a r g u m e n t ,  resourceName, is a String t h a t  n a m e s  a r e s o u r c e  t h a t  is 

to  b e  p r o v i d e d  b y  s o m e  o b j e c t s  i n  t h e  s i m u l a t i o n  a n d  r e q u e s t e d  b y  o t h e r  

ob jec t s .  F o r  e x a m p l e ,  t h e  r e s o u r c e  is c a r  w a s h i n g ,  t h e  p r o v i d e r  is a 

w a s h e r  o b j e c t  a n d  t h e  r e q u e s t o r  is a c a r  ob jec t .  

Simulation instance protocol 

initialization 
initialize 

modeler's initialization language 
defineArrivalSchedule 

defineResources 

Initialize the receiver's instance variables. 

Schedule simulation objects to enter the simu- 
lation at specified time intervals, typically 
based on probability distribution functions. 
This method is implemented by subclasses. It 
involves a sequence of messages to the receiv- 
er (i.e., to self) that  are of the form 

schedule:at:, scheduleArrivalOf:at:, 
scheduleArrivalOf:accordingTo:, or 
scheduleArrivalOf:accordingTo:startingAt:. 

See the next category of messages for descrip- 
tions of these. 

Specify the resources that  are initially entered 
into the simulation. These typically act as re- 
sources to be acquired. This method is 
implemented by subclasses and involves a se- 
quence of messages to the receiver (i.e., to self) 
of the form produce: amount of: resourceName. 

modeler's task language 
produce: amount of: resourceName 

An additional quantity of amount of a re- 
source referred to by the String, resourceName, 
is to be part of the receiver. If the resource 
does not as yet exist in the receiver, add it; if 
it already exists, increase its available quanti- 
ty. 

coordinate:  r e s o u r c e N a m e  Use of a resource referred to by the String, 
resourceName, is to be coordinated by the re- 
ceiver. 

schedule: actionBIock after: timeDelaylnteger 
Set up a program, actionBIock, that  will be 
evaluated after a simulated amount of time, 
timeDelaylnteger, passes. 

schedule: actionBIock at: timelnteger 
Schedule the sequence of actions (actionBIock) 
to occur at a particular simulated time, 
timelnteger. 

scheduleArrivalOf: aSimulationObject at: timelnteger 
Schedule the simulation object, aSimulation- 
Object, to enter the simulation at a specified 
time, timelnteger. 
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scheduleArrivalOf: aSimulationObjectClass 
accordingTo: aProbabilityDistribution 

Schedule simulation objects that are instances 
of aSimulationObjectClass to enter the simula- 
tion at specified time intervals, based on the 
probability distribution aProbabilityDistribution. 
The first such instance should be scheduled to 
enter now. See Chapter 21 for definitions of 
possible probability distributions. 

scheduleArrivalOf: aSimulationObjectClass 
accordingTo: aProbabilityDistribution 
startingAt: timelnteger Schedule simulation objects that are instances 

of aSimulationObjectClass to enter the simula- 
tion at specified time intervals, based on the 
probability distribution aProbabilityDistribution. 
The first such instance should be scheduled to 
enter at time timelnteger. 

Notice t h a t  in the  above schedul ing  messages ,  scheduleArrivalOf:at: 
t akes  a SimulationObject ins tance  as its f irst  a r g u m e n t ,  whi le  
scheduleArrivalOf:accordingTo: t akes  a SimulationObject class. These  
messages  a re  used different ly;  the  f irst  one can  be used by the  
SimulationObject i tself to reschedule  itself, whi le  the  second is used to 
in i t i a te  the  a r r i va l  of Simulat ionObjects  into the  system.  

The  protocol for Simulation includes  severa l  accessing messages .  One, 
the  message  includesResourceFor :  r e sourceName ,  can be sen t  by a 
SimulationObject in o rder  to d e t e r m i n e  w h e t h e r  or not  a resource  hav- 
ing a given n a m e  ex i s t s  in the  s imula t ion .  

Simulation instance protocol 

accessing 
includesResourceFor: resourceName 

Answer if the receiver has a resource that is 
referred to by the String, resourceName. If 
such a resource does not exist, then report an 
error. 

provideResourceFor: resourceName 
Answer a resource that is referred to by the 
String, resourceName. 

time Answer the receiver's current time. 

The  s imula t ion  control  f r a m e w o r k  is l ike t h a t  of class SimulationObject. 
In i t ia l iza t ion  is h a n d l e d  by c rea t ing  the  Simulation and  send ing  it the  
message  startUp. S imu la t i on  objects and  the  schedul ing  of new objects 
c rea te  events  t h a t  a re  placed in the  even t  queue.  Once init ial ized,  the  
Simulation is m a d e  to r u n  by send ing  it t he  message  proceed  unt i l  t he r e  
a re  no longer  a n y  events  in the  queue.  

In the  course of r u n n i n g  the  s imula t ion ,  objects will e n t e r  a n d  exit. 
As p a r t  of the  protocol for schedul ing  a s imu la t ion  object, the  object in- 
forms its s imu la t i on  t h a t  it is e n t e r i n g  or exit ing.  The  cor responding  
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messages  are  enter: anObject  and exit: anObject.  In response to these  
messages,  s tat is t ics  migh t  be collected about  s imula t ion  objects upon 
the i r  en t r ance  and the i r  exit  to the  s imulat ion.  Or a subclass migh t  
choose to deny an object en t r ance  to the s imulat ion;  or a subclass migh t  
choose to reschedule  an  object r a t h e r  t h a n  let it leave the  s imulat ion.  

Simulation instance protocol 

simulation control 
startUp 

proceed 

finishUp 

enter: anObject 

exit: anObject 

Specify the initial simulation objects and the 
arrival schedule of new objects. 
This is a single event execution. The first 
event in the queue, if any, is removed, time is 
updated to the time of the event, and the 
event is initiated. 
Release references to any remaining simula- 
tion objects. 
The argument, anObject, is informing the re- 
ceiver that it is entering. 
The argument, anObject, is informing the re- 
ceiver that it is exiting. 

Of the  above messages,  the  defaul t  responses in class Simulation are 
most ly  to do nothing.  In par t icu lar ,  the  response to messages enter: and  
exit: are  to do nothing.  Messages defineArrivalSchedule and 
def ineResources  also do nothing.  As a result ,  the  message startUp 
accomplishes nothing.  These messages provide the  f r amework  t h a t  
subclasses are  to u s e - - a  subclass is created t h a t  overrides these  mes- 
sages in order  to add simulat ion-specif ic  behavior.  

Unl ike  m a n y  of the sys tem class examples  of ear l ier  chapters ,  the  
superclasses Simulation and SimulationObject typical ly  do not i m p l e m e n t  
the i r  basic messages as 

self subclassResponsibility 

By not doing so, ins tances  of e i ther  of these classes can be successfully 
created.  These ins tances  can then  be used as pa r t  of a basic or a '~de- 
faul t"  s imula t ion  t h a t  serves as a skeletal  example.  As we have seen, 
such s imula t ion  objects are  scheduled to do no th ing  and consist  of no 
events.  Development  of more  subs tan t ive  s imula t ions  can proceed by 
gradua l  r e f inement  of these defaults.  Wi th  a running ,  defaul t  example ,  
the  d e s i g n e r / p r o g r a m m e r  can inc remen ta l ly  modify and tes t  the  simu- 
lation, replacing the un in t e re s t ing  ins tances  of the  superclasses wi th  in- 
s tances of appropr ia te  subclasses. The example  s imula t ion  NothingAtAII 
i l lus t ra tes  the idea of a "defaul t"  s imulat ion.  

Suppose we l i te ra l ly  do noth ing  other  t h a n  to declare the class 
NothingAtAII as a subclass of Simulation. A NothingAtAll has  no init ial  re- 
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sources since it does nothing in response to the message 
defineResources. And it has no simulat ion objects arriving at various 
intervals, because it does nothing in response to the message 
defineArrivalSchedule. Now we execute the following statement.  

NothingAtAII new startUp proceed 

The result  is tha t  an instance of NothingAtAII is created and sent the 
message startUp. It is a s imulat ion with no resources and no objects 
scheduled, so the queue of events is empty. In response to the message 
proceed, the s imulat ion determines tha t  the queue is empty and does 
nothing. 

As a modification of the description of NothingAtAII, we specify a re- 
sponse to the message defineArrivalSchedule. In it, the objects scheduled 
for arrival  are instances of class DoNothing. DoNothing is created simply 
as a subclass of SimulationObject. A DoNothing has no tasks to carry 
out, so as soon as it enters the simulation, it leaves. 

class name DoNothing 
superclass S im u I ation 0 bject 
instance methods 

no new methods 

class name NothingAtAII 
superclass Simulation 
instance methods 

initialization 

def ineArr ivalSchedule  
self scheduleArrival©f: DoNothing 

accordingTo: (Uniform from: 1 to: 5) 

This version of NothingAtAII might  represent  a series of visitors enter ing 
an empty room, looking around without  taking time to do so, and leav- 
ing. The probability distribution, Uniform, in the example in this chap- 
ter is assumed to be the one specified in Chapter  21. According to the  
above specification, new instances of class DoNothing should arrive in 
the simulat ion every 1 to 5 units of s imulated t ime s tar t ing at t ime 0. 
The following expressions, when evaluated, create the simulation, send 
it the message startUp, and then iteratively send it the message proceed. 

aSimulation ~- NothingAtAII new startUp. 
[aSimulation proceed] whileTrue 

The message startUp invokes the message defineArrivalSchedule which 
schedules instances of DoNothing. Each t ime the message proceed is 
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sent  to the  s imulat ion,  a DoNothing enters  or exits. Eva lua t ion  migh t  
resul t  in the following sequence of events. The t ime of each event  is 
shown on the left and a descript ion of the event  is shown on the right.  

0.0 a DoNothing enters 
0.0 a DoNothing exits 
3.21 a DoNothing enters 
3.21 a DoNothing exits 
7.76 a DoNothing enters 
7.76 a DoNothing exits 

and so on. 
We can now make  the  s imula t ion  more in te res t ing  by scheduling the 

ar r iva l  of more  kinds of s imula t ion  objects, ones t h a t  have tasks  to do. 
We define Visitor to be a SimulationObject whose task  is to en te r  the  
e m p t y  room and look around,  t ak ing  be tween 4 and 10 s imula ted  uni ts  
to do so, t ha t  is, a r andom a m o u n t  de te rmined  by eva lua t ing  the ex- 
pression (Uniform from: 4 to: 10) next. 

class name Visitor 
superclass SimulationObject 

instance methods 

simulation control 

tasks 
self holdFor: (Uniform from: 4.0 to: 10.0) next 

NothingAtAII is now defined as 

class name NothingAtAII 

superclass S im u latio n 
instance methods 

initialization 

defineArrivalSchedule 
self scheduleArrivalOf: DoNothing 

accordingTo: (Uniform from: 1 to: 5). 
self scheduleArrivalOf: Visitor 

accordingTo: (Uniform from: 4 to: 8) 
startingAt: 3 

Two kinds of objects en te r  the  s imulat ion,  one t ha t  t akes  no t ime to 
look a round  (a DoNothing) and one t ha t  visits a short  while (a Visitor). 

Execut ion of 

aSimulation ~- NothingAtAII new startUp. 
[aSimulation proceed] whileTrue 



452 
Event-Driven Simulations 

might  result  in the following sequence of events. 

0:0 a DoNothing enters 
0.0 a DoNothing exits 
3.0 a Visitor enters 
3.21 a DoNothing enters 
3.21 a DoNothing exits 
7.76 a DoNothing enters 
7.76 a DoNothing exits 
8.23 a (the first) Visitor exits after 5.23 seconds 

and so on. 

Implementat ion 
of the 
Simulation 
Classes 

Class 
Simuta t ionObjec t  

In order to trace the way in which the sequence of events occurs in the 
examples provided so far, it is necessary to show an implementat ion of 
t h e t w o  classes. The implementat ions  i l lustrate the control of multiple 
independent  processes in the Small talk-80 system tha t  were described 
in Chapter  15. 

Every SimulationObject created in the system needs access to the Simu- 
lation in which it is functioning. Such access is necessary, for example, 
in order to send messages tha t  inform the simulat ion tha t  an object is 
enter ing or exiting. In order to support  such access, SimulationObject 
has a class variable, ActiveSimulation, tha t  is initialized by each in- 
stance of Simulation when tha t  instance is activated ( t h a t  is, sent the 
message startUp). This approach assumes only one Simulation will be ac- 
tive at  one time. It means  tha t  the tasks for any subclass of 
SimulationObject can send messages directly to its simulation, for exam- 
ple, to determine the cur rent  time. SimulationObject specifies no in- 
stance variables. 

class name SimulationObject 
superclass Object 
class variable names ActiveSimutation 
class methods 

class initialization 

activeSimulation: existingSimulation 
ActiveSimulation ~- existingSimulation 

instance creation 

n e w  

1 super new initialize 
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The simulation control framework, sometimes referred to as the ~life 
cycle" of the object, involves the sequence startUp~tasks~finishUp. 
When the SimulationObject first arrives at the simulation, it is sent the 
message startUp. 

instance methods 

simulation control 

initialize 
"Do nothing. Subclasses will initialize instance variables." 
1self 

startUp 
ActiveSimulation enter: self. 
"First tell the simulation that the receiver is beginning to do my tasks." 
self tasks. 
self finishUp 

tasks 
"Do nothing. Subclasses will schedule activities." 
tself 

finishUp 
"Tell the simulation that the receiver is done with its tasks." 
ActiveSimulation exit: self 

The category task language consists of messages the modeler can use 
in  specifying the SimulationObject's sequence of actions. The object 
might hold for an increment of simulated time (hoidFor:). The object 
might try to acquire access to another simulation object that  is playing 
the role of a resource (acquire:ofResource:). Or the object might deter- 
mine whether a resource is available (resourceAvailable:). 

task language 

holdFor: aTimeDelay 
ActiveSimulation delayFor: aTimeDelay 

acquire: amount ofResource: resourceName 
"Get the resource and then tell it to acquire amount of it. Answers an in- 
stance of StaticResource" 
t(ActiveSimulation provideResourceFor: resourceName) 

acquire: amount 
withPriority: 0 

acquire: amount 
of Resource: resourceName 
withPriority: priority 

l'(ActiveSimulation provideResourceFor: resourceName) 
acquire: amount 
withPriority: priority 

produce: amount ofResource: resourceName 
ActiveSimulation produce: amount of: resourceName 

0 
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release: aStat icResource 
taStaticResource release 

inquireFor: amount ofResource: resourceName 
l'(ActiveSimulation provideResourceFor: resourceName) 

amountAvailable > = amount 
resourceAvailable:  resourceName 

"Does the active simulation have a resource with this attribute available?" 
tActiveSimulation includesResourceFor: resourceName 

acquireResource: resourceName 
t(ActiveSimulation provideResourceFor: resourceName) 

acquire 
produceResource: resourceName 

t(ActiveSimulation provideResourceFor: resourceName) 
producedBy: self 

resume: anEvent  
l'anEvent resume 

numberOfProvidersOfResource:  resourceName 
I resourcel 
resource ~- ActiveSimulation provideResourceFor: resourceName. 
resource serversWaiting 

ifTrue: [1'resource queueLength] 
ifFalse: [1'0] 

numberOfRequestersOfResource:  resourceName 
I resourcel 
resource ~ ActiveSimulation provideResourceFor: resourceName. 
resource customersWaiting 

ifTrue: [1'resource queueLength] 
ifFalse: [1"0] 

stopSimulation 
ActiveSimulation finishUp 

A Simulation stores a Set of resources. In the case of static resources, in- 
stances of class ResourceProvider are stored; in the case of resources 
that  consist of tasks coordinated among two or more simulation objects, 
instances of ResourceCoordinator are stored. 

When a SimulationObject requests a static resource 
(acquire:ofResource:) and tha t  request succeeds, then the 
SimulationObject is given an instance of class StaticResource. A 
StaticResource refers to the resource tha t  created it and the quant i ty  of 
the resource it represents. Given the methods shown for class 
SimulationObject, we can see that  a resource responds to the message 
amountAvailable to re turn  t h e  current ly  available quant i ty  of the re-  
source tha t  the SimulationObject might  acquire. This message is sent in 
the method associated wi th  inquireFor:ofResource:. 

In the methods associated with SimulationObject messages acquire:of- 
Resource: and acquire:ofResource:withPriority:, a ResourceProvider is 
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obtained and sent the message acquire: amount withPriority: 
priorityNumber. The result  of this message is an instance of class 
StaticResource. However, if the amount  is not available, the process in 
which the request was made will be suspended until  the necessary re- 
sources become available. A StaticResource is sent the message release 
in order to recycle the acquired resource. 

When a SimulationObject requests a coordinated resource 
(acquireResource:), and tha t  request succeeds, then the object co-opts 
another  simulation object acting as the resource (the object in need of 
service) until  some tasks (services) are completed. If such a resource is 
not available, the process in which the request was made will be sus- 
pended unti l  the necessary resources become available. Instances of 
class ResourceCoordinator unders tand messages acquire in order to 
make the request to coordinate service tasks and producedBy: 
aSimulationObject in order to specify tha t  the a rgument  is to be co-opted 
by another  object in order to synchronize activities. As indicated by the 
implementa t ion of SimulationObject, a ResourceCoordinator can answer 
queries such as customersWaiting or serversWaiting to determine if re- 
sources (customers) or service givers (servers) are waiting to coordinate 
their  activities, and queueLength to say how many  are waiting. 

Explanat ions of the implementat ions  of classes ResourceProvider and 
ResourceCoordinator are provided in Chapters 24 and 25. 

The implementat ion of a scheduling mechanism for class Simulation 
makes extensive use of the Smalltalk-80 processor scheduler classes 
presented in the chapter  on multiple processes (Chapter 15). There are 
several problems tha t  have to be solved in the design of class Simulation. 
First, how do we store an event tha t  must  be delayed for some incre- 
ment  of s imulated time? Second, how do we make certain tha t  all pro- 
cesses init iated at a par t icular  t ime are completed before changing the 
clock? And third, in terms of the solutions to the first two problems, 
how do we implement  the request to repeatedly schedule a sequence of 
actions, in particular,  instant iat ion and init iation of a par t icular  kind of 
SimulationObject? 

In order to solve the first problem, the Simulation mainta ins  a queue 
of all the scheduled events. This queue is a SortedCollection whose ele- 
ments  are the events, sorted with respect to the simulated t ime in 
which they must  be invoked. Each event on the queue is placed there 
within a package tha t  i s a n  instance of class DelayedEvent. At the t ime 
the package is created, the event is the system's active process. As such, 
it can be stored with its needed running  context by creating a Sema- 
phore. When the event is p u t  on the queue, the DelayedEvent is sent 
the message pause which sends its Semaphore the message wait; when 
the event is taken off the queue, it is continued by sending it the mes- 
sage resume. The method associated with resume sends the 
DelayedEvent's Semaphore the message signal. 
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T h e  p ro toco l  for i n s t a n c e s  of c lass  D e l a y e d E v e n t  cons i s t s  of five mes-  
sages.  

DelayedEvent instance protocol 

accessing 
condition 

condition: anObject 

scheduling 
pause 

resume 

comparing 
< = aDelayedEvent 

Answer a condition under which the event 
should be sequenced. 

Set the argument, anObject, to be the condi- 
tion under which the event should be s e -  
quenced. 

Suspend the current active process, that is, 
the current event that is running. 

Resume the suspended process. 

Answer whether the receiver should be se- 
quenced before the argument, aDelayedEvent. 

A DelayedEvent  is c r e a t e d  by s e n d i n g  t h e  c lass  t h e  m e s s a g e  new or 

onCondi t ion:  anObjec t .  T h e  i m p l e m e n t a t i o n  of c lass  D e l a y e d E v e n t  is giv- 
en  nex t .  

class name Delayed Event 
superclass Object 
instance variable names resumptionSemaphore resumptionCondition 
class methods 

instance creation 

n e w  
t super new initialize 

onCondi t ion:  a n O b j e c t  
Tsuper new setCondition: anObject 

instance methods 

accessing 

condi t ion  
T resumptionCondition 

condi t ion:  a n O b j e © t  
resumptionCondition ~- anObject 

comparing 

< = a D e l a y e d E v e n t  
resumptionCondition isNil 

ifTrue: [1'true] 

ifFalse: [tresumptionCondition < = aDelayedEvent condition] 
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scheduling 

pause  
resumptionSemaphore wait 

r e s u m e  
resumptionSemaphore signal. 

1' resumptionCondition 

private 

in i t ia l ize  
resumptionSemaphore ,- Semaphore new 

setCondi t ion:  a n O b j e c t  
self initialize. 

resumptionCondition ~- anObject 

According to the above specification, any object used as a resumption 
condition must  respond to the message < =;  SimulationObject is, in gen- 
eral, s u c h  a c o n d i t i o n .  

Instances of class Simulation own four instance variables: a Set of ob- 
jects t h a t  a c t  a s  r e s o u r c e s  of t h e  s i m u l a t i o n  ( r e s o u r c e s ) ,  a N u m b e r  r e p -  

r e s e n t i n g  the cur ren t  t ime (currentTime), a SortedCollection 
represent ing a queue of delayed events (eventQueue), and an Integer 
denoting the number  of processes active at  the cur ren t  t ime 
(processCount). 

Init ialization of a Simulation sets the instance variables to initial val- 
ues. When the instance is sent the scheduling message startUp, it sends 
itself the message activate which informs interested other classes which 
Simulation is now the active one. 

class name 

superclass 

instance variable names 

Simulation 

Object 

resources currentTime 

eventQueue processCount 

class methods 

instance creation 

n e w  
Tsuper new initialize 

instance methods 

initialization 

in i t ia l ize  
resources ~ Set new. 

currentTime ~- 0.0. 

processcount ~- O. 

eventQueue ~- SortedCollection new 
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activate 
" T h i s  instance is now the active simulation. Inform class 
SimulationObject." 
SimulationObject activeSimulation: self. 
" Resource is the superclass for ResourceProvider and 
ResourceCoordinator" 
Resource activeSimulation: self 

Initialization messages are also needed by the subclasses. The messages 
provided for the modeler to use in specifying arrival  schedules and re- 
source objects provides an interface to the process scheduling messages. 

initialization 

defineArrivalSchedule 
" A  subclass specifies the schedule by which simulation objects dynami- 
cally enter into the simulation." 
tself 

defineResources 
"A subclass specifies the simulation objects that are initially entered into 
the simulation." 
tself 

task language 

produce: amount of: resourceName 
(self includesResourceFor: resourceName) 

ifTrue: [(self provideResourceFor: resourceName) produce: amount] 
ifFalse: [resources add: 

(ResourceProvider named: resourceName with: amount)] 
coordinate: resourceName 

(self includesResourceFor: resourceName) 
ifFalse: [resources add: 

(ResourceCoordinator named: resourceName)] 
schedule: actionBIock after: t imeDelay 

self schedule: actionBIock at: currentTime --t- timeDelay 
schedule: aBIock at: t imelnteger 

"This is the mechanism for scheduling a single action" 
self newProcessFor: 

[self delayUntit: timelnteger. 
aBIock value] 

scheduleArrivalOf: aSimulationObject at: t imelnteger 
self schedule: [aSimulationObject startUp] at: timelnteger 

scheduleArrivalOf: aSimulationObjectClass 
accordingTo: aProbabilityDistribution 

"This means start now" 
self scheduleArrivalOf: aSimulationObjectClass 

accordingTo: aProbabilityDistribution 
startingAt: currentTime 
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scheduleArrivalOf: aSimulationObjectClass 
accordingTo: aProbabilityDistribution 
startingAt: timelnteger 

"Note that aCtass is the class SimulationObject or one of its 
subclasses. The real work is done in the private message 
sched u le: startin gAt: andThe n Every: " 

self schedule: [aSimulationObjectClass new startUp] 
startingAt: timelnteger 
andThenEvery: aProbabilityDistribution 

The scheduling messages of the task language implement a reference- 
counting solution to keeping track of initiated processes. This is the 
technique used to solve the second problem cited earlier, that  is, how to 
make certain that  all processes initiated for a particular time are car- 
ried out by the single Smalltalk-80 processor scheduler before a differ- 
ent process gets the opportunity to change the clock. Using reference 
counting, we guarantee that  simulated time does not change unless the 
reference count is zero. 

The key methods are the ones associated with schedule: aBIock at: 
timelnteger and schedule: aBIock startingAt: timelnteger andThenEvery: 
aProbabilityDistribution. This second message is a pr ivate one called by 
the method associated wi th  scheduleArrivalOf: aSimulationOb]ectClass 
accordingTo: aProbabilityDistribution startingAt: timelnteger. I t  provides a 
general mechanism for scheduling repeated actions and therefore repre- 
sents a solution to the third design problem mentioned earlier, how we 
implement the request to repeatedly schedule a sequence of actions. 

The basic idea for the schedule: aBIock at: timelnteger is to create a 
process in which to delay the evaluation of the sequence of actions 
(aBIock) until t h e  simulation reaches the appropriate simulated time 
(timelnteger). The delay is performed by the message delayUntil: 
delayedTime. The associated method creates a DelayedEvent to be added 
to the simulation's event queue. The process associated with this 
DelayedEvent is then suspended (by sending it the message pause). 
When this instance of DelayedEvent is the first in the queue, it will be 
removed and the time will be bumped to the stored (delayed) time. 
Then this instance of DelayedEvent will be sent the message resume 
which will cause the evaluation of the block; the action of this block is 
to schedule some simulation activity. 

A process that  was active is suspended when the Delayed Event is sig- 
naled to wait. Therefore, the count of the number of processes must  be 
decremented (stopProcess). When the DelayedEvent resumes, the pro- 
cess continues evaluation with the last expression in the method 
delayedUntil:; therefore at this time, the count of the number of process- 
es must be incremented (startProcess). 
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scheduling 

delayUntil: aTime 
1 delayEvent I 
delayEvent ~- DelayedEvent onCondition: timelnteger. 
eventQueue add: defayEvent. 
self stopProcess. 
delayEvent pause. 
self startProcess 

delayFor: t imeDelay 
self delayUntil: currentTime --t- timeDetay 

startProcess 
processCount ~ processCount -t- 1 

stopProcess 
processCount ~- processCount- 1 

Reference counting of processes is also handled in the method associat- 
ed with class Simulation's scheduling message newProcessFor: aBIock. It 
is implemented as follows. 

newProcessFor: aBIock 
self startProcess. 
[aBIock value. 
self stopProcess] fork 

The first expression increments the count of processes. The second ex- 
pression is a block that  is forked. When the Smalltalk processor sched- 
uler evaluates this block, the simulation sequence of actions, aBIock, is 
evaluated. The :completion of evaluating aBIock signals the need to dec- 
rement the count of processes. In this way, a single sequence of actions 
is scheduled in the event queue of the Simulation and delayed until the 
correct simulated time. In summary, the reference count of processes 
increments whenever a new sequence of actions is initiated, decrements 
whenever a sequence completes, decrements whenever a DelayedEvent 
is created, and increments whenever the DelayedEvent is continued. 

The method for the private message schedule: aBIock startingAt: 
timelnteger andThenEvery: aProbabilityDistribution forks a process that 
repeatedly schedules actions. The algor i thm consists of i terations of two 
messages, 

self delayUntil: timelnteger. 
self newProcessFor: aBiock 

Repetit ion of the two messages delayUntil: and newProcessFor: depends 
on a probability distribution function. The number of repetitions equals 
the number of times the distribution can be sampled. The number that  
is sampled represents the next time that the sequence of actions (aBIock) 
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should be invoked. Elements of the distribution are enumerated by 
sending the distribution the message do:. 

private 

schedule: aBIock 
startingAt: timelnteger 
andThenEvery: aProbabilityDistribution 

self newProcessFor: 
["This is the first time to do the action." 
self delayUntil: timelnteger. 
" Do the action." 
self newProcessFor: aBIock copy. 
aProbabilityDistribution 

do: [ :nextTimeDelay I 
" For each sample from the distribution, 
delay the amount sampled," 
self delayFor: nextTimeDelay. 
" then do the action" 
self newProcessFor: aBIock copy]] 

Simulation itself has a control framework similar to that  of 
SimulationObject. The response to startUp is to make the simulation the 
currently active one and then to define the simulation objects and ar- 
rival schedule. The inner loop of scheduled activity is given as the re- 
sponse to the message proceed. Whenever the Simulation receives the 
message proceed, it checks the reference count of processes (by sending 
the message readyToContinue). If the reference count is not zero, then 
there are still processes active for the current  simulated time. So, the 
system-wide processor, Processor, is asked to yield control and let these 
processes proceed. If the reference count is zero, then the event queue is 
checked. If it is not empty, the next event is removed from the event 
queue, time is changed, and the delayed process is resumed. 

simulation control 

startUp 
self activate. 
self defineResources. 
self defineArrivalSchedule 

proceed 
t eventProcess I 
[self readyToContinue] whileFalse' [Processor yield]. 
eventQueue isEmpty 

ifTrue: [tself finishUp] 
ifFalse [eventProcess ~-- eventQueue removeFirst. 

currentTime ~ eventProcess time. 
eventProcess resume] 
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finishUp 
"We need to empty out the event queue" 

eventQueue ~- SortedCollect ion new. 
tfalse 

enter: anObject 
1'self 

exit: anObject 
1'self 

private 

readyToContinue 
1'processCount = 0 

In addition to these various modeler's languages and simulation control 
messages, several accessing messages are provided in the protocol of 
S i m u l a t i o n .  

access ing  

includesResourceFor: resourceName 
t test 1 
test ~- resources 

detect: [ :each I each name = resourceName] 
ifNone: [nil]. 

1'test notNil 

provideResourceFor: resourceName 
1'resources detect: [ :each I each name = resourceName] 

time 
tcurrentTime 

The implementations of Simulation and SimulationObject illustrate the 
use of messages fork to a BlockContext, yield to a ProcessorScheduler, 
and signal and wait to a Semaphore. 

Tracing the 
Example 
N o t h i n g A t A l l  

We can now trace the execution of the first example of the simulation, 
NothingAtAII, in which DoNothings only were scheduled. After sending 
the message 

Noth ingAtA I I  n e w  

the instance variables of the new simulation consist of 

resou rces  = Set  () 
cu r ren tT ime  = 0.0 

p r o c e s s C o u n t  = 0 

e v e n t Q u e u e  - S o r t e d C o l l e c t i o n  () 
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We then send this s imulat ion the message startUp, which invokes the 
message scheduleArrivalOf: DoNothing accordingTo" (Uniform from" 1 to: 
5). This is identical to. sending the simulat ion the message 

schedule: [DoNothing new startUp] 
startingAt: 0.0 
andThenEvery: (Uniform from: 1 to: 5) 

The response is to call on newProcessFor:. 
Step 1. newProcessFor: increments  the processCount (self 

startProcess) and then creates a new Process tha t  evaluates the follow- 
ing block, which will be referred to as block A. 

[self delayUntil: timelnteger. 
self newProcessFor: block copy. 
aProbabilityDistribution do: 

[ :nextTimeDelay I 
self delayFor: nextTimeDelay. 
self newProcessFor: block copy] 

where the variable block is 

[DoNothing new startUp] 

which will be referred to as block B. 
Step 2. When the process re turns  to the second expression of the 

method newProcessFor:, execution continues by evaluating block A. Its 
first expression decrements the process count and suspends an activity 
until  t ime is 0.0 (i.e., create a DelayedEvent for the active simulation 
scheduler to tell the DoNothing to startUp at t ime 0.0; put  it on the 
event queue). 

resources = Set () 
currentTime - 0.0 
processCount = 0 
eventQueue = SortedCollection (a DelayedEvent 0.0) 

Now we send the simulat ion the message proceed. The process count is 
0 so readyToContinue re turns  true; the event queue is not empty so the 
first DelayedEvent is removed, t ime is set to 0.0, and the delayed pro- 
cess is resumed (this was the scheduler block A). The next action incre- 
ments  the process count and evaluates block B. This lets a DoNothing 
enter  and do its task, which is nothing, so it leaves immediately. The 
new processFor: message decrements the process count to 0, gets a 
number  from the probability distribution, delays for this number  of 
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t ime  units,  and schedules a new process for some t ime  later.  The se- 
quence cont inues  indefinitely,  as long as the  message proceed is re-sent  
to the s imulat ion.  

O t h e r  tasks  will en te r  t h e  event  queue depending on the  method  as- 
sociated wi th  the  message tasks in a subclass of SimulationObject. Thus  
if Visitor is scheduled in NothingAtAII, then  the  expresson self holdFor: 
someTime will en te r  an  event  on the queue, in te rming led  wi th  events  
t ha t  schedule new arr ivals  of Visitors and DoNothings. 
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A framework for specifying event-driven simulations was presented in 
the previous chapter. This f ramework did not include methods for gath- 
ering statistics about a s imulat ion as it is running.  Statistics might  con- 
sist of the amount  of t ime each simulat ion object spends in the 
simulat ion (and, therefore, how well the model supports carrying out 
the kinds of tasks specified by the objects); information about the length 
of the queues such as the maximum,  min imum and average lengths and 
amount  of t ime spent in each queue; and information about the utiliza- 
tion of the simulation's  resources. 

There are a number  of ways to add statistics gather ing to class Simu- 
lation or class SimulationObject. In this chapter,  we provide four exam- 
ples of statistics gathering: durat ion statistics, th roughput  histograms, 
event tallying, and event monitoring. Each of these examples involves 
creating a subclass of Simulation or SimulationObject in order to provide 
a dictionary in which data  can be stored or a file into which data  can 
be written, and, in tha t  subclass, modifying the appropriate methods in 
order to store the appropriate data. 

Duration 
Statistics 

For the first example of statistics gathering, we create a general  sub- 
class of Simulation tha t  simply stores the t ime an object enters and exits 
the simulation. The times are kept in a special record whose fields are 
the t ime at which the object entered the simulation (entranceTime) and 
the length of t ime the object spent in the simulat ion (duration). Records 
are described as follows. 

class name Simulat ionObjectRecord 

superclass Object 

instance variable names entranceTime 

duration 

instance methods 

accessing 

ent rance:  cur ren tT ime  
entranceTime ~ currentTime 

exit: currentTi rne 
duration ~ entranceTime - currentTime 

e n t r a n c e  
tentranceTime 

exit  
t entranceTime + duration 

durat ion 
tdurat ion 
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printing 

printOn: aStream 
entranceTime printOn: aStream. 

aStream tab. 
duration printOn: aStream 

A n  e x a m p l e  s u b c l a s s  of Simulat ion w h i c h  u s e s  Simu la t ionOb jec tRecords  
for  g a t h e r i n g  s ta t is t ics  is Stat is t icsWithSimulat ion.  I t  is de f ined  as fol- 

lows. 

class name StatisticsWith Simulation 
superclass S im u lati on 
instance variable names statistics 
instance methods 

initialization 

initialize 
super initialize. 
statistics ~ Dictionary new 

simulation scheduling 

enter: anObject 
statistics at: anObject 

put: (SimulationObjectRecord new entrance currentTime) 

exit: anObject 
(statistics at: anObject) exit currentTime 

statistics 

printStatisticsOn: aStream 
1 stat l  
aStream cr. 
aStream nextPutAll: ' Object ' .  
aStream tab. 
aStream nextPutAIl: 'Entrance T ime' .  
aStream tab. 
aStream nextPutAll: " Durat ion' .  
aStream cr. 
"Sort  with respect to the time the object entered the simulation. Because 
the keys as well as the values are needed, it is necessary to first obtain 

the set of associations and then sort them." 
stat ~ SortedCollection 

sortBtock: [ :i :j I i value entrance < = j value entrance]. 

statistics associationsDo: [ :each I stat add: each]. 
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stat do: 
[ :anAssociation I 

aStream cr. 
anAssociation key printOn: aStream. 
aStream tab. 
anAssociation value printOn: aStream 
"The value is a SimulationObjectRecord which prints the entrance 
time and duration"] 

Suppose we created NothingAtAII as a subclass of StatisticsWithSimulation. 
In  this example, NothingAtAI! schedules two s imula t ion objects: one that  
does noth ing  (a DoNothing), a r r i v ing  according to a un i fo rm d is t r ibu t ion 
from 3 to 5 uni ts  of t ime s ta r t ing  at  0; and one tha t  looks a round  for 5 
units  of s imulated t ime (a Visitor), a r r iv ing according to a uniform distri- 
but ion from 5 to 10 units  of t ime s ta r t ing  at 1. Whenever  one of these 
objects enters  the simulation,  an en t ry  is put  in the statistics dictionary. 
The key is the object itself; the equals (=)  test  is the default  (=  =), 
so each object is a unique key. The value is an instance of 
SimulationObjectRecord with ent rance  data  initialized. When  the object 
exits, the  record associated with it is retr ieved and a message is sent  to 
it in order  to set the exit data. 

class name DoNothing 
superclass SimulationObject 
instance methods 

no new methods 

class name 
superclass 
instance methods 

simulation control 

Visitor 
SimulationObject 

tasks 
self holdFor: 5 

class name 
superclass 
instance methods 

NothingAtAIt 
StatisticsWithSimulation 

initialization 

def ineArr iva lSchedule  
self scheduleArrivalOf: DoNothing 

accordingTo: (Uniform from: 3 to: 5). 
self scheduleArrivalOf: Visitor 

accordingTo: (Uniform from: 5 to: 10) 
startingAt: 1 
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Whenever we halt  the simulation, we can send the message 
printStatisticsOn: aFile (where aFile is a kind of FileStream). The result 

might look like:- 

Object Entrance Time Duration 
a DoNothing 0.0 0.0 
a Visitor 1.0 5.0 
a DoNothing 4.58728 0.0 
a Visitor 6.71938 5.0 
a DoNothing 9.3493 0.0 
a DoNothing 13.9047 0.0 
a Visitor 16.7068 5.0 
a DoNothing 17.1963 0.0 
a DoNothing 21.7292 0.0 
a Visitor 23.2563 5.0 
a DoNothing 25.6805 0.0 
a DoNothing 29.3202 0.0 
a Visitor 32.1147 5.0 
a DoNothing 32.686 0.0 
a DoNothing 36.698 0.0 
a DoNothing 41.1135 0.0 
a Visitor 41.1614 5.0 
a DoNothing 44.3258 0.0 
a Visitor 48.4145 5.0 
a DoNothing 48.492 0.0 
a DoNothing 51.7833 0.0 
a Visitor 53.5166 5.0 
a DoNothing 56.4262 0.0 
a DoNothing 60.5357 0.0 
a Visitor 63.4532 5.0 
a DoNothing 64.8572 0.0 
a DoNothing 68.7634 0.0 
a Visitor 68.921 5.0 
a DoNothing 72.4788 0.0 
a DoNothing 75.8567 0.0 

Throughput 
Histograms 

A common statistic .gathered in simulations is the throughput  of ob- 
jects, that  is, how many objects pass through the simulation in some 
amount  of time; this is proportional to how much time each object 
spends in the simulation. Gathering such statistics involves keeping 
track of the number  of objects that  spend time within predetermined 
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intervals  of time. Report ing the results involves displaying the number  
of objects, the m i n i m u m  time, m a x i m u m  time, and the number  of ob- 
jects whose t imes fall within each specified interval.  Such statistics are 
especially useful in simulations involving resources in order to deter- 
mine whether  or not there  are sufficient resources to handle r eques t s - -  
if objects have to wait  a long t ime to get a resource, then they must  
spend more t ime in the simulation. 

In order to support  the gather ing of th roughput  statistics, we provide 
class Histogram. Histograms main ta in  a tally of values within 
prespecified ranges. For example, we might  tally the number  of t imes 
various values fall between 1 and 5, 5 and 10, 10 and 20, 20 and 25, 25 
and 30, 30 and 35, 35 and 40, and 40 and 45. Tha t  is, we divide the in- 
terval  5 to 45 into bins of size 5 and keep a running  count of the num- 
ber of t imes a value is stored into each bin. 

Class Histogram is created by specifying the lower bound, the upper 
bound, and the bin size. To obtain a Histogram for the above example, 
evaluate 

Histogram from: 5 to: 45 by: 5 

Besides data  on the bins, a Histogram keeps t rack of minimum, maxi- 
mum, and total values entered. An ent ry  might  not fit within the 
bounds of the interval; an additional variable is used to store all such 
entries (extraEntries). The bins are stored as elements of an array;  the 
a r ray  size equals the number  of bins (that is, upper  bound - lower 
bound / /  bin size). The message store: aValue is used to put values in 
the Histogram. The index of the a r ray  e lement  to be incremented is 1 + 
(aValue - lower b o u n d / / b i n s  size). Most of the methods shown support  
pr int ing the collected information. 

class name 
superclass 
instance variable names 

class methods 

Histogram 
Object 
tallyArray 
IowerBound upperBound 
step 
minValue maxValue 
totatValues 
extraEntries 

class initialization 

from: IowerNum to: upperNum by: step 
t self new newLower: IowerNum upper: upperNum by: step 
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instance methods 

accessing 

contains: aValue 
1lowerBound < = aValue and: [aValue < upperBound] 

store: aValue 
I index I 
minVatue isNil 

ifTrue: [minValue ~- maxValue ~ aValue] 
ifFalse: [minValue ~ minValue min: aValue. 

maxValue ~- maxValue max: aValue]. 
totalValues ~ totalValues --t- aValue. 
(self contains: aValue) 

ifTrue: [index ~- (aValue- IowerBound / /  step) + 1. 
tallyArray at: index put: (tallyArray at: index) -I- 1] 

ifFalse: [extraEntries ~ extraEntries + 1] 

printing 

printStatisticsOn: aStream 
I totalObjs p o s l  
self firstHeader: aStream. 
aStream cr; tab. 
totalObjs ~- extraEntries. 
"count the number of entries the throughput records know" 
tallyArray do: [ :each I totalObjs ~ totalObjs -.I-- each]. 
totalObjs printOn: aStream. 
aStream tab. 
minValue printOn: aStream. 
aStream tab. 
maxVatue printOn: aStream. 
aStream tab. 
(totalValues / totalObjs) asFIoat printOn: aStream. 
aStream cr. 
self secondHeader: aStream. 
aStream cr. 
pos ~ lowerBound. 
tallyArray do: ~ 

[ :entry I 
pos printOn: aStream. 
aStream nextPut: $ - .  
(pos ~ pos 4- step)printOn: aStream. 
aStream tab. 
entry printOn: aStream. 
aStream tab. 
(entry / totalObjs) asFIoat printOn: aStream. 
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aStream tab. 

aStream nextPut: $1 • 

" print the X '  s"  

entry rounded timesRepeat: [aStream nextPut: $X]. 

aStream cr] 

f i rstHeader:  aStream 
aStream cr; tab. 

aStream nextPutAIl: 'Number  o f ' .  

aStream tab. 

aStream nextPutAIl: ' M in imum' .  

aStream tab. 

aStream nextPutAIl: ' Max imum ' .  

aStream tab. 

aStream nextPutAIl: ' Ave rage ' .  

aStream cr; tab. 

aStream nextPutAIl: ' O b j e c t s ' .  

aStream tab. 

aStream nextPutAIl: ' Va lue ' .  

aStream tab. 

aStream nextPutAIl: " V a l u e ' .  

aStream tab. 

aStream nextPutAIl: "Va lue '  

secondHeader:  aStream 
aStream cr; tab. 

aStream nextPutAll: "Number  o f ' .  

aStream cr. 

aStream nextPutAIl: ' Ent ry ' .  

aStream tab. 

aStream nextPutAIl: " O b j e c t s ' .  

aStream tab. 

aStream nextPutAIl: ' F requency ' .  

private 

newLower:  IowerNum upper: upperNum by: stepAmount  
tal lyArray ~ Array new: (upperNum - towerNum / /  stepAmount). 

tal lyArray atAIlPut: 0. 

IowerBound ~- IowerNum. 

upperBound ~ upperNum. 

step ~- stepAmount. 

minValue ~ maxVatue ~ nil. 

totalValues ~ 0. 

extraEntries ~ 0 

A s imula t ion  of visitors to a m u s e u m  serves as an example  of the use of 
a Histogram. Museum is l ike NothingAtAII in t ha t  Visitors a r r ive  and look 
around.  The Visitors t ake  a vary ing  a m o u n t  of t ime to look around,  
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depending on the i r  in te res t  in the m u s e u m  artifacts.  We assume tha t  
this t ime is normal ly  d is t r ibuted  with  a mean  of 20 and a s t anda rd  de- 
viat ion of 5. Visitors come to the m u s e u m  th roughou t  the  day, one every 
5 to 10 uni ts  of s imula ted  time. 

class name M useum 
superclass Simulation 
instance variable names statistics 
instance methods 

initialization 

initialize 
super initialize. 
statistics ~- Histogram from: 5 to: 45 by: 5 

defineArrivalSchedule 
self scheduleArrivalOf: Visitor 

accordingTo: (Uniform from: 5 to: 10) 

scheduling 

exit: aSimulationObject 
super exit: aSimulationObject. 
statistics store: currentTime - aSimulationObject entryTime 

printStatisticsOn: aStream 
statistics printStatisticsOn: aStream 

In order  for class Museum to update  the statistics,  Visitors mus t  keep 
t r ack  of when  they  en te red  the m u s e u m  and be able to respond to an 
inquiry  as to the i r  t ime of entry.  

class name Visitor 
superclass SimulationObject 
instance variable names entryTime 
instance methods 

initialization 

initialize 
super initialize. 
entryTime ,- ActiveSimulation time 

accessing 

entryTime 
tentryTime 

simulation control 

tasks 
self holdFor: (Normal mean: 20 deviation: 5) next 
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To create and run  the simulation,  we evaluate  

aSimulation ~ Museum new startUp. 
[aSimulation time < 50] whileTrue: [aSimulation proceed] 

When the Museum was created, a Histogram for statistics w a s  created. 
Each t ime a Visitor left the Museum, data  was stored in the Histogram. 
The data  consists of the dura t ion  of the visit. 

After  runn ing  the s imulat ion unti l  t ime 50, we ask the Museum for a 
report.  

aSimulation printStatisticsOn: (Disk file: 'museum.report') 

The method associated with printStatisticsOn: sends the same message, 
printStatisticsOn:, to the Histogram, which pr ints  the following informa- 
tion o n  the file museum.report.  

Number of Minimum Maximum Average 
Objects Value Value Value 
64 10.0202 31.2791 20.152 

Number of 
Entry Objects Frequency 
5-10 0 0 
10-15 14 0.21875 
15-20 16 0.25 
20-25 20 0.3125 
25-30 13 0.203125 
30-35 1 0.015625 
35-40 0 0 
40-45 0 0 

XXXXXXXXXXXXXX 
XXXXXXXXXXXXXXXX 
XXXXXXXXXXXXXXXXXXXX 
XXXXXXXXXXXXX 
X 

Tallying Events As another  example of ta l lying the events in a simulation,  we present  a 
commonly -used  example  of a s imulat ion of Traffic. In this s imulation,  
we tal ly the numbe r  of cars tha t  enter  an intersection, dis t inguishing 
those tha t  drive s t ra ight  th rough  the intersect ion from those tha t  tu rn  
left and those tha t  t u rn  right. By observation, we note tha t  twice as 
m a n y  cars go s t ra ight  as tu rn  r ight  or left, but  twice as m a n y  tu rn  left 
as right. A new car arr ives at the intersect ion according to a uniform 
distr ibution every 0.5 to 2 units  of t ime (self scheduleArrivalOf: Car 
accordingTo: (Uniform from: 0.5 to: 2)). We will run  the s imulat ion unti l  
s imulated t ime exceeds 100. 
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class name 

superclass 

instance variable names 

instance methods 

Traffic 
Simulation 
statistics 

initialization 

initialize 
super initialize. 
statistics ~- Dictionary new: 3. 
statistics at: .#:straight put: 0. 
statistics at: #r ight put: 0. 
statistics at: #lef t  put: 0 

defineArrivalSchedule 
self scheduleArrivalOf: Car accordingTo: (Uniform from: 0.5 to: 2). 
self schedule: [self finishUp] at: 100 

statistics 

update: key 
statistics at: key put: (statistics at: key) 4- 1 

printStatisticsOn: aStream 
aStream cr. 
aStream nextPutAIt: ' Car Direction Tally' 
statistics associationsDo: 

[ :assoc I 
aStream cr. 
assoc key printOn: aStream. 
aStream tab. 
assoc value printOn: aStream] 

Note  t ha t  in  the method  associated w i t h  def ineArr ivalSchedule, the ac- 
t ion  self f inishUp is s c h e d u l e d  to  o c c u r  a t  s i m u l a t e d  t i m e  100. T h i s  e v e n t  

w i l l  t e r m i n a t e  t h e  s i m u l a t i o n  as  d e s i r e d .  

class name Car 

superclass S im u I atio n Ob ject 
instance methods 

simulation control 

tasks 
" Sample, without replacement, the direction through the intersection that 
the car will travel." 
I sample I 
sample ~- SampleSpace data: 

#(left  left right straight straight straight 
straight straight straight) 

ActiveSimulation update: sample next 



476 
Statistics Gather ing in Event-Driven Simulations 

SampleSpace was a class we introduced in Chapter  21. Cars are sched- 
uled to enter  the simulation with the sole task of picking a direction to 
tell the simulation. After running the simulation, we ask the Traffic 
simulation to report the tallies by sending it the printStatisticsOn: mes- 
sage. A possible outcome of evaluating 

aSimulat ion ~ Traff ic new startUp. 
[aSimulat ion proceed]  whi leTrue. 
aSimulat ion printStat ist icsOn: (Disk file: ' t raff ic.data')  

is the following information writ ten on the file traffic.data. 

Car Direction Tally 
straight 57 
right 8 
left 15 

Event 
Monitoring 

Another  possible technique for gather ing data from a simulation is to 
note the occurrence of each (major) event, including the entering and 
exiting of simulation objects. This is accomplished by creating a sub- 
class of SimulationObject tha t  we call EventMonitor. In this example, a 
class variable refers to a file onto which notations about their  events 
can be stored. Each message that  represents an event to be monitored 
must  be overridden in the subclass to include the instructions for stor- 
ing information on the file. The method in the superclass is still execut- 
ed by distr ibuting the message to the pseudo-variable super. 

Basically, the notations consist of the time and identification of the 
receiver (a kind of SimulationObject), and an annotat ion such as ~en- 
ters" or "requests" or "releases." 

class name 
superclass 
class variable names 
class methods 

class initialization 

file: aFile 
DataFile ~ aFile 

EventMonitor 
S i m u I ati o n 0 b ject 
DataFile 
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instance methods 

scheduling 

startUp 
self timeStamp. 
DataFile nextPutAIl: 'enters ". 
super startUp 

finishUp 
super finishUp. 
self timeStamp. 
DataFile nextPutAIl: ' exits ' 

task language 

holdFor: aTimeDelay 
self timeStamp. 
DataFile nextPutAIl: "holds for ' .  
aTimeDelay printOn: DataFile. 
super holdFor: aTimeDelay 

acquire: amount ofResource: resourceName 
I aStaticResource I 
" Store fact that resource is being requested." 
self timeStamp. 
DataFite nextPutAIt: ' requests ' .  
amount printOn: DataFile. 
DataFile nextPutAIl: ' of ' ,  resourceName. 

" Now try to get the resource." 
aStaticResource ~- super acquire: amount 

ofResource: resourceName. 
" Returns here when resource is obtained; store the fact." 
self timeStamp. 
DataFile nextPutAIl: ' obtained ' .  

amount printOn: DataFile. 
DataFile nextPutAIl: 'o f  ' ,  resourceName. 
1' aStaticResource 

acquire: amount 
ofResource: resourceName 
withPriority: priorityNumber 

t aStaticResource I 
"Store fact that resource is being requested" 
self timeStamp. 
DataFile nextPutAIl: ' requests ' .  

amount printOn: DataFile. 
DataFile nextPutAll: ' at priority ". 
priorityNumber printOn: DataFile. 
DataFile nextPutAIl: ' of ' ,  resourceName. 
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" Now try to get the resource. " 

aStaticResource ~- 

super acquire amount 

ofResource: resourceName 

withPriority: priorityNumber. 

"Returns here when resource is obtained; store the fact." 

self timeStamp. 

DataFile nextPutAIl" "obtained ' .  
amount printOn DataFite. 

DataFile nextPutAIl ' of ' ,  resourceName. 

t aStaticResource 

produce: amount ofResource: resourceName 
self timeStamp. 

DataFile nextPutAIl 'p roduces ' 
amount printOn DataFile. 

DataFile nextPutAIl' "of ", resourceName. 

super produce amount ofResource resourceName 

release: aStat icResource 
self timeStamp. 

DataFile nextPutAIl' ' releases ' 

aStaticResource amount printOn: DataFile. 
DataFile nextPutAIl "of ", aStaticResource name. 

super release: aStaticResource 

acquireResource:  resourceName 
I anEvent I 
" Store fact that resource is being requested" 

self timeStamp. 
DataFile nextPutAIl 'wants to serve for ' .  

DataFile nextPutAIl resourceName. 

" Now try to get the resource. " 

anEvent ~ super acquireResource resourceName. 

" Returns here when resource is obtained store the fact." 

self timeStamp. 
DataFile nextPutAtl ' can serve " 

anEvent condition printOn DataFile. 

tanEvent 

produceResource: resourceName 
self timeStamp. 
DataFile nextPutAIl "wants to get service as " 

DataFile nextPutAll" resourceName. 

super produce amount ofResource resourceName 

resume: anEvent  
self timeStamp. 

DataFile nextPutAIl" ' resumes ' .  



anEvent condition printOn: DataFile. 
super resume: anEvent 

private 

t imeStamp 
DataFile cr. 
ActiveSimulation time printOn: DataFile. 
DataFile tab. 
self printOn: DataFile. 
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We can moni tor  the events  of the NothingAtAII s imula t ion  consisting of 
a r r iva ls  of Visitors and defaul t  s imula t ions  (DoNothings). Except  for cre- 
a t ing Visitor and DoNothing as subclassses of EventMonitor r a t h e r  t h a n  
of SimulationObject, the  class definit ions are  the  same. 

class name DoNothing 
superclass EventMonitor 
instance methods 

no new methods 

class name Visitor 
superclass EventMonitor 
instance methods 

simulation control 

tasks 
self holdFor (Uniform from 4.0 to 10.0) next 

NothingAtAII is redefined so t h a t  the  
EventMonitor. 

defaul t  s imula t ion  is an 

class name NothingAtAII 
superclass Simulation 
instance methods 

initialization 

defineArrivalSchedule 
self scheduleArrivalOf: DoNothing 

accordingTo: (Uniform from: I to: 5). 
self scheduleArrivalOf: Visitor 

accordingTo: (Uniform from: 4 to: 8) 
startingAt: 3 

After  execut ing 
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Visitor file: (Disk file: "NothingAtAIl.events'). 
"This informs DoNothing too" 

aSimulation ~- NothingAtAII new startUp. 
[aSimulation time < 25] whileTrue [aSimulation proceed] 

the file 'NothingAtAIl.events' contains the fol lowing informat ion 

0.0 
0.0 
3.0 
3.0 
4.32703 
4.327O3 
7.74896 
7.74896 
8.20233 
8.20233 
10.5885 
11.8906 
12.5153 
12.5153 
14.2642 
14.2642 
16.6951 
16.6951 
18.7776 
19.8544 
19.8544 
20.5342 
20.5342 
23.464 
23.464 
24.9635 

a DoNothing enters 
a DoNothing exits 
a Visitor enters 
a Visitor holds for 7.5885 
a DoNothing enters 
a DoNothing exits 
a Visitor enters 
a Visitor holds for 4.14163 
a DoNothing enters 
a DoNothing exits 
a Visitor exits 
a Visitor exits 
a DoNothing enters 
a DoNothing exits 
a Visitor enters 
a Visitor holds for 4.51334 
a DoNothing enters 
a DoNothing exits 
a Visitor exits 
a Visitor enters 
a Visitor holds for 5.10907 
a DoNothing enters 
a DoNothing exits 
a DoNothing enters 
a DoNothing exits 
a Visitor exits 

Distinctively labeling each arriving SimulationObject might  improve the 
ability to follow the sequence of events. The goal is to have a trace for 
an execution of the NothingAtAII simulation look like the following. 

0.0 DoNothing 1 enters 
0.0 DoNothing 1 exits 
3.0 Visitor 1 enters 
3.0 Visitor 1 holds for 7.5885 
4.32703 DoNothing 2 enters 
4.32703 DoNothing 2 exits 
7.74896 Visitor 2 enters 
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7.74896 Visitor 2 holds for 4.14163 
8.20233 DoNothing 3 enters 
8.20233 DoNothing 3 exits 
10.5885 Visitor 1 exits 
11.8906 Visitor 2 exits 
12.5153 DoNothing 4 enters 
12.5153 DoNothing 4 exits 
14.2642 Visitor 3 enters 
14.2642 Visitor 3 holds for 4.51334 
16.6951 DoNothing 5 enters 
16.6951 DoNothing 5 exits 
18.7776 Visitor 3 exits 
19.8544 Visitor 4 enters 
19.8544 Visitor 4 holds for 5.10907 
20.5342 DoNothing 6 enters 
20.5342 DoNothing 6 exits 
23.464 DoNothing 7 enters 
23.464 DoNothing 7 exits 
24.9635 Visitor 4 exits 

Each subclass of EventMonitor mus t  create its own sequence of labels. 
EventMonitor sets up a label f ramework  in which the subclass can im- 
p lement  a way of dis t inguishing its instances. EventMonitor itself pro- 
vides a model tha t  the subclasses can duplicate; in this way, a default  
s imula t ion  using instances of EventMonitor can be used to produce the 
t race shown above. In addit ion to the scheduling, task language and pri- 
vate, messages shown in the earl ier  implementa t ion  of EventMonitor, 
the class description has the following messages. 

class name EventMonitor 
superclass SimulationObject 
instance variable names label 
class variable names DataFile 

Counter 
class methods 

class initialization 

fi le: aF i le  
DataFite ,-. aFile. 
Counter ~- 0 

instance methods 

initialization 

in i t ia l ize  
super initialize. 
self setLabel 
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accessing 

setLabel  
Counter ~- Counter -.t- 1. 
label ~- Counter printString 

label 
tlabel 

printing 

printOn: aStream 
self class name printOn: aStream. 
aStream space. 
aStream nextPutAIt: self label 

Visitor, as a subclass of EventMonitor, has to have an independent  class 
var iable  to act  as the counter  of its instances.  The class description of 
Visitor is now 

class name Visitor 
superclass EventMonitor 
class variable names MyCounter 
class methods 

class initialization 

file: aFile 
super file: aFile. 
MyCounter ~- 0 

instance methods 

accessing 

setLabel  
MyCounter ~- MyCounter -I- 1. 
label ~- MyCounter printString 

simulation control 

tasks 
self hoidFor: (Uniform from: 4.0 to: 10.0) next 

MyCounter  is set to 0 when  the ins tance is tom initialize; the me thod  is 
found in class EventMonitor .  Pr in t ing  retr ieves the label t ha t  Visitor re- 
defines wi th  respect  to MyCounter. We let DoNothing use the  class vari- 
able, Counter, of its superclass.  Then the  desired t race  will be produced 
using these definitions. 
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N o n c o n s u m a b l e  Resources 
Example of a File System 

Renewable  Resources 
Example of a Ferry Service 
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In the previous chapters, we introduced a framework in which to speci- 
fy event-driven simulations and to gather  statistics about such simula- 
tions. Without  resources to contend for and use, the only real task tha t  
an object can perform in a simulation is to hold (wait) for some speci- 
fied amount  of simulated time. Two kinds of resources are i l lustrated in 
this chapter: fixed resources and fluctuating resources. These kinds of 
resources were introduced in Chapter  22; the example in that  chapter  
of classes Simulation and SimulationObject defined a support  for re- 
sources coordination tha t  will be fur ther  described in this chapter. 

A fixed resource can be consumable. The simulation with a consum- 
able resource begins with a given quant i ty  of some resource, say, je l ly  
beans. As the simulation proceeds, objects acquire the resource, ulti- 
mately using up all tha t  were originally available. New objects needing 
the resource either terminate  without  successfully completing their  
tasks, or are indefinitely delayed waiting for a resource tha t  will never 
be provided. Alternatively, a fixed resource can be nonconsumable. The  
simulation begins with a given quant i ty  of some nonconsumable re- 
source, say, glass jars. As the simulation proceeds, objects acquire the 
resource. When an object no longer needs the resource, it is recycled. 
Objects needing the resource either obtain it immediately or are 
delayed until  a recycled one becomes available. 

A fluctuating resource models producer /consumer  relationships. A 
simulation can begin with a given quant i ty  of some resource, say cars. 
As the simulation proceeds, objects acquire the resource; when they no 
longer need the resource, they recycle it (such as in the used car mar- 
ket). New resources can be added (produced), increasing the supply of 
the resource. Objects needing the resource either obtain it immediately 
or must  wait until  a recycled one or a new one becomes available. A 
fluctuating resource for which additional quantit ies can be produced is 
called a renewable resource. The example of the car is an example of a 
resource tha t  is both renewable and nonconsumable. 

Implement ing  
ResourceProvider 
and 
StaticResource 

The modeler 's language for specifying resources in a Simulation includes 
expressions of the form 

self produce: amount of: resourceName 

The response to this message is either to create an instance of class Re- 
source with amount as its available quant i ty  of resources, or to retrieve 
an existing Resource and increment  its resources by amount. Instances 
of ResourceProvider are created by sending ResourceProvider the mes- 
sage named: aString or named: aString with: amount. 

When a SimulationObject requests a resource (acquire: amount 
of Resource: resourceName), the current ly  active simulation 
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(ActiveSimulation) is asked to provide the  corresponding resource 
(provideResourceFor:). P r e s u m a b l y  the resource exists in the  s imula t ion  
as a resul t  of the  ini t ia l izat ion of the Simulation; the  Simulation refers to 
a Set  of ins tances  of ResourceProvider and  can e n u m e r a t e  this Set in 
order  to find one whose n a m e  is resourceName.  

Once the  SimulationObject has access to a ResourceProvider it can 

ask how m a n y  resources it has  available,  
ask  its name,  
ask  to acquire  some a m o u n t  (and wi th  a pa r t i cu la r  access priority), 
ask  to produce some amount .  

When  a SimulationObject asks to acquire  some resources,  this  request  is 
added to a queue of such requests,  ordered wi th  respect  to pr ior i ty  and, 
wi th in  ident ical  pr ior i ty  levels, on a first-come first-served basis. Each 
t ime  a reques t  is made  or more  resources are  produced, the  
ResourceProvider checks to see if one or more  of its pending requests  
can be satisfied. 

Each  request  is s tored as an  ins tance  of class DelayedEvent. 
DelayedEvent was described in Chap te r  22. Each  DelayedEvent refers to 
a condition. In the case of delayed tasks,  the  condition is the  t ime  at  
which the  tasks  should be resumed;  in the  case of resource requests ,  the  
condition is an ins tance of Stat icResource which is a r epresen ta t ion  of 
the  requested resource and desired amount .  Wheneve r  a request  is 
made,  the  request  is stored on the  wai t ing  queue, pending, and then  an 
a t t e m p t  is made  to provide the  resource. 

Class ResourceProvider is a subclass of class Resource.  C las s  
ResourceCoordinator,  to be presented  in the  next  chapter ,  is also a sub- 
class of Resource.  Resource  represen ts  the  resource in t e rms  of its 
n a m e  and the queue of requests  t h a t  mus t  be satisfied. A class var iable  
refers to the  cu r ren t ly  active s imula t ion  (ActiveSimulation) for access to 
the  t ime  and  process reference counting. 

class name 
superclass 
instance variable names 

class variable names 
class methods 

Resource 
Object 
pending 
resourceName 
ActiveSimulation 

class initialization 

activeSimulation: existingSimulation 
ActiveSimulation ~- existingSimulation 

instance creation 

named: resourceName 
1"self new setName: resourceName 
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instance methods 

accessing 

addRequest:  aDelayedEvent  
pending add: aDelayedEvent. 
self provideResources. 
ActiveSimulation stopProcess. 
aDelayedEvent pause. 
ActiveSimulation startProcess 

name 
tresourceName 

private 

provideResources 
tself 

setName: aString 
resourceName ~- aString. 
pending ~- SortedCollection new 

Notice that  the mechanism used for storing requests on the 
SortedCotlection, pending, is similar to that  used for storing delayed 
events on the eventQueue of a Simulation. That is, a process that  was 
running is suspended so that  the reference count for processes in the 
Simulation is decremented. At the point that  the process continues 
again, the reference count is incremented. A Semaphore is used in or- 
der to synchronize pausing and resuming the simulation process. 

Class ResourceProvider represents resources as simple quantifiable 
items that  have no tasks to do and are, therefore, not created as actual 
SimulationObjects. Rather, a numerical count is kept of the number of 
the items. When a SimulationObject successfully acquires this kind of 
resource, the SimulationObject is given access to an instance of 
StaticResource. The last expression of the method in ResourceProvider 
associated with acquire:withPriority: creates and returns a StaticResource. 
Prior to evaluating this expression, a DelayedEvent is removed from the 
collection of pending requests and the amount  requested decremented 
from the amount  currently available. 

class name ResourceProvider 
superclass Reso u rce 

instance variable names amountAvailable 
class methods 

instance creation 

named: resourceName with: amount 
t self new setName: resourceName with: amount 
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named: resourceName 
1'self new setName: resourceName with: 0 

instance methods 

accessing 

amountAvai lable  
t amountAvailable 

task language 

acquire: amountNeeded withPriority:  pr ior i tyNumber 
I anEvent I 
anEvent ~- DelayedEvent onCondition: (StaticResource 

for: amountNeeded 
of: self 
with Priority: priorityNumber). 

self addRequest: anEvent. 
t anEvent condition 

produce: amount  
amountAvailable ~ amountAvaitable -i- amount. 
self provideResources 

private 

provideResources 
I anEvent I 
[pending isEmpty not 

and: [pending first condition amount < = amountAvailable]] 

whileTrue: 
[anEvent ~ pending removeFirst. 
amountAvailable ,- amountAvailable - a n E v e n t  condition amount. 
anEvent resume] 

setName: resourceName with: amount 
super setName: aString. 
amountAvailable ,-- amount 

A Stat icResource represents a Simulat ionObject  w i t h  no tasks to do oth- 
er t h a n  to hold quan t i t i es  of i tems for some o ther  Simulat ionObject.  

class name 

superclass 

instance variable names 

class methods 

instance creation 

StaticResource 
SimulationObject 
amount 
resource 
priority 

for: amount of: aResource withPriority: aNumber  
t self new setAmount: amount resource: aResource withPriority: aNumber 
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instance methods 

accessing 

a m o u n t  
tamount 

n a m e  

t resource name 
p r i o r i t y  

1' priority 

comparing 

< = a S t a t i c R e s o u r c e  

tpriority < = aStaticResource priority 

task language 

c o n s u m e :  a N u m b e r  

amount ~ (amount-  aNumber)max: 0 
r e l e a s e  

resource produce: amount. 
amount ~ 0 

private 

s e t A m o u n t :  a N u m b e r  

r e s o u r c e :  a R e s o u r c e  

w i t h P r i o r i t y :  p r i o r i t y N u m b e r  

amount ~ aNumber. 
resource ~ aResource. 
priority ~- priorityNumber 

Since a SimulationObject can  hold on to a r e f e r ence  to a StaticResource, 
the messages consume: and release are par t  of the task language of a 
SimutationObject. When a SimulationObject acquires a resource, i t  is pre- 
sumably consuming that  resource, un t i l  that  resource is returned to the 
simulat ion. The amount  of resource held in the StaticResource is re- 
turned to the s imulat ion by sending the StaticResource the message re- 
lease. (Typical ly, however, the SimulationObject sends itself the message 
release: aStaticResource so that  a un i fo rm style of sending messages to 
self is m a i n t a i n e d  in t he  m e t h o d  assoc ia ted  With the  object 's  tasks.  This  
u n i f o r m i t y  s impl i f ies  the  des ign  of a m e t h o d  for t r a c in g  or m o n i t o r i n g  
the  even t s  of a s imula t ion .  Because  all  t a s k  messages  a re  sen t  as mes-  
sages  to self a n d  t h e r e f o r e  to a SimulationObject ,  it is possible to c r ea t e  
a subclass  of Simulat ionObject  (EventMonitor was  the  e x a m p l e  we pres- 
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ented in Chapter  23) in which all task messages are intercepted in or- 
der to store a notation tha t  the task is being done. 

Using acquire:ofResource: and release:, the resource is t reated as a 
nonconsumable resource. A mixture  is possible. The SimulationObject 
can acquire some amount  of a resource, say 10, consume 5, and re tu rn  
5. The message consume: is used to remove resources from the simula- 
tion. Thus the example would be accomplished by sending a 
StaticResource, acquired with i0 resources, the message consume: 5, 
and then the message release (or sending release: aStaticResource to 
self). 

Consum able  
Resources  

A simple jelly bean example i l lustrates the idea of a consumable re- 
source. R e c a l l  the simulation example, NothingAtAil, introduced in 
Chapter  22. Suppose tha t  whenever  a Visitor enters  the s imulat ion and 
looks around, it has a task to acquire 2 jelly beans, take 2 units of t ime 
eat ing the beans, and leave. The simulat ion is initialized with one re- 
source consisting of 15 jelly beans. The definition of this version of 
NothingAtAIi is 

class name NothingAtAII 
superclass Simulation 
instance methods 

initialization 

d e f i n e R e s o u r c e s  
self produce: I5 of: ' jelly beans' 

d e f i n e A r r i v a l S c h e d u l e  
self scheduleArrivalOf: Visitor accordingTo: (Uniform from: 1 to: 3) 

The Visitor's tasks are expressed in two messages to self found in its 
method for tasks. 

tasks  
self acquire: 2 of Resource: ' jelly beans'. 
self holdFor: 2 

An example execution of this simulation, in which only exits and 
entr ies are monitored, is 

0.0 Visitor 1 enters 
2.0 Visitor 1 exits 
2.03671 Visitor 2 enters 

i 



490 
The Use of Resources in Event -Dr iven  Simula t ions  

4.03671 Visitor 2 exits 
4.34579 Visitor 3 enters 
5.92712 Visitor 4 enters 
6.34579 Visitor 3 exits 
7.92712 Visitor 4 exits 
8.46271 Visitor 5 enters 
10.4627 Visitor 5 exits 
10.5804 Visitor 6 enters 
12.5804 Visitor 6 exits 
12.7189 Visitor 7 enters 
14.7189 Visitor 7 exits 
15.0638 Visitor 8 enters 
17.6466 Visitor 9 enters 
19.8276 Visitor 10 enters 

last visitor to get jelly beans 
endless waiting from now on 

After  the  seventh  Visitor enters ,  the re  are  no more  jel ly beans, so all the  
subsequent  Visitors are  endlessly delayed wai t ing  for resources t h a t  will 
never  be made  available.  Al ternat ive ly ,  the  Visitor could check to see if 
any  jel ly beans  r e m a i n  avai lable  (inquireFor:ofResource:). If none re- 
main,  the  Visitor can leave r a t h e r  t han  get t ing  caught  in the queue. 
This corresponds to the following method  for tasks.  

tasks 
(self inquireFor: 2 of Resource: ' jelly beans')  

ifTrue: [self acquire: 2 of Resource: ' jelly beans' 
self holdFor: 2] 

One addi t ional  r e f inement  migh t  be to inform the s imula t ion  t ha t  all 
resources are  used up and t ha t  it is t ime  to ~close the store." This is 
done by sending the  Visitor the  message stopSimulation. If we were to 
send this  message the first t ime  a Visitor enters  who can not acquire 
enough jelly beans, then  it is possible t ha t  a Visitor who has  en te red  the 
store will get locked in. We have to make  cer ta in  t ha t  a Visitor who ac- 
quires the last  jel ly beans, closes the store upon exit; in this way, a lat- 
er Visitor will not lock this last  successful one into the store. This 
corresponds to the  following method  for tasks. 

tasks 

I flag t 
(self inquireFor: 2 of Resource: ' jel ly beans')  

ifTrue: [self acquire: 2 of Resource: ' jelly beans' .  
flag ~- self inquireFor: 2 of Resource: ' jelly beans' 
"Are there still 2 left so that the next Visitor can be served?" 
self holdFor: 2. 
flag ifFalse: [self stopSimulation]] 

Here  is ano the r  example  execution of the s imula t ion  NothingAtAII, in 
which only exits and entr ies  are  monitored.  
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0.0 Visitor 1 enters 
2.0 Visitor 1 exits 
2.26004 Visitor 2 enters 
4.26004 Visitor 2 exits 
4.83762 Visitor 3 enters 
6.34491 Visitor 4 enters 
6.83762 Visitor 3 exits 
8.34491 Visitor 4 exits 
8.51764 Visitor 5 enters 
9.9006 Visitor 6 enters 
10.5176 Visitor 5 exits 
11.9006 Visitor 6 exits 
12.6973 Visitor 7 enters 
14.0023 Visitor 8 enters 
14.0023 Visitor 8 exits 
14.6973 Visitor 7 exits 

last successful requestor 
nothing available for this Visitor 

last successful requestor closes shop on 
exit 

The EventMonitor class described in the previous chapter  also moni tors  
the  use of resources. So, a t race  of NothingAtAll would include the  t imes 
a t  which jel ly beans were  requested and obtained. 

0.0 Visitor 1 enters 
0.0 Visitor 1 requests 2 of jelly beans 
0.0 Visitor 1 obtained 2 of jelly beans 
0.0 Visitor 1 holds for 2 
1.40527 Visitor 2 enters 
1.40527 Visitor 2 requests 2 of jelly beans 
1.40527 Visitor 2 obtained 2 of jelly beans 
1.40527 Visitor 2 holds for 2 
2.0 Visitor 1 exits 
2.56522 Visitor 3 enters 
2.56522 Visitor 3 requests 2 of jelly beans 
2.56522 Visitor 3 obtained 2 of jelly beans 
2.56522 Visitor 3 holds for 2 
3.40527 Visitor 2 exits 
4.56522 Visitor 3 exits 
5.3884 Visitor 4 enters 
5.3884 Visitor 4 requests 2 of jelly beans 
5.3884 Visitor 4 obtained 2 of jelly beans 
5.3884 Visitor 4 holds for 2 
6.69794 Visitor 5 enters 
6.69794 Visitor 5 requests 2 of jelly beans 
6.69794 Visitor 5 obtained 2 of jelly beans 
6.69794 Visitor 5 holds for 2 
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7.3884 
7.72174 
7.72174 
7.72174 
7.72174 
8.69794 
9.72174 
10.153 
10.153 
10.153 
10.153 
11.875 
11.875 
12.153 

Visitor 4 exits 
Visitor 6 enters 
Visitor 6 requests 2 of jelly beans 
Visitor 6 obtained 2 of jelly beans 
Visitor 6 holds for 2 
Visitor 5 exits 
Visitor 6 exits 
Visitor 7 enters 
Visitor 7 requests 2 of jelly beans 
Visitor 7 obtained 2 of jelly beans 
Visitor 7 holds for 2 
Visitor 8 enters 
Visitor 8 exits 

At t ime  11.875, all but  one jelly bean has been consumed. At t ime 
12.153 Visitor n u m b e r  7 stops the s imulat ion.  

N o n c o n s u m a b l e  
Resources  

A car ren ta l  s imula t ion  serves to i l lus t ra te  the use of a nonconsumable  
resource. The example  s imula t ion  is a shor t - t e rm car ren ta l  agency 
tha t  opens up with  15 cars and 3 t rucks  available.  Renters  o f  cars ar- 
rive with  a m e a n  ra te  of one every 30 minutes ,  and those requi r ing  
t rucks  one every 120 minutes .  The first car  r en t e r  arr ives  when  the 
shop opens, and the  first  t ruck  r en te r  ar r ives  10 minu tes  later.  Classes 
CarRenter  and TruckRenter r epresen t  these s imula t ion  objects. 

RentalAgency is specified as a subclass of Simulation. It implement s  
the  two ini t ial izat ion messages,  defineArrivalSchedule and 

defineResources. 

class name 
superclass 
instance methods 

initialization 

def ineArr ivalSchedule 
self scheduleArrivalOf: CarRenter 

accordingTo: (Exponential mean: 30). 
self scheduleArrivalOf: TruckRenter 

accordingTo: (Exponential mean: 120) 
startingAt; 10 

def ineResources 
self produce: 15 of: " car'. 
self produce: 3 of: 'truck" 

RentalAgency 
Simulation 
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The tasks for CarRenter and TruckRenter are similar. First  acquire a car 
or truck; if none are available, wait. Once the vehicle is obtained, use it. 
A CarRenter keeps the car between 4 and 8 hours (uniformly distribut- 
ed); a TruckRenter keeps the t ruck between 1 and 4 hours (uniformly 
distributed). These usage times are indicated by having the renter  hold 
for the appropriate amount  of t ime before re turning the vehicle (i.e., re- 
leasing the resource). 

In order to monitor the two kinds of SimulationObject, and to have la- 
bels that  separately identify e a c h  kind, the implementat ions of 
CarRenter and TruckRenter duplicate the labeling technique demon- 
strated earlier for class Visitor. 

class name CarRenter 

superclass EventMoni tor  

class variable names CarOounter 

Hour 

class methods 

class init ial ization 

file: f i le 
super file: file. 

CarCounter  ~ O. 

Hour ~ 60 

instance methods 

accessing 

setLabe l  
CarCounter  ~- CarCounter  4-- 1. 

label ~- CarCounter  printStr ing 

simulat ion control  

tasks  

I car l  
car ~ self acquire '  1 of Resource:  ' c a r ' .  

self ho ldFo r  (Uniform from' 4 ,Hou r  t o  8 ,Hour )  next. 

self release: car 

class name TruckRenter  

superclass EventMoni tor  

class variable names TruckCounter  

Hour 

class methods 

class init ial ization 

file: f i le 
super file: file, 

TruckCounter  ~ 0 

Hour ~ 60 
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accessing 

setLabe l  
TruckCounter ~- TruckCounter + 1. 
label ~- TruckCounter printString 

instance methods 

simulation control 

tasks 
I truck I 
truck ,-- self acquire: 1 ofResource: ' truck'. 
self holdFor: (Uniform from: Hour to: 4,Hour) next. 
self release: truck 

The renta l  agency s imula t ion is run  by invoking 

aFile ~ Disk file: 'rental.events'. 
CarRenter file: aFile. 
TruckRenter file: aFile. 
anAgency ,- RentalAgency new startUp. 
[anAgency time < 600] whileTrue: [anAgency proceed] 

The trace on file rental.events after  10 hours  (600 minutes)  shows the 
following sequence of events. 

0 
0 
0 
0 
10 
10 
10 
10 
26.2079 
26.2079 
26.2079 
26.2079 
27.4147 
27.4147 
27.4147 
27.4147 
51.5614 
51.5614 
51.5614 
51.5614 
78.0957 

CarRenter 1 enters 
CarRenter 1 requests 1 of Car 
CarRenter 1 obtained 1 of Car 
CarRenter 1 holds for 460.426 
TruckRenter 1 enters 
TruckRenter 1 requests 1 of Truck 
TruckRenter 1 obtained 1 of Truck 
TruckRenter 1 holds for 87.2159 
CarRenter 2 enters 
CarRenter 2 requests 1 of Car 
CarRenter 2 obtained 1 of Car 
CarRenter 2 holds for 318.966 
CarRenter 3 enters 
CarRenter 3 requests 1 of Car 
CarRenter 3 obtained 1 of Car 
CarRenter 3 holds for 244.867 
CarRenter 4 enters 
CarRenter 4 requests 1 of Car 
CarRenter 4 obtained 1 of Car 
CarRenter 4 holds for 276.647 
CarRenter 5 enters 



78.0957 
78.0957 
78.0957 
93.121 
93.121 
93.121 
93.121 
97.2159 
97.2159 
99.0265 
99.0265 
99.0265 
99.0265 
106.649 
106.649 
106.649 
106.649 
107.175 
107.175 
107.175 
107.175 
121.138 
121.138 
121.138 
121.138 
127.018 
127.018 
127.018 
127.018 
145.513 
145.513 
145.513 
145.513 
166.214 
166.214 
166.214 
166.214 
172.253 
172.253 
172.253 
172.253 
191.438 
191.438 
191.438 
191.438 
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CarRenter 5 requests 1 Of Car 
CarRenter 5 obtained 1 of Car 
CarRenter 5 holds for 333.212 
CarRenter 6 enters 
CarRenter 6 requests 1 of Car 
CarRenter 6 obtained 1 of Car 
CarRenter 6 holds for 359.718 
TruckRenter 1 releases 1 of Truck 
TruckRenter 1 exits 
CarRenter 7 enters 
CarRenter 7 requests 1 of Car 
CarRenter 7 obtained 1 of Car 
CarRenter 7 holds for 417.572 
CarRenter 8 enters 
CarRenter 8 requests 1 of Car 
CarRenter 8 obtained 1 of Car 
CarRenter 8 holds for 294.43 
CarRenter 9 enters 
CarRenter 9 requests 1 of Car 
CarRenter 9 obtained 1 of Car 
CarRenter 9 holds for 314.198 
CarRenter 10 enters 
CarRenter 10 requests 1 of Car 
CarRenter 10 obtained 1 of Car 
CarRenter 10 holds for 467.032 
TruckRenter 2 enters 
TruckRenter 2 requests 1 of Truck 
TruckRenter 2 obtained 1 of Truck 
TruckRenter 2 holds for 74.5047 
CarRenter 11 enters 
CarRenter 11 requests 1 of Car 
CarRenter 11 obtained 1 of Car 
CarRenter 11 holds for 243.776 
CarRenter 12 enters 
CarRenter 12 requests 1 of Car 
CarRenter 12 obtained 1 of Car 
CarRenter 12 holds for 429.247 
CarRenter 13 enters 
CarRenter 13 requests 1 of Car 
CarRenter 13 obtained 1 of Car 
CarRenter 13 holds for 370.909 
TruckRenter 3 enters 
TruckRenter 3 requests 1 of Truck 
TruckRenter 3 obtained 1 of Truck 
TruckRenter 3 holds for 225.127 
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201.523 
201.523 
220.102 
220.102 
220.102 
220.102 
252.055 
252.055 
252.055 
252.055 
269.964 
269.964 
272.282 
272.282 
272.282 
272.282 
292.375 
292.375 
328.2O8 
328.208 
328.208 
328.208 
345.174 
345.174 
350.53 
350.53 
350.53 
350.53 
354.126 
354.126 
358.269 
358.269 
358.269 
358.269 
367.88 
367.88 
367.88 
367.88 
389.289 
389.289 
389.289 
389.289 
401.079 
401.079 
402.224 

TruckRenter 2 releases 1 of Truck 
TruckRenter 2 exits 
CarRenter 14 enters 
CarRenter 14 requests 1 of Car 
CarRenter 14 obtained 1 of Car 
CarRenter 14 holds for 334.684 
CarRenter 15 enters 
CarRenter 15 requests 1 of Car 
CarRenter 15 obtained 1 of Car 
CarRenter 15 holds for 408.358 
CarRenter 16 enters 
CarRenter 16 requests 1 of Car 
CarRenter 3 releases 1 of Car 
CarRenter 3 exits 
CarRenter 16 obtained 1 of Car 
CarRenter 16 holds for 281.349 
CarRenter 17 enters 
CarRenter 17 requests 1 of Car 
CarRenter 4 releases 1 of Car 
CarRenter 4 exits 
CarRenter 17 obtained 1 of Car 
CarRenter 17 holds for 270.062 
CarRenter 2 releases 1 of Car 
CarRenter 2 exits 
CarRenter 18 enters 
CarRenter 18 requests 1 of Car 
CarRenter 18 obtained 1 of Car 
CarRenter 18 holds for 297.154 
CarRenter 19 enters 
CarRenter 19 requests 1 of Car 
TruckRenter 4 enters 
TruckRenter 4 requests 1 of Truck 
TruckRenter 4 obtained 1 of Truck 
TruckRenter 4 holds for 173.648 
TruckRenter 5 enters 
TruckRenter 5 requests 1 of Truck 
TruckRenter 5 obtained 1 of Truck 
TruckRenter 5 holds for 175.972 
CarRenter 11 releases 1 of Car 
CarRenter 11 exits 
CarRenter 19 obtained 1 of Car 
CarRenter 19 holds for 379.017 
CarRenter 8 releases 1 of Car 
CarRenter 8 exits 
CarRenter 20 enters 
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402.224 
402.224 
402.224 
410.431 
410.431 
411.307 
411.307 
416.566 
416.566 
416.566 
416.566 
421.373 
421.373 
422.802 
422.802 
422.802 
422.802 
452.839 
452.839 
46O.426 
460.426 
512.263 
512.263 
512.263 
512.263 
516.598 
516.598 
531.917 
531.917 
535.642 
535.642 
543.162 
543.162 
543.852 
543.852 
553.631 
553.631 
554.786 
554.786 
574.617 
574.617 
574.617 
574.617 
588.171 
588.171 

CarRenter 20 requests 1 of Car 
CarRenter 20 obtained 1 of Car 
CarRenter 20 holds for 341.188 
TruckRenter 6 enters 
TruckRenter 6 requests 1 of Truck 
CarRenter 5 releases 1 of Car 
CarRenter 5 exits 
TruckRenter 3 releases 1 of Truck 
TruckRenter 3 exits 
TruckRenter 6 obtained 1 of Truck 
TruckRenter 6 holds for 119.076 
CarRenter 9 releases 1 of Car 
CarRenter 9 exits 
CarRenter 21 enters 
CarRenter 21 requests 1 of Car 
CarRenter 21 obtained 1 of Car 
CarRenter 21 holds for 241.915 
CarRenter 6 releases 1 of Car 
CarRenter 6 exits 
CarRenter 1 releases 1 of Car 
CarRenter 1 exits 
CarRenter 22 enters 
CarRenter 22 requests 1 of Car 
CarRenter 22 obtained 1 of Car 
CarRenter 22 holds for 277.035 
CarRenter 7 releases 1 of Car 
CarRenter 7 exits 
TruckRenter 4 releases 1 of Truck 
TruckRenter 4 exits 
TruckRenter 6 releases 1 of Truck 
TruckRenter 6 exits 
CarRenter 13 releases 1 of Car 
CarRenter 13 exits 
TruckRenter 5 releases 1 of Truck 
TruckRenter 5 exits 
CarRenter 16 releases 1 of Car 
CarRenter 16 exits 
CarRenter 14 releases 1 of Car 
CarRenter 14 exits 
CarRenter 23 enters 
CarRenter 23 requests 1 of Car 
CarRenter 23 obtained 1 of Car 
CarRenter 23 holds for 436.783 
CarRenter 10 releases 1 of Car 
CarRenter 10 exits 
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591.51 CarRenter 24 enters 
591.51 CarRenter 24 requests 1 of Car 
591.51 CarRenter 24 obtained 1 of Car 
591.51 CarRenter 24 holds for 430.067 
595.461 CarRenter 12 releases 1 of Car 
595.461 CarRenter 12 exits 
598.27 CarRenter 17 releases 1 of Car 
598.27 CarRenter 17 exits 
599.876 CarRenter 25 enters 
599.876 CarRenter 25 requests 1 of Car 
599.876 CarRenter 25 obtained 1 of Car 
599.876 CarRenter 25 holds for 472.042 
642.188 TruckRenter 7 enters 
642.188 TruckRenter 7 requests 1 of Truck 
642.188 TruckRenter 7 obtained 1 of Truck 
642.188 TruckRenter 7 holds for 190.586 

A snapshot of the simulation shows that ,  at  t ime 642.188, the following 
events are queued in anAgency and the following resources are avail- 
able. 

Resource (car) no pending requests; 6 available 
Resource (truck) no pending requests; 2 available 
Event Queue 

CarRenter for creation and start up 
TruckRenter for creation and start up 
9 CarRenters holding 
1 TruckRenter holding 

Note tha t  a nonconsumable resource differs from the description of a 
consumable resource only in the SimulationObject's sending the message 
release: in order to recycle acquired resources. 

Example o f  a File 
System 

The car renta l  is an open simulation in which objects (car renters  and 
t ruck renters)  arrive, do thei r  tasks, and leave again. A closed simula- 
tion is one in which the same objects remain  in the simulat ion for the 
durat ion of the simulation run. The next  example is of a file system; it 
was adopted from a book by Graham Birtwistle tha t  presents a Simula- 
based system named Demos [A System for Discrete Event Modelling on 
Simula, Graham M. Birtwistle, MacMillan, London, England, 1979]. 
The purpose of Demos is to support  teaching about the kinds of event- 
driven simulations discussed in this chapter.  The book is a thorough in- 
troduction to this class of simulations and to their  implementa t ion in 
Simula. There  are many  useful examples, each of which could be 
implemented in the context of the Small talk-80 simulation f ramework 
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provided in this and in the previous chapter.  We use variat ions of a 
Demos file system, a car ferry, and an information system example for 
i l lustrat ion in this chapter  so that ,  after seeing how we approach the 
Small talk-80 implementat ions,  the interested reader  can t ry  out more 
of Birtwistle 's  examples. 

In the example file system, ~writer" processes update a file, and 
~'reader" processes read it. Any number  of readers may access the file 
at  the same time, but  wri ters  must  have sole access to the file. More- 
over, wri ters  have priori ty over readers. The individual sequencing of 
events is shown in the programs below. The example i l lustrates the use 
of priori ty queueing for resources as well as another  approach to col- 
lecting statistics. In this case, the statistics gathered is a tally of the 
number  of reads and the number  of writes. 

Suppose there  are three  system file readers  and two file writers,  and 
only three (nonconsumable) file resources. The initialization method 
specifies a statistics dictionary with two zero-valued entries, reads and 
writes. The simulat ion is to run for 25 simulated units of time; it sched- 
ules itself to receive the message finishUp at  t ime 25. 

Note in the implementa t ion of def ineAr r iva iSchedu le  tha t  the 
Fi leSys ternReaders  and F i leSys temWr i te rs  are g i ven  a t t r i b u t e s  so t h a t  

they  can be identified in the event traces. 

class name 
superclass 
instance variable names 
instance methods 

initialize-release 

i n i t i a l i z e  
super initialize. 
statistics ~- Dictionary new: 2. 

statistics at: ..#:reads put: 0. 

statistics at: ¢/:writes put: 0 

d e f i n e A r r i v a l S c h e d u l e  

self 

FiteSystem 
Simulation 
statistics 

self 

scheduleArrivalOf: (FileSystemReader new label  ' f i rs t ' )  

at: 0.0. 
scheduleArrivalOf: (FileSystemWriter new label  ' f i rst ' )  

at: 0.0. 
self scheduleArrivalOf: (FileSystemReader new label: 

at: 0.0. 
self scheduleArrivalOf: (FileSystemWriter new label  

at: 1.0. 
self scheduteArrivalOf: (FiteSystemReader new label: 

at: 2.0. 
self schedule: [self finishUp] at: 25 

d e f i n e R e s o u r c e s  
self produce: 3 of: 'F i le"  

• second ' )  

second ' )  

• third • ) 
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statistics 

statisticsAt: aKey changeBy: anlnteger 
statistics at: aKey 

put: (statistics at: aKey) --t- anlnteger 
printStatisticsOn: aStream 

statistics printOn: aStream 

The Fi leSys temReader  repeatedly carries out a sequence of five tasks: 
acquire one File resource, hold for an amount  of t ime appropriate  to 
reading the file, release the resource, update the tally of read statistics, 
and then hold for an amount  of t ime appropriate  to using the informa- 
tion read from the file. FileSystemWriters acquire three  file resources, 
hold in order to write on the file, release the resources, and update the 
write statistics. The priori ty of a FileSystemReader is set to 1; the prior- 
ity of a FileSystemWriter is 2. In this way, the nonconsumable 
ResourceProvider"  File" will give a t tent ion to FileSystemWriters before 
FileSystemReaders. 

In order to obtain a t race of the events, the two simulation objects 
are created as subclasses of EventMonitor. Since each has a single label 
tha t  will serve to identify it, only the response to printOn: aStream is 
reimplemented.  

class name FileSystemReader 
superclass EventMonitor 
instance methods 

accessing 

label: aString 
label ,- aString 

simulation control 

tasks 
I file I 
"The repeated sequence of tasks is as fol lows" 
[true] 

whileTrue: 
[file ~- self acquire: 1 ofResource: "Fi le '  withPriority: 1. 
self holdFor: 2.0. 
self release: file. 
ActiveSimulation statisticsAt: #reads changeBy: 1. 
self holdFor: 5.0 ] 

printing 

printOn: aStream 
aStream nextPutAIl: label. 
aStream space. 
self class name printOn: aStream 
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class name 
superclass 
instance methods 

accessing 

label: aString 
label ~- aString 

simulation control 

FiteSystemWriter 
EventMonitor 

tasks 
I file I 
"The repeated sequence of tasks is as follows" 
[true] 

whileTrue: 
[" Gather information " 
self holdFor: 5.0. 
file ~- self acquire: 3 ofResource: 'File" withPriority: 2. 
self holdFor: 3.0. 
self release: file. 
ActiveSimulation statisticsAt: #writes changeBy: 1] 

printing 

printOn: aStream 
aStream nextPutAtl label. 
aStream space. 
self class name printOn" aStream 

The five s imulat ion objects carry  out their  tasks, until  the simulation 
stops itself at  t ime 25. In specifying the tasks of a SimulationObject, the 
modeler has available all the control  s t ructures  of the Small talk-80 lan- 
guage. A trace of the events shows how FileSystemReaders are held up 
because of t h e  higher  priori ty and larger  resource needs of the 
FileSystemWriters. For example, the first and second FileSystemReaders 
are held up at  t ime 7.0; the third at  t ime 9.0; and all until  t ime 11.0, 
the t ime at  which no FileSystemWriter requires resources. 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

first FileSystemReader enters 
first FileSystemReader requests 1 of File 
first FileSystemReader obtained 1 of File 
first FileSystemReader holds for 2.0 
first FileSystemWriter enters 
first FileSystemWriter holds for 5.0 
second FileSystemReader enters 
second FileSystemReader requests 1 of File 
second FileSystemReader. obtained 1 of File 
second FileSystemReader holds for 2.0 
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1.0 
1.0 
2.0 
2.0 
2.0 
2.0 
2.0 
2.0 
2.0 
2.0 
4.0 
4.0 
5.0 
5.0 
5.0 
6.0 
7.0 
7.0 
8.0 
8.0 
8.0 
8.0 
9.0 
11.0 
11.0 
11.0 
11.0 
11.0 
11.0 
11.0 
11.0 
13.0 
13.0 
13.0 
13.0 
13.0 
13.0 
13.0 
13.0 
13.0 
16.0 
16.0 
16.0 
16.0 
16.0 

second FileSystemWriter enters 
second FileSystemWriter holds for 5.0 
second FileSystemReader releases 1 of File 
second FileSystemReader holds for 5.0 
first FileSystemReader releases 1 of File 
first FileSystemReader holds for 5.0 
third FileSystemReader enters 
third FileSystemReader requests 1 of File 
third FileSystemReader obtained 1 of File 
third FileSystemReader holds for 2.0 
third FileSystemReader releases 1 of File 
third FileSystemReader holds for 5.0 
first FiteSystemWriter requests 3 of File 
first FileSystemWriter obtained 3 of File 
first FileSystemWriter holds for 3.0 
second FileSystemWriter requests 3 of File 
first FileSystemReader requests 1 of File 
second FileSystemReader requests 1 of File 
first FileSystemWriter releases 3 of File 
first FileSystemWriter holds for 5.0 
second FileSystemWriter obtained 3 of File 
second FileSystemWriter holds for 3.0 
third FileSystemReader requests 1 of File 
second FileSystemWriter releases 3 of File 
second FileSystemWriter holds for 5.0 
first FileSystemReader obtained 1 of File 
first FileSystemReader holds for 2.0 
second FileSystemReader obtained 1 of File 
second FileSystemReader holds for 2.0 
third FileSystemReader obtained 1 of File 
third FileSystemReader holds for 2.0 
third FileSystemReader releases 1 of File 
third FileSystemReader holds for 5.0 
second FileSystemReader releases 1 of File 
second FileSystemReader holds for 5.0 
first FileSystemReader releases 1 of File 
first FileSystemReader holds for 5.0 
first FileSystemWriter requests 3 of File 
first FileSystemWriter obtained 3 of File 
first FileSystemWriter holds for 3.0 
first FileSystemWriter releases 3 of File 
first FileSystemWriter holds for 5.0 
second FileSystemWriter requests 3 of File 
second FileSystemWriter obtained 3 of File 
second FileSystemWriter holds for 3.0 
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18.0 
18.0 
18.0 
19.0 
19.0 
19.0 
19.0 
19.0 
19.0 
19.0 
19.0 
21.0 
21.0 
21.0 
21.0 
21.0 
21.0 
21.0 
21.0 
21.0 
24.0 
24.0 
24.0 
24.0 
24.0 

first FileSystemReader requests 1 of File 
second FileSystemReader requests 1 of File 
third FileSystemReader requests 1 of File 
second FileSystemWriter releases 3 of File 
second FileSystemWriter holds for 5.0 
first FileSystemReader obtained 1 of File 
first FileSystemReader holds for 2.0 
second FileSystemReader obtained 1 of File 
second FileSystemReader holds for 2.0 
third FileSystemReader obtained 1 of File 
third FileSystemReader holds for 2.0 
third FileSystemReader releases 1 of File 
third FileSystemReader holds for 5.0 
second FileSystemReader releases 1 of File 
second FileSystemReader holds for 5.0 
first FileSystemReader releases 1 of File 
first FileSystemReader holds for 5.0 
first FileSystemWriter requests 3 of File 
first FiteSystemWriter obtained 3 of File 
first FileSystemWriter holds for 3.0 
first FileSystemWriter releases 3 of File 
first FileSystemWriter holds for 5.0 
second FileSystemWriter requests 3 of File 
second FileSystemWriter obtained 3 of File 
second FiteSystemWriter holds for 3.0 

At this point, the current  time is 25 and the statistics gathered is print- 
ed by sending the FileSystem the message printStatisticsOn: aStream 
where the Stream is, for example, a FileStream. The result is 

reads 9 
writes 5 

Note that  if the FileSystemReaders were not held up by lack of re- 
sources and lower priority, there would have been 12 reads during this 
timeframe. 

R e n e w a b l e  
Resources  

In simulations involving producer/consumer synchronizations, simula- 
tion objects acting as producers make resources available to other ob- 
jects acting as consumers. The simUlation starts out with some fixed 
amount  of resource, perhaps 0. Producer objects increase the available 
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resources,  consumer  objects decrease them.  This type of resource differs 
from a nonconsumable  resource in t h a t  there  is no l imit  to the amoun t s  
of resource t ha t  can be made  available.  Such resources are called r e n e w -  

a b l e  resources. Note t ha t  the  l imit  in the nonconsumable  case is 
enforced indirect ly  by the  Simulat ionObject 's  r e tu rn ing  resources 
th rough  the Stat icResource.  

A s imula t ion  of a car  dealership  provides a s imple example  of a re- 
newable  resource. Suppose a cus tomer  comes in to buy a car  every two 
to six days. The car  dealer  s ta r t s  out wi th  12 cars on the lot; when  
these are  sold, orders mus t  wai t  unt i l  new cars are  delivered. Ten to 
twelve new cars are shipped to the dealer  every 90 days. We assume 
t h a t  all the  cars are  the same and tha t  every cus tomer  is will ing to 
wai t  so t h a t  no sales are  lost if a car  is not immedia t e ly  available.  The 
car dealer  is in teres ted  in giving good service, but  he is also unwil l ing 
to keep too large an  inventory.  By examin ing  the average  length  of the 
queue of wai t ing  customers,  the  dealer  can modify his qua r t e r ly  order  
of cars in order to min imize  cus tomer  dissatisfaction and still m a i n t a i n  
a smal l  inventory  of new cars. 

Stat is t ics  on the  a m o u n t  of t ime  tha t  car  buyers  have to wait  to get a 
car are  k e p t  by the s imulat ion.  The method  used is the  same as the 
method  demons t r a t ed  in Chap te r  23 for collecting informat ion  on Visi- 
tors to a Museum; a Histogram is m a i n t a i n e d  by the  CarDealer. Each 
CarBuyer r e m e m b e r s  its en t ry  t ime; when  it exists the s imulat ion,  the  
length  of t ime the CarBuyer spent  in the s imula t ion  is logged in the His- 
togram. This length  of t ime  is equivalent  to the  a m o u n t  of t ime the 
CarBuyer had to wai t  to get  a car because the CarBuyer 's  only task  is to 
acquire  a car. 

class name CarDealer 
superclass Simulation 
instance variable names statistics 
instance methods 

initialize-release 

init ial ize 
super initialize. 
statistics ~ Histogram from: 1 to: 365 by: 7 

def ineArr iva lSchedu le  
self scheduleArrivalOf: CarBuyer 

accordingTo: (Uniform from: 2 to: 6) 
startingAt: 1.0. 

self scheduleArrivalOf: (CarDelivery new) at: 90.0 
"only one delivery is scheduled; the instance of CarDelivery will 
reschedule itself as the last of its tasks" 

def in~Resources  
self produce: 12 of: ' Car' 
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accessing 

exit: aSimulationObject 
super exit: aSimulationObject. 
" A  CarDelivery could be exiting--ignore i t "  

(aSimulationObject isKindOf: CarBuyer) 
ifTrue: [statistics store: currentTime - aSimutationObject entryTime] 

printStatistics: aStream 
statistics printStatisticsOn: aStream 

All the CarBuyer wants to do is get a car; the CarBuyer only waits if a 
car is not immediately available. 

class name CarBuyer 
superclass S im u tatio nObject 
ins tance var iable  names  entryTime 
instance methods 

accessing 

entryTime 
tentryTime 

simulation control 

initialize 
super initialize. 
entryTime ,- ActiveSimulation time 

tasks 
self acquire: 1 of Resource: 'Car" 

The CarDelivery produces 10 to 12 new cars. After producing the new 
cars, the CarDelivery object schedules itself to return in 90 days. An al- 
ternative implementation would have the CarDelivery hold for 90 days 
and then repeat its task. 

class name CarDelivery 
superclass SimulationObject 

ins tance  methods  

simulation control 

tasks 
"Get access to the Car resource and produce 10, 11, or 12 new cars" 
self produce: ((SampleSpace data: #:(10 11 12)) next) 

ofResource: "Car ' .  
" Schedule a new delivery in 90 days'" 
ActiveSimulation scheduleArrivalOf: self 

at: ActiveSimulation time 4- 90 

The statistics give us the number of buyers, minimum, maximum, and 
average wait times for the buyers, and the number of buyers within 
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each wai t - t ime  interval .  No one wai ted longer t han  204 days. 91 car 
buyers  came to the dealer;  12 did not have to wait  because the dealer  
had cars already.  Of the 43 t ha t  wai ted and were served, they  wai ted on 
the average of 78.5 days.  

At t ime  360.0 the  stat is t ics indicates the following information.  

Number of Minimum Maximum Average 
Objects Value Value Value 
55 0.0 197.168 78.5476 

Number of 
Entry Objects Frequency 
1-8 2 0.0363636 
8-15 3 0.0545454 
15-22 2 0.0363636 
22-29 1 0.0181818 
29-36 2 0.0363636 
36-43 1 0.0181818 
43-50 0 0.0 
50-57 1 0.0181818 
57-64 2 0.0363636 
64-71 1 0.0181818 
71-78 2 0.0363636 
78-85 2 0.0363636 
85-92 2 0.0363636 
92-99 0 0.0 
99-106 0 0.0 
106-113 1 0.0181818 
113-120 3 0.0545454 
120-127 2 0.0363636 
127-134 2 0.0363636 
134-141 2 0.0363636 
141-148 1 0.0181818 
148-155 0 0.0 
155-162 1 0.0181818 
162-169 2 0.0363636 
169-176 2 0.0363636 
176-183 1 0.0181818 
183-190 2 0.0363636 
190-197 2 0.0363636 
197-204 1 0.0181818 
204-211 0 0.0 

XX 
XXX 
XX 
X 
XX 
X 

X 
XX 
X 
XX 
XX 
XX 

X 
XXX 
XX 
XX 
XX 
X 

X 
XX 
XX 
X 
XX 
XX 
X 

Pending Requests 36 buyers waiting for a car 



507 
Renewable Resources 

From the above information, we can est imate  tha t  the number  of cars 
delivered could safely be increased, even doubled, to meet  the consumer 
demand. 

Example of a 
Ferry Service 

This next  example is like one in t h e  Birtwistle book. The example is of 
a ferry shut t l ing between an island and the mainland,  carrying cars 
back and forth. The ferry s tar ts  service at  7:00 a.m. (420 minutes  into 
the day) and stops at  10:45 p.m. (1365 minutes  into the day) once it has 
reached one of its docking locations. The ferry has a capacity of only six 
cars. 

The ferry's task is to load no more than  six of the wait ing cars and 
then to cross over the waterway.  The crossing takes about eight min- 
utes with a s tandard  deviation of 0.5 minutes.  The activity of crossing 
from one side to the other continues until  the t ime is 1365 minutes.  The 
FerrySimutation described next  simulates one day's ferry service. Note in 
the definition of Ferry the use of the Small talk-80 whileFalse: control 
s t ruc ture  to repeti t ively send the Ferry from one side to another;  also 
note the use of messages to split up the task description into parts load, 
holdFor: (cross over), unload, and changeSide. 

class name Ferry 
superclass SimulationObject 

instance variable names carsOn Board 
currentSide 

instance methods 

simulation control 

ini t ial ize 
super initialize. 

carsOnBoard ~- 0. 

currentSide ~- " Mainland" ::-, 

tasks  
' "  Initialize the count of loaded cars and then keep loading until at most 6 

are on board. Stop loading if no more cars are waiting at the dock."  

[ActiveSimulation time > 1365.0] whileFalse: 

[carsOnBoard ~- 0. 

self load. 
self holdFor: (Normal mean: 8 deviation: 0.5) next. 

self unload. 
self changeSide] 

load 
" "  It takes 0.5 minutes to load each car. Only try to acquire a resource, a 

car from this side's dock, if it is there. The conditional for the repetition 

checks remaining resources and only continues if a car is waiting." 
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[carsOnBoard < 6 
and: [self inquireFor: 1 of: currentSide]] 

whileTrue: 

[self acquire: 1 ofResource: currentSide. 
self holdFor: 0.5. 
carsOnBoard ~- carsOnBoard + 1] 

changeSide 
currentSide ~ currentSide= ' Mainland' 

ifTrue: [ '  Is land ' ]  
ifFalse: [ '  Mainland ' ]  

unload 
"It takes 0.5 minutes to unload each car." 
self holdFor: carsOnBoard,0.5.  

We will need two SimulationObjects in order  to s imulate  the cars arriv- 
ing at the dock of the Main land  or at  the Island, tha t  is, to produce a 
car at  these locations. 

class name IslandArrival 
superclass SimulationObject 
instance methods 

simulation control 

tasks 
self produce 1 of Resource: ' I s land '  

class name MainlandArrival 
superclass SimulationObject 
instance methods 

simulation control 

tasks 
self produce: 1 ofResource: " Mainland" 

The ferry s imula t ion has two kinds of Resources,  one for the ma in land  
and one for the island, in which to queue the ar r iv ing  cars. When these 
resources are first created, i.e., the day begins, there  are three  cars al- 
ready wai t ing at  the ma in l and  dock and no cars wai t ing at  the  island 
dock. The  ar r ival  schedule says tha t  cars arr ive  wi th  a mean  ra te  of 
0.15 every minute.  

class name FerrySimulation 
superclass Simulation 
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instance methods 

initialization 

def ineArr iva iSchedule  
self scheduleArrivalOf: MainlandArrival 

accordingTo: (Exponential parameter: 0.15) 
startingAt: 420.0. 

self scheduleArrivalOf: IslandArrivat 
accordingTo: (Exponential parameter: 0.15) 
startingAt: 420.0. 

self scheduleArrivalOf: Ferry new at: 420.0 

def ineResources  
self produce: 3 of: "Main land '  
self produce: 0 of: " Is land'  

There  is some data  tha t  the s imulat ion should collect while it is accu- 
mulat ing.  First,  the Ferry should count  the total  n u m b e r  of tr ips it 
takes, the total  cars it carries, and the numbe r  of tr ips it takes  car ry ing 
no cars. This data  is obtained by adding three  ins tance  variables (trips, 
totalCars,  and emptyTr ips)  in the definition of class Ferry and modifying 
three  methods.  

class name 
superclass 
instance variable names 

instance methods 

init ial ize 
super initialize. 
carsOnBoard ~ 0. 
currentSide ~ ' Mainland' 
trips ~-- 0. 
totalCars ,-- 0. 
emptyTrips ~ 0 

load 

Ferry 
SimulationObject 
emptyTrips 
carsOnBoard 

currentSide 
trips 
totalCars 
emptyTrips 

" Keep a running tally of the cars carried" 
[carsOnBoard < 6 

and: [self inquireFor: 1 ofResource: currentSide]] 
whileTrue: 

[self acquire: 1 ofResource: currentSide. 
self holdFor: 0.5. 

carsOnBoard ~ carsOnBoard + 1. 
totalCars ~ totalCars -i-- 1] 
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tasks  

"Check for an empty trip and keep a tally of trips" 
[ActiveSimulation time > 1365.0] whileFalse: 

[carsOnBoard ~ 0. 
self load. 
carsOn Board = 0 ifTrue: [emptyTrips ~- emptyTrips + 1]. 
self holdFor: (Normal mean: 8 deviation: 0.5) next. 
self unload. 
self changeSide. 
trips ,- trips + 1] 

In addition, we would like to know the maximum size of the number  of 
Mainland and Island arrivals, tha t  is, the maximum queue waiting for 
the Ferry. The FerrySimulation can determine this information by add- 
ing two instance variables, maxMainland and maxlsland; each time the 
message produce: amount of: resourceName is sent to the simulation 
and a resource amount  is increased, the corresponding variable can be 
reset to the maximum of its current  value and that  of the resource. 

The trace we provide shows the beginning and the ending sequence 
of events. The arrival of cars at the Island and the Mainland is listed 
separately from the repetitive tasks of the Ferry. 

420.000 IslandArrival 1 
420.000 MainlandArrival 1 
425.290 MainlandArrivai 2 
429.380 MainlandArrival 3 
430.830 IslandArrival 2 
431.302 IslandArrival 3 
434.209 IslandArrival 4 
438.267 IslandArrival 5 
440.864 IslandArrival 6 
441.193 MainlandArrival 4 
448.044 IslandArrival 7 
448.827 IslandArrival 8 
453.811 IslandArrival 9 
458.804 MainlandArrival 5 
467.860 IslandArrival 10 
470.800 IslandArrival 11 
473.957 MainlandArrival 6 
475.508 IslandArrival 12 

This continues until ... 

1300.87 
1301.11 
1301.19 

IslandArrival 169 
MainlandArrival 124 
IslandArrival 170 
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1306.75 
1309.30 
1315.24 
1319.65 
1321.80 
1322.39 
1328.45 
1328.99 
1329.77 
1331.63 
1335.43 
1338.93 
1342.46 
1348.11 
1358.63 
1359.10 
1360.79 

IslandArrival 171 
IslandArrival 172 
MainlandArrival 125 
MainlandArrival 126 
MainlandArrival 127 
MainlandArrival 128 
IslandArrival 173 
IslandArrival 174 
MainlandArrival 129 
IslandArrival 175 
MainlandArrival 130 
IslandArrival 176 
MainlandArrival 131 
IslandArrival 177 
MainlandArrival 132 
IslandArrival 178 
MainlandArrival 133 

T h e  Ferry s t a r t s  a t  t h e  M a i n l a n d  w h e r e  t h e r e  w e r e  t h r e e  c a r s  w a i t i n g ;  

no  c a r s  a r e  a t  t h e  I s l a n d .  I m m e d i a t e l y  a c a r  a r r i v e s  a t  e a c h  p lace .  

420,0 

420.0 
420.5 
421.0 
421.5 

422.0 

430.564 

432.564 
433.064 
433.564 

434.064 

442.617 

Ferry 1 enters 
load at  Mainland:  t he re  a re  now 4 cars wai t ing  at  

Ma in l and  and 1 car wai t ing  at  Is land 

Ferry 1 obtained 1 of Mainland, holds for 0.5 
Ferry 1 obtained 1 of Mainland, holds for 0.5 
Ferry 1 obtained 1 of Mainland, holds for 0.5 
Ferry 1 obtained 1 of Mainland, holds for 0.5 

cross over 

Ferry 1 holds for 8.56369 
unload 4 cars at  Island: t he re  are  now 2 cars  wai t ing 

a t  Ma in land  a n d  l car  wai t ing  at  Is land 

Ferry 1 holds for 2.0 
load at  Island: t he r e  a re  now 2 cars  at  Ma in land  and 

3 cars  a t  Is land 

Ferry 1 obtained 1 of Island, holds for 0.5 
Ferry 1 obtained 1 of Island, holds for 0.5 
Ferry 1 obtained 1 of Island, holds for 0.5 

cross over 

Ferry 1 holds for 8.55344 
unload 3 cars at Mainland: there are now 3 cars wait- 
ing at  Main land  and 3 cars wai t ing  at  I s land 

Ferry 1 holds for 1.5 
load at  Mainland:  t he re  is now 3 cars wai t ing  at  

Ma in land  and 0 cars  wai t ing  at  Is land 
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444.117 
444.617 
445.117 

445.617 

454.598 

456.098 
456.598 
457.098 
457.598 
458.098 
458.598 

459.098 

467.062 

470.062 

1299.52 
1300.02 

1300.52 

1307.76 

1308.76 

1309.26 

1317.54 
1318.04 
1318.54 
1319.04 

Ferry 1 obtained 1 of Mainland, holds for 0.5 
Ferry 1 obtained 1 of Mainland, holds for 0.5 
Ferry 1 obtained 1 of Mainland, holds for 0.5 

Ferry 

Ferry 

Ferry 
Ferry 
Ferry 
Ferry 
Ferry 
Ferry 

Ferry 

Ferry 

Ferry 

Ferry 
Ferry 

Ferry 

Ferry 

Ferry 

Ferry 

Ferry 
Ferry 
Ferry 
Ferry 

cross over 

1 holds for 8.98081 
unload 3 cars  a t  Island: t he re  a re  now 0 cars  wai t ing  

a t  Ma in land  and 6 cars  wai t ing  a t  Is land 

1 holds for 1.5 
load a t  Island: t he re  a re  now 0 cars wai t ing  at  Main- 

land and 6 Cars wai t ing  at  Is land 

1 obtained 1 of Island, holds for 0.5 
1 obtained 1 of Island, holds for 0.5 
1 obtained 1 of Island, holds for 0.5 
1 obtained 1 of Island, holds for 0.5 
1 obtained 1 of Island, holds for 0.5 
1 obtained 1 of Island, holds for 0.5 
cross o v e r .  

1 holds for 7.96448 
unload 6 cars  at  Mainland:  t he re  is now 1 car  wai t ing  

at  Ma in l and  and  0 cars  wai t ing  at  I s land 

1 holds for 3.0 
load at  Mainland:  t he re  is now 1 car  wai t ing  at  Main- 

land and 1 car  wai t ing  at  I s land 

1 obtained 1 of Mainland, holds for 0.5 
cont inues  unt i l  

load at  I s land 

1 obtained 1 of Island, holds for 0.5 
1 obtained 1 of Island, holds for 0.5 
cross over 

1 holds for 7.23914 
unload 2 cars  a t  Ma in land  

1 holds for 1.0 
load at  Mainland:  t he re  is now 1 car  wai t ing  at  Main- 

land and 3 cars  wai t ing  at  Is land 

1 obtained 1 of Mainland, holds for 0.5 
cross over 

1 holds for 7.78433 
load at  Island: t he re  are  now 2 cars wai t ing  at  

Main land  and 4 cars  wai t ing  at  Is land 

1 obtained 1 of Island, holds for 0.5 
1 obtained 1 of Island, holds for 0.5 
1 obtained 1 of Island, holds for 0.5 
1 obtained 1 of Island, holds for 0.5 
cross over 
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1319.54 Ferry 

1328.05 Ferry 

1330.05 Ferry 
1330.55 Ferry 
1331.05 Ferry 
1331.55 Ferry 
1332.05 Ferry 

1332.55 Ferry 

1340.72 Ferry 

1343.22 Ferry 
1343.72 Ferry 
1344.22 Ferry 
1344.72 Ferry 

1345.22 Ferry 

1352.98 Ferry 

1354.98 Ferry 
1355.48 Ferry 

1355.98 Ferry 

1364.52 Ferry 

1365.52 Ferry 

1 holds for 8.51123 
unload 4 cars at Mainland: there  are now 3 cars wait- 

ing at Mainland and 0 cars waiting at Island 

1 holds for 2.0 
load at Mainland: there  are now 5 cars waiting at 
Mainland and 2 cars waiting at Island 

1 obtained 1 of Mainland, holds for 0.5 
1 obtained 1 of Mainland, holds for 0.5 
1 obtained 1 of Mainland, holds for 0.5 
1 obtained 1 of Mainland, holds for 0.5 
1 obtained 1 of Mainland, holds for 0.5 
cross over 

1 holds for 8.17247 
unload 5 cars at Island: there  is now 1 car wait ing at 

Mainland and 4 cars waiting at Is land 
1 holds for 2.5 
load at Island: there  are now 2 cars wait ing at Main- 

land and 4 cars wait ing at  Island 

1 obtained 1 of Island, holds for 0.5 
1 obtained 1 of Island, holds for 0.5 
1 obtained 1 of Island, holds for 0.5 
1 obtained 1 of Island, holds for 0.5 
cross over 
1 holds for 7.75318 
unload at  Mainland: there  are 2 cars waiting at Main- 

land and 1 car waiting at Island 
1 holds for 2.0 
load at Mainland: there  are 2 cars waiting at Main- 

land and 1 car waiting at  Island 
1 obtained 1 of Mainland, holds for 0,5 
1 obtained 1 of Mainland, holds for 0.5 
cross over 
1 holds for 8.54321 
unload 2 cars at Island: there are 2 cars waiting at 
Mainland and 2 cars waiting at Island 

1 holds for 1.0 
quitt ing t ime 
1 exits 

T h e  d a t a  co l lec ted  shows  t h a t  t h e  Ferry took  79 t r ips ,  c a r r y i n g  a t o t a l  of 
310 ca r s  (an  a v e r a g e  of 3.9 ca r s  p e r  tr ip).  N o n e  of t h e  t r i p s  was  done  
w i t h  a n  e m p t y  load.  T h e  M a i n l a n d  w a i t i n g  l ine  h a d  a m a x i m u m  of 7 

ca r s  w h i l e  t h e  I s l a n d  h a d  a m a x i m u m  of 18. A t  t h e  t i m e  t h a t  t h e  Ferry 
closed,  two  ca r s  w e r e  lef t  a t  e a c h  loca t ion .  
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Coordinated Resources 
for Event-Driven 
Simulations 

The Implementa t ion  oi Class 
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Example: A Car Wash Simulat ion 

Example: A Fer ry  Service for a Special Truck  

Example: A Bank 

Example: An Informat ion System 
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The three kinds of simulation objects, consumable, nonconsumable, and 
renewable, coordinate access to quantif iable static resources. Coordina- 
tion is also needed in order to synchronize the tasks of two or more sim- 
ulation objects. For example, a car washer only carries out its tasks 
when a vehicle appears in the car wash; a bank teller gives service to a 
customer when the customer appears in the bank. 

The mechanism for providing synchronization of tasks among two or 
more SimulationObjects is supported by class ResourceCoordinator. Class 
ResourceCoordinator is a concrete subclass of class Resource; class Re- 
source was defined in Chapter  24. The purpose of this chapter  is to de- 
scribe the implementat ion of ResourceCoordinator and to give several 
examples using this synchronization technique. 

The 
Implementat ion  
of Class 
Resource- 
Coordinator 

A ResourceCoordinator represents a SimulationObject whose tasks must  
be synchronized with the tasks of another  SimulationObject. One of the 
objects is considered the resource or the "customer"; the other object 
acquires this resource in order to give it service and can, therefore, be 
thought  of as a "server" or clerk. At any given time, customers may be 
waiting for a server or servers may be waiting for customers, or no one 
may be waiting. Only one queue has to be maintained; a variable of a 
ResourceCoordinator keeps track of w h e t h e r  that  queue contains cus' 
tomers, servers, or is empty. The variable pending, inherited from the 
superclass Resource, refers to the queue; the variable wholsWaiting re- 
fers to the status of the queue. 

Three inquiries can be made of a ResourceCoordinator, are there cus- 
tomers waiting? (customersWaiting), are there servers waiting? 
(serversWaiting), and how many  are waiting? (queueLength). The mes- 
sage acquire comes from a SimulationObject acting as a server who 
wants to acquire a customer to serve. If a customer is waiting, then the 
SimulationObject can give it service (giveService); otherwise, the 
SimulationObject is added to the queue which is set to be a queue of 
servers waiting. The message producedBy: aCustomer comes from a 
SimulationObject acting as a cus tomer  who wants to be served. If a serv- 
er is waiting, then the SimulationObject can get service (getServiceFor: 
aCustomerRequest); otherwise, the SimulationObject is added to the 
queue which is set to be a queue of customers waiting. 

In all cases, the queue consists of instances of DelayedEvent. If the 
queue consists of customers, then the DelayedEvent condition is the 
SimulationObject waiting to get service. If the queue consists of servers, 
then the Delayed Event condition is nil until a customer is acquired, at 
which point the condition is set to be the customer request (itself a 
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Delayed Event tha t  was stored when  the customer  request  was first 
made). When  the Delayed Event is resumed,  the condition is r e tu rned  to 
the requestor;  in this way, a server  gains access to a cus tomer  request.  
Once the synchronized tasks are completed, the server  c a n  resume the 
customer 's  activities by resuming  the  request.  

class name ResourceCoordinator 
superclass mes o u rc e 
instance variable names wholsWaiting 
instance methods 

accessing 

customersWaiting 
1'wholsWaiting = =  ~customer 

serversWaiting 
twholsWaiting = =  ,.#::server 

queueLength 
1' pending size 

task language 

acquire 
t anEvent I 
self customersWaiting ifTrue: [tself giveService]. 
anEvent ,- DelayedEvent new. 
wholsWaiting ~ #server. 
self addRequest: anEvent. 
"At this point, the condition of anEvent has been set to the customer re- 
quest. " 
t'anEvent condition 

producedBy: aCustomer 
I anEvent i 
anEvent ~ DelayedEvent onCondition: aCustomer. 
self serversWaiting ifTrue: [tself getServiceFor: anEvent]. 
wholsWaiting ~ #customer. 
self addRequest: anEvent 

private 

getServiceFor: aCustomerRequest 
I aServerRequest 1 
aServerRequest ~- pending removeFirst. 
pending isEmpty ifTrue: [wholsWaiting ,-- #none].  
aServerRequest condition: aCustomerRequest. 
aServerRequest resume. 
ActiveSimulation stopProcess. 
aCustomerRequest pause. 
ActiveSimulation startProcess 
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giveService 
I aCustomerRequest I 
aCustomerRequest ~- pending removeFirst. 
pending isEmpty ifTrue: [wholsWaiting ~- ,:/./::none]. 
l'aCustomerRequest 

setName: aString 
super setName: aString. 
whotsWaiting ,- -#none 

Notice t h a t  when  a server  gives service to a customer ,  the  cus tomer  re- 
quest  is suspended (pause) in which case the s imula t ion  process refer- 
ence count  mus t  be dec remented  unt i l  the  service task  is resumed.  

Example: 
A Car Wash 
Simulation 

The example  of a CarWash s imula t ion  consists of cars t h a t  a r r ive  and 
ask to be washed or washed  and waxed. Washers  are  avai lable  to do the 
washing  and waxing; when  the re  are  no cars to service, the  Washers  
are  idle. The definit ion of the  s imula t ion  CarWash follows. There  is one 
resource coordinator  for the  var ious car  customers.  Cars a r r ive  for 
washing  about  one every 20 minutes ;  cars ar r ive  for wash ing  and wax- 
ing about  one every 30 minutes .  The Washer  ar r ives  when  the CarWash 
first s ta r t s  and  stays as long as the  s imula t ion  proceeds. 

class name CarWash 
superclass S im u lation 

instance methods 

initialization 

defineArrivalSchedule 
self scheduleArrivalOf: Wash 

accordingTo: (Exponential mean: 20). 
self scheduleArrivalOf: WashAndWax 

accordingTo: (Exponential mean: 30). 
self scheduleArrivalOf: Washer new at: 0.0 

defineResources 
self coordinate: "CarCustomer" 

Each kind of car  cus tomer  can repor t  the  service it requires.  The Wash- 
er tasks  depend on the  kind of service each car cus tomer  wants.  F i rs t  a 
cus tomer  is obtained. Then  it is given service (wash, wax, or both) and 
then  the  cus tomer ' s  own activit ies are continued.  

class name Washer 
superclass Simulat ionObject 
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instance methods 

simulation control 

tasks  
I carRequest I 
[true] whileTrue: 

[carRequest ~ self acquireResource "CarCustomer'. 
(carRequest condition wants ' wash' ) 

ifTrue [self holdFor: (Uniform from: 12.0 to: 26.0) next]. 
(carRequest condition wants" 'wax" ) 

ifTrue' [self holdFor: (Uniform from: 8.0 to' 12.0) next]. 
self resume carRequest] 

The vehicles Wash and WashAndWax are defined next. Each contains 
an a t t r ibu te  which defines the kinds of service they require.  The tasks 
of these vehicles are s imply to ask for service and, after  get t ing the ser- 
vice, to leave. 

class name Wash 
superclass SimulationObject 
instance variable names service 
instance methods 

accessing 

wants:  aServ ice  
1'service includes: aService 

simulation control 

ini t ial ize 
super initialize. 
service ~ # ( ' w a s h ' )  

tasks  
self produceResource ' CarCustomer' 

class name WashAndWax 
superclass Wash 
instance methods 

simulation control 

ini t ial ize 
super initialize. 
service ~ .# ( 'wash"  ' w a x ' )  

WashAndWax is defined as a subclass of Wash since the  only difference 
between the  two is set t ing the service at t r ibutes .  The following t r a c e  
was produced by making  Wash a subclass of EventMonitor. 

0 Wash I enters 
0 Wash I wants to get service as CarCustomer 
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0 
0 
0 
0 
0 
0 
7.95236 
7.95236 
8.42388 
8.42388 
12.9404 
12.9404 
14.2509 
14.2509 
14.2509 
14.2509 
14.2509 
26.6023 
26.6023 
26.8851 
26.8851 
29.5632 
29.5632 
32.1979 
32.1979 
38.7616 
38.7616 
39.753 
43.5843 
43.5843 
48.9683 
48.9683 
48.9683 
48.9683 
48.9683 
51.8478 
51.8478 
63.244 
68.9328 
68.9328 
70.6705 
70.6705 
75.0157 
75.0157 
75.0157 
75.0157 

WashAndWax 1 enters 
WashAndWax 1 wants to get service as CarCustomer 
Washer 1 enters 
Washer 1 wants to serve for CarCustomer 
Washer 1 can serve Wash 1 
Washer 1 holds for 14.2509 
WashAndWax 2 enters 
WashAndWax 2 wants to get service as CarCustomer 
Wash 2 enters 
Wash 2 wants to get service as CarCustomer 
Wash 3 enters 
Wash 3 wants to get service as CarCustomer 
Washer 1 resumes Wash 1 
Washer 1 wants to serve for CarCustomer 
Washer 1 can serve WashAndWax 1 
Washer 1 holds for 25.502 (wash part) 

Wash 1 exits 
WashAndWax 3 enters 
WashAndWax 3 wants to get service as CarCustomer 
Wash 4 enters 
Wash 4 wants to get service as CarCustomer 
Wash 5 enters 
Wash 5 wants to get service as CarCustomer 
Wash 6 enters 
Wash 6 wants to get service as CarCustomer 
Wash 7 enters 
Wash 7 wants to get service as CarCustomer 
Washer 1 holds for 9.21527 (wax part) 
Wash 8 enters 
Wash 8 wants to get service as CarCustomer 
Washer 1 resumes WashAndWax 1 
Washer 1 wants to serve for CarCustomer 
Washer 1 can serve WashAndWax 2 
Washer 1 holds for 14.2757 (wash part) 
WashAndWax 1 exits 
WashAndWax 4 enters 
WashAndWax 4 wants to get service as CarCustomer 
Washer 1 holds for 11.7717 (wax part) 
Wash 9 enters 
Wash 9 wants to get service as CarCustomer 
WashAndWax 5 enters 
WashAndWax 5 wants to get service as CarCustomer 
Washer 1 resumes WashAndWax 2 
Washer 1 wants to serve for CarCustomer 
Washer 1 can serve Wash 2 
Washer 1 holds for 18.6168 
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75.0157 
78.0228 
78.0228 
78.2874 
78.2874 

WashAndWax 2 exits 
Wash 10 enters 
Wash 10 wants to get service as CarCustomer 
WashAndWax 6 enters 
WashAndWax 6 wants to get service as CarCustomer 

At 78.2874, there are 12 customers wa i t i ng - -8  are Wash and 4 are 
WashAndWax; 2 Wash and 2 WashAndWax have been served. 

From this trace one can see that  more Washers are needed to service 
the demand in this CarWash. It is also possible to collect specific data 
on the amount  of t ime customers wait (using the durat ion statistics 
gather ing technique and throughput  his togram from t h e  previous chap- 
ter) and the percentage of t ime a worker is busy or idle. 

Example:  A 
Ferry Service  
for a Specia l  
Truck 

The last example in Chapter  24 was of a ferry service in which a ferry 
crosses between an island and the mainland carrying cars. The cars 
were modeled as static resources tha t  a ferry could acquire. The ferry's 
task was to load as many  as six cars, cross over the water, unload the 
cars it carried, and repeat  the process. The example was like one pro- 
vided in the book on Demos by Graham Birtwistle. In that  book, 
Birtwistle describes the ferry service as coordinating the ferry service 
with the travels of a truck. A t ruck goes from the mainland to the is- 
land in order to make deliveries, re turns  to the mainland to get more 
supplies, and then goes to the island again, etc. The ferry only crosses 
from one side to the other if it is carrying the truck. This version of the 
ferry Simulation requires a coordination of SimulationObjects represent- 
ing the ferry and the truck; each has its own tasks to do, but  the truck 
can not do its tasks without the assistance of the ferry and the ferry 
has no tasks to do in the absence of a t ruck to carry. 

Ferry  service starts at 7:00 a.m. (420.0 minutes into the day) and 
ends at 7:00 p.m. (1140 minutes  into the day). 

class name FerrySimulation 
superclass Simulation 
instance methods 

initialization 

d e f i n e A r r i v a l S c h e d u l e  
self scheduleArrivalOf Truck new at: 420.0. 
self scheduleArrivaiOf Ferry new at: 420.0. 

d e f i n e R e s o u r c e s  
self coordinate: "TruckCrossing' 
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The  Truck and the Ferry are  defined in t e rms  of producing and acquir- 
ing the resource 'TruckCrossing'.  

class name Ferry 
superclass S imu latio n 0 b ject 
instance methods 

simulation control 

tasks 
I truckRequest I 
[ActiveSimutation time > 1140.0] whileFalse: 

[truckRequest ~ self acquireResource: ' TruckCrossing'. 
self toad. 
self crossOver. 
self unload. 
self resume: truckRequest] 

load 
self holdFor: 5.0 

unload 
self holdFor: 3.0 

crossOver 
self holdFor: (Normal mean: 8 deviation: 0.5) next 

The Truck delivers supplies on the  is land and picks up supplies on the 
main land .  

class name 
superclass 

instance methods 

Truck 
SimulationObject 

simulation control 

tasks 
[true] 

whileTrue: 
[self produceResource: ' TruckCrossing' 
self deliverSupplies. 
self produceResource: 'TruckCrossing' 
self pickUpSupplies] 

deliverSupplies 
self holdFor: (Uniform from: 15 to: 30) next 

pickUpSupplies 
self holdFor: (Uniform from: 30 to: 45) next 

There  is no check in the definit ion of Truck or Ferry for a pa r t i cu la r  
side, m a i n l a n d  or island, because we assume tha t  both s imula t ions  ob- 
jects s t a r t  on the same side (the main land)  and the i r  synchronizat ion 
for crossing over gua ran tees  t ha t  they  s tay on the same side. A t race  of 
the  events for r unn ing  FerrySimulation is 



420.0 
420.0 
420.0 
420.0 
420.0 
420.0 
420.0 
425.0 
425.0 

432.843 
432.843 
435.843 
435.843 
435.843 
435.843 
457.038 
457.038 
457.038 
457.038 

462.038 
462.038 
470.327 
470.327 
473.327 
473.327 
473.327 
473.327 
513.361 
513.361 
513.361 
513.361 

518.361 
518.361 
526.413 
526.413 
529.413 
529.413 
529.413 
529.413 
556.605 
556.605 
556.605 
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Start at the mainland 

Ferry enters 
Ferry wants to serve for TruckCrossing 
Truck enters 
TruCk wants to get service as TruckCrossing 
Ferry can serve Truck 
Ferry load truck 
Ferry holds for 5.0 
Ferry cross over 
Ferry holds for 7.84272 

unload the  t ruck  at  the  is land side 

Ferry unload truck 
Ferry holds for 3.0 
Ferry resumes Truck 
Ferry wants to serve for TruckCrossing 
Truck deliver supplies 
Truck holds for 21.1949 
Truck wants to get service as TruckCrossing 
Ferry can serve Truck 
Ferry toad truck 
Ferry holds for 5.0 

cross over back to the  ma in l and  

Ferry cross over 
Ferry holds for 8.28948 
Ferry unload truck 
Ferry holds for 3.0 
Ferry resumes Truck 
Ferry wants to serve for TruckCrossing 
Truck pick up supplies 
Truck holds for 40.0344 
Truck wants to get service as TruckCrossing 
Ferry can serve Truck 
Ferry load truck 
Ferry holds for 5.0 

back to the  island 

Ferry cross over 
Ferry holds for 8.05166 
Ferry unload truck 
Ferry' holds for 3.0 
Ferry resumes Truck 
Ferry wants to serve for TruckCrossing 
Truck delivers supplies 
Truck holds for 27.1916 
Truck wants to get service as TruckCrossing 
Ferry can serve Truck 
Ferry load truck 
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556.605 

561.605 
561.605 
569.137 
569.13.7 
572.136 
572.136 
572.136 
572.136 

Ferry holds for 5.0 
back to mainland, etc. 

Ferry cross over 
Ferry holds for 7.53188 
Ferry unload truck 
Ferry holds for 3.0 
Ferry resumes Truck 
Ferry wants to serve for TruckCrossing 
Truck pick up supplies 
Truck holds for 36.8832 

The ferry tasks do not guarantee  tha t  the resting place for the evening 
is the mainland side. This can be done by monitoring which side the 
ferry is on and then stopping only after re turning to the mainland.  
Only the definition of Ferry must  change since the Truck side is syn- 
chronized with it. 

class name Ferry 
superclass S imu lation Object 
instance variable names currentSide 
instance methods 

simulation control 

init ial ize 
super initialize. 
currentSide ~ 'Mainland' 

tasks 
I truckRequest finished I 
finished ,- false 
[finished] whileFalse: 

[truckRequest ~-- self acquireResource: ' TruckCrossing'. 
self load. 
self crossOver. 
self unload. 
self resume: truckRequest. 
finished ,--- 

ActiveSimulation time > 1140.0 and: [currentSide = " Mainland' ]] 
load 

self holdFor: 5.0 
unload 

self holdFor: 3.0 
crossover  

self holdFor: (Normal mean: 8 deviation: 0.5) next. 
,currentSide ,-- 

currentSide = 'Mainland" 
ifTrue: [ '  Island "] 
ifFalse: [ '  Mainland'] 
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Suppose now tha t  cars can ar r ive  at  the  ferry  r a m p  in order  to be car- 
ried across. The  ferry can car ry  as m a n y  as 4 cars in addit ion to the  
t ruck,  but  the ferry  will not cross over unless the re  is a t ruck  to carry.  
Then  the  definit ion of the  s imula t ion  changes  by the addit ion of cars 
a r r i v i n g  at  the  ma in l and  or the  island; we in t roduce cars in the  same 
way we did in Chapte r  2 4 - - a s  stat ic resources. 

class name FerrySimulation 
superclass Simulation 
instance methods 

initialization 

def ineArr iva lSchedule  
self scheduleArrivalOf: Truck new at: 420.0. 
self scheduleArrivalOf: Ferry new at: 420.0. 
self scheduleArrivalOf: MainlandArrival 

accordingTo: (Exponential parameter: 0.15) 
startingAt: 420.0. 

self scheduleArrival©f: fslandArrival 
accordingTo: (Exponential parameter: 0.15) 
startingAt: 420.0 

def ineResources  
self coordinate: ' TruckCrossing'. 
self produce: 3 of Resource: 'Main land ' .  
self produce: 0 of Resource: ' Is land'  

T h e  definit ions for MainlandArrival and islandArrival are  the  same as 
those given in Chapte r  24. 

class name MainlandArrival 
superclass SimulationObject 
instance methods 

simulation control 

tasks 
self produce: 1 of Resource: 'Mainland'  

class name IslandArrival 
superclass S imula tio n O b j ect 
instance methods 

simulation, control 

tasks 
self produce: 1 of Resource: ' Is land'  

The Ferry now mus t  t ake  into considerat ion loading and unloading any 
cars wai t ing  at  the r a m p  of the  cu r r en t  side. 



526 
C o o r d i n a t e d  Resources  for E v e n t - D r i v e n  S i m u l a t i o n s  

class name 
superclass 
instance variable names 

instance methods 

simulation control 

i n i t i a l i z e  
super initialize. 

currentSide ~- "Ma in land ' .  

carsOn Board ~ 0 

tasks 
I truckRequest finished I 
finished ~ false, 
[finished] whileFalse: 

load 

Ferry 

SimulationObject 

currentSide 

carsOn Board 

[truckRequest ~ self acquireResource: 'TruckCrossing ' .  

self load. 

self crossOver. 

self unload. 

self resume: truckRequest. 
finished 

ActiveSimulationtime > 1140.0and: [currentSide = 'Ma in l and ' ] ]  

" t o a d  the truck first" 

self holdFor: 5.0 
" now load any cars that are waiting on the current side" 

[carsOnBoard < 4 

and: [self inquireFor: 1 ofResource: currentSide]] 

whileTrue: 

[self acquire: 1 ofResource: currentSide. 

self holdFor: 0.5. 
carsOnBoard ~ carsOnBoard + 1] 

unload 
"unload the cars and the truck" 

self holdFor: (carsOnBoard , 0.5) -.I-- 3.0 

crossOver  
self holdFor: (Normal mean 8 deviation: 0.5) next. 

currentSide 
currentSide = " Mainland'  

ifTrue: [ '  I s land ' ]  

ifFalse: [ '  Mainland ' ]  

Example: A 
Bank 

A b a n k  t e l l e r  on ly  ca r r i e s  out  t a sks  w h e n  a c u s t o m e r  a p p e a r s  a t  the  

te l l e r ' s  w indow  a nd  asks  for service.  Since the  te l le r ' s  services  a re  de- 
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pendent  on the needs of the customer, the specification of the teller 's 
tasks includes requests for information from the customer. 

Suppose the bank assigns two bank tellers to work all day. The bank 
opens at  9:00 a.m. and closes at 3:00 p.m. Throughout  the day, custom- 
ers arr ive every 10 minutes  with a s tandard  deviation of 5 minutes.  At 
the noon lunch hour, the number  of customers increases dramatical ly,  
ave rag ing  one every three minutes.  Two additional bank tellers are 
added to handle the increased demand for service. When a regular  bank 
teller is not serving a customer, the teller has desk work to do. 

The arr ival  of customers and regular  workers into the bank is sched- 
uled in the response to the message defineArrivalSchedule to 
BankSimulation. The luncht ime increase is represented by a discrete 
probabili ty distr ibution tha t  is a sample space of twenty  3's, represent-  
ing a total of the 60 minutes  during which luncht ime customers appear. 
Mixed with the normal  load of customers, this means tha t  20 or more 
customers appear  in tha t  busiest hour. 

We define simulat ion objects BankTeller,  Luncht imeTel ler,  
BankCustomer,  as we l l  as the BankSimulat ion. 

class name BankSimulation 
superclass Simulation 
class variable names H our 
instance methods 

initialization 

d e f i n e A r r i v a l S c h e d u l e  
self scheduleArrivalOf: BankCustomer 

accordingTo: (Normal mean: 10 deviation: 5) 
startingAt: 9, Hour. 

self scheduleArrivalOf: (BankTeller name: ' f i rs t ' )  at: 9,Hour 
self scheduleArrivalOf: (BankTeller name: "second ' )  at: 9,Hour. 
self scheduleArrivalOf: BankCustomer 

accordingTo: 
( Sample S paceWith o utRe place m e nt 

data: ((1 to: 20) col tect : [ : i  I 3])) 
startingAt: 12, Hour. 

self schedule: [self hireMoreTellers] at: 12,Hour. 
self schedule: [self finishUp] at: 15,Hour 

d e f i n e R e s o u r c e s  
self coordinate: "TellerCustomer" 

simulation control 

h i reMoreTe l le rs  
self schedule: [(LunchtimeTeller name: ' f i rs t ' )  startUp] after: 0.0. 
self schedule: [(LunchtimeTeller name: "second ' )  startUp] after: 0.0 
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The ResourceCoord ina tor  is responsible for matching customers ( t a k e r s  
of service) with bank tellers (givers of service). The bank customer 's  
task is simple. After enter ing the bank, the customer gets the a t tent ion 
of a bank teller and asks for  service. After obtaining service, the cus- 
tomer  leaves. The amount  of t ime the customer spends in the bank de- 
pends on how long the customer must  wait  for a teller and how long 
the teller takes giving service. 

class name BankCustomer 
superc]ass S i m u I ation Ob ject 
instance methods 

simulation control 

tasks 
self produceResource: "TellerCustomer, 

The bank teller 's  tasks depend on the needs of the customer. To keep 
this example simple, we will assume tha t  a BankTeller does about the 
same work for each customer, taking between 2 and 15 minutes.  Anoth- 
er a l ternat ive  would be to give each BankCustomer a list of desired ser- 
vices as was done in the car wash example; the BankTeiler would 
enumera te  over the set, taking times appropriate  to each kind of ser- 
vice. Whenever  a customer is not available, the teller does other tasks. 
These tasks a r e  small  and take a short  amoun t  of time; however, the 
teller can not be interrupted.  When one of these background desk tasks 
is completed, the tel ler  checks to see if a customer has arr ived and is 
wait ing for service. 

class name BankTeller 
superclass SimulationObject 
instance methods 

simulation control 

tasks 
I customerRequest I 
[true] whileTrue: 

[(self numberOfProvidersOfResource: "TellerCustOmer') > 0 
ifTrue: [self counterWork] 
ifFalse: [self deskWork]] 

counterWork 
I customerRequest I 
customerRequest ,-- self acquireResource: ' Tel lerCustomer'.  
self hotdFor: (Uniform from: 2 to: 15) next. 
self resume: customerRequest 

deskWork 
self holdFor: (Uniform from: 1 to: 5) next 

A LunchtimeTeller has to schedule itself to leave the bank after an hour. 
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This scheduling can be specified in the response to initialize. When it is 
t ime to leave, the LunchtimeTeller has to make certain tha t  all its tasks 
are completed before leaving. Therefore, a signal (getDone) is set to true 
the first t ime the message finishUp is sent; this signal is checked each 
time the teller 's counter work completes. The second time finishUp is 
sent, the signal is true and the teller can exit. The LunchtimeTeller, un- 
like the regular  BankTeller, does not do any desk work when customers 
are not available. 

class name LunchtimeTeller 
superclass BankTelter 
instance variable names getDone 
instance methods 

initialization 

initialize 
super initialize. 
getDone ~- false. 
ActiveSimulation schedule: [self finishUp] after: 60 

simulation control 

finishUp 
getDone 

ifTrue: [super finishUp] 
ifFalse: [getDone ~- true] 

tasks 
[getDone] whileFalse: [self counterWork]. 
self finishUp 

A partial  trace of the events follows. 

540 
540 

54O 
54O 
540 
54O 
540 
540 
540 
543.336 
543.336 
546.298 
546.298 
549.332 
549.332 

BankCustomer 1 enters 
BankCustomer 1 wants to get service as 

TellerCustomer 
BankTeller first enters 
BankTeller 
BankTeller 
BankTeller 
BankTeller 
BankTeller 
BankTeller 
BankTeiler 
BankTeiler 
BankTeller 
BankTeller 
BankTeller 
BankTelter 

first wants to serve for TellerCustomer 
first can serve BankCustomer 1 
first holds for 9.33214 
second enters 
second does desk work 
second holds for 3.33594 
second doesdesk work 
second holds for 2.96246 
second does desk work 
second holds for 3.56238 
first resumes BankCustomer 1 
first does desk work 
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549.332 
549.332 
549.819 
549.819 

549.861 
549.861 
549.861 
551.172 
551.172 
555.341 
555.341 
557.948 
557.948 
559.063 
559.063 

562.537 
562.537 
562.537 
564.18 
564.18 
564.18 
564.18 
565.721 
565.721 

566.81 
566.81 
566.81 
571.891 
571.891 
571.891 
571.891 
575.982 
575.982 
575.982 
575.982 
576.59 
576.59 

BankTeller first holds for 1.83978 
BankCustomer 1 exits 
BankCustomer 2 enters 
BankCustomer 2 wants to get service as 

TellerCustomer 
BankTeller second wants to serve for TellerCustomer 
BankTeller second can serve BankCustomer 2 
BankTeller second holds for 14.3192 
BankTeller first does desk work 
BankTeller first holds for 4.16901 
BankTeller first does desk work 
BankTeller first holds for 2.60681 
BankTeller first does desk work 
BankTelter first holds for 4.58929 
BankCustomer 3 enters 
BankCustomer 3 wants to get service as 

TellerCustomer 
BankTeller first wants to serve for TellerCustomer 
BankTeller first can serve BankCustomer 3 
BankTeller first holds for 13.4452 
BankTeller second resumes BankCustomer 2 
BankTeller second does desk work 
BankTeller second holds for 2.63007 
BankCustomer 2 exits 
BankCustomer 4 enters 
BankCustomer 4 wants to get service as 

TetlerCustomer 
BankTeller second wants to serve for TellerCustomer 
BankTeller second can serve BankCustomer 4 
BankTeller second holds for 5.08139 
BankTeller second resumes BankCustomer 4 
BankTeller second does desk work 
BankTeller second holds for 4.69818 
BankCustomer 4 exits 
BankTeller first resumes BankCustomer 3 
BankTeller first does desk work 
BankTeller first holds for 2.10718 
BankCustomer 3 exits 
BankTeller second does desk work 
BankTeller second holds for 4.04327 

... and so on unt i l  lunch hour  when the ex t ra  help arrives; 
at  this point, 18 customers  have entered; BankTeller first is 
giving BankCustomer 18 service... 



720 
720 

720 
720 
720 
720 
720 
720 

721.109 
721.109 
721.663 
721.663 
721.663 
721.663 
722.085 
722.085 

722.085 
722.085 
723 
723 

723.2 
723.2 
723.2 
725.095 
725.095 
726 
726 

729 
729 

730.071 
730.071 
730.071 
731.6 
731.6 

731.6 
731.6 
731.6 
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BankCustomer 19 enters 
BankCustomer 19 wants to get service as 

TellerCustomer 
LunchtimeTeller first enters 
LunchtimeTeller first wants to serve for TellerCustomer 
LunchtimeTeller first can serve BankCustomer 19 
LunchtimeTeller first holds for 11.9505 
LunchtimeTeller second enters 
LunchtimeTeller second wants to serve for 

TellerCustomer 
BankTeller second does desk work 
BankTeller second holds for 2.09082 
BankTeller first resumes BankCustomer 18 
BankTeller first does desk work 
BankTeller first holds for 3.43219 
BankCustomer 18 exits 
BankCustomer 20 enters 
BankCustomer 20 wants to get service as 

TellerCustomer 
LunchtimeTeller second ~an serve BankCustomer 20 
LunchtimeTeller second holds for 9.51483 
BankCustomer 21 enters 
BankCustomer 21 wants to get service as 

TellerCustomer 
BankTeller second wants to serve for TellerCustomer 
BankTeller second can serve BankCustomer 21 
BankTeller second holds for 9.66043 
BankTeller first does desk work 
BankTeller first holds for 4.97528 
BankCustomer 22 enters 
BankCustomer 22 wants to get service as 

TellerCustomer 
BankCustomer 23 enters 
BankCustomer 23 wants to get service as 

TellerCustomer 
BankTeller first wants to serve for TellerCustomer 
BankTeller first can serve BankCustomer 22 
BankTeller first holds for 8.17746 
LunchtimeTeller second resumes BankCustomer 20 
LunchtimeTeller second wants to serve for 

TellerCustomer 
LunchtimeTeller second can serve BankCustomer 23 
LunchtimeTeller second holds for 6.27971 
BankCustomer 20 exits 
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731.95 
731.95 
731.95 
732 
732 

732 
732 

LunchtimeTeller first resumes BankCustomer 19 
LunchtimeTeller first wants to serve for TellerCustomer 
BankCustomer 19 exits 
BankCustomer 24 enters 
BankCustomer 24 wants to get service as 

TellerCustomer 
LunchtimeTeller first can serve BankCustomer 24 
LunchtimeTeller first holds for 9.52138 

... BankCustomer 40 jus t  left and lunch t ime is over; there  are 3 o ther  
customers  in the  bank; as soon as they  finish with thei r  cu r ren t  cus- 
tomers,  the LunchtimeTellers will leave... 

780.0 
780.0 

780.918 
780..918 
780.918 
781.968 
781.968 

784.001 
784.001 
784.001 
787.879 
787.879 
787.879 
789.189 
789.189 
789.189 
789.189 
789.189 
791.572 
791.572 
791.572 
791.572 
793.917 
793.917 

BankCustomer 44 enters 
BankCustomer 44 wants to get service as 

TellerCustomer 
BankTeller first wants to serve for TellerCustomer 
BankTeiler first can serve BankCustomer 44 
BankTeller first holds for 13.1566 
BankCustomer 45 enters 
BankCustomer 45 wants to get service as 

TellerCustomer 
LunchtimeTeller second resumes BankCustomer 43 
LunchtimeTeller second exits 
BankCustomer 43 exits 
LunchtimeTeller first resumes BankCustomer 42 
LunchtimeTeller first exits 
BankCustomer 42 exits 
BankTeller second resumes BankCustomer 41 
BankTeller second wants to serve for TellerCustomer 
BankTeller second can serve BankCustomer 45 
BankTeller second holds for 2.38364 
BankCustomer 41 exits 
BankTeller second resumes BankCustomer 45 
BankTeller second does desk work 
BankTeller second holds for 2.3421.67 
BankCustomer 45 exits 
BankTeiler second does desk work 
BankTeller second holds for 3.19897 

and so on... 
The da ta  tha t  would be collected here includes the busy/ id le  percent- 

ages of the tellers and the customers '  average wai t  time. 
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Example: An 
Information 
System 

Our last example is also in the Birtwistle book a n d ,  according to 
Birtwistle, is a popular example for simulation systems such as GPSS. 
The example is an information system simulation tha t  describes remote 
terminals  at which users can arrive and make retrieval requests. A cus- 
tomer with a query arrives at one or the other of the t e rmina l s  and 
queues, if necessary, to use it. The system scanner rotates from termi- 
nal to te rminal  seeing if a request  is waiting and, if so, provides service. 
Service means tha t  the scanner copies the query to a buffer unit  capa- 
ble of holding three queries simultaneously; if no buffer position is 
available, the copying process must  wait until  one becomes available. 
Once copying to the buffer succeeds, the system processes the query and 
places the answer in the buffer to re turn  to the terminal  without  need 
for the scanner again. 

Using the data provided by Birtwistle, we will model a system with 
six terminals.  Customers arrive at terminals  with an exponential  mean 
time of 5 minutes. The buffers are modeled as static resources; the ter- 
minals are also static resources; while the terminal  services are objects 
whose tasks are coordinated with the tasks of the queries. 

class name InformationSystem 
superclass Simulation 
instance methods 

initialization 

d e f i n e A r r i v a l S c h e d u l e  
"Schedule many queries and only one scanner" 
self scheduleArrivatOf: Query 

accordingTo: (Exponential parameter: 5) 
startingAt: 0.0. 

self scheduleArrivatOf: SystemScanner new at: 0.0 

d e f i n e R e s o u r c e s  
self produce: 3 ofResource: ' Buffer'. 
0 to: 5 do: 

[ : n l  
self produce: t of Resource: 'Terminal ' ,  n printString. 
self coordinate: 'TerminalService', n printString] 

In the above method, we use string concatenation to form the at t r ibute  
names of six terminals  as static resources and six terminal  services as 
coordinated services; the names are Terminal0 ..... Terminal5 and 
TerminalService0 ..... TerminalService5. 

The ResourceCoordinators for terminal  service for each of the six ter- 
minals are being handled differently here than  in the bank and car 
wash simulation examples. At a n y t i m e ,  the queues of customers or 



534 
Coordinated Resources  for Event -Dr iven  S imula t ions  

servers  will contain only one or no elements .  Dur ing  the s imulat ion,  a 
Query will en te r  a queue to wai t  for t e rmina l  service. A Sys temScanner  
moves from coordinator  to coordinator,  round-robin fashion, to act  as 
t he  giver of service if a Query is wait ing.  

The cus tomer ,  a Query, mus t  first access a t e rmina l  resource to get  a 
reply. On accessing one of the  six te rminals ,  the  cus tomer  keys in a re- 
quest  and awai ts  the reply. It t akes  be tween 0.3 and 0.5 minu tes  (uni- 
formly distr ibuted) to en te r  a query. Then t e rmina l  service is requested.  
The query  now waits  for the  SystemScanner ;  when  the Sys temScanner  
notices the wai t ing  query, it gives it the needed service. This means  
t ha t  the  Sys temScanner  obtains a buffer slot for the  query  and copies 
the request  into the  buffer. It  takes  0.0117 minu tes  to t r ans fe r  a query  
to the  buffer. Now the reply can be t r ans fe r red  to the  t e rmina l  and 
read, the  buffer can be freed up, and the t e rmina l  released. It takes  be- 
tween  0.05 and 0.10 (uniformly distr ibuted) to process a query, and 
0.0397 minu te s  to t rans fe r  the  reply back to the  te rmina l .  Customers  
t ake  be tween 0.6 and 0.8 minu te s  (uniformly distr ibuted) to read a re- 
ply. 

class name Query 

superclass S imulationObject 

instance methods 

scheduling 

tasks 
I terminal terminalNum I 
" pick a terminal" 

terminalNum ,- (SampleSpace data: -#:('0' '1" '2 '  "3" '4 '  "5")) next. 

" get a terminal resource" 

terminal ~- self acquire: 1 of Resource: 'Te rmina l ' ,  terminalNum. 

" got the terminal, now enter the query" 

self holdFor: (Uniform from: 0.3 to: 0.5) next. 

" act as a resource for a terminal service in order to process the query" 

self produceResource: "TerminalService ' ,  terminalNum. 

"the query is now processed; now read the reply" 

self holdFor: (Uniform from: 0.6 to: 0.8) next. 

" and release the terminal" 

self release: terminal 

The scanner ' s  job is to ro ta te  from t e r m i n a l t o  t e rmina l  seeing if a re- 
quest  is pending and, if so, to wai t  to t r ans fe r  a query  into a buffer and 
then  move on. Scanner  rota t ion takes  0.0027 minu tes  and the  same 
a m o u n t  of t ime  to tes t  a t e rmina l .  

class name System Scanner 
superclass S imula tio n O b ject 
instance variable names n 
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instance methods 

simulation control 

init ial ize 
super initialize. 
n~-  5 

tasks 
I terminalServiceRequest buffer test I 
[true] 

whileTrue: 
[n ~ (n + 1) \ \  6. 

self holdFor: 010027. 
test ,- 

self numberOfProvidersOfResource: 
' TerminaIService' ,  n printString. 

self holdFor: 0.0027. 
test = 0 ifFalse 

[terminalServiceRequest ~- 
self acquireResource ( '  TerminatService' ,  n printString). 

buffer ~ self a c q u i r e l o f R e s o u r c e  'Bu f fe r ' .  
" copy the request" 
self holdFor 0.0117. 
"process the query" 
self holdFor (Uniform f rom 0.05 to: 0.10) next. 
"return the reply to the terminal" 
self hotdFor 0.0397. 
"done, release the resources" 
self release: buffer. 
self resume: terminalServiceRequest]] 

The SystemScanner is not idle when no Query is waiting; it continually 
moves from terminal to terminal checking for a Query. This movement 
stops when a Query is found in order to provide service. When the ser- 
vice is completed, the SystemScanner returns to circulating around, 
looking for another Query. 

Not much happens at first. The first Query enters but it holds for 
0.360428 units of time in order to enter its query at Terminal1; mean- 
while the SysternScanner moves around the terminals. A second Query 
enters at 0.0472472 and requests Terrninal3; a third enters at 0.130608 
and requests Terminal4. At 0.360428, the first Query requests service at 
Terrninall which is given a short time later at time 0.367198. Between 
this time and time 0.478235, the SysternScanner gives service by get- 
ting a Buffer, copying the query to the Buffer, processing it, transfer- 
ring the reply, and then releasing the Buffer and resuming the Query. 
In the meantime, the second Query requested service, and a fourth Que- 
ry entered at Terrninal4. The SystemScanner then rotates to Terminal3 to 
give service to the second Query waiting there. 
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0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0027 
0.0054 

Query 1 enters 
Query 1 requests 1 of Terminal1 
Query 1 obtained 1 of Terminal1 
Query 1 holds for 0.360428 
SystemScanner enters 
SystemScanner holds for 0.0027 
SystemScanner holds for 0.0027 
SystemScanner holds for 0.0027 

. . .etc... 

0.0432 
0.0459 
0.0472472 
0.0472472 
0.0472472 
0.0472472 
0.0486 
0.0513 

SystemScanner holds for 0.0027 
SystemScanner holds for 0.0027 
Query 2 enters 
Query 2 requests 1 of Terminal3 
Query 2 obtained 1 of Terminal3 
Query 2 holds for 0.363611 
SystemScanner holds for 0.0027 
SystemScanner holds for 0.0027 

. . .etc...  

O. 1269 
0.1296 
O. 13O608 
O. 130608 
O.13O6O8 
O. 13O608 
0.1323 
0.135 

SystemScanner holds for 0.0027 
SystemScanner holds for 0.0027 
Query 3 enters 
Query 3 requests 1 of Terminal4 
Query 3 obtained 1 of Terminal4 
Query 3 holds for 0.445785 
SystemScanner holds for 0.0027 
SystemScanner holds for 0.0027 

. . .etc... 

0.356398 
0.359098 
0.360428 
0.361798 
0.364498 
0.367198 

0.367198 
0.367198 
0.367198 
0.367198 
0.378898 

SystemScanner holds for 0.0027 
SystemScanner holds for 0.0027 
Query 1 wants to get service as TerminalServicel 
SystemScanner holds for 0.0027 
SystemScanner holds for 0.0027 
SystemScanner wants to give service as 

TerminalServicel 
SystemScanner can serve as TerminalServicel 
SystemScanner requests 1 of Buffer 
SystemScanner obtained 1 of Buffer 
SystemScanner holds for 0.0117 
SystemScanner holds for 0.0596374 
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0.410858 
0.41396 
0.41396 
0.438535 
0.478235 
0.478235 
0.478235 
0.478235 
0.478235 
0.480935 
0.483635 
0.486335 
0.489035 

0.489035 
0.489035 
0.489035 
0.489035 
0.500735 
0.552301 
0.576394 
0.592001 
0.5920O1 
0.592001 
0.592001 
0.592001 

Query 2 wants to get service as TerminalService3 
Query 4 enters 
Query 4 requests 1 of Terminal4 
SystemScanner holds for 0.0397 
SystemScanner releases 1 of Buffer 
SystemScanner resumes Query 1 
SystemScanner holds for 0.0027 
Query 1 got served as TerminalServicel 
Query 1 holds for 0.740207 
SystemScanner holds for 0.0027 
SystemScanner holds for 0.0027 
SystemScanner holds for 0.0027 
SystemScanner wants to give service as 

TerminaiService3 
SystemScanner can serve as TerminalService3 
SystemScanner requests 1 of Buffer 
SystemScanner obtained 1 of Buffer 
SystemScanner holds for 0.0117 
SystemScanner holds for 0.0515655 
SystemScanner holds for 0.0397 
Query 3 wants to get service as TerminalService4 
SystemScanner releases 1 of Buffer 
SystemScanner resumes Query 2 
SystemScanner holds for 0.0027 
Query 2 got served as TerminalService3 
Query 2 holds for 0.655313 

...etc... 
For more examples to try, see the Birtwistle book. 
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The previous three parts of the book described the Smalltalk-80 
system from the programmer's point of view: The five chapters in 
this part present the system from the implementer's point of view. 
Readers who are not interested in how the system is implemented 
may skip these chapters. Readers interested only in the flavor of 
the implementation can read Chapter 26 alone. Readers interested 
in the details of the implementation, including those actually 
implementing the system, will want to read the following four 
chapters as well. 
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The Implementation 
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Compiled Methods 
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Primitive Methods 
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The Hardware 
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Two major components of the Smalltalk-80 system can be distinguished: 
the virtual image and the virtual machine. 

1. The virtual image consists of all of the objects in the system. 

2. The virtual machine consists of the hardware devices and machine 
language (or microcode) routines that give dynamics to the objects 
in the virtual image. 

The system implementer's task is to create a virtual machine. A virtual 
image can then be loaded into the virtual machine and the 
Smalltalk-80 system becomes the interactive entity described in earlier 
chapters. 

The overview of the Smalltalk-80 implementation given in this chap- 
ter is organized in a top-down fashion, starting with the source methods 
written by programmers. These methods are translated by a compiler 
into sequences of eight-bit instructions called bytecodes. The compiler 
and bytecodes a r e t h e  subject of this chapter's first section. The 
bytecodes produced by the compiler are instructions for an interpreter, 
which is described in the second section. Below the interpreter in the 
implementation is an object memory that stores the objects that make 
up the virtual image. The object memory is described in the third sec- 
tion of this chapter. At the bottom of any implementation is the hard- 
ware. The fourth and final section of this chapter discusses the 
hardware required to implement the interpreter and object memory. 
Chapters 27 - 30 give a detailed specification of the virtual machine's 
interpreter and object memory. 

T h e  C o m p i l e r  Source methods written by programmers are represented in the 
Smalltalk-80 system as instances of String. The Strings contain se- 
quences of characters that conform to the syntax introduced in the first 
part of thisbook. For example, the following source method might de- 
scribe how instances of class Rectangle respond to the unary message 
center. The center message is used to find the Point equidistant from a 
Rectangle's four sides. 

c e n t e r  
t origin + corner / 2 

Source methods are translated by the system's compiler into sequences 
of instructions for a stack-oriented interpreter. The instructions are 
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eight-bit numbers  called bytecodes. For example, the bytecodes corre- 
sponding to the source method shown above are, 

O, 1, 176, 119, 185, 124 

Since a bytecode's value gives us little indication of its meaning to the 
interpreter ,  this chapter will accompany lists of bytecodes with com- 
ments  about their  functions. Any par t  of a bytecode's comment that  de- 
pends on the context of the method in which it appears will be 
parenthesized. The unparenthesized par t  of the comment  describes its 
general function. For example, the bytecode 0 always instructs the in- 
terpre ter  to push the value of the receiver's first instance variable on 
its stack. The fact tha t  the variable is named origin depends on the fact 
tha t  this method is used by Rectangles, so origin is parenthesized. The 
commented form of the bytecodes for Rectangle center is shown below. 

Rectangle 
0 

176 
119 
185 
124 

center 
push the value of the receiver's first instance variable (origin) onto the 
stack 
push the value of the receiver's second instance variable (corner) onto the 
stack 
send a binary message with the selector + 
push the Smalllnteger 2 onto the stack 
send a binary message with the selector / 
return the object on top of the stack as the value of the message (center) 

The stack mentioned in some of the bytecodes is used for several pur- 
poses. In this method, it is used to hold the receiver, arguments ,  and re- 
sults of the two messages tha t  are sent. The stack is also used as the 
source of the result to be re turned from the center method. The stack is 
mainta ined by the in terpreter  and will be described in greater  detail in 
the next section. A description of all the types of bytecodes will appear 
at  the end of this section. 

A programmer  does not interact  directly with the compiler. When a 
new source method is added to a class (Rectangle in this example), the 
class asks the compiler for an instance of CompiledMethod containing 
the bytecode t ranslat ion of the source method. The class provides the 
compiler with some necessary information not given in the source 
method, including the names of the receiver's instance variables and 
the dictionaries containing accessible shared variables (global, class, and 
pool variables). The  compiler t ranslates  the source text into a 
CompiledMethod and the class stores the method in its message diction- 
ary. For example, the CompiledMethod shown above is stored in Rec- 
tangle's message dictionary associated with the selector center. 

Another  example of the bytecodes compiled from a source method il- 
lustrates the use of a store bytecode. The message extent: to a Rectangle 
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Compiled Methods 

changes the receiver's width and height to be equal to the x and  y coor- 
dinates of the a rgument  (a Point). The receiver's upper left corner (origin) 
is kept the same and the lower right corner (corner) is moved. 

extent: newExtent 
corner ~- origin + newExtent 

Rectangle extent: 
0 push the value of the receiver's first instance variable (origin) onto the 

stack 
16 push the argument (newExtent) onto the stack 
176 send a binary message with the selector + 
97 pop the top object off of the stack and store it in the receiver's second in- 

stance variable (corner) 
120 return the receiver as the value of the message (extent:) 

The forms of source methods and compiled bytecodes are different in 
several respects. The variable names in a source method are converted 
into instructions to push objects on the stack, the selectors are convert- 
ed into instructions to send messages, and the uparrow is converted into 
an instruction t o r e t u r n  a result. The order of the corresponding compo- 
nents is also different in a source method and compiled bytecodes. De- 
spite these differences in form, the source method and compiled 
bytecodes describe the same actions. 

The compiler creates an instance of CompiledMethod to hold the 
bytecode t ranslat ion of a source method. In addition to the bytecodes 
themselves, a CompiledMethod contains a set of objects called its literal 
frame. The literal frame contains  any objects tha t  could not be referred 
to directly by bytecodes. All of the objects in Rectangle center and Rec- 
tangle extent: were referred to directly by  bytecodes, so the 
CompiledMethods for these methods do not need literal frames. As an 
example of a CompiledMethod with a literal frame, consider the method 
for Rectangle intersects:. The intersects: message inquires whether  one 
Rectangle (the receiver) overlaps another  Rectangle (the argument).  

intersects: aRectangle 
t(origin max: aRectangle origin) < (corner min: aRectangle corner) 

The four message selectors, max:, origin, rain:, and corner are not in the 
set tha t  can be directly referenced by bytecodes. These selectors are in- 
cluded in the CompiledMethod's literal frame and the send bytecodes 
refer  to the selectors by their  position in the literal frame. A 
CompiledMethod's literal frame will be shown after its bytecodes. 

Rectangle intersects: 
0 push the value of the receiver's first instance variable (origin) onto the 

stack 
16 push the argument (aRectangle) 
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209  send a unary message with the selector in the second literal frame loca- 
tion (origin) 

224 send a single argument message with the selector in the first literal 
frame location (max:) 

1 push the value of the receiver's second instance variable (corner) onto the 
stack 

16 push the argument (aRectangle) onto the stack 
211 send a unary message with the selector in the fourth literal frame loca- 

tion (corner) 
226 send a single argument message with the selector in the third literal 

frame location (min:) 

178 send a binary message with the selector < 
124 return the object on top of the stack as the value of the message (inter- 

sects:) 

literal frame 
# max: 
~origin 
~min: 
~corner 

T h e  ca tegor i e s  of objects  t h a t  can  be r e f e r r e d  to d i rec t ly  by by tecodes  

are:  

• t h e  r e c e i v e r  a n d  a r g u m e n t s  of t h e  i n v o k i n g  m e s s a g e  

• t h e  v a l u e s  of t h e  r ece ive r ' s  i n s t a n c e  v a r i a b l e s  

• t h e  v a l u e s  of a n y  t e m p o r a r y  v a r i a b l e s  r e q u i r e d  by t h e  m e t h o d  

• s e v e n  specia l  c o n s t a n t s  (true, false, nil, - 1 ,  0, 1, a n d  2) 

• 32 specia l  m e s s a g e  se lec tors  

T h e  32 specia l  m e s s a g e  se lec tors  a r e  l is ted below. 

-F - < > 

. / \ @ 

bitShift: \ \  bitAnd: bitOr: 
(at:) (at:put:) (size) (next) 
(nextPut:) (atEnd) class 
blockCopy: value value" (do:) 
(new) (new:) (x) (y) 

T h e  se lec tors  in p a r e n t h e s e s  m a y  be r e p l a c e d  w i t h  o t h e r  se lec tors  by 

m o d i f y i n g  t h e  compi l e r  a n d  r e c o m p i l i n g  all  m e t h o d s  in t h e  sys tem.  T h e  

o t h e r  se lec tors  a r e  bu i l t  in to  t h e  v i r t u a l  m a c h i n e .  
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Any objects refer red  to in a CompiledMethod's  bytecodes t ha t  do not 
fall into one of the  categories above mus t  appea r  in its l i teral  frame.  
The objects ordinar i ly  contained in a l i teral  f r ame  a r e  

• shared  var iables  (global, class, and pool) 

• most  l i teral  cons tants  (numbers,  characters ,  strings, ar rays ,  and 
symbols) 

• most  message selectors (those tha t  are  not special) 

Objects of these th ree  types m a y  be in te rmixed  in the l i teral  frame.  If 
an object in the l i teral  f r ame  is referenced twice in the same method,  it 
need only appear  in the l i teral  f rame once. The two bytecodes t ha t  refer  
to the  object will refer  to the  same location in the l i teral  frame. 

Two types of object t ha t  were refer red  to above, t empora ry  var iables  
and shared  variables,  have not been used in the  example  methods.  The 
following example  method for Rectangle merge: uses both types. The 
merge: message is used to find a Rectangle t h a t  includes the a reas  in 
both the receiver  and the  a rgumen t .  

merge: aRectangle 
I minPoint maxPoint I 
minPoint ~ origin min: aRe ctangte or ig in 

maxPoint ~ corner max: aRectangle corner  
1'Rectangle origin: minPoint 

corner: maxPoint 

When a C o m p i l e d M e t h o d  uses t e m p o r a r y  var iables  (maxPo in t  and 
minPoint in this example),  the n u m b e r  required  is specified in the first 

line of its pr in ted  form. When  a CompiledMethod uses a shared  var iable  
(Rectangle in this example)  an ins tance  of Association is included in its 
l i teral  frame.  All CompiledMethods t ha t  refer  to a pa r t i cu la r  shared  
var iable ' s  name  include the same Association in the i r  l i teral  frames.  

Rectangle merge: requires 2 temporary variables 
0 push the value of the receiver's first instance variable (origin) onto the 

stack 
16 push the contents of the first temporary frame location (the argument 

aRectangle) onto the stack 
209 send a unary message with the selector in the second literal frame loca- 

tion (origin) 
224 send the single argument message with the selector in the first literal 

frame location (min:) 
105 pop the top object off of the stack and store in the second temporary 

frame location (minPoint) 
1 push the value of the receiver's second instance variable (corner) onto the 

stack 
16 push the contents of the first temporary frame location (the argument 

aRectangle) onto the stack 
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211 

226 

106 

69 

17 

18 

244 

124 

literal trame 

#min: 
~origin 
# max: 
#corner 
#origin:corner: 
Association: #Rectangle ~Rectangle 

send a unary message with the selector in the fourth literal frame loca- 
tion (corner) 
send a single argument message with the selector in the third literal 
frame location (max:) 
pop the top object off of the stack and store it in the third temporary 
frame location (ma×Point) 
push the value of the shared variable in the sixth literal frame location 
(Rectangle) onto the stack 
push the contents of the second temporary frame location (minPoint) onto 
the stack 
push the contents of the third temporary frame location (ma×Point) onto 
the stack 
send the two argument message with the selector in the fifth literal 
frame location (origin:corner:) 
return the object on top of the stack as the value of the message (merge:) 

[~] Temporary Variables T e m p o r a r y  va r i ab l e s  a r e  c r ea t ed  for a par t ic-  
u l a r  execu t ion  of a CompiledMethod and  cease to exis t  w h e n  the  execu- 
t ion is comple te .  The  CompiledMethod indica tes  to the  i n t e r p r e t e r  how 
m a n y  t e m p o r a r y  va r i ab l e s  will be requi red .  The  a r g u m e n t s  of the  in- 
voking  m e s s a g e  and  the  va lues  of t he  t e m p o r a r y  va r i ab le s  a r e  s to red  to- 
g e t h e r  in the  temporary frame. The  a r g u m e n t s  a r e  s to red  f irs t  and  the  
t e m p o r a r y  va r i ab le  va lues  i m m e d i a t e l y  af ter .  They  a re  accessed by the  
s a m e  type  of bytecode (whose c o m m e n t s  r e fe r  to a t e m p o r a r y  f r a m e  lo- 
cation). Since merge:  t a k e s  a s ingle  a r g u m e n t ,  i ts two t e m p o r a r y  vari-  
ables  use the  second and  t h i rd  locat ions  in the  t e m p o r a r y  f rame.  The  
compi le r  enforces  the  fact  t h a t  t he  va lues  of t he  a r g u m e n t  n a m e s  can- 
not  be c h a n g e d  by neve r  i ssuing a s tore  bytecode  r e f e r r i n g  to the  p a r t  
of t he  t e m p o r a r y  f r a m e  inhab i t ed  by the  a r g u m e n t s .  

[~] Shared  Variables S h a r e d  va r i ab les  a re  found in d ic t ionar ies .  

• global variables in a d ic t iona ry  whose  n a m e s  can a p p e a r  in any  

m e t h o d  

• class variables in a d ic t iona ry  whose  n a m e s  can only a p p e a r  in the  
m e t h o d s  of a s ingle  class and  its subclasses  

• pool variables in a d i c t iona ry  whose  n a m e s  can a p p e a r  in the  

m e t h o d s  of severa l  classes 
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Shared variables are the individual associations that  make up these dic- 
tionaries. The system represents associations in general, and shared 
variables in particular, with instances of Association. When the compil- 
er encounters the name of a shared variable in a source method, the 
Association with the same name is included in the CompiledMethod's 
literal frame. The bytecodes that  access shared variables indicate the 
location of an Association in the literal frame. The actual value of the 
variable is stored in an instance variable of the Association. In the 
CompiledMethod for Rectangle merge: shown above, class Rectangle is 
referenced by including the Association from the global dictionary 
whose name is the symbol ~Rectangle and whose value is the class 
Rectangle. 

The Bytecodes 
The interpreter understands 256 bytecode instructions that  fall into five 
categories: pushes, stores, sends, returns, and jumps. This section gives 
a general description of each type of bytecode without going into detail 
about which bytecode represents which instruction. Chapter 28 de- 
scribes the .exact meaning of each bytecode. Since more than 256 in- 
structions for the interpreter are needed, some of the bytecodes take 
extensions. An extension is one or two bytes following the bytecode, 
that  further specify the instruction. An extension is not an instruction 
on its own, it is only a part  of an instruction. 

E] Push Bytecodes A push bytecode indicates the source of an object 
to be added to the top of the interpreter 's  stack. The sources include 

• the receiver of the message that  invoked the CompiledMethod 

• the instance variables of the receiver 

• the t empora ry  frame (the arguments of the message and the tem- 
porary variables) 

• the literal frame of the CompiledMethod 

• the top of the stack (i.e., this bytecode duplicates the top of the 
stack) 

Examples of most of the types of push bytecode have been included in 
the examples. The bytecode that  duplicates the top of the stack is used 
to implement cascaded messages. 

Two different types of push bytecode use the literal frame as their 
source. One is used to push literal constants and the other to push the 
va lue  of shared variables. Literal constants are stored directly in the 
literal frame, but the values of shared variables are stored in an Associ- 
ation t h a t  is pointed to by the literal frame. The following example 
method uses one shared variable and one literal constant. 
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in©rementlndex 
t lndex ~ Index + 4 

ExampleClass incrementlndex 
64 push the value of the shared variable in the first literal frame location 

(Index) onto the stack 
33 push the constant in the second literal frame location (4) onto the stack 
176 send a binary message with the selector + 
129,192 store the object on top of the stack in the shared variable in the first lit- 

eral frame location (Index) 
124 return the object on top of the stack as the value of the message 

(incrementlndex) 

l i teral  frame 

Association: # Index  ~ 260 

4 

E] Store Bytecodes The bytecodes compiled from an  as s ignment  ex- 
pression end wi th  a store bytecode. The bytecodes before the store 
bytecode compute  the new value of a var iable  and leave it on top of the  
stack. A store bytecode indicates the  var iable  whose value should be 
changed.  The var iables  t h a t  can be changed are  

• the  ins tance  var iables  of the  receiver  

• t e m p o r a r y  var iables  

° shared  var iables  

Some of the  store bytecodes remove the  object to be stored from the  
stack,  and others  leave the object on top of the stack, af ter  s tor ing it. 

El Send Bytecodes A send bytecode specifies the  selector of a message 
to be sent  and how m a n y  a r g u m e n t s  it should have. The receiver  and  
a r g u m e n t s  of the  message are  t aken  off the  in te rp re te r ' s  stack, the  re- 
ceiver from below the  a rguments .  By t h e  t ime the bytecode following 
the send is executed, the  message 's  resul t  will have  replaced its receiver 
and a r g u m e n t s  on the  top of the stack. The detai ls  of sending messages 
and r e t u r n i n g  r e su l t s  is the  subject of the  next  sections of this chapter .  
A set of 32 send bytecodes refer  direct ly to the special selectors listed 
earl ier .  The other  send bytecodes refer  to t h e i r  selectors in the l i teral  

frame. 

E] Return Bytecodes When  a r e tu rn  bytecode is encountered,  the  
CompiledMethod in which it was found has  been complete ly  e x e c u t e d .  
Therefore  a value is r e tu rned  for the  message t h a t  invoked t h a t  
CompiledMethod. The value is usual ly  found on top of the stack. F o u r  
special r e t u r n  bytecodes r e t u r n  the  message receiver (self), true, false, 
and nil. 
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E] Jump Bytecodes Ordinari ly,  the in t e rp re te r  executes the bytecodes 
sequent ial ly  in the order  they appear  in a CompiledMethod. The jump  
bytecodes indicate tha t  the next  bytecode to execute is not the one fol- 
lowing the jump.  There  a re  two variet ies of jump,  unconditional and 
conditional. The uncondi t ional  jumps  t ransfer  control whenever  they 
are encountered.  The condit ional  jumps  will only t ransfer  control if the 
top of the s tack is a specified value. Some of the conditional jumps  
t ransfer  if the top object on the stack is true and others  if it is false. 
The j ump  bytecodes are used to implement  efficient control s t ructures .  

The control s t ruc tures  tha t  are  so optimized by the compiler are the 
conditional selection messages to Booleans ( i fTrue:, i fFalse:,  and 
ifTrue:ifFalse:), some of the logical operat ion messages to Booleans (and" 
and or:), and the conditional repet i t ion messages to blocks (whileTrue: 
and whileFalse:). The jump  bytecodes indicate the next  bytecode to be 
executed relat ive to the position of the jump.  In o ther  words, they tell 
the in te rp re te r  how m a n y  bytecodes to skip. The following method for 
Rectangle includesPoint: uses a condit ional  jump.  

includesPoint:  aPoint  
origin < = aPoint 

ifTrue' [ taPoint < corner] 

ifFalse' [ t fa lse]  

Rectangle 
0 

16 

180 
155 
16 

178 
124 

122 

includesPoint: 
push the value of the receiver's first instance variable (origin) onto the 
stack 
push the contents of the first temporary frame location (the argument 
aPoint) onto the stack 
send a binary message with the selector < = 
jump ahead 4 bytecodes if the object on top of the stack is false 
push the contents of the first temporary frame location (the argument 
aPoint) onto the stack 
push the value of the receiver's second instance variable (corner) onto the 
stack 
send a binary message with the selector < 
return the object on top of the stack as the value of the message 
(includesPoint:) 

return false as the value of the message (includesPoint:) 

The Interpreter The Small ta lk-80 in te rp re te r  executes the bytecode instruct ions found 
in CompiledMethods. The in te rp re te r  uses five pieces of informat ion and 
repeatedly  performs a three-s tep cycle. 
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3 .  

The State of the Interpreter 

1. The CompiledMethod whose bytecodes are being executed. 

2. The location of the next bytecode to be executed in that  
CompiledMethod. This is the interpreter 's  instruction pointer. 

The receiver and arguments  of the message that  invoked the 
CompiledMethod. 

4. Any temporary variables needed by the CompiledMethod. 

5. A stack. 

The execution of most bytecodes involves the interpreter 's  stack. Push 
bytecodes tell where to find objects to add to the stack. Store bytecodes 
tell where to put objects found on the stack. Send bytecodes remove the 
receiver and arguments of messages from the stack. When the result of 
a message is computed, it is pushed onto the stack. 

The Cycle of the Interpreter 

1. Fetch the bytecode from the CompiledMethod indicated by the in- 
struction pointer. 

2. Increment the instruction pointer. 

3. Perform the function specified by the bytecode. 

As an example of the interpreter 's  function, we will trace its execution 
of the CompiledMethod for Rectangle center. The state of the interpret- 
er will be displayed after each of its cycles. The instruction pointer will 
be indicated by an arrow pointing at the next bytecode in the 
CompiledMethod to be executed. 

D 0 push the value of the receiver's first instance variable (origin) onto the 
stack 

The receiver, arguments,  temporary variables, and objects on the stack 
will be shown as normally printed (their responses to printString). For 
example, if a message is sent to a Rectangle, the receiver will be shown 
as  

Receiver 1 O0 @ 1 O0 corner: 200 @ 200 

At the start  of execution, the stack is empty and the instruction 
pointer indicates the first bytecode in the CompiledMethod. This 
CompiledMethod does not require temporaries and the invoking mes- 
sage did not have arguments,  so these two categories are also empty. 

: : T 
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Method for Rectangle center 
Ib 0 push the value of the receiver's first instance variable (origin) onto the 

176 
119 
185 
124 

stack 
push the value of the receiver's second instance variable (corner) onto the 
stack 

send a binary message with the selector 4- 

push the Smalllnteger 2 onto the stack 

send abinary message with the selector / 

return the object on top of the stack as the value of the message (center) 

Receiver 

Arguments 

1 O0 @ 1 O0 corner: 200 @ 200 

Temporary Variables 

Stack 

Fol lowing  one  cycle of t h e  i n t e r p r e t e r ,  t h e  i n s t r u c t i o n  p o i n t e r  has  been  

a d v a n c e d  a n d  t h e  v a l u e  of t h e  r ece ive r ' s  f i rs t  i n s t a n c e  v a r i a b l e  has  

b e e n  copied on to  t h e  s tack.  

Method for Rectangle center 

0 1 

176 
119 
185 
124 

push the value of the receiver's first instance variable (origin) onto the 
stack 

push the value of the receiver's second instance variable (corner) onto the 
stack 
send a binary message with the selector 4- 

push the Smalllnteger 2 onto the stack 

send a binary message with the selector / 

return the object on top of the stack as the value of the message (center) 

Receiver 1 O0 @ 1 O0 corner: 200 @ 200 

Arguments 

Temporary Variables 

Stack 100@ lO0 

T h e  i n t e r p r e t e r ' s  second  cycle has  a n  effect s i m i l a r  to t h e  first.  T h e  
t o p  of t h e  s t a ck  is s h o w n  t o w a r d  t h e  b o t t o m  of t h e  page.  This  corre-  

s p o n d s  to t h e  c o m m o n l y  used  c o n v e n t i o n  t h a t  m e m o r y  loca t ions  a re  

s h o w n  wi th  a d d r e s s e s  i n c r e a s i n g  t o w a r d  t h e  b o t t o m  of t h e  page.  
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Method for Rectangle center 
0 push the value of the receiver's first instance variable (origin) onto the 

$ 176 
119 
185 
124 

Receiver 

stack 
push the value of the receiver's second instance variable (corner) onto the 
stack 
send a binary message with the selector + 

push the Smalllnteger 2 onto the stack 

send a binary message with the selector / 
return the object on top of the stack as the value of the message (center) 

1 O0 @ 1 O0 corner: 200 ® 200 

Arguments 

Temporary Variables 

Stack 1 O0 @ 1 O0 
200 @ 200 

T h e  i n t e r p r e t e r ' s  t h i r d  cycle e n c o u n t e r s  a s end  bytecode.  I t  r e m o v e s  two 

objects  f rom t h e  s t ack  a n d  uses  t h e m  as t h e  r ece ive r  a n d  a r g u m e n t  of a 
m e s s a g e  w i t h  se lec tor  -t- . T h e  p r o c e d u r e  fo r  s e n d i n g  t h e  m e s s a g e  will  

no t  be desc r ibed  in de ta i l  he re .  Fo r  t h e  m o m e n t ,  i t  is on ly  n e c e s s a r y  to 
k n o w  t h a t  e v e n t u a l l y  t h e  r e s u l t  of t h e  -t-- m e s s a g e  will  be p u s h e d  on to  

t h e  s tack.  S e n d i n g  m e s s a g e s  will  be desc r ibed  in l a t e r  sect ions.  

Method for Rectangle center 
0 push the value of the receiver's first instance variable (origin) onto the 

176 
$ 119 

185 
124 

Receiver 

stack 
push the value of the receiver's second instance variable (corner) onto the 
stack 
send a binary message with the selector -t-- 

push the Smallinteger 2 onto the stack 
send a binary message with the selector / 
return the object on top of the stack as the value of the message (center) 

1 O0 @ 1 O0 corner: 200 @ 200 

Arguments 

Temporary Variables 

Stack 300@300 

T h e  i n t e r p r e t e r ' s  n e x t  cycle p u s h e s  t h e  c o n s t a n t  2 on to  t h e  s tack.  
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Method for Rectangle center 
0 push the value of the receiver's first instance variable (origin) onto the 

176 
119 

t 185 
124 

Receiver 
Arguments 
Temporary Variables 
Stack 

stack 

push the value of the receiver's second instance variable (corner) onto the 
stack 

send a binary message with the selector + 
push the Smalllnteger 2 onto the stack 
send a binary message with the selector / 
return the object on top of the stack as the value of the message (center) 

1 O0 @ 1 O0 corner: 200 @ 200 

300@300 
2 

The  i n t e r p r e t e r ' s  nex t  cycle sends  a n o t h e r  message  whose  r e su l t  re- 
places  its r ece ive r  and  a r g u m e n t s  on the  stack.  

Method for Rectangle center 
0 push the value of the receiver's first instance variable (origin) onto the 

176 
119 
185 

$ 124 

Receiver 
Arguments 
Temporary Variables 
Stack 

stack 

push the value of the receiver's second instance variable (corner) onto the 
stack 

send a binary message with the selector + 
push the Smalllnteger 2 onto the stack 
send a binary message with the selector / 
return the object on top of the stack as the value of the message (center) 

1 O0 @ 1 O0 corner: 200 @ 200 

150 @ 150 

Contexts 

The  f inal  bytecode  r e t u r n s  a r e su l t  to the  cen te r  message .  The  r e su l t  is 
found on the  s t ack  (150@150). It  is c lear  by this  point  t h a t  a r e t u r n  

bytecode  m u s t  involve push ing  the  r e su l t  onto a n o t h e r  stack.  The  de- 
ta i ls  of r e t u r n i n g  a va lue  to a message  will be descr ibed  a f t e r  t he  de- 
scr ip t ion  of send ing  a message .  

Push ,  s tore,  and  j u m p  bytecodes  r equ i r e  only smal l  changes  to the  s t a t e  
of the  i n t e r p r e t e r .  Objects  m a y  be moved  to or f rom the  s tack,  and  the  
i n s t ruc t ion  po in te r  is a lways  changed;  but  mos t  of t he  s t a t e  r e m a i n s  the  
same.  Send and  r e t u r n  bytecodes  m a y  r equ i r e  m u c h  l a rge r  changes  to 
t he  i n t e r p r e t e r ' s  s ta te .  W h e n  a m e s s a g e  is sent ,  all five pa r t s  of the  in- 
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t e rpre te r ' s  s ta te  may  have to be changed in order  to execute a different 
CompiledMethod in response to this new message. The in te rpre te r ' s  old 
s t a t e m u s t  be r emembered  because the bytecodes after  the send must  
be executed af ter  the value of the  message is re turned.  

The in te rp re te r  saves its s tate  in objects called contexts. There  will 
be m a n y  contexts in the system at  any  one time. The context  t ha t  rep- 
resents  the cur ren t  s tate  of the  in t e rp re te r  is called the active context. 
When a send bytecode in the active context 's  CompiledMethod requires 
a new CompiledMethod to be executed, the active context  becomes sus- 
pended  and a new context  is created and made active. The suspended 
context  re ta ins  the state associated wi th  the original  CompiledMethod 
unt i l  t ha t  context  becomes active again. A context  mus t  r emember  the 
context  t ha t  it suspended so t ha t  the suspended context  can be resumed 
when a resul t  is re turned.  The suspended context  is called the new con- 
text 's  sender. 

The form used to show the in te rpre te r ' s  s tate  in the last  section will 
be used to show contexts as well. The active context  will be indicated by 
the  word Active in its top delimiter.  Suspended contexts will say Sus- 
pended. For  example,  consider a context  represent ing  the execution of 
the CompiledMethod for Rectangle rightCenter wi th  a receiver of 100@ 
100 corner: 200@200. The source method  for Rectangle rightCenter is 

rightCenter 
t self right @ self center y 

The in te rpre te r ' s  s tate following execution of the first bytecode is 
shown below. The sender  is some other  context  in the system. 

$ 208 
112 
209 
207 
187 
124 

Active 
Method for Rectangle rightCenter 

112 push the receiver (self) onto the stack 
send a unary message with the selector in the first literal (right) 
push the receiver (self) onto the stack 
send the unary message with the selector in the second literal (center) 
send the unary message with the selector y 
send the unary message with the selector ® 
return the object on top of the stack as the value of the message 
(rightCenter) 

literal frame 
#r ight  
#center  

Receiver 
Arguments 
Temporary Variables 
Stack 
Sender ~,~,. 

1 O0 @ 1 O0 corner: 200 @ 200 

1 O0 @ 1 O0 corner: 200 @ 200 
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A f t e r  t h e  n e x t  b y t e c o d e  is e x e c u t e d ,  t h a t  c o n t e x t  w i l l  be  s u s p e n d e d .  T h e  

o b j e c t  p u s h e d  b y  t h e  f i r s t  b y t e c o d e  h a s  b e e n  r e m o v e d  to  be  u s e d  as  t h e  

r e c e i v e r  of a n e w  c o n t e x t ,  w h i c h  b e c o m e s  ac t i ve .  T h e  n e w  a c t i v e  c o n t e x t  

is s h o w n  a b o v e  t h e  s u s p e n d e d  c o n t e x t .  

Active 

Method for Rectangle right 
$ 1 push the value of the receiver's second instance variable (corner) onto the 

stack 

206 

124 

Receiver 

send a unary message with the selector x 

return the object on top of the stack as the value of the message (right) 

Arguments 

Temporary Variables 

Stack 

Sender , ~  

1 O0 ® 1 O0 corner: 200 ® 200 

Suspended 

Method for Rectangle rightCenter 
112 
208 

$ 112 
209 
207 
187 
124 

l iteral frame 

#r ight  
#cen te r  

Receiver 

push the receiver (self) onto the stack 

send a unary message with the selector in the first literal (right) 

push the receiver (self) onto the stack 

send the unary message with the selector in the second literal (center) 

send the unary message with the selector y 

send the unary message with the selector @ 

return the object on top of the stack as the value of the message 
(rightCenter) 

1 O0 @ 1 O0 corner: 200 @ 200 

Arguments 

Temporary Variables 

Stack 

Sender , ~  
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T h e  n e x t  cyc le  of t h e  i n t e r p r e t e r  a d v a n c e s  t h e  n e w  c o n t e x t  i n s t e a d  of 

t h e  p r e v i o u s  one .  

Active 

Method for Rectangle right 
1 push the value of the receiver's second instance variable (corner) onto the 

stack 

-0 206 
124 

Receiver 

send a unary message with the selector x 

return the object on top of the stack as the value of the message (right) 

Arguments 

Temporary Variables 

Stack 

Sender ~ 

1 O0 @ 1 O0 corner: 200 @ 200 

200 @ 200 

Suspended 

Method for Rectangle rightCenter 
112 push the receiver (self) onto the stack 

208 send a unary message with the selector in the first literal (right) 

Ib 112 push the receiver (self) onto the stack 

209 send the unary message with the selector in the second literal (center) 

207 send the unary message with the selector y 

187 send the unary message with the selector @ 

124. return the object on top of the stack as the value of the message 
(rightCenter) 

literal frame 

#r ight  
#center  

Receiver 1 O0 @ 1 O0 corner: 200 @ 200 

Arguments 

Temporary Variables 

Stack 

Sender 

In  t h e  n e x t  cycle ,  a n o t h e r  m e s s a g e  is s en t ,  p e r h a p s  c r e a t i n g  a n o t h e r  

c o n t e x t .  I n s t e a d  of f o l l o w i n g  t h e  r e s p o n s e  of t h i s  n e w  m e s s a g e  (x), w e  
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wi l l  s k i p  to  t h e  p o i n t  t h a t  t h i s  c o n t e x t  r e t u r n s  a v a l u e  (to right). W h e n  

t h e  r e s u l t  of x h a s  b e e n  r e t u r n e d ,  t h e  n e w  c o n t e x t  l ooks  l i k e  th i s :  

Active 

Method for Rectangle right 
1 push the value of the receiver's second instance variable (corner) onto the 

stack 

206 
124 

Receiver 

Arguments 

Temporary Variables 

Stack 

Sender ~ 

send a unary message with the selector x 

return the object on top of the stack as the value of the message (right) 

1 O0 @ 1 O0 corner: 200 @ 200 

200 

Suspended 

Method for Rectangle rightCenter 
112 push the receiver (self) onto the stack 

208 send a unary message with the selector in the first literal (right) 

I) 112 push the receiver (self) onto the stack 

209 send the unary message with the selector in the second literal (center) 

207 send the unary message with the selector y 

187 send the unary message with the selector @ 

124 return the object on top of the stack as the value of the message 
(rightCenter) 

literal frame 
#r ight  
#center  

Receiver 

Arguments 

1 O0 @ 1 O0 corner: 200 @ 200 

Temporary Variables 

Stack 

Sender 
. . . .  

T h e  n e x t  b y t e c o d e  r e t u r n s  t h e  v a l u e  on  t h e  t o p  of t h e  a c t i v e  c o n t e x t ' s  

s t a c k  (200)  a s  t h e  v a l u e  of t h e  m e s s a g e  t h a t  c r e a t e d  t h e  c o n t e x t  (right). 

T h e  a c t i v e  c o n t e x t ' s  s e n d e r  b e c o m e s  t h e  a c t i v e  c o n t e x t  a g a i n  a n d  t h e  

r e t u r n e d  v a l u e  is p u s h e d  on  i t s  s t a c k .  



559 
The  I n t e r p r e t e r  

112 
208 

0 112 
209 
207 
187 
124 

Active 

Method for Rectangle rightCenter 
push the receiver (self) onto the stack 

send a unary message with the selector in the first literal (right) 

push the receiver (self) onto the stack 
send the unary message with the selector in the second literal (center) 

send the unary message with the selector y 
send the unary message with the selector ® 
return the object on top of the stack as the value of the message 
(rightCenter) 

literal frame 
#r ight  
#center  

Receiver 

Arguments 

1 O0 @ 1 O0 corner: 200 @ 200 

Temporary Variables 

Stack 200 

Sender 

BlOck Contexts 
T h e  c o n t e x t s  i l l u s t r a t e d  in t h e  l as t  sec t ion  a r e  r e p r e s e n t e d  in t h e  sys- 
t e m  by  i n s t a n c e s  of Me thodCon tex t .  A M e t h o d C o n t e x t  r e p r e s e n t s  t h e  ex- 
e c u t i o n  of a Cornp i ledMethod  in r e s p o n s e  to a message .  T h e r e  is a n o t h e r  
t y p e  of c o n t e x t  in t h e  s y s t e m ,  w h i c h  is r e p r e s e n t e d  by  i n s t a n c e s  of 

BlockContext .  A BlockContex t  r e p r e s e n t s  a b lock  in a sou rce  m e t h o d  
t h a t  is no t  p a r t  of a n  o p t i m i z e d  con t ro l  s t r u c t u r e .  T h e  c o m p i l a t i o n  of 

t h e  o p t i m i z e d  con t ro l  s t r u c t u r e s  was  d e s c r i b e d  in t he  e a r l i e r  sec t ion  on 
j u m p  by tecodes .  T h e  b y t e c o d e s  c o m p i l e d  f r o m  a n o n o p t i m i z e d  con t ro l  
s t r u c t u r e  a r e  i l l u s t r a t e d  by  t h e  fo l lowing  h y p o t h e t i c a l  m e t h o d  in Collec- 
tion. Th is  m e t h o d  r e t u r n s  a co l lec t ion  of t h e  c lasses  of t h e  r e ce ive r ' s  ele- 

m e n t s .  

classes 
T sel fco l tect : [ :e tement  I element class] 

Collection classes requires 1 t emporary  variable 
112 push the receiver (self) onto the stack 

137 push the active context (thisContext) onto the stack 
118 push the Smalllnteger 1 onto the stack 
200 send a single argument message with the selector blockCopy: 

164,4. jump around the next 4 bytes 
104 pop the top object off of the stack and store in the first temporary frame 

location (element) 
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16 

199 
125 
224 

124 

push the contents of the first temporary frame location (element) onto the 
stack 
send a unary message with the selector class 
return the object on top of the stack as the value of the block 
send a single argument message with the selector in the first literal 
frame location (collect:) 
return the object on top of the stack as the value of the message (classes) 

literal frame 
¢/: col lect: 

A new BlockContext is created by the blockCopy: message to the active 
context. The bytecode that  pushes the active context was not described 
along with the rest of the push bytecodes since the function of contexts 
had not been described at tha t  point. The a rgument  to blockCopy: (1 in 
this example) indicates the number  of block arguments  the block re- 
quires. The BlockContext shares much of the state of the active context 
tha t  creates it. The receiver, arguments ,  temporary  variables, 
CompiledMethod, and sender are all the same. The BlockContext has its 
own instruction pointer and stack. Upon re turn ing  from the biockCopy: 
message, the newly created BlockContext is on the stack of the active 
context and the next instruction jumps around the bytecodes that  de- 
scribe the actions of the block. The active context gave the BlockContext 
an initial instruction pointer pointing to the bytecode after this jump. 
The compiler always uses an extended (two-byte) jump after a 
blockCopy: so that  the BlockContext's initial instruction pointer is al- 
ways two more than  the active context's instruction pointer when it re- 
ceives the blockCopy: message. 

The method for Collection classes creates a BlockContext, but does 
not execute its bytecodes. When the collection receives the collect: m e s -  
sage, it will repeatedly send value: messages to the BlockContext with 
the elements of the collection as arguments .  A BlockContext responds to 
value: by becoming the active context, which causes i ts  bytecodes to be 
executed by the interpreter.  Before the BlockContext becomes active, 
the a rgument  to value: is pushed onto the BiockContext's stack. The 
first bytecode executed by the BlockContext stores this value in a tem- 
porary variable used for the block argument .  

A BlockContext can re turn  a value in two ways. After the bytecodes 
in the block have been executed, the final value on the stack is re- 
turned as the value of the message value or value:. The block can also 
re turn  a value to the message that  invoked the CompiledMethod that  
created the BlockContext. This is done with the regular  re turn  
bytecodes. The hypothetical  method for Collection containslnstanceOf: 
uses both types of re tu rn  from a BlockContext. 

conta ins lnstanceOf :  aClass 
self do" [ 'element I (element isKindOf: aCiass) ifTrue' [ttrue]]. 
tfatse 
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Col lect ion conta ins lnstanceOf :  requires 1 temporary variable 
112 push the receiver (self) onto the stack 
137 push the active context (thisContext) onto the stack 
118 push the Smalllnteger 1 onto the stack 
200 send a single argument message with the selector blockCopy: 

164,8 jump around the next 8 bytes 
105 pop the top object off of the stack and store in the second temporary 

frame location (element) 

17 push the contents of the second temporary frame location (element) onto 
the stack 

16 push the contents of the first temporary frame location (aClass) onto the 
stack 

224 send a single argument message with the selector in the first literal 
frame location (isKindOf:) 

152 pop the top object off of the stack and jump around 1 byte if it is false 
121 return true as the value of the message (containslnstanceOf:) 
115 push nil onto the stack 
125 return the object on top of the stack as the value of the block 
203 send the single argument message with the selector do: 

135 pop the top object off the stack 
122 return falseas the value of the message (containslnstanceOf:) 
l i teral frame 

~isKindOf: 

W h e n  a s end  b y t e c o d e  is e n c o u n t e r e d ,  t h e  i n t e r p r e t e r  f inds  t h e  
C o m p i l e d M e t h o d  i n d i c a t e d  by  t h e  m e s s a g e  as follows. 

1. Find the message receiver. T h e  r e c e i v e r  is be low t h e  a r g u m e n t s  on 
t h e  s tack .  T h e  n u m b e r  of a r g u m e n t s  is i n d i c a t e d  in t h e  s end  
by tecode .  

2. Access a message dictionary. T h e  o r i g ina l  m e s s a g e  d i c t i o n a r y  is 
f o u n d  in t h e  r e c e i v e r ' s  class.  

3. Look up the message selector in the message dictionary. T h e  selec- 
t o r  is i n d i c a t e d  in t h e  s end  by tecode .  

4. I f  the selector is found, t h e  a s soc i a t ed  C o m p i l e d M e t h o d  desc r ibes  
t h e  r e s p o n s e  to t h e  m e s s a g e .  

5. I f  the selector is not found, a n e w  m e s s a g e  d i c t i o n a r y  m u s t  be  
s e a r c h e d  ( r e t u r n i n g  to s t ep  3). T h e  n e w  m e s s a g e  d i c t i o n a r y  wil l  be  
f o u n d  in  t h e  s u p e r c l a s s  of t h e  l as t  c lass  w h o s e  m e s s a g e  d i c t i o n a r y  
w a s  s e a r c h e d .  This  cycle  m a y  be r e p e a t e d  s e v e r a l  t imes ,  t r a v e l i n g  

up  t h e  s u p e r c l a s s  cha in .  

If t h e  s e l ec to r  is no t  f o u n d  in t h e  r e c e i v e r ' s  c lass  n o r  in a n y  of i ts 
supe rc l a s se s ,  a n  e r r o r  is r e p o r t e d ,  a n d  e x e c u t i o n  of t h e  b y t e c o d e s  follow- 

ing  t h e  s e n d  is s u s p e n d e d .  
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E] Superclass Sends A var ia t ion  of the send bytecodes called super- 
sends uses a sl ightly different a lgor i thm to find the CompiledMethod as- 
sociated with a message. Every th ing  is the same except for the second 
step, which specifies the original  message dict ionary to search. When a 
super-send is encountered,  the following second step is substi tuted.  

2. Access a message dictionary. The original message dict ionary is 
found in the superclass of the  class in which the cur ren t ly  execut- 
ing CompiledMethod was found. 

Super-send bytecodes are used when super is used as the receiver of a 
message in a source method. The bytecode used to push the receiver 
will be the same as if self had been used, but  a super-send bytecode will 
be used to describe the selector. 

As an example  of the use of a super-send, imagine a subclass of Rec- 
tangle called ShadedRectangle  tha t  adds an instance var iable  named 
shade. A Rectangle might  respond to the message shade: by producing 
a new ShadedRectangle .  ShadedRectangle  provides a new method  for 
the message intersect:, r e tu rn ing  a ShadedRectangle  ins tead  of a Rec- 
tangle. This method  mus t  use super to access its own abili ty to actual ly  
compute  the intersection. 

intersect: aRectangle 
1' (super intersect: aRectangle) 

shade: shade 

ShadedRectangle intersect: 
112 push the receiver (self) onto the stack 
16 push the contents of the first temporary frame location (the argument 

aRectangle) onto the stack 
133,33 send to super a single argument message with the selector in the second 

literal frame location (intersect:) 
2 push the value of the receiver's third instance variable (shade) onto the 

stack 
224 send a single argument message with the selector in the first literal 

frame location (shade:) 
124 return the object on top of the stack as the value of the message (inter- 

sect:) 
literal frame 

@shade: 
#intersect: 
Association: #ShadedRectangle --~ ShadedRectangle 

It is impor t an t  to note tha t  the init ial  class searched in response to a 
super-send will be the superclass of the receiver 's class only if the 
CompileclMethod containing the super-send was originally found the re- 
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ceiver's class. If the CompiledMethod was originally found in a super- 
class of the receiver's class, the search will s tar t  in that class's 
superclass. Since the interpreter ' s  state does not include the class in 
which it found each CompiledMethod, tha t  information is included in 
the CompiledMethod itself. Every CompiledMethod tha t  includes a su- 
per-send bytecode refers to the class in whose message dictionary it is 
found. The last entry  of the literal frame of those CompiledMethods 
contains an association referring to the class. 

Primitive Methods 
The interpreter ' s  actions after finding a CompiledMethod depend on 
whether  or not the CompiledMethod indicates tha t  a primitive method 
may be able to respond to the message. If no primitive method is indi- 
cated, a new MethodContext is created and made active as described in 
previous sections. If a primitive method is indicated in the 
CompiledMethod, the in terpreter  may be able to respond to the message 
without  actually executing the bytecodes. For example, one of the prim- 
itive methods is associated with the + message to instances of 
S m a l l l n t e g e r .  

+ addend 
< primitive: 1 > 
1' super .-t.- addend 

Smalllnteger + associated with primitive # 1 
112 push the receiver (self) onto the stack 
16 push the contents of the first temporary frame location (the argument ad- 

dend) onto the stack 
133,32 send to super a single argument message with the selector in the first lit- 

eral frame location (+) 
124 return the object on top of the stack as the value of the message (+) 
literal frame 

# +  

Even if a primitive method is indicated for a CompiledMethod, the 
in terpreter  may not be able to respond successfully. For example, the 
a rgument  of the + message might not be another  instance of 
Smalllnteger or the sum might  not be representable by a Smalllnteger. If 
t h e  in terpreter  cannot execute the primitive for some reason, the primi- 
tive is said to fail. When a primitive fails, the bytecodes in the 
CompiledMethod are executed as if the primitive method had not been 
indicated. The method for Smalllnteger + indicates that  the + method 
in the superclass (Integer) will be used if the primitive fails. 

There  are about a hundred primitive methods in the system that  per- 



564, 
The Implementation 

form four types of operation. The exact function of all of the primitives 
will be described in Chapter 29. 

1. Arithmetic 

2. Storage management  

3. Control 

4. Input-output 

The Object 
M e m o r y  

The object memory provides the interpreter  with an interface to the ob- 
jects that  make up the Smalltalk-80 virtual image. Each object is asso- 
ciated with a unique identifier called its object pointer. The object 
memory and interpreter  communicate about objects with object point- 
ers. The size of object pointers determines the maximum number of ob- 
jects a Smalltalk-80 system can contain. This number  is not fixed by 
anything about the language, b u t  the implementation described in this 
book uses 16-bit object pointers, allowing 65536 objects to be referenced. 
Implementation of the Smalltalk-80 system with larger object refer- 
ences will require changing certain parts of the virtual machine specifi- 
cation. It is not  within the scope of this book to detail the relevant 
changes. 

The object memory associates each object pointer with a set of other 
object pointers, Every object pointer is associated with the object point- 
er of a class. If an object has instance variables, its object pointer is also 
associated with the object pointers of their values. The individual in- 
stance variables are referred to by zero-relative integer indices. The 
value of an instance variable can be changed, but the class associated 
with an object cannot bechanged.  The object memory provides the fol- 
lowing five fundamental  functions to the interpreter. 

1. Access the value of an object's instance variable. The object point- 
er of the instance and the index of the instance variable must be 
supplied. The object pointer of the instance variable's value is re- 
turned. 

2. Change the value of an object's instance variable. The object point- 
er of the instance and the index of the instance variable must be 
supplied. The object pointer of the new value must also be sup- 
plied. 

3. Access an object's class. The object pointer of the instance must be 
supplied. The object pointer of the instance's class is returned. 

4. Create a new object. The object pointer of the new object's class 
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and the number  of instance variables it should have must be sup- 
plied. The object pointer of the new instance is returned. 

5. Find the number of instance variables an object has. The object's 
pointer must be supplied. The number of instance variables is re- 
turned. 

There is no explicit function of the object memory to remove an object 
no longer being used because these objects are reclaimed automatically. 
An object is reclaimed when there are no object pointers to it from oth- 
er objects. This reclamation can be accomplished either by reference 
counting or garbage collection. 

There are two additional features of the object memory that  provide 
efficient representation of numerical information. The first of these sets 
aside certain object pointers for instances of class Smaillnteger. The sec- 
ond allows objects to contain integer values instead of object pointers. 

El Representation of Small Integers The instances of class 
Smalllnteger represent the i n t ege r s -16384  through 16383. Each of 
these instances is assigned a unique object pointer. These object point- 
ers a l l  have a 1 in the low-order bit position and the two's complement 
representation of their value in the high-order 15 bits. An instance of 
Smalllnteger needs no instance storage since both its class and its value 
can be determined from its object pointer. Two additional functions are 
provided by the object memory to convert back and forth between 
Smalllnteger object pointers and numerical values. 

6 .  Find the numerical value represented by a Smalilnteger. The ob- 
ject pointer of the Srnalllnteger must be supplied. The two's com- 
plement value is returned. 

7. Find the Smalllnteger representing a numerical value. The two's 
complement value must be supplied. A Smalllnteger object pointer 
is returned. 

This representation for Smalllntegers implies that  there can be 32768 
instances of the other classes in the system. It also implies that  equality 
(=) and equivalence (=  =)  will be the same for instances of Smaillnteger. 
Integers outside the r a n g e - 1 6 3 8 4  through 16383 are represented by 
instances of class LargePositivelnteger or LargeNegativelnteger. There 
may be several instances representing the same value, so equality and 
equivalence are different. 

D Collections of Integer Values Another special representation is in- 
cluded for objects representing collections of integers. Instead of storing 
the object pointers of the Smalllntegers representing the contents of the 

J 
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collection, the actual numerical values are stored. The values in these 
special collections are constrained to be positive. There are two variet- 
ies of collection, one limiting its values to be less than 256 and the oth- 
er limiting its values to be less than 65536. The object memory provides 
functions analogous to the first five listed in this section, but for objects 
whose contents are numerical values instead of object pointers. 

The distinction between objects that  contain object pointers and 
those that  contain integer values is never visible to the Smalltalk-80 
programmer. When one of these special numerical collections is 
accessed by sending it a message, the object pointer of an object repre- 
senting the value is returned. The nature of these special collections is 
only evident in that  they may refuse to store objects that  do not repre- 
sent integers within the proper range. 

The H a r d w a r e  The Smalltalk-80 implementation has been described as a virtual ma- 
chine to avoid unnecessary hardware dependencies. It is natural ly as- 
sumed tha t  the hardware will include a processor and more than 
enough memory to store the virtual image and the machine language 
routines simulating the interpreter a n d  object memory. The current 
size of the virtual image requires at least a half megabyte of memory. 

The size of the processor and the organization of the memory are not 
actually constrained by the virtual machine specification. Since object 
pointers are 16 bits, the most convenient arrangement  would be a 
16-bit processor and a memory of 16-bit words. As with the processor 
and memory of any system, the faster the better. 

The other hardware requirements are imposed by the primitives that  
the virtual image depends on. These input-output devices and clocks are 
listed below. 

1. A bitmap display. It is most convenient if the bitmap being 
displayed can be located in the object memory, although this is 
not absolutely necessary. 

2. A pointing device. 

3. Three buttons associated wi th  the pointing device. It is most con- 
venient if these are physically located on the device. 

4. A keyboard, either decoded ASCII or undecoded ALTO. 

5. A disk. The standard Smalltalk-80 virtual image contains only a 
skeleton disk system that  must be tailored to the actual disk used. 

6. A millisecond timer. 

7. A real time clock with one second resolution. 
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Chapter 26 described the function of the Smalltalk virtual machine, 
which consists of an interpreter  and an object memory. This chapter 
and the next three present a more formal specification of these two 
parts of the virtual machine. Most implementations of the virtual ma- 
chine will be written in machine language or microcode. However, for 
specification purposes, these chapters will present an implementation of 
the virtual machine in Smalltalk itself. While this is a somewhat circu- 
lar proposition, every at tempt has been made to ensure that  no details 
are hidden as a result. 

This chapter consists of three sections. The first describes the con- 
ventions and terminology used in the formal specification. It also pro- 
vides some warnings of possible confusion resulting from the form of 
this specification. The second section describes the object memory rou- 
tines used by the interpreter. The implementation of these routines will 
be described in Chapter 30. The third section describes the three main 
types of object that  the interpreter  manipulates, methods, contexts, and 
classes. Chapter 28 describes the bytecode set and how it is interpreted; 
Chapter 29 describes the primitive routines. 

Form of the 
Specification 

Two class descriptions named Interpreter and ObjectMemory make up 
the formal specification of the Smalltalk-80 virtual machine. The imple- 
mentation of Interpreter will be presented in detail in this chapter and 
the following two; the implementation of ObjectMemory in Chapter 30. 

A potential source of confusion in these chapters comes from the two 
Smalltalk systems involved in the descriptions, the system containing 
Interpreter and ObjectMemory and the system being interpreted. Inter- 
preter and ObjectMernory have methods and instance variables and they 
also manipulate methods and instance variables in the system they in- 
terpret. To minimize the confusion, we will use a different set of termi- 
nology for each system. The methods of Interpreter and ObjectMemory 
will be called routines; the word method will be reserved for the meth- 
ods being interpreted. Similarly, the instance variables of Interpreter 
and ObjectMemory will be called registers; the word instance variable 
will be reserved for the instance variables of objects in the system being 
interpreted. 

The arguments  of the routines and the contents of the registers of In- 
terpreter and ObjectMemory will almost always be instances of Integer 
(Smalllntegers and LargePositivelntegers). This can also be a source of 
confusion since there are Integers in the interpreted system. The Inte- 
gers that  are arguments  to routines and contents of registers represent 
object pointers and numerical values of the interpreted system. Some of 
these will represent the object pointers or values of Integers in the 
interpreted system. 
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The interpreter  routines in this specification will all be in the form 
of Small ta lk  method definitions. For example 

routineName: argumentName 
I temporaryVariable I 
temporaryVariable ~- self anotherRoutine: argumentName. 
1 ~temporaryVariable - 1 

The routines in the specification will contain five types of expression. 

1. Calls on other routines of  the interpreter. Since both the invocation 
and definition of the routine are in Interpreter, they will appear as 
messages to self. 

• self headerOf: newMethod 
• self storelnstruct ionPointerValue: value 

inContext: contextPointer  

2. Calls on routines of  the object memory. An Interpreter uses the 
name memory to refer to its object memory,  so these calls will ap- 
pear as messages to memory. 

• memory fetchCiassOf: newMethod 
• memory storePointer: sender lndex 

ofObject: contextPointer  
withValue: act iveContext  

3. Arithmetic  operations on object pointers and numerical values. 
Arithmetic  operations will be represented by s tandard Small ta lk 
ar i thmetic  expressions, so they will appear as messages to the 
numbers  themselves. 

• receiverValue + argumentValue 
• selectorPointer bitShift: - 1  

4. Array accesses. Certain tables mainta ined by the in terpreter  are 
represented in the formal specification by Arrays. Access to these 
will appear  as at: and at:put: messages to the Arrays. 

• methodCache at: hash 
• semaphoreLis t  at: semaphore lndex  put: semaphorePointer  

5. Conditional control structures. The control s t ructures of the virtu- 
al machine will be represented by s tandard Small ta lk  conditional 
control structures.  Conditional selections will appear as messages 
to Booleans. Conditional repetitions will appear as messages to 
blocks. 
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• i n d e x  < l e n g t h  i fT rue:  [ . . .  ] 
• s i z e F l a g  = 1 i fT rue:  [ . . .  ] 

i fFa lse :  [ ... ] 
• [ c u r r e n t C l a s s  ~ =  N i l P o i n t e r ]  w h i l e T r u e :  [ ... ] 

The definition of Interpreter describes the function of the Smalltalk-80 
bytecode interpreter; however, the form of a machine language imple- 
mentation of the interpreter may be very different, particularly in the 
control structures it uses. The dispatch to the appropriate routine to ex- 
ecute a bytecode is an example of something a machine language inter- 
preter might do differently. To find the right routine to execute, a 
machine ianguage interpreter would probably do some kind of address 
arithmetic to calculate where to jump; whereas, as we will see, Interpret- 
er does a series of conditionals and routine calls. In a machine language 
implementation, the routines that  execute each bytecode would simply 
jump back to the beginning of the bytecode fetch routine when they 
were finished, instead of returning through the routine call structure. 

Another difference between Interpreter and a machine language im- 
plementation is the degree of optimization of the code. For the sake of 
clarity, the routines specified in this chapter have not been optimized. 
For example, to perform a task, Interpreter may fetch a pointer from the 
object memory several times in different routines, when a more opti- 
mized interpreter might save the value in a register for later use. Many 
of the routines in the formal specification will not be subroutines in a 
machine language implementation, but will be written in-line instead. 

Object Memory 
Interface 

Chapter 26 gave an informal description of the object memory. Since 
the routines of Interpreter need to interact with the object memory, we 
need its formal functional specification. This will be presented as the 
protocol specification of class ObjectMemory. Chapter 30 will describe 
one way to implement this protocol specification. 

The object memory associates a 16-bit object pointer with 

1. the object pointer of a class-describing object and 

2. a set of 8- or 16-bit fields that  contain object pointers or numerical 
values. 

The interface to the object memory uses zero-relative integer indices to 
indicate an object's fields. Instances of Integer are used for both object 
pointers and field indices in the interface between the interpreter and 
object memory. 
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The protocol of ObjectMemory contains pairs of messages for fetching 
and storing object pointers  or numer ica l  values in an object's fields. 

object pointer access 
fetchPointer: fieldlndex ofObject: objectPointer 

Return the object pointer found in the field 
numbered fieldlndex of the object associated 
with objectPointer. 

storePointer: fieldlndex ofObject: objectPointer withValue: valuePointer 
Store the object pointer valuePointer in the 
field numbered fieldlndex of the object associ- 
ated with objectPointer. 

word access 
fetchWord: fieldlndex ofObject: objectPointer 

Return the 16-bit numerical value found in 
the field numbered fieldlndex of the object as- 
sociated with objectPointer. 

storeWord: fieldlndex ofObject: objectPointer withValue: valueWord 
Store the 16-bit numerical value valueWord in 
the field numbered fieldlndex of the object as- 
sociated with objectPointer. 

byte access 
fetchByte: bytelndex ofObject: objectPointer 

Return the 8-bit numerical value found in the 
byte numbered bytelndex of the object associ- 
ated with objectPointer. 

storeByte: bytelndex ofObject: objectPointer withValue: valueByte 
Store the 8-bit numerical value valueByte in 
the byte numbered bytelndex of the object as- 
sociated with objectPointer. 

Note tha t  fetchPointer:ofObject: a n d  fetchWord:ofObject: will probably 
be implemented  in an identical fashion, since they  both load a 16-bit 
quant i ty .  However,  the implementa t ion  of storePointer:ofObject: will be 
different  from the implemen ta t ion  of storeWord:ofObject: since it will 
have to perform reference counting (see Chapte r  30) if the object memo- 
ry keeps dynamic  reference counts. We have ma in ta ined  a separa te  in- 
terface for fetchPointer:ofObject: and fetchWord:ofObject: for the sake of 
symmetry .  

Even though  most  of the ma in tenance  of reference counts can be 
done au tomat ica l ly  in the  storePointer:ofObject:withValue: routine,  there  
are  some points at  which the in t e rp re te r  rout ines  mus t  directly manip-  
ula te  the  reference counts. Therefore,  the following two rout ines  are in- 
cluded in the object memory  interface. If an object memory  uses only 
garbage collection to reclaim unreferenced objects, these rout ines  are 
no-ops. 

reference counting 
increaseReferencesTo: objectPointer 

Add one to the reference count of the object 
whose object pointer is objectPointer. 
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decreaseReferencesTo: objectPointer 
Subtract one from the reference count of the 
object whose object pointer is objectPointer. 

Since eve ry  object  con ta in s  the  object  po in t e r  of its class descr ip t ion,  
t h a t  p o i n t e r  could be  cons ide red  the  con ten t s  of one of t h e  object 's  
fields. U n l i k e  o t h e r  fields, however ,  an  object 's  class m a y  be fetched,  
bu t  its va lue  m a y  not  be changed .  Given  the  special  n a t u r e  of th is  
poin ter ,  it w a s  decided not  to access it in t he  s a m e  way.  There fo re ,  
t h e r e  is a special  protocol  for f e t ch ing  an  object 's  class. 

class pointer access. 
fetchClassOf: objectPointer Return the object pointer of the class-describ- 

ing object for the object associated with 
objectPointer. 

The  l eng th  of an  object  m i g h t  also be t h o u g h t  of as t he  con ten t s  of one 
of its fields. However ,  it is l ike the  class field in t h a t  it m a y  not  be 
changed .  T h e r e  a r e  two messages  in the  object  m e m o r y  protocol  t h a t  
ask  for the  n u m b e r  of words  in an  object  a n d  the  n u m b e r  of bytes  in an  
object. No te  t h a t  we h a v e  not  m a d e  a d i s t inc t ion  b e t w e e n  words  and  
po in t e r s  in th is  case since we a s s u m e  t h a t  t hey  bo th  fit in exac t ly  one 
field. 

length access 
fetchWordLengthOf: objectPointer 

Return the number of fields in the object asso- 
ciated with objectPointer. 

fetchByteLengthOf: objectPointer 
Return the number of byte fields in the object 
associated with objectPointer. 

A n o t h e r  i m p o r t a n t  service  of t he  object  m e m o r y  is to c r ea t e  new ob- 
jects.  The  object  m e m o r y  m u s t  be suppl ied  w i th  a class a n d  a l e n g t h  
a n d  will r e spond  wi th  a n e w  object  poin ter .  Again,  t h e r e  a r e  t h r e e  ver- 
sions for c r e a t i n g  objects  wi th  poin ters ,  words,  or  bytes.  

object creation 
instantiateClass: classPointer withPointers: instanceSize 

Create a new instance of the class whose ob- 
ject pointer is classPointer with instanceSize 
fields that will contain pointers. Return the 
object pointer of the new object. 

instantiateClass: classPointer withWords: instanceSize 
Create a new instance of the class whose ob- 
ject pointer is classPointer with instanceSize 
fields that will contain 16-bit numerical val- 
ues. Return the object pointer of the new ob- 
ject. 

instantiateClass: classPointer withBytes: instanceByteSize 
Create a new instance of the class whose ob- 
ject pointer is classPointer with room for 
instanceByteSize 8-bit numerical values. Re- 
turn the object pointer of the new object. 
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Two rout ines  of the object m e m o r y  allow the ins tances  of a class to be 
enumera t ed .  These follow an a rb i t r a ry  order ing of object pointers.  Us- 
ing the  numer ica l  order of the  pointers  themselves  is reasonable.  

instance enumeration 
initiallnstanceOf: classPointer Return the object pointer of the first instance 

of the class whose object pointer is 
ciassPointer in the defined ordering (e.g., the 
one with the smallest object pointer). 

instanceAfter: objectPointer Return the object pointer of the next instance 
of the same class as the object whose object 
pointer is objectPointer in the defined ordering 
(e.g., the one with the next larger object point- 
er). 

Ano the r  rout ine  of the  object  m e m o r y  allows the object pointers  of two 
objects to be in terchanged.  

pointer swapping 
swapPointersOf: firstPointer and: secondPointer 

Make firstPointer refer to the object whose ob- 
ject pointer was secondPointer and make 
secondPointer refer to the object whose object 
pointer was firstPointer. 

As described in Chap te r  26, integers  between - 1 6 3 8 4  and 16383 are 
encoded direct ly  as object pointers  wi th  a 1 in the  low-order bit  position 
and the appropr ia te  2's complemen t  value stored in the high-order  15 
bits. These objects are  ins tances  of class Smailinteger. A Smalllnteger 's  
value,  which would ord inar i ly  be stored in a field, is ac tua l ly  deter- 
mined  from its object pointer.  So ins tead of s tor ing a value in to  a 
Small lnteger 's  field, the  in t e rp re t e r  mus t  request  the  object pointer  of a 
Smalllnteger wi th  the  desired value (using the  integerObjectOf: routine). 
And ins tead of fetching the value from a field, it mus t  request  the  value 
associated wi th  the  object pointer  (using the integerValueOf: routine). 
There  are  also two rout ines  t h a t  de t e rmine  whe the r  an object pointer  
refers to a Smalllnteger (islntegerObject:) and  w h e t h e r  a value is in the 
r ight  range  to be represen ted  as a Smalllnteger (islntegerValue:). The 
function of the  isintegerObject: rout ine  can also be performed by re- 
quest ing the class of the  object and seeing if it is Smalllnteger. 

integer access 
integerValueOf: objectPointer 

integerObjectOf: value 

isintegerObject: objectPointer 

islntegerValue: value 

Return the value of the instance of 
Smalllnteger whose pointer is objectPointer. 
Return the object pointer for an instance of 
Smalllnteger whose value is value. 
Return true if objectPointer is an instance of 
Smalltnteger, false if not. 
Return true if value can be represented as an 
instance of Smalllnteger, false if not. 

The in t e rp re t e r  provides two special rout ines  to access fields t ha t  con- 
ta in  Smallinteflers. The Ietchlnteger:otObject: rout ine  r e tu rns  t h e  value 
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of a Small lnteger whose pointer is stored in the specified field. The 
check to make sure tha t  the pointer is for a Smalllnteger is made for 
uses of this routine when non-Smalllntegers can be tolerated. The 
primitiveFail routine will be described in the section on primitive rou- 
tines. 

fetchlnteger: fieldlndex ofObject: objectPointer 
I integerPointerl 
integerPointer ~- memory fetchPointer: fieldlndex 

ofObject: objectPointer. 
(memory islntegerObject: integerPointer) 

ifTrue: [1'memory integerValueOf: integerPointer] 
ifFalse: [1self primitiveFail] 

The storelnteger:ofObject:withValue: rou t ine  stores the po in ter  of the 
Small lnteger with specified value in the specified field. 

storelnteger: fieldlndex 
ofObject: objectPointer 
withValue: integerValue 

I integerPointerl 
(memory islntegerValue: integerValue) 

ifTrue: [integerPointer ~ memory integerObjectOf: integerValue. 
memory storePointer: fieldtndex 

ofObject: objectPointer 
withValue: integerPointer] 

ifFalse: [1self primitiveFail] 

The interpreter  also provides a routine to perform a t ransfer  of several 
pointers from one object to another.  It takes the number  of pointers to 
transfer,  and the initial field index and object pointer of the source and 
destination objects as arguments.  

transfer: count 
fromlndex: firstFrom 
ofObject: fromOop 
tolndex: firstTo 
ofObject: toOop 

I fromlndex tolndex lastFrom oop I 
fromlndex ~ firstFrom. 
lastFrom ~- firstFrom -.I-- count. 
tolndex ,- firstTo. 
[fromlndex < lastFrom] whileTrue: 

[oop ,- memory fetchPointer: fromlndex 
ofObject: fromOop. 

memory storePointer: tolndex 
ofObject: toOop 
withVafue: oop.. 
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memory storePointer: f romlndex 

ofObject: f romOop 

withValue: NitPointer. 

f romlndex ~ f romlndex + 1. 

to lndex ~- to lndex + 1] 

The interpreter  also provides routines to extract bit fields from numeri- 
cal values. These routines refer to the high-order bit with index 0 and 
the low-order bit with index 15. 

extractBits: f i rstBit lndex to: lastBit lndex of: an lnteger  
l ' (anlnteger bitShift: lastBit lndex - 15) 

bitAnd: (2 raisedTo: lastBit lndex - f irstBittndex + 1) - 1 

highByteOf:  an lnteger  
t setf extractBits: 0 to: 7 

of: anlnteger 

IowByteOf:  anlnteger  
1'self extractBits: 8 to: 15 

of: anlnteger 

Objects Used 
by the 
Interpreter 

This section describes what might be called the data structures of the 
interpreter. Although they are objects, and therefore more than data 
structures, the interpreter treats these objects as data structures. The 
first two types of object correspond to data structures found in the in- 
terpreters for most languages. Methods correspond to programs, subrou- 
tines, or procedures. Contexts correspond to stack frames or activation 
records. The final structure described in this section, that  of classes, is 
not used by the interpreter for most languages but only by the compil- 
er. Classes correspond to aspects of the type declarations of some other 
languages. Because of the nature of Smalltalk messages, the classes 
must be used by the interpreter at runtime. 

There are many constants included in the formal specification. They 
mostly represent object pointers of known objects or field indices for 
certain kinds of objects. Most of the constants will be named and a rou- 
tine that  initializes them will be included as a specification of their val- 
ue. As an example, the following routines initialize the object pointers 
known to the interpreter. 

i nitia iiz eSmall l  ntege rs 
"' Smal l lntegers '"  

MinusOnePointer  ~ 65535. 

ZeroPointer  ~- 1. 

OnePointer ~ 3. 

TwoPointer ~ 5 
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init ial izeGuaranteedPointers 
" U n d e f i n e d O b j e c t  and B o o l e a n s "  

Ni lPointer ~- 2. 

FalsePointer  ~ 4. 

TruePointer  ~- 6. 

" R o o t "  

Schedu le rAssoc ia t ionPo in te r  ~ 8. 

" C l a s s e s "  

C lassSt r ingPoin ter  ~ 14. 

C lassArrayPoin ter  ~ 16. 

C lassMethodContex tPo in te r  ~ 22. 

C lassBIockContex tPo in te r  ~ 24. 

ClassPointPointer  ~- 26. 

C lassLargePos i t i ve ln tegerPo in ter  ~- 28. 

C lassMessagePo in te r  ~- 32. 

C lassCharac terPo in te r  ~ 40. 

" S e l e c t o r s "  

DoesNo tUnde rs tandSe lec to r  ~ 42. 

CannotRetu rnSe lec to r  ~ 44. 

Mus tBeBoo leanSe lec to r  ~- 52. 

" T a b l e s "  

Spec ia lSe lec to rsPo in te r  ~- 48. 

Charac terTab lePo in ter  ~- 50 

Compiled Methods 
The bytecodes executed by the in terpre ter  are found in instances of 
CompiledMethod. The bytecodes are stored as 8-bit values, two to a 
word. In addition to the bytecodes, a CompiledMethod contains some ob- 
ject pointers. The first of these object pointers is called the method 
header and the rest of the object pointers make up the method's  literal 
frame. Figure 27.1 shows the s t ructure  of a CompiledMethod and the 
following routine initializes the indices used to access fields of 
C o m p i l e d M e t h o d s .  

Figure 27.1 

header  
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i n i t i a l i z e M e t h o d l n d i c e s  

"' Class CompiledMethod" 
Headerlndex ~ O. 
LiteralStart ~ 1 

The header is a Smalllnteger that encodes certain information about the 
Comp i l edMethod .  

h e a d e r O f :  m e t h o d P o i n t e r  

1memory fetchPointer: Headerlndex 
ofObject: methodPointer 

The literal frame contains pointers to objects referred to by the 
bytecodes. These include the selectors of messages that the method 
sends, and shared variables and constants to which the method refers. 

l i t e r a l :  o f f s e t  o f M e t h o d :  m e t h o d P o i n t e r  

1'memory fetchPointer: offset --t- LiteralStart 
ofObject: methodPointer 

Following the header and literals of a method are the bytecodes. Meth- 
ods are the only objects in the Smalltalk system that store both object 
pointers (in the header and literal frame) and numerical values (in the 
bytecodes). The form of the bytecodes will be discussed in the next 
chapter. 

[~] Method Headers Since the method header is a Smal l ln teger ,  its val- 
ue will be encoded in its pointer. The high-order 15 bits of the pointer 
are available to encode information; the low-order bit must be a one to 
indicate that  the pointer is for a Smalllntefler. The header includes four 
bit fields that encode information about the CompiledMethod. Figure 
27.2 shows the bit fields of a header. 

Figure 27.2 

I '  ' i ' ' ' '  I I '  ' '  ' ' I ] i t i J a l i i I , 1 1 

flag temporary large literal 
value count context count 

flag 

The temporary count indicates the number of temporary variables used 
by the CompiledMethod. This includes the number of arguments. 

t e m p o r a r y C o u n t O f :  m e t h o d P o i n t e r  

Tsetf extractBits: 3 to: 7 
of: (self headerOf: methodPointer) 

The large context flag indicates which of two sizes of MethodContext are 
needed. The flag indicates whether the sum of the maximum stack 
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I 
depth and the number  of t emporary  variables needed is grea ter  than  
twelve. The smaller  MethodContexts have room for 12 and the larger  
have room for 32. 

largeContextFlagOf: methodPointer 
tsetf extractBits: 8 to: 8 

of: (self headerOf: methodPointer) 

The literal count indicates the size of the MethodContex t ' s  l i teral frame. 
This, in turn,  indicates where the MethodContext's bytecodes start .  

literalCountOf: methodPointer 
t self literalCountOfHeader: (self headerOf: methodPointer) 

l iteralCountOfHeader: headerPointer 
tself extractBits: 9 to: 14 

of: headerPointer 

The object pointer count indicates the total number  of object pointers in 
a MethodContext, including the header  and li teral frame. 

objectPointerCountOf: methodPointer 
r(self literalCountOf: methodPointer) + LiteralStart 

The following routine re turns  the byte index of the first bytecode of a 
Compi ledMethod.  

initiallnstructionPointerOfMethod: methodPointer 
t((setf literalCountOf: methodPointer) + LiteralStart) . 2 -t- 1 

The flag value is used to encode the number  of a rguments  a 
Compi ledMethod takes and whether  or not it has an associated primi- 
tive routine. 

flagValueOf: methodPointer 
1"self extractBits: 0 to: 2 

of: (self headerOf: methodPointer) 

The eight possible flag values have the following meanings: 

flag value meaning 

0-4 

5 

6 

no primitive and 0 to 
4 arguments 

primitive return of self 
(0 arguments) 

primitive return of 
an instance variable 
(0 arguments) 
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Figure 27.4 
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a header extension 
contains the number 
of arguments and a 
primitive index 

Since the majority of CompiledMethods have four or fewer arguments  
and do not have an associated primitive routine, the flag value is usual- 
ly simply the number  of arguments.  

D Special Primitive Methods Small ta lk  methods tha t  only re turn  the 
receiver of the message (self)produce CompiledMethods tha t  have no 
literals or bytecodes, only a header with a flag value of 5. In similar 
fashion, Small ta lk  methods tha t  only re turn  the value of one of the re- 
ceiver's instance variables produce CompiledMethods tha t  contain only 
headers with a flag value of 6. All other methods produce 
CompiledMethods with bytecodes. When the flag value is 6, the index of 
the instance variable to re turn  is found in the header in the bit field or- 
dinarily used to indicate the number  of temporary  variables used by the 
CornpiledMethod. Figure 27.3 shows a CompiledMethod for a Small talk 
method tha t  only re turns  a receiver instance variable. 

II ~ iIO l 
! 1 

flag 
value 

I I I 
l I I 

field 
index 

', ! 'o 'o 'o ' ,  , ,o'o, , 'o,'o111 

The following routine re turns  the index of the field representing the in- 
stance variable to be re turned in the case that  the flag value is 6. 

f ie ldlndexOf:  methodPointer  
t self extractBits: 3 to 7 

of: (self headerOf methodPointer) 

E] Method Header Extensions If the flag value is 7, the next to last 
literal is a header extension, which is another  Smatllnteger. The header 
extension includes two bit fields tha t  encode the a rgument  count and 
primitive index of the CompiledMethod. Figure 27.4 shows the bit fields 
of a header extension. 

I I i i I I I I ! I i i 

a rgument  primitive 
count index 

The following routines are used to access a header extension and its bit 
fields. 
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headerExtensionOf: methodPointer 
I l i teralCountl 
literalCount ~- self literalCount©f: methodPointer. 
tself literal: l i teralCount- 2 

ofMethod: methodPointer 
argumentCountOf: methodPointer 

1 flagValue I 
flagValue ~ self flagVatueOf: methodPointer. 
flagValue < 5 

ifTrue: [tflagValue]. 
flagValue < 7 

ifTrue: [tO] 
ifFalse: [tself extractBits: 2 to: 6 

of: (self headerExtensionOf: methodPointer)] 
primitivelndexOf: methodPointer 

I ffagValue I 
flagValue ~ self flagValueOf: methodPointer. 
f lagVatue=7 

ifTrue: [tself extractBits: 7 to: 14 
of: (self headerExtensionOf: methodPointer)] 

ifFalse: [tO] 

Any CompiledMethod tha t  sends  a superclass message (i.e., a message to 
super) or contains a header  extension, will have as its las t  l i teral an As- 
sociation whose value is the class in whose message dictionary the 
CompiledMethod is found. This is called the method class and is 
accessed by the following routine. 

methodClassOf: methodPointer 
I literalCount association I 
literalCount ~- self literalCount©f: methodPointer, 
association ~ self literal: l i teralCount- 1 

ofMethod: methodPointer. 
tmemory fetchPointer" Valuelndex 

of©bject: association 

An example of a CompiledMethod whose li teral frame contained a 
method class was given in the last chapter.  The CompiledMethod for t h e  
intersect: message to ShadedRectangle  was shown in the section of the 
last chapter  called Messages. 

Contexts  

The in terpre ter  uses contexts to represent  the state of its execution of 
CompiledMethods and blocks. A context can be a MethodContext or a 
BlockContext. A MethodContext represents  the execution of a 
CompiledMethod tha t  was invoked by a message. Figure 27.5 shows a 
MethodContex t  and its Compi ledMethod.  
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Figure 27.5 
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A B l o c k C o n t e x t  represents  a block encountered in a C o m p i l e d M e t h o d .  A 
BlockContext refers to the MethodContext whose CompiledMethod con- 
t a ined  the block it represents.  This is called the BlockContext's home. 
Figure 27.6 shows a BlockContext and its home. 

The indices used to access the fields of contexts are initialized by the 
following routine. 

initializeContextlndices 
"C lass  MethodContext"  

Sendertndex ~ 0. 

lnstructionPointerlndex ~ 1 .  

StackPointerlndex ,- 2. 

Methodlndex ,-- 3. 

Receiverlndex ~- 5. 

TempFrameStar t  ~- 6. 

" Class BlockContext"  

Callerlndex ~- 0. 

BlockArgumentCount lndex ~ 3. 

tnitiallPlndex ~- 4. 

Homelndex ~ 5 

Both kinds of context have six fixed fields corresponding to six named 
instance variables. These fixed fields are followed by some indexable 
fields. The indexable fields are used to store the t emporary  frame (argu- 
ments  and temporary  variables) followed by the contents of the evalua- 
tion stack. The following routines are used to fetch and store the 
instruct ion pointer and stack pointer stored in a context. 
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Figure 27.6 
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instructionPointerOfContext:  contextPointer  
1self fetchlnteger: InstructionPointerlndex 

ofObject: contextP.ointer 
storelnstructionPointerValue: value inContext: contextPointer  

self storelnteger: InstructionPointertndex 
ofObject: contextPointer 
withValue: value 

stackPointerOfContext:  contextPointer  
1"self fetchlnteger: StackPointerlndex 

ofObject: contextPointer 
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storeStackPointerValue: value inContext: contextPointer 
self storelnteger: StackPointerlndex 

ofObject: contextPointer 
withValue: value 

A BlockContext s t o r e s  t h e  n u m b e r  of b l o c k  a r g u m e n t s  i t  e x p e c t s  in  o n e  

of i t s  f ie lds .  

argumentCountOfBlock: blockPointer 
1'self fetchlnteger: BlockArgumentCountlndex 

ofObject: blockPointer 

The context  t ha t  represents the Compi ledMethod or b lock cu r ren t l y  be- 
ing e x e c u t e d  is c a l l e d  t h e  active context. T h e  i n t e r p r e t e r  c a c h e s  in  i ts  

r e g i s t e r s  t h e  c o n t e n t s  of t h e  p a r t s  of t h e  a c t i v e  c o n t e x t  i t  u s e s  m o s t  of- 

t e n .  T h e s e  r e g i s t e r s  a re :  

act iveContext 

homeContext  

method 

receiver 

instructionPointer 

stackPointer 

Context-related Registers of the Interpreter 

This is the active context itself. It is either a 
MethodContext or a BlockContext. 

If the active context is a MethodContext, the home context 
is the same context. If the active context is a BlockContext, 
the home context is the contents of the home field of the 
active context. This will always be a MethodContext. 

This is the CompiledMethod that contains the bytecodes the 
interpreter is executing. 

This is the object that received the message that invoked 
the home context's method. 

This is the byte index of the next bytecode of the method 
to be executed. 

This is the index of the field of the active context contain- 
ing the top of the stack. 

W h e n e v e r  t h e  a c t i v e  c o n t e x t  c h a n g e s  ( w h e n  a n e w  Compi ledMethod is 

i n v o k e d ,  w h e n  a C o m p i l e d M e t h o d  r e t u r n s  o r  w h e n  a p r o c e s s  s w i t c h  oc- 

curs ) ,  a l l  of t h e s e  r e g i s t e r s  m u s t  be  u p d a t e d  u s i n g  t h e  f o l l o w i n g  r o u t i n e .  

fetchContextRegisters 
(self isBIockContext: activeContext) 

ifTrue: [homeContext ~ memory fetchPointer: Hometndex 
ofObject: activeContext] 

ifFalse: [homeContext ~ activeContext]. 
receiver ,-- memory fetchPointer: Receiverlndex 

ofObject: homeContext. 
method ~ memory fetchPointer: Methodlndex 

ofObject: homeContext. 
instructionPointer ,- (self instructionPointerOfContext: activeContext)- 1. 
stackPointer 

(self stackPointerOfContext: activeContext) 4--- TempFrameStart - 1 
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Note tha t  the receiver and method are fetched from the homeContext 
and the instructionPointer and stackPointer are fetched f rom the 
activeContext. The in terpre ter  tells the difference between 
MethodContexts and BiockContexts based on the fact tha t  
MethodContexts store the method pointer (an object p o i n t e r ) a n d  
BlockContexts store the number  of block a rguments  (an integer pointer) 
in the same field. If this location contains an integer pointer, the con- 
text is a BlockContext; otherwise, it is a MethodContext. The distinction 
could be made on the basis of the class of the context, but  special provi- 
sion would have to be made for subclasses of MethodContext and 
BlockContext. 

isBIockContext: contextPointer 
t methodOrArguments I 
methodOrArguments ,- memory fetchPointer: Methodlndex 

ofObject: contextPointer. 
1'memory islntegerObject: methodOrArguments 

Before a new context becomes the active context, the values of the in- 
struction pointer and stack pointer must  be stored into the active con- 
text with the following routine. 

storeContextRegisters 
self storelnstructionPointerValue: instructionPointer + 1 

inContext: activeContext. 
self storeStackPointerValue: stackPointer - TempFrameStart + 1 

inContext: activeContext 

The values of the other  cached registers do not change so they do not 
need to be stored back into the context. The instruction pointer stored 
in a context is a one-relative index to the method's  fields because 
subscripting in Smal l ta lk  (i.e., the at: message) takes one-relative indi- 
ces. The memory,  however, uses zero-relative indices; so the 
fetchContextRegisters routine subt rac ts  one to convert it to a memory 
index and the storeContextRegisters routine adds the one back in. The 
stack pointer  stored in a context tells how far the top of the evaluation 
stack is beyond the fixed fields of the context (i.e., how far after the 
s tar t  of the t emporary  frame) because subscripting in Smal l ta lk  takes 
fixed fields into account and fetches from the indexable fields after 
them. The memory,  however, wants  an index relative to the s ta r t  of the 
object; so the fetchContextRegisters routine adds in the offset of the 
s tar t  of the t emporary  frame (a constant) and the storeContextRegisters 
rout ine subtracts  the offset. 

The following routines perform various operations on the stack of the 
active context. 
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push: object 
stackPointer ~ stackPointer + 1. 
memory storePointer: stackPointer 

ofObject: activeContext 
withValue: object 

popStack 
t stackTop I 
stackTop ~ memory fetchPointer: stackPointer 

ofObject: activeContext. 
stackPointer ~- s tackPointer-  1. 
tstackTop 

stackTop 
1memory fetchPointer: stackPointer 

ofObject: activeContext 
stackValue: offset 

tmemory fetchPointer: stackPointer-offset 
ofObject: activeContext 

pop: number 
stackPointer ~ s tackPointer-  number 

unPop: number 
stackPointer ~ stackPointer + number 

The active context register  must  count as a reference to the par t  of the 
object memory  tha t  deallocates unreferenced objects. If the object mem- 
ory main ta ins  dynamic reference counts, the routine to change active 
contexts must  perform the appropriate  reference counting. 

newActiveContext:  aContext 
self storeContextRegisters. 
memory decreaseReferencesTo: activeContext. 
activeContext ~- aContext. 

memory increaseReferencesTo: activeContext. 
self fetchContextRegisters 

The following routines fetch fields of contexts needed by the in terpre ter  
infrequently enough tha t  they are not cached in registers. The sender is 
the context to be re turned  to when a CompiledMethod re turns  a value 
(either because of a ~'t" or at  the end of the method). Since an explicit 
r e tu rn  from within a block should re tu rn  from the CompiledMethod 
enclosing the block, the sender is fetched from the home context. 

sender 
1memory fetchPointer: Senderlndex 

ofObject: homeContext 

The caller is the context to be re turned  to when a BlockContext re turns  
a value (at the end of the block). 
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c a l l e r  

1'memory fetchPointer: Senderlndex 
ofObject: activeContext 

Since temporar ies  referenced in a block are the same as those refer- 
enced in the CompiledMethod enclosing the block, the temporar ies  are 
fetched from the home context. 

. t e m p o r a r y :  o f f s e t  

1'memory fetchPointer: offset + TempFrameStart 
ofObject: homeContext 

The following routine provides convenient access to the literals of the 
current ly  executing CompiledMethod. 

, l i t e r a l :  o f f s e t  • 

1" self literal: offset 
of Method: method 

Classes 
The in terpre ter  finds the appropria te  CompiledMethod to execute in re- 
sponse to a message by searching a message dictionary. The message 
dictionary is found in the class of the message receiver or one of the 
superclasses of tha t  class. The s t ruc ture  of a class and its associated 
message dictionary is shown in Figure 27.7. In addition to the message 
dictionary and superclass the in terpre ter  uses the class's instance speci- 
fication to de termine  its instances'  memory requirements .  The other 
fields of a class are used only by Smal l ta lk  methods and ignored by the 
interpreter .  The following routine initializes the indices used to access 
fields of classes and their  message dictionaries. 

Figure 27.7 
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initializeClasslndices 
" Class C lass "  

Superc lass lndex ,- 0. 

MessageDic t ionary lndex ~ 1. 

InstanceSpeci f icat iontndex ~ 2. 

"Fields of a message d ic t ionary"  

MethodArray lndex ~- 1. 

SelectorStart  ~- 2 

The in t e rp re t e r  uses several  registers  to cache the s ta te  of the message 
lookup process. 

Class-related Registers of the Interpreter 

m e s s a g e S e l e c t o r  

a r g u m e n t C o u n t  

n e w M e t h o d  

p r i m i t i v e l n d e x  

This is the selector of the message being sent. It is always 
a Symbol. 

This is the number of arguments in the message currently 
being sent. It indicates where the message receiver can be 
found on the stack since it is below the arguments. 

This is the method associated with the messageSelector. 

This is the index of a primitive routine associated with 
newMethod if one exists. 

A message dic t ionary is an  I den t i t yD i c t i ona ry .  I d e n t i t y D i c t i o n a r y  is a sub- 
class of Set  wi th  an addi t ional  Array conta in ing  values associated wi th  
the  contents  of the  Set. The message selectors are  stored in the  indexed 
ins tance  var iables  inher i ted  from Set. The CompiledMethods are  stored 
in an  Array added by IdentityDictionary. A CompiledMethod has the  same 
index in t ha t  Array t h a t  its selector has  in the  indexable var iables  of 
the  d ic t ionary  object itself. The index at  which to store the selector and 
CompiledMethod are  computed  by a hash  function. 

The selectors are  ins tances  of Symbol, so they  m a y  be tested for 
equal i ty  by tes t ing the i r  object pointers  for equali ty.  Since the object 
pointers  of Symbols d e t e r m i n e  equali ty,  the  hash  function m a y  be a 
function of the object pointer.  Since object pointers  are  al located quasi- 
randomly ,  the  object pointer  itself is a reasonable  hash  function. The 
pointer  shifted r ight  one bit  will produce a be t te r  hash  function, since 
all object pointers  o ther  t han  Smalllntegers are  even. 

hash: objectPointer 
l 'objectPointer bitShift: -- 1 

The message selector lookup assumes  t ha t  methods  have been put  into 
the  dic t ionary using the  same hash ing  function. The hash ing  a lgor i thm 
reduces the  original  hash  function modulo the  n u m b e r  of indexable lo- 
cations in the dictionary.  This gives an index in the  dictionary.  To 
make  the  computa t ion  of the modulo reduct ion simple, message diction- 
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aries have an exact power of two fields. Therefore the modulo calcula- 
tion can be performed by masking off an appropriate number  of bits. If 
the selector is not found at the initial hash location, successive fields 
are examined until  the selector is found or a nil is encountered. If a nil 
is encountered in the search, the selector is not in the dictionary. If the 
end of the dictionary is encountered whi le  searching, the search wraps 
around and continues with the first field. 

The following routine looks in a dictionary for a CompiledMethod as- 
sociated with the Symbol in the messageSelector  register. If it finds the 
Symbol, it stores the associated CompiledMethod's pointer into the 
newMethod register, its primitive index into the primitivelndex register 
and re turns  true. If the Symbol is not found in the dictionary, the rou- 
t ine re turns  false. Since finding a nil or an appropriate Symbol are the 
only exit conditions of the loop, the routine must  check for a full dic- 
t ionary (i.e., no nils). It does this by keeping t rack of whether  i t  has 
wrapped around. If the search wraps around twice, the selector is not in 
the dictionary. 

IookupMethodlnDictionary: dictionary 
I length index mask wrapAround nextSelector methodArray I 
length ~ memory fetchWordLengthOf: dictionary. 
mask ~- l eng th -  SelectorStart-  1. 
index ~ (mask bitAnd: (self hash: messageSelector)) + SelectorStart. 
wraparound ~ false. 
[true] whileTrue: 

[nextSelector ~ memory fetchPointer: index 
of Object: dictionary. 

nextSelector=NitPointer ifTrue: [tfalse]. 
nextSetector = messageSelector 

ifTrue: [methodArray ~ memory fetchPointer: MethodArraylndex 
of Object: dictionary. 

newMethod ~-- memory fetchPointer: index-SetectorStart  
ofObject: methodArray. 

primitivelndex ~- self primitivelndex©f: newMethod. 
ttrue], 

index ~- index + 1. 
index=length 

ifTrue: [wrapAround ifTrue: [tfalse]. 
wraparound ~- true. 
index ~ SelectorStart]] 

This routine is used in the following routine to find the method a class 
associates with a selector. If the selector is not found in the initial 
class's dictionary, it is looked up in the next class on the superclass 
chain. The search continues up the superclass chain until  a method is 
found or the superclass chain is exhausted. 
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IookupMethodlnClass: class 
I currentClass dictionary t 
currentClass ~- class. 
[currentClass,--.,= NilPointer] whileTrue: 

[dictionary ~ memory fetchPointer: MessageDictionarylndex 
ofObject: currentClass. 

(self IookupMethodlnDictionary: dictionary) 
ifTrue: [ttrue]. 

currentCtass ~ self superclassOf: currentClass]. 
messageSelector = DoesNotUnderstandSelector 

ifTrue: [self error: ' Recursive not understood error encountered']. 
self createActualMessage. 
messageSelector ~ DoesNotUnderstandSelector. 
1'self IookupMethodlnCfass: class 

superclassOf: classPointer 
1'memory fetchPointer: Superclasstndex 

ofObject: classPointer 

The interpreter  needs to do something out of the ordinary when a mes- 
sage is sent to an object whose class and superclasses do not contain a 
CompiledMethod associated with the message selector. In keeping with 
the philosophy of Smalltalk,  the in terpreter  sends a message. A 
CompiledMethod for this message is guaranteed to be found. The inter- 
preter  packages up the original message in an instance of class Mes- 
sage and then looks for a CompiledMethod associated with the selector 
doesNotUnderstand:. The Message becomes the single i a rgument  for the 
doesNotUnderstand: message. The doesNotUnderstand: message is de- 
fined in Object with a CompiledMethod tha t  notifies the user. This 
CompiledMethod can be overridden in a. user-defined class to do some- 
thing else. Because of this, the iookupMethodlnClass: routine will al- 
ways complete by storing a pointer to a CompiledMethod in the 
newMethod register. 

createActualMessage 
I argumentArray message I 
argumentArray ~- memory instantiateClass: ClassArrayPointer 

withPointers: argumentCount. 
message ~- memory instantiateClass: ClassMessagePointer 

withPointers: self messageSize. 
memory storePointer: MessageSelectorlndex 

of Object: message 
withValue: messageSelector. 

memory storePointer: MessageArgumentslndex 
of Object: message 
withValue: argumentArray. 
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self transfer: argumentCount 
fromField: stackPointer- (argumentCount- 1) 
ofObject: activeContext 
toField: 0 
ofObject: argumentArray. 

self pop: argumentCount. 
self push: message. 
argumentCount ~ 1 

The following routine initializes the indices used to access fields of a 
Message. 

initializeMessagelndices 
MessageSelectorlndex ~ 0. 
MessageArgumentslndex ,- 1. 
MessageSize ~ 2 

The instance specification field of a class contains a Smalllnteger pointer 
that  encodes the following four pieces of information: 

1. Whether  the instances' fields contain object pointers or numerical 
values 

2. Whether  the instances' fields are addressed in word or byte quan- 
tities 

. 

3. Whether  the instances have indexable fields beyond their fixed 
fields 

4. The number of fixed fields the instances have 

Figure 27.8 shows how this information is encoded in the instance spec- 
ification. 

Figure 27.8 

! I I i o ! : :  
1 I 

pointers I indexable 
words 

' ' ' ' ' ' ' '  111 1 1 1 1 1 1 I 1 

number of fixed fields 

The four pieces of information are not independent. If the instances' 
fields contain object pointers, they will be addressed in word quantities. 
If the instances' fields contain numerical values, they will have 
indexable fields and no fixed fields. 

instancespecificationOf: classPointer 
tmemory fetchPointer: Instancespecificationlndex 

ofObject classPointer 
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isPointers: classPointer 
I pointersFlag I 
pointersFlag ~ self extractBits: 0 to: 0 

of: (self instanceSpecif icationOf: classPointer). 
lpointersFlag = 1 

isWords: classPointer 
I wordsFlag I 
wordsFlag ~- self extractBits: 1 to: 1 

of: (self instanceSpecif icationOf: classPointer). 
twordsFlag = 1 

islndexable: classPointer 
I indexab leF lag l  
indexableFlag ~ self extractBits: 2 to: 2 

of: (self instanceSpecif icationOf: classPointer). 
l ' indexableFlag = 1 

f ixedFieldsOf: classPointer 
tsetf extractBits: 4 to: 14 

of: (self instanceSpecif icationOf: classPointer) 

Note: the instance specification of C o m p i l e d M e t h o d  does not accurately 
reflect the s t ructure of its instances since CompiledMethods are not ho- 
mogeneous. The instance specif icat ionsays  tha t  the instances do not 
contain pointers and are addressed by bytes. This is t rue of the 
bytecode section of a CompiledMethod only. The storage manager  needs 
to know tha t  CompiledMethods are special and actually contain some 
pointers. For all other classes, the instance specification is accurate. 
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S t a c k  B y t e c o d e s  

J u m p  B y t e c o d e s  

S e n d  B y t e c o d e s  

R e t u r n  B y t e c o d e s  
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The main loop of the Smalltalk-80 in terpreter  fetches bytecodes from a 
CompiledMethod sequentially and dispatches to routines tha t  perform 
the operations the bytecodes indicate. The fetchByte routine fetches the 
byte indicated by the active context's instruction pointer and incre- 
ments  the instruction pointer. 

fetchByte 
I byte I 
byte ~--- memory fetchByte: instructionPointer 

of Object: method. 
instructionPointer ~ instructionPointer -t- 1. 
tbyte 

Since process switches are only allowed between bytecodes, the first ac- 
tion in the interpreter ' s  main loop is to call a routine tha t  switches pro- 
cesses if necessary. The checkProcessSwitch routine will be described 
with the process scheduling primitive routines in the next chapter. Af- 
ter checking for a process switch, a bytecode is fetched (perhaps from a 
new process), and a dispatch is made to the appropriate routine. 

interpret 
[true] whileTrue: [self cycle] 

cycle 
self checkProcessSwitch. 
currentBytecode ~ self fetchByte. 
self dispatchOnThisBytecode 

The table on page 595 lists the Smalltalk-80 bytecodes. The bytecodes 
are listed in ranges tha t  have similar function. For example, the first 
range includes the bytecodes from 0 through 15 and its entry is shown 
below. 

0-15 0000 i i i i  Push Receiver Variable # i i i i  

Each range of bytecodes is listed with a bit pat tern  and a comment  
about the function of the bytecodes. The bit pa t tern  shows the binary 
representat ion of the bytecodes in the range. 0s and ls  are used in bit 
locations tha t  have the same value for all bytecodes in the range. Since 
all numbers  from 0 through 15 have four zeros in their  high order bits, 
these bits are shown as 0000. Lower case letters are used in bit loca- 
tions whose values vary within the range. The value of each letter can 
be ei ther 0 or 1. The letters used in the pat tern  can be included in the 
comment  to refer  to the value of those bits in a specific bytecode in the 
range. The comment  for the first range of bytecodes indicates tha t  the 
low-order four bits of the bytecode specify the index of one of the re- 
ceiver's variables to be pushed on the stack. 

The variable bits in a bit pat tern  are also sometimes used as a zero- 
relative index into a list included in the comment. For example, the en- 
try 
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120-123 011110ii Return (receiver, true, false, nil) [i i] From Message 

specifies that  the bytecode 120 returns the receiver, bytecode 121 re- 
turns true, bytecode 122 returns false and bytecode 123 returns nil. 

The entries for bytecodes that  take extensions will include more than 
one bit pattern.  For example, 

131 10000011 
j j j k k k k k  

Send Literal Selector @k k k k k With j jj Arguments 

There are four basic types of bytecode. 

• s t ack  bytecodes move object pointers between the object memory 
and the active context's evaluation stack. These include both the 
push bytecodes and store bytecodes described in Chapter 26. 

• j u m p  bytecodes change the instruction pointer of the active context. 

• s e n d  bytecodes invoke CompiledMethods or primitive routines. 

• r e tu rn  bytecodes terminate  the execution of CompiledMethods. 

Not all of the bytecodes of one type are contiguous, so the main dis- 
patch has seven branches each of which calls one of four routines 
(stackBytecode, jumpBytecode, sendBytecode, or returnBytecode). These 
four routines will be described in the next four subsections. 

d i s p a t c h O n T h i s B y t e c o d e  
(currentBytecode between: 0 and: 119) ifTrue: [tself stackBytecode]. 
(currentBytecode between: 120 and: 127) ifTrue: [tself returnBytecode]. 
(currentBytecode between: 128 and: 130) ifTrue: [tself stackBytecode]. 
(currentBytecode between: 131 and: 134) ifTrue: [tsetf sendBytecode]. 
(currentBytecode between: 135 and: 137) ifTrue: [tsetf stackBytecode]. 
(currentBytecode between: 144 and: 175)ifTrue: [tself jumpBytecode]. 
(currentBytecode between: 176 and: 255)ifTrue: [tself sendBytecode] 

The bytecodes 176-191 refer to Arithmetic Messages. These are 

-I--, m, <, >,  < =  
bitOr: 

, > = ,  = ,  ~ = ,  *, /, \ k ,  ®, bitShift:, / / ,  bitAnd:, 

The bytecodes 192-207 refer to Special Messages. These are 

at:* at:put:* size*, next* nextPut:* atEnd* , , ~ , | 

value, value:, do:* * y* , new*, new:*, x , 
- - ,  class, biockCopy:, 

Selectors indicated with an asterisk (*) can be changed by compiler 
modification. 
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The Smalltalk-80 Bytecodes 

Range Bits Function 

0-15 
16-31 
32-63 
64-95 
96-103 
104-111 
112-119 
120-123 
124-125 
126-127 
128 

129 

130 

131 

132 

133 

134 

135 
136 
137 
138-143 
144-151 
152-159 
160-167 

168-171 

172-175 

176-191 
192-207 
208-223 
224-239 
240-255 

O 0 0 0 i i i i  
O 0 0 1 i i i i  
O 0 1 i i i i i  
0 1 0 i i  i i i  
0 1 1 0 0 i i i  
0 1 1 0 1 i i i  
01 1 1 0 i i i  
0 1 1 1 1 0 i i  
0 1 1 1 1 1 0 i  
0 1 1 1 1 1 1 i  
10000000 
j j k k k k k k  
10000001 
j j k k k k k k  
10000010 
j j k k k k k k  
10000011 
j j j k k k k k  
1000010O 

J l l J J J ' l l  
k k k k k k k k  
10000101 
j j j k k k k k  
10000110 
. . . . . . . .  

l J l J J l J J  
k k k k k k k k  
10000111 
10001000 
10001001 

1 O0 1 0 i i i  
1 0 0 1 1 i i i  
1 0 1 0 0 i i i  

J J J J J J J J  
1 0 1 0 1 0 i i  
. . . . . . . .  

J J J J J J J J  
1 0 1 0 1 1 i i  

J j J J J J J J  
1 0 1 1 i i i i  
1 1 0 0 i i i i  
1 ! 0 1 i i i i  
1 1 1 0 i i i i  
1 1 1 1 i i i i  

Push Receiver Variable ~ i i i i  
Push Temporary Location ~ i i i i  
Push Literal Constant # i i i i i  
Push Literal Variable ~ i i i i i  
Pop and Store Receiver Variable ~ i i i  
Pop and Store Temporary Location ~ i i i  
Push (receiver, true, false, nil,-1, 0, 1, 2) [i i i] 
Return (receiver, true, false, nil) [i i] From Message 
Return Stack Top From (Message, Block) [i] 
unused 
Push (Receiver Variable, Temporary Location, Lit- 
eral Constant, Literal Variable) [j j] ~ k  k k k k k 
Store (Receiver Variable, Temporary Location, Ille- 
gal, Literal Variable) [j j] @k k k k k k 
Pop and Store (Receiver Variable, Temporary 
Location, Illegal, Literal Variable) [j j] # k  k k k k k 
Send Literal Selector # k  k k k k With j jj Arguments 

Send Literal Selector # k  k k k k k k k With j j j j j j j j  
Arguments 

Send Literal Selector ~ k k k k k  To Superclass With 
j jj Arguments 
Send Literal Selector # k k k k k k k k  To Superclass 
With j j j j j j j j  Arguments 

Pop Stack Top 
Duplicate Stack Top 
Push Active Context 
unused 
Jump i i i+ 1 (i.e., 1 through 8) 
Pop and Jump On False i i i+ 1 (i.e., 1 through 8) 
Jump (i i i-4).256 + j j j  j j j j j  

Pop and Jump On True i i*256-I-jj j j j j j j  

Pop and Jump On False i i.256 + j j j j j j j j  

Send Arthmetic Message #:i i i i 
Send Special Message ~ i i i i  
Send Literal Selector ~ i i i i  With No Arguments 
Send Literal Selector ~ i i i i  With 1 Argument 
Send Literal Selector .#i ii i With 2 Arguments 
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Stack 
Bytecodes 

The stack bytecodes all perform simple operations on the active con- 
text's evaluation stack. 

• 107 bytecodes p u s h  an object pointer on the stack 

• 99 push an object pointer found in the object memory 
• 7 push a constant  object pointer 
• 1 pushes the interpreter ' s  active context register (activeContext) 

• 18 bytecodes store an object pointer found on the stack into the ob- 
ject memory 

• 17 of these also remove it from the stack 
• 1 leaves it on the stack 

• 1 bytecode removes an object pointer from the stack without 
storing it anywhere.  

The routines used to manipula te  the stack were described in the section 
of the previous chapter  on contexts (push:, popStack, pop:). The 
stackBytecode routine dispatches to the appropriate  routine for the cur- 
rent  bytecode. 

stackBytecode 
(currentBytecode between: 0 and: 15) 

ifTrue: [tsetf pushReceiverVariableBytecode]. 
(currentBytecode between: 16 and: 31) 

ifTrue: [1"self pushTemporaryVariableBytecode]. 
(currentBytecode between: 32 and: 63) 

ifTrue: [1self pushLiteratConstantBytecode]. 
(currentBytecode between: 64 and: 95) 

ifTrue: [!self pushLiteralVariableBytecode]. 
(currentBytecode between: 96 and: 103) 

ifTrue: [1'self storeAndPopReceiverVariableBytecode]. 
(currentBytecode between: 104 and: 111) 

ifTrue: [1self storeAndPopTemporaryVariabteBytecode]. 
currentBytecode = t12 

ifTrue: [1'self pushReceiverBytecode]. 
(currentBytecode between: 113 and: 119) 

ifTrue: [1'self pushConstantBytecode]. 
currentBytecode = 128 

ifTrue: [1'setf extendedPushBytecode]. 
currentBytecode = 129 

ifTrue: [1'self extendedStoreBytecode]. 
currentBytecode = 130 

ifTrue: [1'self extendedStoreAndPopBytecode]. 
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currentBytecode = 135 
ifTrue: [tself popStackBytecode]. 

currentBytecode = 136 
ifTrue: [1'self dupticateTopBytecode]. 

currentBytecode = 137 
ifTrue: [1self pushActiveContextBytecode] 

There are single byte instructions tha t  push the first 16 instance vari- 
ables of the receiver and the first 16 temporary  frame locations. Recall 
tha t  the t e m p o r a r y  frame includes the a rguments  and the t emporary  
variables. 

pushReceiverVariableBytecode 
I f ie ldlndexl 
field index ~ self extractBits: 12 to: 15 

of: currentBytecode. 
self pushReceiverVariable: fieldlndex 

pushReceiverVariable: fieldlndex 
self push: (memory fetchPointer: fietdlndex 

of Object: receiver) 
pushTemporaryVariableBytecode 

I f ie ldlndexl  
fieldlndex ~- self extractBits: 12 to: 15 

of: currentBytecode. 
self pushTemporaryVariable: fieldlndex 

pushTemporaryVariable: temporarylndex 
self push: (self temporary: temporarylndex) 

There are also single byte instructions tha t  reference the first 32 loca- 
tions in the li teral f rame of the active context 's  method. The contents of 
one of these locations can be pushed with pushkiteralConstantBytecode. 
The contents of the value field of an Association stored in one of these 
locations can be pushed with pushLi tera lVar iab leBytecode.  

pushLiteralConstantBytecode 
I fieldlndex I 
fieldlndex ~ self extractBits: 11 to: 15 

of: currentBytecode. 
self pushLiteralConstant: fieldlndex 

pushLiteralConstant: literallndex 
self push: (self literal: literallndex) 

pushLiteralVariableBytecode 
I f ie ldlndexl  
fieldlndex ~- self extractBits: 11 to: 15 

of: currentBytecode. 
self pushLiteralVariable: fieldlndex 
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pushLiteralVariable: literallndex 
i association I 
association ~ self literal: literallndex. 
self push: (memory fetchPointer: Valuelndex 

of Object: association) 

Associations are objects with two fields, one for a name and one for a 
value. They are used to implement  shared variables (global variables, 
class variables, and pool variables). The following routine initializes the 
index used to fetch the value field of Associations. 

i nitializeAssociationlndex 
Valuelndex ~ 1 

The extended push bytecode can perform any of the four operations de- 
scribed above (receiver variable, t emporary  frame location, li teral con- 
stant,  or l i teral variable). However, instead of a limit of 16 or 32 
variables accessible, it can access up to 64 instance variables, t emporary  
locations, l i teral constants, or l i teral  variables. The extended push 
bytecode is followed by a byte whose high order two bits determine 
which type of push is being done and whose low order six bits deter- 
mine the offset to use. 

extendedPushBytecode 
I descriptor variableType variablelndex I 
descriptor ~ self fetchByte, 
variableType ~ self extractBits: 8 to: 9 

of: descriptor. 
variablelndex ~- self extractBits: 10 to: 15 

of: descriptor. 
variableType=0 ifTrue: [tself pushReceiverVariable: variablelndex]. 
variableType= 1 ifTrue: [1"self pushTemporaryVariable: variablelndex]. 
variableType=2 ifTrue: [1'self pushLiteralConstant: variablelndex]. 
variableType=3 ifTrue: [1self pushLiteralVariable: variablelndex] 

The pushReceiverBytecode rou t ine  pushes a po in ter  to the active con- 
text 's  receiver. This corresponds to the use of self or super in a 
Smal l ta lk  method. 

pushReceiverBytecode 
self push: receiver 

The dupl icateTopBytecode rou t ine  pushes another  copy of the object 
pointer on the top of the stack. 

duplicateTopBytecode 
1self push: self stackTop 

The pushConstantBytecode routine pushes one of seven constant  object 
pointers  (true, false, nil, - 1 ,  0, 1, or 2). 
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pushConstantBytecode 
currentBytecode = 113 ifTrue: [1self push: TruePointer]. 
currentBytecode = 114 ifTrue: [1"self push: FalsePointer]. 
currentBytecode - 115 ifTrue: [1'self push: NilPointer]. 
currentBytecode - 116 ifTrue: [tself push: MinusOnePointer]. - 
currentBytecode -- 117 ifTrue: [tself push: ZeroPointer]. 
currentBytecode - 118 ifTrue: [tself push: OnePointer]. 
currentBytecode - t 19 ifTrue: [tself push: TwoPointer] 

The pushAct iveContextBytecode routine pushes a pointer to the active 
contex t  i tself.  Th is  corresponds to the use of th isContext in  a Sma] ] t a l k  
method. 

pushActiveContextBytecode 
self push: activeContext 

The store bytecodes transfer references in the opposite direction from 
the push bytecodes; from the top of the stack to the receiver's instance 
variables, the temporary frame, or the literal frame. There are single 
byte versions for storing into the first eight variables of the receiver or 
the temporary frame and then popping the stack. 

storeAndPopReceiverVariableBytecode 
f variablelndex I 
variabteindex ~ self extractBits: 13 to: 15 

of: currentBytecode. 
memory storePointer: variabletndex 

of Object: receiver 
withValue: self popStack 

storeAndPopTemporaryVariableBytecode 
I variabtelndex I 
vanabtelndex ~- self extractBits: 13 to: 15 

of: currentBytecode. 
memory storePointer: variablelndex + TempFrameStart 

ofObject: homeContext 
withValue: self popStack 

Stores into variables other than those accessible by the single byte ver- 
sions are accomplished by two extended store bytecodes. One pops the 
stack after storing and the other does not. Both extended stores take a 
following byte of the same form as the extended push. It is illegal, how- 
ever, to follow anextended store with a byte of the form 10xxxxxx since 
this would mean changing the value of a literal constant. 

extendedStoreAndPopBytecode 
self extended StoreBytecode. 
self popStackBytecode 

extendedStoreBytecode 
I descriptor variableType variabtelndex association I 
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descriptor ~ self fetchByte. 
variableType ~ self extractBits: 8 to: 9 

of: descriptor. 
variablelndex ~- self extractBits: 10 to: 15 

of: descriptor. 
variableType=O ifTrue: 

[1' memory storePointer: variabletndex 
of Object: receiver 
withValue: self stackTop]. 

variableType= 1 ifTrue: 
[t memory storePointer: variablelndex + TempFrameStart 

ofObject: homeContext 
withValue: self stackTop]. 

variableType= 2 ifTrue: 
[1' self error: 'illegal store']. 

variableType=3 ifTrue: 
[association ~- self literal: variablelndex. 
1`memory storePointer: Valuelndex 

of Object: association 
withValue: self stackTop] 

The last stack bytecode removes the top object pointer from the stack 
without doing anything else with it. 

popStackBytecode 
self popStack 

Jump 
Bytecodes 

The jump bytecodes change the active context's instruction pointer by a 
specified amount. Unconditional jumps change the instruction pointer 
whenever they are encountered. Conditional jumps only change the in- 
struction pointer if the object pointer on the top of the stack is a speci- 
fied Boolean object (either true or false). Both unconditional and 
conditional jumps have a short (single-byte) and a long (two-byte) form. 

jumpBytecode 
(currentBytecode between: 144 and: 151) 

ifTrue: [1"self shortUnconditionalJump]. 
(currentBytecode between: 152 and: 159) 

ifTrue: .[1" self shortConditionalJump]. 
(currentBytecode between: 160 and: 167) 

ifTrue: [tsetf tongUnconditionalJump]. 
(currentBytecode between: 168 and: t75) 

ifTrue: [1'self IongConditionalJump] 



602 
Formal Specification of the Interpreter 

The jump bytecodes use the jump: routine to actually change the 
bytecode index. 

jump: offset 
instructionPointer ~ instructionPointer .4--- offset 

The eight short unconditional jumps advance the instruction pointer by 
1 through 8. 

shortUnconditionalJump 
I offset I 
offset ~ self extractBits: 13 to: 15 

of: currentBytecode. 
self jump: offset + 1 

The eight long unconditional jumps are followed by another byte. The 
low order three bits of the jump bytecode provide the high order three 
bits of an l 1-bit twos complement displacement to be added to the in- 
struction pointer. The byte following the jump provides the low order 
eight bits of the displacement. So long unconditional jumps can jump 
up to 1023 forward and 1024 back. 

IongUnconditionalJump 
I offset I 
offset ~ self extractBits: 13 to: 15 

of: currentBytecode. 
self jump: offset - 4 .  256 + self fetchByte 

The conditional jumps use the jumplf:by: routine to test the top of the 
stack and decide whether to perform the jump. The top of stack is 
discarded after it is tested. 

jumplf:  condition by: offset 
I boolean I 
boolean ~ self popStack. 
boolean = condition 

ifTrue: [self jump: offset] 

ifFalse: [(boolean =TruePointer) I (boolean = FalsePointer) 
ifFalse: [self unPop: l .  

self sendMustBeBoolean]]  

The conditional jumps are used in the compiled form of messages to 
booleans (e.g., ifTrue: and wbileFalse:). If the top of the stack at the time 
of a conditional jump is not true or false it is an error since an object 
other than a boolean has been sent a message that  only booleans under- 
stand. Instead of sending doesNotUnderstand:, the interpreter sends 
m u s t B e B o o l e a n  to it. 
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self sendSelector: MustBeBooleanSelector 
argumentCount: 0 

The sendSelector:argumentCount: routine is described in the next sec- 
tion on send bytecodes. 

The eight short conditional jumps advance the instruction pointer by 
1 through 8 if the top of the stack is false. 

shortConditionalJump 
I offset I 
offset ,-- self extractBits: 13 to: 15 

of: currentBytecode. 
self jumplf: FalsePointer 

by: offset + 1 

So, there are three possible outcomes to a short conditional jump: 

• If the top of the stack is false, the jump is taken. 

• If the top of the stack is true, the jump is not taken. 

• If the top of the stack is neither, mustBeBoolean is sent to it. 

Half of the long conditional jumps perform the jump if the top of the 
stack is false while the other half perform the jump if it is true. The low 
order two bits of the bytecode become the high order two bits of a 10-bit 
unsigned displacement. The byte following the jump provides the low 
order eight bits of the displacement. So long conditional jumps can 
jump up to 1023 forward. 

IongConditionaiJump 
I offset I 
offset ~ self extractBits: 14 to: t5 

of: currentBytecode. 
offset ~- o f fset ,  256 -t- self fetchByte. 
(currentBytecode between: 168 and: 171) 

ifTrue: [1'self jumplf: TruePointer 
by: offset]. 

(currentBytecode between: 172 and: 175) 
ifTrue: [1self jumplf: FalsePointer 

by: offset] 

Send Bytecodes The send bytecodes cause a message to be sent. The object pointers for 
the receiver and the arguments of the message are found on the active 
context's evaluation stack. The send bytecode determines the selector of 
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the message and how many arguments to take from the stack. The 
number of arguments is also indicated in the CornpiledMetbod invoked 
by the message. The compiler guarantees that  this information is re- 
dundant  except when a CompiledMetbod is reached by a perform: mes- 
sage, in which case it is checked to make sure the CompitedMethod 
takes the right number of arguments. The perform: messages will be 
discussed in the next chapter in a section on control primitives. 

The selectors of most messages are found in the literal frame of the 
CornpiledMethod. The literal-selector bytecodes and the extended-send 
bytecodes specify the argument  count of the message and the index of 
the selector in the  literal frame. The 32 special-selector bytecodes speci- 
fy the offset of the selector and argument  count in an Array in the ob- 
ject memory. This Array is shared by all Compi ledMethods in the 
system. 

sendBytecode 
(currentBytecode between: 131 and: 134) 

ifTrue: [tself extendedSendBytecode]. 
(currentBytecode between: 176 and: 207) 

ifTrue: [1'self sendSpecialSelectorBytecode]. 
(currentBytecode between: 208 and: 255) 

ifTrue: [1'self sendLiteralSelectorBytecode] 

The literal-selector bytecodes are single bytes that  can specify 0, 1, or 2 
arguments and a selector in any one of the first 16 locations of the lit- 
eral frame. Both the selector index and the argument  count are 
encoded in the bits of the bytecode. 

sendLiteralSelectorBytecode 
t selector I 
selector ~- self literal: (self extractBits: 12 to: 15 

of: currentBytecode). 
self sendSelector: selector 

argumentCount: (self extractBits: 10 to: t l  
of: currentBytecode) 1 

Most of the send bytecodes call the sendSelector:argumentCount: routine 
after determining the appropriate selector and a rgumen t  count. This 
routine sets up the variables messageSelector and argumentCount,  
which are available to the other routines in the interpreter that  will 
lookup the message and perhaps activate a method. 

sendSelector., selector argumentCount., count 
I newReceiver I 
messageSetector ~ selector. 
argurnentCount ~ count. 
newReceiver ~.- self stackValue: argumentCount. 
self sendSelectorToClass: (memory fetchClassOf: newReceiver) 
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sendSelectorToClass: classPointer 
self f indNewMethodlnClass: classPointer. 
self executeNewMethod 

The in te rpre te r  uses a method cache to reduce the number  of dictionary 
lookups necessary to find CompiledMethods associated with selectors. 
The method cache may be omitted by subst i tut ing a call on 
lookupMethodinClass: for the call on findNewMethodlnClass: in 
sendSelectorToClass: above. The IookupMethodlnCiass: routine is de- 
scribed in the previous chapter  in a section on classes. The cache may 
be implemented  in various ways. The following routine uses four se- 
quential  locations in an Array for each entry. The four locations store 
the selector, class, CompiledMethod, and primitive index for the entry. 
This rout ine does not allow for reprobes. 

f indNewMethodlnClass: class 
f hash I 
hash ~ (((messageSelector bitAnd: class) bitAnd: 16rFF) bitShift: 2) + 1. 

((methodCache at: hash)=messageSelector 
and: [(methodCache at: hash + 1) = class]) 

ifTrue: [newMethod ~ methodCache at: hash + 2. 
primitivelndex ~ methodCache at: hash --t- 3] 

ifFalse: [self IookupMethodlnClass: class. 
methodCache at: hash put: messageSetector. 
methodCache at: hash -.t- 1 put: class. 
methodCache at: hash -I- 2 put: newMethod. 
methodCache at: hash -t- 3 put: primitivelndex] 

The method cache is initialized with the following routine. 

init ializeMethodCache 
methodCacheSize ~ !024. 
methodCache ~ Array new: methodCacheSize 

The e x e c u t e N e w M e t h o d  routine calls a primitive routine if one is asso- 
ciated with the CompiledMethod. The primitiveResponse routine re turns  
false if no primitive is indicated or the primitive routine is unable to 
produce a result. In tha t  case, the CompiledMethod is activated. Primi- 
tive routines and the primitiveResponse routine will be described in the 
next  chapter.  

executeNewMethod 
self primitiveResponse 

ifFalse: [self activateNewMethod] 

The routine tha t  activates a method creates a MethodContext and trans- 
fers the receiver and a rguments  from the current ly  active context 's 
stack to the new context 's stack. It then makes this new context be  the 
in terpre ter ' s  active context. 
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I contextSize newContext newReceiver I 
(self largeContextFlagOf: newMethod)= 1 

ifTrue: [contextSize ~ 32 -t- TempFrameStart] 
ifFalse: [contextSize ~- 12 + TempFrameStart]. 

newContext ~- memory instantiateClass: ClassMethodContextPointer 
withPointers: contextSize. 

memory storePointer: Senderlndex 
ofObject: newContext 
withValue: activeContext. 

self storelnstructionPointerValue: 
(self initiallnstructionPointerOfMethod: newMethod) 

inContext: newContext. 
self storeStackPointerValue: (self temporaryCountOf: newMethod) 

inContext: newContext. 
memory storePointer: Methodlndex 

ofObject: newContext 
withVatue: newMethod. 

self transfer: argumentCount -.I- 1 
fromlndex: stackPointer argumentCount 
ofObject: activeContext 
tolndex: Receiverlndex 
ofObject: newContext. 

self pop: argumentCount 4- 1. 
self newActiveContext: newContext 

There are four extended-send bytecodes. The first two have the same ef- 
fect as the literal-selector bytecodes except tha t  the selector index and 
a rgument  count are found in one or two following bytes instead of in 
the bytecode itself. The other two extended-send bytecodes are used for 
superclass messages. 

extendedSendBytecode 
currentBytecode = 131 ifTrue: [1self singleExtendedSendBytecode]. 
currentBytecode = 132 ifTrue: [tself doubleExtendedSendBytecode]. 
currentBytecode = 133 ifTrue: Itself singleExtendedSuperBytecode]. 
currentBytecode = 134 ifTrue: [tself doubleExtendedSuperBytecode] 

The first form of extended send is followed by a single byte specifying 
the number  of a rguments  in its high order three bits and selector index 
in the low order five bits. 

singleExtendedSendBytecode 
I descriptor selectorlndex I 
descriptor ~ self fetchByte. 
selectorlndex ~ self extractBits: 11 to: 15 

of: descriptor. 
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self sendSelector: (self literal: selectorlndex) 
argumentCount: (self extractBits: 8 to: 10 

of: descriptor) 

The second form of extended send bytecode is followed by two bytes; the 
first is the number of arguments and the second is the index of the se- 
lector in the literal frame. 

doubleExtendedSendBytecode 
I count selector I 
count ~- self fetchByte. 

selector ~- self literal: self fetchByte. 

self sendSelector: selector 
argumentCount: count 

When the compiler encounters a message to super  in a symbolic meth- 
od, it uses the bytecode that pushes self for the receiver, but it uses an 
extended-super bytecode to indicate the selector instead of a regular 
send bytecode. The two extended-super bytecodes are similar to the two 
extended-send bytecodes. The first is followed by a single byte and the 
second by two bytes that  are interpreted exactly as for the extended- 
send bytecodes. The only difference in what these bytecodes do is that 
they start the message lookup in the superclass of the class in which 
the current CompiledMethod was found. Note that  this is not necessari- 
ly the immediate superclass of self. Specifically, it will not be the imme- 
diate superclass of self if the CompiledMethod containing the extended- 
super bytecode was found in a superclass of self originally. All 
CompiledMethods that  contain extended-super bytecodes have the class 
in which they are found as their last literal variable. 

singleExtendedSuperBytecode 
I descriptor selectorlndex methodClass 1 
descriptor ,- self fetchByte. 
argumentCount ~ self extractBits: 8 to: 10 

of: descriptor. 
selectorlndex ~- self extractBits: 11 to: 15 

of: descriptor. 
messageSetector ~- self literal: selectorlndex. 
methodClass ~ self methodClassOf: method. 
self sendSelectorToClass: (self superctassOf: methodClass) 

doublelxtendedSuperBytecode 
I methodClass I 
argumentCount ~- self fetchByte. 
messageSelector ~ self literal: self fetchByte. 
methodClass ~ self methodCtassOf: method. 
self sendSetectorToClass: (self superclassOf: methodClass) 

i 
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The set of special selectors can be used in a message without  being in- 
cluded in the literal frame. An Array in the object memory contains the 
object pointers of the selectors in a l ternat ing locations. The a rgument  
count for each selector is stored in the location following the selector's 
object pointer. The specialSelectorPrimitiveResponse routine will be de- 
scribed in the next chapter. 

sendSpe©ia lSe lec torBytecode  
I selectorlndex selector count I 
self specialSelectorPrimitiveResponse 

ifFalse: [selectorlndex ~ (currentBytecode - 176) , 2. 

selector ~- memory fetchPointer: selectorlndex 
ofObject: SpecialSelectorsPointer. 

count ~ self fetchlnteger: selectorlndex -.t- 1 

ofObject: SpecialSelectorsPointer. 
self sendSelector: selector 

argumentCount: count] 

Return 
Bytecodes 

There are six bytecodes tha t  re turn  control and a value from a context; 
five re turn  the value of a message (invoked explicitly by ~'t" or implicit- 
ly at the end of a method) and the other one re turns  the value of a 
block (invoked implicitly at the end of a block). The distinction between 
the two types of re turn  is tha t  the former re turns  to the sender of the 
home context while the lat ter  re turns  to the caller of the active context. 
The values re turned from the five re turn  bytecodes are: the receiver 
(self), true, false, nil, or the top of the stack. The last re tu rn  bytecode re- 
turns  the top of the stack as the value of a block. 

r e t u r n B y t e c o d e  
currentBytecode = 120 

ifTrue: [tself returnValue: receiver 
to: self sender]. 

currentBytecode = 121 
ifTrue: [tself returnValue: TruePointer 

to: self sender]. 
currentBytecode = 122 

ifTrue: [tself returnVatue: FalsePointer 
to: self sender]. 

currentBytecode = 123 
ifTrue: [ tself  returnValue: NilPointer 

to: self sender]. 
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currentBytecode = 124 
ifTrue: [tself returnValue: self popStack 

to: self sender]. 
currentBytecode = 125 

ifTrue: [1'self returnValue: self popStack 
to: setf caller] 

The simple way to re tu rn  a value to a context would be to simply make  
it the active context and push the value on its stack. 

simpleReturnValue:  resultPointer  to: contextPointer  
self newActiveContext: contextPointer. 
self push: resultPointer 

However, there  are three  si tuations in which this routine is too simple 
to work correctly. If the sender of the active context were nil; this rou- 
tine would store a nil in the in terpre ter ' s  active context pointer, bring- 
ing the system to an unpleasant  halt.  In order to prevent  this, the actu- 
al returnValue:to: routine first checks to see if the sender is nil. The in- 
t e rpre te r  also prevents re turns  to a context tha t  has already been 
re turned  from. It does this by storing nil in the instruction pointer of 
the active context on re tu rn  and checking for a nil instruction pointer of 
the context being re turned  to. Both of these situations can arise since 
contexts are objects and can be manipula ted  by user programs as well 
as by the interpreter .  If e i ther  si tuation arises, the in terpre ter  sends a 
message to the active context informing it of the problem. The third sit- 
uation will arise in systems tha t  automatical ly  deallocate objects based 
on thei r  reference counts. The active context may be deallocated as it is 
re turning.  It, in turn,  may contain the only reference to the result  be- 
ing returned.  In this case, the result  will be deallocated before it can be 
pushed on the new context 's  stack. Because of these considerations, the 
returnValue: rout ine must  be somewhat  more complicated. 

returnValue: resultPointer  to: contextPointer  
I senderslP I 
contextPointer = Nil Pointer 

ifTrue: [self push: activeContext. 
self push: resultPointer. 
tself sendSelector: CannotReturnSelector 

argumentCount: 1]. 
senderslP ~ memory fetchPointer: InstructionPointerlndex 

ofObject: contextPointer. 
senders! P = NitPointer 

ifTrue: [self push: activeContext. 
self push: resultPointer. 
1self sendSelector: CannotReturnSelector 

argumentCount: 1]. 
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memory increaseReferencesTo: resultPointer. 
self returnToActiveContext: contextPointer. 
self push: resultPointer. 
memory decreaseReferencesTo: resultPointer 

This routine prevents the deallocation of the result being returned by 
raising the reference count until it is pushed on the new stack. It could 
also have pushed the result before switching active contexts. The 
returnToActiveContext: routine is basically the same as the 
newActiveContext: routine except that instead of restoring any cached 
fields of the context being returned from, it stores nil into the sender 
and instruction pointer fields. 

re turnToAct iveContext :  aContext  
memory increaseReferencesTo: aContext. 
self nilContextFietds. 
memory decreaseReferencesTo: activeContext. 
activeContext ~- aContext. 
self fetchContextRegisters 

ni lContextFie lds 
memory storePointer: Senderlndex 

ofObject: activeContext 
withValue: NilPointer. 

memory storePointer: InstructionPointerlndex 
ofObject: activeContext 
withValue: NilPointer 
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When a message is sent, the interpreter usually responds by executing 
a Smalltalk CompiledMethod. This involves creating a new 
MethodContex t  for  t ha t  Compi ledMethod and execut ing  its bytecodes un- 
t i l  a r e t u r n  bytecode is encountered.  Some messages, however,  m a y  be 
responded to primitively. A primitive response is performed directly by 
the interpreter without creating a new context or executing any other 
bytecodes. Each primitive response the interpreter can make is de- 
scribed by a primitive routine. A primitive routine removes the message 
receiver and arguments from the stack and replaces them with the ap- 
propriate result. Some primitive routines have other effects on the ob- 
ject memory or on some hardware devices. After a primitive response is 
completed, the interpreter proceeds with interpretation of the bytecode 
after the send bytecode that  caused the primitive to be executed. 

At any point in its execution, a primitive routine may determine that 
a primitive response cannot be made. This may, for example, be due to 
a message argument of the wrong class. This is called primitive failure. 
When a primitive fails, the Smalltalk method associated with the selec- 
tor and receiver's class will be executed as if the primitive method did 
not exist. 

The table below shows the class-selector pairs associated with each 
primitive routine. Some of these class-selector pairs have not appeared 
earlier in this book since they are part of the class's private protocol. 
Some of the primitive routines must meet their specification in order 
for the system to function properly. Other primitive routines are op- 
tional; the system will simply perform less efficiently if they always 
fail. The optional primitives are marked with an asterisk. The 
Smalltalk methods associated with optional primitive routines must do 
everything the primitive does. The Smalltalk methods associated with 
required primitive routines need only handle the cases for which the 
primitive fails. 

The Smal l ta lk  Pr imi t ives  

Primitive Index Class-Selector Pairs 

1 Smalllnteger + 
2 Smalllnteger - 
3 Smalllnteger < 
4 Smalllnteger > 
5" Smalllnteger < = 
6* Smalllnteger > = 
7 Smalllnteger = 
8* Smalllnteger ,~=  
9 Smalllnteger * 
1 O* Smalllnteger / 
11 * Smalllnteger \ \  
12 Smal l lnteger/ /  



13" 

14 

15 

16 

17 

18" 

19 

2O 

21" 

22* 

23* 

24* 

25* 

26* 

27* 

28* 

29* 

30* 

31" 

32* 

33* 

34* 

35* 

36* 

37* 

38 

39 

4O 

41 

42 

43 

44 

45* 

46* 

47 

48* 

49 

50 

51 

52* 

53* 

54* 

55 

56 
57 

58 
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Smalllnteger quo: 

Smalllnteger bitAnd: 

Smalllnteger bitOr: 

Smalilnteger bitXor: 

Smalllnteger bitShift: 

Number @ 

Integer + 

Integer - 

Integer < 

Integer > 

Intec~er < = 

Intec 

inte£ 

Intec 

Intec 

Intec 

Intec 

!er > : 

er = 

er , -~ :  

e r ,  

er / 

er \ \  

LargePositivelnteger + 

LargePositivelnteger - 

LargePositivelnteger < 

LargePositivelnteger > 

LargePositivelnteger < = 

LargePositivelnteger > = 
LargePositivelnteger = 

LargePositivelnteger ~ = 

LargePosit ivelnteger, 

LargePositivelnteger / 

LargePositivelnteger \ \ 

I n tege r / /  LargePosi t ivelnteger/ /  
Integer quo: LargePositivelnteger quo: 

Integer bitAnd: LargePositivelnteger bitAnd: 

Integer bitOr: LargePositivelnteger bitOr: 

Integer bitXor: LargePositivelnteger bitXor: 

Integer bitShift: LargePositivelnteger bitShift: 

Smaillnteger asFIoat 

Float + 

Float - 

Float < 

Float > 

Float < = 

Float > = 

Float -- 

Float ~ = 

Float * 

Float / 

Float truncated 

Float fractionPart 

Float exponent 

Float timesTwoPower: 
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59 
60 

6t 

62 

63 

64 

65* 
66* 
67* 
68 
69 
70 

71 

72 
73 
74 
75 

76 

77 
78 
79 
80* 
81 

82 
83* 

LargeNegativelnteger digitAt: 
LargePositivelnteger digitAt: 
Object at: 
Object basicAt: 
LargeNegativelnteger digitAt:put: 
LargePositivelnteger digitAt:put: 
Object basicAt:put: 
Object at:put: 
ArrayedCollection size 
LargeNegativelnteger digitLength 
LargePositivelnteger digitLength 
Object basicSize 
Object size 
String size 
String at: 
String basicAt: 
String basicAt:put: 
String at:put: 
ReadStream next ReadWriteStream next 
WriteStream nextPut: 
PositionabteStream atEnd 
CompiledMethod objectAt: 
CompiledMethod objectAt:put: 
Behavior basicNew Behavior new 
Interval class new 
Behavior new: 
Behavior basicNew: 
Object become: 
Object instVarAt: 
Object instVarAt:put: 
Object asOop 
Object hash 
Symbol hash 
Smalllnteger asObject 
Smalllnteger asObjectNoFail 
Behavior somelnstance 
Object nextlnstance 
CompiledMethod class newMethod:header: 
ContextPart blockCopy: 
BlockContext value:value:value: 
BlockContext value: 
BlockContext value: 
BlockContext value:value: 
BlockContext valueWithArguments: 
Object perform:with:with:with: 
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85 
86 
87 
88 
89 
90* 
91 

92 
93 
94 
95 
96 
97 
98 
99 
100 
101 
102 
103" 

104" 
105" 

106 
107 
108 
109 
110 

111 
112. 
113 
114 
115 
116 
117 
118 
119 
120 
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Object perform:with: 
Object perform:with:with: 
Object perform: 
Object perform:withArguments: 
Semaphore signal 
Semaphore wait 
Process resume 
Process suspend 
Behavior flushCache 
InputSensor primMousePt InputState primMousePt 
InputState primCursorLocPut: 
InputState primCursorLocPutAgain: 
Cursor class cursorLink: 
InputState primlnputSemaphore: 
InputState primSamplelnterval: 
InputState primlnputWord 
BitBIt copyBitsAgain BitBIt copyBits 
SystemDictionary snapshotPrimitive 
Time class secondCIocklnto: 
Time class millisecondCIocklnto: 
ProcessorScheduler signal:atMilliseconds: 
Cursor beCursor 
DisplayScreen beDisplay 
CharacterScanner scanCharactersFrom:to:in: 

rightX:stopConditions:displaying: 
BitBlt drawLoopX:Y: 
ByteArray primReplaceFrom:to:with:startingAt: 
ByteArray replaceFrom:to:withString:startingAt: 
String replaceFrom:to:withByteArray:startingAt: 
String primReplaceFrom:to:with:startingAt: 

Character = 
Object 
Object class 
SystemDictionary coreLeft 
SystemDictionary quitPrimitive 
SystemDictionary exitToDebugger 
SystemDictionary oopsLeft 
SystemDictionary signal:atOopsLeft:wordsLeft: 
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121 

122 

123 

124 

125 

126 

127 

An example of a primitive method is the response of instances of 
Smalllnteger to messages with selector + .  If the a rgument  is also an in- 
stance of Smalllntefler, and the sum of the values of the receiver and ar- 
gument  is in the range tha t  can be represented by Smalllntefler, then 
the primitive method will remove the receiver and a rgument  from the 
stack and replace them with an instance of Smalllnteger whose value is 
the sum. If the a rgument  is not a Smalllnteger or the sum is out of 
range, the primitive will fail and the Small ta lk  method associated with 
the selector + in Smalllnteger will be executed. 

The control s t ructures  used in the specification of the in terpreter  giv- 
en in this book and the control s t ructures  used in a machine language 
implementat ion of the in terpre ter  will probably use different mecha- 
nisms when primitive routines fail to complete. When a failure condi- 
tion arises, a machine language primitive routine can decide not to 
re turn  to its caller and simply jump to the appropriate place in the in- 
terpre ter  (usually the place tha t  activates a CompiledMethod). However, 
since the formal specification is wri t ten  in Smalltalk,  all routines m u s t  

re turn  to their  senders and Interpreter must  keep t rack of primitive suc- 
cess or failure independently of the routine call structure.  Par t  of the 
book specification, therefore, is a register called success  tha t  is initial- 
ized to true when a primitive is s tar ted and may be set to false if the 
routine fails. The following two routines set and test the state of the 
primitive success  register. 

s u c c e s s :  s u c c e s s V a l u e  
success  ~ successVa lue  & success  

s u c c e s s  
f success  

The following routines set the state of the success  flag in the two com- 
mon cases of initialization before a primitive routine runs and discovery 
by a primitive routine tha t  it cannot complete. 

i n i t P r i m i t i v e  
success  ~ true 

p r i m i t i v e F a i l  
success  ~- false 
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Many of the primitives manipulate integer quantities, so the interpret- 
er includes several routines that perform common functions. The 
poplnteger routine is used when a primitive expects a Smalltnteger on 
the top of the stack. If it is a Smalllnteger, its value is returned; if not, a 
primitive failure is signaled. 

poplnteger 
I integerPointerl 
integerPointer ~- self popStack. 
self success: (memory islntegerObject: integerPointer). 
self success 

ifTrue: [tmemory integerValueOf: integerPointer] 

Recall that  the fetchlnteger:ofObject: routine signaled a primitive fail- 
ure if the indicated field did not contain a Srnaltlnteger. The 
pushlnteger: routine converts a value to a Smalllnteger and pushes it on 
the stack. 

pushlnteger: integerValue 
self push: (memory integerObjectOf: integerValue) 

Since the largest indexable collections may have 65534 indexable ele- 
ments, and Smalllntegers can only represent values up to 16383, primi- 
tive routines that  deal with indices or sizes must be able to manipulate 
LargePositivelntegers. The following two routines convert back and forth 
between 16-bit unsigned values and object pointers to Smalllntegers or 
LargePositivel ntegers. 

positive 16BitlntegerFor: integerValue 
t newLargelnteger I 
integerValue < 0 

ifTrue: [1'self primitiveFail]. 
(memory islntegerValue: integerValue) 

ifTrue: [tmemory integerObjectOf: integerValue]. 
newLargelnteger ~ memory instantiateClass: 

ClassLargePositivelntegerPointer 
withBytes: 2. 

memory storeByte: 0 
ofObject: newLargelnteger 
withValue: (self IowByteOf: integerValue). 

memory storeByte: 1 
ofObject: newLargelnteger 
withValue: (self highByteOf: integerVatue). 

1 newLarge!nteger 
positive 16BitValueOf: integerPointer 

1 value I 
(memory islntegerObject: integerPointer) 
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ifTrue: [1' memory integerValueOf: integerPointer]. 
(memory fetchClassOf: integerPointer)= 

ClassLargePositivelntegerPointer 
ifFalse: [Tself primitiveFait]. 

(memory fetchByteLengthOf: integerPointer) = 2 
ifFalse: [1'self primitiveFail]. 

value ~ memory fetchByte: 1 
ofObject: integerPointer. 

value ~ value.256 4- (memory fetchByte: 0 
ofObject: integerPointer). 

;value 

There are three ways that  a primitive routine can be reached in the 
process of in te rpre t ing  a send-message bytecode. 

1. Some primitive routines are associated with send-special-selector 
bytecodes for certain classes of receiver. These can be reached 
without a message lookup. 

2. The two most common primitive routines (returning self or an in- 
stance variable) can be indicated in the flag value of the header of 
a CompiledMethod. These are only found after a message lookup 
has produced a CompiledMethod, but only the header need be ex- 
amined. 

3. Most primitive routines are indicated by a number  in the header 
extension of a CompiledMethod. These are also found after a mes- 
sage lookup. 

The first path to a primitive routine was represented by the call on 
specialSelectorPrimit iveResponse in the sendSpecialSelectorBytecode 
rout ine. The specialSelectorPrimit iveResponse rout ine selects an appro- 
pr iate primitive routine and re turns  true if a primitive response was 
sucessfully made and false otherwise. Recall tha t  the 
sendSpecialSelectorBytecode routine looks up the special selector if 
specialSelectorPrimitiveResponse re turns  false. 

specialSelectorPrimitiveResponse 
self initPrimitive. 
(currentBytecode between: 176 and: 191) 

ifTrue: [self arithmeticSelectorPrimitive]. 
(currentBytecode between: 192 and: 207) 

ifTrue: [self commonSelectorPrimitive]. 
1' self success 

A primitive r o u t i n e  will be accessed by a special ar i thmetic selector 
only if the receiver is a Smalllnteger. The actual primitive routines will 
be described in the section on ari thmetic primitives. 
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ar i thmet icSe lec torPr imi t ive  
self success: (memory islntegerObject: (self stackValue: 1)). 
self success 

ifTrue: [currentBytecode = 176 ifTrue: [ tsel f  primitiveAdd]. 
currentBytecode = 177 ifTrue: [ tsel f  primitiveSubtract]. 
currentBytecode = 178 ifTrue: [1self primitiveLessThan]. 
currentBytecode = 179 ifTrue: [1"self primitiveGreaterThan]. 
currentBytecode = 180 ifTrue: [1'self primit iveLessOrEqual]. 
currentBytecode = 181 ifTrue: [1"self primitiveGreaterOrEqual]. 
currentBytecode = 182 ifTrue: [1`self primitiveEqual]. 
currentBytecode = 183 ifTrue: [1`self primitiveNotEquat]. 
currentBytecode = 184 ifTrue: [1`self primitiveMultiply]. 
currentBytecode = I85 ifTrue: [1"self primitiveDivide]. 
currentBytecode = 186 ifTrue: [1'self primitiveMod]. 
currentBytecode = 187 ifTrue: [1"self primitiveMakePoint]. 
currentBytecode = 188 ifTrue: [1"self primitiveBitShift]. 
currentBytecode = 189 ifTrue: [1'self primitiveDiv]. 
currentBytecode = 190 ifTrue: [1'self primitiveBitAnd]. 
currentBytecode = 19 t ifTrue: [1'self primitiveBitOr]] 

Only five of the non-ari thmetic  special selectors invoke primitives with- 
out a message lookup (= =,  class, blockCopy:, value, and value:). The 
primitive routine for = = is found in the section on system primitives 
and the routine for class in storage management  primitives. They are 
both invoked for any class of receiver. The routines for blockCopy:, val- 
ue, a n d  value: are found in the section on control primitives. The rou- 
tine for blockCopy: will be invoked if the receiver is a MethodContext or 
a BiockContext. The routines for value and value: will only be invoked if 
the receiver is a BlockContext. 

commonSe lec torPr imi t ive  
I receiverClass I 
argumentCount ~ self fetchtnteger: ( cu r ren tBy tecode-176) .2  + 1 

ofObject: SpecialSelectorsPointer. 
receiverClass 

memory fetchClassOf: (self stackValue: argumentCount). 
currentBytecode = 198 ifTrue: [1self primitiveEquivalent]. 
currentBytecode = 199 ifTrue: [1self primitiveClass]. 
currentBytecode = 200 

ifTrue: [self success: 
(receiverClass = ClassMethodContextPointer) 

I (receiverClass = ClassBIockContextPointer). 
1self success ifTrue: [self primit iveBlockCopy]]. 

(currentBytecode = 201) I (currentBytecode = 202) 
ifTrue: [self success: receiverClass=ClassBIockContextPointer .  

1`self success ifTrue: [self primitiveValue]]. 
self primitiveFail 

j = : : = - -  
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The second and third paths to primitive routines listed above are taken 
after a CompiledMethod for a message has been found. The presence of 
a primitive is detected by the primitiveResponse routine called in 
e×ecuteNewMethod. The primitiveResponse routine is similar  t o  the 
specialSelectorPrimitiveResponse routine in tha t  it re turns  true if a 
primitive response was successfully made and false otherwise. Recall 
tha t  the executeNewMethod routine activates the CompiledMethod that  
has been looked up if primitiveResponse re turns  false. 

primitiveResponse 
I flagValue thisReceiver offset I 
primitivetndex = 0  

ifTrue: [flagValue ~ self flagValueOf: newMethod. 
flagValue = 5 

ifTrue: [self quickReturnSelf. 
ttrue]. 

flagValue = 6 
ifTrue: [self quicktnstanceLoad. 

ttrue]. 
tfalse] 

ifFalse: [self initPrimitive. 
self dispatchPrimitives. 
T self success] 

Flag values of 5 and 6 reach the two most commonly found primitives, 
a simple re turn  of self and a simple re turn  of one of the receiver's in- 
stance variables. Returning self is a no-op as far as the in terpreter  is 
concerned since self's object pointer occupies the same place on the 
stack as the message receiver tha t  it should occupy as the message re- 
sponse. 

quickReturnSelf 

R e t u r n i n g  an instance variable of the receiver is almost as easy. 

quicklnstanceLoad 
l thisReceiver fietdtndex I 
thisReceiver ~- self popStack. 
fieldlndex ~ self fieldlndexOf: newMethod. 
self push: (memory fetchPointer: fieldlndex 

ofObject: thisReceiver) 

The six types  of primitives in the formal specification deal with arith- 
metic, subscripting and streaming, storage management ,  control struc- 
tures, input /output ,  and general system access. These correspond to six 
ranges of primitive indices. A range of primitive indices has been re- 
served for implementat ion-pr ivate  primitive routines. They may be 
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assigned any meaning,  but  cannot be depended upon from interpreter  
to interpreter .  Since these are not part  of the specification, they cannot 
be described here. 

dispatchPrimitives 
primitivelndex < 60 

ifTrue: [1' self dispatchArithmeticPrimitives]. 
primitivelndex < 68 

ifTrue: [1self dispatchSubscriptAndStreamPrimitives]. 
primitivelndex < 80 

ifTrue: [tself dispatchStorageManagementPrimitives]. 
primitivelndex < 90 

ifTrue: [1"self dispatchControtPrimitives]. 
primitivelndex < 110 

ifTrue: [tself dispatchlnputOutputPrimitives]. 
primitivelndex < 128 

ifTrue: [1"self dispatchSystemPrimitives]. 
pnmitivelndex < 256 

ifTrue: [1`self dispatchPrivatePrimitives] 

Ari thmet i c  
Pr imi t ives  

There are three sets of ar i thmetic  primitive routines, one for 
Small lntegers, one for large integers (LargePosit ivelntegers and 
LargeNegativelntegers),  and  one for Floats. The p r im i t i ves  for 
Smaillntegers and Floats must  be implemented,  the primitives for large 
integers are optional. 

dispatchArithmeticPrimitives 
primitivelndex < 20 

ifTrue: [1 self dispatchlntegerPrimitives]. 
primitivelndex < 40 

i'fTrue: [1`self dispatchLargelntegerPrimitives]. 
primitivetndex < 60 

ifTrue: [1self dispatchFIoatPrimitives] 

The first set of ar i thmetic  primitive routines all pop a receiver and ar- 
gument  off the stack and fail if they are not both Smalllntegers. The 
routines then push on the stack either the integral  result  of a computa- 
tion or the Boolean result  of a comparison, The routines tha t  produce 
an integral  result  fail if the value cannot be represented as a 
Small lnteger. 

dispatchlntegerPrimitives 
primitivelndex = 1 ifTrue: [1`self primitiveAdd]. 
primitivelndex = 2 ifTrue: [1self primitiveSubtract]. 
primitivelndex = 3 ifTrue: [tself primitiveLessThan]. 
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3rimitive 
3nmitive 
3rimitive 
3r~mitive 
3rimitive 
3rimitive 
3rimitive 
3rimitive 
3nmitive 
3rimitive 
3rlmitive 
Dnmitive 
3nmitive 
3rimitive 
3nmitive 

ndex = 4 ifTrue: [1'self 3rimitiveGreaterThan]. 
ndex = 5 ifTrue: [1`self 9rimitiveLessOrEqual]. 
ndex = 6 ifTrue: [1self 3rimitiveGreaterOrEqual]. 
ndex = 7 ifTrue: [ lself  3rimitiveEqual]. 
ndex = 8 ifTrue: [1'self 3rimitiveNotEqual]. 
ndex = 9 ifTrue: [1self 3rimitiveMultiply]. 
ndex = 10 ifTrue: [fself 
ndex = 11 ifTrue: [1'self 
ndex = 12 ifTrue: [tself 
ndex = 13 ifTrue: [l'se 
ndex = 14 ifTrue: [ tse 
ndex = 15 ifTrue: [fse 
ndex = 16 ifTrue: [ tse 
ndex = 17 ifTrue: [ tse 
ndex = 18 ifTrue: [l'se 

3rimitiveDivide]. 
3rimitiveMod]. 
3rimitiveDiv]. 
DrimitiveQuo]. 
3rimitiveBitAnd]. 
3rimitiveBitOr]. 
3rimitiveBitXor]. 
3rimitiveBitShift]. 
:~rimitiveMakePoint] 

The pr imi t iveAdd, pr imi t iveSubtract ,  and pr imi t iveMul t ip ly  routines are all 
identical except for the arithmetic operation used, so only the 
primitiveAdd routine will be shown here. 

primitiveAdd 
I integerReceiver integerArgument integerResult J 
integerArgument ~- self poplnteger. 
integerReceiver ~ self poplnteger. 
self success 

ifTrue: [integerResult ~ integerReceiver + integerArgument. 
self success: (memory islntegerValue: integerResult)]. 

self success 
ifTrue: [self  pushlnteger: integerResult] 
ifFatse: [self unPop: 2] 

The primitive routine for division (associated with the se lec tor / )  is dif- 
ferent than the other three arithmetic primitives since it only produces 
a result if the division is exact, otherwise the primitive fails. This prim- 
itive, and the next three that  have to do with rounding division, all fail 
if their a rgument  is 0. 

primitiveDivide 
I integerReceiver integerArgument integerResult I 
integerArgument ~ self poplnteger. 
integerReceiver ~ self poplnteger. 
self success: integerArgument,---,=0. 
self success: integerReceiver\ \ in tegerArgument=0.  
self success 

ifTrue: [integerResult ~ integerReceiver// integerArgument. 
self success: (memory islntegerValue: integerResult)]. 
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self success 
ifTrue [self push: (memory integerObjectOf: integerResult)] 
ifFatse: [self unPop: 2] 

The primitive routine for the modulo function (associated with the se- 
lector \ X) gives the remainder of a division where the quotient is al- 
ways rounded down (toward negative infinity). 

primitiveMod 
I integerReceiver integerArgument integerResutt I 
integerArgument ~- self poplnteger. 
integerReceiver ~- self poplnteger. 
self success: integerArgument,--,=0. 
self success 

ifTrue: [integerResult ~ integerReceiverx \integerArgument. 
self success: (memory islntegerValue: integerResult)]. 

self success 
ifTrue: [self pushlnteger: integerResult] 
ifFalse: [self unPop: 2] 

There are two primitive routines for rounding division (associated with 
the se l ec to r s / /  and quo:). The result of / /  is always rounded down (to- 
ward negative infinity). 

primitiveDiv 
I integerReceiver integerArgument integerResult t 
integerArgument ~- self poplnteger. 
integerReceiver ~ self poplnteger. 
self success: integerArgument,~=0. 
self success 

ifTrue: [integerResult ~ integerReceiver//integerArgument.. 
self success: (memory islntegerValue: integerResult)]. 

self success 
ifTrue: [self pushlnteger: integerResult] 
ifFalse: [self unPop: 2] 

The result of quo: is t runcated (rounded toward zero). 

primitiveQuo 
I integerReceiver integerArgument integerResult I 
integerArgument ~ self poplnteger. 
integerFleceiver ~ self poplnteger. 
self success: integerArgument,-~=O. 
self success 

ifTrue: [integerResult ~ integerReceiver quo: integerArgument. 
self success: (memory istntegerValue: integerResult)]. 
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self success 
ifTrue: [self pushlnteger: integerResult] 
ifFalse: [self unPop: 2] 

The primitiveEqual, primitiveNotEqual, primitiveLessThan, primitive- 
LessQrEqual, primitiveGreaterThan, and primitiveGreaterOrEqual rout ines 
are all identical except for the comparison operation used, so only the 
primitiveEqual routine will be shown here. 

primitiveEqual 
I integerReceiver integerArgument integerResult I 
integerArgument ~ self poplnteger. 
integerReceiver ~- self poplnteger. 
self success 

ifTrue: [integerReceiver = integerArgument 
ifTrue: [self push: TruePointer] 
ifFalse: [self push: FalsePointer]] 

ifFalse: [self unPop: 2] 

The primitiveBitAnd, primitiveBitOr, and primitiveBitXor rout ines per form 
logical operations on the two's-complement binary representations of 
Smalllnteger values. They are identical except for the logical operation 
used, so only the primitiveBitAnd routine will be shown here. 

primitiveBitAnd 
I integerReceiver integerArgument integerResult I 
integerArgument ,- self poplnteger. 
integerReceiver ,- self poplnteger. 
self success 

ifTrue: [integerResult ~ integerReceiver bitAnd: integerArgument]. 
self success 

ifTrue: [self pushlnteger: integerResult] 
ifFalse: [self unPop: 2] 

The primitive routine for shifting (associated with the selector bitShift:) 
re turns a Small lnteger whose value represented in two's-complement is 
the receiver's value represented in two's-complement shifted left by the 
number of bits indicated by the argument. Negative arguments shift 
right. Zeros are shifted in from the right in left shifts. The sign bit is 
extended in right shifts. This primitive fails if the correct result cannot 
be represented as a Smalllnteger. 

primitiveBitShift 
I integerReceiver integerArgument integerResult 1 
integerArgument ~ self poplnteger. 
integerReceiver ~- self poplnteger. 
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self success 
ifTrue: [integerResult ~- integerReceiver bitShift: integerArgument. 

self success: (memory islntegerValue: integerResult)]. 

self success 
ifTrue: [self pushlnteger: integerResuit] 
ifFalse: [self unPop: 2] 

The primitive routine associated with the selector @ returns a new 
Point whose x value is the receiver and whose y value is the argument. 

primitiveMakePoint 
I integerReceiver integerArgument pointResult I 
integerArgument ~ self popStack. 
integerReceiver ~ self popStack. 
self success: (memory islntegerValue: integerReceiver). • 
self success: (memory islntegerVatue: integerArgument). 
self success 

ifTrue: [pointResult ~ memory instantiateClass: ClassPointPointer 
withPointers: ClassPointSize, 

memory storePointer: XIndex 
ofObject: pointResult 

kwithValue: integerReceiver. 
memory storePointer: Ylndex 

ofObject: pointResult 
withValue: integerArgument. 

self push: pointResult] 
ifFalse: [self unPop: 2] 

initializePointlndices 
Xtndex ~--- 0. 
Ylndex ~ 1. 
ClassPointSize ~- 2 

The primitive indices 21 to 37 are the same as primitives 1 to 17 except 
that  they perform their operations on large integers (instances of 
LargePositivelnteger and LargeNegativelnteger). There are adequate 
Smalltalk implementations for all of these operations so the primitive 
routines are optional and will not be specified in this chapter. To imple- 
ment them, the corresponding Smalltalk methods should be translated 
into machine language routines. 

dispatchLargelntegerPrimitives 
self primitiveFail 

Instances of Float are represented in IEEE single-precision (32-bit) for- 
mat. This format represents a floating point quantity as a number be- 
tween one and two, a power of two, and a sign. A Float is a word-size, 
nonpointer object. The most significant bit of the first field indicates the 
sign of the number (1 means negative). The next eight most significant 
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bits of the first field are the 8-bit exponent of two biased by 127 (0 
means an exponent of -127, 128 means an exponent of 1, and so on). 
The seven least significant bits of the first field are the seven most sig- 
nificant bits of the fractional par t  of the number  between one and two. 
The fractional part  is 23 bits long and its 16 least significant bits are 
the contents of the second field of the Float. So a Float whose fields are 

SEEEEEEE E F F F F F F F  
F F F F F F F F  F F F F F F F F  

represents the value 

-1 ~ * 2 E-127 * 1 .F  

0 is represented as both fields=O. The floating point primitives fail if 
the a rgument  is not an instance of Float or if the result  cannot be rep- 
resented as a Float. This specification of the Smalltalk-80 virtual ma- 
chine does not specifically include the parts  of the IEEE s tandard other 
than  the representat ion of floating point numbers. The implementat ion 
of routines that  perform the necessary operations on floating point val- 
ues is left to the implementer.  

The pr im i t i veAsFIoa t  routine converts its Sma l l l n t ege r  receiver into a 
Float. The routines for primitives 41 th rough  50 perform the same oper- 
ations as 1 through 10 or 21 through 30, except that  they operate on 
Floats. The primitiveTruncated routine re turns  a Smalllnteger equal ~to 
the value of the receiver without any fractional part. It fails if its 
t runcated value cannot be represented as a Smaillnteger. The 
primitiveFractionalPart re turns  the difference between the receiver and 
its t runcated value. The primitiveExponent routine re turns  the exponent 
of the receiver and the primitiveTimesTwoPower routine increases the 
exponent by an amount  specified by the argument .  

dispatchFIoatPrimitives 
primitivelndex = 40 ifTrue: [1'self 
primitivelndex 
primitivelndex 
prnmitivelndex 
pnmitivelndex 
pnmitivelndex 
pnmitivelndex 
prlmitiveindex 
pnmitivelndex 
pnmitivetndex 
primitivelndex 
primitivelndex 

= 41 ifTrue: [1"self 
= 42 ifTrue: [Tself 
= 43 ifTrue: [ tsel f  
= 44 ifTrue: [ tsel f  
= 45 ifTrue: [1'self 
= 46 ifTrue: [1"self 
= 47 ifTrue: [ tsel f  
= 48 ifTrue: [1"self 
= 49 ifTrue: [rself  
= 50 ifTrue: [1'self 
= 5 l  ifTrue: [ tsel f  

primitiveAsFIoat]. 
primitiveFIoatAdd]. 
primitiveFIoatSubtract]. 
primitiveFIoatLessThan]. 
primitiveFl°atGreaterThan]" 
primitiveFIoatLessOrEqual]. 
primitiveFIoatGreaterOrEqual]. 
primit iveFIoatEqual]. 
primitiveFIoatNotEqual]. 
primitiveFIoatMultiply]. 
primitiveFIoatDivide]. 
primitiveTruncated]. 
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primitiveindex = 52 ifTrue: [1self primitiveFractionalPart]. 
primitivelndex = 53 ifTrue: [1'self primitiveExponent]. 
primitivelndex = 54 ifTrue: [1`self primitiveTimesTwoPower] 

Array and 
Stream 
Primitives 

The second set of primitive routines are for manipula t ing  the indexable 
fields of objects both directly, by subscripting, and indirectly, by stream- 
ing. These routines make use of the 16-bit positive integer routines, 
since the limit on indexable fields is 65534. 

dispatchSubscriptAndStreamPrimitives 
pr,mitivelndex = 60 ifTrue: [tself primitiveAt]. 
pnmitivetndex = 61 ifTrue: [tself primitiveAtPut]. 
pnmitivelndex = 62 ifTrue: [tself primitiveSize]. 
pnmitivefndex = 63 ifTrue: [1'self primitiveStringAt]. 
pnmitivelndex = 64 ifTrue: [l'self primitiveStringAtPut]. 
prtmitivelndex = 65 ifTrue: [tself primitiveNext]. 
pr~mitivelndex = 66 ifTrue: [1self primitiveNextPut]. 
pnmitivetndex = 67 ifTrue: [1"self primitiveAtEnd] 

The following routines are used to check the bounds on subscripting op- 
erations and to perform the subscripting accesses. They determine 
whether  the object being indexed contains pointers, 16-bit integer val- 
ues, or 8-bit integer values, in its indexable fields. The check- 
IndexableBoundsOf:in: routine takes a one-relative index and deter- 
mines whether  it is a legal subscript of an object. It must  take into ac- 
count any fixed fields. 

checklndexableBoundsOf: index in: array 
I class t 
class ~ memory fetchClassOf: array. 
self success: index> =1. 
self success: index + (self fixedFieldsOf: class)< =(self  lengthOf: array) 

lengthOf: array 
(self isWords: (memory fetchClassOf: array)) 

ifTrue: [1memory fetchWordLengthOf: array] 
ifFalse: [tmemory fetchByteLengthOf: array] 

The subscript:with: and subscript:with:storing: routines assume that  the 
n u m b e r  of f i xed f ie lds has been added in to  the index,  so they  use i t  as a 
one- re la t i ve  index  in to  the object as a whole.  
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subscript: array with: index 
t class value l 
class ~--- memory fetchClassOf: array. 
(self isWords: class) 

ifTrue: [(self isP0inters: class) 
ifTrue: [tmemory fetchPointer: index-  1 

of Object: array] 
ifFalse: [value ~- memory fetchWord: index-1 

of Object: array. 
1'self positive 16BitlntegerFor: value]] 

ifFalse: [value ~ memory fetchByte: index-1 
of Object: array. 

1'memory integerObjectOf: value] 
subscript: array with: index storing: value 

I class I 
class ~- memory fetchClassOf: array. 
(self isWords: class) 

ifTrue: [(self isPointers: class) 
ifTrue: [tmemory storePointer: index-1 

of Object: array 
withValue: value] 

ifFalse: [self success: (memory islntegerObject: value). 
self success ifTrue: 

[tmemory 
storeWord: index-  1 
of Object: array 
withValue: (self positive16BitValueOf: 

value)]]] 
ifFatse: [self success: (memory islntegerObject: value). 

self success ifTrue: 
[tmemory storeByte: index-  1 

of Object: array 
withValue: (self IowByteOf: 

(memory integerValueOf: 
value))]] 

The primit iveAt and primit iveAtPut rout ines s imp ly  fetch or store one of 
the indexable fields of the receiver. They fail if the index is not a 
Smalllnteger or if it is out  of bounds. 

primitiveAt 
I index array arrayClass result I 
index ~- self positive16BitValueOf: self popStack. 
array ~ self popStack. 
arrayCtass ~- memory fetchClassOf: array. 
self checklndexabteBoundsOf: index 

in: array. 
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self success 
ifTrue: [index ~-index + (self fixedFieldsOf: arrayClass). 

result ~- self subscript: array 
with: index]. 

self success 
ifTrue: [self push: result] 
ifFalse: [self unPop: 2] 

The primitiveAtPut routine also fails if the receiver is not a pointer type 
and the second a rgument  is not an 8-bit (for byte-indexable objects) or 
16-bit (for word-indexable objects) positive integer. The primitive rou- 
tine re turns  the stored value as its value. 

primitiveAtPut 
1 array index arrayClass value result I 
value ~ self popStack. 
index ~ self positive16BitValueOf: self popStack. 
array ~ self popStack. 
arrayClass ~ memory fetchClassOf: array. 
self checklndexableBoundsOf: index 

in: array. 
self success 

ifTrue: [index ~ index + (self fixedFieldsOf: arrayClass). 
self subscript: array 

with: index 
storing: value]. 

self success 
ifTrue: [self push: value] 
ifFatse: [self unPop: 3] 

The primitiveSize routine re turns  the number  of indexable fields the re- 
ceiver has (i.e., the largest legal subscript). 

primitiveSize 
I array class length I 
array ~ self popStack. 
class ~- memory fetchClassOf: array. 
length ~- self positive16BitlntegerFor: 

(self lengthOf: array).-- (self fixedFieldsOf: class). 
self success 

ifTrue: [self push: length] 
ifFalse: [self unPop: 1] 

The primit iveStr ingAt and primit iveStr ingAtPut routines are special re- 
sponses to the at: and at:put: messages by  instances of String. A String 
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actually stores 8-bit numbers  in byte-indexable fields, but  it communi- 
cates through the at: and at:put: messages with instances of Character. A 
Character has a single instance variable tha t  holds a Smalllnteger. The 
value of the Smalllnteger re turned from the at: message is the byte 
stored in the indicated field of the String. The primitiveStringAt routine 
always re turns  the same instance of Character for any part icular  value. 
It gets the Characters from an Array in the object m e m o r y  tha t  has a 
guaranteed object pointer called characterTablePointer. 

primitiveStringAt 
I index array ascii character I 
index ~ self positive16BitVatueOf: self popStack. 
array ~ self popStack. 
self checklndexableBoundsOf: index 

in: array. 
self success 

ifTrue: [ascii ,- memory integerValueOf: (self subscript: array 
with: index). 

character ~- memory fetchPointer: ascii 
ofObject: CharacterTablePointer]. 

self success 
ifTrue: [self push: character] 
ifFalse: [self unPop: 2] 

initializeCharacterindex 
CharacterValuetndex ~ 0 

The primit iveStr ingAtPut routine stores the value of a Character in one of 
the receiver 's indexab]e bytes. I t  fai ls i f  the second a r g u m e n t  of the 
at:put: message is not  a Character. 

primitiveStringAtPut 
I index array ascii character I 
character ~- self popStack. 
index ~ self positive16BitValue0f: self popStack. 
array ~- self popStack. 
self checklndexableBounds0f: index 

in: array. 
self success: (memory fetchCtass0f: character)=ClassCharacterPointer. 

self success 
ifTrue: [ascii ~- memory fetchPointer: CharacterValuelndex 

of 0bject: character. 
self subscript: array 

with: index 
storing: ascii]. 

self success 
ifTrue: [self push: character] 
ifFatse: [self unPop: 2] 
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The pr im i t i veNext ,  p r im i t i veNex tPu t ,  and pr im i t i veAtEnd  routines are op- 
tional primitive versions of the Smal l ta lk  code for the next,  nextPut : ,  
and atEnd messages to streams. The primitiveNext and primitiveNextPut 
routines only work if the object being s t reamed is an Array or a String. 

initializeStreamlndices 
StreamArraylndex ~- 0. 
Streamlndexlndex ~ 1. 
StreamReadLimit lndex ~ 2. 
StreamWriteLimittndex ~ 3 

primitiveNext 
I stream index limit array arrayCiass result ascii I 
stream ~- self popStack. 
array ~ memory fetchPointer: StreamArraylndex 

of Object: stream. 
arrayClass ~- memory fetchClassOf: array. 
index ~ self fetchtnteger: Streamlndexlndex 

of Object: stream. 
limit ~ self fetchlnteger: StreamReadLimit lndex 

of Object: stream. 
self success: index < limit. 
self success: 

(arrayClass = CtassArrayPointer) I (arrayClass = ClassStringPointer). 

self checklndexableBoundsOf:  index + 1 
in: array. 

self success 
ifTrue: [index ~- index + 1. 

result ~- self subscript: array 
with: index]. 

self success 
ifTrue: [self storelnteger: Streamlndexlndex 

of Object: stream 
withValue: index]. 

self success 
ifTrue: [arrayClass = ClassArrayPointer 

ifTrue: [self push: result] 
ifFalse: [ascii ~- memory integerValueOf: result. 

self push: (memory fetchPointer: ascii 
of Object: 

CharacterTable Pointer)]] 

i fFalse:  [self unPop: 1] 

primitiveNextPut 
I value stream index limit arraY arrayClass result ascii I 

value ~ self popStack. 
stream ~ self popStack. 
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array - memory fetchPointer: StreamArraylndex 
of Object: stream. 

arrayCiass ~- memory fetchClassOf: array. 
index - self fetchlnteger: Streamlndexlndex 

of Object: stream. 
limit ~- self fetchlnteger: StreamWriteLimitlndex 

of Object: stream. 
self success: index < limit. 
self success: 

(arrayClass = ClassArrayPointer) i (arrayClass = ClassStringPointer). 
self checklndexableBoundsOf: index + 1 

in: array. 
self success 

ifTrue: [index ~ index -4- 1 .  
arrayClass =ClassArrayPointer 

ifTrue: [self subscript: array 
with: index 
storing: value] 

ifFalse: [ascii - memory fetchPointer: 
CharacterValuelndex 

of Object: value. 
self subscript: array 

with: index 
storing: ascii]]. 

self success 
ifTrue: [self storelnteger: Streamlndexlndex 

of Object: stream 
withValue: index]. 

self success 
ifTrue: [self push: value] 
ifFalse: [self unPop: 2] 

primitiveAtlnd 
t stream array arrayClass length index limit 1 
stream - self popStack. 
array ~- memory fetchPointer: StreamArraylndex 

of Object: stream. 
arrayClass ~ memory fetchClassOf: array. 

length ~ self lengthOf: array. 
index ~- self fetchlnteger: Streamlndexlndex 

of Object: stream. 
limit - self fetchlnteger: StreamReadLimitlndex 

of Object: stream. 

self success: 
(array'Class = ClassArrayPointer) I (arrayClass = ClassStringPointer). 
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self success 
ifTrue: [(index > =limit) I (index > =length) 

ifTrue: [self push: TruePointer] 
ifFalse: [self push: FalsePointer]] 

ifFalse: [self unPop: 1] 

Storage 
Management 
Primitives 

The storage management primitive routines manipulate the representa- 
tion of objects. They include primitives for manipulating object point- 
ers, accessing fields, creating new instances of a class, and enumerating 
the instances of a class. 

dispatchStorageManagementPrimiUves 
~rimitivetndex = 68 ifTrue: [1self primitiveObjectAt]. 
3r mitive ndex = 69 ifTrue: [fself primitive©bjectAtPut]. 
3nmitive ndex = 70 ifTrue: [ tself  primitiveNew]. 
9r, mitive ndex = 71 ifTrue: [1self primitiveNewWithArg]. 
3rimitive ndex = 72 ifTrue: [ tself  primi.tiveBecome]. 
3nmitive ndex = 73 ifTrue: [tsetf primitivelnstVarAt]. 
3rimitive ndex = 74 ifTrue: [tsetf primitivelnstVarAtPut]. 
3r mitivelndex = 75 ifTrue: [1self primitiveAsOop]. 
3nmitivetndex = 76 ifTrue: [ tself  primitiveAsObject]. 
3rimitivelndex = 77 ifTrue: [1"self primitiveSomelnstance]. 
orimitivelndex = 78 ifTrue: [1self primitiveNextlnstance]. 
orimitivelndex = 79 ifTrue: [1self primitiveNewMethod] 

The pr imi t iveObjec tAt  and  p r im i t i veOb jec tA tPu t  r ou t i nes  are associated 
w i t h  the  objectAt :  and  objectAt :put :  messages in  Comp i l edMethod .  T h e y  
provide access to the object pointer fields of the receiver (the method 
header and the literals) from Smalltalk. The header is accessed with an 
index of 1 and the literals are accessed with indices 2 through the num- 
ber of literals plus 1. These messages are used primarily by the compil- 
er. 

primitiveObjectAt 
I thisReceiver index I 
index ~- self poplnteger. 
thisReceiver ~- self popStack. 
self success: index > 0. 
self success: index < =(sel f  objectPointerCountOf: thisReceiver). 

self success 
ifTrue: [self push: (memory fetchPointer: index--1 

ofObject: thisReceiver)] 
ifFalse: [self unPop: 2] 
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primitiveObjectAtPut 
I thisReceiver index newValue I 
newVatue ~- self popStack. 
index ~ self poptnteger. 
thisReceiver ~ self popStack. 
self success: index > O. 
self success: index < =(self  objectPointerCountOf: thisReceiver 
self success 

ifTrue: [memory storePointer: index-1 
ofObject: thisReceiver 
withValue: newValue. 

self push: newValue] 
ifFalse: [self unPop: 3] 

The primitiveNew rout ine creates a new instance of the receiver (a class) 
without  indexable fields. The primitive fails if the class is indexable. 

primitiveNew 
I c lasss ize l  
class ~ self popStack. 
size ~- self fixedFieldsOf: class. 
self success: (self islndexable: c l ass ) - - f a l se .  
self success 

ifTrue: [(self isPointers: class) 
ifTrue: [self push: (memory instantiateCtass: class 

withPointers: size)] 
ifFalse: [self push: (memory instantiateClass: class 

withWords: size)]] 
ifFalse [self unPoP 1] 

The primitiveNewWithArg routine creates a new instance of the receiver 
(a class) with the number  of indexable fields specified by the integer ar- 
gument .  The primitive fails if the class is not indexable. 

primitiveNewWithArg 
I size class I 
size ~ self positive16BitValueOf: self popStack. 
class ~ self popStack. 
self success: (self islndexable: class). 
self success 

ifTrue: [size ~- size + (self fixedFieldsOf: class). 
(self isPointers: class) 

ifTrue: [self push: (memory instantiateClass: class 
withPointers: size)] 

ifFalse: [(self isWords: class) 
ifTrue: [self push: (memory instantiateClass: 

class 
withWords: size)] 
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ifFalse: [self push: (memory instantiateClass: 
class 

withBytes: size)]]] 
ifFalse: [self unPop: 2] 

The primitiveBecome routine swaps the instance pointers of the receiver 
and argument .  This means  tha t  all objects tha t  used to point to the re- 
ceiver now point to the  a rgumen t  and vice versa. 

primitiveBecome 
I thisReceiver otherPointer I 
otherPointer ~- self popStack. 
thisReceiver ~ self popStack. 
self success: (memory islntegerObject: otherPointer) not. 
self success: (memory islntegerObject: thisReceiver) not. 
self success 

ifTrue: [memory swapPointersOf: thisReceiver and: otherPointer. 
self push: thisReceiver] 

ifFalse: [self unpop: 2] 

The pr imit ivelnstVarAt and primit ivelnstVarAtPut rout ines are associated. 
w i t h  the instVarAt: and instVarAt:put: messages in Object. They  are s imi-  
|ar  to primit iveAt and primit iveAtPut except t ha t  the n u m b e r i n g  of f ields 
s tar ts  with the  fixed fields (corresponding to named instance variables) 
ins tead of with the indexable fields. The indexable fields are numbered  
s tar t ing with one more than  the number  of fixed fields. These routines 
need a different rout ine to check the bounds of the sUbscript. 

checklnstanceVariableBoundsOf: index in: object 
I class I 
class ~- memory fetchClassOf: object. 
self success: index > = 1. 
self success: index < =(self  lengthOf: object) 

primitivelnstVarAt 
I thisRecejver index value I 
index ~ self poptnteger. 
thisReceiver ~ self popStack. 
self checklnstanceVariableBoundsOf: index 

in: thisReceiver. 
self success 

ifTrue: [value ~ self subscript: thisReceiver 
with: index]. 

self success 
ifTrue: [self push: value] 
ifFalse: [self unPop: 2] 

primitivelnstVarAtPut 
I thisReceiver index newValue realValue I 
newValue ~ self popStack. 
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index ~ self poplnteger. 
thisReceiver ~- self popStack. 
self checklnstanceVariableBoundsOf: index 

in: thisReceiver. 
self success 

ifTrue: [self subscript: thisReceiver 
with: index 
storing: newValue]. 

self success 
ifTrue: [self push: newValue] 
ifFalse: [self unPop: 3] 

The primitiveAsOop routine produces a Smalllnteger whose value is half 
of the receiver's object pointer (interpreting object pointers as 16-bit 
signed quantities). The primitive only works for non-Smalllnteger receiv- 
ers. Since non-Smaillnteger object pointers are even, no information in 
the object pointer is lost. Because of the encoding of Smalllntegers, the 
halving operation can be performed by setting the least significant bit 
of the receiver's object pointer. 

primitiveAsOop 
I thisReceiver I 
thisReceiver ~- self popStack. 
self success: (memory islntegerObject: thisReceiver)= =false. 
self success 

ifTrue: [self push: (thisReceiver bitOr: 1)] 
ifFalse: [self unPop: 1] 

The primitiveAsObject routine performs the inverse operation of 
primitiveAsOop. It only works for Smalllnteger receivers (it is associated 
with the asObject message in Srnalllnteger). It produces the object point- 
er that  is twice the receiver's value. The primitive fails if there is no 
object for that  pointer. 

primitiveAsObject 
I thisReceiver newOop I 
thisReceiver ~- self popStack. 
newOop ~ thisReceiver bitAnd: 16rFFFE. 
self success: (memory hasObject: newOop). 
self success 

ifTrue: [self push: newOop] 
ifFalse: [self unPop: 1] 

The pr imi t iveSomelnstance and pr imi t iveNext fnstance routines allow for 
the enumeration of the instances of a class. They rely on the ability of 
the object memory to define an ordering on object pointers, to find the 
first instance of a class in that  ordering, and, given an object pointer, to 
find the next instance of the same class. 
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primitiveSomelnstance 
I class I 
class ~- self popStack. 
(memory instancesOf: class) 

ifTrue: [self push: (memory initiallnstanceOf: class)] 
ifFalse: [self primitiveFait] 

primitiveNexUnstance 
1 object I 
object ~- self popStack. 
(memory isLastlnstance: object) 

ifTrue: [self primitiveFail] 
ifFalse: [self push: (memory instanceAfter: object)] 

The pr imi t iveNewMethod rou t ine  is associated w i t h  the 
newMethod:header:  message in Compi ledMethod class. Instances of 
Compi tedMethod are created w i t h  a special message. Since the par t  of a 
Compi ledMethod that contains pointers instead of bytes is indicated in 
the header, all CompiledMethods must have a valid header. Therefore, 
CompiledMethods are created with a message (newMethod:header:) that 
takes the number of bytes as the first argument and the header as the 
second argument. The header, in turn, indicates the number of pointer 
fields. 

primiUveNewMethod 
I header bytecodeCount class size I 
header ~- self popStack. 
bytecodeCount ~ self poplnteger. 
class ~- self popStack. 
size ~ (self literalCountOfHeader: header) 4-- 1 , 2 + bytecodeCount. 
self push: (memory instantiateClass: class 

withBytes: size) 

Control 
Pr imit ives  

The control primitives provide the control structures not provided by 
the bytecodes. They include support for the behavior of BlockConte×ts, 
Processes, and Semaphores. They also provide for messages with pa- 
rameterized selectors. 

dispatchControlPrimitives 
primitivelndex = 80 ifTrue: [1self primitiveBIockCopy]. 
primitivelndex = 81 ifTrue: [1"self primitiveValue]. 
primitivelndex = 82 ifTrue: [1`self primitiveValueWithArgs]. 
primitivelndex = 83 ifTrue: [1'self primitivePerform]. 
primitivelndex = 84 ifTrue: [1'self primitivePerformWithArgs]. 
primitivelndex = 85 ifTrue: [1"self primitiveSignal]. 
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primitivelndex = 86 ifTrue: [1'self primitiveWait]. 
primitivelndex = 87 ifTrue: [tself primitiveResume]. 
primitivelndex = 88 ifTrue: [1'self primitiveSuspend]. 
primitivelndex = 89 ifTrue: [tself primitiveFlushCache] 

The pr imit iveBIockCopy rou t ine  is associated w i t h  the blockCopy: mes- 
sage in both BlockContext  and MethodContext .  Th is  message is on ly  pro- 
duced by the compiler. The number  of block arguments  the new 
BlockConte×t takes is passed as the argument .  The primitiveBIockCopy 
routine creates a new instance of BlockConte×t. If the receiver is a 
MethodContext, it becomes the new BlockContext's home context. If the 
receiver is a BlockConte×t, its home context  is used for the new 
BlockConte×t's home context. 

primitiveBIockCopy 
I context methodContext blockArgumentCount newContext initiallP 
contextSize I 
blockArgumentCount ~ self popStack. 
context ~ self popStack. 
(self isBIockContext: context) 

ifTrue: [methodContext ~- memory fetchPointer: Homelndex 
of Object: context] 

ifFalse: [methodContext ~ context]. 
contextSize ~- memory fetchWordLengthOf: methodContext. 
newContext ~- memory instantiateClass: ClassBIockContextPointer 

withPointers: contextSize. 
initiallP ~- memory integerObjectOf: instructionPointer -t- 3. 
memory storePointer: InitiallPIndex 

ofObject: newContext 
withValue: initiallP. 

memory storePointer: InstructionPointerlndex 
ofObject: newContext 
withValue: initiallP. 

self storeStackPointerValue: 0 
inContext: newContext. 

memory storePointer: BlockArgumentCountlndex 
ofObject: newContext 
withValue: blockArgumentCount. 

memory storePointer: Homelndex 
ofObject: newContext 
withValue: methodContext. 

self push: newContext 

The primitiveValue routine is associated with all revalue" messages  in 
BlockContext (value, value:, value:value:, and so on). It checks tha t  the 
receiver takes the same number of block arguments  tha t  the "value" 
message did and then transfers them from the active context's stack to 
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the receiver's stack. The primitive fails if the number of arguments do 
not match. The primitiveValue routine also stores the active context in 
the receiver's caller field and initializes the receiver's instruction point- 
er and stack pointer. After the receiver has been initialized, it becomes 
the active context. 

primitiveValue 
I blockContext blockArgumentCount initiallP I 
blockContext ~- self stackValue: argumentCount. 
blockArgumentCount ~ self argumentCountOfBIock: blockContext. 
self success: argumentCount=blockArgumentCount. 
self success 

ifTrue: [self transfer: argumentCount 
fromlndex: stackPointer-argumentCount -t- 1 
ofObject: activeContext 
totndex: TempFrameStart 
ofObject: blockContext. 

self pop: argumentCount -I- 1. 
initiatlP ~ memory fetchPointer: InitiallPtndex 

ofObject: blockContext. 
memory storePointer: InstructionPointerlndex 

ofObject: blockContext 
withValue: initiallP. 

self storeStackPointerVatue: argumentCount 
inContext: blockContext. 

memory storePointer: Callerlndex 
ofObject: blockContext 
withValue: activeContext. 

self newActiveContext: btockContext] 

The primit iveValueWithArgs rou t ine  is associated w i t h  the 
valueWithArguments: messages in BlockContext. I t  is bas ica l ly  the same 
as the primitiveValue rou t ine  except tha t  the block arguments  come in a 
single Array a rgumen t  to the valueWithArguments: message instead of as 
multiple arguments to the revalue" message. 

primitiveValueWithArgs 
i argumentArray blockContext blockArgumentCount 
arrayCtass arrayArgumentCount initialtP I 
argumentArray ~- self popStack. 
blockContext ~- self popStack. 
blockArgumentCount ~ self argumentCountOfBIock: blockContext. 
arrayCtass ~- memory fetchClassOf: argumentArray. 
self success: (arrayClass = ClassArrayPointer). 
self success 

ifTrue: [arrayArgumentCount ~ memory fetchWordLengthOf: 
argumentArray. 

self success: arrayArgumentCount=blockArgumentCount]. 
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self success 
ifTrue: [self transfer: arrayArgumentCount 

fromlndex: 0 
ofObject: argumentArray 
tolndex: TempFrameStart 
ofObject: blockContext. 

initiallP ,- memory fetchPointer: InitiallPIndex 
ofObject: blockContext. 

memory storePointer: InstructionPointerlndex 
ofObject: btockContext 
withValue: initiallP. 

self storeStackPointerValue: arrayArgumentCount 
inContext: blockContext. 

memory storePointer: Callerlndex 
ofObject: blockContext 
withValue: activeContext. 

self newActiveContext: blockContext] 
ifFalse: [self unPop: 2] 

The primitivePerform routine is associated with all ~perform" messages 
in Object (perform:, perform:with:, perform:with:with:, and so on). I t  is 
equivalent to sending a message to the receiver whose selector is the 
first argument of and whose arguments are the remaining arguments. 
It is, therefore, similar to the sendSelector:argumentCount: routine ex- 
cept that it must get rid of the selector from the stack before calling 
executeNewMethod and it must check that the CompiledMethod it finds 
takes one less argument that the "perform" message did, The primitive 
fails if the number of arguments does not match. 

primitivePerform 
I performSelector newReceiver selectorlndex I 
performSelector ~- messageSelector. 
messageSelector ~- self stackValue: argumentCount- 1. 
newReceiver ~- self stackValue: argumentCount. 
self IookupMethodlnCtass: (memory fetchClassOf: newReceiver). 
self success: (self argumentCountOf: newMethod)=(argumentCount-1). 
self success 

ifTrue: [selectorlndex ~ stackPointer-argumentCount -I- 1. 
self transfer: argumentCount- 1 

fromlndex: selectorindex -I- 1 
ofObject: activeContext 
tolndex: selectorlndex 
ofObject: activeContext. 

self pop: 1. 
argumentCount ,-- argumentCount- 1. 
self executeNewMethod] 

ifFalse: [messageSelector ~ performSelector] 
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The primitivePerformWithArgs rout ine is associated w i th  the 
perforrnWithArguments: messages in Object. I t  is basical ly the same as 
the primitivePerform rout ine except tha t  the message arguments  come in 
a single Array a rgument  to the performWithArguments: message instead 
of as multiple arguments to the ~perform" message. 

primitivePerformWithArgs 
I thisReceiver performSelector argumentArray arrayClass arraySize 
index I 
argumentArray ~ self popStack. 
arraySize ~ memory fetchWordLengthOf: argumentArray. 
arrayClass ~ memory fetchClassOf argumentArray. 
self success: (stackPointer + arraySize) 

< (memory fetchWordLengthOf: activeContext). 
self success: (arrayClass = ClassArrayPointer). 
self success 

ifTrue: [performSelector ,--- messageSelector. 
messageSetector ~- self popStack. 
thisReceiver ,- self stackTop. 
argumentCount ~ arraySize. 
index ~ 1. 
[index < = argumentCount] 

whiteTrue: [self push (memory fetchPointer: index-1 
ofObject: argumentArray). 

index ~ index --t- 1]. 
self IookupMethodlnClass: 

(memory fetchClassOf: thisReceiver). 
self success (self argumentCountOf: newMethod) 

=argumentCount. 
self success 

ifTrue: [self executeNewMethod] 
ifFalse: [self unPop: argumentCount. 

self push messageSelector. 
self push' argumentArray. 
argumentCount ~ 2. 
messageSelector ~ performSetector]] 

ifFalse: [self unPop: 1] 

The next four primitive routines (for primitive indices 85 through 88) 
are used for communication and scheduling of independent processes. 
The following routine initializes the indices used to access Processes, 
ProcessorSchedulers, and Semaphores. 

initializeSchedulerlndices 
"Class ProcessorScheduler" 
ProcessListslndex ~ 0. 
ActiveProcesslndex ~ 1. 
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" Class LinkedList" 
FirstLinklndex ~- 0. 
LastLinklndex ~- 1. 
" Class Semaphore" 
ExcessSignalslndex ~ 2. 
" Class Link" 
NextLinkindex ~ 0. 
" Class Process" 
SuspendedContexttndex ~ 1. 
Prioritylndex ~ 2. 
MyListlndex ~ 3 

Process switching mus t  be synchronized wi th  the execut ion of 
bytecodes. This is done using the following four in t e rp re t e r  registers  
and the  four routines:  checkProcessSwitch,  asynchronousSignal: ,  
synchronousSignal:,  and  transferTo:. 

Process-related Registers of the Interpreter 

newProcessWait ing 

newProcess 

semaphoreList  

semaphore lndex 

The newProcessWaiting register will be true if a process 
switch is called for and false otherwise. 

If newProcessWaiting is true then the newProcess register 
will point to the Process to be transferred to. 

The semaphoreList register points to an Array used by the 
interpreter to buffer Semaphores that should be signaled. 
This is an Array in Interpreter, not in the object memory. It 
will be a table in a machine-language interpreter. 

The semaphorelndex register holds the index of the last 
Semaphore in the semaphoreList buffer. 

The asynchronousSignal:  rou t ine  adds a Semaphore to the buffer.  

asynchronousSignal: aSemaphore 
semaphorelndex ~- s e m a p h o r e l n d e x  + 1. 

semaphoreList at: semaphorelndex put: aSemaphore 

The Semaphores will ac tua l ly  be signaled in the  checkProcessSwitch 
rou t ine  wh ich  calls the synchronousSignal:  rou t ine  once for each Sema- 
phore in the buffer.  I f  a Process is wa i t i ng  for the Semaphore, the 
synchronousSignal: rou t ine  resumes it. I f  no Process is wa i t ing ,  the 
synchronousSignal:  rou t ine  inc rements  the Semaphore 's  count  of excess 
signals. The isEmptyList:, resume:, and removeFirstLinkOfList:  rout ines 
a redescr ibed  la te r  in  th is  section. 
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synchronousSignah aSemaphore 
I excessSignals I 
(self isEmptyList: aSemaphore) 

ifTrue: [excessSignals ~ self fetchlnteger: ExcessSignalsindex 
ofObject: aSemaphore. 

self storelnteger: ExcessSignalslndex 
ofObject: aSemaphore 
withValue: excessSignals + 1] 

ifFalse: [self resume: (self removeFirstLinkOfList: aSemaphore)] 

The transferTo: routine is used whenever the need to switch processes is 
detected. It sets the newProcessWaiting and newProcess registers. 

transferTo: aProcess 
newProcessWaiting ~ true. 
newProcess ~ aProcess 

The checkProcessSwitch routine is called before each bytecode fetch (in 
the interpret routine) and performs the actual process switch if one has 
been called for. It stores the  active context  pointer  in the old Process,  
stores the  new Process  in the ProcessorScheduler ' s  active process field, 
and loads the new active context  out of t ha t  Process. 

checkProcessSwitch 
I activeProcessl 
[semaphoretndex > O] 

whileTrue: 
[self synchronousSignal: (semaphoreList at: semaphorelndex). 
semaphorelndex ~- semaphorelndex-- 1]. 

newProcessWaiting 
ifTrue: [newProcessWaiting ~ false. 

activeProcess ~- self activeProcess. 
memory storePointer: SuspendedContextlndex 

ofObject: activeProcess 
withValue: activeContext. 

memory storePointer: ActiveProcesslndex 
of Object: self schedulerPointer 
withVatue: newProcess. 

self newActiveContext: 
(memory fetchPointer: SuspendedContextlndex 

ofObject: newProcess)] 

Any routines desiring to know what the active process will be must 
take into account the newerocessWaiting and newerocess registers. 
Therefore, they use the following routine. 
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act iveProcess 
newProcessWaiting 

ifTrue: [l'newProcess] 
6 

ifFalse: [1memory fetchPointer: ActiveProcesslndex 
of Object: self schedulerPointer] 

The instance of ProcessorScheduler responsible for scheduling the actu- 
al processor needs to be known globally so that  the primitives will 
know where to resume and suspend Processes. This ProcessorScheduler 
is bound to the name Processor in the Smalltalk global dictionary. The 
association corresponding to Processor has a guaranteed object po in t e r ,  
so the appropriate ProcessorScheduler can be found. 

schedulerPointer  
1memory fetchPointer: Valuelndex 

ofObject: SchedulerAssociationPointer 

When S m a l l t a l k  is started up, the initial active context is found 
through the scheduler's active Process. 

f i rs tContext  
newProcessWaiting ~- false. 
1"memory fetchPointer: SuspendedContextlndex 

of Object: self active Process 

If the object memory automatically deallocates objects on the basis of 
reference counting, special consideration must be given to reference 
counting in the process scheduling routines. During the execution of 
some of these routines, there will be times at which there are no refer- 
ences to some object from the object memory (e.g., after a Process has 
been removed from a Semaphore but before it h a s b e e n  placed on one 
of the ProcessorScheduler's LinkedLists). I f  the object memory uses gar- 
bage collection, it simply must avoid doing a collection in the middle of 
a primitive routine. The routines listed here ignore the reference-count- 
ing problem in the interest of clarity. Implementations using reference 
counting will have to modify these routines in order to prevent prema- 
ture deallocation of objects. 

The following three routines are used to manipulate LinkedLists. 

removeFirstLinkOfList :  aLinkedList  
I firstLink lastLink nextLink I 
firstLink ~- memory fetchPointer: FirstLinktndex 

ofObject: aLinkedList. 
lastLink ~- memory fetchPointer: LastLinklndex 

ofObject: aLinkedList. 
lastLink = firstLink 

ifTrue: [memory storePointer: FirstLinklndex 
ofObject: aLinkedList 
withValue: NilPointer. 
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memory storePointer: LastLinklndex 
ofObject: aLinkedList 
withValue: NilPointer] 

ifFalse: [nextLink ~- memory fetchPointer: NextLinklndex 
ofObject: firstLink. 

memory storePointer: FirstLinklndex 
ofObject aLinkedList 
withValue: nextLink]. 

memory storePointer: NextLinklndex 
ofObject: firstLink 
withValue" NilPointer. 

l"firstLink 
addLastLink: aLink toList: aLinkedList 

t lastLinkl 
(self isEmptyList: aLinkedList) 

ifTrue' [memory storePointer: FirstLinklndex 
ofObject: aLinkedList 
withValue aLink] 

ifFalse: [lastLink ~ memory fetchPointer: LastLinktndex 
ofObject: aLinkedList. 

memory storePointer: NextLinklndex 
ofObject: lastLink 
withValue' aLink]. 

memory storePointer: LastLinklndex 
ofObject: aLinkedList 
withValue" aLink. 

memory storePointer: MyListlndex 
ofObject: aLink 
withValue: aLinkedList 

isEmptyList: aLinkedList 
1'(memory fetchPointer FirstLinklndex 

ofObject: aLinkedList) 
= NilPointer 

These three LinkedList routines are used, in turn,  to implement  the fol- 
lowing two routines tha t  remove links from or add links to the 
ProcessorScheduler 's  LinkedLists of quiescent Processes.  

wakeHighestPriority 
I priority processLists processList I 
processLists ~- memory fetchPointer: ProcessListslndex 

of Object: self schedulerPointer. 
priority ~- memory fetchWordLengthOf: processLists. 
[processList ~- memory fetchPointer: priority-1 

ofObject: processLists. 
self is EmptyList: processList] whileTrue: [priority ~- priority - 1]. 
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1self removeFirstLinkOfList: processList! 
sleep: aProcess 

I priority processLists processList I 
priority ~- self fetchlnteger: Prioritylndex 

ofObject: aProcess. 
processLists ~ memory fetchPointer: ProcessListslndex 

of Object: self schedulerPointer. 
process List ~- memory fetchPointer: pr ior i ty- 1 

ofObject: processLists. 
self addLastLink: aProcess 

toList: processList 

These two routines are used, in turn, to implement the following two 
routines that actually suspend and resume Processes. 

suspendActive 
self transferTo: self wakeHighestPriority 

resume: aProcess 
I activeProcess activePriority newPriority I 
activeProcess ~ self activeProcess. 
activePriority ~ self fetchlnteger: Prioritytndex 

ofObject: activeProcess. 
newPriority ~- self fetchlnteger: Prioritylndex 

ofObject: aProcess. 
newPriority > activePriority 

ifTrue: [self sleep: activeProcess. 
self transferTo: aProcess] 

ifFalse: [self sleep: aProcess] 

The primit iveSignal routine is associated with the signal message in 
Semaphore. Since i t  is called in the process of interpreting a bytecode, 
it can use the synchronousSignal: routine. Any other signaling of Sema- 
phores by the interpreter (for example, for timeouts and keystrokes) 
must use the asynchronousSignal: routine. 

primitiveSignal 
self synchronousSignal: self stackTop. 

The primit iveWait r ou t i ne  is associated, w i t h  the wait message in Sema- 
phore. If the receiver has an excess signal count greater than O, the 
primitiveWait routine decrements the count. If the excess signal count is 
O, the primitiveWait suspends the active Process and adds it to the re- 
ceiver's list of Processes. 

primitiveWait 
I thisReceiver excessSignals I 
thisReceiver ~ self stackTop. 
excessSignals ~ self fetchlnteger: ExcessSignalslndex 

ofObject: thisReceiver. 
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excessSignals > 0 
ifTrue: [self storelnteger: ExcessSignalslndex 

ofObject: thisReceiver 
withValue: excessSignals- 1] 

ifFalse: [self addLastLink: self activeProcess 
toList: thisReceiver. 

self suspendActive] 

The primit iveResume routine is associated with the resume message in 
Process. It simply calls the resume: routine with the receiver as argu- 
m e n t .  

primitiveResume 
self resume: self stackTop 

The primit iveSuspend rout ine is associated with the suspend message in 
Process. The primitiveSuspend rout ine  suspends the receiver i f  i t  is the 
active Process. If the receiver is not the active Process, the primitive 
fails. 

primitiveSuspend 
self success: self stackTop=self activeProcess. 
self success 

ifTrue: [self popStack. 
self push: NilPointer. 
self suspendActive] 

The primitiveFlushCache routine removes the contents of the method 
cache. Implementa t ions  tha t  do not use a method cache can t rea t  this 
as a no-op. 

primitiveFlushCache 
self initializeMethodCache 

Input/Output 
Primitives 

The inpu t /ou tpu t  primitive routines provide Smal l ta lk  with access to 
the s t a t e  of the hardware  devices. Since the implementa t ion of these 
routines will be dependent  on the s t ruc ture  of the implement ing  ma- 
chine, no routines will be given, just  a specification of the behavior of 
the primitives. 

dispatchlnputOutputPrimitives 
primitivelndex = 90 ifTrue: [1'self primitiveMousePoint]. 
primitivelndex = 9I ifTrue: [1'self primitiveCursorLocPut]. 
primitivelndex = 92 ifTrue: [1self primitiveCursorLink]. 
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primitivelndex 
pnmitivelndex 
primitivelndex 
pnmitivelndex 
primitivelndex 
prmmitivelndex 
prlmitivelndex 
pnmitivelndex 
pnmitivelndex 
primitivelndex 
primitivelndex 
primitivelndex 
primitivelndex 

= 93 ifTrue: [tself. primitivelnputSemaphore]. 
= 94 ifTrue: [1'self primitiveSamplelnterval]. 
= 95 ifTrue: [1'self primitivelnputWord]. 
= 96 ifTrue: [1'self primitiveCopyBits]. 
= 97 ifTrue: [1'self primitiveSnapshot]. 
= 98 ifTrue: [1self primitiveTimeWordslnto]. 
= 99 ifTrue: [1`self primitiveTickWordslnto]. 
= 100 ifTrue: [ tself  primitiveSignalAtTick]. 
= 10t ifTrue: [ tself  primitiveBeCursor]. 
= 102 ifTrue: [1"self primitiveBeDisplay]. 
= 103 ifTrue: [1`self primitiveScanCharacters]. 
= t04 ifTrue: [ lsel f  primitiveDrawLoop]. 
= t05 ifTrue: [1`self primitiveStringReplace] 

Four of the primitive routines are used to detect actions by the user. 
The two types of user action the system can detect are changing the 
state of a bi-state device and moving the pointing device. The bi-state 
devices are the keys on the keyboard, three buttons associated with the 
pointing device and an optional five-paddle keyset. The buttons associ- 
ated with the pointing device may or may not actually be on the physi- 
cal pointing device. Three of the four input primitive routines 
(p r im i t i ve lnpu tSemaphore ,  p r im i t i ve lnpu tWord ,  and pr im i t i veSample ln te rva l )  
provide an active or event-initiated mechanism to detect either state 
change or movement. The other primitive routine (primitiveMousePoint) 
provides a passive or polling mechanism to detect pointing device loca- 
tion. 

The event-initiated mechanism provides a buffered stream of 16-bit 
words that encode changes to the bi-state devices or the pointing device 
location. Each time a word is placed in the buffer, a Semaphore is sig- 
naled (using the asynchronousSignal: routine). The Semaphore to signal 
is initialized by the primitivelnputSemaphore routine. This routine is as- 
sociated with the primlnputSemaphore: message in InputState and the 
argument of the message becomes the Semaphore to be signaled. The 
primitivelnputWord routine (associated with the primlnputWord message 
in InputState) returns the next word in the buffer, removing it from the 
buffer. Since the Semaphore is signaled once for every word in the buff- 
er, the Smalltalk process emptying the buffer should send the Sema- 
phore a wait message before sending each primlnputWord message. There 
are six types of 16-bit word placed in the buffer. Two types specify the 
t ime  of an event, two types specify state change of a bi-state device, and 
two types specify pointing device movement. The type of the word is 
stored in its high order four bits. The low order 12-bits are referred to 
as  the parameter. 

The six type codes have the following meanings. 
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type code meaning 

Delta time (the parameter is 
the number of milliseconds 
since the last event of any 
type) 
X location of the pointing 
device 
Y location of the pointing 
device 
Bi-state device turned on 
(the parameter indicates 
which device) 
Bi-state device turned off 
(the parameter indicates 
which device) 
Absolute time (the parame- 
ter is ignored, the next two 
words in the buffer contain 
a 32-bit unsigned number 
that is the absolute value of 
the millisecond clock) 

Whenever  a device state changes or the pointing device moves, a time 
word is put into the buffer. A type 0 word will be used if the number  of 
milliseconds since the last event can be represented in 12 bits. Other- 
wise, a type 5 event is used followed by two words representing the ab- 
solute time. Note tha t  the Semaphore will be signaled 3 times in the 
lat ter  case. Following the time word(s) will be one or more words of 
type 1 through 4. Type 1 and 2 words will be generated whenever the 
pointing device moves at all. It should be remembered tha t  Small talk 
uses a left-hand coordinate system to talk about the screen. The origin 
is the upper left corner of the screen, the x dimension increases toward 
the right, and the y dimension increases toward the bottom. The mini- 
mum time span between these events can be set by the 
primitiveSamplelntervat routine which is associated with the 
primSamplelnterval: message in lnputState. The a rgument  to 
primSamplelnterval: specifies the number  of milliseconds between move- 
ment  events if the pointing device is moving constantly. 

Type 3 and 4 words use the low-order eight bits of the parameter  to 
specify which device changed state. The number ing scheme is set up to 
work with both decoded and undecoded keyboards. An undecoded key- 
board is made up of independent keys with independent  down and up 
transitions. A decoded keyboard consists of some independent  keys and 
some ~meta" keys (shift and escape) tha t  cannot be detected on their  
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own, but  tha t  change the value of the other keys. The keys on a 
decoded keyboard only indicate their  down transit ion,  not their  up t ran-  
sition. On an undecoded keyboard, the s tandard  keys produce parame-  
ters tha t  are the ASCII code of the charac ter  on the keytop without 
shift or control information (i.e,, the key with ~A" on it produces the 
ASCII for '~a" and the key with ~2" and ¢¢@" on it produces the ASCII 
for ~2"). The other  s tandard  keys produce the following parameters .  

key parameter 

backspace 8 
tab 9 
line feed 10 
return 13 
escape 27 
space 32 
delete 127 

For an undecoded keyboard, the meta  keys have the following parame- 
ters. 

key parameter 

left shift 136 
right shift 137 
control 138 
alpha-lock 139 

For a decoded keyboard, the full shifted and ~controlled" ASCII should 
b e  used as a pa rame te r  a n d  successive type 3 and 4 words should be 
produced for each keystroke. 

The remain ing  bi-state devices have the following parameters .  

key parameter 

left or top "pointing device" 128 
button 

center '~pointing device" 129 
button 

right or bottom '~pointing device" 130 
button 

keyset paddles right to left 131 through 135 



651 
Inpu t /Ou tpu t  Primitives 

The primitiveMousePoint routine allows the location of the pointing de- 
vice to be polled. It allocates a new Point and stores the location of the 
pointing device in its x and y fields. 

The display screen is a rectangular  set of pixels tha t  can each be one 
of two colors. The colors of the pixels are determined by the individual 
bits in a specially designated instance of DisplayScreen. DisplayScreen is 
a subclass of Form. The instance of DisplayScreen tha t  should be used to 
update the screen is designated by sending it the message beDisplay. 
This message invokes the primitiveBeDisplay primitive routine. The 
screen will be updated from the last recipient of beDisplay approximate- 
ly 60 t imes a second. 

Every time the screen is updated, a c u r s o r  is ORed into its pixels. 
The cursor image is determined by a specially designated instance of 
Cursor. Cursor is a subclass of Form whose instances always have both 
width and height of 16. The instance of Cursor tha t  should be ORed into 

the screen is designated by sending it the message beCursor. This mes- 
sage invokes the primitiveBeCursor primitive routine. 

The location at which the cursor image should appear is called the 
c u r s o r  l o c a t i o n .  The cursor location may be linked to the location of the 
pointing device or the two locations may be independent.  Whether  or 
not the two locations are linked is determined by sending a message to 
class Cursor with the selector cursorLink: and either true or false as the 
argument .  If the a rgument  is true, then the two locations will be t he  
same; if it is false, they are independent.  The cursorLink: message in 
Cursor's metaclass invokes the primitiveCursorLink primitive routine. 

The cursor can be moved in two ways.  If the cursor and pointing de- 
vice have been linked, then moving the pointing device moves the 
cursor. The cursor can also be moved by sending the message 
primCursorLocPut: to an instance of lnputState. This message takes a 
Point as an a rgument  and invokes the primitiveCursorLocPut primitive 
routine. This routine moves the cursor to the location specified by the 
argument .  If the cursor and pointing device are linked, the 
primitiveCursorLocPut routine also changes the location indicated by the 
pointing device. 

The primitiveCopyBits routine is associated with the copyBits message 
in BitBIt and performs an operation on a bi tmap specified by the receiv- 
er. This routine is described in Chapter  18. 

The primitiveSnapshot routine writes the current  state of the object 
memory on a file of the same format as the Smalltalk-80 release file. 
This file can be resumed in exactly the same way tha t  the release file 
was originally started. Note tha t  the pointer of the active context at the 
time of the primitive call must  be stored in the active Process on the 
file. 

The primitiveTimeWordslnto and primitiveTickWordslnto routines are 
associated with the timeWordslnto: and tickWordsinto: messages in Sen- 
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sor. Both of these messages take a byte indexable object of at least four 
bytes as an argument.  The primitiveTimeWordslnto routine stores the 
number of seconds since the midnight previous to January  1, 1901 as an 
unsigned 32-bit integer into the first four bytes of the argument.  The 
primitiveTickWordslnto routine stores the number of ticks of the millisec- 
ond clock (since it last was reset or rolled over) as an unsigned 32-bit 
integer into the first four bytes of the argument.  

The primitiveSignalAtTick routine is associated with the siflnal:atTick: 
messages in ProcessorScheduler. This message takes a Semaphore as 
the first argument  and a byte indexable object of at least four bytes as 
the second argument.  The first four bytes of the second argument  are 
interpreted as an unsigned 32-bit integer of the type stored by the 
primitiveTickWordslnto routine. The interpreter  should signal the Sema- 
phore argument  when the millisecond clock reaches the value specified 
by the second argument.  If the specified time has passed, the Sema- 
phore i s s igna led  immediately. This primitive signals the last Sema- 
phore to be passed to it. If a new call is made on it before the last t imer 
value has been reached, the last Semaphore will not be signaled. If the 
first a rgument  is not a Semaphore, any currently waiting Semaphore 
will be forgotten. 

The primitiveScanCharacters routine is an optional primitive associat- 
ed with the scanCharactersFrom:to:in:rightX:stopConditions:displaying 
message in CharacterScanner. If the function of the Smalltalk method 
is duplicated in the primitive routine, text display will go faster. T h e  
primitiveDrawLoop routine is similarly an optional primitive associated 
with the drawLoopX:Y: message in BitBIt. If the function of the 
Smalltalk method is duplicated in the primitive routine, drawing lines 
will go faster. 

System 
Primitives 

The seven final primitives are grouped together as system primitives. 

dispatchSystemPrimitives 
primitivelndex = 110 ifTrue: [ tself  primitiveEquivatent]. 
primitivelndex = 111 ifTrue: [1self primitiveClass]. 
primitivelndex = 112 ifTrue: [ tself  primitiveCoreLeft]. 
primitivelndex = t 13 ifTrue: [tsetf primitiveQuit]. 
primitivetndex = 114 ifTrue: [1"self primitiveExitToDebugger]. 
primitivelndex = 115 ifTrue: [ tsel f  primitiveOopsLeft]. 
primitivelndex = 116 ifTrue: [ tself  primitiveSignalAtOopsLeftWordsLeft] 
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The primitiveEquivalent routine is associated with the = = message in 
Object. It re turns  true if the receiver and a rgument  are the  same object 
(have the same object pointer) and false otherwise. 

primitiveEquivalent 
I thisObject otherObject I 
otherObject ~- self popStack. 
thisObject ~ self popStack. 
thisObject = otherObject 

ifTrue: [self push: TruePointer] 
ifFalse: [self push: FalsePointer] 

The primitiveClass rout ine is associated with the class message in Object. 
It re turns  the object pointer of the receiver's class. 

primitiveClass 
1 instancet 
instance ~ self popStack. 
self push: (memory fetchClassOf: instance) 

The pr imit iveCoreLeft  rout ine re turns  the number  of unallocated words 
in  the object space. The primitiveQuit routine exits to another  operating 
system for the host machine,  if one exists. The primitiveExitToDebugger 
rout ine calls the machine language debugger, if one exists. 
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The two major components of any Small talk-80 implementa t ion  are the 
bytecode in te rpre te r  and the object memory.  Chapters  28 and 29 de- 
scribed an implementa t ion  of the bytecode interpreter .  This chapter  de- 
scribes an implementa t ion  of the object memory.  The function of the 
object memory  is to create, store, and destroy objects, and to provide ac- 
cess to their  fields. 

Memory-managemen t  systems fall into two major categories, real- 
memory implementat ions  and virtual-memory implementat ions.  In a 
rea l -memory implementat ion,  all the objects in the envi ronment  reside 
in p r imary  memory  tha t  is directly addressable by the program. In a 
v i r tua l -memory  implementat ion,  objects reside in more than  one level 
of a memory  h ierarchy and must  be shuffled among the various levels 
during execution. This chapter  describes the design of Real- 
ObjectMemory, an object memory  for a rea l -memory Smalltalk-80. 

Although Smal l ta lk  can be implemented on computers  of any word 
size, this presentat ion will be simplified by several assumptions in the 
s tandard  algorithms. The routines of RealObjectMemory assume 

• tha t  there  are eight bits in a byte, 

• tha t  there  are two bytes in a word, 

• tha t  the .more significant byte of a word precedes the less signifi- 
cant  byte, and 

• tha t  the target  computer  is word addressed and word indexed. 

Moreover, the routines assume tha t  the address space is part i t ioned 
into 16 or fewer segments of 64K (65,536) words apiece. The s tandard  al- 
gori thms can be systematical ly  changed to adapt  them to hardware  
with different properties. The routines of RealObjectMemory deal al- 
most exclusively with 16-bit integers, as would a machine- language im- 
plementat ion.  

To access locations in the address space of the host machine,  machine 
language implementa t ions  use load and store instructions. In 
RealObjectMemory, the load and store instructions are symbolized by 
messages to an instance of RealWordMemory whose name is 
wordMemory. The protocol of RealWordMemory is shown below 

RealWordMemory instance protocol 

segment: s word: w Return word w of segment s 
segment: s word: w put: value Store value into word w of segment s; return 

value. 
segment: s word: w byte: byteNumber 

Return byte byteNumber of word w of segment s. 
segment: s word: w byte: byteNumber put: value 

Store value into byte byteNumber of word w of 
segment s; return value. 
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segment: s word: w bits: firstBitlndex to: lastBitlndex 
Return bits firstBitlndex to lastBitlndex of word 
w of segment s. 

segment: s word: w bits: firstBitlndex to: lastBitlndex put: value 
Store value into bits firstBitlndex to lastBitlndex 
of word w of segment s; return value. 

When it is necessary to distinguish the two bytes of a word, the left 
(more significant) byte will be referred to with the index 0 and the right 
(less significant) byte with the index 1. The most significant bit in a 
word will be referred to with the index 0 and the least significant with 
the index 15. Note that  self is an instance of class R e a l O b j e c t M e m o r y  in 
all routines of this chapter. 

The most important  thing about any implementation of the object 
memory is that  it conform to the functional specification of the object 
memory interface given in Chapter 27. This chapter describes a range 
of possible implementations of that  interface. In particular, simple ver- 
sions of some routines are presented early in the chapter and refined 
versions are presented later as the need for those refinements becomes 
clear. These preliminary versions will be flagged by including the com- 
ment, "**Preliminary Version**", on the first line of the routine. 

Heap Storage 

Figure 30.1 

In a real-memory implementation of Smalltalk, all objects are stored in 
an area called the heap. A new object is created by obtaining space to 
store its fields in a contiguous series of words in the heap. An object is 
destroyed by releasing the heap space it occupied. The format of an al- 
located object in the heap is shown in Figure 30.1. The actual data of 
the object are preceded by a two-word header. The size field of the 
header indicates the number of words of heap that  the object occupies, 
including the header. It is an unsigned 16-bit number, and can range 
from 2 up to 65,536. 

size = N + 2 

CLASS 

Field 0 

Field 1 

Field N - 2 

Field N - 1 

i Header 

Body 
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W h e n  m e m o r y  is segmented ,  it is Usually conven ien t  for a Smal l t a lk -80  
i m p l e m e n t a t i o n  to divide the  heap  into heap segments, each  in a differ- 
en t  m e m o r y  segment .  As s t a t ed  ear l ier ,  the  rou t ines  in this  c h a p t e r  as- 
s u m e  t h a t  the  t a r g e t  c o m p u t e r  is s egmen ted  into address  spaces of 
65,536 words.  

Heap Related Constants 

HeapSegmentCount 

FirstHeapSegment 

LastHeapSegment 

HeapSpaceStop 

HeaderSize 

The number of heap segments used in the implementation. 

The index of the first memory segment used to store the 
heap. 

The index of the last memory segment used to store the 
heap (FirstHeapSegment + HeapSegmentCount- 1). 

The address of the last location used in each heap segment. 

The number of words in an object header (2). 

Figure 30.2 
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Suppose for a moment  tha t  an object once allocated never changes its 
location in the heap. To allocate a new object, a space between existing 
objects must  be found tha t  is large enough to hold the new object. After 
a While, the memory '~fragments" or '~checkerboards." That  is, an allo- 
cation request is bound to arrive for an amount  of space smaller than  
the total available memory but larger than  any of the disjoint pieces 
(Figure 30.2a). This can occur even if there is a large amount  of avail- 
able space and a relatively small allocation request. 

Fragmenta t ion  cannot  be tolerated in an interactive system tha t  is 
expected to preserve a dynamic envi ronment  for hundreds  of hours or 
more without  reinitialization. Therefore when memory  fragments,  it 
must  be compacted. Memory is compacted by moving all objects tha t  
are still in use towards one end of the heap, squeezing out all the free 
space between them and leaving one large unallocated block at the oth- 
er end (see Figure 30.2b). 

Each heap segment is compacted separately. Even on a linearly-ad- 
dressed machine it is preferable to segment a lar~ge heap to reduce the 
durat ion of each compaction. 

The Object 
Table 

When an object is moved during compaction, all pointers to its heap 
memory must  be updated. If many  other objects contain pointers direct- 
ly to the old location, then it is t ime-consuming on a sequential comput- 
er to find and update those references to point to the new location. 
Therefore to make the pointer update inexpensive, only one pointer to 
an object's heap memory  is allowed. That  pointer is stored in a table 
called the object table. All references to an object must  be indirected 
through the object table. Thus, the object pointers found in Small ta lk  
objects are really indices into the object table, in which pointers into 
the heap are in tu rn  found (see Figure 30.3). 

Indirection through the object table provides another  benefit. The 
number  of objects of average size Z addressable by an n-bit pointer is on 
the order of 2 n instead of 2n/Z. In our experience, objects average 10 
words in size (Z~10), so a significant gain in address space can be real- 
ized by indirection. 

Throughout  the object table, abandoned entries can occur tha t  are 
not associated with any space on the heap. These entries are called free 
entries and their  object pointers are called free pointers. It is easy to re- 
cycle a free entry, because all object table entries are the same size. 
Compaction of the object table is difficult and generally unnecessary, so 
it is not supported. 

Although the heap is segmented, the object table is stored in a single 
segment so tha t  an object pointer can be 16 bits and thus fit in one 

= 
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object object 
pointer table heap 

object 
pointer 

Figure 30.3 

Object Pointers 

Figure 30.4 

word. Consequently, the number of objects that can be addressed in real 
memory is limited to the number of object table entries that  can fit in 
one segment. A common arrangement  is for each object table entry to 
occupy two words and for the entire table to occupy 64K words or less, 
yielding a maximum capacity of 32K objects. 

An object pointer occupies 16 bits, apportioned as in Figure 30.4. 

I' ObjectTablelndex ! Oi 

I Immediate Signed Integer Jl ! 

When the low-order bit of the object pointer is 0, the first 15 bits are an 
index into the object table. Up to 215 (32K) objects can be addressed. 
When the low-order bit of the object pointer is 1, the first 15 bits are an 
immediate signed integer, and no additional space in the object table or 
the heap is utilized. The benefit of giving special t reatment to integers 
in the range ±214 is that they come and go with high frequency during 
arithmetic and many other operations. The cost of their efficient repre- 
sentation is the number of tests the interpreter must perform to distin- 
guish object pointers of small integers from object pointers of other 
objects. 

The islntegerObject: routine tests the low order bit of objectPointer to 
determine whether the rest of the pointer is an immediate integer val- 
ue rather than an object table index. 

islntegerObject: objectPointer 
t(objectPointer bitAnd: 1) = 1 
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Every other object-access routine requires tha t  its object pointer argu- 
ment  real ly be an object table index. The cantBelntegerObject: routine 
is used to t rap  erroneous calls. If the hardware,  the bytecode interpret-  
er, and the object memory  manage r  are bug free, then this error  condi- 
tion is never encountered.  

cantBelntegerObject." objectPointer 
(self islntegerObject: objectPointer) 

ifTrue: [Sensor notify:' A small integer has no object table entry'] 

The format  of an object table en t ry  is shown in Figure 30.5. If the free 
en t ry  bit is on, then the ent ry  is free. If the free ent ry  bit is off, then 
the four segment  bits select a heap segment  and the 16 location bits lo- 
cate the beginning of the space in tha t  segment  tha t  is owned by the 
object table entry.  The count field, the odd length bit (O), and the point- 
er fields bit will be explained la ter  in the chapter.  

LOCATION I 

Object Table Related Constants 

ObjectTableSegment 

ObjectTableStart 

ObjectTableSize 

HugeSize 

NilPointer 

The number of the memory segment containing the object 
table. 

The location in objectTableSegment of the base of the ob- 
ject table. 

The number of words in the object table (an even number 
-< 64K). 

The smallest number that is too large to represent in an 
eight-bit count field; that is, 256. 

The object table index of the object nil 

The following set of routines accesses the first word of object table 
entr ies in four different ways: loading the whole word, storing the 
whole word, loading a bit field, and storing a bit field. These routines in 
tu rn  utilize routines of wordMemory, an instance of RealWordMemory. 
They assume tha t  objectPointer is expressed as an even word offset rela- 
tive to objectTableStart, the base of the object table in segment  
objectTableSegment. Note tha t  ot is an abbreviation for ~object table." 

ot: objectPointer 
self cantBetntegerObject: objectPointer. 
fwordMemory segment: ObjectTableSegment 

word: ObjectTableStart + objectPointer 
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ot: objectPointer put: value 
self cantBelntegerObject: objectPointer. 
TwordMemory segment: ObjectTableSegment 

word: ObjectTableStart + objectPointer 
put: value 

ot: objectPointer bits: firstBitlndex to: lastBitlndex 
self cantBelntegerObject: objectPointer. 
1"wordMemory segment: ObjectTableSegment 

word: ObjectTableStart + objectPointer 
bits: firstBitlndex 
to: lastBitlndex 

ot: objectPointer bits: firstBitlndex to: lastBiUndex put: value 
self cantBelntegerObject: objectPointer. 
1"wordMemory segment: ObjectTableSegment 

word: ObjectTableStart + objectPointer 
bits: firstBitlndex 
to: lastBitlndex 
put: value 

The following 12 object-access subroutines load or store the various 
fields of the object table entry of objectPointer. 

countBitsOf: objectPointer 
t self ot: objectPointer bits: 0 to: 7 

countBitsOf: objectPointer put: value 
1self ot: objectPointer bits: 0 to: 7 put: value 

oddBitOf: objectPointer 
1'self ot: objectPointer bits: 8 to: 8 

oddBitOf:-objectPointer put: value 
t self ot: objectPointer bits: 8 to: 8 put: value 

pointerBitOf: objectPointer 
t self ot: objectPointer bits: 9 to: 9 

pointerBitOf: objectPointer put: value 
tself ot: objectPointer bits: 9 to: 9 put: value 

freeBitOf: ,objectPointer 
1"self ot: objectPointer bits: 10 to: 10 

freeBitOf: objectPointer put: value 
tself ot: objectPointer bits: 10 to: 10 put: value 

segmentBitsOf: objectPointer 
1self ot: objectPointer bits: 12 to: 15 

segmentBitsOf: objectPointer put: value 
tself ot: objectPointer bits: t2 to: 15 put: value 

IocationBitsOf: objectPointer 
self cantBelntegerObject: objectPointer. 
twordMemory segment: ObjectTableSegment 

word: ObjectTableStart + objectPointer + 1 
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IocationBitsOf: objectPointer put: value 
self cantBelntegerObject: objectPointer. 
1'wordMemory segment: ObjectTabteSegment 

word: ObjectTabteStart -I-objectPointer + 1 
put: value 

For objects tha t  occupy a chunk of heap storage (those whose free bit is 
0), the following four object-access subroutines load or store words or 
bytes from the chunk. 

heapChunkOf: objectPointer word: offset 
twordMemory segment: (self segmentBitsOf: objectPointer) 

word: ((self IocationBitsOf: objectPointer) --I- offset) 
heapChunkOf: objectPointer word: offset put: value 

TwordMemory segment: (self segmentBitsOf: objectPointer) 
word: ((self IocationBitsOf: objectPointer) + offset) 
put: value 

heapChunkOf: objectPointer byte: offset 
rwordMemory segment: (self segmentBitsOf: objectPointer) 

word: ((self IocationBitsOf: objectPointer) + (offset//2)) 
byte: (offset\ \2) 

heapChunkOf: objectPointer byte: offset put: value 
l'wordMemory segment: (self segmentBitsOf: objectPointer) 

word: ((self IocationBitsOf: objectPointer)+ (offset//2)) 
byte: (offset\ \2) put: value 

The next four object-access subroutines are more specialized in tha t  
they load or store words of the object header. 

sizeBitsOf: objectPointer 
tself heapChunkOf: objectPointer word: 0 

sizeBitsOf: objectPointer put: value 
t self heapChunkOf: objectPointer word: 0 put: value 

classBitsOf: objectPointer 
1'self heapChunkOf: objectPointer word: 1 

ciassBitsOf: objectPointer put: value 
1`self heapChunkOf: objectPointer word: 1 put: value 

The remaining two object-access subroutines are functionally identical 
to sizeBitsOf: in the versions shown below. Later  in this chapter,  refine- 
ments  to the object-memory manager  will require new versions of both 
of these subroutines tha t  will re turn  something different from the ob- 
ject size in certain cases. For tha t  reason, these methods are marked 
'~preliminary." 

lastPointerOf: objectPointer .... Preliminary Version** " 
1"self sizeBitsOf: objectPointer 

spaceOccupiedBy: objectPointer .... Preliminary Version**" 
1'self sizeBitsOf: objectPointer 
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Una lloca ted Space 
All f ree  en t r i e s  in the  object  t ab le  a re  kep t  on a l inked  list  h e a d e d  a t  
the  locat ion n a m e d  freePointerkist .  The  l ink  f rom one f ree  e n t r y  to the  
nex t  is an  object po in t e r  in its locat ion field (see F i g u r e  30,6). 

Figure 30.6 
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U n a l l o c a t e d  space  in the  heap  is g rouped  into free chunks (contigu- 
ous blocks) of a s so r t ed  sizes and  each  of those  f ree  c h u n k s  is ass igned  
an  object t ab le  en t ry .  F r e e  c h u n k s  a re  l inked  t o g e t h e r  on lists, each  
c o n t a i n i n g  c h u n k s  of the  s a m e  size. The  l ink  f rom one free  c h u n k  to the  
n e x t  is in its class field (F igure  30.7). To keep  the  tab le  of l ist  heads  
smal l ,  all  f ree c h u n k s  b igger  t h a n  20 words  a re  l inked  onto a s ingle  list. 

Free Space Related Constants 

FreePointerList  

BigSize 

FirstFreeChunkList  

LastFreeChunkLis t  

NonPointer  

The location of the head of the linked list of free object ta- 
ble entries, 

The smallest size of chunk that is not stored on a list 
whose chunks are the same size. (The index of the last free 
chunk list). 

The location of the head of the linked list of free chunks of 
size zero. Lists for chunks of larger sizes are stored in con- 
tiguous locations following FirstFreeChunkkist. Note that 
the lists at FirstFreeChunkList and FirstFreeChunkList + 1 
will always be empty since all chunks are at least two 
words long. 

The location of the head of the linked list of free chunks of 
size BiflSize or larger. 

Any sixteen-bit value that cannot be an object table index, 
e.g., 21~- 1. 

A s e p a r a t e  set  of f ree c h u n k  lists is m a i n t a i n e d  for each  heap  segmen t ,  
bu t  only one free po in t e r  list  is m a i n t a i n e d  for the  object  table.  No te  
t h a t  the  object t ab le  e n t r y  assoc ia ted  wi th  a ¢~free c h u n k "  is not  a ~'free 
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Figure 30.7 
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entry."  It is not on the free pointer  list, and its free en t ry  bit is not set. 
The way a free chunk is distinguished from an allocated chunk is by 
sett ing the count field of the object table en t ry  to zero for a free chunk 
and to nonzero for a n  allocated chunk. 

The following four routines manage  the free pointer list headed at 
freePointerList in segment  objectTableSegment. The first two routines 
simply load and store the list head. 

headOfFreePointerList 
l'wordMemory segment: ObjectTableSegment 

word: FreePointerList 
headOfFreePointerListPut: objectPointer 

twordMemory segment: ObjectTableSegment 
word: FreePointerList 
put: objectPointer 

The routine toFreePointerListAdd: adds a free en t ry  to the head of the 
list. 
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toFreePointerListAdd: objectPointer 
self IocationBitsOf: objectPointer 

put: (self headOfFreePointerList). 
self headOfFreePointerListPut' objectPointer 

The rout ine removeFromFreePointerList removes the f i rst  ent ry  from 
the list and returns it; if the list was empty, it returns nil. The distin- 
guished value NonPointer signifies the end of a linked list. A good value 
for NonPointer is 21~- 1, a value that  is easily detected on most comput- 
ers and that  cannot be confused with an actual object table entry ad- 
dress because it is an odd number. 

removeFromFreePointerList 
I objectPointerl 
objectPointer ~ self headOfFreePointerList. 
objectPointer NonPointer ifTrue: [tnil]. 
self headOfFreePointerListPut: (self IocationBitsOf: objectPointer). 
tobjectPointer 

The following routines manage the free-chunk lists headed at 
FirstFreeChunkList + 2 through LastFreeChunkList of each heap seg- 
ment. The i r  behavior is exactly analogous to that  of the routines above. 
The first three routines work in the segment specified or implied by 
their second parameter.  The fourth routine works in the segment speci- 
fied by the register zurrentSegment. 

headOfFreeChunkList: size inSegment: segment 
twordMemory segment' segment 

word: FirstFreeChunkList .4-- size 
headOfFreeChunkList." size 

inSegment: segment 
put: objectPointer 

TwordMemory segment: segment 
word" FirstFreeChunkList -I-- size 
put: objectPointer 

toFreeChunkList: size add." objectPointer 
I segment I 
segment ~ self segmentBitsOf: objectPointer. 
self classBitsOf: objectPointer 

put: (self headOfFreeChunkList: size inSegment: segment). 
self headOfFreeChunkList: size 

inSegment: segment 
put: objectPointer 

removeFromFreeChunkList: size 
I objectPointer secondChunk I 
objectPointer ~ self headOfFreeChunkList: size 

inSegment: currentSegment. 
objectPointer = NonPointer ifTrue [1'nil]. 
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secondChunk ~- self classBitsOf: objectPointer. 
self headOfFreeChunkList: size 

inSegment: currentSegment 
put: secondChunk. 

l'objectPointer 

The routine resetFreeChunkList:inSegment: resets the specified free- 
chunk list to an empty list. 

resetFreeChunkList: size inSegment: segment 
self headOfFreeChunkList: size 

inSegment: segment 
put: NonPointer 

Allocat ion and 
Deal locat ion  

To allocate an object, an entry  is obtained from the object table and suf- 
ficient space for the header and data  is obtained from some heap seg- 
ment.  The heap segment in which space is found is called the current 
segment. It becomes the first segment in which to look for space to allo- 
cate the next object. The only register required by the object memory 
holds the index of the current  segment. 

currentSegment 

Registers of the Object Memory 

The index of the heap segment currently being used for al- 
location. 

To allocate a ~Iarge" object requiring n words of heap space (n > = 
BigSize), the list beginning at kastFreeChunkList in the  current  segment 
is searched for a free chunk whose size is ei ther n words or at least n÷  
headerSize words. If the free chunk found is larger than  n words, it is 
subdivided and only n of the words are used to satisfy the allocation re- 
quest. 

To allocate a "small" object requiring n words of heap space 
(headerSize < = n < BigSize), the list beginning at freeChunkLists+ n is 
searched. If the list is nonempty,  its first free chunk is removed and 
used for the new object. If the list is empty, the above algori thm for 
"large" objects is used. 

If no chunk of sufficient size is found in the current  segment, then 
the next segment is made current  and the search continues there. The 
new current  segment is compacted first to improve the chances of find- 
ing sufficient space. In a compacted segment,  all the allocated objects 
are at one end and  the (presumably large) space at the other end is all 
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in one large chunk, the sole member of the list LastFreeChunkLists. If 
enough space is not found in any segment, execution is halted. 

When an object is dea]located, its space is recycled on the list of free 
chunks of the appropriate size. However, to simplify the presentat ion in 
this chapter, the s tandard algori thms leave the unused par t  of any 
subdivided chunk on the list of big free chunks even if tha t  par t  is 
small in size. 

An Allocation 
Algorithm 

The allocate:class: routine is presented below as an example of a simple 
allocation routine. It takes as parameters  the size of the desired chunk 
(in words, including header) and the class of the object tha t  chunk will 
represent.  The actual allocation routine takes several other parameters  
and so the allocate:class: routine will be flagged as preliminary.  A more 
complete routine, allocate:extra:class:, is presented in a later  section and 
the actual routine used in the implementat ion,  allocate:odd:pointer:- 
extra:class:, is presented after that.  

allocate: size class: c lassPointer  .... Preliminary Version .... 
I objectPointer I 
objectPointer ~- self allocateChunk: size. " a c t u a l l y  allocate" 
self classBitsOf: objectPointer put: classPointer. " f i l l  in class" 
" initialize all fields to the object table index of the object nil" 
(headerSize to: size-1) do: 

[ :i I self heapChunkOf: objectPointer word: i put: NilPointer]. 
self sizeBitsOf: objectPointer put: size. 
"return the new object's pointer" 
tobjectPointer 

The routine allocateChunk: ei ther succeeds in its allocation task, or it 
reports an unrecoverable error. It uses a subroutine, attempt- 
ToAIIocateChunk:, tha t  either completes the job or re turns  nil if no space 
can be found. 

al locateChunk:  size .... Preliminary Version .... 
I objectPointer I 
objectPointer ~-self attemptToAIIocateChunk: size. 
objectPointer isNil ifFalse: [lobjectPointer]. 
1'self error: "Out of memory' 

The attemptToAllocateChunk: rout ine f irst tries to al locate in 
currentSegment, the segment current ly  targeted for allocations. I t  does 
so using the subroutine attemptToAIIocateChunklnCurrentSegment:. If  
the subroutine fails (returns nil), then the routine compacts the next  
segment and retries the allocation there. This procedure continues unt i l  
the original segment has been compacted and searched. If no space can 
be found anywhere, t he  routine returns nil. Note that i t  uses implemen- 
tation-dependent constants: HeapsegmentCount, FirstHeapsegment, and 
LastHeapsegment. 
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attemptToAIIocateChunk: size 
I objectPointerl 
objectPointer ,,- self attemptToAIIocateChunklnCurrentSegment: size. 
objectPointer isNil ifFalse: [tobjectPointer]. 
1 to: HeapSegmentCount do: 

[:il 
currentSegment ~- currentSegment --t- 1. 
currentSegment > LastHeapSegment 

ifTrue: [currentSegment ~ FirstHeapSegment]. 
self compactCurrentSegment. 
objectPointer 

self attemptToAIIocateChunklnCurrentSegment: size. 
objectPointer isNil ifFalse: [lobjectPointer]]. 

1"nil 

The a t temptToAI IocateChunk lnCurrentSegment :  r ou t i ne  searches the cur-  
r en t  heap segment's free-chunk lists for the first chunk that  is the right 
size or that  can be subdivided to yield a chunk of the right size. Because 
most objects are smaller than BigSize and most allocation requests can 
be satisfied by recycling deallocated objects of the desired size, most al- 
locations execute only the first four lines of the routine. 

attemptToAIlocateChunklnCurrentSegment: size 
I objectPointer predecessor next availableSize excessSize newPointer I 

size < BigSize 
ifTrue: [objectPointer ~- self removeFromFreeChunkList: size]. 

objectPointer notNil 
ifTrue: [1'objectPointer]. " small chunk of exact size handy so use it" 

predecessor ~- NonPointer. 
"remember predecessor of chunk under consideration" 

objectPointer ,- self headOfFreeChunkList: LastFreeChunkList 
inSegment: currentSegment. 

"the search loop stops when the end of the linked list is encountered" 
[objectPointer = NonPointer] whileFalse: 

[availableSize ~ self sizeBitsOf: objectPointer. 
availableSize = size 

ifTrue: " exact fit - - remove from free chunk list and return" 
[next ~ self classBitsOf: objectPointer. 

" ' t h e  link to the next chunk" 
predecessor = N on Pointer 

ifTrue: "it was the head of the list; make the next item the head " 
[self headOfFreeChunkList: LastFreeChunkList 

inSegment: currentSegment put: next] 
ifFalse: " it was between two chunks; link them together" 

[self classBitsOf: predecessor 
put: next]. 

lobjectPointer]. 
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"this chunk was either too big or too small; inspect the amount of 
variance " 

excessSize ~ availableSize-size. 
excessSize > = HeaderSize 

ifTrue: " can be broken into two usable parts: return the second part" 
[" obtain an object table entry for the second part" 
newPointer ~ self obtainPointer: size 

location: (self IocationBitsOf: objectPointer) 
-I- excessSize. 

newPointer isNil ifTrue: [tnii]. 

"correct the size of the first part (which remains on the free list)" 
self sizeBitsOf: objectPointer put: excessSize. 
tnewPointer] 

ifFalse: " not big enough to use; try the next chunk on the list" 
[predecessor ~ objectPointer. 
objectPointer ~- self classBitsOf: objectPointer]]. 

tnil " t h e  end of the linked list was reached and no fit was found" 

The subroutine obtainPointer : locat ion:  used by the above routine obtains 
a free object table entry, zeroes its free entry bit as well as the rest of 
the first word of the entry, points the entry at the specified location, 
and sets the size field of the header to the specified size. 

obtainPointer: size location: location 
I objectPointer I 
objectPointer ~ self removeFromFreePointerList. 
objectPointer isNil ifTrue: [tnil]. 
self ot: objectPointer put: O. 
self segmentBitsOf: objectPointer put: currentSegment. 
self IocationBitsOf: objectPointer put: location. 
self sizeBitsOf: objectPointer put: size. 
tobjectPointer 

A Deallocation 
Algorithm 

It is much simpler to deallocate an object than to allocate one. The 
chunk is recycled on a free-chunk list. The following routine expects 
the count field to have been reset to zero by a higher-level routine. 

deallocate: objectPointer . . . .  Preliminary Version . . . .  
I space I 
space ~-- self spaceOccupiedBy: objectPointer. 
self toFreeChunkList: (space min: BigSize) 

add: objectPointer 

Note that  this routine computes the space occupied by the object using 
spaceOccupiedBy: instead of sizeBitsOf:. The reason will become clear 
later in the chapter when spaceOccupiedBy: is redefined. 



671 
Allocation and Deallocation 

A Compaction 
Algorithm 

The compactCurrentSegment routine invoked above by 
attemptToAIIocateChunk: sweeps th rough  a heap segment, massing a]] 
allocated objects together and updating their  object table entries. For 
the benefit of subsequent allocation, it also links the object table entries 
reclaimed from the free chunk lists onto the free pointer list and cre- 
ates a single free chunk from the unused portion of the heap segment. 
The algorithm for compactCurrentSegment will be presented shortly, af- 
ter some preparatory discussion. 

After a heap segment is compacted a number of times, relatively per- 
manent  objects sift to the bottom of the segment and most allocation 
and deallocation activity occurs nearer  to the top. The segment consists 
of a densely packed region of allocated chunks, followed by a region of 
both allocated and free chunks. During compaction, chunks in the 
densely packed region never move, because there is no space beneath 
them to eliminate. Therefore, the compacter expends effort only on 
chunks above the first free chunk, whose location is referred to as 
IowWaterMark. 

The abandonFreeChunkslnSegment:  rout ine computes IowWaterMark. 
I t  also f inds al l  deal]ocated chunks, recycles the i r  object table entr ies 
onto the l ist of free pointers using the subrout ine releasePointer:, and 
changes their  class fields to the distinguished value nonPointer. During 
the subsequent sweep, when the compacter encounters objects so 
marked it can recognize them as deallocated chunks. 

abandonFreeChunkslnSegment: segment 
t IowWaterMark objectPointer nextPointer I 
lowWaterMark - HeapSpaceStop. "f irst assume that no chunk is free" 
HeaderSize to: BigSize do: "for each free-chunk list" 

[ :size I 
objectPointer ~ self headOfFreeChunkList: size 

inSegment: segment. 
[objectPointer = NonPointer] whileFalse: 

[IowWaterMark ~ IowWaterMark 
min: (self IocationBitsOf: objectPointer). 

nextPointer ~ self classBitsOf: objectPointer. 
" link to next free chunk" 

self classBitsOf: objectPointer put: NonPointer. 
" distinguish for sweep" 

self releasePointer: objectPointer. 
" add entry to free-pointer list" 

objectPointer ~ nextPointer]. 
self resetFreeChunkList: size inSegment: segment]. 

t IowWaterMark 
releasePointer: objectPointer 

self freeBitOf: objectPointer put: 1. 
self toFreePointerListAdd: objectPointer 
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A heap segment is compacted by sweeping through it from bottom to 
top. Each allocated object is moved as far down in the segment as possi- 
ble without overwriting other allocated objects. For each object moved, 
the corresponding object table entry is found and its location field is 
updated to point to the new location of the object. 

It is by no means trivial to find the object table entry of an object en- 
countered during a sweep of the heap segment. The representation of 
the object in the heap does not include a pointer back to the object ta- 
ble entry. To avoid the cost of such a backpointer for every object or 
making the compacter search the object table after every object is 
moved, a trick called "reversing pointers" is employed. During compac- 
tion, instead of the usual arrangement  in which the object table entry 
points to the header  in the heap, the header points temporarily to the 
object table entry. 

Pointers are reversed before starting to sweep through a heap seg- 
ment. The object table is scanned to find every in-use entry whose seg- 
ment field refers to the segment being compacted and whose location 
field is above IowWaterMark. Each such entry points to the header of an 
object that  is to be moved (Figure 30.8a). The pointer is then reversed, 
i.e., the object's own object pointer is stored in the first word of its 
header. This causes the header to point to the object table entry. By do- 
ing this, the size field of the header is overwritten.: To prevent losing 
the size, it is saved in the second word of the object table entry (Figure 
30.8b). By doing that, the location field is overwritten, but that  is of no 
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consequence, because the compacter recomputes the object's heap loca- 
tion after the move. 

reverseHeapPointersAbove: IowWaterMark 
I size I 
0 to: ObjectTableSize-2 by: 2 do: 

[ :objectPointer I 
(self freeBitOf: objectPointer)=O 

ifTrue: "the Object Table entry is in use" 
[(self segmentBitsOf: objectPointer) = currentSegment 

ifTrue: " t h e  object is in this segment" 
[(self IocationBitsOf: objectPointer) < IowWaterMark 

ifFalse: "the object will be swept" 
[size ~ self sizeBitsOf: objectPointer. 

" rescue the size" 
self sizeBitsOf: objectPointer 

put: objectPointer. " reverse the pointer" 
self IocationBitsOf: objectPointer 

put: size " save the size"] ] ] ]  

After all preparations for compaction are complete, the current  heap 
segment is swept using the sweepCurrentSegmentFrom routine. It 
maintains two pointers into the segment, si (source index) and di (desti- 
nation index). The pointer si points to the header of an object currently 
being considered for retention or elimination. The pointer di points to 
the location where that  object will be moved if retained. 

sweepCurrentSegmentFrom: IowWaterMark 
I si di objectPointer size space I 
si ~- di ~ IowWaterMark. 
[si < HeapSpaceStop] 

whileTrue: " f o r  each object, s i ' "  

[(wordMemory segment: currentSegment word: si + 1) = NonPointer 
ifTrue: " unallocated, so skip it" 

[size ~ wordMemory segment: currentSegment word: si. 
si ~- si + size] 

ifFalse: " allocated, so keep it, but move it to compact storage" 
[objectPointer 

wordMemory 
segment: currentSegment word: si. 

size ~- self IocationBitsOf: objectPointer. 
"the reversed size" 

self tocationBitsOf: objectPointer 
put: di. " point object table at new location" 

self sizeBitsOf: objectPointer 
put: size. "restore the size to its proper place" 

si ~- si -I- 1. " s k i p  the size" 
di ~ di -t- 1. " s k i p  the size" 
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2 to: (self spaceOccupiedBy: objectPointer) do: 
" move the rest of the object" 

[ : i l  
wordMemory segment: currentSegment 

word: di 
put: (wordMemory segment: 

currentSegment 
word: si). 

tdi 

si ~- si--t- 1. 
di ~- di + 1]]]. 

Note tha t  while pointers are reversed, it is impossible to access the 
heap memory of an object from its object table entry. Therefore the 
Small ta lk  in terpreter  cannot run during compaction. 

The compactCurrentSegment routine invokes the above routines in 
the proper order and then creates the single free chunk at the top of 
the heap segment. 

c o m p a c t C u r r e n t S e g m e n t  
t IowWaterMark bigSpace I 
IowWaterMark ,,- self abandonFreeChunkslnSegment: currentSegment. 
fowWaterMark < HeapSpaceStop 

ifTrue: 
[self reverseHeapPointersAbove: IowWaterMark. 
bigSpace ~ self sweepCurrentSegmentFrom: IowWaterMark. 
self deallocate: (self obtainPointer: 

(HeapSpaceStop+ 1-bigSpace) 
location: bigSpace)] 

If there are no free chunks within the segment when this routine is in- 
voked, then it does not move any objects. 

Garbage 
Collection 

In Smalltalk,  a new object is allocated explicitly (e.g., when the message 
new is sent to a class) but there is no explicit language construct tha t  
causes an object to be deallocated. Such a construct would be unsafe, 
because it could be used to deallocate an object even though ~Mangling" 
references to it still existed in other objects. An environment  containing 
dangling references would be inconsistent and would be likely to exhibit 
unintended behavior and to suffer unrecoverable errors. 

Most noninteractive programming systems require explicit 
deallocation. The burden of avoiding dangling references is placed on 
the programmer.  If a dangling reference arises, the programmer  is 
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expected to find the bug that  created it, fix that bug, and restart  the 
program. In an interactive environment like Smalltalk (as well as most 
LISP and APL systems), to require a restart  because of a common bug 
would be unacceptable, since it could require the user to redo a poten- 
tially large amount of work. 

Because there is no explicit deallocation in Smalltatk, the memory 
manager m u s t  identify objects that  have become inaccessible and 
deallocate them automaticsLlly. This task is traditionally known as gar- 
bage collection. As compared with explicit deallocation, garbage collec- 
tion entails a large performance penalty. The penalty is incurred 
because the computer must manage deallocation at execution time in- 
stead of relying on the programmer to have done so during coding time. 
However, the cost is well worth the reliability it adds to an interactive 
system. 

There are two traditional approaches to identifying inaccessible ob- 
jects in an object memory: marking and reference counting. A marking 
garbage collector performs an exhaustive search of memory for accessi- 
ble objects and marks them all. Then it scans memory in  search of ob- 
jects that  are unmarked and thus inaccessible and deallocates them. A 
reference-counting garbage collector maintains a count of how many 
references there are to each object from other objects. When the count 
of references to some object reaches zero, that  object is known to be in- 
accessible, and the space it occupies can be reclaimed. 

Reference-counting systems do not deal properly wi th  so-called "cy- 
clic structures." Such a structure is said to occur when an object refer- 
ences itself directly or when an object references itself indirectly via 
other objects that  reference it. In a reference-counting system, when a 
cyclic structure becomes inaccessible to the program, it will have non- 
zero reference counts due to the intrastructure references. Therefore 
the memory manager doesn't recognize that the structure should be 
deallocated, and the objects that  constitute the structure are not 
deallocated. These inaccessible objects waste space; but, unlike dangling 
references, they do not cause inconsistency in the environment. 

Both reference counting and marking involve performance penalties 
on conventional computers. In a reference-counting system, the fre- 
quently performed operation of storing a reference to an object involves 
overhead for reference-count maintenance, so programs run significant- 
ly more slowly. In a marking garbage collector, an extensive search of 
memory must be performed whenever space is entirely depleted. There- 
fore, program execution is subject to relatively lengthy interruptions 
that  can be quite annoying in an interactive system. Both approaches 
incur space overhead. In a reference-counting system, space must be 
provided to store reference counts. In a marking system, extra space 
must be allotted in the heap to allow garbage to accumulate between 
collections. Otherwise, collections occur too frequently. 
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The approach to garbage collection that should be used in a particu- 
lar implementation of Smalltalk depends in part  on the capacity of the 
hardware. If a relatively small amount of memory (e.g., 100 kilobytes) is 
available, a reference counting system is intolerable, because it can 
waste precious space by leaving inaccessible cyclic structures allocated. 
On the other hand, a marking collector is quite acceptable in these cir- 
cumstances, in spite of the interruption that  occurs when it is invoked, 
because when memory is small, the duration of the interruption can be 
so brief as to be imperceptible. If an abundant supply of memory (e.g., 
two megabytes) is available, the time it takes to mark all accessible ob- 
jects can be so long as to be intolerable. On the other hand, there is 
enough space available that  a moderate number of inaccessible objects 
can be tolerated. 

The contrast between the two approaches is accentuated in a large 
virtual-memory system. Marking is even more costly because so much 
time is spent in random accesses to secondary memory. Reference 
counting is even less costly because unreclaimed cyclic structures sim- 
ply migrate to secondary memory where wasted space is less bother- 
some. When memory is abundant, a reference-counting garbage 
collector is appropriate. However, Smalltalk programmers should take 
precautions to avoid the accumulation of an excessive number of inac- 
cessible cyclic structures, otherwise even a large memory will be deplet- 
ed. To break a cyclic structure before it becomes inaccessible, the 
program can change any pointer that participates in the cycle to nil. 

The two approaches to garbage collection can be combined. Refer- 
ences can be counted during normal operation and marking collections 
performed periodically to reclaim inaccessible cyclic structures. A com- 
bined approach is suitable for all but the smallest real-memory imple- 
mentations. If a small-to-medium-size memory is available, a marking 
collection can be performed whenever compaction fails to recover 
enough space. If an abundant memory is available, marking collections 
can be performed nightly or at other convenient intervals. 

A Simple 
Reference-counting 
Collector 

In the reference-counting collector described in this chapter, the refer- 
ence count of an object is recorded in the count field of its object table 
entry. If an object pointer is an immediate integer, it is its own only 
reference, so its reference count is not recorded explicitly. Reference 
counts are updated during store operations. When an object pointer ref- 
erencing object P is stored into a location that formerly contained an 
object pointer referencing object Q, the count field of P is incremented 
and the count field of Q is decremented. Because the count field of an 
object table entry has only eight bits, it is possible for an incremented 
count to overflow. To facilitate overflow detection on most computers, 
the high order bit of the count field serves as an overflow bit. Once the 
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count field reaches 128, it remains at tha t  value and it will not increase 
or decrease. The algori thm for incrementing a reference count is 

countUp: objectPointer 
I count I 
(self islntegerObject: objectPointer) 

ifFatse: 
[count ~- (self countBitsOf: objectPointer) + 1. 
count < 129 ifTrue: [self countBitsOf: objectPointer put: count]]. 

tobjectPointer 

If the decremented reference count of an object reaches zero, then that  
object is deallocated. Before doing so, the count field of every object ref- 
erenced from tha t  object is decremented, because once the object is 
deallocated it will no longer reference those other objects. Note that  
this procedure recurs if any of the lat ter  counts reach zero. A recursive 
procedure tha t  can traverse the original object plus all the objects it 
references is expressed below as the routine forAI IObjectsAccess ib leFrom:-  
suchThat:do: .  This routine takes two procedural a rguments  represented 
by blocks, a predicate tha t  decrements a count and tests for zero and an 
action tha t  deallocates an object. Between evaluating the predicate and 
the action, the procedure's subroutine, forAIIOtherObjectsAccessibleFrom:- 
suchThat:do:, recursively processes every pointer in the object. The pro- 
cedure is allowed to alter the count as a side effect, so the action argu- 
ment  must  restore the count to zero in preparat ion for deallocation. 

countDown: rootObjectPointer 
I count I 
(self islntegerObject: rootObjectPointer) 

ifTrue: [t rootObjectPointer] 
ifFatse: "this is a pointer, so decrement its reference count" 

[t self forAllObjectsAccessibleFrom: rootObjectPointer 
suchThat: 

"the predicate decrements the count and tests for zero" 
[ :objectPointer I 

count ,-- (self countBitsOf: objectPointer)- 1. 
count < 127 

ifTrue: [self countBitsOf: objectPointer 
put: count]. 

count=0] 
do: "the action zeroes the count and deallocates the object" 

[ :objectPointer l 
self countBitsOf: objectPointer put: 0. 
self deallocate: objectPointer]] 

The traversal  routine shown below first tests the predicate on the sup- 
plied object. It then invokes a subroutine tha t  (1) recursively processes 
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A Space-efficient 
Reference-counting 
Collector 

all objects referenced from within the supplied object that  satisfy predi- 
cate, and (2) per forms action on the suppl ied object. 

forAIIObjectsAccessibleFrom: objectPointer 
suchThat: predicate 
do: action 

(predicate value: objectPointer) 
ifTrue: 

[1'self forAIlOtherObjectsAccessibleFrom: objectPointer 
suchThat: predicate 
do: action] 

forAilOtherObjectsAccessibleFrom: objectPointer 
suchThat: predicate 
do: action 

I next I 
1 to: (self lastPointerOf: objectPointer)-1 do: 

[ :offset I 
next ~ self heapChunkOf: objectPointer word: offset. 
((self islntegerObject: next)= =false and: [predicate value: next]) 

ifTrue: " it's a non-immediate object and it should be processed" 
[self forAllOtherObjectsAccessibleFrom: next 

suchThat: predicate 
do: action]]. 

" all pointers have been followed; now perform the action" 
action value: objectPointer. 
tobjectPointer 

The traversal algorithm outlined above is recursive and, therefore, 
must use a stack in its execution. To guard against stack overflow, the 
depth of the stack must be greater  than the longest chain of pointers in 
memory. This requirement is difficult to satisfy when memory space is 
limited. To guarantee that  enough space is available, the pointer chain 
itself can be used as the stack. If object A references object B from A's 
ith field, and object B references object C from B's j~h field, and object C 
references another object from C's k th field, and so on, the pointer chain 
can be represented as A.i~B.j~C.k . . . .  (Figure 30.9a). To use the 
pointer chain as a stack for the recursion of the traversal  algorithm, 
the chain is temporarily reversed to . . . .  C k~B.j- ,A. i  so that  each 
field in the chain points to its predecessor instead of to its successor 
(Figure 30.9b). 

Each step of the traversal algorithm's recursion must be completed 
by "popping the stack." After processing any object in the chain (e.g., C), 
its predecessor (e.g., B) is found by following the reversed pointer chain. 
The algorithm also needs to know which field of the predecessor was 
being worked on. To maintain this information, the algorithm must be 
changed at the earlier stage where it left B to process C. At that  stage, 
the index of the field, j, is copied into the count field of the object t a b l e  
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entry of B. The count can be overwrit ten because the object is being 
deallocated. But if the size of B exceeds 255 words, then the count field 
will not be large enough to store every field index. Instead, the alloca- 
tor is revised to over-allocate by one word any object tha t  is HugeSize 
(256) words or more and to reserve tha t  extra word for use by the tra- 
versal a lgori thm to store offset. 

To accommodate over-allocation, the allocation routine is revised to 
accept an additional argument ,  extraWord, tha t  is ei ther 0 or 1. It is 
also necessary for the allocator to increment  the reference count of the 
new object's class before storing the class into the header of the new ob- 
ject. (In fact, this must  be accomplished even earlier, before calling 
allocateChunk:, to assure tha t  the class is not deallocated accidentally 
by some side effect of tha t  subroutine.) 

al loCate:  s ize extra:  e x t r a W o r d  class: c lassPo in te r  
. . . .  Preliminary Version .... 
I objectPointer t 
self coumUp: classPointer. 

"increment the reference count of the class" 
objectPointer ~- self allocateChunk: size + extraWord. 

" allocate enough" 
self ctassBitsOf: objectPointer put: classPointer. 
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HeaderSize to: size-1 do: 
[ : i l  self heapChunkOf: objectPointer word: i put: NilPointer]. 

" the next statement to correct the SIZE need only be executed if 
extraWord > 0"  

self sizeBitsOf: objectPointer put: size. 
tobjectPointer 

The actual heap space occupied by an object with at least HufleSize 
fields is one greater  than that  stated in its size field, because of the ex- 
t ra  word allocated. Therefore, the spaceOccupiedBy: routine must be 
changed to account for the difference. 

spaceOccupiedBy: objectPointer . . . .  Preliminary Version . . . .  
I size I 
size ~- self sizeBitsOf: objectPointer. 
size < HugeSize 

ifTrue: [tsize] 
ifFalse: [tsize + 1] 

The deallocation algorithm must also be revised because deallocated ob' 
jects have no provision for an extra word not counted in the size field. 

deallocate: objectPointer 
I space I 
space ~ self spaceOccupiedBy: objectPointer. 
self sizeBitsOf: objectPointer put: space. 
self toFreeChunkList: (space min: BigSize)add: objectPointer 

The following routine implements the space-efficient traversal algo- 
rithm, with A, B, and C of the above example represented by the vari- 
ables prior, current, and next. To simplify the loop test, the method scans 
the fields of each chunk in reverse order. Thus the class field is pro- 
cessed last. 

Note that  the last s tatement  of the method restores the pointer chain 
to get B.j again pointing to C instead of to A. It is easy to do so when 
returning to B from processing C, because object pointer of C can sim- 
ply be stored in the jth field of B. One might think that  step unneces- 
sary, because B is  being deallocated. However, t he  same traversal 
algorithm can be used by a marking collector in which B is not being 
deallocated. 

forAIlOtherObjectsAccessibleFrom: objectPointer 
suchThat: predicate 
do: action 

I prior current offset size next I 
"compute prior, current, offset, and size to begin p rocess ing  
objectPointer" 
prior ~ NonPointer. 
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current ~ objectPointer. 
offset ~ size ~ self lastPointerOf: objectPointer. 
[true] whileTrue: " for  all pointers in all objects traversed" 

[(offset ~ offset - 1) > 0 " d e c r e m e n t  the field index" 

ifTrue: " t h e  class field hasn't been passed yet" 
[next~ self heapChunkOf: current word: offset. 

" one of the pointers" 

((self islntegerObject: next)= =fa lse 
and: [predicate value: next]) 

ifTrue: " i t ' s  a non-immediate object and it should be pro- 

cessed" 
[ "  reverse the pointer chain" 
self heapChunkOf: current word: offset put: prior. 
"save the offset either in the count field or in the extra 

word " 

size < HugeSize 
ifTrue: [self countBitsOf: current put: offset] 
ifFalse: [self heapChunkOf: current 

word: size + 1 put: offset]. 
"compute prior, current, offset, and size to begin pro- 

cessing next" 
prior ~ current, current ~ next. 
offset ~- size ~ self tastPointerOf: current]] 

ifFalse: 
["  all pointers have been followed; now perform the action" 

action value: current. 
"did we get here from another object?" 
pr ior= NonPointer 

ifTrue: "this was the root object, so we are done"  
[ t" objectPoi nter]. 

" restore next, current, and size to resume processing prior" 
next ~- current, current ~- prior. 
size ~ self lastPointerOf: current. 
" restore offset either from the count field or from the extra word"  

size < HugeSize 
ifTrue: [offset ~- self countBitsOf: current] 
ifFalse: [offset ,-- self heapChunkOf: current word: size + 1]. 

" restore prior from the reversed pointer chain" 
prior ~ self heapChunkOf: current word: offset. 
"restore (unreverse) the pointer chain" 
self heapChunkOf: current word: offset put: next]] 

The machine-language implementation can deal with the procedural ar- 
guments either by passing a pair of subroutine addresses to be called 
indirectly or by expanding the subroutines in line. If the hardware has 
enough registers, it is possible to keep the variables next, current, prior, 
size, and offset in registers for additional speed of execution. 
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A Marking 
Collector 

The job of the marking garbage collector is to mark  all accessible ob- 
jects so that  the remaining inaccessible objects can be identified and 
added to the lists of free chunks. Accessible objects can be found most 
easily by a recursive search from the '~roots of the world," namely, the 
interpreter 's  stacks and the table of global variables (the Dictionary 
named Smalitalk). 

The following algorithm is performed on each root object. In the ob- 
ject table entry of the object, set the count field to 1 to mean "marked." 
Apply the algorithm of this paragraph to each unmarked object refer- 
enced by the object. 

Note that  the above marking algorithm is inherently recursive. In its 
implementation, the same traversal  routine used for reference counting 
can be used, in either the simple or the space-efficient version. Before 
marking begins, the count fields of all objects are reset to 0 to mean 
"unmarked."  After marking ends, all unmarked  objects are deallocated 
and the reference counts of all marked objects are recomputed. The 
routine that  performs all the necessary steps is called 
reclaimlnaccessibleObjects. 

reclaimlnaccessibleObjects 
self zeroReferenceCounts. 
self markAccessibteObjects. 
self rectifyCountsAndDealtocateGarbage 

The subroutine that  sets the count fields of all objects to 0 is called 
zeroReferenceCounts. It is superfluous to zero the count field of a free 
chunk or of a free entry. Nevertheless, the following version zeroes the 
count field of every entry, because on most computers, it takes less time 
to zero the first byte of an entry than it takes to test the status of that  
entry. 

zeroReferenceCounts 
0 to: ObjectTableSize-2 by: 2 do: 

[ :objectPointer I 
self countBitsOf: objectPointer put: 0] 

The subroutine markAccessibleObjects invokes the marking algorithm 
markObjectsAccessibleFrom: for every object in the list root- 
ObjectPointers. Typically, the list rootObjectPointers includes the object 
pointer of the current  process and the object pointer of the global vari- 
able dictionary, from which all other accessible objects are referenced 
directly or indirectly. 

markAccessibleObjects 
rootObjectPointers do: 

[ :rootObjectPointer I 
self markObjectsAccessibleFrom: rootObjectPointer] 
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The marking  algori thm markObjectsAccessibleFrom: calls the same tra- 
versal routine as the reference-counting collector did. Its predicate suc- 
ceeds for unmarked  objects and it marks  them with a count of 1 as a 
side effect. Its action restores the count field to 1 because the space-effi- 
cient version of the traversal  routine could have changed tha t  field to 
any nonzero value as a side effect. 

markObjectsAccessibleFrom: rootObjectPointer 
I unmarked I 
1'self forAIlObjectsAccessibleFrom: rootObjectPointer 

suchThat: "the predicate tests for an unmarked object and marks it" 
[ :objectPointer I 

unmarked ~ (self countBitsOf: objectPointer) = O. 
unmarked ifTrue: [self countBitsOf: objectPointer put: 1]. 
unmarked] 

do: "the action restores the mark to count= 1" 
[ :objectPointer I 

self countBitsOf: objectPointer put: 1] 

After the marking  algori thm has been executed, every non-free object 
table entry is examined using the subroutine rectify- 
CountsAndDeallocateGarbage. If the entry  is unmarked,  then the entry 
and its heap chunk are added to the appropriate free lists. If the entry 
is marked,  then the count is decremented by one to u n m a r k  it, and the 
counts of all objects tha t  it references directly are incremented. Note 
tha t  when a marked  object is processed, its count may exceed 1 because 
objects previously processed may have referenced it. That  is why it is 
unmarked  by subtraction instead of by setting its count to 0. 

During the examinat ion of object table entries, chunks tha t  were al- 
ready free before the marking  collection began will be encountered. The 
count field of an already-free chunk is zero just  like an unmarked  ob- 
ject, so it will be added to a free-chunk list. Doing so would cause a 
problem if the chunk were already on a free-chunk list. Therefore be- 
fore the scan begins, all heads of free-chunk lists are reset. 

As a final step, the reference count of each root object is incremented 
to assure tha t  it is not deallocated accidentally. 

rectifyCountsAndDeallocateGarbage 
I count I 
" reset heads of free-chunk lists" 
FirstHeapSegment to: LastHeapSegment do: "for every segment" 

[ :segment I 
HeaderSize to: BigSize do: "for every free chunk list" 

[ :size l "reset the list head" 
self resetFreeChunkList: size inSegment: segment]]. 

"rectify counts, and deallocate garbage" 
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0 to: ObjectTableSize-2 by: 2 do: "for every object table entry" 
[ :objectPointer t 

(self freeBitOf: objectPointer)=0 
ifTrue: " if it is not a free entry" 

[(count ~ self countBitsOf: objectPointer) = 0 
ifTrue: "it is unmarked, so deallocate it" 

[self deallocate: objectPointer] 
ifFalse: " it is marked, so rectify reference counts" 

[count < 128 ifTrue: " subtract 1 to compensate for the mark" 
[self countBitsOf: objectPointer put: coun t -1 ] .  

1 to: (self lastPointerOf: objectPointer)-1 do: 
[ :offset I " increment the reference count of each 

pointer" 
self countUp: (self heapChunkOf: objectPointer 

word: offset)]]]]. 
" be sure the root objects don't disappear" 

rootObjectPointers do: 
[ :rootObjectPointer I self countUp: rootObjectPointer]. 

self countBitsOf: NilPointer put: 128 

The allocateChunk: routine can now be revised so tha t  it a t tempts  a 
mark ing  collection if compaction of all segments has failed to yield 
enough space to satisfy an allocation request. 

al locateChunk: size 
I objectPointer I 
objectPointer ~- self attemptToAIIocateChunk: size. 
objectPointer isNil ifFalse: [l'objectPointer]. 
self reclaimlnaccessibleObjects. " garbage collect and try again" 
objectPointer ~- self attemptToAIIocateChunk: size. 
objectPointer isNil ifFalse: [1'objectPointer]. 
self outOfMemoryError " give up" 

Nonpointer 
Objects 

The object format presented in this chapter  is not part icularly space ef- 
ficient, but since its uniformity makes the system software small and 
simple, the inefficiency can generally be forgiven. There are two classes 
of object for which the inefficiency is intolerable, namely, character  
strings and bytecoded methods. There are usually many strings and 
methods in memory, and when stored one character  or one bytecode per 
word, they are quite wasteful of space. 

To store such objects more efficiently, an al ternate  memory format is 
used in which the data part  of an object contains 8-bit or 16-bit values 
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that  are interpreted as unsigned integers ra ther  than as object pointers. 
Such objects are distinguished by the setting of the pointer-fields bit of 
the object table entry: when that  bit is 1, the data consist of object 
pointers; when that  bit is 0, the data consist of positive 8- or 16-bit inte- 
gers. When there are an odd number of bytes of data in a nonpointer 
object, the final byte of the last word is 0 (a slight waste of space), and 
the odd-length bit of the object table entry, which is normally 0, is set 
to 1. To support nonpointer objects, the allocator needs two additional 
parameters,  pointerBit and oddBit. In the case of a nonpointer object 
(pointerBit=0), the default initial value of the elements is 0 instead of 
nil. The final version of the allocation routine is shown below. 

allocate: size 
odd: oddBit 
pointer: pointerBit 
extra: extraWord 
class: classPointer 

i objectPointer default t 
self countUp: classPointer. 
objectPointer ~ self allocateChunk: size 4- extraWord. 
self oddBitof: objectPointer put: oddBit. 
self pointerBitOf: objectPointer put: pointerBit. 
self classBitsOf: objectPointer put: classPointer. 
default ~- pointerBit=0 ifTrue: [0] ifFalse: [NitPointer]. 
HeaderSize to: size-1 do: 

[ :i I self heapChunkOf: objectPointer word' i put: default]. 
self sizeBitsOf: objectPointer put: size. 
tobjectPointer 

The garbage-collecting traversal routines need only process the class 
field of each nonpointer object, because the data contain no pointers. To 
make this happen, the routine lastPointerOf: is changed as follows: 

lastPointerOf: objectPointer . . . .  Preliminary Version . . . .  
(self pointerBitOf: objectPointer)=O 

ifTrue: 
[ lHeaderSize] 

ifFatse: 
[1'self sizeBitsOf: objectPointer] 

The value of lastPointerOf: is never as large as 256 for a nonpointer ob- 
ject, so a nonpointer object never needs to be over-allocated. Therefore, 
spaceOccupiedBy: is revised again as follows: 

spaceOccupiedBy: objectPointer 
I size t 
size ~ self sizeBitsOf: objectPointer. 
(size < HugeSize or: [(self pointerBitOf: objectPointer) = 0]) 

ifTrue: [1 size] 
ifFalse: [tsize + 1] 
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CompiledMethods 
A CompiledMethod is an anomaly for the memory manager because its 
data are a mixture of 16-bit pointers and 8-bit unsigned integers. The 
only change needed to support CompiledMethods is to add to 
lastPointerOf: a computation similar to that in the bytecode interpret- 
er's routine bytecodelndexOf:. MethodClass is the object table index of 
CompiledMethod. 

lastPointerOf: objectPointer 
I methodHeader I 
(self pointerBitOf: objectPointer)=0 

ifTrue: 
[tHeaderSize] 

ifFalse: 
[(self classBitsOf: objectPointer) = MethodClass 

ifTrue: [methodHeader ~ self heapChunkOf: objectPointer 
word: HeaderSize. 

tHeaderSize + 1 -4-((methodHeader bitAnd: 126) 
bitShift: - 1)] 

ifFalse: [tself sizeBitsOf: objectPointer]] 

Interface to the 
Bytecode 
Interpreter 

The final step in the implementation of the object memory is to provide 
the interface routines required by the interpreter. Note that 
fetchClassOf: objectPointer returns InteflerClass (the object table index 
of Smalllnteger) if its argument is an immediate integer. 

object pointer access 

fetchPointer: fieldlndex ofObje©t: objectPointer 
self heapChunkOf: objectPointer word: HeaderSize + fieldlndex 

storePoi.nter: fieldindex 
ofObject: objectPointer 
withValue: valuePointer 

I chunklndext 
chunklndex ~ HeaderSize + fieldlndex. 
self countUp: valuePointer. 
self countDown: (self heapChunkOf: objectPointer word: chunklndex). 
1self heapChunkOf: objectPointer word: chunklndex put: valuePointer 

word access 

fetchWord: wordlndex ofObject: objectPointer 
1'self heapChunkOf: objectPointer word: HeaderSize -t- wordlndex 

storeWord: wordlndex 
ofObject: objectPointer 
withValue: valueWord 

1'self heapChunkOf: objectPointer word: HeaderSize -I-- wordlndex 
put: valueWord 
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byte access 

fetchByte: bytelndex ofObject: objectPointer 
tself heapChunkOf: objectPointer byte: (HeaderSize,2 + bytetndex) 

storeByte: bytelndex 
ofObject: objectPointer 
withValue: valueByte 

1'self heapChunkOf: objectPointer 
byte: (HeaderSize,2 -I-- bytelndex) 
put: vatueByte 

reference counting 

increaseReferencesTo: objectPointer 
self countUp: objectPointer 

decreaseReferencesTo: objectPointer 
self countDown: objectPointer 

class pointer access 

fetchClassOf: objectPointer 
(self islntegerObject: objectPointer) 

ifTrue: [tlntegerClass] 
ifFalse: [1self classBitsOf: objectPointer] 

length access 

fetchWordLengthOf: objectPointer 
t(setf sizeBitsOf: objectPointer)-HeaderSize 

fetchByteLengthOf: objectPointer 
1' (self loadWordLengthOf: objectPointer),2 - (self oddBitOf: objectPointer) 

object creation 

instantiateClass: classPointer withPointers: length 
I size extra I 
size ~- HeaderSize ÷ length. 
extra ~ size < HugeSize ifTrue: [0] ifFalse: [1]. 
1"self allocate: size odd: 0 pointer: t extra: extra class: classPointer 

instantiateClass: classPointer withWords: length 
I size I 
size ~ HeaderSize + length. 
t self allocate: size odd: 0 pointer: 0 extra: 0 class: classPointer 

instantiateClass: classPointer withBytes: length 
1 size ! 
size ~ HeaderSize -Á-- ((length ÷ 1)/2). 
1'self allocate: size odd: length\ \ 2  pointer: 0 extra: 0 class: classPointer 
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instance enumeration 

initiallnstanceOf: classPointer 
0 to: ObjectTableSize-2 by: 2 do: 

[ :pointer I 
(self freeBitOf: pointer)=0 

ifTrue: [(self fetchClassOf: pointer)=classPointer 
ifTrue: [tpointer]]]. 

tNilPointer 
instanceAfter: objectPointer 

I c lassPointer l  
objectPointer to: Objec tTab leSize-2  by: 2 do: 

[ :pointer I 
(self freeBitOf: pointer)=0 

ifTrue: [(self fetchClassOf: pointer)=classPointer 
ifTrue: [tpointer]]]. 

tNilPointer 

pointer swapping 

swapPointersOf: firstPointer and: secondPointer 
I firstSegment firstLocation firstPointer firstOdd I 
firstSegment ~- self segmentBitsOf: firstPointer. 
firstLocation ~- self IocationBitsOf: firstPointer. 
firstPointer ~ self pointerBitOf: firstPointer. 
firstOdd ~ self oddBitOf: firstPointer, 
self segmentBitsOf: firstPointer put: (self segmentBitsOf: secondPointer). 
self tocationBitsOf: firstPointer put: (self IocationBitsOf: secondPointer), 
self pointerBitOf: firstPointer put: (self pointerBitOf: secondPointer). 
self oddBitOf: firstPointer put: (self oddBitOf: secondPointer). 
self segmentBitsOf: secondPointer put: firstSegment. 
self tocationBitsOf: secondPointer put: firstLocation. 
self pointerBitOf: secondPointer put: firstPointer. 
self oddBit©f: secondPointer put: firstOdd 

integer access 

integerValueOf: objectPointer 
1' objectPointer/2 

integerObjectOf." value 
1'(value bitShift: t) + 1 

islntegerObject: objectPointer 
l(objectPointer bitAnd: 1) = 1 

islntegerVa.lue." valueWord 
l'valueWord < = - 16384 and: [valueWord > 16834] 
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Subject Index 

There are four indexes to this book. The first is t h e  type of index found in most books. It is 
called the subject index and includes the concepts discussed in the book. The other three indexes 
include the class names, variable names and message selectors referred to in the book. The 
system index includes names and selectors found in the actual Smalltalk-80 system. The example 
class index includes the names of classes introduced as examples but not found in the system. 
The implementation index includes the names and selectors used in the formal specification 
found in Par t  Four of the book. 

Abelson, Hal, 365 
abstract class. See class, abstract 
accept command, 303-304, 306 
accessing parts, 99-100 
active context. See context, active 
active process. See process, active 
Algol, 13, 34, 119, 165 
allocation, 667-671, 679-680, 684 
animation, 331,  333, 400 
argument. See message argument 

count, 582-584, 587, 604, 606, 608 
name. See expression, message argument name 

arithmetic, 13, 24, 564, 569, 620-627, 660 
on Dates 111 
on Numbers 119-130 
on Points 341-343 
on Times 113 

array, 13, 19, 21, 36-37, 69, 96, 126, 569 
ASCII, 650 
assignment, 563. See expression, assignment 
association, 

See also Association (system index) 
bag, 13 
binary message. See expression, message, binary 
Birtwistle, Graham, 498-499, 507, 521, 533 
bit, 

fields, 575,  577, 579 
manipulation, 128-129 

BitBlt, 333-334, 336, 349, 355, 405, 408, 412 
combination rule, 336-337, 354, 361 

bitmap, 15, 292, 331, 383, 398, 412 
See also display 
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block, 15, 18, 31-37, 125-126, 128, 135-138, 151, 
159, 164, 180, 188, 215, 239, 251-252, 460, 550, 
559-560, 569, 580-581, 585-586, 608 

See also expression, block 
argument, 35-37, 138, 253, 560, 583-584, 638 
context, 559-561 

See also BlockContext (system index) 
browser, 41, 43, 292-293, 297-307, 318 
bytecode, 542-551, 554, 556, 558-560, 562, 568, 

576-579, 581-583, 594-610, 612, 642, 646 
extensions, 548,  560, 595, 599-600, 606-607 
interpreter. See interpreter 
jump, 550, 554, 595, 601-603 

conditional, 550,  603 
unconditional, 550 

return, 549, 554, 595, 608-610, 612 
special, 549 

send, 549, 554-555, 561-562, 595, 603-608, 
612, 618 

super, 562-563, 607 
stack, 595, 597-601 

push, 548-549, 554, 595, 599-600 
store, 549, 554, 595, 600 

caller, 582, 608, 639 
capitalization, 22, 40, 45 
carat, 294-295 
cascading. See expression, message, cascaded 
categories command, 305 
category. See message, category; class, category 
change and update. See dependency 
character, 19-21 
class, 8, 16, 18, 40, 45-46, 53, 56-59, 73, 76, 95, 

269-270, 300, 547, 561-564, 568, 570, 575, 580, 
586-591, 605, 612, 618, 633, 636, 653, 657 

See also subclass; superclass 
abstract, 66-68, 72-73, 78, 81, 134, 198 

See also subclassResponsibility (system in- 
dex) 

category, 80, 284, 298, 300, 303 
comment, 283-284 
creation, 77 
definition, 303-307 
description, 58, 269, 300, 568, 572 

See also implementation description; pro- 
tocol description 

editing, 297 
methods, 79, 269 

See also method 
name, 9, 40, 43, 57-58, 62, 269, 283-284, 288, 

312 
variable, 44, 53, 84, 219, 276, 288, 547 
view, 297 

clipping rectangle, 334, 351-352 
clock, 566 

close command, 317 
collections, 133-141, 145, 172, 195, 212-234, 565, 
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See also array; bag; dictionary; set; string 
of integers, 565-566, 684 
ordered. See SequenceableCollection (system 

index) 
unordered. See Dictionary ; Bag ; Set (system 

index) 
compaction, 659, 667-668, 671-674, 676, 684 
comparing, 96-97, 107, 160, 166-167 
compiler, 272-273, 285, 542-545, 550, 559, 575, 

607, 633 
concatenation, 155 
conditionals. See bytecode, jump, conditional; con- 

trol structures 
context, 15, 555-556, 558-560, 575, 580-586, 612 

active, 555, 558, 560, 563, 583-585, 595, 597, 
599-600, 603, 605, 608-610, 638-639, 643-644, 
651 

home, 581-583, 585, 608, 638 
suspended, 555-556, 561 

control structures, 13, 23, 32-35, 550, 559, 564, 
569-570, 616, 620, 637-647 

See also enumeration; expression, block 
conditional repetition, 13, 34-35, 550, 569 
conditional selection, 13, 34, 238-239, 

569-570 
independent processes. See independent pro- 

cesses 
iteration, 164-165 
of the interpreter. See interpreter, control 

structures 
converting, 123, 127 

Characters, 116 
Collections, 140-141, 157, 169, 175, 217 
Dates and Times, 113 
Strings, 167 

copying, 97-99, 155-156, 285 
cumulative distribution function, 419, 424, 430 
cursor, 15, 292-297, 299, 302, 311-312, 398-399, 

651 
cut command, 296 
cyclic structures, 675-676 
dangling reference, 674 
data structures, 13, 21, 24 

See also collections 
of the interpreter. See interpreter data struc- 

tures 
stack and queue, 157-158 
tree structure. See examples, tree structure 

Davis, Chandler, 373 
deallocation, 667, 670-671, 674-675, 677, 683 



debug command, 318, 320 
debugger, 314, 320-327 
definition command, 304 
density function, 419, 423-424, 430 
dependency, 240-243 
deselection, 300 
dictionary, 7-8, 13, 24, 45, 543, 547, 605 

See also subclass examples 
diSessa, Andrea, 365 
disk, 566 
display, 292, 331, 333, 365-367, 388, 398, 400, 

566, 649, 651 
dolt command, 297, 309-310 
enumeration, 126, 128, 136-137, 151-152, 

156-157, 165, 188, 195, 197, 215, 221, 233, 281, 
573, 633, 636 

See also do: (system index) 
equality, 96, 145, 565, 587 

See also comparing 
equivalence, 96, 136, 145, 565 

See also comparing 
error reporting, 51, 61, 72-73, 102-103, 135-136, 

138, 148, 214, 217, 237, 314-317, 561, 589, 602, 609 
evaluating expressions. See expression evaluation 
event, 418 
examples, 

See also example class index 
calculator, 245-246 
card game, 172-181 
event-driven simulations. See simulation exam- 

ples 
financial transactions, 10, 25, 27 
game of Life, 412-413 
geometric designs. See geometric designs 
hardware interrupt, 263-265 
image manipulation, 405-413 
multiple pens, 375-379 
mutual exclusion, 258-262 
probability distributions, 205, 418 

See also probability distributions 
random walk, 181-185 
resource sharing, 262 
traffic lights, 241-243 
tree structure, 185-192, 208 

exception handling, 135 
expression, 18, 37, 297 

assignment, 22, 27, 32, 37, 49-50 
block. See block 
evaluation, 297, 309, 324, 327 
format, 30 
literal, 18-19,22, 37, 5 0  
message, 18, 24-31 

See also message 
argument name, 42, 491 51, 53, 323-324 
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binary, 27-30, 37 
cascaded, 30, 37, 548 
keyword, 26, 28-30, 36-37 
pattern, 41, 48-49, 53, 57 
unary, 26, 28-30, 37, 77 

parsing, 28-30 
pseudo-variable name, 23, 37, 49-50, 62-63, 

73 
variable name, 18, 21-22, 37, 58, 283, 544 

extended bytecode. See bytecode extensions 
field indices, 570-571, 574-576, 581, 586, 590 
files, 15, 209, 286-288, 466 
fixed-length object, 231, 280-281 
flag value, 577-579, 618, 620 
font, 15, 166, 334, 354, 400 
formatting. See expression format 
fragmentation, 659 
free chunk, 664-671, 674, 682-683 
free entry, 659, 664-665, 670, 683 
free pointer, 659, 665, 671 
freehand drawing, 331 
garbage collection, 565, 571, 644, 674-685 

marking, 675-676, 680, 682-684 
reference counting. See reference counting 

Gardner, Martin, 373 
geometric designs, 370-375 

dragon curve, 372-373 
Hilbert curve, 373-375 
spiral, 370-372, 377 

global variable, 44-45, 53, 308, 547, 644, 682 
declaration, 48 

GPSS, 533 
graphics, 292, 331-362, 365, 383 

See also BitBlt 
halftone, 336, 392, 411 
hardware devices, 263-265, 542, 566, 612, 647 

See also input/output 
hashing, 70-72, 96, 222-224, 587 
header. See method header or object header 
heap, 657-659, 663-664 

See also segment, heap 
hierarchy, 83, 270-271, 273, 275, 277 

See also inheritance; subclass; superclass 
Hilbert, David, 373 
home context. See context, home 
Hydra, 7 
identifier, 22-23 
IEEE floating point standard, 625-626 
image, 

See also DisplayMedium (system index) 
area filling, 390-392, 411-412 
bordering, 393-395 
display box, 388 
displaying, 388-389 
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image (cont.) 
magnifying, 405-407 
reversing, 393 
rotating, 408-410 
transforming, 349, 388 

immutable object, 107, 115 
implementation description, 41, 43, 45-46, 53, 

57-58, 78-81, 84 
independent processes. See process 
indexing, 46, 96, 145, 153, 627-630 
inheritance, 58, 61, 81 

See also multiple inheritance; subclass; super- 
class 

initialization, 81 
of classes, 77, 84-88 
of instances, 77, 87, 274 

input/output, 251, 564, 566, 620, 647-652 
See also display; keyboard; pointing device 

inspector, 311, 313, 323 
instance, 8, 16, 18, 40, 46, 53, 56-58, 62, 76, 95, 

269-270, 565, 591, 633-634, 636 
creation, 40, 45, 47, 68, 76, 78, 80-81, 84, 87, 

98, 110, 112, 115, 139-140, 160-161, 163, 168, 
199, 212-213, 266, 269, 273-275, 287-288, 344, 
564, 572, 633-634, 656 

methods, 79 
See also method 

specification, 586, 590-591 
variable 8, 16, 44-47, 53, 58, 61, 76, 96, 

283-284, 311, 313, 543, 545, 548-549, 552, 
564-565, 568, 578-579, 599-600, 618, 620, 630. 
See private variable, instance 

indexed, 45-47, 56-57, 99, 153, 212, 
275-276, 281, 581, 587, 590 

named, 45-47, 56-57, 99, 246-247, 276, 
280, 543, 581, 590 

instruction pointer, 551-552, 554, 560, 581-582, 
584, 595, 602-603, 609-610, 639 

interface, 8, 16, 40 
See also message 

interpreter, 272, 542, 547-548, 550-564, 566, 
568-571, 574-576, 583-587, 589, 594-610, 612, 656, 
660, 674, 682, 685 

control structures, 569, 616 
data structures, 575 
registers, 583, 587, 642 
state, 551, 554-555, 563 

intervals. See Interval (system index) 
iteration. See control structures, iteration 
Kaehler, Ted, 404 
key, 145, 148, 157, 161, 165, 168-169 

See ~.lso collections 
keyboard, 251, 292, 566, 648-650 

keyword, 26, 37 
See also expression, message, keyword 

keyword message. See expression, message, key- 
word 

Knuth, Donald, 130, 185, 373, 430, 437 
large context flag, 577 
Lehmer, 130, 204 
line drawing, 351-352, 365, 403 

See also Pen (system index) 
Lisp, 100 
list, 

selection. See selection, list 
view, 297, 302 

literal, 546, 548, 579-580, 586, 633 
See also expression, literal 
constant. See expression, literal 
count, 577-578 
frame, 544, 546, 548-549, 563, 576-578, 

580-582, 600, 604, 608 
logarithmic functions, 124 
logical operations, 238 
Logo, 365, 368, 370 
mapping. See MappedCollection (system index) 
mean, 419 
memory management, 656, 675, 685 

See also object memory; compaction; fragmen- 
tation 

real memory, 656-657 
virtual memory, 656,  676 

menu, 15, 296-297, 304 
command. See name of command 
selection. See selection, menu 

message, 6-7, 16, 18, 24, 40, 56-66, 243-246, 
543-545, 549, 551, 553-554, 558-559, 562-563, 566, 
575, 580, 583, 587, 589, 603, 608, 612, 618, 640 

argument, 25-26, 37, 42, 543, 545, 547-549, 
551, 553-554, 560-561, 563, 568, 577-578, 
581-582, 587, 603-605, 612, 616, 621, 635, 
639-641 

category, 42, 53, 80, 284-285, 298-300, 
305-307 

computed, 243-244 
dictionary, 561-563, 580, 586-589 

See also method dictionary 
expression. See expression, message 
receiver. See receiver 
response, 27 
selector, 25, 27, 37, 40, 57, 61, 243-244, 273, 

299-300, 307, 544, 546, 549, 553, 561, 577, 
586-589, 603-606, 637, 640 

value, 18, 558 



metaclass, 76-89, 269-271, 284 
See also Metaclass (system index) 
reference to, 77 

method, 8, 16, 18, 40, 43-44, 48, 53, 56-57, 61-66, 
77, 300, 322, 542-543, 545, 562, 568-569, 576-582, 
585-588, 608, 684 

See also message; primitive method or routine 
cache, 605, 647 
class, 580 
determination, 61-66, 84, 86-89 

See also overriding a method 
dictionary, 273-276, 278 

See also message dictionary 
editing, 300, 305-307 
header, 576-582, 618, 633, 637 

extension, 579-580, 618 
view, 298 

modularity, 7 
mouse. See pointing device 

buttons, 292-297, 299, 302, 304, 312, 566, 
648, 650 

multiple inheritance, 57 
mutual exclusion. See examples, mutual exclusion 
nonpointer objects, 684-686 
notifier, 314-315, 317-320 
number, 13, 19-20, 96, 119-130, 546, 565-566, 

569, 577 
coercion, 125 
generality, 124-125, 127 

object, 6, 16, 18, 40, 56,76, 95, 269, 542 
header, 657, 663, 667, 670, 672 
memory, 542, 564-566, 568-575, 585, 595, 

612, 630, 636, 651, 656-688 
pointer, 564-566, 568-572, 575-576, 578, 584, 

587, 590, 595, 597, 601, 603, 608, 636, 644, 
653, 659-661, 680, 685 

table, 659-667 
entry, 661-663, 666, 670-672, 674, 676, 

683, 685 See also free entry; free pointer 
overriding a method, 57, 64-66, 72-73, 87, 100, 

212, 274, 589 
Papert, Seymour, 365 
parsing. See expression, parsing 
pattern matching, 167 
period, 31, 48, 52, 309 
pixel, 331, 334, 336, 338, 340, 344, 349, 398, 651 
pointing device, 251, 292, 398, 566, 648-649, 651 

See also mouse buttons 
pool, 47-48 
pool variable, 44, 276, 547 
primitive failure, 102, 563, 612, 616-617, 624, 

626, 629, 634, 639-640, 647 
primitive index, 579, 588, 605, 620 
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primitive method or routine, 9, 16, 52-53, 84, 
100, 102, 213, 246-247, 563-564, 566, 568, 574, 
578-579, 587, 595, 605, 612-653 

See also method 
optional, 612 

printing and storing, 100-101, 127, 201-202, 
218-219, 284-287, 313, 467-468, 503 

printlt command, 297, 309-310, 320 
private method category, 80, 214, 612 

See also message category 
private variable, 22, 47 

See also instance variable; temporary variable 
probability distributions, 418-438, 446 

continuous, 420, 432-438 
exponential, 432-435 
gamma, 432, 435-436 
normal or Gaussian, 432, 436-438 
uniform, 420, 424, 432-433 

discrete, 419, 423-432 
Bernoulli, 425-427, 429 
binomial, 425, 427-430 
geometric, 425, 429-430 
Poisson, 425, 430-432 

probability function, 418 
process, 15, 162, 251-266, 452, 459-461, 486, 583, 

594, 641-647 
active, 643 
priorities, 254-257 
scheduling, 254, 455, 644 

See also ProcessorScheduler (system index) 
programming environment, 7, 15, 41, 51, 243, 

275, 278, 283-284, 287, 292-327, 398, 674 
See also browsers 

programming style, 7, 69, 72-73, 81, 84, 97, 100, 
212, 214, 219, 247, 274, 449-452, 488 

See also subclassResponsibility (system index) 
protocol. See interface; message 
protocol description, 41-42, 53 
prototype, 98-99 
pseudo-variable name. See expression, pseudo-vari- 

able name 
queue. See data structures, stack and queue 
random number generation, 129-130 

See also Random (system index) 
random variable, 418-419 
raster, 338 
rational numbers. See Fraction (system index) 
realtime clock, 251, 263, 266 
receiver, 6, 16, 18, 24-25, 27, 37, 61, 543, 545, 

548-549, 551, 553-554, 556, 560-563, 579, 581-582, 
586, 599-600, 603, 605, 607-608, 612, 616, 619-621, 
635, 640, 653 

See also message 

i: 
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rectangle, 8, 24, 311-312, 366 
reference counting, 565, 571, 585, 609-610, 644, 

675-683 
in simulations, 459-461, 486 

registers, 568, 570, 583-585, 588, 616, 642 
resources, 440-444, 446-447, 454-455, 484-513, 

516-537 
consumable, 489-492 
coordinated, 516-537 
nonconsumable, 492-503 
renewable, 503-513 

result, 543-544, 549, 553-555, 612 
returning values 585. See value, returning a 
reversing pointers, 673-674, 678-680 
routines, 568-570, 594, 616-617, 642 
sample space, 172, 418-420 
scheduling. See process or simulation 
screen. See display 
scroll bar, 302 
scrolling, 302 
seed, 204 

See also random number generation 
segments, 656, 658, 666 

current, 667-669 
heap, 658-659, 661, 667, 671-674 

selection, 15, 292-293 
list, 298-299 
menu, 296 
text, 293-295, 297 

selector. See message selector 
sender, 555, 558, 581-582, 585, 608-610 
set, 13 
shared variable, 22, 58, 288, 543, 546-549, 577, 
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See also class variable; global variable; pool 

variable 
Simula, 7, 57, 119, 498 
simulation, 7, 418, 440-464 

event-driven, 441 
examples, 

bank, 526-532 
car dealership, 504-507 
car rental, 492-498 
car traffic, 474-476 
car wash, 442,  518-521 
default (do nothing), 449-452, 462-464 
ferry service, 507-513, 521-526 
file system, 498-503 
information system, 533-537 
jelly bean store, 489-492 
museum visitors, 472-474 

resources. See resources 
scheduling, 448-449, 453, 455, 458-462 

statistics gathering. See statistics gathering 
time, 441, 443, 446 

sorting, 145, 159-160 
special constants, 545 
special message selectors, 545, 549, 604, 608, 

618-619 
special return bytecodes. See bytecode, return, spe- 

cial 
stack, 542-544, 548-552, 554, 558, 560-561, 575, 

577, 581-583, 595, 597, 600-605, 608, 610, 612, 
616-617, 620-621, 638-640, 682 

See also data structures, stack and queue 
stack pointer, 581-582, 584, 639 
statistics gathering, 442, 466-483, 499, 509-510 

durations, 466-469 
event monitoring, 476-483 
event tallying, 474-476 
throughput histograms, 469-474, 504-506 

storage management, 564,  591, 620, 633-637 
See also garbage collection; reference counting 

storing. See printing and storing 
streaming. See Stream (system index) 
strike format, 354 
string, 13, 19-21, 126, 546, 684 

See also concatenation; pattern matching 
subclass, 57-60, 64-65, 73, 269-270, 300, 547, 562, 

584 
examples, 62, 64, 66-72 

subview, 297-300, 302, 313, 320 
superclass, 57-60, 64-66, 73, 81, 269, 322, 

561-563, 580, 586, 588, 606-607 
suspended process, 252-253, 266, 314, 317-318, 

320, 561, 644, 646 
See also debugger; notifier 

symbol, 19, 21, 37 
synchronization, 251, 257, 265 

See also Semaphore (system index) 
system browser. See browser 
system classes, 11, 14, 16 
temporary count, 577 
temporary frame, 547-548, 581-582, 599-600 
temporary variable, 44, 51-53, 86, 138, 323-324, 

545-549, 551, 560, 577-578, 581-582, 585 
testing, 95, 97, 115, 150, 197, 278-281, 348 
text, 15, 166, 292, 302, 331, 351, 383, 400, 405 

display, 354-355 
editing, 296, 298 
selection. See selection, text 

trial, 418 
trigonometric functions, 124 
turtle drawing. See line drawing 



unary message. See expression, message, unary 
uparrow. See T (system index) 
user interface. See programming environment 
value, 

See also message value; variable value 
returning a, 27, 49, 544, 549, 558, 560, 579, 

608-610, 620 
variable, 21, 57 

declaration, 43-48, 51, 58, 84 
name. See expression, variable name 
private. See private variable 
shared. See shared variable 
value, 549 
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variable-length object, 100, 215, 231, 274, 
280- 281, 289 

variance, 419 
view, 15, 292-293, 296, 302 

See also browser; workspace 
virtual image, 542, 564, 566 
virtual machine, 251, 254, 263, 542, 545, 564, 

566, 568-569 
See also interpreter; object memory 
formal specification, 568-688 

window, 15, 334 
See also view 

workspace, 292-293, 298, 309 
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#, 21, 168 
$, 2o 

' 20 
@, 182, 340 

See also Point 
Arc, 403 
Array, 46, 52, 72, 96, 98, 100, 133, 136, 139, 145, 

154-157, 165, 172-174, 197, 202, 216, 219, 231, 253, 
269, 276, 376, 397, 569, 587, 604-605, 608, 631, 639 

used on, 68-69, 71, 242, 259, 411, 472 
ArrayedCollection, 145, 157, 165-166, 219, 231, 

269, 278 
Association, 148-150, 220, 225-226, 546, 580, 599 

used on, 224 
See also association (subject index) 

at:, 46, 148, 153, 584, 595, 629-630 
defined on, 99, 229, 232, 234 

at:put:, 46-47, 148, 153, 308, 595, 629-630 
defined on, 99, 230, 232, 234 

Bag, 133-135, 140-141, 145, 148, 152, 169, 181, 
183, 185 

defined on, 147, 220-222 
used on, 184, 217 

become: 
defined on, 246 
used on, 247 

Behavior, 269-270, 272, 283, 288 
defined on, 273-282, 285 

BitBIt, 334, 349, 355, 361-362, 365-366, 368, 375, 
383, 400, 405, 651-652 

defined on, 350-352 
Bitmap, 333, 338 
BlockContext, 253, 462, 559-560, 580-581, 

583-585, 619, 637-639 
defined on, 254-255 
See also block (subject index) 

Boolean, 15, 23, 34, 119, 215, 237, 239, 550, 569, 
601-602, 621 

defined on, 238 
See also true; false 

ByteArray, 112, 145, 165-166, 231 
Character, 107, 114, 133, 136, 139-140, 145, 

165-166, 168, 201, 209, 630 
defined on, 115-116 

CbaracterScanner, 354, 652 
Circle, 403 
Class, 76, 78, 81, 84, 87-89, 269-271, 281, 

283-284, 289-290 
defined on, 288-289 

ClassDescription, 81, 269-270, 283-284, 288 
defined on, 285-286 

collect:, 36, 38, 138 
defined on, 137, 215, 225, 227, 230, 233-234 

Collection, 95, 145-148, 150-151, 153, 163, 165, 
168, 174, 188, 201, 212, 227, 269, 282, 376 

defined on, 134, 136-137, 139-141, 213-219, 
221 

used on, 284 
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CompiledMethod, 273, 543-544, 546-551, 555, 
559-563, 576-581, 586-589, 591, 594-595, 604-605, 
607, 612, 616, 618, 620, 633, 637, 640, 685 

Cursor, 374-375, 399, 651 
defined on, 398 

Curve, 403, 405 
defined on, 404 

Date, 40, 7778, 107-108, 114 
defined on, 109-111, 113 

Delay, 251, 263 
defined on, 266 

detect:, 138 
defined on, 137, 215 

Dictionary, 56, 133, 145, 148, 157, 168, 220-221, 
233, 269 

defined on, 149-152, 224-226 
used on, 44, 80, 467, 475 

Disk, 210, 283, 287, 474, 476, 480, 494 
Display, 388, 400 

used on, 397 
displayAt:, 389 

defined on, 388 
DisplayBitmap, 333 
DisplayMedium, 383, 396, 398, 400 

defined on, 390, 392-394 
DisplayObject, 390, 398, 400, 403, 405 

defined on, 383, 388 
DisplayScreen, 333, 398, 400, 651 
DisplayText, 383, 400 
do:, 36, 38, 148, 151, 164, 197, 461, 595 

defined on, 136, 215, 226, 228, 230, 233-234 
doesNotUnderstand:, 61, 323, 589 

defined on, 102 
error:, 51, 136, 138, 317 

defined on, 102 
ExternalStream, 208 

defined on, 209 
False, 237, 239 
false, 23, 34-35, 85, 238, 545, 549550, 599, 

601-603, 608 
File, 210 
FileDirectory, 210 
FilePage, 210 
FileStream, 209-210, 469 
Float, 119, 124-127, 130, 621, 625-626 
fork, 251-252 

defined on, 253-254 
Form, 331, 333-334, 336, 352, 354, 365-367, 

374-375, 383, 389-390, 393, 396-398, 400, 405, 651 
defined on, 338-340 
used on, 406, 408, 411-412 

Fraction, 119-120, 124-127 
IdentityDictionary, 145, 148, 226, 587 

ifFaise:, 34, 38, 550 
defined on, 238-239 

ifFalse:ifTrue:, 37 
defined on, 238-239 

ifTrue:, 34, 37, 550, 602 
defined on, 238-239 

ifTrue:ifFalse:, 34, 37, 550 
defined on, 238-239 

InfiniteForm, 398 
inject:into:, 138-139, 148, 185, 216 

defined on, 137, 216 
used on, 180 

InputState, 648-649, 651 
inspect, 311 
Integer, 51, 108, 119, 122-124, 127, 164, 175, 209, 

220, 224, 568, 570, 573 
defined on, 128-129 
See also bit manipulation 

Interval, 125-126, 136, 145, 157, 165, 174-175, 
216, 219 

defined on, 163164, 229-230 
LargeNegativetnteger, 119, 124-125, 127, 565, 

621, 625 
LargePositivelnteger, 119, 124125, 127, 209, 565, 

568, 617, 621, 625 
Line, 403 
LinearFit, 403 
Link, 145, 161-162, 185, 190, 205-206, 227, 286 
LinkedList, 145, 157, 162, 185, 205-208, 229, 286, 

644-645 
defined on, 161, 227-228 

LookupKey, 107, 145 
Magnitude, 111, 114, 166 

defined on, 107-108 
MappedCollection, 145-146, 157, 168-169, 216, 

219 
defined on, 233-234 

Message, 243, 589-590 
Metaclass, 77-78, 81, 89, 269-271, 283-284 

defined on, 287 
MethodContext, 559, 563, 577-578, 580-581, 

583-584, 605, 612, 638 
new, 40, 81-84, 139, 274, 595 

See also instance creation 
new:, 47, 81, 139, 595 

See also instance creation 
nil, 23, 32, 34.35, 45, 47, 51, 76, 84, 97, 138, 

237238, 336, 545, 549, 588, 599, 608-610 
Number, 107, 119, 145, 164-165, 219, 340-341, 

365 
defined on, 120, 122-123, 125-126 



Object, 60-62, 67, 73, 76, 78, 81, 84, 88, 107-108, 
114, 134, 148, 195, 201, 215-216, 218, 226, 237-239, 
242, 269-271, 274, 277, 290, 300, 589, 635, 641, 653 

defined on, 95-97, 99-103, 240-241, 244, 
246-247 

OpaqueForm, 398 
OrderedCollection, 30, 40, 46-47, 130, 133, 136, 

140, 145, 157, 161, 165, 173, 175-177, 179, 182-183, 
195, 201, 277, 279-280, 400-401 

defined on, 158-159, 231-233 
used on, 174, 178, 180, 184, 217 

Path, 383,  400, 403 
defined on, 401 

Pen, 365, 368, 370-379, 383 
defined on, 366-367 
used on, 369 

perform:, 246 
defined on, 244 
used on, 245 
See also message, computed 

Point, 9, 18, 77-78, 182, 338, 340, 348, 365, 376, 
383, 400-401, 403, 411, 544, 625, 651 

defined on, 341, 343-344 
Polygon 

defined on, 368-369 
PositionableStream, 195, 198, 273 

defined on, 199-200 
Process, 162, 251-252, 254, 256-258, 260-266, 

440, 463, 637, 641-647, 651 
defined on, 253, 255 

Processor, 254-255, 258, 264, 644 
used on, 265, 461 

ProcessorScheduler, 251, 254-255, 462, 641, 
643-645, 652 

defined on, 256-257 
Random, 129-130, 172, 174, 183, 195, 274 

defined on, 204-205 
used on, 175, 184, 420 

ReadStream, 198, 204 
defined on, 200 

ReaclWriteStrearn, 198, 204, 208 
Rectangle, 9, 18, 56, 77-78, 298-299, 304, 338, 

343, 367, 383, 390, 542-544, 546, 548, 550-551, 562 
defined on, 344-349 

reject:, 138 
defined on, 137, 216 

RunArray, 165-166 
select:, 137- • 38 

defined on, 136, 226-227, 233-234 
self, 23, 50-51, 53, 62-64, 66, 69-70, 88, 323, 549, 

562, 569, 578, 599, 607-608, 620 
Semaphore, 162, 251, 257, 260, 262, 440, 455, 

462, 486, 637, 641-642, 644, 646, 648-649, 652 
defined on, 258, 261 
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used on, 263-265, 457 
Sensor, 651-652 
SequenceabfeCoilection, 145, 158, 161, 163-164, 

168, 174-175, 188, 195, 198, 212, 229, 231-233, 247 
defined on, 153-157, 226-227 

Set, 101, 133, 136, 140-141, 145, 148, 152, 
180-181, 185, 201, 224-225, 269, 276-277, 279, 282, 
587 

defined on, 222-223 
used on, 217, 457 

SharedQueue, 251,  262, 440 
defined on, 265 

shouldNotimplement, 73, 212 
defined on, 102 

size, 47, 153, 595 
defined on, 100, 215, 226, ,229, 231, 234 

Smalllnteger, 95, 115, 119, 124-125, 127, 133, 145, 
209, 282, 563, 565-566, 568, 573-5?5, 579, 587, 590, 
618, 621, 624, 626, 628, 630, 636, 685 

Smalltalk, 47, 53, 308, 682 
SortedCollection, 133, 140-141, 145, 159, 166, 

233, 277, 279 
defined on, 160 
used on, 217, 264, 457, 462, 467, 486 

species 
defined on, 216 

Spline, 403 
Stream, 101, 166, 195, 198, 201, 203-206, 208, 

219, 420 
defined on, 196-197 

String, 9, 101, 116, 133, 139, 145, 154-155, 157, 
160, 165, 190, 201-203, 206, 209, 219, 231, 273-274, 
276-277, 286, 389, 400, 542, 629-631 

defined on, 166-167 
subclassResponsibility, 72-73, 107-108, 212, 449 

defined on, 102 
super, 23, 63-66, 73, 82-84, 88, 222, 562, 580, 599, 

607 
See also bytecode, send, super 

Symbol, 101, 115, 149, 160, 167, 169, 172-173, 
197, 201, 206, 219, 231, 273, 587-588 

defined on, 168 
Text, 145, 155, 165-166, 231, 276-277, 383, 389, 

400 
TextStyle, 400 

See also cloth 
Time, 40, 77-78, 107, 111, 114, 297 

defined on, 112-113 
used on, 265 

timesRepeat:, 33 
used on, 174 

True, 237 
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true, 23, 34-35, 85, 238-239, 545, 549-550, 599, 
601-603, 608 

UndefinedObject, 237-238 
value, 31-35, 37, 252, 560, 595, 619, 638 

used on, 239 
value:, 36-37, 164, 560, 595, 619, 638 
whileFalse:, 35, 38, 507, 550, 602 

whileTrue:, 35, 38, 550 
WriteStream, 198, 200-201, 204, 226 

defined on, 202-203 
used on, 227, 234 

[ ], See expression, block 
1', 50, 53, 544, 585, 608 
~, 22 
I , 35, 51 
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ActiveSimulation 
defined on, 452 

AuditTrail, 287 
defined on, 286 

BankCustomer 
defined on, 528 
used on, 527 

BankSimulation 
defined on, 527 

BankTeller, 529 
defined on, 528 
used on, 527 

Bernoulli, 427-428 
defined on, 425-426 

BinaryTree 
Binomial 

defined on, 427-428 
BitBItSimulation, 355 

defined on, 356-361 
Calculator 

defined on, 245 
CarBuyer 

defined on, 505 
used on, 504 

Card, 172, 177 
defined on, 176 

CardDeck, 172, 179-180 
defined on, 177-178 

CarDealer 
defined on, 504 

CarDelivery 
defined on, 505 
used on, 504 

CardHand, 172 
defined on, 179-180 

CarRenter 
defined on, 493 
used on, 492 

CarWash, 521 
defined on, 518 

Commander, 375-379 
defined on, 376, 379 

ContinuousProbability 
defined on, 422 

DeductibleHistory, 61-62, 66, 81, 84, 86-88 
defined on, 59-60, 85, 87 

DelayedEvent, 455, 459-460, 463, 486, 516 
defined on, 456-457 
used on, 460, 487, 517 

DiscreteProbability, 421, 423 
defined on, 422 

DoNothing, 462-464, 482 
defined on, 450, 468, 479 
used on, 451 

DrunkenCockroach, 172, 185 
defined on, 183-184 
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DualListDictionary, 67-72 
defined on, 68 

Entry, 163 
defined on, 162 

EventMonitor, 491, 500, 519 
defined on, 476-479, 481-482 

Exponential 
defined on, 434-435 
used on, 492, 509, 518, 525, 533 

FastDictionary, 66-72 
defined on, 71 

Ferry 
defined on, 507-510, 522, 524, 526 
used on, 521, 525 

FerrySimulation, 507, 510, 522 
defined on, 508-509, 521-522, 525 

FileSystem, 503 
defined on, 499-500 

FileSystemReader, 501, 503 
defined on, 500 
used on, 499 

FileSystemWriter, 500 
defined on, 501 
used on, 499 

FinancialHistory, 10, 16, 25, 41, 44-48, 59-62, 66, 
76, 80-88, 292, 303, 308, 314-315, 317 

defined on, 42-44, 78 
Four, 65 

defined on, 64 
Gamma 

defined on, 435-436 
Geometric, 428 

defined on, 429-430 
Histogram 

defined on, 470-472 
used on, 473 

InformationSystem 
defined on, 533 

Insurance, 98 
Interpreter, 568-570, 616 
IslandArrival 

defined on, 508, 525 
Light, 243 

defined on, 241 
used on, 242 

LinkedListStream, 205, 207 
defined on, 206 

LunchtimeTeller, 528 
defined on, 529 
used on, 527 

MainlandArrival 
defined on, 508, 525 

Museum, 472, 474, 504 
defined on, 473 

Node, 172, 185, 188, 190, 208 
defined on, 186-187 

Normal 
defined on, 437-438 
used on, 473, 507, 510, 522, 524, 526 

NothingAtAII, 449, 462-464 
defined on, 450-451, 468, 479, 489 

ObjectMemory, 568, 570 
defined on, 571-573 

One, 63-65 
defined on, 62 

PersonnelRecord, 98-99 
Poisson 

defined on, 431-432 
ProbabilityDistribution, 205, 426 

defined on, 420-421 
Product, 147 
Query 

defined on, 534 
used on, 533 

RealObjectMemory, 656-657 
RealWordMemory 

defined on, 656-657 
Record, 289 

defined on, 290 
RentalAgency 

defined on, 492 
Resource, 484, 516 

defined on, 485-486 
used on, 458 

ResourceCoordinator, 454-455, 485, 516, 528, 533 
defined on, 517-518 
used on, 458 

ResourceProvider, 454-455, 484-489, 500 
used on, 458 

SafeSharedQueue, 265 
defined on, 262-263 

SampleSpace, 205, 423, 476 
defined on, 424 
used on, 475, 505, 534 

SampleSpaceWithoutReplacement, 172, 176-177 
defined on, 175 
used on, 178, 527 

SampleSpaceWithReplacement, 172, 175, 183 
defined on, 173 

ShadedRectangle, 562, 580 
SimpleQueue, 260, 262 

defined on, 258-259 
SimpleSharedQueue 

defined on, 260-262 
Simulation, 441-442, 444, 446, 452, 454-455, 460, 

466-467, 484-486 
defined on, 447-449, 457-459 
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SimulationObject, 441-442, 448-451, 455, 462, 464, 
466, 476, 479-480, 484-489, 501, 504, 516, 521 

defined on, 443-446, 452-454 
used on, 458 

SimulationObjectRecord 
defined on, 466-467 

SmaliDictionary, 66-72, 76 
defined on, 69 

StaticResource, 454, 484-486, 504 
defined on, 487-488 

StatisticsWithSimulation 
defined on, 467-468 

SystemScanner 
defined on, 534-535 
used on, 533 

Three, 65 
defined on, 64 

Tile, 172, 183 
defined on, 181-182 
used on, 184 

Traffic, 474, 476 
defined on, 475 

TrafficLight, 243 
defined on, 242 

Tree, 172, 185, 191, 208 
defined on, 188-189 

Truck 
defined on, 522 
used on, 521, 525 . 

TruckRenter 
defined on, 493-494 
used on, 492 

Two, 63-65 
defined on, 62 

Uniform, 463 
defined on, 433 
used on, 437, 450-451, 468, 473, 475, 479, 

483, 489, 493-494, 504, 519, 522, 528, 534-535 
Visitor, 464, 472, 474, 504 

defined on, 451, 468, 473, 479, 482, 490 
used on, 489 

Wakeup, 263 
defined on, 264-265 

Wash, 521 
defined on, 519 

WashAndWax, 521 
defined on, 519 

Washer 
defined on, 518-519 

WordLink, 206, 208 
defined on, 207 

WordNode, 172 
defined on, 190-191 





Implementation Index 

583 
583-586, 590, 606, 609-610, 640, 643 

abandonFreeChunkslnSegment: 
defined on, 671 
used on, 674 

activateNewMethod 
defined on, 606 
used on, 605 

activeContext 
defined on, 
used on, 

activeProcess 
defined on, 644 
used on, 643-644, 646-647 

addLastLink:toList: 
defined on, 645 
used on, 646-647 

allocate:class: 
defined on, 668 

allocate:extra: class: 
defined on, 679 

allocate:odd:pointer:extra:class: 
defined on, 685 
used on, 687 

allocateChunk: 
defined on, 668, 684 
used on, 668, 679, 685 

argumentCount 
defined on, 587 
used on, 589-590, 604, 606-607, 619, 639-641 

argumentCountOf: 
defined on, 580 
used on, 640-641 

argumentCountOfBIock: 
defined on, 583 
used on, 639 

arithmeticSelectorPrimitive 
defined on, 619 
used on, 618 

asynchronousSignal: 
defined on, 642 

attemptToAllocateChunk:, 671 
defined on, 669 
used on, 668, 684 

attemptToAIiocateChunklnCurrentSegment: 
defined on, 669 
used on, 669 

caller 
defined on, 586 
used on, 609 

cantBelntegerObject 
defined on, 661 
used on, 661-663 

check l nde xab le Bou ndsOf: i n: 
defined on, 627, 635 
used on, 628-632, 635-636 

checkProcessSwitch, 642 
defined on, 643 
used on, 594 
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classBitsOf: 
defined on, 663 
used on, 666-671, 679, 685-687 

commonSelectorPrimitive 
defined on, 619 
used on, 618 

compactCurrentSegment,  671 
defined on, 674 
used on, 669 

countBitsOf: 
defined on, 662 
used on, 677, 681-684 

countDown: 
defined on, 677 
used on, 686-687 

countUp: 
defined on, 677 
used on, 679, 684-687 

createActu al M essag e 
defined on, 589 
used on, 589 

currentSegment 
defined on, 667 
used on, 667, 674 

cycle 
defined on, 594 
used on, 594 

deallocate: 
defined on, 670, 680 
used on, 674, 677, 684 

decreaseReferencesTo:  
defined on, 572, 687 
used on, 585, 610 

dispatchArithmeticPrimitives 
defined on, 621 
used on, 621  

dispatchControlPrimitives 
defined on, 637 
used on, 621 

dispatchFIoatPrimitives 
defined on, 626 
used on, 621 

dispa tc h I n putO u tp ut Pri m itives 
defined on, 647 
used on, 621 

dispatchlntegerPrimitives 
defined on, 621 
used on, 621 

dispatch Largel ntegerPrimitives 
defined on, 625 
used on, 621 

dispatchOnThisBytecode 
defined on, 595 
used on, 594 

dispatchPrimitives 
defined on, 621 
used on, 620 

dispatchPrivatePrimitives 
used on, 621 

dispatchStorageManagementPrimitives 
defined on, 633 
used on, 621 

dispatchSubscriptAndStreamPrimitives 
defined on, 627 
used on, 621 

dispatchSystemPrimitives 
defined on, 652 
used on, 621 

doubleExtendedSendBytecode 
defined on, 607 
used on, 606 

doubleExtendedSuperBytecode 
defined on, 607 
used on, 606 

duplicateTopBytecode 
defined on, 599 
used on, 598 

executeNewMethod 
defined on, 605 
used on, 605, 640-641 

extendedPushBytecode 
defined on, 599 
used on, 597 

extendedSendBytecode 
defined on, 606 
used on, 604 

extendedStoreAndPopBytecode 
defined on, 600 
used on, 597 

extendedStoreBytecode 
defined on, 600-601 
used on, 597, 600 

extractBits:to:of: 
defined on, 575 

fetchByte 
defined on, 594 
used on, 594, 599, 601-602, 606-607 

fetchByte:ofObject: 
defined on, 571, 687 

fetchByteLengthOf: 
defined on, 572, 687 
used on, 618, 627 

fetchClassOf: 
defined on, 572,  687 
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primitivel ndexOf: 
defined on, 580 
used on, 588 

primitivelnstVarAt 
defined on, 635 
used on, 633 

primitivelnstVarAtPut 
defined on, 635 
used on, 633 

primitiveMakePoint 
defined on, 625 
used on, 619, 622 

primitiveMod 
defined on, 623 
used on, 619, 622 

primitiveNew 
defined on, 634 
used on, 633 

primitiveNewMethod 
defined on, 637 
used on, 633 

primitiveNewWithArg 
defined on, 634 
used on, 633 

primitiveNext 
defined on, 631 
used on, 627 

primitiveNextlnstance, 636 
defined on, 637 
used on, 633 

primitiveNextPut 
defined on, 631 
used on, 627 

primitiveObjectAt 
defined on, 633 
used on, 633 

primitiveObjectAtPut 
defiRed on, 634 
used on, 633 

primitivePerform 
used on, 637 

primitivePerformWithArgs 
defined on, 641 
used on, 637 

primitiveQuo 
defined on, 623 
used on, 622 

primitiveResponse 
defined on, 620 
used on, 605 

primitiveResume 
defined on, 647 
used on, 638 

primitiveSignal 
defined on, 646 
used on, 637 

primitiveSize 
used on, 627 

primitiveSomel nstance, 
defined on, 637 
used on, 633 

primitiveStringAt,. 629 
defined on, 630 
used on, 627 

primitiveStringAtPut, 629 
defined on, 630 
used on, 627 

primitiveSuspend 
defined on, 647 
used on, 638 

primitiveValue, 638 
defined on, 639 
used on, 619, 637 

primitiveValueWithArgs 
used on, 637 

primitiveWait 
defined on, 646 
used on, 638 

push:, 597 
defined on, 585 

636 

used on, 590, 598-600, 609-610, 617, 620, 
623-624, 629-638, 641, 647, 653 

pushActiveContextBytecode 
defined on, 600 
used on, 598 

pushConstantBytecode 
defined on, 600 
used on, 597 

pushlnteger: 
defined on, 617 
used on, 622-625 

pushLiteralConstant: 
defined on, 598 
used on, 598 

push LiteralConstantBytecode 
defined on, 598 
used on, 597 

pushLiteralVariable: 
defined on, 599 
used on, 598 

push LiteralVariableBytecode 
defined on, 598 
used on, 597 

push Receiver Byt ecode 
defined on, 599 
used on, 597 

pushReceiverYariable: 
defined on, 598 
used on, 598 

pushReceiverVariableBytecode 
defined on, 598 
used on, 597 



methodClassOf: 
defined on, 580 
used on, 607 

newActiveContext:, 610 
defined on, 585 
used on, 606, 609, 639-640, 643 

newMethod, 589 
defined on, 587 
used on, 588, 605, 620, 640-641 

newProcess 
defined on, 642 
used on, 643 

newProcessWaiting 
defined on, 642 
used on, 643-644 

nilContextFields 
defined on, 610 
used on, 610 

objectPointerCountOf: 
defined on, 578 
used on, 633-634 

obtainPointer:location: 
defined on, 670 
used on, 670, 674 

oddBitsOf: 
defined on, 662 
used on, 685, 688 

or: 
defined on, 661-662 
used on, 670 

ot:bits:to: 
defined on, 662 
used on, 662 

pointerBitOf: 
defined on, 662 
used on, 685-686, 688 

pop:, 597 
defined on, 585 
used on, 590, 606, 639-640 

poplnteger 
defined on, 617 
used on, 622-624, 633-637 

popStack, 597 
defined on, 585 
used on, 600-602, 609, 617, 620, 625, 

628-639, 641, 647, 653 
popStackBytecode 

defined on, 601 
used on, 598, 600 

positive 16Biti ntegerFor: 
defined on, 617 
used on, 628-629 
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positive 16 BitValueOf: 
defined on, 617-618 
used on, 628-630, 634 

primitiveAdd 
defined on, 562 

primitiveAsObject 
defined on, 636 
used on, 633 

primitiveAsOop 
defined on, 636 
used on, 633 

primitiveAt 
defined on, 628 
used on, 627 

primitiveAtEnd, 631 
defined on, 632 
used on, 627 

primitiveAtPut, 628 
used on, 627 

primitiveBecome 
defined on, 635 
used on, 633 

primitiveBitAnd 
defined on, 624 
used on, 619, 622 

primitiveBitShift 
defined on, 624 
used on, 619, 622 

primitiveBIockCopy 
defined on, 638 
used on, 637 

primitiveClass 
defined on, 653 
used on, 619, 652 

primitiveDiv 
defined on, 623 

primitiveDivide 
defined on, 622 
used on, 619, 622 

primitiveEqual 
defined on, 624 
used on, 619, 622 

primitiveEquivalent 
-defined on, 653 
used on, 619, 652 

primitiveFail 
defined on, 616 
used on, 574, 617-619, 625, 637 

primitiveFlushCache 
defined on, 647 
used on, 638 

primitivelndex 
defined on, 587 
used on, 588, 605, 620 
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instantiateClass:withBytes: 
defined on, 572, 687 
used on, 617, 635, 637 

instantiateClass:with Pointers: 
defined on, 572, 687 
used on, 589, 606, 625, 634, 638 

instantiateClass:withWords: 
defined on, 572, 687 
used on, 634 

instructionPointer 
defined on, 583 
used on, 583-584, 594, 602, 638 

instructionPointerOfContext: 
defined on, 582 
used on, 583 

integerObjectOf:. 
defined on, 573, 688 
used on, 617, 623, 628, 638 

integerValueOf: 
defined on, 573, 688 
used on, 617-618, 628, 630-631 

interpret, 643 
isBIockContext: 

defined on, 584 
used on, 583, 638 

isEmptyList:, 642 
defined on, 645 
used on, 643, 645 

islndexable: 
defined on, 591 
used on, 634 

isl ntegerObject: 
defined on, 573, 660, 688 
used on, 617, 619, 628, 635-636, 660, 

677-678, 681, 687 
islntegerValue: 

defined on, 
used on, 

isLastlnstance: 
used on, 637 

isPointers: 
defined on, 591 
used on, 628, 634 

isWords: 
defined on, 591 
used on, 628, 634 

jump: 
defined on, 602 
used on, 602 

jumpBytecode 
defined on, 601 
used on, 595 

573, 688 
617, 622-623, 625 

jumplf:by: 
defined on, 602 
used on, 603 

largeContextFlagOf: 
defined on, 578 
used on, 606 

lastPointerOf: 
defined on, 663, 685-686 
used on, 678, 681, 684 

iengthOf: 
defined on, 627 
used on, 627, 629, 632, 635 

literal: 
defined on, 586 
used on, 599, 604, 607 

literal: of Method: 
defined on, 577 
used on, 580, 586 

literalCountOf: 
defined on, 578 
used on, 578, 580 

literalCountOfHeader: 
defined on, 578 
used on, 578, 637 

IocationBitsOf: 
defined on, 662-663 
used on, 663, 666, 670-671, 673, 688 

iongConditionalJump 
defined on, 603 
used on, 601 

IongUnconditionalJump 
defined on, 602 
used on, 601 

IookupMethodlnClass: 
defined on, 589 
used on, 605, 640-641 

IookupMethodlnDictionary: 
defined on, 588 
used on, 589 

IowByteOf: 
defined on, 575 
used on, 617, 628 

markAccessibleObjects 
defined on, 682 
used on, 682 

markObjectsAccessibleFrom: 
defined on, 683 
used on, 682 

messageSelector 
defined on, 587 
used on, 588-589, 604, 607, 640-641 

method, 584 
defined on, 583 
used on, 583 
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used on, 618-619, 627-632, 635, 639-641, 653, 
688 

fetchContextRegisters, 584 
defined on, 583 
used on, 585, 610 

fetch lnteger:ofObject: 
defined on, 574 
used on, 582-583, 608, 619, 631-632, 643, 646 

fetchPointer:ofObject: 
defined on, 571, 686 

fetchWord:ofObject: 
defined on, 571, 686 

fetchWordLengthOf: 
defined on, 572, 687 
used on, 627, 638-639, 641, 645 

fieldlndexOf: 
defined on, 579 
used on, 620 

fin d NewM et hod I nClass: 
defined on, 605 
used on, 605 

firstContext 
defined on, 

fixeclFieldsOf: 
defined on, 
used on, 

flagValueOf: 
defined on, 
used on, 

644 

591 
627, 629, 634 

578 
580, 620 

forAIIObjectsAccessibleFrom:suchThat:do: 
defined on, 678 
used on, 677, 683 

forAI IOtherO bjectsAccessible Fro m: such That: do: 
defined on, 678, 680 
used on, 678 

freeBitOf: 
defined on, 662 
used on, 671, 673, 684, 688 

hash: 
defined on, 587 

hasObject: 
used on, 636 

headerExtensionOf: 
defined on, 580 

headerOf: 
defined on, 577 

headOfFreeChunkList:inSegment: 
defined on, 666 
used on, 666-667, 669, 671 

headOfFreePointerList 
defined on, 665 
used on, 666 

heapChunkOf:byte: 
defined on, 663 
used on, 687 

heapChunkOf:word: 
defined on, 663 
used on, 663, 668, 678, 680-681, 684-686 

highByteOf: 
defined on, 575 
used on, 617 

homeContext, 584 
defined on, 583 
used on, 583, 600 

increaseReferencesTo: 
defined on, 571, 687 
used on, 585, 610 

i nitiallnstanceOf: 
defined on, 573, 688 
used on, 637 

initial I n structio n P oi nterOf M eth od: 
defined on, 578 
used on, 606 

initializeAssociationlndex 
defined on, 599 

initializeClassl ndicies 
defined on, 587 

initializeContextl ndicies 
defined on, 581 

initializeGuaranteedPointers 
defined on, 576 

initializeMessagelndices 
defined on, 590 

initializeMethodCache 
used on, 605, 647 

initializeMethodlndicies 
defined on, 577 

initializePointlndices 
defined on, 625 

initializeSchedulerl ndices 
defined on, 641 

initializeSmalllntegers 
defined on, 575-576 

initializeStreamlndices 
defined on, 631 

initPrimitive 
defined on, 616 
used on, 618, 620 

instanceAfter: 
defined on, 573, 688 
used on, 637 

instancesOf: 
used On, 637 

instanceSpecificationOf: 
defined on, 590 
used on, 591 
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pushTemporaryVariable: 
defined on, 598 
used on, 598 

pushTemporaryVariableBytecode 
defined on, 598 
used on, 597 

quicklnstanceLoad 
defined on, 620 
used on, 620 

quickReturnSelf 
defined on, 620 
used on, 620 

receiver, 584 
defined on, 583 
used on, 583, 598-600, 608 

reclaimlnaccessibleObjects 
defined on, 682 
used on, 684 

r ectifyCou n tsAnd Deal locate G abage 
defined on, 683 
used on, 682 

releasePointer: 
defined on, 671 
used on, 671 

removeFirstLinkOf:, 642 
defined on, 644 
used on, 643, 646 

removeFromFreeChunkList: 
defined on, 666-667 
used on, 669 

removeFromFreePointerList 
defined on, 666 
used on, 670 

resetFreeChunkList:inSegment: 
defined on, 667 
used on, 671, 683 

resume:, 642 
defined on, 646 
used on, 643, 647 

returnBytecode 
defined on, 608 
used on, 595 

returnToActiveContext: 
defined on, 610 
used on, 610 

returnValue:to: 
defined on, 609 
used on, 608-609 

reverse HeapPointersAbove: 
defined on, 673 
used on, 674 

schedulerPointer 
defined on, 644 
used on, 644-646 

segment:word: 
defined on, 656 

segment:word:bits: 
defined on, 657 

segment:word:byte: 
defined on, 656 

segmentBitsOf: 
defined on, 662 
used on, 663, 670, 673, 688 

semaphorelndex 
defined on, 642 
used on, 642-643 

semaphoreList 
defined on, 642 
used on, 642-643 

sendBytecode 
defined on, 603 
used on, 595 

sender  
defined on, 585 
used on, 608-609 

send Literal Selector Byt ecode 
defined on, 604 
used on, 604 

sendM ustBeBoolean 
defined on, 603 
usedon, 602 

sendSelector:argumentCount: 
defined on, 604 
used on, 603-604, 607-609 

sendSelector:toClass: 
defined on, 605 
used on, 604, 607 

sendSpeciaiSelectorBytecode, 
defined on, 608 
used on, 604 

shortConditionalJump 
defined on, 603 
used on, 601 

shortUnconditionalJump 
defined on, 602 
used on, 601 

simpleReturnValue:to: 
defined on, 609 

singleExtendedSendBytecode 
defined on, 606 
used on, 606 

singleExtendedSuperBytecode 
defined on, 607 
used on, 606 

618 
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sizeBitsOf: 
defined on, 663 
used on, 663, 668-670, 673, 680, 685-687 

sleep: 
defined on, 646 
used on, 646 

spaceOccupiedBy: 
defined on, 663, 680 
used on, 670, 674, 680, 685 

speciaiSelectorPrimitiveResponse 
defined on, 618 
used on, 608 

stackBytecode 
defined on, 597 
used on, 595 

stackPointer 
defined on, 583 
used on, 583-585, 590, 606, 640-641 

stackPointerOfContext: 
defined on, 582 
used on, 583 

stackTop 
defined on, 585 
used on, 599, 641, 646-647 

stackValue: 
defined on, 585 
used on, 604, 619, 639-640 

storeAndPopReceiverVariableBytecode 
defined on, 600 
used on, 597 

storeAndPopTemporaryVariableBytecode 
defined on, 600 
used on, 597 

storeByte:ofObject:withValue: 
defined on, 571, 687 

storeContextRegisters 
defined on, 584 
used on, 585 

storelnstructionPointerValue:inContext: 
defined on, 582 
used on, 584, 606 

storelnteger:ofObject:withValue: 
defined on, 574 
used on, 582-583, 631-632, 643, 647 

storePointer:ofObject:withValue: 
defined on, 571, 686 

storeStack Poi nterV alue: i nCo ntext: 
defined on, 583 
used on, 584, 606, 638-640 

storeWord:ofObject:withValue: 
defined on, 571, 686 

subscript:with:, 627 
defined on, 628 
used on, 629-631, 635 

subscript:with:storing:, 627 
defined on, 628 
used on, 629-630, 632, 636 

success 
defined on, 616 
used on, 617-620, 622-625, 628-636, 639-641, 

647 
success: 

defined on, 
used on, 

616 
617, 619, 622-623, 625, 627-628, 

630-636, 639-641, 647 
superclassOf: 

defined on, 589 
used on, 589, 607 

suspendActive 
defined on, 646 
used on, 647 

swapPointersOf:and: 
defined on, 573 
used on, 635 

sweepCurrentSegmentFrom: 
defined on, 673 
used on, 674 

synchronousSignal:, 642 
defined on, 643 
used on, 643, 646 

temporary: 
defined on, 586 
used on, 598 

temporaryCountOf: 
defined on, 577 
used on, 606 

toFreeChunkList:add: 
defined on, 666 
used on, 670, 680 

toFreePointerListAdd: 
defined on, 666 
used on, 671 

transfer:from Index: ofObject:tol ndex: of Object: 
defined on, 574 
used on, 590, 606, 639, 641 

transferTo:, 642 
defined on, 643 
used on, 646 

unPop: 
defined on, 585 
used on, 602, 622-625, 629-636, 640-641 

wak eH ig hest Priority 
defined on, 645 

zeroReferencecounts 
defined on, 682 
used,on, 682 
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