SMALLIALK-80

THE LANGUAGE AND ITS IMPLEMENTATION

Adele Goldberg and David Robson

class name FinancialHistory

superclass Object
instance variable names cashOnHand
incomes

expenditures
f message category class methods B

e instance creation ~ statements
P s - initialBalance: amount '
message pattern - . tsuper new setinitialBalance: amount

new
tsuper new setinitialBalance: 0

instance methods
transaction recording

receive: amount from: source
incomes at: source
put: (self totalReceivedFrom: source) + amount.
cashOnHand « cashOnHand + amount

spend: amount for: reason
expenditures at: reason
put: (self totalSpentFor: reason) + amount.
cashOnHand — cashOnHand — amount

inquiries
cashOnHand
tcashOnHand

totalReceivedFrom: source
(incomes includesKey: source)
ifTrue: [fincomes at: source]
ifFalse: [10]

totalSpentFor: reason
(expenditures includesKey: reason)
ifTrue: [Texpenditures at: reason]
ifFatse: [10]

private

setinitialBalance: amount
cashOnHand — amount.
incomes « Dictionary new.
expenditures — Dictionary new

message category

message pattern

FinancialHistory class protocol

functional specification

class initialization
initialBalance: amount

new

FinancialHistory instance protocol

Begin a financial history with amount as
the amount of money on hand.

Begin a financial history with O as the
amount of money on hand.

transaction recording
receive: amount from: source

spend: amount for: reason
inquiries

cashOnHand

totalReceivedFrom: source

totalSpentFor: reason

Remember that an amount of money,
amount, has been received from source.

Remember that an amount of money,
amount, has been spent for reason.

Answer the total amount of money cur-
rently on hand.

Answer the total amount received from
source, so far.

Answer the total amount spent for
reason, so far.

Smalltalk- C

The Language and its
Implementation

Adele Goldberg and David Robson

Xerox Palo Alto Research Center

*@V Addison-Wesley Publishing Company
Reading, Massachusetts « Menlo Park, California
London - Amsterdam + Don Mills, Ontario - Sydney

This book is in the

Addison-Wesley series in Computer Science
MICHAEL A. HARRISON

CONSULTING EDITOR

Library of Congress Cataloging in Publication Data

Goldberg, Adele.
Smalltalk-80: the language and its implementation.

1. Smalltalk-80 (Computer system) I. Robson, David.
II. Title.
QA76.8.5635G64 1983 001.64'2 82-13741
ISBN 0-201-11371-6

Copyright © 1983 by Xerox Corporation

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written
permission of the publisher. Printed in the United States of America. Published simultaneously in Canada.

ISBN 0-201~11371-6
ABCDEFGHIJ-HA-89876543

Preface

vi

Preface

Advances in the design and production of computer hardware have
brought many more people into direct contact with computers. Similar
advances in the design and production of computer software are re-
quired in order that this increased contact be as rewarding as possible.
The Smalltalk-80 system is a result of a decade of research into creat-
ing computer software that is appropriate for producing highly func-
tional and interactive contact with personal computer systems.

This book is the first detailed account of the Smalltalk-80 system. It
is divided into four major parts:

Part One — an overview of the concepts and syntax of the program-
ming language.

Part Two — an annotated and illustrated specification of the sys-
tem’s functionality.

Part Three — an example of the design and implementation of a
moderate-size application.

Part Four — a specification of the Smalltalk-80 virtual machine.

The first part introduces the Smalltalk approach to information repre-
sentation and manipulation. Five words—object, message, class, in-
stance, and method—make up the vocabulary with which Smalltalk is
discussed. These terms are defined and the syntax of the Smalltalk-80
programming language is introduced.

The second part of the book contains specifications of the kinds of ob-
jects already present in the Smalltalk-80 programming environment.
New kinds of objects can be added by a programmer, but a wide variety
of objects come with the standard system. The messages that can be
sent to each kind of object are listed, commented upon, and illustrated.

The third part of the book is an example of adding new kinds of ob-
jects to the system. It describes the addition of an application to model
discrete, event-driven simulations such as car washes, banks, or infor-
mation systems. Some readers may find it useful to read the third part
of the book immediately after reading the first part, referring to the
specifications in the second part whenever the meaning of a
Smalltalk-80 expression is not clear.

The fourth part of the book specifies how the Smalltalk-80 virtual
machine can be implemented. This virtual machine provides object-ori-
ented storage, message-oriented processing and graphically-oriented in-
teraction. It is primarily of interest to readers who wish to implement a
Smalltalk-80 system, or to readers who wish to understand the imple-
mentation of a message-oriented system in detail.

Vii
Preface

The Task of
Book-Writing

Smalltalk is a
vision

Writing this first book about the Smalltalk-80 system was a complex
task, partially due to the sociology of the system’s creation, and partial-
ly due to the diverse kinds of information people require about such a
system. We can divide the different reasons for the complexity of this
task into four categories:

Smalltalk is a vision.

¢ Smalltalk is based on a small number of concepts, but defined by
unusual terminology.

Smalltalk is a graphical, interactive programming environment.

Smalltalk is a big system.

In the early 1970’s, the Xerox Palo Alto Research Center Learning Re-
search Group began work on a vision of the ways different people might
effectively and joyfully use computing power. In 1981 the name of the
group was changed to the Software Concepts Group or SCG. The goal of
SCG is to create a powerful information system, one in which the user
can store, access and manipulate information so that the system can
grow as the user’s ideas grow. Both the number and kinds of system
components should grow in proportion to the growth of the user’s
awareness of how to effectively use the system.

SCG’s strategy for realizing this vision has been to concentrate on
two principal areas of research: a language of description (a program-
ming language) which serves as an interface between the models in the
human mind and those in computing hardware, and a language of in-
teraction (a user interface) which matches the human communication
system to that of the computer. Smalltalk research has followed a two-
to four-year cycle: create a system embodying current understanding of
the software needs; implement applications that test the system’s abili-
ty to support these applications; and finally, based on the resulting ex-
perience, reformulate the understanding of software needs and redesign
the programming language and/or the user interface.

The Smalltalk-80 system marks the fifth time through this cycle. The
research is still in progress. We hope that presenting a detailed descrip-
tion of the current research results will contribute to the community
working towards SCG’s vision. The continued unfolding of the research
means that the software system described in this book is literally a
“moving target” and the information in this book represents only one
station on a long track. Holding the train in the station long enough to
write about it a book made the writing task complex.

viii

Preface

Smalltalk has few
concepts

Smalltalk is an
environment

Smalltalk is a big
system

Smalitalk is based on a small number of concepts, but defined by un-
usual terminology. Due to the uniformity with which the object-mes-
sage orientation is carried out in the system, there are very few new
programming concepts to learn in order to understand Smalltalk. On
the one hand, this means that the reader can be told all the concepts
quickly and then explore the various ways in which these concepts are
applied in the system. These concepts are presented by defining the five
words mentioned earlier that make up the vocabulary of Smalltalk-——
object, message, class, instance, and method. These five words are de-
fined in terms of each other, so it is almost as though the reader must
know everything before knowing anything.

Smalltalk is a graphical, interactive programming environment. As
suggested by the personal computing vision, Smalltalk is designed so
that every component in the system that is accessible to the user can be
presented in a meaningful way for observation and manipulation. The
user interface issues in Smalltalk revolve around the attempt to create
a visual language for each object. The preferred hardware system for
Smalltalk includes a high-resolution graphical display screen and a
pointing device such as a graphics pen or a mouse. With these devices,
the user can select information viewed on the screen and invoke mes-
sages in order to interact with that information.

One way to present the details of the Smalltalk-80 system would be
to start with the user interface and to describe each facility for
accessing objects. Such a presentation might begin with scenarios of the
ways in which the programmer might interact with the system. Each
scenario would be a snapshot of a dynamic system. In a linear, static
way, the book would try to convey the dynamics of multiple access
paths to a large and diverse amount of information.

These aspects of the system are an important part of what Smalitalk
provides as an applications development environment. However, in or-
der to explain how this graphical user interface really works, the read-
er first has to understand the programming language. Thus, this book
inverts the presentation of the system by starting with the language it-
self. Information about the system objects that support the user inter-
face has been separated out and, except for the kernel graphics classes,
is not presented in this book. Another book on the Smalltalk-80 user in-
terface presents a detailed treatment of the implementation of these
system objects (Smalltalk-80: The Interactive Programming Environ-
ment by Adele Goldberg).

The Smalltalk-80 system is made up of many components. It includes
objects that provide the functions usually attributed to a computer op-
erating system: automatic storage management, a file system, display

ix
Preface

handling, text and picture editing, keyboard and pointing device input,
a debugger, a performance spy, processor scheduling, compilation and
decompilation. There are a lot of kinds of objects to learn about.

Smalltalk is built on the model of communicating objects. Large ap-
plications are viewed in the same way as the fundamental units from
which the system is built. The interaction between the most primitive
objects is viewed in the same way as the highest-level interaction be-
tween the computer and the user. Objects support modularity—the
functioning of any object does not depend on the internal details of oth-
er objects. The complexity of the system is reduced by this minimization
of interdependencies of system components. Complexity is further re-
duced by grouping together similar components; this is achieved
through classes in Smalltalk. Classes are the chief mechanism for ex-
tension in Smalltalk. User-defined classes become a part of the system
on an equal footing with the kernel classes of the system. Subclasses
support the ability to factor the system in order to avoid repetitions of
the same concepts in many different places.

Managing complexity is a key contribution of the Smalltalk approach
to software. The early examples of the language are very simple, taken
from the kinds of programming exercises common in many program-
ming language books. This is so examples can be short, illustrating one
or two points. The value of Smalltalk may not be apparent in these ex-
amples. After all, they can be done in other languages, and probably
just as well. The value of Smalltalk becomes apparent when designing
and implementing large applications, or when trying to make a modifi-
cation to the system itself. For example, consider a dictionary, a fre-
quently-used data structure in the Smalltalk-80 system. It is possible to
design, implement, test, and install a new representation for dictionar-
ies without in any way disrupting the running system. This is possible
as long as the message interface upon which the functioning of other
system objects depends is not destroyed.

The Smalltalk-80 system supports a number of interesting design
tools, notably classes and instances as units for organizing and sharing
information, and subclassing as a means to inherit and to refine
existing capability. Combined with the interactive way in which the
program development process is carried out, the Smalltalk-80 system
provides a rich environment for prototyping new applications and refin-
ing old ones.

Writing a book about such a rich system means that some things
must be left out. Again, we chose to omit in this first book the details of
the programming interface and the way in which interactive graphical
applications can be created. We focus on the language and the kernel
classes of the system.

X

Preface

The Task of

Book-Reading

This book takes for granted a certain amount of computer literacy on
the part of its reader. We assume that the reader

* knows why software systems are a good idea;

¢ is a programmer or programming-language designer who knows at
least one language well,;

* is familiar with the idea of expression syntax and of evaluation of
expressions by an interpreter;

* is familiar with sequencing of instructions in a computer, control
structures such as iteration and recursion, and the role of data
structures;

* is concerned with the need to have better control of the represen-
tation and manipulation of information in a computing system;
and

* is seeking new ideas for how to create a software (application) sys-
tem that supports the ability to express a software solution in a
way that is closely associated with the natural expression of the so-
lution.

Part of this book is for programmers interested in how to implement
the language and its development environment on a particular kind of
hardware system. Because of the variety of hardware systems on the
market, the issue of “portability” has been emphasized. Portability
means that only a small kernel of functionality must actually be creat-
ed for each hardware system in order to realize a running system. This
book provides an example of how to attain such portability.

Sharing the
Credit

The Smalltalk-80 system is based on ideas gleaned from the Simula
language and from the visions of Alan Kay, who first encouraged us to
try to create a uniformly object-oriented system. The current embodi-
ment of these ideas is the result of two related activities: research car-
ried out at the Xerox Palo Alto Research Center, and cooperation with
a group of stalwart participants in a project to review the research re-
sults.

In August, 1980, several hardware manufacturers were invited to re-
view the pages of our second attempt to write a book about Smalltalk

Xi
Preface

and its latest realization. OQur first attempt described the Smalltalk-76
system and was abandoned in response to our desire to create a more
portable system for distribution outside the Xerox research centers. Our
second attempt was a book that was partially historical in nature, par-
tially statements about a vision for personal computing, and partially
functional specification for a new Smalltalk system. We thought we
would entitle it Smalltalk Dreams and Schemes as a reflection of the
dual purpose of our writing. The manufacturers who patiently reviewed
our material were from Apple Computer, Digital Equipment Corpora-
tion, Hewlett-Packard, and Tektronix. These companies were chosen be-
cause they designed hardware systems. We hoped that, in reviewing the
material, they would learn about our unusual software goals and would
devote some time to the problem of creating hardware systems specifi-
cally for Smalltalk-like systems. We knew that hardware systems cur-
rently on the market, and even ones planned for the near future, would
have insufficient power to support our goals. Instead of designing soft-
ware to fit the hardware we could buy, we decided to try to get the
hardware designed to fit the software we wanted.

The manufacturers assigned personnel from their research laborato-
ries to the task of reading the second version of the book. This book has
benefited from much discussion and hard work on the part of these re-
viewers. The early part of the book was completely rewritten as a result
of their constructive criticism. The reviewers are responsible for our
continuing to try to complete the distribution process and for our com-
pleting this book, but not for any faults in its ultimate form. Each set of
reviewers implemented the system at least once in order to test our
specification of the Smalltalk-80 virtual machine. The current specifica-
tion reflects their careful review.

As authors of this book, we took responsibility for creating the writ-
ten description of the Smalltalk-80 system. But credit for the creation
of the system goes to all the members of the Software Concepts Group.
To these people, we state our debt, our thanks, and our love. Dan
Ingalls manages the overall systems design and development effort. Pe-
ter Deutsch on the Dorado, Glenn Krasner on the Alto, and Kim
McCall on the Dolphin (also called the Xerox 1100 Scientific Informa-
tion Processor), contributed expertise to the virtual machine implemen-
tations on the Xerox computers. User interface ideas, implementations,
and management of the release process were carried out by James
Althoff (user interface development), Robert Flegal (design of the graph-
ics editor), Ted Kaehler (while laboring over virtual memory problems),
Diana Merry (our text guru), and Steve Putz (version management).
Peggy Asprey, Marc Meyer, Bill Finzer, and Laura Gould, in trying to
keep their applications studies in pace with the system development,
tested major changes. Copious reading of the manuscript at various

xii

Preface

stages of inception was done by Michael Rutenberg, Michael Madsen,
Susanne Bodker, and Jay Trow. Editing assistance was given by Rachel
Rutherford and Janet Moreland.

Chapter 18 on the Smalltalk-80 graphics kernel was revised from a
paper written by Dan Ingalls for Byfe magazine; Chapter 30 was initial-
ly written by Larry Tesler. Graphical images in Chapters 18, 19, and
20, were created by Robert Flegal (especially Figures 18.1 and 20.1),
Dan Ingalls, and Adele Goldberg (especially Figures 20.2 and 20.3).
Steve Putz offered valuable assistance in creating the images for Chap-
ter 17. Images for the openings to Parts One and Two, and all images
for the opening pages of Chapters 1 through 20, were created by Adele
Goldberg. Images for Parts Three and Four, and all images for the
opening pages of Chapters 21 through 30, were created by Robert
Flegal. These images were created using the Smalltalk-80 graphics edi-
tor in combination with a low-resolution image scanner designed by Jo-
seph Maleson.

To the participants in the review process, we also give our thanks.
With them we have set an example of cooperative scientific exchange
that we hope will evolve and continue to grow. Encouragement to begin
this project came from our laboratory manager, Bert Sutherland. Re-
viewers and implementors were: from Apple, Rick Meyers and David
Casseres; from Digital Equipment Corporation, Stoney Ballard, Eric Os-
man, and Steve Shirron; from Hewlett-Packard, Alec Dara-Abrams, Joe
Falcone, Jim Stinger, Bert Speelpenning, and Jeff Eastman; and from
Tektronix, Paul McCullough, Allen Wirfs-Brock, D. Jason Penney,
Larry Katz, Robert Reed, and Rick Samco. We thank their companies
and administrators for their patience and willingness to depart from in-
dustry standards, at least for one brief moment—at Apple, Steve Jobs
and Bruce Daniels; at Digital, Larry Samburg; at Hewlett-Packard,
Paul Stoft, Jim Duley, and Ted Laliotis; and at Tektronix, Jack Grimes,
and George Rhine. The folks from Tektronix prepared detailed reviews
on audiotape, so we could not only see the errors of our ways, but hear
them as welll

It is our hope that this book and its companion will facilitate the dis-
tribution of the Smalltalk concepts in the computer community. If it
succeeds, then that success is shared by us with our colleagues at the
Xerox Palo Alto Research Center.

Postscript on
the Production
of This Book

The original text for this book was supplied to the publisher on magnet-
ic tape. The tape included formatting codes identifying the various
types of textual entity in the manuscript. The actual format of each
type of entity was supplied by the publisher. This process worked

Xiii
Preface

smoothly thanks in large part to the efforts and patience of Eileen
Colahan of the International Computaprint Corporation and Fran Ful-
ton, our production editor, as well as the cooperation of Sue Zorn, Mar-
shall Henrichs, and Jim DeWolf of Addison-Wesley.

Many of the graphical images that represent Smalltalk-80 screen
graphics and the Part and Chapter artwork were printed on the Plate-
maker system developed by Gary Starkweather and the Imaging Sci-
ences Laboratory of PARC. We would like to thank Gary, Eric Larson,
and Julian Orr for making the Platemaker available to us.

Adele Goldberg
David Robson

Palo Alto, California
January, 1983

PARTONE

Contents

1 Objects and Messages

Classes and Instances

An Example Application
System Classes

Summary of Terminology

2 Expression Syntax

Literals

Variables

Messages

Blocks

Summary of Terminology

3 Classes and Instances

Protocol Descriptions
Implementation Descriptions
Variable Declarations
Methods

Primitive Methods
Summary of Terminology

4 Subclasses

Subclass Descriptions

10
13
16

17
19
21
24
31
37

39
41
43
44
46
52
53

55
58

xvi

Contents

PARTTWO

An Example Subclass

Method Determination
Abstract Superclasses
Subclass Framework Messages
Summary of Terminology

5 Metaclasses
Initialization of Instances
An Example Metaclass
Metaclass Inheritance
Initialization of Class Variables
Summary of Method Determination
Summary of Terminology

6 Protocol for all Objects
Testing the Functionality of an Object
.Comparing Objects
Copying Objects
Accessing the Parts of an Object
Printing and Storing Objects
Error Handling

7 Linear Measures
Class Magnitude
Class Date
Class Time
Class Character

8 Numerical Classes
Protocol of the Number Classes
Classes Float and Fraction
Integer Classes
Class Random: A Random Number
Generator

9 Protocol for All Collection Classes
Adding, Removing, and
Testing Elements
Enumerating Elements
Instance Creation
Conversion Among Collection Classes

59
61
66
72
73

75
77
78
81
84
88
89

93
95
96
97
99
100
102

105
107
108
111
114

117
120
126
127

129

131

134
136
139
140

Xvii

Contents
10 Hierarchy of the Collection Classes 143
Class Bag 147
Class Set 148
Classes Dictionary and ldentityDictionary 148
Class SequenceableCollection 153
Subclasses of SequenceableCollection 157
Class ArrayedCollection 165
Class MappedCollection 168
Summary of Conversions Among
Collections 169
11 Three Examples that Use Collections 171
Random Selection and Playing Cards 172
The Drunken Cockroach Problem 181
Traversing Binary Trees 185
12 Protocol for Streams 193
Class Stream 195
Positionable Streams 198
Streams of Generated Elements 204
Streams for Collections Without
External Keys 205
External Streams and File Streams 208
13 Implementations of the Basic
Collection Protocol 211
Class Collection 212
Subclasses of Collection 219
14 Kernel Support 235
Class UndefinedObject 237
Classes Boolean, True, and False 237
Additional Protocol for Class Object 239
15 Multiple Independent Processes 249
Processes 251
Semaphores 257
Class SharedQueue 265
Class Delay 266
16 Protocol for Classes 267
Class Behavior 272
Class ClassDescription 284

Xviii

Contents

PARTTHREE

Class Metaclass
Class Class

17 The Programming Interface
Views
Browsers
Testing
Error Reporting

18 Graphics Kernel
Graphical Representation
Graphical Storage
Graphical Manipulation
Classes Form and Bitmap
Spatial Reference
Class BitBlt
Line Drawing
Text Display
Simulation of BitBit

19 Pens
Class Pen
Geometric Designs
Commander Pen

20 Display Objects
Class DisplayObject
Class DisplayMedium
Forms
Display Text
Paths

Image Manipulation with Forms

21 Probability Distributions

Probability Distribution Framework
Discrete Probability Distributions
Continuous Probability Distributions

22 Event-Driven Simulations

A Framework for Simulation
Implementation of the Simulation
Classes

287
288

291
292
297
308
314

329
331
331
333
338
340
349
351
354
355

364
365
370
375

381
383
390
396
400
400
405

417
418
423
432

439
442

452

XiX

Contents
23 Statistics Gathering
in Event-Driven Simulations 465
Duration Statistics 466
Throughput Histograms 469
Tallying Events 474
Event Monitoring 476
24 The Use of Resources
in Event-Driven Simulations 483
Implementing ResourceProvider and
StaticResource 484
Consumable Resources 489
Nonconsumable Resources 492
Renewable Resources 503
25 Coordinated Resources
for Event-Driven Simulations 515
The Implementation of
Class ResourceCoordinator 516
Example: A Car Wash Simulation 518
Example: A Ferry Service
for a Special Truck 521
Example: A Bank 526
Example: An Information System 533
PARTFOUR 26 The Implementation 541
The Compiler 542
The Interpreter 550
The Object Memory 564
The Hardware 566
27 Specification of the Virtual Machine 567
Form of the Specification 568
Object Memory Interface 570
Objects Used by the Interpreter 575
28 Formal Specification of the Interpreter 593
Stack Bytecodes 597
Jump Bytecodes 601
Send Bytecodes 603
Return Bytecodes 608

XX

Contents

29 Formal Specification
of the Primitive Methods

Arithmetic Primitives
Array and Stream Primitives
Storage Management Primitives
Control Primitives
Input/Output Primitives
System Primitives

30 Formal Specification
of the Object Memory

Heap Storage
The Object Table
Allocation and Deallocation
Garbage Collection
Nonpointer Objects
Interface to the Bytecode Interpreter

Subject Index
System Index
Example Class Index

Implementation Index

611
621
627
633
637
647
652

655
657
659
667
674
684
686

691

699

703

707

Smalltalk-80

PART ONE

Part One of this book provides an overview of the Smalltalk-80
programming language. Chapter 1 introduces the basic concepts
and vocabulary of the Smalltalk-80 programming language with-
out introducing its syntax. It describes objects, messages, classes,
instances, and methods. These concepts are discussed in greater
detail in the next four chapters as the relevant parts of the pro-
gramming language syntax are described. Chapter 2 describes the
syntax of expressions. Expressions allow objects to be referred to
and messages to be described. Chapter 3 describes the basic syntax
for classes and methods. Classes and methods allow new kinds of
objects to be created and existing kinds to be modified. The final
two chapters describe two important refinements to the role of
classes in the Smalltalk-80 system. These refinements allow
subclasses and metaclasses.

Objects and Messages

Classes and Instances
An Example Application
System Classes

Summary of Terminology

6
Objects and Messages

An object represents a component of the Smalltalk-80 software system.
For example, objects represent

¢ numbers

» character strings
e queues

¢ dictionaries

* rectangles

« file directories

» text editors

¢ programs

¢ compilers

+ computational processes
« financial histories

e views of information

An object consists of some private memory and a set of operations. The
nature of an object’s operations depends on the type of component it
represents. Objects representing numbers compute arithmetic functions.
Objects representing data structures store and retrieve information. Ob-
jects representing positions and areas answer inquiries about their rela-
tion to other positions and areas.

A message is a request for an object to carry out one of its operations.
A message specifies which operation is desired, but not how that opera-
tion should be carried out. The receiver, the object to which the message
was sent, determines how to carry out the requested operation. For ex-
ample, addition is performed by sending a message to an object repre-
senting a number. The message specifies that the desired operation is
addition and also specifies what number should be added to the receiv-
er. The message does not specify how the addition will be performed.
The receiver determines how to accomplish the addition. Computing is
viewed as an intrinsic capability of objects that can be uniformly in-
voked by sending messages.

The set of messages to which an object can respond is called its inter-
face with the rest of the system. The only way to interact with an object
is through its interface. A crucial property of an object is that its pri-
vate memory can be manipulated only by its own operations. A crucial
property of messages is that they are the only way to invoke an object’s
operations. These properties insure that the implementation of one ob-

7
Objects and Messages

ject cannot depend on the internal details of other objects, only on the
messages to which they respond.

Messages insure the modularity of the system because they specify
the type of operation desired, but not how that operation should be ac-
complished. For example, there are several representations of numeri-
cal values in the Smalltalk-80 system. Fractions, small integers, large
integers, and floating point numbers are represented in different ways.
They all understand the same message requesting the computation of
their sum with another number, but each representation implies a dif-
ferent way to compute that sum. To interact with a number or any ob-
ject, one need only know what messages it responds to, not how it is
represented.

Other programming environments also use objects and messages to
facilitate modular design. For example, Simula uses them for describing
simulations and Hydra uses them for describing operating system facili-
ties in a distributed system. In the Smalltalk-80 system, objects and
messages are used to implement the entire programming environment.
Once objects and messages are understood, the entire system becomes
accessible.

An example of a commonly-used data structure in programming is a
dictionary, which associates names and values. In the Smalltalk-80 sys-
tem, a dictionary is represented by an object that can perform two oper-
ations: associate a name with a new value, and find the value last
associated with a particular name. A programmer using a dictionary
must know how to specify these two operations with messages. Diction-
ary objects understand messages that make requests like “associate the
name Brett with the value 3” and “what is the value associated with
the name Dave?”’ Since everything is an object, the names, such as
Brett or Dave, and the values, such as 3 or 30, are also represented by
objects. Although a curious programmer may want to know how associ-
ations are represented in a dictionary, this internal implementation in-
formation is unnecessary for successful use of a dictionary. Knowledge
of a dictionary’s implementation is of interest only o the programmer
who works on the definition of the dictionary object itself.

An important part of designing Smalltalk-80 programs is determin-
ing which kinds of objects should be described and which message
names provide a useful vocabulary of interaction among these objects.
A language is designed whenever the programmer specifies the mes-
sages that can be sent to an object. Appropriate choice of objects de-
pends, of course, on the purposes to which the object will be put and the
granularity of information to be manipulated. For example, if a simula-
tion of an amusement park is to be created for the purpose of collecting
data on queues at the various rides, then it would be useful to describe
objects representing the rides, workers who control the rides, the wait-
ing lines, and the people visiting the park. If the purpose of the simula-

8

Objects and Messages

tion includes monitoring the consumption of food in the park, then
objects representing these consumable resources are required. If the
amount of money exchanged in the park is to be monitored, then de-
tails about the cost of rides have to be represented.

In designing a Smalltalk-80 application, then, choice of objects is the
first key step. There really is nothing definitive to say about the “right
way” to choose objects. As in any design process, this is an acquired
skill. Different choices provide different bases for extending an applica-
tion or for using the objects for other purposes. The skilled Smalltalk-80
programmer is mindful that the objects created for an application
might prove more useful for other applications if a semantically com-
plete set of functions for an object is specified. For example, a diction-
ary whose associations can be removed as well as added is generally
more useful than an add-only version.

Classes and
Instances

A class describes the implementation of a set of objects that all repre-
sent the same kind of system component. The individual objects de-
scribed by a class are called its instances. A class describes the form of
its instances’ private memories and it describes how they carry out
their operations. For example, there is a system class that describes the
implementation of objects representing rectangular areas. This class de-
scribes how the individual instances remember the locations of their
areas and also how the instances carry out the operations that rectan-
gular areas perform. Every object in the Smalltalk-80 system is an in-
stance of a class. Even an object that represents a unique system
component is implemented as the single instance of a class. Program-
ming in the Smalltalk-80 system consists of creating classes, creating
instances of classes, and specifying sequences of message exchanges
among these objects.

The instances of a class are similar in both their public and private
properties. An object’s public properties are the messages that make up
its interface. All instances of a class have the same message interface
since they represent the same kind of component. An object’s private
properties are a set of instance variables that make up its private mem-
ory and a set of methods that describe how to carry out its operations.
The instance variables and methods are not directly available to other
objects. The instances of a class all use the same set of methods to de-
scribe their operations. For example, the instances that represent rect-
angles all respond to the same set of messages and they all use the
same methods to determine how to respond. Each instance has its own
set of instance variables, but they generally all have the same number

9

Classes and Instances

of instance variables. For example, the instances that represent rectan-
gles all have two instance variables.

Each class has a name that describes the type of component its in-
stances represent. Class names will appear in a special font because
they are part of the programming language. The same font will be used
for all text that represents Smalltalk-80 expressions. The class whose
instances represent character sequences is named String. The class
whose instances represent spatial locations is named Point. The class
whose instances represent rectangular areas is named Rectangle. The
class whose instances represent computational processes is named Pro-
cess.

Each instance variable in an object’s private memory refers to one
object, called its value. The values of a Rectangle’s two instance vari-
ables are instances of Point that represent opposing corners of its rect-
angular area. The fact that Rectangles have two instance variables, or
that those instance variables refer to Points is strictly internal informa-
tion, unavailable outside the individual Rectangle.

Each method in a class tells how to perform the operation requested
by a particular type of message. When that type of message is sent to
any instance of the class, the method is executed. The methods used by
all Rectangles describe how to perform their operations in terms of the
two Points representing opposing corners. For example, one message
asks a Rectangle for the location of its center. The corresponding meth-
od tells how to calculate the center by finding the point halfway be-
tween the opposing corners.

A class includes a method for each type of operation its instances can
perform. A method may specify some changes to the object’s private
memory and/or some other messages to be sent. A method also specifies
an object that should be returned as the value of the invoking message.
An object’s methods can access the object’s own instance variables, but
not those of any other objects. For example, the method a Rectangle
uses to compute its center has access to the two Points referred to by its
instance variables; however, the method cannot access the instance
variables of those Points. The method specifies messages to be sent to
the Points asking them to perform the required calculations.

A small subset of the methods in the Smalltalk-80 system are not
expressed in the Smalltalk-80 programming language. These are called
primitive methods. The primitive methods are built into the virtual ma-
chine and cannot be changed by the Smalitalk-80 programmer. They
are invoked with messages in exactly the same way that other methods
are. Primitive methods allow the underlying hardware and virtual ma-
chine structures to be accessed. For example, instances of integer use a
primitive method to respond to the message +. Other primitive meth-
ods perform disk and terminal interactions.

10

Objects and Messages

An Example
Application

Examples are an important part of the description of a programming
language and environment. Many of the examples used in this book are
taken from the classes found in the standard Smalltalk-80 system. Oth-
er examples are taken from classes that might be added to the system
to enhance its functionality. The first part of the book draws examples
from an application that might be added to the system to maintain sim-
ple financial histories for individuals, households, clubs, or small
businesses. The full application allows information about financial
transactions to be entered and views of that information to be
displayed. Figure 1.1 shows a view of a financial history as it might ap-
pear on a Smalltalk-80 display screen. The top two parts of the view
show two views of the amount of money spent for various reasons. The
next.view down shows how the cash-on-hand fluctuated over time as
transactions were made.

At the bottom of the picture are two areas in which the user can
type in order to add new expenditures and incomes to the history.
When new information is added, the three views are automatically
updated. In Figure 1.2, a new expenditure for food has been added.

This application requires the addition of several classes to the sys-
tem. These new classes describe the different kinds of view as well as
the underlying financial history information. The class that actually re-
cords the financial information is named FinancialHistory and will be
used as an example in the next four chapters. This example application
will make use of several classes already in the system; it will use num-
bers to represent amounts of money and strings to represent the rea-
sons for expenditures and the sources of income.

FinancialHistory is used to introduce the basic concepts of the
Smalltalk-80 programming language because its functionality and im-
plementation are easy to describe. The functionality of a class can be
specified by listing the operations available through its message inter-
tace. FinancialHistory provides six operations:

1. Create a new financial history object with a certain initial amount
of money available.

2. Remember that a certain amount was spent for a particular rea-
son.

3. Remember that a certain amount was received from a particular
source.

4. Find out how much money is available.
5. Find out how much has been spent for a particular reason.

6. Find out how much has been received from a particular source.

11
An Example Application

utilities
food utilities

]

3a0

275

Cash On Hand

Figure 1.1

12
Objects and Messages

utilitias

fond utilities

]

l Last Transactions I

Figure 1.2

13

System Classes

An implementation of these operations is specified in the class descrip-
tion shown inside the front cover of this book. The form of class descrip-
tions will be described in Chapters 3, 4, and 5.

System Classes

Arithmetic

Data Structures

Control Structures

The Smalltalk-80 system includes a set of classes that provides the
standard functionality of a programming language and environment:
arithmetic, data structures, control structures, and input/output facili-
ties. The functionality of these classes will be specified in detail in Part
Two of this book. Figure 1.3 is a diagram of the system classes present-
ed in Part Two. Lines are drawn around groups of related classes; the
groups are labeled to indicate the chapters in which the specifications
of the classes can be found.

The Smalltalk-80 system includes objects representing both real and ra-
tional numbers. Real numbers can be represented with an accuracy of
about six digits. Integers with absolute value less than 2524288 can be rep-
resented exactly. Rational numbers can be represented using these inte-
gers. There are also classes for representing linear magnitudes (like
dates and times) and random number generators.

Most of the objects in the Smalltalk-80 system function as data struc-
tures of some kind. However, while most objects also have other
functionality, there is a set of classes representing more or less pure
data structures. These classes represent different types of collections.
The elements of some collections are unordered while the elements of
others are ordered. Of the collections with unordered elements, there
are bags that allow duplicate elements and sets that don’t allow dupli-
cation. There are also dictionaries that associate pairs of objects. Of the
collections with ordered elements, some have the order specified exter-
nally when elements are added and others determine the order based
on properties of the elements themselves. The common data structures
of arrays and strings are provided by classes that have associative be-
havior (associating indices and elements) and external ordering {(corre-
sponding to the inherent ordering of the indices).

The Smalltalk-80 system includes objects and messages that implement
the standard control structures found in most programming languages.
They provide conditional selection similar to the if-then-else statements
of Algol and conditional repetition similar to its while and until state-

10

Object B
Magnitude Stream
Character PositionableStream
Date ReadStream
Time WriteStream
ReadWriteStream
Number ExternalStream
Float FileStream
Fraction
Integer Random]
LargeNegativelnteger
LargePositiveinteger File
Smaliinteger FileDirectory
FilePage
LookupKey UndefinedObject
Association Boolean
False
Link True
Brocess
ProcessorScheduler

Figure 1.3

Coliection] Delay
= SharedQueue
SequenceableCollection
LinkedList Behavior
ClassDescription
[Semaphore Class
MetaClass
ArrayedCollection
Array Point
Rectangle
Bitmap BitBit
DisplayBitmap CharacterScanner
RunArray [Pen
String
Symbol DisplayObject
Text DisplayMedium
ByteArray Form
Cursor
Interval DisplayScreen
OrderedCollection InfiniteForm
SortedCollection OpaqueForm
Bag Path
MappedCollection Arc
Set Circle
Dictionary Curve
ldentityDictionary Line
LinearFit
Spline

12

14

15

16

18
19

20

Programming
Environment

Viewing and
Interacting

Communication

15
System Classes

ments. Objects representing independent processes and mechanisms for
scheduling and synchronous interaction are also provided. Two classes
are provided to support these control structures. Booleans represent the
two truth values and blocks represent sequences of actions. Booleans
and blocks can also be used to create new kinds of control structures.

There are several classes in the Smalltalk-80 system that assist in the
programming process. There are separate classes representing the
source (human-readable) form and the compiled (machine-executable)
form of methods. Objects representing parsers, compilers, and
decompilers translate between the two forms of method. Objects repre-
senting classes connect methods with the objects that use them (the in-
stances of the classes).

Objects representing organizational structures for classes and meth-
ods help the programmer keep track of the system, and objects repre-
senting histories of software modification help interface with the efforts
of other programmers. Even the execution state of a method is repre-
sented by an object. These objects are called contexts and are analogous
to stack frames or activation records of other systems.

The Smalltalk-80 system includes classes of objects that can be used to
view and edit information. Classes helpful for presenting graphical
views represent points, lines, rectangles, and arcs. Since the Small-
talk-80 system is oriented toward a bitmap display, there are classes for
representing and manipulating bitmap images. There are also classes
for representing and manipulating the more specific use of bitmap im-
ages for character fonts, text, and cursors.

Built from these graphical objects are other objects representing rect-
angular windows, command menus, and content selections. There are
also objects that represent the user’s actions on the input devices and
how these relate to the information being viewed. Classes representing
specific viewing and editing mechanisms constructed from these compo-
nents provide views for classes, contexts, and documents containing text
and graphics. The views of classes provide the fundamental mechanism
to interact with the software in the system. Smalltalk-80 views and edi-
tors are presented in a separate book.

The Smalltalk-80 system allows communication with external media.
The standard external medium is a disk file system. Objects represent
individual files as well as directories. If a connection to a communica-
tions network is available, it can be accessed through objects as well.

16

Objects and Messages

Summary of
Terminology

object

message
receiver -
interface

class

instance
instance variable
method

primitive method

FinancialHistory
system classes

A component of the Smalltalk-80 system represented by
some private memory and a set of operations.

A request for an object to carry out one of its operations.
The object to which a message is sent.

The messages to which an object can respond.

A description of a group of similar objects.

One of the objects described by a class.

A part of an object’s private memory.

A description of how to perform one of an object’s opera-
tions.

An operation performed directly by the Smalltalk-80 virtu-
al machine.

The name of a class used as an example in this book.

The set of classes that come with the Smalltalk-80 system.

2

Expression Syntax

Literals
Numbers
Characters
Strings
Symbols
Arrays

Variables
Assignments
Pseudo-variable Names

Messages

Selectors and Arguments
Returning Values
Parsing

Formatting Conventions
Cascading

Blocks

Control Structures
Conditionals
Block Arguments

Summary of Terminology

18

Expression Syntax

Chapter 1 introduced the fundamental concepts of the Smalltalk-80 sys-
tem. System components are represented by objects. Objects are in-
stances of classes. Objects interact by sending messages. Messages cause
methods to be executed. This chapter introduces an expression syntax
for describing objects and messages. The next chapter introduces a syn-
tax for describing classes and methods.

An expression is a sequence of characters that describes an object
called the value of the expression. The syntax presented in this chapter
explains which sequences of characters form legal expressions. There
are four types of expression in the Smalltalk-80 programming language.

1. Literals describe certain constant objects, such as numbers and
character strings.

2. Variable names describe the accessible variables. The value of a
variable name is the current value of the variable with that name.

3. Message expressions describe messages to receivers. The value of a
message expression is determined by the method the message in-
vokes. That method is found in the class of the receiver.

4. Block expressions describe objects representing deferred activities.
Blocks are used to implement control structures.

Expressions are found in two places, in methods and in text displayed
on the screen. When a message is sent, a method from the receiver’s
class is selected and its expressions are evaluated. Part of the user in-
terface allows expressions to be selected on the screen and evaluated.
The details of selecting and evaluating expressions on the screen fall
outside the scope of this book, since they are part of the user interface.
Some examples, however, are given in Chapter 17.

Of the four types of expression listed above, only the variable names
are context-dependent. An expression’s location in the system deter-
mines which character sequences are legal variable names. The set of
variable names available in a method’s expressions depends on the class
in which the method is found. For example, methods in class Rectangle
and methods in class Point have access to different sets of variable
names. The variables available in a class’s methods will be fully de-
scribed in Chapters 3, 4, and 5. The variable names available for use in
expressions on the screen depend on where the expressions are
displayed on the screen. All other aspects of the expression syntax are
independent of the expression’s location.

The syntax for expressions is summarized in the diagram that ap-
pears inside the back cover of this book. The rest of this chapter de-
scribes the four types of expression.

19
Literals

Literals

Numbers

Five kinds of objects can be referred to by literal expressions. Since the
value of a literal expression is always the same object, these expressions
are also called lZiteral constants. The five types of literal constant are:

numbers
. individual characters
. strings of characters

. symbols

S R R

. arrays of other literal constants

Numbers are objects that represent numerical values and respond to
messages that compute mathematical results. The literal representation
of a number is a sequence of digits that may be preceded by a minus

sign and/or followed by a decimal point and another sequence of digits.
For example,

3
30.45
—3
0.005
—14.0
13772

Number literals can also be expressed in a nondecimal base by preced-
ing the digits with a radix prefix. The radix prefix includes the value of
the digit radix (always expressed in decimal) followed by the letter “r”.

The following examples specify numbers in octal with their correspond-
ing decimal values.

octal decimal
8r377 255
8r153 107
8r34.1 28.125
8r—37 —31

When the base is greater than ten, the capital letters starting with “A”
are used for digits greater than nine. The following examples specify
numbers in hexadecimal with their corresponding decimal values.

20

Expression Syntax

Characters

Strings

hexadecimal decimal
16r106 262

16rFF 255
16rAC.DC 172.859
16r—1.C —1.75

Number literals can also be expressed in scientific notation by following
the digits of the value with an exponent suffix. The exponent suffix in-
cludes the letter “e” followed by the exponent (expressed in decimal).
The number specified before the exponent suffix is multiplied by the ra-
dix raised to the power specified by the exponent.

scientific notation decimal
1.586e5 158600.0
1.586e—3 0.001586
8r3e2 192

2ri1e6 192

Characters are objects that represent the individual symbols of an al-
phabet. A character literal expression consists of a dollar sign followed
by any character, for example,

$a
$M
$—
$3
$1

Strings are objects that represent sequences of characters. Strings re-
spond to messages that access individual characters, replace substrings,
and perform comparisons with other strings. The literal representation
of a string is a sequence of characters delimited by single quotes, for ex-
ample,

Ihi/
"food’
‘the Smalltalk-80 system’

Any character may be included in a string literal. If a single quote is to
be included in a string, it must be duplicated to avoid confusion with
the delimiters. For example, the string literal

Symbols

Arrays

21

Variables

rcan r” t/

refers to a string of the five characters $c, $a, $n, $’, and $t.

Symbols are objects that represent strings used for names in the sys-
tem. The literal representation of a symbol is a sequence of alphanu-
meric characters preceded by a pound sign, for example,

1tbill
#M63

There will never be two symbols with the same characters; each symbol
is unique. This makes it possible to compare symbols efficiently.

An array is a simple data structure object whose contents can be refer-
enced by an integer index from one to a number that is the size of the
array. Arrays respond to messages requesting access to their contents.
The literal representation of an array is a sequence of other literals—
numbers, characters, strings, symbols, and arrays-—delimited by paren-
theses and preceded by a pound sign. The other literals are separated
by spaces. Embedded symbols and arrays are not preceded by pound
signs. An array of three numbers is described by the expression

#(123)
An array of seven strings is described by the expression
#('food’ "utilities” ‘rent’ “household’ “transportation’ ‘taxes” ‘recreation’)
An array of two arrays and two numbers is described by the expression
#(('one’ 1) ('not’ 'negative’) 0 —1)

And an array of a number, a string, a character, a symbol, and another
array is described by the expression

#(9 'nine’ $9 nine (0 ‘zero’ $0 () 'e’ $f ‘g’ $h ‘i)

Variables

The memory available to an object is made up of variables. Most of
these variables have names. Each variable remembers a single object
and the variable’s name can be used as an expression referring to that
object. The objects that can be accessed from a particular place are de-
termined by which variable names are available. For example, the con-

22

Expression Syntax

Assignments

tents of an object’s instance variables are unavailable to other objects
because the names of those variables can be used only in the methods
of the object’s class.

A variable name is a simple identifier, a sequence of letters and dig-
its beginning with a letter. Some examples of variable names are:

index

initialindex
textEditor

bin14

bin14Total
HouseholdFinances
Rectangle
IncomeReasons

There are two kinds of variables in the system, distinguished by how
widely they are accessible. Private variables are accessible only to a sin-
gle object. Instance variables are private. Shared variables can be
accessed by more than one object. Private variable names are required
to have lowercase initial letters; shared variable names are required to
have uppercase initial letters. The first five example identifiers shown
above refer to private variables and the last three refer to shared vari-
ables.

Another capitalization convention evident in the examples above is
that identifiers formed by concatenating several words capitalize each
word following the first one. This convention is not enforced by the sys-
tem.

A literal constant will always refer to the same object, but a variable
name may refer to different objects at different times. The object re-
ferred to by a variable is changed when an assignment expression is
evaluated. Assignments were not listed earlier as a type of expression
since any expression can become an assignment by including an assign-
ment prefix.

An assignment prefix is composed of the name of the variable whose
value will be changed followed by a left arrow (). The following exam-
ple is a literal expression that has an assignment prefix. It indicates
that the variable named quantity should now refer to the object repre-
senting the number 19.

quantity — 19
The following example is a variable-name expression with an assign-

ment prefix. It indicates that the variable named index should refer to
the same object as does the variable named initiallndex.

Pseudo-variable
Names

23

Variables

index « initiallndex

Other examples of assignment expressions are:

chapterName — ’Expression Syntax’
flavors — #('vanilla’ ‘chocolate” ‘butter pecan” ‘garlic’)

More than one assignment prefix can be included, indicating that the
values of several variables are changed.

index — initialindex — 1

This expression indicates that both the variables named index and
initialindex should refer to the number 1. Message expressions and block
expressions can also have assignment prefixes, as will be seen in the
following sections.

A pseudo-variable name is an identifier that refers to an object. In this
way, it is similar to a variable name. A pseudo-variable name is differ-
ent from a variable name in that its value cannot be changed with an
assignment expression. Some of the pseudo-variables in the system are
constants; they always refer to the same objects. Three important pseu-
do-variable names are nil, true, and false.

nil refers to an object used as the value of a variable when no
other object is appropriate. Variables that have not been
otherwise initialized refer to nil.

true refers to an object that represents logical accuracy. It is
used as an affirmative response to a message making a
simple yes-no inquiry.

false refers to an object that represents logical inaccuracy. It is
used as a negative response to a message making a simple
yes-no inquiry.

The objects named true and false are called Boolean objects. They repre-
sent the answers to yes-no questions. For example, a number will re-
spond with true or false to a message asking whether or not the number
is greater than another number. Boolean objects respond to messages
that compute logical functions and perform conditional control struc-
tures.

There are other pseudo-variables in the system (for example, self and
super) whose values are different depending on where they are used.
These will be described in the next three chapters.

24

Expression Syntax

Messages

Messages represent the interactions between the components of the
Smalltalk-80 system. A message requests an operation on the part of
the receiver. Some examples of message expressions and the interac-
tions they represent follow.

Messages to numbers representing arithmetic operations

3+4 computes the sum of three and four.

index + 1 adds one to the number named index.

index > limit inquires whether or not the number named index is greater
than the number named limit.

theta sin computes the sine of the number named theta.

gquantity sqrt comp&tes the positive square root of the number named
quantity.

Messages to linear data structures representing the addition or removal
of information

list addFirst: newComponent
adds the object named newComponent as the first element
of the linear data structure named list.

list removelast removes and returns the last element in list.

Messages to associative data structures (such as dictionaries) represent-
ing the addition or removal of information

ages at: 'Brett Jorgensen’ put: 3
associates the string ’ Brett Jorgensen’ with the number 3
in the dictionary named ages.

addresses at: "Peggy Jorgensen’
looks up the object associated with the string *Peggy
Jorgensen’ in the dictionary named addresses.

Messages to rectangles representing graphical inquiries and calcula-
tions

frame center answers the position of the center of the rectangle named
frame.

frame containsPoint: cursorLocation
answers true if the position named cursorLocation is inside
the rectangle named frame, and false otherwise.

Selectors and
Arguments

25
Messages

frame intersect: clippingBox
computes the rectangle that represents the intersection of
the two rectangles named frame and clippingBox.

Messages to financial history records representing transactions and in-
quiries

HouseholdFinances spend: 32.50 on: "utilities’
informs the financial history named HouseholdFinances
that $32.50 has been spent on utility bills.

HouseholdFinances totalSpentFor: "food’
asks HouseholdFinances how much money has been spent
for food.

A message expression describes a receiver, selector, and possibly some
arguments. The receiver and arguments are described by other expres-
sions. The selector is specified literally.

A message’s selector is a name for the type of interaction the sender
desires with the receiver. For example, in the message

theta sin

the receiver is a number referred to by the variable named theta and

the selector is sin. It is up to the receiver to decide how to respond to

the message (in this case, how to compute the sine function of its value).
In the two message expressions

3+4

and
previousTotal + increment

the selectors are +. Both messages ask the receiver to calculate and re-
turn a sum. These messages each contain an object in addition to the
selector (4 in the first expression and increment in the second). The ad-
ditional objects in the message are arguments that specify the amount
to be added.

The following two message expressions describe the same kind of op-
eration. The receiver is an instance of FinancialHistory and will return
the amount of money spent for a particular reason. The argument indi-
cates the reason of interest. The first expression requests the amount
spent for utility bills.

26

Expression Syntax

HouseholdFinances totalSpentCOn: ‘utilities’

The amount spent for food can be found by sending a message with the
same selector, but with a different argument.

HouseholdFinances totalSpentOn: "food’

The selector of a message determines which of the receiver’s operations
will be invoked. The arguments are other objects that are involved in
the selected operation.

[] Unary Messages Messages without arguments are called unary
messages. For example, the money currently available according to
HouseholdFinances is the value of the unary message expression

HouseholdFinances cashOnHand

These messages are called unary because only one object, the receiver,
is involved. A unary message selector can be any simple identifier. Oth-
er examples of unary message expressions are

theta sin
. quantity sqrt
nameString size

[1 Keyword Messages The general type of message with one or more
arguments is the keyword message. The selector of a keyword message
is composed of one or more keywords, one preceding each argument. A
keyword is a simple identifier with a trailing colon. Examples of expres-
sions describing single keyword messages are

HouseholdFinances totalSpentOn: ‘utilities’
index max: limit

A message with two arguments will have a selector with two keywords.
Examples of expressions describing double keyword messages are

HouseholdFinances spend: 30.45 on: “food’
ages at: ‘Brett Jorgensen’ put: 3

When the selector of a multiple keyword message is referred to inde-
pendently, the keywords are concatenated. The selectors of the last two
message expressions are spend:on: and at:put. There can be any num-

Returning Values

27
Messages

ber of keywords in a message, but most messages in the system have
fewer than three.

[[] Binary Messages There is one other type of message expression
that takes a single argument, the binary message. A binary message se-
lector is composed of one or two nonalphanumeric characters. The only
restriction is that the second character cannot be a minus sign. Binary
selectors tend to be used for arithmetic messages. Examples of binary
message expressions are

3+ 4
total — 1
total <= max

Smalltalk-80 messages provide two-way communication. The selector
and arguments transmit information to the receiver about what type of
response to make. The receiver transmits information back by return-
ing an object that becomes the value of the message expression. If a
message expression includes an assignment prefix, the object returned
by the receiver will become the new object referred to by the variable.
For example, the expression

sum « 3 + 4
makes 7 be the new value of the variable named sum. The expression
X < theta sin

makes the sine of theta be the new value of the variable named x. If the
value of theta is 1, the new value of x becomes 0.841471. If the value of
theta is 1.5, the new value of x becomes 0.997495.

The number referred to by index can be incremented by the expres-
sion

index — index + 1

Even if no information needs to be communicated back to the sender, a
receiver always returns a value for the message expression. Returning a
value indicates that the response to the message is complete. Some mes-
sages are meant only to inform the receiver of something. Examples are
the messages to record financial transactions described by the following
expressions.

HouseholdFinances spend: 32.50 on: "utilities’
HouseholdFinances receive: 1000 from: ‘pay’

28

Expression Syntax

Parsing

The receiver of these messages informs the sender only that it is fin-
ished recording the transaction. The default value returned in such
cases is usually the receiver itself. So, the expression

var — HouseholdFinances spend: 32.50 on: ‘utilities’

results in var referring to the same financial history as
HouseholdFinances.

All of the message expressions shown thus far have described the re-
ceiver and arguments with literals or variable names. When the receiv-
er or argument of a message expression is described by another
message expression, the issue of how the expression is parsed arises. An
example of a unary message describing the receiver of another unary
message is

1.5 tan rounded

Unary messages are parsed left to right. The first message in the exam-
ple is the unary selector tan sent to 1.5. The value of that message ex-
pression (a number around 14.1014) receives the unary message
rounded and returns the nearest integer, 14. The number 14 is the val-
ue of the whole expression.

Binary messages are also parsed left to right. An example of a binary
message describing the receiver of another binary message is

index + offset » 2

The value returned by index from the message + offset is the receiver
for the binary message * 2.

All binary selectors have the same precedence; only the order in
which they are written matters. Note that this makes mathematical ex-
pressions in the Smalltalk-80 language different from those in many
other languages in which multiplication and division take precedence
over addition and subtraction.

Parentheses can be used to change the order of evaluation. A mes-
sage within parentheses is sent before any messages outside the paren-
theses. If the previous example were written as

index + (offset = 2)

the multiplication would be performed before the addition.

Unary messages take precedence over binary messages. If unary
messages and binary messages appear together, the unary messages
will all be sent first. In the example

29
Messages

frame width + border width » 2

the value of frame width is the receiver of the binary message whose se-
lector is + and whose argument is the value of border width. The value
of the + message is, in turn, the receiver of the binary message * 2.
The expression parses as if it had been parenthesized as follows:

({frame width) + (border width)} » 2

Parentheses can be used to send binary messages before unary mes-
sages. The expression

2 » theta sin
calculates twice the sine of theta, while the expression
(2 » theta) sin

calculates the sine of twice theta.

Whenever keywords appear in an unparenthesized message, they
compose a single selector. Because of this concatenation, there is no
left-to-right parsing rule for keyword messages. If a keyword message is
to be used as a receiver or argument of another keyword message, it
must be parenthesized. The expression

frame scale: factor max: 5

describes a single two-argument keyword message whose selector is
scale:max:. The expression

frame scale: (factor max: 5)

describes two single keyword messages whose selectors are scale: and
max:. The value of the expression factor max: 5 is the argument for the
scale: message to frame.

Binary messages take precedence over keyword messages. When una-
ry, binary, and keyword messages appear in the same expression with-
out parentheses, the unaries are sent first, the binaries next, and the
keyword last. The example

bigFrame width: smaliFrame width » 2
is evaluated as if it had been parenthesized as follows:

bigFrame width: ((smallFrame width) » 2)

30

Expression Syntax

Formatting
Conventions

Cascading

In the following example, a unary message describes the receiver of a
keyword message and a binary message describes the argument.

OrderedCollection new add: value = rate
To summarize the parsing rules:

1. Unary expressions parse left to right.

2. Binary expressions parse left to right.

3. Binary expressions take precedence over keyword expressions.
4. Unary expressions take precedence over binary expressions.

5. Parenthesized expressions take precedence over unary expressions.

A programmer is free to format expressions in various ways using
spaces, tabs, and carriage returns. For example, multiple keyword mes-
sages are often written with each keyword-argument pair on a different
line, as in

ages at: ‘Brett Jorgensen’
put: 3

or

HouseholdFinances
spend: 30.45
on: ‘food’

The only time that a space, tab, or carriage return affects the meaning
of an expression is when its absence would cause two letters or two
numbers to fall next to each other.

There is one special syntactic form called cascading that specifies multi-
ple messages to the same object. Any sequence of messages can be
expressed without cascading. However, cascading often reduces the need
for using variables. A cascaded message expression consists of one de-
scription of the receiver followed by several messages separated by
semicolons. For example,

OrderedCollection new add: 1; add: 2; add: 3

Three add: messages are sent to the result of OrderedCollection new.
Without cascading, this would have required four expressions and a

31
Blocks

variable. For example, the following four expressions, separated by peri-
ods, have the same result as the cascaded expression above.

temp ~ OrderedCollection new.
temp add: 1.
temp add: 2.
temp add: 3

Blocks

Blocks are objects used in many of the control structures in the
Smalltalk-80 system. A block represents a deferred sequence of actions.
A block expression consists of a sequence of expressions separated by
periods and delimited by square brackets. For example,

[index « index + 1]
or

[index < index + 1.
array at: index put: 0]

If a period follows the last expression, it is ignored, as in
[expenditures at: reason.]

When a block expression is encountered, the statements enclosed in the
brackets are not executed immediately. The value of a block expression
is an object that can execute these enclosed expressions at a later time,
when requested to do so. For example, the expression

actions at: “‘monthly payments’
put: [HouseholdFinances spend: 650 on: ‘rent’.
HouseholdFinances spend: 7.25 on: ‘newspaper’.
HouseholdFinances spend: 225.50 on: “car payment’]

does not actually send any spend:on: messages to HouseholdFinances. It
simply associates a block with the string ‘monthly payments’.

The sequence of actions a block describes will take place when the
block receives the unary message value. For example, the following two
expressions have identical effects.

32

Expression Syntax

Control Structures

index « index + 1

and
[index « index + 1] value

The object referred to by the expression
actions at: ‘monthly payments’

is the block containing three spend:on: messages. The execution of the
expression

(actions at: ‘monthly payments’) value
results in those three spend:on: messages being sent to
HouseholdFinances.
A block can also be assigned to a variable. So if the expression
incrementBlock « [index « index + 1]
is executed, then the expression
incrementBlock value
increments index.
The object returned after a value message is sent to a block is the
value of the last expression in the sequence. So if the expression

addBlock « [index + 1]

is executed, then another way to increment index is to evaluate

index — addBlock value

A block that contains no expressions returns nit when sent the message
value. The expression

[] value
has the value nil.
A control structure determines the order of some activities. The funda-

mental control structure in the Smalltalk-80 language provides that a
sequence of expressions will be evaluated sequentially. Many

33
Blocks

nonsequential control structures can be implemented with blocks. These ‘
control structures are invoked either by sending a message to a block or
by sending a message with one or more blocks as arguments. The re-
sponse to one of these control structure messages determines the order
of activities with the pattern of value messages it sends to the block(s).

Examining the evaluation of the following sequence of expressions
gives an example of the way blocks work.

incrementBiock ~ [index < index + 1].
sumBiock « [sum + (index » index)].
sum « 0.

index < 1.

sum « sumBlock value.
incrementBlock value.

sum « sumBlock value

The 15 actions taken as a result of evaluating this sequence of expres-
sions are

1. Assign a block to incrementBlock.

2. Assign a block to sumBiock.

3. Assign the number O to sum.

. Assign the number 1 to index.

. Send the message value to the block sumBilock.
. Send the message * 1 to the number 1.

O M e

., Send the message + 1 to the number O.
8. Assign the number 1 to sum.
9. Send the message value to the block IncrementBlock.
10. Send the message + 1 to the number 1.
11. Assign the number 2 to index.
12. Send the message value to the block sumBlock.
13. Send the message * 2 to the number 2.
14. Send the message + 4 to the number 1.
15. Assign the number 5 to sum.

An example of a control structure implemented with blocks is simple
repetition, represented by a message to an integer with timesRepeat: as
the selector and a block as the argument. The integer will respond by
sending the block as many value messages as its own value indicates.
For example, the following expression doubles the value of the variable
named amount four times.

4 timesRepeat: [amount « amount + amount]

34

Expression Syntax

Conditionals

Two common control structures implemented with blocks are condition-
al selection and conditional repetition. Conditional selection is similar to
the if-then-else statements in Algol-like languages and conditional repe-
tition is similar to the while and until statements in those languages.
These conditional control structures use the two Boolean objects named
true and false described in the section on pseudo-variables. Booleans are
returned from messages that ask simple yes-no questions (for example,
the magnitude comparison messages: <, =, <=, >, > = ~=),

(] Conditional Selection The conditional selection of an activity is
provided by a message to a Boolean with the selector ifTrue:ifFalse: and
two blocks as arguments. The only objects that understand
ifTrueiifFalse: messages are true and false. They have opposite responses:
true sends value to the first argument block and ignores the second;
false sends value to the second argument block and ignores the first.
For example, the following expression assigns O or 1 to the variable par-
ity depending on whether or not the value of the variable number is di-
visible by 2. The binary message \\ computes the modulus or
remainder function.

(number \\ 2} =0
ifTrue: [parity — 0]
ifFalse: [parity « 1]

The value returned from ifTrue:ifFalse: is the value of the block that
was executed. The previous example could also be written

parity — (number \\ 2) = 0 ifTrue; [0] ifFalse: [1]

In addition to ifTrue:ifFalse:, there are two single-keyword messages
that specify only one conditional consequent. The selectors of these
messages are ifTrue: and ifFalse:;. These messages have the same effect
as the ifTrue:ifFalse: message when one argument is an empty block.
For example, these two expressions have the same effect.

index <= limit
ifTrue: [total — total + (list at: index)]

and
index <= limit
ifTrue: [total — total + (list at: index)]
ifFalse: []

Since the value of an empty block is nil, the following expression would
set lastElement to nil if index is greater than limit.

Block Arguments

35
Blocks

lastElement < index > limit ifFalse: [list at: index]

[] Conditional Repetition The conditional repetition of an activity is
provided by a message to a block with the selector whileTrue: and an-
other block as an argument. The receiver block sends itself the message
value and, if the response is true, it sends the other block value and
then starts over, sending itself value again. When the receiver’s re-
sponse to value becomes false, it stops the repetition and returns from
the whileTrue: message. For example, conditional repetition could be
used to initialize all of the elements of an array named list.

index « 1.
[index <= list size]
whileTrue: [list at: index put: 0.
index « index + 1]

Blocks also understand a message with selector whileFalse: that repeats
the execution of the argument block as long as the value of the receiver
is false. So, the following expressions are equivalent to the one above.

index < 1.
[index > list size]
whileFalse: [list at: index put: O.
index — index + 1]

The programmer is free to choose whichever message makes the intent
of the repetition clearest. The value returned by both whileTrue: and
whileFalse: is always nil.

In order to make some nonsequential control structures easy to express,
blocks may take one or more arguments. Block arguments are specified
by including identifiers preceded by colons at the beginning of a block.
The block arguments are separated from the expressions that make up
the block by a vertical bar. The following two examples describe blocks
with one argument.

[:array | total — total + array size]

and

[:newElement |
index — index + 1.
list at: index put: newElement]

A common use of blocks with arguments is to implement functions to
be applied to all elements of a data structure. For example, many ob-

36

Expression Syntax

jects representing different kinds of data structures respond to the mes-
sage do:, which takes a single-argument block as its argument. The
object that receives a do: message evaluates the block once for each of
the elements contained in the data structure. Each element is made the
value of the block argument for one evaluation of the block. The follow-
ing example calculates the sum of the squares of the first five primes.
The result is the value of sum.

sum « 0.
#2357 11) do: [:prime | sum « sum + (prime * prime)]

The message collect: creates a collection of the values produced by the
block when supplied with the elements of the receiver. The value of the
following expression is an array of the squares of the first five primes.

#(2 357 11) collect: [:prime | prime = prime]

The objects that implement these control structures supply the values
of the block arguments by sending the block the message value:. A
block with one block argument responds to value: by setting the block
argument to the argument of value: and then executing the expressions
in the block. For example, evaluating the following expressions results
in the variable total having the value 7.

sizeAdder — [:array | total — total + array size].
total — 0.

sizeAdder value: #(a b c).

sizeAdder value: #(1 2).

sizeAdder value: #(e f)

Blocks can take more than one argument. For example
[xzy] x=x) + (y =yl

or
[:frame :clippingBox | frame intersect: clippingBox]

A block must have the same number of block arguments as the number
of value: keywords in the message to evaluate it. The two blocks above
would be evaluated by means of a two-keyword message with selector
value:value:. The two arguments of the message specify the values of the
two block arguments, in order. If a block receives an evaluation mes-
sage with a different number of arguments from the number of block
arguments it takes, an error will be reported.

37

Summary of Terminology

Summary of
Terminology

The syntax of expressions is summarized inside the back cover of this

book.
expression
literal
symbol
array

variable name
assignment

pseudo-variable
name

receiver
message selector

message argument

unary message
keyword
keyword message

binary message
cascading

block
block argument

value

value:

ifTrue:if False:
ifFalse:if True:
ifTrue:
ifFalse:
whileTrue:

A sequence of characters that describes an object.

An expression describing a constant, such as a number or a
string.

A string whose sequence of characters is guaranteed to be
different from that of any other symbol.

A data structure whose elements are associated with inte-
ger indices.

An expression describing the current value of a variable.
An expression describing a change of a variable’s value.

An expression similar to a variable name. However, unlike
a variable name, the value of a pseudo-variable name can-
not be changed by an assignment.

The object to which a message is sent.

The name of the type of operation a message requests of its
receiver.

An object that specifies additional information for an oper-
ation.

A message without arguments.
An identifier with a trailing colon.

A message with one or more arguments whose selector is
made up of one or more keywords.

A message with one argument whose selector is made up of
one or two special characters.

A description of several messages to one object in a single
expression.

A description of a deferred sequence of actions.

A parameter that must be supplied when certain blocks
are evaluated.

A message to a block asking it to carry out the set of ac-
tions it represents.

A keyword used in a message to a block that has block ar-
guments; the corresponding message asks the block to car-
ry out its set of actions.

Message to a Boolean requesting conditional selection.
Message to a Boolean requesting conditional selection.
Message to a Boolean requesting conditional selection.
Message to a Boolean requesting conditional selection.

Message to a block requesting conditional repetition.

38

Expression Syntax

whileFalse:

do:

collect:

Message to a block requesting conditional repetition.

A message to a collection requesting enumeration of its el-
ements.

A message to a collection requesting transformation of its
elements.

Classes and Instances

Protocol Descriptions
Message Categories

Implementation Descriptions

Variable Declarations

Instance Variables
Shared Variables

Methods

Argument Names
Returning Values

The Pseudo-variable self
Temporary Variables

Primitive Methods

Summary of Terminology

40

Classes and Instances

Objects represent the components of the Smalltalk-80 system—the
numbers, data structures, processes, disk files, process schedulers, text
editors, compilers, and applications. Messages represent interactions be-
tween the components of the Smalltalk-80 system—the arithmetic,
data accesses, control structures, file creations, text manipulations,
compilations, and application uses. Messages make an object’s
functionality available to other objects, while keeping the object’s im-
plementation hidden. The previous chapter introduced an expression
syntax for describing objects and messages, concentrating on how mes-
sages are used to access an object’s functionality. This chapter intro-
duces the syntax for describing methods and classes in order to show
how the functionality of objects is implemented.

Every Smalltalk-80 object is an instance of a class. The instances of a
class all have the same message interface; the class describes how to
carry out each of the operations available through that interface. Each
operation is described by a method. The selector of a message deter-
mines what type of operation the receiver should perform, so a class
has one method for each selector in its interface. When a message is
sent to an object, the method associated with that type of message in
the receiver’s class is executed. A class also describes what type of pri-
vate memory its instances will have.

Each class has a name that describes the type of component its in-
stances represent. A class name serves two fundamental purposes; it is
a simple way for instances to identify themselves, and it provides a way
to refer to the class in expressions. Since classes are components of the
Smalltalk-80 system, they are represented by objects. A class’s name
automatically becomes the name of a globally shared variable. The val-
ue of that variable is the object representing the class. Since class
names are the names of shared variables, they must be capitalized.

New objects are created by sending messages to classes. Most classes
respond to the unary message new by creating a new instance of them-
selves. For example,

OrderedCollection new

returns a new collection that is an instance of the system class
OrderedCollection. The new OrderedCollection is empty. Some classes
create instances in response to other messages. For example, the class
whose instances represent times in a day is Time; Time responds to the
message Now with an instance representing the current time. The class
whose instances represent days in a year is Date; Date responds to the
message today with an instance representing the current day. When a
new instance is created, it automatically shares the methods of the
class that received the instance creation message.

41
Protocol Descriptions

This chapter introduces two ways to present a class, one describing
the functionality of the instances and the other describing the imple-
mentation of that functionality.

1. A protocol description lists the messages in the instances’ message
interface. Each message is accompanied by a comment describing
the operation an instance will perform when it receives that type
of message.

2. An implementation description shows how the functionality de-
scribed in the protocol description is implemented. An implemen-
tation description gives the form of the instances’ private memory
and the set of methods that describe how instances perform their
operations.

A third way to present classes is an interactive view called a system
browser. The browser is part of the programming interface and is used
in a running Smalltalk-80 system. Protocol descriptions and implemen-
tation descriptions are designed for noninteractive documentation like
this book. The browser will be described briefly in Chapter 17.

Protocol
Descriptions

A protocol description lists the messages understood by instances of a
particular class. Each message is listed with a comment about its
functionality. The comment describes the operation that will be
performed when the message is received and what value will be re-
turned. The comment describes what will happen, not hAow the opera-
tion will be performed. If the comment gives no indication of the value
to be returned, then the value is assumed to be the receiver of the mes-
sage.

For example, a protocol description entry for the message to a
FinancialHistory with the selector spend:for: is

spend: amount for: reason Remember that an amount of money, amount,
has been spent for reason.

Messages in a protocol description are described in the form of message
patterns. A message pattern contains a message selector and a set of ar-
gument names, one name for each argument that a message with that
selector would have. For example, the message pattern

spend: amount for: reason

42

Classes and Instances

Message Categories

matches the messages described by each of the following three expres-
sions.

HouseholdFinances spend: 32.50 for: ‘utilities’
HouseholdFinances spend: cost+ tax for: "food’
HouseholdFinances spend: 100 for: usualReason

The argument names are used in the comment to refer to the argu-
ments. The comment in the example above indicates that the first argu-
ment represents the amount of money spent and the second argument
represents what the money was spent for.

Messages that invoke similar operations are grouped together in catego-
ries. The categories have names that indicate the common functionality
of the messages in the group. For example, the messages to
FinancialHistory are grouped into three categories named transaction re-
cording, inquiries, and initialization. This categorization is intended to
make the protocol more readable to the user; it does not affect the oper-
ation of the class.
The complete protocol description for FinancialHistory is shown next.

FinancialHistory protocol

transaction recording

receive: amount from: source Remember that an amount of money, amount,
has been received from source.

spend: amount for: reason Remember that an amount of money, amount,
has been spent for reason.

inquiries
cashOnHand Answer the total amount of money currently
on hand.
totalReceivedFrom: source Answer the total amount received from source,
so far.
totalSpentFor: reason Answer the total amount spent for reason, so
far.
initialization
initialBalance: amount Begin a financial history with amount as the

amount of money on hand.

A protocol description provides sufficient information for a programmer
to know how to use instances of the class. From the above protocol de-
scription, we know that any instance of FinancialHistory should respond
to the messages whose selectors are receive:from:, spend:for:,
cashOnHand, totalReceivedFrom:, totalSpentFor:, and initialBalance:. We
can guess that when we first create an instance of a FinancialHistory,
the message initialBalance: should be sent to the instance in order to set
values for its variables.

43
Implementation Descriptions

Implementation An implementation description has three parts.
Descriptions

1. a class name

2. a declaration of the variables available to the instances

3. the methods used by instances to respond to messages

An example of a complete implementation description for
FinancialHistory is given next. The methods in an implementation de-
scription are divided into the same categories used in the protocol de-
scription. In the interactive system browser, categories are used to
provide a hierarchical query path for accessing the parts of a class de-
scription. There are no special character delimiters separating the vari-
ous parts of implementation descriptions. Changes in character font and
emphasis indicate the different parts. In the interactive system browser,
the parts are stored independently and the system browser provides a
structured editor for accessing them.

class name FinancialHistory
instance variable names cashOnHand
incomes

expenditures
instance methods

transaction recording

receive: amount from: source
incomes at: source
put: (self totalReceivedFrom: source) -+ amount.
cashOnHand « cashOnHand + amount
spend: amount for: reason
expenditures at: reason
put: (self totalSpentFor: reason) + amount.
cashOnHand « cashOnHand — amount
inquiries
cashOnHand
tcashOnHand
totalReceivedFrom: source
(incomes includesKey: source)
ifTrue: [tincomes at: source]
ifFalse: [10]
totalSpentFor: reason
(expenditures includesKey: reason)
ifTrue: [texpenditures at: reason]
ifFalse: [10]

44

Classes and Instances

initialization
initialBalance: amount
cashOnHand < amount.

incomes — Dicticnary new.
expenditures « Dictionary new

This implementation description is different from the one presented for
FinancialHistory on the inside front cover of this book. The one on the
inside front cover has an additional part labeled “class methods” that
will be explained in Chapter 5; also, it omits the initialization method
shown here.

Variable
Declarations

The methods in a class have access to five different kinds of variables.
These kinds of variables differ in terms of how widely they are avail-
able (their scope) and how long they persist.

There are two kinds of private variables available only to a single ob-
ject.

1. Instance variables exist for the entire lifetime of the object.

2. Temporary variables are created for a specific activity and are
available only for the duration of the activity.

Instance variables represent the current state of an object. Temporary
variables represent the transitory state necessary to carry out some ac-
tivity. Temporary variables are typically associated with a single execu-
tion of a method: they are created when a message causes the method
to be executed and are discarded when the method completes by return-
ing a value.

The three other kinds of variables can be accessed by more than one
object. They are distinguished by how widely they are shared.

3. Class variables are shared by all the instances of a single class.

4. Global variables are shared by all the instances of all classes (that
is, by all objects).

5. Pool variables are shared by the instances of a subset of the class-
es in the system.

The majority of shared variables in the system are either class vari-
ables or global variables. The majority of global variables refer to the
classes in the system. An instance of FinancialHistory named

Instance Variables

45

Variable Declarations

HouseholdFinances was used in several of the examples in the previous
chapters. We used HouseholdFinances as if it were defined as a global
variable name. Global variables are used to refer to objects that are not
parts of other objects.

Recall that the names of shared variables (3-5) are capitalized, while
the names of private variables (1-2) are not. The value of a shared vari-
able will be independent of which instance is using the method in
which its name appears. The value of instance variables and
temporaries will depend on the instance using the method, that is, the
instance that received a message.

There are two types of instance variables, named and indexed. They dif-
fer in terms of how they are declared and how they are accessed. A
class may have only named instance variables, only indexed variables,
or some of each.

[] Named Instance Variables An implementation description includes
a set of names for the instance variables that make up the individual
instances. Each instance has one variable corresponding to each in-
stance variable name. The variable declaration in the implementation
description of FinancialHistory specified three instance variable names.

instance variable names cashOnHand
incomes
expenditures

An instance of FinancialHistory uses two dictionaries to store the total
amounts spent and received for various reasons, and uses another vari-
able to keep track of the cash on hand.

+ expenditures refers to a dictionary that associates spending reasons
with amounts spent.

+ incomes refers to a dictionary that associates income sources with
amounts received.

+ cashOnHand refers to a number representing the amount of money
available.

When expressions in the methods of the class use one of the variable
names incomes, expenditures, or cashOnHand, these expressions refer to
the value of the corresponding instance variable in the instance that re-
ceived the message.

When a new instance is created by sending a message to a class, it
has a new set of instance variables. The instance variables are initial-
ized as specified in the method associated with the instance creation
message. The default initialization method gives each instance variable
a value of nil.

46

Classes and Instances

For example, in order for the previous example messages to
HouseholdFinances to work, an expression such as the following must
have been evaluated.

HouseholdFinances — FinancialHistory new initialBalance: 350

FinancialHistory new creates a new object whose three instance variables
all refer to nil. The initialBalance: message to that new instance gives
the three instance variables more appropriate initial values.

[} Indexed Instance Variables Instances of some classes can have in-
stance variables that are not accessed by names. These are called
indexed instance variables. Instead of being referred to by name,
indexed instance variables are referred to by messages that include in-
tegers, called indices, as arguments. Since indexing is a form of associa-
tion, the two fundamental indexing messages have the same selectors
as the association messages to dictionaries—at: and at:put. For exam-
ple, instances of Array have indexed variables. If names is an instance of
Array, the expression

names at: 1
returns the value of its first indexed instance variable. The expression
names at: 4 put: "Adele’

stores the string ‘Adele’ as the value of the fourth indexed instance
variable of names. The legal indices run from one to the number of
indexed variables in the instance.

If the instances of a class have indexed instance variables, its vari-
able declaration will include the line indexed instance variables. For exam-
ple, part of the implementation description for the system class Array is

class name Array
indexed instance variables

Each instance of a class that allows indexed instance variables may
have a different number of them. All instances of FinancialHistory have
three instance variables, but instances of Array may have any number
of instance variables.

A class whose instances have indexed instance variables can also
have named instance variables. All instances of such a class will have
the same number of named instance variables, but may have different
numbers of indexed variables. For example, a system class representing
a collection whose elements are ordered, OrderedCollection, has indexed
instance variables to hold its contents. An OrderedCollection might have
more space for storing elements than is currently being used. The two

Shared Variables

47
Variable Declarations

named instance variables remember the indices of the first and last ele-
ment of the contents.

class name OrderedCollection
instance variable names firstindex
lastindex

indexed instance variables

All instances of OrderedCollection will have two named variables, but
one may have five indexed instance variables, another 15, another 18,
and so on.

The named instance variables of an instance of FinancialHistory are
private in the sense that access to the values of the variables is con-
trolled by the instance. A class may or may not include messages giving
direct access to the instance variables. Indexed instance variables are
not private in this sense, since direct access to the values of the vari-
ables is available by sending messages with selectors at: and at:put.
Since these messages are the only way to access indexed instance vari-
ables, they must be provided.

Classes with indexed instance variables create new instances with
the message new: instead of the usual message new. The argument of
new: tells the number of indexed variables to be provided.

list — Array new: 10

creates an Array of 10 elements, each of which is initially the special ob-
ject nil. The number of indexed instance variables of an instance can be
found by sending it the message size. The response to the message size

list size

is, for this example, the integer 10.
Evaluating each of the following expressions, in order,

list — Array new: 3.
list at: 1 put: ‘one’.
list at: 2 put: "two’.
list at: 3 put: ‘three’

is equivalent to the single expression

list — #('one’ ‘two’ “three’)
Variables that are shared by more than one object come in groups
called pools. Each class has two or more pools whose variables can be

accessed by its instances. One pool is shared by all classes and contains
the global variables; this pool is named Smalitalk. Each class also has a

48

Classes and Instances

pool which is only available to its instances and contains the class vari-
ables.

Besides these two mandatory pools, a class may access some other
special purpose pools shared by several classes. For example, there are
several classes in the system that represent textual information; these
classes need to share the ASCII character codes for characters that are
not easily indicated visually, such as a carriage return, tab, or space.
These numbers are included as variables in a pool named TexiConstants
that is shared by the classes implementing text display and text editing.

If FinancialHistory had a class variable named SalesTaxRate and
shared a pool dictionary whose name is FinancialConstants, the declara-
tion would be expressed as follows.

instance variable names cashOnHand
incomes
expenditures

class variable names SalesTaxRate

shared pools FinancialConstants

SalesTaxRate is the name of a class variable, so it can be used in any
methods in the class. FinancialConstants, on the other hand, is the name
of a pool; it is the variables in the pool that can be used in expressions.

In order to declare a variable to be global (known to all classes and
to the user’s interactive system), the variable name must be inserted as
a key.in the dictionary Smalitatk. For example, to make AllHistories
global, evaluate the expression

Smalltalk at: # AllHistories put: nil

Then use an assignment statement to set the value of AllHistories.

Methods

A method describes how an object will perform one of its operations. A
method is made up of a message pattern and a sequence of expressions
separated by periods. The example method shown below describes the
response of a FinancialHistory to messages informing it of expenditures.

spend: amount for: reason
expenditures at: reason
put: (self totalSpentFor: reason) + amount.
cashOnHand « cashOnHand — amount

The message pattern, spend: amount for: reason,-indicates that this
method will be used in response to all messages with selector spend:for:.

Argument Names

Returning Values

49
Methods

The first expression in the body of this method adds the new amount to
the amount already spent for the reason indicated. The second expres-
sion is an assignment that decrements the value of cashOnHand by the
new amount.

Message patterns were introduced earlier in this chapter. A message
pattern contains a message selector and a set of argument names, one
for each argument that a message with that selector would have. A
message pattern matches any messages that have the same selector. A
class will have only one method with a given selector in its message
pattern. When a message is sent, the method with matching message
pattern is selected from the class of the receiver. The expressions in the
selected method are evaluated one after another. After all the expres-
sions are evaluated, a value is returned to the sender of the message.

The argument names found in a method’s message pattern are pseu-
do-variable names referring to the arguments of the actual message. If
the method shown above were invoked by the expression

HouseholdFinances spend: 30.45 for: ‘food’

the pseudo-variable name amount would refer to the number 30.45 and
the pseudo-variable name reason would refer to the string ' food’ dur-
ing the evaluation of the expressions in the method. If the same method
were invoked by the expression

HouseholdFinances spend: cost + tax for: ‘food’

cost would be sent the message 4 tax and the value it returned would
be referred to as amount in the method. If cost referred to 100 and tax
to 6.5, the value of amount would be 106.5.

Since argument names are pseudo-variable names, they can be used
to access values like variable names, but their values cannot be
changed by assignment. In the method for spend:for:, a statement of the
form

amount — amount + taxRate

would be syntactically illegal since the value of amount cannot be
reassigned.

The method for spend:for: does not specify what the value of the mes-
sage should be. Therefore, the default value, the receiver itself, will be
returned. When another value is to be specified, one or more return ex-
pressions are included in the method. Any expression can be turned

50

Classes and Instances

The Pseudo-
variable self

into a return expression by preceding it with an uparrow (7). The value
of a variable may be returned as in

tcashOnHand

The value of another message can be returned as in
Texpenditures at: reason

A literal object can be returned as in
70

Even an assignment statement can be turned into a return expression,
as in

tinitiallndex — O

The assignment is performed first. The new value of the variable is
then returned.

An example of the use of a return expression is the following imple-
mentation of totalSpentFor:.

totalSpentFor: reason
(expenditures includesKey: reason)
ifTrue: [texpenditures at: reason]
ifFalse: [10]

This method consists of a single conditional expression. If the expendi-
ture reason is in expenditures, the associated value is returned; other-
wise, zero is returned.

Along with the pseudo-variables used to refer to the arguments of a
message, all methods have access to a pseudo-variable named self that
refers to the message receiver itself. For example, in the method for
spend:for:, the message totalSpentFor: is sent to the receiver of the
spend:for: message.

spend: amount for: reason
expenditures at: reason
put: (self totalSpentFor: reason) + amount.
cashCnHand « cashOnHand - amount

When this method is executed, the first thing that happens is that
totalSpentFor: is sent to the same object (self) that received spend:for:..
The result of that message is sent the message + amount, and the re-
sult of that message is used as the second argument to at:put:.

Temporary
Variables

51
Methods

The pseudo-variable self can be used to implement recursive func-
tions. For example, the message factorial is understood by integers in or-
der to compute the appropriate function. The method associated with
factorial is

factorial
self = O ifTrue: [11].
self < 0
ifTrue: [self error: “factorial invalid”]
ifFalse: [Tself = (self — 1) factorial]

The receiver is an Integer. The first expression tests to see if the receiv-
er is 0 and, if it is, returns 1. The second expression tests the sign of the
receiver because, if it is less than 0, the programmer should be notified
of an error (all objects respond to the message error: with a report that
an error has been encountered). If the receiver is greater than 0, then
the value to be returned is

self « (self — 1) factorial

The value returned is the receiver multiplied by the factorial of one less
than the receiver.

The argument names and self are available only during a single execu-
tion of a method. In addition to these pseudo-variable names, a method
may obtain some other variables for use during its execution. These are
called temporary variables. Temporary variables are indicated by in-
cluding a temporary variable declaration between the message pattern
and the expressions of a method. A temporary declaration consists of a
set of variable names between vertical bars. The method for spend:for:
could be rewritten to use a temporary variable to hold the previous ex-
penditures.

spend: amount for: reason
| previousExpenditures |
previousExpenditures « self totalSpentFor: reason,
expenditures at: reason
put: previcusExpenditures + amount.
cashOnHand < cashOnHand — amount

The values of temporary variables are accessible only to statements in
the method and are forgotten when the method completes execution.
All temporary variables initially refer to nil.

In the interactive Smalltalk-80 system, the programmer can test al-
gorithms that make use of temporary variables. The test can be carried
out by using the vertical bar notation to declare the variables for the
duration of the immediate evaluation only. Suppose the expressions to

52

Classes and Instances

be tried out include reference to the variable list. If the variable list is
undeclared, an attempt to evaluate the expressions will create a syntax
error message. Instead, the programmer can declare list as a temporary
variable by prefixing the expressions with the declaration | list |. The
expressions are separated by periods, as in the syntax of a method.

| list |

list — Array new: 3.
list at: 1 put: ‘one’.
list at: 2 put: “four’.
list printString

The programmer interactively selects all five lines—the declaration
and the expressions—and requests evaluation. The variable list is avail-
able only during the single execution of the selection.

Primitive
Methods

When an object receives a message, it typically just sends other mes-
sages, so where does something really happen? An object may change
the value of its instance variables when it receives a message, which
certainly qualifies as “something happening.” But this hardly seems
enough. In fact, it is not enough. All behavior in the system is invoked
by messages, however, all messages are not responded to by executing
Smalltalk-80 methods. There are about one hundred primitive methods
that the Smalltalk-80 virtual machine knows how to perform. Examples
of messages that invoke primitives are the 4+ message to small integers,
the at: message to objects with indexed instance variables, and the new
and new: messages to classes. When 3 gets the message + 4, it does not
execute a Smalltalk-80 method. A primitive method returns 7 as the
value of the message. The complete set of primitive methods is included
in the fourth part of this book, which describes the virtual machine.

Methods that are implemented as primitive methods begin with an
expression of the form

< primitive # >

where # is an integer indicating which primitive method will be
followed. If the primitive fails to perform correctly, execution continues
in the Smalltalk-80 method. The expression <primitive # > is followed
by Smalltalk-80 expressions that handle failure situations.

53

Summary of Terminology

Summary of
Terminology

class
instance

instance variable

protocol descrip-
tion

implementation
description

message pattern

temporary vari-
able

class variable
global variable
pool variable
Smalitalk

method

argument name

self
message category
primitive method

An object that describes the implementation of a set of
similar objects.

One of the objects described by a class; it has memory and
responds to messages.

A variable available to a single object for the entire life-
time of the object; instance variables can be named or
indexed.

A description of a class in terms of its instances’ public
message protocol.

A description of a class in terms of its instances’ private
memory and the set of methods that describe how in-
stances perform their operations.

A message selector and a set of argument names, one for
each argument that a message with this selector must
have.

A variable created for a specific activity and available only
for the duration of that activity.

A variable shared by all the instances of a single class.
A variable shared by all the instances of all classes.
A variable shared by the instances of a set of classes.

A pool shared by all classes that contains the global vari-
ables.

A procedure describing how to perform one of an object’s
operations; it is made up of a message pattern, temporary
variable declaration, and a sequence of expressions. A
method is executed when a message matching its message
pattern is sent to an instance of the class in which the
method is found

Name of a pseudo-variable available to a method only for
the duration of that method’s execution; the value of the
argument names are the arguments of the message that
invoked the method.

When used in a method, indicates that the value of the
next expression is to be the value of the method.

A pseudo-variable referring to the receiver of a message.
A group of methods in a class description.

An operation performed directly by the Smalltalk-80 virtu-
al machine; it is not described as a sequence of
Smalltalk-80 expressions.

Subclasses

Subclass Descriptions
An Example Subclass

Method Determination
Messages to self
Messages to super

Abstract Superclasses
Subclass Framework Messages

Summary of Terminology

56

Subclasses

Figure 4.1

Every object in the Smalltalk-80 system is an instance of a class. All in-
stances of a class represent the same kind of system component. For ex-
ample, each instance of Rectangle represents a rectangular area and
each instance of Dictionary represents a set of associations between
names and values. The fact that the instances of a class all represent
the same kind of component is reflected both in the way the instances
respond to messages and in the form of their instance variables.

» All instances of a class respond to the same set of messages and
use the same set of methods to do so.

e All instances of a class have the same number of named instance
variables and use the same names to refer to them.

+ An object can have indexed instance variables only if all instances
of its class can have indexed instance variables.

The class structure as described so far does not explicitly provide for
any intersection in class membership. Each object is an instance of ex-
actly one class. This structure is illustrated in Figure 4.1. In the figure,
the small circles represent instances and the boxes represent classes. If
a circle is within a box, then it represents an instance of the class rep-
resented by the box.

Lack of intersection in class membership is a limitation on design in an
object-oriented system since it does not allow any sharing between class
descriptions. We might want two objects to be substantially similar, but
to differ in some particular way. For example, a floating-point number
and an integer are similar in their ability to respond to arithmetic mes-
sages, but are different in the way they represent numeric values. An
ordered collection and a bag are similar in that they are containers to
which elements can be added and from which elements can be removed,

Figure 4.2

Figure 4.3

57
Subclasses

but they are different in the precise way in which individual elements
are accessed. The difference between otherwise similar objects may be
externally visible, such as responding to some different messages, or it
may be purely internal, such as responding to the same message by ex-
ecuting different methods. If class memberships are not allowed to over-
lap, this type of partial similarity between two objects cannot be
guaranteed by the system.

The most general way to overcome this limitation is to allow arbi-
trary intersection of class boundaries (Figure 4.2).

We call this approach multiple inheritance. Multiple inheritance allows
a situation in which some objects are instances of two classes, while
other objects are instances of only one class or the other. A less general
relaxation of the nonintersection limitation on classes is to allow a class
to include all instances of another class, but not to allow more general
sharing (Figure 4.3).

We call this approach subclassing. This follows the terminology of the
programming language Simula, which includes a similar concept.
Subclassing is strictly hierarchical; if any instances of a class are also

58

Subclasses

instances of another class, then all instances of that class must also be
instances of the other class.

The Smalltalk-80 system provides the subclassing form of inheritance
for its classes. This chapter describes how subclasses modify their
superclasses, how this affects the association of messages and methods,
and how the subclass mechanism provides a framework for the classes
in the system.

Subclass
Descriptions

A subclass specifies that its instances will be the same as instances of
another class, called its superclass, except for the differences that are
explicitly stated. The Smalltalk-80 programmer always creates a new
class as a subclass of an existing class. A system class named Object de-
scribes the similarities of all objects in the system, so every class will at
least be a subclass of Object. A class description (protocol or implemen-
tation) specifies how its instances differ from the instances of its super-
class. The instances of a superclass can not be affected by the existence
of subclasses.

A subclass is in all respects a class and can therefore have subclasses
itself. Each class has one superclass, although many classes may share
the same superclass, so the classes form a tree structure. A class has a
sequence of classes from which it inherits both variables and methods.
This sequence begins with its superclass and continues with its super-
class’s superclass, and so on. The inheritance chain continues through
the superclass relationship until Object is encountered. Object is the
single root class; it is the only class without a superclass.

Reczall that an implementation description has three basic parts:

1. A class name
2. A variable declaration

3. A set of methods

A subclass must provide a new class name for itself, but it inherits both
the variable declaration and methods of its superclass. New variables
may be declared and new methods may be added by the subclass. If in-
stance variable names are added in the subclass variable declaration,
instances of the subclass will have more instance variables than in-
stances of the superclass. If shared variables are added, they will be ac-
cessible to the instances of the subclass, but not to instances of the
superclass. All variable names added must be different from any de-
clared in the superclass. :

59
An Example Subclass

If a class does not have indexed instance variables, a subclass can de-
clare that its instances will have indexed variables; these indexed vari-
ables will be in addition to any inherited named instance variables. If a
class has indexed instance variables, its subclasses must also have
indexed instance variables; a subclass can also declare new named in-
stance variables.

If a subclass adds a method whose message pattern has the same se-
lector as a method in the superclass, its instances will respond to mes-
sages with that selector by executing the new method. This is called
overriding a method. If a subclass adds a method with a selector not
found in the methods of the superclass, the instances of the subclass
will respond to messages not understood by instances of the superclass.

To summarize, each part of an implementation description can be
modified by a subclass in a ditferent way:

1. The class name must be overridden.
2. Variables may be added.
3. Methods may be added or overridden.

An Example
Subclass

An implementation description includes an entry, not shown in the pre-
vious chapter, that specifies its superclass. The following example is a
class created as a subclass of the FinancialHistory class introduced in
Chapter 3. Instances of the subclass share the function of FinancialHistory
for storing information about monetary expenditures and receipts. They
have the additional function of keeping track of the expenditures that
are tax deductible. The subclass provides the mandatory new class
name (DeductibleHistory), and adds one instance variable and four meth-
ods. One of these methods (initialBalance:) overrides a method in the su-
perclass.
The class description for DeductibleHistory follows.

class name DeductibleHistory
superclass FinancialHistory
instance variable names deductibleExpenditures

instance methods
transaction recording

spendDeductible: amount for: reason
self spend: amount for: reason.
deductiblebExpenditures ~
deductibleExpenditures + amount

60

Subclasses

spend: amount for: reason deducting: deductibleAmount
self spend: amount for: reason.
deductibleExpenditures «
deductibleExpenditures + deductibleAmount

inquiries

totalDeductions
tdeductibleExpenditures

initialization
initialBalance: amount

super initialBalance: amount.
deductibleExpenditures «~ 0

In order to know all the messages understood by an instance of
DeductibleHistory, it is necessary to examine the protocols of
DeductibleHistory, FinancialHistory, and Object. Instances of
DeductibleHistory have four variables—three inherited from the super-
class FinancialHistory, and one specified in the class DeductibleHistory.
Class Object declares no instance variables.

Figure 4.4 indicates that DeductibleHistory is a subclass of
FinancialHistory. Each box in this diagram is labeled in the upper left
corner with the name of class it represents.

Object
FinancialHistory
o o °
o | DeductibleHistory
(o] o
[e]
C o]
C
[¢]

Figure 4.4

Instances of DeductibleHistory can be used to record the history of enti-
ties that pay taxes (people, households, businesses). Instances of
FinancialHistory can be used to record the history of entities that do not

61
Method Determination

pay taxes (charitable organizations, religious organizations). Actually,
an instance of DeductibleHistory could be used in place of an instance of
FinancialHistory without detection since it responds to the same mes-
sages in the same way. In addition to the messages and methods
inherited from FinancialHistory, an instance of DeductibleHistory can re-
spond to messages indicating that all or part of an expenditure is de-
ductible. The new messages available are spendDeductible:for:, which is
used if the total amount is deductible; and spend:for:deducting:, which is
used if only part of the expenditure is deductible. The total tax deduc-
tion can be found by sending a DeductibleHistory the message
totalDeductions.

Method
Determination

When a message is sent, the methods in the receiver’s class are
searched for one with a matching selector. If none is found, the methods
in that class’s superclass are searched next. The search continues up
the superclass chain until a matching method is found. Suppose we
send an instance of DeductibleHistory a message with selector
cashOnHand. The search for the appropriate method to execute begins
in the class of the receiver, DeductibleHistory. When it is not found, the
search continues by looking at DeductibleHistory’s superclass,
FinancialHistory. When a method with the selector cashOnHand is found
there, that method is executed as the response to the message. The re-
sponse to this message is to return the value of the instance variable
cashOnHand. This value is found in the receiver of the message, that is,
in the instance of DeductibleHistory.

The search for a matching method follows the superclass chain, ter-
minating at class Object. If no matching method is found in any class in
the superclass chain, the receiver is sent the message
doesNotUnderstand:; the argument is the offending message. There is a
method for the selector doesNotUnderstand: in Object that reports the
error to the programmer.

Suppose we send an instance of DeductibleHistory a message with se-
lector spend:for.. This method is found in the superclass FinanciaiHistory.
The method, as given in Chapter 3, is

spend: amount for: reason
expenditures at: reason
put: (self totalSpentFor: reason) + amount.
cashOnHand « cashOnHand — amount

The values of the instance variables (expenditures and cashOnHand) are
found in the receiver of the message, the instance of DeductibleHistory.

62

Subclasses

Messages to self

The pseudo-variable self is also referenced in this method; self repre-
sents the DeductibleHistory instance that was the receiver of the mes-
sage.

When a method contains a message whose receiver is self, the search
for the method for that message begins in the instance’s class, regard-
less of which class contains the method containing self. Thus, when the
expression self totalSpentFor: reason is evaluated in the method for
spend:for: found in FinancialHistory, the search for the method associat-
ed with the message selector totalSpentFor: begins in the class of self,
i.e., in DeductibleHistory.

Messages to self will be explained using two example classes named
One and Two. Two is a subclass of One and One is a subclass of Object.
Both classes include a method for the message test. Class One also in-
cludes a method for the message result1 that returns the result of the
expression self test.

class name One
superclass Object
instance methods

test
1
result1
Iself test
class name Two
superclass One

instance methods

test
12

An instance of each class will be used to demonstrate the method deter-
mination for messages to seif. example1 is an instance of class One and
example2 is an instance of class Two.

examplel — One new.
example2 — Two new

The relationship between One and Two is shown in Figure 4.5. In addi-
tion to labeling the boxes in order to indicate class names, several of
the circles are also labeled in order to indicate a name referring to the
corresponding instance.

Figure 4.5

Messages to super

63
Method Determination

Object
One
° ° o« examplet
°

o| Two

o oe example2
C
© o]
o
]

The following table shows the results of evaluating various expressions.

expression result

example1 test
example1 resulti
example2 test
example2 resultt

NN = =

The two result! messages both invoke the same method, which is found
in class One. They produce different results because of the message to
self contained in that method. When result1 is sent to example2, the
search for a matching method begins in Two. A method is not found in
Two, so the search continues by looking in the superclass, One. A method
for result1 is found in One, which consists of one expression, tself test.
The pseudo-variable self refers to the receiver, example2. The search for
the response to test, therefore, begins in class Two. A method for test is
found in Two, which returns 2.

An additional pseudo-variable named super is available for use in a
method’s expressions. The pseudo-variable super refers to the receiver
of the message, just as self does. However, when a message is sent to
super, the search for a method does not begin in the receiver’s class. In-
stead, the search begins in the superclass of the class containing the
method. The use of super allows a method to access methods defined in

64

Subclasses

a superclass even if the methods have been overridden in subclasses.
The use of super as other than a receiver (for example, as an argu-
ment), has no different effect from using self; the use of super only af-
fects the initial class in which messages are looked up.

Messages to super will be explained using two more example classes
named Three and Four. Four is a subclass of Three, Three is a subclass
of the previous example Two. Four overrides the method for the mes-
sage test. Three contains methods for two new messages—result2 re-
turns the result of the expression self resultl, and result3 returns the
result of the expression super test.

class name Three
superclass Two
instance methods

resuit2
Tself result1
result3
Tsuper test

class name Four
superclass Three
instance methods

test
14

Instances of One, Twé, Three, and Four can all respond to the messages
test and resultl. The response of instances of Three and Four to mes-
sages illustrates the effect of super (Figure 4.6).

example3 — Three new.
exampled4 — Four new

An attempt to send the messages result?2 or result3 to exampiel or
example2 is an error since instances of One or Two do not understand
the messages result2 or result3.

The following table shows the results of sending various messages.

expression result

exampled test

example4 resultt
example3 result2
example4 result2
exampled result3
example4 result3

NN RN BN

Figure 4.6

65
Method Determination

Object
One
o o o examplei
]

o| Two

© 04— example2
Three
o o e
Four xample3
o o% exampled
o]
¢}
o}

When test is sent to example3, the method in Two is used, since Three
doesn’t override the method. example4 responds to result with a 4 for
the same reason that example2 responded with a 2. When result2 is
sent to example3, the search for a matching method begins in Three.
The method found there returns the result of the expression self resulti.
The search for the response to resultl also begins in class Three. A
matching method is not found in Three or its superclass, Two. The
method for result1 is found in One and returns the result of self test.
The search for the response to test once more begins in class Three.
This time, the matching method is found in Three’s superclass Two.

The effect of sending messages to super will be illustrated by the re-
sponses of example3 and example4 to the message result3. When result3
is sent to example3, the search for a matching method begins in Three.
The method found there returns the result of the expression super test.
Since test is sent to super, the search for a matching method begins not
in class Three, but in its superclass, Two. The method for test in Two
returns a 2. When result3 is sent to example4, the result is still 2, even
though Four overrides the message for test.

This example highlights a potential confusion: super does not mean
start the search in the superclass of the receiver, which, in the last ex-
ample, would have been class Three. It means start the search in the
superclass of the class containing the method in which super was used,
which, in the last example, was class Two. Even if Three had overridden
the method for test by returning 3, the result of example4 result3 would
still be 2. Sometimes, of course, the superclass of the class in which the

66

Subclasses

method containing super is found is the same as the superclass of the
receiver.

Another example of the use of super is in the method for
initialBalance: in DeductibleHistory.

initialBalance: amount
super initialBalance: amount.
deductibleExpenditures « 0

This method overrides a method in the superclass FinancialHistory. The
method in DeductibleHistory consists of two expressions. The first ex-
pression passes control to the superclass in order to process the initial-
ization of the balance.

super initialBalance: amount

The pseudo-variable super refers to the receiver of the message, but in-
dicates that the search for the method should skip DeductibleHistory
and begin in FinancialHistory. In this way, the expressions from
FinancialHistory do not have to be duplicated in DeductibleHistory. The
second expression in the method does the subclass-specific initialization.

deductibleExpenditures — O
It self were substituted for super in the initiaiBalance: method, it would

result in an infinite recursion, since every time initialBalance: is sent, it
will be sent again.

Abstract
Superclasses

Abstract superclasses are created when two classes share a part of their
descriptions and yet neither one is properly a subclass of the other. A
mutual superclass is created for the two classes which contains their
shared aspects. This type of superclass is called abstract because it was
not created in order to have instances. In terms of the figures shown
earlier, an abstract superclass represents the situation illustrated in
Figure 4.7. Notice that the abstract class does not directly contain in-
stances.

As an example of the use of an abstract superclass, consider two clas-
ses whose instances represent dictionaries. One class, named
SmallDictionary, minimizes the space needed to store its contents; the
other, named FastDictionary, stores names and values sparsely and uses
a hashing technique to locate names. Both classes use two parallel lists

Figure 4.7

Figure 4.8

67
Abstract Superclasses

[elN e}

o O o©
o}

that contain names and associated values. SmallDictionary stores the
names and values contiguously and uses a simple linear search to locate
a name. FastDictionary stores names and values sparsely and uses a
hashing technique to locate a name. Other than the difference in how
names are located, these two classes are very similar: they share identi-
cal protocol and they both use parallel lists to store their contents.
These similarities are represented in an abstract superclass named
DualListDictionary. The relationships among these three classes is shown
in Figure 4.8.

Object

DuallListDictionary

SmallDictionary

FastDictionary

o] o] C
(o] o]

The implementation description for the abstract class, DualListDictionary
is shown next.

68

Subclasses

class name DualListDictionary
superclass Object
instance variable names names

values

instance methods
accessing

at: name
| index |
index < self indexOf: name.
index = 0
ifTrue: [self error: “Name not found]
ifFalse: {Tvalues at: index]}
at: name put: value
[index |
index — self indexOf: name.
index = 0
ifTrue: [index « self newindexOf: name].
Tvalues at: index put: value

testing

includes: name

1{self indexOf: name) ~= 0
iIsEmpty

Tself size = 0

initialization
initialize
names « Array new: Q.
values « Array new; 0

This description of DualListDictionary uses only messages defined in
DualListDictionary itself or ones already described in this or in the previ-
ous chapters. The external protocol for a DuallistDictionary consists
of messages at;, at:put, includes:, isEmpty, and initialize. A new
DualListDictionary (actually an instance of a subclass of DualListDictionary)
is created by sending it the message new. It is then sent the message ini-
tialize so that assignments can be made to the two instance variables.
The two variables are initially empty arrays (Array new: 0).

Three messages to self used in its methods are not implemented in
DualListDictionary —size, indexOf:, and newindexOf:. This is the reason
that DualListDictionary is called abstract. If an instance were created, it
would not be able to respond successfully to all of the necessary mes-
sages. The two subclasses, SmallDictionary and FastDictionary, must im-
plement the three missing messages. The fact that the search always

69
Abstract Superclasses

starts at the class of the instance referred to by self means that a meth-
od in a superclass can be specified in which messages are sent to self,
but the corresponding methods are found in the subclass. In this way, a
superclass can provide a framework for a method that is refined or ac-
tually implemented by the subclass.

SmallDictionary is a subclass of DuallistDictionary that uses a minimal
amount of space to represent the associations, but may take a long time
to find an association. It provides methods for the three messages that
were not implemented in DuallistDictionary—size, indexOf:;, and
newlindexOf:. It does not add variables.

class name SmallDictionary
superclass DualListDictionary

instance methods
accessing

size
tnames size

private

indexOf: name
1 to: names size do:
[:index | {names at: index) = name ifTrue: [Tindex]}.
10
newindexOf: name
self grow.
names at: names size put: name.
Tnames size
grow
| oldNames oldValues |
oldNames « names.
oldValues « values.
names — Array new: names size + 1.
values — Array new: values size + 1.
names replaceFrom: 1 to: oldNames size with: oldNames.
values replaceFrom: 1 to: oldValues size with: oldValues

Since names are stored contiguously, the size of a SmallDictionary is the
size of its array of names, names. The index of a particular name is de-
termined by a linear search of the array names. If no match is found,
the index is O, signalling failure in the search. Whenever a new associa-
tion is to be added to the dictionary, the method for newindexOf: is used
to find the appropriate index. It assumes that the sizes of names and
values are exactly the sizes needed to store their current elements. This
means no space is available for adding a new element. The message
grow creates two new Arrays that are copies of the previous ones, with

70

Subclasses

one more element at the end. In the method for newlndexOf:, first the
sizes of names and values are increased and then the new name is
stored in the new empty position (the last one). The method that called
on newindexOf: has the responsibility for storing the value.

We could evaluate the following example expressions.

expression result

ages — SmallDictionary new a new, uninitialized instance
ages initialize instance variables initialized
ages iskmpty true

ages at: ‘Brett’ put: 3 3

ages at: ‘Dave’ put: 30 30

ages includes: 'Sam’ false

ages includes: ‘Brett’ true

ages size 2

ages at: ‘Dave’ 30

For each of the above example expressions, we indicate in which class
the message is found and in which class any messages sent to self are
found.

message selector message to self class of method

initialize Duall.istDictionary

at:put: DuallistDictionary
indexOf: SmallDictionary
newlndexOf: SmaliDictionary

includes: DualListDictionary
indexOf: SmallDictionary

size SmallDictionary

at: DualListDictionary
indexOf: SmaliDictionary
error: Object

FastDictionary is another subclass of DuallistDictionary. It uses a hashing
technique to locate names. Hashing requires more space, but takes less
time than a linear search. All objects respond to the hash message by
returning a number. Numbers respond to the \ \ message by returning
their value in the modulus of the argument.

71
Abstract Superclasses

class name FastDictionary
superclass DuallListDictionary

instance methods
accessing

size
| size |
size « 0.
names do: [:name | name notNil ifTrue: [size ~ size + 1]].
Tsize

initialization
initialize
names « Array new: 4.
values « Array new: 4

private

indexOf: name
| index | .
index « name hash \\ names size + 1.
[{(names at: index) = name]
whileFalse: [(names at: index) isNil
ifTrue: [10]
ifFalse: [index — index \\ names size + 1]}.
Tindex
newindexOf: name
| index |
names size - self size <= (names size / 4)
ifTrue: [self grow].
index « name hash \\ names size + 1.
[(names at: index) isNil]
whileFalse: [index « index \\ names size + 1].
names at; index put: name.
findex
grow
| oldNames oldValues |
oldNames < names.
oldValues « values.
names — Array new: names size * 2.
values — Array new: values size *» 2.
1 to: oldNames size do:
[:index |
(oldNames at: index) isNil
ifFalse: [self at: (oldNames at: index)
put: (oldValues at: index}]]

72

Subclasses

FastDictionary overrides DualListDictionary’s implementation of initialize
in order to create Arrays that already have some space allocated (Array
new: 4). The size of a FastDictionary is not simply the size of one of its
variables since the Arrays always have empty entries. So the size is de-
termined by examining each element in the Array and counting the
number that are not nil.

The implementation of newlndexOf: follows basically the same idea
as that used for SmaliDictionary except that when the size of an Array is
changed (doubled in this case in the method for grow), each element is
explicitly copied from the old Arrays into the new ones so that elements
are rehashed. The size does not always have to be changed as is neces-
sary in SmallDictionary. The size of a FastDictionary is changed only
when the number of empty locations in names falls below a minimum.
The minimum is equal to 25% of the elements.

names size — self size <= (names size / 4)

Subclass
Framework
Messages

As a matter of programming style, a method should not include mes-
sages to self if the messages are neither implemented by the class nor
inherited from a superclass. In the description of DualListDictionary,
three such messages exist—size, indexOf:, and newlndexOf:. As we shall
see in subsequent chapters, the ability to respond to size is inherited
from Object; the response is the number of indexed instance variables.
A subclass of DualListDictionary is supposed to override this method in
order to return the number of names in the dictionary.

A special message, subclassResponsibility, is specified in Object. It is
to be used in the implementation of messages that cannot be properly
implemented in an abstract class. That is, the implementation of size
and indexOf: and newlndexOf:, by Smalltalk-80 convention, should be

self subclassResponsibility

The response to this message is to invoke the following method defined
in class Object.

subclassResponsibility
self error: * My subclass should have overridden one of my messages.”

In this way, if a method should have been implemented in a subclass of
an abstract class, the error reported is an indication to the programmer
of how to fix the problem. Moreover, using this message, the program-
mer creates abstract classes in which all messages sent to self are

73

Summary of Terminology

implemented, and in which the implementation is an indication to the
programmer of which methods must be overridden in the subclass.

By convention, if the programmer decides that a message inherited
from an abstract superclass should actually not be implemented, the ap-
propriate way to override the inherited method is

self shouldNotimplement

The response to this message is to invoke the following method defined
in class Object.

shouldNotimpiement
self error: “ This message is not appropriate for this object.”

There are several major subclass hierarchies in the Smalltalk-80 system
that make use of the idea of creating a framework of messages whose im-
plementations must be completed in subclasses. There are classes describ-
ing various kinds of collections (see Chapters 9 and 10). The collection
classes are arranged hierarchically in order to share as much as possible
among classes describing similar kinds of collections. They make use of
the messages subclassResponsibility and shouldNotimplement. Another
example of the use of subclasses is the hierarchy of linear measures and
number classes (see Chapters 7 and 8).

Summary of
Terminology

subclass A class that inherits variables and methods from an
existing class.

superclass The class from which variables and methods are inherited.

Object The class that is the root of the tree-structured class hier-
archy.

overriding a method Specifying a method in a subclass for the same message as
a method in a superclass.

super A pseudo-variable that refers to the receiver of a message;
differs from self in where to start the search for methods.

abstract class A class that specifies protocol, but is not able to fully im-
plement it; by convention, instances are not created of this
kind of class.

subclassResponsibility A message to report the error that a subclass should have
implemented one of the superclass’s messages.

shouldNotimplement A message to report the error that this is a message
inherited from a superclass but explicitly not available to
instances of the subclass.

Metaclasses

Initialization of Instances

An Example Metaclass

Metaclass Inheritance
Initialization of Class Variables
Summary of Method Determination

Summary of Terminology

76

Metaclasses

Figure 5.1

Since all Smalltalk-80 system components are represented by objects
and all objects are instances of a class, the classes themselves must be
represented by instances of a class. A class whose instances are them-
selves classes is called a metaclass. This chapter describes the special
properties of metaclasses. Examples illustrate how metaclasses are used
to support instance creation and general class inquiries.

In earlier versions of the Smalltalk system, there was only one
metaclass, named Class. It corresponded to the class organization
depicted in Figure 5.1. As used in Chapter 4, a box denotes a class and
a circle denotes an instance of the class in which it is contained. Where
possible, the box is labeled with the name of the class it represents.
Note that there is one circle in the box labeled Class for each box in

the diagram.

Object
o o Class o °
[e] o (e}
o] [o}
o © o o)
e} o]
o o
o o}
o] Q o o
o o
o} o (e} o
o} © o] ¢}
o] o]

This approach had the difficulty that the message protocol of all classes
was constrained to be the same since it was specified in one place. In
particular, the messages used to create new instances were the same for
all classes and could not take any special initialization requirements
into account. With a single metaclass, all classes respond to the mes-
sage new or new: by returning an instance whose instance variables all
refer to nil. For most objects, nil is not a reasonable instance variable
value,’so new instances have to be initialized by sending another mes-
sage. The programmer must ensure that every time a new or new: is
sent, another message is sent to the new object so that it will be proper-
ly initialized. Examples of this kind of initialization were shown in
Chapter 4 for SmaliDictionary and FinancialHistory.

77

Initialization of Instances

The Smalltalk-80 system removes the restriction that all classes have
the same message protocol by making each class an instance of its own
metaclass. Whenever a new class is created, a new metaclass is created
for it automatically. Metaclasses are similar to other classes because
they contain the methods used by their instances. Metaclasses are dif-
ferent from other classes because they are not themselves instances of
metaclasses. Instead, they are all instances of a class called Metaclass.
Also, metaclasses do not have class names. A metaclass can be accessed
by sending its instance the unary message class. For example, Rectan-
gle’s metaclass can be referred to with the expression Rectangle class.

The messages of a metaclass typically support creation and initializa-
tion of instances, and initialization of class variables.

Initialization
of Instances

Each class can respond to messages that request properly initialized
new instances. Multiple metaclasses are needed because the initializa-
tion messages are different for different classes. For example, we have
already seen that Time creates new instances in response to the mes-
sage now and Date creates new instances in response to the message
tcday.

Time now
Date today

These messages are meaningless to Point, the class whose instances rep-
resent two-dimensional locations. Point creates a new instance in re-
sponse to a message with selector x:y: and two arguments specifying the
coordinates. This message is, in turn, meaningless to Time or Date.

Point x: 100 y: 150

Class Rectangle understands several messages that create new in-
stances. A message with the selector origin.corner: takes Points repre-
senting the upper left and lower right corners as arguments.

Rectangle
origin: (Point x: 50 y: 50)
corner: (Point x;: 250 y: 300)

A message with the selector origin:extent: takes as arguments the upper
left corner and a Point representing the width and height. The same
rectangle could have been created by the following expression.

78

Metaclasses

Figure 5.2

Rectangle
origin: (Point x: 50 y: 50)
extent: (Point x: 200 y: 250)

In the Smalltalk-80 system, Class is an abstract superclass for all of the
metaclasses. Class describes the general nature of classes. Each
metaclass adds the behavior specific to its single instance. Metaclasses
may add new instance creation messages like those of Date, Time, Point,
and Rectangle mentioned above, or they may redefine the fundamental
new and new: messages in order to perform some default initialization.

The organization of classes and instances in the system, as described
so far, is illustrated in Figure 5.2.

Object

Class
o o ° l__o—l
o o ° E)bject class o l

0 B

o [Class class o]

o LMetacIass class o l

o Metaclass

In this figure, we indicate classes Object, Metaclass, and Class, and
metaclasses for each. Each circle within the box labeled Metaclass de-
notes a metaclass. Each box within the box labeled Class denotes a sub-
class of Class. There is one such box for each circle within the box
labeled Metaclass. Each of these boxes contains a circle denoting its in-
stance; these instances refer to Object or one of the subclasses of Object,
but not to metaclasses.

An Example
Metaclass

Since there is a one-to-one correspondence between a class and its
metaclass, their descriptions are presented together. An implementa-
tion description includes a part entitled “class methods” that shows the
methods added by the metaclass. The protocol for the metaclass is al-

79
An Example Metaclass

ways found by looking at the class methods part of the implementation
description of its single instance. In this way, messages sent to the class
(class methods) and messages sent to instances of the class (instance
methods) are listed together as part of the complete implementation de-
scription.

The following new version of the implementation description for
FinancialHistory includes class methods.

class name FinancialHistory

superclass Object

instance variable names cashOnHand
incomes

expenditures
class methods

instance creation

initialBalance: amount

tsuper new setlnitialBalance: amount
new

tsuper new setinitialBalance: 0

instance methods

transaction recording

receive: amount from: source
incomes at: source
put: (self totalReceivedFrom: source) + amount.
cashOnHand « cashOnHand + amount
spend: amount for: reason
expenditures at: reason
put: (self totalSpentFor: reason} + amount.
cashOnHand « cashOnHand — amount

inquiries

cashOnHand
tcashOnHand
totalReceivedFrom: source
{incomes includesKey: source)
ifTrue: [tincomes at: source]
ifFalse: [10]
totalSpentFor: reason
{expenditures includesKey: reason)
ifTrue: [texpenditures at: reason]
ifFalse: [10]

80

Metaclasses

private

setinitialBalance: amount
cashOnHand < amount.
incomes « Dictionary new.
expenditures — Dictionary new

Three changes have been made to the implementation description.

1. One category of class methods named instance creation has been
added. The category contains methods for initialBalance: and new.
By convention, the category instance creation is used for class
methods that return new instances.

2. The category of instance methods named initialization has been de-
leted. It had included a method for initialBalance:.

3. A category of instance methods named private has been added.
The category contains one method for setinitialBalance:; this meth-
od contains the same expressions that were in the deleted method
for initialBalance:.

This example illustrates how metaclasses create initialized instances.
The instance creation methods for initialBalance: and new do not have
direct access to the instance variables of the new instance (cashOnHand,
incomes, and expenses). This is because the methods are not a part of
the class of the new instance, but rather of the class’s class. Therefore,
the instance creation methods first create uninitialized instances and
then send an initialization message, setinitialBalance:, to the new in-
stance. The method for this message is found in the instance methods
part of FinancialHistory’s implementation description; it can assign ap-
propriate values to the instance variables. The initialization message is
not considered part of the external protocol of FinancialHistory so it is
categorized as private. It is typically only sent once and only by a class
method. '

The old initialization message initialBalance: was deleted because the
proper way to create a FinancialHistory is to use an expression such as

FinancialHistory initialBalance: 350
not
FinancialHistory new initialBalance: 350

Indeed, this second expression would now create an error since in-
stances of FinancialHistory are no longer described as responding to

81

Metaclass Inheritance

initialBalance:. We could have maintained the instance method
initialBalance: and implemented the class method for initialBalance: to
call on it, but we try not to use the same selectors for both instance and
class methods in order to improve the readability of the implementation
description. However, there would be no ambiguity if the same selector
were used.

Metaclass
Inheritance

Like other classes, a metaclass inherits from a superclass. The simplest
way to structure the inheritance of metaclasses would be to make each
one a subclass of Class. This organization was shown in Figure 5.2.
Class describes the general nature of classes. Each metaclass adds be-
havior specific to its instance. Metaclasses may add new instance cre-
ation messages or they may redefine the fundamental new and new:
messages to perform some default initialization.

When metaclasses were added to the Smalltalk-80 system, one fur-
ther step in class organization was taken. The metaclass subclass hier-
archy was constrained to be parallel to the subclass hierarchy of the
classes that are their instances. Therefore, if DeductibleHistory is a sub-
class of FinancialHistory, then DeductibleHistory’s metaclass must be a
subclass of FinancialHistory’s metaclass. A metaclass typically has only
one instance.

An abstract class named ClassDescription was provided to describe
classes and their instances. Class and Metaclass are subclasses of
ClassDescription. Since the superclass chain of all objects ends at Object
and Object has no superclass, the superclass of Object’s metaclass is
Class. From Class, the metaclasses inherit messages that provide proto-
col for the creation of instances (Figure 5.3).

The superclass chain from Class leads eventually to class Object. No-
tice that the hierarchy of boxes with the box labeled Object class is like
that of the hierarchy of boxes within the box labeled Object; this simi-
larity illustrates the parallel hierarchies. A full description of this part
of the system, including the relationship between Metaclass and its
metaclass, is provided in Chapter 16.

As an example of the metaclass inheritance hierarchy, consider the
implementation of initialBalance: in FinancialHistory class.

initialBalance: amount
Tsuper new setlnitialBalance: amount

82

Metaclasses

Figure 5.3

Object
ClassDescription
Metaclass o
o] [o] (o]
o
Class
Cbject class
ClassDescription class
lMetacIass class o I
[Class class o]
o (o}
ol]
o]
= [_J o)
o
E o] o O °
o o
o]
o

This method creates a new instance by evaluating the expression super
new; it uses the method for new found in the class methods of the su-
perclass, not the class methods found in this class. It then sends the
new instance the message setlnitialBalance: with the initial amount of
the balance as the argument. Similarly, new is reimplemented as creat-
ing an instance using super new followed by setinitialBalance:.

new
tsuper new setlnitialBalance: 0

83

Metaclass Inheritance

Object
ClassDescription
Metaclass o
o o o]
o]
Class

Object class

ClassDescription class
ﬁnetaclass class o l

[Class class OJ

FinancialHistory class

DeductibleHistory class

FinancialHistory
DeductibleHistory

o e]
o]

Figure 5.4

Where is the method for the message new sent to super actually found?
The subclass hierarchy of the metaclasses parallels the hierarchy of
their instances. If one class is a subclass of another, its metaclass will
be a subclass of the other’s metaclass, as indicated in Figure 5.3. The
parallel class and metaclass hierarchies for the FinancialHistory applica-
tion are shown in Figure 5.4.

It we evaluate the expression

FinancialHistory initialBalance: 350

84

Metaclasses

the search for the response to initialBalance: begins in FinancialHistory
class, i.e., in the class methods for FinancialHistory. A method for that
selector is found there. The method consists of two messages:

1. Send super the message new.

2. Send the result of 1 the message setinitialBalance: 0.

The search for new begins in the superclass of FinancialHistory class,
that is, in Object class. A method is not found there, so the search con-
tinues up the superclass chain to Class. The message selector new is
found in Class, and a primitive method is executed. The result is an
uninitialized instance of FinancialHistory. This instance is then sent the
message setlnitialBalance:. The search for the response begins in the
class of the instance, i.e., in FihancialHistory (in the instance methods). A
method is found there which assigns a value to each instance variable.
The evaluation of

FinancialHistory new

is carried out in a similar way. The response to new is found in
FinancialHistory class (i.e., in the class methods of FinancialHistory). The
remaining actions are the same as for initialBalance: with the exception
of the value of the argument to setlnitialBalance:. The instance creation
methods must use super new in order to avoid invoking the same meth-
od recursively.

Initialization of
Class Variables

The main use of messages to classes other than creation of instances is
the initialization of class variables. The implementation description’s
variable declaration gives the names of the class variables only, not
their values. When a class is created, the named class variables are cre-
ated, but they all have a value of nil. The metaclass typically defines a
method that initializes the class variables. By convention, the class-
variable initialization method is usually associated with the unary mes-
sage initialize, categorized as class initialization.

Class variables are accessible to both the class and its metaclass. The
assignment of values to class variables can be done in the class meth-
ods, rather than indirectly via a private message in the instance meth-
ods (as was necessary for instance variables).

The example DeductibleHistory, this time with a class variable that
needs to be initialized, is shown next. DeductibleHistory is a subclass of
FinancialHistory. It declares one class variable, MinimumDeductions.

85

Initialization of Class Variables

class name DeductibleHistory
superclass FinancialHistory
instance variable names deductibleExpenditures
class variable names MinimumDeductions

class methods
instance creation

initialBalance: amount
| newHistory |
newHistory « super initialBalance: amount.
newHistory initializeDeductions.
tnewHistory

new
| newHistory |
newHistory « super initialBalance: 0.
newHistory initializeDeductions.
tnewHistory

class initialization

initialize
MinimumDeductions « 2300

instance methods
transaction recording

spendDeductible: amount for: reason
self spend: amount for: reason.
deductibleExpenditures
deductibleExpenditures + amount
spend: amount for: reason deducting: deductibleAmount
self spend: amount for: reason.
deductibleExpenditures «
deductibleExpenditures + deductibleAmount

inquiries

isltemizable

tdeductibleExpenditures > = MinimumDeductions
totalDeductions

tdeductibleExpenditures

private

initializeDeductions
deductibleExpenditures « O

This version of DeductibleHistory adds five instance methods, one of
which is isltemizable. The response to this message is true or false

86

Metaclasses

depending on whether enough deductions have been accumulated in or-
der to itemize deductions on a tax report. The tax law specifies that a
minimum deduction of 2300 can be taken, so if the accumulation is less,
the standard deduction should be used. The constant, 2300, is referred
to by the class variable MinimumDeductions. In order to successfully
send an instance of DeductibleHistory the message isltemizable, the class
variable MinimumbDeductions must be assigned its numeric value. This is
done by sending the class the message initialize before any instances are
created.

DeductibleHistory initialize

This message only has to be sent once, after the class initialization mes-
sage is first defined. The variable is shared by each new instance of the
class.

According to the above class description, a new instance of
DeductibleHistory can be created by sending the class the messages
initialBalance: or new, just as for the superclass FinancialHistory. Suppose
we evaluate the expression

DeductibleHistory initialBalance: 100

The determination of which methods are actually followed in order to
evaluate the expression depends on the class/superclass chain for
DeductibleHistory. The method for initialBalance: is found in the class
methods of DeductibleHistory.

initialBalance: amount
| newHistory |
newHistory « super initialBalance: amount.
newHistory initializeDeductions.
TnewHistory

This method declares newHistory as a temporary variable. The first ex-
pression of the method is an assignment to the temporary variable.

newHistory — super initialBalance: amount

The pseudo-variable super refers to the receiver. The receiver is the
class DeductibleHistory; its class is its metaclass. The superclass of the
metaclass is the metaclass for FinancialHistory. Thus we can find the
method that will be followed by looking in the class methods of
FinancialHistory. The method is

initialBalance: amount
rsuper new setlnitiaiBalance: amount

87
Initialization of Class Variables

We have already followed evaluation of this method. The response to
new is found in Class. A new instance of the original receiver,
DeductibleHistory, is created and sent the message setlnitialBalance:. The
search for setinitialBalance: begins in the class of the new instance, i.e.,
in DeductibleHistory. It is not found. The search proceeds to the super-
class FinancialHistory. It is found and evaluated. Instance variables de-
clared in FinancialHistory are assigned values. The value of the first
expression of the class method for initialBalance: in DeductibleHistory,
then, is a partially initialized new instance. This new instance is
assigned to the temporary variable newHistory.

newHistory is then sent the message initializeDeductions. The search
begins in the class of the receiver, newHistory; the class is
DeductibleHistory. The method is found. It assigns the value of the
fourth instance variable to be O.

The third expression of the instance creation message returns the
new instance.

An alternative way to implement the class DeductibleHistory is pre-
sented next. In this alternative class description, the instance-creation
class methods of FinancialHistory are not reimplemented. Rather, the
private instance-method message setlnitialBalance: is overridden in or-
der to account for the additional instance variable.

class name DeductibleHistory
superclass FinancialHistory
instance variable names deductibleExpenditures
class variable names MinimumDeductions

class methods
class initialization

initialize
MinimumDeductions « 2300

instance methods
transaction recording

spendDeductible: amount for: reason
self spend: amount for: reason.
deductibleExpenditures «
deductibleExpenditures + amount
spend: amount for: reason deducting: deductibleAmount
self spend: amount for: reason.
deductibleExpenditures «~
deductibleExpenditures + deductibleAmount

inquiries

isltemizable
TdeductibleExpenditures > = MinimumDeductions

88

Metaclasses

totalDeductions
TdeductibleExpenditures

private

setinitialBalance: amount
super setlnitialBalance: amount,
deductibleExpenditures « 0

Using this alternative class description for DeductibleHistory, the evalu-
ation of the response to initialBalance: in

DeductibleHistory initialBalance: 350

is to search in DeductibleHistory class for initialBalance:. It is not found.
Continue the search in the superclass, FinancialHistory class. It is found.
The method evaluated consists of the expression

super new setlnitialBalance: amount

The method for new is found in Class. Search for setinitialBalance: be-
ginning in the class of the new instance, a DeductibleHistory. The meth-
od for setlnitialBalance: is found in DeductibleHistory. The response of
setlnitialBalance: in DeductibleHistory is to send the same message to su-
per so that the search for the method begins in FinancialHistory. It is
found and three instance variables are assigned values. The second ex-
pression of setlnitialBalance: in DeductibleHistory sets the fourth variable
to 0. The result of the original message is a fully initialized instance of
DeductibleHistory.

Summary of
Method
Determination

Determining the actual actions taken when a message is sent involves
searching the methods in the class hierarchy of the receiver. The search
begins with the class of the receiver and follows the superclass chain. If
not found after searching the last superclass, Object, an error is report-
ed. If the receiver is a class, its class is a metaclass. The messages to
which a class can respond are listed in the implementation description
in the part entitled “class methods.” If the receiver is not a class, then
the messages to which it can respond are listed in its implementation
description in the part entitled “instance methods.”

The pseudo-variable self refers to the receiver of the message that in-
voked the executing method. The search for a method corresponding to
a message to self begins in the class of self. The pseudo-variable super

\

89

Summary of Terminology

also refers to the receiver of the message. The search for a method cor-
responding to a message to super begins in the superclass of the class in
which the executing method was found.

This ends the description of the Smalltalk-80 programming language.
To use the system, the programmer must have general knowledge of
the system classes. Part Two gives detailed accounts of the protocol de-
scriptions for each of the system classes and provides examples, often
by presenting the implementation descriptions of system classes. Part
Three introduces a moderate-size application. Before delving into the
details of the actual system classes, the reader might want to skip to
Part Three to get a sense of what it is like to define a larger applica-
tion.

Summary of
Terminology

metaclass The class of a class.
Class An abstract superclass of all classes other than meta-
classes.

Metaclass A class whose instances are classes of classes.

PART TWO

Part One provided an overview of the Smalltalk-80 language both
from the semantic view of objects and message sending and from
the syntactic view of the form that expressions take. The
Smalltalk-80 programmer must first understand the semantics of
the language: that all information is represented in the form of ob-
jects and that all processing is done by sending messages to ob-
jects. Every object is described by a class; every class, with the
exception of class Object, is a subclass of another class. Program-
ming in the Smalltalk-80 system involves the description of new
classes of objects, the creation of instances of classes, and the se-
quencing of messages to the instances. The Smalltalk-80 syntax
defines three forms that messages can take: unary, binary, and
keyword messages. Successful use of the language requires that
the programmer have a general knowledge of each of the basic
kinds of objects in the system and of the messages that can be sent

The semantics and syntax of the language are relatively simple.
Yet the system is large and powerful due to the numbers of and
kinds of available objects. There are eight significant categories of
classes in the Smalltalk-80 system: kernel and kernel support, lin-
ear measures, numbers, collections, streams, classes, independent
processes, and graphics. The protocol of these kinds of objects is
reviewed in 12 chapters of Part Two. In each of these chapters, the
diagram of the class hierarchy given in Chapter 1 is re-presented
in order to highlight the portion of the hierarchy discussed in that
chapter. Three additional chapters in Part Two provide examples
of Smalltalk-80 expressions and class descriptions.

The classes in the Smalltalk-80 system are defined in a linear
hierarchy. The chapters in Part Two take an encyclopedic ap-
proach to reviewing class protocol: categories of messages are de-
fined, each message is annotated, and examples are given. In
presenting the protocol of a class, however, only those messages
added by the class are described. The complete message protocol is
determined by examining the protocol specified in the class and in
each of its superclasses. Thus it is useful to present the classes
starting with a description of class Object and to proceed in a
mostly depth-first manner so that inherited protocol can be under-
stood in conjunction with the new protocol.

Protocol for All Objects

Testing the Functionality of an Object
Comparing Objects

Copying Objects

Accessing the Parts of an Object
Printing and Storing Objects
Error Handling

Magnitude
Character
Date
Time

Number
Float
Fraction
Integer
LargeNegativelnteger
LargePositivelnteger
Smalllinteger

LookupKey
Association
Link
Process
Collection

SequenceableCollection
LinkedList

Semaphore

ArrayedCollection
Array

Bitmap
DisplayBitmap

RunArray
String
Symbol
Text
ByteArray

Interval
OrderedCollection
SortedCollection
Bag
MappedCollection
Set

Dictionary
IdentityDictionary

Stream
PositionableStream
ReadStream
WriteStream
ReadWriteStream
ExternalStream
FileStream

Random

File
FileDirectory
FilePage

UndefinedObject
Boolean

False

True

ProcessorScheduler
Delay
SharedQueue

Behavior
ClassDescription
Class
MetaClass

Point

Rectangle

BitBit
CharacterScanner

Pen

DisplayObject
DisplayMedium
Form
Cursor
DisplayScreen
InfiniteForm
OpaqueForm
Path
Arc
Circle
Curve
Line
LinearFit
Spline

95
Testing the Functionality of an Object

Everything in the system is an object. The protocol common to all ob-
jects in the system is provided in the description of class Object. This
means that any and every object created in the system can respond to
the messages defined by class Object. These are typically messages that
support reasonable default behavior in order to provide a starting place
from which to develop new kinds of objects, either by adding new mes-
sages or by modifying the response to existing messages. Examples to
consider when examining Object’s protocol are numeric objects such as
3 or 16.23, collections such as ‘this is a string” or #(this is an array), nil
or true, and class-describing objects such as Collection or Smallinteger or,
indeed, Object itseli.

The specification of protocol for class Object given in this chapter is
incomplete. We have omitted messages pertaining to message handling,
special dependency relationships, and system primitives. These are
presented in Chapter 14.

Testing the
Functionality
of an Object

Every object is an instance of a class. An object’s functionality is deter-
mined by its class. This functionality is tested in two ways: explicit
naming of a class to determine whether it is the class or the superclass
of the object, and naming of a message selector to determine whether
the object can respond to it. These reflect two ways of thinking about
the relationship among instances of different classes: in terms of the
class/subclass hierarchy, or in terms of shared message protocols.

Object instance protocol

testing functionality

class Answer the object which is the receiver’s
class.

isKindOf: aClass Answer whether the argument, aClass, is a
superclass or class of the receiver.

isMemberOf: aClass Answer whether the receiver is a direct in-

stance of the argument, aClass. This is the
same as testing whether the response to send-
ing the receiver the message class is the same
as (= =) aClass.

respondsTo: aSymbol Answer whether the method dictionary of the
receiver’s class or one of its superclasses con-
tains the argument, aSymbol, as a message se-
lector.

Example messages and their corresponding results are

expression result

3 class Smallinteger
#(this is an array) isKindOf: Collection true

96

Protocol for All Objects

1 (this is an array) isMemberQOf: Collection false

H#(this is an array) class Array

3 respondsTo: #isKindOf: true

#(1 2 3) isMemberOf: Array true

Object class Object class

Comparing
Objects

Since all information in the system is represented as objects, there is a
basic protocol provided for testing the identity of an object and for copy-
ing objects. The important comparisons specified in class Object are
equivalence and equality testing. Equivalence (==) is the test of
whether two objects are the same object. Equality (=) is the test of
whether two objects represent the same component. The decision as to
what it means to be “represent the same component” is made by the re-
ceiver of the message; each new kind of object that adds new instance
variables typically must reimplement the = message in order to specify
which of its instance variables should enter into the test of equality.
For example, equality of two arrays is determined by checking the size
of the arrays and then the equality of each of the elements of the ar-
rays; equality of two numbers is determined by testing whether the two
numbers represent the same value; and equality of two bank accounts
might rest solely on the equality of each account identification number.

The message hash is a special part of the comparing protocol. The re-
sponse to hash is an integer. Any two objects that are equal must re-
turn the same value for hash. Unequal objects may or may not return
equal values for hash. Typically, this integer is used as an index to lo-
cate the object in an indexed collection (as illustrated in Chapter 3).
Any time = is redefined, hash may also have to be redefined in order
to preserve the property that any two objects that are equal return
equal values for hash.

Object instance protocol

comparing

= = anObject Answer whether the receiver and the argu-
ment are the same object.

= anObject Answer whether the receiver and the argu-
ment represent the same component.

~ = anObject Answer whether the receiver and the argu-
ment do not represent the same component.

~n~ anObject Answer whether the receiver and the argu-
ment are not the same object.

hash Answer an Integer computed with respect to

the representation of the receiver.

97
Copying Objects

The default implementation of = is the same as that of ==.
Some specialized comparison protocol provides a concise way to test
for identity with the object nil.

Object instance protocol

testing
isNil Answer whether the receiver is nil.
notNil Answer whether the receiver is not nil.
These messages are identical to == nil and ~~ nil, respectively. Choice

of which to use is a matter of personal style.
Some obvious examples are

expression result
nil isNil true
true notNil true
3 isNil false
Habc)= #{abc) true
3 = (6/2) true
#(1 2 3) class == Array true

Copying
Objects

There are two ways to make copies of an object. The distinction is
whether or not the values of the object’s variables are copied. If the val-
ues are not copied, then they are shared (shallowCopy); if the values are
copied, then they are not shared (deepCopy).

Object instance protocol

copying
copy Answer another instance just like the receiver.
shallowCopy Answer a copy of the receiver which shares
the receiver’s instance variables.
deepCopy Answer a copy of the receiver with its own

copy of each instance variable.

The default implementation of copy is shallowCopy. In subclasses in
which copying must result in a special combination of shared and
unshared variables, the method associated with copy is usually re-
implemented, rather than the method associated with shallowCopy or
deepCopy.

o8

Protocol for All Objects

Figure 6.1

As an example, a copy (a shallow copy) of an Array refers to the same
elements as in the original Array, but the copy is a different object. Re-
placing an element in the copy does not change the original. Thus

expression result

a « ('first” "second” "third") (’first” “second’ “third")
b « a copy ("first” “second” “third’)
a==>t true

a==>b faise

(aat: 1) == (b at: 1) true

b at: 1 put: 'newFirst’ "newFirst’

a=>b false

a < "hello’ "hello’

b < a copy "hello’

a=>b true

a==>b false

Figure 6.1 shows the relationship between shallow and deep copying. To
further illustrate the distinction between shallowCopy and deepCopy,
take as an example a PersonnelRecord. Suppose it is defined to include
the variable insurancePlan, an instance of class Insurance. Suppose fur-
ther that each instance of Insurance has a value associated with it rep-
resenting the limit on medical coverage. Now suppose we have created
employeeRecord as a prototypical instance of a PersonnelRecord. By
“prototypical” we mean that the object has all of the initial attributes
of any new instance of its class, so that instances can be created by sim-
ply copying it rather than sending a sequence of initialization messages.
Suppose further that this prototypical instance is a class variable of
PersonnelRecord and that the response to creating a new
PersonnelRecord is to make a shallow copy of it; that is, the method as-
sociated with the message new is temployeeRecord copy.

. shallow deep
original copy copy
/ B e { / \
/’ T ———— —l I
1 2 3 f————— - 1 2 3
copy copy copy

As a result of evaluating the expression

joeSmithRecord — PersonnelRecord new

99
Accessing the Parts of an Object

joeSmithRecord refers to a copy (in particular, a shallow copy) of
employeeRecord.

The prototype employeeRecord and the actual record joeSmithRecord
share a reference to the same insurance plan. Company policy may
change. Suppose PersonnelRecord understands the message
changelnsurancelLimit: aNumber, which is implemented by having the
prototypical instance of PersonnelRecord, employeeRecord, reset its in-
surance plan limit on medical coverage. Since this insurance plan is
shared, the result of evaluating the expression

PersonnelRecord changelnsurancelimit: 4000

is to change the medical coverage of all employees. In the example,
both the medical coverage referenced by employeeRecord and that ref-
erenced by its copy, joeSmithRecord, is changed. The message
changelnsurancelimit: is sent to the class PersonnelRecord because it is
the appropriate object to broadcast a change to all of its instances.

Accessing the
Parts of an
Object

There are two kinds of objects in the Smalltalk-80 system, objects with
named variables and objects with indexed variables. Objects with
indexed variables may also have named instance variables. This distinc-
tion is explained in Chapter 3. Class Object supports six messages in-
tended to access the indexed variables of an object. These are

Object instance protocol

accessing

at: index Answer the value of the indexed instance
variable of the receiver whose index is the ar-
gument, index. If the receiver does not have
indexed variables, or if the argument is great-
er than the number of indexed variables, then
report an error.

at: index put: anObject Store the argument, anObject, as the value of
the indexed instance variable of the receiver
whose index is the argument, index. If the re-
ceiver does not have indexed variables, or if
the argument is greater than the number of
indexed variables, then report an error. An-
swer anObject.

basicAt: index Same as at: index. The method associated with
this message, however, cannot be modified in
any subclass.

100

Protocol for All Objects

basicAt: index put: anObject Same as at: index put: anObject. The method
associated with this message, however, cannot
be modified in any subclass.

size Answer the receiver’s number of indexed vari-
ables. This value is the same as the largest le-
gal index.

basicSize Same as size. The method associated with this
message, however, cannot be modified in any
subclass.

Notice that the accessing messages come in pairs; one message in each
pair is prefixed by the word basic meaning that it is a fundamental sys-
tem message whose implementation should not be modified in any sub-
class. The purpose of providing pairs is so that the external protocol, at;,
at:put;, and size, can be overridden to handle special cases, while still
maintaining a way to get at the primitive methods. (Chapter 4 includes
an explanation of “primitive” methods, which are methods implement-
ed in the virtual machine for the system.) Thus in any method in a hi-
erarchy of class descriptions, the messages, basicAt:, basicAt:put;, and
basicSize, can always be used to obtain the primitive implementations.
The message basicSize can be sent to any object; if the object is not
variable length, then the response is 0.

Instances of class Array are variable-length objects. Suppose letters is
the Array #(abd fjmps). Then

expression result

letters size 8

letters at: 3 d

letters at: 3 put: #c¢ c

letters fabcfjmps)

Printing and
Storing Objects

There are various ways to create a sequence of characters that provides
a description of an object. The description might give only a clue as to
the identity of an object. Or the description might provide enough infor-
mation so that a similar object can be constructed. In the first case
(printing), the description may or may not be in a well-formatted, visu-
ally pleasing style, such as that provided by a Lisp pretty-printing rou-
tine. In the second case (storing), the description might preserve
information shared with other objects.

The message protocol of the classes in the Smalltalk-80 system sup-
port printing and storing. The implementation of these messages in
class Object provides minimal capability; most subclasses override the

101
Printing and Storing Objects

messages in order to enhance the descriptions created. The arguments
to two of the messages are instances of a kind of Stream; Streams are
presented in Chapter 12.

Object instance protocol

printing
printString Answer a String whose characters are a de-
scription of the receiver.
printOn: aStream Append to the argument, aStream, a String
whose characters are a description of the re-
ceiver.
storing
storeString Answer a String representation of the receiver
from which the receiver can be reconstructed.
storeOn; aStream Append to the argument, aStream, a String

representation of the receiver from which the
receiver can be reconstructed.

Each of the two kinds of printing is based on producing a sequence of
characters that may be shown on a display screen, written on a file, or
transferred over a network. The sequence created by storeString or
storeOn: should be interpretable as one or more expressions that can be
evaluated in order to reconstruct the object. Thus, for example, a Set of
three elements, $a, $b, and $c, might print as

Set ($a $b $¢)
while it might store as
(Set new add: $a; add: $b; add: $¢)

Literals can use the same representation for printing and storing. Thus
the String ‘hello” would print and store as ‘hello’. The Symbol #name
prints as name, but stores as #name.

For lack of more information, the default implementation of
printString is the object’s class name; the default implementation of
storeString is the class name followed by the instance creation message
basicNew, followed by a sequence of messages to store each instance
variable. For example, if a subclass of Object, say class Example, demon-
strated the default behavior, then, for eg, an instance of Example with
no instance variables, we would have

expression result

eg printString “an Example’
eg storeString "(Example basicNew)’

102

Protocol for All Objects

Error Handling

The fact that all processing is carried out by sending messages to ob-
jects means that there is one basic error condition that must be han-
dled by the system: a message is sent to an object, but the message is
not specified in any class in the object’s superclass chain. This error is
determined by the interpreter whose reaction is to send the original ob-
ject the message doesNotUnderstand: aMessage. The argument,
aMessage, represents the failed message selector and its associated ar-
guments, if any. The method associated with doesNotUnderstand: gives
the user a report that the error occurred. How the report is presented
to the user is a function of the (graphical) interface supported by the
system and is not specified here; a minimum requirement of an interac-
tive system is that the error message be printed on the user’s output
device and then the user be given the opportunity to correct the errone-
ous situation. Chapter 17 illustrates the Smalltalk-80 system error noti-
fication and debugging mechanisms.

In addition to the basic error condition, methods might explicitly
want to use the system error handling mechanism for cases in which a
test determines that the user program is about to do something unac-
ceptable. In such cases, the method might want to specify an error com-
ment that should be presented to the user. A typical thing to do is to
send the active instance the message error: aString, where the argument
represents the desired comment. The default implementation is to in-
voke the system notification mechanism. The programmer can provide
an alternative implementation for error: that uses application-depen-
dent error reporting.

Common error messages are supported in the protocol of class Object.
An error message might report that a system primitive failed, or that a
subclass is overriding an inherited message which it can not support
and therefore the user should not call upon it, or that a superclass
specifies a message that must be implemented in a subclass.

Object instance protocol

error handling
doesNotUnderstand: aMessage Report to the user that the receiver does not
understand the argument, aMessage, as a
message.

error: aString Report to the user that an error occurred in
the context of responding to a message to the
receiver. The report uses the argument,
aString, as part of the error notification com-
ment.

primitiveFailed Report to the wuser that a method
implemented as a system primitive has failed.

103
Error Handling

shouldNotimplement Report to the user that, although the super-
class of the receiver specifies that a message
should be implemented by subclasses, the
class of the receiver cannot provide an appro-
priate implementation.

subclassResponsibility Report to the user that a method specified in
the superclass of the receiver should have
been implemented in the receiver’s class.

A subclass can choose to override the error-handling messages in order
to provide special support for correcting the erroneous situation. Chap-
ter 13, which is about the implementation of the collection classes, pro-
vides examples of the use of the last two messages.

Linear Measures

Class Magnitude
Class Date
Class Time

Class Character

Object

Number
Float
Fraction
Integer

LargeNegativelnteger
LargePositiveinteger
Smallinteger

LookupKey
Association

Link
Process
Collection

SequenceableCollection
LinkedList

Semaphore

ArrayedCollection
Array

Bitmap
DisplayBitmap

RunArray
String
Symbol
Text
ByteArray

Interval
OrderedCollection
SortedCollection
Bag
MappedColiection
Set

Dictionary
IdentityDictionary

Stream
PositionableStream
ReadStream
WriteStream
ReadWriteStream
ExternalStream
FileStream

Random

File
FileDirectory
FilePage

UndefinedObject
Boolean

False

True

ProcessorScheduler
Delay
SharedQueue

Behavior
ClassDescription
Class
MetaClass

Point

Rectangle

BitBit
CharacterScanner

Pen

DisplayObject
DisplayMedium
Form
Cursor
DisplayScreen
InfiniteForm
OpaqueForm
Path
Arc
Circle
Curve
Line
LinearFit
Spline

107
Class Magnitude

The Smalltalk-80 system provides several classes representing objects
that measure something with linear ordering. Real world examples of
such measurable quantities are (1) temporal quantities such as dates
and time, (2) spatial quantities such as distance, and (3) numerical
quantities such as reals and rationals.

Class Magnitude

Is one number less than another number? Does one date come after an-
other date? Does one time precede another time? Does a character come
after another one in the alphabet? Is one distance the same or less than
another distance?

The common protocol for answering these queries is provided in the
class Magnitude. Magnitude provides the protocol for objects that have
the ability to be compared along a linear dimension. Subclasses of class
Magnitude include Date, Time, and Number. Classes Character (an ele-
ment of a string) and LookupKey (a key in a dictionary association) are
also implemented as subclasses of class Magnitude. Character is interest-
ing as an example of immutable objects in the system and so is intro-
duced in this chapter; LookupKey is less interesting and is deferred
until needed in the chapter on collections. A class Distance is not pro-
vided in the actual Smalltalk-80 system.

Magnitude instance protocol

comparing

< aMagnitude Answer whether the receiver is less than the
argument.

<= aMagnitude Answer whether the receiver is less than or
equal to the argument.

> aMagnitude Answer whether the receiver is greater than
the argument.

> = aMagnitude Answer whether the receiver is greater than
or equal to the argument.

between: min and: max Answer whether the receiver is greater than

or equal to the argument, min, and less than
or equal to the argument, max.

Although Magnitude inherits from its superclass, Object, the message =
for comparing the equality of two quantifiable objects, every kind of
Magnitude must redefine this message. The method associated with =
in class Magnitude is

self subclassResponsibility

If a subclass of Magnitude does not implement =, then an attempt to
send the message to an instance of the subclass results in the special er-
ror message that a subclass should have implemented the message, as
specified in its superclass.

108

Linear Measures

An instance of a kind of Magnitude can also respond to messages that
determine which of two objects that can be linearly measured is the
larger or the smaller.

Magnitude instance protocol

testing
min: aMagnitude Answer the receiver or the argument, which-
ever has the lesser magnitude.
max: aMagnitude Answer the receiver or the argument, which-
ever has the greater magnitude.
Note that protocol for the equality comparisons ==, ~=, and ~~ is

inherited from class Object. Using Integers as the example kinds of
Magnitudes, we have

expression result
3 <=4 true
3> 4 false
5 between: 2 and: 6 true

5 between: 2 and: 4 false
34 min: 45 34

34 max: 45 45

The programmer does not create instances of Magnitude, but only of its
subclasses. This is due to the fact that Magnitude is not able to imple-
ment all of the messages it specifies, indeed, that it implements one or
more of these messages by the expression self subclassResponsibility.

Class Date

Now that we have defined the general protocol of Magnitudes, it is pos-
sible to add additional protocol that supports arithmetic and inquiries
about specific linear measurements. The first refinement we will exam-
ine is the subclass Date.

An instance of Date represents a specific day since the start of the
Julian calendar. A day exists in a particular month and year. Class
Date knows about some obvious information: (1) there are seven days in
a week, each day having a symbolic name and an index 1, 2, ..., or 7; (2)
there are 12 months in a year, each having a symbolic name and an in-
dex, 1, 2, ..., or 12; (3) months have 28, 29, 30, or 31 days; and (4) a par-
ticular year might be a leap year.

Protocol provided for the object, Date, supports inquiries about Dates
in general as well as about a specific Date. Both Date and Time provide
interesting examples of classes in the system for which special knowl-
edge is attributed to and accessible from the class itself, rather than

109

Class Date

from -its instances. This “class protocol” is specified in the metaclass of
the class. Let’s first look at the class protocol of Date supporting general

inquiries.

Date class protocol

general inquiries
dayOfWeek: dayName

nameOfDay: daylndex

indexOfMonth: monthName

nameOfMonth: monthindex

Answer the index in a week, 1, 2, .., or 7, of
the day named as the argument, dayName.

Answer a Symbol that represents the name of
the day whose index is the argument,
dayindex, where 1 is Monday, 2, is Tuesday,
and so on.

Answer the index in a year, 1, 2, .., or 12, of
the month named as the argument,
monthName.

Answer a Symbol that represents the name of
the month whose index is the argument,
monthindex, where 1 is January, 2, is Febru-
ary, and so on.

daysinMonth: monthName forYear: yearinteger

daysinYear: yearinteger
leapYear: yearinteger

dateAndTimeNow

Answer the number of days in the month
whose name is monthName in the year
yearinteger (the year must be known in order
to account for a leap year).

Answer the number of days in the year,
yearinteger.

Answer 1 if the year yearinteger is a leap
year; answer 0 otherwise.

Answer an Array whose first element is the
current date (an instance of class Date repre-
senting today’s date) and whose second ele-
ment is the current time (an instance of class
Time representing the time right now).

Thus we can send the following messages.

expression result
Date daysiInYear: 1982 365
Date dayOfWeek: #Wednesday 3
Date nameOfMonth: 10 October
Date leapYear: 1972 1 (meaning it is a
leap year)
Date daysinMonth: #February 29
forYear: 1972
Date daysinMonth: #Feb 28

forYear: 1971

Date is familar with the common abbreviations for names of months.

110

Linear Measures

There are four messages that can be used to create an instance of
class Date. The one commonly used in the Smalltalk-80 system, notably
for marking the creation date of a file, is Date today.

Date class protocol

instance creation

today Answer an instance of Date representing the
day the message is sent.
fromDays: dayCount Answer an instance of Date that is dayCount

number of days before or after January 1,
1901 (depending on the sign of the argument).

newDay: day month: monthName year: yearinteger
Answer an instance of Date that is day num-
ber of days into the month named monthName
in the year yearinteger.

newDay: dayCount year: yearinteger
Answer an instance of Date that is dayCount
number of days after the beginning of the
year yearlnteger.

Four examples of instance creation messages are

expression result
Date today 3 February 1982
Date fromDays: 200 20 July 1901
Date newDay: 6 6 February 1982
month: #Feb
year: 82
Date newDay: 3 year: 82 3 January 1982

Messages that can be sent to an instance of Date are categorized as
accessing, inquiries, arithmetic, and printing messages. Accessing and
inquiries about a particular day consist of

¢ the day index, month index, or year

¢ the number of seconds, days, or months since some other date

¢ the total days in the date’s month or year

+ the days left in the date’s month or year

¢ the first day of the date’s month

« the name of the date’s weekday or month

¢ the date of a particular weekday previous to the instance

Simple arithmetic is supported in the protocol of class Date.

111
Class Time

Date instance protocol

arithmetic

addDays: dayCount Answer a Date that is dayCount number of
days after the receiver.

subtractDays: dayCount Answer a Date that is dayCount number of
days before the receiver.

subtractDate: aDate Answer an Integer that represents the number
of days between the receiver and the argu-
ment, aDate.

Such arithmetic is useful, for example, in order to compute due dates
for books in a library or fines for late books. Suppose dueDate is an in-
stance of Date denoting the day a book was supposed to be returned to
the library. Then

Date today subtractDate: dueDate

computes the number of days for which the borrower should be fined. If
a book is being borrowed today and it can be kept out for two weeks,
then

Date today addDays: 14

is the due date for the book. If the librarian wants to quit work 16 days
before Christmas day, then the date of the last day at work is

(Date newDay: 25 month: #December year: 1982) subtractDays: 16

An algorithm to determine the fine a borrower must pay might first
compare today’s date with the due date and then, if the due date has
past, determine the fine as a 10-cent multiple of the number of days
overdue.

Date today < dueDate
ifTrue: [fine — 0]
ifFalse: [fine — 0.10 = (Date today subtractiDate: dueDate)]

Class Time

An instance of class Time represents a particular second in a day. Days
start at midnight. Time is a subclass of Magnitude. Like class Date, Time
can respond to general inquiry messages that are specified in the class
protocol.

112
Linear Measures

Time class protocol

general inquiries
millisecondClockValue Answer the number of milliseconds since the
millisecond clock was last reset or rolled over
to 0.

millisecondsToRun: timedBlock Answer the number of milliseconds
timedBlock takes to return its value.

timeWords Answer the seconds {in Greenwich Mean
Time) since Jan. 1, 1901. The answer is a four-
element ByteArray (ByteArray is described in
Chapter 10).

totalSeconds Answer the total seconds from Jan. 1, 1901,
corrected for time zone and daylight savings
time.

dateAndTimeNow Answer an Array whose first element is the

current date (an instance of class Date that
represents today’s date) and whose second ele-
ment is the current time (an instance of class
Time that represents the time right now). The
result of sending this message to Time is iden-
tical to the result of sending it to Date.

The only non-obvious inquiry is millisecondsToRun: timedBlock. An ex-
ample is

Time millisecondsToRun: [Date today]

where the result is the number of milliseconds it took the system to
compute today’s date. Because there is some overhead in responding to
this message, and because the resolution of the clock affects the result,
the careful programmer should determine the machine-dependent
uncertainties associated with selecting reasonable arguments to this
message.

A new instance of Time can be created by sending Time the message
now; the corresponding method reads the current time from a system
clock. Alternatively, an instance of Time can be created by sending the
message fromSeconds: secondCount, where secondCount is the number
of seconds since midnight.

Time class protocol

instance creation

now Answer an instance of Time representing the
second the message is sent.

fromSeconds: secondCount Answer an instance of Time that is
secondCount number of seconds since mid-
night.

Accessing protocol for instances of class Time provide information as to
the number of hours (hours), minutes (minutes) and seconds (seconds)

113
Class Time

that the instance represents.
Arithmetic is also supported.

Time instance protocol

arithmetic
addTime: timeAmount Answer an instance of Time that is the argu-
ment, timeAmount, after the receiver.
subtractTime: timeAmount Answer an instance of Time that is the argu-

ment, timeAmount, before the receiver.

In the messages given above, the arguments (timeAmount) may be either
Dates or Times. For this to be possible, the system must be able to con-
vert a Date and a Time to a common unit of measurement; it converts
them to seconds. In the case of Time, the conversion is to the number of
seconds since midnight; in the case of Date, the conversion is to the
number of seconds between a time on January 1, 1901, and the same
time in the receiver’s day. To support these methods, instances of each
class respond to the conversion message asSeconds.

Time instance protocol

converting

asSeconds Answer the number of seconds since midnight
that the receiver represents.

Date instance protocol

converting

asSeconds Answer the number of seconds between a time
on January 1, 1901, and the same time in the
receiver’s day.

Arithmetic for Time can be used in ways analogous to that for Date.
Suppose the amount of time a person spends working on a particular
project is to be logged so that a customer can be charged an hourly fee.
Suppose the person started work at startTime and worked continuously
during the day until right now; the phone rings and the customer
wants to know today’s charges. At that moment, the bill at $5.00 an
hour is

{Time now subtractTime: startTime) hours * 5

ignoring any additional minutes or seconds. If a charge for any fraction
of an hour over 30 minutes is to be charged as a full hour then an addi-
tional $5.00 is added if

(Time now subtractTime: startTime) minutes > 30

114

Linear Measures

Who is more productive, the worker who finished the job with time
logged at timeA or the worker with time timeB? The answer is the first
worker if timeA < timeB. Comparing protocol is inherited from the
superclasses Magnitude and Object.

Suppose times are computed across days, for example, in computing
the time of a car in a four-day rally. If the first day of the rally started
at startTime on day startDate, then the time for a car arriving at the
finish line right now is computed as follows.

Let the start time be 6:00 a.m.

startTime « Time fromSeconds: (60+60+6).
on February 2, 1982
startDate — Date newDay: 2 month: #Feb year: 82.
The time that has passed up to the start of the current day is

todayStart —~ ({((Time fromSeconds: 0) addTime: Date today)
subtractTime: startDate)
subtractTime: startTime

That is, add all the seconds since Jan. 1, 1901, up to the start of today
and then subtract all the seconds since Jan. 1, 1901, up to tke start of
the start date. This is equivalent to adding the number of seconds in
the number of elapsed days, but then the programmer would have to do
all the conversions.

(Date today subtractDate: startDate) * 24+60+*60)
By adding the current time, we have the elapsed rally time for the car.

todayStart addTime: Time now

Class Character

Class Character is the third subclass of class Magnitude we shall exam-
ine. It is a kind of Magnitude because instances of class Character form
an ordered sequence about which we can make inquiries such as wheth-
er one character precedes (<) or succeeds (>) another character alpha-
betically. There are 256 instances of class Character in the system. Each
one is associated with a code in an extended ASCII character set.

Characters can be expressed literally by preceding the alphabetic
character by a dollar sign ($); thus, $A is the Character representing the
capital letter “A”. Protocol for creating instances of class Character con-
sists of

115
Class Character

Character class protocol

instance creation

value: aninteger Answer an instance of Character whose value
is the argument, aninteger. The value is asso-
ciated with an element of the ASCII character
set. For example, Character value: 65 is a capi-
tal “A”.

digitValue: aninteger Answer an instance of Character whose digit
value is the argument, aninteger. For example,
answer $9 if the argument is 9; answer $0 for
0; answer $A for 10, and $Z for 35. This meth-
od is useful in parsing numbers into strings.
Typically, only Characters up to $F are useful
(for base 16 numbers).

Class protocol, that is, the set of messages to the object Character, pro-
vides a vocabulary for accessing characters that are not easy to distin-
guish when printed: backspace, cr, esc, newPage (that is, form feed),
space, and tab.

Messages to instances of Character support accessing the ASCII value
and the digit value of the instance and testing the type of character.
The only state of a Character is its value which can never change. Ob-
jects that can not change their internal state are called immutable ob-
Jjects. This means that, once created, they are not destroyed and then
recreated when they are needed again. Rather, the 256 instances of
Character are created at the time the system is initialized and remain
in the system. Whenever a new Character whose code is between 0 and
255 is requested, a reference is provided to an already existing Charac-
ter. In this way the 256 Characters are unique. Besides Characters, the
Smalltalk-80 system includes Smalllntegers and Symbols as immutable
objects.

Character instance protocol

accessing
asciiValue Answer the number corresponding to the
ASCII encoding for the receiver.
digitValue Answer the number corresponding to the nu-
merical radix represented by the receiver (see
the instance creation message digitValue: for
the correspondences).
testing
isAlphaNumeric Answer true if the receiver is a letter or a dig-
it.
isDigit Answer whether the receiver is a digit.
isLetter Answer whether the receiver is a letter.
isLowercase Answer whether the receiver is a lowercase
letter.
isUppercase Answer whether the receiver is an uppercase

letter.

116

Linear Measures

isSeparator Answer whether the receiver is one of the sep-
arator characters in the expression syntax:
space, cr, tab, line feed, or form feed.

isVowel Answer whether the receiver is one of the
vowels: a, e, i, 0, Or u, in upper or lowercase.

Instance protocol also provides conversion of a character into upper- or
lowercase (asLowercase and asUppercase) and into a symbol (asSymbol).

A simple alphabetic comparison demonstrates the use of comparing
protocol for instances of Character. Suppose we wish to know if one
string of characters precedes another string in the telephone book.
Strings respond to the message at: to retrieve the element whose index
is the argument; elements of Strings are Characters. Thus "abc’ at: 2 is
$b. In the following we assume we are specifying a method in class
String whose message selector is min:. The method returns a String, ei-
ther the receiver of the message min: or its argument, whichever is col-
lated first alphabetically.

min: aString
1 to: self size do:
[:index |
(index > aString size) ifTrue: [taString].
(self at: index) > (aString at: index) ifTrue: [taString].
(self at: index) < (aString at: index) ifTrue: [tself]].
1self

The algorithm consists of two statements. The first is an iteration over
each element of the receiver. The iteration stops when either (1) the ar-
gument, aString, no longer has a character with which to compare the
next character in the receiver (i.e., index > aString size); (2) the next
character in self comes after the next character in aString (i.e., (self at:
index) > (aString at: index)); or (3) the next character in self comes be-
fore the next character in aString. As an example of (1), take the com-
parison of ‘abcd’ and ‘abc’ which terminates when index = 4; the
answer is that ‘abc’ is first alphabetically. For (2), suppose we compare
‘abde’ with ‘abce’. When index = 3, $d > $c is true; the answer is
‘abce’. For (3), compare ‘az’ with ‘by’ which terminates when index = 1;
the answer is ‘az’. In the case that the receiver has fewer characters
than the argument, even when the receiver is the initial substring of
the argument, the first statement will complete and the second state-
ment is evaluated; the result is the receiver. An example is the compar-
ison of ‘abc¢’ and ‘abcd’.

Note that arithmetic on characters is not supported. For example,
the following expression is incorrect.

a«< %A+ 1
The error occurs because a Character does not understand the message +.

3

Numerical Classes

Protocol of the Number Classes
Classes Fioat and Fraction

Integer Classes

Class Random: A Random Number Generator

Object

Magnitude Stream
Character PositionableStream
Date ReadStream
Time WriteStream

ReadWriteStream
ExternalStream
FileStream

LookupKey
Association

Link
Process
Collection

SequenceableCollection
LinkedList

Semaphore

ArrayedCollection
Array

Bitmap
DisplayBitmap

RunArray
String
Symbol
Text
ByteArray

Interval
OrderedCollection
SortedCollection
Bag

MappedColiection
Set
Dictionary
IldentityDictionary

File
FileDirectory
FilePage

UndefinedObject
Boolean

False

True

ProcessorScheduler
Delay
SharedQueue

Behavior
ClassDescription
Class
MetaClass

Point

Rectangle

BitBit
CharacterScanner

Pen

DisplayObject
DisplayMedium
Form
Cursor
DisplayScreen
InfiniteForm
OpaqueForm
Path
Arc
Circle
Curve
Line
LinearFit
Spline

118

Numerical Classes

One of the major goals of the Smalltalk programming system is to ap-
ply a single metaphor for information processing as uniformly as possi-
ble. The Smalltalk metaphor, as described in earlier chapters, is one of
objects that communicate by sending messages. This metaphor is very
gimilar to the one used in Simula for implementing simulation systems.
One of the greatest challenges to the application of the Smalltalk meta-
phor to all aspects of a programming system has been in the area of
arithmetic. Simula used the object/message metaphor only for the
higher level interactions in the simulations it implemented. For arith-
metic, as well as most algorithmic control structures, Simula relied on
the embedded Algol programming language with its built-in number
representations, operations, and syntax. The contention that even the
addition of two integers should be interpreted as message-sending met
with a certain amount of resistance in the early days of Smalltalk. Ex-
perience has demonstrated that the benefits of this extreme uniformity
in the programming language outweigh any inconvenience in its imple-
mentation. Over several versions of Smalltalk, implementation tech-
niques have been developed to reduce the message-sending overhead for
the most common arithmetic operations so that there is now almost no
cost for the benefits of uniformity.

Objects that represent numerical values are used in most systems
done in Smalltalk (as with most other programming languages). Num-
bers are naturally used to perform mathematical computations; they
are also used in algorithms as indices, counters, and encodings of states
or conditions (often called flags). Integral numbers are also used as col-
lections of binary digits (bits) that perform boolean masking operations
with each other.

Each different kind of numerical value is represented by a class. The
number classes have been implemented so that all numbers behave as
if they were of the most general type. The actual class of a particular
number object is determined by how much of the full generality is
needed to represent its value. Therefore the external protocol of all
number objects is inherited from the class Number. Number has three
subclasses: Float, Fraction, and Integer. Integer has three subclasses:
Smallinteger, LargePositivelnteger, and LargeNegativelnteger. Integral
numbers provide further protocol to support treating the number as a
sequence of bits. This protocol is specified in the class integer. Num-
bers in the system are instances of Float, Fraction, Smalllnteger,
LargePositivelnteger, or LargeNegativelnteger. Classes Number and Inte-
ger specify shared protocol, but they do not specify particular represen-
tations for numeric values. Therefore no instances of Number or Integer
are created.

Unlike other objects that may change their internal state, the only
state of a number is its value, which should never change. The object 3,
for example, should never change its state to 4, or disastrous effects
could occur.

120

Numerical Classes

Protocol of the
Number
Classes

Number defines the protocol of all numeric objects. Its messages support
standard arithmetic operations and comparisons. Most of these must be
implemented by subclasses of Number since they depend on the actual
representation of values.

The protocol of arithmetic messages consists of the usual binary op-

Number instance protocol

erators such as 4+, —, « and /, and several unary and keyword mes-
sages for computing the absolute value of a number, the negation of a
number, or the integer quotient or remainder of a number. The catego-
ry for arithmetic messages is as follows.

arithmetic
+ aNumber

— aNumber

+ aNumber

/ aNumber

// aNumber

\\ aNumber

abs

negated

quo: aNumber
rem: aNumber

reciprocal

Some examples follow.

Answer the sum of the receiver and the argu-
ment, aNumber.

Answer the difference between the receiver
and the argument, aNumber.

Answer the result of multiplying the receiver
by the argument, aNumber.

Answer the result of dividing the receiver by
the argument, aNumber. Note that since as
much precision as possible is retained, if the
division is not exact, the result will be an in-
stance of Fraction.

Answer the integer quotient defined by divi-
sion with truncation toward negative infinity.

Answer the integer remainder defined by divi-
sion with truncation toward negative infinity.
This is the modulo operation.

Answer a Number that is the absolute value
(positive magnitude) of the receiver.

Answer a Number that is the negation of the
receiver.

Answer the integer quotient defined by divi-
sion with truncation toward zero.

Answer the integer remainder defined by divi-
sion with truncation toward zero.

Answer 1 divided by the receiver. Report an
error to the user if the receiver is 0.

expression result
1+ 10 11

56 — 83 2.6
5-26 2.4
(—4) abs 4
6/2 3

121
Protocol of the Number Classes

7/2 (7/2), a Fraction with
numerator 7 and de-
nominator 2

7 reciprocal (1/7), a Fraction with
numerator 1 and de-
nominator 7

Arithmetic messages that return integral quotients and remainders
from a division operation follow two conventions. One convention trun-
cates the resulting number toward zero, the other toward negative in-
finity. These are the same for positive results since zero and negative
infinity are in the same direction. For negative results, the two conven-
tions round in different directions. The protocol for Number provides for
both conventions.
The following table shows the relationships among the selectors.

truncate toward

result negative infinity truncate toward zero
quotient // quo:
remainder N\ rem:

Examples include:

expression result

6 quo: 2

7 quo: 2

(7 quo: 2) + 1
7quo:2 + 1
7 rem: 2
7//2

7\\ 2

7 \\ 2 +1
-7 quo: 2
—7 rem: 2
-77//2
—7\\ 2

N = W =N b Www

I
- W

-
A

The result of quo:, rem:, or // is always to return a value whose sign is

positive if the receiver and argument have the same sign, and negative

if their signs are different. \\ always produces a positive result.
Additional mathematical functions are

Numerical Classes

Number instance protocol

mathematical functions
exp

In
log: aNumber
floorLog: radix

raisedTo: aNumber

raisedTolnteger: aninteger

sqrt

squared

Some examples are

Answer a floating point number that is the
exponential of the receiver.

Answer the natural log of the receiver.
Answer the log base aNumber of the receiver.

Answer the floor of the log base radix of the
receiver, where the floor is the integer nearest
the receiver toward negative infinity.

Answer the receiver raised to the power of the
argument, aNumber.

Answer the receiver raised to the power of the
argument, anlnteger, where the argument
must be a kind of Integer.

Answer a floating point number that is the
positive square root of the receiver.

Answer the receiver multiplied by itself.

expression result
2.718284 In 1.0

6 exp 403.429
2 exp 7.38906
7.38906 In 1.99998 (that is, 2)
2log: 2 1.0

2 floorLog: 2 1

6 log: 2 2.584986
6 floorLog: 2 2

6 raisedTo: 1.2 8.58579
6 raisedTolnteger: 2 36

64 sqrt 8.0

8 squared 64

Number instance protocol

Properties of numbers that deal with whether a number is even or odd
and negative or positive can be tested with the following messages.

testing
even

odd

negative
positive

strictlyPositive
sign

Answer whether the receiver is an even num-
ber.

Answer whether the receiver is an odd num-
ber.

Answer whether the receiver is less than 0.

Answer whether the receiver is greater than
or equal to 0.

Answer whether the receiver is greater than 0.

Answer 1 if the receiver is greater than 0, an-
swer -1 if less than 0, else answer 0.

123

Protocol of the Number Classes

Properties of numbers that deal with truncation and round off are sup-

plied by the following protocol.

Number instance protocol

truncation and round off
ceiling

floor
truncated
truncateTo: aNumber

rounded
roundTo: aNumber

Answer the integer nearest the receiver to-
ward positive infinity.

Answer the integer nearest the receiver to-
ward negative infinity.

Answer the integer nearest the receiver to-
ward zero.

Answer the next multiple of the argument,
aNumber, that is nearest the receiver toward
Zero.

Answer the integer nearest the receiver,

Answer the multiple of the argument,
aNumber, that is nearest the receiver.

Whenever a Number must be converted to an Integer, the message

truncated can be used. So we have

expression result
186.32 ceiling 17
16.32 floor 16
—16.32 floor —-17
—16.32 truncated —16
16.32 truncated 16
16.32 truncateTo: 5 15
16.32 truncateTo: 5.1 15.3
16.32 rounded 16
16.32 roundTo: 6 18
16.32 roundTo: 6.3 18.9

The protocol provided in class Number includes various messages for
converting a number into another kind of object or a different unit of
representation. Numbers can represent various unit measurements
such as degrees and radians. The following two messages perform con-

versions.

Number instance protocol

converting
degreesToRadians

radiansToDegrees

So that

30 degreesToRadians
90 degreesToRadians

The receiver is assumed to represent degrees.
Answer the conversion to radians.

The receiver is assumed to represent radians.
Answer the conversion to degrees.

0.523599

124

Numerical Classes

Trigonometric and logarithmic functions are included in the protocol
for mathematical functions. The receiver for the trigonometric func-
tions cos, sin, and tan is an angle measured in radians; the result of the
functions arcCos, arcSin and arcTan is the angle measured in radians.

In the following examples, 30 degrees is given as 0.523599 radians; 90
degrees is 1.5708 radians.

expression result
0.523599 sin 0.5
0.523599 cos 0.866025
0.523599 tan 0.57735
1.5708 sin 1.0
0.57735 arcTan 0.523551
1.0 arcSin 1.5708

When a kind of Integer is asked to add itself to another kind of Integer,
the result returned will naturally also be a kind of Integer. The same is
true for the sum of two Floats; the class of the result will be the same
as the class of the operands. If the two operands are Smallintegers and
the absolute value of their sum is too large to be represented as a
Smallinteger, the result will be a LargePositivelnteger or a
LargeNegativelnteger. The determination of the appropriate class of re-
sult when the operands are of different classes is somewhat more com-
plicated. Two design criteria are that there be as little loss of
information as possible and that commutative operations produce the
same result regardless of which operand is the receiver of the message
and which is the argument. So for example, 3.1 = 4 will return the
same result as 4 » 3.1.

The appropriate representation for the result of operations on num-
bers of different classes is determined by a numerical measure of gener-
ality assigned to each class. Classes said to have more generality will
have a larger number for this generality measure. Each class must be
able to convert its instances into equal-valued instances of more general
classes. The measure of generality is used to decide which of the oper-
ands should be converted. In this way, the arithmetic operations obey
the law of commutativity with no loss of numerical information. When
the differences between two classes of numbers are only a matter of
precision (where “precision” is a measure of the information provided
In a number), the more precise class is assigned a higher degree of gen-
erality. We have arbitrarily assigned approximate numbers a higher
generality in cases where precision was not the issue (so, Float is more
general than Fraction).

The generality hierarchy for the kinds of numbers in the
Smalltalk-80 system, with most general listed first, is

125
Protocol of the Number Classes

Float

Fraction

LargePositivelnteger, LargeNegativelnteger
Smallinteger

The messages in the Number protocol designed to support the necessary
coercions are categorized as “coercing” messages.

Number instance protocol

coercing
coerce: aNumber Answer a number representing the argument,
aNumber, that is the same kind of Number as
the receiver. This method must be defined by
all subclasses of Number.
generality Answer the number representing the ordering

of the receiver in the generality hierarchy.

retry: aSymbol coercing: aNumber

An arithmetic operation denoted by the sym-
bol, aSymbol, could not be performed with the
receiver and the argument, aNumber, as the
operands because of the difference in repre-
sentation. Coerce either the receiver or the ar-
gument, depending on which has the lower
generality, and then try the arithmetic opera-
tion again. If the symbol is the equals sign,
answer false if the argument is not a Number.
If the generalities are the same, then.
retry:coercing: should not have been sent, so
report an error to the user.

Thus if we try to evaluate 32.45 = 4, the multiplication of a Float by a
Smallinteger will result in evaluating the expression

32.45 retry: #+ coercing: 4

and the argument 4 will be coerced to 4.0 (Float has higher generality
than Smallinteger). Then the multiplication will be carried out success-
fully.

Defining a hierarchy of the numbers in terms of a numerical mea-
sure of generality works for the kinds of numbers provided in the basic
Smalltalk-80 system because the generality is transitive for these kinds
of numbers. However, it does not provide a technique that can be used
for all kinds of numbers.

Intervals (described in detail in Chapter 10) can be created by sending
one of two messages to a number. For each element of such an interval,
a block can be evaluated with the element as the block value. '

126

Numerical Classes

Number instance protocol

intervals

to: stop Answer an Interval from the receiver up to the
argument, stop, with each next element com-
puted by incrementing the previous one by 1.

to: stop by: step Answer an Interval from the receiver up to the
argument, stop, with each next element com-
puted by incrementing the previous one by
step.

to: stop do: aBlock Create an Interval from the receiver up to the
argument, stop, incrementing by 1. Evaluate
the argument, aBlock, for each element of the
Interval.

to: stop by: step do: aBlock Create an Interval from the receiver up to the
argument, stop, incrementing by step. Evalu-
ate the argument, aBlock, for each element of
the Interval.

Thus if we evaluate

a<0.
10 to: 100 by: 10 do: [:each | a « a + each]

the final value of a will be 550.

If a is the array #(‘one’ ‘two’ ‘three’ ‘four’ ‘five’), then each element
of the array can be accessed by indices that are in the interval from 1
to the size of the array. The following expression changes each element
so that only the initial characters are kept.

1 to: a size do: [:index | a at: index put: {(a at: index) at: 1)]

The resulting array is #{('o0’ "t ‘t’ 'f’ 'f’). Note that, like an ar-
ray, elements of a string can be accessed using the messages at: and
at:put:.. Messages to objects like strings and arrays are detailed in Chap-
ters 9 and 10.

Classes Float
and Fraction

The classes Float and Fraction provide two representations of non-inte-
gral values. Floats are representations of real numbers that may be ap-
proximate; they represent about 6 digits of accuracy with a range
between plus or minus 10 raised to the power plus or minus 32. Some
examples are

8.0
13.3

127
Integer Classes

0.3

2.5e6

1.27¢—30
—12.987654e12

Fractions are representations of rational numbers that will always be
exact. All arithmetic operations on a Fraction answer a reduced frac-
tional result.

Instances of Float can be created by literal notation in methods (for
example, 3.14159) or as the result of an arithmetic operation, one argu-
ment of which is another Float.

Instances of Fraction can be created as a result of an arithmetic oper-
ation if one of the operands is a Fraction and the other is not a Float. (If
it were a Float, the result would be a Float since the generality number
of Float is higher than that of Fraction). Instances of Fraction can also be
created when the mathematical division operation (/) is performed on
two Integers and the result is not integral. In addition, class protocol for
Fraction supports sending a message of the form numerator: numinteger
denominator: deninteger in order to create an instance.

Float responds to the message pi to return the corresponding con-
stant. It adds truncation and round off protocol to return the fraction
and integer parts of the receiver (fractionPart and integerPart), and it
adds converting protocol to convert the receiver to a Fraction (asFraction).
Similarly class Fraction adds converting protocol to convert the receiver
to a Float (asFloat).

Integer Classes

Class Integer adds protocol particular to integral numbers. It has three
subclasses. One is class Smalllnteger, which provides a space-economical
representation for a substantial range of integral values that occur fre-
quently in counting and indexing. The representation limits the range
to a little less than the magnitudes representable by a single ma-
chine word. Large integers, which are represented by instances of
LargePositivelnteger or LargeNegativelnteger depending on the sign of
the integer, do not have a limit to their magnitude. The cost in provid-
ing the generality of large integers is longer computation time. Thus if
the result of an arithmetic operation on a large integer is representable
as a small integer, it will in fact be a small integer.

In addition to the messages inherited from the class Number, class In-
teger adds converting protocol (asCharacter, asFloat and asFraction), fur-
ther printing (printOn: aStream base: b, radix: baselnteger), and enumer-
ating protocol. Thus 8 radix: 2 is 2r1000.

128

Numerical Classes

For enumerating, it is possible to evaluate a block repetitively an in-
tegral number of times using the message timesRepeat: aBlock. Take as
an example

a«~ 1.
10 timesRepeat: [a — a + a]

where the block has no arguments. The resulting value of a is 2'°, or
1024.

Class Integer provides factorization and divisibility protocol not speci-
fied for numbers in general.

Integer instance protocol

factorization and divisibility

factorial Answer the factorial of the receiver. The re-
ceiver must not be less than 0.

gcd: aninteger Answer the greatest common divisor of the re-
ceiver and the argument, aninteger.

lem: aninteger Answer the least common multiple of the re-

ceiver and the argument, aninteger.

Examples are

expression result
3 factorial 6

55 ged: 30 5

6 icm: 10 30

In addition to the numerical properties of integers, some algorithms
make use of the fact that integers can be interpreted as a sequence of
bits. Thus protocol for bit manipulation is specified in Integer.

integer instance protocol

bit manipulation .

allMask: aninteger Treat the argument aninteger as a bit mask.
Answer whether all of the bits that are 1 in
aninteger are 1 in the receiver.

anyMask: aninteger Treat the argument aninteger as a bit mask.
Answer whether any of the bits that are 1 in
aninteger are 1 in the receiver.

noMask: aninteger Treat the argument aninteger as a bit mask.
Answer whether none of the bits that are 1 in
aninteger are 1 in the receiver.

bitAnd: aninteger Answer an Integer whose bits are the logical
and of the receiver’s bits and those of the ar-
gument aninteger.

bitOr: aninteger Answer an Integer whose bits are the logical
or of the receiver’s bits and those of the argu-
ment aninteger.

129
Class Random: A Random Number Generator

bitXor: aninteger Answer an integer whose bits are the logical
xor of the receiver’s bits and those of the ar-

gument aninteger.

bitAt: index Answer the bit (0 or 1) at position index of the
receiver.

bitinvert Answer an Integer whose bits are the comple-
ment of the receiver.

highBit Answer the index of the high order bit of the

binary representation of the receiver.

bitShift: aninteger Answer an Integer whose value (in two’s-com-
plement representation) is the receiver’s value
(in two’s-complement representation) shifted
left by the number of bits indicated by the ar-
gument, aninteger. Negative arguments shift
right. Zeros are shifted in from the right in
left shifts. The sign bit is extended in right
shifts.

Some examples follow. Note that the default radix for printing an Inte-
ger is 10.

expression result
2r111000111000111 29127
2r101010101010101 21845
2r101000101000101 20805
2r000111000111000 3640

29127 allMask: 20805 true

29127 allMask: 21845 false

29127 anyMask: 21845 true

29127 noMask: 3640 true

29127 bitAnd: 3640 0

29127 bitOr: 3640 32767

32767 radix: 2 2r111111111111111
29127 bitOr: 21845 30167

30167 radix: 2 2r111010111010111
3640 bitShift: 1 7280

Class Random:
A Random
Number
Generator

Many applications require random choices of numbers. Random num-
bers are useful, for example, in statistical applications and data encryp-
tion algorithms. Class Random is a random number generator that is
included in the standard Smalltalk-80 system. It provides a simple way
of obtaining a sequence of random numbers that will be uniformly dis-
tributed over the interval between, but not including, 0.0 and 1.0.

An instance of class Random maintains a seed from which the next
random number is generated. The seed is initialized in a pseudo-ran-

130

Numerical Classes

dom way. An instance of Random is sent the message next whenever a
new random number is desired.
A random number generator can be created with the expression

rand « Random new

The expression

rand next

can then be evaluated whenever a new random number is needed. The
response is a number (Float) between 0.0 and 1.0. '

The implementation of next is based on Lehmer’s linear congruential
method as presented in Knuth, Volume 1 [D. E. Knuth, The Art of
Computer Programming: Fundamental Algorithms, Volume 1, Reading,
Mass: Addison Wesley, 1968].

next
| temp |
“Lehmer's linear congruential method with modulus m = 2 raisedTo: 186,
a = 27181 odd, and 5 = a \\ 8, ¢ = 13849 odd, and ¢ / m approxi-
mately 0.21132”
[seed « 13849 + (27181 = seed) bitAnd: 8r177777.

temp — seed / 65536.0.
temp = 0] whileTrue.
Ttemp

It is also possible to send an instance of class Random the messages
next: aninteger, to obtain an OrderedCollection of aninteger number of
random numbers, and nextMatchFor: aNumber, to determine whether
the next random number is equal to aNumber.

Suppose we want to select one of 10 integers, 1, ..., 10, using the ran-
dom number generator rand. The expression to be evaluated is

(rand next » 10) truncated + 1

That is,

expression result

rand next a random number be-
tween O and 1

rand next » 10 a random number be-
tween 0 and 10

(rand next » 10) truncated an integer > = 0 and
<=9

{rand next » 10) truncated + 1 an integer > = 1 and
<=10

Protocol for All
Collection Classes

Adding, Removing, and Testing Elements

Enumerating Elements
Selecting and Rejecting
Collecting

Detecting

Injecting

Instance Creation

Conversion Among Collection Classes

Object

Magnitude
Character
Date
Time

Number
Float
Fraction
Integer
LargeNegativelnteger
LargePositiveinteger
Smallinteger

LookupKey
Association
Link

Process

SequenceableCollection
LinkedList

Semaphore

ArrayedCollection
Array

Bitmap
DisplayBitmap

RunArray
String
Symbol
Text
ByteArray

Interval
OrderedCollection
SortedCollection
Bag
MappedCollection
Set

Dictionary
IdentityDictionary

Stream
PositionableStream
ReadStream
WriteStream
ReadWriteStream
ExternalStream
FileStream

Random

File
FileDirectory
FilePage

UndefinedObject
Boolean

False

True

ProcessorScheduler
Delay
SharedQueue

Behavior
ClassDescription
Class
MetaClass

Point

Rectangle

BitBit
CharacterScanner

Pen

DisplayObject
DisplayMedium
Form
Cursor
DisplayScreen
InfiniteForm
OpaqueForm
Path
~ Are
Circle
Curve
Line
LinearFit
Spline

133
Protocol for All Collection Classes

A collection represents a group of objects. These objects are called the
elements of the collection. For example, an Array is a collection. The
Array

#('word” 35 3G (12 3))

is a collection of five elements. The first one is a String, the second and
third are Smallintegers, the fourth element is a Character, and the fifth
is itself an Array. The first element, the String, is also a collection; in
this case, it is a collection of four Characters.

Collections provide basic data structures for programming in the
Smalltalk-80 system. Elements of some of the collections are unordered
and elements of other collections are ordered. Of the collections with
unordered elements, Bags allow duplicate elements and Sets do not al-
low duplication. There are also Dictionaries that associate pairs of ob-
jects. Of the collections with ordered elements, some have the order
specified externally when the elements are added (OrderedColliections,
Arrays, Strings) and others determine the order based on the elements
themselves (SortedCollections). For example, the common data struc-
tures of arrays and strings are provided by classes that associate inte-
ger indices and elements and that have external ordering corresponding
to the ordering of the indices.

This chapter introduces the protocol shared by all collections. Each
message described in this chapter is understood by any kind of collec-
tion, unless that collection specifically disallows it. Descriptions of each
kind of collection are provided in the next chapter.

Collections support four categories of messages for accessing ele-
ments:

« messages for adding new elements
* messages for removing elements
+ messages for testing occurrences of elements

+ messages for enumerating elements

A single element or several elements can be added or removed from a
collection. It is possible to test whether a collection is empty or whether
it includes a particular element. It is also possible to determine the
number of times a particular element occurs in the collection. Enumer-
ation allows one to access the elements without removing them from
the collection.

134

Protocol for All Collection Classes

Adding,
Removing,
and Testing
Elements

The basic protocol for collections is specified by the superclass of all col-
lection classes, named Collection. Class Collection is a subclass of class
Object. The protocol for adding, removing, and testing elements follows.

Collection instance protocol

adding
add: newObject Include the argument, newObject, as one of
the receiver’s elements. Answer newQObject.
addAll: aCollection Include all the elements of the argument,
aCollection, as the receiver’s elements. Answer
aCollection.
removing
remove: oldObject Remove the argument, oldObject, from the re-

ceiver’s elements. Answer oldObject unless no
element is equal to oldObject, in which case,
report that an error occurred.

remove: oldObject ifAbsent: anExceptionBlock
Remove the argument, oldObject, from the re-
ceiver’s elements. If several of the elements
are equal to oldObject, only one is removed. If
no element is equal to oldObject, answer the
result of evaluating anExceptionBlock. Other-
wise, answer oldObject.

removeAll: aCollection Remove each element of the argument,
aCollection, from the receiver. If successful for
each, answer aCollection. Otherwise report
that an error occurred.

testing
includes: anObject Answer whether the argument, anObject, is
equal to one of the receiver’s elements.
iIsEmpty Answer whether the receiver contains any el-
ements.
occurrencesOf: anObject Answer how many of the receiver’s elements

are equal to the argument, anObject.

In order to demonstrate the use of these messages, we introduce the col-
lection lotteryA

(272 572 852 156)
and the collection lotteryB
(572 621 274)

We will assume that these two collections, representing numbers drawn
in a lottery, are instances of Bag, a subclass of Collection. Collection it-
self is abstract in the sense that it describes protocol for all collections.
Collection does not provide sufficient representation for storing ele-
ments and so it is not possible to provide implementations in Collection

135
Adding, Removing, and Testing Elements

of all of its messages. Because of this incompleteness in the definition of
Collection, it is not useful to create instances of Collection. Bag is con-
crete in the sense that it provides a representation for storing elements
and implementations of the messages not implementable in its super-
class.

All collections respond to size in order to answer the number of their
elements. So we can determine that

lotteryA size
is 4 and
lotteryB size

is 3. Then, evaluating the messages in order, we have

expression result lotteryA if it changed
lotteryA isEmpty false
lotteryA includes: 572 true
lotteryA add: 596 596 Bag (272 572 852 156 596)
lotteryA addAll: lotteryB Bag (572 621 Bag (272 274 852 156 596 572
274) 572 621)
lotteryA occurrencesOf: 572 2
lotteryA remove: 572 572 Bag (272 274 852 156 596 572
621)
lotteryA size 7
lotteryA removeAll: lotteryB Bag (672 621 Bag (272 852 596 156)
274)
lotteryA size 4

Note that the add: and remove: messages answer the argument rather
than the collection itself so that computed arguments can be accessed.
The message remove: deletes only one occurrence of the argument, not
all occurrences.

Blocks were introduced in Chapter 2. The message remove: oldObject
ifAbsent: anExceptionBlock makes use of a block in order to specify the
behavior of the collection if an error should occur. The argument
anExceptionBlock is evaluated if the object referred to by oldObject is
not an element of the collection. This block can contain code to deal
with the error or simply to ignore it. For example, the expression

lotteryA remove: 121 ifAbsent: []

does nothing when it is determined that 121 is not an element of
lotteryA.

136

Protocol for All Collection Classes

The default behavior of the message remove: is to report the error by
sending the collection the message error: ' object is not in the collection”.
(Recall that the message error: is specified in the protocol for all objects
and is therefore understood by any collection.)

Enumerating
Elements

Included in the instance protocol of collections are several enumeration
messages that support the ability to list the elements of a collection and
to supply each element in the evaluation of a block. The basic enumera-
tion message is do: aBlock. It takes a one-argument block as its argu-
ment and evaluates the block once for each of the elements of the
collection. As an example, suppose letters is a collection of Characters
and we want to know how many of the Characters are a or A.

count — O.
letters do: [:each | each aslLowercase == $a
: ifTrue: [count — count + 1]]

That is, increment the counter, count, by 1 for each element that is an
upper- or lowercase a. The desired result is the final value of count. We
can use the equivalence test (==) rather than equality since objects
representing Characters are unique.

Six enhancements of the basic enumeration messages are specified in
the protocol for all collections. The description of these enumeration
messages indicates that “a new collection like the receiver” is created
for gathering the resulting information. This phrase means that the
new collection is an instance of the same class as that of the receiver.
For example, if the receiver of the message select: is a Set or an Array,
then the response is a new Set or Array, respectively. In the
Smalltalk-80 system, the only exception is in the implementation of
class Interval, which returns a new OrderedCollection, not a new Interval,
from these enumeration messages. The reason for this exception is that
the elements of an Interval are created when the Interval is first created;
it is not possible to store elements into an existing Interval.

Collection instance protocol

enumerating
do: aBlock Evaluate the argument, aBlock, for each of
the receiver’s elements.
select: aBlock Evaluate the argument, aBlock, for each of

the receiver’s elements. Collect into a new col-
lection like that of the receiver, only those el-
ements for which aBlock evaluates to true.
Answer the new collection.

Selecting and
Rejecting

137

Enumerating Elements

reject: aBlock Evaluate the argument, aBlock, for each of
the receiver’s elements. Collect into a new col-
lection like that of the receiver only those ele-
ments for which aBlock evaluates to false.
Answer the new collection.

collect: aBlock Evaluate the argument, aBlock, for each of
the receiver’s elements. Answer a new collec-
tion like that of the receiver containing the
values returned by the block on each evalua-
tion.

detect: aBlock Evaluate the argument, aBlock, for each of
the receiver’s elements. Answer the first ele-
ment for which aBlock evaluates to true. If
none evaluates to true, report an error.

detect: aBlock ifNone: exceptionBlock
Evaluate the argument, aBlock, for each of
the receiver’s elements. Answer the first ele-
ment for which aBlock evaluates to true. If
none evaluates to true, evaluate the argument,
exceptionBlock. exceptionBlock must be a
block requiring no arguments.

inject: thisValue into: binaryBlock Evaluate the argument, binaryBlock, once for
each element in the receiver. The block has
two arguments: the second is an element from
the receiver; the first is the value of the previ-
ous evaluation of the block, starting with the
argument, thisValue. Answer the final value of
the block.

Each enumeration message provides a concise way to express a se-
quence of messages for testing or gathering information about the ele-
ments of a collection.

We could have determined the number of occurrences of the character
a or A using the message select:.

(letters select: [:each | each asLowercase == $a)) size

That is, create a collection containing only those elements of letters that
are a or A, and then answer the size of the resulting collection.

We could also have determined the number of occurrences of the
character a or A using the message reject..

(letters reject: [:each | each asl.owercase ~~ $a}) size

That is, create a collection by eliminating those elements of letters that
are not a or A, and then answer the size of the resulting collection.

The choice between select: and reject: should be based on the best ex-
pression of the test. If the selection test is best expressed in terms of ac-
ceptance, then select: is easier to use; if the selection test is best
expressed in terms of rejection, then reject: is easier to use. In this ex-
ample, select: would be preferred.

138

Protocol for All Collection Classes

Collecting

Detecting

Injecting

As another example, assume employees is a collection of workers,
each of whom responds to the message salary with his or her gross
earnings. To make a collection of all employees whose salary is at least
$10,000, use

employees select: [:each | each salary > = 10000]
or
employees reject: [:each | each salary < 10000]

The resulting collections are the same. The choice of which message to
use, select: or reject;, depends on the way the programmer wishes to ex-
press the criterion “at least $10,000.”

Suppose we wish to create a new collection in which each element is
the salary of each worker in the collection employees.

employees collect: [:each | each salary]

The resulting collection is the same size as employees. Each of the ele-
ments of the new collection is the salary of the corresponding element
of employees.

Suppose we wish to find one worker in the collection of employees
whose salary is greater than $20,000. The expression

employees detect: [:each | each salary > 20000]

will answer with that worker, if one exists. If none exists, then employ-
ees will be sent the message error: ’ object is not in the collection’. Just
as in the specification of the removing messages, the programmer has
the option to specify the exception behavior for an unsuccessful detect:.
The next expression answers one worker whose salary exceeds $20,000,
or, if none exists, answers nil.

employees detect: [:each | each salary > 20000] ifNone: [nil]

In the message injectinto:, the first argument is the initial value that
takes part in determining the result; the second argument is a two-ar-
gument block. The first block argument names the variable that refers
to the result; the second block argument refers to each element of the
collection. An example using this message sums the salaries of the
workers in the collection employees.

employees
inject: O
into: [:subTotal :nextWorker | subTotal + nextWorker salary]

139

Instance Creation

where the initial value of 0 increases by the value of the salary for each
worker in the collection, employees. The result is the final value of sub-
Total.

By using the message inject:into:, the programmer can locally specify
temporary variable names and can avoid separate initialization of the
object into which the result is accumulated. For example, in an earlier
expression that counted the number of occurrences of the Characters a
and A in the collection letters, we used a counter, count.

count « O.
letters do: [:each | each asl.owercase == $a
ifTrue: [count — count + 1]]

An alternative approach is to use the message inject:iinto:. In the exam-
ple expression, the result is accumulated in count. count starts at 0. If

the next character (nextElement) is a or A, then add 1 to count; other-
wise add O.

letters inject: 0
into: [:count :nextElement |
count + (nextElement asLowerCase == $a
ifTrue: [1]
ifFalse: [0])]

Instance
Creation

In the beginning of this chapter, examples were given in which new col-
lections were expressed as literals. These collections were Arrays and
Strings. For example, an expression for creating an array is

#('first” ‘second’ ’'third’)

where each element is a String expressed literally.

The messages new and new: can be used to create instances of partic-
ular kinds of collections. In addition, the class protocol for all collec-
tions supports messages for creating instances with one, two, three, or
four elements. These messages provide a shorthand notation for creat-
ing kinds of collections that are not expressible as literals.

Collection class protocol

instance creation

with: anObject Answer an instance of the collection contain-
ing anObject.

140

Protocol for All Collection Classes

with: firstObject with: secondObject
Answer an instance of the collection contain-
ing firstObject and secondObiject as elements.

with: firstObject with: secondObject with: thirdObject
Answer an instance of the collection contain-
ing firstObject, secondObject, and thirdObject
as elements.

with: firstObject with: secondObject with: thirdObject with: fourthObject
Answer an instance of the collection, contain-
ing firstObject, secondObject, thirdObject, and
fourthObject as the elements.

For example, Set is a subclass of Collection. To create a new Set with
three elements that are the Characters s, e, and t, evaluate the expres-
sion

Set with: $s with: $e with: $t

Note that the rationale for providing these four instance creation mes-
sages, no more and no fewer, is that this number satisfies the uses to
which collections are put in the system itself.

Conversion
Among
Collection
Classes

A complete description and understanding of the permissible conver-
sions between kinds of collections depends on a presentation of all the
subclasses of Collection. Here we simply note that five messages are
specified in the converting protocol for all collections in order to con-
vert the receiver to a Bag, a Set, an OrderedCollection, and a
SortedCollection. These messages are specified in class Collection be-
cause it is possible to convert any collection into any of these kinds of
collections. The ordering of elements from any collection whose ele-
ments are unordered, when converted to a collection whose elements
are ordered, is arbitrary.

Collection instance protocol

converting
asBag Answer a Bag whose elements are those of the
receiver.
asSet Answer a Set whose elements are those of the
receiver (any duplications are therefore elimi-
nated).
asOrderedCollection Answer an OrderedCollection whose elements

are those of the receiver (ordering is possibly
arbitrary).

141

asSortedCollection

asSortedCollection: aBlock

Conversion Among Collection Classes

Answer a SortedCollection whose elements are
those of the receiver, sorted so that each ele-
ment is less than or equal to (< =) its succes-
SOrs.

Answer a SortedCollection whose elements are
those of the receiver, sorted according to the
argument aBlock.

Thus if lotteryA is a Bag containing elements

272 572 852 156 596 272 572
then
lotteryA asSet
is a Set containing elements
852 596 156 572 272
and

lotteryA asSortedCollection

is a SortedCollection containing elements ordered (the first element is

listed as the leftmost one)

156 272 272 572 572 596 852

Hierarchy of the
Collection Classes

Class Bag
Class Set

Classes Dictionary and IdentityDictionary
Class SequenceableCollection

Subclasses of SequenceableCollection
Class OrderedCollection

Class SortedCollection

Class LinkedList

Class Interval

Class ArrayedCollection
Class String
Class Symbol

Class MappedCollection

Summary of Conversions Among Collections

Object

Magnitude
Character
Date
Time

Number
Float
Fraction
Integer
LargeNegativelnteger
LargePositivelnteger
Smallinteger

Process

Collection

Semaphore

Bitmap
DisplayBitmap

Stream
PositionableStream
ReadStream
WriteStream
ReadWriteStream
ExternalStream
FileStream

Random

File
FileDirectory
FilePage

UndefinedObject
Boolean

False

True

ProcessorScheduler
Delay
SharedQueue

Behavior
ClassDescription
Class
MetaClass

Point

Rectangle

BitBit
CharacterScanner

Pen

DisplayObject
DisplayMedium
Form
Cursor
DisplayScreen
InfiniteForm
OpaqueForm
Path
Arc
Circle
Curve
Line
LinearFit
Spline

145
Hierarchy of the Collection Classes

Figure 10.1 provides a road map for distinguishing among the various
collection classes in the system. Following the choices in the figure is a
useful way to determine which kind of collection to use in an imple-
mentation.

One distinction among the classes is whether or not a collection has
a well-defined order associated with its elements. Another distinction is
that elements of some collections can be accessed through externally-
known names or keys. The type of key defines another way of
distinguishing among kinds of collections. Some are integer indices, im-
plicitly assigned according to the order of the elements; others are ex-
plicitly assigned objects that serve as lookup keys.

One unordered collection with external keys is a Dictionary. Its keys
are typically instances of String or LookupKey; the comparison for
matching keys is equality (=). Dictionary has a subclass,
IdentityDictionary, whose external keys are typically Symbols. Its com-
parison for matching keys is equivalence (= =). Elements of a Bag or a
Set are unordered and not accessible through externally-known keys.
Duplicates are allowed in a Bag, but not allowed in a Set.

All ordered collections are kinds of SequenceableCollections. Ele-
ments of all SequenceableCollections are accessible through keys that
are integer indices. Four subclasses of SequenceableCollection support
different ways in which to create the ordering of elements. An addition-
al distinction among the SequenceableCollection classes is whether the
elements can be any object or whether they are restricted to be in-
stances of a particular kind of object.

The order of elements is determined externally for
OrderedCollections, LinkedLists, and ArrayedCollections. For
OrderedCollection and LinkedList, the programmer’s sequence for adding
and removing elements defines the ordering of the elements. An ele-
ment of an OrderedCollection can be any object, while that of a
LinkedList must be a kind of Link. The different ArrayedCollections in
the system include Array, String, and ByteArray. The elements of an
Array or a RunArray can be any kind of object, elements of a String or of
a Text must be Characters, and those of a ByleArray must be
Smallintegers between 0 and 255.

The order of elements is determined internally for Intervals and
SortedCollections. For an Interval, the ordering is an arithmetic progres-
sion that is specified at the time the instance is created. For a
SortedCollection, the ordering is specified by a sorting criterion deter-
mined by evaluating a block known to the collection. Elements of an
Interval must be Numbers; elements of a SortedCollection can be any
kind of object.

In addition to the collection classes already mentioned,
MappedCollection is a Collection that represents an indirect access path
to a collection whose elements are accessible via external keys. The

H

T°0T a3

uoI193)|0DpalepIO

Isrpajun

Aesyuny Aeny

xay

bums

Aeliryalig

Aue

|

yun

/pr:wﬁﬁw Jo ssep

uo1198]|0DPBLI0S LTSS

Aur Jaqunn

SIUIWD[JO SB[

ou

_l |
Aue

N

uonosjjonpaleny

_ Sok

me » Aq 9[qISso00R u

[

19)oeiey)

SIUSUIBID JO SSB[O

19baju)jjews

_/

uopolq |

E _W_& | fsevonoraiinusp | [Kie
O—Q

A
A[reusjul A[[euIo)xa ww
_ _ p_ow\sc:a wmuwo:m:@
POUTUWLIDIOP PAIIPIO _
ou
N
uonosjjodajqeasuanbag
N\ 7
soh ou
AN yd

pﬁ@&@@&o Sjuswo 2Jde v

uoljoa|jo9

189) $$900%
7/

sak

4
((hoxte £q Bﬁwmwo@

146

147
Class Bag

mapping from one set of external keys to the collection is determined at
the time the MappedCoillection is created.

The remainder of this chapter explores each of the collection
subclasses, describing any additions to the message protocols and pro-
viding simple examples.

Class Bag

A Bag is the simplest kind of collection. It represents collections whose
elements are unordered and have no external keys. It is a subclass of
Collection. Since its instances do not have external keys, they cannot re-
spond to the messages at: and at:put.. The message size answers the to-
tal number of elements in the collection.

A Bag is nothing more than a group of elements that behaves accord-
ing to the protocol of all collections. The general description of collec-
tions does not restrict the number of occurrences of an element in an
individual collection. Class Bag emphasizes this generality by specifying
an additional message for adding elements.

Bag instance protocol

adding

add: newObject withOccurrences: aninteger
Include the argument, newQObject, as an ele-
ment of the receiver, aninteger number of
times. Answer the argument, newObject.

Consider the example class Product which represents a grocery item
and its price. A new Product may be created using the message of: name
at: price, and the price of an instance is accessible by sending it the
message price. Filling one’s grocery bag may be expressed by

sack — Bag new.

sack add: {Product of: #steak at: 5.80).

sack add: {Product of: #potatoes at: 0.50) withOccurrences: 6.
sack add: {Product of: #carrots at: 0.10) withOccurrences: 4.
sack add: (Product of: #milk at: 2.20)

Then the grocery bill is determined by the expression

amount « O.
sack do: [:eachProduct | amount — amount + eachProduct price]

or

148

Hierarchy of the Collection Classes

sack inject: 0
into: [:amount :eachProduct | amount + eachProduct price]

to be $11.40. Note that the messages add:, do:, and inject:into: to a Bag
are inherited from its superclass, Collection.

A Bag is unordered, so that, although enumeration messages are sup-
ported, the programmer cannot depend on the order in which elements
are enumerated.

Class Set

Class Set represents collections whose elements are unordered and have
no external keys. Its instances cannot respond to the messages at: and
at:put:. A Set is like a Bag except that its elements cannot be duplicat-
ed. The adding messages add the element only if it is not already in the
collection. Class Set is a subclass of class Collection.

Classes
Dictionary and
IdentityDictionary

Class Dictionary represents a set of associations between keys and val-
ues. The elements of a Dictionary are instances of class Association, a
simple data structure for storing and retrieving the members of the
key-value pair.

An alternative way of thinking about a Dictionary is that it is a col-
lection whose elements are unordered but have explicitly assigned keys
or names. From this perspective, the elements of a Dictionary are arbi-
trary objects (values) with external keys. These alternative ways of
thinking about a Dictionary are reflected in the message protocol of the
class. Messages inherited from class Collection—includes:, do:, and other
enumeration messages—are applied to the values of the Dictionary.
That is, these messages refer to the values of each association in the
Dictionary, rather than to the keys or to the associations themselves.

Messages inherited from class Object—at: and at:put:—are applied to
the keys of the Dictionary. The at: and at:put: paradigm is extended for
the associations and the values by adding messages associationAt: and
keyAtValue:. In order to provide additional control when looking up ele-
ments in a Dictionary, the message atiifAbsent: is provided; using it, the
programmer can specify the action to take if the element whose key is
the first argument is not found. The inherited message at: reports an
error if the key is not found.

149

Dictionary instance protocol

Classes Dictionary and IdentityDictionary

accessing
at: key ifAbsent: aBlock

associationAt: key

Answer the value named by the argument,
key. If key is not found, answer the result of
evaluating aBlock.

Answer the association named by the argu-
ment, key. If key is not found, report an error.

associationAt: key ifAbsent: aBlock

keyAtValue: value

Answer the association named by the argu-
ment, key. If key is not found, answer the re-
sult of evaluating aBlock.

Answer the name for the argument, value. If
there is no such value, answer nil. Since val-
ues are not necessarily unique, answer the
name for the first one encountered in the
search.

keyAtValue: value ifAbsent: exceptionBlock

keys
values

Answer the key for the argument, value. If
there is no such value, answer the result of
evaluating exceptionBlock.

Answer a Set containing the receiver’s keys.

Answer a Bag containing the receiver’s values
(includes any duplications).

As an example of the use of a Dictionary, suppose opposites is a Diction-
ary of word Symbols and their opposites.

opposites — Dictionary new.
opposites at: #hot put: #cold.

opposites at: #push put: #pull.

opposites at: #stop put: #go.
opposites at: #come put: #go

Alternatively, an element can be added using the message add: by cre-
ating an Association as the argument.

opposites add: (Association key: #front value: #back).
opposites add: (Association key: #top value: #bottom)

The Dictionary, opposites, now consists of

key value
hot cold
push pull
stop go
come go
front back
top bottom

150
Hierarchy of the Collection Classes

We can use the testing protocol inherited from class Collection to test
the values in the Dictionary. Notice that includes: tests the inclusion of a
value, not a key.

expression result
opposites size 6
opposites includes: #cold true
opposites includes: #hot faise
opposites occurrencesOf: #go 2

opposites at: #stop put: #start start

The fourth example indicates that, although a key can appear only once
in a Dictionary, a value can be associated with any number of keys. The
last example re-associates the key f#stop with a new value, #start. Ad-
ditional messages are provided in class Dictionary for testing associa-
tions and keys.

Dictionary instance protocol

dictionary testing

includesAssociation: anAssociation
Answer whether the receiver has an element
(association between a key and a value) that is
equal to the argument, anAssociation.

includesKey: key Answer whether the receiver has a key equal
to the argument, key.

Then we can try

expression result

opposites true
includesAssociation:
(Association
key: #come
value: #go)

opposites includesKey: #hot true

151
Classes Dictionary and IdentityDictionary

Similarly, the removing protocol specified in class Collection is extended
to provide access by reference to associations and keys, as well as to
values. However, the message remove: itself is not appropriate for a Dic-
tionary; in removing an element, mention of the key is required.

Dictionary instance protocol

dictionary removing

removeAssociation: anAssociation
Remove the key and wvalue association,
anAssociation, from the receiver. Answer
anAssociation.

removeKey: key Remove key (and its associated value) from
the receiver. If key is not in the receiver, re-
port an error. Otherwise, answer the value as-
sociated with key.

removeKey: key ifAbsent: aBlock Remove key (and its associated value) from
the receiver. If key is not in the receiver, an-
swer the result of evaluating aBlock. Other-
wise, answer the value named by key.

For example

expression result
opposites The association whose
removeAssociation: key is fttop and val-
(Association ue is #bottom. oppo-
key: #top sites has one less
value: #bottom) element.
opposites removeKey: #hot The association whose

key is #hot and

whose value is F#cold.
This association is
removed from opposites.

opposites hot
removeKey: #cold
ifAbsent: [opposites
at: #cold
put: #hot]

As a result of the last example, the association of #cold with #hot is
now an element of opposites.

The message do: evaluates its argument, a block, for each of the Dic-
tionary’s values. The collection enumerating protocol, inherited from
class Collection, is again extended in order to provide messages for enu-
merating over the associations and the keys. Messages supporting uses
of reject: and inject:into: are not provided.

1562

Hierarchy of the Collection Classes

Dictionary instance protocol

dictionary enumerating

associationsDo: aBlock Evaluate aBlock for each of the receiver’s
key/value associations.

keysDo: aBlock Evaluate aBlock for each of the receiver’s
keys.

We thus have three possible ways of enumerating over a Dictionary.
Suppose newWords is a Set of vocabulary words that a child has not yet
learned. Any word in opposites is now part of the child’s repertoire and
can be removed from newWords. Evaluating the following two expres-
sions removes these words (the first removes the values, the second the

keys).

opposites do: [:word | newWords remove: word ifAbsent: []].
opposites keysDo: [:word | newWords remove: word ifAbsent: []]

Note that if a word from opposites is not in newWords, then nothing
(no error report) happens. Alternatively, one expression, enumerating
the Associations, can be used.

opposites associationsDo:
[:each |
newWords remove: each key ifAbsent: [].
newWords remove: each value ifAbsent: []]

The accessing messages keys and values can be used to obtain collec-
tions of the words in the opposites dictionary. Assuming the evaluation
of all previous example expressions, then

opposites keys

returns the Set whose elements are
push come front stop cold

and
opposites values

returns the Bag whose elements are

pull go back start hot

153
Class SequenceableCollection

Class
Sequenceable-
Collection

Class SequenceableCollection represents collections whose elements are
ordered and are externally named by integer indices.
SequenceableCollection is a subclass of Coilection and provides the pro-
tocol for accessing, copying, and enumerating elements of a collection
when it is known that there is an ordering associated with the ele-
ments. Since the elements are ordered, there is a well-defined first and
last element of the collection. It is possible to ask the index of a particu-
lar element (indexOf:) and the index of the beginning of a sequence of
elements within the collection (indexOfSubCollection:startingAt:). All col-
lections inherit messages from class Object for accessing indexed vari-
ables. As described in Chapter 6, these are at:, at:put;, and size. In
addition, SequenceableCollections support putting an object at all posi-
tions named by the elements of a Collection (atAll:put:), and putting an
object at all positions in the sequence (atAllPut:). Sequences of elements
within the collection can be replaced by the elements of another collec-
tion (replaceFrom:to:with: and replaceFrom:to:with:startingAt:).

SequenceableCollection instance protocol
accessing

atAll: aCollection put: anObject Associate each element of the argument,
aCollection (an Integer or other external key),
with the second argument, anObject.

atAllPut: anObject Put the argument, anObject, as every one of
the receiver’s elements.

first Answer the first element of the receiver. Re-
port an error if the receiver contains no ele-
ments.

last Answer the last element of the receiver. Re-
port an error if the receiver contains no ele-
ments.

indexOf: anElement Answer the first index of the argument,
anElement, within the receiver. If the receiver
does not contain anElement, answer 0.

indexOf: anElement ifAbsent: exceptionBlock
Answer the first index of the argument,
anElement, within the receiver. If the receiver
does not contain anElement, answer the result
of evaluating the argument, exceptionBlock.

indexOfSubCollection: aSubCollection startingAt: anindex
If the elements of the argument,
aSubCollection, appear, in order, in the receiv-
er, then answer the index of the first element
of the first such occurrence. If no such match
is found, answer O.

indexOfSubCollection: aSubCollection startingAt: anindex

ifAbsent: exceptionBlock Answer the index of the receiver’s first ele-
ment, such that that element equals the first

154

Hierarchy of the Collection Classes

element of the argument, aSubCollection, and
the next elements equal the rest of the ele-
ments of aSubCollection. Begin the search of
the receiver at the element whose index is the
argument, anindex. If no such match is found,
answer the result of evaluating the argument,
exceptionBlock.

replaceFrom: start to: stop with: replacementCollection

Associate each index between start and stop
with the elements of the argument,
replacementColiection. Answer the receiver.
The number of elements in
replacementCollection must equal stop-start+1.

replaceFrom: start to: stop with: replacementColiection startingAt: repStart

Associate each index between start and stop
with the elements of the argument,
replacementCollection, starting at the element
of replacementCollection whose index is
repStart. Answer the receiver. No range
checks are performed, except if the receiver is
the same as replacementCollection but repStart
is not 1, then an error reporting that indices
are out of range will occur.

Examples of using these accessing messages, using instances of String,

are
expression result
‘aaaaaaaaaa’ size 10
’ aaaaaaaaaa’ atAll: (2 to: 10 by: 2) put: $b “ababababab ’
' aaaaaaaaaa’ atAllPut: $b " bbbbbbbbbb -
* This string * first $T
"This string " last $g
* ABCDEFGHIJKLMNOP ' indexOf: $F
" ABCDEFGHIJKLMNOP * indexOf: $M ifAbsent: [0] 13
" ABCDEFGHIJKLMNOP * indexOf: $Z ifAbsent: [0] 0
" The cow jumped ’” indexOfSubCollection: ' cow’ 5

" The cow jumped”’
" The cow jumped”’

startingAt: 1

replaceFrom: 5 to: 7 with: "dog’
replaceFrom: 5 to: 7

" The dog jumped”’
" The spo jumped’

with: “the spoon ran’ startingAt: 5

Any of these examples could be similarly carried out with an instance
of any subclass of SequenceableCollection, for example, with an Array.
For the Array, #(The brown jug), replacement of brown by black is car-
ried out by evaluating the expression

1#(The brown jug) replaceFrom: 2 to: 2 with: #(black)

155
Class SequenceableCollection

Notice that the last argument must be an Array as well. And notice that
the replacement messages do not change the size of the original collec-
tion (the receiver), although they do alter the collection. It may be
preferrable to preserve the original by creating a copy. The copying pro-
tocol of SeguenceableCollections supports copying a sequence of ele-
ments in the collection, copying the entire collection with part of it
replaced, copying the entire collection with an element deleted, or copy-
ing the entire collection with one or more elements concatenated.

SequenceableCollection instance protocol

copying
, aSequenceableCollection This is the concatenation operation. Answer a
copy of the receiver with each element of the
argument, aSequenceableCollection, added, in
order.
copyFrom: start to: stop Answer a copy of a subset of the receiver,

starting from element at index start until ele-
ment at index stop.

copyReplaceAll: oldSubCollection with: newSubCollection
Answer a copy of the receiver in which all oc-
currences of oldSubColiection have been re-
placed by newSubCollection.

copyReplaceFrom: start to: stop with: replacementCollection

Answer a copy of the receiver satisfying the
following conditions: If stop is less than start,
then this is an insertion; stop should be exact-
ly start-1. start = 1 means insert before the
first character. start = size + 1 means ap-
pend after last character. Otherwise, this is a
replacement; start and stop have to be within
the receiver’s bounds.

copyWith: newElement Answer a copy of the receiver that is 1 bigger
than the receiver and has newElement as the
last element.

copyWithout: oldElement Answer a copy of the receiver in which all oc-
currences of oldElement have been left out.

Using the replace and copy messages, a simple text editor can be de-
vised. The Smalltalk-80 system includes class String as well as class
Text, the latter providing support for associating the characters in the
String with font or emphasis changes in order to mix character fonts,
bold, italic, and underline. The message protocol for Text is that of a
SequenceableCollection with additional protocol for setting the empha-
sis codes. For illustration purposes, we use an instance of class String,
but remind the reader of the analogous application of editing messages
for an instance of class Text. Assume that line is initially an empty
string

line «~ String new: 0

156

Hierarchy of the Collection Classes

Then

expression result

line < line copyReplaceFrom: 1 “ this is the first line tril’
to: 0
with: ’ this is the first line tril’

line < line copyReplaceAll: " tril’ "this is the first line trial ’
with: * trial ’

line — line copyReplaceFrom: " this is the first line

(line size+ 1) trialand so on”’

to: (line size)
with: “and so on”’

line indexOfSubCollection: " trial ’ 24

startingAt: 1

line — line copyReplaceFrom: 29 " this is the first line trial
to: 28 and so on’
with: * ~

The last two messages of the copying protocol given above are useful in
obtaining copies of an Array with or without an element. For example

expression result

#(one two three) (one two three four)
copyWith: #four

#(one two three) (one three)

copyWithout: #two

Because the elements of a SequenceableCollection are ordered, enu-
meration is in order, starting with the first element and taking each
successive element until the last. Reverse enumeration is also possible,
using the message reverseDo: aBlock. Enumeration of two
SequenceableCollections can be done together so that pairs of ele-
ments, one from each collection, can be used in evaluating a block.

SequenceableCollection instance protocol

enumerating
findFirst: aBlock Evaluate aBlock with each of the receiver’s el-
ements as the argument. Answer the index of
the first element for which the argument,
aBlock evaluates to true.

157
Subclasses of SequenceableCollection

findLast: aBlock Evaluate aBlock with each of the receiver’s el-
ements as the argument. Answer the index of
the last element for which the argument,
aBlock evaluates to true.

reverseDo: aBlock Evaluate aBlock with each of the receiver’s el-
ements as the argument, starting with the
last element and taking each in sequence up
to the first. For SequenceableCollections, this
is the reverse of the enumeration for do.
aBlock is a one-argument block.

with: aSequenceableCollection do: aBlock
Evaluate aBlock with each of the receiver’s el-
ements along with the corresponding element
from aSequenceableCollection.
aSequenceableCollection must be the same
size as the receiver, and aBlock must be a two-
argument block.

The following expressions create the Dictionary, opposites, which was in-
troduced in an earlier example.

opposites « Dictionary new.
#(come cold front hot push stop)
with: #(go hot back cold pull start)
do: [:key :value | opposites at: key put: value]

The Dictionary now has six associations as its elements.

Any SequenceableCollection can be converted to an Array or a
MappedCollection. The messages are asArray and mappedBy:
aSequenceableColiection.

Subclasses of
Sequenceable-
Collection

Class
OrderedCollection

Subclasses of SequenceableCollection are OrderedCollection, LinkedList,
Interval, and MappedCollection. ArrayedCollection is a subclass represent-
ing a collection of elements with a fixed range of integers as external
keys. Subclasses of ArrayedCollection are, for example, Array and String.

OrderedCollections are ordered by the sequence in which objects are
added and removed from them. The elements are accessible by external
keys that are indices. The accessing, adding, and removing protocols are
augmented to refer to the first and last elements, and to elements pre-
ceding or succeeding other elements.

OrderedCollections can act as stacks or queues. A stack is a sequen-
tial list for which all additions and deletions are made at one end of the

158
Hierarchy of the Collection Classes

list (called either the “rear” or the “front”) of the list. It is often called
a last-in first-out queue.

OrderedCollection

usual vocabulary message

push newObject addLast: newObject
pop removelast

top last

empty isEmpty

A queue is a sequential list for which all additions are made at one end
of the list (the “rear”), but all deletions are made from the other end
(the “front”). It is often called a firsé-in first-out queue.

OrderedCollection

usual vocabulary message

add newObiject addLast: newObiject
delete removeFirst

front first

empty isEmpty

The message add: to an OrderedCollection means “add the element as
the last member of the collection” and remove: means “remove the
argument as an element.” The message protocol for OrderedCollections,
in addition to that inherited from classes Collection and
SegquenceableColiection, follows.

OrderedCollection instance protocol

accessing
after: oldObject Answer the element after oldObject in the re-
ceiver. If the receiver does not contain
oldObject or if the receiver contains no ele-
ments after oldObject, report an error.

before: oldObject Answer the element before oldObject in the
receiver. If the receiver does not contain
oldObject or if the receiver contains no ele-
ments before oldObject, report an error.

adding
add: newQObiject after: oldObject Add the argument, newObject, as an element
of the receiver. Put it in the sequence just
succeeding oldObject. Answer newObject. If
oldObject is not found, then report an error.

Class
SortedCollection

159
Subclasses of SequenceableCollection

add: newObject before: oldObject Add the argument, newObject, as an element
of the receiver. Put it in the sequence just
preceding oldObject. Answer newObject. If
oldObject is not found, then report an error.

addAllFirst: anOrderedCollection Add each element of the argument,
anOrderedCollection, at the beginning of the
receiver. Answer anOrderedCollection.

addAliLast: anOrderedCollection Add each element of the argument,

anOrderedCollection, to the end of the receiv-
er. Answer anOrderedCollection.

addFirst: newObject Add the argument, newObject, to the begin-
ning of the receiver. Answer newObject.

addlLast: newObiject Add the argument, newObject, to the end of
the receiver. Answer newObject.

removing

removeFirst Remove the first element of the receiver and
answer it. If the receiver is empty, report an
error.

removelast Remove the last element of the receiver and

answer it. If the receiver is empty, report an
error.

Class SortedCollection is a subclass of OrderedCollection. The elements
in a SortedCollection are ordered by a function of two elements. The
function is represented by a two-argument block called the sort block.
It is possible to add an element only with the message add:; messages
such as addLast: that allow the programmer to specify the order of in-
serting are disallowed for SortedCollections.

An instance of class SortedCollection can be created by sending
SortedCollection the message sortBlock:. The argument to this message
is a block with two-arguments, for example,

SortedCollection sortBlock: [:a:b [a <= b]

This particular block is the default sorting function when an instance is
created simply by sending SortedCollection the message new. Thus ex-
amples of the four ways to create a SortedCollection are

SortedCollection new

SortedCollection sortBlock: [:a:b [a > b]
anyCollection asSortedCollection

anyCollection asSortedCollection: [:a:b | a > b]

It is possible to determine the block and to reset the block using two ad-
ditional accessing messages to instances of SortedCollection. When the
block is changed, the elements of the collection are, of course, re-sorted.
Notice that the same message is sent to the class itself (sortBlock:) to

160
Hierarchy of the Collection Classes

create an instance with a particular sorting criterion, and to an in-
stance to change its sorting criterion.

SortedCollection class protocol

instance creation

sortBlock: aBlock Answer an instance of SortedCollection such
that its elements will be sorted according to
the criterion specified in the argument, aBlock.

SortedColiection instance protocol

accessing
sortBlock Answer the block that is the criterion for sort-
ing elements of the receiver.
sortBlock: aBlock Make the argument, aBlock, be the criterion

tor ordering elements of the receiver.

Suppose we wish to maintain an alphabetical list of the names of chil-
dren in a classroom.

children < SortedCollection new

The initial sorting criterion is the default block [:a :b | a <= b]. The
elements of the collection can be Strings or Symbols because, as we
shall show presently, these kinds of objects respond to the comparison
messages <, >, <=, and > =.

expression result

children add: #Joe Joe

children add: #Bill Bill

children add: #Alice Alice

children SortedCollection
(Alice Bill Joe)

children add: #Sam Sam

children SortedColiection

sortBlock: [:a:b | a < b] (Sam Joe Bill Alice)

children add: #Henrietta Henrietta

children SortedCollection
(Sam Joe Henrietta
Bill Alice)

The sixth message in the example reversed the order in which elements
are stored in the collection, children.

Class LinkedList

161
Subclasses of SequenceableCollection

LinkedList is another subclass of SequenceableCollection whose elements
are explicitly ordered by the sequence in which objects are added and
removed from them. Like OrderedCollection, the elements of a
LinkedList can be referred to by external keys that are indices. Unlike
OrderedCollection, where the elements may be any object, the elements
of a LinkedList are homogeneous; each must be an instance of class Link
or of a subclass of Link.

A Link is a record of a reference to another Link. Its message protocol
consists of three messages. The same message (nextLink:) is used to cre-
ate an instance of Link with a particular reference, and to change the
reference of an instance.

LinkedList class protocol

instance creation

nextLink: alink Create an instance of Link that references the
argument, alink. ’

LinkedList instance protocol

accessing
nextLink Answer the receiver’s reference.
nextLink: alink Set the receiver’s reference to be the argu-

ment, alink.

Since class Link does not provide a way to record a reference to the ac-
tual element of the collection, it is treated as an abstract class. That is,
instances of it are not created. Rather, subclasses are defined that pro-
vide the mechanisms for storing one or more elements, and instances of
the subclasses are created.

Since LinkedList is a subclass of SequenceableCollection, its instances
can respond to the accessing, adding, removing, and enumerating mes-
sages defined for all collections. Additional protocol for LinkedList con-
sists of

LinkedList instance protocol

adding
addFirst: aLlink Add alink to the beginning of the receiver’s
list. Answer alink.
addLast; aLink Add alink to the end of the receiver’s list. An-
swer alink.
removing
removeFirst Remove the receiver’s first element and answer
it. If the receiver is empty, report an error.
removelast - Remove the receiver’s last element and answer

it. If the receiver is empty, report an error.

162

Hierarchy of the Collection Classes

An example of a subclass of Link in the Smalltalk-80 system is class
Process. Class Semaphore is a subclass of LinkedList. These two classes
are discussed in Chapter 15, which is about multiple independent pro-

cesses in the system.

The following is an example of the use of LinkedList. Link does not
provide instance information other than a reference to another Link. So,
as an example, assume that there is a subclass of Link named Entry. En-
try adds the ability to store one object. The instance creation message
for an Entry is for: anObject, and its accessing message is element.

class name Entry
superclass Link
instance variable names element

class methods
instance creation

for: anObject
Tself new setElement: anObject

instance methods

accessing
element
Telement
printing
printOn: aStream
aStream nextPutAll: “ Entry for: *, element printString
private
setElement: anObject
element — anObject

The classes LinkedList and Entry can then be used as follows.

expression result

list — LinkedList new LinkedList ()
list add: (Entry for: 2) Entry for: 2
list add: (Entry for: 4) Entry for: 4
st €000 ey
ist addFirst: (Entry for: 1) Entry for: 1

list LinkedList (Entry for: 1

Entry for: 2 Entry
for: 4 Entry for: 5)

list isEmpty false
list size 4

Class Interval

163
Subclasses of SequenceableCollection

list inject: O 12
into: [:value :each |
{each element)

+ vaiue]
list last Entry for: 5
list first Entry for: 1
list remove: (Entry for: 4) Entry for: 4
list removeFirst Entry for: 1
list removelast Entry for: 5
list first = = list last true

Another kind of SequenceableCollection is a collection of numbers rep-
resenting a mathematical progression. For example, the collection
might consist of all the integers in the interval from 1 to 100; or it
might consist of all even integers in the interval from 1 to 100. Or the
collection might consist of a series of numbers where each additional
number in the series is computed from the previous one by multiplying
it by 2. The series might start with 1 and end with the last number
that is less than or equal to 100. This would be the sequence 1, 2, 4, 8§,
16, 32, 64.

A mathematical progression is characterized by a first number, a
limit (maximum or minimum) for the last computed number, and a
method for computing each succeeding number. The limit could be posi-
tive or negative infinity. An arithmetic progression is one in which the
computation method is simply the addition of an increment. For exam-
ple, it could be a series of numbers where each additional number in
the series is computed from the previous one by adding a negative 20.
The series might start with 100 and end with the last number that is
greater than or equal to 1. This would be the sequence 100, 80, 60,
40, 20.

In the Smalltalk-80 system, the class of collections called Intervals
consists of finite arithmetic progressions. In addition to those messages
inherited from its superclasses SequenceableColiection and Collection,
class Interval supports messages for initialization and for accessing those
values that characterize the instance. New elements cannot be added or
removed from an Interval.

The class protocol of Interval consists of the following messages for
creating instances.

Interval class protocol

instance creation

from: startinteger to: stopinteger Answer an instance of class Interval, starting
with the number startinteger, ending with the
number stopinteger, and using the increment
1 to compute each successive element.

164
Hierarchy of the Collection Classes

™ from: startinteger to: stopinteger by: stepinteger
Answer an instance of Interval, starting with
the number startinteger, ending with the num-
ber stopinteger, and using the increment
steplnteger to compute each successive ele-
ment.

All messages appropriate to SequenceableCollections can be sent to an
Interval. In addition, the instance protocol of Interval provides a message
for accessing the increment of the arithmetic progression (increment).

Class Number supports two messages that provide a shorthand for
expressing new Intervals—to: stop and to: stop by: step. Thus to create
an Interval of all integers from 1 to 10, evaluate either

Interval from: 1 to: 10
or
1to: 10

To create an Interval starting with 100 and ending with 1, adding a neg-
ative 20 each time, evaluate either

Interval from: 100 to: 1 by: —-20
or
100 to: 1 by: —20
This is the sequence 100, 80, 60, 40, 20. The Interval need not consist of

Integers—to create an Interval between 10 and 40, incrementing by 0.2,
evaluate either

Interval from: 10 to: 40 by: 0.2
or
10 to: 40 by: 0.2

This is the sequence 10, 10.2, 10.4, 10.6, 10.8, 11.0, ... and so on.

Note that we could provide the more general case of a progression by
replacing the numeric value of step by a block. When a new element is
to be computed, it would be done by sending the current value as the
argument of the message value: to the block. The computations of size
and do: would have to take this method of computation into account.

165
Class ArrayedCollection

The message do: to an Interval provides the function of the usual for-
loop in a programming language. The Algol statement

for i := 10 step 6 until 100 do
begin
<statements >
end

is represented by
{10 to: 100 by: 6) do: [:i | statements]

Numbers respond to the message to:by:do: as though the expression had
been written as given in the example. So that iteration can be written
without parentheses as

10 to: 100 by: 6 do: [:i | statements]

To increment by 1 every sixth numeric element of an OrderedCollection,
numbers, evaluate

6 to: numbers size
by: 6
do: [:index | numbers at: index put: (numbers at: index) + 1]

The Interval created is 6, 12, 18, ..., up to the index of the last element
of numbers. If the size of the collection is less than 6 (the supposedly
first index), nothing happens. Otherwise elements at position 6, 12, 18,
and so on, until the last possible position, are replaced.

Class
ArrayedCollection

As stated earlier, class ArrayedCollection is a subclass of Collection. It
represents a collection of elements with a fixed range of integers as ex-
ternal keys. ArrayedCollection has five subclasses in the Smalltalk-80
system— Array, String, Text, RunArray, and ByteArray.

An Array is a collection whose elements are any objects. It provides
the concrete representation for storing a collection of elements that
have integers as external keys. Several examples of the use of Arrays
have already been given in this chapter.

A String is a collection whose elements are Characters. Many exam-
ples of the use of Strings have been given in this and in previous chap-

166

Hierarchy of the Collection Classes

Class String

ters. Class String provides additional protocol for initializing and
comparing its instances.

Text represents a String that has font and emphasis changes. It is
used in storing information needed for creating textual documents in
the Smalltalk-80 system. An instance of Text has two instance vari-
ables, the String and an instance of RunArray in which an encoding of
the font and emphasis changes is stored.

Class RunArray provides a space-efficient storage of data that tends to
be constant over long runs of the possible indices. It stores repeated ele-
ments singly and then associates with each single element a number
that denotes the consecutive occurrences of the element. For example,
suppose the Text representing the String ‘He is a good boy.” is to be
displayed with the word “boy” in bold, and further suppose that the
code for the font is 1 and for its boldface version is 2. Then the
RunArray for the Text that is associated with 'He is a good boy.” (a
String of 17 Characters) consists of 1 associated with 13, 2 associated
with 3, and 1 associated with 1. That is, the first 13 Characters are in
font 1, the next three in font 2, and the last in font 1.

A ByteArray represents an ArrayedColiection whose elements are inte-
gers between 0 and 255. The implementation of a ByteArray stores two
bytes to a 16-bit word; the class supports additional protocol for word
and double-word access. ByteArrays are used in the Smalltalk-80 system
for storing time in milliseconds.

As stated earlier, the class protocol for String adds messages for creating
a copy of another String (fromString: aString) or for creating a String
from the Characters in a Stream (readFrom: aStream). The main signifi-
cance of this second message is that pairs of embedded quotes are read
and stored as one element, the quote character. In addition, class String
adds comparing protocol like that specified in class Magnitude. We in-
troduced some of these messages earlier in the description of class
SortedCollection.

String instance protocol

comparing

< aString Answer whether the receiver collates before
the argument, aString. The collation sequence
is ASCII with case differences ignored.

< = aString Answer whether the receiver collates before
the argument, aString, or is the same as
aString. The collation sequence is ASCII with
case differences ignored.

> aString Answer whether the receiver collates after the

argument, aString. The collation sequence is
ASCII with case differences ignored.

167

> = aString

match: aString

sameAs: aString

Class ArrayedColiection

Answer whether the receiver collates after the
argument, aString, or is the same as aString.
The collation sequence is ASCII with case dif-
ferences ignored.

Treat the receiver as a pattern that can con-
tain characters # and *. Answer whether the
argument, aString, matches the pattern in the
receiver. Matching ignores upper/lower case
differences. Where the receiver contains the
character #, aString may contain any single
character. Where the receiver contains *,
aString may contain any sequence of charac-
ters, including no characters.

Answer whether the receiver collates precisely
with the argument, aString. The collation se-
quence is ASCII with case differences ignored.

We have not as yet given examples of using the last two messages.

expression result
" first string* sameAs: ’first string” true
* First String” sameAs: ' first string’ true
" First String” = first string”’ false
* #irst string” match: ’ first string” true
** string” match: " any string”’ true
"+.st’ match: ’filename.st’ true
“first string " match: ‘first «’ false

Strings can be converted to all lowercase characters or all uppercase
characters. They can also be converted to instances of class Symbol.

String instance protocol

converting
asLowercase

asUppercase

asSymbol

Therefore we have

Answer a String made up from the receiver
whose characters are all lowercase.

Answer a String made up from the receiver
whose characters are all uppercase.

Answer the unique Symbol whose characters
are the characters of the receiver.

expression

result

* first string* asUppercase
" First String~ asLowercase
" First” asSymbol

"FIRST STRING’
" first string”
First

168

Hierarchy of the Collection Classes

Class Symbol

Symbols are arrays of Characters that are guaranteed to be unique.
Thus

‘a string” asSymbol == ‘a string’ asSymbol

answers true. Class Symbol provides two instance creation messages in
its class protocol for this purpose.

Symbol class protocol

instance creation

intern: aString Answer a unique Symbol whose characters are
those of aString.

internCharacter: aCharacter Answer a unique Symbol of one character, the
argument, aCharacter.

In addition, Symbols can be expressed literally using the character # as
a prefix to a sequence of Characters. For example, #dave is a Symbol of
four Characters. Symbols print without this prefix notation.

Class
MappedCollection

Class MappedCollection is a subclass of Collection. It represents an ac-
cess mechanism for referencing a subcollection of a collection whose el-
ements are named. This mapping can determine a reordering or
filtering of the elements of the collection. The basic idea is that a
MappedCollection refers to a domain and a map. The domain is a Col-
lection that is to be accessed indirectly through the external keys stored
in the map. The map is a Collection that associates a set of external
keys with another set of external keys. This second set of keys must be
external keys that can be used to access the elements of the domain.
The domain and the map, therefore, must be instances of Dictionary or
of a subclass of SequenceableCollection.

Take, for example, the Dictionary of word Symbols, opposites, intro-
duced earlier.

key value
come go
cold hot
front back
hot cold
push pull

stop start

169
Summary of Conversions Among Collections

Suppose we create another Dictionary of synonym Symbols for some of
the keys of the entries in opposites and refer to it by the variable name
alternates.

key value
cease stop
enter come
scalding hot
shove push

Then we can provide a MappedCollection by evaluating the expression
words — MappedCollection collection: opposites map: alternates

Through words, we can access the elements of opposites. For example,
the value of the expression words at: #cease is start (i.e., the value of
the key cease in alternatives is stop; the value of the key stop in oppo-
sites is start). We can determine which part of opposites is referenced
by words by sending words the message contents.

words contents
The result is a Bag containing the symbols start go cold pull.

The message at:put: is an indirect way to change the domain collec-
tion. For example

expression result

words at: #scalding cold

words at: #cease start

words at: #cease continue
put: #continue

opposites at: #stop continue

Summary of
Conversions
Among
Collections

In the sections describing the various kinds of collections, we have indi-
cated which collections can be converted to which other collections. In
summary, any collection can be converted to a Bag, a Set, an
OrderedCollection, or a SortedCollection. All collections except Bags and
Sets can be converted to an Array or a MappedCollection. Strings and
Symbols can be converted into one another; but no collection can be
converted into an Interval or a LinkedList.

Three Examples That
Use Collections

Random Selection and Playing Cards
The Drunken Cockroach Problem

Traversing Binary Trees
A Binary Word Tree

172

Three Examples That Use Collections

Three examples of class descriptions are given in this chapter. Each
example makes use of the numeric and collections objects available in
the Smalltalk-80 system; each illustrates a different way to add func-
tionality to the system.

Card games can be created in terms of random selection from a col-
lection representing a deck of cards. The example class Card represents
a playing card with a particular suit and rank. CardDeck represents a
collection of such Cards; a CardHand is a collection of Cards for an indi-
vidual player. Selecting cards from a CardDeck or a CardHand is carried
out using example classes that represent sampling with replacement,
SampleSpaceWithReplacement, and sampling without replacement,
SampleSpaceWithoutReplacement. A well-known programming problem,
the drunken cockroach problem, involves counting the number of steps
it takes a cockroach to randomly travel over all the tiles in a room. The
solution given in this chapter represents each tile as an instance of ex-
ample class Tile and the bug as an instance of DrunkenCockroach. The
third example in this chapter is of a tree-like data structure represent-
ed by classes Tree and Node; a WordNode illustrates the way trees can
be used to store strings representing words.

Random
Selection and
Playing Cards

The Smalltalk-80 class Random, which acts as a generator for randomly
selected numbers between 0 and 1, was described in Chapter 8. Random
provides the basis for sampling from a set of possible events; such a set
is known as a sample space. A simple form of discrete random sampling
can be obtained in which a random number is used to to select an ele-
ment from a sequenceable collection. If the selected element remains in
the collection, then the sampling is done “with replacement”-—that is,
every element of the collection is available each time the collection is
sampled. Alternatively, the sampled element can be removed from the
collection each time the collection is sampled; this is sampling “without
replacement.”

Class SampleSpaceWithReplacement represents random selection
with replacement from a sequenceable collection of items. An instance
of the class is created by specifying the collection of items from which
random sampling will be done. This initialization message has selector
data:. We then sample from the collection by sending the instance the
message next. Or we can obtain aninteger number of samples by sending®
the message next: aninteger.

For example, suppose we wish to sample from an Array of Symbols
representing the names of people.

173
Random Selection and Playing Cards

people — SampleSpaceWithReplacement
data: #(sally sam sue sarah steve)

Each time we wish to select a name from the Array, we evaluate the ex-
pression

people next

The response is one of the Symbols, sally, sam, sue, sarah, or steve. By
evaluating the expression

people next: 5

an OrderedCollection of {five samples is selected. Instances of
SampleSpaceWithReplacement respond to messages isEmpty and size to
test whether any elements exist in the sample space and how many ele-
ments exist. Thus the response to

people isEmpty
is false; and the response to

people size

is 5.

An implementation of class SampleSpaceWithReplacement is given
next. Comments, delimited by double quotes, are given in each method
to indicate its purpose.

class name SampleSpaceWithReplacement
superclass Object
instance variable names data

rand

class methods
instance creation

data: aSequenceableCollection
“Create an instance of SampleSpaceWithReplacement such that the ar-
gument, aSequenceableCollection, is the sample space.”
tself new setData: aSequenceableCollection

instance methods
accessing

next
“The next element selected is chosen at random from the data collec-
tion. The index into the data collection is determined by obtaining a

174
Three Examples That Use Collections

random number between 0 and 1, and normalizing it to be within the
range of the size of the data collection.”
self iskmpty
ifTrue: [self error: " no values exist in the sample space '].
Tdata at: (rand next * data size) truncated + 1
next: aninteger
“Answer an OrderedCollection containing aninteger number of selec-
ticns from the data collection.”
| aCollection |
aGollection — OrderedCollection new: aninteger.
aninteger timesRepeat: [aCollection addlLast: self next].
taCollection

testing

isEmpty
”Answer whether any items remain to be sampled.”
Tself size = 0O

size
” Answer the number of items remaining to be sampled.”
tdata size

private
setData: aSequenceableCollection
“The argument, aSequenceableCollection, is the sample space. Create
a random number generator for sampling from the space.”
data — aSequenceableCollection.
rand — Random new

The class description declares that each instance has two variables
whose names are data and rand. The initialization message. data:, sends
the new instance the message setData: in which data is bound to a
SequenceableCollection (the value of the argument of the initialization
message) and rand is bound to a new instance of class Random.

SampleSpaceWithReplacement is not a subclass of Collection because
it implements only a small subset of the messages to which Collections
can respond. In response to the messages next and size to a
SampleSpaceWithReplacement, the messages at: and size are sent to the
instance variable data. This means that any collection that can respond
to at: and size can serve as the data from which elements are sampled.
All SequenceableCollections respond to these two messages. So, for ex-
ample, in addition to an Array as illustrated earlier, the data can be an
Interval. Suppose we wish to simulate the throw of a die. Then the ele-
ments of the sample space are the positive integers 1 through 6.

175
Random Selection and Playing Cards

die — SampleSpaceWithReplacement data: (1 to: 6)
A throw of the die is obtained by evaluating
die next

The response from this message is one of the Integers, 1, 2, 3, 4, 5, or 6.

We could select a card from a deck of cards in a similar way if the
collection associated with the instance of SampleSpaceWithReplacement
consists of elements representing playing cards. In order to play card
games, however, we have to be able to deal a card out to a player and
remove it from the deck. So, we have to use random selection without
replacement.

To implement random selection without replacement, we define the
response to the message next as removing the selected element. Since
all SequenceableCollections do not respond to the message remove:, (for
example, Interval does not) we either must check the argument of the
initialization message or we must convert the argument to an accept-
able kind of collection. Since all OrderedCollections respond to the two
messages, and since all collections can be converted to an
OrderedColiection, we can 'use the conversion approach. The method as-
sociated with setData: sends its argument the message
asOrderedColiection in order to accomplish the goal.

Class SampleSpaceWithoutReplacement is defined to be a subclass of
SampleSpaceWithReplacement. The methods associated with the mes-
sages next and setData: are overridden; the remaining messages are
inherited without modification.

class name SampleSpaceWithcutReplacement
superclass SampleSpaceWithReplacement

instance methods
accessing

next
tdata remove: super next

private

setData: aCollection
data — aCollection asOrderedCollection.
rand «~ Random new

Notice that the method for next depends on the method implemented in
the superclass (super next). The superclass’s method checks to make cer-
tain that the sample space is not empty and then randomly selects an
element. After determining the selected element, the subclass’s method
removes the element from data. The result of the remove: message is

176
Three Examples That Use Collections

the argument, so that the result of the message next to a
SampleSpaceWithoutReplacement is the selected element.

Now let’s implement a simple card game. Suppose the sample space
data for the card game are instances of a class Card where each Card
knows its suit and rank. An instance of Card is created by sending it
the message suitrank:, specifying the suit (heart, club, spade, or
diamond) and its rank (1, 2, ..., 13) as the two arguments. A Card re-
sponds to the messages suit and rank with the appropriate information.

class name Card

superclass Object

instance variable names suit
rank

class methods
instance creation

suit: aSymbol rank: aninteger
“Create an instance of Card whose suit is the argument, aSymbo!, and
whose rank is the argument, anlnteger.”
Tself new setSuit: aSymbol rank: aninteger

instance methods
accessing

suit
” Answer the receiver’s suit.”
Tsuit

rank
” Answer the receiver’s rank.”
Trank

private

setSuit: aSymbol rank: aninteger
suit « aSymbol.
rank — aninteger

A deck of cards, cardDeck, is created by the following expressions.

cardDeck — OrderedCollection new: 52.
#(heart club spade diamond) do:
[:eachSuit |
1to: 13 do: [:n | cardDeck add: (Card suit: eachSuit rank: n)]]

The first expression creates an OrderedCollection for 52 elements. The
second expression is an enumeration of the ranks 1 through 13 for each
of the four suits: heart, club, spade, and diamond. Each element of the
OrderedCollection is set to be a Card with a different suit and rank.

177
Random Selection and Playing Cards

The ability to sample from this deck of cards is obtained by creating
an instance of SampleSpaceWithoutReplacement with the card deck as
the collection from which samples will be taken

cards — SampleSpaceWithoutReplacement data: cardDeck
To deal a card, evaluate the expression
cards next

The response to this message is an instance of class Card.

Another way to provide a deck of playing cards is illustrated in the
description of example class CardDeck. The basic idea is to store a lin-
ear list of cards; next means supply the first card in the list. A card can
be returned to the deck by placing it at the end or by inserting it at
some random position. The linear list is made random by shuffling—
that is, randomly ordering the cards.

In the implementation of class CardDeck provided next, we store an
initial version of the deck of cards as a class variable. It is created using
the expressions given earlier. A copy of this variable is made as an in-
stance variable whenever a new instance is created; it is shuffled before
cards are dealt out. Each subsequent shuffle of the deck uses the cur-
rent state of the instance variable, not of the class variable. Of course,
the shuffling process, since it is based on the use of an instance of
SampleSpaceWithoutReplacement, is quite uniform. A simulation of real
shuffling involves first splitting the deck approximately in half and
then interleaving the two halves. The interleaving involves selecting
chunks from one half and then the other half. Indeed, such a simula-
tion may be more random than an actual person’s shuffling; a person’s
shuffling ability might be observable and predictable.

Messages to a CardDeck, such as return:, next, and shuffle, are useful
in creating card games.

class name CardDeck
superclass Object

instance variable names cards

class variable names InitialCardDeck

class methods
class initialization
initialize
” Create a deck of 52 playing cards.”
InitialCardDeck « OrderedCollection new: 52.
ft(heart club spade diamond) do:
[:aSuit |
1to: 13
do: [:n | InitialCardDeck add: (Card suit: aSuit rank: n)]]

178
Three Examples That Use Collections

instance creation

new

“Create an instance of CardDeck with an initial deck of 52 playing
cards.” .

tsuper new cards: InitialCardDeck copy
instance methods
accessing

next
“Deal (give out) the next card.”
tcards removeFirst
return: aCard
“Put the argument, aCard, at the bottom of the deck.”
cards addlast: aCard
shuffle
| sample tempDeck |
sample — SampleSpaceWithoutReplacement data: cards.
tempDeck — OrderedColiection new: cards size.

cards size timesRepeat: [tempDeck addlLast: sample next].
self cards: tempDeck

testing

isEmpty
” Answer whether any more cards remain in the deck.”
Tcards isEmpty

private

cards: aCollection
cards — aCollection

The class CardDeck must be initialized by evaluating the expression

CardDeck initialize

In the implementation of CardDeck, cards is the instance variable and
is therefore the deck of cards used in playing a game. To play a game,
an instance of CardDeck is created

CardDeck new

and then each card is dealt by sending this new instance the message
next. When a card is put back in the deck, the CardDeck is sent the

179
Random Selection and Playing Cards

message return:. Shuffling always shuffles whichever cards are currently
in the deck. If a full CardDeck is to be reused after a round of play, any
cards taken from the deck must be returned.

Note the implementation of the message shuffle. A sample space
without replacement, sample, is created for a copy of the current deck
of cards. A new OrderedCollection, tempDeck, is created for storing ran-
domly selected cards from this sample space. Sampling is done from
sample for each possible card; each selected card is added to the
tempDeck. Once all the available cards have been shuffled into it,
tempDeck is stored as the current game deck.

Suppose we create a simple card game in which there are four play-
ers and a dealer. The dealer deals out cards to each of the players. If at
least one of the players has between 18 and 21 points, the game ends
with the “prize” divided among each of these players. Points are count-
ed by adding up the ranks of the cards. A player with more than 21
points is not dealt new cards.

Each player is represented by an instance of class CardHand that
represents a card hand. A CardHand knows the cards it is dealt and can
determine its total point count (in response to the message points).

class name CardHand
superclass Object
instance variable names cards

class methods

instance creation

new
Tsuper new setCards

instance methods

accessing

take: aCard
”The argument, aCard, is added to the reciever.”
cards add: aCard

returnAliCardsTo: cardDeck
“Place all of the receiver’s cards into the deck of cards referred to by
the argument, cardDeck, and remove these cards from the receiver’s
hand.”
cards do: [:eachCard | cardDeck return: eachCard].
self setCards

180
Three Examples That Use Collections

inquiries
points

“ Answer the sum of the ranks of the receiver’s cards.”
fcards inject: 0 into: [:value :nextCard | value + nextCard rank]

private

setCards
cards « OrderedCollection new

We create a Set of four players. Each player is represented by an in-
stance of CardHand. The dealer’s cards are the gameCards. The dealer
(that is, the programmer) starts by shuffling the deck; there is no win-
ner yet. There may be more than one winner; winners will be listed in
the Set, winners.

players « Set new.

4 timesRepeat: [players add: CardHand new].
gameCards — CardDeck new.

gameCards shuffle

As long as there is no winner, each player with less than 21 points is
given another card from the gameCards. Before dealing a card to each
eligible player, the dealer looks to see if there are any winners by test-
ing the points for each player.

[winners — players select: [:each | each points between: 18 and: 21].
winners isEmpty and: [gameCards isEmpty not]]
whileTrue:
[players do:
[:each |
each points < 21 ifTrue: [each take: gameCards next]]

The condition for continuing to play is a block with two expressions.
The first expression determines the winners, if any. The second expres-
sion tests to see if there are any winners yet (winners isEmpty) and, if
not, if there are any more cards to deal out (gameCards isEmpty not). If
there are no winners and more cards, the game continues. The game
consists of an enumeration of each player; each player takes another
card (each take: gameCards next) only if the number of card points is
less than 21 (each points < 21).

To play again, all cards have to be returned to the game deck, which
is then shuffled.

players do: [:each | each returnAliCardsTo: gameCards].
gameCards shuffle

The players and dealer are ready to play again.

181
The Drunken Cockroach Problem

The Drunken
Cockroach
Problem |

We can use some of the collection classes to solve a well-known pro-
gramming problem. The problem is to measure how long it takes a
drunken cockroach to touch each tile of a floor of square tiles which is
N tiles wide and M tiles long. To slightly idealize the problem: in a giv-
en “step” the cockroach is equally likely to try to move to any of nine
tiles, namely the tile the roach is on before the step and the tiles imme-
diately surrounding it. The cockroach’s success in moving to some of
these tiles will be limited, of course, if the cockroach is next to a wall of
the room. The problem is restated as counting the number of steps it
takes the cockroach to land on all of the tiles at least once.

One straightforward algorithm to use to solve this problem starts
with an empty Set and a counter set to 0. After each step, we add to
the Set the tile that the cockroach lands on and increment a counter of
the number of steps. Since no duplication is allowed in a Set, we would
be done when the number of elements in the Set reaches N*M. The so-
lution would be the value of the counter.

While this solves the simplest version of the problem, we might also
like to know some additional information, such as how many times each
tile was visited. To record this information, we can use an instance of
class Bag. The size of the Bag is the total number of steps the cockroach
took; the size of the Bag when it is converted to a Set is the total num-
ber of distinct tiles touched by the cockroach. When this number
reaches N*M, the problem is solved. The number of occurrences of each
tile in the Bag is the same as the number of times the roach visited
each tile.

Each tile on the floor can be labeled with respect to its row and its
column. The objects representing tiles in the solution we offer are in-
stances of class Tile. A commented implementation of class Tile follows.

class name Tile

superclass Object

instance variable names location
floorArea

instance methods
accessing

location
" Answer the location of the receiver on the floor.”
Tlocation
location: aPoint
” Answer the location of the receiver on the floor.”
tlocation
location: aPoint
” Set the receiver’ s location on the floor to be the argument, aPoint.”
location — aPoint

182
Three Examples That Use Collections

floorArea: aRectangle
”Set the floor area to be the rectangular area represented by the argu-
ment, aRectangle.”
floorArea « aRectangle

moving

neighborAt: deltaPoint
“Create and answer a new Tile that is at the location of the receiver
changed by the x and y amounts represented by the argument,
deltaPoint. Keep the location of the newTile within the boundries of the
floor area.”
| newTile |
newTile « Tile new floorArea: floorArea.
newTile location: ({location + deltaPoint max: floorArea origin)
min: floorArea corner).
TnewTile

comparing

= aTile
“ Answer whether the receiver is equal 1o the argument, aTile.”
t{aTite isKindOf: Tile) and: [location = aTile location]

hash
Mocation hash

A Tile refers to its row and column locations, each of which must be at
least 1 and no larger than the width or length of the floor. Therefore, in
addition to remembering its location, a Tile must remember the maxi-
mum floor space in which it can be placed. A Tile can be sent the mes-
sage neightborAt: aPoint in order to determine a Tile at one of the
locations next to it. This new Tile must be at a location within the
boundaries of the floor.

The way we will simulate the cockroach’s walk is to select a direction
in terms of changes in the x-y coordinates of the cockroach’s location.
Given the location of the cockroach (tile x,y), there are 9 tiles to which
the insect can move unless the tile is along one of the edges. We will
store the possible changes of x and y in an OrderedCollection that is the
data for random selection. The OrderedCollection will contain Points as
elements; the Points are direction vectors representing all the possible
combinations of moves. We create this collection by the expressions

Directions — OrderedCollection new: 9.
(—1to: 1) do: [:x | (—1 to: 1) do: [:y | Directions add: x@y]]

Directions, then, is a collection with elements

—-1e—-1, -1@0, —1@1,0@—1,0@0,0@1,1@—1,1@0, 1@1

183
The Drunken Cockroach Problem

As part of the drunken walk simulation, we will generate a random
number for selecting an element from this OrderedCollection of possible
moves. As an alternative to using a random number generator directly,
we could use the previous example’s SampleSpaceWithReplacement
with Directions as the sample space.

Suppose the cockroach starts on the Tile that is at location 1@1.
Each time the cockroach is supposed to take a step, we obtain an ele-
ment from the collection, Directions. This element is then the argument
of the message neighborAt: to the Tile. In the following, assume Rand is
an instance of class Random.

tile neighborAt:
{Directions at: ((Rand next * Directions size) truncated + 1)).

The resulting new tile location is the place where the cockroach landed.

Each tile position has to be remembered in order to be able to report
on whether every location has been touched and how many steps were
required. By storing each tile in a Bag, a tally is kept of the number of
times the cockroach landed in each location. So at each step, a new tile
is created that is a copy of the previous tile. This new tile is changed
according to the randomly selected direction and is added to the Bag.
When the number of unique elements of the Bag equals the total num-
ber of tiles, the cockroach is done.

Only two messages are needed in class DrunkenCockroach. One is a
command to have the cockroach take a walk around a specific floor
area until every tile on the floor has been touched. This is the message
walkWithin:startingAt:.. The second is an inquiry as to the number of
steps the cockroach has taken so far; this is the message numberOfSteps.
We can also inquire about the number of times the roach stepped on a
particular tile by sending the DrunkenCockroach the message
timesSteppedOn:. The collection of direction vectors (as described earli-
er) is created as a class variable of DrunkenCockroach; the random
number generator Rand is also a class variable of DrunkenCockroach.

class name DrunkenCockroach
superclass Object
instance variable names currentTile
tilesVisited
class variable names Directions
Rand

class methods
class initialization
initialize
" Create the collection of direction vectors and the random number gen-
erator.”

184
Three Examples That Use Collections

Directions « OrderedCollection new: 9.
{(—11to: 1) do: [x| (—11to: 1) do: [y | Directions add: x@y]].
Rand — Random new

instance creation

new
Tsuper new setVariables

instance methods
simulation

walkWithin: aRectangle startingAt: aPoint
| numberTiles |
tilesVisited — Bag new.
currentTile location: aPoint.
currentTile floorArea: aRectangle.
numberTiles — (aRectangle width + 1) * (aRectangle height + 1).
tilesVisited add: currentTile.
[tilesVisited asSet size < numberTiles] whileTrue:
[currentTile « currentTile neighborAt:
(Directions at: (Rand next * Directions size) truncated + 1).
tilesVisited add: currentTile]

data

numberOfSteps
ttilesVisited size
timesSteppedOn: aTile
TilesVisited occurrencesOf: aTile

private

setVariables
currentTile — Tile new.
tilesVisited «~ Bag new

We can now send the following messages in order to experiment with a
drunken cockroach. Initialize the class and create an instance.

DrunkenCockroach initialize.
cockroach — DrunkenCockroach new

Obtain the results of 10 experiments with a 5 by 5 room.

results — OrderedCollection new: 10.

10 timesRepeat:
[cockroach walkWithin: (1@ 1 corner: 5@5) startingAt: (1@1).
results add: cockroach numberQOfSteps]

185

Traversing Binary Trees

The average of the 10 results is the average number of steps it took the
drunken cockroach to solve the problem.

(results inject: 0 into: [:sum :exp | sum + exp]) / 10

Note that in the implementation of the DrunkenCockroach message
walkWithin:startingAt:, the termination condition is whether the Bag,
when converted to a Set, has N*M elements. A faster way to make this
test would be to add the message uniqueElements to the class Bag so
that the conversion to a Set is not done each time through the itera-
tion.

(For those readers wishing to try this change, the method to be added
to class Bag is

uniqueElements
Tcontents size

Then the message walkWithin:startingAt: can be changed so that the ter-
mination condition is tilesVisited uniqueElements < numberTiles.)

Traversing
Binary Trees

A tree is an important nonlinear data structure that is useful in com-
puter algorithms. A tree structure means that there is a branching re-
lationship between elements. There is one element designated as the
root of the tree. If there is only one element, then it is the root. If there
are more elements, then they are partitioned into disjoint (sub)trees. A
binary tree is either the root only, the root with one binary (subjtree, or
the root together with two binary (sub)trees. A complete description of
the genealogy of tree structures is provided by Knuth in Volume 1 of
the Art of Computer Programming. Here we assume the reader is famil-
iar with the idea so that we can demonstrate how to specify the data
structure as a Smalltalk-80 class.

We will define a class Tree in a way that corresponds to the defini-
tion of LinkedList. Elements of a Tree will be Nodes that are like the
Links of LinkedLists, able to make connections to other elements. The
Tree will reference the root node only.

A node is simple to represent as a Smalltalk-80 object with two in-
stance variables, one refers to the left node and another to the right
node. We choose to treat the order of the nodes to support in-order tra-
versal. That is, in enumerating the nodes, visit the left subnode first,
the root second, and the right subnode third. If a node has no subnodes,
then it is called a leaf. We define the size of the node to be 1 plus the
size of its subnodes, if any. Thus a leaf is a node of size 1, and a node

186
Three Examples That Use Collections

with two leaves as subnodes has size 3. The size of a tree is the size of
its root node. This definition of size corresponds to the general notion of
size for collections.

Messages to a Node give access to the left node, the right node, and
the last or end node. It is also possible to remove a subnode
(remove:ifAbsent:) and the root (rest).

class name Node

superclass Object

instance variable names leftNode
rightNode

class methods
instance creation

left: INode right: rNode
”Create an instance of a Node with the arguments INode and rNode as
the left and right subnodes, respectively.”
| newNcde |
newNode « self new.
newNode left: INode.
newNode right: rNode.
TnewNode

instance methods

testing

isLeaf
” Answer whether the receiver is a leaf, that is, whether it is a node with-
out any subnodes.”
tleftNode isNil & rightNode isNil

accessing

left
teftNode

left: aNode
leftNode — aNode

right
TrightNode

right: aNode
rightNode « aNode

187
Traversing Binary Trees

size
11 + (leftNode isNil
ifTrue: [0]
ifFalse: [leftNode size])
+ (rightNode isNil
ifTrue: [0]
ifFalse: [rightNode size])

end
| aNode |
aNode ~ self.
{aNode right isNil] whileFalse: [aNode — aNode right].
TaNode

removing

remove: subnode ifAbsent: exceptionBlock
” Assumes the root, self, is not the one to remove.”
self isLeaf ifTrue: [texceptionBlock value].
lefitNode = subnode
ifTrue: [leftNode ~ lefiNode rest. Tsubnode].
rightNode = subnode
ifTrue: [rightNode « rightNode rest. Tsubnode].
leftNode isNil
ifTrue: [TrightNode remove: subncde ifAbsent: exceptionBlock].
tleftNode
remove: subnode
ifAbsent:
[rightNode isNil
ifTrue: [exceptionBlock value]
ifFalse:
[rightNode remove: subnode
ifAbsent: exceptionBlock]]

rest
leftNode isNil
ifTrue: [trightNode]
ifFalse: [leftNode end right: rightNode.
TlefiNode]

enumerating

do: aBlock
leftNode isNil ifFalse: [leftNode do: aBlock].
aBlock value: self.
rightNode isNil ifFalse: [rightNode do: aBlock]

188
Three Examples That Use Collections

If Node is a leaf, it is denoted by nil nil
where
left node nil) (nil right node
then
root
s T~
left node right node

Enumeration uses in-order traversal, first applying the left subnode as
the value of the block, then the root, and third the right subnode. The
block must be defined for a block argument that is a Node.

Next we provide a Tree as a kind of SequenceableCollection whose ele-
ments are Nodes. A Tree has one instance variable which we name root;
root is either nil or it is an instance of Node. As a subclass of
SequenceableCollection, class Tree implements messages add:
anElement, remove: anElement ifAbsent: exceptionBlock, and do: aBlock.
Basically, the methods associated with each of these messages checks to
see whether the tree is empty (root isNil) and, if not, passes the appro-
priate message to root. The check on “empty” is inherited from Collec-
tion. The intention is that the programmer who uses a tree structure
accesses the elements of that structure only via an instance of class

Tree.
class name Tree
superclass SequenceableCollection
instance variable names root

instance methods
testing
isEmpty
Troot isNil
accessing

first
| save |
self emptyCheck.
save — root.

189
Traversing Binary Trees

[save left isNil] whileFalse: [save — save left].
Tsave
last
self emptyCheck.
troot end
size
self isEmpty
ifTrue: [10]
ifFalse: [Troot size]
adding

add: aNode
tself addLast: aNode
addFirst: aNode
”1f the collection is empty, then the argument, aNocde, is the new roaot;
otherwise, it is the left node of the current first node.”
self isEmpty
ifTrue: [troot — aNode]
ifFalse: [self first left: aNode].
TaNode
addLast: aNode
”|f the collection is empty, then the argument, aNode, is the new root,
otherwise it is the last element of the current root.”
self iskEmpty
ifTrue: [root — aNode]
ifFalse: [self iast right: aNode].
tfaNode

removing
remove: aNode ifAbsent: exceptionBlock
“First check the root. If not found, move down the tree checking each
node.”
self isEmpty ifTrue: [texceptionBlock value].

root = aNode
ifTrue: [root — root rest. TaNode]

ifFalse: [Troot remove: aNode ifAbsent. exceptionBlock]
removeFirst
self emptyCheck.
Tself remove: self first ifAbsent: []
removelast
self emptyCheck.
tself remove: self last ifAbsent: []

enumerating

do: aBlock
self isEmpty ifFalse: [root do: aBlock]

190

Three Examples That Use Collections

A Binary Word
Tree

Note that the removing messages do not remove the subtree beginning
with the node to be removed, only the node itself.

The definition of a Node, like that of a Link, is all structure without
content. We have left the content of each Node to be specified by a sub-
class. Suppose we wish to use a kind of Node to store words represented
as Strings. We call this class WordNode. An instance of WordNode is
created by sending WordNode the message for:, if no subnodes are speci-
fied, or for:leftrright: if the two subnodes are specified. So a WordNode il-
lustrated as

cat

[

is created by evaluating the expression

WordNode for: “cat”’

A WordNode that looks like

cat
[| |
dog goat

l l

is created by evaluating the expression

WordNode for: “cat”’
left: (WordNode for: “dog’)
right: (WordNode for: “goat”’)

An implementation for the class WordNode follows. Notice that equality
(=) is redefined to mean that the words in the Nodes are the same; this
means that the inherited removing messages will remove a subnode if
its word 1s the same as the word of the argument.

class name WordNode
superclass Node
instance variable names word

class methods
instance creation

for: aString
tself new word: aString

191

Traversing Binary Trees

for: aString left: INode right: rNode
| newNode |
newNode « super left: INode right: rNode.
newNode word: aString.
tnewNode

instance methods
accessing

word
tword

word: aString
word « aString

comparing
= aWordNode
1{aWordNcde isKindOf: WordNode) and: [word = aWordNode word]

hash
tword hash

A sequence of expressions follows to illustrate the use of WordNode.
Note that no effort is made in the definition of WordNode to support in-
serting elements so that each word collates alphabetically when the
tree is traversed. An interested reader might add an insert: aWordNode
message to WordNode that maintains the alphabetic sort.

tree — Tree new.

tree add: (WordNode for: “cat’)
cat

l

tree addFirst: (WordNode for: "frog’)

cat

frc[>g _ — |

tree addLast; (WordNode for: “horse’ left: (WordNode for: “monkey’) right: nil)

cat

frog [horse
l —1 |

monkey

l

192

Three Examples That Use Collections

tree addFirst: (WordNode for: "ape’)

frog

cat

horse

— |

—t

—

ape

[

monkey

l

tree remove: (WordNode for: "horse’)

frog

cat

— |

[

I

—

ape

[

monkey

I

tree remove: (WordNode for: “frog’)

cat

[

—

monkey

l

Protocol for Streams

Class Stream

Positionable Streams
Class ReadStream
Class WriteStream
Class ReadWriteStream

Streams of Generated Elements
Streams for Collections Without External Keys

External Streams and File Streams

Object

Magnitude
Character
Date
Time

Number
Float
Fraction
Integer

LargeNegativelnteger
LargePositiveinteger

Smallinteger

LookupKey
Association

Link
Process
Collection

SequenceableCollection
LinkedList

Semaphore

ArrayedColiection
Array

Bitmap
DisplayBitmap

RunArray
String
Symbol
Text
ByteArray

Interval
OrderedCollection
SortedCollection
Bag

MappedCollection
Set
Dictionary
IdentityDictionary

Random

UndefinedObject
Boolean

False

True

ProcessorScheduler
Delay
SharedQueue

Behavior
ClassDescription
Class
MetaClass

Point

Rectangle

BitBit
CharacterScanner

Pen

DisplayObject
DisplayMedium
Form
Cursor
DisplayScreen
InfiniteForm
OpaqueForm
Path
Arc
Circle
Curve
Line
LinearFit
Spline

195
Class Stream

The collection classes provide the basic data structure for storing ob-
jects together as nonlinear and linear groups. The protocol for these
classes makes it possible directly to access (store and retrieve) individu-
al elements. It also, through the enumeration messages, supports
noninterruptible accessing of all of the elements, in order. However, it
does not support intermingling the two kinds of accessing operations—
enumerating and storing. Nor does the collection protocol support
accessing individual elements, one at a time, unless an external position
reference is separately maintained.

Unless an easily computed external name for each element exists, in-
terruptible enumeration of individual elements can not be carried out
efficiently. It is possible, for example, sequentially to read elements of
an OrderedCollection using a combination of first and after:, as long as
the elements of the collection are unique. An alternative approach in-
volves the collection itself remembering, in some way, which element
was last accessed. We call this the “position reference” in the discussion
that follows. The possibility of shared access to a sequence of elements,
however, means that it is necessary to maintain a separate, external
memory of the last element accessed.

Class Stream represents the ability to maintain a position reference
into a collection of objects. We use the phrase streaming over a collec-
tion to mean accessing the elements of a collection in such a way that it
is possible to enumerate or store each element, one at a time, possibly
intermingling these operations. By creating several Streams over the
same collection, it is possible to maintain multiple position references
into the same collection.

There are a number of ways to maintain a position reference for
streaming over a collection. A common one is to use an integer as an
index. This approach can be used for any collection whose elements are
externally named by an integer. All SequenceableCoilections fall into
this category. As we shall describe later, such a Stream is represented
in the Smalltalk-80 system by the class PositionableStream. A second
way to maintain a position reference is to use a seed for a generator of
objects. An example of this kind of Stream in the Smalltalk-80 system is
class Random which was already presented in Chapter 8. And a third
way is to maintain a non-numerical position reference, such as a refer-
ence to a node in a sequence; this approach is illustrated in this chapter
by an example class that supports streaming over a linked list or a tree
structure.

Class Stream

Class Stream, a subclass of class Object, is a superclass that specifies the
accessing protocol for streaming over collections. Included in this proto-
col are messages for reading (retrieving) and writing (storing) into the

196

Protocol for Streams

collection, although not all the subclasses of class Stream can support
both kinds of accessing operations. The basic reading message is next;
its response is the next element in the collection that is referenced by
the Stream. Given the ability to access the next element, more general
reading messages can be supported. These are next: aninteger, which re-
sponds with a collection of aninteger number of elements; nextMatchFor:
anObject, which reads the next element and answers whether it is equal
to the argument, anObject; and contents, which answers a collection of
all of the elements.

Stream instance protocol

accessing—reading

next Answer the next object accessible by the re-
ceiver.

next: aninteger Answer the next aninteger number of objects
accessible by the receiver. Generally, the an-
swer will be a collection of the same class as
the one accessed by the receiver.

nextMatchFor: anObject Access the next object and answer whether it
is equal to the argument, anObject.

contents Answer all of the objects in the collection
accessed by the receiver. Generally, the an-
swer will be a collection of the same class as
the one accessed by the receiver.

The basic writing message is nextPut: anObiject; this means to store the
argument, anObject, as the next element accessible by the receiver. If
both read and write messages are possible, a next message following a
nextPut: anElement does not read the element just stored, but rather the
one after it in the collection. Writing messages also include nextPutAlk:
aCollection, which stores all of the elements in the argument into the
collection accessed by the receiver, and next: aninteger put: anObject,
which stores the argument, anObject, as the next aninteger number of
elements.

Stream instance protocol

accessing—writing

nextPut: anObject Store the argument, anObject, as the next ele-
ment accessible by the receiver. Answer
anObject.

nextPutAll: aCollection Store the elements in the argument,

aCollection, as the next elements accessible by
the receiver. Answer aCollection.

next: aninteger put: anObject Store the argument, anObject, as the next
aninteger number of elements accessible by
the receiver. Answer anObject.

The reading and writing messages each determine if a next element can

197
Class Stream

be read or written and, if not, an error is reported. The programmer
might therefore wish to determine whether accessing is still feasible;
this is accomplished by sending the Stream the message atEnd.

Stream instance protocol

testing

atEnd Answer whether the receiver cannot access
any more objects.

Noninterrupted reading of elements that are applied as arguments to a
block can be done by sending the message do: aBlock, similar to the
enumerating message supported by the collection classes.

Stream instance protocol

enumerating

do: aBlock Evaluate the argument, aBlock, for each of
the remaining elements that can be accessed
by the receiver.

The implementation of this enumeration message depends on sending
the messages atEnd and next to the message receiver. We show this
method as an example of the use of these messages.

do: aBlock
[self atknd] whileFalse: [aBlcck value: self next]

Each kind of Stream must specify its instance creation messages. In
general, a Stream can not be created simply by sending the message
new because the Stream must be informed of which, collection it
accesses and what is its initial position reference.

As a simple example, let’s assume that the collection accessed by a
Stream is an Array and that the Stream is called accessor. The contents
of the Array are the Symbols

Bob Dave Earl Frank Harold Jim Kim Mike Peter Rick Sam Tom

and the position reference is such that Bob is the next accessible ele-
ment. Then

expression result
accessor next Bob
accessor next Dave
accessor false

nextMatchFor: #Bob

198

Protocol for Streams

accessor
nextMatchFor: #Frank

accessor next
accessor nextPut: #James
accessor contents

true

Harold
James
(Bob Dave Earl Frank

Harold James Kim
Mike Peter Rick
Sam Tom)

accessor (Karl Larry Paul)
nextPutAll:

#(Karl Larry Paul)

accessor contents (Bob Dave Earl Frank
Harold James Karl
Larry Paul Rick Sam

Tom)
accessor next: 2 put: #£John John

accessor contents (Bob Dave Earl Frank
Harold James Karl
Larry Paul John

John Tom)
accessor next Tom
accessor atEnd true

Positionable
Streams

In the introduction to this chapter we indicated three possible
approaches that a Stream might use in order to maintain a position ref-
erence. The first one we will present uses an integer index which is
incremented each time the Stream is accessed. The Stream accesses only
those kinds of collections whose elements have integers as external
keys; these include all of the subclasses of SequenceableCollection.

Class PositionableStream is a subclass of class Stream. It provides ad-
ditional protocol appropriate to Streams that can reposition their posi-
tion references, but, it is an abstract class because it does not provide
an implementation of the inherited messages next and nextPut: anObject.
The implementation of these messages is left to the subclasses of
PositionableStream—ReadStream, WriteStream, and ReadWriteStream.

A PositionableStream is created by sending the class one of two in-
stance creation messages, on: aCollection or on: aCollection from:
firstindex to: lastindex. The argument, aCollection, is the collection the
Stream accesses; in the second case, a copy of a subcollection of
aCollection is accessed, i.e., the one delimited by the twec arguments
firstindex and lastindex.

199
Positionable Streams

PositionableStream class protocol

instance creation

on: aCollection Answer an instance of a kind of
PositionableStream that streams over the ar-
gument, aCollection.

on: aCollection from: firstindex to: lastindex
Answer an instance of a kind of
PositionableStream that streams over a copy of
a subcollection of the argument, aCollection,
from firstindex to lastindex.

PositionableStream supports additional protocol for accessing and test-
ing the contents of the collection.

PaositionableStream instance protocol

testing
iIsSEmpty Answer true if the collection the receiver
accesses has no elements; otherwise, answer
false.

accessing
peek Answer the next element in the collection (as
in the message next), but do not change the
position reference. Answer nil if the receiver is
at the end.

peekFor: anObject Determine the response to the message peek.
If it is the same as the argument, anObject,
then increment the position reference and an-
swer true. Otherwise answer false and do not
change the position reference.

upTo: anObject Answer a collection of elements starting with
the next element accessed by the receiver, and
up to, not inclusive of, the next element that
is equal to anObject. If anObject is not in the
collection, answer the entire rest of the collec-
tion.

reverseContents Answer a copy of the receiver’s contents in re-
verse order.

Since a PositionableStream is known to store an explicit position refer-
ence, protocol for accessing that reference is supported. In particular,
the reference can be reset to access the beginning, the end, or any other
position of the collection.

PositionableStream instance protocol

positioning
position Answer the receiver’s current position refer-
ence for accessing the collection.
position: aninteger Set the receiver’s current position reference

for accessing the collection to be the argu-
ment, aninteger. If the argument is not within

200

Protocol for Streams

Class ReadStream

Class WriteStream

reset
setToEnd

skip: aninteger

skipTo: anObject

accessor «

»

the bounds of the receiver’s collection, report
an error,

Set the receiver’s position reference to the be-
ginning of the collection.

Set the receiver’s position reference to the end
of the collection.

Set the receiver’s position reference to be the
current position plus the argument, aninteger,
possibly adjusting the result so as to remain
within the bounds of the collection.

Set the receiver’s position reference to be past
the next occurrence of the argument, anObject,
in the collection. Answer whether such an oc-
currence existed.

Class ReadStream is a concrete subclass of PositionableStream that rep-
resents an accessor that can only read elements from its collection. We
can create an example similar to the previous one to demonstrate the
use of the additional protocol provided in class PositionableStream and
inherited by all ReadStreams. None of the nextPut:;, next:put:;, nor
nextPutAll: messages can be successfully sent to a ReadStream.

ReadStream on: #(Bob Dave Earl Frank Harold Jim Kim Mike

Peter Rick Sam Tom)

expression result

accessor next Bob

accessor true
nextMatchFor: #Dave

accessor peek Earl

accessor next Earl

accessor peekFor: #Frank true

accessor next Harold

accessor upTo: #Rick (Jim Kim Mike Peter)

accessor position 10

accessor skip: 1 the accessor itself

accessor next Tom

accessor ateEnd true

accessor reset the accessor itself

accessor skipTo: #Frank true

accessor next Harold

Class WriteStream is a subclass of PositionableStream representing
accessors for writing elements into a collection. None of the next, next:,
nor do: messages can be successfully sent to a WriteStream.

201

Positionable Streams

WriteStreams are used throughout the Smalltalk-80 system as a part
of the methods for printing or storing a string description of any object.
Each object in the system can respond to the messages printOn: aStream
and storeOn: aStream. The methods associated with these messages con-
sist of a sequence of messages to the argument, which is a kind of
Stream that allows writing elements into the collection it accesses.
These messages are nextPut;, where the argument is a Character, and
nextPutAll:, where the argument is a String or a Symbol. An example
will illustrate this idea.

Class Object printing protocol, as described in Chapter 6, includes the
message printString. An implementation of this message is

printString
| aStream |
aStream « WriteStream on: (String new: 16).
self printOn: aStream.
TaStream contents

If a collection is sent the message printString, then the answer is a String
that is a description of the instance. The method creates a WriteStream
that the collection can store into, sends the message printOn: to the col-
lection, and then responds with the contents of the resulting
WriteStream. The message storeString to any object is similarly
implemented in class Object, the difference being that the second ex-
pression consists of the message storeOn: aStream rather than printOn:
aStream.

The general way in which collections print a description of them-
selves is to print their class name followed by a left parenthesis,
followed by a description of each element separated by spaces, and ter-
minated by a right parenthesis. So if a Set has four elements—the
Symbols one, two, three, and four—then it prints on a Stream as

Set (one two three four)
An OrderedCollection with the same elements prints on a Stream as
OrderedColiection {one two three four)

and so on.

Recall that the definition of printOn: and storeOn: given in Chapter 6
is that any suitable description can be provided for printOn:, but the de-
scription created by storeOn: must be a well-formed expression that,
when evaluated, re-constructs the object it purports to describe.

Here is an implementation in class Collection for printOn:.

202

Protocol for Streams

printOn: aStream

aStream nextPutAll: self class name.

aStream space.
aStream nextPut: $(.
self do:

[:element |

element printOn: aStream.

aStream space].
aStream nextPut: $)

Notice that the message space is sent to the WriteStream (aStream). It,
and a number of other messages are provided in class WriteStream to
support concise expressions for storing delimiters into such Streams.

They are

WriteStream instance protocol

character writing
cr

crTab

crTab: aninteger

space

tab

Thus to construct the String

" name city

bob New York
joe Chicago
bill Rochester

from two corresponding Arrays,

names — # (bob joe bill)

Store the return character as the next ele-
ment of the receiver.

Store the return character and a single tab
character as the next two elements of the re-
ceiver.

Store the return character as the next ele-
ment of the receiver, followed by aninteger
number of tab characters.

Store the space character as the next element
of the receiver.

Store the tab character as the next element of
the receiver.

cities —« # (" New York’ “Chicago’ ' Rochester’)

evaluate the expressions

203
Positionable Streams

aStream ~ WriteStream on: (String new: 18).
aStream nextPutAll: “name”.
aStream tab.
aStream nextPutAll: “city’.
aStream cr; cr.
names with: cities do:
[:name :city |
aStream nextPutAll: name.
aStream tab.
aStream nextPutAll: city.
aStream cr]

then the desired result is obtained by evaluating aStream contents.

Suppose a collection already exists and we wish to append further in-
formation into it by using Stream protocol. Class WriteStream supports
instance creation protocol that accepts a collection and sets the position
reference for writing to the end.

WriteStream class protocol

instance creation

with: aCollection Answer an instance of WriteStream accessing
the ‘argument, aCollection, but positioned to
store the next element at the end of it.

with: aCollection from: firstindex to: lastindex
Answer an instance of WriteStream accessing
the subcollection of the argument, aColiection,
from locaton firstindex to lastindex, but posi-
tioned to store the next element at the end of
the subcollection.

Thus if a String referred to as header already existed, containing

‘name city

then the previous example String would be constructed by

aStream — WriteStream with: header.
names with; cities do:
[:name :city |
aStream nextPutAll: name.
aStream tab.
aStream nextPutAll: city.
aStream cr].
aStream contents

204

Protocol for Streams

Class
ReadWriteStream

Class ReadWriteStream is a subclass of WriteStream that represents an
accessor that can both read and write elements into its collection. It
supports all the protocol of both ReadStream and WriteStream, as given
above.

Streams of
Generated
Elements

Of the three ways to create a position reference for streaming over a
collection, the second way cited in the introduction to this chapter was
to specify a seed by which the next elements of the collection can be
generated. This kind of Stream only permits reading the elements, not
writing. The reference, however, can be repositioned by resetting the
seed.

Class Random, introduced in Chapter 8, is a subclass of Stream that
determines its elements based on an algorithm employing a number as
a seed. Random provides a concrete implementation for next and atEnd.
Because the size of the collection is infinite, it never ends; moreover,
Random can not respond to the message contents. It can respond to the
message do:, but the method will never end without the programmer’s
purposeful intervention.

The following is an implementation of class Random; the reader is
referred to Chapters 11 and 21 for examples making use of instances of
the class. The implementations for do: and nextMatchFor: anObject are
inherited from class Stream.

class name Random
superclass Stream
instance variable names seed

class methods
instance creation

new
tself basicNew setSeed

instance methods
testing

atEnd
Tfalse

accessing

next
| temp |
”Lehmer’s linear congruential method with modulus m = 2 raisedTo:

205
Streams for Collections Without External Keys

16, a = 27181 odd, and 5 = a \\ 8, ¢ = 13849 odd, and ¢/m ap-
proximately 0.21132”

[seed « 13849 + (27181 * seed) bitAnd: 8r177777.

temp ~ seed / 65536.0.

temp = 0] whileTrue.

ttemp

private

setSeed
“For pseudo-random seed, get a time from the system clock. It is a
large positive integer; just use the lower 16 bits.”
seed — Time millisecondClockValue bitAnd: 8r177777

Another possible example of a stream of generated elements are the
probability distributions that are presented in Chapter 21. The super-
class ProbabilityDistribution is implemented as a subclass of Stream. The
message next: aninteger is inherited from Stream. Each kind of
ProbabilityDistribution determines whether it is “read-only” and, if so,
implements nextPut: as self shouldNotimplement. Class SampleSpace,
another example in Chapter 21, maintains a collection of data items
and implements nextPut: anObject as adding to the collection.

Streams for
Collections
Without
External Keys

The third way to maintain a position reference for streaming over a col-
lection cited in the introduction to this chapter was to maintain a non-
numerical reference. This would be useful in cases where the elements
of the collection cannot be accessed by external keys or where such ac-
cess is not the most efficient means to retrieve an element.

Streaming over instances of class LinkedList provides an example in
which the elements can be accessed by indexes as the external keys, but
each such access requires a search down the chain of linked elements.
It is more efficient to maintain a reference to a particular element in
the collection (a kind of Link) and then to access the next element by re-
questing the current elements nextLink. Both reading and writing into
the LinkedList can be supported by such a Stream.

Suppose we create a subclass of Stream that we call LinkedListStream.
Each instance maintains a reference to a LinkedList and a position ref-
erence to an element in the collection. Since both reading and writing
are supported, the messages next, nextPut:, atEnd, and contents must be
implemented. (Note that these four messages are defined in class
Stream as self subclassResponsibility) A new instance of
LinkedListStream is created by sending it the message on: alinkedList.

206

Protocol for Streams

class name LinkedListStream

superclass Stream

instance variable names collection
currentNode

class methods

instance creation

on: aLinkedList
tself basicNew setOn: alinkedList

instance methods

testing

atEnd
tcurrentNode isNil

accessing

next
| saveCurrentNode |
saveCurreniNode < currentNode.
self atknd
ifFalse: [currentNode — currentNode nextLink].
tsaveCurrentNode
nextPut: aLink
| index previousLink |
self atbnd ifTrue: [tcollection addLast: alink].
index — collection indexOf: currentNode.
index = 1
ifTrue: [collection addFirst: aLink]
ifFalse: [previousLink « collection at: index - 1.
previouslink nextLink: aLink].
alink nextLink: currentNode nextLink.
currentNode « alink nexiLink.
talink

private

setOn: aLinkedList
collection — alinkedList.
currentNode — alinkedList first

Now suppose in order to demonstrate the use of this new kind of
Stream we make up a LinkedList of nodes that are instances of class
WordLink; class WordLink is a subclass of Link that stores a String or a
Symbol.

207

Streams for Collections Without External Keys

class name WordLink
superclass Link
instance variable names word

class methods
instance creation

for: aString
Tself new word: aString

instance methods
accessing

word
tword

word: aString
word < aString

comparing

= aWordLink
Tword = aWordLink word

printing

printOn: aStream

aStream nextPutAll: * a WordLink for”.

aStream nextPutAll: word

From the above we can see that an instance of WordLink for the word

f#tone is created by
WordLink for: #one
Its print string is
“a WordLink for one’

We can then create a LinkedList

of WordLinks and then a

LinkedListStream that accesses this LinkedList.

list — LinkedList new.

list add: (WordLink for: #one).

list add: (WordLink for: #two).

list add: (WordLink for: #three).

list add: (WordLink for: #four).

list add: (WordLink for: #five).
accessor — LinkedListStream on: list

Then an example sequence of messages to accessor is

208

Protocol for Streams

expression result

accessor next a WordLink for one
accessor next a WordLink for two

accessor nextMatchFor: true
(WordLink for: #three)

accessor nextPut:
(WordLink for: #insert)

accessor contents

a WordLink for insert

LinkedList
{a WordLink for one
a WordLink for two
a WordLink for three
a WordLink for insert
a WordLink for five)

accessor next a WordLink for five
accessor atend true

Similarly, traversing the nodes of a tree structure, such as that of class
Tree given in Chapter 11, can be done by a kind of Stream that main-
tains a reference to a current node and then accesses the next element
by accessing the current node’s left tree, root, or right tree. This kind of
Stream is slightly more complicated to implement than that for a
LinkedList because it is necessary to retain knowledge of whether the
left or right tree has been traversed and back references to the father of
the current node. The order of traversal of the tree structure can be
implemented in the Stream, ignoring the method by which subtrees
were added to the structure. Thus, although we used in-order traversal
in the implementations of class Tree and class Node, we can stream
over a Tree with postorder traversal by implementing the messages
next and nextPut: appropriately.

External
Streams and
File Streams

The Streams we have examined so far make the assumption that the el-
ements of the collection can be any objects, independent of representa-
tion. For communicating with input/output devices, such as a disk,
however, this assumption is not valid. In these cases, the elements are
stored as binary, byte-sized elements that may prefer to be accessed as
numbers, strings, words (two bytes), or bytes. Thus we have a need to
support a mixture of nonhomogeneous accessing messages for reading
and writing these different-sized “chunks” of information.

Class ExternalStream is a subclass of class ReadWriteStream. Its pur-
pose is to add the nonhomogeneous accessing protocol. This includes
protocol for positioning as well as accessing.

209
External Streams and File Streams

ExternalStream instance protocol

nonhomogeneous accessing

nextNumber: n Answer the next n bytes of the collection
accessed by the receiver as a positive Smali-
Integer or LargePositivelnteger.

nextNumber: n put: v Store the argument, v, which is a positive
Smallinteger or LargePositivelnteger, as the
next n bytes of the collection accessed by the
receiver. If necessary, pad with zeros.

nextString Answer a String made up of the next elements
of the collection accessed by the receiver.

nextStringPut: aString Store the argument, aString, in the collection
accessed by the receiver.

nextWord Answer the next two bytes from the collecton
accessed by the receiver as an Integer.

nextWordPut: aninteger Store the argument, aninteger, as the next two

bytes of the collection accessed by the receiver.

nonhomogeneous positioning

padTo: bsize Skip to the next boundary of bsize characters,
and answer how many characters were
skipped.

padTo: bsize put: aCharacter Skip-—writing the argument, aCharacter, into
the collection accessed by the receiver in order
to pad the collection—to the next boundary of
bsize characters and answer how many char-
acters were written (padded).

padToNextWord Make the position reference even (on word
boundary), answering the padding character,
if any.

padToNextWordPut: aCharacter Make the position reference even (on word

boundary), writing the padding character,
aCharacter, if necessary.

skipWords: nWords Position after nWords number of words.

wordPosition Answer the current position in words.

wordPosition: wp Set the current position in words to be the ar-
gument, wp.

Class FileStream is a subclass of ExternalStream. All accesses to external
files are done using an instance of FileStream. A FileStream acts as
though it were accessing a large sequence of bytes or characters; the el-
ements of the sequence are assumed to be Integers or Characters. The
protocol for a FileStream is essentially that of class ExternalStream and
its superclasses. In addition, protocol is provided to set and to test the
status of the sequence the FileStream is streaming over.

Classes ExternalStream and FileStream are provided in the
Smalltalk-80 system as the framework in which a file system can be
created. Additional protocol in class FileStream assumes that a file sys-
tem is based on a framework consisting of a directory or dictionary of
files, where a file is a sequence of file pages. The Smalltalk-80 system
includes classes FileDirectory, File, and FilePage to represent these struc-

210

Protocol for Streams

tural parts of a file system. A FilePage is a record of data that is
uniquely identified within its File by a page number. A File is uniquely
identified both by an alphanumeric name and a serial number; it main-
tains a reference to the FileDirectory which contains the File. And the
FileDirectory is itself uniquely identified by the device or “server” to
which it refers. User programs typically do not access a File or its
FilePages directly; rather they access it as a sequence of characters or
bytes through a FileStream. Thus the programmer can create a
FileStream as an accessor to a file using an expression of the form

Disk file: “ name.smalltalk ’
where Disk is an instance of a FileDirectory. The FileStream can then be

sent sequences of reading and writing messages as specified in the pro-
tocol of this chapter.

Implementation of the
Basic Collection Protocol

Class Collection

Subclasses of Collection

Class Bag

Class Set

Class Dictionary
SequenceableCollections

Subclasses of SequenceableCollection
Class MappedCollection

212

Implementation of the Basic Collection Protocol

The protocol for the classes in the Collection hierarchy was presented in
Chapters 9 and 10. This chapter presents the complete implementation
of class Collection and the implementation of the basic protocol for in-
stance creation, accessing, testing, adding, removing, and enumerating
for each subclass of Collection. These implementations make effective
use of a framework in class Collection that is refined in its subclasses.
Messages in Collection are implemented in a very general way or as self
subclassResponsibility. Messages are implemented as

self subclassResponsibility

if the method depends on the representation of the instances. Each sub-
class must override such messages to fulfill any “subclass responsibili-
ties.” Subclasses may override other messages, for efficiency purposes,
with a new method that takes advantage of the representation. A sub-
class may implement some messages with

self shouldNotimplement

which results in a report that the message should not be sent to in-
stances of the class. For example, SequenceableCollections cannot re-
spond to remove:ifAbsent:; therefore the method is implemented as self
shouldNotimplement.

Class Collection

[] Collection instance creation protocol In addition to the messages
new and new:, an instance of a Collection can be created by sending any
one of four messages made up of one, two, three, or four occurrences of
the keyword with:. The messages new and new: are not reimplemented
in Collection; they produce an instance that is an empty collection. Each
of the other four instance creation methods is specified in Collection in
a similar way. First an instance is created (with the expression self new)
and then the arguments, in order, are added to the instance. The new
instance is returned as the result. The instance is created using self
new, rather than super new or self basicNew, because a subclass of Col-
lection might reimplement the message new. Any subclass of Collection
that represents fixed-size objects with indexed instance variables must
reimplement the following instance creation messages since such a sub-
class cannot provide an implementation for new.

213
Class Collection

class name Collection
superclass Object
class methods

instance creation

with: anObject
| newCollection |
newCollection « self new.
newCollection add: anObject.
TnewCollection

with: firstObject with: secondObject
| newCollection |
newCollection « self new.
newCollection add: firstObject.
newCollection add: secondObject.
tnewCollection

with: firstObject with: secondObject with: thirdObject
| newCollection |
newCollection « self new.
newCollection add: firstObject.
newCollection add: secondObject.
newCollection add: thirdObject.
TnewCollection

with: firstObject with: secondObject with: thirdObject
with: fourthObject
[newCollection |
newCollection — self new.
newCollection add: firstObject.
newCollection add: secondObject.
newCaollection add: thirdObject.
newCollection add: fourthObject.
TnewCollection

The implementation of each of the instance creation messages depends
on the ability of the newly-created instance to respond to the message
add:. Class Collection cannot provide implementations of the following
messages because they depend on the representation used by a subclass:

add: anObject
remove: anObject ifAbsent: aBlock
do: aBlock

All other messages in the basic collection protocol are implemented in
terms of these three messages. Each subclass must implement the three
basic messages; each can then reimplement any others in order to im-
prove its performance.

214

Implementation of the Basic Collection Protocol

[] Collection adding protocol The protocol for adding elements to a
collection is implemented in class Collection as follows.

adding

add: anObject
self subclassResponsibility

addAll: aCollection
aCollection do: [:each | self add: each].
taCollection

Notice that the implementation of addAll: depends on both do: and add..
The order of adding elements from the argument, aCollection, depends
on both the order in which the collection enumerates its elements (do:)
and the manner in which the elements are included into this collection

{add:).

[] Collection removing protocol The messages remove: and removeAll:
are implemented in terms of the basic message remove:ifAbsent:, which
must be provided in a subclass. These methods report an error if the el-
ement to be removed is not in the collection. The method
remove:ifAbsent: can be used to specify different exception behavior.

removing

remove: anObject ifAbsent: exceptionBlock
self subclassResponsibility

remove: anObject
self remove: anObject ifAbsent: [self errorNotFound]

removeAll: aCollection
aCollection do: [:each | self remove: each].
taCollection

private

errorNotFound
self error: “Object is not in the collection’

As usual, the category private refers to messages introduced to support
the implementations of other messages; it is not to be used by other ob-
jects. Most error messages that are used more than once will be speci-
fied as private messages in order to create the literal message string

once only.

[] Collection festing protocol ~All the messages in the protocol for test-
ing the status of a collection can be implemented in Collection.

215
Class Collection

testing

isEmpty
Tself size = 0
includes: anObject
self do: [:each | anObject = each ifTrue: [Ttrue]].

tfalse
occurrencesOf: anObject
[tally |
tally « Q.
self do: [:each | anObject = each ifTrue: [tally < tally + 1]].
ftally

The implementations of includes: and occurrencesOf: depend on the
subclass’s implementation of the basic enumerating message do:. The
block argument of do: in the method for includes: terminates as soon as
an element equal to the argument is found. If no such element is found,
the last expression (1false) is evaluated. The response to isEmpty and in-
cludes: are Boolean objects, true or false. The message size is inherited
from class Object, but is reimplemented in Collection because size, as
defined in Object, is only nonzero for variable-length objects.

accessing

size
| tally |
tally « 0.
self do: [:each | tally < tally + 1].
Ttally

This is a low-performance approach to computing the size of a collection
which, as we shall see, is reimplemented in most of the subclasses.

[] Collection enumerating protocol An implementation of all of the
messages that enumerate the elements of collections, except do:, can be
provided in class Collection.

enumerating

do: aBlock
self subclassResponsibility
collect: aBlock
| newCollection |
newCollection « self species new.
self do: [:each | newCollection add: (aBlock value: each)].
TnewCollection
detect: aBlock
1self detect: aBlock ifNone: [self errorNotFound]

216

Implementation of the Basic Collection Protocol

detect: aBlock ifNone: exceptionBlock
self do: [:each | {aBlock value: each) ifTrue: [teach]].
TexceptionBlock value
inject: thisValue into: binaryBlock
| nextVaiue |
nextValue ~ thisValue.
self do: [:each | nextValue « binaryBlock value: nextValue value: each).
TnextValue
reject: aBlock
tself select: [:element | (aBlock value: element) == false]
select: aBlock
| newCollection |
newCollection « self species new.
self do: [:each | (aBlock value: each) ifTrue: [newCollection add: each]].
TnewCollection

In the methods associated with collect: and select:, the message species
is sent to self. This message was not shown in Chapter 9 because it is
not part of the external protocol of collections. It is categorized as pri-
vate to indicate the intention for internal use only. The message is
implemented in class Object as returning the class of the receiver.

private

species
Tself class

Thus the expression
self species new

means “create a new instance of the same class as that of the receiver.”

For some collections, it may not be appropriate to create a “similar”
instance in this way; a new collection that is like it may not be an in-
stance of its class. Such a collection will override the message species.
In particular, an Interval responds that its species is Array (because it is
not possible to modify an Interval); the species of a MappedCollection is
the species of the collection it maps (since the MappedCollection is sim-
ply acting as an accessor for that collection).

If a collection cannot create an instance by simply sending the class
the message new, it must reimplement messages collect: and select.
Since reject: is implemented in terms of select, it need not be
reimplemented.

The method for injectinto: evaluates the block argument once for
each element in the receiver. The block is also provided with its own
value from each previous evaluation; the initial value is provided as the
argument of inject.. The final value of the block is returned as the value
of the inject:into: message.

217
Class Collection

The reason for the introduction of two messages, detect: and
detect:ifNone:, is similar to the reason for the two removing messages,
remove: and remove:ifAbsent.. The general case (detect:) reports an er-
ror if no element meeting the detection criterion is found; the program-
mer can avoid this error report by specifying an alternative exception
(detect:ifNone:).

[] Collection converting protocol The protocol for converting from any
collection into a Bag, Set, OrderedCollection, or SortedCollection is
implemented in a straightforward way-—create a new instance of the
target collection, then add to it each element of the receiver. In most
cases, the new instance is the same size as the original collection. In the
case of OrderedCollections, elements are added at the end of the se-
quence (addLast), regardless of the order of enumerating from the
source.

converting

asBag
| aBag |
aBag — Bag new.
self do: [:each | aBag add: each].
taBag

asOrderedCollection
| anOrderedCollection |
anOrderedCollection « OrderedCollection new: self size.
self do: [:each | anOrderedCollection addLast: each].
tanOrderedCollection

asSet
| aSet |
aSet — Set new: self size.
self do: [:each | aSet add: each].
taSet

asSortedCollection
| aSoriedCollection |
aSortedCollection « SortedCollection new: self size.
aSortedCollection addAll: self.
taSortedCollection

asSortedCollection: aBlock
| aSortedCollection |
aSortedCollection — SortedCollection new: self size.
aSortedCollection sortBlock: aBlock.
aSortedCollection addAll: self.
TaSortedCollection

218

Implementation of the Basic Collection Protocol

[] Collection printing protocol The implementations of the printOn:
and storeOn: messages in Object are overridden in Collection. Collec-
tions print in the form

className (element element element)

Collections store themselves as an expression from which an equal col-
lection can be constructed. This takes the form of

((className new})
or
((className new) add: element; yourseif)
or
((className new) add: element; add: element; yourself)

with the appropriate number of cascaded messages for adding each ele-
ment, depending on whether the collection has no, one, or more ele-
ments. The message yourself returns the receiver of the message. It is
used in cascaded messages to guarantee that the result of the cascaded
message is the receiver. All objects respond to the message yourself; it is
defined in class Object.

The general methods for printing and storing are

printing

printOn: aStream

| tooMany |
tooMany — aStream position + self maxPrint.
aStream nextPutAll: self class name, “(’.
self do:

[:element |

aStream position > tooMany

ifTrue: [aStream nextPutAll: “..etc...) . tself].

element printOn: aStream.

aStream space].
aStream nextPut: $)

storeOn: aStream

| noneYet |
aStream nextPutAll: “ (.
aStream nextPutAll: self class name.
aStream nextPutAll: ‘new)’.
noneYet « true.
self do:

[:each |

noneYet

ifTrue: [noneYet — false]

219
Subclasses of Collection

ifFalse: [aStream nextPut: $;].
aStream nextPutAll: “add:”.
aStream store: each].
noneYet ifFalse: [aStream nextPutAll: *; yourself'].
aStream nextPut: $)

private

maxPrint
15000

These methods make use of instances of a kind of Stream that acts as
an accessor for a String. The method printOn: sets a threshold for the
length of the String to be created; a long collection may print as

className (element element ...etc...)

The threshold is determined as the response to the message maxPrint
which is set at 5000 characters. Subclasses can override the private
message maxPrint in order to modify the threshold.

Note that this technique of using a method rather than a variable is
a way of providing a parameter in a method. A variable cannot be used
as the parameter because the variable, to be accessible to all instances,
would have to be a class variable. Subclasses cannot specify a class vari-
able whose name is the same as a class variable in one of its
superclasses; thus if a subclass wants to change the value of the vari-
able, it will do so for instances of its superclass as well. This is not the
desired effect.

The printing format is modified in several subclasses. Array does not
print its class name; Intervals print using the shorthand notation of the
messages to: and to:by: to a Number. A Symbol prints its characters
(without the # prefix of the literal form of a Symbol); a String prints its
characters delimited by single quotes.

The storeOn: message is reimplemented in ArrayedCollection and sev-
eral of its subclasses because instances are created using new: aninteger
rather than simply new. Arrays, Strings, and Symbols store in their lit-
eral forms. Intervals use the shorthand notation of messages to: and
to:by:. MappedCollections store using the converting message mappedBy:
that is sent to the collection that is indirectly accessed.

Subclasses of
Collection

For each subclass of Collection, we show the methods that implement
the three required messages (add:, remove:ifAbsent:;, and do:) and the
messages in the adding, removing, testing, and enumerating protocols

220

Implementation of the Basic Collection Protocol

Class Bag

that are reimplemented. New collection protocol for a particular sub-
class as specified in Chapter 9 will generally not be presented in this
chapter.

Bag represents an unordered collection in which an element can appear
more than once. Since the elements of Bags are unordered, the mes-
sages at: and at:put: are reimplemented to report an error.

Instances of Bag have an instance of Dictionary as a single instance
variable named contents. Each unique element of a Bag is the key of an
Association in contents; the value of an Association is an Integer repre-
senting the number of times the element appears in the Bag. Removing
an element decrements the tally; when the tally falls below 1, the Asso-
ciation is removed from contents. Bag implements new, size, includes:,
and occurrencesOf:. A new instance must initialize its instance variable
to be a Dictionary. The reimplementation of size is made efficient by
summing all the values of elements of contents. The arguments of the
testing messages are used as keys of contents. In implementing in-
cludes:, the responsibility for checking is passed to contents. In order to
answer the query occurrencesOf: anObject, the method checks that
anObject is included as a key in contents and then locks up the value
(the tally) associated with it.

class name Bag
superclass Coliection
instance variable names contents

class methods
instance creation

new
tsuper new setDictionary

instance methods
accessing

at: index
self errorNotKeyed
at: index put: anObject
self errorNotKeyed
size
| tally { .
fally « 0
contents do: [:each | tally « tally + each].
Hally

testing

includes: anObject
tcontents includesKey: anObject

221
Subclasses of Collection

occurrencesOf: anObject
(self includes: anObject)
ifTrue: [Toontents at: anObject]
ifFalse: [10]

private

setDictionary
contents — Dictionary new

(in Collection)
private

errorNotKeyed
self error:
self class name, “s do not respond to keyed accessing messages”’

To add an element is to add it once, but Bags can add multiple times.
The implementation of add: calls on add:withOccurrences:. Removing an
element checks the number of occurrences, decrementing the tally or
removing the element as a key in contents if the tally is less than 1.

adding

add: newObject
Tself add: newObject withOccurrences: 1

add: newObject withOccurrences: aninteger
contents at: newObject
put: aninteger + (self occurrencesOf: newObiject).
TnewObject

removing

remove: oldObject ifAbsent: exceptionBlock
| count |
count « self occurrencesOf: oldObject.
count = O ifTrue: [TexceptionBlock value].
count = 1
ifTrue: [contents removeKey: oldObject]
ifFalse: [contents at: oldObject put: count —1]].
toldObject

Enumerating the elements of a Bag means selecting each element of
the Dictionary and evaluating a block with the key of that element (.e.,
the actual Bag element is the key of the Dictionary). This has to be done
multiple times, once for each occurrence of the element, as indicated by
the value associated with the key.

222

Implementation of the Basic Collection Protocol

Class Set

enumerating

do: aBlock
contents associationsDo:
[:assoc | assoc value timesRepeat: [aBlock value: assoc keyl]]

The elements of Sets are unordered like those of Bags, so the messages
at: and at:put: produce an error report. A Set may not contain an ele-
ment more than once, therefore, every insertion of an element must, in
theory, check the entire collection. To avoid searching all elements, a
Set determines where in its indexed instance variables to start a search
for a particular element by using a hashing technique.

Each Set has an instance variable named tally. Maintaining this tally
of the number of elements avoids the inefficiencies involved in deter-
mining the size of the Set by counting every non-nil element. Thus new,
new:, and size are reimplemented; the first two in order to initialize the
variable taily and the last simply to respond with the value of tally.

class name Set
superclass Collection
instance variable names tally

class methods
instance creation

new
Tself new: 2
new: aninteger
t(super new: aninteger) setTally

instance methods
accessing

at: index
self errorNotKeyed
at: index put: anObject
self errorNotKeyed
size
Ttally

private

setTally
tally « 0

In the method for new:, super is used in order to avoid recursion. A pri-
vate message of Set, findElementOrNil;, hashes the argument to produce
the index at which to begin the probe of the Set. The probe proceeds
until the argument, anObject, is found, or until nit is encountered. The

223
Subclasses of Collection

response is the index of the last position checked. Then the testing mes-
sages are implemented as

testing

includes: anObject
t(self basicAt: (self findElementOrNil: anObject)) ~~ nil
occurrencesOf: anObject
(self includes: anObject)
ifTrue: [11]
ifFalse: [10]

The number of occurrences of any element in the Set is never more
than 1. The three basic messages must make use of basicAt: and
basicAt:put: because Sets report an error if at: or at:put: is used.

adding

add: newObject
| index |
newObject isNil if True: [TnewObject].
index — self findElementOrNil: newGbject.
(self basicAt: index) isNil
ifTrue: [self basicAt: index put: newObiject. tally < tally + 1].
TnewObject

removing

remove: oldObject ifAbsent: aBlock
| index |
index « self find: oldObject ifAbsent: [TaBlock value].
self basicAt: index put: nil.
tally < tally — 1.
self fixCollisionsFrom: index.
ToldObject

enumerating

do: aBlock
1 to: self basicSize do:
[:index |
(self basicAt: index) isNil
ifFalse: [aBlock value: (self basicAt: index)]]

The private message find:ifAbsent: calls on findElementOrNil; if the ele-
ment, oldObject, is not found, the argument aBlock is evaluated. In or-
der to guarantee that the hashing/probing technique works properly,
remaining elements might need to be compacted whenever one is re-
moved (fixCollisionsFrom:). These methods are good examples of when
the accessing messages basicAt, basicAt:put;, and basicSize must

be used.

224

Implementation of the Basic Collection Protocol

Class Dictionary

A Dictionary is a collection of Associations. Class Dictionary uses a
hashing technique to locate its elements which is like that of its super-
class, Set, but hashes on the keys in the Associations instead of on the
Associations themselves. Most of the accessing messages for Dictionary
are reimplemented to treat the values of the Associations as the ele-
ments, not the Associations themselves.

Dictionary implements at: and at:put:, but redefines the argument as-
sociated with the keyword at: to be any key in the Dictionary (not neces-
sarily an Integer index). The argument of includes: is the value of one of
the Associations in the Dictionary, not one of the Associations them-
selves. The message do: enumerates the values, not the Associations.
The argument to remove: is also a value, but this is an inappropriate
way to delete from a Dictionary because elements are referenced with
keys. Either removeAssociation: or removeKey: should be used. Thus the
messages remove: and remove:ifAbsent: should not be implemented for
Dictionary.

Much of the work in the accessing protocol is done in private mes-
sages, either those inherited from Set or similar ones for finding a key
(findKeyOrNil:).

class name Dictionary
superclass Set
instance methods

accessing

at: key
tself at: key ifAbsent: [self errorKeyNotFound]
at: key put: anObject
| index element |
index « self findKeyOrNil: key.
element « self basicAt: index.
element isNil
ifTrue:
[self basicAt: index put: (Association key: key value: anObject).
fally « tally + 1]
“element is an Association. The key already exists, change its
value.”
ifFalse:
[element value: anObject].
tanObject
at: key ifAbsent: aBlock
| index |
index «— self findKey: key ifAbsent: [taBlock value].
1(self basicAt: index) value

225
Subclasses of Collection

testing

includes: anObject
" Revert to the method used in Collection.”
self do: [;:each | anObject = each ifTrue: [Ttrue]].
Tfalse

adding

add: anAssociation
| index element |
index « self findKeyOrNil: anAssociation key.
element « self basicAt: index.
element isNil
ifTrue: [self basicAt: index put: anAssociation.
tally « tally + 1]
ifFalse: [element value: anAssociation value].
tanAssociation

removing

remove: anObject ifAbsent: aBlock
self shouldNotimplement

enumerating

do: aBlock
self associationsDo: [:assoc | aBlock value: assoc value]

private

errorKeyNotFound
self error: “ key not found”’

Notice the similarity between at:put: and add:. The difference is in the
action taken if the element is not found—in the case of at:put:, a new
Association is created and stored in the Dictionary; in the case of add;,
the argument, anAssociation, is stored so that any shared reference to
the Association is preserved.

The message collect: is reimplemented in order to avoid the problems

of collecting possibly identical values into a Set which would result in
throwing away duplications. The message select: is reimplemented in
order to select Associations by applying their values as the arguments
to the block.

enumerating

collect: aBlock
| newCollection |
newCollection ~ Bag new.
self do: [:each | newCollection add: (aBlock value: each)].
tnewCollection

226

Implementation of the Basic Collection Protocol

Sequenceable-
Collections

select: aBlock
| newColliection |
newCollection — self species new.
self associationsDo:
[:each |
{aBlock value: each value) ifTrue: [newCollection add: each]].
TnewCollection

IdentityDictionary overrides at:, at:put;, and add: in order to implement
checking for identical keys instead of equal keys. An |dentityDictionary is
implemented as two parallel ordered collections of keys and values,
rather than as a single collection of Associations. Thus do: must also be
reimplemented. The implementation is not shown.

SequenceableCollection is the superclass for all collections whose ele-
ments are ordered. Of the messages we are examining, remove:ifAbsent:
is specified as being inappropriate for SequenceableCollections in gen-
eral, since the order of elements might have been externally specified
and it is assumed that they should be removed in order. Because
SequenceableCollections are ordered, elements are accessed using at;
the implementation is provided in class Object. The message do: is
implemented by accessing each element at index 1 through the size of
the collection. SequenceableCollections are created using the message
new.. Therefore, collect: and select: must be reimplemented to create
the new collection using new: rather than new. The methods for coilect:
and select: shown next use a WriteStream in order to access the new col-
lection, and the message at: in order to access elements of the original
collection.

class name SequenceableCollection
superclass Collection
instance methods

accessing

size
self subclassResponsibility

removing

remove: oldObject ifAbsent: anExceptionBlock
self shouldNotimplement

enumerating

do: aBlock
| index length |
index « C.
length « self size.

227
Subclasses of Collection

[(index « index + 1) <= length]

whileTrue: [aBlock value: (self at: index)]

collect: aBlock

| aStream index length |
aStream ~ WriteStream on: (self species new: self size).
index < O.
length « self size.
[(index « index + 1) <= length]

whileTrue; [aStream nextPut: (aBlock value: (self at: index))].
TaStream contents

select: aBlock

| aStream index length |
aStream ~ WriteStream on: (self species new: self size).
index ~ 0.
length « self size.
[(index « index + 1) <= length]

whileTrue:

[(aBlock value: (self at; index))
ifTrue: [aStream nextPut: (self at: index)]].

TaStream contents

Notice that size is declared as a subclass responsibility in
SequenceableCollection. The method inherited from the superclass Col-
lection uses do: to enumerate and thereby count each element. But the
method for do: as specified in SequenceableCollection determines the
limit for indexing by requesting the size of the collection. Therefore,
size must be reimplemented in order not to be stated in terms of do:.

[] Class LinkedList Elements of LinkedList are instances of Link or of

Subclasses of one of its subclasses. Each LinkedList has two instance variables, a ref-
Sequer)ceable- erence to the first and to the last elements. Adding an element is as-
Collection sumed to be interpreted as adding to the end (addLast:); the method for

addLast: is to make the element the next link of the current last link.
Removing an element means that the element’s preceding link must
reference the element’s succeeding link (or nil). If the element to be re-
moved is the first one, then its succeeding link becomes the first one.

class name LinkedList
superclass SequenceableCollection
instance variable names firstLink
lastLink
instance methods
accessing
at: index

| count element size |
count « 1.

228
Implementation of the Basic Collection Protocol

element « self first.
size « self size,
[count > size] whileFalse:
[count = index
ifTrue: [telement]
ifFalse: [count « count + 1,
element « element nextlink]].
Tself errorSubscriptBounds: index
at: index put: element

self error: “ Do not store into a LinkedList using at:put;’

adding

add: aLink
Tself addLast: alink
addLast: aLink
self isEmpty
ifTrue: [firstLink — alink]
ifFalse: [lastLink nextlLink: alink].
lastLink < alink.
talink

removing

remove: aLink ifAbsent: aBlock
| tempLink |
alink == firstLink
ifTrue:
[firstLink « alLink nextLink.
alink == lastLink ifTrue: [lastLink —nil]]
ifFalse:
[tempLink « firstLink.
[tempLink isNil ifTrue: [TaBlock value].
tempLink nextLink == alink]
whileFalse: [templink « tempLink nextLink].
tempLink nextLink: aLink nextLink.
alink == lastLink ifTrue: [lastLink — templink]].
alink nextLink: nil.
talink

enumerating

do: aBlock
I alink |
aLink « firstLink.
[aLink isNil] whileFalse:
[aBlock value: aLink.
aLink « alink nextlLink]

229
Subclasses of Collection

A nil link signals the end of the LinkedList. Thus the enumerating mes-
sage do: is implemented as a simple loop that continues until a nil is en-
countered in the collection.

[] Class Interval Intervals are SequenceableCollections whose ele-
ments are computed. Therefore, messages for adding and removing can-
not be supported. Since elements are not explicitly stored, all accessing
(at:, size, and do:) requires a computation. Each method checks to see if
the last element computed is to be incremented (positive step) or
decremented (negative step) in order to determine whether the limit
(stop) has been reached.

class name Interval
superclass SequenceableCollection
instance variable names start

stop

step

class methods
instance creation

from: startinteger to: stopinteger
1self new
setFrom: startinteger
to: stopinteger
by: 1
from: startinteger to: stopinteger by: stepinteger
Tself new
setFrom: startinteger
to: stoplnteger
by: stepinteger

instance methods
accessing

size
step < O
ifTrue: [start < stop
ifTrue: [10]
ifFalse: [1stop — start // step + 1]]
ifFalse: [stop < start
ifTrue: [10]
ifFalse: [1stop — start // step + 1]]
at: index
(index > = 1 and: [index <= self size))
ifTrue: [tstart + (step * (index — 1))]
ifFalse: [self errorSubscriptBounds: index]

230
Implementation of the Basic Collection Protocol

at: index put: anObject
self error: “you cannot store into an Interval ’

adding

add: newObject
self error: " elements cannot be added to an Interval”’

removing

remove: newObject
self error: * elements cannot be removed from an Interval’

enumerating

do: aBlock
| aValue |
aValue « start.
step < O
ifTrue: [[stop <= aValue]
whileTrue: [aBlock value: aValue.
aValue « aValue + stepl]]
ifFalse: [[stop > = aValue]
whileTrue: [aBlock value: aValue.

aValue « aValue + step]]
collect: aBlock
| nextvValue i result |
result « self species new: self size.
nextValue « start.
= 1.
step < 0
ifTrue: [[stop <= nextValue]
whileTrue:
[result at: i put: (aBlock value: nextValue).
nextValue « nextValue + step.
i—i+ 1]
ifFalse: [[stop > = nextValue]
whileTrue:
[result at: i put: (aBlock value: nextValue).
nextValue « nextValue + step.
P~ i+ 1]
Tresult

private

setFrom: startinteger to: stopinteger by: stepinteger
start — startinteger.
stop « stopinteger.
step « stepinteger

231
Subclasses of Collection

[] ArrayedCollections—Array, ByteArray, String, Text, and Symbol
ArrayedCollection is a subclass of SequenceableCollection; each
ArrayedCollection is a variable-length object. All instance creation
methods are reimplemented to use new:, not new. ArrayedCollections are
fixed-length so add: is disallowed; in its superclass, remove: was already
disallowed and do: was implemented. Only size, therefore, is
implemented in ArrayedCollection—it is a system primitive that reports
the number of indexed instance variables.

Of the subclasses of ArrayedCollection, Array, and ByteArray do not
reimplement any of the messages we are examining in this chapter.
Accessing messages for String—at:, at:put;, and size—are system primi-
tives; in Text, all accessing messages are passed as messages to the in-
stance variable string (which is an instance of String). Symbol disallows
at:put: and returns String as its species.

[[] OrderedCollections and SortedCollections OrderedCollection stores
an ordered, contiguous sequence of elements. Since OrderedCollections
are expandable, some efficiency is gained by allocating extra space for
the sequence. Two instance variables, firstindex and lastindex, point to
the first and the last actual elements in the sequence.

The index into OrderedCollection is converted to be within the range
of firstindex to lastindex for accessing messages (at: and at:put:) and the
size is simply one more than the difference between the two indices.
Adding an element is interpreted to be adding to the end; if there is no
room at the end, the collection is copied with additional space allocated
(makeRoomAtLast is the private message that does this work). The actu-
al location for storing an element is the computed index position after
lastindex. If an element is removed, then the remaining elements must
be moved up so that elements remain contiguous (removeindex:).

class name OrderedCollection
superclass SequenceableCollection
instance variable names firstindex

lastindex

class methods
instance creation

new
tself new: 10
new: aninteger
t(super new: anlnteger) setindices

instance methods
accessing

size
tlastindex — firstindex + 1

232
Implementation of the Basic Collection Protocol

at: aninteger
{aninteger < 1 or: [aninteger + firstindex — 1 > lastindex])
ifTrue: [self errorNoSuchElement]
ifFalse: [tsuper at: aninteger + firstindex — 1}
at: aninteger put: anObject
| index |
index « anlnteger truncated.
(index < 1 or: [index -+ firstindex — 1 > lastindex])
ifTrue: [self errorNoSuchElement]
ifFalse: [tsuper at: index + firstindex — 1 put: anObject]

adding

add: newObject
tself addlast: aLink
addLast: newObject
lastindex = self basicSize ifTrue: [self makeRoomAtLast].
lastindex « lastindex + 1.
self basicAt: lastindex -put: newObject.
TnewObject

removing

remove: oldObject ifAbsent: absentBlock
| index |
index « firstindex.
[index <= lastindex]
whileTrue:
[oldObject = (self basicAt: index)
ifTrue: [self removelndex: index.
toldObject]
ifFalse: [index '« index + 1]].
tabsentBlock value

private

setindices
firstindex « self basicSize // 2 max: 1.
lastindex — firstindex — 1 max: 0
errorNoSuchElement
self error:
" attempt to index non-existent element in an ordered collection

The enumerating messages do:;, collect;, and select: are each
reimplemented —do: in order to provide better performance than the
method provided in SequenceableColiection.

Class
MappedCollection

233
Subclasses of Coliection

enumerating

do: aBlock
| index |
index — firstindex.
[index <= lastindex]
whileTrue:
[aBlock value: (self basicAt: index).
index « index + 1]
collect: aBlock
| newCollection |
newCollection « self species new.
self do: [:each | newCollection add: (aBlock value: each)].
tnewCollection
select: aBlock
| newCollection |
newCollection — self copyEmpty.
self do: [:each | (aBlock value: each) ifTrue: [newCollection add: each]].
TnewCollection

In the method for select:, the new collection is created by sending the
original collection the message copyEmpty. This message creates a new
collection with enough space allocated to hold all the elements of the
original, although all the elements might not be stored. In this way,
time taken in expanding the new collection is avoided.

SortedCollection is a subclass of OrderedCollection. The message
at:put: reports an error, requesting the programmer to use add:; add: in-
serts the new element according to the value of the instance variable
sortBlock. The determination of the position for insertion is done as a
“bubble sort.” collect: is also reimplemented to create an
OrderedCollection rather than a SortedColiection for collecting the val-
ues of the block. The code is not shown; a bubble sort looks the same in
Smalltalk-80 as it would in most programming languages.

Instances of MappedCoilection have two instance variables—domain
and map. The value of domain is either a Dictionary or a
SequenceableCollection; its elements are accessed indirectly through
map. The message add: is disallowed. Both at: and at:put: are
reimplemented in MappedCollection in order to support the indirect ac-
cess from map to the elements of domain. The size of a
MappedCollection is the size of its domain.

class name MappedCollection
superclass Collection
instance variable names domain

map

234

Implementation of the Basic Collection Protocol

class methods

instance creation

collection: domainCollection map: mapCollection

Tsuper new setCollection: docmainCollection map: mapCollection
new

self error: " use collection:map: to create a MappedCcllection”

instance methods

accessing

at: anindex
tdomain at: (map at: anindex)
at: anindex put: anObject
tdomain at: (map at: anindex) put: anObject
size
tmap size
adding

add: newObject
self shouldNotimptement

enumerating

do: aBlock
map do:
[:mapVaiue | aBlock value: (domain at: mapValue)]
collect: aBlock
| aStream |
aStream « WriteStream on: (self species new: self size).
self do: [:domainvalue |
aStream nextPut: (aBlock value: domainValue)].
TaStream contents
select: aBlock
[aStream |
aStream « WriteStream on: (self species new: self size).
self do:
[:domainValue |
(aBlock value: domainValue)
ifTrue: [aStream nextPut: domainValue]].
TaStream contents

private

setCollection: domainCollection map: mapCollection
domain « domainCollection.
map « mapCollection

species
tdomain species

Kernel Support Classes

Class UndefinedObject
Classes Boolean, True, and False

Additional Protocol for Class Object
Dependence Relationships Among Objects
Message Handling

System Primitive Messages

Object

Magnitude
Character
Date
Time

Number
Float
Fraction
Integer

argeNegativelnteger
LargePositiveinteger

Smaliinteger

LookupKey
Association

Link
Process
Collection

SequenceableCollection
LinkedList

Semaphore

ArrayedCollection
Array

Bitmap
DisplayBitmap

RunArray
String
Symbol
Text
ByteArray

Interval
OrderedCollection
SortedCollection
Bag
MappedCollection
Set

Dictionary
IdentityDictionary

Stream
PositionableStream
ReadStream
WriteStream
ReadWriteStream
ExternalStream
FileStream

Random

File
FileDirectory
FilePage

ProcessorScheduler
Delay
SharedQueue

Behavior
ClassDescription
Class
MetaClass

Point

Rectangle

BitBit
CharacterScanner

Pen

DisplayObject
DisplayMedium
Form
Cursor
DisplayScreen
InfiniteForm
OpaqueForm
Path
Arc
Circle
Curve
Line
LinearFit
Spline

237
Class UndefinedObject

Class
UndefinedObject

The object nil represents a value for uninitialized variables. It also rep-
resents meaningless results. It is the only instance of class
UndefinedObject.

The purpose of including class UndefinedObject in the system is to
handle error messages. The typical error in evaluating Smalltalk-80 ex-
pressions is that some object is sent a message it does not understand.
Often this occurs because a variable is not properly initialized—in
many cases, the variable name that should refer to some other object
refers to nil instead. The error message is of the form

className does not understand messageSelector

where className mentions the class of the receiver and
messageSelector is the selector of the erroneously-sent message.

Note, if nil were an instance of Object, then a message sent to it in
error would state

Object does not understand messageSelector

which is less explicit than stating that an undefined object does not un-
derstand the message. At the price of a class description, it was possible
to improve on the error message.

Tests to see if an object is nil are handled in class Object, but
reimplemented in UndefinedObject. In class Object, messages isNil and
notNil are implemented as

isNil
tfalse

notNil
ftrue

In class UndefinedObject, messages isNil and notNil are implemented as
isNil
Ttrue

notNil
tfalse

so that no conditional test in Object is required.

Classes Boolean,
True, and False

Protocol for logical values is provided by the class Boolean; logical val-
ues are represented by subclasses of Boolean—True and False. The
subclasses add no new protocol; they reimplement many messages to

238

Kernel Support Classes

have better performance than the methods in the superclass. The idea
is similar to that in testing for nil in Object and UndefinedObject; true
knows that it represents logical truth and false knows that it represents
logical falsehood. We show the implementation of some of the control-

ling protocol to illustrate this idea.

The logical operations are

Boolean instance protocol

logical operations
& aBoolean

| aBoolean
not-
eqv: aBoolean

xor. aBoolean

Evaluating conjunction. Answer true if both
the receiver and the argument are true.

Evaluating disjunction. Answer true if either
the receiver or the argument is true.

Negation. Answer true if the receiver is false,
answer false if the receiver is true.

Answer true if the receiver is equivalent to the
argument, aBoolean.

Exclusive OR. Answer true if the receiver is
not equivalent to aBoolean.

These conjunction and disjunction operations are “evaluating”—this
means that the argument is evaluated regardless of the value of the re-
ceiver. This is in contrast to and: and or: in which the receiver deter-
mines whether to evaluate the argument.

Boolean instance protocol

controlling
and: alternativeBlock

or: alternativeBlock

Nonevaluating conjunction. If the receiver is
true, answer the value of the argument; other-
wise, answer false without evaluating the ar-
gument.

Nonevaluating disjunction. If the receiver is
false, answer the value of the argument; oth-
erwise, answer true without evaluating the ar-
gument.

ifTrue: trueAlternativeBlock ifFalse: falseAlternativeBlock

Conditional statement. If the receiver is true,
answer the result of evaluating
trueAiternativeBlock; otherwise answer the re-
sult of evaluating falseAlternativeBlock.

ifFalse: falseAlternativeBlock ifTrue: trueAlternativeBlock

if True: trueAlternativeBlock

ifFalse: falseAlternativeBlock

Conditional statement. If the receiver is true,
answer the result of evaluating
trueAlternativeBlock; otherwise answer the re-
sult of evaluating falseAlternativeBlock.

Conditional statement. If the receiver is true,
answer the result of evaluating
trueAlternativeBlock; otherwise answer nil.

Conditional statement. If the receiver is false,

answer the result of evaluating
falseAlternativeBlock; otherwise answer nil.

239
Additional Protocol for Class Object

The arguments to and: and or: must be blocks in order to defer evalua-
tion. Conditional statements are provided as messages ifTrue:ifFalse;,
ifFalse:ifTrue:, ifTrue:, and ifFalse:, as already specified and exemplified
throughout the previous chapters. The messages are implemented in
the subclasses of class Boolean so that the appropriate argument block
is evaluated.

In class True, the methods are

ifTrue: trueAlternativeBlock ifFalse: falseAlternativeBlock
TtrueAlternativeBlock value

ifFalse: falseAlternativeBlock ifTrue: trueAlternativeBlock
TtrueAlternativeBlock value

ifTrue: trueAlternativeBlock
TtrueAlternativeBlock value

ifFalse: falseAlternativeBlock
Tnil

In class False, the methods are

ifTrue: trueAlternativeBlock ifFalse: falseAlternativeBlock
MfalseAlternativeBlock value

ifFalse: falseAlternativeBlock ifTrue: trueAlternativeBlock
TfalseAlternativeBlock value

ifTrue: trueAlternativeBlock
il

ifFalse: falseAlternativeBlock
tfalseAlternativeBlock value

If x is 3, then
X > 0 ifTrue: [x « x — 1] ifFalse: [x « x + 1]

is interpreted as x> 0 evaluates to true, the sole instance of class True; the
method for ifTrueifFalse: is found in class True, so the block [x « x — 1]
is evaluated without further testing.

In this way, the message lookup mechanism provides an effective im-
plementation of conditional control with no additional primitive opera-
tions or circular definitions.

Additional
Protocol for
Class Object

Protocol for class Object, shared by all objects, was introduced in
Chapter 6. Several categories of messages were not included in that
early discussion. Most of these are part of Object’s protocol to provide
system support for message handling, dependence relationships,
primitive message handling, and system primitives.

240

Kernel Support Classes

Dependence
Relationships
Among Objects

Information in the Smalltalk-80 system is represented by objects. The
variables of objects themselves refer to objects; in this sense, objects are
explicitly related or dependent on one another. Classes are related to
their superclasses and metaclasses; these classés share external and in-
ternal descriptions and are thereby dependent on one another. These
forms of dependency are central to the semantics of the Smalltalk-80
language. They coordinate descriptive information among objects.

An additional kind of dependency is supported in class Object. Its
purpose is to coordinate activities among different objects. Specifically,
its purpose is to be able to link one object, say A, to one or more other
objects, say B, so B can be informed if A changes in any way. Upon be-
ing informed when A changes and the nature of the change, B can de-
cide to take some action such as updating its own status. The concept of
change and update, therefore, are integral to the support of this third
kind of object dependence relationship.

The protocol in class Object is

Object instance protocol

dependents access

addDependent: anObject Add the argument, anObject, as one of the re-
ceiver’s dependents.

removeDependent: anObject Remove the argument, anObject, as one of the
receiver’s dependents.

dependents Answer an OrderedCollection of the objects
that are dependent on the receiver, that is,
the objects that should be notified if the re-
ceiver changes.

release Remove references to objects that may refer
back to the receiver. This message is
reimplemented by any subclass that creates
references to dependents; the expression super
release is included in any such
reimplementation.

change and update
changed The receiver changed in some general way; in-
form all the dependents by sending each de-
pendent an update: message.

changed: aParameter) The receiver changed; the change is denoted
by the argument, aParameter. Usually the ar-
gument is a Symbol that is part of the depen-
dent’s change protocol; the default behavior is
to use the receiver itself as the argument. In-
form all of the dependents.

update: aParameter An object on whom the receiver is dependent
has changed. The receiver updates its status
accordingly (the default behavior is to do
nothing).

broadcast: aSymbol Send the argument, aSymbol, as a unary mes-
sage to all of the receiver’s dependents.

241
Additional Protocol for Class Object

broadcast: aSymbol with: anObject
Send the argument, aSymbol, as a keyword
message with argument, anObject, to all of the
receiver’s dependents.

Take, as an example, the objects that model traffic lights. A typical
traffic light at a street corner is an object with three lights, each a dif-
ferent color. Only one of these lights can be ON at a given moment. In
this sense, the ON-OFF status of each of the three lights is dependent on
the status of the other two. There are a number of ways to create this
relationship. Suppose we create the class Light as follows.

class name
superclass
instance variable names

Light
Object
status

class methods
instance creation

setOn

Tself new setOn
setOff

1self new setOff

instance methods
status

turnOn
self isOff
ifTrue: [status « true. self changed]
turnOff
self isOn
ifTrue: [siatus ~ false]

testing

isOn

Tstatus
isOff

Tstatus not

change and update

update: aLight
alight == self ifFalse: [self turnOff]

private

setOn

status « true
setOff

status « false

242

Kernel Support Classes

The model is very simple. A Light is either on or off, so a status flag is
kept as an instance variable; it is true if the Light is on, false if the Light
is off. Whenever a Light is turned on (turnOn), it sends itself the changed
message. Any other status change is not broadcast to the dependents on
the assumption that a Light is turned off in reaction to turning on an-
other Light. The default response to changed is to send all dependents
the message update: self (i.e., the object that changed is the argument to
the update: message). Then update: is implemented in Light to mean
turn off. If the parameter is the receiver, then, of course, the update: is
ignored.

The class TrafficLight is defined to set up any number of coordinated
lights. The instance creation message with: takes as its argument the
number of Lights to be created. Each Light is dependent on all other
Lights. When the TrafficLight is demolished, the dependencies among its
Lights are disconnected (the message inherited from class Object for
disconnecting dependents is release; it is implemented in TrafficLight in
order to broadcast the message to all Lights).

class name TrafficLight
superclass Object
instance variable names lights

class methods
instance creation

with: numberOfLights
tself new lights: numberOfLights

instance methods

Operate

turnOn: lightNumber
(lights at: lightNumber) turnOn

initialize-release

release
super release.
lights do: [:eachlight | eachlight release].
fights « nil

private

lights: numberOfLights
lights — Array new: (numberQOfLights max: 1}.
lights at: 1 put: Light setOn.
2 to: numberOfLights do:
[:index | lights at: index put: Light setOff].

Message Handling

243
Additional Protocol for Class Object

lights do:
[:eachlight |
lights do:
[:dependentLight |
eachlight ~~ dependentlLight
ifTrue: [eachLight addDependent: dependentLight]]]

The private initialization method is lights: numberOfLights. Each light is
created turned off except for the first light. Then each light is connect-
ed to all the other lights (using the message addDependent:). The simu-
lated TrafficLight operates by some round robin, perhaps timed,
sequencing through each light, turning it on. A simple example shown
below creates the TrafficLight with the first light on, and then turns on
each of the other lights, one at a time. A simulation of a traffic corner
might include different models for controlling the lights.

trafficLight — TrafficLight with: 3.
trafficLight turnOn: 2.
trafficLight turnOn: 3

The message turnOn: to a TrafficLight sends the message turnOn to the
designated Light. If the Light is currently off, then it is set on and the
message changed sent. The message changed sends update: to each de-
pendent Light; if a dependent light is on, it is turned off.

A particularly important use of this dependency protocol is to sup-
port having multiple graphical images of an object. Each image is de-
pendent on the object in the sense that, if the object changes, the image
must be informed so that it can decide whether the change affects the
displayed information. The user interface to the Smalltalk-80 system
makes liberal use of this support for broadcasting notices that an object
has changed; this is used to coordinate the contents of a sequence of
menus of possible actions that the user can take with respect to the
contents of information displayed on the screen. Menus themselves can
be created by linking possible actions together, in a way similar to the
way we linked together the traffic lights.

All processing in the Smalltalk-80 system is carried out by sending
messages to objects. For reasons of efficiency, instances of class Mes-
sage are only created when an error occurs and the message state must
be stored in an accessible structure. Most messages in the system,
therefore, do not take the form of directly creating an instance of Mes-
sage and transmitting it to an object.

In some circumstances, it is useful to compute the message selector
of a message transmission. For example, suppose that a list of possible
message selectors is kept by an object and, based on a computation, one
of these selectors is chosen. Suppose it is assigned as a value of a vari-
able selector. Now we wish to transmit the message to some object, say,

244

Kernel Support Classes

to receiver. We can not simply write the expression as

receiver selector

because this means—send the object referred to by receiver the unary
message selector. We could, however, write

receiver perform: selector

The result is to transmit the value of the argument, selector, as the
message to receiver. Protocol to support this ability to send a computed
message to an object is provided in class Object. This protocol includes
methods for transmitting computed keyword as well as unary messages.

Object instance protocol

message handling
perform: aSymbol

perform: aSymbol with: anObject

Send the receiver the unary message indicated
by the argument, aSymbol. The argument is
the selector of the message. Report an error if
the number of arguments expected by the se-
lector is not zero.

Send the receiver the keyword message indi-
cated by the arguments. The first argument,
aSymbol, is the selector of the message. The
other argument, anObject, is the argument of
the message to be sent. Report an error if the
number of arguments expected by the selector
is not one.

perform: aSymbol with: firstObject with: secondObiject

Send the receiver the keyword message indi-
cated by the arguments. The first argument,
aSymbol, is the selector of the message. The
other arguments, firstObject and secondObject,
are the arguments of the message to be sent.
Report an error if the number of arguments
expected by the selector is not two.

perform: aSymbol with: firstObject with: secondObject with: thirdObject

Send the receiver the keyword message indi-
cated by the arguments. The first argument,
aSymbol, is the selector of the message. The
other arguments, firstObject, secondObiject,
and thirdObject, are the arguments of the mes-
sage to be sent. Report an error if the number
of arguments expected by the selector is not
three.

perform: selector withArguments: anArray

Send the receiver the keyword message indi-
cated by the arguments. The argument, selec-
tor, is the selector of the message. The
arguments of the message are the elements of
anArray. Report an error if the number of ar-
guments expected by the selector is not the
same as the size of anArray.

One way in which this protocol can be used is as a decoder of user com-
mands. Suppose for example that we want to model a very simple cal-

245
Additional Protocol for Class Object

culator in which operands precede operators. A possible implementation
represents the calculator as having (1) the current result, which is also
the first operand, and (2) a possibly undefined second operand. Each op-
erator is a message selector understood by the result. Sending the mes-
sage clear, once, resets the operand; sending the message clear when the
operand is reset will reset the result.

class name Calculator

superclass Object

instance variable names result
operand

class methods
instance creation

new
Tsuper new initialize

instance methods
accessing

result
Tresult

calculating

apply: operator
(self respondsTo: operator)
ifFalse: [self error: “ operation not understood ”].
operand isNil
ifTrue: [result — result perform: operator]
ifFalse: [result — result perform: operator with: operand]
clear
operand isNil
ifTrue: [result « 0]
ifFalse: [operand « nil]
operand: aNumber
operand « aNumber

private

initialize
result <« 0

An example illustrates the use of the class Calculator.

hp ~ Calculator new

Create hp as a Calculator. The instance variables are initialized with re-
sult 0 and operand nil.

246
Kernel Support Classes

hp operand: 3
Imagine the user has pressed the key labeled 3 and set the operand.
hp apply: #+
The user selects addition. The method for apply determines that the op-
erator is understood and that the operand is not nil; therefore, the re-
sult is set by the expression
result perform: operator with: operand
which is equivalent to
0+ 3
The method sets result to 3; operand remains 3 so that
hp apply: #+
again adds 3, so the result is now 6.
hp operand: 1.
hp apply: # —.
hp clear.
hp apply: #squared

The result was 6, subtract 1, and compute the square; result is now 25.

There are a number of messages specified in class Object whose purpose
System Primitive is to support the needs of the overall system implementation. They are
Messages categorized as system primitives. These are messages that provide di-
rect access to the state of an instance and, to some extent, violate the
principle that each object has sovereign control over storing values into
its variables. However, this access is needed by the language interpret-
er. It is useful in providing class description/development utilities for
the programming environment. Examples of these messages are
instVarAt: aninteger and instVarAt: aninteger put: anObject which retrieve
and store the values of named instance variables, respectively.

Object instance protocol

system primitives
become: otherObject Swap the instance pointers of the receiver and

the argument, otherObject. All variables in
the entire system that pointed to the receiver

247
Additional Protocol for Class Object

will now point to the argument and vice ver-
sa. Report an error if either object is a
Smalllnteger.

instVarAt: index Answer a named variable in the receiver. The
numbering of the variables corresponds to the
order in which the named instance variables
were defined.

instVarAt: index put: value Store the argument, value, into a named vari-
able in the receiver. The number of variables
corresponds to the order in which the named
instance variables were defined. Answer value.

nextinstance Answer the next instance after the receiver in
the enumeration of all instances of this class.
Answer nil if all instances have been enumer-
ated.

numberOfPointers Answer the number of objects to which the re-
ceiver refers.

refct Answer the number of object pointers in the
system that point at the receiver. Answer 0 if
the receiver is a Smallinteger.

Probably the most unusual and effective of the system primitive mes-
sages is the message become: otherObject. The response to this message
is to swap the instance pointer of the receiver with that of the argu-
ment, otherObject. An example of the use of this message is found in
the implementation of the message grow in several of the collection
classes. The message grow is sent when the number of elements that
can be stored in a (fixed-length) collection have to be increased without
copying the collection; copying is undesirable because all shared refer-
ences to the collection must be preserved. Thus a new collection is cre-
ated, its elements stored, and then the original collection transforms
into (becomes) the new one. All pointers to the original collection are
replaced by pointers to the new one.

The following is the method for grow as specified in class
SequenceableCollection.

grow
| newCcliection |
newCollection — self species new: self size + self growSize.
newCollection replaceFrom: 1 to: self size with: self.
tself become: newCollection
growSize
110

Subclasses can redefine the response to the message growSize in order
to specify alternative numbers of elements by which to expand.

Multiple Independent
Processes

Processes
Scheduling
Priorities
Semaphores
Mutual Exclusion
Resource Sharing
Hardware Interrupts

Class SharedQueue

Class Delay

Object

Magnitude
Character
Date
Time

Number
Float
Fraction
Integer
argeNegativeinteger
LargePositivelnteger
Smallinteger

LookupKey
Association

Link

Collection

SequenceableCollection
LinkedList

ArrayedCollection
Array

Bitmap
DisplayBitmap

RunArray
String
Symbol
Text
ByteArray

Interval
OrderedCollection
SortedCollection
Bag
MappedCollection
Set

Dictionary
IdentityDictionary

Stream
PositionableStream
ReadStream
WriteStream
ReadWriteStream
ExternalStream
FileStream

Random
File

FileDirectory
FilePage

UndefinedObject
Boolean

False

True

Behavior
ClassDescription
Class
MetaClass

Point

Rectangle

BitBit
CRaracterScanner

Pen

DisplayObject
DisplayMedium
Form
Cursor
DisplayScreen
InfiniteForm
OpaqueForm
Path
Arc
Circle
Curve
Line
LinearFit
Spline

251

Processes

The Smalltalk-80 system provides support for multiple independent
processes with three classes named Process, ProcessorScheduler, and
Semaphore. A Process represents a sequence of actions that can be car-
ried out independently of the actions represented by other Processes. A
ProcessorScheduler schedules the use of the Smalltalk-80 virtual ma-
chine that actually carries out the actions represented by the Processes
in the system. There may be many Processes whose actions are ready
to be carried out and ProcessorScheduler determines which of these the
virtual machine will carry out at any particular time. A Semaphore al-
lows otherwise independent processes to synchronize their actions with
each other. Semaphores provide a simple form of synchronous commu-
nication that can be used to create more complicated synchronized in-
teractions. Semaphores also provide synchronous communication with
asynchronous hardware devices such as the user input devices and
realtime clock.

Semaphores are often not the most useful synchronization mecha-
nism. Instances of SharedQueue and Delay use Semaphores to satisfy
the two most common needs for synchronization. A SharedQueue pro-
vides safe transfer of objects between independent processes and a De-
lay allows a process to be synchronized with the real time clock.

Processes

A process is a sequence of actions described by expressions and
performed by the Smalltalk-80 virtual machine. Several of the process-
es in the system monitor asynchronous hardware devices. For example,
there are processes monitoring the keyboard, the pointing device, and
the realtime clock. There is also a process monitoring the available
memory in the system. The most important process to the user is the
one that performs the actions directly specified by the user, for exam-
ple, editing text, graphics, or class definitions. This user interface pro-
cess must communicate with the processes monitoring the keyboard
and pointing device to find out what the user is doing. Processes might
be added that update a clock or a view of a user-defined object.

A new process can be created by sending the unary message fork to a
block. For example, the following expression creates a new process to
display three clocks named EasternTime, MountainTime, and PacificTime
on the screen.

[EasternTime display.
MountainTime display.
PacificTime display] fork

252

Multiple Independent Processes

The actions that make up the new process are described by the block’s
expressions. The message fork has the same effect on these expressions
as does the message value, but it differs in the way the result of the
message is returned. When a block receives value, it waits to return un-
til all of its expressions have been executed. For example, the following
expression does not produce a value until all three clocks have been
completely displayed.

[EasternTime display.
MountainTime display.
PacificTime display] value

The value returned from sending a block value is the value of the last
expression in the block. When a block receives fork, it returns immedi-
ately, usually before its expressions have been executed. This allows the
expressions following the fork message to be executed independently of
the expressions in the block. For example, the following two expressions
would result in the contents of the collection namelist being sorted in-
dependently of the three clocks being displayed. '

[EasternTime display.
MountainTime display.
PacificTime display] fork.
alphabeticallist — namelist sort

The entire collection may be sorted before any of the clocks are
displayed or all of the clocks may be displayed before the collection be-
gins sorting. The occurrence of either one of these extreme cases or an
intermediate case in which some sorting and some clock display are in-
terspersed is determined by the way that display and sort are written.
The two processes, the one that sends the messages fork and sort, and
the one that sends display, are executed independently. Since a block’s
expressions may not have been evaluated when it returns from fork, the
value of fork must be independent of the value of the block’s expres-
sions. A block returns itself as the value of fork.

Each process in the system is represented by an instance of class Pro-
cess. A block’s response to fork is to create a new instance of Process
and schedule the processor to execute the expressions it contains.
Blocks also respond to the message newProcess by creating and return-
ing a new instance of Process, but the virtual machine is not scheduled
to execute its expressions. This is useful because, unlike fork, it provides
a reference to the Process itself. A Process created by newProcess is
called suspended since its expressions are not being executed. For exam-
ple, the following expression creates two new Processes but does not re-
sult in either display or sort being sent.

253

Processes

clockDisplayProcess — [EasternTime display] newProcess. :
sortingProcess « [alphabeticallist — namelList sort] newProcess

The actions represented by one of these suspended Processes can actu-
ally be carried out by sending the Process the message resume. The fol-
lowing two expressions would result in display being sent to
EasternTime and sort being sent to nameList.

clockDisplayProcess resume.
sortingProcess resume

Since display and sort would be sent from different Processes, their exe-
cution may be interleaved. Another example of the use of resume is the
implementation of fork in BlockContext.

fork
self newProcess resume

A complementary message, suspend, returns a Process to the suspend-
ed state in which the processor is no longer executing its expressions.
The message terminate prevents a Process from ever running again,
whether it was suspended or not.

Process instance protocol

changing process state
resume Allow the receiver to be advanced.

suspend Stop the advancement of the receiver in such
a way that it can resume its progress later (by
sending it the message resume).

terminate Stop the advancement of the receiver forever.

Blocks also understand a message with selector newProcessWith: that
creates and returns a new Process supplying values for block argu-
ments. The argument of newProcessWith: is an Array whose elements
are used as the values of the block arguments. The size of the Array
should be equal to the number of block arguments the receiver takes.
For example,

displayProcess « [:clock | clock display]
newProcessWith: (Array with: MountainTime)

The protocol of BlockContext that allows new Processes to be created is
shown on the following page.

254

Multiple Independent Processes

Scheduling

Priorities

BlockContext instance protocol

scheduling
fork Create and schedule a new Process for the ex-
ecution of the expressions the receiver con-
tains.
newProcess Answer a new suspended Process for the exe-

cution of the expressions the receiver con-
tains. The new Process is not scheduled.

newProcessWith: argumentArray Answer a new suspended Process for the exe-
cution of the expressions the receiver contains
supplying the elements of argumentArray as
the values of the receiver’s block arguments.

The Smalltalk-80 virtual machine has only one processor capable of
carrying out the sequence of actions a Process represents. So when a
Process receives the message resume, its actions may not be carried out
immediately. The Process whose actions are currently being carried out
is called active. Whenever the active Process receives the message sus-
pend or terminate, a new active Process is chosen from those that have
received resume. The single instance of class ProcessorScheduler keeps
track of all of the Processes that have received resume. This instance
of ProcessorScheduler has the global name Processor. The active Pro-
cess can be found by sending Processor the message activeProcess. For
example, the active Process can be terminated by the expression

Processor activeProcess terminate

This will be the last expression executed in that Process. Any expres-
sions following it in a method would never be executed. Processor will
also terminate the active Process in response to the message
terminateActive.

Processor terminateActive

Ordinarily, Processes are scheduled for the use of the processor on a
simple first-come first-served basis. Whenever the active Process re-
ceives suspend or terminate, the Process that has been waiting the long-
est will become the new active Process. In order to provide more con-
trol of when a Process will run, Processor uses a very simple priority
mechanism. There are a fixed number of priority levels numbered by
ascending integers. A Process with a higher priority will gain the use
of the processor before a Process with a lower priority, independent of
the order of their requests. When a Process is created (with either fork
or newProcess), it will receive the same priority as the Process that

255

Processes

created it. The priority of a Process can be changed by sending it the
message priority: with the priority as an argument. Or the priority of a
Process can be specified when it is forked by using the message forkAt:
with the priority as an argument. For example, consider the following
expressions executed in a Process at priority 4.

wordProcess « [['now’ displayAt: 50@ 100] forkAt: 6.
["is” displayAt: 100@ 100] forkAt: 5.
“the’ displayAt: 150@ 100]

newProcess.

wordProcess priority: 7.

“time’ displayAt: 200@ 100.

wordProcess resume.

“for’ displayAt: 250@ 100

The sequence of displays on the screen would be as follows.

time

the time

now the time

now is the time
now is the time for

Priorities are manipulated with a message to Processes and a message
to BlockContexts.

Process instance protocol

accessing
priority: aninteger Set the receiver’s priority to be aninteger.

BlockContext instance protocol

scheduling

forkAt: priority Create a new process for the execution of the
expressions the receiver contains. Schedule
the new process at the priority level priority.

The methods in the Smalltalk-80 system do not actually specify priori-
ties with literal integers. The appropriate priority to use is always
obtained by sending a message to Processor. The messages used to ob-
tain priorities are shown in the protocol for class ProcessorScheduler.
One other message to Processor allows other Processes with the
same priority as the active Process to gain access to the processor. The
ProcessorScheduler responds to the message yield by suspending the ac-
tive Process and placing it on the end of the list of Processes waiting
at its priority. The first Process on the list then becomes the active Pro-

256
Multiple Independent Processes

cess. If there are no other Processes at the same priority, yield has no

effect.

‘ProcessorScheduler instance protocol

accessing
activePriority

activeProcess

process state change
terminate(—\ctive
yield

priority names
highlOPriority

lowlOPriority
systemBackgroundPriority
timingPriority
userBackgroundPriority

userlnterruptPriority

userSchedulingPriority

Answer the priority of the currently running
process.

Answer the currently running process.

Terminate the currently running process.

Give other processes at the priority of the cur-
rently running process a chance to run.

Answer the priority at which the most time
critical input/output processes should run.

Answer the priority at which most
input/output processes should run.

Answer the priority at which system back-
ground processes should run.

Answer the priority at which the system pro-
cesses keeping track of real time should run.

Answer the priority at which background pro-
cesses created by the user should run.

Answer the priority at which processes creat-
ed by the user and desiring immediate service
should run.

Answer the priority at which the user inter-
face processes should run.

The messages to ProcessorScheduler requesting priorities were listed in
alphabetical order above since this is the standard for protocol descrip-
tions. The same messages are listed below from highest priority to low-
est priority along with some examples of Processes that might have

that priority.

timingPriority

highlOPriority

lowlOPriority

userinterruptPriority

userSchedulingPriority

The Process monitoring the real time clock
(see description of class Wakeup later in this
chapter).

The Process monitoring the local network
communication device.

The Process monitoring the user input devices
and the Process distributing packets from the
local network.

Any Process forked by the user interface that
should be executed immediately.

The Process performing actions specified
through the user interface (editing, viewing,
programming, and debugging).

257

Semaphores
userBackgroundPriority Any Process forked by the user interface that
should be executed only when nothing else is
happening.
systemBackgroundPriority A system Process that should be executed

when nothing else is happening.

Semaphores

The sequence of actions represented by a Process is carried out asyn-
chronously with the actions represented by other Processes. The func-
tion of one Process is independent of the function of another. This is
appropriate for Processes that never need to interact. For example, the
two Processes shown below that display clocks and sort a collection
probably do not need to interact with each other at all.

[EasternTime display.
MountainTime display.
PacificTime display] fork.
alphabeticallist —~ namelList sort

However, some Processes that are substantially independent must in-
teract occasionally. The actions of these loosely dependent Processes
must be synchronized while they interact. Instances of Semaphore pro-
vide a simple form of synchronized communication between otherwise
independent Processes. A Semaphore provides for the synchronized
communication of a simple (~1 bit of information) signal from one pro-
cess to another. A Semaphore provides a nonbusy wait for a Process
that attempts to consume a signal that has not been produced yet.
Semaphores are the only safe mechanism provided for interaction be-
tween Processes. Any other mechanisms for interaction should use
Semaphores to insure their synchronization.

Communication with a Semaphore is initiated in one Process by
sending it the message signal. On the other end of the communication,
another Process waits to receive the simple communication by sending
wait to the same Semaphore. It does not matter in which order the two
messages are sent, the Process waiting for a signal will not proceed un-
til one is sent. A Semaphore will only return from as many wait mes-
sages as it has received signal messages. If a signal and two waits are
sent to a Semaphore, it will not return from one of the wait messages.
When a Semaphore receives a wait message for which no corresponding
signal was sent, it suspends the process from which the wait was sent.

258

Multiple Independent Processes

Mutual Exclusion

Semaphore instance protocol

communication

signal Send a signal through the receiver. If one or
more Processes have been suspended trying
to receive a signal, allow the one that has
been waiting the longest to proceed. If no Pro-
cess is waiting, remember the excess signal.

wait The active Process must receive a signal
through the receiver before proceeding. If no
signal has been sent, the active Process will
be suspended until one is sent.

The processes that have been suspended will be resumed in the same
order in which they were suspended. A Process’s priority is only taken
into account by Processor when scheduling it for the use of the proces-
sor. Each Process waiting for a Semaphore will be resumed on a first-
come first-served basis, independent of its priority. A Semaphore allows
a Process to wait for a signal that has not been sent without using pro-
cessor capacity. The Semaphore does not return from wait until signal
has been sent. One of the main advantages of creating an independent
process for a particular activity is that, if the process requires some-
thing that is not available, other processes can proceed while the first
process waits for it to become available. Examples of things that a pro-
cess may require and that may or may not be available are hardware
devices, user events (keystrokes or pointing device movements), and
shared data structures. A specific time of day can also be thought of as
something that might be required for a process to proceed.

Semaphores can be used to ensure mutually exclusive use of certain fa-
cilities by separate Processes. For example, a Semaphore might be used
to provide a data structure that can be safely accessed by separate Pro-
cesses. The following definition of a simple first-in first-out data struc-
ture does not have any provision for mutual exclusion.

class name SimpleQueue
superclass Object
instance variable names contentsArray

readPosition
writePosition
class methods

instance creation

new
tself new: 10

new: size
Tsuper new init: size

259

Semaphores

instance methods
accessing

next
| value |
readPosition = writePosition
ifTrue: [self error: “empty queue’]
ifFalse: [value « contentsArray at: readPosition.
contentsArray at: readPosition put: nil.
readPosition « readPosition + 1.
Tvalue]
nextPut: value
writePosition > contentsArray size
ifTrue: [self makeRoomForWrite].
contentsArray at: writePosition put: value.
writePosition « writePosition + 1.
Tvalue
size
TwritePosition - readPosition

testing

isEmpty
twritePosition = readPosition

private

init: size
contentsArray — Array new: size.
readPosition « 1.
writePosition « 1
makeRoomForWrite
| contentsSize |
readPosition = 1
ifTrue: [contentsArray grow]
ifFalse:
[contenisSize « writePosition — readPosition.
1 to: contentsSize do:
[:index |
contentsArray
at: index

put: (contentsArray at: index + readPosition — 1)].
readPosition « 1.

writePosition « contentsSize + 1]

A SimpleQueue remembers its contents in an Array named
contentsArray and maintains two indices into the contentsArray named

260

Multiple Independent Processes

readPosition and writePosition. New contents are added at writePosition
and removed at readPosition. The private message makeRoomForWrite
is sent when there is no room at the end of contentsArray for remem-
bering a new object. If contentsArray is completely full, its size is in-
creased. Otherwise, the contents are moved to the first of contentsArray.

The problem with sending to a SimpleQueue from different Process-
es is that more than one Process at a time may be executing the meth-
od for next or nextPut.. Suppose a SimpleQueue were sent the message
next from one Process, and had just executed the expression

value — contentsArray at: readPosition

when a higher priority Process woke up and sent another next message
to the same SimpleQueue. Since readPosition has not been incremented,
the second execution of the expresson above will bind the same object
to value. The higher priority Process will remove the reference to the
object from contentsArray, increment the readPosition and return the
object it removed. When the lower priority Process gets control back,
readPosition has been incremented so it removes the reference to the
next object from contentsArray. This object should have been the value
of one of the next messages, but it is discarded and both next messages
return the same object.

To ensure mutual exclusion, each Process must wait for the same
Semaphore before using a resource and then signal the Semaphore
when it is finished. The following subclass of SimpleQueue provides mu-
tual exclusion so that its instances can be used from separate Processes.

class name SimpleSharedQueue
superclass SimpleQueue
instance variable names accessProtect

instance methods
accessing

next
| value |
accessProtect wait.
value — super next.
accessProtect signal.
tvalue

nextPut: value
accessProtect wait.
super nextPut: value.
accessProtect signal.
tvalue

261
Semaphores

private

init: size
super init: size.
accessProtect — Semaphore new.
accessProtect signal

Since mutual exclusion is a common use of Semaphores, they include a
message for it. The selector of this message is critical:. The implementa-
tion of critical: is as follows.

critical: aBlock

| value |

self wail.

value « aBlock value.

seif signal.

Tvalue
A Semaphore used for mutual exclusion must start out with one excess
signal so the first Process may enter the critical section. Class Sema-
phore provides a special initialization message, forMutualExclusion, that
signals the new instance once.

Semaphore instance protocol

mutual exclusion

critical: aBlock Execute aBlock when no other critical blocks
are executing.

Semaphore class protocol

instance creation

forMutualExclusion Answer a new Semaphore with one excess sig-
nal.

The implementation of SimpleSharedQueue could be changed to read as
follows.

class name SimpleSharedQueue
superclass SimpleQueue
instance variable names accessProtect

instance methods
accessing

next
| value |
accessProtect critical: [value « super next].
Tvalue

nextPut: value
accessProtect critical: [super nextPut: value].
tvalue

262

Multiple Independent Processes

Resource Sharing

private

init: size
super init: size.
accessProtect — Semaphore forMutualExclusion

In order for two Processes to share a resource, mutually exclusive ac-
cess to it is not enough. The Processes must also be able to communi-
cate about the availability of the resource. SimpleSharedQueue will not
get confused by simultaneous accesses, but if an attempt is made to re-
move an object from an empty SimpleSharedQueue, an error occurs. In
an environment with asynchronous Processes, it is inconvenient to
guarantee that attempts to remove objects (by sending next) will be
made only after they have been added (by sending nextPut:). Therefore,
Semaphores are also used to signal the availability of shared resources.
A Semaphore representing a resource is signalled after each unit of the
resource is made available and waited for before consuming each unit.
Therefore, if an attempt is made to consume a resource before it has
been produced, the consumer simply waits.

Class SafeSharedQueue is an example of how Semaphores can be
used to communicate about the availability of resources.
SafeSharedQueue is similar to SimpleSharedQueue, but it uses another
Semaphore named valueAvailable to represent the availability of the
contents of the queue. SafeSharedQueue is not in the Smalltalk-80 sys-
tem, it is described here only as an example. SharedQueue is the class
that is actually used to communicate between processes in the system.
SharedQueue provides functionality similar to SafeSharedQueue’s. The
protocol specification for SharedQueue will be given later in this chap-
ter.

class name SafeSharedQueue
superclass SimpleQueue
instance variable names accessProtect

valueAvailable

instance methods
accessing

next
| value |
valueAvailable wait.
accessProtect critical: [value — super next].
Tvalue
nextPut: value
accessProtect critical: [super nextPut: value .
valueAvailable signal.
tvalue

Hardware
Interrupts

263

Semaphores

private

init: size
super init: size.
accessProtect « Semaphore forMutualExclusion.
valueAvailable « Semaphore new

Instances of Semaphore are also used to communicate between hard-
ware devices and Processes. In this capacity, they take the place of in-
terrupts as a means of communicating about the changes of state that
hardware devices go through. The Smalltalk-80 virtual machine is spec-
ified to signal Semaphores on three conditions.

» user event: a key has been pressed on the keyboard, a button has
been pressed on the pointing device, or the pointing device has
moved.

« timeout: a specific value of the millisecond clock has been reached.

» low space: available object memory has fallen below certain limits.

These three Semaphores correspond to three Processes monitoring user
events, the millisecond clock and memory utilization. Each monitoring
Process sends wait to the appropriate Semaphore suspending itself until
something of interest happens. Whenever the Semaphore is signalled,
the Process will resume. The virtual machine is notified about .these
three types of monitoring by primitive methods. For example, the
timeout signal can be requested by a primitive method associated with
the message signal:atTime: to Processor.

Class Wakeup is an example of how one of these Semaphores can be
used. Wakeup provides an alarm clock service to Processes by monitor-
ing the millisecond clock. Wakeup is not in the Smalltalk-80 system; it
is described here only as an example. Delay is the class that actually
monitors the millisecond clock in the Smalltalk-80 system. Delay pro-
vides functionality similar to Wakeup’s. The protocol specification for
Delay will be given later in this chapter.

Wakeup provides a message that suspends the sending Process for a
specified number of milliseconds. The following expression suspends its
Process for three quarters of a second.

Wakeup after: 750

When Wakeup receives an after: message, it allocates a new instance
which remembers the value of the clock at which the wakeup should
occur. The new instance contains a Semaphore on which the active Pro-
cess will be suspended until the wakeup time is reached. Wakeup keeps

264

Multiple Independent Processes

all of its instances in a list sorted by their wakeup times. A Process
monitors the virtual machine’s millisecond clock for the earliest of
these wakeup times and allows the appropriate suspended Process to
proceed. This Process 1is created in the class method for
initialize TimingProcess. The Semaphore used to monitor the clock is re-
ferred to by a class variable named TimingSemaphore. The virtual ma-
chine is informed that the clock should be monitored with the following
message found in the instance method for nextWakeup.

Processor signal: TimingSemaphore atTime: resumptionTime

The list of instances waiting for resumption is referred to by a class
variable named PendingWakeups. There is another Semaphore named
AccessProtect that provides mutually exclusive access to
PendingWakeups.

class name Wakeup

superclass Object

instance variable names alarmTime
alarmSemaphore

class variable names PendingWakeups
AccessProtect

TimingSemaphore
class methods

alarm clock service

after: millisecondCount
{self new sleepDuration: millisecondCount) waitForWakeup
class initialization
initialize
TimingSemaphore « Semaphore new.
AccessProtect — Semaphore forMutualExclusion.
PendingWakeups «~ SortedCollection new.
self initializeTimingProcess
initializeTimingProcess
[[true]
whileTrue:
[TimingSemaphore wait.
AccessProtect wait.
PendingWakeups removeFirst wakeup.
PendingWakeups isEmpty
ifFalse: [PendingWakeups first nextWakeup}.
AccessProtect signal]]
forkAt: Processor timingPriority

265
Class SharedQueue

instance methods
process delay

waitForWakeup
AccessProtect wait.
PendingWakeups add: self.
PendingWakeups first == self
ifTrue: [self nextWakeup].
AccessProtect signal.
alarmSemaphore wait

comparison

< otherWakeup
talarmTime < otherWakeup wakeupTIime

accessing

wakeupTime
talarmTime

private

nextWakeup
Processor signal: TimingSemaphore atTime: resumptionTime
sleepDuration: millisecondCount
alarmTime < Time millisecondClockValue + millisecondCount.
alarmSemaphore — Semaphore new
wakeup
alarmSemaphore signal

Class Class SharedQueue is the system class whose instances provide safe

SharedQueue communication of objects between Processes. Both its protocol and its
implementation are similar to the SafeSharedQueue example shown
earlier in this chapter.

SharedQueue instance protocol

accessing
next Answer with the first object added to the re-
ceiver that has not yet been removed. If the
receiver is empty, suspend the active Process
until an object is added to it.
nextPut: value Add value to the contents of the receiver. If a

Process has been suspended waiting for an ob-
ject, allow it to proceed.

266
Multiple Independent Processes

Class Delay A Delay allows a Process to be suspended for a specified amount of
time. A Delay is created by specifying how long it will suspend the ac-

tive Process.

halfMinuteDelay — Delay forSeconds: 30.
shortDelay — Delay forMilliseconds: 50

Simply creating a Delay has no effect on the progress of the active Pro-
cess. It is in response to the message wait that a Delay suspends the ac-
tive Process. The following expressions would both suspend the active
Process for 30 seconds.

halfMinuteDelay wait.
(Delay forSeconds: 30) wait

Delay class protocol

instance creation

forMilliseconds: millisecondCount Answer with a new instance that will suspend
the active Process for millisecondCount milli-
seconds when sent the message wait.

forSeconds: secondCount Answer with a new instance that will suspend
the active Process for secondCount seconds
when sent the message wait.

untilMilliseconds: millisecondCount
Answer with a new instance that will suspend
the active Process until the millisecond clock
reaches the value millisecondCount.

general inquiries
millisecondClockValue Answer with the current value of the millisec-
ond clock.

Delay instance protocol

accessing
resumptionTime Answer with the value of the millisecond
clock at which the delayed Process will be re-
sumed.

process delay
wait Suspend the active Process until the millisec-
ond clock reaches the appropriate value.

A trivial clock can be implemented with the following expression.

[[true] whileTrue:
[Time now printString displayAt: 100@ 100.
{Delay forSeconds: 1) wait]] fork

The current time would be displayed on the screen once a second.

Protocol for Classes

Class Behavior

Class ClassDescription
Class Metaclass
Class Class

Object

Magnitude Stream
Character PositionableStream
Date ReadStream
Time WriteStream
ReadWriteStream
Number ExternalStream
Float FileStream
Fraction
Integer Random
LargeNegativeinteger
LargePositivelnteger File
Smallinteger FileDirectory
FilePage
LookupKey UndefinedObject
Association Boolean
False
Link True
Process
ProcessorScheduler
Collection Delay
SharedQueue
SequenceableCollection
LinkedList
Semaphore
ArrayedCollection ‘
Array Point
Rectangle
Bitmap BitBit
DisplayBitmap CharacterScanner
RunArray Pen
String
Symbol DisplayObject
Text DisplayMedium
ByteArray Form
Cursor
Interval DisplayScreen
OrderedCollection InfiniteForm
SortedCollection OpaqueForm
Bag Path
MappedCollection Arc
Set “Circle
Dictionary Curve
IdentityDictionary Line
LinearFit

Spline

269
Protocol for Classes

We have now introduced the protocol for most of the classes that de-
scribe the basic components of the Smalltalk-80 system. One notable ex-
ception is the protocol for the classes themselves. Four classes—Behavior,
ClassDescription, Metaclass, and Class—interact to provide the facili-
ties needed to describe new classes. Creating a new class involves
compiling methods and specifying names for instance variables, class
variables, pool variables, and the class itself.

Chapters 3, 4, and 5 introduced the basic concepts represented by
these classes. To summarize from that discussion, the Smalltalk-80 pro-
grammer specifies a new class by creating a subclass of another class.
For example, class Collection is a subclass of Object; class Array is a sub-
class of ArrayedCollection (whose superclass chain terminates with
Object).

1. Every class is ultimately a subclass of class Object, except for Ob-
ject itself, which has no superclass. In particular, Class is a sub-
class of ClassDescription, which is a subclass of Behavior which is a
subclass of Object.

There are two kinds of objects in the system, ones that can create in-
stances of themselves (classes) and ones that can not.

2. Every object is an instance of a class.

Each class is itself an instance of a class. We call the class of a class, its
metaclass.

3. Every class is an instance of a metaclass.

Metaclasses are not referenced by class names as are other classes. In-
stead, they are referred to by a message expression sending the unary
message class to the instance of the metaclass. For example, the
metaclass of Collection is referred to as Collection class; the metaclass of
Class is referred to as Class class.

In the Smalltalk-80 system, a metaclass is created automatically
whenever a new class is created. A metaclass has only one instance.
The messages categorized as “class methods” in the class descriptions
are found in the metaclass of the class. This follows from the way in
which methods are found; when a message is sent to an object, the
search for the corresponding method begins in the class of the object.
When a message is sent to Dictionary, for example, the search begins in
the metaclass of Dictionary. If the method is not found in the metaclass,
then the search proceeds to the superclass of the metaclass. In this case,
the superclass is Set class, the metaclass for Dictionary’s superclass. If
necessary, the search follows the superclass chain to Object class.

270

Protocol for Classes

Figure 16.1

Figure 16.2

In the diagrams in this chapter, all arrows with solid lines denote a
subclass relationship; arrows with dashed lines an instance relationship.
A ---> B means A is an instance of B. Solid gray lines indicate the
class hierarchy; solid black lines indicate the metaclass hierarchy.

Smalllnteger wwsme Integer sumeussd Number swmusssedy Object

(uumann
(unnuns
(amnsunn
(ammuss

Smalllnteger- Integer um—— Number — Object

class class class class

Since the superclass chain of all objects ends at Object as shown in Fig-
ure 16.1, and Object has no superclass, the superclass of Object’s
metaclass is not determined by the rule of maintaining a parallel hier-
archy. It is at this point that Class is found. The superclass of Object
class is Class.

4. All metaclasses are (ultimately) subclasses of Class (Figure 16.2).

Class

|]

| |

]

- Smallinteger sy Integer susmases: Number s Object

: [= = :

B | []

v a a a a
Class - : : :
class a - s "

L [] a a

v v A4 A\ 4
Smallinteger Integer Number Object
class —) class r— class — class

Since metaclasses are objects, they too must be instances of a class. Ev-
ery metaclass is an instance of Metaclass. Metaclass itself is an instance
of a metaclass. This is a point of circularity in the system—the
metaclass of Metaclass must be an instance of Metaclass.

5. Every metaclass is an instance of Metaclass (Figure 16.3).

Figure 16.4 shows the relationships among Class, ClassDescription, Be-
havior, and Object, and their respective metaclasses. The class hierarchy
follows a chain to Object, and the metaclass hierarchy follows a chain
through Object class to Class and on to Object. While the methods of

271

Protocol for Classes

Class
a
B
]
: Smallinteger: Integer sy Number ssssusi Object
v . . u .
Class - = . H
class . . . :
- n [] |] |]
L u s []
u . .] L]
] v v A 4 v
: Smallinteger Integer Number Object
v — ———)
Metaclass class === c|ass class class
n A '0 L] - ™
= * u L) . .
: ™ ..l...-l.--...l..-..-ll----....-.l....
™]
] []
v B
Metaclass

Figure 16.3 class

Object support the behavior common to all objects, the methods of Class
and Metaclass support the behavior common to all classes.

6. The methods of Class and its superclasses support the behavior
common to those objects that are classes.

7. The methods of instances of Metaciass add the behavior specific to
particular classes.

The correspondence between the class and metaclass hierarchies is
shown in Figure 16.5, in which the part of the number hierarchy and
the behavior hierarchy of the last two figures are combined.

]

- ClassDescription s . Object
Class] - :
class . a .

: u - | |

. n = n

v n n n

Meta::liss L - -
| / ©er . X

a & "¢ ClassDescription Behavior Object

e s class) class T ciass

e * a L] n

Metaclass A/ » » u

Figure 16.4 class .IIIIIIIIIIIIIIIIIIIIIIIII

272

Protocol for Classes

Figure 16.5

[| | n
Smalllnteger_’ Integer-Number,

class class class
V' A A
| n "
a n [|
- |] u
] |] »
n [| | |
] a [|
| | a a

Smallinteger sssss= Integer ssmsasy: Number

Class

SRR

n
n
- X
. iy i
- ClassDescriptionssz Behavior:ussssui Object
Class class ' ® . u
] r 4 = - =
» = = »
. ‘ n = »
s : : :
=) Metaclas M v M
etaclass _ ; ;
na P CIassDescnptlon~Behawor_ Object
: = L/ class class class
vs ’0‘ - : .
Metaclass EENEEENNEEANEENEANNERRED
class

Class Behavior

Class Behavior defines the minimum state necessary for objects that
have instances. In particular, Behavior defines the state used by the
Smalltalk-80 interpreter. It provides the basic interface to the compiler.
The state described by Behavior includes a class hierarchy link, a meth-
od dictionary, and a description of instances in terms of the number

and the representation of their variables.

The message protocol for class Behavior will be described in four cat-
egories—creating, accessing, testing, and enumerating. These categories
and their subcategories, as outlined below, provide a model for thinking

about the functionality of classes in the Smalltalk-80 system.

273
Class Behavior

Outline of Protocol for All Classes

creating
+ creating a method dictionary
e creating instances
* creating a class hierarchy

accessing
*» accessing the contents of the method dictionary
¢ accessing instances and variables: instance, class, and pool
- o accessing the class hierarchy

testing
* testing the contents of the method dictionary
 testing the form of the instances
* testing the class hierarchy

enumerating
* enumerating subclasses and instances

[] Behavior's Creating Protocol The methods in a class description

are stored in a dictionary we refer to as the method dictionary. 1t is also
sometimes called a message dictionary. The keys in this dictionary are
message selectors; the values are the compiled form of methods (in-
stances of CompiledMethod). The protocol for creating the method dic-
tionary supports compiling methods as well as adding the association
between a selector and a compiled method. It also supports accessing

both the compiled and noncompiled (source) versions of the method.

Behavior instance protocol

creating method dictionary

methodDictionary: aDictionary Store the argument, aDictionary, as the meth-
od dictionary of the receiver.

addSelector: selector withMethod: compiledMethod
Add the message selector, selector, with the
corresponding compiled method, compiled-
Method, to the receiver’s method dictionary.

removeSelector: selector Remove the argument, selector (which is a
Symbol representing a message selector), from
the receiver’s method dictionary. If the selec-
tor is not in the method dictionary, report an
error.

compile: code The argument, code, is either a String or an
object that converts to a String or it is a
PositionableStream accessing an object that is
or converts to a String. Compile code as the
source code in the context of the receiver’s
variables. Report an error if the code can not
be compiled.

274

Protocol for Classes

compile: code notifying: requestor
Compile the argument, code, and enter the
result in the receiver’s method dictionary. If
an error occurs, send an appropriate message
to the argument, requestor.

recompile: selector Compile the method associated with the mes-
sage selector, selector.
decompile: selector Find the compiled code associated with the ar-

gument, selector, and decompile it. Answer
the resulting source code as a String. If the se-
lector is not in the method dictionary, report

an error.
compileAll Compile all the methods in the receiver’s
method dictionary.
compileAllSubclasses Compile all the methods in the receiver’s

subclasses’ method dictionaries.

Instances of classes are created by sending the message new or new:.
These two messages can be overridden in the method dictionary of a
metaclass in order to supply special initialization behavior. The purpose
of any special initialization is to guarantee that an instance is created
with variables that are themselves appropriate instances. We have
demonstrated this idea in many previous chapters. Look, for example,
at the definition of class Random in Chapter 12; the method dictionary
of Random class (the class methods) contains an implementation for
new in which a new instance is sent the message setSeed; this initial-
ization guarantees that the random number generation algorithm refers
to a variable that is an appropriate kind of number.

Suppose a class overrides the method for new and then one of its
subclasses wishes to do the same in order to avoid the behavior created
by its superclass’s change. The method for the first class might be

new
Tsuper new setVariables

where the message setVariables is provided in the protocol for instances
of the class. By sending the message new to the pseudo-variable super,
the method for creating an instance as specified in class Behavior is
evaluated; the result, the new instance, is then sent the message
setVariables. In the subclass, it is not possible to utilize the message su-
per new because this will invoke the method of the first class—precise-
ly the method to be avoided. In order to obtain the basic method in
Behavior for creating an instance, the subclass must use the expression
self basicNew. The message basicNew is the primitive instance creation
message that should not be reimplemented in any subclass. In Behavior,
new and basicNew are identical. A similar pair for creating variable-
length objects, new: and basicNew:, are also provided in the protocol of
class Behavior. (Note, this technique of dual messages is also used in
class Object for accessing messages such as at: and at:put:.)

275
Class Behavior

Behavior instance protocol

instance creation

new Answer an instance of the receiver with no
indexed variables. Send the receiver the mes-
sage new: O if the receiver is indexable.

basicNew Same as new, except this method should not
be overridden in a subclass.
new: aninteger Answer an instance of the receiver with

aninteger number of indexed variables. Report
an error if the receiver is not indexable.

basicNew: aninteger Same as basicNew, except this method should
not be overridden in a subclass.

The protocol for creating classes includes messages for placing the class
within the hierarchy of classes in the system. Since this hierarchy is
linear, there is only a need to set the superclass and to add or remove
subclasses.

Behavior instance protocol

creating a class hierarchy

superclass: aClass Set the superclass of the receiver to be the ar-
gument, aClass.

addSubclass: aClass Make the argument, aClass, be a subclass of
the receiver.

removeSubclass: aClass Remove the argument, aClass, from the

subclasses of the receiver.

Although the creating protocol for Behavior makes it possible to write
expressions for creating a new class description, the usual approach is
to take advantage of the graphical environment in which the
Smalltalk-80 language is embedded, and to provide an interface in
which the user fills out graphically-presented forms to specify informa-
tion about the various parts of a class.

[[] Behavior's Accessing Protocol The messages that access the con-
tents of a method dictionary distinguish among the selectors in the
class’s locally specified method dictionary, and those in the method dic-
tionaries of the class and each of its superclasses.

Behavior instance protocol

accessing the method dictionary

selectors Answer a Set of all the message selectors
specified in the receiver’s local method diction-
ary.

allSelectors Answer a Set of all the message selectors that

instances of the receiver can understand. This
consists of all message selectors in the receiv-
er’s method dictionary and in the dictionaries
of each of the receiver’s superclasses.

276

Protocol for Classes

compiledMethodAt: selector

sourceCodeAt: selector

sourceMethodAt: selector

Answer the compiled method associated with
the argument, selector, a message selector in
the receiver’s local method dictionary. Report
an error if the selector can not be found.

Answer a String that is the source code associ-
ated with the argument, selector, a message
selector in the receiver’s local method diction-
ary. Report an error if the selector can not be
found. ‘

Answer a Text for the source code associated
with the argument, selector, a message selec-
tor in the receiver’s local method dictionary.
This Text provides boldface emphasis for the
message pattern part of the method. Report
an error if the selector can not be found.

An instance can have named instance variables, indexed instance vari-
ables, class variables, and dictionaries of pool variables. Again, the dis-
tinction between locally specified variables and variables inherited from
superclasses is made in the accessing protocol.

Behavior instance protocol

accessing instances and variables

allinstances

somelnstance
instanceCount

instVarNames

subclassinstVarNames

allinstVarNames

classVarNames

allClassVarNames

sharedPools

allSharedPools

Answer a Set of all direct instances of the re-
ceiver.

Answer an existing instance of the receiver.

Answer the number of instances of the receiv-
er that currently exist.

Answer an Array of the instance variable
names specified in the receiver.

Answer a Set of the instance variable names
specified in the receiver’s subclasses.

Answer an Array of the names of the receiver’s
instance variables, those specified in the re-
ceiver and in all of its superclasses. The Array
ordering is the order in which the variables
are stored and accessed by the Smalltalk-80
interpreter.

Answer a Set of the class variable names
specified locally in the receiver.

Answer a Set of the names of the receiver’s
and the receiver’s superclasses’ class vari-
ables.

Answer a Set of the names of the pools (diction-
aries) that are specified locally in the receiver.

Answer a Set of the names of the pools (diction-
aries) that are specified in the receiver and
each of its superclasses.

277

Thus, for example,

Class Behavior

expression

result

OrderedCollection instVarNames

OrderedCollection
subclassinstVarNames

SortedCollection
allinstvarNames

String classVarNames
String allClassVarNames

Text sharedPools

(firstindex’ ‘lastindex’})
Set ("sortBlock’)

(’firstindex’ ’lastindex’
" sortBlock”)

Set (StringBiter)

Set (StringBlter
DependentsFields
ErrorRecursion)

a Set containing one
element, TextConstants,
a Dictionary

The accessing protocol includes messages for obtaining collections of the
superclasses and subclasses of a class. These messages distinguish be-
tween a class’s immediate superclass and subclasses, and all classes in

the class’s superclass chain.

Behavior instance protocol

accessing class hierarchy
subclasses

allSubclasses

withAllSubclasses

superclass
allSuperclasses

Thus, for example

Answer a Set containing the receiver’s imme-
diate subclasses.

Answer a Set of the receiver’s subclasses and
the receiver’s descendent’s subclasses.

Answer a Set of the receiver, the receiver’s
subclasses and the receiver’'s descendent’s
subclasses.

Answer the receiver’s immediate superclass.

Answer an OrderedCollection of the receiver’s
superclass and the receiver’s ancestor’s
superclasses. The first element is the receiv-
er’s immediate superclass, followed by its su-
perclass, and so on; the last element is always
Object.

expression

result

String superclass
ArrayedCollection subclasses

ArrayedCollection
Set (Array ByteArray
RunArray Bitmap

String Text)

278

Protocol for Classes

ArrayedCollection Set (Array ByteArray
allSubclasses RunArray Bitmap
String Text

DisplayBitmap Symbol
CompiledMethod)

ArrayedCollection Set
withAllSubclasses (ArrayedCollection
Array ByteArray
RunArray Bitmap
String Text
DisplayBitmap Symbol
CompiledMethod)

ArrayedCollection OrderedCollection
allSuperclasses (SequenceableCollection
Collection Object)
ArrayedCollection OrderedCollection
class allSuperclasses (SequenceableCollection

class Collection class
Object class Class
ClassDescription
Behavior Object)

[] Behavior's Testing Protocol Testing protocol provides the messages
needed to find out information about the structure of a class and the
form of its instances. The structure of a class consists of its relationship
to other classes, its ability to respond to messages, the class in which a
message is specified, and so on.

The contents of a method dictionary can be tested to find out which
class, if any, implements a particular message selector, whether a class
can respond to a message, and which methods reference particular vari-
ables or literals. These messages are all useful in creating a program-
ming environment in which the programmer can explore the structure
and functionality of objects in the system.

Behavior instance protocol

testing the method dictionary

hasMethods Answer whether the receiver has any methods
in its (local) method dictionary.
includesSelector: selector Answer whether the message whose selector is

the argument, selector, is in the local method
dictionary of the receiver’s class.

canUnderstand: selector Answer whether the receiver can respond to
the message whose selector is the argument.

279

Class Behavior

The selector can be in the method dictionary
of the receiver’s class or any of its super-
classes.

whichClassincludesSelector: selector

Answer the first class on the receiver’s super-
class chain where the argument, selector, can
be found as a message selector. Answer nil if
no class includes the selector.

whichSelectorsAccess: instVarName

Answer a Set of selectors from the receiver’s
local method dictionary whose methods access
the argument, instVarName, as a named in-
stance variable.

whichSelectorsReferTo: anObject Answer a Set of selectors whose methods ac-

scopeHas: name ifTrue: aBlock

Thus, for example

cess the argument, anObject.

Determine whether the variable name, name,
is within the scope of the receiver, ie., it is
specified as a variable in the receiver or in
one of its superclasses. If so, evalaute the ar-
gument, aBlock.

expression result
OrderedCollection true
includesSelector:
#addFirst:
SortedColiection false
includesSelector: #size
SortedCollection true

canUnderstand: #size

SortedCollection
whichClasslncludesSelector:
#size
OrderedCollection
whichSelectorsAccess:
Ffirstindex

QOrderedCollection

Set
{makeRoomAtFirst
before: size
makeRoomAtLast
insert:before:
remove:ifAbsent:
addFirst: first
removeFirst find:
removeAllSuchThat:
at: at:put: reverseDo:
do: setindices:)

The last example expression is useful in determining which methods
must be changed if an instance variable is renamed or deleted. In addi-

280

Protocol for Classes

tion to the messages intended for external access, the Set includes all
messages implemented in support of the implementation of the external
messages.

The testing protocol includes messages to a class that test how its
variables are stored, whether the number of variables is fixed-length or
variable-length, and the number of named instance variables.

Behavior instance protocol

testing the form of the instances

isPointers Answer whether the variables of instances of
the receiver are stored as pointers (words).

isBits Answer whether the variables of instances of
the receiver are stored as bits (i.e., not point-
ers).

isBytes Answer whether the variables of instances of
the receiver are stored as bytes (8-bit inte-
gers).

isWords Answer whether the variables of instances of
the receiver are stored as words.

isFixed Answer frue if instances of the receiver do not
have indexed instance variables; answer false
otherwise.

isVariable Answer true if instances of the receiver do
have indexed instance variables; answer false
otherwise.

instSize Answer the number of named instance vari-
ables of the receiver.

So we have

expression result

LinkedList isFixed true

String isBytes true

Integer isBits false

Float isWords true

OrderedCollection isFixed false

OrderedCollection instSize 2 .

o¢ « OrderedCollection OrderedCollection
with: $a ($a $b $c)
with: $b
with: $c

0cC size 3

The last four example lines show that instances of OrderedCollection
are variable-length; the instance oc has three elements. In addition, in-
stances of OrderedCollection have two named instance variables.

There are four kinds of classes in the system. Classes that have

281
Class Behavior

indexed instance variables are called variable-length and classes that do
not are called fixed-length. The variables of all fixed-length classes are
stored as pointers (word-sized references). The variables of variable-
length classes can contain pointers, bytes, or words. Since a pointer is a
word-sized reference, an object that contains pointers will answer true
when asked whether it contains words, but the inverse is not always
the case. Initialization messages specified in Class and itemized in a lat-
er section support creation of each kind of class.

Behavior instance protocol

testing the class hierarchy

inheritsFrom: aClass Answer whether the argument, aClass, is on
the receiver’s superclass chain.
kindOfSubclass Answer a String that is the keyword that de-

scribes the receiver as a class: either a regular
(fixed length) subclass, a variableSubclass, a
variableByteSubclass, or a variableWord-

Subclass.
Thus

expression result
String inheritsFrom: Collection true
String kindOfSubclass ‘ variableByteSubclass:
Array kindOfSubclass " variableSubclass: *
Float kindOfSubclass * variableWordSubclass:
integer kindOfSubclass " subclass: ’

[] Behavior's Enumerating Protocol Messages specified in class Be-
havior also support listing out particular sets of objects associated with
a class and applying each as the argument of a block. This enumeration
of objects is similar to that provided in the collection classes, and con-
sists of enumerating over all subclasses, superclasses, instances, and in-
stances of subclasses. In addition, two messages support selecting those
subclasses or superclasses for which a block evaluates to true.

Behavior instance protocol

enumerating

aliSubclassesDo: aBlock Evaluate the argument, aBlock, for each of
the receiver’s subclasses.

allSuperclassesDo: aBlock Evaluate the argument, aBlock, for each of
the receiver’s superclasses.

allinstancesDo: aBlock Evaluate the argument, aBlock, for each of

the current instances of the receiver.

282

Protocol for Classes

allSubinstancesDo: aBlock Evaluate the argument, aBlock, for each of
the current instances of the receiver’s
subclasses.

selectSubclasses: aBlock Evaluate the argument, aBlock, for each of

the receiver’s subclasses. Collect into a Set
only those subclasses for which aBlock evalu-
ates to true. Answer the resulting Set.

selectSuperclasses: aBlock Evaluate the argument, aBlock, with each of
the receiver’s superclasses. Collect into a Set
only those superclasses for which aBlock eval-
uates to true. Answer the resulting Set.

As an example, in order to understand the behavior of an instance of
the collection classes, it might be useful to know which subclasses of
Collection implement the adding message addFirst:. With this informa-
tion, the programmer can track down which method is actually evaluat-
ed when the message addFirst: is sent to a collection. The following ex-
pression collects each such class into a Set named subs.

subs « Set new.
Collection allSubclassesDo:
[:class |
(class includesSelector: #addFirst:)
ifTrue: [subs add: class]]

The same information is accessible from

Collection selectSubclasses:
[:class | class includesSelector: #addFirst:]

Both create a Set of the three subclasses LinkedList, OrderedCollection,
and RunArray.

The following expression returns a collection of the superclasses of
Smallinteger that implement the message =.

Smallinteger selectSuperclasses:
[:class | class includesSelector: # =]

The response is
Set (Integer Magnitude Object)
Several subclasses of Collection implement the message first. Suppose we

wish to see a list of the code for each implementation. The following ex-
pressions print the code on the file whose name is “classMethods first’.

283
Class Behavior

| aStream |
aStream — Disk file: ‘classMethods.first’.
Collection allSubclassesDo:

[:class |
(class includesSelector: #first)
ifTrue:
[class name printOn: aStream.
aStream cr.

(class sourceCodeAt: #first) printOn: aStream.
aStream cr; cr]].
aStream close

The resulting contents of the file is

SequenceableCollection
“first
self emptyCheck.
tself at; 17
OrderedCollection
"first
self emptyCheck.
tself basicAt: firstindex’
Interval
“first
Tstart’
LinkedList
“first
self emptyCheck.
tfirstLink’

The protocol described in the next sections is not generally used by pro-
grammers, but may be of interest to system developers. The messages
described are typically accessed in the programming environment by
selecting items from a menu presented in a graphically-oriented inter-
face.

Although most of the facilities of a class are specified in the protocol
of Behavior, a number of the messages can not be implemented because
Behavior does not provide a complete representation for a class. In par-
ticular, Behavior does not provide a representation for instance variable
names and class variable names, nor for a class name and a comment
about the class.

Representations for a class name, class comment, and instance vari-
able names are provided in ClassDescription, a subclass of Behavior.
ClassDescription has two subclasses, Class and Metaclass. Class de-

284

Protocol for Classes

scribes the representation for class variable names and pool variables.
A metaclass shares the class and pool variables of its sole instance.
Class adds additional protocol for adding and removing class variables
and pool variables, and for creating the various kinds of subclasses.
Metaclass adds an initialization message for creating a subclass of itself,
that is, a message for creating a metaclass for a new class.

Class
ClassDescription

ClassDescription represents class naming, class commenting, and nam-
ing instance variables. This is reflected in additional protocol for
accessing the name and comment, and for adding and removing in-
stance variables.

ClassDescription instance protocol

accessing class description

name Answer a String that is the name of the re-
ceiver.

comment Answer a String that is the comment for the
receiver.

comment: aString Set the receiver’s comment to be the argu-
ment, aString.

addInstVarName: aString Add the argument, aString, as one of the re-
ceiver’s instance variables. i

removeinstVarName: aString Remove the argument, aString, as one of the

receiver’s instance variables, Report an error
if aString is not found.

ClassDescription was provided as a common superclass for Class and
Metaclass in order to provide further structuring to the description of a
class. This helps support a general program development environment.
Specifically, ClassDescription adds structure for organizing the
selector/method pairs of the method dictionary. This organization is a
simple categorization scheme by which the subsets of the dictionary are
grouped and named, precisely the way we have been grouping and
naming messages throughout the chapters of this book. ClassDescription
also provides the mechanisms for storing a full class description on an
external stream (a file), and the mechanisms by which any changes to
the class description are logged.

The classes themselves are also grouped into system category classifi-
cations. The organization of the chapters of this part of the book paral-
lels that of the system class categories, for example, magnitudes,
numbers, collections, kernel objects, kernel classes, and kernel support.
Protocol for message and class categorization includes the following
messages.

285
Class ClassDescription

ClassDescription instance protocol

organization of messages and classes

category Answer the system organization category for
the receiver.
category: aString Categorize the receiver under the system cate-

gory, aString, removing the receiver from any
previous category.

removeCategory: aString Remove each of the messages categorized un-
der the name aString and then remove the
category itself.

whichCategoryincludesSelector: selector
Answer the category of the argument, selector,
in the organization of the receiver’s method
dictionary, or answer nil if the selector can not
be found.

Given a categorization of the messages, ClassDescription is able to sup-
port a set of messages for copying messages from one method dictionary

to another, retaining or changing the category name. Messages to sup-
port copying consists of

copy: selector from: aClass
copy: selector from: aClass classified: categoryName
copyAll: arrayOfSelectors from: class
copyAll: arrayOfSelectors from: class classified: categoryName
copyAliCategoriesFrom: aClass
copyCategory: categoryName from: aClass
copyCategory: categoryName
from: aClass
classified: newCategoryName

The categorization scheme has an impact on protocol for compiling
since a compiled method must be placed in a particular category. Two
messages are provided: compile: code classified: categoryName and
compile: code classified: categoryName notifying: requestor.

We also note, for the next example, that Behavior supports special
printing protocol so that arguments to the compiling messages can be
computed. These are

Behavior instance protocol

printing
classVariableString Answer a String that contains the names of
each class variable in the receiver’s variable
declaration.
instanceVariableString Answer a String that contains the names of

each instance variable in the receiver’s vari-
able declaration.

286

Protocol for Classes

sharedVariableString Answer a String that contains the names of
each pool dictionary in the receiver’s variable
declaration.

Take as an example the creation of a class named AuditTrail. This class
should be just like LinkedList, except that removing elements should not
be supported. Therefore, the class can be created by copying the
accessing, testing, adding, and enumerating protocol of LinkedList. We
assume that the elements of an AuditTrail are instances of a subclass of
Link that supports storing the audit information. First, let’s create the
class. We assume that we do not know internal information about
LinkedList so that the superclass name and variables must be accessed
by sending messages to LinkedList.

LinkedList superclass
subclass: #AuditTrail
instanceVariableNames: LinkedList instanceVariableString
classVariableNames: LinkedList classVariableString
poolDictionaries: LinkedList sharedPoolString
category: ‘Record Keeping’.

AuditTrail is created as a subclass of whichever class is the superclass for
LinkedList (LinkedList superclass). Now we copy the categories we are in-
terested in from class LinkedList.

AuditTrail copyCategory: #accessing from: LinkedList.
AuditTrail copyCategory: #testing from: LinkedList.
AuditTrail copyCategory: #adding from: LinkedList.
AuditTrail copyCategory: #enumerating from: LinkedList.
AuditTrail copyCategory: #private from: LinkedList.

AuditTrail declared two instance variable names, firstLink and lastLink,
and copied messages first, last, size, isEmpty, add:, addFirst;, and addLast:.
We also copied all the messages in the category private on the as-
sumption that at least one of them is needed in the implementation of
the external messages.

Some messages in ClassDescription that support storing the class de-
scription on an external stream are

ClassDescription instance protocol

filing
fileOutOn: aFileStream Store a description of the receiver on the file
accessed by the argument, aFileStream.
fileOutCategory: categoryName Create a file whose name is the name of the
receiver concatenated by an extension, ’.st’.
Store on it a description of the messages cate-
gorized as categoryName.

287
Class Metaclass

fileOutChangedMessages: setOfChanges on: aFileStream
The argument, setOfChanges, is a collection of
class/message pairs that were changed. Store
a description of each of these pairs on the file
accessed by the argument, aFileStream.

We can write a description of class AuditTrail on the file “AuditTrail.st” by
evaluating the expression

AuditTrail fileOutOn: (Disk file: “AuditTrail.st’)

Class Metaclass The primary role of a metaclass in the Smalltalk-80 system is to pro-
vide protocol for initializing class variables and for creating initialized
instances of the metaclass’s sole instance. Thus the key messages added
by Metaclass are themselves initialization messages-—one is sent to
Metaclass itself in order to create a subclass of it, and one is sent to an
instance of Metaclass in order to create its sole instance.

. Metaclass class protocol

instance creation

subclassOf: superMeta Answer an instance of Metaclass that is a sub-
class of the metaclass, superMeta.

name: newName
environment: aSystemDictionary
subclassOf: superClass
instanceVariableNames: stringOfinstVarNames
variable: variableBoolean
words: wordBoolean
pointers: pointerBoolean
classVariableNames: stringOfClassVarNames
poolDictionaries: stringOfPooiNames
category: categoryName
comment: commentString
changed: changed Each of these arguments, of course, is needed
in order to create a fully initialized class.

The Smalltalk-80 programming environment provides a simplified way,
using graphical interface techniques, in which the user specifies the in-
formation to create new classes.

288

Protocol for Classes

Class Class

Instances of Class describe the representation and behavior of objects.
Class adds more comprehensive programming support facilities to the
basic ones provided in Behavior and more descriptive facilities to the
ones provided in ClassDescription. In particular, Class adds the repre-
sentation for class variable names and shared (pool) variables.

Class instance protocol

accessing instances and variables

addClassVarName: aString Add the argument, aString, as a class variable
of the receiver. The first character of aString
must be capitalized; aString can not already be
a class variable name.

removeClassVarName: aString Remove the receiver’s class variable whose
name is the argument, aString. Report an er-
ror if it is not a class variable or if it is still
being used in a method of the class.

addSharedPool: aDictionary Add the argument, aDictionary, as a pool of
shared variables. Report an error if the diction-
ary is already a shared pool in the receiver.

removeSharedPool: aDictionary Remove the argument, aDictionary, as one of

the receiver’s pool dictionaries. Report an er-
ror if the dictionary is not one of the receiv-

er’s pools.

classPool Answer the dictionary of class variables of the
receiver.

initialize Initialize class variables.

Additional accessing messages store a description of the class on a file,
where the file has the same name as that of the class (fileOut), and re-
move the class from the system (removeFromSystem).

A variety of messages for creating one of the four kinds of subclasses
in the system are specified in the method dictionary of Class. In addi-
tion, Class provides a message for renaming a class (rename: aString);
this message is provided in Class rather than in ClassDescription be-
cause it is not an appropriate message to send to a metaclass.

Class instance protocol

instance creation

subclass: classNameString

instanceVariableNames: stringlnstVarNames

classVariableNames: stringOfClassVarNames

poolDictionaries: stringOfPoolNames

category: categoryNameString
Create a new class that is a fixed-length (reg-
ular) subclass of the receiver. Each of the ar-
guments provides the information needed to
initialize the new class and categorize it.

289
Class Class

Three other messages, like the one above except that the first keyword
is variableSubclass:, variableByteSubclass:, or variableWordSubclass, sup-
port the creation of the other kinds of classes. Note also that the system
requires that a subclass of a variable-length class be a variable-length
class. When possible, the system makes the appropriate conversion; oth-
erwise, an error is reported to the programmer. '
Suppose that every time we created a new subclass, we wanted to in-
stall messages for storing and retrieving the instance variables of that
class. For example, if we create a class Record with instance variable
names name and address, we wish to provide messages name and ad-
dress, to respond with the values of these variables, and name: argu-
ment and address: argument, to set the values of these variables to the
value of the message argument. One way to accomplish this is to add
the following method to the instance creation protocol of class Class.

accessingSubclass: className
instanceVariableNames: instVarString
classVariableNames: classVarString
poolDictionaries: stringOfPoolNames
category: categoryName
| newClass |
newClass — self subclass: className
instanceVariableNames: instVarString
classVariableNames: classVarString
poolDictionaries: stringOfPoolNames
category: categoryName.
newClass instvarNames do:
[:aName |
newClass compile: (aName , ’
17, aName) classified: #accessing.
newClass compile: (aName , ": argument
*, aName, ~ « argument.
targument’) classified: #accessing].
tnewClass

The method creates the class as usual, then, for each instance variable
name, compiles two methods. The first is of the form

name
Tname

and the second is of the form

name: argument
name « argument.
Targument

290

Protocol for Classes

So, if we create the class Record, we can do so by sending Object the
following message.

Object accessingSubclass: #Record
instanceVariableNames: ‘name address’
classVariableNames: "’
poolDictionaries: ”*
category: ‘Example’.

The message is found in the method dictionary of Class, and creates the
following four messages in the category accessing of class Record.

accessing

name
Thame

name: argument
name « argument.
Targument

address
Taddress

address: argument
address < argument.
targument

The Programming
Interface

Views
Text Selections
Menu Selections

Browsers

List Selections
Scrolling

Class Definitions

Testing
Inspectors

Error Reporting
Notifiers
Debuggers

292

The Programming Interface

This chapter shows how a programmer adds new classes to the system
and then tests and debugs their behavior using the Smalltalk-80 pro-
gramming environment. The chapter presents a scenario of how a pro-
grammer might add class FinancialHistory to the system. FinancialHistory
was used in the first part of this book as an example class. Its protocol
and implementation descriptions can be found inside the front cover of
this book. This example scenario is not intended as an exhaustive sur-
vey of the Smalltalk-80 programming interface. It is intended as an
overview that provides motivation for the kinds of graphics support de-
scribed in subsequent chapters. '

A user and the Smalltalk-80 programming environment interact
through a bitmap display screen, a keyboard, and a pointing device. The
display is used to present graphical and textual views of information to
the user. The keyboard is used to present textual information to the
system. The pointing device is used to select information on the display
screen. Smalltalk-80 uses an indirect pointing device called a mouse. A
cursor on the screen shows the location currently being pointed to by
the mouse. The cursor is moved by moving the mouse over a flat sur-
face. The mouse has three buttons, which are used to make different
kinds of selection.

Views

The display screen contains one or more rectangular areas called views.
The views are displayed on a gray background and may overlap. Each
view has a title shown at its upper left corner. Figure 17.1 shows the
Smalltalk screen with two overlapping views on it. Their titles are
Workspace and System Browser. These two views contain only text; oth-
er views might contain pictures or both text and pictures.

The view toward the top of the figure is a workspace. 1t contains text
that can be edited or evaluated. The view towards the bottom of the fig-
ure is a system browser. It allows the class descriptions in the system to
be viewed and edited. The arrow in the lower right part of the browser
is the cursor. It shows the current location of the mouse. At the lower
right corner of each figure in this chapter will be a small rectangle con-
taining three ovals arranged side by side. These ovals represent the
three mouse buttons. When one of the buttons is pressed, the corre-
sponding oval will be filled in. The buttons will be referred to as the left,
middle, and right buttons, even though they may not be arranged side
by side on some mice.

A variety of information is typically visible on the Smalltalk-80 dis-
play screen. In order to take some action, the user indicates what part
of the visible information should be affected. The general activity of
directing attention to a particular piece of information is called selec-

Figure 17.1

Text Selections

293
Views

‘elcoma to the standard Smalltalk-80 system

Gollections-Sequ

Collections-Text Pen a2 iy
Cuollections-Arrayvad Point comparing bottom
Collections-Support] Q rectangle functionsfbottom;

B SR = resting bottemCenter
Graphics-Display Of --- truncation and rour] bottomLeft
transforming bettomRight
cepying battomRight:
printing S arher
press printing carnar

genter
“Answer the point at the centar of the receiver."
+self topleft + salf bottamRight 7/ 2

tion. The system gives visual feedback to indicate the current selection.
The most common feedback mechanism is to complement a rectangular
area of the screen, changing black to white and white to black. To begin
using the system, one of the views is selected. The selected view is indi-
cated by complementing only its title. The selected view will be com-
pletely displayed, obscuring the overlapping parts of any other views. In
Figure 17.1, the browser is the selected view.

A different view can be selected by moving the cursor into part of its
rectangular frame that hasn’t been overlapped by other views, and then
pressing the left button on the mouse. In Figure 17.2, the workspace
has been selected. Note that the left mouse button is pressed. The
workspace now obscures the overlapped part of the browser.

The Smalltalk-80 text editor provides the ability to select text and to
perform editing operations on that selected text. For example, to re-
place the sequence of characters the standard with my special in the
workspace, the old characters are selected and then the new characters
are typed.

294

The Programming Interface

Figure 17.2

Figure 17.3

s

Welcoma to the standard Smalltalk-&0

Graphics—\:‘i»ews
Graphics-Editors s class I prass printing Icorner

center
“Answer the point at the center of tha receiver.”
t5alf topleft + self bottomRight /¢ 2

Characters are selected using the left mouse button. The cursor is posi-
tioned at one end of the selection and the mouse button is pressed (Fig-
ure 17.3).

The text selection is now empty—it contains no characters. The posi-
tion of an empty selection is shown with a carat (an inverted “v”). The

Walcome to*he standard Smalltalk-80 system

300

Figure 174

Figure 17.5

Figure 17.6

295
Views

carat is partially obscured by the cursor in Figure 17.3. While the
mouse button remains pressed, the cursor is moved to the other end of
the characters to be selected. The selected characters are shown in a
complemented rectangle (Figure 17.4).

When the button is released, the selection is complete (Figure 17.5).
When characters are typed on the keyboard, they replace the selected
characters. After typing the new characters, the selection is empty and
positioned at the end of the new characters (Figure 17.6).

" RSmalltalk a0 swvstam

Welcoma to Ryls €mallta|k 30

Wealcame to my spec:ia.LSrkallta.lk-SD swst

296

The Programming Interface

Menu Selections

Figure 17.7

Figure 17.8

Another kind of selection used in the user interface is called menu se-
lection. The middle and right mouse buttons are used to select com-
mands from one of two menus. When one of these buttons is pressed, a
menu appears at the location of the cursor. The menu obtained by
pressing the middle button contains commands relevant to the contents
of the selected view. When the view contains editable text, as does the
workspace, these commands relate to text manipulation. The menu
obtained by pressing the right button contains commands relevant to
the selected view itself. The middle-button menu may be different in
different views, but the right-button menu is always the same.

Characters can be deleted from a piece of text by selecting the char-
acters and then invoking the cut command from the middle-button
menu. In the next picture, the characters special have been selected
and the middle button has been pressed. The menu of commands rele-
vant to the contents of the view has appeared. While the button is held
down, the cursor is moved to select the cut command in the menu (Fig-
ure 17.7). When the button is released, the selected command is carried
out. In this example, the selected text is removed (Figure 17.8).

qain
unda
CORY b

Waealcome to my

pasts

dolt
printit
accept
cancel

U80

(.

Welcome ta my Smalltalk-30 system

o

297

Browsers

A text selection can be treated as a Smalltalk-80 expression and
evaluated. There are two commands in the middle-button menu to car-
ry out such an operation, dolt and printlt. Selecting dolt simply evaluates
the selected expression and discards the resulting value. Selecting printlt
evaluates the selected expression and prints its value after the expres-
sion. For example, after typing and selecting the expression Time now,
printlt will print out the resulting new instance of Time (Figure 17.9).
The printed result becomes the current text selection (Figure 17.10).

Al
ando

Woalcomme to m

Time now

[y

Figure 17.9 U ' U

Welcome to my Smalltalk-80 system
Time now/ERIERPEREYEET T

Figure 17.10

If the cursor is moved outside the menu before the button is released,
no command is carried out.

Browsers A browser is a view of the classes in the Smalltalk-80 system. Existing
classes are examined and changed using a browser. New classes are
added to the system using a browser. A browser consists of five rectan-
gular subviews. Along the top are four subviews showing lists. Each list

298

The Programming Interface

Figure 17.11

may or may not have one of its items selected. The selected item in
each list is complemented. The contents of the list cannot be edited
through the view, they can only be selected. Below the four list
subviews is a subview showing some text. That subview is similar to the
workspace, allowing the text to be edited. The selections in the four
lists determine what text is visible in the lower subview. When a selec-
tion has been made in all four lists, the lower subview shows a
Smalltalk-80 method. The method is found in a class determined by the
selections in the two lists on the left. The method within that class is
determined by the selections in the two lists on the right. The browser
in Figure 17.11 is showing the method used by Rectangles to respond to
the message center.

area

yed Point i bottom

Collections-Suppart] Quadrangis rectangle funcrions| battam:
5 tasting bottomenter

Graphics~Display © truncation and rour bottomlert
Graphi ths transforming bottamBight
bottamBight:
printing

GFraphics~Editars T press printing corner

jgcenter
“Answer the point at the center of the receiver”
ts2lf topleft + s2lf bottomfight 77 2

The classes in the system are organized into categories. The leftmost
list in the browser shows the categories of classes in the system. When
a category is selected, the classes in that category are shown in the next
list to the right. In the example, the category Graphics-Primitives is se-
lected. That category has four classes in it. When one of these classes is
selected, its message categories are shown in the next list to its right.

List Selections

Figure 17.12

299

Browsers

Since Rectangle is selected, the categories in its instance protocol are
displayed. At the bottom of the second list, two rectangular areas are
labeled instance and class. One of these will be selected at all times. If
class is selected, then the next list to the right shows the categories of
class messages; if instance is selected, the list shows the categories of in-
stance messages. When a message category is selected, the selectors of
messages in that category are shown in the rightmost list. When one of
these message selectors is selected, the corresponding method is
displayed in the subview at the bottom of the browser. The method
displayed can be edited and the old version can be replaced by the
edited version, if desired.

A selection is made in a list by placing the cursor over an item and
then pressing and releasing the left mouse button. In Figure 17.12, an-
other item is selected in the browser’s rightmost list. Therefore, another
method is presented in the lower text subview.

3 vad Foint n:-:nmparing battom
-Support] Guadrangle £=1n botton
- resting

2 bottomlaft

bottomBight

. 1 bottomPight
printing center
prass printing cornar

bottomGenter
ser tha point art the center of the bottom harizontal ling of the

" =
AN

r.

racai

taalf center © & self bottam

300

The Programming Interface

If the left button is pressed and released while the cursor is over the
item already selected, that item is deselected (Figure 17.13).

Collections-Seguen
Collections-Taxt
comparing bottom
rectangle fun bottom:
testing‘ bottomCenter
truncation an bottomlLa¥t
Graphics-Paths transfarming bottomRight
Graphics-Symbols copying bottamBight:
Graphics-viaws printing center
Graphics-Editors press printing corner

inatance

massage selector and argument names
“comment stating purpose of message”

| temporary variable names |
statements

Figure 17.13

When a message category is selected, but none of its message selectors
have been selected in the rightmost list, the lower subview contains
some text describing the various syntactic parts of a method. This text
can be replaced with a new method to be added to the system. The new
method will be added to the selected category.

If a class category has been selected, but none of its classes has been
selected, the lower subview contains some text describing the various
parts of a class definition. This text is in the form of a message to a
class (Object, in this case) asking it to create a new subclass of itself
(Figure 17.14).

Figure 17.14

Collactions-Sel
Collactions-T4
Collactions-Ar
GCollactions-Syj

vaphics-Frmi
Graphics-Displj
Graphics—Pathj
Graphics=Symj

Graphics-Editd

301

Pen

Paint
Quadrangle
Rectanyle

instanoe

Browsers

Qbjact subclass: #NameQfClass

instancevariablaNameas: instyvarName 1 instvarfNamaz’
classyariableNames: "Class¥arName 1 ClassvarNameag®

poolDictionaries:
category: ‘Graphics-Primitives’

s

302

The Programming Interface

Scrolling

Figure 17.15

A view may not be large enough to show all of the information it
might. For example, many of the lists viewed by the browser are too
long to be completely displayed in the space available. The view can be
positioned on different parts of the list by using a scroll bar. A scroll
bar is a rectangular area that appears to the left of the subview con-
taining the cursor. The gray box in the scroll bar indicates which part
of the total list is visible in the view. The height of the scroll bar repre-
sents the length of the entire list. The part of the scroll bar occupied by
the gray box indicates the part of the list that is visible.

Mew Projects
Numeric-Magnitude] Pen
Numeric-TJumbars Paint
Collections-Abstrag Quadrg
Collections-Unorder| Rectan
J Zollections-Saquend ————--
Collections-Teaxt
Collections-Arrayvead
Collections-Suppaort
Graphics-Primitives m
Ohject subclass: #NameOf
instanceVariableMNames

30

By moving the mouse into the scroll bar, another part of the list can be
shown. This is called scrolling. When the cursor is in the right half of
the scroll bar, it takes the shape of an upward pointing arrow. If the
left mouse button is pressed, the items in the list appears to move up in
the subview and new items become visible at the bottom. When the
cursor is in the left half of the scroll bar, its shape is a downward point-
ing arrow; pressing the left button makes an earlier part of the list visi-
ble. For example, the browser’s leftmost list can be scrolled to show
categories earlier in the list (Figure 17.15).

Views containing text can also be scrolled if the view is too small to
show all the text.

303

Browsers

A new class can be added to the system by selecting a class category

Class Definitions and editing the text describing the parts of a class definition. The
FinancialHistory example will be added to the category named New
Projects.

While text is being changed in the lower subview, it may not accu-
rately represent a class definition or a method. The accept command in
the middle-button menu is used to indicate that the editing has been
completed and the class definition or method should be added to the
system (Figures 17.16 and 17.17).

e (g =1
Numeric-Magnitude

again
unda
copy
Ut
paste
dalt
printlt
Object subclass: #FinancialHistory format
ariableMames “cashOnHand incomes expenditures

Collections~Unorder
Cotlectionz-Sequen
Collections-Taxt

llections-Arrayver
Colections-Support
Graphics-Primitives

instance

instancay

classyariableNames; ™ caryel

aolDictionari v IPAaWn
N S5

paailiictionaries . e xpdain
catagory: "New Frojects’

Jad

Figure 17.16

em Bro

Numer
Numeric-Nombers
Callactions-abstra
Collections-Unorder
Collections-Saquen
Collactions-Taxt
Collactions-arraye
Cuollections-Suppart
Graphics-Primitives

inztanca

AOb,iect subclass: #FinancialHistory
instancevyariableNames: "'cashOnHand incomes expendituras *
classVariablaMames; ™' k
pooiDictionaries: ™
category: ‘New Projects’

Figure 17.17

304
The Programming Interface

The menu that appears when the middle button is pressed is differ-
ent in each of the browser’s subviews. In the subview showing the class-
es in a category, the menu includes an item called definition. This com-
mand causes the class definition of an existing class to be displayed
(Figures 17.18 and 17.19).

This class definition can then be modified with the standard text
editing operations. After changing the text, accept must be selected

again in the middle-button menu. For example, an instance variable
could be added to all Rectangles by adding its name to the appropriate
place in the class definition.

New Frojects
Mummeric—klagn

Numeric-humb Faint amparing
Coflections-& Quadrangid ctangle functions
Ractangle esting
————————— ~; sasfruncation and raur
e - forming

Tapving
Printing
prass printing

Collecticn
Collections=5u

Sraphitcs—Primie

instance

080

Figure 17.18

Naw Projects
Numeric-Magn|
Mumeric—Numb
Collections-Ah
Collactions-Un
Coliections-Sa
Collections-T
Collactions-ar|
Callactions-Suyj
Graphica-Frinu.

Fen accessing

Point comparing
Quadrangle rectangle functions
testing
------------ truncation and rour
transforming
copwing

printing

prass printing

n
%

instance

Object subclass: #Ractangle
instancaVariableNames: “origin corner *
classvariableNames:
poolDicticnaries: ™
categery: ‘Graphici-Primitives’

Figure 17.19

305

Browsers

Another item in the middle-button menu for the class list is
categories. When it is selected, the message categorization is shown in
the bottom subview (Figures 17.20 and 17.21).

browsa
printOut f---—--~---
Numeric-Magn fileQut messageas
Numeric-MNumb] & |--------- hlerarchy p------~----
Collections-4 definition
Collections-Un caomment
Cuollections-Se

Collections-T remy 2
Collections- Af
Collections—3u
Graphics-Prim}

Figure 17.20

Collactions~Ab
Collections-Un
Collections-Sa
Collections-Td
Coilections-ar
Collectio

Graphics-Primi

As vet unclassified’)

Figure 17.21

The new class has a single, empty message category called As yet
unclassified.

306

The Programming Interface

The categorization can be changed by editing the text and selecting
accept (Figures 17.22 and 17.23). Notice the change in the third subview
from the left of Figure 17.23. There are now three categories, transac-
tion recording, inquiries, and private.

Mumeric
Numeric-Numbers
Collections-Abstra
Coliections-Unarder
Caoliections-Segquan

. gali
Coliections-Text ‘Tﬁ“:‘ig
Collections—Arraye .

copy

Collections-Suppart

o P cut

Graphics-Primitives paste Flass

{"transaction recording’y| delt
printit

{inquiries™)
(private’y

Figure 17.22

transaction racardi
inquirias
private

Graphics-Primitives

(‘transaction recording’)
A g’

{‘inquiries”)
Uprivate”)

Figure 17.23

Figure 17.24

Figure 17.25

307

Browsers

After a new class has been added to the system, methods can be add-
ed by selecting categories and editing method templates (Figures 17.24
and 17.25).

Notice the change in the rightmost subview of Figure 17.25. The se-
lector of the new method is added to the (previously empty) list and be-
comes the current selection.

Numaric inquiries
Caollections-Abstrag privats
Coligctions=-Unordery J-rommmmmeees
Collections-Saguen again
Collections-Taxt unda
Callections copy
Cotlection cut
paste
dinlt
spend: amount for: reason printlt
expenditures at: reasan format
put: (self tatalSpentFor reason) + amount,
cashOnHzand + cashonHand - amount, ‘:Sgwe;
Explain

tion recard
inquirias
private

Numeric-Numbers
Collections-&hstrac
Collections-Unarder
Caollections—Sequean
oilactions-Taxt

Collections—Arraye
Collections-8upport
Graphics-Frimitives

irEtance

spand: amount far: reason
expenditures at: raason
put: (self totalSpentFor reason) + amount.
cash@nHand ¢ cashOnHand - amount,

308

The Programming Interface

Testing

Figure 17.26

After the methods shown in Chapter 5 have been added to
FinancialHistory, instances can be created and tested by sending them
messages. First, a new global variable will be added to the system by
sending the message at:put: to the dictionary of global variables whose
name is Smalltalk. The first argument of at:put: is the name of the glob-
al variable and the second is the initial value. This global variable will
be used to refer to the instance being tested (Figure 17.26).

Wealcame to my Smalltalk-80 system again
Time pow 10:02:45 am undo
copy
cut
paste
dolt
prinyt
accapt
cancel

Smalitalk at FHouseholdFinances

080

Figure 17.27

Figure 17.28

308
Testing

Messages are sent to HouseholdFinances by typing expressions in the
workspace and evaluating them by invoking the commands dolt or
printlt (Figure 17.27). Several expressions can be selected and evaluated
at one time. The expressions are separated by periods (Figure 17.28).

W ar I capy
Welcome ta my Smalltalk-8S0 system 15}_’;9
as
Time now 10:02:45 am B
prin¥lt
Smalltalk at: #HouseholdFinancas accapt
put: nil cancel

HouseholdFinances = FinancialHiztory initialBalance: 1850,

080

Welcame to my Smalltalk-80 system
Time now 10:02:45 am again
unda
Smalitalk at: #HouseholdFinances copy
. cut
put: nil -
¢ : . . o paste
HousehaoldFinances € FinancialHistory initialBalangeee

HouzehaldFinances spen:

ldFinance

310

The Programming Interface

Selecting printlt instead of dolt displays the result following the ex-
pression (Figures 17.29 and 17.30).

Woalcaome to my Smalltalk-50 system
Time now 10:02:45 am

N = B - H -~ T
‘% Smalltalk at: #HoussholdFinances PR
put: nil undo
HouseholdFinances € FinancialHistory ini{ copy poar 1560,
| | HouseholdFinances spend: 700 far: “rent] ©Yt
3 paste

HouseholdFinances spend: 78.53 for: “fo
- HouseholdFinances receive: 820 fram: 'p
; HouseholdFinances receive: 22,15 from: -’
HouzeholdFinances cashonHand

Figure 17.29

Walcome to my Smalltatk—-80 system
Time now 1:02:45 am

Smalltalk at; #HouseholdFinances

put: nil
HouseholdFinances « FinancialHistory initialBalance: 1880,
HouseholdFinances spend: 700 for: ‘rent’,
HouseholdFinances spand: 76,53 faor: "food’.
-= HouseholdFinances raceive: 820 fran: "pay’.
alk HoussholdFinances receive: 22.15 from: "intemest’.
HouseholdFinances cashOnHandjy

0o0

Figure 17.30

311
Testing

An inspector is a view of an object’s instance variables. An inspector is
created by sending inspect to the object whose instance variables are to
be viewed (Figure 17.31).

After inspect has been sent, the user is prompted for a rectangular
area in which to display the inspector. The shape of the cursor is
changed to indicate that the upper left corner of the rectangular area
should be specified (Figure 17.32).

Inspectors

Walcome ta my Smalltalk-80 system
Time now 1002:45 am

Smalltalk at: #HouseholdFinances again
, undo

put: nil copy
HouseholdFinances « FinancialHisy] cut
HousehaldFinances spend: 700 far paste
HousehaldFinances spand; 785!

alBalanca: 1550,

-
fath] a .
\ , Aprindlt] |
HousehaldFinances receive: 320 f gcn‘ept v
HouseholdFinanceas receive: 22, 15|canceipterest’

—

HouseholdfFinances cashOnHand 1623.62

HouseholdFinances inspact

Figure 17.31

Waoarkspac

Walcome to ffy Smalltalk-80 system
Time naow 10:02:45 am

Smalltalk at: #HousaholdFinances
put: nil

Figure 17.32

HouseholdFinances
HaouseholdFinances
HaouseholdFinances
HousehaldFinances
HouseholdFinances
HouseholdFinanceas
HouseholdFinances

« FinancialHistory initiaiBalance: 1560,
spend: 700 for ‘rent’.

spend: 7853 for: "food’

receiva: 820 from “pay’

receive: 22,15 from: Jinterast’,

=

cashonHand 1623.62

inspect

312

The Programming Interface

Figure 17.33

Figure 17.34

The cursor is moved to the desired location and the left mouse button is
pressed and held down. The shape of the cursor is changed again to in-
dicate that the lower right corner of the rectangular area should now
be specified. As long as the left mouse button remains pressed, the pro-
spective new rectangular frame is displayed (Figure 17.33).
When the button is released, the inspector is displayed in the select-
ed area (Figure 17.34).
The title of the inspector is the name of the inspected object’s class.

Welcome ton
Time now 10

Smalitalk at:
put:
HousehaldFina

HousehaldFing
HousehaldFina
HousehaoldFina
HousehaldFing
HouseholdFing
HiouzeholdFina e

Welcomea ta
Time now 10
cashonH
Smalltalk at: | incomes
put; expendit

HouseholdFing

HousehaldFing

HouseholdFina
HouseholdFina
HaousehaoldFina
HouseholdFiny
HouseholdFina

Figure 17.35

Figure 17.36

313
Testing

An inspector has two subviews. The left subview shows a list containing
self and the names of the object’s instance variables. When one of the
elements of the list is selected, the corresponding value is printed in the
subview to the right (Figures 17.35 and 17.36). The text that appears in
the righthand subview is obtained as a result of sending printString to
the selected object. Selecting the element self at the top of the list,
prints the object being inspected (Figure 17.37).

Waorkspace

FinancialHistor

Smalltal

Househa
Househo
Househa
| Househa
F Househo
Househa
Hauseho

FinancialHiztars

Welcomg
Time no

Dictionary {“rant’™=>700

food™->¥E.63)
cashonHand :

Smalltal Incomes

Housaho

Househo

Househo
| Househao
€] Househo

Haouseho

Haouseho

314

The Programming Interface

Figure 17.37

Morkspace) -
P FinancialHistory

YWalcomg

Time no
cash%‘ Hand

incomes
expenditures

a FinancialHistary

Smalltal

Househo
Househn
Housaho
Househo
1 Househa
Househo
Househo

Error
Reporting

When an error is encountered, the process in which the error occurred
is suspended and a view of that process is created. Suspended processes
can be viewed in two ways, with notifiers and with debuggers. A notifier
provides a simple description of the process at the time of the error. A
debugger provides a more detailed view and also the ability to change
the state of the suspended process before resuming it.

As an example of error reporting, we will follow the addition and
debugging of several new methods in FinancialHistory. The following
methods contain several errors which will be “discovered” in the testing
process. The intention of these new methods is to allow a
FinancialHistory to give a summary report of its state.

report

| reportStream |

reportSiream ~ WriteStream on: (String new: 10).

reportStream cr.

reportStream nexiPutAli: * Expenses’.

reportStream cr.

self expenseReasons do:

[:reason | reportStream tab.

reportStream nextPutAll: reason.
reportStream tab.
reportStream nextPutAll: (self totalSpentFor: reason).
reportStream cr].

Figure 17.38

315
Error Reporting

reportStream nexiPutAll: “Incomes” .
reportStream cr.
self incomeSources do:
[:source | reportStream tab.
reportStream nextPutAll: source.
reporiStream tab.
reportStream nextPutAll: (self totalReceivedFrom: source).
reportStream cr).
freportSiream contents
incomeSources
tincomes keys
expenditureReasons
texpenditures keys

A new category is added and the new methods typed in and accepted
(Figure 17.38).

After adding the new methods, the instance of FinancialHistory can be
asked for a report by evaluating an expression in the workspace (Figure
17.39). Instead of printing the report, a notifier appears on the screen
(Figure 17.40).

HousehaldFinances € minancialHistory inittalBala
HouseholdFinances spand: 700 for ‘rent’
HouseholdFinances spend: 78.53 for “food”

rojects
Numeric-Magnitude {IZ§ transaction recordi] expenditureReasongasy
Numeric-Numbers inquiries
Callections-Ahstrac i rting
Collections-Unorder, te
Collections-Segquen
Caollections-Teaxt
Collections-Arraye
Caollections-3upport
Graphics—Primitives

again
undo
repartStream nextPutall reasan, copy
reportStream tah. cut
reportStream nextPutall {self tatalSpen paste |a
dolt
. . printit
reportdtream naxtPutall ‘Incamas’ format

inztancse

reportStreaam crl.

reportitream cr.

self incomeSources dao cansel

Spawn

[:source { reportStream tab.
2xplain

reportStream nextPutAll source.
reportStream tab.
reportStream nextPutall (self totalReceivedFrom: source),

reportStream crl.
treportStream contants,

316
The Programming Interface

Wik,

Welcome to my It
Timeg now 1O02:45 am

Smalitalk at: #HouseholdFinances

put: nil :
HouseholdFinances « FinancialHi i?_f;'g' itialBalance: 1560,
HouseholdFinances spend: 700 f Copy !
HousehaldFinances spend: 78.53] cur
HouseholdFinances receive: 820) paste
HouseholdFinances receive: 22,1
HouseholdFinances cashOnHand
HouseholdFinances inspect
HousahaldFinan

Figure 17.39

Workspace

Welcome to my Smalltalk-80 33
Time now 10:02:48 am

2 mot und

FinancialHistory{Obhjecti>>doesNotUndarstand:
FinancialHistory>>repart
UndefinedQbject>>Dolt
Ccnmpiler))e\-'a|uate:in:t@notifying:ifFaH:

House
Housg
House
Hause
House
House
HoussholdFinances inspect
HouseholdFinances raport

StringHalderController>>dolt

Figure 17.40

Notifiers

Figure 17.41

317
Error Reporting

A notifier is a simple view of a process suspended after an error. The
notifier’s title indicates the nature of the error. Notifiers are created by
sending an object the message error:.. The argument of the message be-
comes the title of the notifier. The notifier shown in Figure 17.40 indi-
cates that the message expenseReasons was sent to an object that did
not understand it. The list visible in the notifier shows part of the state
of the suspended process.

The cause of this error is evident from the title of the notifier. The
message added to FinancialHistory was expenditureReasons not
expenseReasons. The notifier and the erroneous process can be
discarded by selecting the command close in the right mouse-button
menu (Figure 17.41).

Workspace
Wealcome to my Smalltalk-80 system
Tima now 10:02:45 am

e not undarstood: expenseleas

FinancialHistory{Object)>>doesplatlipderstand:
FinancialHistory>»report undar

House UndefinedObjact>>Dolt
Hausa Campiler>evaluateintanotifyifcallapse
StringHoldarController>>dolt

House
House

mave
frame

House
House

HouseholdFinances inspect
HousehaldFinances repart

318
The Programming Interface

The misspelling in report can be corrected in the browser (Figures
17.42 and 17.43).

Collections-Support
Graphics-Primitives

instance

report
| repart3Stream |
reportStream « WriteStream on (String new: 10}

rapart@tream or.

reportStream nextPutsll "Expanses’,

reportdtream or.

salf expenieaﬁans do;

[reasony reportStream tak

reportSitream naxtPutall reason,
reportStraam tab,
raportStraam nextPutall (self totalSpentFor raason),
reportdtream orl.

reportStream nextPutall TIncomes’

Figure 17.42

angain
report uridn

| report3traam | copy

repart cam « WriteStream on: (String cut PO
paste
dolt
printic
farmat

eam nextPutall "Expanses’

reportSitres
self expenditurgf

[weaszon | re am tab, rige!
ol
2xplain

raportStream nootPutAl

reportStream tab,
Stream nestPutall (self totalSpentFor reaszong.

report
reportitream orl
repartdtream naxtPutAll Tinoomes’,

Figure 17.43

After fixing the misspelling in the browser, the original expression can
be evaluated in the workspace again (Figures 17.44 and 17.45).

This creates another notifier. The cause of this error is not as obvi-
ous. The message do: was sent to an object that did not understand it.
In order to learn more about the error, a more detailed view of the sus-
pended process can be obtained by selecting the command debug in the
middle-button menu.

319
Error Reporting

Welzome to my Smalitalk-S0 system

Timme rioe

again
.) undo
Smalltalk at #HouzeholdFinancy5 oy

put: nil out
HouseholdFinances « FinancialHi paste
HouseholdFinance: spend: TOO] dalt
HouseholdFinances s TS50
HoussholdFinances
HouzeholdFinanoes receive: 15 1
HouseholdFinans wnHand 168
HouseholdFinances i
HousehaldFinance

Figure 17.44

Househd Smallinteger{Cbjecti>>doeshotlnderstand:
Housahg WriteStream{Streami>inaxtPutall
[]in FinancialHistory» repaort

Hausehd L
Hausehd []in Setiido: \

Househig
Househﬁ
HouseholdFinances inspect
HouseholdFinances repart

Smallinteger{Mumberisrtonda:

Figure 17.45

320

The Programming Interface

Debuggers

Figure 17.46

A debugger is a view of a suspended process that reveals more details
than a notifier reveals. When debug is selected in a notifier’s middle-
button menu, a debugger is created viewing the same process the notifi-
er viewed (Figure 17.46). After selecting debug, the user is prompted to
supply a rectangular area in which to display the debugger. The rectan-
gle is specified in the same way that the rectangular frame for a new
inspector is specified (Figure 17.47).

28 Message not understood: do

Smallintager]Objac ceshotlinderstand: [4ge
WriteStreami Str
[]in Financia
] in Setrrdo

iy

SmallintegerMumberiitodo:

T —_——
Voo o w

g

jng

eh

eh
seholdFinances inspect
Al e e o bt

i

The debugger has six subviews. The top subview shows the same list
that was visible through the notifier. This list gives a partial history of
the process in which the error occurred. Each item corresponds to a
message that was sent and whose response is not yet completed. The
item contains the name of the receiver’s class and the selector of the
message, separated by “>>". The last item visible in the list,
FinancialHistory >> report, indicates that an instance of FinancialHistory
received the message report. This message was sent when the middle-
button menu command printlt was selected while the expression
HouseholdFinances report was the text selection. When one of the items
in the debugger’s upper list is selected, the method invoked by the cor-
responding message is displayed in the subview immediately below.

321
Error Reporting

Welcome fo
Timg novs

Smallinteger{dbject
WriteStrea

shlotdnderstand:
tPutall
port

1 in Setrrdo
Smalllnteger{MNumber)»:tadom
Setkrdo

FinancistHistory:

£ gl rr

A

Figure 17.47

322

The Programming Interface

When a method is displayed, the last message sent before the process
was suspended is complemented. Figure 17.48 shows that the message
do: was sent to the result of the expression self expenditureReasons.
The next item up on the list, Set>>do:, indicates that the receiver of
do: was an instance of Set. The method invoked can be seen by
selecting Set>> do: in the list.

Weltome toomy

Time powe 1Qu02eds am

Smaliinteger{Object)r>doesMotlinderstand:
WriteStreamidtraam)rrnastPut &l

[] in FinancialHistorys>rapor:

[] in Setirdo a:
Smallinteger(MNumber):toida:
Setr>do;

report
| repartStraam |

repartStream + WriteStream am (Stringy newe 10),

rapart3traam or,

report3tream nextFutall ‘Expenses’,
reportdtream cr.
self expenditureReasans

SO0},

Incomes”,

reportStream nextPutall: *
repQrtStroam o

salf thisContext

cashGnHand reportStrean

incames reason

expenditures source

0od

Figure 17.48

Figure 17.49 shows that this method sent a message to the object 1. The
next item up on the list, Smalllnteger(Number) >> to:do: shows that the
receiver was an instance of Smallinteger. When the method invoked by
a message was found in a superclass of the receiver’s class, the name of
that superclass is included in parentheses after the receiver’s direct
class. In the example, the method for to:do: was found in class Number.

Figure 17.49

323
Error Reporting

Wealcame to my
Timie pove JCHCO2AE am

Smallinteger{Object)drdoesMatUndarstand:
WriteStream(Stream)rrnextPurall

[] in FinancialHistory»»raport

[]in Set>rdo:
Smallintegaer{Mumbar» > taido;

o

iaiHistory > report

nf do: aBlock

rindec) == nil ifFalze: [aBloc

self thisContaxt
tally aBiock
index

0i0

The top item on the list, Smallinteger(Object)>> doesNotUnderstand:,
shows the last thing that happened before the process was suspended-—
an instance of Smallinteger received the message doesNotUnderstand:.
This message was sent by the system when the do: message was not
found in Smallinteger or in any of its superclasses. The
doesNotUnderstand: message invoked a method that suspended the pro-
cess and created the notifier viewing it. The second item from the top of
the list, WriteStream(Stream) >> nextPutAll;, indicates that the misunder-
stood do: message was sent from the method for nextPutAll: in class
Stream. Figure 17.50 shows the debugger with that item selected. The
method displayed shows that do: was sent to the object named
aCollection, which was provided as the argument of nextPutAll:.

The lower four subviews of a debugger are used to find the value of
the variables used in the method. They function like two inspectors.
The leftmost subview shows a list of the receiver (self) and its instance
variable names. The third subview from the left shows the argument

324

The Programming Interface

Figure 17.50

LA
Welcame to my
Timne now TO0oedas am

Smalita

&3y 3 nextFut &
inancialHistory»>repart
[Jin Setx>do:
Smalllnteger{Mumbar)::tauda:
Setr>dor
FinancialHistory» repart

T

nextPutAll: aCollection
“Append the slements of alollection onto the receiver,

Nun
Mun
Coll
Coll
Call
Call
Call
Coll
Gra

Anzwar

aColtection.”

| salf mestPut v]l

aCaollection
taCollection

o [

self
collection
position
readLimit
writglimit

names and temporary variable names. When a name is selected in ei-
ther one of these lists, the value of the associated variable is shown in
the subview to its right. To display the receiver of the do: message,
aCollection is selected in Figure 17.50.

The source of this error appears to be that the Stream was expecting
a collection of elements as the argument of nextPutAll: and it got a num-
ber, 700, instead. Selecting the next item down from the top list shows
where the argument came from. The argument was the result of evalu-
ating the expression (self totalSpentFor: reason). In Figure 17.51, selec-
tions have been made in the bottom subviews to display the values of
the instance variable, expenditures, and the argument, reason.

When text is selected and evaluated in the method displayed in the
browser, the variable names are interpreted in that context. So the ar-
gument to nextPutAll: can be found by re-executing the expression (self
totalSpentFor: reason) and printing the result (Figure 17.52).

Figure 17.51

Figure 17.52

325

Walcome to my Smalltal
Time nove 1002450 an

Error

Reporting

in Fins 2
[]in Set>>do:
Smallinteger{Number)>>toido
Setr>do
FinancialHistory»>raport

report
| reportdtraam |
reportStream < WriteStream on: (String new: 10}

Mur
Coll
Coll
Call
Coll
Coll
Call
Gra

repartStraam cr.
reportStream nextPutall "Expenses’.
reportStream cr.
self expenditureReasons da:
[ireasan | reportStraam tab.
reportStream nextPutsll rea
reportStream tab.

rep

reportStraam crj.
repartStream nextFutall ‘Incomaes®,
repottSLream gl

thisContext
’ reportStrean

‘rant’

Dictionary

reportstraam or.
artStraam nextPutsll "E
tStraan

salf axpenditurefie again
[reason | repar unda
o TOpY .
apott SRl reazon.
repor Ut =2-3<tulyt

reportStraam pasra

repartStream o dolt
reportStraam dps
repartStream nextPutAll fims format
i o . EGI=Tas
LSROrT Uel:?mt'u — CAMNG) pm———— ——
_________ ictignary o Ispawn rent’
self food -rTEES) cxplain thisContaxt
cash&nHand repartStraan

i

326

The Programming Interface

Figure 17.53

Figure 17.54

raportotream of
reportStream nextPutall "Expenses’,
reportStream cr.
self expenditureReasons do
[reason | reportStream tab,
reportStream nextPutall reason.
reportStream tab.
reportStream nextPutall: (self tatalSpentFor reasonm_,.
reportStream crl.
reportStream naxtPutall fIncomes’.
reporiSiradm or

Dictionary {"rent™=>700
“faod™->73.83)

thisCantext
reportStrean

Wealcome to my Smalltalk-80 system
Time nowy 10248 am

Smallinteger{Object)>>doesNotUnderstand:
WriteStream{Stream)» nextPutall:
in Financ

[]in Set>duo:
Smalinteger{Number)>>toido:
Set>>do:

o FinancialHistory>raport

reportStream tab. again
repartStream unda
copy

nextPutalk (self t| "7 PtFor: reasan) printString.
repaortStream or], paste
repartStream nextPutall: “Incomes’, dalt
reportStream cr. printit
self incomeSources do rormat
[isource | reportStream tab. canaal
repartdtream nextPutalspawnle
raportStream tab, explain
repartStream
nextPutAll (self totalReceivedFram: source) printString‘
reportStream or].
troportStream coptoants

T Dictionary (‘rent’->700 | """ "TTTTC
self faad - 53 thl_ﬁuoftext

cashOnHand repartStrean
incomeas

Figure 17.55

327

Error Reporting

The result is 700, as expected (Figure 17.53).

The report method had intended that the character representation of
700 be appended to reportStream, but it appended the number itself in-
stead. This bug is fixed by sending the number the message printString.
The correction can be made in the debugger (Figure 17.54). Now the ex-
pression can be evaluated again. The report is now successfully printed
in the workspace (Figure 17.55).

HouseholdFinances
HouseholdFinances
HouseholdFinances
HousaholdFinances
HouseholdFinanceas
HouseholdFinances
HouseholdFinances
HouseholdFinances

flj [} d

Incomes

« FinancialHistory initialBalance; 1!
spand: FOO for “rent’,

spend: ¥E.63 for: “food’.

receive: 820 from: “pay’

receive: 22,15 from: “interest’,
cashnHand 1623862

reportj

This completes the overview of the Smalltalk-80 programming inter-
face. The ability to support this type of interaction with the user moti-
vates the nature of many of the graphics classes discussed in

subsequent chapters.

The Graphics Kernel

Graphical Representation
Graphical Storage

Graphical Manipulation
Source and Destination Forms
Clipping Rectangle

Hualftone Form

Combination Rule

Classes Form and Bitmap

Spatial Reference
Class Point
Class Rectangle

Class BitBlt
Line Drawing
Text Display

Simulation of BitBlt
Efficiency Considerations

Object

Magnitude
Character
Date
Time

Number
Float
Fraction
Integer
LargeNegativelnteger
LargePositivelnteger
Smallinteger

LookupKey
Association
Link
Process
Collection

SequenceableCollection
LinkedList

Semaphore

ArrayedCollection
Array

RunArray
String
Symbol
Text
ByteArray

Interval
OrderedCollection
SortedCollection
Bag
MappedCollection
Set

Dictionary
IdentityDictionary

Stream
PositionableStream
ReadStream
WriteStream
ReadWriteStream
ExternalStream
FileStream

Random

File
FileDirectory
FilePage

UndefinedObject
Boolean

False

True

ProcessorScheduler
Delay
SharedQueue

Behavior
ClassDescription
Class
MetaClass

Pen

DisplayObject
DisplayMedium
Form
Cursor
DisplayScreen
InfiniteForm
OpaqueForm
Path
Arc
Circle
Curve
Line
LinearFit
Spline

331
Graphical Storage

Graphical
Representation

Figure 18.1 shows a view of the display screen for a Smalltalk-80 sys-
tem. It illustrates the wide range of graphical idiom available to the
system. Rectangular areas of arbitrary size are filled with white, black,
and halftone patterns. Text, in various typefaces, is placed on the
screen from stored images of the individual characters. Halftone shades
are “brushed” by the user to create freehand paintings. Moreover, al-
though not shown on the printed page, images on the display can be
moved or sequenced in time to provide animation.

The example interaction with the system given in the previous chap-
ter illustrated some of the ways in which objects can be observed and
manipulated graphically. Meaningful presentation of objects in the sys-
tem demands maximum control over the display medium. One ap-
proach that provides the necessary flexibility is to allow the brightness
of every discernible point in the displayed image to be independently
controlled. An implementation of this approach is a contiguous block of
storage in which the setting of each bit is mapped into the illumination
of a corresponding picture element, or pixel, when displaying the image.
The block of storage is referred to as a bitmap. This type of display is
called a bitmapped display. The simplest form of bitmap allows only
two brightness levels, white and black, corresponding to the stored bit
values 0 or 1 respectively. The Smalltalk-80 graphics system is built
around this model of a display medium.

Graphical
Storage

Images are represented by instances of class Form. A Form has height
and width, and a bitmap, which indicates the white and black regions
of the particular image being represented. Consider, for example, the
man-shape in Figure 18.2. The height of the Form is 40, its width is 14,
and its appearance is described by the pattern of ones and zeros (shown
as light and dark squares) in its bitmap. The height and width of the
Form serve to impose the appropriate two-dimensional ordering on the
otherwise unstructured data in the bitmap. We shall return to the rep-
resentation of Forms in more detail later in this chapter.

New Forms are created by combining several Forms. The freehand
drawing in the center of Figure 18.1 is an example of a large Form that
was created by combining and repeating several Forms that serve as
“paint brushes” in a Smalltalk-80 application system. The text in Fig-
ure 18.1 is a structured combination of Forms representing characters.

A Form can be presented to the display hardware as a buffer in
memory of the actual data or of the image to be shown on a display

332
The Graphics Kernel

Form
InfiniteFarm

Figure 18.1

Figure 18.2 i

333
Graphical Manipulation

o 5 10

Pipaa o b

0

5

|III||IIIIIIIII|I|IIIIIIIlIIII|IIII'IIII|

screen. Since the interface to the hardware is through a Form, there is
no difference between combining images internally and displaying them
on the screen. Animation can be displayed smoothly by using one Form
as the display Form while the next image to be displayed is prepared in
a second Form. As each image is completed, the two Forms exchange
roles, causing the new image to be displayed and making the Form with
the old image available for building yet another image in the sequence.

The Forms used as buffers for data to be shown on the display screen
are instances of class DisplayScreen, a subclass of Form. Contiguous
storage of bits is provided by instances of class Bitmap. DisplayScreen’s
bitmap is an instance of DisplayBitmap, a subclass of Bitmap.
DisplayScreen and DisplayBitmap provide protocol specific to the actual
hardware and to the fact that the Form represents the whole display
screen rather than potential parts of it.

Graphical
Manipulation

A basic operation on Forms, referred to as BitBit, supports a wide range
of graphical presentation. All text and graphic objects in the system are
created and modified using this single graphical operation. The name

334

The Graphics Kernel

Source and
Destination Forms

Clipping Rectangle

“BitBIt” derives from the generalization of data transter to arbitrary bit
locations, or pixels. One of the first computers on which a Smalltalk
system was implemented had an instruction called BLT for dlock trans-
fer of 16-bit words, and so “bit block transfer” became known as BitBlt.

Operations are represented by messages to objects. So BitBlt could
have been implemented with a message to class Form. However, be-
cause BitBlts are fairly complicated operations to specify, they are rep-
resented by objects. These objects are instances of the class named BitBR.
The basic operation is performed by sending an appropriately initialized
instance of BitBlt the message copyBits. The BitBlt operation is inten-
tionally a very general operation, although most applications of it are
graphically simple, such as “move this rectangle of pixels from here to
there.”

Figure 18.3 illustrates the process of copying a character of text into
a region on the display. This operation will serve to illustrate most of
the characteristics of BitBlt that are introduced in the remainder of
this section.

The BitBlt copy operation involves two Forms, a source and a destina-
tion. The source in the example in Figure 18.3 is a font containing a set
of character glyphs depicted in some uniform style and scale, and
packed together horizontally. The destination in the example is as-
sumed to be a Form that is used as the display buffer. Pixels are copied
out of the source and stored into the destination. The width and height
of the transfer correspond to the character size. The source x and y co-
ordinates give the character’s location in the font, and the destination
coordinates specify the position on the display where its copy will ap-
pear.

BitBlt includes in its specification a rectangular area which limits the
region of the destination that can be affected by its operation, indepen-
dent of the other destination parameters. We call this area the clipping
rectangle. Often it is desirable to display a partial window onto larger
scenes, and the clipping rectangle ensures that all picture elements fall
inside the bounds of the window. By its inclusion in the BitBlt primi-
tive, the clipping function can be done efficiently and in one place,
rather than being replicated in all application programs.

Figure 18.4 illustrates the result of imposing a clipping rectangle on
the example of Figure 18.3. Pixels that would have been placed outside
the clipping rectangle (the left edge of the “N” and half of the word
“the”) have not been transferred. Had there been other characters that
fell above or below this rectangle, they would have been similarly
clipped.

335
Graphical Manipulation

0 10 20 30 40 50 60 70 80
0
destForm
destX = 67 10 u= us H
destY = 10 H = H H Skn EEEb
20 i HHIHH FHHIEH] H
30
4 O 111
width = 7
height = 13
0 10 260 270
0 a—
sourceForm oy
Sourcex:248 lO_ IAAGEMNEENENAENSE NS NSEEESRE AN AEERERA EEN] I=
sourceY = 0 (nasmEms)
Figure 18.3
0 10 20 30 40 50 60 70 80
0
destForm
10 - H
clipX = 6 FrE - i &,
clipY = 4 f i H 8
clipWidth = 58 20 HH
clipHeight = 23
30
40

Figure 18.4

336

The Graphics Kernel

Halftone Form

Often it is desirable to fill areas with a regular pattern that provides
the effect of gray tone or texture. To this end, BitBlt provides for refer-
ence to a third Form containing the desired pattern. This Form is re-
ferred to as a halftone or mask. It is restricted to have height and width
of 16. When halftoning is specified, this pattern is effectively repeated
every 16 units horizontally and vertically over the entire destination.

There are four “modes” of supplying pixels from the source and half-
tone controlled by supplying nil for the source form or the halftone
form:

0. no source, no halftone (supplies solid black)

1. halftone only (supplies halftone pattern)

2. source only (supplies source pixels)

3. source AND halftone (supplies source bits masked by halftone pat-

tern)

Figure 18.5 illustrates the effect of these four modes with the same
source and destination and a regular gray halftone.

mode O
all ones

Figure 18.5

Combination Rule

mode 1 mode 2 mode 3
halftone only source only source AND halitone

The examples above have all determined the new contents of the desti-
nation based only on the source and halftone, storing directly into the
destination. The previous contents of the destination can also be taken
into account in determining the result of the copying.

There are 16 possible rules for combining each source element S with
the corresponding destination element D to produce the new destina-
tion element D’. Each rule must specify a white or black result for each
of the four cases of source being white or black, and destination being
white or black.

337
Graphical Manipulation

Figure 18.6 shows a box with four cells corresponding to the four
cases encountered when combining source S and destination D. For in-
stance, the cell numbered 2 corresponds to the case where the source
was black and the destination was white. By appropriately filling the
four cells with white or black, the box can be made to depict any combi-
nation rule. The numbers in the four cells map the rule as depicted
graphically to the integer value which selects that rule. For example, to
specify that the result should be black wherever the source or destina-
tion (or both) was black, we would blacken the cells numbered 4, 2, and
1. The associated integer for specifying that rule is the sum of the
blackened cell numbers,or4 + 2 + 1 = 7.

D Destination Before

v

Source Before S

v
Figure 18.6 D’ Destination After

Figure 18.7 illustrates four common combination rules graphically.
In addition, each is described by a combination diagram, its integer rule
number, and the actual logical function being applied. The full set of 16
combination rules appears later in the chapter as part of the detailed
simulation of BitBlt.

bl

rule 3 rule 7 rule 1 rule 6
D=S DD=SORD D’=SANDD D= SXORD

Figure 18.7

338

The Graphics Kernel

Classes Form
and Bitmap

Figure 18.8 shows further information about the Form shown in Figure
18.2. The width and height are stored as Integers. The actual pixels are
stored in a separate object which is an instance of class Bitmap. Bitmaps
have almost no protocol, since their sole purpose is to provide storage
for Forms. They also have no intrinsic width and height, apart from
that laid on by their owning Form, although the figure retains this
structure for clarity. It can be seen that space has been provided in the
Bitmap for a width of 16; this is a manifestation of the hardware organi-
zation of storage and processing into 16-bit words. Bitmaps are allocat-
ed with an integral number of words for each row of pixels. This row
size is referred to as the raster size. The integral word constraint on
raster size facilitates movement from one row to the next within the op-
eration of BitBlt, and during the scanning of the display screen by the
hardware. While this division of memory into words is significant at the
primitive level, it is encapsulated in such a way that none of the
higher-level graphical components in the system need consider the is-
sue of word size.

Two classes, Rectangle and Point, are used extensively in working
with stored images. A Point contains x and y coordinate values and is
used to refer to a pixel location in a Form; a Rectangle contains two
Points—the top left corner and the bottom right corner—and is used to
define a rectangular area of a Form.

Class Form includes protocol for managing a rectangular pattern of
black and white dots. The bitmap of a Form can be (rejset by copying
bits from a rectangular area of the display screen (fromDisplay:), and the
extent and offset of the Form can be set (extent:, extent:offset:). Two
messages provide access to the individual bits (valueAt: and valueAt:put:).
Constants for modes and masks are known to class Form and can be
obtained by the following class messages of Form.

Form instance protocol

initialize-release
fromDisplay: aRectangle Copy the bits from the display screen within

the boundaries defined by the argument,
aRectangle, into the receive’s bitmap.

accessing

extent: aPoint Set the width and height of the receiver to be
the coordinates of the argument, aPoint.

extent: extentPoint offset: offsetPoint
Set the width and height of the receiver to be
the coordinates of the argument, extentPoint,
and the offset to be offsetPoint.

33¢

0

Classes Form and Bitmap

5 10 15

ol v b

Form
[width 1 |
height 40

bitmap e—

Figure 18.8

pattern
vaiueAt: aPoint

valueAt: aPoint put: bitCode

Form class protocol

Answer the bit, 0 or 1, at location aPoint with-
in the receiver’s bitmap.

Set the bit at location aPoint within the re-
ceiver’s bitmap to be bitCode, either 0 or 1.

instance creation
fromDisplay: aRectangle

mode constants
erase
over
reverse
under

Answer a new Form whose bits are copied
from the display screen within the boundaries
defined by the argument, aRectangle, into the
receiver’s bitmap.

Answer the integer denoting mode erase.
Answer the Integer denoting mode over.
Answer the Integer denoting mode reverse.
Answer the Integer denoting mode under.

340

The Graphics Kernel

mask constants

black Answer the Form denoting a black mask.

darkGray Answer the Form denoting a dark gray mask.

gray i Answer the Form denoting a gray mask.

lightGray Answer the Form denoting a light gray mask.

veryLightGray Answer the Form denoting a very light gray
mask.

white Answer the Form denoting a white mask.

Spatial
Reference

Class Point

Since the images represented by Forms are inherently two-dimensional,
image manipulation is simplified by providing objects representing two-
dimensional locations and areas. Instances of class Point represent loca-
tions and instances of class Rectangle represent areas.

A Point represents an x-y pair of numbers usually designating a pixel
in a Form. Points refer to pixel locations relative to the top left corner
of a Form (or other point of reference). By convention, x increases to the
right and y down, consistent with the layout of text on a page and the
direction of display scanning. This is in contrast to the “right-handed”
coordinate system in which y increases in the upward direction.

A Point is typically created using the binary message @ to a Number.
For example, the result of evaluating the expression

200 @ 150

is a Point with x and y coordinates 200 and 150. In addition, the class
protocol of Point supports the instance creation message x: xinteger vy:
yinteger.

Point x: 200 y: 150

represents the same location as 200@150. The instance protocol for
Point supports accessing messages and messages for comparing two
Points.

341

Point instance protocol

Spatial Reference

accessing
X
x: aNumber

Y
y: aNumber

comparing
< aPoint

< = aPoint
> aPoint
> = aPoint

max: aPoint

min: aPoint

Answer the x coordinate.

Set the x coordinate to be the argument,
aNumber.

Answer the y coordinate.

Set the y coordinate to be the argument,
aNumber.

Answer whether the receiver is above and to
the left of the argument, aPoint.

Answer whether the receiver is neither below
nor to the right of the argument, aPoint.

Answer whether the receiver is below and to
the right of the argument, aPoint.

Answer whether the receiver is neither above
nor to the left of the argument, aPoint.

Answer the lower right corner of the rectan-
gle uniquely defined by the receiver and the
argument, aPoint.

Answer the upper left corner of the rectangle
uniquely defined by the receiver and the argu-
ment, aPoint.

With respect to the coordinates labeled in Figure 18.9, example expres-

sions are
expression result
(45@230) < (175@270) true
(45@230) < (175@200) false
(45@230) > (175@200) false
(175@270) > (45@230) true
(45@ 230) max: (175@200) 175@230
{45@230) min: (175@200) 45@200

Arithmetic can be carried out between two Points or between a Point
and a Number (a scaling factor). Each of the arithmetic messages takes
either a Point or a Number (a scalar) as an argument, and returns a new
Point as the result. Truncation and round off messages, similar to those
for Numbers, are also provided in the instance protocol of Point.

Point instance protocol

arithmetic
+ scale

Answer a new Point that is the product of the

receiver and the argument, scale.

342

The Graphics Kernel

0,0

s 45,200

» 45,230

e 45, 550

Figure 18.9

+ 175, 200
o 175,230
s« 175,270

* 300, 175

640, 808

+ delta

— delta

/ scale

// scale

abs

truncation and round off

rounded

truncateTo: grid

Answer a new Point that is the sum of the re-
ceiver and the argument, delta.

Answer a new Point that is the difference of
the receiver and the argument, deita.

Answer a new Point that is the quotient of the
receiver and the argument, scale.

Answer a new Point that is the quotient (de-
fined by division with truncation toward nega-
tive infinity) of the receiver and the
argument, scale.

Answer a new Point whose x and y are the ab-
solute values of the receiver’s x and y.

Answer a new Point that is the receiver’s x
and y rounded.

Answer a new Point that is the receiver’s x
and y truncated to the argument, grid.

343

Spatial Reference

Thus
expression result
(45@230) + (175@300) 220@530
(45@230) + 175 220@405
(45@230) — (175@300) —130@ ~70
(160@240) / 50 (16/5)@(24/5)
(160@240) // 50 304
(160@240) // (50@50) 3@4
((45@230) — (175@300)) abs 130@70
(120.5 @ 220.7) rounded 121@221
(160 @ 240) truncateTo: 50 150@ 200

Various other operations can be performed on Points including comput-
ing the distance between two Points, computing the dot product of two
Points, transposing a point, and determining Points within some gridded

range.

Point instance protocol

point functions
dist: aPoint

dotProduct: aPoint
grid: aPoint
normal

transpose

truncatedGrid: aPoint

Examples are

Answer the distance between the argument,
aPoint, and the receiver.

Answer a Number that is the dot product of
the receiver and the argument, aPoint.

Answer a Point to the nearest rounded grid
modules specified by the argument, aPoint.
Answer a Point representing the unit vector
rotated 90 deg clockwise.

Answer a Point whose x is the receiver’s y and
whose y is the receiver’s x.

Answer a Point to the nearest truncated grid
modules specified by the argument, aPoint.

expression result

(45@230) dist: 175@270 136.015

{160 @ 240) dotProduct: 50@50 20000

(160 @ 240) grid: 50@50 150@ 250
(160 @ 240) normal —0.83105 @ 0.5547
(160 @ 240) truncatedGrid: 50@ 50 150@200
(175@300) transpose 300@175

Points and Rectangles are used together as support for graphical ma-
nipulation. A Rectangle contains two Points—origin, which specifies the

344

The Graphics Kernel

Class Rectangle

top left corner, and corner, which indicates the bottom right corner of
the region described. Class Rectangle provides protocol for access to all
the coordinates involved, and other operations such as intersection with
other rectangles. Messages to a Point provide an infix way to create a
Rectangle with the Point as the origin.

Point instance protocol

converting
corner: aPoint Answer a Rectangle whose origin is the re-
ceiver and whose corner is the argument,
aPoint.
extent: aPoint Answer a Rectangle whose origin is the re-
ceiver and whose extent is the argument,
aPoint.

Thus (45@200) corner: (175@270) represents the rectangular area
shown earlier in the image of display coordinates.

Instances of Rectangle represent rectangular areas of pixels. Arithmetic
operations take points as arguments and carry out scaling and translat-
ing operations to create new Rectangles. Rectangle functions create
new Rectangles by determining intersections of Rectangles with Rec-
tangles.

In addition to the messages to Point by which Rectangles can be cre-
ated, class protocol for Rectangle supports three messages for creating
instances. These messages specify either the boundaries of the rectan-
gular area, the origin and corner coordinates, or the origin and width
and height of the area.

Rectangle class protocol

instance creation

left: leftNumber right: rightNumber top: topNumber bottom: bottomNumber
Answer a Rectangle whose left, right, top, and
bottom coordinates are determined by the ar-
guments.

origin: originPoint corner: cornerPoint
Answer a Rectangle whose top left and bottom
right corners are determined by the argu-
ments, originPoint and cornerPoint.

origin: originPoint extent: extentPoint
Answer a Rectangle whose top left corner is
originPoint and width by height is extentPoint.

The accessing protocol for Rectangle is quite extensive. It supports de-
tailed ways of referencing eight significant locations on the boundary of
the Rectangle. These points are shown in Figure 18.10.

Messages for accessing these positions have selectors with names like
those shown in the diagram.

345

top center

Spatial Reference

top left top right
left . J right
center center center
bottom o bpttom
Figure 18.10 left bottom center right

Rectangle instance protocol

accessing
topLeft

topCenter
topRight
rightCenter
bottomRight
bottomCenter
bottomLeft
leftCenter

center
area

width
height
extent

top
right
bottom

left

Answer the Point at the top left corner of the
receiver.

Answer the Point at the center of the receiv-
er’s top horizontal line.

Answer the Point at the top right corner of
the receiver.

Answer the Point at the center of the receiv-
er’s right vertical line.

Answer the Point at the bottom right corner of
the receiver.

Answer the Point at the center of the receiv-
er’s bottom horizontal line.

Answer the Point at the bottom left corner of
the receiver.

Answer the Point at the center of the receiv-
er’s left vertical line.

Answer the Point at the center of the receiver.

Answer the receiver’s area, the product of
width and height.

Answer the receiver’s width.
Answer the receiver’s height.

Answer the Point receiver’s width @ receiver’s"
height.

Answer the position of the receiver’s top hori-
zontal line.

Answer the position of the receiver’s right
vertical line.

Answer the position of the receiver’s bottom
horizontal line.

Answer the position of the receiver’s left ver-
tical line.

346
The Graphics Kernel

origin Answer the Point at the top left corner of the
receiver.

corner Answer the Point at the bottom right corner of
the receiver.

Suppose the Rectangle referred to as frame is created by the expression

frame — Rectangle origin: 100@ 100 extent: 150@ 150

then

expression result
frame topLeft 100@100
frame top 100
frame rightCenter 250@175
frame bottom 250
frame center 175@175
frame extent 150@150
frame area 22500

Each of the Rectangle’s locations can be modified by an accessing mes-
sage whose keyword is one of the positions named in Figure 18.10. In
addition, the width and height can be set with the messages width: and
height:, respectively. Two messages are listed below that are commonly
used in the implementation of the system programming interface in or-
der to reset the variables of a Rectangle.

Rectangle instance protocol

accessing

origin: originPoint corner: cornerPoint
Set the points at the top left corner and the
bottom right corner of the receiver.

origin: originPoint extent: extentPoint
Set the point at the top left corner of the re-
ceiver to be originPoint and set the width and
height of the receiver to be extentPoint.

Rectangle functions create new Rectangles and compute relationships
between two Rectangles.

Rectangle instance protocol

rectangle functions

amountToTranslateWithin: aRectangle
Answer a Point, delta, such that the receiver,
when moved by delta, will force the receiver
to lie within the argument, aRectangle.

Figure 18.11

347

areasOutside: aRectangle

expandBy: delta

insetBy: delta

Spatial Reference

Answer a collection of Rectangles comprising
the parts of the receiver which do not lie
within the argument, aRectangle.

Answer a Rectangle that is outset from the re-
ceiver by delta, where delta is a Rectangle,
Point, or scalar.

Answer a Rectangle that is inset from the re-
ceiver by delta, where delta is a Rectangie,
Point, or scalar.

insetOriginBy: originDeltaPoint cornerBy: cornerDeltaPoint

intersect: aRectangle

merge: aRectangle

Answer a Rectangle that is inset from the re-
ceiver by originDeltaPoint at the origin and
cornerDeltaPoint at the corner.

Answer a Rectangle that is the area in which
the receiver overlaps with the argument,
aRectangle.

Answer the smallest Rectangle that contains
both the receiver and the argument,
aRectangle.

Figure 18.11 shows three Rectangles, A, B, and C, created as follows.

A « 50@50 corner: 200@ 200.

B ~ 120@120 corner: 260@ 240.

C « 100@300 corner: 300@400

50, 50

120, 120

200, 200

100, 300

260, 240

300, 400

348

The Graphics Kernel

Then expressions using these three Rectangles are listed below, Notice
that Rectangles print in the form originPoint corner: cornerPoint.

expression

result

A amountToTranslateWithin: C
A areasOutside: B

C expandBy: 10
C insetBy: 10@20

A intersect: B

B merge: C

50@250

OrderedCollection
((50@50 corner: 200
@120) (50@120
corner: 120@200))

90@290
corner: 310@410

110@320
corner: 290@ 380

120@120

corner: 200@ 200
100@120

corner: 300@400

The testing protocol for Rectangles includes messages to determine
whether a Point or other Rectangle is contained within the boundaries
of a Rectangle, or whether two Rectangles intersect.

Rectangle instance protocol

testing
contains: aRectangle

containsPoint: aPoint

intersects: aRectangle

Continuing the above example

Answer whether the receiver contains all
Points contained by the argument, aRectangle.

Answer whether the argument, aPoint, is
within the receiver.

Answer whether the receiver contains any
Point contained by the argument, aRectangle.

expression result
A contains: B faise
C containsPoint: 200@ 320 true
A intersects: B true

Like the messages for a Point, the coordinates of a Rectangle can be
rounded to the nearest integer. A Rectangle can be ‘'moved by some
amount, translated to a particular location, and the coordinates can be
scaled or translated by some amount. Rectangles also respond to scaling

349
Class BitBlt

and translating messages; they are part of the protocol for any object
that can display itself on a display medium.

Rectangle instance protocol

truncation and round off

rounded Answer a Rectangle whose origin and corner co-
ordinates are rounded to the nearest integer.

transforming

moveBy: aPoint Change the corner positions of the receiver so
that its area translates by the amount defined
by the argument, aPoint.

moveTo: aPoint Change the corners of the receiver so that its
top left position is the argument, aPoint.

scaleBy: scale Answer a Rectangle scaled by the argument,
scale, where scale is either a Point or a scalar.

translateBy: factor Answer a Rectangle translated by the argu-
ment, factor, where factor is either a Point or a
scalar.

For example

expression result
A moveBy: 50@50 100@100

corner: 250@ 250
A moveTo: 200@ 300 200@300

corner: 350@450
A scaleBy: 2 400@600

corner: 700@ 900
A translateBy: —100 100@200

corner; 250@ 350

Class BitBlt

The most basic interface to BitBlt is through a class of the same name.
Each instance of BitBlt contains the variables necessary to specify a
BitBIlt operation. A specific application of BitBlt is governed by a list of
parameters, which includes:

destForm (destination form) a Form into which pixels will be stored
sourceForm a Form from which pixels will be copied
halftoneForm a Form containing a spatial halftone pattern

350

The Graphics Kernel

combinationRule an Integer specifying the rule for combining corresponding
pixels of the sourceForm and destForm
destX, destY, width, (destination area x, y, width, and height) Integers which
height specify the rectangular subregion to be filled in the desti-
nation
clipX, clipY, (clipping rectangular area x, y, width, and height) Integers
ClipWidth, which specify a rectangular area which restricts the affect-
clipHeight ed region of the destination
sourceX, sourceY integers which specify the location (top left corner) of the

subregion to be copied from the source

The BitBIlt class protocol consists of one message for creating instances;
this message contains a keyword and argument for each BitBlt variable.
The BitBIt instance protocol includes messages for initializing the vari-
ables and a message, copyBits, which causes the primitive operation to
take place. It also contains a message, drawFrom: startPoint to: stopPoint,
for drawing a line defined by two Points.

BitBit class protocol

instance creation

destForm: destination
sourceForm: source
halftoneForm: halftone
combinationRule: rule
destOrigin: destOrigin
sourceCrigin: sourceOrigin
extent: extent
clipRect: clipRect

BitBlt instance protocol

. Answer a BitBlt with values set according to

each of the arguments, where rule is an Inte-
ger; destination, source, and halftone are Forms;
destOrigin, sourceOrigin, and extent are Points;
and clipRect is a Rectangle.

accessing
sourceForm: aForm

destForm: aForm
mask: aForm

combinationRule: aninteger

clipHeight: aninteger

clipWidth: aninteger

Set the receiver’s source form to be the argu-
ment, aForm.

Set the receiver’s destination form to be the
argument, aForm.

Set the receiver’s halftone mask form to be
the argument, aForm.

Set the receiver’s combination rule to be the
argument, aninteger, which must be an inte-
ger between O and 15.

Set the receiver’s clipping area height to be
the argument, aninteger.

Set the receiver’s clipping area width to be
the argument, aninteger.

351

clipRect
clipRect: aRectangle

clipX: aninteger
clipY: aninteger
sourceRect: aRectangle
sourceOrigin: aPoint
sourceX: aninteger
sourceY: aninteger
destRect: aRectangle
destOrigin: aPoint
destX: aninteger
destY: aninteger
height: aninteger

width: aninteger

copying

copyBits

Line Drawing

Answer the receiver’s clipping rectangle.

Set the receiver’s clipping rectangle to be the
argument, aRectangle.

Set the receiver’s clipping rectangle top left x
coordinate to be the argument, aninteger.

Set the receiver’s clipping rectangle top left y
coordinate to be the argument, aninteger.

Set the receiver’s source form rectangular
area to be the argument, aRectangle.

Set the receiver’s source form top left coordi-
nates to be the argument, aPoint.

Set the receiver’s source form top left x coor-
dinate to be the argument, aninteger.

Set the receiver’s source form top left y coor-
dinate to be the argument, aninteger.

Set the receiver’s destination form rectangu-
lar area to be the argument, aRectangle.

Set the receiver’s destination form top left co-
ordinates to be the argument, aPoint.

Set the receiver’s destination form top left x
coordinate to be the argument, aninteger.

Set the receiver’s destination form top left y
coordinate to be the argument, aninteger.

Set the receiver’s destination form height to
be the argument, aninteger.

Set the receiver’s destination form width to be
the argument, aninteger.

Perform the movement of bits from the source
form to the destination form. Report an error
if any variables are not of the right type (Inte-
ger or Form), or if the combination rule is not
between 0 and 15 inclusive. Try to reset the
variables and try again.

The state held in an instance of BitBlt allows multiple operations in a
related context to be performed without the need to repeat all the ini-
tialization. For example, when displaying a scene in a display window,
the destination form and clipping rectangle will not change from one
operation to the next. Thus the instance protocol for modifying individ-
ual variables can be used to gain efficiency.

Line Drawing

Much of the graphics in the Smalltalk-80 system consists of lines and
text. These entities are synthesized by repeated invocation of BitBlt.

352

The Graphics Kernel

The BitBlt protocol includes the messages drawFrom: startPoint to:
stopPoint to draw a line whose end points are the arguments, startPoint
and stopPoint.

BitBlt instance protocol

line drawing

drawFrom: startPoint to: stopPoint
Draw a line whose end points are the argu-
ments, startPoint and stopPoint. The line is
formed by displaying copies of the current
source form according to the receiver’s half-
tone mask and combination rule.

By using BitBIt, one algorithm can draw lines of varying widths, differ-
ent halftones, and any combination rule. To draw a line, an instance of
BitBIt is initialized with the appropriate destination Form and clipping
rectangle, and with a source that can be any Form to be applied as a
pen or “brush” shape along the line. The message drawFrom:to: with
Points as the two arguments is then sent to the instance. Figure 18.12
shows a number of different pen shapes and the lines they form when
the BitBIt combination rule is 6 or 7.

The message drawFrom: startPoint to: stopPoint stores the destX and
destY values. Starting from these stored values, the line-drawing loop,
drawbLoopX: xDelta Y: yDelta, shown next, accepts x and y delta values
and calculates x and y step values to determine points along the line,
and then calls copyBits in order to display the appropriate image at
each point. The method used is the Bresenham plotting algorithm (/BM
Systems Journal, Volume 4, Number 1, 1965). It chooses a principal di-
rection and maintains a variable, p. When p’s sign changes, it is time
to move in the minor direction as well. This method is a natural unit to
be implemented as a primitive method, since the computation is trivial
and the setup in copyBits is almost all constant from one invocation to
the next.

The method for drawLoopX: xDelta Y: yDelta in class BitBIt is

drawlLoopX: xDelta Y: yDelta
| dx dy px py p |
dx < xDelta sign.
dy < yDelta sign.
px — yDelta abs.
py « xDelta abs.
self copyBits. ”first point”

353

Line Drawing

Figure 18.12

py > px
ifTrue: “more horizontal”
[p-py//2
1 to: py do:
[:i| destx « destx + dx.
pe=p—px) <0
ifTrue: [desty « desty + dy. p « p + pyl.
self copyBits]]
ifFalse: “more vertical”
[o— px//2.
1 to: px do:
[:i| desty — desty + dy.
(p=p—py <0
ifTrue: [destx « destx + dx. p « p + px].
self copyBits]]

354

The Graphics Kernel

Text Display

One of the advantages derived from BitBIt is the ability to store fonts
compactly and to display them using various combination rules. The
compact storage arises from the possibility of packing characters hori-
zontally one next to another (as shown earlier in Figure 18.3), since
BitBlt can extract the relevant bits if supplied with a table of left x coor-
dinates of all the characters. This is called a strike format from the ty-
pographical term meaning a contiguous display of all the characters in
a font.

The scanning and display of text are performed in the Smalltalk-80
system by a subclass of BitBlt referred to as CharacterScanner. This sub-
class inherits all the normal state, with destForm indicating the Form
in which text is to be displayed and sourceForm indicating a Form con-
taining all the character glyphs side by side (as in Figure 18.3). In addi-
tion CharacterScanner defines further state including:

text a String of Characters to be displayed
textPos an Integer giving the current position in text
xTable an Array of Integers giving the left x location of each char-

acter in sourceForm

StOpX an Integer that sets a right boundary past which the inner
loop should stop scanning

exceptions an Array of Symbols that, if non-nil, indicate messages for
handling the corresponding characters specially

printing a Boolean indicating whether characters are to be printed

Once an instance has been initialized with a given font and text loca-
tion, the scanWord: loop below will scan or print text until some hori-
zontal position (stopX) is passed, until a special character (determined
from exceptions) is found, or until the end of this range of text (endRun)
is reached. Each of these conditions is denoted by a symbolic code re-
ferred to as stopXCode, exceptions (an Array of Symbols) and
endRunCode.

scanword: endRun

| charlndex |

[textPos < endRun] whileTrue:
[” pick character” charlndex « text at: textPos.
" check exceptions”
{(exceptions at: charindex) > 0

ifTrue: [texceptions at: charlndex].

“left x of character in font” sourceX < xTable at: charindex.
“up to teft of next char”
width « (xTable at: charlndex+ 1) — sourceX.
”print the character” printing ifTrue: [self copyBits].

355
Simulation of BitBit

“advance by width of character” destX — destX + width.
destX > stopX ifTrue: [1stopXCode]. “passed right boundary”
”advance to next character”
textPos« textPos+ 1].

textPos « textPos—1.

TendRunCode

The check on exceptions handles many possibilities in one operation.
The space character may have to be handled exceptionally in the case
of text that is padded to achieve a flush right margin. Tabs usually re-
quire a computation or table lookup to determine their width. Carriage
return is also identified in the check for exceptions. Character codes be-
yond the range given in the font are detected similarly, and are usually
handled by showing an exceptional character, such as a little lightning
bolt, so that they can be seen and corrected.

The printing flag can be set false to allow the same code to measure a
line (break at a word boundary) or to find to which character the cursor
points. While this provision may seem over-general, two benefits (be-
sides compactness) are derived from that generality. First, if one makes
a change to the basic scanning algorithm, the parallel functions of meas-
uring, printing, and cursor tracking are synchronized by definition. Sec-
ond, if a primitive implementation is provided for the loop, it exerts a
threefold leverage on the system performance.

The scanword: loop is designed to be amenable to such primitive im-
plementation; that is, the interpreter may intercept it and execute
primitive code instead of the Smalltalk-80 code shown. In this way,
much of the setup overhead for copyBits can be avoided at each charac-
ter and an entire word or more can be displayed directly. Conversely,
the Smalltalk text and graphics system requires implementation of only
the one primitive operation (BitBlt) to provide full functionality.

Simulation of
BitBlt

We provide here a simulation of an implementation of copyBits in a
subclass of BitBlt referred to as BitBltSimulation. The methods in this
simulation are intentionally written in the style of machine code in or-
der to serve as a guide to implementors. No attempt is made to hide the
choice of 16-bit word size. Although the copyBits method is presented as
a Smalltalk-80 method in BitBitSimulation, it is actually implemented in
machine-code as a primitive method in class BitBlt; the simulation does
the same thing, albeit slower.

356

The Graphics Kernel

class name
superclass
instance variable names

BitBItSimulation
BitBIt
sourceBits sourceRaster

destBits destRaster
halftoneBits
skew skewMask
mask1 mask?2
preload nWords
hDir vDir
sourcelndex sourceDelta
destindex destDelta
sx sy dx dy w h
class variable names AllOnes RightMasks
class methods
initialize
“Initialize a table of bit masks”
RightMasks ~
#(0 16r1 16¢3 16r7 16rF
16r1F 16r3F 16r7F 16rFF
16r1FF 16r3FF 16r7FF 16rFFF
16r1FFF 16r3FFF 16r7FFF 16rFFFF).
AllOnes « 16rFFFF

instance methods
operations

copyBits
“sets wand h”
self clipRange.
(w< =0 or: [hn<=0]) ifTrue: [1self]. “null range”
self computeMasks.
self checkOverlap.
self calculateOffsets.
self copyLoop

private

clipRange
“clip and adjust source origin and extent appropriately
“firstin x”
destX > = clipX
ifTrue: [sx « sourceX. dx « destX. w « width]
ifFalse: [sx « sourceX + (clipX — destX).
w — width — (clipX — destX).
dx « clipX].
{dx + w) > (clipX + clipWidth)
ifTrue: [w « w — ({(dx + w) — (clipX + clipWidth))].

”

357
Simulation of BitBlt

“then iny”
destY > = clipY
ifTrue: [sy < sourceY. dy « destY. h « height]
ifFalse: [sy < sourceY + clipY — destY.
h < height — clipY + destY.
dy « clipY].
(dy + h) > (clipY + clipHeight)
ifTrue: [h « h — ((dy + h) — (clipY + clipHeight))].
sx <0
ifTrue: [dx « dx — sx. W « w + sx. sx « O]
sx + w > sourceForm width
ifTrue: [w « w — (sx + w — sourceForm width)].
sy <0
ifTrue: [dy « dy — sy. h « h + sy. sy « Q].
sy + h > sourceForm height
ifTrue: [h — h — (sy + h — sourceForm height)]

Clipping first checks whether the destination x lies to the left of the
clipping rectangle and, if so, adjusts both destination x and width. As
mentioned previously, the data to be copied into this adjusted rectangle
comes from a shifted region of the source, so that the source x must
also be adjusted. Next, the rightmost destination x is compared to the
clipping rectangle and the width is decreased again if necessary. This
whole process is then repeated for y and height. Then the height and
width are clipped to the size of the source form. The adjusted parame-
ters are stored in variables sx, sy, dx, dy, w, and h. If either width or
height is reduced to zero, the entire call to BitBlt can return immediately.

computeMasks
| startBits endBits |
“ calculate skew and edge masks”
destBits < destForm bits.
destRaster — destForm width —1// 16 + 1.
sourceForm notNil
ifTrue: [sourceBits « sourceForm bits.
sourceRaster— sourceForm width — 1//16 + 1].
halftoneForm notNil
ifTrue: [halftoneBits « halftoneForm bits].
skew < {sx — dx) bitAnd: 15.
”how many bits source gets skewed to right”
startBits — 16 — (dx bitAnd: 15).
“how many bits in first word”
mask1 « RightMasks at: startBits + 1.
endBits « 15 — ({dx + w—1) bitAnd: 15).
“how many bits in last word”
mask?2 « (RightMasks at: endBits + 1} bitlnvert.

358

The Graphics Kernel

skewMask «
{(skew=0
ifTrue: [0]
ifFalse: [RightMasks at: 16 —~ skew + 1]).
” determine number of words stored per line; merge masks if necessary”
w < startBits
ifTrue: [mask1 < mask1 bitAnd: mask2.
mask2 « 0.
nWords « 1]
ifFalse: [nNWords « (w — startBits — 1) // 16 + 2].

In preparation for the actual transfer of data, several parameters are
computed. First is skew, the horizontal offset of data from source to des-
tination. This represents the number of bits by which the data will
have-to be rotated after being loaded from the source in order to line up
with the final position in the destination. In the example of Figure 18.3,
skew would be 5 because the glyph for the character “e” must be
shifted left by 5 bits prior to being stored into the destination. From
skew, skewMask is saved for use in rotating (this is unnecessary for ma-
chines with a rotate word instruction). Then mask1 and mask2 are com-
puted for selecting the bits of the first and last partial words of each
scan line in the destination. These masks would be 16r1FFF and
16rFFCO respectively in the example of Figure 18.3 since startBits=13
and endBits=6. In cases such as this where only one word of each desti-
nation line is affected, the masks are merged to select the range within
that word, here 16r1FCO.

checkOverlap
| t]
“check for possible overlap of source and destination”
hDir « vDir « 1. “defaults for no cverlap”
(sourceForm == destForm and: [dy > = sy])
ifTrue:
[dy > sy “have to start at bottom”
ifTrue: [vDir « —1.sy « sy + h — 1.dy « dy + h — 1]
ifFalse: [dx > sx "y’s are equal, but x’s are backward
ifTrue: [hDir « —1.
SX « sx +w — 1.
" start at right”
dx « dx +w — 1.
“and fix up masks”
skewMask « skewMask bitlnvert.
t « maski.
mask1 « mask2.
mask? « t}]]

359
Simulation of BitBIt

A check must be made for overlapping source and destination. When
source and destination lie in the same bitmap, there is the possibility of
the copy operation destroying the data as it is moved. Thus when the
data is being moved downward, the copy must start at the bottom and
proceed upward. Similarly when there is no vertical movement, if the
horizontal movement is to the right, the copy must start at the right
and work back to the left. In all other cases the copy can proceed from
top to bottom and left to right.

calculateOffsets
“check if need to preload buffer
(i.e., two words of source needed for first word of destination)
preload— (sourceForm notNil) and:
[skew ~= 0 and: [skew <= (sx bitAnd: 15)]}.
hDir < 0 ifTrue: [preload « preload == false].
“ calculate starting offsets”
sourcelndex « sy + sourceRaster + (sx // 16}.
destindex — dy « destRaster + (dx // 16).
” calculate increments from end of 1 line to start of next”
sourceDelta «
(sourceRaster « vDir) —
(nWords + (preload ifTrue: [1] ifFalse: [O]) = hDir).
destDella — (destRaster x vDir) — (nWords « hDir)

”

In cases where two words of source are needed to store the first word
into the destination, a flag preload is set indicating the need to preload
a 32-bit shifter prior to the inner loop of the copy (this is an optimiza-
tion; one could simply always load an extra word initially). The offsets
needed for the inner loop are the starting offset in words from the
source and destination bases; deltas are also computed for jumping from
the end of the data in one scanline to the start of data in the next.

inner loop

copylLoop
| prevWord thisWord skewWord mergeMask
halftoneWord mergeWord word |
1 to: h do: “here is the vertical loop:”
[}
{halftoneForm notNil)
ifTrue:
[halftoneWord — halftoneBits at: (1 -+ (dy bitAnd: 15)).
dy « dy + vDir]
ifFalse: [halftoneWord « AllOnes].
skewWord « halftoneWord.

360

The Graphics Kernel

preload
ifTrue: [prevWord « sourceBits at: sourceindex + 1.
“load the 32-bit shifter”
sourcelndex < sourceindex + hDir]
ifFalse: [prevWord « 0].
mergeMask « maski.
1 to to: nWords do: " here is the inner horizontal loop”
[word |
sourceForm notNil ”if source is used”
ifTrue:
[prevWord « prevWord bitAnd: skewMask.
thisWord < sourceBits at: sourcelndex + 1.
“pick up next word”
skewWord «
prevWord bitOr: (thisWord bitAnd: skewMask bitinvert).
prevWord — thisWord.
skewWord « (skewWord bitShift: skew) bitOr:
(skewWord bitShift: skew — 16)].
”16-bit rotate”
mergeWord — self merge: (skewWord bitAnd: halftoneWord)
with: (destBits at: destindex + 1).
destBits
at: destindex + 1
put: {{(mergeMask bitAnd: mergeWord)
bitOr: (mergeMask bitinvert
bitAnd: (destBits at: destindex + 1))).
sourceindex « sourcelndex + hDir.
destindex « destindex + hDir.
word = (nWords — 1)
ifTrue: [mergeMask « mask?2]
ifFalse: [mergeMask « AllOnes]].
sourcelndex « sourcelndex + sourceDelta.
destindex « destindex + destDelta]

The outer, or vertical, loop includes the overhead for each line,
selecting the appropriate line of halftone gray, preloading the shifter if
necessary, and stepping source and destination pointers to the next
scanline after the inner loop. It should be noted here that the reason
for indexing the halftone pattern by the destination y is to eliminate
“seams” which would occur if the halftones in all operations were not
coordinated this way.

The inner, or horizontal, loop picks up a new word of source, rotates
it with the previous, and merges the result with a word of the destina-
tion. The store into the destination must be masked for the first and

Efficiency
Considerations

361
Simulation of BitBIt

last partial words on each scanline, but in the middle, no masking is re-
ally necessary.

merge: sourceWord with: destinationWord

“These are the 16 combination rules:”
combinationRule=0

ifTrue: [10].
combinationRule=1

ifTrue: [TsourceWord bitAnd: destinationWord].
combinationRule=2

ifTrue: [TsourceWord bitAnd: destinaticnWord bitinvert].
combinationRule=3

ifTrue: [tsourceWord].
combinationRule=4

ifTrue: [TsourceWord bitinvert bitAnd: destinationWord].
combinationRule=5

ifTrue: [tdestinationWord].
combinationRule=6

ifTrue:[TsourceWord bitXor: destinationWord].
combinationRule=7

ifTrue: [TsourceWord bitOr: destinationWord].
combinationRule=8

ifTrue: [tsourceWord bitinvert bitAnd: destinationWord bitinvert].
combinationRule=9

ifTrue: [TsourceWord bitinvert bitXor: destinationWord].
combinationRule= 10

ifTrue: [tdestinationWord bitinvert].
combinationRule= 11

ifTrue: [TsourceWord bitOr: destinationWord bitinvert].
combinationRule=12

ifTrue: [tsourceWord bitinvert].
combinationRule=13

ifTrue: [fsourceWord bitinvert bitOr: destinationWord].
combinationRule=14

ifTrue: [tsourceWord bitinvert bitOr: destinationWord bitinvert].
combinationRule=15

ifTrue: [TAllOnes]

Our experience has demonstrated the value of BitBlt's generality. This
one primitive is so central to the programming interface that any im-
provement in its performance has considerable effect on the interactive
quality of the system as a whole. In normal use of the Smalltalk-80 sys-
tem, most invocations of BitBIt are either in the extreme microscopic or
macroscopic range.

362

The Graphics Kernel

In the macroscopic range, the width of transfer spans many words.
The inner loop across a horizontal scan line gets executed many times,
and the operations requested tend to be simple moves or constant
stores. Examples of these are:

clearing a line of text to white
clearing an entire window to white
scrolling a block of text up or down

Most processors provide a fast means for block moves and stores, and
these can be made to serve the applications above. Suppose we struc-
ture the horizontal loop of BitBlt as

1. move left partial word,
2. move many whole words (or none),

3. move right partial word (or none).

Special cases can be provided for 2 if the operation is a simple store or
a simple copy with no skew (horizontal bit offset) from source to desti-
nation. In this way, most macroscopic applications of BitBlt can be made
fast, even on processors of modest power.

The microscopic range of BitBlt is characterized by a zero count for
the inner loop. The work on each scanline involves at most two partial
words, and both overall setup and vertical loop overhead can be consid-
erably reduced for these cases. Because characters tend to be less than
a word wide and lines tend to be less than a word thick, nearly all text
and line drawing falls into this category. A convenient way to provide
such efficiency is to write a special case of BitBlt which assumes the mi-
croscopic parameters, but goes to the general BitBlt whenever these are
not met. Because of the statistics (many small operations and a few
very large ones), it does not hurt to pay the penalty of a false assump-
tion on infrequent calls. One can play the same trick with clipping by
assuming no clipping will occur and running the general code only
when this assumption fails.

Pens

Class Pen

Geometric Designs
Spirals

Dragon Curve
Hilbert Curve

Commander Pen

Object

Magnitude Stream
Character PositionableStream
Date ReadStream
Time WriteStream
ReadWriteStream
Number ExternalStream
Float FileStream
Fraction
Integer Random
LargeNegativeinteger
LargePositivelnteger File
Smallinteger FileDirectory
FilePage
LookupKey UndefinedObject
Association Boolean
False
Link True
Process
ProcessorScheduler
Collection Delay
SharedQueue
SequenceableCollection
LinkedList Behavior
ClassDescription
Semaphore Class
MetaClass
ArrayedCollection
Array Point
Rectangile
Bitmap BitBit
DisplayBitmap CharacterScanner
RunArray
String i o
Symbol DisplayObject
Text DisplayMedium
ByteArray Form
Cursor
Interval DisplayScreen
OrderedCollection InfiniteForm
SortedCollection OpaqueForm
Bag Path
MappedCollection Arc
Set Circle
Dictionary Curve
IdentityDictionary Line
LinearFit

Spline

365
Class Pen

As explained in the previous chapter, Forms represent images. Lines
can be created by copying a Form to several locations in another Form
at incremental distances between two designated points. Higher-level
access to line drawing is provided by instances of class Pen.

Pen is a subclass of BitBlt. As such, it is a holder for source and desti-
nation Forms. The source Form can be colored black or white or differ-
ent tones of gray, and copied into the destination Form with different
combination rules, different halftone masks, and with respect to differ-
ent clipping rectangles. The source Form is the Pen’s writing tool or
nib. The destination Form is the Pen’s writing surface; it is usually the
Form representing the display screen.

In addition to the implementations inherited from BitBIt, a Pen has a
Point that indicates a position on the display screen and a Number that
indicates a direction in which the Pen moves. A Pen understands mes-
sages that cause it to change its position or direction. When its position
changes, the Pen can leave a copy of its Form at its former position. By
moving the Pen to different screen positions and copying its Form to
one or more of these positions, graphic designs are created.

Several programming systems provide this kind of access to line
drawing. In these systems, the line drawer is typically called a “turtle”
after the one first provided in the MIT/BBN Logo language (Seymour
Papert, MindStorms: Children, Computers and Powerful Ideas, Basic
Books, 1980; Harold Abelson and Andrea diSessa, Turtle Geometry: The
Computer as a Medium for Exploring Mathematics, MIT Press, 1981).
The protocol for Pens supports messages that are like the turtle com-
mands provided in Logo. These consist of commands for telling the tur-
tle to go some distance, turn some amount, to place a pen in a down
position, and to place a pen in an up position. When the pen is down
and it moves, a trace of the turtle’s path is created. The corresponding
Pen messages are go: distance, turn: amount, down, and up.

Multiple Pens can be created and their movement on the screen co-
ordinated so that the process of creating a graphical design can itself be
graphically pleasing. The next section contains the protocol that is pro-
vided in class Pen. Subsequent sections give examples of designs that
can be created by sending messages to Pens.

Class Pen

Instances of class Pen are created by sending Pen the message new. A
Pen created this way can draw anywhere on the display screen; its ini-
tial position is the center of the screen, facing in a direction towards

366

Pens

the top of the screen. The Pen is set to draw (i.e, it is down) with a
source Form or nib that is a 1 by 1 black dot.

There are two ways to change the source Form of a Pen. One way is
to send the Pen the message defaultNib: widthinteger. The other way is
to reset the source Form by sending the Pen the messages it inherits
from its superclass, BitBit. For example, the message sourceForm:
changes the source form, or the message mask: changes the halftone
form (the mask) used in displaying the source form. (Note that the de-
fault mask for displaying is black.)

Pen instance protocol

initialize-release

defaultNib: shape A “nib” is the tip of a pen. This is an easy
way to set up a default pen. The Form for the
receiver is a rectangular shape with height
and width equal to (1) the argument, shape, if
shape is an Integer; or (2) the coordinates of
shape if shape is a Point.

Thus
bic — Pen new defaultNib: 2

creates a Pen with a black Form that is 2 bits wide by 2 bits high.

The accessing protocol for a Pen provides access to the Pen’s current
direction, location, and drawing region. The drawing region is referred
to as the Pen’s frame.

Pen instance protocol

accessing
direction Answer the receiver’s current direction. 270 is
towards the top of the screen.
location Answer the receiver’s current location.
frame Answer the Rectangle in which the receiver
can draw.
frame: aRectangle Set the Rectangle in which the receiver can

draw to be the argument, aRectangle.

Continuing to use the example, bic, and assuming that the display
screen is 600 bits wide and 800 bits high, we have

expression result
bic direction 270

bic location 300@400
bic frame:

(50@ 50 extent: 200@ 200)
bic tocation 300@400

367
Class Pen

Notice that when the Pen direction is towards the top of the display
screen, the angle is 270 degrees. Notice also that the Pen is currently
outside its drawing region and would have to be placed within the Rec-
tangle, 50@50 corner: 250@ 250, before any of its marks could be seen.

The “turtle” drawing commands alter the Pen’'s drawing state, orient
its drawing direction, and reposition it.

Pen instance protocol

moving

down Set the state of the receiver to “down” so that
it leaves marks when it moves.

up Set the state of the receiver to “up” so that it
does not leave marks when it moves.

turn: degrees Change the direction that the receiver faces
by an amount equal to the argument, degrees.

north Set the receiver’s direction to facing toward
the top of the display screen.

go: distance Move the receiver in its current direction a
* number of bits equal to the argument, dis-
tance. If the receiver status is “down,” a line
will be drawn using the receiver’s Form as the
shape of the drawing brush.

goto: aPoint Move the receiver to position aPoint. If the re-
ceiver status is “down”, a line will be drawn
from the current position to the new one us-
ing the receiver’'s Form as the shape of the
drawing brush. The receiver’s direction does
not change.

place: aPoint Set the receiver at position aPoint. No lines
are drawn.

home Place the receiver at the center of the region
in which it can draw.

Thus we can place bic in the center of its frame by evaluating the ex-
pression

bic home
If we then ask

bic location
the response would be 150@ 150.

Suppose that we drew a line with a Pen and then decided that we
wanted to erase it. If the line had been drawn with a black Form, then

we can erase it by drawing over it with a white Form of at least the
same size. Thus

bic go: 100

368

Pens

draws the black line. Then
bic white

sets the drawing mask to be all white (the message white is inherited
from the protocol of BitBIt), and then

bic go: —100

draws over the original line, erasing it.
An exercise that is common in the Logo examples is to create various
polygon shapes, such as a square.

4 timesRepeat: [bic go: 100. bic turn: 90]

The following expression creates any polygon shape by computing the
angle of turning as a function of the number of sides. If nSides is the
number of sides of the desired polygon, then

nSides timesRepeat: [bic go: 100. bic turn: 360 // nSides]

will draw the polygon. We can create a class Polygon whose instances
refer to the number of sides and length of each side. In addition, each
Polygon has its own Pen for drawing. In the definition that follows, we
specify that a Polygon can be told to draw on the display screen; the
method is the one described earlier.

class name Polygon

superclass Object

instance variable names drawingPen
nSides
length

class methods
instance creation
new
Tsuper new default
instance methods
drawing

draw
drawingPen black.
nSides timesRepeat: [drawingPen go: length; turn: 360 // nSides]

Figure 19.1

369
Class Pen

accessing

length: n
length < n

sides: n
nSides « n

private

default
drawingPen « Pen new.
self length: 100.
self sides: 4

Then a Polygon can be created and a sequence of polygons drawn by
evaluating the expressions

poly — Polygon new.
3 to: 10 do: [:sides | poly sides: sides. poly draw]

The result is shown in Figure 19.1.

370

Pens

Geometric
Designs

Spirals

Figure 19.2a

The Logo books mentioned earlier provide extensive examples of how to
use this kind of access to line drawing in order to create images on a
computer display screen. We provide several examples of methods that
can be added to a Pen so that any Pen can draw a geometric design
such as those shown in Figures 19.2 - 19.5. (Note: These methods are in
the system as part of the description of Pen so that users can play with
creating geometric designs.)

The first design is called a spiral. A spiral is created by having the Pen
draw incrementally longer lines; after each line is drawn, the Pen turns
some amount. The lines drawn begin at length 1 and increase by 1 each
time until reaching a length equal to the first argument of the message
spiral:angle:. The second argument of the message is the amount the
Pen turns after drawing each line.

spiral: n angle: a
1 to: n do:
[0] self go:i. self tun: a]

Each of the lines in Figure 19.2 was drawn by sending bic the message
spiral:angle:, as follows.

bic spiral: 150 angle: 89

371

Geometric Designs

bic spiral: 150 angle: 91

Figure 19.2b

bic spiral: 150 angle: 121

Figure 19.2¢

372
Pens

bic home.

bic spiral: 150 angle: 89.
bic home.

bic spiral: 150 angle: 91

Figure 19.2d

Figure 19.3 is an image of a “dragon curve” of order 8 which was
Dragon Curve drawn in the middle of the screen by evaluating the expression

bic — Pen new defaultNib: 4.

bic dragon: 9

The method associated with the message dragon: in class Pen is

dragon: n
n=20
ifTrue: [self go: 10]
ifFalse:
[n>0
ifTrue:
[self dragon: n — 1.
self turn: 90.
self dragon: 1 — n]
ifFalse:
[self dragon: —1 — n.
self turn: —90.
self dragon: 1 + n]]

Figure 19.3

Hilbert Curve

373
Geometric Designs

Dragon curves were discussed by Martin Gardner in his mathematical
games column in Scientific American (March 1967, p. 124, and April
1967, p. 119). Another discussion of dragon curves appears in Donald
Knuth and Chandler Davis, “Number Representations and Dragon
Curves,” Journal of Recreation Mathematics, Vol. 3, 1970, pp. 66-81 and
133-149.

Figure 19.4 is a space-filling curve attributed to the mathematician Da-
vid Hilbert. A space-filling curve has an index; as the index increases to
infinity, the curve tends to cover the points in a plane. The example is
the result of evaluating the expression

Pen new hilbert: 5 side: 8

The index for the example is 5; at each point, a line 8 pixels long is
drawn. The corresponding method for the message hilbert:side is

hilbert: n side: s
lamj
n = 0 ifTrue: [Tself turn: 180].
n > 0ifTrue: [a « 90.
me<n— 1}
ifFalse: [a « —90.
m « n + 1].

374

Pens

Figure 194

self turn: a.

self hilbert: 0 — m side: s.
self turn: a.

self go: s.

self hilbert: m side: s.

self turn: 0 — a.

self go: s.

self turn: 0 — a.

self hilbert: m side: s.

self go: s.

self turn: a.

self hilbert: 0 — m side: s.
self turn: a

A Hilbert curve, where the source form is a different shape, creates a
nice effect. Suppose the Form is three dots in a row; this is a system
cursor referred to as wait. The image in Figure 19.5 was created by
evaluating the expressions

bic — Pen new sourceForm: Cursor wait.
bic combinationRule: Form under.
bic hilbert: 4 side: 16

Figure 19.5

375
Commander Pen

Expressions Cursor wait and Form under access a Form and a combina-
tion rule, respectively, that are constants in the system and that are
known to the named classes. Other such constants are listed in a sec-
tion of the next chapter. The messages sourceForm: and
combinationRule: are inherited by Pens from their superclass BitBIt.

Commander
Pen

The next example is shown in Figure 19.6. Although we can not show
the process by which the design was created, it is a nice example for
the reader to try. The basic idea is to create an object that controls sev-
eral Pens and coordinates their drawing a design. We call the class of
this kind of object, Commander. A Commander is an array of Pens.
Pens controlled by a Commander can be given directions by having the
Commander enumerate each Pen and evaluate a block containing Pen
commands. So if a Commander’s Pens should each go: 100, for example,
then the Commander can be sent the message

do: [:eachPen | eachPen go: 100]
A Commander also responds to messages to arrange its Pens so that in-

teresting designs based on symmetries can be created. The two mes-
sages given in the description of Commander shown next are fanCut and

376

Pens

lineUpFrom: startPoint to: endPoint. The first message arranges the Pens
so that their angles are evenly distributed around 360 degrees. A
Commander’s Pens can be positioned evenly along a line using the mes-
sage lineUpFrom:to:, where the arguments define the end points of the
line.

A description for Commander follows. The message new: is redefined
so that Pens are stored in each element of the Array.

class name Commander
superclass Array

class methods
instance creation

new: numberOfPens
| newCommander |
newCommander « super new: numberOfPens.
1 to: numberOfPens do:
[@index | newCommander at; index put: Pen new].
TnewCommander

instance methods
distributing

fanOut
1 to: self size do:
[:index |
(self at: index) turn: (index — 1) « (360 / seif size)]
lineUpFrom: startPoint to: endPoint
1 to: self size do:
[:index |
(self at: index)
place: startPoint + (stopPoint—startPoint«(index—1) / (self size —1)}]

The methods are useful examples of sending messages to instances of
class Point. The image in Figure 19.6 was drawn by evaluating the ex-
pressions

bic —« Commander new: 4.

bic fanOut.

bic do: [:eachPen | eachPen up. eachPen go: 100. eachPen down].
bic do: [:eachPen | eachPen spiral: 200 angle: 121]

The message do: to a Commander is inherited from its Collection super-
class.

Figure 19.6

377

Commander Pen

Another example of the use of a Commander is given in Figure 19.7.
This image was created by using the message lineUpFrom:to:. It is a sim-
ple sequence of spirals arranged along a line at an angle, created by
evaluating the expressions

bic — Commander new: 6.
bic lineUpFrom: (300@ 150) to: (300@ 500).
bic do: [:eachPen | eachPen spiral: 200 angle: 121]

[] Additional Protocol for Commander Pen An expanded description
of Commander adds to Commander each message of the protocol of class
Pen whose behavior changes position or orientation. This additional
protocol supports the ability to send messages that are part of Pen’s

378

Pens

[

19

igure

F

379

Commander Pen

protocol to the Commander. Each such message is implemented as
broadcasting the message to the elements of the collection. In this way,
messages to Commander take the same form as messages to any Pen,
rather than that of a do: message. With the class defined in this way,
drawing sequences to a Commander appear more like drawing se-
quences to a Pen. Moreover, all the Pens commanded by a Commander
draw in parallel; for example, all the spirals of Figures 19.6 or 19.7
would grow at once.

down

self do: [.each | each down]
up

self do: [:each | each up]
turn: degrees

self do: [:each | each turn: degrees]
north

self do: [:each | each north]
go: distance

self do: [:each | each go: distance]
goto: aPoint

self do: [:each | each goto: aPoint]
place: aPoint

self do: [.each | each place: aPoint]
home

self do: [:each | each home]
spiral n angle: a

1 to: n do:

[:i| self go:i. self turn: a]

With this additional protocol, Figure 19.6 can be drawn by evaluating
the expressions

bic — Commander new: 4.
bic fanOut.

bic up.

bic go: 100.

bic down.

bic spiral: 200 angle: 121

and Figure 19.7 by the expressions
bic « Commander new: 6.

bic lineUpFrom: (300@ 150) to: (300 @ 500).
bic spiral: 200 angle: 121

Display Objects

Class DisplayObiject
Class DisplayMedium

Forms

Other Forms
Cursors

The Display Screen

Display Text
Paths

Image Manipulation with Forms
Magnification

Rotation

Area Filling

The Game of Life

Object

Magnitude
Character
Date
Time

Number
Float
Fraction
Integer
LargeNegativelnteger
LargePositiveinteger
Smallinteger

LookupKey
Association
Link
Process
Collection

SequenceableCollection
LinkedList

Semaphore

ArrayedCollection
Array

Bitmap
DisplayBitmap

RunArray
String
Symbol
Text
ByteArray

Interval
OrderedCollection
SortedCollection
Bag
MappedCollection
Set

Dictionary
IdentityDictionary

Stream
PositionableStream
ReadStream
WriteStream
ReadWriteStream
ExternalStream
FileStream

Random

File
FileDirectory
FilePage

UndefinedObject
Boolean

False

True

ProcessorScheduler
Delay
SharedQueue

Behavior
ClassDescription
Class
MetaCiass

Point

Rectangle

BitBit
CharacterScanner

Pen

Dls layObject
pBisp‘!;;Medlum

Dhnta s
il a cm
- Inﬂnlier-'g';mv

OpaqueForm

Arc
‘ C!rcle
~ Curve :
. Line e
. LinearFit B
Spiine i

383
Class DisplayObject

Graphics in the Smalltalk-80 system begin with the specification of
BitBIt. Supported by Points, Rectangles, Forms, Pens, and Text, a wide
variety of imagery can be created. The images in Figure 20.1 illustrate
some of the graphical entities made possible by extending the use of
these five kinds of objects.

The more artistic images in Figures 20.2 and 20.3 were created using
the additional display objects available in the Smalltalk-80 system. The
methods used in creating these images are described later. This chapter
describes the available kinds of display objects and the various ways to
manipulate them.

Class
DisplayObject

A Form is a kind of display object. There are others in the system. The
way in which these objects are implemented is as a hierarchy of classes
whose superclass is named DisplayObject. Form is a subclass in this hi-
erarchy.

A display object represents an image that has a width, a height, an
assumed origin at 0@0, and an offset from this origin relative to which
the image is to be displayed. All display objects are similar in their
ability to copy their image into another image, to be scaled, and to be
translated. They differ in how their image is created.

There are three primary subclasses of DisplayObject. They are
DisplayMedium, DisplayText, and Path.

+ DisplayMedium represents images that can be “colored” (that is,
filled with a gray tone) and bordered (that is, their rectangular
outline is colored).

» DisplayText represents textual images.
¢ Path represents images composed as collections of images.

A Form is a subclass of DisplayMedium; it adds the bitmap representa-
tion of the image. All DisplayObjects provide source information for im-
ages; Forms provide both the source and the destination information.

Class DisplayObject supports accessing messages for manipulating the
various aspects of the image.

DisplayObject instance protocol

accessing
width Answer the width of the receiver’s bounding
box, a rectangle that represents the bound-
aries of the receiver’s image.
height Answer the height of the receiver’s bounding
box.
extent Answer a Point representing the width and

height of the receiver’s bounding box.

TONES

- -
vl @

FONT SYMBOL
ABCDEFGHIJKLMNOPQRST
abcdefghijklmnopgrstuvwxyz
1234567890

POINTS TEXT
The modern age has brought to
. Ha:- -0 . Ikebana the concepts of individual

expression and abstract design
divorced from established rules.

LIN‘E/

—"

[TBLT

Figure 20.1

BRUSHES

LY
[]

- i
=

IDIOM

DOCUMENT

“enr Cracd.
R ATt S R R
P [eeTweee suapge o s e e e Aot
“-a Clesenih .

YN, e e T NN RN T
aapd{st an

reng? - thewe vh cramw od vatloden s lapee s aes s st
usr

SERE R 0w e snmule” e af Tlie OfH ?oroug snd bk

wmeeg mnpaas I oan AP IRIL o e b oosn? svvs e
NNTHT WS IS SRR RTL AT TN TR T NTA e
YA v N el fawy Lhit e, oy oy I & *win

= dnfler .=

BT U R R TR LRl SN F

“-a sppr-ds 2or the “sas e hasl=nll"; oo on #WAIL 4T Asele, L
YA Tk S tadile e

—eemgtey Corhw bW
I - FARYY

XY Ti N Lhe SRR VAN LTS S
BT T et R the

e Tased 31112

LS 8

385

Figure 20.2

386

|
IR
(RRRTRIRARIA TR
YRR

P
AAREE RN
RN

b b
L R A A

|1||w

!

L
N N N N Y|
I I I I I B S O A
3 N Y I
I\}IVIIHII!

M
eI

I

(LT
r!lll i“ll‘Illll’l’l‘ [N
’||||1||.4|\|\

387

Figure 20.3

388

Display Objects

offset - Answer a Point representing the amount by
which the receiver should be offset when it is
displayed or its position is tested.

offset: aPoint Set the receiver’s offset.
rounded Set the receiver’s offset to the nearest integral
amount.

DisplayObject also provides three kinds of messages that support
transforming an image, displaying the image, and computing the dis-
play box, that is, a rectangular area that represents the boundaries of
the area for displaying the image.

DisplayObject instance protocol

transforming
scaleBy: aPoint Scale the receiver’s offset by aPoint.
translateBy: aPoint Translate the receiver’s offset by aPoint.

align: alignmentPoint with: relativePoint
Translate the receiver’s offset such that
alignmentPoint aligns with relativePoint.

display box access

boundingBox Answer the rectangular area that represents
the boundaries of the receiver’s space of infor-
mation.
displaying

displayOn: aDisplayMedium
. at: aDisplayPoint
clippingBox: clipRectangle
rule: ruleinteger

mask: aForm
Display the receiver at location aDisplayPoint

with rule, ruleinteger, and halftone mask,
aForm. Information to be displayed must be
confined to the area that intersects with
clipRectangle.
There are actually several displaying messages not shown above. Alter-
native displaying messages progressively omit a keyword (starting from
the last one) and provide default masks, rules, clipping rectangles, and
positions, when needed. Basically the display screen itself is the default
clipping rectangle, 0@0 is the default display position, and the object
that represents the system display screen, Display, (a global variable) is
the default display medium.

The message displayAt: aDisplayPoint provides a generally useful mes-
sage when the only parameter not defaulted is the location at which
the image is to be placed. The message display assumes that the display
location is 0@0.

DisplayObiject instance protocol
displayAt: aDisplayPoint Display the receiver at location aDisplayPoint
with rule “over” or “storing”; halftone mask, a
black Form; clipping rectangle the whose dis-
play screen; onto the display screen (Display).

display Display the receiver at location 0@0.

389
Class DisplayObiject

These last two displaying messages are provided for textual objects such
as String and Text as well, so that the programmer can place characters
on the screen by evaluating an expression such as

‘This is text to be displayed’ displayAt: 100@ 100

Suppose locomative is the Form that looks like

LOCOMOTIVE

then it can be displayed on the screen with top left corner at location
50@ 150 by evaluating the expression

locomotive displayAt: 50@ 150

DISPLAY SCREEN

390

Display Objects

Class
DisplayMedium

DisplayMedium is a subclass of DisplayObject that represents an object
onto which images can be copied. In addition to those messages
inherited from its superclass, DisplayMedium provides protocol for color-
ing the interior of images and placing borders around the display boxes
of images. The “colors” are Forms that are already available in the sys-
tem. These are black (the bitmap is all ones), white (all zeros), and vari-
ous gray tones, either gray, veryLightGray, lightGray, or darkGray
(mixtures of ones and zeros). Images of these colors are given below. All
or portions of the DisplayMedium’s area can be changed to one of these
colors using the following messages.

DisplayMedium instance protocol

coloring
black Change all of the receiver’s area to black.

black: aRectangle Change the area of the receiver defined by the

argument, aRectangle, to black.
white Change all of the receiver’s area to white.

white: aRectangle

gray
gray: aRectangle

verylightGray
veryLightGray: aRectangle

lightGray
lightGray: aRectangle

darkGray

Change the area of the receiver defined by the
argument, aRectangle, to white.

Change all of the receiver’s area to gray.

Change the area of the receiver defined by the
argument, aRectangle, to gray.

Change all of the receiver’s area to very light
gray. _

Change the area of the receiver defined by the
argument, aRectangle, to very light gray.

Change all of the receiver’s area to light gray.

Change the area of the receiver defined by the
argument, aRectangle, to light gray.

Change all of the receiver’s area to dark gray.

Change the area of the receiver defined by the
argument, aRectangle, to dark gray.

darkGray: aRectangle

In the above messages, the origin of the argument, aRectangle, is in the
coordinate system of the receiver.

Suppose picture is a kind of DisplayMedium that is 100 pixels in width
and 100 pixels in height, and that box is an instance of Rectangie with
origin at 30 @ 30 and width and height of 40. Then the protocol for fill-
ing the subarea of picture represented by box is illustrated by the fol-
lowing sequence.

391
Class DisplayMedium

expression result

picture black: box

picture white: box

picture gray: box

picture lightGray: box

picture veryLightGray: box

392
Display Objects

picture darkGray: box

Part of an image can be filled with a pattern by sending a
DisplayMedium a message to fill a particular sub-area with a halftone
pattern. The other coloring messages use these filling messages in their
implementation.

DisplayMedium instance protocol

fill. aRectangle mask: aHalftoneForm
Change the area of the receiver defined by the
argument, aRectangle, to white, by filling it
with the 16 x 16-bit pattern, aHalftoneForm.
The combination rule for copying the mask to
the receiver is 3 (Form over).

fill. aRectangle rule: aninteger mask: aHalftoneForm
Change the area of the receiver defined by the
argument, aRectangle, to white, by filling it
with the 16 x 16 bit pattern, aHalftoneForm.
The combination rule for copying the mask to
the receiver is anlnteger.

As an example, the result of evaluating the expressions

box — 16@ 16 extent: 64 @64.
picture fill: box mask: locomotive

where locomotive is a 16x16-bit Form, is

s o s
ol e o s
e G G- G
Sl Gz Gk e

The result of evaluating the sequence of two expressions

picture lightGray: box.
picture fill: box rule: Form under mask: locomotive

393
Class DisplayMedium

is

Note that in the above, the rule Form under refers to an Integer combi-
nation rule. Messages to Form to access combination rules and halftone
masks were defined in Chapter 18.

Reversing an image means changing all the bits in the area that are
white to black and those that are black to white. Either all or part of
an image can be reversed.

DisplayMedium instance Protocol

reverse: aRectangle mask: aHalftoneForm
Change the area in the receiver defined by the
argument, aRectangle, so that, in only those
bits in which the mask, aHalftoneForm, is
black, white bits in the receiver become black
and black become white.

reverse: aRectangle Change the area in the receiver defined by the
argument, aRectangle, so that white is black
and black is white. The default mask is Form
black.

reverse Change all of the receiver’s area so that white
is black and black is white.

The result of
picture reverse: box

on the last image is

Bordering means coloring the outline of a rectangle. Bordering is done
using a source Form and mask. Three messages provide methods for
bordering an image.

394

Display Objects

DisplayMedium instance protocol

bordering

border: aRectangle widthRectangle: insets mask: aHalftoneForm

Color an outline around the area within the
receiver defined by the argument, aRectangle.
The color is determined by the mask,
aHalftoneForm. The width of the outline is de-
termined by the Rectangle, insets, such that,
origin x is the width of the left side, origin y
is the width of the top side, corner x is the
width of the right side, and corner y is the
width of the bottom side.

border: aRectangle width: borderWidth mask: aHalftoneForm

Color an outline around the area within the
receiver defined by the argument, aRectangle.
The color is determined by the mask,
aHalftoneForm. The width of all the sides is
borderWidth.

border: aRectangle width: borderWidth

Examples are

Color an outline around the area within the
receiver defined by the argument, aRectangle.
The color is Form black. The width of all the
sides is borderWidth.

expression

result

picture
border: box
width: 8

picture
border: box
width: 8
mask: Form gray

395

picture
border: box
widthRectangle:
(4@16 corner: 4@ 16)
mask: Form darkGray

picture
border: box
~ width: 16

mask: locomotive

Class DisplayMedium

The next sequence of images shows how bordering can be done by ma-
nipulating the size of the rectangle used to designate which area within

picture should be changed.

expression

result

frame ~ 48@48 extent: 16@16.
picture white.
picture reverse: frame

frame — frame expandBy: 16.
picture

fill: frame

rule: Form reverse

mask: Form black.

396
Display Objects

frame ~ frame expandBy: 16.
picture
border: frame ﬂ'ﬁ'ﬁ'&ﬁ'
width: 16
mask: locomotive

picture
border: frame
width: 1

Forms Class Form is the only subclass of DisplayMedium in the standard
Smalltalk-80 system. It was introduced in Chapter 18 in which we de-
fined messages that provide access to constants representing masks and
combination rules (modes). As an illustration of the use of Forms in cre-
ating complex images, the following sequence of expressions creates the
image shown at the beginning of this chapter as Figure 20.2.

Suppose we have two Forms available, each 120 bits wide and 180
bits high. We name them face25 and face75. These images were creat-
ed using a scanner to digitize photographs of a gentleman when he was
in his 20’s and on the occasion of his 75th birthday.

397

Forms

The scanned images were scaled to the desired size and then com-
bined with halftone masks in the following way. Two Arrays, each size
8, contain references to the halftone masks (masks) and the Forms
(forms) used in creating each part of the final image.

masks « Array new: 8.

masks at: 1 put: Form black.
masks at: 2 put: Form darkGray.
masks at: 3 put: Form gray.
masks at: 4 put: Form lightGray.
masks at: 5 put: Form veryLightGray.
masks at: 6 put: Form lightGray.
masks at: 7 put: Form gray.
masks at: 8 put: Form black.
forms « Array new: 8.

forms at: 1 put: face25.

forms at: 2 put: face25.

forms at: 3 put: face25.

forms at: 4 put: face25.

forms at: 5 put: face75.

forms at: 6 put: face75.

forms at: 7 put: face75.

forms at: 8 put; face75

The variable i is the initial index into the first halftone and first Form
used in forming the first sub-image of each row. Each time a complete
row is displayed, i is incremented by 1. Each row consists of 5 elements.
The variable index is used to index 5 halftones and five Forms; index is
set to i at the outset of each row. Thus the first row is made up by com-
bining elements 1, 2, 3, 4, and 5 of masks and forms; the second row is
made up by combining elements 2, 3, 4, 5, and 6 of masks and forms;
and so on. The y coordinate of each row changes by 180 pixels each
time; the x coordinate of each column changes by 120 pixels.

i« 1.
0 to: 540 by: 180 do:
[:y| index « i
0 to: 480 by: 120 do:
[:x | (forms at: index)
displayOn: Display
at: x@y
clippingBox: Display boundingBox
rule: Form over
mask: (masks at: index).
index « index + 1].
- i+ 1]

398

Display Objects

Other Forms

Cursors

Two other kinds of forms exist in the system, InfiniteForm and
OpaqueForm. These two classes are subclasses of DisplayObject, rather
than of DisplayMedium. They therefore do not share Form’s inherited
ability to be colored and bordered. InfiniteForm represents a Form
obtained by replicating a pattern Form indefinitely in all directions.
Typically the overlapping views displayed in the Smalltalk-80 program-
ming interface (as shown in Chapter 17) are placed over a light gray
background; this background is defined by an InfiniteForm whose repli-
cated pattern is Form gray. OpaqueForms represent a shape as well as a
figure Form. The shape indicates what part of the background should be
occluded in displaying the image, so that patterns other than black in
the figure will still appear opaque. Instances of OpaqueForm support
creating animations. Neither InfiniteForm nor OpaqueForm adds new
protocol.

Form has two subclasses of interest, class Cursor and class
DisplayScreen. The Smalltalk-80 system makes extensive use of Forms
to indicate both the current location of the hardware pointing device
and the current status of the system. A Form used in this way is re-
ferred to as a cursor since its primary purpose is to move over the
screen in order to locate screen coordinates.

Instances of class Cursor are Forms that are 16 pixels wide and 16
pixels high. Class Cursor adds three new messages to the displaying pro-
tocol that it inherits from DisplayObject.

Cursor instance protocol

displaying »
show Make the receiver be the current cursor
shape.
showGridded: gridPoint Make the receiver be the current cursor

shape, forcing the location of cursor to the
point nearest the location, gridPoint.

showWhile: aBlock While evaluating the argument, aBlock, make
the receiver be the cursor shape.

Several different cursors are supplied with the standard Smalltalk-80
system. They are shown in Figure 20.4 both small and enlarged in or-
der to illustrate their bitmaps. The name of each cursor, given below its
image, is the same as the message to class Cursor which accesses that
particular Cursor. For example, the following expression shows a cursor
that looks like eyeglasses on the screen while the system computes the
factorial of 50. It then reverts to showing the original cursor shape.

399
Forms

X \ & \-ﬁ-

normal execute
t r L L
up down
r I-— J __I
origin corner
- 7 A
read write
) " H
crosshair move
. N T T
Figure 20.4 marker wait

Cursor read showWhile: [50 factorial]

Changing the cursor shape is a very effective way of communicating
with the user. Attention is always on the cursor, and changing its shape
does not alter the appearance of the display.

400

Display Objects

The Display
Screen

DisplayScreen is another subclass of Form. There is usually only one in-
stance of DisplayScreen in the system. It is referred to as Display, a
global variable used to handle general user requests to deal with the
whole display screen. In addition to the messages it inherits from its
superclasses, DisplayObject, DisplayMedium, and Form, DisplayScreen
provides class protocol for resetting the width, height, and displayed im-
age of the screen.

The one case when multiple instances of DisplayScreen may exist is
when (double-buffered) full screen animation is being done by alternat-
ing which instance of DisplayScreen supplies bits to the display hard-
ware. Typically, full screen animation is not used, rather, animation is
done within a smaller rectangular area. A hidden buffer of bits is used
to form the next image. Each new image is displayed by copying the
bits to the rectangular area using the copyBits: message of a BitBlt.

DisplayText

The second subclass of DisplayObject is class DisplayText. An instance of
Text provides a font index (1 through 10) and an emphasis (italic, bold,
underline) for each character of an instance of String. DisplayText con-
sists of a Text and a TexiStyle. A TextStyle associates each font index
with an actual font (set of glyphs). In addition to representing this map-
ping to the set of fonts, a DisplayText supports the ability to display the
characters on the screen. It does not support the protocol needed to cre-
ate a user interface for editing either the characters or the choice of
fonts and emphasis; this protocol must be supplied by subclasses of
DisplayText.

Paths

A third subclass of DisplayObject is class Path. A Path is an
OrderedCollection of Points and a Form that should be displayed at each
Point. Complex images can be created by copying the Form along the
trajectory represented by the Points.

Class Path is the basic superclass of the graphic display objects that
represent trajectories. Instances of Path refer to an OrderedCollection
and to a Form. The elements of the collection are Points. They can be
added to the Path (add:); all Points that are described by some criterion

401
Paths

can be removed from the Path (removeAllSuchThat:); and the Points can
be enumerated, collected, and selected (do:, coliect, and select:).

Path instance protocol

accessing
form Answer the Form referred to by the receiver.
form: aForm Set the Form referred to by the receiver to be
aForm.
at: index Answer the Point that is the indexth element
‘ of the receiver’s collection.
at: index put: aPoint Set the argument, aPoint, to be the indexth el-
ement of the receiver’s collection.
size Answer the number of Points in the receiver’s
collection.
testing
isEmpty Answer whether the receiver contains any
Points.
adding
add: aPoint Add the argument, aPoint, as the last element
of the receiver’s collection of Points.
removing
removeAllSuchThat: aBlock Evaluate the argument, aBlock, for each Point
in the receiver. Remove those Points for which
aBlock evaluates to true.
enumerating
do: aBlock Evaluate the argument, aBlock, for each Point
in the receiver.
collect: aBlock Evaluate the argument, aBlock, for each Point
in the receiver. Collect the resulting values
into an OrderedCollection and answer the new
collection.
select: aBlock Evaluate the argument, aBlock, for each Point

in the receiver. Collect into an Ordered-
Collection those Points for which aBlock evalu-
ates to true. Answer the new collection.

As an example, we create a “star” Path, and display a dot-shaped Form,
referred to by the name dot, at each point on that Path.

aPath — Path new form: dot.
aPath add: 150 @ 285.
aPath add: 400 @ 285.
aPath add: 185 @ 430.
aPath add: 280 @ 200.
aPath add: 375 @ 430.

402
Display Objects

aPath add: 150 @ 285.
aPath display

The resulting image is shown as the first path in Figure 20.5.

Figure 20.5

403
Paths

There are three paths in Figure 20.5.

e an instance of Path, created as indicated above
* an instance of LinearFit, using the same collection of Points

« an instance of Spline, using the same collection of Points

A LinearFit is displayed by connecting the Points in the collection, in or-
der.

aPath — LinearFit new form: dot.
aPath add: 150 @ 285.

aPath add: 400 @ 285.

aPath add: 185 @ 430.

aPath add: 280 @ 200.

aPath add: 375 @ 430.

aPath add: 150 @ 285.

aPath display

The Spline is obtained by fitting a cubic spline curve through the Points,
again, in order. The order in which the Points are added to the Path sig-
nificantly affects the outcome.

aPath Spline new form: dot.
aPath add: 150 @ 285.

aPath add: 400 @ 285.

aPath add: 185 @ 430.

aPath add: 280 @ 200.

aPath add: 375 @ 430.

aPath add: 150 @ 285.

aPath computeCurve.

aPath display

LinearFit and Spline are defined as subclasses of Path. In order to sup-
port the protocol of DisplayObject, each of these subclasses implements
the message displayOn:at:clippingBox:rule:mask:.

Straight lines can be defined in terms of Paths. A Line is a Path spec-
ified by two points. An Arc is defined as a quarter of a circle. Instances
of class Arc are specified to be one of the four possible quarters; they
know their center Point and the radius of the circle. A Circle, then, is a
kind of Arc that represents all four quarters. Again, in order to support
the protocol of DisplayObject, each of these three classes (Line, Arc, and
Circle) implements the messages displayOn:at:clippingBox:rule:mask:.

Class Curve is a subclass of Path. It represents a hyperbola that is
tangent to lines determined by Points pl, p2 and p2, p3, and that passes

404
Display Objects

through Points pl and p3. The displaying message for Curve is defined
as shown in the method below.

displayOn: aDisplayMedium
at: aPoint
clippingBox: aRectangle
rule: aninteger
mask: aForm
| pa pbksplp2p3line |
line « Line new.
line form: self form.
self size < 3 ifTrue: [self error: “ Curves are defined by three points " 1.
pl1 « self at: 1.
p2 « self at: 2.
p3 ~ self at: 3.
S « Path new.
s add: p1.
pa « p2 — pl.
pb « p3 — p2.
k « 5 max: pa x abs + payabs + pb x abs + pbyabs // 20.
”k is a guess as to how many line segments to use to approximate the
curve.”
1 to: k do:
[:i} sadd:
pasi//k + ple(k—i) + (pb{i—1)//k + p2x(i—1)}//(k—1)].
s add: p3.
1 to: s size do:
(R
line at: 1 put: (s at: i).
line at: 2 put: {s at: i + 1).
line displayOn: aDisplayMedium
at: aPoint
clippingBox: aRectangle
rule: aninteger
mask: aForm]

The algorithm was devised by Ted Kaehler. Basically the idea is to di-
vide the line segments pl, p2 and p2, p3 into 10 sections. Numbering
the sections as shown in the diagram, draw a line connecting point 1 on
pl, p2 to point 1 on p2, p3; draw a line connecting point 2 on pl, p2 to
point 2 on p2, p3; and so on. The hyperbola is the path formed from pl
to p3 by interpolating along the line segments formed on the outer
shell.

Several curves are shown in Figure 20.6. The curves are the black
lines; the gray lines indicate the lines connecting the points that were
used to define the curves.

405
Image Manipulation with Forms

Two Curves were used to create the image shown in Figure 20.3. The
Form was one of the images of the gentleman used in Figure 20.2.

Image
Manipulation
with Forms

Magnification

We have shown in Chapter 18 how BitBIlt can copy shapes and how re-
peated invocation can synthesize more complex images such as text and
lines. BitBIt is also useful in the manipulation of existing images. For
example, text can be made to look bold by ORing over itself, shifted
right by one pixel. Just as complex images can be built from simple
ones, complex processing can be achieved by repeated application of
simple operations. In addition to its obvious manisfestation in the
DisplayObject protocol, the power of BitBlt is made available for manipu-
lating images through such messages as copy:from:in:rule:.

We present here four examples of such structural manipulation:
magnification, rotation, area filling, and the Game of Life.

A simple way to magnify a stored Form would be to copy it to a larger
Form, making a big dot for every little dot in the original. For a height
h and width w, this would take h*w operations. The algorithm present-
ed here (as two messages to class Form) uses only a few more than h + w
operations.

magnify: aRectangle by: scale
| wideForm bigForm spacing |
spacing —« 0 @ 0.

406

Display Objects

Figure 20.6

P1

wideForm «

Form new

extent: aRectangle width « scale x @ aRectangle height.

wideForm

spread: aRectangle

from: self

by: scale x

spacing: spacing x

direction: 1 @ 0.
bigForm « Form new extent: aRectangle extent * scale.
bigForm

spread: wideForm boundingBox

from: wideForm

by: scale y

spacing: spacing y

direction: 0 @ 1.
tbigForm

P2

Q2

407
Image Manipulation with Forms

spread: rectangle
from: aForm
by: scale
spacing: spacing
direction: dir
| slice sourcePt |
slice « 0@0 corner: dir transpose * self extent + dir.
sourcePt — rectangle origin.
1 to: (rectangle extent dotProduct: dir) do:
L]
“slice up original area”
self copy: slice
from: sourcePt
in: aForm
rule: 3.
sourcePt « sourcePt + dir.
slice moveBy: dir + scale].
1 to: scale - spacing —1 do:
L]
“smear out the slices, leave white space”
self copy: (dir corner: self extent)
from:0 @ O
in: self
rule: 7]

The magnification proceeds in two steps. First, it slices up the image
into vertical strips in wideForm separated by a space equal to the mag-
nification factor. These are then smeared, using the ORing function,
over the intervening area to achieve the horizontal magnification. The
process is then repeated from wideForm into bigForm, with horizontal
slices separated and smeared in the vertical direction, achieving the de-
sired magnification. Figure 20.7 illustrates the progress of the above al-
gorithm in producing the magnified “7”.

self wideForm wideForm bigForm bigForm
N
. _ | |]|]
_]
—— B
— EEEN
_ [|
_ |
_ |
|
Figure 20.7

408

Display Objects

Rotation

Another useful operation on images is rotation by a multiple of 90 de-
grees. Rotation is often thought to be a fundamentally different opera-
tion from translation, and this point of view would dismiss the
possibility of using BitBlt to rotate an image. However, the first trans-
formation shown in Figure 20.8 is definitely a step toward rotating the
image shown; all that remains is to rotate the insides of the four cells
that have been permuted. The remainder of the figure shows each of
these cells being further subdivided, its cells being similarly permuted,
and so on. Eventually each cell being considered contains only a single
pixel. At this point, no further subdivision is required, and the image
has been faithfully rotated.

Each transformation shown in Figure 20.8 would appear to require
successively greater amounts of computation, with the last one requir-
ing several times more than h*w operations. The tricky aspect of the al-
gorithm below is to permute the subparts of every subdivided cell at
once, thus performing the entire rotation in a constant times log,(h) op-
erations. The parallel permutation of many cells is accomplished with
the aid of two auxiliary Forms. The first, mask, carries a mask that se-
lects the upper left quadrant of every cell; the second, temp, is used for
temporary storage. A series of operations exchanges the right and left
halves of every cell, and then another series exchanges the diagonal
quadrants, achieving the desired permutation.

rotate

| mask temp quad all |

all « self boundingBox.

mask « Form extent: self extent.

temp < Form extent: self extent.

mask white. ”set up the first mask”

mask black: (0@0 extent: mask extent // 2).

quad < self width // 2.

[quad > = 1] whileTrue:
[First exchange left and right halves”
temp copy: all from: 0@0 in: mask rule: 3.
temp copy: all from: 0@quad negated in: mask rule: 7.
temp copy: all from: 0@0 in: self rule: 1.
self copy: all from: 0@0 in: temp rule: 6.
temp copy: all from: quad@0 in: self rule: 6.
self copy: all from: quad@0 in: self rule: 7.
self copy: all from: quad negated@0 in: temp ruie: 6.
“then flip the diagonals”
temp copy: all from: 0@0 in: self rule: 3.
temp copy: all from: quad@quad in: self rule: 6.
temp copy: all from: 0@0 in: mask rule: 1.

409
Image Manipulation with Forms

Figure 20.8

410

Display Objects

Figure 20.9

Figure 20.10

self copy: all from: 0@0 in: temp rule: 6.

self copy: all from: quad negated@quad negated in: temp rule: 6.
“Now refine the mask”

mask copy: all from: (quad//2)@{quad//2) in: mask rule: 1.
mask copy: all from: 0@quad negated in: mask rule: 7.

mask copy: all from: quad negated@O0 in: mask rule: 7.

quad « gquad // 2]

Figure 20.9 traces the state of temp and self after each successive opera-
tion.

1 2 3 4 5 6 7
self |A|B A|B Al|B 0B 0B B|B B|A
DjC DIC D C 0]C 0fC C|C C|D
Flip left M t
and I'ight M (3R AI\:D XOR X{ R OR. XOR
110 110 At O Al O AB| 0 AB| 0 AB| 0
temp
00 110 D|o Do CDj 0 CDl 0 CD} 0
...then...
8 9 10 11 12
B|A B|A Bl A D|A DIl A M means
self
clp clp clp clp clB the quadrant mask
exchange M
diagonals. XOR AND XOR XOR
y AB here
B|A BD| ? BDj ¢ BD| 0 BD| 0 means A XOR B
temp
C|D 71 7? 010 010 00

In the Figure 20.9, the offsets of each operation are not shown, though
they are given in the program listing. After twelve operations, the de-
sired permutation has been achieved. At this point the mask evolves to
a finer grain, and the process is repeated for more smaller cells. Figure
20.10 shows the evolution of the mask from the first to the second stage
of refinement.

AND OR OR

The algorithm presented here for rotation is applicable only to square
forms whose size is a power of two. The extension of this technique to
arbitrary rectangles is more involved. A somewhat simpler exercise is
to apply the above technigue to horizontal and vertical reflections about
the center of a rectangle.

Area Filling

411
Image Manipulation with Forms

A useful operation on Forms is to be able to fill the interior of an
outlined region with a halftone mask. The method given here takes as
one argument a Point that marks a location in the interior of the re-
gion. A mark is placed at this location as a seed, and then the seed is
smeared (in all four directions) into a larger blob until it extends to the
region boundary. At each stage of the smearing process, the original
Form is copied over the blob using the “erase” rule. This has the effect
of trimming any growth which would have crossed the region borders.
In addition, after every ten smear cycles, the resulting smear is com-
pared with its previous version. When there is no change, the smear
has filled the region and halftoning is applied throughout.
shapeFill: aMask interiorPoint: interiorPoint
| dirs smearForm previousSmear all cycle noChange |
all ~ self boundingBox.
smearForm « Form extent: self extent.
“ Place a seed in the interior”
smearForm valueAl: interiorPoint put: 1.
previousSmear « smearForm deepCopy.
dirs « Array with: 1@0 with: —1@0 with: 0@ 1 with: 0@ — 1.
cycle < 0.
[check for nc change every 10 smears”
(cycle « cycle + 1I)\\10 = 0 and:
[previousSmear copy: all
from: 0@0
in: smearForm
rule: Form reverse.
noChange « previousSmear isAliWhite.
previousSmear copy: all from: 0@0 in: smearForm rule: Form over.
noChange]]
whileFalse:
[dirs do:
[:dir |
“smear in each of the four directions”
smearfForm copy: all
from: dir
in: smearForm
rule: Form under.
” After each smear, trim around the region border”
smearForm copy: all from: 0@0 in: self rule: Form erase]].
”Now paint the filled region in me with aMask”
smearForm displayOn; self
at: 0@0
clippingBox: self boundingBox
rule: Form under
mask: aMask

412

Display Objects

- * *
Figure 20.11

The Game of Life

Figure 20.11 shows a Form with a flower-shaped region to be filled. Suc-
cessive smears appear below, along with the final result.

Conway’s Game of Life is a simple rule for successive populations of a
bitmap. The rule involves the neighbor count for each cell—how many
of the eight adjacent cells are occupied. Each cell will be occupied in
the next generation if it has exactly three neighbors, or if it was occu-
pied and has exactly two neighbors. This is explained as follows: three
neighboring organisms can give birth in an empty cell, and an existing
organism will die of exposure with less than two neighbors or from
overpopulation with more than three neighbors. Since BitBlt cannot
add, it would seem to be of no use in this application. However BitBlt’s
combination rules, available in the Form operations, do include the
rules for partial sum (XOR) and carry (AND). With some ingenuity and
a fair amount of extra storage, the next generation of any size of
bitmap can be computed using a constant number of BitBlt operations.

nextLifeGeneration
| nbr1 nbr2 nbr4 carry2 carry4 all delta |
nbr1 « Form extent: self extent.
nbr2 « Form extent: self extent.
nbr4 « Form extent: self extent.
carry2 « Form extent: self extent.
carryd — Form extent: self extent.
all < self boundingBox.
1 to: 8 do:
[
“delta is the offset of the eight neighboring cells”
delta « ((#(—101110 -1 —=1)at i)
@ (#(—1 -1 —-101110)ati)).
carry2 copy: all from: 0@0 in: nbr1 rule: 3.
carry? copy: all from: delta in: self rule: 1. " AND for carry into 2~

Figure 20.12

413

Image Manipulation with Forms

nbrd
nbr2
solf 8 neighbor shifts YT
— —_—
carryd|
| carry2
self neighbor counts next self
Tl T111
1[2]2]1
] NABAR] B
[n . AR a n
I 1]3]2]2 i
NRE]
11 L1
v
nbr1 nbr2 nbrd
] ||
- 1 | |
[

nbri1 copy: all from: delta in: self rule: 6. " XOR for sum 1~

carry4 copy: all from: 0@0 in: nbr2 rule: 3.

carry4 copy: all from: 0@0 in: carry2 rule: 1. “AND for carry into 4”
nbr2 copy: all from: @0 in: carry2 rule: 6. ”XOR for sum 2~

nbr4 copy: all from: 0@0 in: carry4 rule: 6].

“XOR for sum 4 {ignore carry into 8}

self

copy: all from: 0@0 in: nbr2 rule: 1.

nbr1 copy: all from: 0@0 in: nbr2 rule: 1.

self
self

copy: all from: 0@0 in: nbr1 rule: 7.
copy: all from: 0@0 in: nbr4 rule: 4

” compute next generation”

As shown in Figure 20.12, the number of neighbors is represented using
three image planes for the 1’s bit, 2’s bit and 4’s bit of the count in bi-

nary. The

8's bit can be ignored, since there are no survivors in that

case, which is equivalent to zero (the result of ignoring the 8’s bit). This
Smalltalk-80 method is somewhat wasteful, as it performs the full carry
propagation for each new neighbor, even though nothing will propagate
into the 4-plane until at least the fourth neighbor.

PART THREE

Part Three is an example of modeling discrete, event-driven simu-
lations in the Smalltalk-80 system. A simulation is a representa-
tion of a system of objects in a real or fantasy world. The purpose
of creating a computer simulation is to provide a framework in
which to understand the simulation situation. In order to create
the Smalltalk-80 simulations, we first describe a hierarchy of clas-
ses that represent probability distributions. Various kinds of prob-
ability distributions are used to determine arrival times of objects,
such as customers, into a simulation; they are also used to ran-
domly select response or service times for workers in a simulation.
The example class SimulationObject represents any kind of object

that enters into a simulation in order to carry out one or more
tasks; class Simulation represents the simulation itself and provides
the control structures for admitting and assigning tasks to new
SimulationObijects.

The objects that participate in event-driven simulations operate
more or less independently of one another. So it is necessary to
consider the problem of coordinating and synchronizing their ac-
tivities. The Smalltalk-80 system classes, Process, Semaphore, and
SharedQueue, provide synchronization facilities for otherwise inde-
pendent simulation events. The framework of classes defined in
this part support the creation of simulations that use consumable,
nonconsumable, and/or renewable resources. They also provide a
number of ways in which a programmer can gather statistics
about a running simulation.

Probability Distributions

S

Probability Distribution Framework
Definitions

Introductory Examples

Class ProbabilityDistribution

Class DiscreteProbability

Class ContinuousProbability

o

e -
-l
X
an -
S ween g

Discrete Probability Distributions
The Bernoulli Distribution

The Binomial Distribution

The Geometric Distribution

The Poisson Distribution

.-
PRI TRt
P
N E L P
. LI

1Y

-
-
.

Continuous Probability Distributions
The Uniform Distribution

The Exponential Distribution

The Gamma Distribution

The Normal Distribution

W LN

418

Probability Distributions

Probability
Distribution
Framework

Definitions

Applications, such as simulations, often wish to obtain values associated
with the outcomes of chance experiments. In such experiments, a num-
ber of possible questions might be asked, such as:

+ What is the probability of a certain event occurring?
* What is the probability of one of several events occurring?

¢ What is the probability that, in the next N trials, at least one suc-
cessful event will occur?

* How many successful events will occur in the next N trials?

* How many trials until the next successful event occurs?

In the terminology of simulations, a trial is a tick of the simulated
clock (where a clock tick might represent seconds, minutes, hours, days,
months, or years, depending on the unit of time appropriate to the situ-
ation). An event or success is a job arrival such as a car arriving to a car
wash, a customer arriving in a bank, or a broken machine arriving in
the repair shop.

In the realm of statistics, the probability that an event will occur is
typically obtained from a large number of observations of actual trials.
For example, a long series of observations of a repair shop would be
needed in order to determine the probability of a broken machine arriv-
ing in the shop during a fixed time interval. In general, several events
might occur during that time interval. The set of possible events is
called a sample space. A probability function on a sample space is de-
fined as an association of a number between 0 and 1 with each event in
the sample space. The probability or chance that at least one of the
events in the sample space will occur is defined as 1; if p is the proba-
bility that event E will occur, then the probability that E will not occur
is defined as 1 — p.

Sample spaces are classified into two types: discrete and continuous.
A sample space is discrete if it contains a finite number of possible
events or an infinite number of events that have a one-to-one relation-
ship with the positive integers. For example, the six possible outcomes
of a throw of a die constitute a discrete sample space. A sample space is
continuous if it contains an ordered, infinite number of events, for ex-
ample, any number between 1.0 and 4.0. Probability functions on each
of these types of sample spaces are appropriately named discrete proba-
bility functions and continuous probability functions.

A random variable is a real-valued function defined over the events
in a sample space. The adjectives “discrete” and “continuous” apply to
random variables according to the characteristic of their range. The

Introductory
Examples

419
Probability Distribution Framework

probability function of a random variable is called a probability distri-
bution; the values in the range of the function are the probabilities of
occurrence of the possible values of the random variable. The density is
a function that assigns probabilities to allowed ranges of the random
variable. Any function can be a density function (discrete or continuous)
if it has only positive values and its integral is 1.

Another useful function that plays an important role in simulations
is called the cumulative distribution function. 1t gives the probability
that the value of the random variable is within a designated range. For
example, the cumulative distribution function answers the question:
what is the probability that, in the throw of a die, the side is 4 or less?

The mean is defined as the average value that the random variable
takes on. The variance is a measure of the spread of the distribution. It
is defined as the average of the square of the deviations from the mean.

Two examples of sample spaces are given here before entering into a
detailed description of the Smalltalk-80 classes. Suppose the sample
space is the possible outcomes of a toss of a die. The sample space con-
sists of

event 1: 1 is thrown
event 2: 2 is thrown
event 3: 3 is thrown
event 4: 4 is thrown
event 5: 5 is thrown
event 6: 6 is thrown

Then, for this discrete probability distribution, the probability function
for any event is

flevent) = 1/6

If X is a random variable over the sample space, then the probability
distribution of X is g(X) such that

g(X=1) = f(eventl) = 1/6, ..., g(X=86) = f(event6) = 1/6.

The density of X is 1/6 for any value of X.
The cumulative distribution function of X is

c(a, b) = 2 g(X)
For example,

c(24) = gX=2) + gX=3) + gX=4) =1/6 + 1/6 + 1/6 = 1/2

420

Probability Distributions

Class
ProbabilityDistribution

As an example of a continuous probability distribution, let the sample
space be the time of day where the start of the day is time = 12:00 a.m.
and the end of the day is time = 11:59:59.99... p.m. The sample space is
the interval between these two times.

The probability function is

flevent) = probability (event, < time < event,)
where event; < event,. The density of X is

g(X = any specified time) = 0

Suppose this is a 24-hour clock. Then the probability that, upon looking
at a clock, the time is between 1:00 p.m. and 3:00 p.m., is defined by the
cumulative distribution function

c(1:00, 3:00) = {39 g(X)

g(X) is uniform over 24 hours. So
¢(1:00, 3:00) = ¢(1:00, 2:00) + ¢(2:00, 3:00) = 1/24 + 1/24 = 1/12.

The superclass for probability distributions provides protocol for
obtaining one or more random samplings from the distribution, and for
computing the density and cumulative distribution functions. It has a
class variable U which is an instance of class Random. Class Random
provides a simple way in which to obtain a value with uniform proba-
bility distribution over the interval [0,1].

Like class Random, ProbabilityDistribution is a Stream that accesses el-
ements generated algorithmically. Whenever a random sampling is re-
quired, the message next is sent to the distribution.
ProbabilityDistribution implements next by returning the result of the
message inverseDistribution: var, where the argument var is a random
number between 0 and 1. Subclasses of ProbabilityDistribution must im-
plement inverseDistribution: in order to map [0,1] onto their sample
space, or else they must override the definition of next. The message
next: is inherited from the superclass Stream.

class name ProbabilityDistribution
superclass Stream
class variable names u

class methods
class initialization
initialize
“Uniformly distributed random numbers in the range [0,1].”
U < Random new

421
Probability Distribution Framework

instance creation

new
tself basicNew

instance methods
random sampling

next
“This is a general random number generation method for any probability

law; use the (0, 1) uniformly distributed random variable U as the val-
ue of the law’s distribution function. Obtain the next random value and
then solve for the inverse. The inverse solution is defined by the sub-
class.”

1self inverseDistribution: U next

probability functions

density: x
“This is the density function.”
self subclassResponsibility

distribution: aCollection
“This is the cumulative distribution function. The argument is a range of
contiguous values of the random variable. The distribution is mathemati-
cally the area under the probability curve within the specified interval.”
self subclassResponsibility

private

inverseDistribution: x
self subclassResponsibility
computeSample: m outOf: n
“Compute the number of ways one can draw a sample without replace-
ment of size m from a set of size n.”
m > nifTrue: [10.0].
tn factorial / (n—m) factorial

In order to initialize the class variable U, evaluate the expression
ProbabilityDistribution initialize
Computing the number of ways one can draw a sample without replace-

ment of size m from a set of size n will prove a useful method shared by
the subclass implementations that follow.

The two types of probability distributions, discrete and continuous, are
Class specified as subclasses of class ProbabilityDistribution; each provides an
DiscreteProbability implementation of the cumulative distribution function which depends

422

Probability Distributions

on the density function. These implementations assume that the density
function will be provided in subclasses.

Class
ContinuousProbability

class name DiscreteProbability
superclass ProbabilityDistribution
instance methods

probability functions

distribution: aCollection
” Answer the sum of the discrete values of the density function for each
element in the collection.”
[t
1t < 0.0
aCollection do: [:i | t « t + (self density: i}].
1

class name ContinuousProbability
superclass ProbabilityDistribution
instance methods

probability functions

distribution: aCollection
“This is a slow and dirty trapezoidal integration to determine the area
under the probability function curve y=density(x) for x in the specified
collection. The method assumes that the collection contains numerically-
ordered elements.”
| taStream x1 x2 y1 y2 |
t < 0.0.
aStream < ReadStream on: aCollection.
x2 « aStream next.
y2 « self density: x2.
[x1 « x2. x2 « aStream next]
whileTrue:
1~ y2
y2 « self density: x2.
te t 4+ (x2—x1)«(y2+y1))].
1+0.5

In order to implement the various kinds of probability distributions as
subclasses of class DiscreteProbability or ContinuousProbability, both the
density function and the inverse distribution function (or a different re-
sponse to next) must be implemented.

423
Discrete Probability Distributions

Discrete
Probability
Distributions

As an example of a discrete probability distribution, take the heights of
a class of 20 students and arrange a table indicating the frequency of
students having the same heights (the representation of height is given
in inches). The table might be

measured height number of students

60" 3
62"
64"
66"
68"
70"

w oW~ N

Given this information, we might ask the question: what is the proba-
bility of randomly selecting a student who is 5'4” tall? This question is
answered by computing the density function of the discrete probability
associated with the observed information. In particular, we can define
the density function in terms of the following table.

height density
60" 3/20
62" 2/20
64" 4/20
66"~ 3/20
68"~ 5/20
70" 3/20

Suppose we define a subclass of DiscreteProbability which we name
SampleSpace, and provide the above table as the value of an instance
variable of SampleSpace. The response to the message density: x is the
value associated with x in the table (in the example, the value of x is
one of the possible heights); the value of the density of x, where x is not
in the table, is 0. The probability of sampling each element of the col-
lection is equally likely, so the density function is the reciprocal of the
size of the collection. Since there may be several occurrences of a data
element, the probability must be the appropriate sum of the probability
for each occurrence. The implementation of the cumulative distribution
function is inherited from the superclass.

424

Probability Distributions

class name SampleSpace
superclass DiscreteProbability
instance variable names data

class methods
instance creation

data: aCollection
1self new setData: aCollection

instance methods
probability functions

density: x
“x must be in the sample space; the probability must sum over all occur-
rences of x in the sample space”
{(data includes: x)
ifTrue: {1(data occurrencesOf: x) / data size]
ifFalse: [10]

private

inverseDistribution: x

1data at: {x«data size) truncated + 1
setData: aCollection

data — aCollection

Suppose heights is an instance of SampleSpace. The data is an array of
20 elements, the height of each student in the example.

heights — SampleSpace data:
#(60 60 60 62 62 64 64 64 64 66 66 66 68 68 68 68
68 70 70 70)

Then we can ask heights the question, what is the probability of ran-
domly selecting a student with height 64, or what is the probability of
randomly selecting a student whose height is between 60" and 64”7
The answer to the first question is the density function, that is, the re-
sponse to the message density: 64. The answer to the second is the cu-
mulative distribution function; that is, the answer is the response to the
message distribution: (60 to: 64 by: 2).

SampleSpace, in many ways, resembles a discrete uniform distribu-
tion. In general, a discrete uniform distribution is defined over a finite
range of values. For example, we might specify a uniform distribution
defined for six values: 1, 2, 3, 4, 5, 6, representing the sides of a die. The
density function, as the constant 1/6, indicates that the die is “fair,”
i.e., the probability that each of the sides will be selected is the same.

We define four kinds of discrete probability distributions that are
useful in simulation studies. They are Bernoulli, Binomial, Geometric,

The Bernoulli
Distribution

425
Discrete Probability Distributions

and Poisson. A Bernoulli distribution answers the question, will a suc-
cess occur in the next trial? A binomial distribution represents N re-
peated, independent Bernoulli distributions, where N is greater than or
equal to one. It answers the question, how many successes are there in
N trials? Taking a slightly different point of view, the geometric distri-
bution answers the question, how many repeated, independent Bernoul-
li trials are needed before the first success is obtained? A Poisson
distribution is used to answer the question, how many events occur in a
particular time interval? In particular, the Poisson determines the
probability that K events will occur in a particular time interval, where
K is greater than or equal to O.

A Bernoulli distribution is used in the case of a sample space of two
possibilities, each with a given probability of occurrence. Examples of
sample spaces consisting of two possibilities are

¢ The throw of a die, in which I ask, did I get die side 4? The proba-
bility of success if the die is fair is 1/6; the probability of failure is
5/6.

¢ The toss of a coin, in which I ask, did I get heads? The probability
of success if the coin is fair is 1/2; the probability of failure is 1/2.

» The draw of a playing card, in which I ask, is the playing card the
queen of hearts? The probability of success if the card deck is stan-
dard is 1/52; the probability of failure is 51/52.

According to the specification of class Bernoulli, we create a Bernoulli
distribution using expressions of the form

Bernoulli parameter: 0.17

In this example, we have created a Bernoulli distribution with a proba-
bility of success equal to 0.17. The probability of success is also referred
to as the mean of the Bernoulli distribution.

The parameter, prob, of a Bernoulli distribution is the probability
that one of the two possible outcomes will occur. This outcome is typi-
cally referred to as the successful one. The parameter prob is a number
between 0.0 and 1.0. The density function maps the two possible out-
comes, 1 or 0, onto the parameter prob or its inverse. The cumulative
distribution, inherited from the superclass, can only return values prob
or 1.

class name Bernoutli
superclass DiscreteProbability
instance variable names prob

426
Probability Distributions

class methods
instance creation

parameter: aNumber
(aNumber between: 0.0 and: 1.0)
ifTrue: [Tself new setParameter: aNumber]
itFalse: [self error: " The probability must be between 0.0 and 1.0"]

instance methods
accessing

mean
fprob
variance
Tprob « (1.0 — prob)

probability functions

density: x
“let 1 dencle success”
x = 1ifTrue: [Tprob].
“let O denote failure”
x = 0 ifTrue: [11.0—prob].
self error: “outcomes of a Bernoulii can only be 1 or 0

private

inverseDistribution: x
“Depending on the random variable x, the random sample is 1 or O,
denoting success or failure of the Bernoulli trial.”
x <= prob
ifTrue: [11]
ifFalse: [10]
setParameter: aNumber
prob « aNumber

Suppose, at some stage of playing a card game, we wish to determine
whether or not the first draw of a card is an ace. Then a possible (ran-
domly determined) answer is obtained by sampling from a Bernoulli
distribution with mean of 4/52.

(Bernoulli parameter: 4/52) next

Let’s trace how the response to the message next is carried out.

The method associated with the unary selector next is found in the
method dictionary of class ProbabilityDistribution. The method returns
the value of the expression self inverseDistribution: U next. That is, a
uniformly distributed number between 0 and 1 is obtained (U next) in

The Binomial
Distribution

427
Discrete Probability Distributions

order to be the argument of inverseDistribution:. The method associated
with the selector inverseDistribution: is found in the method dictionary
of class Bernoulli. This is the inverse distribution function, a mapping
from a value prob of the cumulative distribution function onto a value,
x, such that prob is the probability that the random variable is less
than or equal to x. In a Bernoulli distribution, x can only be one of two
values; these are denoted by the integers 1 and 0.

In simulations, we use a Bernoulli distribution to tell us whether or not
an event occurs, for example, does a car arrive in the next second or
will a machine break down today? The binomial distribution answers
how many successes occurred in N trials. The density function of a Ber-
noulli distribution tells us the probability of occurrence of one of two
events. In contrast, the density function of a binomial answers the ques-
tion, what is the probability that x successes will occur in the next N
trials?

The binomial distribution represents N repeated, independent Ber-
noulli trials. It is the same as Bernoulli for N = 1. In the description of
class Binomial, a subclass of class Bernoulli, the additional instance vari-
able, N, represents the number of trials. That is, given an instance of
Binomial, the response to the message next answers the question, how
many successes are there in N trials?

The probability function for the binomial is

Nt

: X __n)N—-x
xI(N—-x)! prd=p)

where x is the number of successes and p is the probability of success
on each trial. The notation “!” represents the mathematical factorial
operation. The first terms can be reduced to computing the number of
ways to obtain x successes out of N trials, divided by the number of
ways to obtain x successes out of x trials. Thus the implementation giv-
en below makes use of the method computeSample: a outOf: b provided
in the superclass ProbabilityDistribution.

class name Binomial
superclass Bernoutli
instance variable names N

class methods
instance creation

eventis: n mean: m
n truncated <= Q ifTrue: [self error: “number of events must be > 0'].

tself new evenis: n mean: m

428
Probability Distributions

instance methods
random sampling

next
It
“ A surefire but slow method is to sample a Bernoulli N times. Since the
Bernoulli returns 0 or 1, the sum will be between 0 and N.”
t« 0.
N timesRepeat: [t < t + super next].
Tt

probability functions

density: x
(x between: 0 and: N)
ifTrue: [t((self computeSample: x outOf: N)
/ (self computeSample; x outOf: x))
« (prob raisedTo: x) + ({1.0 —prob) raisedTo: N—x)]
ifFalse: [10.0]

private

events: n mean: m
N « n truncated.
self setParameter: m/N
" setParameter: is implemented in my superclass”

Let’s use flipping coins as our example. In five trials of a coin flip,
where the probability of heads is 0.5, the Bernoulli distribution with pa-
rameter 0.5 represents one trial, i.e., one coin flip.

sampleA — Bernoulli parameter: 0.5
The result of
sampleA next

is either 1 or 0, answering the question, did I get heads?
Suppose instead we create

sampleB — Binomial events: 5 mean: 2.5
The result of

sampleB next

The Geometric
Distribution

429
Discrete Probability Distributions

is a number between 0 and 5, answering the question, how many heads
did I get in 5 trials?
The message

sampleB density: 3

is a number between 0 and 1, answering the question, what is the prob-
ability of getting heads 3 times in 5 trials?

Suppose we wish to answer the question, how many repeated, indepen-
dent Bernoulli trials are needed before the first success is obtained?
This new perspective on a Bernoulli distribution is the geometric distri-
bution. As in the Bernoulli and binomial cases, the probability of a suc-
cess is between 0.0 and 1.0; the mean of the geometric is.the reciprocal
of the success probability. Thus if we create a geometric distribution as

Geometric mean: 5

then the mean is 5 and the probability of a success is 1/5. The mean
must be greater than or equal to L.

A geometric distribution is more suitable for an event-driven simula-
tion design than a Bernoulli or binomial. Instead of asking how many
cars arrive in the next 20 seconds (a binomial question), the geometric
distribution asks, how many seconds before the next car arrives. In
event-driven simulations, the (simulated) clock jumps to the time of the
next event. Using a geometric distribution, we can determine when the
next event will occur, set the clock accordingly, and then carry out the
event, potentially “saving” a great deal of real time.

The probability distribution function is

p(l__p)x——l

where x is the number of trials required and p is the probability of suc-
cess on a single trial.

class name Geometric
superclass Bernoulii
class methods

instance creation

mean: m
tself parameter: 1/m
“ Note that the message parameter: is implemented in the superclass”

430

Probability Distributions

The Poisson
Distribution

instance methods
accessing

mean
11.0/ prob

variance
T (1.0—prob) / prob squared

probability functions

density: x
x > QifTrue: [tprob « ({1.0—prob) raisedTo: x—1)]
ifFalse: [10.0]

private

inverseDistribution: x
”Method is from Knuth, Vol. 2, pp.116-117"~
Hx tn / (1.0—prob) In) ceiling

Suppose, on the average, two cars arrive at a ferry landing every min-
ute. We can express this statistical information as

sample — Geometric mean: 2/60

The density function can be used to answer the question, what is the
probability that it will take N trials before the next success? For exam-
ple, what is the probability that it will take 30 seconds before the next
car arrives?

sample density: 30

The cumulative distribution function can be used to answer the ques-
tion, did the next car arrive in 30 to 40 seconds?

sample distribution: (30 to: 40)

Suppose the question we wish to ask is, how many events occur in a
unit time (or space interval)? The binomial distribution considers the
occurrence of two independent events, such as drawing a king of hearts
or a king of spades from a full deck of cards. There are random events,
however, that occur at random points in time or space. These events do
not occur as the outcomes of trials. In these circumstances, it does not
make sense to consider the probability of an event happening or not
happening. One does not ask how many cars did not arrive at a ferry or
how many airplanes did not land at the airport; the appropriate ques-
tions are how many cars did arrive at the ferry and how many air-
planes did land at the airport, in the next unit of time?

431
Discrete Probability Distributions

In simulations, the Poisson distribution is useful for sampling poten-
tial demands by customers for service, say, of cashiers, salesmen, tech-
nicians, or Xerox copiers. Experience has shown that the rate at which
the service is provided often approximates a Poisson probability law.

The Poisson law describes the probability that exactly x events occur
in a unit time interval,- when the mean rate of occurrence per unit time is
the variable mu. For a time interval of dt, the probability is mu=dt; mu
must be greater than 0.0.

The probability function is

a*e 2
x!

where a is the mean rate (or mu), e the base of natural logarithms, x is
the number of occurrences, and ! the factorial notation.

class name Poisson
superclass DiscreteProbability
instance variable names mu

class methods
instance creation

mean: p
”p is the average number of events happening per unit interval.”
p > 0.0
iffrue: [Tself new setMean: p]
ifFalse: [self error: “mean must be greater than 0.0"]

instance methods
accessing

mean
Tmu

variance
Tmu

random sampling

next
“how many events occur in the next unit interval?”
l png |
p — mu negaled exp.
n « 0.
g~ 1.0
[g « g« Unext.
g >=p]
whileTrue: [n « n+ 1].
™Tn

432

Probability Distributions

probability functions

density: x
“the probability that in a unit interval, x events will occur”

x>=20
ifTrue: [T((mu raisedTo: x) « {(mu negated exp)) / x factorial]
ifFalse: [10.0]
private

setMean: p
mu < p

The response to the message next answers the question, how many
events occur in the next unit of time or space? The density function of x
determines the probability that, in a unit interval (of time or space), x
events will occur. The cumulative distribution function of x determines
the probability that, in a unit interval, x events or fewer will occur.

Continuous
Probability
Distributions

The Uniform
Distribution

A continuous random variable can assume any value in an interval or
collection of intervals. In the continuous case, questions similar to those
asked in the discrete case are asked and the continuous probability dis-
tributions show strong correspondence to the discrete ones. An example
of a question one asks of a continuous probability distribution is, what
is the probability of obtaining a temperature at some moment of time.
Temperature is a physical property which is measured on a continuous
scale.

We define four kinds of continuous probability distributions; they are
uniform, exponential, gamma, and normal distributions. The uniform
distribution answers the question, given a set of equally likely events,
which one occurs? Given that the underlying events are Poisson distrib-
uted, the exponential distribution is used to answer the question, how
long before the first (next) event occurs? The gamma distribution is re-
lated in that it answers the question, how long before the Nth event oc-
curs? The normal or Gaussian distribution is useful for approximating
limiting forms of other distributions. It plays a significant role in statis-
tics because it is simple to use; symmetrical about the mean; completely
determined by two parameters, the mean and the variance; and reflects
the distribution of everyday events.

We have already examined the uniform distribution from the perspec-
tive of selecting discrete elements from a finite sample space. The ques-
tion we asked was, given a set of equally likely descriptions, which one

The Exponential
Distribution

433

Continuous Probability Distributions

to pick? In the continuous case, the sample space is a continuum, such
as time or the interval between 0 and 1. The class Uniform provided
here extends the capabilities of class Random by generating a random
variable within any interval as a response to the message next.

class name Uniform

superclass ContinucusProbability

instance variable names startNumber
stopNumber

class methods
instance creation

from: begin to: end
begin > end
ifTrue: [self error: “illegal interval ’]
ifFalse: [Tself new setStart: begin toEnd: end]

instance methods
accessing

mean
T(startNumber + stopNumber)/2
variance
t(stopNumber — startNumber) squared / 12

probability functions

density: x
{x between: startNumber and: stopNumber)
ifTrue: [11.0 / {stopNumber — startNumber)]
ifFalse: [10]

private

inverseDistribution: x
“x is a random number between 0 and 1~
tstartNumber + {x = (stopNumber — startNumber))
setStart: begin toEnd: end
startNumber « begin.
stopNumber « end

Given that the underlying events are Poisson distributed, the exponen-
tial distribution determines how long before the next event occurs. This
is more suitable for a simulation design than is Poisson in the same
sense that the geometric distribution was more suitable than the bino-
mial, because we can jump the simulated clock setting to the next oc-
currence of an event, rather than stepping sequentially through each
time unit.

434

Probability Distributions

As an example of sampling with an exponential, we might ask, when
will the next car arrive? The density function of x is the probability
that the next event will occur in the time interval x, for example, what
is the probability of the next car arriving in the next 10 minutes?

Exponential is typically used in situations in which the sample dete-
riorates with time. For example, an exponential is used to determine
the probability that a light bulb or a piece of electronic equipment will
fail prior to some time x. Exponential is useful in these cases because
the longer the piece of equipment is used, the less likely it is to keep
running.

As in the case of a Poisson, the parameter of the exponential distri-
bution, mu, is in terms of events per unit time, although the domain of
this distribution is time (not events).

The probability function for the exponential distribution is

Wi

e
a

where a is the mean rate (mu = 1/a) between occurrences.

class name Exponential
superclass ContinucusProbability
instance variable names mu

class methods

instance creation

mean: p
” Since the exponential parameter mu is the same as Poisson mu, if we
are given the mean of the exponential, we take reciprocal to get the
probability parameter”
tself parameter: 1.0/p

parameter: p
p > 0.0

ifTrue: [Tself new setParameter: p]
ifFalse: [self error:
" The probability parameter must be greater than 0.0]

instance methods
accessing

mean
11.0/mu

variance
11.0/{mu « mu)

435
Continuous Probability Distributions

probability functions

density: x
x > 0.0
ifTrue: [Tmu « (mu=x) negated exp]
ifFalse: [10.0]
distribution: aninterval
aninterval stop <= 0.0
ifTrue: {10.0]
ifFalse: [11.0 — (mu = aninterval stop) negated exp —
(anlnterval start > 0.0
ifTrue: [self distribution:
(0.0 to: aninterval start)]
ifFalse: [0.0])]

private

inverseDistribution: x
“implementation according to Knuth, Vol. 2, p. 114"
1x In negated / mu

setParameter: p
mu « p

A distribution related to the exponential is gamma, which answers the
The Gamma question, how long before the Nth event occurs? For example, we use a
Distribution gamma distribution to sample how long before the Nth car arrives at
the ferry landing. Each instance of class Gamma represents an Nth
event and the probability of occurrence of that Nth event (inherited
from the superclass Exponential). The variable N specified in class Gam-
ma must be a positive integer.

The probability function is

X
xk-1le-3

ak(k—1)

where k is greater than zero and the probability parameter mu is 1/a.
The second term of the denominator, (k-1)!, is the gamma function
when it is known that k is greater than 0. The implementation given
below does not make this assumption.

class name Gamma
superclass Exponential
instance variable names N

436

Probability Distributions

The Normal
Distribution

class methods

instance creation

events: k mean: p
k « k truncated.
k>0
ifTrue: [T(self parameter: k/p) setEvents: k]
ifFalse: [self error: * the number of events must be greater than 0]

instance methods
accessing

mean
Tsuper mean = N
variance
Tsuper variance = N

probability functions

density: x
[t
x > 0.0
ifTrue: [t « mu * x.
T{mu raisedTo: N) / (self gamma: N)
« {X raisedTo: N—1)
= 1 negated exp]
ifFalse: [10.0]

private

gamma: n
[t
t~n-— 10
Tself computeSample: t outOf: t
setEvents: events
N « events

The normal distribution, also called the Gaussian, is useful for summa-
rizing or approximating other distributions. Using the normal distribu-
tion, we can ask questions such as how long before a success occurs
(similar to the discrete binomial distribution) or how many events occur
in a certain time interval (similar to the Poisson). Indeed, the normal
can be used to approximate a binomial when the number of events is
very large or a Poisson when the mean is large. However, the approxi-
mation is only accurate in the regions near the mean; the errors in ap-
proximation increase towards the tail.

A normal distribution is used when there is a central dominating
value (the mean), and the probability of obtaining a value decreases
with a deviation from the mean. If we plot a curve with the possible
values on the x-axis and the probabilities on the y-axis, the curve will

437
Continuous Probability Distributions

look like a bell shape. This bell shape is due to the requirements that
the probabilities are symmetric about the mean, the possible values
from the sample space are infinite, and yet the probabilities of all of
these infinite values must sum to 1. The normal distribution is useful
when determining the probability of a measurement, for example, when
measuring the size of ball bearings. The measurements will result in
values that cluster about a central mean value, off by a small amount.

The parameters of a normal distribution are the mean (mu) and a
standard deviation (sigma). The standard deviation must be greater
than 0. The probability function is

1 {x—a\2

e 5 (b)
by 2m
where a is the parameter mu and b is the standard deviation sigma.
class name Normal
superclass ContinuousProbability
instance variable names mu
sigma

class methods
instance creation

mean: a deviation: b
b>00
ifTrue: ['self new setMean: a standardDeviation: b]
ifFalse: [self error: “ standard deviation must be greater than 0.0"]

instance methods
accessing

mean
Tmu
variance
tsigma squared

random sampling

next
“Polar method for normal deviates, Knuth vol. 2, pp. 104, 113"
| viv2srandu |
rand « Uniform from: —1.0 to: 1.0.
[v1 « rand next.
v2 « rand next.
s « v1 squared + v2 squared.
s > = 1] whileTrue.
U« (—20x«siIn/s)saqrt
tmu + (sigma = v1 « u)

438
Probability Distributions

probability functions

density: x
| twoPit |
twoPi — 2 « 3.1415926536.
t e x — mu / sigma.
1{—0.5 « t squared) exp / {sigma twoPi sqrt)

private

setMean: m standardDeviation: s
mu « m.
sigma « s

In subsequent chapters, we define and provide examples of using class
descriptions that support discrete, event-driven simulation. The proba-
bility distributions defined in the current chapter will be used through-
out the example simulations.

-
.~
-

-
LK

tnm g .

.ﬁb

Aoy =

-

....:..- -t ane s We W
.

Pl

o

Event-Driven
Simulations

A Framework for Simulations
Simulation Objects

Simulations

A "Default” Example: NothingAtAll

Implementation of the Simulation Classes
Class SimulationObject

Class DelayedEvent

Class Simulation

Tracing the Example NothingAtAll

440

Event-Driven Simulations

A simulation is a representation of a system of objects in a real or fan-
tasy world. The purpose of creating a computer simulation is to provide
a framework in which to understand the simulated situation, for exam-
ple, to understand the behavior of a waiting line, the workload of
clerks, or the timeliness of service to customers. Certain kinds of simu-
lations are referred to as “counter simulations.” They represent situa-
tions for which there are places or counters in which clerks work.
Customers arrive at a place in order to get service from a clerk. If a
clerk is not available, the customer enters a waiting line. The first cus-
tomer in the line is serviced by the next available clerk. Often a given
simulation has several kinds of places and several customers, each with
an agenda of places to visit. There are many examples of such situa-
tions: banks, car washes, barber shops, hospitals, cafeterias, airports,
post offices, amusement parks, and factories. A computer simulation
makes it possible to collect statistics about these situations, and to test
out new ideas about their organization.

The objects that participate in a counter simulation operate more or
less independently of one another. So, it is necessary to consider the
problem of coordinating or synchronizing the activities of the various
simulated objects. They typically coordinate their actions through the
mechanism of message passing. Some objects, however, must synchro-
nize their actions at certain critical moments; some objects can not pro-
ceed to carry out their desired actions without access to specific
resources that may be unavailable at a given moment. The
Smalltalk-80 system classes, Process, Semaphore, and SharedQueue,
provide synchronization facilities for otherwise independent activities.
To support a general description of counter simulations, mechanisms
are needed for coordinating ‘

* the use of fixed-size resources,
¢ the use of fluctuating resources, and

* the appearance of simultaneity in the actions of two objects.

Fixed resources can either be consumable or nonconsumable. For exam-
ple, jelly beans are consumable, fixed resources of a candy store; books
are non-consumable resources of a library. Fluctuating resources are
typically referred to as renewable or producer/consumer synchronized.
A store can model its supply of jelly beans as a fluctuating resource be-
cause the supply can be renewed. One can also imagine a resource that
is both renewable and nonconsumable. Such a resource might be mod-
eled in a simulation of car rentals: cars are renewable resources since
new ones are manufactured and added to the available supply of cars to
rent; the cars are also nonconsumable because a rented car is returned
to the dealer for use by other customers. Actually, most nonconsumable

441

Event-Driven Simulations

resources are consumable, for example, library books eventually become
too tattered for continued circulation; the rental cars eventually get
junked. “Nonconsumable” means, minimally, that they are not
consumed during the period of interest in the simulation.

When the actions of two objects in a simulation must be synchro-
nized to give the appearance of carrying out a task together, the two
objects are said to be in a server/client relationship. For example, a
doctor needs the cooperation of the patient in order to carry out an ex-
amination. The server is a coordinated resource; it is a simulation ob-
ject whose tasks can only be carried out when one or more clients
request the resource.

An important aspect of simulations is that they model situations that
change over time; customers enter and leave a bank; cars enter, get
washed, get dried, and leave a car wash; airplanes land, unload passen-
gers, load passengers, and take off from airports. It is often the case
that these activities are time-related; at certain times or with certain
intervals of time, events occur. Therefore, actions have to be synchro-
nized with some notion of time. Often this notion of time is itself simu-
lated.

There are a number of ways in which to represent the actions of sim-
ulated objects with respect to real or simulated time. In one approach,
the clock runs in its usual manner. At each tick of the clock, all objects
are given the opportunity to take any desired action. The clock acts as a
synchronization device for the simulation, providing the opportunity to
give the appearance of parallelism since the clock waits until all actions
appropriate at the given time are completed. Often, no actions will take
place at a given tick of the clock.

Alternatively, the clock can be moved forward according to the time
at which the next action will take place. In this case, the system is driv-
en by the next discrete action or event scheduled to occur. The imple-
mentation of a simulation using this approach depends on maintaining
a queue of events, ordered with respect to simulated time. Each time an
event is completed, the next one is taken from the queue and the clock
is moved to the designated time.

The simulations presented in this chapter are based on this event-
driven approach. They include simulations in which a collection of inde-
pendent objects exist, each with a set of tasks to do (services or re-
sources to obtain), and each needing to coordinate its activity’s times
with other objects in the simulated situation.

This chapter describes a framework in which such simulations can be
developed. The class SimulationObject describes a general kind of object
that might appear in a simulation, that is, one with a set of tasks to do.
The message protocol of the class provides a framework in which the
tasks are carried out. An instance of class Simulation maintains the sim-
ulated clock and the queue of events. The specification of the arrival of

442

Event-Driven Simulations

new objects into the system (objects such as customers) and the specifi-
cation of resources (such as the clerks) are coordinated in this class.

The next chapter, Chapter 23, deals with ways to collect the data
generated in running a simulation. Statistics gathering can be handled
by providing a general mechanism in subclasses of class Simulation
and/or class SimulationObject. Alternatively, each example simulation
can provide its own mechanism for collecting information about its be-
havior.

Chapter 24 describes example simulations that make use of two
kinds of synchronizations, shared use of fixed resources and shared use
of fluctuating resources; Chapter 25 introduces additional support for
coordination between two simulation objects—those wanting service
and those providing service.

A Framework
for Simulations

Simulation
Objects

This section contains a description of the classes that provide the basic
protocol for classes SimulationObject and Simulation. These classes are
presented twice. First, a description of the protocol is given with an ex-
planation of how to create a default example; second, an implementa-
tion of these classes is given.

Consider simulating a car wash. Major components of a car wash are
washing places, drying places, paying places, washers, dryers, cashiers,
and vehicles of different sorts such as trucks and cars. We can classify
these components according to behavior. Major classifications are:
places, where workers are located and work is performed; workers, such
as washers, dryers, and cashiers; and the vehicles that are the custom-
ers of the places. These classifications might be translated into three
classes of Smalltalk objects: Place, Worker, and Customer. But each of
these classes of objects is similar in that each describes objects that
have tasks to do—a Customer requests service, a Worker gives service,
and a Place provides resources. In particular, a Place provides a waiting
queue for the times when there are more customers than its workers
can handle. These similarities are modeled in the superclass
SimulationObject, which describes objects that appear in a simulated sit-
uation; a SimulationObject is any object that can be given a sequence of
tasks to do. Each object defines a main sequence of activity that is initi-
ated when the object enters the simulation. For example, the activities
of a car in a car wash are to request a washer, wait while being
washed, request a dryer, wait while being dried, pay for the service, and
leave.

Class SimulationObject specifies a general control sequence by which
the object enters, carries out its tasks, and leaves the simulation. This

443

A Framework for Simulations

sequence consists of sending the object the messages startUp, tasks, and
finishUp. Initialization of descriptive variables is specified as the re-
sponse to message initialize. These messages are invoked by the method
associated with startUp. Response to the messages tasks and initialize are
implemented by subclasses of SimulationObject.

SimulationObject instance protocol

initialization
initialize Initialize instance variables, if any.

simulation control

startUp Initialize instance variables. Inform the simu-
lation that the receiver is entering it, and
then initiate the receiver’s tasks.

tasks Define the sequence of activities that the re-
ceiver must carry out.

finishUp The receiver’s tasks are completed. Inform the
simulation.

There are several messages that any SimulationObject can use in order
to describe its tasks. One is holdFor: aTimeDelay, where the argument
aTimeDelay is some amount of simulated time for which the object de-
lays further action. The idea of this delay is to create a period of time
in which the object is presumably carrying out some activity.

We call the category of these messages, the modeler’s task language
to indicate that these are the messages sent to a SimulationObject as
part of the implementation of the message tasks.

A simulation can contain simple or static resources, like “jelly
beans,” that can be acquired by a simulation object. Or a simulation
can consist of coordinated resources, that is, simulation objects whose
tasks must be synchronized with the tasks of other simulation objects.
The task language includes messages for accessing each kind of re-
source, either to get or to give the resource.

There are 3 kinds of messages for static resources. There are 2 mes-
sages for getting an amount of the resource named resourceName. They
are

acquire: amount ofResource: resourceName
acquire: amount ofResource: resourceName withPriority: prioritylnteger

There is one for giving an amount of the resource named resourceName,
produce: amount ofResource: resourceName
and one for giving up an acquired static resource,

release: aStaticResource

444

Event-Driven Simulations

There are also 3 kinds of messages for coordinated resources. The mes-
sage for getting the resource named resourceName (here, the resource
is a SimulationObject that models a kind of customer, and the asker is a
server such as a clerk) is

acquireResource: resourceName

To produce the resource named resourceName (the asker is a customer),
the message is

produceResource: resourceName

and to give up an acquired resource (which is a SimulationObject whose
task events can now be resumed), the message is

resume: anEvent

When a SimulationObject makes a static resource request
(acquire:ofResource: or request:), it can do so by stating the level of im-
portance of the request. The number O represents the least important
request, successively higher numbers represent successively higher lev-
els of importance. The message acquire:ofResource: assumes a priority
level of 0; acquire:ofResource:withPriority: specifies particular levels in
its third argument.

Two queries check whether a static resource is in the simulation and
how much of the resource is available. These are resourceAvailable:
resourceName, which answers whether or not the simulation has a re-
source referred to by the String, resourceName; and inquireFor: amount
ofResource: resourceName, which answers whether there is at least
amount of the resource remaining.

When a SimulfationObject is synchronizing its tasks with that of an-
other SimulationObject, it might be useful to know whether such an ob-
Ject is available. Two additional inquiry messages support finding out
whether a provider or requester of a coordinated task is available—
numberOfProvidersOfResource: resourceName and numberOf-
RequestersOfResource: resourceName.

In addition, a message to a SimulationObject can request that the
Simulation it is in stop running. This is the message stopSimulation.

SimulationObject instance protocol

task language

holdFor: aTimeDelay Delay carrying out the receiver’s next task
until aTimeDelay amount of simulated time
has passed.

445

A Framework for Simulations

acquire: amount ofResource: resourceName
Ask the simulation to provide a simple re-
source that is referred to by the String,
resourceName. If one exists, ask it to give the
receiver amount of resources. If one does not
exist, notify the simulation user (programmer)
that an error has occurred.

acquire: amount ofResource: resourceName withPriority: priorityNumber

Ask the simulation to provide a simple re-
source that is referred to by the String,
resourceName. If one exists, ask it to give the
receiver amount of resources, taking into ac-
count that the priority for acquiring the re-
source is to be set as priorityNumber. If one
does not exist, notify the simulation user (pro-
grammer) that an error has occurred.

produce: amount ofResource: resourceName
Ask the simulation to provide a simple re-
source that is referred to by the String,
resourceName. If one exists, add to it amount
more of its resources. If one does not exist,
create it.

release: aStaticResource The receiver has been using the resource re-
ferred to by the argument, aStaticResource. It
is no longer needed and can be recycled.

inquireFor: amount ofResource: resourceName
Answer whether or not the simulation has at
least a quantity, amount, of a resource re-
ferred to by the String, resourceName.

resourceAvailable: resourceName
Answer whether or not the simulation has a
resource referred to by the String,
resourceName.

acquireResource: resourceName Ask the simulation to provide a resource sim-
ulation object that is referred to by the String,
resourceName. If one exists, ask it to give the
receiver its services. If one does not exist, no-
tify the simulation user (programmer) that an
error has occurred.

produceResource: resourceName
Have the receiver act as a resource that is re-
ferred to by the String, resourceName. Wait
for another SimulationObject that provides ser-
vice to (acquires) this resource.

resume: ankEvent The receiver has been giving service to the re-
source referred to by the argument, anEvent.
The service is completed so that the resource,
a SimulationObject, can continue its tasks.

numberOfProvidersOfResource: resourceName
Answer the number of SimulationObjects wait-
ing to coordinate its tasks by acting as the re-
source referred to by the String, resourceName.

numberOfRequestersOfResource: resourceName
Answer the number of SimulationObjects wait-
ing to coordinate its tasks by acquiring the re-
source referred to by the String, resourceName .

446

Event-Driven Simulations

Simulations

stopSimulation Tell the simulation in which the receiver is
running to stop. All scheduled events are re-
moved and nothing more can happen in the
simulation.

The examples we present in subsequent chapters illustrate each mes-
sage in the modeler’s task language.

The purpose of class Simulation is to manage the topology of simulation
objects and to schedule actions to occur according to simulated time. In-
stances of class Simulation maintain a reference to a collection of
SimulationObjects, to the current simulated time, and to a queue of
events waiting to be invoked.

The unit of time appropriate to the simulation is saved in an in-
stance variable and represented as a floating-point number. The unit
might be milliseconds, minutes, days, etc. A simulation advances time
by checking the queue to determine when the next event is scheduled
to take place, and by setting its instance variable to the time associated
with that next event. If the queue of events is empty, then the simula-
tion terminates.

Simulation objects enter a simulation in response to one of several
scheduling messages such as

scheduleArrivalOf. aSimulationObjectClass

accordingTo: aProbabilityDistribution or

scheduleArrivalOf: aSimulationObject at: aTimelnteger.

These messages are sent to the simulation either at the time that the
simulation is first initialized, in response to the message
defineArrivalSchedule, or as part of the sequence of tasks that a
SimulationObject carries out. The second argument of the first message,
aProbabilityDistribution, is an instance of a probability distribution such
as those defined in Chapter 21. In this chapter, we assume the avail-
ability of the definitions given in Chapter 21. The probability distribu-
tion defines the interval at which an instance of the first argument,
aSimulationObjectClass, is to be created and sent the message startUp.

In addition, Simulation supports messages having to do with schedul-
ing a particular sequence of actions. These are schedule: actionBlock at:

- timelnteger and schedule: actionBlock after: amountOfTime.

In order to define the resources in the simulation, the modeler can
send the simulation one or more of two possible messages. Either

self produce: amount of: resourceName

where the second argument, resourceName, is a String that names a
simple quantifiable resource available in the simulation; the first argu-
ment is the (additional) quantity of this resource to be made available.

447

Or

self coordinate: resourceName

A Framework for Simulations

The argument, resourceName, is a String that names a resource that is
to be provided by some objects in the simulation and requested by other
objects. For example, the resource is car washing, the provider is a
washer object and the requestor is a car object.

Simulation instance protocol

initialization
initialize

modeler’s initialization language
defineArrivalSchedule

defineResources

modeler’s task language

Initialize the receiver’s instance variables.

Schedule simulation objects to enter the simu-
lation at specified time intervals, typically
based on probability distribution functions.
This method is implemented by subclasses. It
involves a sequence of messages to the receiv-
er (ie., to self) that are of the form

schedule:at:, scheduleArrivalOf.at:,

scheduleArrivalOf:accordingTo:, or

scheduleArrivalOf:accordingTo:startingAt:.
See the next category of messages for descrip-
tions of these.

Specify the resources that are initially entered
into the simulation. These typically act as re-
sources to be acquired. This method is
implemented by subclasses and involves a se-
quence of messages to the receiver (i.e., to self)
of the form produce: amount of: resourceName.

produce: amount of: resourceName

coordinate: resourceName

An additional quantity of amount of a re-
source referred to by the String, resourceName,
is to be part of the receiver. If the resource
does not as yet exist in the receiver, add it; if
it already exists, increase its available quanti-
ty.

Use of a resource referred to by the String,
resourceName, is to be coordinated by the re-
ceiver.

schedule: actionBlock after: timeDelaylnteger

Set up a program, actionBlock, that will be
evaluated after a simulated amount of time,
timeDelayinteger, passes.

schedule: actionBlock at: timelnteger

Schedule the sequence of actions (actionBlock)
to occur at a particular simulated time,
timeinteger.

scheduleArrivalOf: aSimulationObject at: timeinteger

Schedule the simulation object, aSimulation-
Object, to enter the simulation at a specified
time, timelnteger.

448

Event-Driven Simulations

scheduleArrivalOf: aSimulationObjectClass
accordingTo: aProbabilityDistribution
Schedule simulation objects that are instances
of aSimulationObjectClass to enter the simula-
tion at specified time intervals, based on the
probability distribution aProbabilityDistribution.
The first such instance should be scheduled to
enter now. See Chapter 21 for definitions of
possible probability distributions.

scheduleArrivalOf: aSimulationObjectClass
accordingTo: aProbabilityDistribution

i : timeln
startingAt: timelnteger Schedule simulation objects that are instances

of aSimulationObjectClass to enter the simula-
tion at specified time intervals, based on the
probability distribution aProbabilityDistribution.
The first such instance should be scheduled to
enter at time timelnteger.

Notice that in the above scheduling messages, scheduleArrivalOf.at:
takes a SimulationObject instance as its first argument, while
scheduleArrivalOf:accordingTo: takes a SimulationObject class. These
messages are used differently; the first one can be used by the
SimulationObject itself to reschedule itself, while the second is used to
initiate the arrival of SimulationObjects into the system.

The protocol for Simulation includes several accessing messages. One,
the message includesResourceFor: resourceName, can be sent by a
SimulationObject in order to determine whether or not a resource hav-
ing a given name exists in the simulation.

Simulation instance protocol

accessing

includesResourceFor: resourceName
Answer if the receiver has a resource that is
referred to by the String, resourceName. If
such a resource does not exist, then report an
error.

provideResourceFor: resourceName
Answer a resource that is referred to by the
String, resourceName.

time Answer the receiver’s current time.

The simulation control framework is like that of class SimulationObject.
Initialization is handled by creating the Simulation and sending it the
message startUp. Simulation objects and the scheduling of new objects
create events that are placed in the event queue. Once initialized, the
Simulation is made to run by sending it the message proceed until there
are no longer any events in the queue.

In the course of running the simulation, objects will enter and exit.
As part of the protocol for scheduling a simulation object, the object in-
forms its simulation that it is entering or exiting. The corresponding

A “Default”
Example:
NothingAtAll

449
A Framework for Simulations

messages are enter: anObject and exit: anObject. In response to these
messages, statistics might be collected about simulation objects upon
their entrance and their exit to the simulation. Or a subclass might
choose to deny an object entrance to the simulation; or a subclass might
choose to reschedule an object rather than let it leave the simulation.

Simulation instance protocol

simulation control

startUp Specify the initial simulation objects and the
arrival schedule of new objects.

proceed This is a single event execution. The first
event in the queue, if any, is removed, time is
updated to the time of the event, and the
event is initiated.

finishUp Release references to any remaining simula-
tion objects.

enter: anObject The argument, anObject, is informing the re-
ceiver that it is entering.

exit: anObject The argument, anObject, is informing the re-

ceiver that it is exiting.

Of the above messages, the default responses in class Simulation are
mostly to do nothing. In particular, the response to messages enter: and
exitt are to do nothing. Messages defineArrivalSchedule and
defineResources also do nothing. As a result, the message startUp
accomplishes nothing. These messages provide the framework that
subclasses are to use—a subclass is created that overrides these mes-
sages in order to add simulation-specific behavior.

Unlike many of the system class examples of earlier chapters, the
superclasses Simulation and SimulationObject typically do not implement
their basic messages as

self subclassResponsibility

By not doing so, instances of either of these classes can be successfully
created. These instances can then be used as part of a basic or a “de-
fault” simulation that serves as a skeletal example. As we have seen,
such simulation objects are scheduled to do nothing and consist of no
events. Development of more substantive simulations can proceed by
gradual refinement of these defaults. With a running, default example,
the designer/programmer can incrementally modify and test the simu-
lation, replacing the uninteresting instances of the superclasses with in-
stances of appropriate subclasses. The example simulation NothingAtAll
illustrates the idea of a “default” simulation.

Suppose we literally do nothing other than to declare the class
NothingAtAll as a subclass of Simulation. A NothingAtAll has no initial re-

450

Event-Driven Simulations

sources since it does nothing in response to the message
defineResources. And it has no simulation objects arriving at various
intervals, because it does nothing in response to the message
defineArrivalSchedule. Now we execute the following statement.

NothingAtAll new startUp proceed

The result is that an instance of NothingAtAll is created and sent the
message startUp. It is a simulation with no resources and no objects
scheduled, so the queue of events is empty. In response to the message
proceed, the simulation determines that the queue is empty and does
nothing.

As a modification of the description of NothingAtAll, we specify a re-
sponse to the message defineArrivalSchedule. In it, the objects scheduled
for arrival are instances of class DoNothing. DoNothing is created simply
as a subclass of SimulationObject. A DoNothing has no tasks to carry
out, so as soon as it enters the simulation, it leaves.

class name DoNothing
superclass SimulationObject

instance methods
no new methods

class name NothingAtAll
superclass Simulation
instance methods

initialization
defineArrivalSchedule

self scheduleArrivalOf: DoNothing
accordingTo: (Uniform from: 1 to: 5)

This version of NothingAtAll might represent a series of visitors entering
an empty room, looking around without taking time to do so, and leav-
ing. The probability distribution, Uniform, in the example in this chap-
ter is assumed to be the one specified in Chapter 21. According to the
above specification, new instances of class DoNothing should arrive in
the simulation every 1 to 5 units of simulated time starting at time 0.
The following expressions, when evaluated, create the simulation, send
it the message startUp, and then iteratively send it the message proceed.

aSimulation — NothingAtAll new startUp.
[aSimulation proeeed] whileTrue

The message startUp invokes the message defineArrivalSchedule which
schedules instances of DoNothing. Each time the message proceed is

451

A Framework for Simulations

sent to the simulation, a DoNothing enters or exits. Evaluation might
result in the following sequence of events. The time of each event is
shown on the left and a description of the event is shown on the right.

0.0 a DoNothing enters

0.0 a DoNothing exits

3.21 a DoNothing enters

3.21 a DoNothing exits

7.76 a DoNothing enters

7.76 a DoNothing exits
and so on.

We can now make the simulation more interesting by scheduling the
arrival of more kinds of simulation objects, ones that have tasks to do.
We define Visitor to be a SimulationObject whose task is to enter the
empty room and look around, taking between 4 and 10 simulated units
to do so, that is, a random amount determined by evaluating the ex-
pression (Uniform from: 4 to: 10) next.

class name Visitor
superclass SimulationObject
instance methods

simulation control

tasks
self holdFor: (Uniform from: 4.0 to: 10.0) next

NothingAtAll is now defined as

class name NothingAtAll
superclass Simulation
instance methods

initialization

defineArrivalSchedule
self scheduleArrivalOf: DoNothing
accordingTo: (Uniform from: 1 to: 5).
self scheduleArrivalOf: Visitor
accordingTo: (Uniform from: 4 to: 8)
startingAt: 3

Two kinds of objects enter the simulation, one that takes no time to
look around (a DoNothing) and one that visits a short while (a Visitor).
Execution of

aSimulation — NothingAtAll new startUp.
[aSimulation proceed] whileTrue

452

Event-Driven Simulations

might result in the following sequence of events.

0.0 a DoNothing enters

0.0 a DoNothing exits

3.0 a Visitor enters

3.21 a DoNothing enters

3.21 a DoNothing exits

7.76 a DoNothing enters

7.76 a DoNothing exits

8.23 a (the first) Visitor exits after 5.23 seconds
and so on.

Implementation
of the
Simulation
Classes

Class
SimulationObject

In order to trace the way in which the sequence of events occurs in the
examples provided so far, it is necessary to show an implementation of
the two classes. The implementations illustrate the control of multiple
independent processes in the Smalltalk-80 system that were described
in Chapter 15.

Every SimulationObject created in the system needs access to the Simu-
lation in which it is functioning. Such access is necessary, for example,
In order to send messages that inform the simulation that an object is
entering or exiting. In order to support such access, SimulationObject
has a class variable, ActiveSimulation, that is initialized by each in-
stance of Simulation when that instance is activated (that is, sent the
message startUp). This approach assumes only one Simulation will be ac-
tive at one time. It means that the tasks for any subclass of
SimulationObject can send messages directly to its simulation, for exam-
ple, to determine the current time. SimulationObject specifies no in-
stance variables.

class name SimulationObject
superclass Object
class variable names ActiveSimulation

class methods
class initialization

activeSimulation: existingSimulation
ActiveSimulation « existingSimulation

instance creation

new
Tsuper new initialize

453

Implementation of the Simulation Classes

The simulation control framework, sometimes referred to as the “life
cycle” of the object, involves the sequence startUp—tasks—finishUp.
When the SimulationObject first arrives at the simulation, it is sent the
message startUp.

instance methods
simulation control
initialize _
Do nothing. Subclasses will initialize instance variables.”
Tself
startUp
ActiveSimulation enter: self.
” First tell the simulation that the receiver is beginning to do my tasks.”
self tasks.
self finishUp
tasks
” Do nothing. Subclasses will schedule activities.”
Tself
finishUp
”Tell the simulation that the receiver is done with its tasks.”
ActiveSimulation exit: self

The category task language consists of messages the modeler can use
in specifying the SimulationObject’s sequence of actions. The object
might hold for an increment of simulated time (holdFor:). The object
might try to acquire access to another simulation object that is playing
the role of a resource (acquire:ofResource:). Or the object might deter-
mine whether a resource is available (resourceAvailable:).

task language

holdFor: aTimeDelay
ActiveSimulation delayFor: aTimeDelay
acquire: amount ofResource: resourceName
“ Get the resource and then tell it to acquire amount of it. Answers an in-
stance of StaticResource”
T(ActiveSimulation provideResourceFor: resourceName)
acquire: amount
withPriority: O
acquire: amount
ofResource: resourceName
withPriority: priority
T{ActiveSimulation provideResourceFor: resourceName)
acquire; amount
withPriority: priority
produce: amount ofResource: resourceName
ActiveSimulation produce: amount of: resourceName

454

Event-Driven Simulations

release: aStaticResource
taStaticResource release
inquireFor: amount ofResource: resourceName
T(ActiveSimulation provideResourceFor: resourceName)
amountAvailable > = amount
resourceAvailable: resourceName
" Does the active simulation have a resource with this attribute available?”
TActiveSimulation includesResourceFor: resourceName
acquireResource: resourceName
T{ActiveSimulation provideResourceFor: resourceName)
acquire
produceResource: resourceName
T(ActiveSimulation provideResourceFor: resourceName)
producedBy: self
resume: anEvent
tankvent resume
numberOfProvidersOfResource: resourceName
| resource |
resource — ActiveSimulation provideResourceFor: resourceName.
resource serversWaiting
ifTrue: [Tresource gueuelength]
ifFalse: [10]
numberOfRequestersOfResource: resourceName
| resource |
resource — ActiveSimulation provideResourceFor: resourceName.
resource customersWaiting
ifTrue: [Tresource queueLength]
ifFalse: [10]
stopSimulation
ActiveSimulation finishUp

A Simulation stores a Set of resources. In the case of static resources, in-
stances of class ResourceProvider are stored; in the case of resources
that consist of tasks coordinated among two or more simulation objects,
instances of ResourceCoordinator are stored.

When a SimulationObject requests a static resource
(acquire:ofResource:) and that request succeeds, then the
SimulationObject is given an instance of class StaticResource. A
StaticResource refers to the resource that created it and the quantity of
the resource it represents. Given the methods shown for class
SimulationObject, we can see that a resource responds to the message
amountAvailable to return the currently available quantity of the re-
source that the SimulationObject might acquire. This message is sent in
the method associated with inquireFor:ofResource:.

In the methods associated with SimulationObject messages acquire:of-
Resource: and acquire:ofResource:withPriority:, a ResourceProvider is

’

Class
DelayedEvent

455
Implementation of the Simulation Classes

obtained and sent the message acquire: amount withPriority:
priorityNumber. The result of this message is an instance of class
StaticResource. However, if the amount is not available, the process in
which the request was made will be suspended until the necessary re-
sources become available. A StaticResource is sent the message release
in order to recycle the acquired resource.

When a SimulationObject requests a coordinated resource
(acquireResource:), and that request succeeds, then the object co-opts
another simulation object acting as the resource (the object in need of
service) until some tasks (services) are completed. If such a resource is
not available, the process in which the request was made will be sus-
pended until the necessary resources become available. Instances of
class ResourceCoordinator understand messages acquire in order to
make the request to coordinate service tasks and producedBy:
aSimulationObject in order to specify that the argument is to be co-opted
by another object in order to synchronize activities. As indicated by the
implementation of SimulationObject, a ResourceCoordinator can answer
queries such as customersWaiting or serversWaiting to determine if re-
sources (customers) or service givers (servers) are waiting to coordinate
their activities, and queuelLength to say how many are waiting.

Explanations of the implementations of classes ResourceProvider and
ResourceCoordinator are provided in Chapters 24 and 25.

The implementation of a scheduling mechanism for class Simulation
makes extensive use of the Smalltalk-80 processor scheduler classes
presented in the chapter on multiple processes (Chapter 15). There are
several problems that have to be solved in the design of class Simulation.
First, how do we store an event that must be delayed for some incre-
ment of simulated time? Second, how do we make certain that all pro-
cesses initiated at a particular time are completed before changing the
clock? And third, in terms of the solutions to the first two problems,
how do we implement the request to repeatedly schedule a sequence of
actions, in particular, instantiation and initiation of a particular kind of
SimulationObject?

In order to solve the first problem, the Simulation maintains a queue
of all the scheduled events. This queue is a SortedCollection whose ele-
ments are the events, sorted with respect to the simulated time in
which they must be invoked. Each event on the queue is placed there
within a package that is an instance of class DelayedEvent. At the time
the package is created, the event is the system’s active process. As such,
it can be stored with its needed running context by creating a Sema-
phore. When the event is put on the queue, the DelayedEvent is sent
the message pause which sends its Semaphore the message wait; when
the event is taken off the queue, it is continued by sending it the mes-
sage resume. The method associated with resume sends the
DelayedEvent’'s Semaphore the message signal.

456

Event-Driven Simulations

The protocol for instances of class DelayedEvent consists of five mes-
sages.

DelayedEvent instance protocol

accessing
condition Answer a condition under which the event
should be sequenced.
condition: anObject Set the argument, anObject, to be the condi-
tion under which the event should be se-
quenced.
scheduling
pause Suspend the current active process, that is,
the current event that is running.
resume Resume the suspended process.
comparing
< = aDelayedEvent Answer whether the receiver should be se-

quenced before the argument, aDetayedEvent.

A DelayedEvent is created by sending the class the message new or
onCondition: anObject. The implementation of class DelayedEvent is giv-

en next.
class name DelayedEvent
superclass Object
instance variable names resumptionSemaphore resumptionCondition

class methods
instance creation

new
Tsuper new initialize
onCondition: anObject
Tsuper new setCondition: anObject

instance methods
accessing

condition
TresumptionCondition
condition: anObject
resumptionCondition — anObject

comparing

<= aDelayedEvent
resumptionCondition isNii
ifTrue: [Ttrue]
ifFalse: [fresumptionCondition <= aDelayedEvent condition]

Class Simulation

457
Implementation of the Simulation Classes

scheduling

pause
resumptionSemaphore wait
resume
resumptionSemaphore signal.
TresumptionCondition

private
initialize
resumptionSemaphore « Semaphore new
setCondition: anObject

self initialize.
resumptionCondition — anObject

According to the above specification, any object used as a resumption
condition must respond to the message < =; SimulationObject is, in gen-
eral, such a condition.

Instances of class Simulation own four instance variables: a Set of ob-
jects that act as resources of the simulation (resources), a Number rep-
resenting the current time (currentTime), a SortedCollection
representing a queue of delayed events (eventQueue), and an Integer
denoting the number of processes active at the current time
(processCount).

Initialization of a Simulation sets the instance variables to initial val-
ues. When the instance is sent the scheduling message startUp, it sends
itself the message activate which informs interested other classes which
Simulation is now the active one.

class name Simulation
superclass Object
instance variable names resources currentTime

eventQueue processCount
class methods

instance creation

new
Tsuper new initialize

instance methods
initialization
initialize
resources — Set new,
currentTime — 0.0,

processCount « 0.
eventQueue — SoriedCollection new

458

Event-Driven Simulations

activate
“This instance is now the active simulation. Inform class
SimulationObject.”
SimulationObject activeSimulation: self.
“Resource is the superclass for ResourceProvider and
ResourceCoordinator”
Resource activeSimulation: self

Initialization messages are also needed by the subclasses. The messages
provided for the modeler to use in specifying arrival schedules and re-
source objects provides an interface to the process scheduling messages.

initialization

defineArrivalSchedule
” A subclass specifies the schedule by which simulation objects dynami-
cally enter into the simulation.”
1self

defineResources
” A subclass specifies the simulation cbjects that are initially entered into
the simulation.” :
1self

task language

produce: amount of: resourceName
(self includesResourceFor: rescurceName)
ifTrue: [(self provideResourceFor: resourceName) produce: amount]
ifFalse: [resources add: _
(ResourceProvider named: resourceName with: amount)]
coordinate: resourceName
(self includesResourceFor: resourceName)
ifFalse: [resources add:
{ResourceCoordinator named: resourceName)]
schedule: actionBlock after: timeDelay
self schedule: actionBlock at: currentTime + timeDelay
schedule: aBlock at: timeinteger
“This is the mechanism for scheduling a single action”
self newProcessFor:
[self delayUntii: timeinteger.
aBlock value]
scheduleArrivalOf: aSimulationObject at: timelnteger
self schedule: [aSimulationObject startUp] at: timelnteger
scheduleArrivalOf: aSimulationObjectClass
accordingTo: aProbabilityDistribution
“This means start now”
self scheduleArrivalOf: aSimulationObjectClass
accordingTo: aProbabilityDistribution
startingAt: currentTime

459
Implementation of the Simulation Classes

scheduleArrivalOf: aSimulationObjectClass
accordingTo: aProbabilityDistribution
startingAt: timeinteger
“Note that aClass is the class SimulationObject or one of its
subclasses. The real work is done in the private message
schedule:startingAt.andThenEvery:”
self schedule: [aSimulationObjectClass new startUp]
startingAt: timelnteger
andThenEvery: aProbabilityDistribution

The scheduling messages of the task language implement a reference-
counting solution to keeping track of initiated processes. This is the
technique used to solve the second problem cited earlier, that is, how to
make certain that all processes initiated for a particular time are car-
ried out by the single Smalltalk-80 processor scheduler before a differ-
ent process gets the opportunity to change the clock. Using reference
counting, we guarantee that simulated time does not change unless the
reference count is zero.

The key methods are the ones associated with schedule: aBlock at:
timelnteger and schedule: aBlock startingAt: timelnteger andThenEvery:
aProbabilityDistribution. This second message is a private one called by
the method associated with scheduleArrivalOf: aSimulationObjectClass
accordingTo: aProbabilityDistribution startingAt: timelinteger. It provides a
general mechanism for scheduling repeated actions and therefore repre-
sents a solution to the third design problem mentioned earlier, how we
implement the request to repeatedly schedule a sequence of actions.

The basic idea for the schedule: aBlock at: timelnteger is to create a
process in which to delay the evaluation of the sequence of actions
(aBlock) until the simulation reaches the appropriate simulated time
(timelnteger). The delay is performed by the message delayUntil:
delayedTime. The associated method creates a DelayedEvent to be added
to the simulation’s event queue. The process associated with this
DelayedEvent is then suspended (by sending it the message pause).
When this instance of DelayedEvent is the first in the queue, it will be
removed and the time will be bumped to the stored (delayed) time.
Then this instance of DelayedEvent will be sent the message resume
which will cause the evaluation of the block; the action of this block is
to schedule some simulation activity.

A process that was active is suspended when the DelayedEvent is sig-
naled to wait. Therefore, the count of the number of processes must be
decremented (stopProcess). When the DelayedEvent resumes, the pro-
cess continues evaluation with the last expression in the method
delayedUntil:; therefore at this time, the count of the number of process-
es must be incremented (startProcess).

460

Event-Driven Simulations

scheduling

delayUntil: aTime

| delayEvent |

delayEvent — DelayedEvent onCondition: timeinteger.

eventQueue add: delayEvent.

self stopProcess.

delayEvent pause.

self startProcess
delayFor: timeDelay

self delayUntil: currentTime + timeDelay
startProcess

processCount « processCount + 1
stopProcess

processCount « processCount — 1

Reference counting of processes is also handled in the method associat-
ed with class Simulation’s scheduling message newProcessFor: aBlock. It
is implemented as follows.

newProcessFor: aBlock
self startProcess.
[aBlock value.
self stopProcess] fork

The first expression increments the count of processes. The second ex-
pression is a block that is forked. When the Smalltalk processor sched-
uler evaluates this block, the simulation sequence of actions, aBlock, is
evaluated. The completion of evaluating aBlock signals the need to dec-
rement the count of processes. In this way, a single sequence of actions
is scheduled in the event queue of the Simulation and delayed until the
correct simulated time. In summary, the reference count of processes
increments whenever a new sequence of actions is initiated, decrements
whenever a sequence completes, decrements whenever a DelayedEvent
is created, and increments whenever the DelayedEvent is continued.

The method for the private message schedule: aBlock startingAt:
timeinteger andThenEvery: aProbabilityDistribution forks a process that
repeatedly schedules actions. The algorithm consists of iterations of two
messages,

self delayUntil: timelnteger.
self newProcessFor: aBlock

Repetition of the two messages delaylntil: and newProcessFor: depends
on a probability distribution function. The number of repetitions equals
the number of times the distribution can