

c lass n a m e

s u p e r c l a s s

i n s t a n c e v a r i a b l e n a m e s

.............. c lass m e t h o d s
message category

...... instiance creation

. i n i t i a l B a l a n c e : a m o u n t
message pattern

FinancialHistory
Object
cashOnHand
incomes
expenditures

statements ii

tsuper new setlnitialBalance: amount

n e w
tsuper new setlnitialBalance: 0

m s t a n c e m e t h o d s

transaction recording

r e c e i v e : a m o u n t f r o m : s o u r c e

incomes at: source
put: (self tolalReceivedFrom: source) .4- amount.

cashOnHand ~ cashOnHand 4,- amount

s p e n d : a m o u n t for: r e a s o n
expenditures at: reason

put: (self totalSpentFor: reason) + amount.

cashOnHand ~ cashOnHand -- amount

inquiries

c a s h O n H a n d
tcashOnHand

t o t a l R e c e i v e d F r o m : s o u r c e
(incomes includesKey: source)

ifTrue: [t incomes at: source]

ifFalse: I t0]

t o t a l S p e n t F o r : r e a s o n
(expenditures includesKey: reason)

ifTrue: [texpenditures at: reason]

ifFalse: [tO]

private

s e t l n i t i a l B a l a n c e : a m o u n t
cashOnHand - amount.
incomes ~ Dictionary new.
expenditures ~ Dictionary new

.. FinancialHistory class protocol
(~:.. message category ~:~ class initialization

~n~: n

ini t ia lBalance: a m o u n t
... .iii:ii~.

......... message pattern new
~i~ ~ ~n

. , ... : :::.

..... : . , . : • , ,:,=~:~ ::,~ :

.... ~i~i funct ional spec i f i ca t ion ,,..:~

~:.i .. ii i ,~ii ..
?

::!i:ii I... ..,.
.

Begin a financial history with amount as
the amoun t of money on hand.

Begin a financial history with 0 as the
amoun t of money on hand.

FinancialHistory instance protocol

transaction recording

receive: amount from: source

spend" amount for: reason

Remember tha t an amount of money,
amount, has been received from source.

Remember tha t an amount of money,
amount, has been spent for reason.

inquiries

cashOnHand

totalReceivedFrom: source

totalSpentFor: reason

Answer the total amount of money cur-
rent ly on hand.

Answer the total amount received from
source, so far.
Answer the total amount spent for
reason, so far.

S m a l l t a l k - _

The Language and its
Implementation
Adele Goldberg and David Robson

Xerox Palo A l t o Research Center

Addison-Wesley Publishing Company v v
Reading, Massachusetts • Menlo Park, California
London , Ams terdam" Don Mills, Ontario • Sydney

This book is in the
Addison-Wesley series in Computer Science
MICHAEL A. HARRISON
CONSULTING EDITOR

Library of Congress Cataloging in Publication Data

Goldberg, Adele.
Smalltalk-80: the language and its implementation.

1. Smalltalk-80 (Computer system) I. Robson, David.
II. Title.
QA76.8.S635G64 1983 001.64'2 82-13741
ISBN 0-201-11371-6

Copyright © 1983 by Xerox Corporation

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written
permission of the publisher. Printed in the United States of America. Published simultaneously in Canada.

ISBN 0-201-11371-6

ABCDEFGHI J-HA-8 9876543

Preface

Preface

Advances in the design and production of computer hardware have
brought many more people into direct contact with computers. Similar
advances in the design and production of computer software are re-
quired in order that this increased contact be as rewarding as possible.
The Smalltalk-80 system is a result of a decade of research into creat-
ing computer software t h a t is appropriate for producing highly func-
tional and interactive contact with personal computer systems.

This book is the first detailed account of the Smalltalk-80 system. It
is divided into four major parts:

Part One an overview of the concepts and syntax of the program-
ming language.

Part Two an annotated and illustrated specification of the sys-
tem's functionality.

Part Three an example of the design and implementation of a
moderate-size application.

Part Four a specification of the Smalltalk-80 virtual machine.

The first part introduces the Smalltalk approach to information repre-
sentation and manipulation. Five words--object, message, class, in-
stance, and methodmmake up the vocabulary with which Smalltalk is
discussed. These terms are defined and the syntax of the Smalltalk-80
programming language is introduced.

The second part of the book contains specifications of the kinds of ob-
jects already present in the Smalltalk-80 programming environment.
New kinds of objects can be added by a programmer, but a wide variety
of objects come with the standard system. The messages that can be
sent to each kind of object are listed, commented upon, and illustrated.

The third part of the book is an example of adding new kinds of ob-
jects to the system. It describes the addition of an application to model
discrete, event-driven simulations such as car washes, banks, or infor-
mation systems. Some readers may find it useful to read the third part
of the book immediately after reading the first part, referring to the
specifications in the second part whenever the meaning of a
Smalltalk-80 expression is not clear.

The fourth part of the book specifies how the Smalltalk-80 virtual
machine can be implemented. This virtual machine provides object-ori-
ented storage, message-oriented processing and graphically-oriented in-
teraction. It is primarily of interest to readers who wish to implement a
Smalltalk-80 system, or to readers who wish to understand the imple-
mentation of a message-oriented system in detail.

vii
Preface

The Task of
Book-Writing

Writing this first book about the Smalltalk-80 system was a complex
task, partially due to the sociology of the system's creation, and partial-
ly due to the diverse kinds of information people require about such a
system. We can divide the different reasons for the complexity of this
task into four categories:

• Smalltalk is a vision.

• Smalltalk is based on a small number of concepts, but defined by
unusual terminology.

• Smalltalk is a graphical, interactive programming environment.

• Smalltalk is a big system.

S m a l l t a l k is a
v is ion

In the early 1970's, the Xerox Palo Alto Research Center Learning Re-
search Group began work on a vision of the ways different people might
effectively and joyfully use computing power. In 1981 the name of the
group was changed to the Software Concepts Group or SCG. The goal of
SCG is to create a powerful information system, one in which the user
can store, access and manipulate information so that the system can
grow as the user's ideas grow. Both the number and kinds of system
components should grow in proportion to the growth of the user's
awareness of how to effectively use the system.

SCG's strategy for realizing this vision has been to concentrate on
two principal areas of research: a language of description (a program-
ming language)which serves as an interface between the models in the
human mind and those in computing hardware, and a language of in-
teraction (a user interface) which matches the human communication
system to that of the computer. Smalltalk research has followed a two-
to four-year cycle: create a system embodying current understanding of
the software needs; implement applications that test the system's abili-
ty to support these applications; and finally, based on the resulting ex-
perience, reformulate the understanding of software needs and redesign
the programming language and/or the user interface.

The Smalltalk-80 system marks the fifth time through this cycle. The
research is still in progress. We hope that presenting a detailed descrip-
tion of the current research results will contribute to the community
working towards SCG's vision. The continued unfolding of the research
means that the software system described in this book is literally a
"moving target" and the information in this book represents only one
station on a long track. Holding the train in the station long enough to
write about it a book made the writing task complex.

VIII

P r e f a c e

Smal l ta lk has few
concepts

Smal l ta lk is an
environment

Smal l ta lk is a big
system

Smalltalk is based on a small number of concepts, but defined by un-
usual terminology. Due to the uniformity with which the object-mes-
sage orientation is carried out in the system, there are very few new
programming concepts to learn in order to understand Smalltalk. On
the one hand, this means that the reader can be told all the concepts
quickly and then explore the various ways in which these concepts are
applied in the system. These concepts are presented by defining the five
words mentioned earlier that make up the vocabulary of Sma l l t a lku
object, message, class, instance, and method. These five words are de-
fined in terms of each other, so it is almost as though the reader must
know everything before knowing anything.

Smalltalk is a graphical, interactive programming environment. As
suggested by the personal computing vision, Smalltalk is designed so
that every component in the system that is accessible to the user can be
presented in a meaningful way for observation and manipulation. The
user interface issues in Smalltalk revolve around the attempt to create
a visual language for each object. The preferred hardware system for
Smalltalk includes a high-resolution graphical display screen and a
pointing device such as a graphics pen or a mouse. With these devices,
the user can select information viewed on the screen and invoke mes-
sages in order to interact with that information.

One way to present the details of the Smalltalk-80 system would be
to start with the user interface and to describe each facility for
accessing objects. Such a presentation might begin with scenarios of the
ways in which the programmer might interact with the system. Each
scenario would be a snapshot of a dynamic system. In a linear, static
way, the book would try to convey the dynamics of multiple access
paths to a large and diverse amount of information.

These aspects of the system are an important part of what Smalltalk
provides as an applications development environment. However, in or-
der to explain how this graphical user interface really works, the read-
er first has to understand the programming language. Thus, this book
inverts the presentation of the system by starting with the language it-
self. Information about the system objects that support the user inter-
face has been separated out and, except for the kernel graphics classes,
is not presented in this book. Another book on the Smalltalk-80 user in-
terface presents a detailed t reatment of the implementation of these
system objects (Smalltalk-80: The Interactive Programming Environ-
ment by Adele Goldberg).

The Smalltalk-80 system is made up of many components. It includes
objects that provide the functions usually attributed to a computer op-
erating system: automatic storage management, a file system, display

Preface

handling, text and picture editing, keyboard and pointing device input,
a debugger, a performance spy, processor scheduling, compilation and
decompilation. There are a lot of kinds of objects to learn about.

Smalltalk is built on the model of communicating objects. Large ap-
plications are viewed in the same way as the fundamental units from
which the system is built. The interaction between the most primitive
objects is viewed in the same way as the highest-level interaction be-
tween the computer and the user. Objects support modular i ty-- the
functioning of any object does not depend on the internal details of oth-
er objects. The complexity of the system is reduced by this minimization
of interdependencies of system components. Complexity is further re-
duced by grouping together similar components; this is achieved
through classes in Smalltalk. Classes are the chief mechanism for ex-
tension in Smalltalk. User-defined classes become a part of the system
on an equal footing with the kernel classes of the system. Subclasses
support the ability to factor the system in order to avoid repetitions of
the same concepts in many different places.

Managing complexity is a key contribution of the Smalltalk approach
to software. The early examples of the language are very simple, taken
from the kinds of programming exercises common in many program-
ming language books. This is so examples can be short, illustrating one
or two points. The value of Smalltalk may not be apparent in these ex-
amples. After all, they can be done in other languages, and probably
just as well. The value of Smalltalk becomes apparent when designing
and implementing large applications, or when trying to make a modifi-
cation to the system itself. For example, consider a dictionary, a fre-
quently-used data structure in the Smalltalk-80 system. It is possible to
design, implement, test, and install a new representation for dictionar-
ies without in any way disrupting the running system. This is possible
as long as the message interface upon which the functioning of other
system objects depends is not destroyed.

The Smalltalk-80 system supports a number of interesting design
tools, notably classes and instances as units for organizing and sharing
information, and subclassing as a means to inherit and to refine
existing capability. Combined with the interactive way in which the
program development process is carried out, the Smalltalk-80 system
provides a rich environment for prototyping new applications and refin-
ing old ones.

Writing a book about such a rich system means that some things
must be left out. Again, we chose to omit in this first book the details of
the programming interface and the way in which interactive graphical
applications can be created. We focus on the language and the kernel
classes of the system.

Preface

The T a s k o f
Book-Reading

This book takes for granted a certain amount of computer literacy on
the par t of its reader. We assume that the reader

• knows why software systems are a good idea;

• is a p rogrammer or programming-language designer who knows at
least one language well;

• is familiar with the idea of expression syntax and of evaluation of
expressions by an interpreter;

• is familiar with sequencing of instructions in a computer, control
s t ructures such as i teration and recursion, and the role of data
structures;

• is concerned with the need to have better control of the represen-
tat ion and manipulat ion of information in a computing system;
and

• is seeking new ideas for how to create a software (application) sys-
tem that supports the ability to express a software solution in a
way tha t is closely associated with the na tura l expression of the so-
lution.

Par t of this book is for programmers interested in how to implement
the language and its development environment on a part icular kind of
hardware system. Because of the variety of hardware systems on the
market , the issue of "portabili ty" has been emphasized. Portabil i ty
means tha t only a small kernel of functionality must actually be creat-
ed for each hardware system in order to realize a running system. This
book provides an example of how to a t ta in such portability.

Sharing the
C r e d i t

The Smalltalk-80 system is based on ideas gleaned from the Simula
language and from the visions of Alan Kay, w h o first encouraged us to
t ry to create a uniformly object-oriented system. The current embodi-
ment of these ideas is the result of two related activities: research car-
ried out at the Xerox Palo Alto Research Center, and cooperation with
a group of s ta lwart part icipants in a project to review the research re-
sults.

In August, 1980, several hardware manufacturers were invited to re-
view the pages of our second a t t e m p t to write a book about Small ta lk

Preface

and its latest realization. Our first a t tempt described the Smalltalk-76
system and was abandoned in response to our desire to create a more
portable system for distribution outside the Xerox research centers. Our
second at tempt was a book that was partially historical in nature, par-
tially statements about a vision for personal computing, and partially
functional specification for a new Smalltalk system. We thought we
would entitle it Smalltalk Dreams and Schemes as a reflection of the
dual purpose of our writing. The manufacturers who patiently reviewed
our material were from Apple Computer, Digital Equipment Corpora-
tion, Hewlett-Packard, and Tektronix. These companies were chosen be-
cause they designed hardware systems. We hoped that, in reviewing the
material, they would learn about our unusual software goals and would
devote some time to the problem of creating hardware systems specifi-
cally for Smalltalk-like systems. We knew that hardware systems cur-
rently on the market, and even ones planned for the near future, would
have insufficient power to support our goals. Instead of designing soft-
ware to fit the hardware we could buy, we decided to try to get the
hardware designed to fit the software we wanted.

The manufacturers assigned personnel from their research laborato-
ries to the task of reading the second version of the book. This book has
benefited from much discussion and hard work on the part of these re-
viewers. The early part of the book was completely rewrit ten as a result
of their constructive criticism. The reviewers are responsible for our
continuing to try to complete the distribution process and for our com-
pleting this book, but not for any faults in its ul t imate form. Each set of
reviewers implemented the system at least once in order to test our
specification of the Smalltalk-80 virtual machine. The current specifica-
tion reflects their careful review.

As authors of this book, we took responsibility for creating the writ-
ten description of the Smalltalk-80 system. But credit for the creation
of the system goes to all the members of the Software Concepts Group.
To these people, we state our debt, our thanks, and our love. Dan
Ingalls manages the overall systems design and development effort. Pe-
ter Deutsch on the Dorado, Glenn Krasner on the Alto, and Kim
McCall on the Dolphin (also called the Xerox 1100 Scientific Informa-
tion Processor), contributed expertise to the virtual machine implemen-
tations on the Xerox computers. User interface ideas, implementations,
and management of the release process were carried out by James
Althoff (user interface development), Robert Flegal (design of the graph-
ics editor), Ted Kaehler (while laboring over virtual memory problems),
Diana Merry (our text guru), and Steve Putz (version management).
Peggy Asprey, Marc Meyer, Bill Finzer, and Laura Gould, in trying to
keep their applications studies in pace with the system development,
tested major changes. Copious reading of the manuscript at various

xii
Preface

stages of inception was done by Michael Rutenberg, Michael Madsen,
Susanne Bodker, and Jay Trow. Editing assistance was given by Rachel
Rutherford and Janet Moreland.

Chapter 18 on the Smalltalk-80 graphics kernel was revised from a
paper written by Dan Ingalls for Byte magazine; Chapter 30 was initial-
ly written by Larry Tesler. Graphical images in Chapters 18, 19, and
20, were created by Robert Flegal (especially Figures 18.1 and 20.1),
Dan Ingalls, and Adele Goldberg (especially Figures 20.2 and 20.3).
Steve Putz offered valuable assistance in creating the images for Chap-
ter 17. Images for the openings to Parts One and Two, and all images
for the opening pages of Chapters 1 through 20, were created by Adele
Goldberg. Images for Parts Three and Four, and all images for the
opening pages of Chapters 21 through 30, were created by Robert
Flegal. These images were created using the Smalltalk-80 graphics edi-
tor in combination with a low-resolution image scanner designed by Jo-
seph Maleson.

To the participants in the review process, we also give our thanks.
With them we have set an example of cooperative scientific exchange
that we hope will evolve and continue to grow. Encouragement to begin
this project came from our laboratory manager, Bert Sutherland. Re-
viewers and implementors were: from Apple, Rick Meyers and David
Casseres; from Digital Equipment Corporation, Stoney Ballard, Eric Os-
man, and Steve Shirron; from Hewlett-Packard, Alec Dara-Abrams, Joe
Falcone, Jim Stinger, Bert Speelpenning, and Jeff Eastman; and from
Tektronix, Paul McCullough, Allen Wirfs-Brock, D. Jason Penney,
Larry Katz, Robert Reed, and Rick Samco. We thank their companies
and administrators for their patience and willingness to depart from in-
dustry standards, at least for one brief m o m e n t - - a t Apple, Steve Jobs
and Bruce Daniels; at Digital, Larry Samburg; at Hewlett-Packard,
Paul Stoft, Jim Duley, and Ted Laliotis; and at Tektronix, Jack Grimes,
and George Rhine. The folks from Tektronix prepared detailed reviews
on audiotape, so we could not only see the errors of our ways, but hear
them as well!

It is our hope that this book and its companion will facilitate the dis-
tribution of the Smalltalk concepts in the computer community. If it
succeeds, then that success is shared by us with our colleagues at the
Xerox Palo Alto Research Center.

P o s t s c r i p t o n
t h e P r o d u c t i o n
of T h i s B o o k

The original text for this book was supplied to the publisher on magnet-
ic tape. The tape included formatting codes identifying the various
types of textual entity in the manuscript. The actual format of each
type of entity was supplied by the publisher. This process worked

×iii
Preface

smoothly thanks in large part to the efforts and patience of Eileen
Colahan of the International Computaprint Corporation and Fran Ful-
ton, our production editor, as well as the cooperation of Sue Zorn, Mar-
shall Henrichs, and Jim DeWolf of Addison-Wesley.

Many of the graphical images that represent Smalltalk-80 screen
graphics and the Part and Chapter artwork were printed on the Plate-
maker system developed by Gary Starkweather and the Imaging Sci-
ences Laboratory of PARC. We would like to thank Gary, Eric Larson,
and Julian Orr for making the Platemaker available to us.

Adele Goldberg
David Robson
Palo Alto, California
January, 1983

Contents

P A R T O N E 1 Objects and Messages
Classes and Instances
An Example Application
System Classes
Summary of Terminology

2 Express ion Syntax
Literals
Variables
Messages
Blocks
Summary of Terminology

3 Classes and Instances
Protocol Descriptions
Implementation Descriptions
Variable Declarations
Methods
Primitive Methods
Summary of Terminology

4 Subclasses
Subclass Descriptions

5
8

10
13
16

17
19
21
24
31
37

39
41
43
44
46
52
53

55
58

xvi
Contents

P A R T T W O

An Example Subclass
Method Determination
Abstract Superclasses
Subclass Framework Messages
Summary of Terminology

59
61
66
72
73

5 Metaclasses 75
Initialization of Instances 77
An Example Metaclass 78
Metaclass Inheritance 81
Initialization of Class Variables 84
Summary of Method Determination 88
Summary of Terminology 89

6 Protoco l for all Objects 93
Testing the Functionality of an Object 95
,Comparing Objects 96
Copying Objects 97
Accessing the Parts of an Object 99
Printing and Storing Objects 100
Error Handling 102

7 Linear M e a s u r e s 105
Class Magnitude 107
Class Date 108
Class Time 111
Class Character 114

8 N u m e r i c a l Classes
Protocol of the Number Classes
Classes Float and Fraction
Integer Classes
Class Random: A Random Number

Generator

9 Protoco l for All Col lect ion Classes
Adding, Removing, and

Testing Elements
Enumerat ing Elements
Instance Creation
Conversion Among Collection Classes

117
120
126
127

129

131

134
136
139
140

xvii
Contents

10 Hierarchy of the Col lect ion Classes 143
Class Bag 147
Class Set 148
Classes Dictionary and IdentityDictionary 148
Class SequenceableCollection
Subclasses of SequenceableCollection
Class ArrayedCollection
Class MappedCollection
Summary of Conversions Among

Collections

153
157
165
168

169

11 Three E x a m p l e s that Use Col lect ions
Random Selection and Playing Cards
The Drunken Cockroach Problem
Traversing Binary Trees

171
172
181
185

12 Protoco l for S treams
Class Stream
Positionable Streams
Streams of Generated Elements
Streams for Collections Without

External Keys
External Streams and File Streams

193
195
198
204

205
208

13 I m p l e m e n t a t i o n s of the Basic
Col lect ion Protoco l

Class Collection
Subclasses of Collection

211
212
219

14 Kernel Support
Class UndefinedObject
Classes Boolean, True, and False
Additional Protocol for Class Object

235
237
237
239

15 Mult ip le I n d e p e n d e n t P r o c e s s e s
Processes
Semaphores
Class SharedQueue
Class Delay

249
251
257
265
266

16 Protoco l for Classes
Class Behavior
Class ClassDescription

267
272
284

o , .

XVlII

C o n t e n t s

P A R T T H R E E

Class Metaclass
Class Class

17 The Programming Interface
Views
Browsers
Testing
Error Reporting

18 Graphics Kernel
Graphical Representat ion
Graphical Storage
Graphical Manipulation
Classes Form and Bitmap
Spatial Reference
Class BitBIt
Line Drawing
Text Display
Simulation of BitBIt

19 Pens
Class Pen
Geometric Designs
Commander Pen

20 Display Objects
Class DisplayObject
Class DisplayMedium
Forms
Display Text
Paths
Image Manipulation with Forms

21 Probabil i ty Distributions
Probability Distribution Framework
Discrete Probability Distributions
Continuous Probability Distributions

22 Event-Driven Simulations
A Framework for Simulation
Implementation of the Simulation

Classes

287
288

291
292
297
308
314

329
331
331
333
338
340
349
351
354
355

364
365
370
375

381
383
390
396
400
400
405

417
418
423
432

439
442

452

xix

23 Stat is t ics Gather ing
in Event -Dr iven S imula t ions

Duration Statistics
Throughput Histograms
Tallying Events
Event Monitoring

Contents

465
466
469
474
476

24 The Use of R e s o u r c e s
in Event -Dr iven S imula t ions

Implementing ResourceProvider and
StaticResource

Consumable Resources
Nonconsumable Resources
Renewable Resources

483

484
489
492
503

25 Coordinated R e s o u r c e s
for Event -Dr iven S imula t ions

The Implementation of
Class ResourceCoordinator

Example: A Car Wash Simulation
Example: A Ferry Service

for a Special Truck
Example: A Bank
Example: An Information System

515

516
518

521
526
533

P A R T F O U R 26 The I m p l e m e n t a t i o n
The Compiler
The Interpreter
The Object Memory
The Hardware

541
542
550
564
566

27 Specification of the Virtual Mach ine
Form of the Specification
Object Memory Interface
Objects Used by the Interpreter

567
568
570
575

28 Formal Spec i f i cat ion of the Interpreter
Stack Bytecodes
Jump Bytecodes
Send Bytecodes
Return Bytecodes

593
597
601
603
608

××

C o n t e n t s

29 Formal Specification
of the Primitive Methods

Arithmetic Primitives
Array and Stream Primitives
Storage Management Primitives
Control Primitives
Input/Output Primitives
System Primitives

30 Formal Specification
of the Object Memory

Heap Storage
The Object Table
Allocation and Deallocation
Garbage Collection
Nonpointer Objects
Interface to the Bytecode Interpreter

Subject Index

System Index

Example Class Index

Implementation Index

611
621
627
633
637
647
652

655
657
659
667
674
684
686

691

699

703

707

Smalltalk-80

°o

0

0
@ @

"1
iiii!iiiiii~i~i~i~iiiiiii!i Objects and Messages

Classes and Instances

An Example Application

System Classes

Summary ot Terminology

Objects and Messages

An object represents a component of the Small talk-80 software system.
For example, objects represent

• numbers

• charac ter strings

• queues

• dictionaries

• rectangles

• file directories

• text editors

• programs

• compilers

• computat ional processes

• financial histories

• views of information

An object consists of some private memory and a set of operations. The
na ture of an object's operations depends on the type of component it
represents. Objects represent ing numbers compute ar i thmet ic functions.
Objects represent ing data s t ructures store and retr ieve information. Ob-
jects represent ing positions and areas answer inquiries about their rela-
tion to other positions and areas.

A message is a request for an object to carry out one of its operations.
A message specifies which operation is desired, but not how tha t opera-
tion should be carried out. The receiver, the object to w h i c h t h e message
was sent, determines how to carry out the requested operation. For ex-
ample, addition is performed by sending a message to an object repre-
senting a number. The message specifies tha t the desired operation is
addition and also specifies what number should be added to the receiv-
er. The message does not specify how the addition will be performed.
The receiver determines how to accomplish the addition. Computing is
viewed as an intrinsic capabili ty of objects tha t can be uniformly in-
voked by sending messages.

The set of messages to which an object can respond is called its inter-
face with the rest of the system. The only way to interact with an object
is through its interface. A crucial property of an object is tha t its pri-
vate memory can be manipula ted only by its own operations. A c ruc ia l
property of messages is tha t they are the only way to invoke an object's
operations. These properties insure tha t the implementat ion of one ob-

Objects and Messages

ject cannot depend on the internal details of other objects, only on the
messages to which they respond.

Messages insure the modularity of the system because they specify
the type of operation desired, but not how that operation should be ac-
complished. For example, there are several representations of numeri-
cal values in the Smalltalk-80 system. Fractions, small integers, large
integers, and floating point numbers are represented in different ways.
They all understand the same message requesting the computation of
their sum with another number, but each representation implies a dif-
ferent way to compute that sum. To interact with a number or any ob-
ject, one need only know what messages it responds to, not how it is
represented.

Other programming environments also use obiects and messages to
facilitate modular design. For example, Simula uses them for describing
simulations and Hydra uses them for describing operating system facili-
ties in a distributed system. In the Smalltalk-80 system, objects and
messages are used to implement the entire programming environment.
Once objects and messages are understood, the entire system becomes
accessible.

An example of a commonly-used data structure in programming is a
dictionary, which associates names and values. In the Smalltalk-80 sys-
tem, a dictionary is represented by an object that can perform two oper-
ations: associate a name with a new value, and find the value last
associated with a particular name. A programmer using a dictionary
must know how to specify these two operations with messages. Diction-
ary objects understand messages that make requests like "associate the
name Brett with the value 3" and "what is the value associated with
the name Dave?" Since everything is an object, the names, such as
Brett or Dave, and the values, such as 3 or 30, are also represented by
objects. Although a curious programmer may want to know how associ-
ations are represented in a dictionary, this internal implementation in-
formation is unnecessary for successful use of a dictionary. Knowledge
of a dictionary's implementation is of interest only to the programmer
who works on the definition of the dictionary object itself.

An important part of designing Smalltalk-80 programs is determin-
ing which kinds of objects should be described and which message
names provide a useful vocabulary of interaction among these objects.
A language is designed whenever the programmer specifies the mes-
sages that can be sent to an object. Appropriate choice of objects de-
pends, of course, on the purposes to which the object will be put and the
granularity of information to be manipulated. For example, if a simula-
tion of an amusement park is to be created for the purpose of collecting
data on queues at the various rides, then it would be useful to describe
objects representing the rides, workers who control the rides, the wait-
ing lines, and the people visiting the park. If the purpose of the simula-

Objects and Messages

tion includes monitoring the consumption of food in the park, then
objects representing these consumable resources are required. If the
amount of money exchanged in the park is to be monitored, then de-
tails about the cost of rides have to be represented.

In designing a Smalltalk-80 application, then, choice of objects is the
first key step. There really is nothing definitive to say about the ~right
way" to choose objects. As in any design process, this is an acquired
skill. Different choices provide different bases for extending an applica-
tion or for using the objects for other purposes. The skilled Smalltalk-80
programmer is mindful that the objects created for an application
might prove more useful for other applications if a semantically com-
plete set of functions for an object is specified. For example, a diction-
ary whose associations can be removed as well as added is generally
more useful than an add-only version.

Classes and
I n s t a n c e s

A class describes the implementation of a set of objects that all repre-
sent the same kind of system component. The individual objects de-
scribed by a class are called its instances. A class describes the form of
its instances' private memories and it describes how they carry out
their operations. For example, there is a system class that describes the
implementation of objects representing rectangular areas. This class de-
scribes how the individual instances remember the locations of their
areas and also how the instances carry out the operations that rectan-
gular areas perform. Every object in the Smalltalk-80 system is an in-
stance of a class. Even an object that represents a unique system
component is implemented as the single instance of a class. Program-
ming in the Smalltalk-80 system consists of creating classes, creating
instances of classes, and specifying sequences of message exchanges
among these objects.

The instances of a class are similar in both their public and private
properties. An object's public properties are the messages that make up
its interface. Al l instances of a class have the same message interface
since they represent the same kind of component. An object's private
properties are a set of instance variables that make up its private mem-
ory and a set of methods that describe how to carry out its operations.
The instance variables and methods are not directly available to other
objects. The instances of a class all use the same set of methods to de-
scribe their operations. For example, the instances that represent rect-
angles all respond to the same set of messages and they all use the
same methods to determine how to respond. Each instance has its own
set of instance variables, but they general ly all have the same number

Classes and Instances

of instance variables. For example, the instances that represent rectan-
gles all have two instance variables.

Each class has a name that describes the type of component its in-
stances represent. Class names will appear in a special font because
they are part of the programming language. The same font will be used
for all text that represents Smalltalk-80 expressions. The class whose
instances represent character sequences is named String. The class
whose instances represent spatial locations is named Point. The class
whose instances represent rectangular areas is named Rectangle. The
class whose instances represent computational processes is named Pro-
cess.

Each instance variable in an object's private memory refers to one
object, called its value. The values of a Rectangle's two instance vari-
ables are instances of Point that represent opposing corners of its rect-
angular area. The fact that Rectangles have two instance variables, or
that those instance variables refer to Points is strictly internal informa-
tion, unavailable outside the individual Rectangle.

Each method in a class tells how to perform the operation requested
by a particular type of message. When that type of message is sent to
any instance of the class, the method is executed. The methods used by
all Rectangles describe how to perform their operations in terms of the
two Points representing opposing corners. For example, one message
asks a Rectangle for the location of its center. The corresponding meth-
od tells how to calculate the center by finding the point halfway be-
tween the opposing corners.

A class includes a method for each type of operation its instances can
perform. A method may specify some changes to the object's private
memory and/or some other messages to be sent. A method also specifies
an object that should be returned as the value of the invoking message.
An object's methods can access the object's own instance variables, but
not those of any other objects. For example, the method a Rectangle
uses to compute its center has access to the two Points referred to by its
instance variables; however, the method cannot access the instance
variables of those Points. The method specifies messages to be sent to
the Points asking them to perform the required calculations.

A small subset of the methods in the Smalltalk-80 system are not
expressed in the Smalltalk-80 programming language. These are called
primitive methods. The primitive methods are built into the virtual ma-
chine and cannot be changed by the Smalltalk-80 programmer. They
are invoked with messages in exactly the same way that other methods
are. Primitive methods allow the underlying hardware and virtual ma-
chine structures to be accessed. For example, instances of Integer use a
primitive method to respond to the message +. Other primitive meth-
ods perform disk and terminal interactions.

10
Objects and Messages

An Example
Application

Examples are an impor tan t par t of the description of a p rogramming
language and environment . Many of the examples used in this book are
taken from the classes found in the s tandard Small talk-80 system. Oth-
er examples are taken from classes tha t might be added to the system
to enhance its functionality. The first par t of the book draws examples
from an application tha t might be added to the system to main ta in sim-
ple financial histories for individuals, households, clubs, or small
businesses. The full application allows information about financial
t ransact ions to be entered and views of tha t information to be
displayed. Figure 1.1 shows a view of a financial history as it might ap-
pear on a Small talk-80 display screen. The top two parts of the view
show two views of the amount of money spent for various reasons. The
next v i ew down shows how the cash-on-hand fluctuated over t ime as
t ransact ions were made.

At the bottom of the picture are two areas in which the user can
type in order to add new expenditures and incomes to the history.
When new information is added, the three views are automat ica l ly
updated. In Figure 1.2, a new expendi ture for food has been added.

This application requires the addition of several classes to the sys-
tem. These new classes describe the different kinds of view as well as
the under lying financial history information. The class tha t actual ly re-
cords the financial information is named FinancialHisto~ and will be
used as an example in the next four chapters. This example application
will make use of several classes a l ready in the system; it will use num-
bers to represent amounts of money and strings to represent the rea-
sons for expenditures and the sources of income.

FinancialHistow is used to introduce the basic concepts of the
Small talk-80 programming language because its functionali ty and im-
plementat ion are easy to describe. The functionali ty of a class can be
specified by listing the operations available through its message inter-
face. FinancialHisto~ provides six operations:

0 Create a new financial history object with a certain initial amount
of money available.

2. Remember tha t a certain amount was spent for a par t icular rea-

0

son.

Remember tha t a certain amount was received from a par t icular
source.

4. Find out how much money is available.

5. Find out how much has been spent for a par t icular reason.

6. Find out how much has been received from a par t icular source.

util it ies

A n E x a m p l e A p p l i c a t i o n

IExpenditures I

food

r-ent

r-ent food util it ies

o liliiiiiii!!i!iiiiiiiiil
2O0

4OO

600

800

800
275
250
'225

200
t75
150

125
100
75

IExpenditures I

Cash On Hand I

11

",,,,,

! spend I! 50.15 I! for

I receive II 820 ll from

Last Transact ions i

util it ies

pay

F i g u r e 1.1

util it ies

O b j e c t s a n d M e s s a g e s

I Expenditures I

food

rent

rent food

° liii[iiiiiiiiiiiiiiiiiil 2-o0

40o

600

{3oo

util it ies

! I

300
275
250
225
200
17'S
150
125
100
75

IExpenditures I

12

I Cash On Hand i

I spono Ii 97,5o II for ii food

! rooo'vo II 820 !1 from II pay

I Last Transact ions, I

Figure 1.2

13
S y s t e m Classes

An implementation of these operations is specified in the class descrip-
tion shown inside the front cover of this book. The form of class descrip-
tions will be described in Chapters 3, 4, and 5.

System Classes

Arithmetic

Data Structures

Control Structures

The Smalltalk-80 system includes a set of classes that provides the
standard functionality of a programming language and environment:
arithmetic, data structures, control structures, and input/output facili-
ties. The functionality of these classes will be specified in detail in Part
Two of this book. Figure 1.3 is a diagram of the system classes present-
ed in Part Two. Lines are drawn around groups of related classes; the
groups are labeled to indicate the chapters in which the specifications
of the classes can be found.

The Smalltalk-80 system includes objects representing both real and ra-
tional numbers. Real numbers can be represented with an accuracy of
about six digits. Integers with absolute value less than 252428s can be rep-
resented exactly. Rational numbers can be represented using these inte-
gers. There are also classes for representing linear magnitudes (like
dates and times) and random number generators.

Most of the objects in the Smalltalk-80 system function as data struc-
tures of some kind. However, while most objects also have other
functionality, there is a set of classes representing more or less pure
data structures. These classes represent different types of collections.
The elements of some collections are unordered while the elements of
others are ordered. Of the collections with unordered elements, there
are bags that allow duplicate elements and sets that don't allow dupli-
cation. There are also dictionaries that associate pairs of objects. Of the
collections with ordered elements, some have the order specified exter-
nally when elements are added and others determine the order based
on properties of the elements themselves. The common data structures
of arrays and strings are provided by classes that have associative be-
havior (associating indices and elements) and external ordering (corre-
sponding to the inherent ordering of the indices).

The Smalltalk-80 system includes objects and messages that implement
the standard control structures found in most programming languages.
They provide conditional selection similar to the if-then-else statements
of Algol and conditional repetition similar to its while and until state-

10

Figure 1.3

Object

Magnitude
Character
Date
Time

Number
Float
Fraction
Integer

LargeNegativelnteger
LargePositiveinteger
Smalllnteger

LookupKey
Association

Link

I Process

Collection I
I

SequenceableCollection
LinkedList

Semaphore

Stream
PositionableStream

ReadStream
WriteStream

ReadWriteStream
ExternalStream

FileStream

Random]

File
FileDirectory
FilePage

ArrayedCollection
Array

Bitmap
DisplayBitmap

RunArray
String

Symbol
Text
ByteArray

Interval
OrderedCollection

SortedCollection

UndefinedObject
Boolean

False
True

P rocessorSched u ler
Delay
SharedQueue

Behavior
ClassDescription

Class
MetaClass

Bag
M a ppedCol lect ion
Set

Dictionary
IdentityDictionary

Point
Rectangle
BitBit

CharacterScanner

Pen

DisplayObject
DisplayMedium

Form
Cursor
DisplayScreen

InfiniteForm
OpaqueForm
Path

Arc
Circle

Curve
Line
LinearFit
Spline

12

14

15

16

18

19

20

15
System Classes

ments. Objects representing independent processes and mechanisms for
scheduling and synchronous interaction are also provided. Two classes
are provided to support these control structures. Booleans represent the
two truth values and blocks represent sequences of actions. Booleans
and blocks can also be used to create new kinds of control structures.

Programming
Environment

There are several classes in the Smalltalk-80 system that assist in the
programming process. There are separate classes representing the
source (human-readable) form and the compiled (machine-executable)
form of methods. Objects representing parsers, compilers, and
decompilers translate between the two forms of method. Objects repre-
senting classes connect methods with the objects that use them (the in-
stances of the classes).

Objects representing organizational structures for classes and meth-
ods help the programmer keep track of the system, and objects repre-
senting histories of software modification help interface with the efforts
of other programmers. Even the execution state of a method is repre-
sented by an object. These objects are called contexts and are analogous
to stack frames or activation records of other systems.

Viewing and
Interacting

The Smalltalk-80 system includes classes of objects that can be used to
view and edit information. Classes helpful for presenting graphical
views represent points, lines, rectangles, and arcs. Since the Small-
talk-80 system is oriented toward a bitmap display, there are classes for
representing and manipulating bitmap images. There are also classes
for representing and manipulating the more specific use of bitmap im-
ages for character fonts, text, and cursors.

Built from these graphical objects are other objects representing rect-
angular windows, command menus, and content selections. There are
also objects that represent the user's actions on the input devices and
how these relate to the information being viewed. Classes representing
specific viewing and editing mechanisms constructed from these compo-
nents provide views for classes, contexts, and documents containing text
and graphics. The views of classes provide the fundamental mechanism
to interact with the software in the system. Smalltalk-80 views and edi-
tors are presented in a separate book.

Communication
The Smalltalk-80 system allows communication with external media.
The standard external medium is a disk file system. Objects represent
individual files as well as directories. If a connection to a communica-
tions network is available, it can be accessed through objects as well.

16
O b j e c t s a n d M e s s a g e s

S u m m a r y of
T e r m i n o l o g y

object

message

receiver "

interface

class

instance

instance variable

method

primitive method

FinancialHistory
system classes

A component of the Smalltalk-80 system represented by
some private memory and a set of operations.

A request for an object to carry out one of its operations.

The object to which a message is sent.

The messages to which an object can respond.

A description of a group of similar objects.

One of the objects described by a class.

A part of an object's private memory.

A description of how to perform one of an object's opera-
tions.

An operation performed ,directly by the Smalltalk-80 virtu-
al machine.

The name of a class used as an example in this book.

The set of classes that come with the Smalltalk-80 system.

2
Expression Syntax

Literals
Numbers
Characters
Strings
Symbols
Arrays

Variables
Assignments
Pseudo-variable Names

Messages
Selectors and Arguments
Returning Values
Parsing
Formatting Conventions
Cascading

Blocks
Control Structures
Conditionals
Block Arguments

Summary of Terminology

18
Expression Syntax

Chapter 1 introduced the fundamenta l concepts of the Small talk-80 sys-
tem. System components are represented by objects. Objects are in-
stances of classes. Objects in teract by sending messages. Messages cause
methods to be executed. This chapter introduces an expression syntax
for describing objects and messages. The next chapter introduces a syn-
tax for describing classes and methods.

An expression is a sequence of characters tha t describes an object
called the value of the expression. The syntax presented in this chapter
explains which sequences of characters form legal expressions. There
are four types of expression in the Small talk-80 programming language.

1. Literals describe certain constant objects, such as numbers and
charac ter strings.

2. Variable names describe the accessible variables. The value of a
variable name is the cur ren t value of the var iab le with tha t name.

3. Message expressions describe messages to receivers. The value of a
message expression is determined by the method the message in-
vokes. Tha t method is found in the class of the receiver.

4. Block expressions describe objects represent ing deferred activities.
Blocks are used to implement control structures.

Expressions are found in two places, in methods and in text displayed
on the screen. When a message is sent, a method from the receiver's
class is selected and its expressions are evaluated. Pa r t of the user in-
terface allows expressions to be selected on the screen and evaluated.
The details of selecting and evaluat ing expressions on the screen fall
outside the scope of this book, since they are par t of the user interface.
Some examples, however, are given in Chapter 17.

Of the four types of expression listed above, only the variable names
are context-dependent. An expression's location in the system deter-
mines which charac ter sequences are legal variable names. The set of
variable names available in a method's expressions depends on the class
in which the method is found. For example, methods in class Rectangle
and methods in class Point have access to different sets of variable
names. The variables available in a class's methods will be fully de-
scribed in Chapters 3, 4, and 5. The variable names available for use in
expressions on the screen depend on where the expressions are
displayed on the screen. All other aspects of the expression syntax are
independent of the expression's location.

The syntax for expressions is summarized in the diagram that ap-
pears inside the back cover of this book. The rest of this chapter de-
scribes the four types of expression.

19
Literals

Literals

Nu m be rs

Five kinds of objects can be referred to by literal expressions. Since the
value of a literal expression is always the same object, these expressions
are also called l i teral constants. The five types of literal constant are:

1. numbers

2. individual characters

3. strings of characters

4. symbols

5. arrays of other literal constants

Numbers are objects that represent numerical values and respond to
messages that compute mathematical results. The literal representation
of a number is a sequence of digits that may be preceded by a minus
sign and/or followed by a decimal point and another sequence of digits.
For example,

3
30.45
- 3
0.005
- 1 4 . 0
13772

Number literals can also be expressed in a nondecimal base by preced-
ing the digits with a radix prefix. The radix prefix includes the value of
the digit radix (always expressed in decimal) followed by the letter ~r".
The following examples specify numbers in octal with their correspond-
ing decimal values.

octal dec imal

8r377 255
8r153 107
8r34.1 28.125
8r--37 --31

When the base is greater than ten, the capital letters starting with ~A"
are used for digits greater than nine. The following examples specify
numbers in hexadecimal with their corresponding decimal values.

20
Expression Syntax

hexadecimal decimal

16r106 262

16rFF 255

16rAC.DC 172.859
16r- l .C -1.75

Number literals can also be expressed in scientific notation by following
the digits of the value with an exponent suffix. The exponent suffix in-
cludes the letter ~e" followed by the exponent (expressed in decimal).
The number specified before the exponent suffix is multiplied by the ra-
dix raised to the power specified by the exponent.

scientific notation decimal

1.586e5 158600.0

1.586e-- 3 0.001586
8r3e2 192
2rl 1 e6 192

Characters

Strings

Characters are objects that represent the individual symbols of an al-
phabet. A character literal expression consists of a dollar sign followed
by any character, for example,

$a

SM
$ -
$$
$1

Strings are objects t h a t represent sequences of characters. Strings re-
spond to messages that access individual characters, replace substrings,
and perform comparisons with other strings. The literal representation
of a string is a sequence of characters delimited by single quotes, for ex-
ample,

'hi'
'food'
'the Smalltalk-80 system'

Any character may be included in a string literal. If a single quote is to
be included in a string, it must be duplicated to avoid confusion with
the delimiters. For example, the string literal

21
Variables

Symbols

Arrays

"can " t "

refers to a string of the five characters $c, $a, $n, $ ' , and St.

Symbols are objects tha t represent strings used for names in the sys-
tem. The literal representat ion of a symbol is a sequence of alphanu-
meric characters preceded by a pound sign, for example,

:#:bill
M 6 3

There will never be two symbols with the same characters; each symbol
is unique. This makes it possible to compare symbols efficiently.

An ar ray is a simple data s t ructure object whose contents can be refer-
enced by an integer index from one to a number tha t is the size of the
array. Arrays respond to messages requesting access to their contents.
The literal representat ion of an ar ray is a sequence of other l i t e ra l s - -
numbers, characters, strings, symbols, and a r r ays - -de l imi t ed by paren-
theses and preceded by a pound sign. The other literals are separated
by spaces. Embedded symbols and arrays are not preceded by pound
signs. An ar ray of three numbers is described by the expression

#(1 2 3)

An array of seven strings is described by the expression

('food" 'utilities' ' rent" 'household' 'transportation' 'taxes' 'recreation')

An array of two arrays and two numbers is described by the expression

(('one' 1) (' not" "negative') 0 -- 1)

And an ar ray of a number, a string, a character, a symbol, and another
ar ray is described by the expression

#(9 'nine' $9 nine (0 "zero' $ 0 () ' e ' $f 'g' $h 'i'))

V a r i a b l e s The memory available to an object is made up of variables. Most of
these variables have names. Each variable remembers a single object
and the variable's name can be used as an expression referring to tha t
object. The objects tha t can be accessed from a part icular place are de-
termined by which variable names are available. For example, the con-

22
Expression Syntax

Assignments

tents of an object's instance variables are unavai lable to other objects
because the names of those variables can be used only in the methods
of the object's class.

A variable name is a simple identifier, a sequence of letters and dig-
its beginning with a letter. Some examples of variable names are:

index
initiallndex
textEditor
bin14
bin14Totai
HouseholdFinances
Rectangle
IncomeReasons

There are two kinds of variables in the system, distinguished by how
widely they are accessible. Pr ivate variables are accessible on ly to a sin-
gle object. Instance variables are private. Shared variables can be
accessed by more than one object. Pr ivate variable names are required
to have lowercase initial letters; shared variable names are required to
have uppercase initial letters. The first five example identifiers shown
above refer to private variables and the last three refer to shared vari-
ables.

Another capitalization convention evident in the examples above is
tha t identifiers formed by concatenat ing several words capitalize each
word following the first one. This convention is not enforced by the sys-
tem.

A li teral constant will always refer to the same object, but a variable
name may refer to different objects at different times. The object re-
ferred to by a variable is changed when an ass ignment expression is
evaluated. Assignments were not listed earl ier as a type of expression
since any expression can become an ass ignment by including an assign-
ment prefix.

An ass ignment prefix is composed of the name of the variable whose
value will be changed followed by a left arrow (~-). The following exam-
ple is a li teral expression tha t has an ass ignment prefix. It indicates
tha t the variable named quantity should now refer to the object repre-
senting the number 19.

quantity ~- 19

The following example is a var iable-name expression with an assign-
ment prefix. It indicates tha t the variable named index should refer to
the same object as does the variable named initiallndex.

23
V a r i a b l e s

index ~ initiallndex

Other examples of ass ignment expressions are:

chapterName ~- 'Expression Syntax'
flavors ~- #('van i l la ' 'chocolate" 'butter pecan" "garlic')

More than one ass ignment prefix can be included, indicating tha t the
values of several variables are changed.

index ~- ini t ia l lndex ~- 1

This expression indicates tha t both the variables named index and
initiallndex should refer to the number 1. Message expressions and block
expressions can also have ass ignment prefixes, as will be seen in the
following sections.

Pseudo-variable
Name s

A pseudo-variable name is an identifier tha t refers to an object. In this
way, it is s imilar to a variable name. A pseudo-variable name is differ-
ent from a variable name in tha t its value cannot be changed with an
ass ignment expression. Some of the pseudo-variables in the system are
constants; they always refer to the same objects. Three impor tan t pseu-
do-variable names are nil, true, and false.

nil

true

false

refers to an object used as the value of a var iable when no
o ther object is appropr ia te . Var iab les t h a t have not been
otherwise init ial ized refer to nil.

refers to an object t h a t represen ts logical accuracy. It is
used as an af f i rmat ive response to a message mak ing a
s imple yes-no inquiry.

refers to an object t h a t represen ts logical inaccuracy. It is
used as a negat ive response to a message mak ing a simple
yes-no inquiry.

The objects named true and false are called Boolean objects. They repre-
sent the answers to yes-no questions. For example, a number will re-
spond with true or false to a message asking whether or not the number
is grea ter than another number. Boolean objects respond to messages
tha t compute logical functions and perform conditional control struc-
tures.

There are other pseudo-variables in the system (for example, self and
super) whose values are different depending on where they are used.
These will be described in the next three chapters.

24
Express ion S y n t a x

Messages Messages r e p r e s e n t t h e i n t e r a c t i o n s b e t w e e n the c o m p o n e n t s of the
S m a l l t a l k - 8 0 sys tem. A m e s s a g e r eques t s an ope ra t ion on t he p a r t of

t he receiver . Some e x a m p l e s of m e s s a g e express ions and the in te rac -
t ions t hey r e p r e s e n t follow.

Messages to n u m b e r s r e p r e s e n t i n g a r i t h m e t i c ope ra t ions

3--I-4

index + 1

index > limit

theta sin

quantity sqrt

computes the sum of three and four.

adds one to the number named index.

inquires whether or not the number named index is greater
than the number named limit.

computes the sine of the number named theta.

computes the positive square root of the number named
quantity.

Messages to l i n e a r d a t a s t r u c t u r e s r e p r e s e n t i n g t he add i t ion or r e m o v a l
of i n f o r m a t i o n

list addFirst: newComponent
adds the object named newComponent as the first element
of the linear data structure named list.

list removeLast removes and returns the last element in list.

Messages to assoc ia t ive d a t a s t r u c t u r e s (such as d ic t ionar ies) r ep re sen t -

ing the add i t ion or r e m o v a l of i n f o r m a t i o n

ages at: "Brett Jorgensen" put: 3
associates the string "Brett Jorgensen' with the number 3
in the dictionary named ages.

addresses at: 'Peggy Jorgensen"
looks up the object associated with the string 'Peggy
dorflensen' in the dictionary named addresses.

Messages to r e c t a n g l e s r e p r e s e n t i n g g r a p h i c a l inqui r ies and calcula-
t ions

frame center answers the position of the center of the rectangle named
frame.

frame containsPoint: cursorLocation
answers true if the position named cursorLocation is inside
the rectangle named frame, and false otherwise.

25
Messages

frame intersect: clippingBox
computes the rectangle that represents the intersection of
the two rectangles named frame and clippingBox.

Messages to financial history records represent ing t ransact ions and in-
quiries

HousehoidFinances spend: 32.50 on: 'utilities"
informs the financial history named HouseholdFinances
that $32.50 has been spent on utility bills.

HouseholdFinances totalSpentFor: "food"
asks HouseholdFinances how much money has been spent
for food.

Selectors and
Arguments

A message expression describes a receiver, selector, and possibly some
arguments. The receiver and a rguments are described by other expres-
sions. The selector is specified literally.

A message's selector is a name for the type of interact ion the sender
desires with the receiver. For example, in the message

theta sin

the receiver is a number referred to by the variable named theta and
the selector is sin. I t is up to the receiver to decide how to respond to
the message (in this case, how to compute the sine function of its value).

In the two message expressions

3 + 4

and

previousTotal + increment

the selectors are + . Both messages ask the receiver to calculate and re-
tu rn a sum. These messages each contain an object in addition to the
selector (4 in the first expression and increment in the second). The ad-
ditional objects in the message are a rguments tha t specify the amount
to be added.

The following two message expressions describe the same kind of op-
eration. The receiver is an instance of FinancialHistory and will r e tu rn
the amoun t of money spent for a par t icular reason. The a rgumen t indi-
cates the reason of interest. The first expression requests the amount
spent for uti l i ty bills.

26
Expression Syntax

HouseholdFinances totalSpentOn: "utilities"

The amount spent for food can be found by sending a message with the
same selector, but with a different argument .

HouseholdFinances totalSpentOn: "food"

The selector of a message determines which of the receiver's operations
will be invoked. The a rgumen t s are other objects tha t are involved in
the selected operation.

E] Unary Messages Messages without a rguments are called unary
messages. For example, the money current ly available according to
HouseholdFinances is the value of the una ry message expression

HouseholdFinances cashOnHand

These messages are called una ry because only one object, the receiver,
is involved. A unary message selector can be any simple identifier. Oth-
er examples of unary message expressions are

theta sin
quantity sqrt
nameString size

E] Keyword Messages The general type of message with one or more
a rguments is the keyword message. The selector of a keyword message
is composed of one or more keywords, one preceding each argument . A
keyword is a simple identifier with a trai l ing colon. Examples of expres-
sions describing single keyword messages are

HouseholdFinances totalSpentOn: 'utilities'
index max: limit

A message with two a rguments will have a selector with two keywords.
Examples of expressions describing double keyword messages are

HouseholdFinances spend: 30.45 on: "food"
ages at: 'Brett Jorgensen' put: 3

When the selector of a mult iple keyword message is referred to inde-
pendently, the keywords are concatenated. The selectors of the last two
message expressions are spend:on: and at:put:. There can be any num-

27
Messages

ber of keywords in a message, but most messages in the system have
fewer than three.

[~] Binary Messages There is one other type of message expression
tha t takes a single argument , the binary message. A binary message se-
lector is composed of one or two nona lphanumer ic characters. The only
restrict ion is tha t the second charac ter cannot be a minus sign. Binary
selectors tend to be used for ar i thmet ic messages. Examples of b inary
message expressions are

3 + 4

t o t a l - 1

total < = max

Returning Values
Small talk-80 messages provide two-way communication. The selector
and a rguments t r ansmi t information to the receiver about what type of
response to make. The receiver t ransmi ts information back by re turn-
ing an object tha t becomes the value of the message expression. If a
message expression includes an ass ignment prefix, the object re turned
by the receiver will become the new object referred to by the variable.
For example, the expression

sum ~- 3 + 4

makes 7 be the new value of the variable named sum. The expression

x ~- theta sin

makes the sine of theta be the new value of the variable named x. If the
value of theta is 1, the new value of x becomes 0.841471. If the value of
theta is 1.5, the new value of × becomes 0.997495.

The number referred to by index can be incremented by the expres-
sion

index ~ index + 1

Even if no information needs to be communicated back to the sender, a
receiver always re turns a value for the message expression. Return ing a
value indicates tha t the response to the message is complete. Some mes-
sages are mean t only to inform the receiver of something. Examples are
the messages to record financial t ransact ions described by the following
expressions.

H o u s e h o l d F i n a n c e s spend: 32.50 on: 'ut i l i t ies '

H o u s e h o l d F i n a n c e s receive: 1000 from: "pay"

28
Expre s s ion S y n t a x

Parsing

The receiver of these messages informs the sender only tha t it is fin-
ished recording the transaction. The default value re turned in such
cases is usually the receiver itself. So, the expression

var ~- HouseholdFinances spend: 32.50 on: 'utilities'

results in var referring to the same financial history
Household Finances.

as

All of the message expressions shown thus far have described the re-
ceiver and arguments with literals or variable names. When the receiv-
er or a rgument of a message expression is described by another
message expression, the issue of how the expression is parsed arises. An
example of a unary message describing the receiver of another unary
message is

1.5 tan rounded

Unary messages are parsed left to right. The first message in the exam-
ple is the unary selector tan sent to 1.5. The value of tha t message ex-
pression (a number around 14.1014) receives the unary message
rounded and re turns the nearest integer, 14. The number 14 is the val-
ue of the whole expression.

Binary messages are also parsed left to right. An example of a binary
message describing the receiver of another binary message is

index + offset * 2

The value re turned by index from the message + offset is the receiver
for the binary message * 2.

All binary selectors have the same precedence; only the order in
which they are wri t ten matters. Note tha t this makes mathemat ica l ex-
pressions in the Smalltalk-80 language different from those in many
other languages in which multiplication and division take precedence
over addition and subtraction.

Parentheses can be used to change the order of evaluation. A mes-
sage within parentheses is sent before any messages outside the paren-
theses. If the previous example were wri t ten as

index + (o f fse t . 2)

the multiplication would be performed before the addition.
Unary messages take precedence over binary messages. If unary

messages and binary messages appear together, the unary messages
will all be sent first. In the example

29
Messages

frame width + border width. 2

the value of frame width is the receiver of the binary message whose se-
lector is + and whose a rgument is the value of border width. The value
of the + message is, in turn, the receiver of the binary message * 2.
The expression parses as if it had been paren thes izedas follows:

((frame width) + (border width)) * 2

Parentheses can be used to send binary messages before unary mes-
sages. The expression

2 . theta sin

calculates twice the sine of theta, while the expression

(2 . theta)sin

calculates the sine of twice theta.
Whenever keywords appear in an unparenthesized message, they

compose a single selector. Because of this concatenation, there is no
left-to-right parsing rule for keyword messages. If a keyword message is
to be used as a receiver or a rgument of another keyword message, it
must be parenthesized. The expression

frame scale: factor max: 5

describes a single two-argument keyword message whose selector is
scale:max:. The expression

frame scale: (factor max: 5)

describes two single keyword messages whose selectors are scale: and
max:. The value of the expression factor max: 5 is the a rgument for the
scale: message to frame.

Binary messages take precedence over keyword messages. When una-
ry, binary, and keyword messages appear in the same expression with-
out parentheses, the unaries are sent first, the binaries next, and the
keyword last. The example

bigFrame width: smallFrame width • 2

is evaluated as if it had been parenthesized as follows:

bigFrame width: ((smallFrame width) • 2)

30
Expression Syntax

Formatting
Conventions

In the following example, a unary message describes the receiver of a
keyword message and a binary message describes the argument.

OrderedCollection new add: value • rate

To summarize the parsing rules:

1. Unary expressions parse left to right.

2. Binary expressions parse left to right.

3. Binary expressions take precedence over keyword expressions.

4. Unary expressions take precedence over binary expressions.

5. Parenthesized expressions take precedence over unary expressions.

A programmer is free to format expressions in various ways using
spaces, tabs, and carriage returns. For example, multiple keyword mes-
sages are often written with each keyword-argument pair on a different
line, as in

ages at: 'Brett Jorgensen'
put: 3

o r

HouseholdFinances
spend: 30.45
on: "food"

The only time that a space, tab, or carriage return affects the meaning
of an expression is when its absence would cause two letters or two
numbers to fall next to each other.

Cascading
There is one special syntactic form called cascading that specifies multi-
ple messages to the same object. Any sequence of messages can be
expressed without cascading. However, cascading often reduces the need
for using variables. A cascaded message expression consists of one de-
scription of the receiver followed by several messages separated by
semicolons. For example,

OrderedCollection new add: 1; add: 2; add: 3

Three add: messages are sent to the result of OrderedCollection new.
Without cascading, this would have required four expressions and a

31
B l o c k s

variable. For example, the following four expressions, separated by peri-
ods, have the same result as the cascaded expression above.

temp ~ OrderedCoilection new.
temp add: 1.
temp add: 2.
temp add: 3

Blocks Blocks are objects used in many of the control structures in the
Smalltalk-80 system. A block represents a deferred sequence of actions.
A block expression consists of a sequence of expressions separated by
periods and delimited by square brackets. For example,

[index ,- index + 1]

o r

[index ~-index + 1.
array at: index put: O]

If a period follows the last expression, it is ignored, as in

[expenditures at: reason.]

When a block expression is encountered, the statements enclosed in the
brackets are not executed immediately. The value of a block expression
is an object that can execute these enclosed expressions at a later time,
when requested to do so. For example, the expression

actions at: 'monthly payments'
put: [HouseholdFinances spend: 650 on: 'rent'.

HousehoidFinances spend: 7.25 on: 'newspaper'.
HouseholdFinances spend: 225.50 on: 'car payment']

does not actually send any spend:on: messages to HouseholdFinances. It
simply associates a block with the string 'monthly payments'.

The sequence of actions a block describes wi l l take place when the
block receives the unary message value. For example, the following two
expressions have identical effects.

32
Expression Syntax

index ~ index + 1

and

[index ~ index + 1] value

The object referred to by the expression

actions at: 'monthly payments'

is the block containing three spend:on: messages. The execution of the
expression

(actions at: 'monthly payments') value

results in those three spend:on: messages being sent
HouseholdFinances.

A block can also be assigned to a variable. So if the expression

to

incrementBIock ~ [index ~- index + 1]

is executed, then the expression

incrementBIock value

increments index.
The object returned after a value message is sent to a block is the

value of the last expression in the sequence. So if the expression

addBIock ~- [index + 1]

is executed, then another way to increment index is to evaluate

index ~ addBIock value

A block that contains no expressions returns nil when sent the message
value. The expression

[] value

has the value nil.

Control Structures
A control structure determines the order of some activities. The funda-
mental control structure in the Smalltalk-80 language provides that a
sequence of expressions will be evaluated sequentially. Many

33
Blocks

nonsequential control s t ructures can be implemented with blocks. These
control s t ructures are invoked either by sending a message to a block or
by sending a message with one or more blocks as arguments . The re-
sponse to one of these control s t ructure messages determines the order
of activities with the pat tern of value messages it sends to the block(s).

Examining the evaluation of the following sequence of expressions
gives an example of the way blocks work.

incrementBIock ~- [index ~ index + 1].
sumBIock ~- [sum + (index . index)].
sum ~- O.
index ~- 1.
sum ~ sumBIock value.
incrementBIock value.
sum ~- sumBIock value

The 15 actions taken as a result of evaluating this sequence of expres-
sions are

1. Assign a block to incrementBIock.

2. Assign a block to sumBIock.

3. Assign the number 0 to sum.

4. Assign the number 1 to index.

5. Send the message value to the block sumBIock.

6. Send the m e s s a g e , 1 to the number 1.

7. Send the message + 1 to the number 0.

8. Assign the number 1 to sum.

9. Send the message value to the block IncrementBIock.

10. Send the message + 1 to the number 1.

11. Assign the number 2 to index.

12. Send the message value to the block sumBIock.

13. Send the message * 2 to the number 2.

14. Send the message + 4 to the number 1.

15. Assign the number 5 to sum.

An example of a control s t ructure implemented with blocks is simple
repetition, represented by a message to an integer with timesRepeat: as
the selector and a block as the argument . The integer will respond by
sending the block as many value messages as its own value indicates.
For example, the following expression doubles the value of the variable
named amount four times.

4 timesRepeat: [amount ~- amount + amount]

34
Expression Syntax

Conditionals
Two common control s t ructures implemented with blocks are condition-
al selection and conditional repetition. Conditional selection is s imilar to
the if-then-else s ta tements in Algol-like languages and conditional repe-
tition is similar to the while and until s ta tements in those languages.
These conditional control s t ructures use the two Boolean objects named
true and false described in the section on pseudo-variables. Booleans are
re turned from messages tha t ask simple yes-no questions (for example,
the magni tude comparison messages: <, - , < = , >, > - , ~ -) .

E] Conditional Selection The conditional selection of an activity is
provided by a message to a Boolean with the selector ifTrue:ifFalse: and
two blocks as arguments . The only objects tha t unders tand
ifTrue:ifFalse: messages are true and false. They have opposite responses:
true sends value to the first a rgument block and ignores the second;
false sends value to the second a rgument block and ignores the first.
For example, the following expression assigns 0 or 1 to the variable par-
ity depending on whether or not the value of the variable number is di-
visible by 2. The binary message \ \ computes the modulus or
remainder function.

(number \ \ 2) - 0
ifTrue" [pari ty ~- O]
i fFalse: [pari ty ~- 1]

The value re turned from i fT rue : i fFa lse is the value of the block tha t
was executed. The previous example could also be wri t ten

parity ~- (number \ \ 2) - 0 i fTrue: [0] i fFa lse [1]

In addition to i fTrue: i fFalse:, there are two single-keyword messages
tha t specify only one conditional consequent. The selectors of these
messages are ifTrue: and ifFalse:. These messages have the same effect
as the ifTrue:ifFalse: message when one a rgument is an empty block.
For example, these two expressions have the same effect.

index < - l i m i t
i fTrue: [total ~ total + (list at: index)]

and

index < = limit
i fTrue: [total ~- total + (list at: index)]
ifFalse" []

Since the value of an empty block is nil, the following expression would
set lastElement to nil if index is grea ter than limit.

35
Blocks

lastElement ~ index > limit ifFalse: [list at: index]

El Conditional Repetition The conditional repeti t ion of an activity is
provided by a message to a block with the selector whileTrue: and an-
other block as an argument . The receiver block sends itself the message
value and, if the response is true, it sends the other block value and
then s tar ts over, sending itself value again. When the receiver's re-
sponse to value becomes false, it stops the repeti t ion and re turns from
the whileTrue: message. For example, conditional repeti t ion could be
used to initialize all of the e lements of an a r r ay named list.

index ~- 1.
[index < = list size]

whi leTrue: [list at: index put: O.
index ~ index + 1]

Blocks also unders tand a message with selector whileFalse: tha t repeats
the execution of the a rgumen t block as long as the value of the receiver
is false. So, the following expressions are equivalent to the one above.

index ~ 1.
[index > list size]

whi leFalse: [list at: index put: O.
index ~ - i ndex + 1]

Block Arguments

The p rogrammer is free to choose whichever message makes the intent
of the repeti t ion clearest. The value re turned by both whileTrue: and
whileFalse: is always nil.

In order to make some nonsequential control s t ructures easy to express,
blocks may take one or more arguments . Block a rguments are specified
by including identifiers preceded by colons at the beginning of a block.
The block a rguments are separated from the expressions tha t make up
the block by a vertical bar. The following two examples describe blocks
with one argument .

[:array I total ~- total + array size]

and

[:newElement I
index ~ index + 1.
list at: index put: newElement]

A common use of blocks with a rguments is to implement functions to
be applied to all elements of a data structure. For example, many ob-

36
Expression Syntax

jects representing different kinds of data s t ructures respond to the mes-
sage do:, which takes a s ingle-argument block as its argument . The
object tha t receives a do: message evaluates the block once for each of
the elements contained in the data structure. Each element is made the
value of the block a rgument for one evaluation of the block. The follow-
ing example calculates the sum of the squares of the first five primes.
The result is the value of sum.

sum ~ 0.
.~(2 3 5 7 11) d o : [: p r i m e l sum ,- sum + (pr ime, prime)]

The message collect: creates a collection of the values produced by the
block when supplied with the elements of the receiver. The value of the
following expression is an a r ray of the squares of the first five primes.

..~(2 3 5 7 11) co l lec t : [:p r ime l p r ime, prime]

The objects tha t implement these control s t ructures supply the values
of the block a rguments by sending the block the message value:. A
block with one block a rgument responds to value: b y s e t t i n g the block
a rgument to the a rgument of value: and then executing the expressions
in the block. For example, evaluat ing the following expressions results
in the variable total having the value 7.

sizeAdder ~ [:array I total ~ total + array size].
total ~ 0.
sizeAdder value: @(a b c).
sizeAdder value: @(1 2).
sizeAdder value: # (e f)

Blocks can take more than one argument . For example

[: x : y l (x , x) + (y , y)]

o r

[:frame :clippingBox I frame intersect: clippingBox]

A block must have the same number of block arguments as the number
of value: keywords in the message to evaluate it. The two blocks above
would be evaluated by means of a two-keyword message with selector
value:value:. The two arguments of the message specify the values of the
two block arguments , in order. If a block receives an evaluation mes-
sage with a different number of a rguments from the number of block
arguments it takes, an error will be reported.

37
S u m m a r y of T e r m i n o l o g y

S u m m a r y o f

T e r m i n o l o g y
T h e s y n t a x of e x p r e s s i o n s is s u m m a r i z e d i n s i d e t h e b a c k c o v e r of t h i s

b o o k .

express ion

literal

symbol

array

variable name

ass ignment

pseudo-variable
name

receiver

message selector

message argument

unary message

keyword

keyword message

binary message

cascading

block

block argument

value

value:

ifTrue:if False:

if False:if True:

ifTrue:

if False:

whileTrue:

A sequence of characters that describes an object.

An expression describing a constant, such as a number or a
string.

A string whose sequence of characters is guaranteed to be
different from that of any other symbol.

A data structure whose elements are associated with inte-
ger indices.

An expression describing the current value of a variable.

An expression describing a change of a variable's value.

An expression similar to a variable name. However, unlike
a variable name, the value of a pseudo-variable name can-
not be changed by an assignment.

The object to which a message is sent.

The name of the type of operation a message requests of its
receiver.

An object that specifies additional information for an oper-
ation.

A message without arguments.

An identifier with a trailing colon.

A message with one or more arguments whose selector is
made up of one or more keywords.

A message with one a rgument whose selector is made up of
one or two special characters.

A description of several messages to one object in a single
expression.

A description of a deferred sequence of actions.

A parameter that must be supplied when certain blocks
are evaluated.

A message to a block asking it to carry out the set of ac-
tions it represents.

A keyword used in a message to a block that has block ar-
guments; the corresponding message asks the block to car-
ry out its set of actions.

Message to a Boolean requesting conditional selection.

Message to a Boolean requesting conditional selection.

Message to a Boolean requesting conditional selection.

Message to a Boolean requesting conditional selection.

Message to a block requesting conditional repetition.

38
E x p r e s s i o n S y n t a x

whileFalse:

do:

collect:

Message to a block requesting conditional repetition.

A message to a collection request ing enumera t ion of its el-
ements.

A message to a collection requesting t ransformat ion of its
elements.

3
Classes and Instances

Protocol Descriptions
Message Categories

Implementation Descriptions

Variable Declarations
Instance Variables
Shared Variables

Methods
Argument Names
Returning Values
The Pseudo-variable self
Temporary Variables

Primitive Methods

Summary of Terminology

40
C l a s s e s a n d I n s t a n c e s

Objects represent the components of the Smalltalk-80 system the
numbers, data structures, processes, disk files, process schedulers, text
editors, compilers, and applications. Messages represent interactions be-
tween the components of the Smalltalk-80 s y s t e m - - t h e ari thmetic,
data accesses, control structures, file creations, text manipulat ions,
compilations, and application uses. Messages make an object's
functionality available to other objects, while keeping the object's im-
plementat ion hidden. The previous chapter introduced an expression
syntax for describing objects and messages, concentrat ing on how mes-
sages are used to access an object's functionality. This chapter intro-
duces the syntax for describing methods and classes in order to show
how the functionality of objects is implemented.

Every Smalltalk-80 object is an instance of a class. The instances of a
class all have the same message interface; the class describes how to

• carry out each of the operations available through tha t interface. Each
operation is described by a method. The selector of a message deter-
mines what type of operation the receiver should perform, so a class
has one method for each selector in its interface. When a message is
sent to an object, the method associated with tha t type of message in
the receiver's class is executed. A class also describes what type of pri-
vate memory its instances will have.

Each class has a name tha t describes the type of component its in-
s tances represent. A class name serves two fundamental purposes; it is
a simple way for instances to identify themselves, and it provides a way
to refer to the class in expressions. Since classes are components of the
Smalltalk-80 system, they are represented by objects. A class's name
automatical ly becomes the name of a globally shared variable. The val-
ue of tha t variable is the object representing the class. Since class
names are the names of shared variables, they must be capitalized.

New objects are created by sending messages to classes. Most classes
respond to the unary message new by creating a new instance of them-
selves. For example,

OrderedCollection new

re turns a new collection tha t is an instance of the system class
OrderedCollection. The new 0rderedCollection is empty. Some classes
create instances in response to other messages. For example, the class
whose instances represent times in a day is Time; Time responds to the
message now with an instance represent ing the cu r r en t time. The class
whose instances represent days in a year is Date; Date responds to the
message today with an instance representing the current day. When a
new instance is created, it automatical ly shares the methods of the
class tha t received the instance creation message.

41
Protocol Descriptions

This chapter introduces two ways to present a class, one describing
the functionali ty of the instances and the other descr ibing the imple-
menta t ion of tha t functionality.

1. A protocol description lists the messages in the instances' message
interface. Each message is accompanied by a comment describing
the operation an instance will perform when it receives tha t type
of message.

2. An implementation description shows how the functionali ty de-
scribed in the protocol description is implemented. An implemen-
tat ion description gives the form of the instances' private memory
and the set of methods tha t describe how instances perform their
operations.

A third way to present classes is an interactive view called a system
browser. The browser is part of the programming interface and is used
in a running Smalltalk-80 system. Protocol descriptions and implemen-
tat ion descriptions are designed for noninteract ive documentat ion like
this book. The browser will be described briefly in Chapter 17.

Protocol
Descriptions

A protocol description lists the messages understood by instances of a
part icular class. Each message is listed wi th a comment about its
functionality. The comment describes the operation tha t will be
performed when the message is received and what value will be re-
turned. The comment describes what will happen, not how the opera-
t i onwi l l be performed. If the comment gives no indication of the value
to be returned, then the value is assumed to be the receiver of the mes-
sage.

For example, a protocol description entry for the message to a
FinancialHistory With the selector spend:for: is

spend: amount for: reason Remember that an amount of money, amount,
has been spent for reason.

Messages in a protocol description are described in the form of message
patterns, A message pat tern contains a message selector and a set of ar-
gument names, one name for each a rgument tha t a message with tha t
selector would have. For example, the message pat tern

spend: amount for: reason

42
C l a s s e s a n d I n s t a n c e s

matches the messages described by each of the following three expres-
sions.

HouseholdFinances spend: 32.50 for: 'utilities"
HouseholdFinances spend: cost-4- tax for: 'food'
HousehoidFinances spend: 100 for: usualReason

The a rgument names are used in the comment to refer to the argu-
ments. The comment in the example above indicates tha t the first argu-
ment represents the amount of money spent and the second a rgument
represents what the money was spent for.

Message Categories
Messages tha t invoke similar operations are grouped together in catego-
ries. The categories have names that indicate the common functionality
of the messages in the group. For example, the messages to
FinancialHistory are grouped into three categories named transaction re-
cording, inquiries, and initialization. This categorization is intended to
make the protocol more readable to the user; it does not affect the oper-
ation of the class.

The complete protocol description for FinanciaiHistory is shown next.

FinancialHistory protocol

transaction recording
receive: amount from: source

spend: amount for: reason

inquiries
cashOnHand

totalReceivedFrom" source

totalSpentFor: reason

Remember tha t an amoun t of money, amount,
has been received from source.

Remember tha t an amoun t of money, amount,
has been spent for reason.

Answer the total amoun t of money cur ren t ly
on hand.

Answer the total amoun t received from source,
so far.

Answer the total amoun t spent for reason, so
far.

initialization
initialBalance: amount Begin a financial his tory with amount as the

amoun t of money on hand.

A protocol description provides sufficient information for a programmer
to know how to use instances of the class. From the above protocol de-
scription, we know tha t any instance of FinancialHistory should respond
to the messages whose selectors are receive:from:, spend:for:,
cashOnHand, totalReceivedFrom:, totalSpentFor:, and initialBalance:. We
can guess that when we f irst create an instance of a FinancialHistory,
the message initialBalance: should be sent to the instance in order to set
values for its variables.

43
Implementation Descriptions

Implementation
Descriptions

An implementation description has three parts.

1. a class name

2. a declaration of the variables available to the instances

3. the methods used by instances to respond to messages

An example of a complete implementation description for
FinancialHistow is given next. The methods in an implementation de-
scription are divided into the same categories used in the protocol de-
scription. In the interactive system browser, categories are used to
provide a hierarchical query path for accessing the parts of a class de-
scription. There are no special character delimiters separating the vari-
ous parts of implementation descriptions. Changes in character font and
emphasis indicate the different parts. In the interactive system browser,
the parts are stored independently and the system browser provides a
structured editor for accessing them.

class name
instance variable names

instance methods

transaction recording

FinancialHistory
cashOnHand
incomes
expenditures

rece ive : a m o u n t f rom: source
incomes at: source

put: (self totalReceivedFrom: source) -+. amount.
cashOnHand ~- cashOnHand --t- amount

spend: a m o u n t for: reason
expenditures at: reason

put: (self totalSpentFor: reason) -t- amount.
cashOnHand ~ cashOnHand - amount

inquiries

c a s h O n H a n d
tcashOnHand

t o t a l R e c e i v e d F r o m : source
(incomes includesKey: source)

ifTrue: [t incomes at: source]
ifFalse: [tO]

to ta lSpentFor : reason
(expenditures includesKey: reason)

ifTrue: [texpenditures at: reason]
ifFalse: [tO]

44
Classes and Instances

initialization

in i t i a lBa lance : a m o u n t
c a s h O n H a n d ~- a m o u n t .

i n c o m e s ~ D i c t i o n a r y n e w .

e x p e n d i t u r e s ~ D i c t i o n a r y n e w

This implementa t ion description is different from the one presented for
FinancialHisto~ on the inside front cover of this book. The one on the
inside front cover has an additional par t labeled ~class methods" tha t
will be explained in Chapter 5; also, it omits the initialization method
shown here.

Variable
Dec larat ions

The methods in a class have access to five different kinds of variables.
These kinds of variables differ in terms of how widely they are avail-
able (their scope) and how long they persist.

There are two kinds of private variables available only to a single ob -~

ject.

1. Instance variables exist for the ent ire lifetime of the object.

2. Temporary variables are created for a specific activity and are
available only for the durat ion of the activity.

Instance variables represent the cur rent state of an object. Temporary
variables represent the t rans i tory state necessary to carry out some ac-
tivity. Temporary variables are typically associated with a single execu-
tion of a method: they are created when a message causes the method
to be executed and are discarded when the method completes by re turn-
ing a value.

The three other kinds of variables can be accessed by more than one
object. They are distinguished by how widely they are shared.

3. Class variables are shared by all the instances of a single class.

4. Global variables are shared by all the instances of all classes (that
is, by all objects).

5. Pool variablesare shared by the instances of a subset of the class-
es in the system.

The majori ty of shared variables in the system are ei ther class vari-
ables or global variables. The majori ty of global variables refer to the
classes in the system. An instance of FinancialHiston/ named

45
Variable Declarations

HouseholdFinances was used in several of the examples in the previous
chapters . We used HouseholdFinances as if it were defined as a global
variable name. Global variables are used to refer to objects tha t are not
parts of other objects.

Recall tha t the names of shared variables (3-5) are capitalized, while
the names of private variables (1-2) are not. The value of a shared vari-
able will be independent of which instance is using the method in
which its name appears. The value of instance variables and
temporaries will depend on the instance using the method, that is, the
instance tha t received a message.

Instance Variables
There are two types of instance variables, named and indexed. They dif-
fer in terms of how they are declared and how they are accessed. A
class may have only named instance variables, only indexed variables,
or some of each.

EJ Named Instance Variables An implementat ion description includes
a set of names for the instance variables that make up the individual
instances. Each instance has one variable corresponding to each in-
stance variable name. The variable declaration in the implementat ion
description of FinancialHistory specified three instance variable names.

instance variable names cash©nHand
incomes
expenditures

An instance of FinancialHistory uses two dictionaries to store the total
amounts spent and received for various reasons, and uses another vari-
able to keep track of the cash on hand.

• expenditures refers to a dictionary that associates spending reasons
with amounts spent.

• incomes refers to a dictionary tha t associates income sources with
amoun t s received.

• cashOnHand refers to a number represent ing the amount of money
available.

When expressions in the methods of the class use one of the variable
names incomes, expenditures, or cashOnHand, these expressions refer to
the value of the corresponding instance variable in the instance that re-
ceived the message.

When a new instance is created by sending a message to a class, it
has a new set of instance variables. The instance variables are initial-
ized as specified in the method associated with the instance creation
message. The default initialization method gives each instance variable
a value of nit.

46
Classes and Instances

For example, in order for the previous example messages to
HouseholdFinances to work, an expression such as the following must
have been evaluated.

HouseholdFinances ~ FinancialHistory new initialBalance: 350

FinancialHistory new creates a new object whose three instance variables
all refer to nil. The initialBalance: message to that new instance gives
the three instance variables more appropriate initial values.

E~] Indexed Instance Variables Instances of some classes can have in-
stance variables that are not accessed by names. These are called
indexed instance variables. Instead of being referred to b y name,
indexed instance variables are referred to by messages that include in-
tegers, called indices, as arguments . Since indexing is a form of associa-
tion, the two fundamental indexing messages h a v e the same selectors
as the association messages to dict ionaries--at : and at:put:. For exam-
ple, instances of Array have indexed variables. If names is an instance of
Array, the expression

names at: 1

re turns the value of its first indexed instance variable. The expression

names at: 4 put: 'Adele'

stores the str ing 'Adele' as the value of the four th indexed instance
variable of names. The legal indices run from one to the number of
indexed variables in the instance.

If the instances of a class have indexed instance variables, its vari-
able declaration will include the line indexed instance variables. For exam-
ple, par t of the implementat ion description for the system class Array is

class name Array
indexed instance variables

Each instance of a class that allows indexed instance variables may
have a different number of them. All instances of FinanciaIHistory have
three instance variables, but instances of Array may have any number
of instance variables.

A class whose instances have indexed instance variables can also
have named instance variables. All instances of such a class will have
the same number of named instance variables, but may have different
numbers of indexed variables. For example, a system class representing
a collection whose elements are ordered, OrderedCollection, has indexed
instance variables to hold its contents. An OrderedCollection might have
more space for storing elements than is current ly being used. The two

47
Variable Declarations

named instance variables remember the indices of the first and last ele-
ment of the contents.

class name
instance variable names

indexed instance variables

OrderedCol lection
firsttndex
lastlndex

All instances of OrderedCo l lec t ion will have two named variables, but
one may have five indexed instance variables, another 15, another 18,
and so on.

The named instance variables of an instance of FinancialHistory are
private in the sense tha t access to the values of the variables is con-
trolled by the instance. A class may or may not include messages giving
direct access to the instance variables. Indexed instance variables are
not private in this sense, since direct access to the values of the vari-
ables is available by sending messages with selectors at: and at:put:.
Since these messages are the only way to access indexed instance vari-
ables, they must be provided.

Classes with indexed instance variables create new instances with
the message new: instead of the usual message new. The a rgument of
new: tells the number of indexed variables to be provided.

list ~- Array new: 10

creates an Array of 10 elements, each of which is initially the special ob-
ject nil. The number of indexed instance variables of an instance can be
found by sending it the message size. The response to the message size

list size

is, for this example, the integer 10.
Evaluatit!g each of the following expressions, in order,

list ~- Array new: 3.
list at: 1 put: 'one ' .
list at: 2 put: ' two' .
list at: 3 put: ' three"

is equivalent to the single expression

Shared Variables

list ~- :#('one" ' two ' ' three ')

Variables tha t are shared by more than one object come in groups
called pools. Each class has two or more pools whose variables can be
accessed by its instances. One pool is shared by all classes and contains
the global variables; this pool is named Smalitalk. Each class a lso has a

48
Classes and Instances

pool which is only available to its instances and contains the class vari-
ables.

Besides these two manda to ry pools, a class may access some other
special purpose pools shared by several classes. For example, there are
several classes in the system tha t represent textual information; these
classes need to share the ASCII charac ter codes for characters tha t are
not easily indicated visually, such as a carr iage re turn, tab, or space.
These numbers are included as variables in a pool named TextConstants
tha t is shared by the classes implement ing text display and text editing.

If FinancialHistory had a class variable named SalesTaxRate and
shared a pool d ic t ionary whose name is FinancialConstants, the declara-
tion would be expressed as follows.

instance variable names

class variable names
shared pools

cashOnHand
incomes
expenditures
SalesTaxRate
FinancialConstants

SalesTaxRate is the name of a class variable, so it can be used in any
methods in the class. FinancialConstants, on the other hand, is the name
of a pool; it is the variables in the pool tha t can be used in expressions.

I n order to declare a variable to be global (known to all classes and
to the user 's interact ive system), the variable name must be inserted as
a k e y in the dict ionary Smalltalk. For example, to make AIIHistories
global, evaluate the expression

Smalltaik at: #AI IHis tor ies put: nil

Then use an ass ignment s t a t ement to set the value of AliHistories.

Methods A method describes how an object will perform one of its operations. A
method is made up of a message pa t te rn and a sequence of expressions
separated by periods. The example method shown below describes the
response of a FinanciaiHistory to messages informing it of expenditures.

spend: amount for: reason
expenditures at: reason

put: (self totalSpentFor: reason) 4- amount.
cashOnHand ~- cashOnHand- amount

The message pat tern , spend: amount for: reason, , indicates tha t this
method will be used in response to all messages with selector spend:for:.

49
Methods

The first expression in the body of this method adds the new amount to
the amount already spent for the reason indicated. The second expres-
sion is an assignment tha t decrements the value of cashOnHand by the
new amount.

Argument Names

Returning Values

Message pat terns were introduced earlier in this chapter. A message
pat tern contains a message selector and a set of a rgument names, one
for each a rgument tha t a message with tha t selector would have. A
message pa t te rn matches any messages tha t have the same selector. A
class will have only one method with a given selector in its message
pattern. When a message is sent, the method with matching message
pat tern is selected from the class of the receiver. The expressions in the
selected method are evaluated one after another. After all the expres-
sions are evaluated, a value is re turned to the sender of the message.

The a rgument names found in a method's message pat tern are pseu-
do-variable names referring to the arguments of the actual message. If
the method shown above were invoked by the expression

HouseholdFinances spend" 30.45 for: "food'

the pseudo-variable name amount would refer to the number 30.45 and
the pseudo-variable name reason would refer to the string ' f o o d ' dur-
ing the evaluation of the expressions in t he method. If the same method
were invoked by the expression

HouseholdFinances spend: coslt + tax for: 'food'
i

cost would be sent the message • tax and the value it returned would
be referred to as amount in the ~ethod. If cost referred to 100 and tax
to 6.5, the value of amount would be 106.5.

Since a rgument names are pseu~lo-variable names, they can be used
to access values like variable names, but their values cannot be
changed by assignment. In the method for spend:for:, a s ta tement of the
form

amount ~- amount , taxRate

would be syntactically illegal since the value of amount cannot be
reassigned.

The method for spend:for: does not specify what the value of the mes-
sage should be. Therefore, the default value, the receiver itself, will be
returned. When another value is to be specified, one or more re turn ex-
pressions are included in the method. Any expression can be turned

50
Classes and Instances

The Pseudo-
variable se l f

into a re turn expression by preceding it with an uparrow (t). The value
of a variable may be re turned as in

t c a s h O n H a n d

The value of another message can be re turned as in

t expend i tu res at: reason

A literal object can be re turned as in

tO

Even an assignment s ta tement can be turned into a re turn expression,
as in

l" init ial lndex ~- 0

The assignment is performed first. The new value of the variable is
then returned.

An example of the use of a re turn expression is the following imple-
mentat ion of totalSpentFor:.

to ta lSpentFor : reason
(expenditures includesKey: reason)

ifTrue: [texpenditures at: reason]
ifFalse: [1'0]

This method consists of a single conditional expression. If the expendi-
ture reason is in expenditures, the associated value is returned; other-
wise, zero is returned.

Along with the pseudo-variables used t o refer to the a rguments of a
message, all methods have access to a pseudo-variable named self tha t
refers to the message receiver itself. For example, in the method for
spend:for:, the message totalSpentFor: is sent to the receiver of the
spend:for: message.

spend: a m o u n t for: reason
expenditures at: reason

put: (self totalSpentFor: reason) + amount.

cashOnHand ~- cashOnHand - amount

When this method is executed, the first thing tha t happens is that
totalSpentFor: is sent to the same object (self) tha t received spend:for:.
The result of that message is sent the message ÷ amount, and the re-
sult of tha t message is used as the second a rgument to at:put:.

51
Methods

The pseudo-variable self can be used to implement recursive func-
tions. For example, the message factorial is understood by integers in or-
der to compute the appropriate function. The method associated with
factorial is

factor ial
self = 0 ifTrue: [1' 1].

self < 0
ifTrue: [self error: "factorial inva l id ']

i fFalse: [t s e l f . (self -- 1) factor ial]

The receiver is an I n teger . The first expression tests to see if the receiv-
er is 0 and, if it is, re turns 1. The second expression tests the sign of the
receiver because, if it is less than 0, the programmer should be notified
of an error (all objects respond to the message error: with a report that
an error has been encountered). If the receiver is greater than 0, then
the value to be re turned is

s e l f , (se l f - 1) factorial

The value re turned is the receiver multiplied by the factorial of one less
than the receiver.

Temporary
Variables

The a rgument names and se l f are available only during a single execu-
tion of a method. In addition to these pseudo-variable names, a method
may obtain some other variables for use during its execution. These are
called temporary variables. Temporary variables are indicated by in-
cluding a temporary variable declaration between the message pat tern
and the expressions of a method. A temporary declaration consists of a
set of variable names between vertical bars. The method for spend:for:
could be rewri t ten to use a temporary variable to hold the previous ex-
penditures.

spend: amount for: reason
I p rev iousExpendi tures I
p rev iousExpendi tures ~ self to ta lSpentFor: reason.

expendi tures at: reason
put: prev iousExpendi tures .-I- amount.

cashOnHand ~ cashOnHand - amount

The values of temporary variables are accessible only to s ta tements in
the method and are forgotten when the method completes execution.
All temporary variables initially refer to nil.

In the interactive Smalltalk-80 system, the programmer can test al-
gori thms that make use of temporary variables. The test can be carried
out by using the vertical bar notation to declare the variables for the
durat ion of the immediate evaluation only. Suppose the expressions to

52
C l a s s e s a n d I n s t a n c e s

be tried out include reference to the variable list. If the variable list is
undeclared, an a t tempt to evaluate the expressions will create a syntax
error message. Instead, the programmer can declare list as a temporary
variable by prefixing the expressions with the declaration I list I. The
expressions are separated by periods, as in the syntax of a method.

I list l
list ~- Array new: 3.
list at: 1 put: "one'.
list at: 2 put: ' four ' .
list pr intStr ing

The programmer interactively selects all five l i ne s - - t he declaration
and the express ions- -and requests evaluation. The variable list is avail-
able only during the single execution of the selection.

Primit ive
Methods

When an object receives a message, it typically just sends other mes-
sages, so where does something really happen? An object may change
the value of its instance variables when it receives a message, which
certainly qualifies as ~something happening." But this hardly seems
enough. In fact, it is not enough. All behavior in the system is invoked
by messages, however, all messages are not responded to by executing
Smalltalk-80 methods. There are about one hundred primitive methods
tha t the Smalltalk-80 vir tual machine knows how to perform. Examples
of messages tha t invoke primitives are the + message to small integers,
the at: message to objects with indexed instance variables, and the new
and new: messages to classes. When 3 gets the message + 4, it does not
execute a Small talk-80 method. A primitive method re turns 7 as the
value of the message. The complete set of primitive methods is included
in the fourth par t of this book, which degcribes the virtual machine.

Methods tha t are implemented as primitive methods begin with an
expression of the form

< pr imit ive ~ >

where # is an integer indicating which primitive method will be
followed. If the primitive fails to perform correctly, execution continues
in the Smalltalk-80 method. The expression < primitive # > is followed
by Smalltalk-80 expressions that handle failure situations.

53
S u m m a r y of T e r m i n o l o g y

S u m m a r y of
T e r m i n o l o g y

class

instance

instance variable

protocol descrip-
tion

implementation
description

message pattern

temporary vari-
able

class variable

global variable
pool variable

Smalltalk

method

argument name

self

message category
primitive method

An object tha t describes the implementa t ion of a set of
s imilar objects.

One of the objects described by a class; it has memory and
responds to messages.

A variable available to a single object for the ent ire life-
t ime of the object; instance variables can be named or
indexed.

A description of a class in te rms of its instances ' public
message protocol.

A description of a class in te rms of its instances ' private
memory and the set of methods tha t describe how in-
stances perform their operations.

A message selector and a set of a rgument names, one for
each a rgumen t tha t a message with this s e l ec to r must
have.

A variable created for a specific activity and available only
for the durat ion oI tha t activity.

A variable shared by all the instances of a single class.

A variable shared by all the instances of all classes.

A variable shared by the instances of a set of classes.

A pool shared by all classes tha t contains the global vari-
ables.

A procedure describing how to perform one of an object's
operations; it is made up of a message pat tern, t emporary
variable declaration, and a sequence of expressions. A
method is executed when a message matching its message
pa t te rn is sent to an instance of the class in which the
method is found

Name of a pseudo-variable available to a method only for
the durat ion of tha t method's execution; the value of the
a rgumen t names are the a rguments of the message tha t
invoked the method.

When used in a method, indicates tha t the value of the
next expression is to be the value of the method.

A pseudo-variable referring to the receiver of a message.

A group of methods in a class description.

An operation periormed directly by the Small talk-80 virtu-
al machine; it is not described as a sequence of
Small ta lk-80 expressions.

..~ ~.. ~. ~ . . . , i ~ ..,i .. ~..•,t .. -'~ ~.-"i~ ;.,,i~:...,

" ' ~ " ~ .:'..".~ ~'.~ ;-'."~i "
• . l i l ~ -..III,,~ . . I I I~ -. . l i l~ ..I

.
• . i l l . . k.jIl~ .4h.~ ~.d,4 . . jh4 -.j

~'~-~"~ "'~ g'~t: ''''~
~,,,, :.~,,X "':,";,;~ ..',t,'. :;;,h g.-,

. ' .~ % . ' .~ 2,-" N . ' ~ ~ . ' : . : ~_

• . "~ .~'.%

4
Subclasses

Subclass Descriptions

An Example Subclass

Method Determination
Messages to s e l f

Messages to super

Abstract Superclasses

Subclass Framework Messages

S u m m a r y of T e r m i n o l o g y

56
S u b c l a s s e s

Every object in the Smal l ta lk-80 sys tem is an ins tance of a class. All in-
s tances of a class r epresen t the same kind of sys tem component . For ex-
ample, each ins tance of Rectangle represents a r ec t angu la r a rea and
each ins tance of Dictionary represen ts a set of associations between
names and values. The fact t ha t the ins tances of a class all r ep resen t
the same kind of component is reflected both in the way the ins tances
respond to messages and in the form of the i r ins tance variables.

• All ins tances of a class respond to the same set of messages a n d
use the same set of methods to do so.

• All ins tances of a class have the same n u m b e r of n a m e d ins tance
var iables and use the same names to refer to them.

• An object can have indexed ins tance var iables only if all ins tances
of its class can have i n d e x e d ins tance variables.

The class s t ruc tu re as described so far does not explici t ly provide for
any intersect ion in class membersh ip . Each object is an ins tance of ex-
act ly one class. This s t ruc tu re is i l lus t ra ted in Figure 4.1. In the figure,
the smal l circles r epresen t ins tances and the boxes represen t classes. If
a circle is wi th in a box, then it represen ts an ins tance of the class rep-
resented by the box.

O O

O

O

Figure 4.1

O O

Lack of in tersect ion in class membersh ip is a l imi ta t ion on design in an
object-oriented sys tem since it does not allow any shar ing between class
descript ions. We migh t wan t two objects to be subs tan t ia l ly similar , but
to differ in some par t i cu la r way. For example, a f loating-point n u m b e r
and an in teger are s imi lar in the i r abi l i ty to respond to a r i thmet i c mes-
sages, but are different in the way they represen t numer ic values. An
ordered collection and a bag are s imi lar in t ha t they are conta iners to
which e lements can be added and from which e lements can be removed,

57
S u b c l a s s e s

but they are different in the precise way in which individual elements
are accessed. The difference between otherwise similar objects may be
externally visible, such as responding to some different messages, or it
may be purely internal, such as responding to the same message by ex-
ecuting different methods. If class memberships are not allowed to over-
lap, this type of partial similarity between two objects cannot be
guaranteed by the system.

The most general way to overcome this limitation is to allow arbi-
t rary intersection of class boundaries (Figure 4.2).

Figure 4.2

0
0 0

0 0 0 l

0
0 0

We call this approach multiple inheritance. Multiple inheritance allows
a situation in which some objects are instances of two classes, while
other objects are instances of only one class or the other. A less general
relaxation of the nonintersection limitation on classes is to allow a class
to include all instances of another class, but not to allow more general
sharing (Figure 4.3).

0 0 0

0 ~ 0
0

0 0 W 0

o 0

O

O

Figure 4.3

o

i 0 0

0

0 0

We call this approach subclassing. This follows the terminology of the
programming language Simula, which includes a similar concept.
Subclassing is strictly hierarchical; if any instances of a class are also

58
Subclasses

instances of another class, then all instances of tha t class must also be
instances of the other class.

The Small talk-80 system provides the subclassing form of inher i tance
for its classes. This chapter describes how subclasses modify their
superclasses, how this affects the association of messages and methods,
and how the subclass mechanism provides a f ramework for t h e classes
in the system.

Subclass
Descriptions

A subclass specifies tha t its instances will be the same as instances of
another class, called its superclass, except for the differences tha t are
explicitly stated. The Small talk-80 p rogrammer always creates a new
class as a subclass of an existing class. A system class named Object de-
scribes the similarit ies of all objects in the system, so every class will at
least be a subclass of Object. A class description (protocol or implemen-
tation) specifies how its instances differ from the instances of its super-
class. The instances of a superclass can not be affected by the existence
of subclasses.

A subclass is in all respects a class and can therefore have subclasses
itself. Each class has one superclass, a l though many classes may share
the same superclass, so the classes form a tree structure. A class has a
sequence of classes from which it inheri ts both variables and methods.
This sequence begins with its superclass and continues with its super-
class's superclass, and so on. The inher i tance chain continues through
the superclass relat ionship until Object is encountered. Object is the
single root class; it is the only class without a superclass.

Recall tha t an implementa t ion description has three basic parts:

1. A class name

2. A variable declaration

3. A set of methods

A subclass must provide a new class name for itself, but it inheri ts both
the variable declarat ion and methods of its superclass. New variables
may be declared and new methods may be added by the subclass. If in-
stance variable names are added in the subclass variable declaration,
instances of the subclass will have more instance variables than in-
stances of the superclass. If shared variables are added, they will be ac-
cessible to the instances of the subclass, but not to instances of the
superclass. All variable names added must be different from any de-
clared in the superclass.

59
An Example Subclass

If a class does not have indexed ins tance variables, a subclass can de-
clare t h a t its ins tances will have indexed variables; these indexed vari-
ables will be in addit ion to any inher i t ed n a m e d ins tance variables. If a
class has indexed ins tance variables, its subclasses mus t also have
indexed ins tance variables; a subclass can also declare new n a m e d in-
s tance variables.

If a subclass adds a method whose message p a t t e r n has the same se-
lector as a method in the superclass, its ins tances will respond to mes-
sages wi th t h a t selector by execut ing the new method. This is called
overriding a method. If a subclass adds a method wi th a selector not
found in the methods of the superclass, the ins tances of the subclass
will respond to messages not unders tood by ins tances of the superclass.

To summar ize , each par t of an imp lemen ta t i on descript ion can be
modified by a subclass in a different way:

1. The class n a m e must be overridden.

2. Var iables may be added.

3. Methods may be added or overridden.

An Example
S u b c l a s s

An imp lemen ta t i on description includes an entry, not shown in the pre-
vious chapter , t ha t specifies its superclass. The following example is a
class created as a subclass of the FinancialHistory class in t roduced in
Chapter 3. Instances of the subclass share the function of FinancialHistory
for s tor ing informat ion about m o n e t a r y expendi tures and receipts. They
have the addi t ional function of keeping t rack of the expendi tures t ha t
are tax deductible. The subclass provides the m a n d a t o r y new class
name (DeductibleHistory), and adds one ins tance var iable and four meth-
ods. One of these methods (initialBalance:) overrides a method in the su-
perclass.

The class description for DeductibleHistory follows.

class name
superclass
instance variable names
instance methods

DeductibleHistory
Financial History
deductibleExpenditures

transaction recording

spendDeduct ib le : amount for: reason
self spend: amount for: reason.
deductibleExpenditures ,-

deductibleExpenditures + amount

60
S u b c l a s s e s

spend: amount for: reason deducting: deduct ib leAmount
self spend: amount for: reason.
deductibleExpenditures ,-

deductibleExpenditures + deductibleAmount

inquiries

totalDeductions
t deductibleExpenditures

initialization

initialBalance: amount
super initialBalance: amount.
deductibleExpenditures ~ 0

In order to know all the messages understood by an instance of
DeductibleHistory, it is necessary to examine the protocols of
DeductibleHistory, FinancialHistory, and Object. Instances of
DeductibleHistory have four var iab les-- three inheri ted from the super-
class FinancialHistory, and one specified in the class DeductibleHistory.
Class Object declares no instance variables.

F igure 4.4 indicates that DeductibleHistory is a subclass of
FinancialHistory. Each box in this diagram is labeled in the upper left
corner with the name of class it represents.

Figure 4.4

Object

FinancialH istory

0

DeductibleH istory

0
0

0
0

0

Instances of DeductibleHistory can be used to record the history of enti-
ties that pay taxes (people, households, businesses). Instances of
FinancialHistory can be used to record the history of entities that do not

61
Method Determinat ion

pay taxes (charitable organizations, religious organizations). Actually,
an instance of DeductibleHistory could be used in place of an instance of
FinancialHistory without detection since it responds to the same mes-
sages in the same way. In addition to the messages and methods
inheri ted from FinancialHistory, an instance of Deduct ib leHistory can re-
spond to messages indicating tha t all or par t of an expendi ture is de-
ductible. The new messages available are spendDeductible:for:, which is
used if the total amount is deductible; and spend:for:deducting:, which is
used if only par t of the expendi ture is deductible. The total tax deduc-
tion can be found by sending a DeductibleHistory the message
totalDeductions.

Method
Determinat ion

When a message is sent, the methods in the receiver 's class are
searched for one with a matching selector. If none is found, the methods
in tha t class's superclass are searched next. The search continues up
the superclass chain until a matching method is found. Suppose we
send an ins tance of Deduct ib leHistory a message with selector
cashOnHand. The search for the appropria te method to execute begins
in the class of the receiver, DeductibleHistory. When it is not found, the
search continues by looking at DeductibleHistory's superclass,
FinancialHistory. When a method with the selector cashOnHand is found
there, tha t method is executed as the response to the message. The re-
sponse to this message is to re tu rn the value of the instance variable
cashOnHand. This value is found in the receiver of the message, tha t is,
in the instance of Deduct ib leHistory.

The search for a matching method follows the superclass chain, ter-
minat ing at class Object. If no matching method is found in any class in
the superclass chain, the receiver is sent the message
doesNotUnderstand:; the a rgumen t is the offending message. There is a
method for the selector doesNotUnderstand: in Object tha t reports the
error to the programmer.

Suppose we send an instance of DeductibleHistory a message with se-
lector spend:for:. This method is found in the supei'class FinancialHistory.
The method, as given in Chapter 3, is

spend: a m o u n t for: reason
expenditures at: reason

put: (self totalSpentFor: reason) + amount.
cashOnHand ~ cashOnHand - amount

The values of the instance variables (expendi tures and cashOnHand) are
found in the receiver of the message; the instance of DeductibleHistory.

62
S u b c l a s s e s

The pseudo-variable self is also referenced in this method; self repre-
sents the DeductibleHistory instance tha t was the receiver of the mes-
sage.

Messages to sel f

When a method contains a message whose receiver is self, the search
for the method for tha t message begins in the instance's class, regard-
less of which class contains the method containing self. Thus, when the
expression self totalSpentFor: reason is evaluated in the me thod for
spend:for: found in FinancialHistory, the search for the method associat-
ed with the message selector totalSpentFor: begins in the class of self,
i.e., in DeductibleHistory.

Messages to self will be explained using two example classes named
One and Two. Two is a subclass of One and One is a subclass of Object.
Both classes include a method for the message test. Class One also in-
cludes a method for the message result1 tha t re turns the result of the
expression self test.

, .

class name On e

superclass Object
instance methods

tes t
t l

resu l t 1
t self test

class name Two

superclass One

instance methods

tes t
t2

An instance of each class will be used to demonst ra te the method deter-
minat ion for messages to self. example1 is an instance of class One and
example2 is an instance of class Two.

example1 ~- One new.
example2 ~- Two new

The relat ionship between One and Two is shown in Figure 4.5. In addi-
tion to labeling the boxes in order to indicate class names, several of
the circles are also labeled in order to indicate a name referr ing to the
corresponding instance.

Figure 4.5

63
M e t h o d D e t e r m i n a t i o n

Object
One !

0 0

Two

0 ¢

~examplel

--example2

The following table shows the results of evaluat ing various expressions.

Messages to super

expression result

example1 test 1
example1 result1 1
example2 test 2
example2 result1 2

The two result1 messages both invoke the same method, which is found
in class One. They produce different results because of t h e message to
self contained in tha t method. When result1 is sent to example2, the
search for a matching method begins in Two. A method is not found in
Two, so the search continues by looking in the superclass, One. A method
for result1 is found in One, which consists of one expression, T self test.
The pseudo-variable self refers to the receiver, exarnple2. The search for
the response to test, therefore, begins in class Two. A method for test is
found in Two, which re turns 2.

An additional pseudo-variable named super is available for use in a
method's expressions. The pseudo-variable super refers to the receiver
of the message, just as serf does. However, when a message is sent to
super, the search for a method does not begin in the receiver's class. In-
stead, the search begins in the superclass of the class containing the
method. The use of super allows a method to access methods defined in

64
Subclasses

a superclass even if the methods have been overr idden in subclasses.
The use of super as Other t h a n a receiver (for example, as an argu-
ment), has no different effect from using self; the use of super only af-
fects the ini t ial class in which messages are looked up.

Messages to super will be explained using two more example classes
n a m e d Three and Four. Four is a subclass of Three, Three is a subc lass
of the previous example Two. Four overrides the method for the mes-
sage test. Three contains methods for two new messagesmresu l t2 re-
tu rns the resul t of the expression self result1, and result3 r e tu rns the
resul t of the expression super test.

class name Three
superclass Two
instance methods

resul t2
f self result1

resul t3
1' super test

class name Four
superclass Three
instance methods

test
t4

Ins tances of One, Two, Three, and Four can all respond to the messages
test and result1. The response of ins tances of Three and Four to mes-
sages i l lus t ra tes the effect of super (Figure 4.6).

4'

example3 ~-Three new.
example4 ~- Four new

An a t t e m p t to send the messages result2 or result3 to example1 o r
example2 is an er ror since ins tances of One or Two do not unde r s t and
the messages result2 or result3.

The following table shows the resul ts of sending various messages.

expression result

example3 test 2
example4 result1 4
example3 result2 2
example4 result2 4
example3 result3 2
example4 result3 2

65
M e t h o d D e t e r m i n a t i o n

Figure 4.6

o ¢

Three ' cJ
Four

o o d
o

~ e x a m p l e l

~example2

~example3

~example4

When test is sent to example3, the method in Two is used, since Three
doesn't override the method, example4 responds to result1 with a 4 for
the same reason that example2 responded with a 2. When result2 is
sent to example3, the search for a matching method begins in Three.
The method found there returns the result of the expression self result1.
The search for the response to result1 also begins in class Three. A
matching method is not found in Three or its superclass, Two. The
method for result1 is found in One and returns the result of self test.
The search for the response to test once more begins in class Three.
This time, the matching method is found in Three's superclass Two.

The effect of sending messages to super will be illustrated by the re-
sponses of example3 and exarnple4 to the message result3. When result3
is sent to example3, the search for a matching method begins in Three.
The method found there returns the result of the expression super test.
Since test is sent to super, the search for a matching method begins not
in class Three, but in its superclass, Two: The method for test in Two
returns a 2. When result3 is sent to example4, the result is still 2, even
though Four overrides the message for test.

This example highlights a potential confusion: super does not mean
start the search in the superclass of the receiver, which, in the last ex-
ample, would have been class Three. It means start the search in the
superclass of the class containing the method in which super was used,
which, in the last example, was class Two. Even if Three had overridden
the method for test by returning 3, the result of exarnple4 result3 would
still be 2. Sometimes, of course, the superclass of the class in which the

66
S u b c l a s s e s

method containing super is found is the same as the superclass of the
receiver.

Another example of the use of super is in the method for
initialBalance in DeductibleHistory.

in i t ia lBa lance: a m o u n t
super initialBalance: amount.
deductibleExpenditures ~ 0

This method overrides a method in the superclass FinancialHistory. The
method in DeductibleHistory consists of two expressions. The first ex-
pression passes control to the superclass in order to process the initial-
ization of the balance.

super initialBalance amount

The pseudo-variable super refers to the receiver of the message, but in-
dicates that the search for the method should skip DeductibleHistory
and begin in FinancialHistory. In this way, the expressions from
FinancialHistory do not have to be duplicated in DeductibleHistory. The
second expression in the method does the subclass-specific initialization.

deductibleExpenditures ~- 0

If self were substituted for super in the initialBalance: method, it would
result in an inf inite recursion, since every time initialBalance: is sent, i t
will be sent again.

Abstract
Superclasses

Abstract superclasses are created when two classes share a par t of their
descriptions and yet nei ther one is properly a subclass of the other. A
mutua l superclass is created for the two classes which contains their
shared aspects. This type of superclass is called abstract because it was
not created in order to have instances. In terms of the figures shown
earlier, an abst ract superclass represents the situation i l lustrated in
Figure 4.7. Notice tha t the abstract class does not directly contain in-
stances.

As an example of the use of an abstract Superclass, consider two clas-
ses whose instances represent dictionaries. One class, named
SmallDictionary, minimizes the space needed to store its contents; the
other, named FastDictionary, stores names and values sparsely and uses
a hashing technique to locate names. Both classes use two parallel lists

67
Abst rac t Superclasses

Figure 4.7

0 0

0 0

0

0
0

0

t h a t contain names and associated values. SmallDictionary stores the
names and values contiguously and uses a s imple l inear search to locate
a name. FastDictionary stores names and values sparsely and uses a
hash ing technique to locate a name. Other t han the difference in how
names are located, these two classes are very similar: they share identi-
cal protocol and they both use paral le l l i s t s to store the i r contents.
These s imi lar i t ies are represen ted in an abs t rac t superclass named
DualListDictionary. The re la t ionships among these th ree classes is shown
in Figure 4.8.

Figure 4.8

Object
DualListDictionary

SmallDictionary
0

0 0
0

0 0

FastDictionary
o 0

0

The imp lemen ta t i on descript ion for the abs t rac t class, DualListDictionary
is shown next.

68
S u b c l a s s e s

class name DualListDictionary
superclass Object
instance variable names n ames

values

instance m e t h o d s

accessing

at: n a m e

I index I
index ~- self indexOf: name.
index = 0

ifTrue: [self error: "Name not found ']
ifFalse: [tvalues at: index]

at: n a m e put: v a l u e

I index I
index ~- self indexOf: name.
index = 0

ifTrue: [index ~- self newlndexOf: name].
t values at: index put: value

testing

i nc ludes : n a m e
t(setf indexOf: name),~,= 0

i s E m p t y
tself size = 0

initialization

in i t i a l i ze
names ~- Array new: 0.
values ~- Array n e w 0

This description of DualListDictionary uses only messages defined in
DualListDictionary itself or ones a l ready described in this or in the previ-
ous chapters. The external protocol for a DualListDictionary consists
of messages at:, at:put:, includes:, isEmpty, a n d initialize. A new
DualListDictionary (actually an instance of a subclass of DualListDictionary)
is created by sending it the message new. It is then sent the message ini-
tialize so tha t ass ignments can be made to the two instance variables.
The two variables are init ially empty a r rays (Array new: 0).

Three messages to self used in its methods are not implemented in
DualL is tD ic t ionary- -s ize , indexOf:, and newlndexOf: . Th is is the reason
t ha t DualListDict ionary is cal led abstract . I f an ins tance were created, i t
wou ld not be a:ble to respond successful ly to a l l o f the necessary mes-
sages. The two subclasses, Smal lDict ionary and FastDict ionary, mus t im-
p l emen t the three missing messages. The fact tha t the search always

69
Abstract Superclasses

s tar ts at the class of the instance referred to by self means tha t a meth-
od in a superclass can be specified in which messages are sent to self,
but the corresponding methods are found in the subclass. In this way, a
superclass can provide a f r amework for a method tha t is refined or ac-
tua l ly implemented by the subclass.

Smal lD ic t ionary is a subclass of DualL is tD ic t ionary t h a t uses a m i n i m a l
a m o u n t of space to r ep resen t the associat ions, b u t m a y t ake a long t i m e

to find an association. It provides methods for the three messages tha t
were not implemented in DualListDictionary~size, indexOf:, and
newlndexOf:. It does not add variables.

class name
superclass
instance methods

accessing

s ize
t names size

SmallDictionary

DualListDictionary

private

i ndexOf : n a m e
1 to: names size do:

[: index 1 (names at: index) = name ifTrue: [Tindex]].

tO

n e w l n d e x O f : n a m e

self grow.
names at: names size put: name.

1 names size

g r o w
I oldNames oldValues I

otdNames ~ names.

oldValues ~ values.
names ~- Array new: names size --.t-. 1.

values ~ Array new: values size 4- 1.
names replaceFrom: 1 to: oldNames size with: oldNames.

values replaceFrom: 1 to: oldVafues size with: oldValues

Since names are stored contiguously, the size of a Smal lD ic t ionary is the
size of its a r r ay of names, names. The index of a par t i cu la r name is de-
t e rmined by a l inear search of the a r r ay names. If no ma tch is found,
the index is 0, Signalling failure in the search. Whenever a new associa-
tion is to be added to the dictionary, the method for newlndexOf: is used
to find the appropr ia te index. It assumes tha t the sizes of names and
values are exactly the sizes needed to store thei r cu r ren t elements. This
means no space is available for adding a new element. The message
grow creates two new Arrays tha t are copies of the previous ones, with

70
S u b c l a s s e s

one more e lement at the end. In the method for newlndexOf:, first the
sizes of names and values are increased and then the new name is
stored in the new empty position (the last one). The method tha t called
on newlndexOf: has the responsibility for storing the value.

We could evaluate the following example expressions.

expression result

ages ~- SmallDictionary new a new, uninitialized instance
ages initialize instance variables initialized
ages isEmpty true
ages at: 'Brett' put: 3 3
ages at: 'Dave' put: 30 30
ages includes: 'Sam' false
ages includes: 'Brett' true
ages size 2
ages at: 'Dave" 30

For each of the above example expressions, we indicate in which class
the message is found and in which class any messages sent to self are
found.

message selector message to self class of method

initialize
at:put:

includes:

size
at:

Dual ListDictionary
DualListDictionary

indexOf: SmallDictionary
newl ndexOf: SmallDictionary

Dual ListDictionary
indexOf: SmallDictionary

SmallDictionary
DualListDictionary

indexOf: SmallDictionary
error: Object

FastDict ionary is another subclass of DualListDictionary. It uses a hashing
technique to locate names. Hashing requires more space, but takes less
t ime than a l inear search. All objects respond to the hash message by
re turn ing a number. Numbers respond to the \ \ message by re turn ing
their value in the modulus of the argument .

71
A b s t r a c t S u p e r c l a s s e s

class name FastDict ionary

superclass Dual ListDict ionary

instance methods

accessing

s i ze

I size I

size ~ 0.

names do: [:name I name notNil ifTrue: [size ~ size --t- 1]].

ts ize

initialization

i n i t i a l i z e

names ~- Array new: 4.

values ~- Array new: 4

private

i n d e x O f : n a m e

I index I
index ~ name hash \ \ names size -.t- 1.

[(names at: index) = name]

whi leFalse: [(names at: i ndex) isN i l

ifTrue: [1' 0]

ifFalse: [index ~ index \ \ names size + 1]].

Tindex

n e w l n d e x O f : n a m e

I index I
names s i ze - self size < = (names size / 4)

ifTrue: [self grow].

index ~-- name hash \ \ names size + 1.

[(names at: i ndex) i sN i l]

whi leFalse: [index ~ index \ \ names size -t- 1].

names at: index put: name.

t index

g r o w

I o ldNames o ldValues I

o ldNames ~- names.

o ldValues ~- values.

names ~- Array new: names size * 2.

values ~- Array new: values s i z e , 2.

1 to: o ldNames size do:

[: index I

(o ldNames at: i ndex) i sN i l

i fFalse: [self at: (o ldNames at: index)

put: (o ldValues at: index)]]

72
Subclasses

FastDictionary overrides DualListDictionary's implementat ion of initialize
in order to create Arrays that a l ready have some space allocated (Array
new: 4). The size of a FastDictionary is.not s imply the size of one of i ts
variables since the Arrays always have empty entries. So the size is de-
te rmined by examining each e lement in the Array and counting the
number tha t are not nil.

The implementa t ion of newlndexOf: follows basically the same idea
as tha t used for SmallDictionary except tha t when the size of an Array is
changed (doubled in this case in the method for grow), each e lement is
explicitly copied from the old Arrays into the new ones so tha t elements
are rehashed. The size does not always have to be changed as is neces-
sary in SmallDictionary. The size of a FastDictionary is changed only
when the number of empty locations in names falls below a minimum.
The min imum is equal to 25% of the elements.

names size - self size < = (names size / 4)

Subclass
Framework
Messages

As a ma t t e r of p rogramming style, a method should not include mes-
sages to self if the messages are nei ther implemented by the class nor
inheri ted from a superclass. In the description of DualListDictionary,
three such messages exis t - -s ize , indexOf:, and newlndexOf:. As we shall
see in subsequent chapters, the ability to respond to size is inheri ted
from Object; the response is the number of indexed instance variables.
A subclass of DualListDictionary is supposed to override this method in
order to r e tu rn the number of names in the dictionary.

A special message, subclassResponsibility, is specified in Object. It is
to be used in the implementa t ion of messages tha t cannot be properly
implemented in an abstract class. Tha t is, the implementat ion of size
and indexOf: and newlndexOf:, by Smalltalk-80 convention, should be

self subclassResponsibility

The response to this message is to invoke the following method defined
in class Object.

subclassResponsibility
self error: 'My subclass should have overridden one of my messages.

In this way, if a method should have been implemented in a subclass of
an abstract class, the error reported is an indication to the p rogrammer
of how to fix the problem. Moreover, using this message, the program-
mer creates abstract classes in which all messages sent to self are

73
S u m m a r y of T e r m i n o l o g y

i m p l e m e n t e d , a n d in w h i c h t h e i m p l e m e n t a t i o n is a n i n d i c a t i o n to t h e

p r o g r a m m e r of w h i c h m e t h o d s m u s t be o v e r r i d d e n in t h e subclass .

By c o n v e n t i o n , if t h e p r o g r a m m e r dec ides t h a t a m e s s a g e i n h e r i t e d

f r o m a n a b s t r a c t s u p e r c l a s s s h o u l d a c t u a l l y not be i m p l e m e n t e d , t he ap-

p r o p r i a t e w a y to o v e r r i d e t h e i n h e r i t e d m e t h o d is

self shouldNotlmplement

T h e r e s p o n s e to th i s m e s s a g e is to i nvoke t h e fo l lowing m e t h o d de f ined

in class Object .

shouldNotlmplement
self error: 'This message is not appropriate for this .object.'

T h e r e a r e s e v e r a l m a j o r subc la s s h i e r a r c h i e s in t h e S m a l l t a l k - 8 0 s y s t e m

t h a t m a k e use of t h e idea of c r e a t i n g a f r a m e w o r k of m e s s a g e s whose im-

p l e m e n t a t i o n s m u s t be c o m p l e t e d in subc lasses . T h e r e a r e c lasses descr ib-
ing v a r i o u s k inds of co l lec t ions (see C h a p t e r s 9 a n d 10). T h e co l lec t ion

c lasses a r e a r r a n g e d h i e r a r c h i c a l l y in o r d e r to s h a r e as m u c h as poss ib le
a m o n g c lasses de sc r ib ing s i m i l a r k inds of col lect ions . T h e y m a k e use of
the messages subclassResponsibility and shouldNotlmplement. Another
e x a m p l e of t h e use of subc la s ses is t h e hierarchy of l i n e a r m e a s u r e s a n d

n u m b e r c lasses (see C h a p t e r s 7 a n d 8).

Summary oI
Terminology

subclass A class that inherits variables and methods from an
existing class.

s u p e r c l a s s The class from which variables and methods are inherited.

Object The class that is the root of the tree-structured class hier-
archy.

o v e r r i d i n g a m e t h o d Specifying a method in a subclass for the same message as
a method in a superclass.

s u p e r A pseudo-variable that refers to the receiver of a message;
differs from self in where to start the search for methods.

a b s t r a c t c l a s s A class that specifies protocol, but is not able to fully im-
plement it; by convention, instances are not created of this
kind of class.

subclassResponsibility A message to report the error that a subclass should have
implemented one of the superclass's messages.

shouldNotlmplement A message to report the error that this is a message
inherited from a superclass but explicitly not available to
instances of the subclass.

_.: ~.

?

5
Metaclasses

Ini t ia l izat ion of Ins tances

An Example Metaclass

Metaclass Inher i t ance

Ini t ia l izat ion of Class Variables

S u m m a r y of Method Determina t ion

S u m m a r y of Terminology

76
M e t a c l a s s e s

Since all Smalltalk-80 system components are represented b y objects
and all objects are instances of a class, the classes themselves must be
represented by instances of a class. A class whose instances are them-
selves classes is called a metaclass. This chapter describes the special
properties of metaclasses. Examples il lustrate how metaclasses are used
to support instance creation and general class inquiries.

In earlier versions of the Small talk system, there was only one
metaclass, named Class. It corresponded to the c lass organization
depicted in Figure 5.1. As used in Chapter 4, a box denotes a class and
a circle denotes an instance of the class in which it is contained. Where
possible, the box is labeled with the name of the class it represents.
Note that there is one circle in the box labeled Class for each box in
the diagram.

Figure 5.1

Object

0

°i° 0

0

0

Class
0

0 0

0 0

0

00l O0

0

0 0

This approach had the difficulty that the message protocol of all classes
was constrained to be the same since it was specified in one place. In
particular, the messages used to create new instances were the same for
all classes and could not take any special initialization requirements
into account. With a single metaclass, all classes respond to the mes-
sage new or new: by re turning an instance whose instance variables all
refer to nil. For most objects, nil is not a reasonable instance variable
value, * so new instances have to be initialized by sending another mes-
sage. The programmer must ensure that every time a new or new: is
sent, another message is sent to the new object so tha t it will be proper-
ly initialized. Examples of this kind of initialization were shown in
Chapter 4 for SmallDictionary and FinancialHistory.

77
I n i t i a l i z a t i o n of I n s t a n c e s

The Smalltalk-80 system removes the restriction that all classes have
the same message protocol by making each class an instance of its own
metaclass. Whenever a new class is created, a new metaclass is created
for it automatically. Metaclasses are similar to other classes because
they contain the methods used by their instances. Metaclasses are dif-
ferent from other classes because they are not themselves instances of
metaclasses. Instead, they are all instances of a class called Metaclass.
Also, metaclasses do not have class names. A metaclass can be accessed
by sending its instance the unary message class. For example, Rectan-
gle's metaclass can be referred to with the expression Rectangle class.

The messages of a metaclass typically support creation and initializa-

tion of instances, and initialization of class variables.

In i t ia l i zat ion
of I n s t a n c e s

Each class can respond to messages that request properly initialized
new instances. Multiple metaclasses are needed because the initializa-
tion messages are different for different classes. For example, we have
already seen that Time creates new instances in response to the mes-
sage now and Date creates new instances in response to the message

today. ::

Time now
Date today

These messages are meaningless to Point, the class whose instances rep-
resent two-dimensional locations. Point creates a new instance in re-
sponse to a message with selector x:y: and two arguments specifying the
coordinates. This message is, in turn, meaningless to Time or Date.

Point x: 100 y: 150

Class Rectangle understands several messages that create new in-
stances. A message with the selector origin:corner: takes Points repre-
senting the upper left and lower right corners as arguments.

Rectangle
origin: (Point x: 50 y: 50)
corner: (Point x: 250 y: 300)

A message with the selector origin:extent: takes as arguments the upper
left corner and a Point representing the width and height. The same
rectangle could have been created by the following expression.

78
M e t a c l a s s e s

Rectangle
origin: (Point x: 50 y: 50)
extent: (Point x: 200 y: 250)

In the Smalltalk-80 system, Class is an abstract superclass for all of the
metaclasses. Class describes the general na ture of classes. Each
metaclass adds the behavior specific to its single instance. Metaclasses
may add new instance creation messages like those of Date, Time, Point,
and Rectangle mentioned above, or they may redefine the fundamenta l
new and new: messages in order to perform some default initialization.

The organization of classes and instances in the system, as described
so far, is i l lustrated in Figure 5.2.

Figure 5.2

Object
Class

Object class o]

Class class o I

Metaclass class el
Metaclass

O

O

In this figure, we indicate classes Object, Metaclass, and Class, and
metaclasses for each. Each circle within the box labeled Metaclass de-
notes a metaclass. Each box within the box labeled Class denotes a sub-
class of Class. There is one such box for each circle within the box
labeled Metaclass. Each of these boxes contains a circle denoting its in-
stance; these instances refer to Object or one of the subclasses of Object,
but not to metaclasses.

An Example
Metaclass

Since there is a one-to-one correspondence between a class and its
metaclass, their descriptions are presented together. An implementa-
tion description includes a part entit led ~class methods" tha t shows the
methods added by the metaclass. The protocol for the metaclass is al-

79
An Example Metaclass

ways found by looking at the class methods par t of the implementat ion
description of its single instance. In this way, messages sent to the class
(class methods) and messages sent to instances of the class (instance
methods) are listed together as par t of the complete implementat ion de-
scription.

The following new version of the implementat ion description for
FinancialHistory includes class methods.

class name
superclass
instance variable names

class methods

FinancialHistory
Object
cashOnHand
incomes
expenditures

instance creation

in i t ia lBa lance: a m o u n t
t super new setlnitialBatance: amount

n e w
1"super new settnitialBalance: 0

instance methods

transaction recording

r e c e i v e : a m o u n t f rom: s o u r c e
incomes at: source

put: (self totalReceivedFrom: source) + amount.
cashOnHand ~ cashOnHand + amount

spend: a m o u n t for: reason

expenditures at: reason
put: (self totalSpentFor: reason) 4- amount.

cashOnHand ~- cashOnHand - amount

inquiries

c a s h O n H a n d
tcashOnHand

t o t a l R e c e i v e d F r o m : source
(incomes includesKey: source)

ifTrue: [tincomes at: source]
ifFalse: [1'0]

to ta lSpentFor : r eason
(expenditures includesKey: reason)

ifTrue: [texpenditures at: reason]
ifFalse: [TO]

80
M e t a c l a s s e s

private

set ln i t ia lBa lance: a m o u n t
cashOnHand ~- amount.
incomes ~ Dictionary new.

expenditures ~ Dictionary new

Three changes have been made to the implementat ion description.

l e

e

e

One category of class methods named instance creation has been
added. The category contains methods for initiaiBalance: and new.
By convention, the category instance creation is used for class
methods tha t re turn new instances.

The category of instance methods named initialization has been de-
leted. It had included a method for initialBalance:.

A category of instance methods named private has been added.
The category contains one method for setlnitialBalance:; this meth-
od contains the same expressions tha t were in the deleted method
for in i t ia lBalance:.

This example il lustrates how metaclasses create initialized instances.
The instance creation methods for initialBatance: and new do not have
direct access to the instance variables of the new instance (cashOnHand,
incomes, and expenses). This is because the methods are not a part of
the class of the new instance, but ra ther of the class's class. Therefore,
the instance creation methods first create uninitialized instances and
then send an initialization message, setlnitialBalance:, to the new in-
stance. The method for this message is found in the instance methods
par t of FinancialHistory's implementat ion description; it can assign ap-
propriate values to the instance variables. The initialization message is
not considered part of the external protocol of FinancialHistory so it is
categorized as private. It is typically only sent once and only by a class
method.

The old initialization message initialBalance: was deleted because the
proper way to create a FinancialHistory is to use an expression such as

Financ ia lH is tory in i t ia lBalance: 350

not

Financ ia lH is tory new in i t ia lBalance: 350

Indeed, this second expression would now create an error since in-
stances of FinancialHistory are no longer described as responding to

81
Metaclass Inheritance

initialBalance:. We could have maintained the instance method
initialBalance: and implemented the class method for initialBalance: to
call on it, but we try not to use the same selectors for both instance and
class methods in order to improve the readability of the implementation
description. However, there would be no ambiguity if the same selector
were used.

M e t a c l a s s
I n h e r i t a n c e

Like other classes, a metaclass inherits from a superclass. The simplest
way to structure the inheritance of metaclasses would be to make each
one a subclass of Class. This organization was shown in Figure 5.2.
Class describes the general nature of classes. Each metaclass adds be-
havior specific to its instance. Metaclasses may add new instance cre-
ation messages or they may redefine the fundamental new and new:
messages to perform some default initialization.

When metaclasses were added to the Smalltalk-80 system, one fur-
ther step in class organization was taken. The metaclass subclass hier-
archy was constrained to be parallel to the subclass hierarchy of the
classes that are their instances. Therefore, if DeductibleHistory is a sub-
class of FinanciaIHistory, then DeductibleHistory's metaclass must be a
subclass of FinanciaIHistory's metaclass. A metaclass typically has only
one instance.

An abstract class named ClassDescription was provided to describe
classes and their instances. Class and Metaclass are subclasses of
ClassDescription. Since the superclass chain of all objects ends at Object
and Object has no superclass, the superclass of Object's metaclass is
Class. From Class, the metaclasses inherit messages that provide proto-
col for the creation of instances (Figure 5.3).

The superclass chain from Class leads eventually to class Object. No-
tice that the hierarchy of boxes with the box labeled Object class is like
that of the hierarchy of boxes within the box labeled Object; this simi-
larity illustrates the parallel hierarchies. A full description of this part
of the system, including the relationship between Metaclass and its
metaclass, is provided in Chapter 16.

As an example of the metaclass inheritance hierarchy, consider the
implementation of initialBalance: in FinancialHistory class.

in i t ia iBalance: amount
T super new setlnitialBalance: amount

82
M e t a c l a s s e s

Figure 5.3

Object
ClassDescription

Metaclass
o o

o

Class
Object class

ClassDescription class
I Metaclass class o !

I Class class o I

F! el
o

I ol

0

R
0 0

0 0

o !O°1o

This method creates a new instance by evaluating the expression super
new; it uses the method for new found in the class methods of the su-
perclass, not the class methods found in this class. It then sends the
new instance the message setlnitialBalance: with the initial amount of
the balance as the argument. Similarly, new is reimplemented as creat-
ing an instance using super new followed by setlnitialBalance:.

n e w

rsuper new setlnitialBalance 0

83
Metaclass Inheri tance

Figure 5.4

Object
ClassDescription

Metaclass
o o

O

Class
Object class

ClassDescription class

Metaclass class

i Class class

FinancialHistory class

DeductibleHistory class

FinancialH istory
DeductibleH istory

, O

O O
o O

o

Where is the method for the message new sent to super actually found?
The subclass hierarchy of the metaclasses parallels the hierarchy of
their instances. If one class is a subclass of another, its metaclass will
be a subclass of the other 's metaclass, as indicated in Figure 5.3. The
parallel class and metaclass hierarchies for the FinancialHistory applica-
tion are shown in Figure 5.4.

If we evaluate the expression

FinancialHistory initialBalance: 350

84
Metaclasses

the search for the response to initialBalance: begins in FinancialHistory
class, i.e., in the class methods for FinancialHistory. A method for that
selector is found there. The method consists of two messages:

1. Send super the message new.

2. Send the result of 1 the message setlnitialBalance: 0.

The search for new begins in the superclass of FinancialHistory class,
that is, in Object class. A method is not found there, so the search con-
tinues up the superclass chain to Class. The message selector new is
found in Class, and a primitive method is executed. The result is an
uninitialized instance of FinancialHistory. This instance is then sent the
message setlnitialBalance:. The search for the response begins in the
class of the instance, i.e., in FinancialHistory (in the instance methods). A
method is found there which assigns a value to each instance variable.

The evaluation of

FinancialHistory new

is carried out in a similar way. The response to new is found in
FinancialHistory class (i.e., in the class methods of FinancialHistory). The
remaining actions are the same as for initialBalance: with the exception
of the value of the a rgument to setlnitialBalance:. The instance creation
methods must use super new in order to avoid invoking the same meth-
od recursively.

Ini t ia l izat ion of
Class Var iab les

The main use of messages to classes other than creation of instances is
the initialization of class variables. The implementat ion description's
variable declaration gives the names of the class variables only, not
their values. When a class is created, the named class variables are cre-
ated, but they all have a value of nil. The metaclass typically defines a
method that initializes the class variables. By convention, the class-
variable initialization method is usually associated with the unary mes-
sage initialize, categorized as class initialization.

Class variables are accessible to both the class and its metaclass. The
assignment of values to class variables can be done in the class meth-
ods, ra ther than indirectly via a private message in the instance meth-
ods (as was necessary for instance variables).

The example DeductibleHistory, this time with a class variable that
needs to be initialized, is shown next. DeductibleHistory is a subclass of
FinancialHistory. It declares one class variable, MinimumDeductions.

85
I n i t i a l i z a t i o n of C l a s s V a r i a b l e s

class name DeductibleHistory
superclass FinancialHistory
instance variable names deductibleExpenditures
class variable names MinimumDeductions

class methods

i n s t a n c e c rea t ion

init ialBalance: amount
I newHistory I
newHistory ~ super initialBalance: amount.
newHistory initializeDeductions.
tnewHistory

new
I newHistory I
newHistory ~- super initialBalance: 0.
newHistory initializeDeductions.
t newHistory

class initialization

initialize
MinimumDeductions ~- 2300

instance methods

transaction recording

spendDeductible: amount for: reason
self spend: amount for: reason.
deductibleExpenditures

deductibleExpenditures -t- amount
spend: amount for: reason deducting: deduct ib leAmount

self spend: amount for: reason.
deductibleExpenditures ~-

deductibleExpenditures -I- deductibleAmount

inquiries

is l temizable
l 'deductibleExpenditures > = MinimumDeductions

totalDeduct ions
1'deductibleExpenditures

private

ini t ial izeDeductions
deductibleExpenditures ~ 0

This version of DeductibleHistory adds five instance methods, one of
which is isltemizable. The response to this message is true or false

86
Metaclasses

depending on whether enough deductions have been accumulated in or-
der to itemize deductions on a tax report. The tax law specifies tha t a
min imum deduction of 2300 can be taken, so if the accumulat ion is less,
the s tandard deduction should be used. The constant, 2300, is referred
to by the class variable MinimumDeductions. In order to successfully
send an instance of DeductibleHistory the message isltemizable, the class
variable MinimumDeductions must be assigned its numeric value. This is
done by sending the class the message initialize before any instances are
created.

DeductibleHistory initialize

This message only has to be sent once, after the class initialization mes-
sage is first defined. The variable is shared by each new instance of the
class.

According to the above class description, a new instance of
DeductibleHistory can be created by sending the class the messages
initialBalance: or new, just as for the superclass FinancialHistory. Suppose
we evaluate the expression

DeductibleHistory initialBalance: 100

The determinat ion of which methods are actual ly followed in order to
evaluate the expression depends on the class/superclass chain for
DeductibleHistory. The method for initialBalance: is found in the class
methods of DeductibleHistory.

in i t ia lBalance: amount
I newHistory I
newHistory ~ super initialBalance: amount.
newHistory initializeDeductions.
lnewHistory

This method declares newHistory as a t emporary variable. The first ex-
pression of the method is an assignment to the temporary variable.

newHistory ~ super initialBalance: amount

The pseudo-variable super refers to the receiver. The receiver is the
class DeductibleHistory; its class is its metaclass. The superclass of the
metaclass is the metaclass for FinancialHistory. Thus we can find the
method tha t will be followed by looking in the class methods of
FinancialHistory. The method is

in i t ia lBalance: amount
;'super new setlnitialBalance: amount

87
Initialization of Class Variables

We have already followed evaluation of this method. The response to
new is found in Class. A new instance of the original receiver,
DeductibleHistory, is created and sent the message setlnitialBalance:. The
search for setlnitialBalance: begins in the class of the new instance, i.e.,
in DeductibleHistory. It is not found. The search proceeds to the super-
class FinanciaiHistory. It is found and evaluated. Instance variables de-
clared in FinancialHistory are assigned values. The value of the first
expression of the class method for initialBalance: in DeductibleHistory,
then, is a partial ly initialized new ins tance . This new instance is
assigned to the temporary variable newHistory.

newHistory is then sent the message initializeDeductions. The search
begins in the class of the receiver, newHistory; the class is
DeductibleHistory. The method is found. It assigns the value of the
fourth instance variable to be 0.

The third expression of the instance creation message re turns the
new instance.

An al ternative way to implement the class DeductibleHistory is pre-
sented next. In this al ternat ive class description, the instance-creation
class methods of FinancialHistory are not reimplemented. Rather, the
private instance-method message setlnitialBalance: is overridden in or-
der to account for the additional instance variable.

class name
superclass
instance variable names
class variable names
class methods

class initialization

init ial ize
MinimumDeductions ~ 2300

DeductibleHistory
FinancialHistory
deductibleExpenditures
MinimumDeductions

instance methods

transaction recording

spendDeduct ib le: amount for: reason
self spend: amount for: reason.
deductibleExpenditures ~-

deductibleExpenditures -I- amount
spend: amount for: reason deducting: deduct ib leAmount

self spend: amount for: reason.
deductibleExpenditures ~-

deductibleExpenditures -t-- deductibleAmount

inquiries

is l temizable
l"deductibleExpenditures > = MinimumDeductions

88
M e t a c l a s s e s

tota lDeduct ions
TdeductibleExpenditures

private

set lni t ia lBalance: amount
super setlnitialBalance: amount.
deductibleExpenditures ~ 0

Using this al ternat ive class description for DeductibleHistory, the evalu-
at ion of the response to initialBalance: in

DeductibleHistory initialBalance: 350

is to search in DeductibleHistory class for initialBalance:. I t is not found.
Continue the search in the superclass, FinancialHistory class. I t is found.
The method evaluated consists of the expression

super new setlnitiaiBalance: amount

The method for new is found in Class. Search for setlnitialBalance: be-
ginning in the class of the new instance, a DeductibleHistory. The meth-
od for setlnitialBalance: is found in DeductibleHistory. The response of
setlnitialBalance: in DeductibleHistory is to send the same message to su-
per so that the search for the method begins in FinancialHistory. It is
found and three instance variables are assigned values. The second ex-
pression of setlnitialBalance: in DeductibleHistory sets the fourth variable
to 0. The result of the original message is a fully initialized instance of
DeductibleHistory.

Summary of
Method
Determination

Determining the actual actions taken when a message is sent involves
searching the methods in the class hierarchy of the receiver. The search
begins with the class of the receiver and follows the superclass chain. If
not found after searching the last superclass, Object, an error is report-
ed. If the receiver is a class, its class is a metaclass. The messages to
which a class can respond are listed in the implementat ion description
in the par t entit led ~class methods." If the receiver is not a class, then
the messages to which it can respond are listed in its implementat ion
description in the part entit led '~instance methods."

The pseudo-variable self refers to the receiver of the message tha t in-
voked the executing method. The search for a method corresponding to
a message to self begins in the class of self. The pseudo-variable super

89
S u m m a r y of T e r m i n o l o g y

also refers to the receiver of the message. The search for a method cor-
responding to a message to super begins in the superclass of the class in
which the executing method was found.

This ends the description of the Smalltalk-80 programming language.
To use the system, the programmer must have general knowledge of
the system classes. Part Two gives detailed accounts of the protocol de-
scriptions for each of the system classes and provides examples, often
by presenting the implementation descriptions of system classes. Part
Three introduces a moderate-size application. Before delving into the
details of the actual system classes, the reader might want to skip to
Part Three to get a sense of what it is like to define a larger applica-
tion.

S u m m a r y of.
Termino logy

metaclass
Class

Metaclass

The class of a class.

An abstract superclass of all classes other than meta-
classes.

A class whose instances are classes of classes.

..-, ,..," .,-"

....,o,O.,''°"
°,,o," ,o. , , , o ' ' ~

.,.-"°"

e,"""

,'"f" ~.~.../,

~ _ , i "~" °''°'''°'°''°'°" .,"°'°"
_o-

m

J

i" ,."
~ j..,w "°

P A R T T W O

.,, .-'-""

i,..f"

i

Par t One provided an overview of the Smalltalk-80 language both
from the semantic view of objects and message sending and from
the syntactic view of the form that expressions take. The
Smalltalk-80 programmer must first understand the semantics of
the language: that all information is represented in the form of ob-
jects and that all processing is done by sending messages to ob-
jects. Every object is described by a class; every class, with the
exception of class Object, is a subclass of another class. Program-
ming in the Smalltalk-80 system involves the description of new
classes o£ objects, the creation of instances of classes, and the se-
quencing of messages to the instances. The Smalltalk,80 syntax
defines three forms that messages can take: unary, binary, and
keyword messages. Successful use of the language requires that
the programmer have a general knowledge of each of the basic
kinds of objects in the system and of the messages that can be sent
to them.

The semantics and syntax of the language are relatively simple.
Yet the system is large and powerful due to the numbers of and
kinds of available objects. There are eight significant categories of
classes in the Smalltalk-80 system: kernel and kernel support, lin-
ear measures, numbers, collections, streams, classes, independent
processes, and graphics. The protocol of these kinds of objects is
reviewed in 12 chapters of Part Two. In each of these chapters, the
diagram of the class hierarchy given in Chapter 1 is re-presented
in order to highlight the portion of the hierarchy discussed in that
chapter. Three additional chapters in Part Two provide examples
of Smalltalk-80 expressions and class descriptions.

The classes in the Smalltalk-80 system are defined in a linear
hierarchy. The chapters in Part Two take an encyclopedic ap-
proach to reviewing class protocol: categories of messages are de-
fined, each message is annotated, and examples are given. In
presenting the protocol of a class, however, only those messages
added by the class are described. The kcomplete message protocol is
determined by examining the protocol specified in the class and in
each of its superclasses. Thus it is useful to present the classes
starting with a description of class Object and to proceed in a
mostly depth-first manner so that inherited protocol can be under-
stood in conjunction with the new protocol.

.-°"

...°.-"

..-- . .

....
.°° ..."

°.°.-

~ ~ , ~

%.,J ~ .

Protocol for All Objects

Testing the Functionality oi an Object

Comparing Objects

Copying Objects

Access ing the Parts of an Object

Printing and Storing Objects

Error Handling

Magnitude
Character
Date
Time

Number
Float
Fraction
Integer

LargeNegativelnteger
LargePositivelnteger
Smalllnteger

LookupKey
Association

Link

Stream
PositionableStream

ReadStream
WriteStream

ReadWriteStream
ExternalStream

FileStream

Random

File
FileDirectory
FilePage

UndefinedObject
Boolean

False
True

Process

Collection

SequenceableCollection
LinkedList

Semaphore

ArrayedCollection
Array

Bitmap
DisplayBitmap

RunArray
String

Symbol
Text
ByteArray

Interval
OrderedCollection

SortedCollection
Bag
M appedCollection
Set

Dictionary
IdentityDictionary

ProcessorScheduler
Delay
ShamdOueue

Behavior
C lassDescription

Class
MetaClass

Point
Rectangle
BitBit

CharacterScanner

Pen

DisplayObject
DisplayMedium

Form
Cursor
DisplayScreen

InfiniteForm
OpaqueForm
Path

Arc
Circle

Curve
Line
LinearFit
Spline

95
Test ing the Func t iona l i ty of an Object

Eve ry th ing in the sys tem is an object. The protocol common to all ob-
jects in the sys tem is provided in the descript ion of class Object. This
means t h a t any a n d every object created in the sys tem can respond to
the messages defined by class Object. These are typical ly messages t ha t
suppor t reasonable defaul t behavior in order to provide a s ta r t ing place
from which to develop new kinds of objects, e i ther by adding new mes-
sages or by modifying the response to exist ing messages. Examples to
consider when examin ing Object 's protocol are numer ic objects such as
3 or 16.23, collections such as "this is a string" or ~(th is is an array), nil
or true, and class-describing objects such as Collection or Smalllnteger or,
indeed, Object itself.

The specification of protocol for class Object given in this chap te r is
incomplete. We have omit ted messages pe r t a in ing to message handl ing,
special dependency relat ionships , and sys tem primit ives. These are
presented in Chap te r 14.

Test ing the
Funct ional i ty
of an Object

Every object is an ins tance of a class. An object 's funct ional i ty is deter-
mined by its class. This funct ional i ty is tes ted in two ways: explicit
n a m i n g of a class to de t e rmine w h e t h e r it is the class or the superclass
of the object, and n a m i n g of a message selector to de t e rmine w h e t h e r
the object can respond to it. These re f lec t two ways of t h ink ing about
the re la t ionship among ins tances of different classes: in t e rms of the
c lass /subclass h ie rarchy , or in t e rms of shared message protocols.

Object instance protocol

testing functionality
class Answer the object which is the receiver's

class.
isKindOf: aClass Answer whether the argument, aClass, is a

superclass or class of the receiver.
isMemberOf: aClass Answer whether the receiver is a direct in-

stance of the argument, aClass. This is the
same as testing whether the response to send-
ing the receiver the message class is the same
as (= =) aClass.

respondsTo: aSymbol Answer whether the method dictionary of the
receiver's class or one of its superclasses con-
tains the argument, aSymbol, as a message se-
lector.

Example messages and the i r corresponding resul ts are

expression result

3 class
(this is an array)isKindOf: Collection

Smalllnteger
true

96
Protocol for All Objects

#(this is an array) isMemberOf: Collection
#(this is an array) class
3 respondsTo: #isKindOf:
,:#:(1 2 3)isMemberOf: Array
Object class

false
Array
true
true
Object class

Comparing
Objects

Since all in format ion in the sys tem is represen ted as objects, the re is a
basic protocol provided for tes t ing the ident i ty of an object and for copy-
ing objects. The impor t an t comparisons specified in class Object are
equivalence and equal i ty testing. Equivalence (= =) is the test of
whe the r two objects are the same object. Equal i ty (=) is the test of
w h e t h e r two objects represen t the same component . The decision as to
wha t it means to be ¢'represent the same component" is made by the re-
ceiver of the message; each new kind of object t ha t adds new ins tance
var iables typical ly mus t r e i m p l e m e n t the = message in order to specify
which o f its i n s t ance var iables should en te r into the t e s t of equali ty.
For example, equal i ty of two a r r ays is de t e rmined by checking the size
of the a r r ays and then the equal i ty of each of the e lements of the ar-
rays; equal i ty of t w o number s is de t e rmined by tes t ing w h e t h e r the two
number s represen t the same value; and equal i ty of two bank accounts
migh t rest solely on the equal i ty of each account identif icat ion number .

The message hash is a special pa r t of the compar ing protocol. The re-
sponse to hash is an integer. Any two objects t h a t are equal mus t re-
t u rn the same value for hash. Unequa l objects m a y or m a y not r e tu rn
equal values for hash. Typically, this in teger is used as an index to lo-
cate the object in an indexed collection (as i l lus t ra ted in Chap te r 3).
Any t ime = is redefined, hash m a y also have to be redefined in order
to preserve the proper ty t h a t any two objects t ha t are equal r e tu rn
equal values for hash.

Object instance protocol

comparing
anObject

= anObject

~ = anObject

~ anObject

hash

Answer whether the receiver and the argu-
ment are the same object.
Answer whether the receiver and the argu-
ment represent the same component.
Answer whether the receiver and the argu-
ment do not represent the same component.
Answer whether the receiver and the argu-
ment are not the same object.
Answer an Integer computed with respect to
the representation of the receiver.

97
Copying Objects

The de fau l t i m p l e m e n t a t i o n of = is the s a m e as t h a t of - - .
Some special ized c o mp a r i s o n protocol provides a concise way to tes t

for i den t i t y wi th t he object nil.

Object instance protocol

testing
isNil
notNil

Answer whether the receiver is nil.
Answer whether the receiver is not nil.

These me s s a g e s a re ident ica l to = = nil a n d ~ nil, respect ive ly . Choice
of wh ich to use is a m a t t e r of pe r sona l style.

Some obvious e x a m p l e s a r e

expression result

nil isNil true
true notNil true
3 isNil false
(a b c) = # (a b c) true
3 = (6/2) true
#(1 2 3) class = = Array true

Copying
Objects

T h e r e a re two ways to m a k e copies of an object. The d i s t inc t ion is
w h e t h e r or not t he va lues of t he object 's va r i ab l e s a r e copied. If t he val-
ues a r e not copied, t h e n t h e y a re s h a r e d (shallowCopy); if t he va lues a re
copied, t h e n t h e y a re not s h a r e d (deepCopy).

Object instance protocol

copying
copy
shallowCopy

deepCopy

Answer another instance just like the receiver.
Answer a copy of the receiver which shares
the receiver's instance variables.
Answer a copy of the receiver with its own
copy of each instance variable.

The de fau l t i m p l e m e n t a t i o n of copy is shallowCopy. In subclasses in
wh ich copying m u s t r e su l t in a special c o m b i n a t i o n of s h a r e d and
u n s h a r e d var iab les , t he m e t h o d assoc ia ted wi th copy is u sua l ly re-
i m p l e m e n t e d , r a t h e r t h a n the m e t h o d assoc ia ted wi th shal lowCopy or

d e e p c o p y .

98
Protocol for All Objects

As an example, a copy (a shallow copy) of an Array refers to the same
elements as in the original Array, but the copy is a different object. Re-
placing an e lement in the copy does not change the original. Thus

expression result

a ,- @ (" f irst" " s e c o n d ' " th i rd ') (" f irst" " second " " th i rd ')

b ,- a copy (' f i r s t ' ' s e c o n d ' ' t h i r d ')

a = b t rue

a = = b fa lse

(a at: 1) = = (b at: 1) t rue

b at: 1 put: " n e w F i r s t ' " newF i r s t '

a = b fa lse

a ,- "he l lo" ' he l lo '

b ,- a copy "he l l o '

a = b true

a = = b fa lse

Figure 6.1 shows the relat ionship between shallow and deep copying. To
fur ther i l lustrate the distinction between shailowCopy and deepCopy,
take as an example a PersonneiNecord. Suppose it is defined to include
the variable insurancePlan, an instance of class insurance. Suppose fur-
ther tha t each instance of Insurance has a value associated with it rep-
resent ing the limit on medical coverage. Now suppose we have created
employeeRecord as a prototypical instance of a PersonneiRecord. By
"prototypical" we mean tha t the object has all of the initial a t t r ibutes
of any new instance of its class, so tha t instances can be created by sim-
ply copying it r a the r than sending a sequence of initialization messages.
Suppose fur ther tha t this prototypical instance is a class variable o f
PersonnelRecord and tha t the response to creat ing a new
PersonnelRecord is to make a shallow copy of it; tha t is, t h e method as-
sociated with the message new is T employeeRecord copy.

Figure 6.1

• • , 1 shallow
orlglnat I co

-,"
/ , , - i - J - - Q - - - - - - - - J ,

1 1 -

/!X
col yl co yF

As a result of evaluat ing the expression

j o e S m i t h R e c o r d ~- P e r s o n n e l R e c o r d n e w

99
A c c e s s i n g t h e P a r t s of a n O b j e c t

joeSmithRecord refers to a copy (in particular, a shallow copy) of
ernployeeRecord.

The prototype employeeRecord and the actual record joeSmithRecord
share a reference to the same insurance plan. Company policy may
change. Suppose PersonnelRecord understands the message
changelnsuranceLimit: aNumber, which is implemented by having the
prototypical instance of PersonnelRecord, empioyeeRecord, reset its in-
surance plan limit on medical coverage. Since this insurance plan is
shared, the result of evaluating the expression

PersonnelRecord changelnsuranceLimit: 4000

is to change the medical coverage of all employees. In the example,
both the medical coverage referenced by employeeRecord and that ref-
erenced by its copy, joeSmithRecord, is changed. The message
changelnsuranceLimit: is sent to the class PersonnelRecord because it is
the appropriate object to broadcast a change to all of its instances.

Access ing the
Parts of an
Object

There are two kinds of objects in the Smalltalk-80 system, objects with
named variables and objects with indexed variables. Objects with
indexed variables may also have named instance variables. This distinc-
tion is explained in Chapter 3. Class Object supports six messages in-
tended to access the indexed variables of an object. These are

Object instance protocol

accessing
at: index

at: index put: anObject

basicAt: index

Answer the value of the indexed instance
variable of the receiver whose index is the ar-
gument, index. If the receiver does not have
indexed variables, or if the argument is great-
er than the number of indexed variables, then
report an error.

Store the argument, anObject, as the value of
the indexed instance variable of the receiver
whose index is the argument, index. If the re-
ceiver does not have indexed variables, or if
the argument is greater than the number of
indexed variables, then report an error. An-
swer anObject.

Same as at: index. The method associated with
this message, however, cannot be modified in
any subclass.

100
Protocol for All Objects

basicAt: index put: anObject

size

basicSize

Same as at: index put: anObject. The method
associated with this message, however, cannot
be modified in any subclass.
Answer the receiver's number of indexed vari-
ables. This value is the same as the largest le-
gal index.
Same as size. The method associated with this
message, however, cannot be modified in any
subclass.

Notice tha t the accessing messages come in pairs; one message in each
pair is prefixed by the word basic mean ing tha t it is a fundamenta l sys-
tem message whose implementa t ion should not be modified in any sub-
class. The purpose of providing pairs is so tha t the external protocol, at:,
at:put:, and size, can be overr idden to handle special cases, while still
ma in ta in ing a way to get at the primit ive methods. (Chapter 4 includes
an explanat ion of "pr imit ive" methods, which are methods implement-
ed in the vi r tual machine for the system.) Thus in any method in a hi-
e rarchy of class descriptions, the messages, basicAt:, basicAt:put:, and
basicSize, can always be used to obtain the primit ive implementat ions .
T h e message basicSize can be sent to any object; if the object is not
variable length, then the response is 0.

Instances of class Array are var iable- length objects. Suppose letters is
the Array @(a b d f j rn p s). Then

expression result

letters size 8
letters at: 3 d
letters at: 3 put: @c c
letters (a b c f j m p s)

Printing and
Storing Objects

There are various ways to create a sequence of characters tha t provides
a description of an object. The description might give only a clue as to
the ident i ty of an object. Or the description might provide enough infor-
mat ion so tha t a s imilar object can be constructed. In the first case
(printing), the description may or may not be in a well-formatted, visu-
ally pleasing style, such as tha t provided by a Lisp pre t ty-pr in t ing rou-
tine. In the second case (storing), the description might preserve
informat ion shared with other objects.

The message protocol of the classes in the Small ta lk-80 system sup-
port pr in t ing and storing. The implementa t ion of these messages in
class Object provides minimal capability; most subclasses override the

101
P r i n t i n g and S tor ing Objects

messages in order to e n h a n c e the descr ipt ions created. The a r g u m e n t s
to two of the messages a re ins tances of a k ind of Stream; S t r eams are
p re sen t ed in C h a p t e r 12.

Object instance protocol

printing
printString

printOn: aStream

Answer a String whose characters are a de-
scription of the receiver.
Append to the argument, aStrearn, a String
whose characters are a description of the re-
ceiver.

storing
storeString

storeOn: aStream

Answer a String representation of the receiver
from which the receiver can be reconstructed.
Append to the argument, aStrearn, a String
representation of the receiver from which the
receiver can be reconstructed.

Each of the two kinds of p r i n t i ng is based on produc ing a sequence of
c h a r a c t e r s t h a t m a y be shown on a d isplay screen, w r i t t e n on a file, or
t r a n s f e r r e d over a ne twork . The sequence c rea t ed by storeString or
storeOn: should be i n t e r p r e t a b l e as one or more express ions t h a t can be
eva lua t ed in order to r econs t ruc t the object. Thus , for example , a Set of
t h r ee e lements , $a, $b, and $c, m i g h t p r in t as

Set ($a $b $c)

while it m i g h t s tore as

(Set new add: $a; add: $b; add: $c)

Li te ra l s can use the s a m e r e p r e s e n t a t i o n for p r i n t i ng and storing. Thus
the String ' h e l lo 'wou ld p r in t and s tore as 'hello'. The Symbol # n a m e
pr in t s as name, bu t s tores as ~ n a m e .

For lack of more in format ion , the defau l t i m p l e m e n t a t i o n of
printString is the object 's class name; the defau l t i m p l e m e n t a t i o n of
storeString is the class n a m e followed by the ins t ance c rea t ion message
basicNew, followed by a s e q u e n c e of messages to s tore each ins tance
var iable . For example , if a subclass of Object, say class Example, demon-
s t r a t ed the defau l t behavior , then , for eg, an ins tance of Example wi th
no ins t ance var iables , we would have

expression result

eg printString
eg storeString

• an Example'
• (Example basicNew) '

102
P r o t o c o l f o r A l l O b j e c t s

Error Handling The fact tha t all processing is carried out by sending messages to ob-
jects means tha t there is one basic error condition tha t must be han-
dled by the system: a message is sent to an object, but the message is
not specified in any class in the object's superclass chain. This error is
determined by the in terpre ter whose reaction is to send the original ob-
ject the message doesNotUnderstand: aMessage. The argument ,
aMessage, represents the failed message selector and its associated ar-
guments, if any. The method associated with doesNotUnderstand: gives
the user a report tha t the error occurred . How the report is presented
to the user is a function of the (graphical) interface supported by the
system and is not specified here; a min imum requi rement of an interac-
tive system is tha t the error message be printed on the user 's output
device and then the user be given the opportuni ty to correct the errone-
ous situation. Chapter 17 i l lustrates the Small talk-80 system error noti-
fication and debugging mechanisms.

In addition to the basic error condition, methods might explicitly
want to use the system error handl ing mechanism for cases in which a
test determines tha t the user program is about to do something unac-
ceptable. In such cases, the method might want to specify an error com-
ment tha t should be presented to the user. A typical t h i n g to do is to
send the active instance the message error: aString, where the a rgumen t
represents the desired comment. The default implementa t ion is to in-
voke the system notification mechanism. The p rogrammer can provide
an a l ternat ive implementa t ion for error: tha t uses application-depen-
dent error reporting.

Common error messages are supported in the protocol of class Object.
An error message might report tha t a system primitive failed, or tha t a
subclass is overriding an inheri ted message which it can not support
and therefore the user should not call upon it, or tha t a superclass
specifies a message tha t must be implemented in a subclass.

Object ins tance protocol

error handling
doesNotUnderstand: aMessage

error: aString

primitiveFailed

Report to the user t ha t the receiver does not
unde r s t and the a rgumen t , aMessage, as a
message.

Repor t to the user t ha t an er ror occurred in
the context of responding to a message to the
receiver. The repor t uses the a rgument ,
aString, as par t of the e r ror notif icat ion com-
ment .

Repor t to the user t h a t a method
implemen ted as a sys tem pr imi t ive has failed.

103
E r r o r H a n d l i n g

shouldNotl mplement

subclassResponsibility

Report to the user that, although the super-
class of the receiver specifies that a message
should be implemented by subclasses, the
class of the receiver cannot provide an appro-
priate implementation.
Report to the user that a method specified in
the superclass of the receiver should have
been implemented in the receiver's class.

A subc la s s can choose to o v e r r i d e t h e e r r o r - h a n d l i n g m e s s a g e s in o r d e r

to p r o v i d e spec ia l s u p p o r t for c o r r e c t i n g t h e e r r o n e o u s s i t u a t i o n . Chap-
t e r 13, w h i c h is a b o u t t h e i m p l e m e n t a t i o n of t h e co l lec t ion classes, pro-

v ides e x a m p l e s of t h e use of t h e l as t two messages .

.o.-°° ~.~.
;,- %

,.oo,-° ..."
.....o"

.,o.-"

J ""

...-"
""°" -% ,- . °...-"

" % ' ' ' " "-,. i ,o"'"°""°"''"

:'" J "'"
- y.°,"°"

~.~ . .o-Y"

._ ..-:"
°....°'°

°°
° .,o.-"

_o.O-"

m. -'°°
...-,"

o ,ut .°~'m

,., .o- ..--"
. ,.,'°"

.,.-

.,.-o'"

,.., °.°-""

.o..,-'°""" .,"

,..-
,...-'*'"

. . . . ""

/

Linear Measures

Class Magnitude

Class Date

Class Time

Class Character

Object

Number
Float
Fraction
Integer

LargeNegativelnteger
LargePositivelnteger
Smalllnteger

LookupKey
Association

Link

Process

Collection

SequenceableCollection
LinkedList

Semaphore

ArrayedCollection
Array

Bitmap
DisplayBitmap

RunArray
String

Symbol
Text
ByteArray

Interval
OrderedCollection

SortedCollection
Bag
M appedCollection
Set

Dictionary
I dentityDictionary

Stream
PositionableStream

ReadStream
WriteStream

ReadWriteStream
ExternalStream

FileStream

Random

File
FileDirectory
FilePage

UndefinedObject
Boolean

False
True

ProcessorScheduler
Delay
SharedQueue

Behavior
ClassDescription

Class
MetaClass

Point
Rectangle
BitBit

CharacterScanner

Pen

DisplayObject
DisplayMedium

Form
Cursor
DisplayScreen

InfiniteForm
OpaqueForm
Path

Arc
Circle

Curve
Line
LinearFit
Spline

107
Class Magnitude

The Smal l ta lk-80 sys tem provides several classes represen t ing objects
t h a t measu re someth ing wi th l inear ordering. Real world examples of
such measu rab le quant i t ies are (1) t empora l quant i t ies such as dates
and t ime, (2) spat ia l quant i t ies such as distance, and (3) numer ica l
quant i t ies such as reals and rat ionals .

Class Magnitude IS one n u m b e r less t han ano the r number? Does one date come after an-
o ther date? Does one t ime precede ano the r t ime? Does a cha rac te r come
af ter ano the r one in the a lphabet? Is one dis tance the same or less t han
ano the r distance?

The common protocol for answer ing these queries is provided in the
class Magnitude. Magnitude provides the protocol for objects t ha t have
the abi l i ty to be compared along a l inear dimension. Subclasses of class
Magnitude include Date, Time, and Number. Classes Character (an ele-
m e n t of a string) and LookupKey (a key in a d ic t ionary association) are
also imp lemen ted as subclasses of class Magnitude. Character is interest-
ing as an example of i m m u t a b l e objects in the sys tem and so is intro-
duced in this chapter ; LookupKey is less in te res t ing and is deferred
unt i l needed in the chap te r on collections. A class Distance is not pro-
vided in the ac tua l Smal l ta lk-80 system.

Magnitude instance protocol

comparing
< aMagnitude

< = aMagnitude

> aMagnitude

> = aMagnitude

between: min and: max

Answer whether the receiver is less than the
argument.
Answer whether the receiver is less than or
equal to the argument.
Answer whether the receiver is greater than
the argument.
Answer whether the receiver is greater than
or equal to the argument.
Answer whether the receiver is greater than
or equal to the argument, rain, and less than
or equal to the argument, max.

Al though Magnitude inher i t s from its superclass, Object, the message =
for compar ing the equal i ty of two quant i f iable objects, every kind of
Magnitude mus t redefine this message. The method associated wi th =
in class Magnitude is

self subclassResponsibi l i ty

If a subclass of Magnitude does not i m p l e m e n t = , then an a t t e m p t to
send the message to an ins tance of the subclass resul ts in the special er-
ror message t h a t a subclass should have imp lemen ted the message, -as
specified in its superclass.

108
Linear Measures

An instance of a kind of Magnitude can also respond to messages tha t
de termine which of two objects tha t can be l inear ly measured is the
larger or the smaller.

Magnitude instance protocol

testing
min: aMagnitude Answer the receiver or the argument, which-

ever has the lesser magnitude.
max: aMagnitude Answer the receiver or the argument, which-

ever has the greater magnitude.

Note tha t protocol for the equal i ty comparisons - - , ~ = , and ~ is
inher i ted from class Object. Using Integers as the example kinds of
Magnitudes, we have

expression result

3 < = 4 true

3 > 4 false

5 between: 2 and: 6 true

5 between: 2 and: 4 false

34 min: 45 34

34 max: 45 45

The p r o g r a m m e r does not create instances of Magnitude, but only of its
subclasses. This is due to the fact tha t Magnitude is not able to imple-
men t all of the messages it specifies, indeed, tha t it implements one or
more of these messages by the expression self subclassResponsibility.

Class D at e Now tha t we have defined the general protocol of Magnitudes, it is pos-
sible to add addit ional protocol tha t supports a r i thmet ic and inquiries
about specific l inear measurements . The first re f inement we will exam-
ine is the subclass Date.

An instance of Date represents a specific day since the s tar t of the
Ju l ian calendar. A day exists in a par t icu lar month and year. Class
Date knows about some obvious information: (1) there are seven days in
a week, each day having a symbolic name and an index 1, 2, ..., or 7; (2)
there are 12 months in a year, each having a symbolic name and an in-
dex, 1, 2, ..., or 12; (3) months have 28, 29, 30, or 31 days; and (4) a par-
t icular year might be a leap year.

Protocol provided for the object, Date, supports inquiries about Dates
in general as well as about a specific Date. Both Date and Time provide
interes t ing examples of classes in the system for which special knowl-
edge is a t t r ibu ted to and accessible from the class itself, r a the r t han

109
C l a s s Date

f r o m i t s i n s t a n c e s . T h i s " c l a s s p r o t o c o l " is s p e c i f i e d in t h e m e t a c l a s s of

t h e c lass . L e t ' s f i r s t l ook a t t h e c l a s s p r o t o c o l of D a t e s u p p o r t i n g g e n e r a l

i n q u i r i e s .

Date class protocol

general inquiries
dayOfWeek: dayName

nameOfDay: daylndex

indexOfMonth: monthName

nameOfMonth: monthlndex

Answer the index in a week, 1, 2 or 7, of
the day named as the a rgument , dayName.

Answer a Symbol tha t represents the name of
the day whose index is the a rgument ,
daylndex, where 1 is Monday, 2, is Tuesday,
and so on.

Answer the index in a year, 1, 2 or 12, of
the month named as the a rgument ,
monthName.
Answer a Symbol that represents the name of
the month whose index is the argument,
monthlndex, where 1 is January, 2, is Febru-
ary, and so on.

dayslnMonth: monthName forYear: yearlnteger
Answer the number of days in the month
whose name is monthName in the year
yearlnteger (the year must be known in order
to account for a leap year).

dayslnYear: year lnteger Answer the number of days in the year,
yearlnteger.

leapYear: year lnteger Answer 1 if the year yearlnteger is a leap
year; answer 0 otherwise.

dateAndTimeNow Answer an Array whose first element is the
current date (an instance of class Date repre-
senting today's date) and whose second ele-
ment is the current time (an instance of class
Time representing the time right now).

T h u s w e c a n s e n d t h e f o l l o w i n g m e s s a g e s .

expression result

Date dayslnYear: 1982
Date dayOfWeek: #Wednesday
Date name,OfMonth: 10
Date leapYear:. 1972

Date dayslnMonth: #February
forYear: t 972

Date dayslnMonth: #Feb
forYear: 1971

365

3

October

1 (mean ing it is a

leap year)

29

28

D a t e is f a m i l a r w i t h t h e c o m m o n a b b r e v i a t i o n s for n a m e s of m o n t h s .

110
L i n e a r M e a s u r e s

T h e r e a r e four messages t h a t can be used to c r ea t e an ins t ance of
class Date. The one c o m m o n l y used in the Sma l l t a lk -80 sys tem, no tab ly
for m a r k i n g the c rea t ion da te of a file, is Date today.

Date class protocol

instance creation
today Answer an instance of Date representing the

day the message is sent.
fromDays: dayCount Answer an instance of Date that is dayCount

number of days before or after January 1,
1901 (depending on the sign of the argument).

newDay: day month: monthName year: yearlnteger
Answer an instance of Date that is day num-
ber of days into the month named monthName
in the year yearlnteger.

newDay: dayCount year: yearlnteger
Answer an instance of Date that is dayCount
number of days after the beginning of the
year yearlnteger.

Four e x a m p l e s of i n s t ance c rea t ion messages a re

expression result

Date today
Date fromDays: 200
Date newDay: 6

month: # Feb
year: 82

Date newDay: 3 year: 82

3 February 1982
20 July 1901
6 February 1982

3 January 1982

Messages t h a t can be sen t to an i n s t ance of Date a re ca tegor ized as
accessing, inquir ies , a r i t h m e t i c , and p r i n t i n g messages . Access ing and
inqui r ies abou t a p a r t i c u l a r day consist of

• t he day index, m o n t h index, or yea r

• t h e n u m b e r of seconds, days, or m o n t h s since some o the r da te

• t he to ta l days in the da te ' s m o n t h or y e a r

• t he days left in the da te ' s m o n t h or y e a r

• t he f i rs t day of t he da te ' s m o n t h

• t he n a m e of t he da te ' s w e e k d a y or m o n t h

• t he da te of a p a r t i c u l a r w e e k d a y prev ious to the i n s t ance

S imple a r i t h m e t i c is suppor t ed in the protocol of class Date.

Date instance protocol

111
Class Time

arithmetic
addDays: dayCount Answer a Date that is dayCount number of

days after the receiver.
subtractDays: dayCount Answer a Date that is dayCount number of

days before the receiver.
subtractDate: aDate Answer an Integer that represents the number

of days between the receiver and the argu-
ment, aDate.

Such a r i t hme t i c is useful, for example , in order to compute due dates
for books in a l ib rary or fines for la te books. Suppose dueDate is an in-
s tance of Date denot ing the day a book was supposed to be r e tu rned to
the l ibrary. Then

Date today subtractDate: dueDate

computes the n u m b e r of days for which the borrower should be fined. If
a book is being borrowed today and it can be kept out for two weeks,
then

Date today addDays: 14

is the due date for the book. If the l ib ra r ian wan t s to quit work 16 days
before Chr i s tmas day, then the date of the last day at work is

(Date newDay: 25 month: #December year: 1982) subtractDays: 16

An a lgor i thm to de te rmine the fine a borrower mus t pay migh t first
compare today 's date wi th the due date and then, if the due date has
past, de t e rmine the fine as a 10-cent mul t ip le of the n u m b e r of days
overdue.

Date today < dueDate
ifTrue: [fine ~- 0]
ifFalse: [fine ~ 0.10 * (Date today subtractDate: dueDate)]

Class Time An ins tance of class Time represents a pa r t i cu la r second in a day. Days
s t a r t a t midnight . Time is a subclass of Magnitude. Like class Date, Time
can respond to gene ra l inquiry messages t ha t are specified in the class
protocol.

112
L i n e a r M e a s u r e s

Time class protocol

general inquiries
millisecondCIockValue

millisecondsToRun: timedBIock

timeWords

totalSeconds

dateAndTimeNow

Answer the number of milliseconds since the
millisecond clock was last reset or rol led over
to 0.

Answer the number of milliseconds
timedBIock takes to r e tu rn its value.

Answer the seconds (in Greenwich Mean
Time) since Jan. 1, 1901. The answer is a four-
e lement ByteArray (ByteArray is described in
Chapter 10).

Answer the total seconds from Jan. 1, 1901,
corrected for t ime zone and daylight savings
time.

Answer an Array whose first e lement is the
cur ren t date (an instance of class Date tha t
represents today's date) and whose second ele-
men t is the cur ren t t ime (an instance of class
Time tha t represents the t ime right now). The
resul t of sending this message to Time is iden-
tical to the result of sending it to Date.

The only non-obvious inquiry is millisecondsToRun: timedBIock. An ex-
ample is

Time millisecondsToRun: [Date today]

where the result is the number of milliseconds it took the system to
compute today's date. Because there is some overhead in responding to
this message, and because the resolution of the clock affects the result,
the careful programmer should determine the machine-dependent
uncertainties associated with selecting reasonable arguments to this
message.

A new instance of Time can be created by sending Time the message
now; the corresponding method reads the current time from a system
clock. Alternatively, an instance of Time can be created by sending the
message fromSeconds: secondCount, where SecondCount is the number
of seconds since midnight.

Time class protocol

instance creation
now

fromSeconds: secondCount

Answer an instance of Time represent ing the
second the message is sent.

Answer an instance of Time tha t is
secondCount number of seconds since mid-
night.

Accessing protocol for instances of class Time provide information as to
the number of hours ~ (hours), minutes (minutes) and seconds (seconds)

113
Class Time

t ha t the ins tance represents .
Ar i thmet i c is also supported.

Time instance protocol

arithmetic
addTime: timeAmount

subtractTime: timeAmount

Answer an instance of Time that is the argu-
ment, timeAmount, after the receiver.
Answer an instance of Time that is the argu-
ment, timeAmount, before the receiver.

In the messages given above, the a r g u m e n t s (timeAmount) may be e i ther
Dates or Times. For this to be possible, the sys tem mus t be able to con-
ver t a Date and a Time to a common uni t of measu remen t ; it converts
t h e m to seconds. In the case of Time, the conversion is to the n u m b e r of
seconds since midnight ; in the case of Date, the conversion is to the
n u m b e r of seconds be tween a t ime on J a n u a r y 1, 1901, and the same
t ime in the receiver 's day. To suppor t these methods, ins tances of each
class respond to the conversion message asSeconds .

Time instance protocol

converting
asSeconds

Date instance protocol

Answer the number of seconds since midnight
that the receiver represents.

converting
asSeconds Answer the number of seconds between a time

on January 1, 1901, and the same time in the
receiver's day.

Ar i thmet i c for Time can be used in ways analogous to t h a t for Date.
Suppose the a m o u n t of t ime a person spends working on a pa r t i cu la r
project is to be logged so t h a t a cus tomer can be charged an hour ly fee.
Suppose the person s ta r ted work at startTime and worked cont inuously
dur ing the day unt i l r ight now; the phone rings and the cus tomer
wan t s to know today's charges. At t ha t moment , the bill at $5.00 an

hour is

(Time now subtractTime: startTime) hours * 5

ignoring any addi t ional minu tes or seconds. If a charge for any fraction
of an hour over 30 minu tes is to be charged as a full hour then an addi-

t ional $5.00 is added if

(Time now subtractTime: startTime) minutes > 30

114
Linear Measures

Who is more productive, the worker who finished the job with t ime
logged at timeA or the worker with t ime timeB? The answer is the first
w o r k e r if timeA < timeB. Comparing protocol is inheri ted from the
superclasses Magnitude and Object.

Suppose t imes are computed across days, for example, in computing
the t ime of a car in a four-day rally. If the first day of the ral ly s tar ted
at startTime on day startDate, then the t ime for a car arr iving at the
finish line r ight now is computed as follows.

Let the s ta r t t ime be 6:00 a.m.

startTime ~ Time fromSeconds: (60*60,6).

on Februa ry 2, 1982

startDate ~- Date newDay: 2 month: #Feb year: 82.

The t ime tha t has passed up to the s ta r t of the cur rent day is

todayStart ~ (((Time fromSeconds: 0) addTime: Date today)
subtractTime: startDate)

subtractTime: startTime

That is, add all the seconds since Jan. 1, 1901, up to the s ta r t of today
and then subtract all the seconds since Jan. 1, 1901, up to tee s tar t of
the s ta r t date. This is equivalent to adding the number of seconds in
the number of elapsed days, but then the p rogrammer would have to do
all the conversions.

(Date today subtractDate: startDate), 24*60,60)

By adding the cur rent time, we have the elapsed rally t ime for the car.

todayStart addTime: Time now

Class Character Class Character is the third subclass of class Magnitude we shall exam-
ine. It is a kind of Magnitude because instances of class Character form
an ordered sequence about which we can make inquiries such as wheth-
er one charac ter precedes (<) or succeeds (>) another charac ter alpha-
betically. There are 256 instances of class Character in the system. Each
one is associated with a code in an extended ASCII charac ter set.

Characters can be expressed l i terally by preceding the alphabetic
charac ter by a dollar sign ($); thus, $A is the Character represent ing the
capital let ter "A". Protocol for creat ing instances of class Character con-
sists of

Character class protocol

115
Class Character

instance creation
value: anlnteger Answer" an instance of Character whose value

is the argument, anlnteger. The value is asso-
ciated with an element of the ASCII character
set. For example, Character value: 65 is a capi-
tal '~A".

digitValue: anlnteger Answer an instance of Character whose digit
value is the argument, anlnteger. For example,
answer $9 if the argument is 9; answer $0 for
0; answer $A for 10, and $Z for 35. This meth-
od is useful in parsing numbers into strings.
Typically, only Characters up to $F are useful
(for base 16 numbers).

Class protocol , t h a t is, t h e se t of m e s s a g e s to t h e object Charac te r , pro-
v ides a v o c a b u l a r y for acces s ing c h a r a c t e r s t h a t a r e no t e a s y to d is t in-

g u i s h w h e n p r in t ed : b a c k s p a c e , cr, e sc , n e w P a g e (t h a t is, f o r m feed),

s p a c e , a n d tab.
M e s s a g e s to i n s t a n c e s of C h a r a c t e r s u p p o r t acces s ing t h e ASCII v a l u e

a n d t h e d ig i t v a l u e of t h e i n s t a n c e a n d t e s t i n g t h e t y p e of c h a r a c t e r .
T h e on ly s t a t e of a C h a r a c t e r is i ts v a l u e w h i c h can n e v e r change . Ob-
j ec t s t h a t can no t c h a n g e t h e i r i n t e r n a l s t a t e a r e ca l led immutable ob-
jects. This m e a n s t h a t , once c r ea t ed , t h e y a r e n o t d e s t r o y e d a n d t h e n
r e c r e a t e d w h e n t h e y a r e n e e d e d aga in . R a t h e r , t h e 256 i n s t a n c e s of
C h a r a c t e r a r e c r e a t e d a t t h e t i m e t h e s y s t e m is i n i t i a l i zed a n d r e m a i n
in t h e sy s t em. W h e n e v e r a n e w C h a r a c t e r w h o s e code is b e t w e e n 0 a n d
255 is r e q u e s t e d , a r e f e r e n c e is p r o v i d e d to a n a l r e a d y e x i s t i n g Charac-

te r . In th i s w a y t h e 256 C h a r a c t e r s a r e un ique . Bes ides Cha rac t e r s , t he
S m a l l t a l k - 8 0 s y s t e m inc ludes Sma l l l n t ege r s a n d S y m b o l s a s i m m u t a b l e

objects .

Character instance protocol

accessing
asciiValue

digitValue

testing
isAIphaNumeric

isDigit
isLetter
isLowercase

isUppercase

Answer the number corresponding to the
ASCII encoding for the receiver.

Answer the number corresponding to the nu-
merical radix represented by the receiver (see
the instance creation message digitValue: for
the correspondences).

Answer true if the receiver is a letter or a dig-
it.
Answer whether the receiver is a digit.
Answer whether the receiver is a letter.

Answer whether the receiver is a lowercase
letter.
Answer whether the receiver is an uppercase
letter.

116
Linear Measures

isSeparator Answer whether the receiver is one of the sep-
arator characters in the expression syntax:
space, cr, tab, line feed, or form feed.

isVowel Answer whether the receiver is one of the
vowels: a, e, i, o, or u, in upper or lowercase.

I n s t ance protocol also provides conversion of a charac ter into upper- or
lowercase (askowercase and asUppercase) and into a symbol (asSymbol).

A simple alphabet ic comparison demonst ra tes the use of comparing
protocol for instances of Character. Suppose we wish to know if one
s t r ing of characters precedes ano the r s t r ing in the telephone book.
Strings respond to the message at: to retr ieve the e lement whose index
is the a rgument ; e lements of Strings are Characters. Thus ' a b c ' at: 2 is
$b. In the following we assume we are specifying a method in class
String whose message selector is min:. The method re tu rns a String, ei-
the r the receiver of the message rain: or its a rgument , whichever is col-
lated first a lphabet ical ly.

min: aSt r ing
1 to: self size do:

[:index I
(index > aString size)ifTrue: [taString].
(self at: index) > (aString at: index)ifTrue: [taString].
(self at: index) < (aString at: index)ifTrue: [tself]].

tself

The a lgor i thm consists of two s ta tements . The first is an i terat ion over
each e lement of the receiver. The i terat ion stops when ei ther (1) the ar-
gument , aStrinfl, no longer has a charac te r with which to compare the
next charac te r in the receiver (i.e., index > aString size); (2) the next
charac te r in self comes after the next charac ter in aStrinfl (i.e., (self at:
index) > (aString at: index)); or (3) the next charac te r in self comes be-
fore the next charac ter in aString. As an example of (1), take the com-
parison of ' abcd ' and 'abc ' which te rmina tes when index = 4; the
answer is t ha t 'abc ' is first alphabetically. For (2), suppose we compare
'abde" with 'abce ' . When index = 3, $d > $c is true; the answer is

"abce'. For (3), compare "az" with "by" which te rmina tes when index -- 1;
the answer is "az'. In the case tha t the receiver has fewer characters
t h a n the a rgument , even when the receiver is the initial subst r ing of
the a rgument , the first s t a t ement will complete and the second state-
men t is evaluated; the resul t is the receiver. An example is the compar-
ison of 'abc ' and 'abcd' .

Note t h a t a r i thmet ic on characters is not supported. For example,
the following expression is incorrect.

a ~- $A + 1

The er ror occurs because a Character does not under s t and the message + .

, . . ,°"

°°,

o-. .o

• "~
o , o " " !

|Ii.iJ""=,,

8
Numerical Classes

Protoco l of the N u m b e r Classes

Classes Float and Fraction

Integer Classes

Class Random" A R a n d o m N u m b e r Generator

Object

Magnitude Stream
Character PositionableStream
Date ReadStream
Time WriteStream

ReadWriteStream
ExternalStream

FileStream

•iii!i•i•ii•,,:•,•, , FileDirecto ry
FilePage

LookupKey UndefinedObject
Association Boolean

False
Link True

Process

Collection

SequenceableCollection
LinkedList

Semaphore

ArrayedCollection
Array

Bitmap
DisplayBitmap

RunArray
String

Symbol
Text
ByteArray

Interval
OrderedCollection

SortedCollection.
Bag
M appedCollection
Set

Dictionary
IdentityDictionary

ProcessorScheduler
Delay
SharedQueue

Behavior
ClassDescription

Class
MetaClass

Point
Rectangle
BitBit

CharacterScanner

Pen

DisplayObject
DisplayMedium

Form
Cursor
DisplayScreen

InfiniteForm
OpaqueForm
Path

Arc
Circle

Curve
Line
LinearFit
Spline

119
Numerical Classes

One of the major goals of the Smalltalk programming system is to ap-
ply a single metaphor for information processing as uniformly as possi-
ble. The Smalltalk metaphor, as described in earlier chapters, is one of
objects that communicate by sending messages. This metaphor is very
similar to the one used in Simula for implementing simulation systems.
One of the greatest challenges to the application of the Smalltalk meta-
phor to all aspects of a programming system has been in the area of
arithmetic. Simula used the object/message metaphor only for the
higher level interactions in the simulations it implemented. For arith-
metic, as well as most algorithmic control structures, Simula relied on
the embedded Algol programming language with its built-in number
representations, operations, and syntax. The contention that even the
addition of two integers should be interpreted as message-sending met
with a certain amount of resistance in the early days of Smalltalk. Ex-
perience has demonstrated that the benefits of this extreme uniformity
in the programming language outweigh any inconvenience in its imple-
mentation. Over several versions of Smalltalk, implementation tech-
niques have been developed to reduce the message-sending overhead for
the most common arithmetic operations so that there is now almost no
cost for the benefits of uniformity.

Objects that represent numerical values are used in most systems
done in Smalltalk (as with most other programming languages). Num-
bers are natural ly used to perform mathematical computations; they
are also used in algorithms as indices, counters, and encodings of states
or conditions (often called flags). Integral numbers are also used as col-
lections of binary digits (bits) that perform boolean masking operations
with each other.

Each different kind of numerical value is represented by a class. The
number classes have been implemented so that all numbers behave as
if they were of the most general type. The actual class of a particular
number object is determined by how much of the full generality is
needed to represent its value. Therefore the external protocol of all
number objects is inherited from the class Number. Number has three
subclasses: Float, Fraction, and Integer. Integer has three subclasses:
Smalllnteger, LargePositivelnteger, and LargeNegativelnteger. Integral
numbers provide further protocol to support treating the number as a
sequence of bits. This protocol is specified in the class Integer. Num-
bers in the system are instances of Float, Fraction, Smalllnteger,
LargePositivelnteger, or LargeNegativelnteger. Classes Number and Inte-
ger specify shared protocol, but they do not specify particular represen-
tations for numeric values. Therefore no instances of Number or Integer
are created.

Unlike other objects that may change their internal state, the only
state of a number is its value, which should never change. The object 3,
for example, should never change its state to 4, or disastrous effects
could occur.

120
N u m e r i c a l C lasses

Protoco l of the
N u m b e r
Classes

N u m b e r de f ines t h e p ro toco l of a l l n u m e r i c objects . I t s m e s s a g e s s u p p o r t

s t a n d a r d a r i t h m e t i c o p e r a t i o n s a n d c o m p a r i s o n s . M o s t of t h e s e m u s t be

i m p l e m e n t e d by s u b c l a s s e s of N u m b e r s ince t h e y d e p e n d on t h e a c t u a l

r e p r e s e n t a t i o n of va lues .

T h e p ro toco l of a r i t h m e t i c m e s s a g e s cons i s t s of t h e u s u a l b i n a r y op-

e r a t o r s s u c h as + , - , • a n d /, a n d s e v e r a l u n a r y a n d k e y w o r d mes-

sages for c o m p u t i n g t h e a b s o l u t e v a l u e of a n u m b e r , t h e n e g a t i o n of a

n u m b e r , or t h e i n t e g e r q u o t i e n t or r e m a i n d e r of a n u m b e r . T h e ca tego-

ry for a r i t h m e t i c m e s s a g e s is as follows.

Number instance protocol

arithmetic
+ a.Num.ber

- aNumber

. aNumber

/ aNumber

/ / a N u m b e r

\ \ aNumber

abs

negated

quo: aNumber

rem: aNumber

reciprocal

Answer the sum of the receiver and the argu-
ment, aNumber.
Answer the difference between the receiver
and the argument, aNumber.

Answer the result of multiplying the receiver
by the argument, aNumber.
Answer the result of dividing the receiver by
the argument, aNumber. Note that since as
much precision as possible is retained, if the
division is not exact, the result will be an in-
stance of Fraction.

Answer the integer quotient defined by divi-
sion with truncation toward negative infinity.

Answer the integer remainder defined by divi-
sion with truncation toward negative infinity.
This is the modulo operation.

Answer a Number that is the absolute value
(positive magnitude) of the receiver.

Answer a Number that is the negation of the
receiver.

Answer the integer quotient defined by divi-
sion with truncation toward zero.

Answer the integer remainder defined by divi-
sion with truncation toward zero.

Answer 1 divided by the receiver. Report an
error to the user if the receiver is 0.

S o m e e x a m p l e s follow.

expression result

1 + 1 0

5.6 -- 3

5 - 2.6

(- -4) abs

6 / 2

11

2.6

2.4

4

3

7 / 2

7 reciprocal

121
Protocol of the Number Classes

(7/2), a Fraction with
numerator 7 and de-
nominator 2
(1/7), a Fraction w i t h

numerator 1 and de-
nominator 7

Ari thmetic messages tha t re tu rn integral quotients and remainders
from a division operation follow two conventions. One convention trun-
cates the resulting number toward zero, the other toward negative in-
finity. These are the same for positive results since zero and negative
infinity are in the same direction. For negative results, the two conven-
tions round in different directions. The protocol for Number provides for
both conventions.

The following table shows the relationships among the selectors.

truncate toward
result negative infinity truncate toward zero

quotient / / quo:
remainder \ \ rem"

Examples include:

expression result

6 quo: 2 3

7 quo: 2 3

(7 q u o : 2) + 1 4

7 quo: 2 + 1 2

7 rem: 2 1

7 / / 2 3

7 \ \ 2 1

7 \ \ 2 + 1 2

- 7 q u o : 2 - 3

- 7 rem: 2 -- 1

- 7 / / 2 - 4

- 7 \ \ 2 1

The result of quo:, rein:, o r / / is always to re turn a value whose sign is
positive if the receiver and a rgument have the same sign, and negative
if their signs are different. \ \ always produces a positive result.

Additional mathemat ica l functions are

122
N u m e r i c a l C l a s s e s

Number instance protocol

mathematical functions
exp

In
log: al),lumber
floorLog: radix

raisedTo: aNumber

raisedTolnteger: anlnteger

Answer a floating point number that is the
exponential of the receiver.

Answer the natural log of the receiver.

Answer the log base aNumber of the receiver.

Answer the floor of the log base radix of the
receiver, where the floor is the integer nearest
the receiver toward negative infinity.

Answer the receiver raised to the power of the
argument, aNumber.

Answer the receiver raised to the power of the

sqrt

squared

Some examples are

argument , anlnteger, where the argument
must be a kind of Integer.
Answer a floating point number that is the
positive square root of the receiver.

Answer the receiver multiplied by itself.

expression result

2.718284 In 1.0
6 exp 403.429
2 exp 7.38906
7.38906 In 1.99998 (that is, 2)
2 log: 2 1.0
2 floorLog: 2 1
6 log: 2 2.58496
6 floorLog: 2 2
6 raisedTo: 1.2 8.58579
6 raisedTolnteger: 2 36
64 sqrt 8.0
8 squared 64

P r o p e r t i e s of n u m b e r s t h a t d e a l w i t h w h e t h e r a n u m b e r is e v e n o r o d d

a n d n e g a t i v e o r p o s i t i v e c a n b e t e s t e d w i t h t h e f o l l o w i n g m e s s a g e s .

Number instance protocol

testing
even

odd

negative
positive

strictlyPositive
sign

Answer whether the receiver is an even num-
ber.

Answer whether the receiver is an odd num-
ber.

Answer whether the receiver is less than 0.

Answer whether the receiver is greater than
or equal to 0.

Answer whether the receiver is greater than 0.

Answer 1 if the receiver is greater than 0, an-
swer -1 if less than 0, else answer 0.

123
Pro toco l of t h e N u m b e r Classes

P r o p e r t i e s of n u m b e r s t h a t dea l w i t h t r u n c a t i o n a n d r o u n d off a r e sup-
pl ied by t h e fo l lowing protocol.

Number instance protocol

truncation and round off

ceiling

floor

truncated

truncateTo: aNumber

rounded
roundTo: aNumber

Answer the integer nearest the receiver to-
ward positive infinity.

Answer the integer nearest the receiver to-
ward negative infinity.

Answer the integer nearest the receiver to-
ward zero.

Answer the next multiple of the argument,
aNumber, that is nearest the receiver toward
zero.

Answer the integer nearest the receiver.
Answer the multiple of the argument,
aNumber, that is nearest the receiver.

W h e n e v e r a Number m u s t be c o n v e r t e d to an Integer, t h e message

t runca ted can be used. So we h a v e

expression result

16.32 ceiling 17

16.32 floor 16

- 16.32 floor - 17

- 16.32 truncated - 16

16.32 truncated 16

16.32 truncateTo: 5 15

16.32 truncateTo: 5.1 15.3

16.32 rounded 16

16.32 roundTo: 6 18

16.32 roundTo: 6.3 18.9

T h e protocol p rov ided in class Number inc ludes va r ious messages for
c o n v e r t i n g a n u m b e r in to a n o t h e r k ind of object or a d i f f e ren t u n i t of

r e p r e s e n t a t i o n . N u m b e r s can r e p r e s e n t va r i ous u n i t m e a s u r e m e n t s

such as deg rees a n d rad ians . T h e fol lowing two m e s s a g e s p e r f o r m con-

vers ions .

Number instance protocol

converting

degreesToRadians

radiansToDegrees

So t h a t

The receiver is assumed to represent degrees.
Answer the conversion to radians.

The receiver is assumed to represent radians.
Answer the conversion to degrees.

30 degreesToRadians = 0.523599

90 degreesToRadians = 1.5708

124
Numerical Classes

Trigonometric and logarithmic functions a r e included in the protocol
for mathemat ica l functions. The receiver for the tr igonometric func-
tions cos, sin, and tan is an angle measured in radians; the result of the
functions arcCos, arcSin and arcTan is the angle measured in radians.

In the following examples, 30 degrees is given as 0.523599 radians; 90
degrees is 1.5708 radians.

expression result

0.523599 sin 0.5

0.523599 cos 0.866025

0.523599 tan 0.57735
1.5708 sin 1.0

0.57735 arcTan 0.523551

1.0 arcSin 1.5708

When a kind of Integer is asked to add itself to another kind of Integer,
the result re turned will na tura l ly also be a kind of Integer. The same is
t rue for the sum of two Floats; the class of the result will be the same
as the class of the operands. If the two operands are Srnalllntegers and
the absolute value of their sum is too large to be represented as a
Srnalllnteger, the result will be a LargePositivelnteger or a
LargeNegativelnteger. The determinat ion of the appropriate class of re-
sult when the operands are of different classes is somewhat more com-
plicated. Two design criteria are tha t there be as little loss of
information as possible and tha t commutat ive operations produce the
same result regardless of which operand is the receiver of the message
and which is the argument . So for example, 3.1 , 4 will re turn the
same result as 4 , 3 . 1 .

The appropriate representat ion for the result of operations on num-
bers of different classes is determined by a numerical measure of gener-
ality assigned to each class. Classes said to have more general i ty will
have a larger number for this general i ty measure. Each class must be
able to convert its instances into equal-valued instances of more general
classes. The measure of general i ty is used to decide which of the oper-
ands should be converted. In this way, the ar i thmetic operations obey
the law of commutat ivi ty with no]oss of numerical information. When
the differences between two classes of numbers are only a mat te r of
precision (where "precision" is a measure of the information provided
in a number), the more precise class is assigned a higher degree of gen-
erality. We have arbi t rar i ly assigned approximate numbers a higher
generali ty in cases where precision was not the issue (so, Float is more
general than Fraction).

The generali ty hierarchy for the kinds of numbers in the
Smalltalk-80 system, with most general listed first, is

125
P r o t o c o l of t h e N u m b e r C l a s s e s

Float
Fraction
LargePositivelnteger, LargeNegativelnteger
Smalllnteger

The messages in the Number protocol designed to support the necessary
coercions are categorized as "coercing" messages.

Number instance protocol

coercing
coerce: aNumber

generality

Answer a number represent ing the argument ,
aNumber, tha t is the same kind of Number as
the receiver. This method must be defined by
all subclasses of Number.

Answer the number represent ing the ordering
of the receiver in the general i ty hierarchy.

retry: aSymbol coercing: aNumber
An ar i thmet ic operation denoted by the sym-
bol, aSymbol, could not be performed with the
receiver and the argument , aNumber, as the
operands because of the difference in repre-
sentation. Coerce ei ther the receiver or the ar-
gument , depending on which has the lower
generali ty, and then t ry the ar i thmet ic opera-
tion again. If the symbol is the equals sign,
answer false if the a rgumen t is not a Number.
If the generali t ies are the same, t h e n
retry:coercing: should not have been sent, so
report an error to the user.

Thus if we try to evaluate 32.45 • 4, the multiplication of a Float by a
Smalllnteger will result in evaluat ing the expression

32.45 retry: # , coercing: 4

and the a rgument 4 will be coerced to 4.0 (Float has higher generali ty
than Smaillnteger). Then the multiplication will be carried out success-

fu l ly .
Defining a hierarchy of the numbers in te rms of a numerical mea-

sure of general i ty works for the kinds of numbers provided in the basic
Smalltalk-80 system because the generali ty is transit ive for these kinds
of numbers. However, it does not provide a technique tha t can be used
for all kinds of numbers.

Intervals (described in detail in Chapter 10) can be created by sending
one of two messages to a number. For each element of such an interval,
a block can be evaluated with the element as the block value.

126
N u m e r i c a l C l a s s e s

Number instance protocol

intervals
to: stop

to: stop by: step

to: stop do: aBIock

to: stop by: step do: aBIock

Thus if we evaluate

Answer an Interval from the receiver up to the
argument, stop, with each next element com-
puted by incrementing the previous one by 1.

Answer an Interval from the receiver up to the
argument, stop, with each next element com-
puted by incrementing the previous one by
step.

Create an Interval from the receiver up to the
argument, stop, incrementing by 1. Evaluate
the argument, aBIock, for each element of the
Interval.

Create an Interval from the receiver up to the
argument, stop, incrementing by step. Evalu-
ate the argument, aBIock, for each element of
the Interval.

a ~ - 0 .

10 to: 100 by: 10 do: [:each I a ~ a -4- each]

the final value of a will be 550.
If a is the a r r ay ¢f:('one" 'two" ' three' "four' "five'), then each element

of the a r ray can be accessed by indices tha t are in the interval from 1
to the size of the array. The following expression changes each element
so tha t only the initial characters are kept.

1 to: a size do: [:index I a at: index put: ((a at: index) at: 1)]

The result ing a r ray is @ (' o ' ' t ' ' t ' " f ' " f ') . Note that , like an ar-
ray, elements of a str ing can be accessed using the messages at: and
at:put:. Messages to objects like strings and ar rays are detailed in Chap-
ters 9 and 10.

Classes Float
and Fraction

The classes Float and Fraction provide two representat ions of non-inte-
gral values. Floats are representat ions of real numbers tha t may be ap-
proximate; they represent about 6 digits of accuracy with a range
between plus or minus 10 raised to the power plus or minus 32. Some
examples are

8.0
13.3

127
Integer Classes

0.3
2.5e6
1 . 2 7 e - 3 0
- 12.987654el 2

Fractions are representat ions of rational numbers tha t will always be
exact. All ar i thmetic operations on a Fraction answer a reduced frac-
tional result.

Instances of Float can be created by literal notation in methods (for
example, 3.14159) or as the result of an ar i thmetic operation, one argu-
ment of which is another Float.

Instances of Fraction can be created as a result of an ar i thmetic oper-
ation if one of the operands is a Fraction and the other is not a Float. (If
it were a Float, the result would be a Float since the general i ty number
of Float is higher than tha t of Fraction). Instances of Fraction can also be
created when the mathemat ica l division operation (/) is performed on
two Integers and the result is not integral. In addition, class protocol for
Fraction supports sending a message of the form numerator: numlnteger
denominator: denlnteger in order to create an instance.

Float responds to the message pi to re turn the corresponding con-
stant. It adds t runcat ion and round off protocol to re turn the fraction
and integer parts of the receiver (fractionPart and integerPart), and it
adds converting protocol to convert the receiver to a Fraction (asFraction).
Similarly class Fraction adds converting protocol to convert the receiver
to a Float (asFIoat).

Integer Classes Class Integer adds protocol part icular to integral numbers. It has three
subclasses. One is class Smalllnteger, which provides a space-economical
representat ion for a substantial range of integral values tha t occur fre-
quently in counting and indexing. The representat ion limits the range
to a little less than the magnitudes representable by a single ma-
chine word. Large integers, which are represented by instances of
LargePositivelnteger or kargeNegativelnteger depending on the sign of
the integer, do not have a limit to their magnitude. The cost in provid-
ing the generali ty of large integers is longer computation time. Thus if
the result of an ar i thmetic operation on a large integer is representable
as a small integer, it will in fact be a small integer.

In addition to the messages inheri ted from the class Number, class In-
teger adds converting protocol (asCharacter, asFIoat and asFraction), fur-
ther print ing (printOn: aStream base: b, radix: baselnteger), and enumer-
a t ingprotocol . Thus 8 radix: 2 is 2r1000.

128
N u m e r i c a l C l a s s e s

F o r e n u m e r a t i n g , i t is p o s s i b l e to e v a l u a t e a b l o c k r e p e t i t i v e l y a n in-

t e g r a l n u m b e r of t i m e s u s i n g t h e m e s s a g e t i m e s R e p e a t : aBIock. T a k e as

a n e x a m p l e

a ~-- 1.
10 timesRepeat: [a ~ a + a]

w h e r e t h e b l o c k h a s no a r g u m e n t s . T h e r e s u l t i n g v a l u e of a is 2 l°, or

1024.
Class Integer provides factorization and d iv is ib i l i ty protocol not speci-

fied for numbers in genera].

Integer instance protocol

factorization and divisibility
factorial

gcd" anlnteger

Icm: anlnteger

E x a m p l e s a r e

Answer the factorial of the receiver. The re-
ceiver must not be less than 0.

Answer the greatest common divisor of the re-
ceiver and the argument, anlnteger.
Answer the least common multiple of the re-
ceiver and the argument, anlnteger.

e x p r e s s i o n r e s u l t

3 factorial 6
55 gcd: 30 5
6 Icm: 10 30

In a d d i t i o n to t h e n u m e r i c a l p r o p e r t i e s of i n t e g e r s , s o m e a l g o r i t h m s

m a k e u s e of t h e fac t t h a t i n t e g e r s c a n be i n t e r p r e t e d as a s e q u e n c e of

bi ts . T h u s p r o t o c o l for b i t m a n i p u l a t i o n is spec i f i ed in Integer .

Integer instance protocol

bit manipulation
allMask: anlnteger

anyMask: anlnteger

noMask: anlnteger

bitAnd: anlnteger

bitOr: anlnteger

Treat the argument anlnteger as a bit mask.
Answer whether all of the bits that are 1 in
anlnteger are 1 in the receiver.

Treat the argument anlnteger as a bit mask.
Answer whether any of the bits that are 1 in
anlnteger are t in the receiver.

Treat the argument anlnteger as a bit mask.
Answer whether none of the bits that are 1 in
anlnteger are 1 in the receiver.

Answer an Integer whose bits are the logical
and of the receiver's bits and those of the ar-
gument anlnteger.

Answer an Integer whose bits are the logical
or of the receiver's bits and those of the argu-
ment anlnteger.

bitXor: anlnteger

bitAt: index

bitlnvert

highBit

bitShift: anlnteger

129
Class Random: A R a n d o m N u m b e r G e n e r a t o r

Answer an Integer whose bits are the logical
xor of the receiver's bits and those of the ar-
gument anlnteger.
Answer the bit (0 or 1) at position index of the
receiver.
Answer an Integer whose bits are the comple-
ment of the receiver.
Answer the index of the high order bit of the
binary representation of the receiver.
Answer an Integer whose value (in two's-com-
plement representation) is the receiver's value
(in two's-complement representation) shifted
left by the number of bits indicated by the ar-
gument, anlnteger. Negative arguments shift
right. Zeros are shifted in from the right in
left shifts. The sign bit is extended in right
shifts.

Some e x a m p l e s follow. Note t h a t t he de fau l t r ad ix for p r i n t i n g an Inte-

ger is 10.

expression resul t

2rl 11000111000111 29127
2r101010101010101 21845
2rl 01000101000101 20805
2r000111000111000 3640
29127 allMask: 20805 true
29127 allMask: 21845 false
29127 anyMask: 21845 true
29127 noMask: 3640 true
29127 bitAnd: 3640 0
29127 bitOr: 3640 32767
32767 radix: 2 2rl 11111111111111
29127 bitOr: 21845 30167
30167 radix: 2 2rl 11010111010111
3640 bitShift: 1 7280

Class Random:
A R a n d o m
N u m b e r
Generator

M a n y app l ica t ions r equ i r e r a n d o m choices of n u m b e r s . R a n d o m num-
bers a re useful , for example , in s ta t i s t i ca l app l ica t ions and d a t a encryp-
t ion a lgor i thms . Class Random is a r a n d o m n u m b e r g e n e r a t o r t h a t is
inc luded in the s t a n d a r d Sma l l t a lk -80 sys tem. I t provides a s imple way
of ob t a in ing a sequence of r a n d o m n u m b e r s t h a t will be un i fo rmly dis-
t r i b u t e d over the i n t e rva l be tween , bu t not including, 0.0 and 1.0.

An i n s t ance of class Random m a i n t a i n s a seed f rom which the nex t
r a n d o m n u m b e r is gene ra t ed . The seed is in i t ia l ized in a pseudo-ran-

130
Numer ica l Classes

dom way. An instance of Random is sent the message next whenever a
new random n u m b e r is desired.

A r andom n u m b e r genera tor can be created with the expression

rand ~- R a n d o m new

The expression

rand next

can then be evaluated whenever a new random number is needed. The
response is a number (Float) between 0.0 and 1.0.

The implementa t ion of next is based on Lehmer ' s l inear congruent ia l
method as presented in Knuth , Volume 1 [D. E. Knuth , The Art of
Computer Programming: Fundamental Algorithms, Volume 1, Reading,
Mass: Addison Wesley, 1968].

n e x t

I temp I

"Lehmer's linear congruential method with modulus m = 2 raisedTo: 16,
a = 27181 odd, and 5 = a \ \ 8, c = 13849 odd, and c / m approxi-

mately 0.21132"

[seed ~ 13849 + (27181 * seed) bitAnd: 8r177777.
temp ~ seed / 65536.0.

temp = 0] whileTrue.
ttemp

It is also possible to send an instance of class Random the messages
next: aninteger, to obtain an OrderedCollection of anlnteger n u m b e r of
r andom numbers , and nextMatcbFor: aNumber, to de te rmine whe the r
the next r andom n u m b e r is equal to aNumber.

Suppose we wan t to select one of 10 integers, 1, ..., 10, using the ran-
dom n u m b e r genera tor rand. The expression to be evaluated is

(rand next * 10) t runcated + 1

That is,

expression result

rand next

rand n e x t , 10

(rand n e x t , 10) truncated

(rand n e x t , 10) truncated + 1

a random number be-
tween 0 and 1
a random number be-
tween 0 and 10
an integer > = 0 and
< = 9
an integer > = 1 and
< = 10

...........

~ ~" iN;i:,,_
:~" :~[:~: -

~.:9...---

. i ..°

,.%, ..° . . - ' °" '~ '~" ,.. °

• . - " .

.°°
...

°°°.-"
.° .°-"

.-"

_. ° ..°'°"

.°- '
..,.."

. . .°-'°""

.,..-"
°-.

°.-

.¥-

... °-
° °.,"

°°-'°

9
P r o t o c o l for A l l
C o l l e c t i o n C l a s s e s

Adding, Removing, and Testing Elements

Enumerating E lements
Selecting and Rejecting
Collecting
Detecting
Injecting

Instance Creation

Conversion Among Collection Classes

Object

Magnitude
Character
Date
Time

Number
Float
Fraction
Integer

LargeNegativelnteger
LargePositivelnteger
Smalllnteger

LookUpKey
Association

Link

Process

SequenceableCollection
LinkedList

Semaphore

ArrayedCollection
Array

Bitmap
DisplayBitmap

RunArray
String

Symbol
Text
ByteArray

Interval
OrderedCollection

SortedCollection
Bag
M a ppedCo I lect ion
Set

Dictionary
IdentityDictionary

Stream
PositionableStream

ReadStream
WriteStream

ReadWriteStream
ExternaiStream

FileStream

Random

File
FileDirectory
FilePage

UndefinedObject
Boolean

False
True

ProcessorSchedu ler
Delay
SharedOueue

Behavior
ClassDescription

Class
MetaClass

Point
Rectangle
BitBit

CharacterScanner

Pen

DisplayObject
DisplayMedium

Form
Cursor
DisplayScreen

InfiniteForm
OpaqueForm
Path

Arc
Circle

Curve,
,Line
LinearFit
Spline

133
Protocol for All Collection Classes

A collection represents a group of objects. These objects are called the
elements of the collection. For example, an Array is a collection. The
Array

..~("word" 3 5 $G (1 2 3))

is a collection of five elements. The first one is a String, the second and
th i rd are Smalllntegers, the fourth e lement is a Character, and the fifth
i s itself an Array. The first element, the String, is also a collection; in
this case, it is a collection of four Characters.

Collections provide basic data s t ructures for p rogramming in the
Small talk-80 system. Elements of some of the collections are unordered
and elements of other collections are ordered. Of the collections with
unordered elements, Bags allow duplicate elements and Sets do not al-
low duplication. There are also Dictionaries tha t associate pairs of ob-
jects. Of the collections with ordered elements, some have the order
specified external ly when the elements are added (OrderedCollections,
Arrays, Strings) and others determine the order based on the elements
themselves (SortedCollections). For example, the common data struc-
tures of a r rays and strings are provided by classes tha t associate inte-
ger indices and elements and tha t have external ordering corresponding
to the ordering of the indices.

This chapter introduces the protocol shared by all collections. Each
message described in this chapter is understood by any kind of collec-
tion, unless tha t collection specifically disallows it. Descriptions of each
kind of collection are provided in the next chapter.

Collections support four categories of messages for accessing ele-
ments:

• messages for adding new elements

• messages for removing elements

• messages for testing occurrences of elements

• messages for enumera t ing elements

A single e lement or several e lements can be added or removed from a
collection. It is possible to test whether a collection is empty or whether
it includes a par t icular element. It is also possible to determine the
number of t imes a par t icular e lement occurs in the collection. Enumer-
ation allows one to access the elements without removing them from
the collection.

134
P r o t o c o l f o r A l l C o l l e c t i o n C l a s s e s

Adding,
Removing,
and Testing
Elements

The basic protocol for collections is specified by the superclass of all col-
lection classes, named Collection. Class Collection is a subclass of class
Object. The protocol for adding, removing, and testing elements follows.

Collection instance protocol

adding
add: newObject

addAIl: aCollection

Include the argument , newObject, as one of
the receiver 's elements. Answer newObject.

Include all the elements of the argument ,
aCollection, as the receiver 's elements. Answer
aCollection.

removing
remove: oldObject Remove the argument, oldObject, from the re-

ceiver's elements. Answer oldObject unless no
e lement is equal to oldObject, in which case,
report tha t an error occurred.

remove: oldObject ifAbsent: anExceptionBIock
Remove the a rgument , oldObject, from the re-
ceiver's elements. If several of the elements
are equal to oldObject, only one is removed. If
n o e l e m e n t is equal to oldObject, answer the
resul t of evaluat ing anExceptionBIock. Other-
wise, answer oldObject.

removeAIl: aCollection Remove each e lement of the argument ,
aCollection, from the receiver. If successful for
each, answer aCollection. Otherwise report
tha t an error occurred.

testing
includes: anObject

isEmpty

occurrencesOf: anObject

Answer whether the argument , anOb]ect, is
equal to one of the receiver's elements.

Answer whether the receiver contains any el-
ements.

Answer how many of the receiver 's e lements
are equal to the argument , anObject.

In order to demonstrate the use of these messages, we introduce the col-
lection]otteryA

(272 572 852 156)

and the collection IotteryB

(572 621 274)

We will assume that these two collections, representing numbers drawn
in a lottery, are instances of Bag, a subclass of Collection. Collection it-
self is abstract in the sense that it describes protocol for all collections.
Collection does not provide sufficient representation for storing ele-
ments and so it is not possible to provide implementations in Collection

135
Adding, Removing, and Testing Elements

of all of its messages. Because of this incompleteness in the definition of
Collection, it is not useful to create instances of Collection. Bag is con-
crete in the sense tha t it provides a representat ion for storing elements
a n d implementat ions of t h e messages not implementable in its super-
class.

All collections respond to size in order to answer the number of their
elements. So we can determine tha t

iotteryA size

is 4 and

IotteryB size

is 3. Then, evaluat ing the messages in order, we have

expression result iotteryA if it changed

IotteryA isEmpty
IotteryA includes: 572
IotteryA add: 596
IotteryA addAIl:. IotteryB

IotteryA occurrencesOf: 572
IotteryA remove: 572

false
true
596
Bag (572 621

274)
2
572

IotteryA size 7
IotteryA removeAIl: IotteryB Bag (572 621

274)
IotteryA size 4

Bag (272 572 852 156 596)
Bag (272 274 852 156 596 572

572 621)

Bag (272 274 852 156 596 572
621)

Bag (272 852 596 156)

Note tha t the add: and remove: messages answer the a rgument ra ther
than the collection itself so tha t computed a rguments can be accessed.
The message remove: deletes only one occurrence of the argument , not
all occurrences.

Blocks were introduced in Chapter 2. The message remove: oldObject
ifAbsent: anExceptionBlock makes use of a block in order to specify the
behavior of the collection if an error should occur. The a rgument
anExceptionBIock is evaluated if the object referred to by oldObject is
not an e lement of the collection. This block can contain code to deal
with the error or simply to ignore it. For example, the expression

IotteryA remove" 121 ifAbsent: []

does nothing when it is determined tha t 121 is not an e lement of
IotteryA.

136
Protocol for All Collection Classes

The default behavior of the message remove: is to report the er ror by
sending the collection the message error: ' object is not in the col lect ion ' .
(Recall t ha t the message error: is specified in the protocol for all Objects
and is therefore unders tood by any collection.)

Enumerating
Elements

Included in the instance protocol of collections are several enumera t i on
messages tha t support the abili ty to list the e lements of a collection and
to supply each e lement in the evaluat ion of a block. The basic enumera-
tion message is do: aBIock. It takes a one-a rgument block as its argu-
men t and evaluates the block once for each of the e lements of the
collection. As an example, suppose letters is a collection of Characters
and we want to know how m a n y of the Characters are a or A.

count ~- 0.
letters do: ["each I each asLowercase = = $a

ifTrue: [count ~- count + 1]]

Tha t is, i nc rement the counter, count, by 1 for each e lement tha t is an
upper- or lowercase a. The desired result is the final value of count. We
can use the equivalence test (= =) r a the r t han equali ty since objects
represent ing Characters are unique.

Six enhancemen t s of the basic enumera t ion messages are specified in
the protocol for all collections. The description of these enumera t ion
messages indicates tha t "a new collection like the receiver" is created
for ga ther ing the resul t ing information. This phrase means t ha t the
new collection is an instance of the same class as tha t of the receiver.
For example, if the receiver of the message select: is a Set or an Array,
then the response is a new Set or Array, respectively. In the
Small ta lk-80 system, the only exception is in the implementa t ion of
class Interval, which r e tu rns a new OrderedCollection, not a new Interval,
from these enumera t i on messages. The reason for this exception is tha t
the e lements of an Interval are created when the Interval is first created;
it is n o t possible to store e lements into an exist ing Interval.

Collection instance protocol

enumerating
do: aBIock

select: aBIock

Evaluate the argument, aBIock, for each of
the receiver's elements.
Evaluate the argument, aBIock, for each of
the receiver's elements. Collect into a new col-
lection like that of the receiver, only those el-
ements for which aBIock evaluates to true.
Answer the new collection.

Selecting and
Rejecting

137
E n u m e r a t i n g E l e m e n t s

reject: aBIock

collect: aBIock

detect: aBIock

Evaluate the a rgument , aBIock, for each of
the receiver 's elements. Collect into a new col-
lection like tha t of the receiver only those ele-
ments for which aBIock evaluates to false.
Answer the new collection.

Evaluate the argument , aBIock, for each of
the receiver 's elements. Answer a new collec-
tion like tha t of the receiver containing the
values re tu rned by the block on each evalua-
tion.

Evaluate the argument , aBIock, for each of
the receiver 's elements. Answer the first ele-
ment for which aBIock evaluates to true. If
none evaluates to true, report an error.

detect: aBIock ifNone: exceptionBIock
Evaluate the argument, aBIock, for each of
the receiver 's elements. Answer the first ele-
ment for which aBIock evaluates to true. If
none evaluates to true, evaluate the argument ,
exceptionBIock, exceptionBIock must be a
block requir ing no arguments .

inject: thisValue into: binaryBIock Evaluate the argument , binaryBIock, once for
each e lement in the receiver. The block has
two arguments: the second is an e lement from
the receiver; the first is the value of the previ-
ous evaluation of the block, s tar t ing with the
argument , thisValue. Answer the final value of
the block.

Each enumerat ion message provides a concise way to express a se-
quence of messages for testing or gather ing information about the ele-
ments of a collection.

We could have determined the number of occurrences of the character
a or A using the message select:.

(letters select: [:each I each asLowercase = = $a]) size

That is, create a collection containing only those elements of letters that
are a or A, and then answer the size of the resulting collection.

We could also have determined the number of occurrences of the
character a or A using the message reject:.

(letters reject: [:each I each asLowercase , ~ $a]) size

That is, create a collection by eliminating those elements of letters that
are not a or A, and then answer the size of the resulting collection.

The choice between select: and reject: should be based on the best ex-
pression of the test. If the selection test is best expressed in terms of ac-
ceptance, then select: is easier to use; if the selection test is best
expressed in terms of rejection, then reject: is easier to use. In this ex-
ample, select: would be preferred.

138
P r o t o c o l fo r A l l C o l l e c t i o n C l a s s e s

As another example, assume employees is a collection of workers,
each of whom responds to the message salary with his or her gross
earnings. To make a collection of all employees whose salary is at least
$10,000, use

o r

employees select: [:each I each salary > = 10000]

employees reject: [:each i each salary < 10000]

Collecting

The result ing collections are the same. The choice of which message to
use, select: or reject:, depends on the way the p rogrammer wishes to ex-
press the criterion "at least $10,000."

Suppose we wish to create a new collection in which each e lement is
the sa lary of each worker in the collection employees.

employees collect: [:each t each salary]

Detecting

The result ing collection is the same size as employees. Each of the ele-
ments ~ of the new collection is the salary of the corresponding element
of employees.

Suppose we wish to find one worker in the collection of employees
whose salary is grea ter than $20,000. T h e expression

employees detect: [:each ! each salary > 20000]

will answer with tha t worker, if one exists. If none exists, then employ-
ees will be sent the message error: "object is not in the collection' . Jus t
as in the specification of the removing messages, the p rogrammer has
the option to specify the exception behavior for an unsuccessful detect:.
The next expression answers one worker whose salary exceeds $20,000,
or, if none exists, answers nil.

Injecting

employees detect: [:each I each salary > 20000] ifNone: [nil]

In the message inject:into:, the first a rgumen t is the initial value tha t
takes par t in determining the result; the second a rgument is a two-ar-
gument block. The first block a rgumen t names the variable tha t refers
to the result; the second block a rgumen t refers to each element of the
collection. An example using this message sums the salaries of the
workers in the collection employees.

employees
inject: 0
into: [:subTotal :nextWorker I subTotal + nextWorker salary]

139
I n s t a n c e C r e a t i o n

where the initial value of 0 increases by the value of the salary for each
worker in the collection, employees. The result is the final value of sub-
Total.

By using the message inject:into:, the programmer can locally specify
temporary variable names and can avoid separate initialization of the
object into which the result is accumulated. For example, in an earlier
expression tha t counted the number of occurrences of the Characters a
and A in the collection letters, we used a counter, count.

count ,- O.
letters do: [:each I each asLowercase = = $a

ifTrue: [count ~- count + 1]]

An al ternat ive approach is to use the message inject:into:. In the exam-
ple expression, the result is accumulated in count, count starts at 0. If
the next character (nextElement) is a or A, then add 1 to count; other-
wise add 0.

letters inject: 0
into: [:count :nextElement t

count + (nextElement asLowerCase = = $a
ifTrue: [1]
ifFalse: [0])]

Ins tance
Creat ion

In the beginning of this chapter, examples were given in which new col-
lections were expressed as literals. These collections were Arrays and
Strings. For example, an expression for creating an ar ray is

('f irst' ' second ' ' third')

where each element is a String expressed literally.
The messages new and new: can be used to create instances of partic-

ular kinds of collections. In addition, the class protocol for all collec-
tions supports messages for creating instances with one, two, three, or
four elements. These messages provide a shor thand notation for creat-
ing kinds of collections tha t are not expressible as literals.

Collection class protocol

instance creation
with: anObject Answer an instance of the collection contain-

ing anObject.

140
P r o t o c o l f o r A l l C o l l e c t i o n C l a s s e s

with: firstObject with: secondObject
Answer an instance of the collection contain-

' ing firstObject and secondObject as elements.
with: firstObject with: secondObject with: thirdObject

Answer an instance of the collection contain-
ing firstObject, secondObject, and thirdObject
as elements.

with: firstObject with: secondObject with: thirdObject with: fourthObject
Answer an instance of the collection, contain-
ing firstObject, secondObject, thirdObject, and
fourthObject as the elements.

For example, Set is a subclass of Collection. To create a new Set with
three elements that are the Characters s, e, and t, evaluate the expres-
sion

Set with: $s with: $e with: $t

Note tha t the rationale for providing these four instance creation mes-
sages, no more and no fewer, is tha t this number satisfies the uses to
which collections are put in the system itself.

Conversion
A mong
Collection
Classes

A complete description and unders tand ing of the permissible conver-
sions between kinds of collections depends on a presentat ion of all the
subclasses of Collection. He re we simply note tha t five messages are
specified in the converting protocol for all collections in order to con-
vert the receiver to a Bag, a Set, an OrderedCollection, and a
SortedCollection. These messages are specified in class Collection be-
cause it is possible to convert any collection into any of these kinds of
collections. The ordering of elements from any collection whose ele-
ments are unordered, when converted to a collection whose elements
are ordered, is arbitrary.

Collection instance protocol

converting
asBag

asSet

asOrderedCollection

Answer a Bag whose elements are those of the
receiver.

Answer a Set whose elements are those of the
receiver (any duplications are therefore elimi-
nated).

Answer an OrderedCollection whose elements
are those of the receiver (ordering is possibly
arbitrary).

141
C o n v e r s i o n A m o n g C o l l e c t i o n C l a s s e s

asSortedCol lection

asSortedCollection: aBIock

Answer a SortedCollection whose elements are
those of the receiver, sorted so that each ele-
ment is less than or equal t o (< =) its succes-
sors.

Answer a SortedCollection whose elements are
those of the receiver, sorted according to the
argument aBIock.

T h u s if Iot teryA is a Bag c o n t a i n i n g e l e m e n t s

272 572 852 156 596 272 572

t h e n

lotteryA asSet

is a S e t c o n t a i n i n g e l e m e n t s

852 596 156 572 272

a n d

IotteryA asSortedCollection

is a SortedCollection c o n t a i n i n g e l e m e n t s o r d e r e d (t h e f i r s t e l e m e n t is

l i s t e d as t h e l e f t m o s t one)

156 272 272 572 572 596 852

~ i emloo ellmt d

-°.%
" - .
,,."

,..-"

.,°

, ...-"
.,°-°"

°°..°,"

°..-°"
,-

, ,

-..,--"
"-% °

"3
...,°-'°""

,.....,-"""

.,."
..-"

,.,-"
,..,"

.-

°...--"
. o..'" .."

..-"

,,."

.,"
......"°"

moore ~ I°°°ell

10
Hierarchy of the
Collection Classes

Class Bag

Class Set

Classes Dictionary and IdentityDictionary

Class SequenceableCollection

Subclasses of SequenceableCollection
Class OrderedCollection
Class SortedCollection
Class LinkedList
Class Interval

Class ArrayedCollection
Class String
Class Symbol

Class MappedCollection

Summary of Conversions Among Collections

Object

Magnitude
Character
Date
Time

Number
Float
Fraction
Integer

LargeNegativelnteger
LargePositivelnteger
Smalllnteger

Process

Collection

Semaphore

Bitmap
DisplayBitmap

Stream
PositionableStream

ReadStream
WriteStream

ReadWriteStream
ExternalStream

FileStream

Random

File
FileDirectory
FilePage

UndefinedObject
Boolean

False
True

ProcessorScheduler
Delay
SharedQueue

Behavior
ClassDescription

Class
MetaClass

Point
Rectangle
BitBit

CharacterScanner

Pen

DisplayObject
DisplayMedium

Form
Cursor
DisplayScreen

InfiniteForm
OpaqueForm
Path

Arc
Circle

.Curve
Line
LinearFit
Spline

145
Hierarchy of the Collection Classes

Figure 10.1 provides a road map for dist inguishing among the various
collection classes in the system. Following the choices in the figure is a
useful way to determine which kind of collection to use in an imple-
mentat ion.

One distinction among the classes is whether or not a collection has
a well-defined order associated with its elements. Another distinction is
tha t e lements of some collections can be accessed through externally-
known names or keys. The type of key defines another way of
dist inguishing among kinds of collections. Some are integer indices, im-
plicitly assigned according to the order of the elements; others are ex-
plicitly assigned objects tha t serve as lookup keys.

One unordered collection with external keys is a Dictionary. Its keys
are typically instances of String or LookupKey; the comparison for
matching keys is equali ty (=). Dictionary has a subclass,
IdentityDictionary, whose external keys are typically Symbols. Its com-
parison for matching keys is equivalence (= =). Elements of a Bag or a
Set are unordered and not accessible through external ly-known keys.
Duplicates are allowed in a Bag, but not allowed in a Set.

All ordered collections are kinds of SequenceableCollections. Ele-
ments of all SequenceableCollections are accessible through keys tha t
are integer indices. Four subclasses of SequenceableCollection support
different ways in which to create the ordering of elements. An addition-
al distinction among the SequenceableCollection classes is whether the
e lements can be any object or whether they are restricted to be in-
stances of a par t icular kind of object.

The order of elements is determined external ly for
OrderedCollections, LinkedLists, and ArrayedCollections. For
OrderedCollection and LinkedList, the programmer's sequence for adding
and removing elements defines the ordering of the elements. An ele-
ment of an OrderedCoilection can be any object, while tha t of a
kinkedkist must be a kind of kink. The different ArrayedCollections in
the system include Array, String, and ByteArray. The elements of an
Array or a RunArray can be any kind of object, e lements of a String or of
a Text must be Characters , and those of a ByteArray must be
Smalllntegers between 0 and 255.

The order of elements is determined in ternal ly for Intervals and
SortedCollections. For an Interval, the ordering is an ar i thmet ic progres-
sion tha t is specified at the t ime the instance is created. For a
SortedCollection, the ordering is specified by a sorting criterion deter-
mined by evaluat ing a block known to the collection. Elements of an
Interval must be Numbers; elements of a SortedCollection can be any
kind of object.

In addition to the collection classes already mentioned,
MappedCollection is a Collection tha t represents an indirect access path
to a collection whose elements are accessible via external keys. The

® I \

/

q

(

.i
t

q

t

I ' ©

.,.~

~,~ nu

_ ~ I I ~ I
k'~ ,,-, n

r~
A

~ | |

~ ~ I 1 '

©

c,.-°

~ .~ S ~
r~

© . . I

r~

g

"E
o

C

~ m

1 q)

q)
q)

i=

c

xi_!
o ~
m
m

E

d

146

147
C l a s s Bag

mapping from one set of external keys to the collection is determined at
the time the MappedCollection is created.

The remainder of this chapter explores each of the collection
subclasses, describing any additions to the message protocols and pro-
viding simple examples.

Class Bag A Bag is the simplest kind of collection. It represents collections whose
elements are unordered and have no external keys. It is a subclass of
Collection. Since its instances do not have external keys, they cannot re-
spond to the messages at: and at:put:. The message size answers the to-
tal number of elements in the collection.

A Bag is nothing more than a group of elements that behaves accord-
ing to the protocol of all collections. The general description of collec-
tions does not restrict the number of occurrences of an element in an
individual collection. Class Bag emphasizes this generality by specifying
an additional message for adding elements.

Bag instance protocol

adding
add: newObject withOccurrences: anlnteger

Include the argument, newObject, as an ele-
ment of the receiver, an lnteger number of
times. Answer the argument, newObject.

Consider the example class Product which represents a grocery item
and its price. A new Product may be created using the message of: name
at: price, and the price of an instance is accessible by sending it the
message price. Filling one's grocery bag may be expressed by

sack ~- Bag new.
sack add: (Product of: #steak at: 5.80).
sack add: (Product of: #potatoes at: 0.50) withOccurrences: 6.
sack add: (Product of: .#carrots at: 0.10) withOccurrences: 4.
sack add: (Product of: #mi lk at: 2.20)

Then the grocery bill is determined by the expression

amount ~ 0.
sack do: [:eachProduct I amount ~- amount + eachProduct price]

o r

148
Hierarchy of the Collection Classes

sack inject: 0
into: [:amount :eachProduct I amount + eachProduct price]

to be $11.40. Note tha t the messages add:, do:, and inject:into: to a Bag
are inheri ted from its superclass, Collection.

A Bag is unordered, so that , a l though enumerat ion messages are sup-
ported, the p rogrammer cannot depend on the order in which elements
are enumerated.

Class Set Class Set represents collections whose elements are unordered and have
no external keys. Its instances cannot respond to the messages at: and
at:put:. A Set is like a Bag except tha t its elements cannot be duplicat-
ed. The adding messages add the element only if it is not already in the
collection. Class Set is a subclass of class Collection.

Classes
Dictionary and
i dentityDictionary

Class Dictionary represents a set of associations between keys and val-
ues. The elements of a Dictionary are instances of class Association, a
simple data s t ructure for storing and retrieving the members of the
key-value pair.

An al ternat ive way of th inking about a Dictionary is tha t it is a col-
lection whose elements are unordered but have explicitly assigned keys
or names. From this perspective, the elements of a Dictionary are arbi-
t ra ry objects (values) with external keys. These al ternat ive ways of
th inking about a Dictionary are reflected in the message protocol of the
class. Messages inheri ted from class Collection--includes:, do:, and other
enumera t ion messages w are applied to the values of the Dictionary.
That is, these messages refer to the values of each association in the
Dictionary, ra ther than to the keys or to the associations themselves.

Messages inheri ted from class Object--at : and at :put :mare applied to
the keys of the Dictionary. The at: and at:put: paradigm is extended for
the associations and the values by adding messages associationAt: and
keyAtValue:. In order to provide additional control when looking up ele-
ments in a Dictionary, the message at:ifAbsent: is provided; using it, the
p rogrammer can specify the action to take if the element whose key is
the first a rgument is not found. The inherited message at: reports an
error if the key is not found.

Dictionary instance protocol

149
C l a s s e s Dictionary a n d IdentityDictionary

accessing
at: key ifAbsent: aBlock Answer the value named by the argument,

key. If key is not found, answer the result of
evaluating aBIock.

associationAt: key Answer the association named by the argu-
ment, key. If key is not found, report an error.

associat ionAt: key ifAbsent: aBIock
Answer the association named by the argu-
ment, key. If key is not found, answer the re-
su l t of evaluating aBIock.

keyAtValue: value Answer the name for the argument, value. If
there is no such value, answer nil. Since val-
ues are not necessarily unique, answer the
name for the first one encountered in the
search.

keyAtValue: value ifAbsent: exceptionBIock
Answer the key for the argument, value. If
there is no such value, answer the result of
evaluating exceptionBIock.

keys Answer a Set containing the receiver's keys.

va lues Answer a Bag containing the receiver's values
(includes any duplications).

As an example of the use of a Dictionary, suppose opposites is a Diction-
ary of word Symbols and their opposites.

opposites ~- Dictionary new.
opposites at: #ho t put: #cold.
opposites at: #push put: .#pull.
opposites at: #stop put: #go.
opposites at: #come put: ~go

A l t e r n a t i v e l y , a n e l e m e n t c a n be a d d e d u s i n g t h e m e s s a g e add" b y c r e -

a t i n g a n A s s o c i a t i o n a s t h e a r g u m e n t .

opposites add: (Association key: ~front value: #back).
opposites add: (Association key: # top value: #bottom)

The Dictionary, opposites, now consists of

key value

hot cold
push pull
stop go
come go
front back
top bottom

150
H i e r a r c h y of the Collection Classes

We can use the tes t ing protocol i nhe r i t ed f rom class Collection to tes t
the va lues in the Dictionary. Notice t h a t includes: tests the inclusion of a
value, not a key.

expression result

opposites size 6
opposites includes: .#cold true
opposites includes: #hot false
opposites occurrencesOf: :#go 2
opposites at: ¢#stop put: #start start

The four th e x a m p l e indica tes tha t , a l t hough a key can a p p e a r only once
in a Dictionary, a va lue can be associa ted wi th any n u m b e r of keys. The
last e x a m p l e re-associa tes the key # s t o p wi th a new value, # s t a r t . Ad-
di t ional messages a re provided in class Dictionary for tes t ing associa-
t ions and keys.

Dictionary instance protocol

dictionary testing
includesAssociation: anAssociation

Answer whether the receiver has an element
(association between a key and a value) that is
equal to the argument, anAssociation.

includesKey: key Answer whether the receiver has a key equal
to the argument, key.

T h e n we can t ry

expression result

opposites true
includesAssociation:

(Association
key: #come
value: #go)

opposites includesKey: #hot true

151
Classes Dictionary and IdentityDictionary

Similar ly , the r emov ing protocol specified in class Collection is ex tended
to provide access by re fe rence to associat ions a n d keys, as well as to
values. However , the message remove: itself is not a p p r o p r i a t e for a Dic-
tionary; in r emov ing an e lement , m e n t i o n of the key is required.

Dictionary instance protocol

dictionary removing
removeAssociation: anAssociation

Remove the key and value association,
anAssociation, from the receiver. Answer
anAssociation.

removeKey: key Remove key (and its associated value) from
the receiver. If key is not in the receiver, re-
port an error. Otherwise, answer the value as-
sociated with key.

removeKey: key ifAbsent: aBIock Remove key (and its associated value) from
the receiver. If key is not in the receiver, an-
swer the result of evaluating aBIock. Other-
wise, answer the value named by key.

For e x a m p l e

expression result

opposites
removeAssociation:

(Association
key: #top
value: #bottom)

opposites removeKey: ,#hot

The association whose
key is # top and val-
ue is :#:bottom. oppo-
sites has one less
element.

The association whose

opposites
removeKey: #cold
ifAbsent: [opposites

at: :# cold
put: #hot]

key is #ho t and
whose value is #cold.
This association is
removed from opposites.
hot

As a resu l t of the las t example , the associa t ion of # c o l d wi th :#:hot is
now an e l e m e n t of opposi tes .

The message do: eva lua te s its a r g u m e n t , a block, for each of the Dic,
t ionary ' s values. The collection e n u m e r a t i n g protocol, i nhe r i t ed f rom
class Collection, is aga in ex tended in order to provide messages for enu-
m e r a t i n g over the associat ions and the keys. Messages suppor t ing uses
of reject: and inject:into: a re not provided.

152
H i e r a r c h y of t h e C o l l e c t i o n C l a s s e s

Dictionary instance protocol

dictionary enumerating
associationsDo: aBIock

keysDo: aBIock

Evaluate aBIock for each of the receiver's
key/value associations.

Evaluate aBIock for each of the receiver's
keys.

We thus have three possible ways of enumera t ing over a Dictionary.
Suppose newWords is a Set of vocabulary words tha t a child has not yet
learned. Any word in opposites is now part of the child's repertoire and
can be removed from newWords. Evaluat ing the following two expres-
sions removes these words (the first removes the values, the second the
keys).

opposites do: [:word I newWords remove: word ifAbsent: []].
opposites keysDo: [:word I newWords remove: word ifAbsent: []]

Note tha t if a word from opposites is not in newWords, then nothing
(no error report) happens. Alternatively, one expression, enumera t ing
the Associations, can be used.

opposites associationsDo:
[:each 1

newWords remove: each key ifAbsent: [].
newWords remove: each value ifAbsent: []]

The accessing messages keys and values can be used to obtain collec-
tions of the words in the opposites dictionary. Assuming the evaluation
of all previous example expressions, then

opposites keys

re turns the Set whose elements are

push come front stop cold

and

opposites values

re turns the Bag whose elements are

pull go back start hot

153
Class SequenceableCollection

Class
Sequenceable-
Collection

Class S e q u e n c e a b t e C o l l e c t i o n r e p r e s e n t s co l lec t ions w h o s e e l e m e n t s a r e
o r d e r e d a n d a r e e x t e r n a l l y n a m e d by i n t e g e r indices.
S e q u e n c e a b l e C o l l e c t i o n is a subc l a s s of Collect ion a n d p rov ides t h e pro-
tocol for access ing , copying , a n d e n u m e r a t i n g e l e m e n t s of a co l lec t ion

w h e n it is k n o w n t h a t t h e r e is a n o r d e r i n g a s soc i a t ed w i t h t h e ele-
m e n t s . S ince t h e e l e m e n t s a r e o r d e r e d , t h e r e is a we l l -de f ined first a n d
last e l e m e n t of t h e col lec t ion. I t is poss ib le to a sk t h e i n d e x of a p a r t i c u -

l a r e l e m e n t (indexOf:) a n d t h e i n d e x of t h e b e g i n n i n g of a s e q u e n c e of

e l e m e n t s w i t h i n t h e co l lec t ion (indexOfSubCoilect ion:s tar t ingAt:) . All col-
l ec t ions i n h e r i t m e s s a g e s f r o m class Objec t for a cce s s ing i n d e x e d va r i -

ables . As de sc r ibed in C h a p t e r 6, t h e s e a r e at:, at:put:, a n d size. In
add i t ion , S e q u e n c e a b l e C o l l e c t i o n s s u p p o r t p u t t i n g a n object a t al l posi-
t i ons n a m e d by t h e e l e m e n t s of a Collect ion (atAil:put:), a n d p u t t i n g a n
ob jec t a t a l l pos i t ions in t h e s e q u e n c e (atAIIPut:). S e q u e n c e s of e l e m e n t s
w i t h i n t h e co l lec t ion can be r e p l a c e d by t h e e l e m e n t s of a n o t h e r collec-
t ion (replaceFrom:to:wi th: a n d replaceFrom:to:with:s tar t ingAt:) .

SequenceableCollection instance protocol

accessing
atAIl: aCollection put: anObject Associate each element of the argument,

aCollection (an Integer or other external key),
with the second argument, anObject.

atAI1Put: anObject Put the argument, anObject, as every one of
the receiver's elements.

first Answer the first element of the receiver. Re-
port an error if the receiver contains no ele-
ments.

last Answer the last element of the receiver. Re-
port an error if the receiver contains no ele-
ments.

indexOf: anElement Answer the first index of the argument,
anElement, within the receiver. If the receiver
does not contain anElement, answer 0.

indexOf: anElement ifAbsent: exceptionBlock
Answer the first index of the argument,
anElement, within the receiver. If the receiver
does not contain anElement, answer the result
of evaluating the argument, exceptionBIock.

indexOfSubCollection: aSubCollection startingAt: anlndex
If the elements of the argument,
aSubCollection, appear, in order, in the receiv-
er, then answer the index of the first element
of the first such occurrence. If no such match
is found, answer 0.

indexOfSubCollection: aSubCollection startingAt: anlndex
ifAbsent: exceptionBIock Answer the index of the receiver's first ele-

ment, such that that element equals the first

154
H i e r a r c h y of t h e Col lec t ion Classes

element of the argument, aSubCollection, and
the next elements equal the rest of the ele-
ments of aSubCollection. Begin the search of
the receiver at the element whose index is the
argument, anlndex. If no such match is found,
answer the result of evaluating the argument,
exceptionBIock.

replaceFrom: start to: stop with: replacementCollection
Associate each index between start and stop
with the elements of the argument,
replacementCollection. Answer the receiver.
The number of elements in
replacementCollection must equal stop-start + 1.

replaceFrom: start to: stop with: replacementCollection startingAt: repStart
Associate each index between start and stop
with the elements of the argument ,
replacementCollection, starting at the element
of replacementCollection whose index is
repStart. Answer the receiver. No range
checks are performed, except if the receiver is
the same as replacementCollection but repStart
is not 1, then an error reporting that indices
are out of range will occur.

E x a m p l e s of u s ing t h e s e access ing messages , u s ing i n s t a n c e s of String,

a r e

expression result

• aaaaaaaaaa" size
' aaaaaaaaaa ' atAIl: (2 to: 10 by: 2) put: $b
'aaaaaaaaaa" atAllPut: $b

• This string • first

' This string' last

• ABCDEFGHIJKLMNOP' indexOf: $F

'ABCDEFGHIJKLMNOP' indexOf: $M ifAbsent: [0]

'ABCDEFGHIJKLMNOP' indexOf: $Z ifAbsent: [0]

'The cow jumped' indexOfSubCoilection: ' cow'
startingAt: 1

'The cow jumped" replaceFrom: 5 to: 7 with: •dog '
'The cow jumped" replaceFrom: 5 to: 7

with: ' the spoon ran' startingAt: 5

10

' ababababab '

• bbbbbbbbbb '

ST
$g

6

13

0

5

• The dog jumped'
• The spo jumped'

A n y of t h e s e e x a m p l e s could be s i m i l a r l y ca r r i ed ou t w i t h an i n s t a n c e
of a n y subc lass of Sequenceab l eCo l l ec t i on , for example , w i t h an Array.

Fo r t h e Array, @(The brown jug), r e p l a c e m e n t of brown by black is car-

r ied ou t by e v a l u a t i n g t h e exp re s s ion

(T h e brown jug) rep laceFrom: 2 to: 2 with: # (b l a c k)

155
Class SequenceableCollection

Notice t h a t the last a r g u m e n t m u s t be an Array as well. And not ice t h a t

the r e p l a c e m e n t messages do not c h a n g e the size of t he or ig ina l collec-
t ion (the receiver) , a l t h o u g h they do a l t e r t he collection. It m a y be
p r e f e r r a b l e to p re se rve the o r ig ina l by c r e a t i n g a copy. The copying pro-
tocol of Sequenceab leCo l l ec t ions suppor t s copying a sequence of ele-
m e n t s in the collection, copying the e n t i r e collect ion wi th p a r t of it
replaced, copying t he e n t i r e col lect ion wi th an e l e m e n t deleted, or copy-
ing t he e n t i r e col lect ion wi th one or m o r e e l e m e n t s conca tena ted .

SequenceableCollection instance protocol

copying
, aSequenceableCollection

copyFrom: start to: stop

copyReplaceAIl: oldSubCollection

This is the concatenation operation. Answer a
copy of the receiver with each element of the
argument, aSequenceableCollection, added, in
order.

Answer a copy of a subset of the receiver,
starting from element at index start until ele-
ment at index stop.
with: newSubCoilection
Answer a copy of the receiver in which all oc-
currences of oldSubCollection have been re-
placed by newSubCollection.

copyReplaceFrom: start to: stop with: replacementCollection
Answer a copy of the receiver satisfying the
following conditions: If stop is less than start,
then this is an insertion; stop should be exact-
ly start-1, start = 1 means insert before the
first character, start = size + 1 means ap-
pend after last character. Otherwise, this is a
replacement; start and stop have to be within
the receiver's bounds.

copyWith: newElement Answer a copy of the receiver that is 1 bigger
than the receiver and has newElement as the
last element.

copyWithout: oldElement Answer a copy of the receiver in which all oc-
currences of oldElement have been left out.

Using the replace and copy messages, a simple text editor can be de-
vised. The Smal] ta lk-80 system includes class String as wel l as-class
Text, the l a t t e r p rovid ing suppor t for assoc ia t ing the c h a r a c t e r s in the
String wi th font or e m p h a s i s changes in order to mix c h a r a c t e r fonts,
bold, italic, and under l ine . The m e s s a g e protocol for Text is t h a t of a
Sequenceab leCol lec t ion wi th add i t iona l protocol for s e t t i ng the e m p h a -
sis codes. For i l l u s t r a t ion purposes , we use an i n s t ance of class String,
bu t r e m i n d the r e a d e r of t he ana logous app l ica t ion of ed i t ing messages
for an i n s t ance of class Text. A s s u m e t h a t line is in i t ia l ly an e m p t y
s t r i ng

line ~- String new: 0

156
Hiera rchy of the Collection Classes

Then

expression result

line ~- line copyReplaceFrom: 1
to: 0
with: ' th is is the first line tril"

line ~- line copyReplaceAIl: ' tr i l '
with: ' tr ial '

line ~ line copyReplaceFrom:
(line s ize+ 1)

to: (line size)
with: "and so on '

line indexOfSubCollection: ' trial"
startingAt: 1

line ~- line copyReplaceFrom: 29
to: 28
with: ' '

' th is is the first line tr i l '

' th is is the first line tr ial '

' th is is the first line
trialand so on '

24

' th is is the first line trial
and so on '

The last two messages of the copying protocol given above are useful in
obtaining copies of an Array wi th or wi thout an element. For example

expression result

-~(one two three)
copyWith: .#four

@(one two three)
copyWithout: .#:two

(one two three four)

(one three)

Because the e lements of a SequenceableCollection are ordered, enu-
mera t ion is in order, s ta r t ing wi th the first e lement and tak ing each
successive e lement unt i l the last. Reverse enumera t ion is also possible,
using the message reverseDo: aBIock. E n u m e r a t i o n of two
SequenceableCollect ions can be done together so tha t pairs of ele-
ments, one from each collection, can be used in evaluat ing a block.

SequenceableCollection instance protocol

enumerating
findFirst: aBIock Evaluate aBIock with each of the receiver's el-

ements as the argument. Answer the index of
the first element for which the argument,
aBIock evaluates to true.

157
Subclasses of SequenceableCollection

findLast: aBIock Evaluate aBIock with each of the receiver's el-
ements as the argument. Answer the index of
the last element for which the argument,
aBIock evaluates to true.

reverseDo: aBIock Evaluate aBIock with each of the receiver's el-
ements as the argument, starting with the
last element and taking each in sequence up
to the first. For SequenceableCollections, this
is the reverse of the enumeration for do:.
aBIock is a one-argument block.

with: aSequenceableCollection do: aBIock
Evaluate aBIock with each of the receiver's el-
ements along with the corresponding element
from aSequenceableCollection.
aSequenceableCollection must be the same
size as the receiver, and aBIock must be a two-
argument block.

T h e fo l lowing e x p r e s s i o n s c r e a t e t h e Dictionary, oppos i t e s , w h i c h was in-

t r o d u c e d in a n e a r l i e r e x a m p l e .

opposites ,- Dictionary new.
-~'(come cold front hot push stop)

with: @(go hot back cold pull start)
do: [:key :value t opposites at: key put: value]

T h e Dictionary now has six a s s o c i a t i o n s as i ts e l e m e n t s .
A n y S e q u e n c e a b l e C o l l e c t i o n can be c o n v e r t e d to a n Array or a

MappedCoi lec t ion . The m e s s a g e s a r e asArray a n d mappedBy :

a S e q u e n c e a b l e C o l l e c t i o n .

S u b c l a s s e s of
Sequenceable-
Collection

Class
OrderedCollection

Subclasses of SequenceableCollection are OrderedCollection, LinkedList,
Interval, and MappedCollection. ArrayedCollection is a subclass represent-
ing a co l lec t ion of e l e m e n t s w i t h a f ixed r a n g e of i n t e g e r s as e x t e r n a l
keys . Subc l a s se s of ArrayedCol lec t ion are , for e x a m p l e , Array a n d String.

OrderedCollections a r e o r d e r e d by t h e s e q u e n c e in w h i c h objec ts a r e
a d d e d a n d r e m o v e d f rom t h e m . T h e e l e m e n t s a r e access ib le by e x t e r n a l

keys t h a t a r e indices. T h e access ing , add ing , a n d r e m o v i n g p ro toco l s a r e
a u g m e n t e d to r e f e r to t h e f i r s t a n d las t e l e m e n t s , a n d to e l e m e n t s pre-

ced ing or s u c c e e d i n g o t h e r e l e m e n t s .
Orde redCo l l ec t ions can ac t as stacks or queues. A s t a c k is a s equen-

t ia l l ist for w h i c h a l l a d d i t i o n s a n d de l e t i ons a r e m a d e a t one e n d of t h e

158
H i e r a r c h y of t h e Co l l ec t ion Classes

l is t (ca l led e i t h e r t h e " r e a r " or t h e " f r o n t ") of t h e list. I t is o f t en ca l l ed

a last-in first-out queue .

usual vocabulary
©rderedCollection
message

push newObject addLast: newObject
pop removeLast
top last
empty isEmpty

A q u e u e is a s e q u e n t i a l l i s t for w h i c h a l l a d d i t i o n s a r e m a d e a t one end

of t h e l i s t (the " r e a r ") , b u t a l l d e l e t i o n s a r e m a d e f rom t h e o t h e r end

(the " f ron t") . I t is o f t en ca l l ed a first-in first-out queue .

usual vocabulary
OrderedCollection
message

add newObject addLast: newObject
delete removeFirst
front first
empty isEmpty

T h e m e s s a g e add: to a n Orde redCo l l ec t i on m e a n s " a d d t h e e l e m e n t as

t h e l a s t m e m b e r of t h e c o l l e c t i o n " a n d remove : m e a n s " r e m o v e t h e

a r g u m e n t as a n e l e m e n t . " T h e m e s s a g e p ro toco l for Orde redCo l l ec t i ons ,

in a d d i t i o n to t h a t i n h e r i t e d f r o m c lasses Col lect ion a n d

S e q u e n c e a b l e C o l l e c t i o n , follows.

OrderedCollection instance protocol

accessing
after: oldObject

before: oldObject

adding
add: newObject after: oldObject

Answer the element after old0bject in the re-
ceiver. If the receiver does not contain
old0bject or if the receiver contains no ele-
ments after oldObject, report an error.

Answer the element before oldObject in the
receiver. If the receiver does not contain
oldObject or if the receiver contains no ele-
ments before oldObject, report an error.

Add the argument, new0bject, as an element
of the receiver. Put it in the sequence just
succeeding oldObject. Answer newObject. If
oldObject is not found, then report an error.

159
Subclasses of SequenceableCollection

Class
S o r t e d C o l l e c t i o n

add: newObject before: oldObject

addAIIFirst: anOrderedCollection

addAIILast: anOrderedCollection

addFirst: newObject

addLast: newObject

removing
removeFirst

removeLast

Add the argument, newObject, as an element
of the receiver. Put it in the sequence just
preceding oldObject. Answer newObject. If
oldObject is not found, then report an error.

Add each element of the argument,
anOrderedCollection, at the beginning of the
receiver. Answer anOrderedCollection.

Add each element of the argument,
anOrderedCollection, to the end of the receiv-
er. Answer anOrderedCollection.

Add the argument, newObject, to the begin-
ning of the receiver. Answer newObject.

Add the argument, newObject, to the end of
the receiver. Answer newObject.

Remove the first element of the receiver and
answer it. If the receiver is empty, report an
error.

Remove the last element of the receiver and
answer it. If the receiver is empty, report an
error.

Class SortedCollection is a subclass of OrderedCollection. The elements
in a SortedCollection are ordered by a function of two elements. The
function is represented by a two-argument block called the sort block.
I t is possible to add an element only wi th the message add:; messages
such as addLast: that allow the programmer to specify the order of in-
serting are disallowed for SortedCollections.

An instance of class SortedCollection can be created by sending
SortedCollection the message sortBIock:. The argument to this message
is a block wi th two-arguments, for example,

SortedCollection sortBIock: [:a :b i a < = b]

T h i s p a r t i c u l a r b lock is t h e d e f a u l t s o r t i n g f u n c t i o n w h e n a n i n s t a n c e is

c r e a t e d s i m p l y by s e n d i n g Sor t edCo l l ec t ion t h e m e s s a g e new. T h u s ex-

a m p l e s of t h e four w a y s to c r e a t e a So r t edCo l l ec t ion a r e

SortedCoilection new
SortedCollection sortBIock: [:a :b I a > b]
anyCollection asSortedCollection
anyCollection asSortedCollection: [:a :b I a > b]

I t is poss ib le to d e t e r m i n e t h e b lock a n d to r e s e t t h e b lock u s i n g two ad-

d i t i o n a l acces s ing m e s s a g e s to i n s t a n c e s of Sor tedCol lec t ion . W h e n t h e

b lock is c h a n g e d , t h e e l e m e n t s of t h e co l l ec t ion are , of course , r e - so r t ed .

N o t i c e t h a t t h e s a m e m e s s a g e is Sent to t h e c lass i tself (sortBlock:) to

160
H i e r a r c h y of the Collect ion Classes

c r ea t e an i n s t ance wi th a p a r t i c u l a r so r t ing cr i te r ion , and to an in-

s t ance to change its so r t ing cr i te r ion .

SortedCollection class protocol

instance creation
sortBIock: aBIock Answer an instance of SortedCollection such

that its elements will be sorted according to
the criterion specified in the argument, aBIock.

SortedCollection instance protocol

accessing
sortBIock

sortBlock: aBIock

Answer the block that is the criterion for sort-
ing elements of the receiver.
Make the argument, aBIock, be the criterion
for ordering elements of the receiver.

Suppose we wish to m a i n t a i n an a lphabe t i ca l list of the n a m e s of chil-

d ren in a c lassroom.

children ~- SortedCollection new

The in i t ia l so r t ing c r i t e r ion is t he de fau l t block [:a "b I a < = b]. The
e l e m e n t s of t he collect ion can be Strings or Symbols because , as we
shal l show presen t ly , these k inds of objects respond to the compar i son

messages < , > , < = , and > = .

expression result

children add: :#:Joe Joe
children add: .:.#:Bill Bill
children add: #Alice Alice
children SortedCollection

(Alice Bill Joe)
children add: :/¢Sam Sam
children SortedCollection

sortBIock: [:a :b I a < b] (Sam Joe Bill Alice)
children add: #Henrietta Henrietta
children SortedCollection

(Sam Joe Henrietta
Bill Alice)

The s ix th message in the e x a m p l e r eve r sed the o rde r in which e l e m e n t s

a re s to red in the collection, children.

Class LinkedList

161
Subclasses of SequenceableCollection

LinkedList is another subclass of SequenceableCollection whose elements
a re expl ic i t ly o rde red by the sequence in which objects a r e added and

r e m o v e d f rom them. L i k e OrderedCollect ion, the e l e m e n t s of a
LinkedList can be r e f e r r e d to by e x t e r n a l keys t h a t a r e indices. Un l ike

OrderedCollect ion, w h e r e t he e l e m e n t s m a y be any object, t he e l e m e n t s
of a LinkedList a r e homogeneous ; each m u s t be an in s t ance of class Link
or of a subclass of Link.

A Link is a record of a r e f e r ence to a n o t h e r Link. I ts m e s s a g e protocol
consists of t h r e e messages . The s a m e m e s s a g e (nextLink:) is used to cre-
a t e an i n s t ance of Link wi th a p a r t i c u l a r re fe rence , and to change the
r e f e r ence of an ins tance .

LinkedList class protocol

instance creation
nextLink: aLink Create an instance of Link that references the

argument, aLink.

LinkedList instance protocol

accessing
nextLink
nextLink: aLink

Answer the receiver's reference.
Set the receiver's reference to be the argu-
ment, aLink.

Since class Link does not provide a way to record a r e f e rence to the ac-
tua l e l e m e n t of the collection, it is t r e a t e d as an a b s t r a c t class. T h a t is,
i n s t ances of it a re not c rea ted . R a t h e r , subclasses a re def ined t h a t pro-
vide the m e c h a n i s m s for s to r ing one or m o r e e l emen t s , and ins t ances of
t he subclasses a re c rea ted .

Since LinkedList is a subclass of Sequenceab leCol lec t ion , its ins tances
can re spond to t h e accessing, adding, r emoving , and e n u m e r a t i n g mes-
sages def ined for all collections. A d d i t i o n a l protocol for LinkedList con-
sists of

LinkedList instance protocol

adding
addFirst: aLink

addLast: aLink

removing
removeFirst

removeLast

Add aLink to the beginning of the receiver's
list. Answer aLink.
Add aLink to the end of the receiver's list. An-
swer aLink.

Remove the receiver's first element and answer
it. If the receiver is empty, report an error.

Remove the receiver's last element and answer
it. If the receiver is empty, report an error.

162
Hie ra rchy of the Collection Classes

An example of a subclass of Link in the Smal l ta lk-80 sys tem is class
Process. Class Semaphore is a subclass of LinkedList. These two classes
are discussed in Chap te r 15, which is about mul t ip le independent pro-
cesses in the system.

The following is an example of the use of LinkedList. Link does not
provide ins tance informat ion o ther t han a reference to ano the r Link. So,
as an example , a ssume tha t there is a subclass of Link n a m e d Entry. En-
try adds the abi l i ty to store one object. The ins tance creat ion message
for an Entry is for: anObject, and its accessing message is element.

class name Entry
superclass Link
instance variable names e I e m e nt
class methods

instance creation

for: anObject
t self new setElement: anObject

instance methods

accessing
element

telement
printing

print,On= aStream
aStream nextPutAIl: ' Entry for: ' , element printString

private
setElement: anObject

element ~- anObject

The classes L inkedList and Entry can t hen be used as fo l lows.

expression result

list ~- LinkedList new
list add: (Entry for: 2)
list add: (Entry for: 4)
list addLast: (Entry for: 5)
list addFirst: (Entry for: 1)
list

list isEmpty
list size

LinkedList 0
Entry for: 2
Entry for: 4

Entry for: 5
Entry for: 1
LinkedList (Entry for: 1

Entry for: 2 Entry
for: 4 Entry for: 5)

false
4

163
Subc lasses of S e q u e n c e a b l e C o l l e c t i o n

list inject: 0 12
into: [:value :each I

(each element)
+ value]

list last Entry for: 5
list first Entry for: 1
list remove: (Entry for: 4) Entry for: 4
list removeF i rs t Entry for: 1
list removeLast Entry for: 5
list first = = list last true

Class I n t e r v a l
Another kind of SequenceableCollection is a collection of numbers rep-
resenting a mathemat ica l progression. For example, the collection
might consist of all the integers in the interval from 1 to 100; or it
might consist of all even integers in the interval from 1 to 100. Or the
collection might consist of a series of numbers where each additional
number in the series is computed from the previous one by mult iplying
it by 2. The series might s tar t with 1 and end w i t h t h e last number
tha t is less than or equal to 100. This would be the sequence 1, 2, 4, 8,
16, 32, 64.

A mathemat ica l progression is characterized by a first number, a
limit (maximum or minimum) for the last computed number, and a
method for computing each succeeding number. The limit could be posi-
tive or negative infinity. An ar i thmetic progression is one in which the
computat ion method is simply the addition of an increment. For exam-
ple, it could be a series of numbers where each additional number in
the series is computed from the previous one by adding a negative 20.
The series might s tar t with 100 and end with the last number tha t is
greater than or equal to 1. This would be the sequence 100, 80, 60,
40, 20.

In the Smalltalk-80 system, the class of collections called Intervals
consists of finite ar i thmetic progressions. In addition to those messages
inheri ted from its superclasses SequenceableCollection and Collection,
class Interval supports messages for initialization and for accessing those
values tha t characterize the instance. New elements cannot be added or
removed from an Interval .

The class protocol of Interval consists of the following messages for
creating instances.

Interval class protocol

instance creation
from: startlnteger to: stoplnteger Answer an instance of class Interval, starting

with the number startlnteger, ending with the
number stoplnteger, and using the increment
1 to compute each successive element.

164
H i e r a r c h y of t h e C o l l e c t i o n C l a s s e s

from: startlnteger to: stoplnteger by: steplnteger
Answer an instance of Interval, starting with
the number startlnteger, ending with the num-
ber stoplnteger, and using the increment
steplnteger to compute each successive ele-
ment.

All messages appropriate to SequenceableCollections can be sent to an
Interval. In addition, the instance protocol of Interval provides a message
for accessing the increment of the ar i thmetic progression (increment).

Class Number supports two messages tha t provide a shor thand for
expressing new Intervals--to: stop and to" stop by: step. Thus to create
an Interval of all integers from 1 to 10, evaluate either

Interval from: 1 to: 10

o r

1 to: 10

To create an Interval s tar t ing with 100 and ending with 1, adding a neg-
ative 20 each time, evaluate either

Interval from: 100 to: 1 b y : - 2 0

o r

lOOto: 1 by: - 2 0

This is the sequence 100, 80, 60, 40, 20. The Interval need not consist of
Integers-- to create an Interval between 10 and 40, incrementing by 0.2,
evaluate either

Interval from" 10 to: 40 by: 0.2

o r

10 tO" 40 by: 0.2

This is the sequence 10, 10.2, 10.4, 10.6, 10.8, 11.0 and so on.
Note tha t we could provide the more general case of a progression by

replacing the numeric value of step by a block. When a new element is
to be computed, it would be done by sending the current value as the
a rgument of the message value: to the block. The computations of size
and do: would have to take this method of computation into account.

165
Class ArrayedCoilection

The message do: to an Interval provides the function of the usual for-
loop in a programming language. The Algol s tatement

for i "= 10 step 6 unt i l 100 do
begin
< statements >
end

is represented by

(10 to: 100 by: 6) do: [:i I s tatements]

Numbers respond to the message to:by:do: as though the expression had
been writ ten as given in the example. So that iteration can be written
without parentheses as

10 to: 100 by: 6 do: [:i I s tatements]

To increment by 1 every sixth numeric element of an OrderedCollection,
numbers, evaluate

6 to: numbers size
by: 6
do: [:index I numbers at: index put: (numbers at: index) + 1]

The Interval created is 6, 12, 18 , up to the index of the last element
of numbers. If the size of the collection is less than 6 (the supposedly
first index), nothing happens. Otherwise elements at position 6, 12, 18,
and so on, until the last possible position, are replaced.

Class
ArrayedCollection

As stated earlier, class ArrayedCollection is a subclass of Collection. It
represents a collection of elements with a fixed range of integers as ex-
ternal keys. ArrayedCollection has five subclasses in the Smalltalk-80
system--Array, String, Text, RunArray, and ByteArray.

An Array is a collection whose elements are any objects. It provides
the concrete representation for storing a collection of elements that
have integers as external keys. Several examples of the use of Arrays
have already been given in this chapter.

A String is a collection whose elements are Characters. Many exam-
ples of the use of Strings have been given in this and in previous chap-

166
Hierarchy of the Collection Classes

ters. Class String provides addit ional protocol for initializing and
comparing its instances.

Text represents a String tha t has font and emphasis changes. It is
used in storing informat ion needed for creat ing textual documents in
the Small ta lk-80 system. An instance of Text has two instance vari-
ables, the String and an instance of RunArray in which an encoding of
the font and emphasis changes is stored.

Class RunArray provides a space-efficient storage of data tha t tends to
be constant over long runs of the possible indices. It stores repeated ele-
ments singly and then associates with each single e lement a number
tha t denotes the consecutive occurrences of the element. For example,
suppose the Text represent ing the String 'He is a good boy.' is to be
displayed with the word "boy" in bold, and fur ther suppose tha t the
code for the font is 1 and for its boldface version is 2. Then the
RunArray for the Text tha t is associated with "He is a good boy." (a
String of 17 Characters) consists of 1 associated with 13, 2 associated
with 3, and 1 associated with 1. Tha t is, the first 13 Characters are in
font 1, the next three in font 2, and the last in font 1.

A ByteArray represents an ArrayedColJection whose elements are inte-
gers between 0 and 255. The implementa t ion of a ByteArray stores two
bytes to a i6-bit word; the class supports addit ional protocol for word
and double-word access. ByteArrays are used in the Small talk-80 system
for s toring t ime in milliseconds.

Class St r ing

As stated earlier, the class protocol for String adds messages for creat ing
a copy of ano ther String (fromString: aString) or for creat ing a String
from the Characters in a Stream (readFrom: aStream). The main signifi-
cance of this second message is tha t pairs of embedded quotes are read
and stored as one element, the quote character . In addition, class String
adds comparing protocol like tha t specified in class Magnitude. We in-
t roduced some of these messages ear l ier in the description of class
SortedCollection.

String instance protocol

comparing
< aString

< = aString

> aString

Answer whether the receiver collates before
the argument, aString. The collation sequence
is ASCII with case differences ignored.
Answer whether the receiver collates before
the argument, aString, or is the same as
aString. The collation sequence is ASCII with
case differences ignored.
Answer whether the receiver collates after the
argument, aString. The collation sequence is
ASCII with case differences ignored.

167

C l a s s A r r a y e d C o l l e c t i o n

> = aString Answer whether the receiver collates after the
argument, aString, or is the same as aString.
The collation sequence is ASCII with case dif-
ferences ignored.

m a t c h : a S t r i n g Treat the receiver as a pattern that can con-
tain characters # and *. Answer whether the
argument, aString, matches the pattern in the
receiver. Matching ignores upper/lower case
differences. Where the receiver contains the
character #:, aString may contain any single
character. Where the receiver contains ,,
aString may contain any sequence of charac-
ters, including no characters.

s a m e A s : a S t r i n g Answer whether the receiver collates precisely
with the argument, aString. The collation se-
quence is ASCII with case differences ignored.

W e h a v e n o t a s y e t g i v e n e x a m p l e s of u s i n g t h e l a s t t w o m e s s a g e s .

expression result

' f i rs t s t r i ng • s a m e A s : ' f i rs t s t r i ng •

• F i rs t S t r i ng • s a m e A s : ' f i rs t s t r i ng •

• F i rs t S t r i ng • = ' f i rs t s t r i ng •

' # i r s t s t r i ng • m a t c h : • f i r s t s t r i ng •

• • s t r i ng • m a t c h : " a n y s t r i ng •

" , . s t " m a t c h : ' f i l e n a m e . s t '

• f i rs t s t r i ng • m a t c h : • f i r s t , '

t r ue

t r u e

f a l s e

t r ue

t r ue

t r ue

f a l s e

S t r i n g s c a n be c o n v e r t e d to a l l l o w e r c a s e c h a r a c t e r s o r a l l u p p e r c a s e

c h a r a c t e r s . T h e y c a n a l s o be c o n v e r t e d to i n s t a n c e s of c l a s s S y m b o l .

String instance protocol

c o n v e r t i n g

a s L o w e r c a s e

a s U p p e r c a s e

a s S y m b o l

T h e r e f o r e w e h a v e

Answer a String made up from the receiver
whose characters are all lowercase.

Answer a String made up from the receiver
whose characters are all uppercase.

Answer the unique Symbol whose characters
are the characters of the receiver.

expression result

• f i rs t s t r i ng • a s U p p e r c a s e

• F i rs t S t r i ng • a s L o w e r c a s e

' F i rs t • a s S y m b o l

• F I R S T S T R I N G "

• f i rs t s t r i ng •

F i rs t

168
Hierarchy of the Collection Classes

Class Symbol

Symbols are arrays of Characters that are guaranteed to be unique.
Thus

'a string' asSymbol = = 'a string' asSymbol

answers true. Class Symbol provides two instance creation messages in
its class protocol for this purpose.

Symbol class protocol

instance creation
intern: aString

internCharacter: aCharacter

Answer a unique Symbol whose characters are
those of aString.
Answer a unique Symbol of one character, the
argument, aCharacter.

In addition, Symbols can be expressed literally using the character ~ as
a prefix to a sequence of Characters. For example, ¢/:dave is a Symbol of
four Characters. Symbols print without this prefix notation.

Class
M appedCol lectio n

Class MappedCollection is a subclass of Collection. I t represents an ac-
cess mechanism for referencing a subcollection of a collection whose el-
ements are named. This mapping can determine a reordering or
filtering of the elements of the collection. The basic idea is tha t a
MappedCollection refers to a domain and a map. The domain is a Col-
lection tha t is to be accessed indirectly through the external keys stored
in the map. The map is a Collection that associates a set of external
keys with another set of external keys. This second set of keys must be
external keys that can be used to access the elements of the domain.
The domain and the map, therefore, must be instances of Dictionary or
of a Subclass of SequenceableCollection.

Take, for example, the Dictionary of word Symbols, opposites, intro-
duced earlier.

key value

come go
cold hot
front back
hot cold
push pull
stop start

169
Summary of Conversions Among Collections

Suppose we create another Dictionary of synonym Symbols for some of
the keys of the entries in opposites and refer to it by the variable name
alternates.

key value

cease stop
enter come
scalding hot
shove push

Then we can provide a MappedCollection by evaluating the expression

words ~- MappedCollection collection: opposites map: alternates

Through words, we can access the elements of opposites. For example,
the value of the expression words at: # c e a s e is start (i.e., the value of
the key cease in alternatives is stop; the value of the key stop in oppo-
sites is start). We can determine which part of opposites is referenced
by words by sending words the message contents.

words contents

The result is a Bag containing the symbols start go cold pull.
The message at:put: is an indirect way to change the domain collec-

tion. For example

expression result

words at: #scalding cold
words at: #cease start
words at: #cease continue

put: #continue
opposites at: #stop continue

Summary of
Conversions
Among
Collections

In the sections describing the various kinds of collections, we have indi-
cated which collections can be converted to which other collections. In
summary, any collection can be converted to a Bag, a Set, an
OrderedCollection, or a SortedCollection. All collections except Bags and
Sets can be converted to an Array or a MappedCoilection. Strings and
Symbols can be converted into one another; but no collection can be
converted into an Interval or a kinkedList.

.........a." " ' ' - .
.._..°" ---.

.-'" .

% °oo°

Three Examples That
Use Collections

Random Selection and Playing Cards

The Drunken Cockroach Problem

Traversing Binary Trees
A Binary Word Tree

172
Three Examples Tha t Use Collections

Three examples of class descriptions are given in this chapter. Each
example makes use of the numeric and collections objects available in
the Small talk-80 system; each i l lustrates a different way to add func-
t ionali ty to the system.

Card games can be created in terms of random selection from a col-
lection represent ing a deck of cards. The example class Card represents
a playing card with a par t icular suit and rank. CardDeck represents a
collection of such Cards; a CardHand is a collection of Cards for an indi-
vidual player. Selecting cards from a CardDeck or a CardHand is carried
out using example classes tha t represent sampling with replacement,
SampleSpaceWithReplacement, and sampling without replacement,
SampleSpaceWithoutReplacement. A well-known programming problem,
the d runken cockroach problem, involves counting the number of steps
it takes a cockroach to randomly travel over all the tiles in a room. The
solution given in this chapter represents each tile as an instance of ex-
ample class Tile and the bug as an instance of DrunkenCockroach. The
third example in this chapter is of a tree-like data s t ructure represent-
ed by classes Tree and Node; a WordNode i l lustrates the way trees can
be used to store strings represent ing words.

Random
Select ion and
P lay ing Cards

The Smalltalk-80 class Random, which acts as a generator for randomly
selected numbers between 0 and 1, was described in Chapter 8. Random
provides the basis for sampling from a set of possible events; such a set
is known as a sample space. A simple form of discrete random sampling
can be obtained in which a random number is used to to select an ele-
ment from a sequenceable collection. If the selected element remains in
the collection, then the sampling is done "with replacement" - - tha t is,
every e lement of the collection is available each time the collection is
sampled. Alternatively, the sampled element can be removed from the
collection each t ime the collection is sampled; this is sampling "without
replacement ."

Class SampleSpaceWithReplacement represents random selection
with replacement from a sequenceable collection of items. An instance
of the class is created by specifying the collection of items from which
random sampling will be done. This initialization message has selector
data:. We then sample from the collection by sending the instance the
message next. Or we can obtain anlnteger number of samples by send ing
the message next: anlnteger.

For example, suppose we wish to sample from an Array of Symbols
represent ing the names of people.

173
Random Selection and Playing Cards

people ~- SampleSpaceWithReplacement
data: #(sa l ly sam sue sarah steve)

Each t ime we wish to select a name from the Array, we evaluate the ex-
pression

people next

The response is one of the Symbols, sally, sam, sue, sarah, or steve. By
evaluat ing the expression

people next: 5

an OrderedCollection of five samples is selected. Instances of
SampleSpaceWithReplacement respond to messages isEmpty and size to
test whe the r any e lements exist in the sample space and how many ele-
ments exist. Thus the response to

people isEmpty

is false; and the response to

people size

is 5.
An implementa t ion of class SampleSpaceWithReplacement is given

next. Comments , delimited by double quotes, are given in each method
to indicate its purpose.

class n a m e SampleSpaceWithReplacement
superclass Object
instance variable names data

rand
class methods

instance creation

data: aSequenceableCollection
"Create an instance of SampleSpaceWithReplacement such that the ar-
gument, aSequenceableCollection, is the sample space."
t self new setData: aSequenceableCollection

instance methods

accessing

next
"The next element selected is chosen at random from the data collec-
tion. The index into the data collection is determined by obtaining a

174
Three Examples Tha t Use Collections

random number between 0 and 1, and normalizing it to be within the
range of the size of the data collection."
self isEmpty

ifTrue: [self error: " no values exist in the sample space'].
tdata at: (rand next , data size) truncated + 1

next: anlnteger
"Answer an OrderedColfection containing anlnteger number of selec-
tions from the data collection."
I aCollection I
aCollection ~- OrderedCollection new: anlnteger.
anlnteger timesRepeat: [aCollection addLast: self next].
taCollection

testing

isEmpty
"Answer whether any items remain to be sampled."
rself size = 0

size
"Answer the number of items remaining to be sampled."
1' data size

private

setData: aSequenceableCollection
"The argument, aSequenceableCollection, is the sample space. Create
a random number generator for sampling from the space."
data ~- aSequenceableCollection.
rand ,- Random new

The class description declares tha t each ins tance has two var iables
whose names are data and rand. The ini t ia l izat ion message, data:, sends
the new ins tance the message setData: in which data is bound to a
SequenceableCollect ion (the value of the a r g u m e n t of the ini t ia l izat ion
message) and rand is bound to a new ins tance of class Random.

SampleSpaceWithReplacement is not a subclass of Collection because
i t imp lements only a smal l subset of the messages to which Collections
can respond. In response to the messages next and size to a
SampleSpaceWithReplacement, the messages at: and size are sent to the
instance var iable data. This means tha t any col lect ion tha t can respond
to at: and size can serve as the data f rom which elements are sampled.
A l l SequenceableCollect ions respond to these two messages. So, for ex-
ample, in addi t ion to an Array as i l lus t ra ted earl ier, the data can be an
Interval. Suppose we wish to s imulate the th row of a die. Then the ele-
ments of the sample space are the positive integers 1 th rough 6.

175
Random Selection and Playing Cards

die ~ SampleSpaceWi thRep lacement data: (1 to: 6)

A throw of the die is obtained by eva lua t ing

die next

The response from this message is one of the Integers, 1, 2, 3, 4, 5, or 6.
We could select a card from a deck of cards in a s imi lar way if the

collection associated wi th the ins tance of SampleSpaceWithReplacement
consists of e lements represen t ing playing cards. In order to play card
games, however, we have to be able to deal a card out to a p layer and
remove it from the deck. So, we have to use r andom selection wi thout
rep lacement .

To i m p l e m e n t r andom selection wi thout rep lacement , we define the
response to the message next as removing the selected element . Since
all SequenceableCol lect ions do not respond to the message remove:, (for
example, Interval does not) we e i ther mus t check the a r g u m e n t of the
ini t ia l izat ion message or we mus t convert the a r g u m e n t to an accept-
able kind of collection. Since all OrderedCollections respond to the two
messages, and since all collections can be converted to an
OrderedCollection, we can ~use the conversion approach. The method as-
sociated wi th setData: sends its a r g u m e n t the message
asOrderedCollection in order to accomplish the goal.

Class SampleSpaceWithoutReplacement is defined to be a subclass of
SampleSpaceWithReplacement . The methods associated wi th the mes-
sages next and setData: are overridden; the r ema in ing messages are
inher i ted wi thout modification.

class name
superclass
instance methods

SampleSpaceWithoutReplacement
SampleSpaceWithReplacement

accessing

next
1data remove: super next

private

setData: aCol lect ion
data ~ aCollection asOrderedCollection.
rand ~ Random new

Notice t ha t the method for next depends on the method implemen ted in
the superclass (super next). The superclass 's method checks to make cer-
ta in t ha t the sample space is not empty and then randomly selects an
e lement . After de t e rmin ing the selected element , the subclass 's method
removes the e l emen t from data. The resul t of the remove: message is

176
Three Examples That Use Collections

the argument , so tha t the result of the message next to a
SarnpleSpaceWithoutReplacement is the selected element.

Now let's implement a simple card game. Suppose the sample space
data for the card game are instances of a class Card where each Card
knows its suit and rank. An instance of Card is created by sending it
the message suit:rank:, specifying the suit (heart, club, spade, or
diamond) and its r ank (1, 2, ..., 13) as the two arguments . A Card re-
sponds to the messages suit and rank with the appropria te information.

class name Card
superclass Object
instance variable names suit

rank
class methods

instance creation

suit: aSymbol rank: anlnteger
"Create an instance of Card whose suit is the argument, aSymbol, and
whose rank is the argument, anlnteger."
1self new setSuit: aSymbol rank: anlnteger

instance methods

accessing

suit
"Answer the receiver's suit. "
tsuit

rank
" Answer the receiver' s rank."
trank

private

setSuit: aSymbol rank: anlnteger
suit ~- aSymbol.
rank ~ anlnteger

A deck of cards, cardDeck, is created by the following expressions.

cardDeck ,- OrderedCol lect ion new: 52.
(h e a r t club spade diamond) do"

[:eachSuit I
1 to: 13 d o [:n I cardDeck add" (Card suit: eachSuit rank: n)]]

The first expression creates an OrderedCol lect ion for 52 elements. The
second expression is an enumera t ion of the ranks 1 through 13 for each
of the four suits: heart , club, spade, and diamond. Each element of the
OrderedCollection is set to be a Card with a different suit and rank.

177
Random Selection and Playing Cards

The ability to sample from this deck of cards is obtained by creating
an instance of SampleSpaceWithoutReplacement with the card deck as
the collection from which samples will be taken

cards ~- S a m p l e S p a c e W i t h o u t R e p l a c e m e n t data: ca rdDeck

To deal a card, evaluate the expression

cards next

The response to this message is an instance of class Card.
Another way to provide a deck of playing cards is i l lustrated in the

description of example class CardDeck. The basic idea is to store a lin-
ear list of cards; next means supply the first card in the list. A card can
be re tu rned to the deck by placing it at the end or by insert ing it at
some random position. The l inear list is made random by shuftlling--
tha t is, randomly ordering the cards.

In the implementa t ion of class CardDeck provided next, we store an
initial version of the deck of cards as a class variable. It is created using
the expressions given earlier. A copy of this variable is made as an in-
stance variable whenever a new instance is created; it is shuffled before
cards are dealt out. Each subsequent shuffle of the deck uses the cur-
rent s tate of the instance variable, not of the class variable. Of course,
the shuffling process, since it is based on the use of an instance of
SampleSpaceWithoutReplacement, is quite uniform. A simulat ion of real
shuffling involves first splitting the deck approximately in half and
then inter leaving the two halves. The interleaving involves selecting
chunks from one half and then the other half. Indeed, such a simula-
tion may be more random than an actual person's shuffling; a person's
shuffling ability might be observable and predictable.

Messages to a CardDeck, such as return:, next, and shuffle, are useful
in creat ing card games.

class name CardDeck
superclass Object
instance variable names card s
class variable names InitialCardDeck
class methods

class initialization

in i t ia l ize
" Create a deck of 52 playing cards."

InitiatCardDeck ~ OrderedCollection new: 52.

#(hear t club spade diamond) do:

[:aSuit I
1 to: 13

do: [:n I InitialCardDeck add: (Card suit: aSuit rank: n)]]

178
T h r e e E x a m p l e s T h a t U s e C o l l e c t i o n s

instance creation

n e w

"Create an instance of CardDeck with an initial deck of 52 playing
cards. "

1"super new cards: InitialCardDeck copy

instance methods

accessing

next
" Deal (give out) the next card."
1' cards removeFirst

return: aCard
" Put the argument, aCard, at the bottom of the deck."
cards addLast: aCard

shuffle
I sample tempDeck I

sample ~ SampfeSpaceWithoutReplacement data: cards.
tempDeck ~- OrderedCollection new: cards size.

cards size timesRepeat: [tempDeck addLast: sample next] .
self cards: tempDeck

testing

isEmpty
"Answer whether any more cards remain in the deck."
Tcards isEmpty

private

cards: aCollection
cards ~- aCollection

The class CardDeck must be initialized by evaluat ing the expression

CardDeck initialize

In the implementat ion of CardDeck, cards is the instance variable and
is therefore the deck of cards used in playing a game. To play a game,
an instance of CardDeck is created

CardDeck new

and then each card is dealt by sending this new instance the message
next. When a card is put back in the deck, the CardDeck is sent the

179
Random Selection and Playing Cards

message return:. Shuffling always shuffles whichever cards are current ly
in the deck. If a full CardDeck is to be reused after a round of play, any
cards taken from the deck must be returned.

Note the implementat ion of the message shuffle. A sample space
without replacement, sample, is created for a copy of the cur rent deck
of cards. A new OrderedCollection, tempDeck, is created for storing ran-
domly selected cards from this sample space. Sampling is done from
sample for each possible card; each selected card is added to the
tempDeck. Once all the available cards have been shuffled into it,
tempDeck is stored as the cur rent game deck.

Suppose we create a simple card game in which there are four play-
ers and a dealer. The dealer deals out cards to each of the players. If at
least one of the players has between 18 and 21 points, the game ends
with the "prize" divided among each of these players. Points are count-
ed by adding up the ranks of the cards. A player with more than 21
points is not dealt new cards.

Each player is represented by an instance of class CardHand tha t
represents a card hand. A CardHand knows the cards it is dealt and can
determine its total point count (in response to the message points).

class name CardHand
superclass Object
instance variable names cards
class methods

instance creation

n e w

1'super new setCards

instance methods

accessing

take: aCard
" The argument, aCard, is added to the reciever."
cards add: aCard

re turnAI ICardsTo: c a r d D e c k
" P l a c e all of the receiver's cards into the deck of cards referred to by
the argument, cardDeck, and remove these cards from the receiver's

hand. "

cards do: [:eachCard I cardDeck return: eachCard].
self setCards

180
Three Examples That Use Collections

inquiries

points
"Answer the sum of the ranks of the receiver's cards."
t cards inject: 0 into: [:value :nextCard I value + nextCard rank]

private

setCards
cards ~- OrderedCollection new

We create a Set of four players. Each player is represented by an in-
stance of CardHand. The dealer 's cards are the gameCards. The dealer
(that is, the programmer) starts by shuffling the deck; there is no win-
ner yet. There may be more than one winner; winners will be listed in
the Set, winners.

players ~ Set new.
4 timesRepeat: [players add: CardHand new].
gameCards ~ CardDeck new.
gameCards shuffle

As long as there is no winner, each player with less than 21 points is
given another card from the flameCards. Before dealing a card to each
eligible player, the dealer looks to see if there are any winners by test-
ing the points for each player.

[winners ~ players select: [:each I each points between: 18 and: 21].
winners isEmpty and: [gameCards isEmpty not]]

whileTrue:
[players do:

[:each t
each points < 21 ifTrue: [each take: gameCards next]]

The condition for continuing to play is a block with two expressions.
The first expression determines the winners, if any, The second expres-
sion tests to see if there are any winners yet (winners isEmpty) and, if
not, if there are any more cards to deal out (flameCards isEmpty not). If
there are no winners and more cards, the game continues. The game
consists of an enumerat ion of each player; each player takes another
card (each take: gameCards next) only if the number of card points is
less than 21 (each points < 21).

To play again, all cards have to be re turned to the game deck, which
is then shuffled.

players do: [:each I each returnAIICardsTo: gameCards].
gameCards shuffle

The players and dealer are ready to play again.

181
The Drunken Cockroach Problem

The Drunken
Cockroach
Problem

We can use some of the collection classes to solve a well-known pro-
g ramming problem. The problem is to measure how long it takes a
drunken cockroach to touch each tile of a floor of square tiles which is
N tiles wide and M tiles long. To slightly idealize the problem: in a giv-
en ~step" the cockroach is equally likely to t ry to move to any of nine
tiles, namely the tile the roach is on before the step and the tiles imme-
diately surrounding it. The cockroach's success in moving to some of
these tiles will be limited, of course, if the cockroach is next to a wall of
the room. The problem is restated as counting the number of steps it
takes the cockroach to land on all of the tiles at least once.

One straightforward algori thm to use to solve this problem starts
with an empty Set and a counter set to 0. After each step, we add to
the Set the tile that the cockroach lands on and increment a counter of
the number of steps. Since no duplication is allowed in a Set, we would
be done when the number of elements in the Set reaches N*M. The so-
lution would be the value of the counter.

While this solves the simplest version of the problem, we might also
like to know some additional information, such as how many times each
tile was visited. To record this information, we can use an instance of
class Bag. The size of the Bag is the total number of steps the cockroach
took; the size of the Bag when it is converted to a Set is the total num-
ber of distinct tiles touched by the cockroach. When this number
reaches N 'M, the problem is solved. The number of occurrences of each
tile in the Bag is the same as the number of times the roach visited
each tile.

Each tile on the floor can be labeled with respect to its row and its
column. The objects representing tiles in the solution we offer are in-
stances of class Tile. A commented implementat ion of class Tile follows.

class name Tile
superclass Object

instance variable names Iocation
floorArea

instance methods

accessing

location
" Answer the location of the receiver on the floor."

tlocation

location: aPoint

"Answer the location of the receiver on the floor."

1location

location: aPoint
" S e t the receiver' s location on the floor to be the argument, aPoint."

location ~- aPoint

182
Three Examples Tha t Use Collections

f loerArea= a R e c t a n g l e

"Set the floor area to be the rectangular area represented by the argu-
ment, aRectangle."
floorArea ~-- aRectangle

moving

ne ighborAt : de l t aPo in t

"Create and answer a new Tile that is at the location of the receiver
changed by the x and y amounts represented by the argument,
deltaPoint. Keep the location of the newTile within the boundries of the
floor area. "
I newTile I
newTile ~ Tile new floorArea: floorArea.
newTile location ((location + deltaPoint max floorArea origin)

min floorArea corner).
tnewTile

comparing

= a f i l e

" Answer whether the receiver is equal to the argument, aTile."
t(aTile isKindOf: Tile) and' [location = aTile location]

hash
t location hash

A Tile refers to its row and column locations, each of which mus t be at
least 1 and no la rger t han the width or length of the floor. Therefore, in
addit ion to r e m e m b e r i n g its location, a Tile mus t r e m e m b e r the maxi-
m u m floor space in which it can be placed. A Tile can be sent the mes-
sage neightborAt: aPoint in order to de t e rmine a Tile at one of the
locations next to it. This new Tile mus t be at a location wi th in the
boundarie~ of the floor.

The way we will s imula te the cockroach's walk is to select a direction
in t e rms of changes in the x-y coordinates of the cockroach ' s location.
Given the location of the cockroach (tile x,y), there are 9 tiles to which
the insect can move unless the tile is along one of the edges. We will
store the possible changes of x and y in an OrderedCollection t ha t is the
da ta for r andom selection. The OrderedCollection will contain Points as
e lements ; the Points are direct ion vectors represen t ing all the possible
combinat ions of moves. We create this collection by the expressions

Directions ,- OrderedCollection new: 9.
(- 1 to" 1) do: [: x i (- 1 to: 1) do: [:y I Directions add: x@y]]

Directions, then, is a collection wi th e lements

- - 1@- -1 , - -1@0, - -1@1, 0 @ - - 1 , 0 @ 0 , 0 @ 1 , 1@--1, 1@0, 1@,1

183
The Drunken Cockroach Problem

As par t of the drunken walk simulation, we will generate a random
number for selecting an e lement from this OrderedCollection of possible
moves. As an a l ternat ive to using a random number generator directly,
we could use the previous example 's SampleSpaceWithReplacement
with Directions as the sample space.

Suppose the cockroach star ts on the Tile tha t is at location 1 ® 1.
Each t ime the cockroach is supposed to take a step, we obtain an ele-
ment from the collection, Directions. This e lement is then the a rgument
of the message neighborAt: to the Tile. In the following, assume Rand is
an instance of class Random.

tile neighborAt:
(Directions at: ((Rand next * Directions size) t runcated + 1)).

The result ing new tile location is the place where the cockroach landed.
Each tile position has to be remembered in order to be able to report

on whether every location has been touched and how many steps were
required. By storing each tile in a Bag, a tally is kept of the number of
t imes the cockroach landed in each location. So at each step, a new tile
is created tha t is a copy of the previous tile. This new tile is changed
according to the randomly selected direction and is added to the Bag.
When the number of unique elements of the Bag equals the total num-
ber of tiles, the cockroach is done.

Only two messages are needed in class DrunkenCockroach. One is a
command to have the cockroach take a walk around a specific floor
area until every tile on the floor has been touched. This is the message
walkWithin:startingAt:. The second is an inquiry as to the number of
steps the cockroach has taken so far; this is the message numberOfSteps.
We can also inquire about the number of t imes the roach stepped on a
par t icular tile by sending the DrunkenCockroach the message
timesSteppedOn:. The collection of direction vectors (as described earli-
er) is created as a class variable of DrunkenCockroach; the random
number generator Rand is also a class variable of DrunkenCockroach.

class name DrunkenCockroach
superclass Object
instance variable names C u rre ntTit e

tilesVisited
class variable names Directions

Rand
class methods

class initialization

in i t ia l ize
"Create the collection of direction vectors and the random number gen-

erator."

184
Three Examples That Use Collections

Directions ~- OrderedCollection new: 9.

(- 1 to: 1) d o : [: x I (- 1 to: 1) do : [:y I Directions add: x®y]] .
Rand ~- Random new

instance creation

new
1'super new setVariables

instance methods

simulation

walkWithin: aRectangle startingAt: aPoint
I numberTiles I
tilesVisited ~- Bag new.
currentTile location: aPoint.
currentTile floorArea: aRectangte.
numberTiles ~- (aRectangle width ---t- 1) . (aRectangle height + 1).
tilesVisited add: currentTile.
[tilesVisited asSet size < numberTfles] whileTrue'

[currentTile ~- currentTile neighborAt:

(Directions at: (Rand nex t . Directions size) truncated + 1).
tilesVisited add: currentTile]

data

numberOfSteps
ltilesVisited size

timesSteppedOn: aTile
l'titesVisited occurrencesOf: aTile

private

setVariables
currentTile ~- Tile new.
tilesVisited ~- Bag new

We can now send the following messages in order to exper iment with a
d runken cockroach. Initialize the class and create an instance.

DrunkenCock roach initialize.
cock roach ~- D runkenCock roach new

Obtain the results of 10 exper iments with a 5 by 5 room.

results ~- OrderedCol lec t ion new: 10.
10 t imesRepeat :

[cockroach walkWithin: (1 @ 1 corner: 5 @ 5) start ingAt: (1 @ 1).
results add: cock roach numberOfS teps]

185
T r a v e r s i n g B i n a r y Trees

The average of the 10 results is the average number of steps it took the
d runken cockroach to solve the problem.

(results inject: 0 into: [:sum :exp I sum + exp]) / 10

Note tha t in the implementa t ion of the DrunkenCockroach message
walkWithin:startingAt:, the te rminat ion condition is whether the Bag,
when converted to a Set, has N*M elements. A faster way to make this
test would be to add the message uniqueElements to the class Bag so
tha t the conversion to a Set is not done each t ime through the itera-
tion.

(For those readers wishing to t ry this change, the method to be added
to class Bag is

uniqueElements
1" contents size

Then the message walkWithin:startingAt: can be changed so tha t the ter-
minat ion condition is tilesVisited uniqueEiements < numberTiles.)

Traversing
Binary Trees

A tree is an impor tan t nonl inear data s t ructure tha t is useful in com-
puter algorithms. A tree s t ruc ture means tha t there is a branching re-
lationship between elements. There is one e lement designated as the
root of the tree. If there is only one element, then it is the root. If there
are more elements, then they are part i t ioned into disjoint (sub)trees. A
binary tree is e i ther the root only, the root with one binary (sub)tree, or
the root together with two binary (sub)trees. A complete description of
the genealogy of tree s t ructures is provided by Knu th in Volume 1 of
the Art of Computer Programming. Here we assume the reader is famil-
iar with the idea so tha t we can demonst ra te how to specify the data
s t ruc ture as a Small talk-80 class.

We will define a class Tree in a way tha t corresponds to the defini-
tion of LinkedList. Elements of a Tree will be Nodes tha t are like the
Links of LinkedLists, able to make connections to other elements. The
Tree will reference the root node only.

A node is simple to represent as a Small talk-80 object with two in-
stance variables, one refers to the left node and another to the right
node. We choose to t rea t the order of the nodes to support in-order tra-
versal. Tha t is, in enumera t ing the nodes, visit the left subnode first,
the root second, and the r ight subnode third. If a node has no subnodes,
then it is called a leaf We define the size of the node to be 1 plus the
size of its subnodes, if any. Thus a leaf is a node of size 1, and a node

186
T h r e e E x a m p l e s T h a t Use Collections

wi th two leaves as subnodes has size 3. The size of a t ree is the size of
its root node. This def ini t ion of size corresponds to the gene ra l not ion of
size for collections.

Messages to a Node give access to the left node, the r igh t node, and
the las t or end node. It is also possible to remove a subnode
(remove: i fAbsent :) and the root (rest).

class name Node
superclass Object
instance variable names leftNode

rightNode

class methods

instance creation

left: INode right: rNode
"Create an instance of a Node with the arguments INode and rNode as
the left and right subnodes, respectively."

I newNode I
newNode ,-- self new.
newNode left: INode.
newNode right: rNode.
tnewNode

instance methods

testing

isLeaf
"Answer whether the receiver is a leaf, that is, whether it is a node with-
out any subnodes."
l'leftNode isNil & rightNode isNil

accessing

left
t leftNode

left: aNode
leftNode ~- aNode

right
tr ightNode

right: aNode
rightNode ,- aNode

187
T r a v e r s i n g B ina ry Trees

size
i'1 + (leftNode isNit

ifTrue: [0]
ifFalse: [leftNode size])

::Jr- (rightNode isNil
ifTrue: [0]
ifFalse: [rightNode size])

end
I aNode I
aNode ~- self.
[aNode right isNil] whileFalse: [aNode ~- aNode right].
taNode

removing

remove: subnode i fAbsent: except ionBIock
" Assumes the root, self, is not the one to remove."
self isLeaf ifTrue: [texceptionBIock value].
leftNode = subnode

ifTrue: [leftNode ~ leftNode rest. 1subnode].
rightNode = subnode

ifTrue: [rightNode ~- rightNode rest. t subnode].
leftNode isNil

ifTrue: [tr ightNode remove: subnode ifAbsent: exceptionBIock].
t leftNode

remove: subnode
ifAbsent:

[rightNode isNil
ifTrue: [exceptionBIock value]
ifFalse:

[rightNode remove: subnode
ifAbsent: exceptionBlock]]

rest
leftNode isNil

ifTrue: [tr ightNode]
ifFalse: [leftNode end right: rightNode.

tleftNode]

enumerating

do: aBIock
leftNode isNil ifFalse: [leftNode do: aBIock].
aBIock value: self.
rightNode isNil ifFalse: [rightNode do: aBIock]

188
Three Examples That Use Collections

If Node is a leaf, it is denoted by nil nil

where
left node right node

then

root

left node ~ ~ / ~ ~ ~ ht node

Enumeration uses in-order traversal, first applying the left subnode as
the value of the block, then the root, and third the right subnode. The
block must be defined for a block argument that is a Node.

Next we provide a Tree as a k ind of SequenceableCollection whose ele-
ments are Nodes. A Tree has one instance variable which we name root;
root is ei ther nil or i t is an instance of Node. As a subclass of
SequenceableCollection, class Tree implements messages add:
anElement, remove: anElement ifAbsent: exceptionBIock, and do: aBIock.
Basically, the methods associated w i th each of these messages checks to
see whether the tree is empty (root isNil) and, if not, passes the appro-
pr iate message to root. The check on "empty" is inher i ted from Collec-
tion. The intention is that the programmer who uses a tree structure
accesses the elements of that structure only via a n instance of class
Tree.

class name Tree
superc]ass SequenceableCol lection
instance variable names root
instance methods

testing

isEmpty
1' root isNil

accessing

first
I save I
self emptyCheck.
save ~ root.

189
T r a v e r s i n g B i n a r y Trees

[save left isNil] whiteFalse: [save ~- save left].
tsave

last
self emptyCheck.
1' root end

size
self isEmpty

ifTrue: [1 0]
ifFalse: [troot size]

adding

add: aNode
tself addLast: aNode

addFirst: aNode
"I f the collection is empty, then the argument, aNode, is the new root;
otherwise, it is the left node of the current first n o d e . "
self isEmpty

ifTrue: [1'root ~ aNode]
ifFatse: [self first left: aNode].

taNode
addLast: aNode

"I f the collection is empty, then the argument, aNode, is the new root;
otherwise it is the last element of the current root."
self isEmpty

ifTrue: [root ~ aNode]
ifFalse: [self last right: aNode].

taNode

removing

remove: aNode i fAbsent: except ionBIock
"First check the root. If not found, move down the tree checking each

node."
self isEmpty ifTrue: [lexceptionBIock value].
root = aNode

ifTrue: [root ~ root rest. 1"aNode]
ifFalse: [1'root remove: aNode ifAbsent: exceptionBlock]

removeFi rs t
self emptyCheck.
1self remove: self first ifAbsent: []

removeLast
self emptyCheck.
1'self remove: self last ifAbsent: []

enumerating

do: aBIock
self isEmpty ifFalse: [root do: aBIock]

190
Three Examples Tha t Use Collections

Note tha t the removing messages do not remove the subtree beginning
with the node to be removed, only the node itself.

A Binary
Tree

Word
The definition of a Node, like tha t of a Link, is all s t ruc ture wi thout
content. We have left the content of each Node to be specified by a sub-
class. Suppose we wish to use a kind of Node to store words represented
as Strings. We call this class WordNode. An instance of WordNode is
created by sending WordNode the message for:, if no subnodes are speci-
fled, or for:left:right: if the two subnodes are specified. So a WordNode il-
lus t ra ted as

cat

I
is created by evaluat ing the expression

WordNode for: ' ca t '

A WordNode tha t looks like

I
dog

i

cat

I !
goat

!

is created by evaluat ing the expression

WordNode for: ' ca t '
left: (WordNode for: ' d o g ')
right: (WordNode for: ' g o a t ')

An implementa t ion for the class WordNode follows. Notice tha t equali ty
(=) is redefined to mean tha t the words in the Nodes are the same; this
means tha t the inher i ted removing messages will remove a subnode if
its word is the same as the word of the a rgument .

class name WordNode
superclass Node
instance variable names word
class methods

instance creation

for: aString
t self new word aString

191
Traversing Binary Trees

for: aStr ing left: INode right: rNode
I newNode I
newNode ~- super left INode right: rNode.
newNode word aString.
tnewNode

instance methods

accessing

word
tword

word: aStr ing
word ~- aString

comparing

= a W o r d N o d e
1(aWordNode isKindOf WordNode) and'. [word = aWordNode word]

hash
1' word hash

A sequence of expressions follows to i l lustrate the use of WordNode.
Note that no effort is made in the definition of WordNode to support in-
serting elements so tha t each word collates alphabetically when the
tree is traversed. An interested reader might add an insert: aWordNode
message to WordNode tha t maintains the alphabetic sort.

tree ~- Tree new.

tree add: (WordNode for: 'cat ')

tree addFirst: (WordNode for: "frog')

._• cat

tree addLast: (WordNode for: 'horse' left: (WordNode for: 'monkey ') right: nil)

cat I I "
frog 1 horse

1 1 I ' t l , I monkey
I

192
T h r e e E x a m p l e s T h a t U s e C o l l e c t i o n s

tree addFirst: (WordNode for: 'ape')

/ / / /

m m

L~~_i I cTt ! i "~r'e t

tree remove" (WordNode for: "horse')

, , ,

I ave t

[cat
frog] [[[]

tree remove: (WordNode for: 'frog')

!
ape

__2__

oft]
i ~ m°Tkey t

,,:
..l.j-" l' I III

.¢" .J ,I l
..-" . ¢ ' i l

..¢' l

=..="

...--"

,,m°J

. .°=,.'"
y.,.."

- 2

Protocol for Streams

Class Stream

P o s i t i o n a b l e S treams
Class ReadStream
Class WriteStream
Class ReadWriteStream

Streams of G e n e r a t e d E lements

S treams for Col lect ions Without Externa l Keys

Externa l S treams and File S treams

Object

Magnitude
Character
Date
Time

Number
Float
Fraction
Integer

Large N ega t ivel n teg er
LargePositivelnteger
Smalllnteger

LookupKey
Association

Link

Process

Collection

SequenceableCollection
LinkedList

Semaphore

Arra yedC ol iect ion
Array

Bitmap
DisplayBitmap

RunArray
String

Symbol
Text
ByteArray

Interval
OrderedCollection

SortedCollection
Bag
MappedCollection
Set

Dictionary
IdentityDictionary

UndefinedObject
Boolean

False
True

ProcessorScheduler
Delay
SharedQueue

Behavior
ClassDescription

Class
MetaClass

Point
Rectangle
BitBit

CharacterScanner

Pen

DisplayObject
DisplayMedium

Form
Cursor
DisplayScreen

InfiniteForm
OpaqueForm
Path

Arc
Circle

Curve
Line
LinearFit
Spline

195
Class Stream

The collection classes provide the basic data s t ructure for storing ob-
jects together as nonl inear and l inear groups. The protocol for these
classes makes it possible directly to access (store and retrieve) individu-
al elements. It also, through the enumera t ion messages, supports
noninterrupt ible accessing of all of the elements, in order. However, it
does not support intermingl ing the two kinds of accessing opera t ions- -
enumera t ing and storing. Nor does the collection protocol support
accessing individual elements, one at a time, unless an external position
reference is separately maintained.

Unless an easily computed external name for each element exists, in-
terrupt ible enumera t ion of individual elements can not be carried out
efficiently. It is possible, for example, sequential ly to read elements of
an OrderedCollection using a combination of first and after:, as long as
the elements of the collection are unique. An a l ternat ive approach in-
volves the collection itself remembering, in some way, which element
was last accessed. We call this the "position reference" in the discussion
tha t follows. The possibility of shared access to a sequence of elements,
however, means tha t it is necessary to main ta in a separate, external
memory of the last e lement accessed.

Class Stream represents the ability to main ta in a position reference
into a collection of objects. We use the phrase s t r eaming over a collec-
tion to mean accessing the elements of a collection in such a way tha t it
is possible to enumera te or store each element, one at a time, possibly
intermingl ing these operations. By creating several Streams over the
same collection, it is possible to main ta in multiple position references
into the same collection.

There are a number of ways to main ta in a position reference for
s t reaming over a collection. A common one is to use an integer as an
index. This approach can be used for any collection whose elements are
external ly named by an integer. All SequenceableCollections fall into
this category. As we shall describe later, such a Stream is represented
in the Small talk-80 system by the class PositionableStream. A second
way to main ta in a position reference is to use a seed for a generator of
objects. An example of this kind of Stream in the Small talk-80 system is
class Random which was already presented in Chapter 8. And a third
way is to main ta in a non-numerical position reference, such as a refer-
ence to a node in a sequence; this approach is i l lustrated in this chapter
by an example class tha t supports s t reaming over a linked list or a tree
structure.

Class Stream Class Stream, a subclass of class Object, is a superclass tha t specifies the
accessing protocol for s t reaming over collections. Included in this proto-
col are messages for reading (retrieving) and wri t ing (storing) into the

196
Protocol for S t r e a m s

collection, a l t h o u g h not all the subclasses of class S t ream can suppor t
both k inds of access ing opera t ions . The basic r e a d i n g message is next;
its response is the nex t e l e m e n t in the collect ion t h a t is r e f e renced by
the St ream. Given the abi l i ty to access the nex t e l emen t , m o r e g e n e r a l
r e a d i n g messages can be suppor ted . These a re next: anlnteger , which re-
sponds wi th a collect ion of an ln teger n u m b e r of e l emen t s ; nextMatchFor:
anObject , which reads the nex t e l e m e n t and a n s w e r s w h e t h e r it is equal
to the a r g u m e n t , anObject; and contents , which a n s w e r s a collect ion of

all of t he e l emen t s .

Stream instance protocol

accessing--reading
next

next: anlnteger

nextMatchFor: anObject

contents

Answer the next object accessible by the re-
ceiver.
Answer the next anlnteger number of objects
accessible by the receiver. Generally, the an-
swer will be a collection of the same class as
the one accessed by the receiver.
Access the next object and answer whether it
is equal to the argument, anObject.
Answer all of the objects in the collection
accessed by the receiver. Generally, the an-
swer will be a collection of the same class as
the one accessed by the receiver.

The basic wr i t i ng message is nextPut: anObject; this m e a n s to s tore the
a r g u m e n t , anObject , as the n e x t e l e m e n t accessible by the receiver . If
bo th r ead and wr i t e messages a re possible, a next m e s s a g e fol lowing a
nextPut: anElemen t does not r ead the e l e m e n t j u s t s tored, bu t r a t h e r the
one a f t e r it in the collection. W r i t i n g messages also inc lude nextPutAIl:
aCollection, which s tores all of t he e l e m e n t s in the a r g u m e n t into the
collect ion accessed by the receiver , and next: an ln teger put: anObject ,
which s tores the a r g u m e n t , anObject , as the nex t an ln teger n u m b e r of
e l emen t s .

Stream instance protocol

accessing--writing
nextPut: anObject

nextPutAIl: aCollection

next: anlnteger put: anObject

The r e a d i n g and wr i t i ng messages

Store the argument, anObject, as the next ele-
ment accessible by the receiver. Answer
anObject.
Store the elements in the argument,
aCollection, as the next elements accessible by
the receiver. Answer aCollection.
Store the argument, anObject, as the next
anlnteger number of elements accessible by
the receiver. Answer anObject.

each d e t e r m i n e if a nex t e l e m e n t can

197
Class Stream

be read or wr i t t en and, if not, an error is reported. The p r o g r a m m e r
migh t therefore wish to de t e rmine w h e t h e r accessing is still feasible;
this is accomplished by sending the Stream the message atEnd.

Stream instance protocol

testing
atEnd Answer whether the receiver cannot access

any more objects.

N o n i n t e r r u p t e d reading of e lements t h a t are applied as a r g u m e n t s to a
block can be done by sending the message do: aBIock, s imi lar to the
e n u m e r a t i n g message suppor ted by the collection classes.

Stream instance protocol

enumerating
do: aBIock Evaluate the argument, aBIock, for each of

the remaining elements that can be accessed
by the receiver.

The imp lemen ta t i on of this enumera t i on message depends on sending
the messages atEnd and next to the message receiver. We show this
method as an example of the use of these messages.

do: aBIock
[self atEnd] whileFalse: [aBIock value: self next]

Each kind of Stream mus t specify its ins tance creat ion messages. In
general , a Stream can not be created s imply by sending the message
new because the Stream mus t be informed of w h i c h collection it
accesses and wha t is its ini t ial position reference.

As a s imple example , let 's assume t h a t the collection accessed by a
Stream is an Array and t h a t the Stream is called accessor . The contents
of the Array are the Symbols

Bob Dave Earl Frank Harold Jim Kim Mike Peter Rick Sam Tom

and the position reference is such tha t Bob is the next accessible ele-
ment . Then

expression result

accessor next Bob
accessor next Dave
accessor false

nextMatchFor: # Bob

198
Protocol for Streams

accessor
nextMatchFor: ~Frank

accessor next
accessor nextPut: @James
accessor contents

accessor
nextPutAIl"

#(Karl Larry Paul)
accessor contents

accessor next: 2 put: .:#:John
accessor contents

true

accessor next
accessor atEnd true

Harold
James
(Bob Dave Earl Frank

Harold James Kim
Mike Peter Rick
Sam Tom)

(Karl Larry Paul)

(Bob Dave Earl Frank
Harold James Karl
Larry Paul Rick Sam
Tom)

John
(Bob Dave Earl Frank

Harold James Karl
Larry Paul John
John Tom)

Tom

P o s i t i o n a b l e
S t r e a m s

In the introduction to this chapter we indicated three possible
approaches tha t a Stream might use in order to mainta in a position ref-
erence. The first one we will present uses an integer index which is
incremented each time the Stream is accessed. The Stream accesses only
those kinds of collections whose elements have integers as external
keys; these include all of the subclasses of SequenceableCollection.

Class PositionableStream is a subclass of class Stream. I t provides ad-
dit ional protocol appropriate to Streams that can reposition their posi-
tion references, but, it is an abstract class because it does not provide
an implementat ion of the inheri ted messages next and nextPut: anObject.
The implementat ion of these messages is left to the subclasses of
PositionableStream--ReadStream, WriteStream, and ReadWriteStream.

A PositionableStream is created by sending the class one of two in-
stance creation messages, on" aCollection or on" aCollection from"
firstlndex to: lastlndex. The argument, aCollection, is the collection the
Stream accesses; in the second case, a copy of a subco]]ection of
aCollection is accessed, i.e., the one delimited by the two arguments
firstlndex and lastlndex.

PositionableStream class protocol

199
P o s i t i o n a b l e S t r e a m s

instance creation
on: aCollection Answer an instance of a kind of

PositionableStream that streams over the ar-
gument, aCollection.

on: aCollection from: firstindex to: last lndex
Answer an instance of a kind of
PositionableStream that streams over a copy of
a subcollection of the argument, aCollection,
from firstlndex to lastlndex.

PositionableStream s u p p o r t s a d d i t i o n a l p r o t o c o l fo r a c c e s s i n g a n d t e s t -

i n g t h e c o n t e n t s of t h e c o l l e c t i o n .

PositionableStream instance protocol

testing
isEmpty Answer true if the collection the receiver

accesses has no elements; otherwise, answer
false.

accessing
peek

peekFor: anObject

upTo: anObject

reverseContents

Answer the next element in the collection (as
in the message next), but do not change , the
position reference. Answer nil if the receiver is
at the end.

Determine the response to the message peek.
If it is the same as the argument, anObject,
then increment the position reference and an-
swer true. Otherwise answer false and do not
change the position reference.

Answer a collection of elements starting with
the next element accessed by the receiver, and
up to, not inclusive of, the next element that
is equal to anObject. If anObject is not in the
collection, answer the entire rest of the collec-
tion.

Answer a copy of the receiver's contents in re-
verse order.

S i n c e a P o s i t i o n a b l e S t r e a m is k n o w n to s t o r e a n e x p l i c i t p o s i t i o n r e f e r -

e n c e , p r o t o c o l for a c c e s s i n g t h a t r e f e r e n c e is s u p p o r t e d . I n p a r t i c u l a r ,

t h e r e f e r e n c e c a n be r e s e t to a c c e s s t h e b e g i n n i n g , t h e e n d , o r a n y o t h e r

p o s i t i o n of t h e c o l l e c t i o n .

PositionableStream instance protocol

positioning
position

position: anlnteger

Answer the receiver's current position refer-
ence for accessing the collection.

Set the receiver's current position reference
for accessing the collection to be the argu-
ment, anlnteger. If the argument is not within

200
P r o t o c o l fo r S t r e a m s

reset

setToEnd

skip: anlnteger

skipTo: anObject

the bounds of the receiver's collection, report
an error.

Set the receiver's position reference to the be-
ginning of the collection.

Set the receiver's position reference to the end
of the collection.

Set the receiver's position reference to be the
current position plus the argument, anlnteger,
possibly adjusting the result so as to remain
within the bounds of the collection.

Set the receiver's position reference to be past
the next occurrence of the argument, anObject,
in the collection. Answer whether such an oc-
currence existed.

Class ReadStream
C l a s s ReadStream is a c o n c r e t e s u b c l a s s of PositionableStream t h a t r e p -

r e s e n t s an accessor that can only read elements from its collection. We
can create an example simi lar to the previous one to demonstrate the
use of the addit ional protocol provided in class PositionableStream and
inheri ted by all ReadStreams. None of the nextPut:, next:put:, nor
nextPutAIl: messages can be successfully sent to a ReadStream.

accessor ~-
ReadStream on: # (Bob Dave Earl Frank Harold Jim Kim Mike

Peter Rick Sam Tom)

expression result

accessor next Bob
accessor true

nextMatchFor: # Dave
accessor peek Earl
accessor next Earl
accessor peekFor: #Frank true
accessor next Harold
accessor upTo: =#:Rick (Jim Kim Mike Peter)
accessor position 10
a c c e s s o r skip: 1 t he accessor i tself

accessor next Tom
accessor atEnd true
accessor reset the accessor itself
accessor skipTo: #Frank true
accessor next Harold

Class WriteStream
C l a s s WriteStream is a s u b c l a s s of PositionableStream r e p r e s e n t i n g

accessors for wr i t ing elements into a collection. None of the next, next:,
nor do: messages can be successfully sent to a WriteStream.

201
Positionable Streams

WriteStrearns are used throughout the Smalltalk-80 system as a part
of the methods for pr int ing or storing a string description of any object.
Each object in the system can respond to the messages printOn: aStream
and storeOn: aStream. The methods associated with these messages con-
sist of a sequence of messages to the argument , which is a kind of
Stream tha t allows writ ing elements into the collection it accesses.
These messages are nextPut:, where the a rgument is a Character, and
nextPutAil:, where the a rgument is a String or a Symbol. An example
will i l lustrate this idea.

Class Object pr int ing protocol, as described in Chapter 6, includes the
message printString. An implementat ion of this message is

printString
1 aStream t
aStream ~ WriteStream on: (String new: 16).
self printOn: aStream.
t aStream contents

If a collection is sent the message printString, then the answer is a String
tha t is a description of the instance. The method creates a WriteStream
tha t the collection can store into, sends the message printOn: to the col-
lection, and then responds with the contents of the resulting
WriteStream. The message storeString to any object is similarly
implemented in class Object, the difference being tha t the second ex-
pression consists of the message storeOn: aStream ra ther than printOn:
aStream.

The general way in which collections print a description of them-
selves is to print their class name followed by a left parenthesis,
followed by a description of each element separated by spaces, and ter-
minated by a right parenthesis. So if a Set has four e l e m e n t s - - t h e
Symbols one, two, three, and four - - then it prints on a Stream as

Set (one two three four)

An OrderedCollection with the same elements prints on a Stream as

OrderedCol lect ion (one two three four)

and so on.
Recall tha t the definition of printOn: and storeOn: given in Chapter 6

is tha t any suitable description can be provided for printOn:i but the de-
scription created by storeOn: must be a well-formed expression that,
when evaluated, re-constructs the object it purports to describe.

Here is an implementat ion in class Collect ion for printOn:.

202
P r o t o c o l for S t r e a m s

printOn: aStream
aStream nextPutAIl: self class name.
aStream space.
aStream nextPut: $(.
self do:

[:element I
element printOn: aStream.
aStream space].

aStream nextPut: $)

N o t i c e t h a t t h e m e s s a g e space is s e n t to t h e W r i t e S t r e a m (a S t r e a m) . I t ,

a n d a n u m b e r of o t h e r m e s s a g e s a r e p r o v i d e d in c l a s s W r i t e S t r e a m to

s u p p o r t c o n c i s e e x p r e s s i o n s for s t o r i n g d e l i m i t e r s i n t o s u c h S t r e a m s .

T h e y a r e

WriteStream instance protocol

character writing
cr

crTab

crTab: anlnteger

space

tab

T h u s to c o n s t r u c t t h e String

"name city

bob New York
joe Chicago

bill Rochester

Store the r e tu rn charac te r as the next ele-
ment of the receiver.

Store the return character and a single tab
character as the next two elements of the re-
ceiver.

Store the return character as the next ele-
ment of the receiver, followed by anlnteger
number of tab characters.

Store the space character as the next element
of the receiver.

Store the tab character as the next element of
the receiver.

f r o m t w o c o r r e s p o n d i n g Arrays,

names ~- ~ (bob joe bill)
cities ~- @ (' N e w York" 'Chicago" ' Rochester ')

e v a l u a t e t h e e x p r e s s i o n s

203
Posi t ionable S t r e a m s

aStream ~- WriteStream on: (String new: 16).
aStream nextPutAIl: ' n a m e ' .
aStream tab.
aStream nextPutAIl: ' c i t y ' .
aStream cr; cr.
names with: cities do:

[:name :city I
aStream nextPutAIl: name.
aStream tab.
aStream nextPutAIl: city.
aStream cr]

t h e n the des i red resu l t is ob ta ined by e v a l u a t i n g aS t ream contents .
Suppose a collection a l r e a d y exists and we wish to append f u r t h e r in-

fo rma t ion into it by using St ream protocol. Class WriteStream suppor ts
ins tance c rea t ion protocol t h a t accepts a collection and sets the posit ion
re fe rence for wr i t ing to the end.

WriteStream class protocol

instance creation
with: aCollection Answer an instance of WriteStream accessing

the argument, aCotlection, but positioned to
store the next element at the end of it.

with: aCollection from: firstlndex to: lastlndex
Answer an instance of WriteStream accessing
the subcollection of the argument, aCollection,
from locaton firstlndex to iastlndex, but posi-
tioned to store the next element at the end of
the subcollection.

Thus if a String re fe r red to as header a l r e a d y existed, con ta in ing

"name city

t hen the previous e x a m p l e String would be cons t ruc ted by

aStream ~ WriteStream with: header.
names with: cities do:

[:name :city I
aStream nextPutAIl: name.
aStream tab.
aStream nextPutAIl: city.
aStream cr].

aStream contents

204
Protocol for S t reams

Class
ReadWriteStream

Class ReadWriteStream is a subclass of WriteStream tha t represents an
accessor tha t can both read and write elements into its collection. It
supports all the protocol of both ReadStream and WriteStream, as given
above.

Streams of
Generated
Elements

Of the three ways to create a position reference for s t reaming over a
collection, the second way cited in the introduction to this chapter was
to specify a seed by which the next elements of the collection can be
generated. This kind of Stream only permits reading the elements, not
writing. The reference, however, can be repositioned by reset t ing the
seed.

Class Random, introduced in Chapter 8, is a subclass of Stream tha t
determines its elements based on an algori thm employing a number as
a seed. Random provides a concrete implementat ion for next and atEnd.
Because the size of the collection is infinite, it never ends; moreover,
Random can not respond to the message contents. It can respond to the
message do:, but the method will never end without the programmer ' s
purposeful intervention.

The following is an implementa t ion of class Random; the reader is
referred to Chapters 11 and 21 for examples making use of instances of
the class. The implementat ions for do: and nextMatchFor: anObject are
inheri ted from class Stream.

class name

superclass

instance variable names

class methods

instance creation

Random
Stream
seed

n e w

1self basicNew setSeed

instance methods

testing

a t E n d
tfalse

accessing

n e x t

1 temp I
"Lehmer ' s linear congruential method with modulus m = 2 raisedTo'

205
Streams for Collections Without External Keys

16, a = 27181 odd, and 5 = a \ x 8, c = 13849 odd, and c/m ap-
proximately 0.21132"

[seed ~- 13849 + (27181 * seed) bitAnd: 8r177777.
temp ,-- seed / 65536.0.
temp = 0] whileTrue.

ttemp

private

setSeed
"For pseudo-random seed, get a time from the system clock. It is a
large positive integer; just use the lower 16 bits."

seed ,- Time millisecondCIockValue bitAnd: 8r177777

Another possible example of a s t ream of generated elements are the
probability distributions tha t are presented in Chapter 21. The super-
class ProbabilityDistribution is implemented as a subclass of Stream. The
message next: anlnteger is inheri ted from Stream. Each kind of
ProbabilityDistribution determines whether it is "read-only" and, if so,
implements nextPut: as self shouldNotlmplement. Class SampleSpace,
another example in Chapter 21, maintains a collection of data items
and implements nextPut: anObject as adding to the collection.

Streams for
Collections
Without
External Keys

The third way to mainta in a position reference for s t reaming over a col-
lection cited in the introduction to this chapter was to mainta in a non-
numerical reference. This would be useful in cases where the elements
of the collection cannot be accessed by external keys or where such ac-
cess is not the most efficient means to retrieve an element.

St reaming over instances of class LinkedList provides an example in
which the elements can be accessed by indexes as the external keys, but
each such access requires a search down the chain of linked elements.
It is more efficient to mainta in a reference to a part icular element in
the collection (a kind of Link) and then to access the next element by re-
questing the current elements nextLink. Both reading and writing into
the LinkedList can be supported by such a Stream.

Suppose we create a subclass of Stream that we call LinkedListStream.
Each instance mainta ins a reference to a LinkedList and a position ref-
erence to an element in the collection. Since both reading and writing
are supported, the messages next, nextPut:, atEnd, and contents must be
implemented. (Note tha t these ~ four messages are defined in class
Stream as self subclassResponsibi l i ty.) A new ins tance of

L inkedListStream is created by sending i t the message on: aLinkedList.

206
P r o t o c o l for S t r e a m s

class name

superclass

instance variable names

class methods

LinkedListStream

Stream
collection
currentNode

instance creation

on: aL inkedL is t
tself basicNew setOn' aLinkedList

instance methods

testing

atEnd
1̀ currentNode isNil

accessing

next
t saveCurrentNodel
saveCurrentNode ~ currentNode.
self atEnd

ifFalse: [currentNode ~- currentNode nextLink].

lsaveCurrentNode
nextPut: aLink

I index previousLink I
self atEnd ifTrue: [1'collection addLast: aLink].
index ~- collection indexOf: currentNode.

index = 1
ifTrue: [collection addFirst: aLink]
ifFalse: [previousLink ,-- collection at: index- 1.

previousLink nextLink: aLink].
aLink nextLink: currentNode nextLink.
currentNode ,- aLink nextLink.

taLink

private

setOn: aL inkedL is t
collection ~- aLinkedList.
currentNode ~- aLinkedList first

N o w s u p p o s e in o r d e r to d e m o n s t r a t e t h e use of t h i s n e w k i n d of

S t r e a m we m a k e up a kinkedList of nodes t h a t a r e i n s t a n c e s of c lass

WordLink; c lass Wordkink is a subc l a s s of Link t h a t s t o r e s a String or a

Symbol .

207
S t r e a m s for Collections W i t h o u t E x t e r n a l Keys

class name WordLink
superclass Link
instance variable names word
class methods

instance creation

for: aString
1'self new word aString

instance methods

accessing

word
tword

word: aString
word ~ aString

comparing

= aWordLink
1'word = aWordLink word

printing

printOn: aSt ream
aStream nextPutAIl' ' a WordLink for ' .
aStream nextPutAIl word

F r o m the above we can see t h a t an in s t ance of WordLink for the word
@one is c r ea t ed by

WordLink for: .#one

Its p r in t s t r ing is

' a WordLink for one '

We can then create a LinkedList of WordLinks and then a
LinkedListStream tha t accesses this LinkedList.

list ~ LinkedList new.
list add: (WordLink for: #one) .
list add: (WordLink for: # two) .
list add: (WordLink for: # three) .
list add: (WordLink for: # four) .
list add: (WordLink for: #f ive) .
accessor ~- LinkedListStream on: list

T h e n an e x a m p l e sequence of messages to a c c e s s o r is

208
Protocol for St reams

expression result

accessor next

accessor next
accessor nextMatchFor:

(WordLink for: @three)

accessor nextPut:
(WordLink for: #insert)

accessor contents

accessor next
accessor atEnd

a WordLink for one
a WordLink for two

true

a WordLink for insert

LinkedList
(a WordLink for one
a WordLink for two
a WordLink for three
a WordLink for insert
a WordLink for five)

a WordLink for five
true

Similarly, t ravers ing the nodes of a tree s tructure, such as tha t of class
Tree given in Chapter 11, can be done b y a kind of Stream tha t main-
tains a reference to a cur ren t node and then accesses the next e lement
by accessing the cur rent node's left tree, root, or r ight tree. This kind of
Stream is slightly more complicated to implement than tha t for a
kinkedkist because it is necessary to re ta in knowledge of whether the
left or r ight tree has been t raversed and back references to the father of
t h e cur ren t node. The order of t raversal of the tree s t ruc ture can be
implemented in the Stream, ignoring the method by which subtrees
were added to the structure. Thus, a l though we used in-order t raversal
in the implementat ions of class Tree and class Node, we can s t ream
over a Tree with postorder t raversal by implement ing the messages
next and nextPut: appropriately.

Externa l
S treams and
File S treams

The Streams we have examined so far make the assumption tha t the el-
ements of the collection can be any objects, independent of representa-
tion. For communicat ing with inpu t /ou tpu t devices, such as a disk,
however, this assumption is not valid. In these cases, the elements are
stored as binary, byte-sized elements tha t may prefer to be accessed as
numbers, strings, words (two bytes), or bytes. Thus we have a need to
support a mixture of nonhomogeneous accessing messages for reading
and writ ing these different-sized "chunks" of information.

Class ExternalStream is a subclass of class ReadWri teStream. I ts pur -

pose is to add the nonhomogeneous accessing protocol. This includes
protocol for positioning as well as accessing.

ExternalStream instance protocol

209
E x t e r n a l S t r e a m s a n d F i l e S t r e a m s

nonhomogeneous accessing
nextNumber: n

nextNumber: n put: v

nextString

nextStringPut: aString

nextWord

nextWordPut: anlnteger

nonhomogeneous positioning
padTo: bsize

Answer the next n bytes of the collection
accessed by the receiver as a positive Small-
Integer or LargePositivelnteger.
Store the argument, v, which is a positive
Smaillnteger or LargePositivelnteger, as the
next n bytes of the collection accessed by the
receiver. If necessary, pad with zeros.

Answer a String made up of the next elements
of the collection accessed by the receiver.

Store the argument, aString, in the collection
accessed by the receiver.

Answer the next two bytes from the collecton
accessed by the receiver as an Integer.

Store the argument, anlnteger, as the next two
bytes of the collection accessed by the receiver.

Skip to the next boundary of bsize characters,
and answer how many characters were
skipped.

padTo: bsize put: aCharacter Skip--wr i t ing the argument, aCharacter, into
the collection accessed by the receiver in order
to pad the collection--to the next boundary of
bsize characters and answer how many char-
acters were written (padded).

padToNextWord Make the position reference even (on word
boundary), answering the padding character,
if any.

padToNextWordPut: aCharacter Make the position reference even (on word
boundary), writing the padding character,
aCharacter, if necessary.

skipWords: nWords Position after nWords number of words.

wordPosit ion Answer the current position in words.

wordPosition: wp Set the current position in words to be the ar-
gument, wp.

Class FileStream is a subclass of ExternaiStream. A l l accesses to external
files are done using an instance of FileStream. A FileStream acts as
though i t were accessing a large sequence of bytes or characters; the el-
ements of the sequence are assumed to be Integers or Characters. The
protocol for a FileStream is essentially that of class ExternalStream and
its superclasses. In addition, protocol is provided to set and to test the
s ta tus of the sequence the FileStream is s t reaming over.

Classes ExternalStream and FileStream are provided in the
Small ta lk-80 system as the f ramework in which a file system can be
created. Addit ional protocol in class FileStrearn assumes tha t a file sys-
tem is based on a f ramework consisting of a directory or dict ionary of
files, where a file is a sequence of file pages. The Small ta lk-80 system
includes classes FileDirectory, File, and FilePage to represent these struc-

210
Protocol for S t r eams

tu ra l par ts of a file system. A FilePage is a record of da ta t ha t is
uniquely identified wi th in its File by a page number . A File is u n i q u e l y

identified both by an a lphanumer i c n a m e and a serial number ; it main-
ta ins a reference to the FileDirectory which contains the File. And the
FileDirectory is itself un ique ly identified by the device or reserver" to
which it refers. User p rograms typical ly do not access a File or its
FilePages directly; r a t h e r they access it as a sequence of charac te r s or
bytes th rough a FileStream. Thus the p r o g r a m m e r can create a
FileStream as an accessor to a file using an expression of the form

Disk file: "name.smalltalk'

where Disk is an ins tance of a FileDirectory. The FileStream can then be
sent sequences of reading and wr i t ing messages as specified in the pro-
tocol of this chapter .

.=....'"ei,o..-,''"
,.o ,.-'=

J "

,2m" gem. .°n.

o-."

o=e o
..=."

o- j .
. . e

/ 3

Implementation of the
Basic Collection Protocol

Class Collection

Subc las se s of Collection
Class Bag
Class Set
Class Dictionary
SequenceableCollections
Subclasses of SequenceableCollection
Class MappedCollection

212
Implementa t ion of the Basic Collection Protocol

The protocol for the classes in the Collection h ierarchy was presented in
Chapters 9 and 10. This chapter presents the complete implementat ion
of class Collection and the implementat ion of the basic protocol for in-
stance creation, accessing, testing, adding, removing, and enumera t ing
for each subclass of Collection. These implementat ions make effective
use of a f ramework in class Collection tha t is refined in its subclasses.
Messages in Collection are implemented in a very general way or as self
subclassResponsibility. Messages are implemented as

self subclassResponsibility

if the method depends on the representat ion of the instances. Each sub-
class must override such messages to fulfill any "subclass responsibili-
ties." Subclasses may override other messages, for efficiency purposes,
with a new method tha t takes advantage of the representat ion. A sub-
class may implement some messages with

self shouldNotlmplement

which results in a report tha t the message should not be sent to in-
stances of the class. For example, SequenceableCollections cannot re-
spond to remove:ifAbsent:; therefore the method is implemented as self
shouldNotlmplement.

Class Collection E] Collection instance creation protocol In addition to the messages
new and new:, an instance of a Collection can be created by sending any
one of four messages made up of one, two, three, or four occurrences of
the keyword with:. The messages new and new: are not re implemented
in Collection; t h e y produce an instance tha t is an empty collection. Each
of the other four instance creation methods is specified in Collection in
a similar way. Firs t an instance is created (with the expression self new)
and then the arguments , in order, are added to the instance. The new
instance is re turned as the result. The instance is created using self
new, r a the r than super new or self basicNew, because a subclass of Col-
lection might re implement the message new. Any subclass of Collection
tha t represents fixed-size objects with indexed instance variables must
re implement the following instance creation messages since such a sub-
class cannot provide an implementat ion for new.

213
Class Col lect ion

class name Collection
superclass Object
class methods

instance creation

with: anObje©t
I newCollection I
newCollection ~ self new.
newCollection add: anObject.
t newColtection

with: firstObje©t with: secondObject
I newCollection I
newCollection ,- self new.
newCollection add: firstObject.
newCollection add: secondObject.
t newCollection

with: firstObject with: secondObject with: thirdObject
I newCollection I
newCollection ~ self new.
newCollection add: firstObject.
newCollection add: secondObject.
newCollection add: thirdObject.
tnewCollection

with: firstObject with: secondObject with: thirdObject
with: fourthObject
I newColtection I
newCollection ~ self new.
newCollection add: firstObject.
newCollection add: secondObject.
newColtection add: thirdObject.
newCollection add: fourthObject.
tnewCollection

The implementation of each of the instance creation messages depends
on the ability of the newly-created instance to respond to the message
add:. Class Collection cannot provide implementations of the following
messages because they depend on the representation used by a subclass:

add: anOb jec t
remove: anOb jec t i fAbsent: aBIock
do: aBIock

All other messages in the basic collection protocol are implemented in
terms of these three messages. Each subclass must implement the three
basic messages; each can then reimplement any others in order to im-
prove its performance.

214
Implementa t ion of the Basic Collection Protocol

El Collection adding protocol The protocol for adding elements to a
collection is implemented in class Collection as follows.

adding

add: anObject
self subclassResponsibility

addAIl: aCollection
aOoltection do: [:each I self add: each].
taCollection

Notice that the implementat ion of addAIl: depends on both do: and add:.
The order of adding elements from the argument, aCollection, depends
on both the order in which the collection enumerates its elements (do:)
and the m a n n e r in which the elements are included into this collection
(add:).

El Collection removing protocol The messages remove: and removeAIl:
are implemented in terms of the basic message remove:ifAbsent:, which
must be provided in a subclass. These methods report an error if the el-
ement to be removed is not in the collection. The method
remove:ifAbsent: can be used to specify different exception behavior.

removing

remove: anObject ifAbsent: excepUonBIock
self subclassResponsibility

remove: anObject
self remove: anObject ifAbsent: [self errorNotFound]

removeAIh aCollection
aCollection do: [:each I self remove: each].
taColleotion

private

errorNotFound
self error: 'Object is not in the collection

As usual, the category private refers to messages introduced to support
the implementat ions of other messages; it is not to be used by other ob-
jects. Most error messages tha t are used more than once will be speci-
f ied as private messages in order to create the l i teral message str ing
once only.

[~] Collection testing protocol All the messages in the protocol for test-
ing the status of a collection can be implemented in Collection.

215
Class Co l lec t ion

testing

isEmpty
1' self size = 0

includes: anObject
self do: [:each I anObject = each ifTrue: [1'true]].
1`false

occurrencesOf: anObject
I tally I
tally ~- O.
self do: [:each I anObject = each ifTrue: [tally ~ tally + 1]].
t tal ly

The implementat ions of includes: and occurrencesOf: depend on the
subclass's implementat ion of the basic enumera t ing message do:. The
block a rgument of do: in the method for includes: terminates as soon as
an element equal to the a rgument is found. If no such element is found,
the last expression (tfalse) is evaluated. The response to isEmpty and in-
cludes: are Boolean objects, true or false. The message size is inherited
from class Object, but is re implemented in Collection because size, as
defined in Object, is only nonzero for variable-length objects.

accessing

size
I tally I
tally ~ O.
self do: [:each I tally ~ tally + 1].
t tal ly

This is a low-performance approach to computing the size of a collection
which, as we shall see, is re implemented in most of the subclasses.

[~] Collection enumerating protocol An implementat ion of all of the
messages tha t enumera te the elements of collections, except do:, can be
provided in class Collection.

enumerating

do: aBIock
self subclassResponsibi l i ty

collect: aBIock
I newCol lect ion I
newCollect ion ~ self species new.
self do: [:each I newCotlect ion add: (aBIock value: each)].
l 'newCollect ion

detect: aBIock
1self detect: aBIock ifNone: [self errorNotFound]

216
I m p l e m e n t a t i o n of t h e B a s i c C o l l e c t i o n P r o t o c o l

detect: aBIock ifNone: exceptionBIock
self do: [:each I (aBIock value: each)ifTrue: [Teach]].
texceptionBlock value

inject: thisValue into: binaryBIock
I nextValue I
nextValue ~- thisValue.
self do: [:each I nextValue ~ binaryBIock value: nextValue value: each].
TnextValue

reject: aBIock
tself select: [:element I (aBIock value: element) = = false]

select: aBIock
I newCollection I
newCollection ~ self species new.
self do: [:each I (aBIock value: each) ifTrue: [newCollection add: each]].
tnewCollection

In the methods associated with collect: and select:, the message species
is sent to self. This message was not shown in Chapter 9 because it is
not par t of the external protocol of collections. It is categorized as pri-
vate to indicate the intention for internal use only. The message is
implemented in class Object as re turn ing the class of the receiver.

private

species
1 self class

Thus the expression

self species new

means ~'create a new instance of the same class as tha t of the receiver."
For some collections, it may not be appropriate to create a ~'similar"

instance in this way; a new collection tha t is like it may not be an in-
stance of its class. Such a collection will override the message species.
In particular, an Interval responds tha t its species is Array (because it is
not possible to modify an Interval); the species of a MappedCol lec t ion is
the species of the collection it maps (since the MappedCollection is sim-
ply acting as an accessor for tha t collection).

If a collection cannot create an instance by simply sending the class
the message new, it must re implement messages collect: and select:.
Since reject: is implemented in terms of select:, it need not be
reimplemented.

The method for inject:into: evaluates the block a rgument once for
each element in the receiver. The block is also provided with its own
value from each previous evaluation; the initial value is provided as the
a rgument of inject:. The final value of the block is re turned as the value
of the inject:into: message.

2 1 7
Class Col lect ion

The reason for the introduction of two messages, detect: and
detect:ifNone:, is s imilar to the reason for the two removing messages,
remove: and remove:ifAbsent:. The general case (detect:) reports an er-
ror if no e lement meet ing the detection criterion is found; the program-
mer can avoid this er ror report by specifying an a l ternat ive exception
(detect: ifN one:).

E] Collection converting protocol The protocol for converting from any
collection into a Bag, Set, OrderedCollection, or SortedCollection is
implemented in a s t ra ightforward w a y - - c r e a t e a new instance of the
target collection, then add to it each element of the receiver. In most
cases, the new instance is the same size as the original collection. In the
case of OrderedCollections, e lements are added at the end of the se-
quence (addLast:), regardless of the order of enumera t ing from the
source.

converting

asBag
I aBag l
aBag ~ Bag new.
self do: [:each I aBag add: each].
l'aBag

asOrderedCollection
I anOrderedCollection I
anOrderedColtection ~ OrderedCollection new: self size.
self do : [:each t anOrderedCollection addLast: each].
1' anOrderedCollection

asset
I aSet l
aSet ~- Set new: self size.
self do: [:each I aSet add: each].
taSet

asSortedCollection
i aSortedCollection I
aSortedCollection ~ SortedCollection new: self size.

aSortedCollection addAIl: self.
t aSortedCollection

asSortedCollection: aBIock
I aSortedCollection I
aSortedCollection ~- SortedCollection new: self size.
aSortedCollection sortBIock: aBIock.
aSortedCollection addAIl: self.
l 'aSortedCollection

218
Implementa t ion of the Basic Collection Protocol

Collection printing protocol The implementat ions of the printOn:
and storeOn: messages in Object are overridden in Collection. Collec-
tions pr int in the form

className (element element element)

Collections store themselves as an expression from which an equal col-
lection can be constructed. This takes the form of

o r

o r

((className new))

((className new) add: element; yourself)

((className new) add: element; add: element; yourself)

with the appropria te number of cascaded messages for adding each ele-
ment, depending on whether the collection has no, one, or more ele-
ments. The message yourself r e tu rns the receiver of the message. It is
used in cascaded messages to guaran tee tha t the result of the cascaded
message is the receiver. All objects respond to the message yourself; it is
defined in class Object.

The general methods for pr int ing and storing are

printing

printOn: aStream
I tooMany I
tooMany ~- aStream position + self maxPrint.
aStream nextPutAIl: self class name, " (' .
self do:

[:element I
aStream position > tooMany

ifTrue: [aStream nextPutAll: ' ...etc...) ' . t self].
element printOn: aStream.
aStream space].

aStream nextPut: $)
storeOn: aStream

I noneYet I
aStream nextPutAtl: "((' .
aStream nextPutAll: self class name.
aStream nextPutAIl: 'new)'.
noneYet ~- true.
self do:

[:each I
noneYet

ifTrue: [noneYet ~ false]

219
Subclasses of Collection

ifFatse: [aStream nextPut: $;].
aStream nextPutAIt "add".
aStream store: each].

noneYet ifFalse: [aStream nextPutAIl' " yourself '].
aStream nextPut' $)

private

maxPr in t
1'5000

These methods make use of instances of a kind of Stream tha t acts as
an accessor for a String. The method printOn: sets a threshold for the
length of the String to be created; a long collection may print as

className (element element ...etc...)

The threshold is determined as the response to the message maxPrint
which is set at 5000 characters. Subclasses can override the private
message maxPrint in order to modify the threshold.

Note tha t this technique of using a method ra ther than a variable is
a way of providing a parameter in a method. A variable cannot be used
as the parameter because the variable, to be accessible to all instances,
would have to be a class variable. Subclasses cannot specify a class vari-
able whose name is the same as a class variable in one of its
superclasses; thus if a subclass wants to change the value of the vari-
able, it will do so for instances of its superclass as well. This is not the
desired effect.

The print ing format is modified in several subclasses. Array does not
print its class name; Intervals pr int using the shor thand notation of the
messages to: and to:by: to a Number. A Symbol prints its characters
(without the ~ prefix of the literal form of a Symbol); a String prints its
characters delimited by single quotes.

The storeOn: message is re implemented in ArrayedCollection and sev-
eral of its subclasses because instances are created using new: aninteger
ra ther than simply new. Arrays, Strings, and Symbols store in their lit-
eral forms. Intervals use the shor thand notation of messages to: and
to:by:. MappedCollections store using the converting message mappedBy:
tha t is sent to the collection tha t is indirectly accessed.

S u b c l a s s e s of
Collection

For each subclass of Collection, we show the methods tha t implement
the three required messages (add:, remove:ifAbsent:, and do:) and the
messages in the adding, removing, testing, and enumera t ing protocols

220
I m p l e m e n t a t i o n of t h e B a s i c C o l l e c t i o n P r o t o c o l

Class Bag

tha t are reimplemented. New collection protocol for a par t icular sub-
class as specified in Chapter 9 will generally not be presented in this
chapter.

Bag represents an unordered collection in which an element can appear
more than once. Since the elements of Bags are unordered, the mes-
sages at: and at:put: are re implemented to report an error.

Instances of Bag have an instance of Dictionary as a single instance
variable named contents. Each unique element of a Bag is the key of an
Association in contents; the value of an Association is an Integer repre-
senting the number of times the element appears in the Bag. Removing
an element decrements the tally; when the tally falls below 1, the Asso-
ciation is removed from contents. Bag implements new, size, includes:,
and occurrencesOf:. A new instance must initialize its instance variable
to be a Dictionary. The re implementat ion of size is made efficient by
summing all the values of elements of contents. The arguments of the
testing messages are used as keys of contents. In implement ing in-
cludes:, the responsibility for checking is passed to contents. In order to
answer the query occurrencesOf: anObject, the method checks tha t
anObject is included as a key in contents and then looks up the value
(the tally) associated with it.

class name Bag
superclass Collection
instance variable names contents
class methods

instance creation

n e w

1'super new setDictionary

instance methods

accessing

at: index
self errorNotKeyed

at." index put." anObject
self errorNotKeyed

size
I tally I ,
tally ~- 0
contents do : [:each I tally ~- tally -I- each].
ttally

testing

includes: anObjec t
1'contents includesKey: anObject

221
Subclasses of Collection

occurrencesOf: anObject
(self includes' anObject)

ifTrue: [tcontents at: anObject]
ifFalse: [tO]

private

setDictionary
contents ~- Dictionary new

(in Collection)

private

errorNotKeyed
self error:

self class name, "s do not respond to keyed accessing messages"

To add an element is to add it once, but Bags can add multiple times.
The implementation of add: calls on add:withOccurrences:. Removing an
element checks the number of occurrences, decrementing the tally or
removing the element as a key in contents if the tally is less than 1.

adding

add: newObject
1self add: newObject withOccurrences: 1

add: newObject withOccurrences." anlnteger
contents at: newObject

put: antnteger + (self occurrencesOf: newObject).
l"newObject

removing

remove: oldObject ifAbsent: exceptionBIock
I count I
count ~ self occurrencesOf: oldObject.
count = 0 ifTrue: [l exception Block value].
count = 1

ifTrue: [contents removeKey: oldObject]
ifFatse: [contents at: oldObject put: count -1]] .

toldObject

Enumerating the elements of a Bag means selecting each element of
the Dictionary and evaluating a block with the key of that element (i.e.,
the actual Bag element is the key of t h e Dictionary). This has to be done
multiple times, once for each occurrence of the element, as indicated by
the value associated with the key.

222
Implementa t ion of the Basic Collection Protocol

enumerating

do: aBIock
contents associationsDo:

[:assoc I assoc value timesRepeat: [aBIock value: assoc key]]

Class Set

The elements of Sets are unordered like those of Bags, so the messages
at: and at:put: produce an error report. A Set may not contain an ele-
ment more than once, therefore, every insertion of an e lement must, in
theory, check the ent ire collection. To avoid searching all elements, a
Set determines where in its indexed instance variables to s tar t a search
for a par t icular e lement by using a hashing technique.

Each Set has an instance variable named tally. Mainta in ing this tal ly
of the number of elements avoids the inefficiencies involved in deter-
mining the size of the Set by counting every non-nil element. Thus new,
new:, and size are reimplemented; the first two in order to initialize the
variable tally and the last simply to respond with the value of tally.

class name
superclass
instance variable names

Set
Collection
ta y

class methods

instance creation

n e w

mself new: 2
new: anlnteger

t(super new: anlnteger) setTally

instance methods

accessing

at: index
self errorNotKeyed

at: index put: anObject
self errorNotKeyed

size
ttally

private

setTally
tally ~ 0

In the method for new:, super is used in order to avoid recursion. A pri-
vate message of Set, findElementOrNil:, hashes the a rgument to produce
the index at which to begin the probe of the Set. The probe proceeds
until the argument , anObject, is found, or until nil is encountered. The

223
Subclasses of Collect ion

response is the index of the last position checked. Then the test ing mes-
sages are implemented as

testing

includes: anObject
t(self basicAt: (self findElementOrNil: anObject)) ,~,,-~ nil

occurrencesOf: anObject
(self includes: anObject)

ifTrue: [T 1]
ifFalse: [t0]

The number of occurrences of any e lement in the Set is never more
than 1. The three basic messages must make use of basicAt: and
basicAt:put: because Sets report an error if at: or at:put: is used.

adding

add: newObject
I index I
newObject isNil ifTrue: [TnewObject].
index ~- self findElement©rNil: newObject.
(self basicAt: index)isNil

ifTrue: [self basicAt: index put: newObject, tally ~ tally + 1].
tnewObject

removing

remove: oldObject ifAbsent: aBIock
I index I
index ~ self find: oldObject ifAbsent: [taBIock value].
self basicAt: index put: nil.
tally ~- t a l l y - 1.
self fixCotlisionsFrom: index.
totdObject

enumerating

do: aBIock
1 to: self basicSize do:

[:index I
(self basicAt: index)isNil

ifFalse: [aBIock value: (self basicAt: index)]]

The p r i va te message f ind:i fAbsent: cal ls on f indElementOrNi l : ; i f the ele-
ment , o ldObject , is not found, the a rgument aBIock is evaluated. In or-
der to guaran tee tha t the hashing/probing technique works properly,
remain ing elements might need to be compacted whenever one is re-
moved (fixCollisionsFrom:). These methods are good examples of when
the accessing messages basicAt:, basicAt:put:, and basicSize must
be used.

224
Implementa t ion of the Basic Collection Protocol

C l a s s Dic t ionary

A Dictionary is a col lect ion of Associat ions. Class Dictionary uses a
hashing technique to locate its e lements which is like tha t of its super-
class, Set, but hashes on the keys in the Associations instead of on the
Associations themselves. Most of the accessing messages for Dictionary
are re implemented to t rea t the values of the Associations as the ele-
ments, not the Associations themselves.

Dictionary implements at: and at:put:, but redefines the a rgumen t as-
sociated with the keyword at: to be any key in the Dictionary (not neces-
sari ly an Integer index). The a rgumen t of includes: is the value of one of
the Associations in the Dictionary, not one of the Associations them-
selves. The message do: enumera tes the values, not the Associations.
The a rgument to remove: is also a value, but this is an inappropria te
way to delete from a Dictionary because elements are referenced with
keys. Ei ther removeAssociation: or removeKey: should be used. Thus the
messages remove: and rernove:ifAbsent: should not be implemented for
Dictionary.

Much of the work in the accessing protocol is done in private mes-
sages, e i ther those inheri ted from Set or similar ones for finding a key
(findKeyOrNil:).

class name Dictionary
superclass Set
instance methods

accessing

at: key
rsetf at: key ifAbsent: [self errorKeyNotFound]

at: key put: anObject
I index element I ~
index ~- self findKeyOrNil: key.
element ~ self basicAt: index.
element isNil

ifTrue:
[self basicAt: index put: (Association key: key value: anObject).
tally ~ tally + 1]
" element is an Association. The key already exists, change its

value."
ifFalse:

[element value: anObject].
tanObject

at: key ifAbsent: aBIock
I index I
index ,- self findKey: key ifAbsent: [taBIock value].
t(self basicAt: index) value

225
Subclasses of Col lect ion

testing

includes: anObject
"Revert to the method used in Collection."
self do: [:each t anObject = each ifTrue: [ttrue]].
tfalse

adding

add: anAssociation
I index element I
index ~- self findKeyOrNil: anAssociation key.
element ~ self basicAt: index.
element isNil

ifTrue: [self basicAt: index put: anAssociation.
tally ~- tally + 1]

ifFalse: [element value: anAssociation value].
1' anAssociation

removing

remove: anObject ifAbsent: aBIock
self shouldNotlmplement

enumerating

do." aBIock
self associationsDo: [:assoc I aBlock value: assoc value]

private

errorKeyNotFound
self error: "key not found'

Notice the similari ty between at:put: and add:. The difference is in the
action taken if the element is not f o u n d - - i n the case of at:put:, a new
Association is created and stored in the Dictionary; in the case of add:,
the argument , anAssociation, is stored so tha t any shared reference to
the Association is preserved.

The message collect: is re implemented in order to avoid the problems
of collecting possibly identical values into a Set which would result in
throwing away duplications. The message select: is re implemented in
order to select Assoc ia t ions by applying their values as the arguments
to the block.

enumerating

collect: aBlock
I newColiection t
newCollection ~ Bag new.
self do: [:each I newCollection add: (aBIock value: each)].

tt newCollection

226
Implementa t ion of the Basic Collection Protocol

select: aBIock
I newCollection I
newCollection ~- self species new.
self associationsDo:

[each I
(aBIock value each value)ifTrue' [newCollection add: each]].

tnewCollection

IdentityDictionary overrides at:, at:put:, and add: in order to implement
checking for identical keys instead of equal keys. An IdentityDictionary is
implemented as two parallel ordered collections of keys and values,
ra ther than as a single collection of Associations. Thus do: must also be
reimplemented. The implementat ion is not shown.

Sequenceable-
Col lect ions

SequenceableCollection is the superclass for a l l collections whose ele-
ments are ordered. Of the messages we are examining, remove:ifAbsent:
is specified as being inappropriate for SequenceableCollections in gen-

era l , since the order of elements might have been external ly specified
and it is assumed tha t they should be removed in order. Because
SequenceableCollections are ordered, elements are accessed using at:;
the implementat ion is provided in class Object. The message do: is
implemented by accessing each element at index 1 through the size of
the collection. SequenceableCollections are created using the message
new:. Therefore, collect: and select: must be re implemented to create
the new collection using new: ra ther than new. The methods for collect:
and select: shown next use a WriteStrearn in order to access the new col-
lection, and the message at: in order to access elements of the original
collection.

class name
superclass
instance methods

SequenceableColfection
Collection

accessing

size
self subclassResponsibility

removing

remove: o ldObject i fAbsent: anExcept ionBiock
self shouldNotlmplement

enumerating

do: aBIock
I index length I
index ~ O.
length ~- self size.

Subclasses of
S e q u e n c e a b l e -
C o l l e c t i o n

227
Subclasses of Col lect ion

[(index ~ index + 1) < = length]
whileTrue: [aBIock value: (self at: index)]

collect: aBIock
I aStream index length I
aStream ~- WriteStream on: (self species new: self size).
index ~- O.
length ~- self size.
[(index ~-index + 1) < = length]

whileTrue: [aStream nextPut: (aBIock value: (self at: index))].
1 aStream contents

select: aBlock
I aStream index length I
aStream ~ WriteStream on: (self species new: self size).
index ~ O.
length ~ self size.
[(index ~ index + t) < = length]

whileTrue:
[(aBIock value: (self at: index))

ifTrue: [aStream nextPut: (self at: index)]].
t aStream contents

Notice that size is declared as a subclass responsibility in
SequenceableCol lec t ion. The m e t h o d i n h e r i t e d f r o m the superclass Col-
lection uses do: to e n u m e r a t e and t he reby coun t each e lement . B u t the
m e t h o d for do: as speci f ied in Sequenceab leCol lec t ion de te rm ines the
limit for indexing by requesting the size of the collection. Therefore,
size must be re implemented in order not to be stated in terms of do:.

[~] Class kinkedList Elements of kinkedList are instances of Link or of
one of its subclasses. Each kinkedList has two instance variables, a ref-
erence to the first and to the last elements. Adding an element is as-
sumed to be interpreted as adding to the end (addkast:); the method for
addLast: is to make the element the next link of the current last link.
Removing an element means tha t the element 's preceding link must
reference the element 's succeeding link (or nil). If the element to be re-
moved is the first one, then its succeeding link becomes the first one.

class name
superclass
instance variable names

instance methods

accessing

at: index
I count ebement size I
count ~ 1.

LinkedList
SequenceableCollection
firstLink
lastLink

228
I m p l e m e n t a t i o n of t h e Bas ic C o l l e c t i o n P r o t o c o l

element ~ self first.

size ~ self size.

[count > size] whileFalse:

[count = index

ifTrue: [1'element]

ifFalse: [count ~ count + 1.

element ~- element nextLink]].

1"self errorSubscriptBounds: index

at: index put: e lement
self error: ' D o not store into a LinkedList using at:put: '

adding

add: aLink
t self addLast: aLink

addLast: aLink
self isEmpty

ifTrue: [firstLink ~- aLink]

ifFalse: [lastLink nextLink: aLink].
lastLink ~- aLink.

taLink

removing

remove: aLink i fAbsent: aBlock
I tempLink I
aLink = = firstLink

ifTrue:

[firstLink ~ aLink nextLink.

aLink = -- lastLink ifTrue: [lastLink ~- nil]]
ifFalse:

[tempLink ~ firstLink.

[tempLink isNil ifTrue: [taB lock value].

tempLink nextLink - - = aLink]

whileFalse: [tempLink ~ tempLink nextLink].
tempLink nextLink: aL-ink nextLink.

aLink = = lastLink ifTrue: [lastLink ~- tempLink]].
aLink nextLink: nil.
1"aLink

enumerating

do= aBIock
I aLink I
aLink ~ firstLink.

[aLink isNil] whileFalse:

[aBtock value: aLink.

aLink ~- aLink nextLink]

229
Subclasses of Col lect ion

A nil l ink signals the end of the LinkedList. Thus the enumera t ing mes-
sage do: is implemented as a simple loop tha t continues until a nil is en-
countered in the collection.

El Class Interval Intervals are Sequenceab leCol lec t ions whose ele-
men ts are computed. Therefore, messages for adding and removing can-
not be supported. Since elements are not explicitly stored, all accessing
(at:, size, and do:) requires a computation. Each method checks to see if
the last e lement computed is to be incremented (positive step) or
decremented (negative step) in order to de termine whether the limit
(stop) has been reached.

class name
superclass
instance variable names

class methods

instance creation

Interval
SequenceableCol lection
start
stop
step

from: sta.rtlnteger to: stoplnteger
1' self new

setFrom: startlnteger
to: stoplnteger
by: 1

from: start lnteger to: stopinteger by: steplnteger
1' self new

setFrom: startlnteger
to: stoplnteger
by: steplnteger

instance methods

accessing

size
step < 0

ifTrue: [start < stop
ifTrue: [tO]
ifFatse: [tstop -- s ta r t / / step + 1]]

ifFalse: [stop < start
ifTrue: [tO]
ifFalse: [tstop - s ta r t / / step + 1]]

at: index
(index > = 1 and: [index < = self size])

ifTrue: [tstart + (step . (i n d e x - 1))]
ifFalse: [self errorSubscriptBounds: index]

230
I m p l e m e n t a t i o n of t h e B a s i c C o l l e c t i o n P r o t o c o l

at: index put: anObjec t
self error: ' you cannot store into an Interval"

adding

add: n e w O b j e c t
self error: ' elements cannot be added to an Interval '

removing

remove: newObje©t
self error: ' elements cannot be removed from an Interval '

enumerat ing

do: aBIock
I aValue I
aValue ~ start.

step < 0

ifTrue: [[stop < = aValue]

whileTrue: [aBIock value: aValue.

aValue ~- aValue + step]]

ifFalse: [[stop > = aValue]

whileTrue: [aBIock value: aValue.

aValue ~ aValue + step]]

collect: aBIock
I nextValue i result I

result ~- self species new: self size.

nextValue ~- start.

i~- 1.
step < 0

ifTrue: [[stop < = nextValue]

whileTrue:

[result at: i put: (aBIock value: nextValue).

nextValue ~ nextVatue + step.
i t - i + 1]]

ifFalse: [[stop > = nextValue]

whileTrue:

[result at: i put: (aBIock value: nextValue).

nextValue ~- nextValue -t- step.

i ~--- i + 1]].
tresult

private

setFrom: s ta r t ln teger to: s top in teger by: s tep ln teger
start ~- startlnteger:

stop ~ stoplnteger.

step ~- steplnteger

231
Subclasses of Collection

E~] ArrayedCollectionsmArray, ByteArray, String, Text, and Symbol
ArrayedCollection is a subclass of SequenceableCollection; each
ArrayedCollection is a variable-length object. A l l instance creation
methods are reimp]emented to use new:, not new. ArrayedCollections are
f ixed-length so add: is disallowed; in its superc]ass, remove: was already
disallowed and do: was implemented. On|y size, therefore, is
implemented in ArrayedCol lection - - i t is a system pr imi t ive that reports
the number of indexed instance variables.

Of the subclasses of ArrayedCollection, Array, and ByteArray do not
re implement any of the messages we are examining in this chapter.
Accessing messages for Stringmat:, at:put:, and s i z e m a r e system primi-
tives; in Text, all accessing messages are passed as messages to the in-
stance variable string (which is an instance of String). Symbol disallows
at:put: and re turns String as its species.

E] OrderedCollections and SortedCollections OrderedCollection stores
an ordered, contiguous sequence of elements. Since OrderedCollections
are expandable, some efficiency is gained by allocating ext ra space for
the sequence. Two instance variables, firstlndex and lastlndex, point to
the first and the last actual elements in the sequence.

The index into OrderedCollection is converted to be within the range
of firstlndex to lastlndex for accessing messages (at: and at:put:) and the
size is simply one more than the difference between the two indices.
Adding an e lement is in terpreted to be adding to the end; if there is no
room at the end, the collection is copied with additional space allocated
(makeRoomAtLast is the private message tha t does this work). The actu-
al location for storing an e lement is the computed index position after
lastlndex. If an e lement is removed, then the remaining elements must
be moved up so tha t elements remain contiguous (removelndex:).

class name
superclass
instance variable names

class methods

OrderedCollection
SequenceableCollection
firstlndex
lasttndex

instance creation

n e w
1'self new: 10

new: a n l n t e g e r
t(super new' anlnteger) setlndices

instance methods

accessing

s ize

tlastlndex - firstlndex -I- 1

232
Implementation of the Basic Collection Protocol

at: anlnteger
(anlnteger < 1 or: [anlnteger + f i r s t l n d e x - 1 > lastlndex])

ifTrue: [self errorNoSuchElement]
ifFalse: [tsuper at: anlnteger + firstlndex - 1]

at: anlnteger put: anObject
I index I
index ~- anlnteger truncated.
(index < 1 or: [index + f i r s t l n d e x - 1 > las t lndex])

ifTrue: [self errorNoSuchElement]
ifFalse: [tsuper at: index + firstlndex - 1 put: anObject]

adding

add-: newObject
1'self addLast: aLink

addLast: newObject
lastlndex = self basicSize ifTrue: [self makeRoomAtLast].

lastlndex ~ lastlndex -4- 1.
self basicAt: lastlndex put: newObject.
tnewObject

removing

remove: eldObject ifAbsent: absentBiock
t index I
index ~- firstlndex.
[index < = lastlndex]

whileTrue:
[oldObject = (self basicAt: index)

ifTrue: [self removelndex: index.
l 'oldObject]

ifFalse: [index , - i n d e x + 1]].
tabsentBIock value

private

setlndices
f irstlndex ~- self b a s i c S i z e / / 2 max: 1.
lastlndex ~ f i r s t t n d e x - 1 max: 0

errorNoSuchElement
self error:

"attempt to index non-existent element in an ordered col lect ion"

The enumerating messages do:, collect:, and select: are each
reimplemented--do: in order to provide better performance than the
method provided in SequenceableCollection.

Class
MappedCollection

233
Subclasses of Col lect ion

enumerating

de: aBIock
I index I
index ~- firstlndex.
[index < = lastlndex]

whileTrue:
[aBIock value: (self basicAt: index).
index ~ index + 1]

collect: aBIock
! newCol lect iont
newCollection ~ self species new.
self do: [:each I newCollection add: (aBIock value: each)].
l"newCollection

select: aBIock
I newCollection]
newCollection ~ self copyEmpty.
self do: [:each I (aBIock value: each)ifTrue: [newCollection add: each]].
tnewCollection

In the method for select:, the new collection is created by sending the
original collection the message copyEmpty. This message creates a new
collection with enough space allocated to hold all the elements of the
original, al though all the elements might not be stored. In this way,
time taken in expanding the new collection is avoided.

SortedCollection is a subclass of OrderedCollection. The message
at:put: reports an error, requesting the programmer to use add:; add: in-
serts the new element according to the value of the instance variable
sortBIock. The determinat ion of the position for insertion is done as a
'%ubble sort." collect: is also reimplemented to create an
OrderedCollection ra ther than a SortedCollection for collecting the val-
ues of the block. The code is not shown; a bubble sort looks the same in
Smalltalk-80 as it would in most programming languages.

Instances of MappedCollection have two instance var iables- -domain
and map. The value of domain is either a Dictionary or a
SequenceableCollection; its elements are accessed indirectly through
map. The message add: is disallowed. Both at: and at:put: are
reimplemented in MappedCollection in order to support the indirect ac-
cess from map to the elements of domain. The size of a
MappedCollection is the size of its domain.

class name MappedCollection
superclass Col lection
instance variable names domain

map

234
I m p l e m e n t a t i o n of t h e B a s i c C o l l e c t i o n P r o t o c o l

class methods

instance creation

collection: domainCollection map." mapCollection
tsuper new setCollection: domainCollection map: mapCollection

new
self error: "use collection:map: to create a MappedCollection"

instance methods

accessing

at: anlndex
t domain at: (map at: anlndex)

at: anlndex put: anObject
1'domain at: (map at: anlndex) put: anObject

size
tmap size

adding

add: newObject
self shouldNotlmplement

enumerating

do: aBIock
map do:

[:mapValue I aBIock value: (domain at: mapValue)]
collect: aBIock

I aS t ream 1
aStream ,- WriteStream on: (self species new: self size).
se l fdo: [:domainValue l

aStream nextPut: (aBIock value: domainValue)].
t aStream contents

select: aBIock
I aStream I
aStream ~- WriteStream on: (self species new: self size).
self do:

[:domainValue I
(aBIock value: domainValue)

ifTrue: [aStream nextPut: domainValue]].
1' aStream contents

private

setCollection: domainCollection map: mapCollection
domain ~ domainCollection.
map ~ mapCollection

species
t domain species

l

j . - "

. . - 14
Kernel Support Classes

Class UndefinedObject

Classes Boolean, True, and False

Addit ional Protocol for Class Object
Dependence Relationships Among Objects
Message Handling
System Primitive Messages

Object

Magnitude
Character
Date
Time

Number
Float
Fraction
Integer

LargeNegativelnteger
LargePositivelnteger
Smalllnteger

LookupKey
Association

Link

Process

Collection

SequenceableCollection
LinkedList

Semaphore

ArrayedCollection
Array

Bitmap
DisplayBitmap

RunArray
String

Symbol
Text
ByteArray

Interval
OrderedCollection

SortedCollection
Bag
M appedCollection
Set

Dictionary
IdentityDictionary

Stream
PositionableStream

ReadStream
WriteStream

ReadWriteStream
ExternalStream

FileStream

Random

File
FileDirectory
FilePage

ProcessorScheduler
Delay
SharedQueue

Behavior
ClassDescription

Class
MetaClass

Point
Rectangle
BitBit

CharacterScanner

Pen

DisplayObject
DisplayMedium

Form
Cursor
DisplayScreen

InfiniteForm
OpaqueForm
Path

Arc
Circle

Curve
Line
LinearFit
Spline

237
Class UndefinedObject

Class
UndefinedObject

The object nil represents a value for uninitialized variables. It also rep-
resents meaningless results. It is the only instance of class
UndefinedObject.

The purpose of including class UndefinedObject in the system is to
handle error messages. The typical error in evaluating Smal]talk-80 ex-
pressions is tha t some object is sent a message it does not understand.
Often this occurs because a variable is not properly in i t ia l ized-- in
many cases, the variable name tha t should refer to some other object
refers to nil instead. The error message is of the form

className does not understand messageSelector

where className mentions the class of the receiver and
messageSelector is the selector of the erroneously-sent message.

Note, if nil were an instance of Object, then a message sent to it in
error would s tate

Object does not understand messageSelector

which is less explicit than s tat ing tha t an undefined object does not un-
ders tand the message. At the price of a class description, it was possible
to improve on the error message.

Tests to see if an object is nil are handled in class Object, but
re implemented in UndefinedObject. In class Object, messages isNil and
notNii are implemented as

isNil
tfalse

notNil
ttrue

In class UndefinedObject, messages isNil and notNil are implemented as

isNil
ttrue

notNil
tfatse

so tha t no conditional test in Object is required.

Classes Boolean,
True, and False

Protocol for logical values is provided by the class Boolean; logical val-
ues are represented by subclasses of Boo lean~True and False. The
subclasses add no new protocol; they re implement many messages to

238
K e r n e l S u p p o r t C l a s s e s

h a v e b e t t e r p e r f o r m a n c e t h a n t h e m e t h o d s in t h e s u p e r c l a s s . T h e i d e a

is s i m i l a r to t h a t in t e s t i n g for nil in O b j e c t a n d U n d e f i n e d O b j e c t ; t rue

k n o w s t h a t i t r e p r e s e n t s l og i ca l t r u t h a n d fa l se k n o w s t h a t i t r e p r e s e n t s

l og i ca l f a l s e h o o d . W e s h o w t h e i m p l e m e n t a t i o n of s o m e of t h e c o n t r o l -

l i n g p r o t o c o l to i l l u s t r a t e t h i s idea .

T h e log ica l o p e r a t i o n s a r e

Boolean instance protocol

logical operations
& aBoolean Evaluating conjunction. Answer true if both

the receiver and the argument are true.

I aBoolean Evaluating disjunction. Answer true if either
the receiver or the argument is true.

not. Negation. Answer true if the receiver is false,
answer false if the receiver is true.

eqv: aBoolean Answer true if the receiver is equivalent to the
argument, aBoolean.

xor: aBoolean Exclusive OR. Answer true if the receiver is
not equivalent to aBoolean.

T h e s e c o n j u n c t i o n a n d d i s j u n c t i o n o p e r a t i o n s a r e ~ ' e v a l u a t i n g " - - t h i s

m e a n s t h a t t h e a r g u m e n t i s e v a l u a t e d r e g a r d l e s s of t h e v a l u e of t h e re-

ce ive r . T h i s is in c o n t r a s t to and: a n d or: in w h i c h t h e r e c e i v e r d e t e r -
m i n e s w h e t h e r to e v a l u a t e t h e a r g u m e n t .

Boolean instance protocol

controlling
and: alternativeBIock Nonevaluating conjunction. If the receiver is

true, answer the value of the argument; other-
wise, answer false without evaluating the ar-
gument.

or: atternativeBlock Nonevaluating disjunction. If the receiver is
false, answer the value of the argument; oth-
erwise, answer true without evaluating the ar-
gument.

ifTrue: trueAIternativeBIock ifFalse: falseAIternativeBIock
Conditional statement. If the receiver is true,
answer the result of evaluating
trueAIternativeBtock; otherwise answer the re-
sult of evaluating falseAIternativeBIock.

ifFalse: falseAIternativeBIock ifTrue: trueAIternativeBIock
Conditional statement. If the receiver is true,
answer the result of evaluating
trueAIternativeBIock; otherwise answer the re-
sult of evaluatting falseAIternativeBIock.

ifTrue: trueAIternativeBIock Conditional statement. If the receiver is true,
answer the result of evaluating
trueAIternativeBIock; otherwise answer nil.

ifFalse: falseAIternativeBIock Conditional statement. If the receiver is false,
answer the result of evaluating
falseAIternativeBIock; otherwise answer nil.

239
Add i t iona l Pro toco l for Class Object

The arguments to and: and or: must be blocks in order to defer evalua-
tion. Conditional statements are provided as messages ifTrue:ifFalse:,
ifFalse:ifTrue:, ifTrue:, and ifFalse:, as already specified and exemplified
throughout the previous chapters. The messages are implemented in
the subclasses of class Boolean so that the appropriate argument block
is evaluated.

In class True, the methods are

ifTrue: t rueAI ternat iveBIock ifFalse: fa lseAi ternat iveBIock
l'trueAIternativeBlock value

ifFalse: fa lseAi ternat iveBIock ifTrue." t rueAI ternat iveBIock
ttrueAtternativeBIock value

ifTrue: t rueAI ternat iveBIock
ttrueAIternativeBIock value

ifFalse: fa lseAI ternat iveBIock
tnil

In class False, the methods are

i fTrue: t rueAI te rna t iveBIock ifFalse: fa lseAI te rnat iveBIock
l ' falseAIternativeBIock value

ifFalse: fa lseAI te rna t iveBIock ifTrue: t rueAI te rna t iveBIock
l ' fatseAIternativeBIock value

i fTrue: t rueAI te rna t iveBIock
tnil

ifFalse: fa lseAI ternat iveBIock
t falseAtternativeBiock value

If x is 3, then

x > 0 i fTrue: [x ~- x - 1] i fFalse: [x ~ x + 1]

is interpreted as x > 0 evaluates to true, the sole instance of class True; the
method for ifTrue:ifFalse: is found in class True, so the block [x ~- x - 1]
is evaluated without further testing.

In this way, the message lookup mechanism provides an effective im-
plementation of conditional control with no additional primitive opera-
tions or circular definitions.

Addit ional
P r o t o c o l f o r
C l a s s O b j e c t

Protocol for class Object, shared by all objects, was introduced in
Chapter 6. Several categories of messages were not included in that
early discussion. Most of these are part of Object's protocol to provide
system support for message handling, dependence relationships,
primitive message handling, and system primitives.

240
K e r n e l S u p p o r t Classes

Dependence
Relationships
Among Objects

I n f o r m a t i o n in t h e S m a l l t a l k - 8 0 s y s t e m is r e p r e s e n t e d by objects . T h e

v a r i a b l e s of objec ts t h e m s e l v e s r e f e r to objects; in t h i s sense , objec ts a r e
exp l i c i t l y r e l a t e d or d e p e n d e n t on one a n o t h e r . Classes a r e r e l a t e d to

t h e i r s u p e r c l a s s e s a n d m e t a c l a s s e s ; t h e s e c lasses s h a r e e x t e r n a l a n d in-
t e r n a l d e s c r i p t i o n s a n d a r e t h e r e b y d e p e n d e n t on one a n o t h e r . T h e s e
f o r m s of d e p e n d e n c y a r e c e n t r a l to t h e s e m a n t i c s of t h e S m a l l t a l k - 8 0

l a n g u a g e . T h e y c o o r d i n a t e d e s c r i p t i v e i n f o r m a t i o n a m o n g objects .
A n a d d i t i o n a l k i n d of d e p e n d e n c y is s u p p o r t e d in c lass Object . I ts

p u r p o s e is to coordinate ac t iv i t i e s a m o n g d i f f e r e n t objects. Speci f ica l ly ,
i ts p u r p o s e is to be ab le to l i nk one object , s ay A, to one or m o r e o t h e r
objects , s ay B, so B can be i n f o r m e d if A c h a n g e s in a n y way. U p o n be-
ing i n f o r m e d w h e n A c h a n g e s a n d t h e n a t u r e of t h e c h a n g e , B can de-

c ide to t a k e s o m e a c t i o n s u c h as u p d a t i n g its own s t a tus . T h e concep t of
change a n d update, t h e r e f o r e , a r e i n t e g r a l to t h e s u p p o r t of th i s t h i r d

k i n d of objec t d e p e n d e n c e r e l a t i o n s h i p .

T h e p ro toco l in c lass Objec t is

Object instance protocol

dependents access
addDependent: anObject

removeDependent: anObject

dependents

release

change and update
changed

changed: aParameter

update: aParameter

broadcast: aSymbol

Add the argument, anObject, as one of the re-
ceiver's dependents.

Remove the argument, anObject, as one of the
receiver's dependents.

Answer an OrderedCollection of the objects
that are dependent on the receiver, that is,
the objects that should be notified if the re-
ceiver changes.

Remove references to objects that may refer
back to the receiver. This message is
reimplemented by any subclass that creates
references to dependents; the expression super
release is included in any such
reimplementation.

The receiver changed in some general way; in-
form all the dependents by sending each de-
pendent an update: message.

The receiver changed; the change is denoted
by the argument, aParameter. Usually the ar-
gument is a Symbol that is part of the depen-
dent's change protocol; the default behavior is
to use the receiver itself as the argument. In-
form all of the dependents.

An object on whom the receiver is dependent
has changed. The receiver updates its status
accordingly (the default behavior is to do
nothing).

Send the argument, aSymbol, as a unary mes-
sage to all of the receiver's dependents.

241
Addi t iona l Protocol for Class Object

broadcast: aSymboi with: anObject
Send the argument, aSymbol, as a keyword
message with argument, anObject, to all of the
receiver's dependents.

Take , as an example , the objects t h a t model t raff ic lights. A typical
t raff ic l ight a t a s t r ee t co rne r is an object wi th t h r e e lights, each a dif-
f e ren t color. Only one of these l ights can be ON a t a given m o m e n t . In
th is sense, the ON-OFF s t a tu s of each of the t h r e e l ights is d e p e n d e n t on
the s t a tu s of the o ther two. T h e r e a re a n u m b e r of ways to c rea te this
re la t ionship . Suppose we c rea t e the class Light as follows.

class name Light

superclass Object

instance variable names status

class methods

instance creation

setOn
1'self new setOn

setOff
1"self new setOff

instance methods

status

turnOn
self isOff

ifTrue: [status ~ true. self changed]

turnOff
self isOn

ifTrue [status ~- false]

testing

isOn
1'status

isOff
1" status not

change and update

update: aLight
aLight = = self ifFalse: [self turnOff]

private

setOn
status ~ true

setOff
status ~ false

242
Kernel Support Classes

The model is very simple. A Light is ei ther on or off, so a status flag is
kept as an instance variable; it is true if the Light is on, false if the Light
is off. Whenever a Light is turned on (turnOn), it sends itself the changed
message. Any other status change is not broadcast to the dependents on
the assumption tha t a Light is turned off in reaction to turning on an-
other Light. The default response to changed is to send all dependents
the message update: self (i.e., the object tha t changed is the a rgument to
the update: message). Then update: is implemented in Light to mean
turn off. If the parameter is the receiver, then, of course, the update: is
ignored.

The class TrafficLight is defined to set up any number of coordinated
lights. The instance creation message with: takes as its a rgument the
number of Lights to be created. Each Light is dependent on all other
Lights. When the TrafficLight is demolished, the dependencies among its
Lights are disconnected (the message inheri ted from class Object for
disconnecting dependents is release; it is implemented in TrafficLight in
order to broadcast the message to all Lights).

class name TrafficLight
superclass Object
instance variable names lights
class methods

instance creation

with: numberOfLights
tself new lights: numberOfLights

instance methods

operate

turnOn: l ightNumber
(lights at: l ightNumber) turnOn

initialize-release

release
super release.
lights do: [:eachLight I eachLight release].
lights ,- nil

private

lights: numberOfLights
lights ~- Array new: (numberOfLights max: 1).
lights at: 1 put: Light setOn.
2 to: numberOfLights do:

[:index I lights at: index put: Light setOff].

Message Handling

243
Additional Protocol for Class Object

lights do:
[:eachLight !

lights do:
[:dependentLight I

eachLight ,~,,~, dependentLight
ifTrue: [eachLight addDependent: dependentLight]]]

The private initialization method is lights: numberOfLights. Each light is
created tu rned off except for the first light. Then each light is connect-
ed to all the other lights (using the message addDependent:). The simu-
lated Traffickight operates by some round robin, perhaps timed,
sequencing through each light, tu rn ing it on. A simple example shown
below creates the Traffickight with the first light on, and then turns on
each of the other lights, one at a time. A simulation of a traffic corner
might include different models for controlling the lights.

trafficLight ~- TrafficLight with: 3.
trafficLight turnOn: 2.
trafficLight turnOn: 3

The message turnOn: to a TrafficLight sends the message turnOn to the
designated Light. If the Light is current ly off, then it is set on and the
message changed sent. The message changed sends update: to each de-
pendent Light; if a dependent light is on, it is tu rned off.

A par t icular ly impor tant use of this dependency protocol is to sup-
port having multiple graphical images of an object. Each image is de-
pendent on the object in the sense that , if the object changes, the image
must be informed so tha t it can decide whe ther the change affects the
displayed information. The user interface to the Small talk-80 system
makes liberal use of this support for broadcasting notices tha t an object
has changed; this is used to coordinate the contents of a sequence of
menus of possible actions tha t the user can take with respect to the
contents of information displayed on the screen. Menus themselves can
be created by linking possible actions together, in a way similar to the
way we linked together the traffic lights.

All processing in the Small talk-80 system is carried out by sending
messages to objects. For reasons of efficiency, instances of class Mes-
sage are only created when an error occurs and the message state must
be stored in an accessible structure. Most messages in the system,
therefore, do not take the form of directly creat ing an instance of Mes-
sage and t ransmi t t ing it to an object.

In some circumstances, it is useful to compute the message selector
of a message transmission. For example, suppose tha t a list of possible
message selectors is kept by an object and, based on a computation, one
of these selectors is chosen. Suppose it is assigned as a value of a vari-
able selector. Now we wish to t r ansmi t the message to some object, say,

244
K e r n e l S u p p o r t C l a s s e s

to receiver. We can not simply write the expression as

receiver selector

because this m e a n s - - s e n d the object referred to by receiver the unary
message selector. We could, however, write

receiver perform: selector

The result is to t ransmi t the value of the argument , selector, as the
message to receiver. Protocol to support this ability to send a computed
message to an object is provided in class Object. This protocol includes
methods for t ransmi t t ing computed keyword as well as una ry messages.

Object instance protocol

message handling
perform: aSymbol Send the receiver the unary message indicated

by the argument , aSymbol. The a rgument is
the selector of the message. Report an error if
the number of arguments expected by the se-
lector is not zero.

perform: a S y m b o l with: a n O b j e c t Send the receiver the keyword message indi-
cated by the arguments. The first argument ,
aSymbol, is the selector of the message. The
other argument , anObject, is the a rgument of
the message to be sent. Report an error if the
number of arguments expected by the selector
is not one.

perform: aSymbol with: firstObject with: secondObject
Send the receiver the keyword message indi-
cated by the arguments. The first argument ,
aSymbol, is the selector of the message. The
other arguments, firstObject and secondObject,
are the arguments of the message to be sent.
Report an error if the number of arguments
expected by the selector is not two.

perform: aSymbol with: firstObject with: secondObject with: thirdObject
Send the receiver the keyword message indi-
cated by the arguments. The first argument ,
aSymbol, is the selector of the message. The
other arguments, firstObject, secondObject,
and thirdObject, are the arguments of the mes-
sage to be sent. Report an error if the number
of arguments expected by the selector is not
three.

perform: selector withArguments: anArray
Send the receiver the keyword message indi-
cated by the arguments. The argument , selec-
tor, is the selector of the message. The
arguments of the message are the elements of
anArray. Report an error if the number of ar-
guments expected by the selector is not the
same as the size of anArray.

One way in which this protocol can be used is as a decoder of user com-
mands. Suppose for example tha t we want to model a very simple cal-

245
Additional Protocol for Class Object

culator in which operands precede operators. A possible implementat ion
represents the calculator as having (1) the cur ren t result, which is also
the first operand, and (2) a possibly undefined second operand. Each op-
era tor is a message selector understood by the result. Sending the mes-
sage clear, once, resets the operand; sending the message clear when the
operand is reset will reset the result.

class name Calculator

superclass Object
instance variable names res u It

operand

class methods

instance creation

new
1' super new initialize

instance methods

accessing

result
Vresult

calculating

apply: operator
(self respondsTo: operator)

ifFalse: [self error: ' operation not unders tood '] .

operand isNil
ifTrue: [result ~- result perform: operator]

ifFalse: [result ,- result perform: operator with: operand]

clear
operand isNil

ifTrue: [result ~ O] '

ifFalse: [operand ~ nil]

operand: aNumber
operand ~- aNumber

private

initialize
result ~- 0

An example i l lustrates the use of the class Calculator.

hp ~ Ca lcu la to r new

Create hp as a Calcu la tor . The instance variables are initialized with re-
sult 0 and operand nil.

246
Kernel Support Classes

hp operand: 3

Imagine the user has pressed the key labeled 3 and set the operand.

hp apply: # +

The user selects addition. The method for apply determines that the op-
erator is understood and that the operand is not nil; therefore, the re-
sult is set by the expression

result perform: operator with: operand

which is equivalent to

0 + 3

The method sets result to 3; operand remains 3 so that

hp apply: ~ +

again adds 3, so the result is now 6.

hp operand: 1.
hp apply: # - .
hp clear.
hp apply: :#:squared

The result was 6, subtract 1, and compute the square; result is now 25.

System Primitive
Messages

There are a number of messages specified in class Object whose purpose
is to support the needs of the overall system implementation. They are
categorized as system primitives. These are messages that provide di-
rect access to the state of an instance and, to some extent, violate the
principle that each object has sovereign control over storing values into
its variables. However, this access is needed by the language interpret-
er. It is useful in providing class descript ion/development utilities for
the programming environment. Examples of these messages are
instVarAt: anlnteger and instVarAt: anlnteger put: anObject which retrieve
and store the values of named instance variables, respectively.

Object instance protocol

system primitives
become: otherObject Swap the instance pointers of the receiver and

the argument, otherObject. All variables in
the entire system that pointed to the receiver

247
A d d i t i o n a l P ro toco l for Class Objec t

instVarAt: index

instVarAt: index put: value

nextlnstance

numberOfPointers

refct

will now point to the argument and vice ver-
sa. Report an error if either object is a
Smalilnteger.
Answer a named variable in the receiver. The
numbering of the variables corresponds to the
order in which the named instance variables
were defined.
Store the argument, value, into a named vari-
able in the receiver. The number of variables
corresponds to the order in which the named
instance variables were defined. Answer value.
Answer the next instance after the receiver in
the enumeration of all instances of this class.
Answer nil if all instances have been enumer-
ated.
Answer the number of objects to which the re-
ceiver refers.
Answer the number of object pointers in the
system that point at the receives ~. Answer 0 if
the receiver is a Smalllnteger.

P r o b a b l y t h e m o s t u n u s u a l a n d ef fec t ive of t h e s y s t e m p r i m i t i v e mes-
sages is t h e m e s s a g e b e c o m e : o therObjec t . T h e r e s p o n s e to t h i s m e s s a g e
is to s w a p t h e i n s t a n c e p o i n t e r of t h e r e c e i v e r w i t h t h a t of t h e a rgu -
m e n t , o therObjec t . An e x a m p l e of t h e use of t h i s m e s s a g e is f ound in
t h e i m p l e m e n t a t i o n of t h e m e s s a g e grow in s e v e r a l of t h e co l lec t ion

classes. T h e m e s s a g e grow is s e n t w h e n t h e n u m b e r of e l e m e n t s t h a t
can be s t o r e d in a (f ixed- leng th) co l lec t ion h a v e to be i n c r e a s e d w i t h o u t

c o p y i n g t h e col lec t ion; copy ing is u n d e s i r a b l e b e c a u s e al l s h a r e d refer -
ences to t h e co l lec t ion m u s t be p r e s e r v e d . T h u s a n e w co l lec t ion is cre-
a ted , i ts e l e m e n t s s tored , a n d t h e n t h e o r i g ina l co l lec t ion t r a n s f o r m s

in to (becomes) t h e n e w one. All p o i n t e r s to t h e o r i g ina l co l lec t ion a r e

r e p l a c e d by p o i n t e r s to t h e n e w one.
T h e fo l lowing is t h e m e t h o d for grow as spec i f ied in class

SequenceableCol lect ion.

grow
I newCollection I
newCollection ~ self species new: self size + self growSize.
newCollection reptaceFrom: 1 to: self size with: self.
1self become: newCollection

growSize
1"10

Subc l a s se s can r e d e f i n e t h e r e s p o n s e to t h e m e s s a g e growSize in o r d e r

to speci fy a l t e r n a t i v e n u m b e r s of e l e m e n t s by w h i c h to e x p a n d .

. ,

.='
..-"

.. SJ""
..."

. ' " " 1
.#

°~"

~ j -''-.ii"

15
Multiple Independent
Processes

Processes
Scheduling
Priorities

Semaphores
Mutual Exclusion
Resource Sharing
Hardware Interrupts

Class SharedQueue

Class Delay

Object

Magnitude
Character
Date
Time

Number
Float
Fraction
Integer

Large N ega tivel nteger
LargePositivel nteger
Smalllnteger

LookupKey
Association

Link

Co ection • ,

SequenceableCollection ~ ~
LinkedList ~N~

ArrayedCollection
Array

Bitmap
DisplayBitmap

RunArray
String

Symbol
Text
ByteArray

Interval
OrderedCollection

SortedCollection
Bag
MappedCollection
Set

Dictionary
IdentityDictionary

Stream
PositionableStream

ReadStream
WriteStream

ReadWriteStream
ExternalStream

FileStream

Random

File
FileDirectory
FilePage

UndefinedObject
Boolean

False
True

B e h ~) ; ~ iD::; rl p t I o n

MetaClass

Point
Rectangle
BitBit

CharacterScanner

Pen

DisplayObject
DisplayMedium

Form
Cursor
DisplayScreen

InfiniteForm
OpaqueForm
Path

Arc
Circle

Curve
Line
LinearFit
Spline

251
P r o c e s s e s

The Smalltalk-80 system provides support for multiple independent
processes with three classes named Process, ProcessorScheduler, and
Semaphore. A Process represents a sequence of actions tha t can be car-
ried out independently of the actions represented by other Processes. A
ProcessorScheduler schedules the use of the Smalltalk-80 virtual ma-
chine tha t actually carries out the actions represented by the Processes
in the system. There may be many Processes whose actions are ready
to be carried out and ProcessorScheduler determines which of these the
vir tual machine will carry out at any part icular time. A Semaphore al-
lows otherwise independent processes to synchronize their actions with
each other. Semaphores provide a simple form of synchronous commu-
nication that can be used to create more complicated synchronized in-
teractions. Semaphores also provide synchronous communicat ion with
asynchronous hardware devices such as the user input devices and
real t ime clock.

Semaphores are often not the most useful synchronization mecha-
nism. Instances of SharedQueue and Delay use Semaphores to satisfy
the two most common needs for synchronization. A SharedQueue pro-
vides safe t ransfer of objects between independent processes and a De-
lay allows a process to be synchronized with the real t ime clock.

P r o c e s s e s A process is a sequence of actions described by expressions and
performed by the Smalltalk-80 vir tual machine. Several of the process-
es in the system monitor asynchronous hardware devices. For example,
there are processes monitoring the keyboard, the pointing device, and
the real t ime clock. There is also a process monitoring the available
memory in the system. The most impor tant process to the user is the
one tha t performs the actions directly specified by the user, for exam-
ple, editing text, graphics, or class definitions. This user interface pro-
cess must communicate with the processes monitoring the keyboard
and pointing device to find out what the user is doing. Processes might
be added tha t update a clock or a view of a user-defined object.

A new process can be created by sending the unary message fork to a
block. For example, the following expression creates a new process to
display three clocks named EasternTime, MountainTime, and PacificTime
on the screen.

[EasternTime display.
MountainTime display.
PacificTime display] fork

252
Multiple Independent Processes

The actions tha t make up the new process are described by the block's
expressions. The message fork has the same effect on these expressions
as does the message value, but it differs in the w a y the result of the
message is re turned. When a block receives value, it waits to r e tu rn un-
til all of its expressions have been executed. For example, the following
expression does not produce a value until all three clocks have been
completely displayed.

[EasternTime display.
MountainTime display.
PacificTime display] value

The value re tu rned from sending a block value is the value of the last
expression in the block. When a block receives fork, it re turns immedi-
ately, usually before its expressions have been executed. This allows the
expressions following the fork message to be executed independent ly of
the expressions in the block. For example, the following two expressions
would r e s u l t in the contents of the collection nameList being sorted in-
dependent ly of the three clocks being displayed.

[EasternTime display.
MountainTime display.
PacificTime display] fork.

alphabeticalList ~- nameList sort

The ent ire collection m a y be sorted before any of the clocks are
displayed or all of the clocks may be displayed before the collection be-
gins sorting. The occurrence of ei ther one of these extreme cases or an
in termedia te case in which some sort ing and some clock display are in-
terspersed is determined by the way tha t display and sort are writ ten.
The two processes, the one tha t sends the messages fork and sort, and
the one tha t sends display, are executed independently. Since a block's
expressions may not have been evaluated when it re turns from fork, the
value of fork must be independent of the value of the block's expres-
sions. A block re turns itself as the value of fork.

Each process in the system is represented by an instance of class Pro-
cess. A block's response to fork is to create a new instance of Process
and schedule the processor to execute the expressions it contains.
Blocks also respond to the message newProcess by creating and re turn-
ing a new instance of Process, but the vir tual machine is not scheduled
to execute its expressions. This is useful because, unlike fork, it provides
a reference to the Process itself. A Process created b y newProcess is
called suspended since its expressions are not being executed. For exam-
ple, the following expression creates two new Processes but does not re-
sult in e i ther display or sort being sent.

253
Processes

clockDisplayProcess ~- [EasternTime display] newProcess..
sortingProcess ~ [alphabeticalList ~ nameList sort] newProcess

The actions represented by one of these suspended Processes can actu-
ally be carr ied out by sending the Process the message resume. The fol-
lowing two expressions would resul t in display being sent to
EasternTime and sort being sent to nameList.

clockDisplayProcess resume.
sortingProcess resume

Since display and sort would be sent from different Processes , their exe-
cution may be interleaved. Another example of the use of resume is the
implementa t ion of fork in BlockContext.

fork
self newProcess resume

A complementa ry message, suspend, r e tu rns a Process to the suspend-
ed state in which the processor is no longer execut ing its expressions.
The message terminate prevents a Process from ever runn ing again,
whe the r it was suspended or not.

Process instance protocol

changing process state
resume
suspend

terminate

Allow the receiver to be advanced.
Stop the advancement of the receiver in such
a way that it can resume its progress later (by
sending it the message resume).
Stop the advancement of the receiver forever.

Blocks also unders t and a message with selector newProcessWith: tha t
creates and re tu rns a new Process supplying values for block argu-
ments. The a r g u m e n t of newProcessWith: is an Array whose elements
are used as the values of the block arguments . The size of the Array
should be equa l to the n u m b e r of block a rgumen t s the receiver takes.
For example,

displayProcess ~ [:clock I clock display]
newProcessWith: (Array with: MountainTime)

The protocol of BlockContext tha t allows new Processes to be created is
shown on the following page.

254
M u l t i p l e I n d e p e n d e n t P r o c e s s e s

BiockContext instance protocol

scheduling
fork

newProcess

newProcessWith: argumentArray

Create and schedule a new Process for the ex-
ecution of the expressions the receiver con-
tains.

Answer a new suspended Process for the exe-
cution of the expressions the receiver con-
tains. The new Process is not scheduled.

Answer a new suspended Process for the exe-
cution of the expressions the receiver contains
supplying the elements of argumentArray as
the values of the receiver's block arguments.

Scheduling
The Smalltalk-80 virtual machine has only one processor capable of
carrying out the sequence of actions a Process represents. So when a
Process receives the message resume, its actions may not be carried out
immediately. The Process whose actions are current ly being carried out
is called active. Whenever the active Process receives the message sus-
pend or terminate, a new active Process is chosen from those that have
received resume. The single instance of class ProcessorScheduler keeps
track of all of the Processes that have received resume. This instance
of ProcessorScheduler has the global name Processor. The active Pro-
cess can be found by sending Processor the message activeProcess. For
example, the active Process can be terminated by the expression

Processor activeProcess terminate

Priorities

This will be the last expression executed in that Process. Any expres-
sions following it in a method would never be executed. Processor will
also terminate the active Process in response to the message
terminateActive.

Processor terminateActive

Ordinarily, Processes are scheduled for the use of the processor on a
simple first-come first-served basis. Whenever the active Process re-
ceives suspend or terminate, the Process that has been waiting the long-
est will become the new active Process. In order to provide more con-
trol of when a Process will run, Processor uses a very simple priority
mechanism. There are a fixed number of priority levels numbered by
ascending integers. A Process with a higher priority will gain the use
of the processor before a Process with a lower priority, independent of
the order of their requests. When a Process is created (with either fork
or newProcess), it will receive the same priority as the Process that

255
Processes

created it. The prior i ty of a Process can be changed by sending it the
message priority: wi th the pr ior i ty as an a rgument . Or the pr ior i ty of a
Process can be specified when it is forked by using the message forkAt:
wi th the pr ior i ty as an a rgumen t . For example, consider the following
expressions executed in a Process a t pr ior i ty 4.

wordProcess ~- [[' now' displayAt: 50@ 100] forkAt: 6.
[" is" displayAt: 100 @ 100] forkAt: 5.
• the" displayAt: 150 @ 100]

newProcess.
wordProcess priority: 7.
• t ime' displayAt: 200 @ 100.

wordProcess resume.
• for" displayAt: 250 @ 100

The sequence of displays on the screen would be as follows.

time
the time

now the time
now is the time
now is the time for

Prior i t ies are man ipu l a t ed wi th a message to Processes and a message
to BlockContexts.

Process instance protocol

accessing

priority: anlnteger

BlockContext instance protocol

Set the receiver's priority to be anlnteger.

scheduling
forkAt: priority Create a new process for the execution of the

expressions the receiver contains. Schedule
the new process at the priority level priority.

The methods in the Smal l ta lk-80 sys tem do not ac tua l ly specify priori-
ties wi th l i teral integers. The appropr ia te pr ior i ty to use is a lways
obtained by sending a message to Processor. The messages used to ob-
ta in priori t ies are shown in the protocol for class ProcessorScheduler .

One other message to Processor allows other P rocesses wi th the
same pr ior i ty as the active Process to gain access to the processor. The
ProcessorScheduler responds to the message yield b y suspending the ac-
tive Process and placing it on the end of the list of P rocesses wai t ing
at its priority. The first Process on the list then becomes the active Pro-

256
M u l t i p l e I n d e p e n d e n t P r o c e s s e s

cess. If t h e r e a r e n o o t h e r Processes a t t h e s a m e p r i o r i t y , yield h a s no

effect .

ProcessorScheduler instance protocol

accessing
activePriority

activeProcess

process state change
terminateActive

yield

.priority names
highlOPriority

IowiOPriority

systemBackgroundPriority

timingPriority

userBackgroundPriority

userl nterruptPriority

userSchedulingPriority

Answer the priority of the currently running
process.

Answer the currently running process.

Terminate the currently running process.

Give other processes at the priority of the cur-
rently running process a chance to run.

o

Answer the priority at which the most time
critical input/output processes should run.

Answer the priority at which most
input/output processes should run.

Answer the priority at which system back-
ground processes should run.

Answer the priority at which the system pro-
cesses keeping track of real time should run.

Answer the priority at which background pro-
cesses created by the user should run.

Answer the priority at which processes creat-
ed by the user and desiring immediate service
should run.

Answer the priority at which the user inter-
face processes should run.

T h e m e s s a g e s to ProcessorScheduler r e q u e s t i n g p r i o r i t i e s w e r e l i s t e d in

a l p h a b e t i c a l o r d e r a b o v e s i n c e t h i s is t h e s t a n d a r d for p r o t o c o l d e s c r i p -

t i ons . T h e s a m e m e s s a g e s a r e l i s t e d b e l o w f r o m h i g h e s t p r i o r i t y to low-
e s t p r i o r i t y a l o n g w i t h s o m e e x a m p l e s of P r o c e s s e s t h a t m i g h t h a v e
t h a t p r i o r i t y .

timingPriority

highlOPriority

IowlOPriority

userl nterruptPriority

userSchedulingPriority

The Process monitoring the real time clock
(see description of class Wakeup later in this
chapter).

The Process monitoring the local network
communication device.

The Process monitoring the user input devices
and the Process distributing packets from the
local network.

Any Process forked by the user interface that
should be executed immediately.

The Process performing actions specified
through the user interface (editing, viewing,
programming, and debugging).

userBackgroundPriority

systemBackgroundPriority

257
S e m a p h o r e s

Any Process forked by the user interface that
should be executed only when nothing else is
happening.

A system Process that should be executed
when nothing else is happening.

Semaphores The sequence of actions represented by a Process is carried out asyn-
chronously with the actions represented by other Processes. The func-
tion of one Process is independent of the function of another. This is
appropria te for Processes tha t never need to interact. For example, the
two Processes shown below tha t display clocks and sort a collection
probably do not need to in teract with each other at all.

[EasternTime display.
MountainTime display.
PacificTime display] fork.

alphabeticalList ~- nameList sort

However, some Processes tha t are substant ial ly independent must in-
teract occasionally. The actions of these loosely dependent Processes
must be synchronized while they interact. Instances of Semaphore pro-
vide a simple form of synchronized communicat ion between otherwise
independent Processes. A Semaphore provides for the synchronized
communicat ion of a simple (~1 bit of information) signal from one pro-
cess to another. A Semaphore provides a nonbusy wait for a Process
tha t a t tempts to consume a signal t ha t has not been produced yet.
Semaphores are the only safe mechanism provided for interact ion be-
tween Processes. Any other mechanisms for interact ion should use
Semaphores to insure their synchronization.

Communicat ion with a Semaphore is init iated in one Process by
sending it the message signal. On the other end of the communication,
another Process waits to receive the simple communicat ion by sending
wait to the same Semaphore. It does not ma t t e r in which order the two
messages are sent, the Process wait ing for a signal will not proceed un-
til one is sent. A Semaphore will only re tu rn from as many wait mes-
sages as it has received signal messages. If a signal and two waits are
sent to a Semaphore, it will not r e tu rn from one of the wait messages.
When a Semaphore receives a wait message for which no corresponding
signal was sent, it suspends the process from which the wait was sent.

258
Multiple Independen t Processes

Semaphore instance protocol

communication
signal

wait

Send a signal through the receiver. If one or
more Processes have been suspended trying
to receive a signal, allow the one that has
been waiting the longest to proceed. If no Pro-
cess is waiting, remember the excess signal.
The active Process must receive a signal
through the receiver before proceeding. If no
signal has been sent, the active Process will
be suspended until one is sent.

The processes t h a t have been suspended will be resumed in the same
order in which they were suspended. A Process ' s pr ior i ty is only t aken
into account by Processor when scheduling it for the use of the proces-
sor. Each Process wai t ing for a Semaphore will be resumed on a first-
come first-served basis, independent of its priority. A Semaphore allows
a Process to wai t for a signal t h a t has not been sent wi thout using pro-
cessor capacity. The Semaphore does not r e t u r n from wait unti l signal
has been sent. One of the ma in advan tages of c rea t ing an independen t
process for a pa r t i cu la r act ivi ty is that , if the process requires some-
th ing tha t is not available, o ther processes can proceed while the first
process waits for it to become available. Examples of things t ha t a pro-
cess may require and tha t may or may not be avai lable are h a r d w a r e
devices, user events (keystrokes or point ing device movements) , and
shared da ta s t ructures . A specific t ime of day can also be thought of as
someth ing t h a t migh t be requi red for a process to proceed.

Mutual Exclusion
Semaphores can be used to ensure m u t u a l l y exclusive use of cer ta in fa-
cilities by separa te Processes . For example, a Semaphore might be used
to provide a da ta s t ruc tu re tha t can be safely accessed by separa te Pro-
cesses . The following definit ion of a s imple first-in first-out da ta struc-
ture does not have any provision for m u t u a l exclusion.

class name
superclass
instance variable names

class methods

instance creation

n e w

1self new: 10

n e w : s i z e

1"super new init size

SimpleQueue
Object
contentsArray
readPosition
writePosition

259
Semaphores

instance methods

accessing

next
I value I
readPosit ion = wri tePosit ion

ifTrue: [self error: ' emp ty q u e u e ']

ifFalse: [value ,-- contentsArray at: readPosit ion.

contentsArray at: readPosit ion put: nil.

readPosi t ion ~- readPosit ion --t- 1.

tva lue]

nextPut: value
writePosit ion > contentsArray size

ifTrue: [self makeRoomForWri te] .

contentsArray at: wri tePosit ion put: value.

wri tePosit ion ~ wri tePosit ion + 1.

1value

size
"rwritePosition - readPosit ion

testing

isEmpty
l 'writePosit ion = readPosi t ion

private

init: size
contentsArray ~ Array new: size.

readPosit ion ~- 1.

wri tePosit ion ~- 1

makeRoomForWr i te
I con ten t sS i ze t

readPosi t ion = 1

ifTrue: [contentsArray grow]

ifFalse:

[contentsSize ~ wri tePosit ion - readPosit ion.

1 to: contentsSize do:

[: index I

contentsArray

at: index

put: (contentsArray at: index + readPosit ion - 1)].

readPosi t ion ~- 1.

wri tePosit ion ~- contentsSize + 1]

A S i m p l e Q u e u e remembers its contents in an Ar ray named
contentsArray and main ta ins two indices into the contentsArray named

260
Multiple Independent Processes

readPosition and writePosition. New contents are added at writePosition
and removed at readPosition. The pr ivate message makeRoomForWrite
is sent when there is no room at the end of contentsArray for remem-
bering a new object. If contentsArray is completely ful l , its size is in-
creased. Otherwise, the contents are moved to the f i rst of contentsArray.

The problem w i th sending to a SimpleQueue from dif ferent Process-
es is tha t more than one Process at a t ime may be executing the meth-
od for next or nextPut:. Suppose a SimpleQueue were sent the message
next f rom one Process, and had just executed the expression

value ~- contentsArray at: readPosition

when a higher priori ty Process woke u p and sent another next message
to the same SimpleQueue. Since readPosition has not been incremented,
the second execution of the expresson above will bind the same object
to value. The higher priori ty Process will remove the reference to the
object from contentsArray, increment the readPosition and re tu rn the
object it removed. When the lower priori ty Process gets control back,
readPosition has been incremented so it removes the reference to the
next object from contentsArray. This object should have been the value
of one of the next messages, but it is discarded and both next messages
re tu rn the same object.

To ensure mutua l exclusion, each Process must wait for the same
Semaphore before using a resource and then signal the Semaphore
when it is finished. The following subclass of SimpleQueue provides mu-
tual exclusion so tha t its instances can be used from separate Processes.

class name
superclass
instance variable names
instance methods

SimpteSharedQueue
SimpleQueue
accessProtect

accessing

nex t

t value I
accessProtect wait.
value ,- super next.
accessProtect signal.
tvalue

nextPut : v a l u e
accessProtect wait.
super nextPut: value.
accessProtect signal.
tvalue

261
S e m a p h o r e s

private

init: s ize
super init: size.
accessProtect ~ Semaphore new.
accessProtect signal

Since m u t u a l exclusion is a common use of Semaphores, they inc lude a
message for it. The selector of th is message is critical:. The imp lemen ta -
t ion of critical: is as fol lows.

crit ical: aBIock
I value I
self wait.
value ~ aBIock value.
self signal.
1"value

A Semaphore used for m u t u a l exclusion m u s t s t a r t out wi th one excess
s ignal so the f irst P rocess m a y e n t e r the cr i t ical section. Class Sema-
phore provides a special in i t ia l iza t ion message, forMutualExclusion, t h a t
signals the new ins tance once.

Semaphore instance protocol

mutual exclusion
critical aBIock Execute aBIock when no other critical blocks

are executing.

Semaphore class protocol

instance creation
forMutualExclusion Answer a new Semaphore with one excess sig-

nal.

The i m p l e m e n t a t i o n of S impleSharedQueue could be changed to read as

follows.

class name SimpleSharedQueue
superclass SimpleQueue
instance variable names accessProtect
instance methods

accessing

next
I value I
accessProtect critical: [value ,- super next].
Tvalue

nextPut: va lue
accessProtect critical: [super nextPut: value].

fvalue

262
Multiple Independent Processes

private

init: size
super init: size.
accessProtect ~ Semaphore forMutualExclusion

Resource Sharing
In order for two Processes to share a resource, mutua l ly exclusive ac-
cess to it is not enough. The Processes must also be able to communi-
cate about the availabil i ty of the resource. SimpleSharedQueue will not
get confused by s imul taneous accesses, but if an a t t empt is made to re-
move an object from an empty SimpleSharedQueue, an error occurs. In
an envi ronment with asynchronous Processes, it is inconvenient to
guaran tee tha t a t tempts to remove objects (by sending next) will be
made only after they have been added (by sending nextPut:). Therefore,
Semaphores are also used to signal the availabili ty of shared resources.
A Semaphore represent ing a resource is signalled after each unit of the
resource is made available and waited for before consuming each unit.
Therefore, if an a t t empt is made to consume a resource before it has
been produced, the consumer simply waits.

Class SafeSharedQueue is an example of how Semaphores can be
used to communicate about the availabili ty of resources.
SafeSharedQueue is s imilar to SimpleSharedQueue, but it uses another
Semaphore named valueAvailable to represent the availabil i ty of the
contents of the queue. SafeSharedQueue is not in the Small talk-80 sys-
tem, it is described here only as an example. SharedQueue is the class
tha t is actual ly used to communicate between processes in the system.
SharedQueue provides functionali ty similar to SafeSharedQueue's . The
protocol specification for SharedQueue will be given la ter in this chap-
ter.

class name
superclass
instance variable names

instance methods

accessing

SafeSharedQueue
SimpleQueue
accessProtect
valueAvailable

next

I value I
valueAvailable wait.
accessProtect critical: [value ~--- super next].
tvalue

nextPut: va lue
accessProtect critical: [super nextPut: value].
valueAvailable signall
tvalue

263
Semaphores

private

init: s ize
super init: size.
accessProtect ~ Semaphore forMutualExclusion.
valueAvailable ~ Semaphore new

Hardware
Interrupts

Instances of Semaphore are also used to communicate between hard-
ware devices and Processes. In this capacity, they take the place of in-
terrupts as a means of communicating about the changes of state that
hardware devices go through. The Smalltalk-80 virtual machine is spec-
ified to signal Semaphores on three conditions.

• user event: a key has been pressed on the keyboard, a button has
been pressed on the pointing device, or the pointing device has
moved.

• timeout: a specific value of the millisecond clock has been reached.

• low space: available object memory has fallen below certain limits.

These three Semaphores correspond to three Processes monitoring user
events, the millisecond clock and memory utilization. Each monitoring
Process sends wait to the appropriate Semaphore suspending itself until
something of interest happens. Whenever the Semaphore is signalled,
the Process will resume. The virtual machine is notified about .these
three types of monitoring by primitive methods. For example, the
timeout signal can be requested by a primitive method associated with
themessage signal:atTime: to Processor.

Class Wakeup is an example of how one of these Semaphores can be
used. Wakeup provides an alarm clock service to Processes by monitor-
ing the millisecond clock. Wakeup is not in the Smalltalk-80 system; it
is described here only as an example. Delay is the class that actually
monitors the millisecond clock in the Smalltalk-80 system. Delay pro-
vides functionality similar to Wakeup's. The protocol specification for
Delay will be given later in this chapter.

Wakeup provides a message that suspends the sending Process for a
specified number of milliseconds. The following expression suspends its
Process for three quarters of a second.

Wakeup after: 750

When Wakeup receives an after: message, it allocates a new instance
which remembers the value of the clock at which the wakeup should
occur. The new instance contains a Semaphore on which the active Pro-
cess will be suspended until the wakeup time is reached. Wakeup keeps

264
Multiple Independent Processes

all of its instances in a list sorted by their wakeup times. A Process
monitors the vir tual machine 's millisecond c lock for the earliest of
these wakeup times and allows the appropria te suspended Process to
proceed. This Process is created in the class method for
initializeTimingProcess. The Semaphore used to monitor the clock is re-
ferred to by a class variable named TimingSemaphore. The vir tual ma-
chine is informed tha t the clock should be monitored with the following
message found in the instance method for nextWakeup.

Processor signal: TimingSemaphore atTime: resumptionTime

The list of instances wait ing for resumption is referred to by a class
variable named PendingWakeups. There is another Semaphore named
AccessProtect tha t provides mutua l ly exclusive access to
PendingWakeups.

class name
superclass
instance variable names

class variable names

class methods

Wakeup
Object
alarmTime
alarmSemaphore
PendingWakeups
AccessProtect
TimingSemaphore

alarm clock service

after: millisecondCount
(self new sleepDuration: millisecondCount) waitForWakeup

class initialization

initialize
TimingSemaphore ~ Semaphore new.
AccessProtect ~ Semaphore forMutuatExclusion.
PendingWakeups ~ SortedCollection new.
self initializeTimingProcess

initializeTimingProcess
[[true]

whileTrue:
[TimingSemaphore wait.
AccessProtect wait.
PendingWakeups removeFirst wakeup.
PendingWakeups isEmpty

ifFalse: [PendingWakeups first nextWakeup].
AccessProtect signal]]

forkAt: Processor timingPriority

265
Class SharedQueue

instance methods

process delay

waitForWakeup
AccessProtect wait.
PendingWakeups add self.
PendingWakeups first = = self

ifTrue: [self nextWakeup].
AccessProtect signal.
alarmSemaphore wait

comparison

< otherWakeup
t alarmTime < otherWakeup wakeupTIme

accessing

wakeupTime
l'alarmTime

private

nextWakeup
Processor signal: TimingSemaphore atTime: resumptionTime

sleepDuration: millisecondCount
alarmTime ~- Time millisecondCtockValue + millisecondCount.
alarmSemaphore ~- Semaphore new

wakeup
alarmSemaphore signal

Class
SharedQueue

Class S h a r e d Q u e u e is t h e s y s t e m class whose i n s t a n c e s Prov ide safe
c o m m u n i c a t i o n of objects b e t w e e n P r o c e s s e s . B o t h its protocol a n d its

i m p l e m e n t a t i o n a r e s i m i l a r to t h e S a f e S h a r e d Q u e u e e x a m p l e s h o w n

e a r l i e r in th i s chap t e r .

SharedQueue instance protocol

accessing
next

nextPut: value

Answer with the first object added to the re-
ceiver that has not yet been removed. If the
receiver is empty, suspend the active Process
until an object is added to it.
Add value to the contents of the receiver. If a
Process has been suspended waiting for an ob-
ject, allow it to proceed.

266
M u l t i p l e I n d e p e n d e n t Processes

ClassDelay A Delay al lows a Process to be s u s p e n d e d for a specif ied a m o u n t of

t ime. A Delay is c r e a t e d by spec i fy ing h o w long it will s u s p e n d t h e ac-

t ive Process .

halfMinuteDelay ~- Delay forSeconds: 30.
shortDelay ~- Delay forMilliseconds" 50

S i m p l y c r e a t i n g a Delay has no effect on t h e p rogress of t he ac t ive Pro-
cess . I t is in r e sponse to t h e m e s s a g e wait t h a t a Delay s u s p e n d s t h e ac-

t ive P rocess . T h e fol lowing expres s ions would bo th s u s p e n d t h e ac t ive
P r o c e s s for 30 seconds.

halfMinuteDelay wait.
(Delay forSeconds: 30) wait

Delay class protocol

instance creation
forMiiliseconds: millisecondCount Answer with a new instance that will suspend

the active Process for millisecondCount milli-
seconds when sent the message wait.

forSeconds: secondCount Answer with a new instance that will suspend
the active Process for secondCount seconds
when sent the message wait.

untilMilliseconds: millisecondCount
Answer with a new instance that will suspend
the active Process until the millisecond clock
reaches the value millisecondCount.

general inquiries
miilisecondCIockValue

Delay instance protocol

Answer with the current value of the millisec-
ond clock.

accessing
resumptionTime Answer with the value of the millisecond

clock at which the delayed Process will be re-
sumed.

process delay
wait Suspend the active Process until the millisec-

ond clock reaches the appropriate value.

A t r iv ia l clock can be i m p l e m e n t e d w i t h t h e fol lowing express ion .

[[true] whileTrue:
[Time now printString displayAt: 100 @ 100.
(Delay forSeconds: 1) wait]] fork

T h e c u r r e n t t i m e wou ld be d i sp layed on t h e sc reen once a second.

..-

f
f ...-"

16
Protocol for Classes

Class Behavior

Class ClassDescription

Class Metaclass

Class Class

Object

Magnitude
Character
Date
Time

Number
Float
Fraction
Integer

LargeNegativelnteger
LargePositivelnteger
Smalllnteger

LookupKey
Association

Link

Process

Collection

SequenceableCollection
LinkedList

Semaphore

ArrayedCollection
Array

Bitmap
DisplayBitmap

RunArray
String

Symbol
Text
ByteArray

Interval
OrderedCollection

SortedCollection
Bag
M appedCollection
Set

Dictionary
IdentityDictionary

Stream
PositionableStream

ReadStream
WriteStream

ReadWriteStream
ExternalStream

FileStream

Random

File
FileDirectory
FilePage

UndefinedObject
Boolean

False
True

ProcessorScheduler
Delay
SharedQueue

I ! ~ !ii!!~!!~iJiiiii~ !ii!i ~iii!iiiT ~ii~!ilJi!iii!i~Ji!iii!ii~ilE!i
!iiiiiiii!! i iilii !iiiiiii!! iii!~i ili!!! iii!il ii!i i

lil ilili iii!i!!!!! ii iil !ii!!i !ili ii!i iiili i! iiii!iiiii!i ii! iiii!i!iii!i ii !i iliiii!iiii!ii!i iiiii!ii)i
t~! iii!i~ii i!i ~ ili i iliii i!i ~i!i ~i ~ ii~i ~iiiiiii ili!ilil

Point
Rectangle
BitBit

CharacterScanner

Pen

DisplayObject
DisplayMedium

Form
Cursor
DisplayScreen

InfiniteForm
OpaqueForm
Path

Arc
Circle

Curve
Line
LinearFit
Spline

269
Protocol for Classes

We have now introduced the protocol for most of the classes that de'
scribe the basic components of the Smalltalk-80 system. One notable ex-
ception is the protocol for the classes themselves. Four classes--Behavior,
ClassDescription, Metaclass, and Class~ in te rac t to provide; the facili-
ties needed to describe new classes. Creating a new class involves
compiling methods and specifying names for instance variables, class
variables, pool variables, and the class itself.

Chapters 3, 4, and 5 introduced the basic concepts represented by
these classes. To summarize from that discussion, the Smalltalk-80 pro-
grammer specifies a new class by creating a subclass of another class.
For example, class Collection is a subclass of Object; class Array is a sub-
class of ArrayedCollection (whose superclass chain terminates with
Object).

1; Every class is ultimately a subclass of class Object, except for Ob-
ject itself, which has no superclass. In particular, Class is a sub-
class of ClassDescription, which is a subclass of Behavior which is a
subclass of Object,

There are two kinds of objects in the system, ones that can create in:
stances of themselves (classes) and ones that can not.

2 . Every object is an instance of a class.

Each class is itself an instance of a class. We call the class of a class, its
metaclass.

3. Every class is an instance of a metaclass.

Metaclasses are not referenced by class names as are other classes. In-
stead, they are referred to by a message expression sending:the unary
message ctass to the instance of the metaclass. For example, the
metaclass of Collection is referred to as Collection class; the metaclass of
Class is referred to as Class class.

In the Smalltalk-80 system, a metaclass is created automatically
whenever a new class is created. A metaclass has only one instance.
The messages categorized as "class methods" in the class descriptions
are found in the metaclass of the class. This follows from the way in
which methods are found; when a message is sent to an object, the
search for the corresponding method begins in the class of the object.
When a message is sent to Dictionary, for example, the search begins in
the metaclass of Dictionary. If the method is not found in the metaclass,
then the search proceeds to the superclass of the metaclass. In this case,
the superclass is Set class, the metaclass for Dictionary's superclass. If
necessary, the search follows the superclass chain to Object class.

270
P r o t o c o l fo r C l a s s e s

In the diagrams in this chapter, all arrows with solid lines denote a
subclass relationship; arrows with dashed lines an instance relationship.
A ---> B means A is an instance of B. Solid gray lines indicate the
class hierarchy; solid black lines indicate the metaclass hierarchy.

Figure 16.1

Smalll nteger ~,.~!;!~ I nteger ~,~:~,~ N umber ,~;~,,~!i!;~:. 0 bject
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •

Integer N u m b e r Object Smalllnteger mmmlp, mmmmmm 0 mmmm$,
class class class class

Since the superclass chain of all objects ends at Object as shown in Fig,
ure 16.1, and Object has no superclass, the superclass of Object's
metaclass is not determined by the rule of maintaining a parallel hier-
archy. It is at this point that Class is found. The superclass of Object
class is Class.

4. All metaclasses are (ultimately) subclasses of Class (Figure 16.2).

Figure 16.2

Class

v

Class
c lass

Smalllnteger ~ ~ . Integer ~~...~~: Number .Object
• • • m
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •

Smalllnteger,mmmml~ Integer . Number Object
class class mmmmmll, class mmmmmmmmmm), class

Since metaclasses are objects, they too must be instances of a class. Ev-
ery metaclass is an instance of Metaclass. Metaclass itself is an instance
of a metaclass. This is a point of circularity in the sys tem-- the
metaclass of Metaclass must be an instance of Metaclass.

5. Every metaclass is an instance of Metaclass (Figure 16.3).

Figure 16.4 shows the relationships among Class, ClassDescription, Be-
havior, and Object, and their respective metaclasses. The class hierarchy
follows a chain to Object, and the metaclass hierarchy follows a chain
through Object class to Class and on to Object. While the methods of

271
Protocol for Classes

Figure 16.3

Class

[]

[]

Class
class

m

[]
m

Metaclass

• []
[] •
• []

Metaclass
class

S m a l l l n t e g e r - In teger , .Number , Ob jec t

m [] [] •
• • • •
• • • •
[] [] • •
[] [] • []
[] • [] []
• [] • []

S ma ill n t ege r mmmk In tege r N u m b e r O b j e c t
class class m m m l m class mmmmmk class

Ft • • m •
'% [] • [] •
mmmmm mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm

O b j e c t support the behavior common to all objects, the methods of C l a s s

a n d M e t a c l a s s s u p p o r t t h e b e h a v i o r c o m m o n to a l l c lasses.

6. The methods of Class and its superclasses support the behavior
common to those objects that are classes.

7. The methods of instances of Metaclass add the behavior specific to
particular =classes.

The correspondence between the class and metaclass hierarchies is
shown in Figure 16.5, in which the part of the number hierarchy and
the behavior hierarchy of the last two figures are combined.

Figure 16.4

Class

• • .,~ii~i~ii~ili~iiiii~;i~i~ii~i~ii~;~!i!iiiiiii~i~ii~iiiiiii~!~ I
• ~,

c I a s s D e s c r i p t i o n ~JJ~;~ B e h a v io r ~:~;~:~!iii~,~:. 0 b j e c t

Class ~i: m • •
c I a s s ,,,J;~' n [] •

'~" ~ • • [] [] • •
• • []

Metacla • • []
u m ~.m n i n t l Behavior O b j e c t - [] e~ v m a s s - e s c r ' , ' " ° n - m ~ - ~
" ~ D r SS • • ~ p l class class cla
vm ,,4ve, • • []

Metaclass v -~A • • •
class -m mm mmmmm m [] mmm • mmm mm mmm [] mm

272
Protocol for C l a s s e s

Figure 16.5

| n n u n | n n m n n n m u m n n m u n n u u n u n n u u u u u n n n u n n
• • • •
• • • •

• " Smal l ln tegermmm@ Integer m N u m b e r
• c l a s s c l a s s ~ c l a s s
• ,4~ .4~ ,4k
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •

• Smal in n t e g e r ~ ~) , , . I n t e g e r ~~)~i i~ i~ • N u tuber

• !i • , , ~o~
• C I a s s)~)~
• • % iii • • "m'~

• ,% ii~
• m m % ,~iiii~,,.

• ,~, C lassDescription~i~i~::,:. B eh av io r ~ ~ , ~ i k O b j e c t

• C l a s s c l a s s .J~i • • •

,:,j::.. • • •

• • ,.:~ -. • • •
• ~ "~k • • •

• m : - - "111 , v ~ m m b M e t a c m a s s
• ~ I~ ClassDescription._..~Behavior~ Object |
• m .gill c l a s s ~ c l a s s - ~ c l a s s •
• • ,4Y+
• y.m _,~y -++ m m • • • •

M e t a c l a ~ @mmmmiimmmmimmmmmiimmmmim
c l a s s

Class Behavior Class Behav iOr defines the minimum state necessary for objects that
have instances. In particular, Behavior defines the state used by the
Smalttalk-80 interpreter. It provides the basic interface to the compiler.
The state described by Behavior includes a class hierarchy link, a meth-
od dictionary, and a description of instances in terms of the number
and the representation of their variables.

The message protocol for class Behavior will be described in four cat-
egories--creating, accessing, testing, and enumerating. These categories
and their subcategories, as outlined below, provide a model for thinking
about the functionality of classes in the Smalltalk-80 system.

273
Class Behavior

Outline of Protocol for All Classes

c r e a t i n g
• c r e a t i n g a m e t h o d d i c t i ona ry
• c r e a t i n g in s t ances
• c r e a t i n g a class h i e r a r c h y

access ing
• access ing the c o n t e n t s of t he m e t h o d d ic t iona ry
• access ing in s t ances a n d var iables : ins tance , class, a n d pool

• access ing the class h i e r a r c h y

t e s t ing
• t e s t i ng t h e c o n t e n t s of t he m e t h o d d i c t i ona ry
• t e s t ing t h e fo rm of t he in s t ances
• t e s t ing the class h i e r a r c h y

e n u m e r a t i n g
• e n u m e r a t i n g subclasses a n d in s t ances

[~] Behavior's Creating Protocol Th e m e t h o d s in a class descr ip t ion
a r e s to red in a d i c t iona ry we r e fe r to as t he method dictionary. I t is also
s o m e t i m e s cal led a me s s a g e d ic t ionary . Th e keys in th i s d i c t iona ry a r e
mes sage selectors; t he va lues a re t h e compi led fo rm of m e t h o d s (in -
s t ances of CompiledMethod). Th e protocol for c r e a t i n g the m e t h o d dic-

t i o n a r y s u p p o r t s compi l ing m e t h o d s as well as a d d i n g the assoc ia t ion
b e t w e e n a se lec tor a n d a compi led me thod . I t also s u p p o r t s access ing
bo th t he compi led a n d n o n c o m p i l e d (source) vers ions of t h e me thod .

Behavior instance protocol

creating method dictionary
methodDictionary: aDictionary Store the argument, aDictionary, as the meth-

od dictionary of the receiver.

addSelector: selector withMethod: compiledMethod
Add the message selector, selector, with the
corresponding compiled method, compiled-
Method, to the receiver's method dictionary.

removeSelector: selector Remove the argument, selector (which is a
Symbol representing a message selector), from
the receiver's method dictionary. If the selec-
tor is not in the method dictionary, report an
error.

compile: code The argument, code, is either a String or an
object that converts to a String or it is a
PositionableStream accessing an object that is
or converts to a String. Compile code as the
source code in the context of the receiver's
variables. Report an error if the code can not
be compiled.

274
Protocol for Classes

compile: code notifying: requestor
Compile the argument, code, and enter the
result in the receiver's method dictionary. If
an error occurs, send an appropriate message
to the argument, requestor.

recompile: selector Compile the method associated with the mes-
sage selector, selector.

decompile: selector Find the compiled code associated with the ar-
gument, selector, and decompile it. Answer
the resulting source code as a String. If the se-
lector is not in the method dictionary, report
an error.

compileAII Compile all the methods in the receiver's
method dictionary.

compileAIISubclasses Compile all the methods in the receiver's
subclasses' method dictionaries.

Instances of classes are created by sending the message new or new:.
These two messages can be overr idden in the method dict ionary of a
metaclass in order to supply special ini t ial izat ion behavior. The purpose
of any special ini t ial izat ion is to gua ran tee tha t an instance is created
wi th variables tha t are themselves appropr ia te instances. We have
demons t ra ted this idea in m a n y previous chapters. Look, for example,
at the definition of class Random in Chapter 12; the method dict ionary
of Random class (the class methods) contains an implementa t ion for
new in which a new instance is sent the message setSeed; this initial-
ization guaran tees t ha t the r andom n u m b e r genera t ion a lgor i thm refers
to a var iable tha t is an appropr ia te kind of number .

Suppose a class overr ides the method for new and then one of its
subclasses wishes to do the same in order to avoid the behavior created
by its superclass 's change. The method for the first class might be

M Q W

1'super new setVariables

where the message setVariables is provided in the protocol for instances
of the class. By sending the message new to the pseudo-variable super,
the method for creat ing an instance as specified in class Behavior is
evaluated; the result , the new instance, is then sent the message
setVariables. In the subclass, it is not possible to utilize the message su-
per new because this will invoke the method of the first c lass- -prec ise-
ly the method to be avoided. In order to obtain the basic method in
Behavior for creat ing an instance, the subclass mus t use the expression
self basicNew. The message basicNew is the pr imit ive instance creat ion
message tha t should not be re implemented in any subclass. In Behavior,
new and basicNew are identical. A similar pair for creat ing variable-
length objects, new: and basicNew:, are also provided in the protocol of
class Behavior. (Note, this technique of dual messages is also used in
class Object for accessing messages such as at: and at:put:.)

275
Class Behavior

Behavior instance protocol

instance creation
new Answer an instance of the receiver with no

indexed variables. Send the receiver the mes-
sage new: 0 if the receiver is indexable.

basicNew Same as new, except this method should not
be overridden in a subclass.

new:anlnteger Answer an instance of the receiver with
anlnteger number of indexed variables. Report
an error if the receiver is not indexable.

basicNew: anlnteger Same as basicNew, except this method should
not be overridden in a subclass.

T h e protocol for c r e a t i n g classes inc ludes m e s s a g e s for p lac ing t h e class

w i t h i n t h e h i e r a r c h y of classes in t he sys tem. Since th i s h i e r a r c h y is

l inear , t h e r e is on ly a n e e d to set t he supe rc l a s s a n d to add or r e m o v e

subclasses .

Behavior instance protocol

creating a class hierarchy
superclass: aClass

addSubclass: aClass

removeSubclass: aClass

Set the superclass of the receiver to be the ar-
gument, aClass.
Make the argument, aClass, be a subclass of
the receiver.
Remove the argument, aClass, from the
subclasses of the receiver.

A l t h o u g h t h e c r e a t i n g protocol for Behavior m a k e s it possible to wr i t e

exp re s s ions for c r e a t i n g a n e w class descr ip t ion , t h e u s u a l a p p r o a c h is
to t a k e a d v a n t a g e of t he g r a p h i c a l e n v i r o n m e n t in w h i c h t h e

S m a l l t a l k - 8 0 l a n g u a g e is e m b e d d e d , a n d to p rov ide a n i n t e r f ace in

w h i c h t h e u s e r fills ou t g r a p h i c a l l y - p r e s e n t e d fo rms to specify i n fo rma-

t ion a b o u t t h e v a r i o u s p a r t s of a class.

E] Behavior ' s Accessing Protocol T h e m e s s a g e s t h a t access t he con-
t e n t s of a m e t h o d d i c t i o n a r y d i s t i n g u i s h a m o n g t h e se lec tors in t h e

class 's local ly specif ied m e t h o d d ic t iona ry , a n d those in t h e m e t h o d dic-

t i o n a r i e s of t h e class a n d each of its superc lasses .

Behavior instance protocol

accessing the method dictionary
selectors

allSelectors

Answer a Set of all the message selectors
specified in the receiver's local method diction-
ary.
Answer a Set of all the message selectors that
instances of the receiver can understand. This
consists of all message selectors in the receiv-
er's method dictionary and in the dictionaries
of each of the receiver's superclasses.

276
P r o t o c o l fo r C l a s s e s

compiledMethodAt: selector

sourceCodeAt: selector

sourceMethodAt: selector

Answer the compiled method associated with
the argument, selector, a message selector in
the receiver's local method dictionary. Report
an error if the selector can not be found.

Answer a String that is the source code associ-
ated with the argument, selector, a message
selector in the receiver's local method diction-
ary. Report an error if the selector can not be
found.

Answer a Text for the source code associated
with the argument, selector, a message selec-
tor in the receiver's local method dictionary.
This Text provides boldface emphasis for the
message pattern part of the method. Report
an error if the selector can not be found.

A n i n s t a n c e c a n h a v e n a m e d i n s t a n c e v a r i a b l e s , i n d e x e d i n s t a n c e v a r i -

a b l e s , c l a s s v a r i a b l e s , a n d d i c t i o n a r i e s of poo l v a r i a b l e s . A g a i n , t h e dis-

t i n c t i o n b e t w e e n l o c a l l y s p e c i f i e d v a r i a b l e s a n d v a r i a b l e s i n h e r i t e d f r o m

s u p e r c l a s s e s is m a d e in t h e a c c e s s i n g p r o t o c o l .

Behavior instance protocol

accessing instances and variables
alllnstances

someinstance
• instanceCount

instVarNames

subclass lnstVarNames

alllnstVarNames

classVarNames

allCiassVarNames

sharedPools

allSharedPools

Answer a Set of all direct instances of the re-
ceiver.

Answer an existing instance of the receiver.

Answer the number of instances of the receiv-
er that currently exist.

Answer an Array of the instance variable
names specified in the receiver.

Answer a Set of the instance variable names
specified in the receiver's subclasses.

Answer an Array of the names of the receiver's
instance variables, those specified in the re-
ceiver and in all of its superclasses. The Array
ordering is the order in •which the variables
are stored and accessed by the Smalltalk-80
interpreter.

Answer a Set of the class var iable names
specified locally in the receiver.

Answer a Set of the names of the receiver's
and the receiver's superclasses' class vari-
ables.

Answer a Set of the names of the pools (diction-
aries) that are specified locally in the receiver.

Answer a Set of the names of the pools (diction-
aries) that are specified in the receiver and
each of its superclasses.

277
Class Behavior

Thus , for e x a m p l e ,

expression result

OrderedCollection instVarNames
OrderedCollection

subclasslnstVarNames
SortedCollection

alllnstVarNames
String classVarNames
String allClassVarNames

Text sharedPools

('firstlndex' ' lastlndex')
Set (' sortBIock')

(' firstlndex' 'lastlndex"
' sortBIock')

Set (StringBIter)
Set (StringBiter

DependentsFields
ErrorRecursion)

a Set containing one
element, TextConstants,
a Dictionary

T h e access ing protocol inc ludes m e s s a g e s for o b t a i n i n g col lec t ions of t h e

supe rc l a s se s a n d subc lasses of a class. T h e s e m e s s a g e s d i s t i n g u i s h be-

t w e e n a class 's i m m e d i a t e supe rc l a s s a n d subclasses , a n d all c lasses in

t he class 's supe rc l a s s cha in .

Behavior instance protocol

accessing class hierarchy
subclasses

allSubclasses

withAIISubclasses

superclass
allSuperclasses

Thus , for e x a m p l e

Answer a Set containing the receiver's imme-
diate subclasses.
Answer a Set of the receiver's subclasses and
the receiver's descendent's subclasses.
Answer a Set of the receiver, the receiver's
subclasses and the receiver's descendent's
subclasses.
Answer the receiver's immediate superclass.
Answer an OrderedCollection of the receiver's
superclass and the receiver's ancestor's
superclasses. The first element is the receiv-
er's immediate superclass, followed by its su-
perclass, and so on; the last element is always
Object.

expression result

String superclass
ArrayedCollection subclasses

• ArrayedCollection
Set (Array ByteArray

RunArray Bitmap
String Text)

278
Protocol for Classes

ArrayedCollection
allSubclasses

ArrayedCollection
withAIISubclasses

ArrayedCollection
allSuperclasses

ArrayedCollection
class allSuperclasses

Set (Array ByteArray
RunArray Bitmap
String Text
DisplayBitmap Symbol
CompiledMethod)

Set
(ArrayedCollection
Array ByteArray
RunArray Bitmap
String Text
DisplayBitmap Symbol
CompiledMethod)

OrderedCollection
(SequenceableCollection
Collection Object)

OrderedCollection
(SequenceableCollection
class Collection class
Object class Class
CiassDescription
Behavior Object)

D Behavior 's Testing Protocol Tes t ing protocol provides the messages
needed to find out i n fo rma t ion about the s t r u c t u r e of a class and the
form of its ins tances . The s t r u c t u r e of a class consists of its r e l a t ionsh ip
to o the r classes, its abi l i ty to respond to messages , the class in which a
message is specified, and so on.

The con ten t s of a m e t h o d d ic t ionary can be tes ted to find out which
class, if any, i m p l e m e n t s a p a r t i c u l a r message selector, w h e t h e r a class
can respond to a message , and which me thods re fe rence p a r t i c u l a r vari-
ables or l i terals . These messages a re all useful in c rea t ing a p rogram-
ming e n v i r o n m e n t in which the p r o g r a m m e r can explore the s t r u c t u r e
and func t iona l i ty of objects in the system.

Behavior instance protocol

testing the method dictionary
hasMethods

includesSelector: selector

canUnderstand: selector

Answer whether the receiver has any methods
in its (local) method dictionary.
Answer whether the message whose selector is
the argument, selector, is in the local method
dictionary of the receiver's class.
Answer whether the receiver can respond to
the message whose selector is the argument.

279
C l a s s Behavior

The selector can be in the method dictionary
of the receiver's class or any of its super-
classes.

whichClasslncludesSelector: selector
Answer the first class on the receiver's super-
class chain where the argument, selector, can
be found as a message selector. Answer nil if
no class includes the selector.

whichSelectorsAccess: instVarName
Answer a Set of selectors from the receiver's
local method dictionary whose methods access
the argument, instVarName, as a named in-
stance variable.

whichSelectorsReferTo: anObject Answer a Set of selectors whose methods ac-
cess the argument, anObject.

scopeHas: name ifTrue: aBIock Determine whether the variable name, name,
is within the scope of the receiver, i.e., it is
specified as a variable in the receiver or in
one of its superclasses. If so, evalaute the ar-
gument, aBlock.

T h u s , fo r e x a m p l e

expression result

OrderedCollection
includesSelector:

:#addFirst:
SortedCollection

includesSelector: #size
SortedCollection

canUnderstand: #size
SortedCollection

whichClasslncludesSelector:
#size

OrderedCollection
whichSelectorsAccess:

#firstlndex

true

false

true

OrderedCollection

Set
(makeRoomAtFirst
before: size
makeRoomAtLast
insert:before:
remove:ifAbsent:
addFirst: first
removeFirst find:
removeAIISuchThat:
at: at:put: reverseDo:
do: setlndices:)

T h e l a s t e x a m p l e e x p r e s s i o n is u s e f u l in d e t e r m i n i n g w h i c h m e t h o d s

m u s t b e c h a n g e d if a n i n s t a n c e v a r i a b l e is r e n a m e d o r d e l e t e d . I n a d d i -

280
Pro toco l for Classes

t i on to t h e m e s s a g e s i n t e n d e d for e x t e r n a l access, t h e Se t i n c l u d e s al l
m e s s a g e s i m p l e m e n t e d in s u p p o r t of t h e i m p l e m e n t a t i o n of t h e e x t e r n a l
messages .

T h e t e s t i n g p ro toco l i n c l u d e s m e s s a g e s to a c lass t h a t t e s t h o w its
v a r i a b l e s a r e s to red , w h e t h e r t h e n u m b e r of v a r i a b l e s is f i x e d - l e n g t h or
v a r i a b l e - l e n g t h , a n d t h e n u m b e r of n a m e d i n s t a n c e va r i ab l e s .

Behavior instance protocol

testing the form of the instances
isPointers

isBits

isBytes

isWords

isFixed

isVariable

instSize

Answer whether the variables of instances of
the receiver are stored as pointers (words).
Answer whether the variables of instances of
the receiver are stored as bits (i.e., not point-
ers).

Answer whether the variables of instances of
the receiver are stored as bytes (8-bit inte-
gers).

Answer whether the variables of instances of
the receiver are. stored as words.

Answer true if instances of the receiver do not
have indexed instance variables; answer false
otherwise.

Answer true if instances of the receiver do
have indexed instance variables; answer false
otherwise.

Answer the number of named instance vari-
ables of the receiver.

So we h a v e

expression result

LinkedList isFixed true
String isBytes true
Integer isBits false
Float isWords true
OrderedCollection isFixed false
OrderedCollection instSize 2
oc ~- OrderedCollection OrderedCollection

with: $a ($a $b $c)
with: $b
with: $c

oc size 3

T h e l a s t fou r e x a m p l e l ines s h o w t h a t i n s t a n c e s of OrderedCollection
a r e v a r i a b l e - l e n g t h ; t h e i n s t a n c e oc ha s t h r e e e l e m e n t s . In add i t i on , in-
s t a n c e s of Orde redCol l ec t ion h a v e two n a m e d i n s t a n c e va r i ab l e s .

T h e r e a r e four k i n d s of c lasses in t h e s y s t e m . Classes t h a t h a v e

281
Class Behav io r

indexed ins t ance var iab les a re cal led variable-length and classes t h a t do
not a re cal led fixed-length. The var iab les of all f ixed- length classes a re
s tored as poin te rs (word-sized references) . The var iab les of var iable-
l eng th classes can con ta in pointers , bytes, or words. Since a po in te r is a
word-sized reference , an object t h a t conta ins po in te r s will a n s w e r true
w h e n asked w h e t h e r it conta ins words, bu t the inverse is not a lways

t h e case. In i t ia l iza t ion messages specified in Class and i temized in a lat-
e r sect ion suppor t c rea t ion of each k ind of class.

Behavior instance protocol

testing the class hierarchy

inheri tsFrom aClass

kindOfSubclass

Thus

Answer whether the argument, aClass, is on
the receiver's superclass chain.
Answer a String that is the keyword that de-
scribes the receiver as a class: either a regular
(fixed length) subclass, a variableSubctass, a
variableByteSubclass, or a variableWord-
Subclass.

expression result

String inheritsFrom: Collection

String kindOfSubclass

Array kindOfSubclass

Float kindOfSubclass

Integer kindOfSubclass

true

' variableByteSubclass: '

' variableSubclass: "

' variableWordSubclass: '

' subclass: '

[~] Behavior 's Enumerating Protocol Messages specified in class Be-
havior also suppor t l i s t ing out p a r t i c u l a r sets of objects associa ted wi th
a class and app ly ing each as the a r g u m e n t of a block. This e n u m e r a t i o n
of objects is s imi la r to t h a t provided in the collection classes, and con-
sists of e n u m e r a t i n g over all subclasses, superclasses , ins tances , and in-
s tances of subclasses. In addi t ion, two messages suppor t se lec t ing those
subclasses or superc lasses for wh ich a block eva lua te s to true.

Behavior instance protocol

enumerating
allSubclassesDo: aBIock

allSuperclassesDo: aBIock

all lnstancesDo: aBIock

Evaluate the argument, aBIock, for each of
the receiver's subclasses.
Evaluate the argument, aBIock, for each of
the receiver's superclasses.
Evaluate the argument, aBIock, for each of
the current instances of the receiver.

282
Protocol for Classes

allSubinstancesDo: aBIock

selectSubclasses: aBIock

selectSuperclasses: aBIock

Evaluate the argument, aBIock, for each of
the current instances of the receiver's
subclasses.
Evaluate the argument, aBIock, for each of
the receiver's subclasses. Collect into a Set
only those subclasses for which aBIock evalu-
ates to true. Answer the resulting Set.
Evaluate the argument, aBIock, with each of
the receiver's superclasses. Collect into a Set
only those superclasses for which aBIock eval-
uates to true. Answer the resulting Set.

As an example , in o rde r to u n d e r s t a n d the b e h a v i o r of an i n s t ance of
t he col lect ion classes, it m i g h t be useful to know wh ich subclasses of
Collection i m p l e m e n t t he add ing message addFirst:. W i t h t h i s in fo rma-
t ion, t he p r o g r a m m e r can t r a c k down which m e t h o d is a c tua l l y eva lua t -
ed w h e n the message addFirst: is sen t to a collection. Th e fol lowing ex-
p ress ion collects each such class in to a Set n a m e d subs.

subs ~ Set new.
Collection allSubclassesDo:

[:class I
(class includesSelector: #addFirst:)

ifTrue: [subs add: class]]

The s a m e i n f o r m a t i o n is accessible f rom

Collection selectSubclasses:
[:class I class includesSelector: #addFirst:]

Both c r ea t e a Set of t he t h r e e subclasses LinkedList, OrderedCollect ion,
a n d RunArray.

The fol lowing express ion r e t u r n s a col lect ion of the superc lasses of
Smal l ln teger t h a t i m p l e m e n t the message = .

Smalllnteger selectSuperclasses:
[:class I class includesSelector: @=]

The response is

Set (Integer Magnitude Object)

Severa l subclasses of Collection i m p l e m e n t the me s s a g e first. Suppose we
wish to see a list of t he code for each i m p l e m e n t a t i o n . Th e fol lowing ex-
press ions p r i n t t he code on the file whose n a m e is ' c lassMethods . f i rs t ' .

283
Class Behavior

I aStream I
aStream ~- Disk file: 'classMethods.first'.
Collection allSubclassesDo:

[:class I
(class includesSelector: #first)

ifTrue:
[class name printOn: aStream.
aStream cr.
(class sourceCodeAt: #first) printOn: aStream.
aStream cr; cr]].

aStream close

The result ing contents of the file is

SequenceableCollection
'first

self emptyCheck.
i" self at: 1'

OrderedCollection
'first

self emptyCheck.
1"self basicAt: firstlndex'

Interval
'first

T start'
LinkedList
'first

self emptyCheck.
1"firstLink'

The protocol described in the next sections is not general ly used by pro-
grammers , but may be of interest to system developers. The messages
described are typically accessed in the programming environment by
selecting items from a menu presented in a graphical ly-oriented inter-
face.

Although most of the facilities of a class are specified in the protocol
of Behavior, a number of the messages can not be implemented because
Behavior does not provide a complete representat ion for a class. In par-
ticular, Behavior does not provide a representat ion for instance variable
names and class variable names, nor for a class name and a comment
about the class.

Representat ions for a class name, class comment, and instance vari-
able names are provided in ClassDescription, a subclass of Behavior.
ClassDescription has two subclasses, Class and Metaclass. Class de-

284
Protocol for Classes

scribes the representa t ion for class variable names and pool v a r i a b l e s .
A metaclass shares t h e class and pool variables of its sole instance.
Class adds additional protocol for adding and removing class variables
and pool variables, and for creat ing the various kinds of subclasses.
Metaclass adds an initialization message for creat ing a subclass of itself,
tha t is, a message for creat ing a metaclass for a new class.

Class
ClassDescription

ClassDescription represents class naming, class commenting, and nam-
ing instance variables, This is reflected in additional protocol for
accessing the name and c o m m e n t , and for adding and removing in-
stance variables.

ClassDescription,instance protocol

accessing class description
name

comment

comment: aString

addlnstVarName: aString

removelnstVarName: aString

Answer a Strin 9 that is the name of the re-
ceiver.
Answer a String that is the comment for the
receiver.
Set the receiver's comment to be the argu-
ment, aString.
Add the argument, aString, as one of the re-
ceiver's instance variables.
Remove the argument, aString, as one of the
receiver's instance variables. Report an error
if aString is not found.

ClassDescription was provided as a common superclass for Class and
Metactass in order to provide fur ther s t ruc tur ing to the description of a
class. This helps support a general program development environment.
Specifically, ClassDescription adds s t ruc ture for organizing the
se lector /method pairs of the method dictionary. This organization is a
simple categorization scheme by which the subsets of the dictionary a re
grouped and named, precisely the way we have been grouping and
naming messages throughout the chapters of this book. ClassDescriPtion
also provides the mechanisms for storing a full class description on an
external s t ream (a file), and the mechanisms by which any changes to
the class description are logged.

The classes themselves are also grouped into system category classifi-
cations. The organization of the chapters of this par t of the book paral-
lels tha t of the system class categories, for example, magnitudes,
numbers , collections, kernel objects, ke rne l classes, and kernel support.
Protocol for message and class categorization includes the following
messages.

285
Class ClassDescription

ClassDescription instance protocol

organization of messages and classes
category Answer the system organization category for

the receiver.
category: aString Categorize the receiver under the system cate-

gory, aString, removing the receiver from any
previous category.

removeCategory: aString Remove each of the messages categorized un-
der the name aString and then remove the
category itself.

whichCategorylncludesSelector:, selector
Answer the category of the argument, selector,
in the organization of the receiver's method
dictionary, or answer nil if the selector can not
be found.

Given a ca tegor iza t ion of t he messages , ClassDescr ipt ion is ab le to sup-
por t a set of messages for copying messages f rom one m e t h o d d ic t iona ry
to a n o t h e r , r e t a i n i n g or c h a n g i n g the ca t egory name . Messages to sup-
por t copying consis ts of

copy: selector from: aClass
copy: selector from: aClass classified: categoryName
copyAIl: arrayOfSelectors from: class
copyAIl: arrayOfSelectors from: class classified: categoryName
copyAilCategoriesFrom: aClass
copyCategory: categoryName from: aClass
copyCategory: categoryName

from: aClass
classified: newCategoryName

The ca tegor i za t ion s c h e m e has an i m p a c t on protocol for compi l ing
since a compi led m e t h o d m u s t be placed in a p a r t i c u l a r ca tegory . Two
message s a re provided: compile: c o d e classified: c a t e g o r y N a m e and
compile: c o d e classified: ca tegoryNarne notifying: requestor .

We also note , for t h e nex t example , t h a t Behavior suppor t s special
p r i n t i n g protocol so t h a t a r g u m e n t s to the compi l ing messages can be

computed . These a r e

Behavior instance protocol

printing
classVariableString

i nstanceVariableString

Answer a String that contains the names of
each class variable in the receiver's variable
declaration.
Answer a String that contains the names of
each instance variable in the receiver's vari-
able declaration.

286
Protocol for Classes

sharedVariableString Answer a String that contains the names of
each pool dictionary in the receiver's variable
declaration.

Take as an example the creation of a class named AuditTrail. This class
should be just like LinkedList, except that removing elements should not
be supported. Therefore, the class can be created by copying the
accessing, testing, adding, and enumerating protocol of LinkedList. We
assume that the elements of an AuditTrail are instances of a subclass of
Link t h a t suppor t s s tor ing the aud i t in format ion . Firs t , let 's c rea te the
class. We a s s u m e t h a t we do not know in t e rna l i n fo rma t ion about
LinkedList so t h a t the superc lass n a m e and var iab les m u s t be accessed
by send ing messages to LinkedList.

LinkedList superclass
subclass: .#AuditTrail
instanceVariableNames: LinkedList instanceVariableString
classVariableNames: LinkedList classVariableString
poolDictionaries: LinkedList sharedPoolString
category: 'Record Keeping'.

AuditTrail is c r ea t ed as a subclass of wh icheve r class is the superc lass for
LinkedList (LinkedList superclass) . Now we copy the ca tegor ies we a re in-
t e res ted in f rom class LinkedList.

AuditTrail copyCategory: #accessing from: LinkedList.
AuditTrail copyCategory: #testing from: LinkedList.
AuditTrail copyCategory: #adding from: LinkedList.
AuditTrail copyCategory: #enumerating from: LinkedList.
AuditTrail copyCategory: @private from: LinkedList.

AuditTraii dec la red two ins tance va r i ab le names , firstLink and lastLink,
and copied messages first, last, size, isEmpty, add:, addFirst:, and addLast: .
We also copied all the messages in the ca tegory private o n the as-
sump t ion t h a t a t leas t one of t h e m is needed in the i m p l e m e n t a t i o n of
the e x t e r n a l messages .

Some messages in ClassDescript ion t h a t suppor t s to r ing the class de-
scr ipt ion on an e x t e r n a l s t r e a m a re

ClassDescription instance protocol

filing
fileOutOn: aFileStream

fileOutCategory: categoryName

Store a description of the receiver on the file
accessed by the argument, aFileStream.
Create a file whose name is the name of the
receiver concatenated by an extension, '.st'.
Store on it a description of the messages cate-
gorized as categoryName.

287
Class Me tac l ass

fileOutChangedMessages: setOfChanges on: aFileStream
The argument, setOfChanges, is a collection of
class/message pairs that were changed. Store
a description of each of these pairs on the file
accessed by the argument, aFileStream.

We can write a description of class AuditTrail on the file "AuditTrail.st" by
evaluat ing the expression

AuditTrail fileOutOn: (Disk file: 'AuditTrail.st')

Class Metaclass The pr imary role of a metaclass in the Smalltalk-80 system is to pro-
vide protocol for initializing class variables and for creating initialized
instances of the metaclass's sole instance. Thus the key messages added
by Metaclass are themselves initialization messages - -one is sent to
Metaclass itself in order to create a subclass of it, and one is sent to an
instance of Metaclass in order to create its sole instance.

Metaclass class protocol

instance creation
subclassOf: superMeta Answer an instance of Metaclass that is a sub-

class of the metaclass, superMeta.

name: newName
environment: aSystemDictionary
subclassOf: superClass
instanceVariableNames: stringOflnstVarNames
variable: variableBoolean
words: wordBoolean
pointers: pointerBoolean
classVariableNames: stringOfCiassVarNames
poolDictionaries: stringOfPoolNames
category: categoryName
comment: commentString
changed: changed Each of these arguments, of course, is needed

in order to create a fully initialized class.

The Smalltalk-80 programming envi ronment provides a simplified way,
using graphical interface techniques, in which the user specifies the in-
formation to create new classes.

288
P r o t o c o l for C l a s s e s

Class Class I n s t a n c e s of C l a s s d e s c r i b e t h e r e p r e s e n t a t i o n a n d b e h a v i o r of objec ts .

C l a s s a d d s m o r e c o m p r e h e n s i v e p r o g r a m m i n g s u p p o r t f a c i l i t i e s to t h e

bas i c o n e s p r o v i d e d in B e h a v i o r a n d m o r e d e s c r i p t i v e f ac i l i t i e s to t h e

o n e s p r o v i d e d in C l a s s D e s c r i p t i o n , I n p a r t i c u l a r , C l a s s a d d s t h e r e p r e -

s e n t a t i o n for c l a s s v a r i a b l e n a m e s a n d s h a r e d (pool) v a r i a b l e s .

Class instance protocol

accessing instances and variables
addClassVarName: aString

removeClassVarName: aString

addSharedPool: aDictionary

removeSharedPooi: aDictionary

classPool

Add the argument, aString, as a class variable
of the receiver. The first character of aString
must be capitalized; aString can not already be
a class variable name.

Remove t h e receiver's class variable whose
name is the argument, aString. Report an er ~
ror if it is not a class variable or if it is still
being used in a method of the class.

Add the argument, aDictionary, as a pool of
shared variables. Report an error if the diction-
ary is already a shared pool in the receiver.

Remove the argument, aDictionary, as one of
the receiver's pool dictionaries. Report an er-
ror if the dictionary is not one of the receiv-
er's pools.

Answer the dictionary of class variables of the
receiver.

initialize Initialize class variables.

Additional a c c e s s i n g m e s s a g e s s t o r e a description of t h e c l a s s on a file,
w h e r e t h e f i le h a s t h e s a m e n a m e as t h a t of t h e c l a s s (fileOut), a n d re-

m o v e t h e c l a s s f r o m t h e s y s t e m (r e m o v e F r o m S y s t e m) .

A v a r i e t y of m e s s a g e s fo r c r e a t i n g o n e of t h e f o u r k i n d s of s u b c l a s s e s

in t h e s y s t e m a r e s p e c i f i e d in t h e m e t h o d d i c t i o n a r y of C lass . I n add i -

t ion , C l a s s p r o v i d e s a m e s s a g e for r e n a m i n g a c l a s s (r e n a m e : aStr ing);

t h i s m e s s a g e is p r o v i d e d in C l a s s r a t h e r t h a n in C l a s s D e s c r i p t i o n be-

c a u s e i t is n o t a n a p p r o p r i a t e m e s s a g e to s e n d to a m e t a c l a s s .

Class instance protocol

instance creation
subclass: classNameString

instanceVariableNames: stringlnstVarNames
classVariableNames: stringOfCiassVarNames
poolDictionaries: stringOfPoolNames
category: categoryNameString

Create a new class that is a fixed-length (reg-
ular) subclass of the receiver. Each of the ar-
guments provides the information needed to
initialize the new class and categorize it.

289
Class Class

Three other messages, like the one above except tha t the first keyword
is variableSubclass:, variableByteSubclass:, or variableWordSubclass, sup-
por t the creation of the other kinds of classes. Note also tha t the system
requires tha t a subclass of a variable-length class be a variable-length
class. When possible, the system makes the appropriate conversion; oth-
erwise, an error is reported to the programmer.

Suppose tha t every time we created a new subclass, we wanted to in-
stall messages for storing and retrieving the instance variables of tha t
class. For example, if we create a class Record with instance variable
names name and address, we wish to provide messages name and ad-
dress, to respond with the values of these variables, and name: argu-
ment and address: argument, to set the values of these variables to the
value of the message argument . One way to accomplish this is to add
the following method to the instance creation protocol of class Class.

accessingSubclass: className
instanceVariableNames: instVarString
classVariableNames: classVarString
poolDictionaries." stringOfPoolNames
category: categoryName

I newClassl
newClass ~- self subclass: className

instanceVariableNames instVarString
classVariableNames classVarString
poolDictionaries stringOfPoolNames
category: categoryName.

newClass instVarNames do
[aName I

newClass compile: (aName, "
1", aName) classified' #accessing.

newClass compile: (aName, "' argument
', aName, '~- argument.
1argument") classified: #accessing].

1'newCtass

The method creates the class as usual, then, for each instance variable
name, compiles two methods. The first is of the form

name
tname

and the second is of the form

name: argument
name ~- argument.
Targument

290
Protocol for Classes

So, if we create the class Record, we can do so by sending Object the
following message.

Object accessingSubclass: #Record
instanceVariableNames: 'name address'
classVariableNames: " "

pooIDictionaries: " "

category: 'Example'.

The message is found in the method dictionary of Class, and creates the
following four messages in the category accessing of class Record.

accessing

n a m e
tname

name: a r g u m e n t
name ~- argument.
targument

address
taddress

address: a r g u m e n t
address ~ argument.
targument

....-" "~...

. .o--"

. . .-"
...--

. , . . . -"
. . . - "

..-"
....-

17'
The Programming
Interface

Views
Text Selections
Menu Selections

Browsers
List Selections
Scrolling
Class Definitions

Testing
Inspectors

Error Reporting
Notifiers
Debuggers

292
The Programming Interface

This chapter shows how a p rogrammer adds new classes to the system
and then tests and debugs their behavior using the Small talk-80 pro-
g ramming environment . The chapter presents a scenario of how a pro-
g r a m m e r might add class FinancialHistory to the system. FinancialHistory
was used in the first par t of this book as an example class. Its protocol
and implementat ion descriptions can be found inside the front cover of
this book. This example scenario is not intended as an exhaustive sur-
vey of the Small talk-80 programming interface. It is intended as an
overview tha t provides motivation for the kinds of graphics support de-
scribed in subsequent chapters.

A user and the Small talk-80 programming envi ronment interact
through a bitmap display screen, a keyboard, and a pointing device. The
display is used to present graphical and textual views of information to
the user. The keyboard is used to present textual informat ion to the
system. The pointing device is used to select information on the display
screen. Small talk-80 uses an indirect pointing device called a mouse. A
cursor on the screen shows the location cur rent ly being pointed to by
the mouse, The cursor is moved by moving the mouse over a flat sur-
face. The mouse has three buttons, which are used to make different
kinds of selection.

Views The display screen contains one or more rec tangular areas called views.
The views are displayed on a gray background and may overlap. Each
view has a title shown at its upper left corner. Figure 17.1 shows the
Smal l ta lk screen with two overlapping views on it. Their titles are
Workspace and System Browser. These two views contain only text; oth-
er views might contain pictures dr both text and ~ictures.

The view toward the top of the figure is a workspace. It contains text
tha t can be edited o reva lua ted . The view towards the bottom of the fig-
ure is a system browser. It allows the class descriptions in the system to
be viewed and edited. The arrow in the lower r ight par t of the browser
is the cursor. It shows t h e cur rent location of the mouse. At the lower
r ight corner of each figure in this chapter will be a small rectangle con-
taining three ovals a r ranged side by side. These ovals r e p r e s e n t the
three mouse buttons. When one of the but tons is pressed, the corre-
sponding oval will be filled in. The buttons will be referred to as the left,
middle, and right buttons, even though they may not be a r ranged side
by side on some mice.

A variety of information is typically visible on the Small talk-80 dis-
play screen. In order to take some action, the user indicates what par t
of the visible information should be affected. The general activity of
directing a t tent ion to a par t icular piece of information is called selec-

2 9 3
V i e w s

@iiiilBi!!ili!!@!ii!j@!i!iiiiii iiiiiiiii!iiiiiiiii@iiiiiii@@@ii Workspa ~e ~iii~iii~ii@i@iiii!i~iiiiii~iiiiiiiMii~iiiBi!iMiiiiiB~ii~iiiiii!iiii~i~i~!ii@iiiiii!~Bii~iii~Miii~iiii ~
iii!iiiii iil Welcome to the st andard 8mallt atk- 80 svstem i~

iiiiiiiiiii i i i i@B iiil i!i iiiiii! !ii !!,
Collections-Sequen(.
Collections-Text Pen ~ area
Collections-Arraye(Point companng bottom
Collections-Support Quadrangle rectangle functions bottom',

~ testing bottomCenter
Graphics-Display O truncation and rour bottomLeft
Graphics-Paths transforming bottomRight
Graphics-Symbo s copying bottomRight:
Graphics-Views printing
Graphics-Editors pr-ess printinq corner cla55

i i ~enter
"Answer the point at the center" of the receiver,"
*self topLeft + self bottomRight ..".,'2

i

iiiiiiiiii; !iiiii;ii i iii!;iiii i[i i iiii i[i i li!ii[iiiiiii i iiiiii iiiiii!iii;iiiiiiiiiiiiii ii i iil i!iiiil i iii i! iiiiiiiiiiii iiiiiiiiii !iiiiii i iiiiiiiiil ii i!iiiiiii! i iiiii !iiiiiiii i i i iiii iiiii i iiiiil i i!ili!iiiii i ii i iiiiii ilili i iiiiiiiiii!iiiiii ii
Figure 17.1

Text Selections

tion. 'I'he system gives visual feedback to indicate the current selection.
The most common feedback mechanism is to complement a rectangular
area or the screen, changing black to white and white to black. To begin
using ~he system, one of the views is selected. The selected view is indi-
cated by complementing only its title. The selected view will be com-
pletely displayed, obscuring the overlapping parts of any other views. In
Figure 17.1, the browser is the selected view.

A different view can be selected by moving the cursor into part of its
rectangular frame that hasn't been overlapped by other views, and then
pressillg the left button on the mouse. In Figure 17.2, the workspace
has been selected. Note that the left mouse button is pressed. The
worksl)ace now obscures the overlapped part of the browser.

The Smalltalk-80 text editor provides the ability to select text and to
perform editing operations on that selected text. For example, to re-
place the sequence of characters the standard wi th my special in the
works:pace, the old characters are selected and then the new characters
are typed.

294
The Programming Interface

... Welcome to t h e s t a n d a r d Smal l ta lk-80 systen~

~iiiiiiiii~i~i~i~ii!!iiiiiiiiiiiii!iiiiii
Collections-~,equen(
Co l lec t ions-Text Pen
Col lect ions-Arrayec Point
Collections-Sup.port Quadran ~1

Graphics-Display OI
Graphics-Paths
Graphics-Symbols
Graphics-Views
Graphics-Editors i ~ ~ : ~ i i l class I press printing I c°rner

• c e n t e r

"Answer the point a t t h e c e n t e r o f t h e receiver,"
-tself topLef t + self bottomRight / / 2

iiii
Figure 17.2

Characters are selected using the left mouse button. The cursor is posi-
t ioned at one end of the selection and the mouse button is pressed (Fig-
ure 17.3).

The text selection is now e m p t y m i t contains no characters. The posi-
tion of an empty selection is shown with a carat (an inverted ~'v"). The

Figure 17.3

Welcome to,~,he standard 8malltalk-80 system

295
Views

carat is partially obscured by the cursor in Figure 17.3. While the
mouse button remains pressed, the cursor is moved to the other end of
the characters to be selected. The selected characters are shown in a
complemented rectangle (Figure 17.4).

When the button is released, the selection is complete (Figure 17.5).
When characters are typed on the keyboard, they replace the selected
characters. After typing the new characters, the selection is empty and
positioned at the end of the new characters (Figure 17.6).

Figure 17.4

Figure 17.5

Figure 17.6

~i~!~!~! W

[iii!ii

W e l c o m e to l ~ m a l l t a l k - 8 0 _~x.,'stem

Welcome to i i i l~mal l ta lk-80 s'..,,'.~ t e m

 i ! i i i i i i i i i i i i i jiiii!ijjiiii iiii! !iii!iiiiii!iii! ![iiii!i!iiii!illi! i!i ii !!ii!i!ii[i iiiii ii i!iii[[iiii i!iiii iij ! iiii iiii ii!i ! ! ii i[!ii i [i i!
W e l c o m e to my ~,p~,_-..ia~,S a l l ta tk - ,£n ~,v~,t~m iii!ii r~ ' - - ! i l ! i i

296
The P r o g r a m m i n g In t e r f ace

M e n u S e l e c t i o n s

Another kind of selection used in the user interface is called m e n u se-

lection. The middle and right mouse buttons are used to select com-
mands from one of two menus. When one of these buttons is pressed, a
menu appears at the location of the cursor. The menu obtained by
pressing the middle but ton contains commands re levant to the contents
of the selected view. When the view contains editable text, as does the
workspace, these commands relate to text manipulat ion. The menu
obtained by pressing the r ight but ton contains commands re levant to
the selected view itself. The middle-button menu may be different in
different views, but the r ight-but ton menu is always the same.

Characters can be deleted from a piece of text by selecting the char-
acters and then invoking the cut command from the middle-button
menu. In the next picture, the characters special have been selected
and the middle but ton has been pressed. The menu of commands rele-
vant to the contents of the view has appeared. While the but ton is held
down, the cursor is moved to select the cut command in the menu (Fig-
ure 17.7). When the but ton is released, the selected command is carried
out. In this example, the selected text is removed (Figure 17.8).

Figure 17.7

Figure 17.8

[!iiiiiiiiiiiiiiiiiiiii i!iiiiiii!i![!iii!iii
,a. q,a. in
J n d o

| l i ~ ~ 0 s y :5 t @ rn

P ' ~ I
' Jo l t !

p r i n t l t !
,9. C: C: e p t I
c: eL rt c: e I I

I

100

297
B r o w s e r s

A text selection can be t reated as a Smalltalk-80 expression and
evaluated. There are two commands in the middle-button menu to car-
ry out such an operation, dolt and printlt. Selecting dolt simply evaluates
the selected expression and discards the result ing value. Selecting printlt
evaluates the selected expression and prints its value after the expres-
sion. For example, after typing and selecting the expression Time now,
printlt will pr int out the result ing new instance of Time (Figure 17.9).
The printed result becomes the current text selection (Figure 17.10).

i!ililijiiiiiii ,j~,,j,=,
iii~i!i I~I ',,,'v'el,::orrle t,:, rn v :: ,-:,-,r,v_ - r -.

liii!! i Ii m J ~ ! F' '=' '~ t ~,

!iiiiii ..'.::'~ d o l t

ii::::iil ~{ c:,_~, n , : :e I

•I!•i•iiiiii•••iiij•••iiii]ijiIi•!iii•i•ii••iiiii•iiii•i•!i•iii•iiiiiiiiiii•iii!iiiiii•••i•!i••iii•iiiiiiiiiiiiiii!ii
.::.- ',_--; 0 5 v s t e m ,i!iiii!

Figure 17.9

Figure 17.10

W e l c o m e t o m y 8 m a l l t a l k - 8 0 s y s t e m

T i m e n o w i J m T ~ e I , , ~ m

If the cursor is moved outside the menu before the but ton is released,
no command is carried out.

B r o w s e r s A browser is a view of the classes in the Smalltalk-80 system. Existing
classes are examined and changed using a browser. New classes are
added to the system using a browser. A browser consists of five rectan-
gular subviews. Along the top are four subviews showing lists. Each list

298
T h e P r o g r a m m i n g I n t e r f a c e

may or may not have one of its items selected. The selected item in
each list is complemented. The contents of the list cannot be edited
through the view, they can only be selected. Below the four list
subviews is a subview showing some text. That subview is similar to the
workspace, allowing the text to be edited. The selections in the four
lists de termine what text is visible in the lower subview. When a selec-
tion has been made in all four lists, the lower subview shows a
Smalltalk-80 method. The method is found in a class determined by the
selections in the two lists on the left. The method within tha t class is
determined by the selections in the two lists on the right. The browser
in Figure 17.11 is showing the method used by Rectangles to respond to
the message center.

~ - ~ ~ - ~ :,:~!~!~i:,]ii iii ili iii il iii iii ii [ilil ill
C o l l e c t i ons -Se , : : lU e n (J
C o l l e c t i o n s - T e : x : t Pen ~ ,_~. re a
C o II e - t i o n s - ,'A r r,~. y e ,: P o i n t c o m p o. n n g b o t t. ,:, r,,
C o l l e c t i o n s - S u p p o r t Q u a d r a n g l e re,::t,_~.ngle fu r~ , : : t i ons b , : , t t o r m

iZi , l i l l l h l [I ~ i ~ ' ' ' u i i I ~ ' ~ I ~ I t e s t i n g b,:, t t o r,,,::: e r, t e r
G r a p h i c s - D i s p l a y Ol t r u r , c:,~t iorJ a.nd r, : ,ur bc, t t c , r r~Lef t
G r a p h i,:: s - P,_~. t h s t r,_~. n s f o rrni n g b o t t o rn R ig h t
(31",9. ~1 hi - s - :B :.,,' m b ,:, I z, c ,:l p I:" i n !_4 I::, o t t o rl-i R i g h t ',
'3 r,_~. p h ic z, - V i e v..,' z. | F' r in t i n g
G r,_~. p h i ,:: s - E d i t i:l r ~, L p r e s s p r i rl t i rl q c El r n i~ i r

i l l l l l l~l lBial l l i l l } l l l C I ,_~. 5 5 -

~ : : e r t t e r

" A n s v , , , ' e r t h e p o i n t ,9.t t h e c e n t . e r o f t h e t ec :e i ' ~ , ' e r . "

• t s e l f t , : , p L e f t + s e l f b o t t o m R i g h t /.," :2

i[Eii i! iiiiiiii iiiiiiiiiiliiiiiiiii]iiiiil iii iiiiii [ii[iiiiiii ili iiiiiiiii iiiiiii iii ili iiiii iii iiii ill iiiiiiiiiiiiiiiiii iiiiii iiiiiiii iilii iliiii iiiiiiiiiiiil iiiiiiil iii iiiiill iiili iiiii[iiiiiiiiiiiiil iii iiiiiii!i!ili iii iiji

Figure 17.11

The classes in the system are organized into categories. The leftmost
list in the browser shows the categories of classes in the system. When
a category is selected, the classes in tha t category are shown in the next
list to the right. In the example, the category Graphics-Primitives is se-
lected. That category has four classes in it. When one of these classes is
selected, its message categories are shown in the next list to its right.

List Selections

299
B r o w s e r s

Since Rectangle is selected, the categories in its instance protocol are
displayed. At the bottom of the second list, two rectangular areas are
labeled instance and class. One of these will be selected at all times. If
class is selected, then the next list to the right shows the categories of
class messages; if instance is selected, the list shows the categories of in-
stance messages. When a message category is selected, the selectors of
messages in tha t category are shown in the r ightmost list. When one of
these message selectors is selected, the corresponding method is
displayed in the subview at the bottom of the browser. The method
displayed can be edited and the old version can be replaced by the
edited version, if desired.

A selection is made in a list by placing the cursor over an item and
then pressing and releasing the left mouse button. In Figure 17.12, an-
other i tem is selected in the browser's r ightmost list. Therefore, another
method is presented in the lower text subview.

..,.,.,_ _,.,.,.,,,,,

C o l l e - - t i o n s - : _ : ; e q u e r l (- -

C o II e,:: t i i:, n s - T e >:: t F'e n I
C o I I e ,:: t io n s - A r r a. y e ,: F',:, i n t ,:: o m p a r i n g
(_-: El II e c t io n s - 8 u p p c I r t ,::...,. u a. d ra. n g le re c t a. n !ale fu r l ,:

I ~ I i i l] i [I / ~ I I I l ~ I ~ I -] ~ i i I I t e 2, t i n g
G r a. p h i c s - E:,i s p I,_~ y O i t r u rl c,~. t i o n a. n,:
G r a. l:' h ic s - Pa. t h s t r a. n s f o r rrl i n g

G ra. IF' h ic s - :E; y rn b,_-, Is c o p y in g
,:3 r,~. IF' h ic s - 'v'i e v,.,' s p r i n t i n g
Gr ,_~.pr - , ics-Edi t i : i rs I ~ l . l ~ l / ~ - ~ c:l,_~.ss I l l p r e s s p r i n t i n g

b o t t o m O e n t e r

b o t t o rl-i

bll_l 1: t o rl-i:

b o t t o rrl R i g I-i t

b o t t o m Rig h t :

I:: e rl t ill r

c i:l r rl Q r

",&nsv,. , 'er t h e p o i n t a. t t h e c e n t e r o f t h e I :) o t t o r n h o r i z o n t a . l l i r le o f t h e

r e c : e i v e l ' . "

¢ s e l f c e n t e r ::,:: @ z, e l f b o t t o m

hP.
:~:~:

iiiill
Figure 17.12

300
T h e P r o g r a m m i n g I n t e r f a c e

If the left button is pressed and released while the cursor is over the
i t em already selected, that item is deselected (Figure 17.13).

, ' , - , - , - - , - , - i - , .

Collections-Sequen(
Collections-Text Pen
Collections-Arrayec Point
Collections-Support Quadrangle rectangle func

mr~ar~m, l lU in~ i~ i~ i ~ t e s tin g
Graphics-Display 0 truncation an(
Graphics-Paths transforming
Graphics-Symbols copying
Graphics-Views printing
Graphics-Editors ~ press printing

message selector" and argument names
"comment stat ing purpose of message"

~ area
comparing bottom

bottom:
bottomC~nter
bot t omL,~'ft
bottomRight
bottomRight:
center-
corner

I temporary variable names I
statements

Figure 17.13

When a message category is selected, but none of its message selectors
have been selected in the rightmost list, the lower subview contains
some text describing the various syntactic parts of a method. This text
can be replaced with a new method to be added to the system. The new
method will be added to the selected category.

If a class category has been selected, but none of its classes has been
selected, the lower subview contains some text describing the various
parts of a class definition. This text is in the form of a message to a
class (Object, in th i s case) asking it to create a new subclass of itself
(Figure 17.14).

301
Browsers

Collections-Be ~I "
Collections-Te I~ Pen --
Co l l ec t i ons -A r ~i Point,
Co l lec t ions-Su ~ Quaoranq,~

i I f ~ l . l l I I i = l m m l ~ R e C t a r u l e
Graphics-Disp l I~ ~
G raph i cs -Pa th ~
Graph ics -Svml i~l i
Graphics-\."]e~.~ ~ L
Graphics-Edi t , - ~ ~ - - ililili

- " ~ class i ii!i

Obiect subclass', #NarneOfClass iiilii
instance'v 'ar iableNames: ' inst \ . "arName "1 inst \ . "arName2' iii!i
c lass\,"ar iableNames: 'C:lass\."arName 1 Class'v 'arName2' iii{i!
poolE:,ictionaries: " ii!?~ii
cate.qorv: 'Graph ics-Pr imi t i ves ' iiiiiii

Figure 17.14

302
The Programming Interface

Scrolling
A view may not be large enough to show all of the information it
might. For example, many of the lists viewed by the browser are too
long to be completely displayed in the space available. The view can be
positioned on different parts of the list by using a scroll bar. A scroll
bar is a rectangular area that appears to the left of the subview con-
taining the cursor. The gray box in the scroll bar indicates which part
of the total list is visible in the view. The height of the scroll bar repre-
sents the length of the entire list. The part of the scroll bar occupied by
the gray box indicates the part of the list that is visible.

Figure 17.15

New Pro.iec ts
Numer i c -Magn i t ude :
Numer ic -Numbers
C o l l e c t i o n s - A b s t r a c
,3o l lec: t ions-Unorder
Co l l ec t i ons -Sequen t
C o l l e c t i o n s - T e x t
C ollec t i o n s-,'A rra ye,:
C o l l e c t i o n s - S u p p o r t

Ob.iect subclass' #NameOfJ(

i n s t a n c e V a r i a b l e N a m e s

By moving the mouse into the scroll bar, another part of the list can be
shown. This is called scrolling. When the cursor is in the right hall of
the scroll bar, it takes the shape of an upward pointing arrow. If the
left mouse button is pressed, the items in the list appears to move up in
the subview and new items become visible at the bottom. When the
cursor is in the left half of the scroll bar, its shape is a downward point-
ing arrow; pressing the left button makes an earlier part of the list visi-
ble. For example, the browser's leftmost list can be scrolled to show
categories earlier in the list (Figure 17.15).

Views containing text can also be scrolled if the view is too small to
show all the text.

3 0 3
Browsers

Class Definitions
A new class can be added to the system by selecting a class category
and editing the text describing the parts of a class definition. The
FinancialHisto~, example will be added to the category named New
P r o j e c t s .

While text is being changed in the lower subview, it may not accu-
rately represent a class definition or a method. The accept command in
the middle-button menu is used to indicate that the editing has been
completed and the class definition or method should be added to the
system (Figures 17.16 and 17.17).

ii!!iiil ii!!iil]iii!iiiiiiiiiiiiiiiiiii]iii]i]iiiiiiiiil iiii ili i iii iiiiili i!ii iiiiiiiii!iiii ili !iiiiiiiiiiil iii ilii !ii
ii ili i iiiiil ili i~!!i~.i~i~!~i~i:i~i*i~i~:i~i:!%~i~i%iiiiiii i ili iil iii iiiiiiii iiii iiii ili iii iii I
i~ iiii!iiii[iil i[ill ~ m ~ ~ i i i i i i i i i i i i!ili!iiiiii i!i ii! ii~!iil i i!i i i i i i I :~: : :: : : : : : :~ :::

~i~!~iiiiii i i i ~
i i l l iii ili iil ii ~ N u n e r i c - M a g n i t u d e
!i i!! ~ i !!i iii i! Numer ic -Nun- ,bers
i! i! i i i i i i i i i! i Co ec : t i on~ -a .bs t rac
iiiiiiiii!iiiiiii!ili Co l l ec t i on~ , -Uno rde r ~.!~,_~.ir,
iiiill i::ii! Co l l ec t i on~ . -£e uen,: I u'n,:tE,
ili{iiiiiiiiiiiiiiiii ,2, 011 e c r io n s - T e ::,:: t c,3 p y
iiiiiiiii[iiiiiii!ii[Col lec ti,:,ns-,a, rr,_~.ve,: OUt
iii[iiiiiiii[iii[ii C o l l e c t onc,-Sup ~-,_-,r-t p a s t e
i - : ! i ! i i i l ~i!i! i i i l '
iii[[~i iiiii[iii[ii G r a p h i c s - P r i m i t i v e s , dE, i t
: : ! i i~ i i i~ i [! i ! i~ i ! : : I I ! IilPql,~IB~lilllll~a~:~ c l a . ss p r i n t l t

f o r m & t ii[ii ~ O b j e c t subclass: # F i n a n c i a l H i s t o r y
i[[[i ~ : i ns tance ' v ' a r i ab leNames : ' c a s h O n H a n d in,-_:or,-,es e:: , : :penditure~' I ~ . e ~ I
iiii! W c lass ' v 'a r iab leNames : "
i!iii ~ poolE:,iction~ries: " sp,~.,,,,.'r,
iiii ~ c~teq,_~,-v: 'Ne,.v P,-oiects' e!<I:,lain

Figure 17.16

Figure 17.17

N u m e r i c - M a g n i t u d e ~ no messages
Numer ic - N u m b e r s

C o l l e c t i o n s - U n o r d e r [
C o l l e c t i o n s - S e q u e n t
C o l l e c t i o n s - T e x t ,

C o l l e c t i o n s - S u p p o r t

A O b . i e c t subc lass : # F i n a n c i a l H i s t o r y

i i

1001 I

3 0 4
T h e P r o g r a m m i n g I n t e r f a c e

The menu tha t appears when the middle button is pressed is differ-
ent in each of the browser's subviews. In the subview showing the class-
es in a category, the menu includes an item called definition. This com-
mand causes the class definition of an existing class to be displayed
(Figures 17.18 and 17.19).

This class definition can then be modified with the s tandard text
editing operations. Af te r changing the text, accept must be selected
again in the middle-button menu. For example, an instance variable
could be added to all Rectangles by adding its name to the appropriate
place in the class definition.

Figure 17.18

iii!ii!iiiiiiiiii iiiiiiiiiiiiiiiiiiiiiii{iiiiii!ii!l

-: ~ . 5 5 '- L I _

100 3

Figure 17.19

iill i! iiii!!iii!i!iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii iiiiiiiiiiiiiiii!iiiiiiiiiiiiii!iiiiiiiiiiiilili ii!iiiiiiil i!i!iii! iliiiii !
i! ili if! iii iil ~ m ~ m . . i iiiiiiiiiiiiiiiii!i!i!i!i!i!i i i iiiii iii i iiiil i

iiiiiiii!ii~iiiiiiiii N~,.,.' p ,o i~o t_ , I m
iiiiiiiili!~i~ Numeric:Ma-qnl m Pen ,~.cces_~inq
ii!ili!iiii~il Numeric-Nun~b I ~ Point comparin.-q
iiiiiiiii!ii!iii~ii Collections-,ALt E'~ Quadra.n.qle r-ectan.qle- funct
~ii!i~!!!i!ii~!i Collections-U 4 ~ ~ testinq-
i!ii!i::i::iiiiiii::!iii! Cotlections-Se] ~ - trunca-tion and
i!!!iiiiiii~iiiiii! Collection_~-T~ [~ tran_~formin.q
!iiii!iiiiiil Collection_~-Aq El copyin¢:l
ii!iiiiiiiii!~iiii Collections-Su| ~ printin~
!..!:i:}!!:i!!:i:!~!!i. R l l m ~ ' ~ " ' i I ' m " ~ " ~ , , l w a , ~ , ~ clas_~ :press F;rinting

ii!i!ii~ii!iii~!~ii!i~ii!!l instance\,"ariableNames: 'origin corner '

c a t e g o r y : 'G rap hie5 - Primi ti',,,'e 5'

ions

r o u t

1001

305
B r o w s e r s

Another i tem in the middle-button menu for the class list is
categories. When it is selected, the message categorization is shown in
the bottom subview (Figures 17.20 and 17.21).

iiiiiiiiiilllii~iiiiiiiiiiiiiiiiiiiiii!iii!iiii!iiiiiiiiiiiiiiiliiiiil o
!!!iiiifitii!iiili !iiiiiiiiliil!iliii!iliiiiiiilii!iiiti -, , ,~_
!iiiifi//!Ii h . - - - m - - m : : : : : : : : : : ~*~o~o~ •
i!!ii!ii!!iii!iill Numer ic-Magn ~ i l ~ l l J f i leOut) messages
~!iiiii~i!i!iiiiiii~ii!i Numeric-Numb ~ ; h ierarchy
!!iiiiiiiiiiiiiiii[ii! Collections-,'Ab ~ def ini t i°n
[iiiiii!ii!i!!ii!iiiii Col tect ions-Un ~ comment

ii!i::iiiSiiiiiiiili Col lect ions-Te ~ remcwe
iiiii!ii!!!iiiiii i!!! Col lect ions-Ar
iiiiiii!iiiiiiiiii ~iil Col lect ions-Su I
i[i[[ii[{iiiiiii[i[[i Graphic~-Primi ~
~i!ilii::il!l{iiill - ~ class

Figure 17.20

Figure 17.21

i!ii!iiiiiii!i iiiiiii i {iiiiiii!iiiii{iiiiii!iiii!iiiiiiiiiiiiiiii!!iii!ii!!

IW

!iiiiii!i
000

The new class has a single, empty message category called As yet
unclassified.

3 0 6
T h e P r o g r a m m i n g I n t e r f a c e

The categorization can be changed by editing the text and selecting
accept (Figures 17.22 and 17.23). Notice the change in the third subview
from the left of Figure 17.23. There are now three categories, transac-
tion r e c o r d i n g , i n q u i r i e s , a n d p r i v a t e .

i)) ~)i)))i)i))i))))))))))))i)i))i)))i)))i)))i)))ii)iii))ii))))))))i)))ii))!i))ii)))i))ii))))ii)))iiii)ii)ii)))))))i))))))i))i))))
iii iiiiiiiiiii ! ~
)i)))i)))))))))) N u m e r i c - M a g n i t u d e ~ no r,-,essage~,
))i)i))i il)))) N u m e ri c - N u m b e r-~.
)i)))!)))))i!)i))) C o l l e c t i o n s - A b s t r a c
)))))))))))))) Co l l ec t i o n s - U n o r d e r
))i~i iiii!!iiiiiiiii C o l l e c t i o n s - Sequen,:
)))))i))))))))))) C o l l e c t i o n s - T e x t a.g._~lr,
: .. :~i~:i:i: i .-'El -i 'q LIFI 3C ~i~i i~::iiiiii~i~i~ L.,L l l ec t l c ns-, 'Arra\ , 'ec

)))r'Ir (' t r a n s a c t i o n reco rd inc l ')
::lass

i~i , ~ " p r n t l t ,4 M <, oqo, o.~,~ ~m m . ' format

))) s p a w n !

Figure 17.22

Figure 17.23

))iiiii)i)))))ii)ii)i)ilil)iiiii))))!il)iiii)))i)iii))i)))i))iiii)))ii!i iliiii)i)il)iil))iiiii))i))i)iil)i))!i)))i)J
)()~~m--'-'=-i)))))i)))))))i)))) i)))))))i)[)))))i))~))))i))))
m m - - - - - LL_)i)il))))) N u m e r i c - M a g n i t u d e

i i! i!i i i! i i Numer i c -Numbe rs

"i !ii iil iii iii C o l l e c t i o n s - , ' A b s t r a c
ii ii!iliiiiii!!)ii C o l l e c t i o n s - U n o r d e r
iiiil !ii i!iiiil C o l l e c t i o n s - S e q u e n , :
i iil ii! iiiili C o l l e c t i o n s - T e x t
ii i)iii)i i iii Col le c t ions- . 'A r r -ay ec
!iiiiii iilii C o l l e c t i o n s - S u p p o r t
i i!{)iii i G r a p h i c s - P r i m i t i v e s .

~ ' t r a n s a c t i o n r -ecord ing ')
)) (' inquir ie_~')

('p r - iva te"~

t ranse tc : t i on re c:c,r-di
inqu i r ies
p r i v a t e

00

307
Browsers

After a new class has been added to the system, methods can be add-
ed by selecting categories and editing method templates (Figures 17.24
and 17.25).

Notice the change in the rightmost subview of Figure 17.25. The se-
lector of the new method is added to the (previously empty) list and be-
comes the current selection.

iiiiiii!iiiiiiiiiiili! i iii!iiiiiii!iiiiiiiiiiiiiiii:iiiiiiiiiiiiiii!iiii
i!iii!iiiiiiiiiiiiii!i :

il i!iiii ii{iii iii N u m e r i c - M a g n i t u d e : ~ ~n~m~.1~.~:~m~.ll'
iiiii~i~i!iiiiiii~iiiil Numeric-Numbers in,::luiries
::i!i:4::ili::!il C o l l e c t i o n ~ - A b ~ t r & c o r m r a t e . . : : . . . : . : : : . . : . _ , _ ~.

i!iiiiii!iiiii!iiiiiii C o l l e c t i o n s - L l n o t - d e t
!iii!iiii~i!ii{iiiiiii C o l l e c t i o n s - S e q u e n (
iiii!iiiiiiiiiiiii!iii C o l l e c t i o n s - T e x t
i!iiiiiii!!~iiii!i~ii! C o l t e c t i o n s - , ' A r r ~ , ¢ e ¢
i:: i{i :: ~ !!i iii ill C o l l e c t i o n ~ , - R u ~ ~ot-t :::i~:~ ' - ~- F~
~!iiii!i ~!ilili O r a p h i c : ~ , - P r i m i t i v e ~ , .
i :: i.-il :: ii~::~i~ i~i::i~i ~ i i lilliRILtl~ll Ii1[~11 01455

{ i i i i i l T s p e n d : a m o u n t for', r e a s o n

ii!iiil, ~ e x p e n d i t u r e s a t : r e a s o n

iiiii! i, ~ p u t : (s e l f t , 3 t a . I S p e n t F o r : r-e._~.son) + ,~.mo,Jnt,

iiiili c a. s h 0 n H,_~. n d ~- ,:: ,~. s h 0 n H ,9. n d - ,~. m o,.J n iii!iii

~ga i l - ,
u n d o
C: 0 p ~.,.'

C U t
p g s t e

d o l t
p r i n t l t
f o rm & t

I
s p a w n
e x p l a i n

Figure 17.24

Figure 17.25

~ ' ~ - - ~ - i i i i i i i i i i i i i iiiiiiiiiiiiiiiiiiiiiiiiiii! iii iiii~i~i

iili N u m e r i c - N u m b e r s i n q u i r i e s
U! C o t l e c t i o n s - A b s t r a c p r i v a t e
iili C o l l e c t i o n _ ~ - U n o r d e t
iii C o l l e c t i o n s - S e q u e n (
iili C o l l e c t i o n s - T e x t
i!i! C o l l e c t i o n s - A r r a ~ o ' e (
iili C o l l e c t i o n s - S u p p o r t
i~ii G r a p h i c s - P r i m i t i v e s . ~ m m ~ c l a s s

- - s p e n d : a m o u n t fo r : r e a s o n

e x p e n d i t u r e s a t : r -eason

p u t : (s e l f t o t a l S p e n t F o r : r e a s o n ~ + a m o u n t ,

c a s h O n H a n d e c a s h O n H a n d - a m o u n ~

I I l } l l l l l l l l ~ l l l l l ~ i ~

iOOi
iiiii!i

308
The Programming Interface

Testing After the methods shown in Chapter 5 have been added to
FinancialHistow, instances can be created and tested by sending them
messages. First, a new global variable will be added to the system by
sending the message at:put: to the dictionary of global variables whose
name is Smalltalk. The first argument of at:put: is the name of the glob-
al variable and the second is the initial value. This global variable will
be used to refer to the instance being tested (Figure 17.26).

I I

Figure 17.26

Welcome to my S m a l l t a l k - 8 0 sys tem

Time n o w 10 :02 :45 am

3 0 9

Testing

Messages are sent to HouseholdFinances by typing expressions in the
workspace and evaluating them by invoking the commands dolt or
printlt (Figure 17.27). Several expressions can be selected and evaluated
at one time. The expressions are separated by periods (Figure 17.28).

.................... i,i,lil!iiii!iiiiiiiiiiiiiiii, liiiiiiiiiiii,,!iiiiiiiiiii !iii!iiiiiii!i!iiiiiiiii!iiiiiii!iiil i:i i i iiii i iiiii ii! ii!iiii!ii! iiiii iiii iiiiiiiii i iiiiiii i!ii iiiii iiiiii ii i i i 0 '°on0o
i ; - ; :i:i:i:i:Wi:

::~i~!: W e l c o m e t o m~ 8 m a l l t a l k - 8 0 s y s t e m c u t
:<,,,~#~#~ ~ p a s t e
:-;:~:~ ~ T i m e n o w 1 0 : 0 2 : 4 5 an t
~ : ~ : - : : i ~ 1

iiiii
iiiiii M 8 m a l l t a l k a t : # H o u s e h o l d F i n a n c e s aCOel3' l : l
;.:i~i! i ~ 1
!!~!ii m p u t ' n i l c a n c e l l
; ! ~ t : ! i ~1 _ 1 I __ _ ~ _ _

_ _ _ _ _ _

I
I

Figure 17.27

, : ,usel- .o ldFir , ._~r, , : :es s p e n d ' 7 0 0 f o r : ' r e n t ' .

o u s e 1-. ,:, Id F in .~ r, ,:: e s s p e r, ,t.1' 7 8 . 5 :~.', f,:, r: ' f,:, ,:, ,..:1 '.

o u s e I-, ,:, id Fir, ,~ r, , :e s r-e c e i',,,' e ' ;=; 2 U fr-,:, m' ' p ,_~ y ' ,

, : , u s e h o l d F i n , ~ n c e s r-e,::ei',,,'e: ~ , 15 fr,:,r,-,: ' i r , t e r e - ; t : , ~

Figure 17.28

W e l c o m e t o m y 8 m a l l t a l k - 8 0 s y s t e m

T i m e n o w 1 0 : 0 2 ' 4 5 an t

8 m a l l t a l k at' # H o u s e h o l d F i n a n c e s

p u t ' n i l

H o u s e h o l d F i n a n c e s ÷ F i n a n c i a l H i s t o r y i n i t i a l B a

310
The Programming Interface

Selecting p r i n t l t instead of d o l t displays the result following the ex-
pression (Figures 17.29 and 17.30).

,u s e I-, old Fin a. n c: e s c: a. s h ,:TZ:, n H a i

Figure 17.29

W e l c o m e to my 8 m a l l t a l k - 8 0 s y s t e m

T ime n o w 1 0 ' 0 2 ' , 4 5 a.m

8 m a l l t a l k at: # H o u s e h o l d F i n a n c e s

pu t : nil

H o u s e h o l d F i n a n c e s • F i n a n c i a l H i s t o r y in

H o u s e h o l d F i n a n c e s spend', 7 0 0 for : ' r e n t

H o u s e h o l d F i n a n c e s spend', 7 8 , 5 8 for', ' f o

H o u s e h o l d F i n a n c e s receive ' , 8 2 0 f rom: 'p

H o u s e h o l d F i n a n c e s receive ' , 2 2 , 1 5 from', 'i

a. !.i:1a ~n
undo

i c o p y i c e ' 1 5 6 0 ,
CUt

p a s t e
d o l t

c a n c e l

Figure 17.30

311
Testing

Inspectors
An inspector is a view of an object's instance variables. An inspector is
created by sending inspect to the object whose instance variables are to
be viewed (Figure 17.31).

After inspect has been sent, the user is prompted for a rectangular
area in which to display the inspector. The shape of the cursor is
changed to indicate that the upper left corner of the rectangular area
should be specified (Figure 17.32).

u s e h,:,l d Fi r,._~.r~,_-: e s inspe,

Figure 17.31

Figure 17.32

i!i!i!!!i!i!!!!!!!!i!~!
ii!iiii~iiiiiii!!!!~!

iiiiiii!iiii!iiiiii!iil
:

:

i i i i i i i i~ i i i i i i i i i i i~ i i

iiiiiii iiii!iiiii!i

W e l c o m e to my :Bm,_~.lltalk-80 s y s t e m

T ime n o w 1 0 : 0 2 : 4 5 am

, ~qa in
S m a l l t a l k a t : #Househol idFinanc:e_z, .~_~',~,:,do

put', nil cop\, '
H o u s e h o l d F i n a n c e s • F i n a n c i a l H i s t c u (i a lBa lance ' , 1 5 6 0 ,

H o u s e h o l d F i n a n c e s spend: 7 0 0 for p a s t e

H o u ~ e h o l d F i n a n c e s spend: 7 8 , 5 3 f IIt,,ill,l~l!!::l',
- Drln~l"E

, ~ , . - . i , I - ~ ,~ Househo ldF , n.~nce~ rece i ve : I.-I~L 1"1 ",,, , a. c c ~[_, ,. -"
H o u s e h o l d F i n a n c e s r 'eceive: 2 2 , 1 5 c a n c e l n t e r e s t ' ,

H o u s e h o l d F i n a n c e s c a s h O n H a n d 1 6 2 3 , 6 2

 i i!iiii! !iiii iii ii iii!i!i!i iiiii iiiii iiii!ii iiiii ! !iiiii! i ii i!iiii i i ii!iiii iiiiiii ! iiiii!iiii!i i i!i!i iii i iii!iiiiiii i
W e l c o m e to n l r . T ' S m a l l t a i k - 8 0 s y s t e m

I

T ime n o w 1 0 : 0 2 : 4 5 am

,Sma l l t a l k a t : # H o u s e h o l d F i n a n c e _ ~

put', nil .- ~ _
H o u s e h o l d F i n a n c e s " F i n a n c i a l H i s t u r v i n i t i a l B a l a n c e : 1 5 6 u ,

H o u s e h o l d F i n a n c e s spend: 7 0 0 for-', ' r e n t ' ,

H o u s e h o l d F i n a n c e s spend: 7 8 , 5 3 for : ' f o o d ' ,

H o u s e h o l d F i n a n c e s r ece i ve : 8 2 0 f rom: ' p a y ' ,

H o u s e h o l d F i n a n c e s r-eceive: 22, 15 f rom: ' i n t e r e s t ' ,

100

312
The Programming Interface

The cursor is moved to the desired location and the left mouse button is
pressed and held down. The shape of the cursor is changed again to in-
dicate that the lower right corner of the rectangular area should now
be specified. As long as the left mouse button remains pressed, the pro-
spective new rectangular frame is displayed (Figure 17.33).

When the button is released, the inspector is displayed in the select-
ed area (Figure 17.34).

The title of the inspector is the name of the inspected object's class.

iiiiii!iiiiiiiiiii!!i i iiiiiii
iii!iiiii!iiiii!i!iil w e l c o m e to r,
iiiiiii!iiiiiiiiiiiii T i m e no,,,',,,' 1 O:

iiiiiiiiiiiiiiiiii!ii Sn-,~,,t~lk .,.t'.
iiiiiiiiiiiii!iiiii![put:
iiiiiiiii!iii!iiiiii HouseholdFine
!!iliiiiiiiiii!iiiiii Hou=~eholdFina
i!iiiiiiiiiiiiiii[i!! Ho,JseholdFin,_~
~ i Z i ~ i Househ,_-,IdFin,_~
~ . ~ . " ~ HouseholdFin~

HouseholdFine

iii•iiii•i•ii•iiii•ii••i!i•iiii•i•!i[i!ii•i•!i•i•••ii••i•i••!iiii••ii•!••i.•iii!i{iiiiiiii•!•i•iiiiiiiiiii•••••ii!•i•i•ii•iii!iii•i•iiiiiii•ii!ii!•i•i
rl 1 ~ 7

i SO,

Figure 17.33

Figure 17.34

~ : ~ : ~ : ~ : ~ : ~ : ~ : ~ : ~ : } : ~ :

:

. , o . : : : . . ; . :

:

. - , - ° : ,

. - : - ° . ,

: - = - = = = = < = : =
: = - < =

.

:

. - = - o - . - , - , - - - -

iii•ii•!iiiiiiiii•iiii••iiiiiiiiiiIiii•ii3iiiiiii•ii•ii!iiiiiiiiiiii••iiiiiii•ii!ii iIi i iii iIi}iiiiiiiiiiIiiii i iIiiiiiiiIiiii! i i iiiIiiiiiiiI!iiiiii i iI j i I i I i
iiiiiiiiiiiiiiiiiiiiiiiii i! iiiiiii iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii iiiiiiiiii]i i

Welcome to n, /
Time now 10 self /

i i

: _ cashOnl 1
8malltalk at: ~nc°mes /

put expendi
HouseholdFin~ . .)O,
HouseholdFine
HouseholdFina
HouseholdFin~
HouseholdFin~
HouseholdFin4
HouseholdFinc. .~.

10001

Figure 17.35

3 1 3
Testing

An inspector has two subviews. The left subview shows a list containing
self and the names of the object's instance variables. When one of the
elements of the list is selected, the corresponding value is printed in the
subview to the right (Figures 17.35 and 17.36). The text that appears in
the righthand subview is obtained as a result of sending printString to
the selected object. Selecting the element self at the top of the list,
prints the object being inspected (Figure 17.37).

iiiiiii!i!iiiiiiiiiii iiii iiiii iii! i i iiii!iiii ii ii ii iii iiiiii{ iiiiiiii iiiii i iiiiiiiii i i i iiiiiiii!ii iiiii iiiiii! iiiii iiiiiiiiiiiii i iiiiiii i! iiii!iiiiiiiiiiii i !iiiiiiiiiiiiiii! iliiiii iii!iii!iiiiiiiiiiiiiii iiii!ii
iiiiiiiii!!ii!~iiiiiiii Workspa c iiii!ii

iliiiiiiiiiiiiii!iiiiil Time no :~_-:_::_~ se l f i!iiiii
!iiiiiiiiiiiii!iiiiiiil F__:"~ [, ~ a m ~ B ~ ~ iiiii!i

i!i!i!!!!!i!!!ii!i!!!ii 8 m a l l t a l m incom,~: i:,i~i~i
iiiiiii!!{iiiiiiii!iii! ~ e x p e n d i t u r e s iiiiiii
!{!ii{!i!i!iii!i!iiiii! ~ iii!!ii~i
i!iiiiii!iiii!iiii!i!il Househo E .~0, !!!ii~:::
ii!::i::!iiii':i::i::!-:!::i-:i Househo im il;:_i:.i
ili!iiiii!iiiiii!!iiiii ~ i:~i~iii
ii!iiii!iiiiiiiiiiiiiii Househo ~ i;ii!ii
...... Househo ~ {!i!ii!

Househo ."_~=r~[..=.~--.~ !::i::i!i
=-

Househo Im :;::;_:_:;

H o u s e h o .~..,K,,?.. iiii{~i

10o0

Figure 17.36

Vv'orkspace

YVelcom~ -

T i m e no'

8 m a t l t a l

Househo

Househo
Househo

Househo

Househo
Househo

Househo

m

M

sel f
c a s h O n H a n d
incomes

Dictionary ('rent'->700

'food'->78,53)

O,

314
T h e P r o g r a m m i n g I n t e r f a c e

Figure 17.37

Workspace

iiiiiiiiiiii!iiiiiii~il Welcome
iiiiiiiiiiiiiiiiiiiiiii Time no

iiiiiiiiiiiiiiiiiiiiiil Househo
iiiiiiiiiiiiiiiiiiiiiii aou_~ho
iiiiiili!iiiiiiiiiiiiil Househo
. - I Househo
.}.=~L.~2 ~ " = '_.~ ~' 1 Hou_~eho

/ Househo
Househo

incomes
expenditures

a Financia.IHistory

.~0,

Error
Reporting

When an error is encountered, the process in which the error occurred
is suspended and a view of tha t process is created. Suspended processes
can be viewed in two ways, with notifiers and with debuggers. A notifier
provides a simple description of the process at the t ime of the error. A
debugger provides a more detailed view and also the ability to change
the state of the suspended process before resuming it.

As an example of error reporting, we will follow the addition and
debugging of several new methods in FinancialHistory. The following
methods contain several errors which will be "discovered" in the testing
process. The intention of these new methods is to allow a
FinancialHistory to give a s u m m a r y report of its state.

report
I reportStream I
reportStream ,-- WriteStream on: (String new: 10).
reportStream cr.
reportStream nextPutAll: ' Expenses' .
reportStream cr.
self expenseReasons do:

[:reason I reportStream tab.
reportStream nextPutAIl: reason.
reportStream tab.
reportStream nextPutAIl: (self totalSpentFor: reason).
reportStream cr].

315
E r r o r R e p o r t i n g

reportStream nextPutAIl: " Incomes'.
reportStream cr.
self incomeSources do:

[:source I reportStream tab.
reportStream nextPutAIl: source.
reportStream tab.
reportStream nextPutAIl: (self totalReceivedFrom: source).
reportStream cr].

t reportStream contents
incomeSources

1 incomes keys
expenditureReasons

1 expenditures keys

A new category is added and the new methods typed in and accepted
(Figure 17.38).

After adding the new methods, the instance of FinancialHistory can be
asked for a report by evaluating an expression in the workspace (Figure
17.39), Instead of printing the report, a notifier appears on the screen
(Figure 17.40).

!iiii!iiiiiii!i!i iiiiiiii~i~i~iii~ii~ii~i!~~~iii~i~i~ii~!~ii!iiiiii!~ii~i~i!~ii~!!iii~i!~iiiii~i~i~i~ H o u s e h old Fin a n c e s s p e n d: 7 0 0 fo r: 're n t',

~[iiiiiiiiiiiiiiiiiiiiili iiiiiiiiiiiliiiiiiiii Hou~eholdFinance~ ~ ~end', 78 ~3 for' 'food' I

iiiiiili{iiiiiii!~ iili~ J Numer ic -Nurnbers inquir ies incomeSources -
i{iiiiiiii ii' Co l l ec t i on - - 'Ab - t r .~c ~ 1 ~
iiiiiiiii i~i i i i i Co l l ec t i ons -Uno rde r p r i va te
iiiiiiiiiiiiiiiii~ii~i~ Co l ec t i ons -Sequen (

i!i~iiiii!~iiii~!iii iiii', Col lec t ions- ,&r ra vec [
C o l l e c t i o n s - S u p p o r t
Graph ics -Pr im i t Yes ~ a qain ~i!~iiiiii

[!i r e p o r t S t r e a m nex tPutAI l : reason, copv i~i~iiil
iiiii! r e p o r t S t r e a m tab. cut. !ii ili
i!ili r e p o r t 6 t r e a m nex tPutAI l : (sel f t o t a l S p e r P;L:ltt e ason), i!i~!i~
ili~ii E~ report.Stre_~m cr] ii i
i i i ! ~ i r e p o r t S t r e a m ~ ~ om'e p r in t l t i lll iiili [~ nex tPutAI l : ' lnc s', for-m.~t iiiii{::i::
iiiili ~1~ reportStream cr, ~!iillllllj~ll,l' [[i[il

ilii r-epor-tStream nex tPutAI l : (sel f to ta lRece ivedFrom: source), i~iii~[

[ii!i[!i -treportStream contents,, ~i~!~i~J

Figure 17.38

316
T h e P r o g r a m m i n g I n t e r f a c e

• " . ' - ' - ' - ' - ' ~ ' - ~ ' ~ ' - ' - ' - ' - ' - ' i ' , ' | ' i ' | ' i ' i ' | ' i ' | ' l ' i " ~ ' ~ ' , ~ ' ~ ' - " ~ ' - ' ~ ' - * . ' - ' - ' ~ ' - ' . ' - ' . ' ~ " ~ ' - i ' i ' i ' i ' i ' | ' i ' i ' i ' i "

Welc.ome to my Sm.~llt._~Ik-RO svster, ,

Time no'.,.,,' 10:02 ' .45 an,

8 m a l l t a l k a t : # H o u s e h o l d F i n a n c e s
put : nil

Househo ldF inances e Financia lHi aga in i t i a tBa lance ' 1560.
undo

Househo ldF inances spend: 7 0 0 f cop>, ' "
Househo ldF inances spend: 78.,53 cu t od'.
Househo ldF inances rece ive: 8 2 0 p a s t e ,ay ' ,
Househo ldF inances rece ive: 22.1 dol t ' i n t e r e s t '

HouseholdFinanc:es cashOnHand a c c e p t 2
HouseholdFinance_~ inspec t cance l

:,u z.e 1-,,_-,I d Fin a r, c:e s te [...,,_-

iii!i!
• earn ne×tPutAI l ' , reason, iiiiiiiiiiiiiiiiiiiii~iiiii!iiiii~iii::i~iiiiii

Figure 17.39

i!iiiii!ii!iiiiiiiii!iii ii•ii!i•ii•iiiiiiiiii!i!i•iIiiiiiiii•ii!iiiiiiiiii•iiiiiiiiii•i•i•iiiii•iiiiiiiii••iii•!i•iiiiiiii•i!iiiiiiiii•iiiiiiiiiii•iiiiiiii!iiiiiiiiii!!iiiiiiiii!ii•ii•i!•iiiii•iiiiiiiiii•iiiiiI
!iiiii!!iiiiiiiiiiiii!i Workspace i!ii!i!ii~i~iii~iii~iiiiii~iiiiiii!i~ii~iiiii~i~ii!~iiii~iiii~i~iiiiiiiii~!i~ii~iiii~iii~i~ii~i~i~iiiiiii~iiiiiiiii~i~ii!iiii~i!iii~i~i~i~ii!~i~i~
iiiiiiiiiiiiiiiiiiiiiii ~i
iiiiii!iiiiiiii!iiiiill Welcome to my 8 m a l l t a l k - 8 0 sys tem
i!iiiiiii!i!iiiiiiiii!i T ime no,.,, 10 :02 :45 am

iii!iiiiii!iiiiiiiiiiii ~,, . , , , ,

iii:i:i:iii:i:i:i:i:i: ouos : : - - o o u iiiiiiiii~iiiiiiiiiiiii _ F i n a n c i a l H i s t o r v (O b iect~.. , d o e ~ N o t U n d e r ~ t a n d

HouseholdFinan'ce5 inspec t
Househo ldF inances r e p o r t

iiiiiiiii{iii~iiiiiiiiiiiii~!ii!!-:i."i~i~i~!~ :i

• earn nex tPu tA I l : reason, iiiii!iiiiiiiiiiiii!iiiii~iiiii~iiiiiiiiiiiiiil

Figure 17.40

Notifiers

317
Error Reporting

A notifier is a simple view of a process suspended after an error. The
notifier's title indicates the na ture of the error. Notifiers are created by
sending an object the message error:. The a rgument of the message be-
comes the title of the notifier. The notifier shown in Figure 17.40 indi-
cates tha t the message expenseReasons was sent to an object that did
not unders tand it. The list visible in the notifier shows part of the state
of the suspended process.

The cause of this error is evident from the title of the notifier. The
message added to FinancialHistory was expenditureReasons not
expenseReasons. The not i f ier and the erroneous process can be
discarded by se|ecting the command close in the r ight mouse-button
menu (Figure 17.41).

i! I i i i i I ! i i i iEi i i i [iii IiiFPii Jji i iiiiiii!ii]iiiiiiii ! ii ii [iii i!i i!!iiii!iii!i i iiiiiiii ii!iJiii!i!iiiiii ii!i iii!i !i!!]ii iiiiiiii iiiii!i[i iii i![ii
ii iii

Welcome to my Smalltalk-80 system
Time now 10:02:45 am

Sn,all,

House FinancialHistory(Ob_iect)>>doesl\lnrl Ind~-stand: 560
• under '

ii Hous e FinancialHistorx.,'>>. report rnove !i
House Unde finedOb.iec:tbbDolt frame
House Compiler>>evaluate:in:to:notifyicollapse

i

i

~ . ~ . : ~ House StringHolderOontroller>:.'dolt

House
i

HouseholdFinances inspect
HouseholdFinances report

~i!m nextPut,~il, t-eason.

Figure 17.41

318
T h e P r o g r a m m i n g I n t e r f a c e

The mis spe l l ing in report can be corrected in the browser (Figures
17.42 and 17.43).

iiiiiiiilil

._. ~:::::
~:i:::
:,::: ::~::: ._

:m:

C o II e c t io n s - 8 u p p~:, r t
(3 r . aph i cs -P r im i t i ves

r e p o r t

I r e p o r t S t r e a m I
r e p o r t S t r e a . m ÷ W r i t e S t r e a . m ,:,n: (:_=itring nev,,,': 11211),

r e p o r t S t r e a . m cr,
repor t :=qt ream nextPut , 'AI l : ' Expenses ' ,

r e p o r t S t r e a m c:r,
se l f e x p e n l ~ , . e a s o n s do:

[: reas°MN r e p o r t S t r e a m ta.b,
repor t , ' :q t resm n e × t P u t A I l : rea.sc, n,

r e p o r t S t r e a m tab ,
r e p o r t S t r e a m n e x t P u t A I l : (se l f t o t a l ~ p e n t F o r : r eason) ,

r e p o r t : S t r e a m cr],
r e p o r t S t r e a m n e x t P u t A I l : ' I ncomes ' ,
r a r l r l r l - . ~ ' l ' r a ~ n'l i - ' r

Figure 17.42

Figure 17.43

B

i~i~i~ ,:_~,-.~. p h i,:: s-p,-i r,-,i t i'...' e s L , ' iiiiiiii

i,i,ii i copy c:ut 10) , :~:~:~ r-el_,,:,r-tL=itrea.m ,- V,,,'rite:_:itrea.m c,n: r:Str-in p a s t e , i:iiiili

iiiiii r~_~,,:,rt S ~.,-e,~ m c,-. i~
i i : : i : : i repor-t:=_;tre,_~.rr~ rle::.::tPut,AIl: 'E::,::penses', pr in t l r , i i:.ii!i[~

~ ::::::::
i~;~i! se l f e::,::F, erii:titur%Fiea.s,:,r,s dCI: I_.,~,~Ni W !ii{iiii

ii~:!~:! [:,-e,_~s,:,r, I rep,:,rt::-,tre,_~.r,-, ~.,~.b. et i!'~!'~!'~',
~?~iii r e p o r t :=-; t r-e a. rn n e ::,:: t F'u t ,A II s p a. v,,,' r, i iiii::ii

iii~ii rep,:,rt:_=~tre,_~.rr, ta.b, -.. ::::::::::i::iiii::
i?:::::i r e p c , r t : : ; t r e , ~ . m r i e : , : t P u l - , & , l l ' (s e l f t c , t ,9.1:=-;permtFc, r: r-e,_~.s,:,r,"l, ii

........
i::i::ii I " e p O r t S t r -e ,9. r r l c . r] , i i i

...... .:.:.::':':'iiiii r e Fi El r t :_~ t r - e _~rrl rl e x t P i j t ,,& I I : . . ' I rl i:: c, rl-i e s ' , ::::::::i]iil]::::

...... ! o /
iiiiii iiiiiiiiiiii iiiiiii iiiiiiiii' iiiiii'i ii~i iiii iiiiiiiii! ii'ii'iii iiiiiiiiii!ii'i'ii'i i iiiii ii iiii" ii ii ii i' i' ii'i iii' ii i iii'i'ii i, i ii~i,~iii

After f ix ing the mis spe l l ing in the browser, the original express ion can
be e v a l u a t e d in the workspace aga in (Figures 17.44 and 17.45).

This creates a n o t h e r notifier. The cause of this error is not as obvi-
ous. The m e s s a g e do: was sent to an object that did not u n d e r s t a n d it.
In order to learn more about the error, a more detai led v iew of the sus-
pended process can be obta ined by se lec t ing the c o m m a n d debug in the
midd le -but ton menu .

3 1 9
E r r o r R e p o r t i n g

H c, u s e I-, o l d Fin ,_~. n c e s c ,_~. s h,:::, n H ,_~. n d 16 2 :3 ,6 2

H o u s e h o l d F i n a n c e s i n s p e c t

. : ! i ~ ! ~ ! ! ~] i i i ~ . : ~ i i ~ i ~ i ~ i i i i i ~ ! ! ~ i i i ! ! i i ~ i i ! ! ! ~ i i i ~ . . i i i ~ i i i ! ! i i ! ! ~ i ! ! i i ! i ! i i ~ i i . : i ! i ! i . : i : . ! i i ~ i . : ! ! i ! ! . : ~ ! ! ! i ! ! ~ ! ~ i i ~ ! ! i ! i i ! ! ! ! ! ~ ! ! i ! i i i i . : ! ~ ! i i ! ! ! ! i i ! i ! i ! i ! i ! i ! i ! i ! i ~ ! i i i i i ! : . ~ i i ! i ! i ! i ! ! ! ! ! i ! ! ! i i i ! i ! ! ! ! ! ! ! i ! i i i ! ~ ! ! : ! iiiiii!iiiiiiiiiiiii iiiiii i !iiii i ii! i!iiiiiiii!iiiii!iiii !ii iiiii !iiii !!i!iii!!ii!iii ! iiiiiii[ii iii! iiiiiii!i iiiii!ii!iiii!! ii!i!i ii!ii!i!iii!i!iii !i!i iiii
iiiiill !#':~ T i m e nov,,,' 1 ,:,:,:,2', 4.5 ,~,.r,-, , ,; iiiiiii

i::i!~i ~.~ U FI d o ~!ii!i
::{!i::i! ~ ::;rn,a IIt,~IF;: ,~ t , #H,-,u.-:~t- i ,- , IdFin,~ nc: r .n ' - , " ii{::ii

iiii!! pu,.: iii;ii
!ii]ii ~ Hou-~¢~l-I,-, ,::lFin,~n,-:~-~ ~- Fin,~n,::i,_~.lHi p a s t e iti,_~.lB._~.l,~.nc~' IF, FiN i!i!ii , : : . . : : , ~ . . . ~ , _ _ _ , ; : : : : :

iiiii!: ~ d -,I t . ~ii
~{~ ~ H n u-~ ~ I- n I d F I rl,a n n o.-~ .~ B ¢~ n d ' ,, I I I 1 t ~ " ' , i~ii!i

~i~i~i~ ~ H,:,usel-, , : , ldFtn,_~.nc~s 5E, en,::l: 7 L - q , 5 : 2 ~ ,:,d', ::F:i::i

- - H,:,usehi:,ldFir,,_~.F,,::e5 i.-el::el',,,'e: i=_121:1 ,::,~.ncel ;',-~.Y', ii[!il

Hi: ,us~l-, i - , IdFin,~ rll-:~.-~ r~r:~i',,, '~: 2 2 , IF, frl!,rn: ' i r l r ~ r~ , -~ t ' , iiilii

) u s e h o l d F i n a n c e s r e p c

• , , i

iiiii!i!iiiii]iiiii!!ii!i]iiii!i!]]iiiiii!iiiiii
liii!iiiiiiiiiiiiii!iiiiiiiiiiiiiiiiiiiiiiiiiiii

Figure 17.44

W e lc: o rl-i ~l t. o m ,:,' 8 i-i-i ,9. II 1: ,_~. I k . -8 CI 5 ,.# E, t e rl-i i:

m mo ncv, ,oo o,m i i i

Househ(\,\,' rJ t e8 tre,_~.m(Stt-ea.m)> >nextPutAtl '
Househ([] in Fin,3.nci,_~.lHJstc, ry;:,::,report

. H o u s e h([] in :5 e t :::, :::,,:1,:,' I~

~ t . ~ . ~ . . : ~ Ho us e h,: :E; m a. I l ln t e g e r(,. N u m b e r). :::, :::, t o' d o'

H o u s e h (

H o u s e h o l d F i n a n c e s i n s p e c t

H o u seho ldF inan ,_ - . .es r e p o r t

~:''~ " -- iiiiii!iiiii!iiiiiiiiii!}iiiiii!iiiiiii!iiiiii il
iiiiiiiiiiii!ii]iiiiiiiiiiiiiiiiiiiiiiiiiiiii

Figure 17.45

320
T h e P r o g r a m m i n g I n t e r f a c e

Debuggers
A debugger is a view of a suspended process tha t reveals more details
than a notifier reveals. When debug is selected in a notifier's middle-
but ton menu, a debugger is created viewing the same process the notifi-
er viewed (Figure 17.46). After selecting debug, the user is prompted to
supply a rec tangular area in which to display the debugger. The rectan-
gle is specified in the same way tha t the rec tangular frame for a new
inspector is specified (Figure 17.47).

Figure 17.46

a, l l t ,~. I
j.-~ i.., h r

J 5 ~_ I"t,:

J 5 e h C

J s e h c

J 5 e h ,:

J S e l ' l c

:5; rn ,9. III n t e g e r (,:::, b. i e ,:: t i: :::' :> d ,:, e ~, r',,J L-, t I_1 n d e r ~, t ,_~. n ,::1

' , , , ' , , , ' r i te : : ; r r~, , -~ r r t t " : : ; t r ~ " " " _ ~ > : : t P u t , ~ , l l :
. " - " l P r o c e e a l

[] in Firi,_~.ri,::i,_~.IHisl~i:,c, rt
[] Jr, :~; e t :, :::, d ,:,:

L=; rri ,~,. I I I n t e g e r-(b,J i j rrl b e r l i::,]::, t c, :,:.1 o :

~, e I-, ,:, Id F i n ,~, n,:: e ~, i n ~ p e,:: t

J .= ,~ h ,-, I ,-,I ~; r, .~ r'~ ,-, u .-= t" ~ h ,'~ ~" 1"

• 1 5 ~;~

IOOO
The debugger has six subviews. The top subview shows the same list
tha t was visible th rough the notifier. This list gives a par t ia l history of
the process in which the error occurred. Each i tem corresponds to a
message tha t was sent and whose response is not yet completed. The
i tem contains the name of the receiver 's class and the selector of the
message, separated by " > > " . The last i tem visible in the list,
FinancialHistory>> report, indicates t h a t an instance of FinancialHistory
received the message report. This message was sent when the middle-
button menu command printlt was selected while the expression
HouseholdFinances report was the text selection. When one of the items
in the debugger 's upper list is selected, the method invoked by the cor-
responding message is displayed in the subview immediate ly below.

3 2 1

Error Reporting

w e c: o r,, e t o r,,:,,' S r, a I t ,~

i i i i i i i i i i i i i ! i " " ~

iiiiiii iliiii S m a l l l n t eqet - ((]b iec t ", :::. :::, iJlzle ~[',,Jl:! t I_ll-,lJel.-S t.~.rl,J;
i~i ii! iii li V,.,'ri t e S t r e a n,,"S tt.-ea r,:l",:::.:::.ne::,::tPut 'All
!if! !i i{i [] ir F n,~r, ci._~.lH ~.t,:,r.,;::::,::,report
ii!iiiiiiiiii [] in Set:::,:::,do: "
iiiii!iiiiiiii!!i Smat l l ln t eqe r," Num be r".:::. :::' t,-_, : d,_',
iiir~.~., ~ S e t :::.:::do:
iil, T.~, ~ Fin a n c i a l H i s t o rv::,:::.report

A

, ,

se l f t h i 5 ,:: o n t e :,:: t

~:: - 8 0 3 ':,~ 5 t ~_ rll

I

ITiiiYiriiiYi

Figure 17.47

322
The Programming Interface

When a method is displayed, the last message sent before the process
was suspended is complemented. Figure 17.48 shows that the message
do: was sent to t h e result of the expression self expenditureReasons.
The next i tem up on the list, Set >> do:, indicates that the receiver of
do: was an instance of Set. The method invoked can be seen by
se lect ing Set >> do: in the list.

'v',,,' e Ic ,3 rri o_ t o rig ~:,' :-i rl-i ,3. II t ,_~. It::- 8 I-I $]:,, $ t e rl-i

S m a l l l n t e g e r (O b . i e c t).:.,>do e s N o t :Unde rs t a rid',
W r i t e 8 t re a m (S t re,~.m) >.:>he x t Put,~,l l :
[] in F i n a n c i a l H i s t o r y : : . , : . , r e p o r t
[J in S e t > > d o :
S m a l l l n t e g e r (N u m ber):::,>t o:,:J,:,:

:~i~'~n ",__.. r e p o r t

N u n] repor tS t re ,_~ .m I

Co i l reportStre,3.rn ~-',,,',,,'riteL=;trea.n -, ,_-,r,: , "S t r i nq n e w : 10',.
Co i l
Co i l reportStrea.m cr,

Co i l reportStream ne::.::tF'ut,~,ll: 'E::,::per, ses ' ,

Co i l r - e p o r t S tre,_~.n-~ cr ,
Co i l
G - a

r ~ p

r e p o r t S t r e a m nextPut ,L . , l l : ' I n c o m e s ' .

t - e u o r t 8 t t e a n l or,

s e l f t h i _ ~ C o n t e x t
c a s h O n H a n d r e p o r t S t r e a n -
in c o m e s t e a so r,
e x p e n d i t u r e s s o u r c e

,o; ,~,,- - iiiiliTiii!!i

Figure 17.48

Figure 17.49 shows that this method sent a message to the object 1. The
next i tem up on the list, Smalllntefler(Number)>> to:do: shows that the
receiver was an instance of Smalllnteger. When the method invoked by
a message was found in a superclass of the receiver's class, the name of
that superclass is included in parentheses after the receiver's direct
class. In the example , the method for to:do: was found in class Number.

323
Error Reporting

. I '

W e I c: o m e t c, rr y L=; rn a II t a. I k - 8 I_-I :5 ~,.' SS t e rl-i

S m a l l l n t e g e r (O b j e c t) > > d o e ~ , N , : , t Under~, t and:
V,,,'rit eS t r e a m (S t r e a m) > >ne::<t Put,Al l :
[] in F i n a n c i a l H i . ~ t o r y > > r e p o r t
[] in S e t > > d o :
S m a l l l n t e g e r (N u m b e i -) > > t o : d o :

Nun- do: a B I o c k

Nun" ta l l y ' = 0 i f T r u e : [.1"self] ,
Co l
Col
Col I [:il-,de>:: j
Col (z, e l f ba~,i,::,&,t: inde::,::) == nil i fFa lse : [,~.BIo-k. v a l u e ' (s e l f b,:-t~,ic:,At: inde::,::)i

•t,:, ' ?,elf b" z,i,:::_=;ize ,.tic,:

co, I
Col
Gra

r e p

s e l f
t a l l y '
1
2
3
4

_

t h i 5 C o n t e ::,:: t
a B loc:k
i n d e >::

,~

,- - , ~ , , - - IY!!iY!i~iil

Figure 17.49

The top item on the list, Smalllnteger(Object)>>doesNotUnderstand:,
shows the last thing that happened before the process was suspended- -
an instance of Smalllnteger received the message doesNotUnderstand:.
This message was sent by the system when the do: message was not
found in Smalllnteger or in any of its superclasses. The
doesNotUnderstand: message invoked a method that suspended the pro-
cess and created the notifier viewing it. The second item from the top of
the list, WriteStream(Stream)>> nextPutAIl:, indicates that the misunder-
stood do: message was sent from the method for nextPutAIl: in class
Stream. Figure 17.50 shows the debugger with that item selected. The
method displayed shows that do: was sent to the object named
aCollection, which was provided as the argument of nextPutAIl:.

The lower four subviews of a debugger are used to find the value of
the variables used in the method. They function like two inspectors.
The leftmost subview shows a list of the receiver (self) and its instance
variable names. The third subview from the left shows the argument

3 2 4

T h e P r o g r a m m i n g I n t e r f a c e

Y;,' e Ic o m e t o rn :¢ 8 rn ._~. II t ,~,. I k.- 8 I;I S ~.~" 5 t e m

il " '11~ i i i
Smalllnt eger'(Objeo t)> >doesl~Jotl_lnderst,_~.nd:

i~ ri t e S t re ,~ rn (S t re.~ rn :, }:. :::. n e ::,:: t F'u t ,A, I
[] in Financia.IHistory>>report
[] in Set:>:>do:
S m a I I In t e g e r(N u m b e r):::, :::, t o :d,:,:

6\. 's S e t > : > d o :
i... F ina n c i a l H i s t o ry:::.::.,rep o r t

N u n n e x t P u t A I l : a C o l l e c t i o n

Nun" " . A p p e n d t h e e lemen ts . ,:,f ,_~.,:Z:olle,::ti,:,n ,:,nt,:, t h e t -ece i ve r , ,~,r, sv,,,'er
C o l t a C o l l e c t i o n
C o i l i ,"
Col
Co l a C o l l e c t i o n l l i ~ i ~ i l ~ l ~ l l ~ l ~ I.

Co i l - t a C o l l e c t i o n
Co i l
Gr-a

r e p ,

7 0 0
sel f t h i sC,:, rl t e ::,.: t
c o l l e c t i o n
p o s i t i o n
r e a d L i m i t
w r i t e L i m i t

,- - , ~ , , - - ii if! ili i!i

Figure 17.50

names and temporary variable names. When a name is selected in ei-
ther one of these lists, the value of the associated variable is shown in
the subview to its right. To display the receiver of the do: message,
aCollection is selected in Figure 17.50.

The source of this error appears to be that the Stream was expecting
a collection of e lements as the argument of nextPutAl]: and it got a num-
ber, 700, instead. Selecting the next item down from the top list shows
where the argument came from. The argument was the result of evalu-
ating the expression (self totalSpentFor: reason). In Figure 17.51, selec-
tions have been made in the bottom subviews to display the values of
the instance variable, expenditures, and the argument, reason.

When text is selected and evaluated in the method displayed in the
browser, the variable names are interpreted in that context. So the ar-
gument to nextPutAIl: can be found by re-executing the expression (self
totalSpentFor: reason) and printing the result (Figure 17.52).

3 2 5

Error Reporting

Welcome to my S m a l l t a l k - 8 0 sys tem

iii!ili iiUi . :
~i!i iii ii i!i 8mal l ln t e qer(Ob iec:t)>. ' . ,doesNotUnderstand:
:~iiiiiiii!iiiii W ri t e S t r-ca m (S t ;'e a m ~ > :> n e x t Put All:

i!iiii!ii! [] in 8et>>do:
~iiiii!iiiiiiil Z3nlallln t eger (Number)> > to:do:

Set>>do:
!Svs" F inanc ia lHis tory :>>repor t

Nun r e p o r t
Nun' i r e p o r t S t r e a m I
Coil r e p o r t S t r e a m 4- Wr i t eS t ream on: (S t r inq new', 10),
Coil ~ '
Coil r e p o r t S t r e a m cr.
Coil r e p o r t S t r e a m nextPutAI l ' , 'Expenses' .
Coil r e p o r t S t r e a m cr.
Coil self expend i t u reReasons do:
Gr-ai I C : reas°n I r ep° r tE i t r eam tab,
rep! r e p o r t S t r e a m nex tPu tA I l : reason,

r e p o r t S t r e a m tab,

r e p o r t S t r e a m cr] ,
repor tS t r -eam nex tPu tA I l : ' Incomes' ,

r-~iD o r t S t rea rll cr,
D i c t i o n a r y (' r e n t ' - > 7 0 0 ~ i ' r e n t '

self , food,_>TR,..r., 3) t h i s C o n t e x t
cashOnHand ' - - • r -eportStrean!
incomes m m

sou rce

Figure 17.51

self
cashOnHand
incomes

r e p o r t S t r e a m cr',
rep,_-,rt,2itre,_~m ne:x:tPutAIl: 'E>::penses'.
r epo r tS t rea rn cr,
self e::<penditureReasons do: aga in

[: reason i report :~; tream undo j
r-epnrt:=-itrearn r copy ~,II: r'eason,

- CU t

repor tEi t rearn t pas te
r e p o r t S t r e a m r dol t ktt: (~ _ i i i m m l l ~ ~ i ~ ~ ~) ,

repc, r t S t r e a m c ~

repor - tSt ream nex tPu tA I l : ' tnc a c c e p t
reDor- tStream cr. canE:el

. ' r e n t ' D i c t i o n a r y (' r e n t ' -) p 5 -~a'v.,~n -.-, _
• ~i:< lain

t his (._:o nt e:×:t
'food'->78,.6',_:i :, p . l r e p o r t S t r e a n.

/ I l l - s O u r C e

Figure 17.52

326
The P r o g r a m m i n g Interface

Figure 17.53

repor tSt ream cr,
reportStrearn nextPutAIl : 'Expenses',
reportStrearn cr,
self expenditureReasons do:

[:reason I repor tSt ream tab,
repor tSt ream nextPutAIl : reason,
repor tSt ream tab,
reportStrearn nextPutAIl : (self totalSpentFor', reasoni~ l~ l) ,
reportStrearn cr], ~,,

rep0r tStrearn nextPutAIl : ' Incomes,
reoortStrearn cr,

D ic t ionary (' rent : ' ->700 rent '
th isContex t self ' f ood ' ->78 ,53)

cashOnHand repor tS t rean
incomes
m~mmma~mmn~llllklmm~ s o u r c e

100
iili

Welcome to my 8n la l l ta lk -80 system

iiiiiiiiiiiiii Ill in Fin,_~.nci,_~.lHist,:,ry::,:::,repor

8rnal l lnteger(Object)>>doesNotUnderstand:
Wri teStrearn(Stream)>>nextPutAI l :

[] in 8et>>do:
8malllnteger(Nurnber)>>to',do:

FinancialHistory>>report

reportStrearn tab,
reportStrearn

nextPutAIl : (self t
repor tSt ream cr],

repor tSt ream nextPutAIl : 'lncornes',

repor tSt ream cr, format
self incorneSources do:

[:source I reportStrearn tab, c.a~nL~ ii
reportStrearn nextPutA
repor tSt ream tab, explain
reportStrearn

again
undo
cop~,'
cut ntFor: r-eason) pr intStr ing,

paste
dolt

pr int l t

spawn e,

nextPutAIl : (self totalReceivedFrom: source) pr intEi t r in~
repor tSt ream cr],

t reDor~:~t;re ~n-i Qoptents
D ic t ionary (' r en t ' ->700 rent '

self ' food ' ->78,58) th isContex t
cashOnHand repor tS t rean
incomes I ~

source

, o : - , ~ - Yiiiii i i i l

Figure 17.54

327
Error Reporting

The result is 700, as expected (Figure 17.53).
The report method had intended that the character representation of

700 be appended to reportStream, but it appended the number itself in-
stead. This bug is fixed by sending the number the message pdntStdng.
The correction can be made in the debugger (Figure 17.54). Now the ex-
pression can be evaluated again. The report is now successfully printed
in the workspace (Figure 17.55).

_ m

iiiii[iiiii

i

class

 !! iii i i ii i i iii!1!!iiiiiii iiiiiiiii! iii iii i i i iii!i i i!iii!iii!!ii!iiiiii !i!ii iii !ii !ii!! i i!i iii i i !i iiiii!iii i! ii
HouseholdFinances " FinancialHistorv initialBalance: I 5613,

HouseholdFinances spend: 700 for: 'rent',

H ouseholdFinances spend', 78,53 fol-', ' food', iiiili
HousehotdFinances receive: 820 from: 'pay' ,
HouseholdFinances receive: 22,15 from: ' interest ' , ~!~
HouseholdFinances cashOnHand 162:3,62
HouseholdFinances ill~,pec t

i I i!ii[i!iiiiiiiiiiiiiiiiiiiiiiiii]i!iiiii!iiii
::i:i:i

Figure 17.55

This completes the overview of the Smalltalk-80 programming inter-
face. The ability to support this type of interaction with the user moti-
vates the nature of many of the graphics classes discussed in
subsequent chapters.

, o o o e- , , o

,,,-"
o- , , - "

,,,,,"
,--

..!.~." y.. ,,': "..

" . - .

. . . . ~i.~P
.......................

, ,,, , ,-" -~ ,,

~ . _e , ,,, -''~

" -%.
"-%.

.....-
. ...-"

too, . m°~i°"
....."

...-."

. . .-"

. - - ' "

.-

..o.."

...."

..."
..."

..--
...-°

. . -

...-"
,...-"

• . ' , %

18
The Graphics Kernel

Graphical Representation

Graphical Storage

Graphical Manipulation
Source and Destination Forms
Clipping Rectangle
Halftone Form
Combination Rule

Classes Form and Bitmap

Spatial Reference
Class Point
Class Rectangle

Class BitBIt

Line Drawing

Text Display

Simulation of BitBlt
Efficiency Considerations

Object

Magnitude
Character
Date
Time

Number
Float
Fraction
Integer

LargeNegativelnteger
LargePositivelnteger
Smalllnteger

LookupKey
Association

Link

Stream
PositionableStream

ReadStream
WriteStream

ReadWriteStream
ExternalStream

FileStream

Random

File
FileDirectory
FilePage

UndefinedObject
Boolean

False
True

Process

Collection

SequenceableCollection
LinkedList

ProcessorScheduler
Delay
SharedQueue

Behavior
ClassDescription

Semaphore Class
MetaClass

ArraArrayyedC ol lection

Pen RunArray
String

Symbol
Text
ByteArray

Interval
OrderedCollection

SortedCollection
Bag
M appedCollection
Set

Dictionary
IdentityDictionary

DisplayObject
DisplayMedium

Form
Cursor
DisplayScreen

InfiniteForm
OpaqueForm
Path

Arc
Circle

Curve
Line
LinearFit
Spline

331
Graphical Storage

Graphical
Representation

Figure 18.1 shows a view of the display screen for a Smalltalk-80 sys-
tem. It illustrates the wide range of graphical idiom available to the
system. Rectangular areas of arbitrary size are filled with white, black,
and halftone patterns. Text, in various typefaces, is placed on the
screen from stored images of the individual characters. Halftone shades
are "brushed" by the user to create freehand paintings. Moreover, al-
though not shown on the printed page, images on the display can be
moved or sequenced in time to provide animation.

The example interaction with the system given in the previous chap-
t e r illustrated some of the ways in which objects can be observed and
manipulated graphically. Meaningful presentation of objects in the sys-
tem demands maximum control over the display medium. One ap-
proach that provides the necessary flexibility is to allow the brightness
of every discernible point in the displayed image to be independently
controlled. An implementation of this approach is a contiguous block of
storage in which the setting of each bit is mapped into the illumination
of a corresponding picture element, or pixel, when displaying the image.
The block of storage is referred to as a bitmap. This type of display is
called a bitmapped display. The simplest form of bitmap allows only
two brightness levels, white and black, corresponding to the stored bit
values 0 or 1 respectively. The Smalltalk-80 graphics system is built
around this model of a display medium.

Graphical
Storage

Images are represented by instances of class Form. A Form has height
and width, and a bitmap, which indicates the white and black regions
of the particular image being represented. Consider, for example, the
man-shape in Figure 18.2. The height of the Form is 40, its width is 14,
and its appearance is described by the pattern of ones and zeros (shown
as light and dark squares) in its bitmap. The height and width of the
Form serve to impose the appropriate ~ two-dimensional ordering on the
otherwise unstructured data in the bitmap. We shall return to the rep-
resentation of Forms in more detail later in this chapter.

New Forms are created by combining several Forms. The freehand
drawing in the center of Figure 18.1 is an example of a large Form that
was created by combining and repeating several Forms that serve as
"paint brushes" in a Smalltalk-80 application system. The text in Fig-
ure 18.1 is a structured combination of Forms representing characters.

A Form can be presented to the display hardware as a buffer in
memory of the actual data or of the image to be shown on a display

3 3 2

The G r a p h i c s K e r n e l

iilii iiiiiiiiiiiiiiii iiiiiiii iiiii iiiiiiiiiiil iii il ilii iiiiiiiiiiiiiiiiiii
C o ll e c t io n :; - T e ::,:: t !
,:i: o II e c r i o n :3 -,&, r r,_~. :;,'e d I C u r s o r- _~ ,:: c e :3 s i n g
,3 o II e c t i,:, n s - :R t r e ,_~. n-i s I E:, i ~ p l a ':,' M e d iu rn d i s p l a ~:,' i rl g
,3 ,:, I1 e c 1: i,:, n s - :_=; u F' F' ':' r t I E:, i s F' l a v ,:_-:, b i e ,:: t ,3 i s p l a y b ,:, ::,:: ,9. c ,:: e s s
Gr ,_~ .ph ic s - P r i r r~ i t i v e 5 I D i s p I . 9 . v S c r e e r l ,:: orl',,,'e r t i n g

,:3 r._~. p hi, : : s - F'._~. t h s F,:, r rn
,:S r a p h i c s - 8 y m b ,:, Is In f in i t e F,:, r rn
,:S r a p h i c s , " ie v.,'s

E:, i s p l a y : , b.i e c t s u b ,:: l a s s' # E:, i s [.:., la. ::.' T

i r I ,- " t b I e N,9. m e s' : t e ::,:: t t
F o r m E d i t o r r',,J ,_~. m e s :

I ; : " : :'

iii ii!ili i

i ~;[;F~@ ~ : ~ ~ : ? ~ - : . : . , . • _
. . .<~i i i~ . . . : . ._ - ' . , ~ .~_L= ,," ",,

iiiiiiiliiii ,,. , " , ' L.<:., 9,,,:... a~,~] I ,, _1_
.... £ ' - - - : i - -~, ~ - ,,". £ : - - - '~ [I ,., - :~ - - i

iiii', !'~,i ~ : • ~ - =r
+ 1 8 ! 8 ! 8 ! /" "~, - - - " i l ia " - ' - '

..-~5:-,,~,3...: !iiiiilili~]]::~:.-..,. li r, ' I "',,,
~ - ~ i l i l i i i i i i i i i i i i i i i ! ~ , I !iiiii]!iiii'~::::.''~-<~ r ," ", ', ~

.... <~ ' : :~ '~ '~"~ '~ ' : :~" : : ' "~ : ' " "~ ' : ' ,~ :~"~" : :~: " , ' ,' iiili --'" ":~.":.~.::.:i i i i ~! i i i i i i i ~ i i~ i i i i':. i i i i i i i i i l l : . ', ..-" ,, 2
- - , . ~ . : . : . : . : . : . : . : . : . : . : . : . : . : : . : . : : : : : ~ : : : : : : : : : : : : : : : : : : .~ -... .. ,

ii iiiiiii ii!il i ~!-~' ~;~:~:~ ":,~ i i ~i~:: ~~ ~ii::::ili~!~::i::ii~::ii~::~it

i ~iii!!:: ::~!ii~::!::i:: !~i i ;: ! !::::iiiF:iii~:-~..~ i iii i F:::i::i!::::i!iii;:i::i~i~i~i~i~i~i~i~. ".~::::~:~:~:~:~:! ~!::i iliiii8 ::iiiiiiiii i i i i i}~.:,,"<, iiiiiiiiiiiiiiiiii

",',':4Uiii::i;: A ii::i ::~::i!iii!:; F: U i F:!ii~::i-: ~ : . : .~ !iii il

i ' : ~ : - limP':,, iiii ~, , ,, ~, / '., ,~ !iiiiiii::i

. i~i~',~i~

iiiiiiiii! i!iii iiiiii !i ii:ii i i'i" i
il iiii iii ii iii ii iilil ii i/ii

I-1 iiiii
, i~i~i:.i::~

lnl t l!Dl 1' '1 E r IF I
i i i ! i ! i ! i ! i ! i ! i i ! i

ii ii iiiiiiiiiiiiiii!iiiii iiiiiiiiii{i i i iiiiiil i!ii iiiiiiiii!iiiiiiiiiii!i!iiiiii!iii iliiiiiiiiiii iiii i i iill i i lii

Figure 18.1

0 5 10
I J ~ l l l i l l l l l l l

333
Graphical Manipulation

5

10

15

20

Figure 18.2 n

screen. Since the interface to the hardware is through a Form, there is
no difference between combining images internally and displaying them
on the screen. Animation can be displayed smoothly by using one Form
as the display Form while the next image to be displayed is prepared in
a second Form. As each image is completed, the two Forms exchange
roles, causing the new image to be displayed and making the Form with
the old image available for building yet another image in the sequence.

The Forms used as buffers for data to be shown on the display screen
are instances of class DisplayScreen, a subclass of Form. Contiguous
storage of bits is provided by instances of class Bitmap. DisplayScreen's
bitmap is an instance of DisplayBitmap, a subclass of Bitmap.
DisplayScreen and DisplayBitmap provide protocol specific to the actual
hardware and to the fact that the Form represents the whole display
screen rather than potential parts of it.

Graphical
Manipulation

A basic operation on Forms, referred to as BitBlt, supports a wide range
of graphical presentation. All text and graphic objects in the system are
created and modified using this single graphical operation. The name

334
The Graphics Kernel

~BitBlt" derives from the generalization of data transfer to arbitrary bit
locations, or pixels. One of the first computers on which a Smalltalk
system was implemented had an instruction called BLT for block trans-
fer of 16-bit words, and so ~bit block transfer" became known as BitBlt.

Operations are represented by messages to objects. So BitBlt could
have been implemented with a message to class Form. However, be-
cause BitBlts are fairly complicated operations to specify, they are rep-
resented by objects. These objects are instances of the class named BitBIt.
The basic operation is performed by sending an appropriately initialized
instance of BitBIt the message copyBits. The BitBlt operation is inten-
tionally a very general operation, although most applications of it are
graphically simple, such as ~move this rectangle of pixels from here to
there."

Figure 18.3 illustrates the process of copying a character of text into
a region on the display. This operation will serve to illustrate most of
the characteristics of BitBlt that are introduced in the remainder of
this section.

Source and
Destination Forms

The BitBlt copy operation involves two Forms, a source and a destina-
tion. The source in the example in Figure 18.3 is a font containing a set
of character glyphs depicted in some uniform style and scale, and
packed together horizontally. The destination in the example is as-
sumed to be a Form that is used as the display buffer. Pixels are copied
out of the source and stored into the destination. The width and height
of the transfer correspond to the character size. The source x and y co-
ordinates give the character's location in the font, and the destination
coordinates specify the position on the display where its copy will ap-
pear.

Clipping Rectangle
BitBlt includes in its specification a rectangular area which limits the
region of the destination that can be affected by its operation, indepen-
dent of the other destination parameters. We call this area the clipping
rectangle. Often it is desirable to display a partial window onto larger
scenes, and the clipping rectangle ensures that all picture elements fall
inside the bounds of the window. By its inclusion in the BitBlt primi-
tive, the clipping function can be done efficiently and in one place,
rather than being replicated in all application programs.

Figure 18.4 illustrates the result of imposing a clipping rectangle on
the example of Figure 18.3. Pixels that would have been placed outside
the clipping rectangle (the left edge of the ~'N" and half of the word
~the") have not been transferred. Had there been other characters that
fell above or below this rectangle, they would have been similarly
clipped.

destForm

des tX = 67

destY = 10

1 0

335
Graphical Manipula t ion

0 lO 20 30 40 50 60 70 80

2 0

30

width = 7

height = 13

sourceForm

sourceX = 248

sourceY = 0

F igu re 18.3

40

i0

I0 240 250 260 270

destForm

0 i0 20 30 40 50 60 70 80

clipX = 6

cl ipY = 4

cl ipWidth = 58

c l ipHeight = 23

10

20

30

Figure 18.4

4 0

336
The Graphics Kernel

Halftone Form
Often it is desirable to fill areas with a regular pa t te rn tha t provides
the effect of gray tone or texture. To this end, BitBlt provides for refer-
ence to a thi rd Form containing the desired pat tern. This Form is re-
ferred to as a halftone or mask. It is restricted to have height and width
of 16. When halftoning is specified, this pa t te rn is effectively repeated
every 16 units horizontal ly and vertically over the entire destination.

There are four ~modes" of supplying pixels from the source and half-
tone controlled by supplying nil for the source form or the halftone
form:

0. no source, no halftone (supplies solid black)

1. halftone only (supplies halftone pat tern)

2. source only (supplies source pixels)

3. source AND halftone (supplies source bits masked by halftone pat-
tern)

Figure 18.5 i l lustrates the effect of these four modes with the same
source and dest ination and a regular gray halftone.

Figure 18.5

mode 0
all ones

mode 1 mode 2 mode 3
halftone only source only source AND halftone

Combination Rule
The examples above have all de termined the new contents of the desti-
nat ion based onty on the source and halftone, storing directly into the
destination. The previous contents of the destination can also be taken
into account in determining the resul t of the copying.

There are 16 possible rules for combining each source e lement S with
the corresponding destination e lement D to produce the new destina-
tion e lement D'. Each rule must specify a white or black result for each
of the four cases of source being white or black, and destination being
white or black.

337
Graphical Manipula t ion

Figure 18.6 shows a box with four cells corresponding to the four
cases encountered when combining source S and dest inat ion D. For in-
stance, the cell numbered 2 corresponds to the case where the source
was black and the dest inat ion was white. By appropria te ly filling the
four cells with white or black, the box can be made to depict any combi-
nation rule. The numbers in the four cells map the rule as depicted
graphical ly to the integer value which selects tha t rule. For example, to
specify tha t the result should be black wherever the source or destina-
tion (or both) was black, we would blacken the cells numbered 4, 2, and
1. The associated integer for specifying tha t rule is the sum of the
blackened cell numbers , or 4 + 2 + 1 = 7.

Figure 18.6

Source Before

D

"f2111

Destination Before

D' Destination After

Figure 18.7 i l lustrates four common combination rules graphically.
In addition, each is described by a combination diagram, its integer rule
number , and the actual logical function being applied. The full set of 16
combination rules appears later in the chapter as par t of the detailed
s imulat ion of BitBlt.

rule 3 rule 7 rule 1 rule 6
D' = S D' = S O R D D' = S A N D D D' = S X O R D

Figure 18.7

338
The Graphics Kernel

Classes Form
and Bitmap

Figure 18.8 shows fur ther information about the Form shown in Figure
18.2. The width and height are stored as Integers. The actual pixels are
stored in a separate object which is an instance of class Bitmap. Bitmaps
have almost no protocol, since their sole purpose is to provide storage
for Forms. They also have no intrinsic width and height, apar t from
tha t laid on by their owning Form, al though the figure retains this
s t ructure for clarity. It can be seen that space has been provided in the
Bitmap for a width of 16; this is a manifestat ion of the hardware organi-
zation of storage and processing into 16-bit words. Bitmaps are allocat-
ed with an integral number of words for each row of pixels. This row
size is referred to as the raster size. The integral word constraint on
ras ter size facilitates movement from one row to the next within the op-
eration of BitBlt, and during the scanning of the display screen by the
hardware. While this division of memory into words is significant at the
primitive level, it is encapsulated in such a way tha t none of the
higher-level graphical components in the system need consider the is-
sue of word size.

Two classes, Rectangle and Point, are used extensively in working
with stored images. A Point contains x and y coordinate values and is
used to refer to a pixel location in a Form; a Rectangle contains two
Poin ts - - the top left corner and the bottom right c o r n e r m a n d is used to
define a rectangular area of a Form.

Class Form includes protocol for managing a rectangular pa t tern of
black and white dots. The bi tmap of a Form can be (re)set by copying
bits from a rectangular area of the display screen (fromDisplay:), and the
extent and offset of the Form can be set (extent:, extent:offset:). Two
messages provide access to the individual bits (vatueAt: and valueAt:put:).
Constants for modes and masks are known to class Form and can be
obtained by the following class messages of Form.

Form instance protocol

initialize-release
fromDisplay: aRectangle

accessing

extent: aPoint

Copy the bits from the display screen within
the boundaries defined by the argument,
aRectangle, into the receiver's bitmap.

Set the width and height of the receiver to be
the coordinates of the argument, aPoint.

extent: extentPoint offset: offsetPoint
Set the width and height of the receiver to be
the coordinates of the argument, extentPoint,
and the offset to be offsetPoint.

Form

width 14

height 40

bitmap o-

10

15

2 0 - -
m

m

339
Classes Form and Bitmap

0 5 10 15
l l , l l l l l J l l a l l l l l

Figu re 18.8

pattern
valueAt: aPoint

valueAt: aPoint put: bitCode

Answer the bit, 0 or 1, at location aPoint with-
in the receiver's bitmap.

Set the bit at location aPoint within the re-
ceiver's bitmap to be bitCode, either 0 or 1.

Form class protocol

instance creation
fromDisplay: aRectangle

mode constants
erase
over
reverse
under

Answer a new Form whose bits are copied
from the display screen within the boundaries
define~,,] by the argument, aRectangle, into the
receiver's bitmap.

Answer the Integer denoting mode erase.

Answer the Integer denoting mode over.

Answer the Integer denoting mode reverse.

Answer the Integer denoting mode under.

340
The Graphics Kernel

mask constants
black
darkGray

J

gray
lightGray
veryLightGray

white

Answer the Form denoting a black mask.
Answer the Form denoting a dark gray mask.
Answer the Form denoting a gray mask.
Answer the Form denoting a light gray mask.
Answer the Form denoting a very light gray
mask.
Answer the Form denoting a white mask.

Spatial
Reference

Since the images represented by Forms are inherent ly two-dimensional,
image manipula t ion is simplified by providing objects represent ing two-
dimensional locations and areas. Instances of class Point represent loca-
tions a n d instances of class Rectangle represent areas.

Class Point
A Point represents an x-y pair of numbers usually designating a pixel
in a Form. Points refer to pixel locations relative to the top left corner
of a Form (or other point of reference). By convention, x increases to the
right and y down, consistent with the layout of text on a page and the
direction of display scanning. This is in contrast to the "r ight-handed"
coordinate system in which y increases in the upward direction.

A Point is typically created using the binary message @ to a Number.
For example, the result of evaluating the expression

200 @ 150

is a Point with x and y coordinates 200 and 150. In addition, the class
protocol of Point supports the instance creation message x: xlnteger y:
ylnteger.

Point x: 200 y: 150

represents the same location as 200@ 150. The instance protocol for
Point supports accessing messages and messages for comparing two
Points.

Point instance protocol

341
S p a t i a l R e f e r e n c e

accessing
x

x: aNumber

Y
y: aNumber

Answer the x coordinate.

Set the x coordinate to be the argument,
aNumber.

Answer the y coordinate.

Set the y coordinate to be the argument,
aNumber.

comparing

< aPoint

< = aPoint

> aPoint

> = aPoint

max: aPoint

min: aPoint

Answer whether the receiver is above and to
the left of the argument, aPoint.

Answer whether the receiver is neither below
nor to the right of the argument, aPoint.

Answer whether the receiver is below and to
the right of the argument, aPoint.

Answer whether the receiver is neither above
nor to the left of the argument, aPoint.

Answer the lower right corner of the rectan-
gle uniquely defined by the receiver and the
argument, aPoint.

Answer the upper left corner of the rectangle
uniquely defined by the receiver and the argu-
ment, aPoint.

W i t h r e s p e c t to t h e c o o r d i n a t e s l a b e l e d i n F i g u r e 18.9, e x a m p l e e x p r e s -

s i o n s a r e

expression result

(45@230) < (175@270)

(45 @ 230) < (175 @ 200)

(45@230) > (175@200)

(175@270) > (45@230)

(45 @ 230) max: (175 @ 200)
(45 @ 230) min: (175 @ 200)

true

false

false

true
175@230
45 @ 200

A r i t h m e t i c c a n be c a r r i e d o u t b e t w e e n t w o Po in t s o r b e t w e e n a Point

a n d a N u m b e r (a s c a l i n g fac to r) . E a c h of t h e a r i t h m e t i c m e s s a g e s t a k e s

e i t h e r a Point o r a N u m b e r (a s c a l a r) a s a n a r g u m e n t , a n d r e t u r n s a n e w

Point a s t h e r e s u l t . T r u n c a t i o n a n d r o u n d off m e s s a g e s , s i m i l a r to t h o s e

for N u m b e r s , a r e a l so p r o v i d e d in t h e i n s t a n c e p r o t o c o l of Point .

Point instance protocol

arithmetic

, scale Answer a new Point that is the product of the
receiver and the argument, scale.

342
T h e G r a p h i c s K e r n e l

0 0

F i g u r e 18.9

• 45, 200

• 45, 230

* 45, 550

• 175, 200

• 175, 230

• 175, 270

• 300, 175

640, 808

+ delta

- delta

/ scale

/ / s c a l e

a b s

truncation and round off

rounded

truncateTo: grid

Answer a new Point t ha t is the sum of the re-
ceiver and the a rgument , delta.

Answer a new Point t h a t is the d i f fe rence of
the receiver and the a rgument , delta.

Answer a new Point t h a t is the quot ien t of the
receiver and the a rgument , scale.

Answer a new Point t ha t is the quot ien t (de-
fined by division wi th t runca t ion toward nega-
tive infinity) of the receiver and the
a r g u m e n t , scale.

Answer a new Point whose x and y are the ab-
solute values of the receiver 's x and y.

Answer a new Point t ha t is the receiver 's x
and y rounded.

Answer a new Point t ha t i s the receiver 's x
and y t r unca t ed to the a rgument , grid.

343
Spa t i a l R e f e r e n c e

T h u s

expression result

(45 @ 230) + (175 @ 300)
(45 @ 230) --I-- 175
(45@230) - (175@300)
(160@240) / 50
(160@240) / / 50
(160@240) / / (50@50)
((45@230) - (175@300)) abs
(120.5 @ 220.7) rounded
(160 @ 240) truncateTo: 50

220@530
220@405
--130@--70
(16/5)@(24/5)
3@4
3@4
130@70
121 @221
150 @ 200

V a r i o u s o t h e r o p e r a t i o n s can be p e r f o r m e d on Points i n c l u d i n g compu t -

ing t h e d i s t a n c e b e t w e e n two Points, c o m p u t i n g t he dot p r o d u c t of two

Points, t r a n s p o s i n g a point , a n d d e t e r m i n i n g Points w i t h i n some g r i d d e d

range .

Point instance protocol

point functions
dist: aPoint

dotProduct: aPoint

grid: aPoint

normal

transpose

truncatedGrid: aPoint

E x a m p l e s a r e

Answer the distance between the argument,
aPoint, and the receiver.
Answer a Number that is the dot product of
the receiver and the argument, aPoint.
Answer a Point to the nearest rounded grid
modules specified by the argument, aPoint.
Answer a Point representing the unit vector
rotated 90 deg clockwise.
Answer a Point whose x is the receiver's y and
whose y is the receiver's x.
Answer a Point to the nearest truncated grid
modules specified by the argument, aPoint.

expression result

(45@230) dist: 175@270
(160@240) dotProduct: 50@50
(160 @ 240) grid: 50 @ 50
(160 @ 240) normal
(160 @ 240) truncatedGrid: 50 @ 50
(175 @ 300) transpose

136.015
20000
150 @ 250
--0.83105 @ 0.5547
150 @ 200
300 @ 175

Points a n d R e c t a n g l e s a r e used t o g e t h e r as s u p p o r t for g r a p h i c a l ma-
n ipu l a t i on . A Rectangle c o n t a i n s two Po in t s - -o r ig in , w h i c h specifies t h e

344
The Graphics Kernel

top left corner, and corner, which indicates the bottom right corner of
the region described. Class Rectangle provides protocol for access to all
the coordinates involved, and other operations such as intersection with
other rectangles. Messages to a Point provide an infix way to create a
Rectangle with the Point as the origin.

Point instance protocol

converting
corner: aPoint

extent: aPoint

T h u s (45@ 200) corner:

Answer a Rectangle whose origin is the re-
ceiver and whose corner is the argument,
aPoint.
Answer a Rectangle whose origin is the re-
ceiver and whose extent is the argument,
aPoint.

(175 @ 270) represents the rec tangular area
shown earlier in the image of display coordinates.

Class Rectang le
Instances of Rectangle represent rectangular areas of pixels. Ari thmetic
operations take points as a rguments and carry out scaling and translat-
ing operations to create new Rectangles. Rectangle functions create
new Rectangles by determining intersections of Rectangles with Rec-
tangles.

In addition to the messages to Point by which Rectangles can be cre-
ated, class protocol for Rectangle supports three messages for creating
instances. These messages specify ei ther the boundaries of the rectan-
gular area, the origin and corner coordinates, or the origin and width
and height of the area.

Rectangle class protocol

instance creation
left: leftNumber right: rightNumber top: topNumber bottom: bottomNumber

Answer a Rectangle whose left, right, top, and
bottom coordinates are determined by the ar-
guments.

origin: originPoint corner: cornerPoint
Answer a Rectangle whose top left and bottom
right corners are determined by the argu-
ments, originPoint and cornerPoint.

origin: originPoint extent: extentPoint
Answer a Rectangle whose top left corner is
originPoint and width by height is extentPoint.

The accessing protocol for Rectangle is quite extensive. It supports de-
tailed ways of referencing eight significant locations on the boundary of
theRectangle . These points are shown in Figure 18.10.

Messages for accessing these positions have selectors with names like
those shown in the diagram.

F i g u r e 18.10

top left ?

left
center

top center

345
S p a t i a l R e f e r e n c e

top r ight

center

r ight
center

_ bo t tom bot tom l =
left bot tom center r ight

Rectangle instance protocol

accessing
topLeft

topCenter

topRight

rightCenter

bottomRight

bottomCenter

bottomLeft

leftCenter

center
area

width
height
extent

top

right

bottom

left

Answer the Point at the top left corner of the
receiver.

Answer the Point at the center of the receiv-
er's top horizontal line.

Answer the Point at the top right corner of
the receiver.

Answer the Point at the center of the receiv-
er's right vertical line.

Answer the Point at the bottom right corner of
the receiver.

Answer the Point at the center of the receiv-
er's bottom horizontal line.

Answer the Point at the bottom left corner of
the receiver.

Answer the Point at the center of the receiv-
er's left vertical line.

Answer the Point at the center of the receiver.

Answer the receiver's area, the product of
width and height.

Answer the receiver's width.

Answer the receiver's height.

Answer the Point receiver's width ® receiver's ~
height.

Answer the position of the receiver's top hori-
zontal line.

Answer the position of the receiver's right
vertical line.

Answer the position of the receiver's bottom
horizontal line.

Answer the position of the receiver's left ver-
tical line.

346
The Graph ic s K e r n e l

origin

corner

Answer the Point at the top left corner of the
receiver.

Answer the Point at the bottom right corner of
the receiver.

Suppose the Rec tang le r e f e r r ed to as f rame is c r ea t ed by the express ion

frame ~ Rectangle or ig in : 100 @ 100 extent: 150 @ 150

t h e n

expression result

frame topLeft 100 @ 100
frame top 100
frame rightCenter 250@ 175
frame bottom 250
frame center 175 @ 175
frame extent 150 @ 150
frame area 22500

Each of the Rectangle 's locat ions can be modif ied by an access ing mes-
sage whose keyword is one of t he posi t ions n a m e d in F igu re 18.10. In
addi t ion, the wid th and h e i g h t can be set wi th the messages width: and
height:, respect ively . Two messages a r e l is ted below t h a t a re c o m m o n l y
used in the i m p l e m e n t a t i o n of t he sy s t em p r o g r a m m i n g in t e r face in or-
der to r e se t the va r i ab les of a Rectangle .

Rectangle instance protocol

accessing
origin: originPoint corner: cornerPoint

Set the points at the top left corner and the
bottom right corner of the receiver.

origin: originPoint extent: extentPoint
Set the point at the top left corner of the re-
ceiver to be originPoint and set the width and
height of the receiver to be extentPoint.

Rec t ang le func t ions c r ea t e new Rectangles and c o m p u t e r e l a t i onsh ips
b e t w e e n two Rectangles .

Rectangle instance protocol

rectangle functions
amountToTranslateWithin: aRectangle

Answer a Point, delta, such that the receiver,
when moved by delta, will force the receiver
to lie within the argument, aRectangle.

347
S p a t i a l R e f e r e n c e

areasOutside: aRectangle Answer a collection of Rectangles comprising
the parts of the receiver which do not lie
within the argument, aRectangle.

expandBy: delta Answer a Rectangle that is outset from the re-
ceiver by delta, where delta is a Rectangle,
Point, or scalar.

insetBy: delta Answer a Rectangle that is inset from the re-
ceiver by delta, where delta is a Rectangle,
Point, or scalar.

insetOriginBy: originDeltaPoint cornerBy: cornerDeltaPoint
Answer a Rectangle that is inset from the re-
ceiver by originDeltaPoint at the origin and
cornerDeltaPoint at the corner.

intersect: aRec tang le Answer a Rectangle that is the area in which
the receiver overlaps with the argument,
aRectangle.

merge: aRec tang le Answer the smallest Rectangle that contains
both the receiver and the argument,
aRectangle.

F i g u r e 18.11 s h o w s t h r e e R e c t a n g l e s , A, B, a n d C, c r e a t e d as fo l lows.

A ~- 50 @ 50 corner: 200 @ 200.
B ~- 120 ® 120 corner" 260 @ 240.

C ~ 100 @ 300 corner: 300 @ 400

50, 50

120, 120

200 200

260, 240

100, 300

Figure 18.11 300, 400

348
The Graphics Kerne l

Then expressions using these th ree Rectangles are listed below. Notice
t h a t Rectangles p r in t in the form originPoint corner: cornerPoint.

expression result

A amountToTranslateWithin" C

A areasOutside: B

C expandBy: 10

C insetBy: 10 @ 20

A intersect: B

B merge: C

50 @ 250
OrderedCollection

((50@50 corner: 200
@ 120) (50 @ 120
corner: 120 @, 200))

90 @ 290
corner: 310 @ 410

110@320
corner: 290 @ 380

120@ 120
corner: 200 @ 200

100@ 120
corner: 300 ® 400

The tes t ing protocol for Rectangles includes messages to de t e rmine
w h e t h e r a Point or o ther Rectangle is conta ined wi th in the boundar ies
of a Rectangle, or w h e t h e r two Rectangles intersect .

Rectangle instance protocol

testing
contains: aRectangle

containsPoint: aPoint

intersects: aRectangle

Cont inu ing the above example

Answer whether the receiver contains all
Points contained by the argument, aRectangle.
Answer whether the argument, aPoint, is
within the receiver.
Answer whether the receiver contains any
Point contained by the argument, aRectangle.

expression result

A contains: B false
C containsPoint: 200 @ 320 true
A intersects: B true

Like the messages for a Point, the coordinates of a Rectangle can be
rounded to the nea res t integer. A Rectangle can be m o v e d by some
amount , t r ans l a t ed to a pa r t i cu la r location, and the coordinates can be
scaled or t r an s l a t ed by some amount . Rectangles also respond to scaling

349
Class BitBIt

a n d t r a n s l a t i n g m e s s a g e s ; t h e y a r e p a r t of t h e p r o t o c o l for a n y ob j ec t

t h a t c a n d i s p l a y i t se l f on a d i s p l a y m e d i u m .

Rectangle instance protocol

truncation and round off
rounded

transforming
moveBy: aPoint

moveTo: aPoint

scaleBy: scale

translateBy: factor

Answer a Rectangle whose origin and corner co-
ordinates are rounded to the nearest integer.

Change the corner positions of the receiver so
that its area translates by the amount defined
by the argument, aPoint.

Change the corners of the receiver so that its
top left position is the argument, aPoint.

Answer a Rectangle scaled by the argument,
scale, where scale is either a Point or a scalar.

Answer a Rectangle translated by the argu-
ment, factor, where factor is either a Point or a
scalar.

F o r e x a m p l e

expression result

A moveBy: 50 @ 50

A moveTo: 200@300

A scateBy: 2

A translateBy: - 100

100@ 100
corner: 250 @ 250

200@3OO
corner: 350 @ 450

400@600
corner: 700@900

100 @ 200
corner: 250 @ 350

C l a s s B i tB I t T h e m o s t b a s i c i n t e r f a c e to B i t B l t is t h r o u g h a c l a s s of t h e s a m e n a m e .

E a c h i n s t a n c e of BitBIt c o n t a i n s t h e v a r i a b l e s n e c e s s a r y to spec i fy a

B i t B l t o p e r a t i o n . A spec i f ic a p p l i c a t i o n of B i t B l t is g o v e r n e d b y a l i s t of

p a r a m e t e r s , w h i c h i n c l u d e s :

destForm

sourceForm

hal f toneForm

(destination form) a Form into which pixels will be stored

a Form from which pixels will be copied

a Form containing a spatial halftone pattern

350
T h e G r a p h i c s K e r n e l

combinationRule

destX, destY, width,
height

clipX, clipY,
clipWidth,
clipHeight

sourceX, sourceY

an Integer specifying the rule for combining corresponding

pixels of the sourceForm and destForm

(destination area x, y, width, and height)Integers which

specify the rectangular subregion to be filled in the desti-

nation

(clipping rectangular area x, y, width, and height) Integers

which specify a rectangular area which restricts the affect-

ed region of the destination

Integers which specify the location (top left corner) of the

subregion to be copied from the source

The BitBIt class protocol consists of one message for creating instances;
this message contains a keyword and argument for each BitBlt variable.
The BitBIt instance protocol includes messages for initializing the vari-
ables and a message, copyBits, which causes the primitive operation to
take place. It also contains a message, drawFrom: startPoint to: stopPoint,
for drawing a line defined by two Points.

BitBIt class protocol

instance creation
destForm: destination

sourceForm: source
halftoneForm: halftone
combinationRule: rule
destOrigin: destOrigin
sourceOrigin: sourceOrigin
extent: extent
clipRect: clipRect Answer a BitBIt with values set according to

each of the arguments, where rule is an Inte-
ger; destination, source, and halftone are Forms;
destOrigin, sourceOrigin, and extent are Points;
and clipRect is a Rectangle.

BitBIt instance protocol

accessing
sourceForm: aForm

destForm: aForm

mask: aForm

combinationRule: anlnteger

clipHeight: anlnteger

clipWidth: anlnteger

Set the receiver's source form to be the argu-
ment, aForm.
Set the receiver's destination form to be the
argument, aForm.

Set the receiver's halftone mask form to be
the argument, aForm.

Set the receiver's combination rule to be the
argument, anlnteger, which must be an inte-
ger between 0 and 15.

Set the receiver's clipping area height to be
the argument, anlnteger.

Set the receiver's clipping area width to be
the argument, anlnteger.

clipRect
clipRect: aRectangle

clipX: anlnteger

clipY: anlnteger

sourceRect: aRectangle

sourceOrigin: aPoint

sourceX: anlnteger

sourceY: anlnteger

destRect: aRectangle

destOrigin: aPoint

destX: anlnteger

destY: anlnteger

height: anlnteger

width: anlnteger

copying
copyBits

351
L i n e D r a w i n g

Answer the receiver's clipping rectangle.

Set the receiver's clipping rectangle to be the
argument , aRectangle.
Set the receiver's clipping rectangle top left x
coordinate to be the argument , anlnteger.

Set the receiver's clipping rectangle top left y
coordinate to be the argument , anlnteger.

Set t h e receiver's source form rectangular
area to be the argument , aRectangle.

Set the receiver's source form top left coordi-
nates to be the argument , aPoint.

Set the receiver's source form top left x coor-
dinate to be the argument , anlnteger.

Set the receiver's source form top left y coor-
dinate to be the argument , anlnteger.

Set the receiver's destination form rectangu-
lar area to be the argument, aRectangle.

Set the receiver's destination form top left co-
ordinates to be the argument , aPoint.

Set the receiver's destination form top left x
coordinate to be the argument , anlnteger.

Set the receiver's destination form top left y
coordinate to be the argument , anlnteger.

Set the receiver's destination form height to
be the argument , anlnteger.

Set the receiver's destination form width to be
the argument , anlnteger.

Perform the movement of bits from the source
form to the destination form. Report an error
if any variables are not of the right type (Inte-
ger or Form), or if the combination rule is not
between 0 and 15 inclusive. Try to reset the
variables and try again.

The state held in an instance of BitBIt allows multiple operations in a
related context to be performed without the need to repeat all the ini-
tialization. For example, when displaying a scene in a display window,
the destination form and clipping rectangle will not change from one
operation to the next. Thus the instance protocol for modifying individ-
ual variables can be used to gain efficiency.

Line Drawing Much of the graphics in the Smalltalk-80 system consists of lines and
text. These entities are synthesized by repeated invocation of BitBIt.

352
The Graphics Kernel

The BitBit protocol includes the messages drawFrom: startPoint to:
stopPoint to draw a line whose end points are the arguments , startPoint
and stopPoint.

BitBIt instance protocol

line drawing
drawFrom: startPoint to: stopPoint

Draw a line whose end points are the argu-
ments, startPoint and stopPoint. The line is
formed by displaying copies of the current
source form according to the receiver's half-
tone mask and combination rule.

By using BitBIt, one algori thm can draw lines of varying widths, differ-
ent halftones, and any combination rule. To draw a line, an instance of
BitBIt is initialized with the appropriate destination Form and clipping
rectangle, and with a source tha t can be any Form to be applied as a
pen or "brush" shape along the line. The message drawFrom:to: with
Points as the two arguments is then sent to the instance. Figure 18.12
shows a number of different pen shapes and the lines they form when
the BitBIt combination rule is 6 or 7.

The message drawFrom: startPoint to: stopPoint stores the destX and
destY values. Star t ing from these stored values, the line-drawing loop,
drawLoopX: xDeita Y: yDeita, shown next, accepts x and y delta values
and calculates x and y step values to determine points along the line,
and then calls copyBits in order to display the appropriate image at
each point. The method used is the Bresenham plotting algori thm (IBM
Systems Journal, Volume 4, Number 1, 1965). It chooses a principal di-
rection and mainta ins a variable, p When p's sign changes, it is t ime
to move in the minor direction as well. This method is a na tura l unit to
be implemented as a primitive method, since the computat ion is trivial
and the setup in copyBits is almost all constant from one invocation to
the next.

The method for drawLoopX: xDelta Y: yDelta in class BitBIt is

drawLoopX: xDelta Y: yDelta
t dx dy px py p 1
dx ~- xDelta sign.
dy ~- yDelta sign.
px ~ yDelta abs.
py ~- xDelta abs.
self copyBits. "first point"

353
L i n e D r a w i n g

7

..'.."
÷

," i""J?'
..-J :.-""': :°""'~: :'* iiiI~_~1~/"

l,,'~#
.: f"" i' i' ~=~=i~=~~= J~ (;i'

.../" ,i' i
,

......: S" i /_~
• :- ~ ~ - ; 7 :" ~ ~l

....:"

...... :" /' ' $i' /::" #,/~~l'
.: :'*"

• :-""" III "L/i Ii.." ~ ~ _ 2"~

,t
Figure 18.12

py > px

ifTrue: " ' more horizontal "

[p + - p y / / 2.

1 to: py do:

[: i l destx ~ destx + dx.

(p ,- p - px) < 0

ifTrue: [desty ~ desty + dy. p ~- p -Jr py].

self copyBits]]

ifFalse: " more ver t ica l "

[p~- p x / / 2 .

1 to: px do:

[: i l desty ~ desty + dy.

(p ~ p - p y) < 0

ifTrue: [destx ~ destx + dx. p ~ p -+- px].

self copyBits]]

354
T h e G r a p h i c s K e r n e l

Text Display One of the advantages derived from BitBlt is the ability to store fonts
compactly and to display them using various combination rules. The
compact storage arises from the possibility of packing characters hori-
zontally one next to another (as shown earlier in Figure 18.3), since
BitBIt can extract the relevant bits if supplied with a table of left x coor-
dinates of all the characters. This is called a strike format from the ty-
pographical term meaning a contiguous display of all the characters in
a font.

The scanning and display of text are performed in the Smalltalk-80
system by a subclass of BitBlt referred to as CharacterScanner. This sub-
class inherits all the normal state, with destForm indicating the Form
in which text is to be displayed and sourceForm indicating a Form con-
taining all the character glyphs side by side (as in Figure 18.3). In addi-
tion CharacterScanner defines further state including:

text.
textPos

xTable

stopX

except ions

printing

a String of Characters to be displayed

an Integer giving the current position in text

an Array of Integers giving the left x location of each char-
acter in sourceForm

an Integer that sets a right boundary past which the inner
loop should stop scanning

an Array of Symbols that, if non-nil, indicate messages for
handling the corresponding characters specially

a Boolean indicating whether characters are to be printed

Once an instance has been initialized with a given font and text loca-
tion, the scanWord: loop below will scan or print text until some hori-
zontal position (stopX) is passed, until a special character (determined
from exceptions) is found, or until the end of this range of text (endRun)
is reached. Each of these conditions is denoted by a symbolic code re-
ferred to as stopXCode, except ions (an Array of Symbols) and
endRunCode.

scanword: endRun
I charlndex I
[textPos < endRun] whiteTrue:

[" p i c k character" charlndex ~- text at: textPos.
" check exceptions"
(exceptions at: charlndex) > 0

ifTrue: [texceptions at: charlndex].
" left x of character in font" sourceX ~- xTable at: charlndex.
"up to left of next char"
width ~- (xTable at: charlndex+ 1) - sourceX.
" p r i n t the character" printing ifTrue: [self copyBits].

355
Simulation of BitBIt

" a d v a n c e by width of character" destX ~- destX 4-- width.
destX > stopX ifTrue' [tstopXCode]. " passed right boundary"
" advance to next character"
textPos,.- textPos+ 1].

textPos ~ textPos- 1.
tendRunCode

The check on exceptions handles many possibilities in one operation.
The space character may have to be handled exceptionally in the case
of text tha t is padded to achieve a flush right margin. Tabs usually re-
quire a computat ion or table lookup to determine their width. Carriage
re turn is also identified in the check for exceptions. Character codes be-
yond the range given in the font are detected similarly, and are usually
handled by showing an exceptional character, such as a little l ightning
bolt, so tha t they can be seen and corrected.

The printing flag can be set false to allow the same code to measure a
line (break at a word boundary) or to find to which character the cursor
points. While this provision may seem over-general, two benefits (be-
sides compactness) are derived from tha t generality. First, if one makes
a change to the basic scanning algorithm, the parallel functions of meas-
uring, printing, and cursor t racking are synchronized by definition. Sec-
ond, if a primitive implementat ion is provided for the loop, it exerts a
threefold leverage on the system performance.

The scanword: loop is designed to be amenable to such primitive im-
plementation; tha t is, the in terpreter may intercept it and execute
primitive code instead of the Smalltalk-80 code shown. In this way,
much of the setup overhead for copyBits can be avoided at each charac-
ter and an entire word or more can be displayed directly. Conversely,
the Smal l ta lk text and graphics system requires implementat ion of only
the one primitive operation (BitBlt) to provide full functionality.

Simulat ion of
BitBIt

We provide here a s imulat ion of an implementat ion of copyBits in a
subclass of BitBIt referred to as BitBItSimulation. The methods in this
s imulat ion are intentionally wri t ten in the style of machine code in or-
der to serve as a guide to implementors. No a t tempt is made to hide the
choice of 16-bit word size. Although the copyBits method is presented as
a Smalltalk-80 method in BitBItSimulation, it is actually implemented in
machine-code as a primitive method in class BitBIt; the simulation does
the same thing, albeit slower.

356
T h e G r a p h i c s K e r n e l

class n a m e

superclass

ins tance var iable names

class var iable names

class methods

initialize
"Initialize a table of bit masks"

RightMasks ,-

(0 16rl 16r3 16r7 16rF

BitBltSimulation

BitBIt

sourceBits sourceRaster

destBits destRaster

hatftoneBits

skew skewMask

mask 1 mask2

preload nWords
hDir vDir

sourcelndex sourceDelta

desttndex destDelta

sx sy dx dy w h

AllOnes RightMasks

16r1F 16i3F 16r7F 16rFF

16r1FF 16r3FF 16r7FF 16rFFF

16r1FFF 16r3FFF 16r7FFF 16rFFFF).

AflOnes ~ 16rFFFF

ins tance methods

operations

copyBits
" sets w and h "

self clipRange.

(w < = 0 or: [h < =0]) i fTrue: [1self]. " null range
self computeMasks.

self checkOverlap.

self calculateOffsets.

self copyLoop

private

clipRange
" clip and adjust source origin and extent appropriately"
" f i r s t in x "

destX > = clipX

ifTrue: [sx ~-- sourceX, dx ~ destX, w ~-- width]

ifFalse: [sx ~ sourceX + (c l i p X - destX).

w ~- width - (clipX - destX).

dx ~- clipX].

(dx + w) > (clipX + clipWidth)

ifTrue: [w ~ w - ((dx + w) - (clipX 4--- clipWidth))].

357
Simulation of Bi tBI t

" then in y "

destY > = cl ipY

ifTrue: [sy ~ sourceY, dy ~ destY, h ~- height]

ifFalse: [sy ~-- sourceY + c l i p Y - destY.

h ~ h e i g h t - cl ipY + destY.

dy ~ cl ipY].

(dy + h) > (cl ipY + cl ipHeight)

ifTrue: [h ~- h - ((dy + h) - (cl ipY + cl ipHeight))].

s x < 0

ifTrue: [dx ~ dx - sx. w ~ w + sx. sx ~ 0].

sx -4-- w > sourceForm width

ifTrue: [w ~ w - (sx + w - sourceForm width)].

s y < 0

ifTrue: [dy ~ d y - sy. h ~- h + sy. sy ~ 0].

sy ÷ h > sourceForm height

ifTrue: [h ~ h - (sy + h - sourceForm height)]

Clipping first checks whether the destination x lies to the left of the
clipping rectangle and, if so, adjusts both destination x and width. As
mentioned previously, the data to be copied into this adjusted rectangle
comes from a shifted region of the source, so tha t the source x must
also be adjusted. Next, the r ightmost destination x is compared to the
clipping rectangle and the width is decreased again if necessary. This
whole process is then repeated for y and height. Then the height and
width are clipped to the size of the source form. The adjusted parame-
ters are stored in variables sx, sy, dx, dy, w, and h. If either width or
height is reduced to zero, the entire call to BitBIt can re turn immediately.

computeMasks
I startBits endBits t

" calculate skew and edge masks "

destBits ~ destForm bits.

destRaster ~ destForm width --1 / / t6 + 1.

sourceForm notNil

ifTrue: [sourceBits ~ sourceForm bits.

sourceRaster , - sourceForm width - 1 / / 1 6 ÷ 1].

hal f toneForm notNil
ifTrue: [half toneBits ~- hal f toneForm bits].

skew ~- (sx -- dx) bitAnd: 15.

' " how many bits source gets skewed to r ight"

startBits ~- 16 - (dx bitAnd: 15).

" how many bits in first wo rd "

mask1 ~ RightMasks at: startBits + 1.

endBits ~-- 1 5 - ((dx + w - l) b i t A n d : 15).

" how many bits in last wo rd "

mask2 ~ (RightMasks at: endBits + 1) bitlnvert.

358
The Graphics Kernel

s k e w M a s k

(s k e w = 0

ifTrue: [0]

i fFalse: [R igh tMasks at: 16 - skew + 1]).

" determine number of w o r d s s tored per line; merge masks if n e c e s s a r y "

w < startBits

ifTrue: [mask1 ~- mask1 bi tAnd: mask2.

mask2 ~ 0.

nWords ~ 1]

i fFalse: [nWords ~- (w - startBits - 1) / / 16 + 2].

In prepara t ion for the actual t ransfer of data, several pa ramete rs are
computed. Firs t is skew, the horizontal offset of data from source to des-
tination. This represents the number of bits by which the data will
have.to be rotated after being loaded from the source in order to line up
with the final position in the destination. In the example of Figure 18.3,
skew would be 5 because the glyph for the charac ter ~e" must be
shifted left by 5 bits prior to being stored into the destination. From
skew, skewMask is saved for use in rotat ing (this is unnecessary for ma-
chines with a rotate word instruction). Then mask1 and mask2 are com-
puted for selecting the bits of the first and last part ia l words of each
scan line in the destination. These masks would be 16r1FFF and
16rFFC0 respectively in the example of Figure 18.3 since startBits= 13
and endBits=6. In cases such as this where only one word of each desti-
nation line is affected, the masks are merged to select the range within
tha t word, here 16rl FC0.

checkOverlap
I t t

" c h e c k for poss ib le over lap of source and des t i na t i on "

hDir ~ vDir ~- t. " d e f a u l t s for no o v e r l a p "

(sou rceForm = = des tForm and: [dy > = sy])

ifTrue:

[dy > sy " have to start at b o t t o m "

ifTrue: [vDir ~ - 1 . sy ~- sy + h - 1. dy ~- dy --4- h - 1]

i fFalse: [dx > sx " y ' s are equal , but x ' s are b a c k w a r d "

i fTrue: [hDir ~- - 1.

sx ~- sx + w - 1.

" start at r igh t "

dx ~- dx 4- w - 1.

" and fix up m a s k s "

s k e w M a s k ~- s k e w M a s k bit lnvert.

t ~- mask1.

mask1 ~- mask2.

mask2 ~- t]]]

359
Simulation of BitBIt

A check must be made for overlapping source and destination. When
source and destination lie in the same bitmap, there is the possibility of
the copy operation destroying the data as it is moved. Thus when the
data is being moved downward, the copy must s tar t at the bottom and
proceed upward. Similarly when there is no vertical movement, if the
horizontal movement is to the right, the copy must s tar t at the r ight
and work back to the left. In all other cases the copy can proceed from
top to bottom and left to right.

calculateOffsets
'" check if need to preload buffer
(i.e., two words of source needed for first word of destination)"

p re load~ (sourceForm notNil) and:
[skew ,--.,= 0 and: [skew < = (sx bitAnd: 15)]].

hDir < 0 ifTrue: [preload ~ preload = = false].

" calculate starting offsets"
sourcelndex ~- s y , sourceRaster + (s x / / 16).

destlndex ~ d y , destRaster + (d x / / 16).
" calculate increments from end of 1 line to start of next"

sourceDetta ,-
(sourceRaster , vDir) -

(nWords + (preload ifTrue: [1] ifFalse: [0]) , hDir).

destDelta ~- (destRaster , vDir) - (nWords , hDir)

In cases where two words of source are needed to store the first word
into the destination, a flag preload is set indicating the need to preload
a 32-bit shifter prior to the inner loop of the copy (this is an optimiza-
tion; one could simply always load an ext ra word initially). The offsets
needed for the inner loop are the s tar t ing offset in words from the
source and destination bases; deltas are also computed for jumping from
the end of the data in one scanline to the s tar t of data in the next.

inner loop

copyLoop
I prevWord thisWord skewWord mergeMask

halftoneWord mergeWord word 1
1 to: h do: " here is the vertical loop:"

[:i l
(halftoneForm notNit)

ifTrue:
[halftoneWord ~ halftoneBits at: (1 -i- (dy bitAnd: 15)).

dy ,- dy + vDir]

ifFalse: [hatftoneWord ,- AIIOnes].
skewWord ,- halftoneWord.

360
The Graphics Kernel

preload

ifTrue: [prevWord ~ sourceBits at: sourcelndex + 1.

" load the 32-bit shif ter"

sourcelndex ~- sourcetndex + hDir]

ifFalse: [prevWord ~- 0].

mergeMask ~- mask1.

1 to to: nWords do: "here is the inner horizontal loop"

[:word I

sourceForm notNil " if source is used"

ifTrue:

[prevWord ~- prevWord bitAnd: skewMask.

thisWord ~ sourceBits at: sourcelndex -t- 1.

" p i c k up next wo rd "

skewWord ~-

prevWord bitOr: (thisWord bitAnd: skewMask bitlnvert).

prevWord ~- thisWord.

skewWord ~ (skewWord bitShift: skew) bitOr:

(skewWord bitShift: skew - 16)].

" 16-bit rotate"

mergeWord ~ self merge: (skewWord bitAnd: halftoneWord)

with: (destBits at: dest lndex + 1).

destBits

at: dest lndex --t- 1

put: ((mergeMask bitAnd: mergeWord)

bitOr: (mergeMask bitlnvert

bitAnd: (destBits at: dest lndex + 1))).

sourcelndex ~ sourcelndex --.t- hDir.

dest lndex ~ dest lndex --I- hDir.

word = (nWords - 1)

ifTrue: [mergeMask ~ mask2]

ifFalse: [mergeMask ~ AIIOnes]].

sourcelndex ~ sourcelndex -t- sourceDelta.

dest lndex ~ dest lndex + destDelta]

The outer, or vertical, loop includes the overhead for each line,
selecting the appropriate line of halftone gray, preloading the shifter if
necessary, and stepping source and destination pointers to the next
scanline after the inner loop. It should be noted here tha t the reason
for indexing the halftone pa t te rn by the destination y is to el iminate
~seams" which would occur if the halftones in all operations were not
coordinated this way.

The inner, or horizontal, loop picks up a new word of source, rotates
it with the previous, and merges the result with a word of the destina-
tion. The store into the destination must be masked for the first and

361
Simulation of BitBIt

last part ial words on each scanline, but in the middle, no masking is re-
ally necessary.

merge: sourceWord with: dest inat ionWord
"These are the 16 combination rules:"
com binationRu!e = 0

ifTrue: [tO].
combinationRule= 1

ifTrue: [tsourceWord bitAnd: destinationWord].
combination Rule = 2

ifTrue: [tsourceWord bitAnd: destinationWord bitlnvert].
combinationRule= 3

ifTrue: [t sourceWord].
combinationRule= 4

ifTrue: [tsourceWord bitlnvert bitAnd: destinationWord].

combinationRute = 5
ifTrue: [1destinationWord].

combinationRule =6
ifTrue:[l'sourceWord bitXor: destinationWord].

combinationRule= 7
ifTrue: [l"sourceWord bitOr: destinationWord].

combination Rule = 8
ifTrue: [tsourceWord bitlnvert bitAnd: destinationWord bitlnvert].

combination Rule = 9
ifTrue: [1"sourceWord bitlnvert bitXor: destinationWord].

combinationRule = 10
ifTrue: [l"destinationWord bitlnvert].

combinationRule = 11
ifTrue: [tsourceWord bitOr: destinationWord bitlnvert].

combinationRule = 12
ifTrue: [tsourceWord bitlnvert].

combinationRule= 13
ifTrue: [tsourceWord bitlnvert bitOr: destinationWord].

combinationRule= 14
ifTrue: [t sourceWord bitlnvert bitOr: destinationWord bittnvert].

combinationRule = 15
ifTrue: [tAIIOnes]

Efficiency
Considerations

Our experience has demonstrated the value of BitBIt 's generality. This
one primitive is so central to the programming interface tha t any im-
provement in its performance has considerable effect on the interactive
quality of the system as a whole. In normal use of the Smalltalk-80 sys-
tem, most invocations of BitBIt are either in the extreme microscopic or
macroscopic range.

362
The Graphics Kernel

In the macroscopic range, the width of t ransfer spans many words.
The inner loop across a horizontal scan line gets executed many times,
and the operations requested tend to be simple moves or constant
stores. Examples of these are:

clearing a line of text to white

clearing an ent i re window to white

scrolling a block of text up or down

Most processors provide a fast means for block moves and stores, and
these can be made to serve the applications above. Suppose we struc-
ture the horizontal loop of BitBIt as

1. move left par t ia l word,

2. move many whole words (or none),

3. move r ight part ia l word (or none).

Special cases can be provided for 2 if the operation is a simple store or
a simple copy with no skew (horizontal bit offset) from source to desti-
nation. In this way, most macroscopic applications of BitBit can be made
fast, even on processors of modest power.

The microscopic range of BitBIt is characterized by a zero count for
the inner loop. The work on each scanline involves at most two part ia l
words, and both overall setup and vertical loop overhead can be consid-
erably reduced for these cases. Because characters tend to be less than
a word wide and lines tend to be less than a word thick, near ly all text
and line drawing falls into this category. A convenient way to provide
such efficiency is to write a special case of BitBIt which assumes the mi-
croscopic parameters , but goes to the general BitBlt whenever these are
not met. Because of the statistics (many small operations and a few
very large ones), it does not hur t to pay the penal ty of a false assump-
tion on infrequent calls. One can play the same tr ick with clipping by
assuming no clipping will occur and runn ing the general code only
when this assumption fails.

. "
..."

.--"
....."'"

o j °m°

.""f

F "e

19
Pens

Class Pen

Geometric Des igns
Spirals
Dragon Curve
Hilbert Curve

Commander Pen

Object

Magnitude
Character
Date
Time

Number
Float
Fraction
Integer

LargeNegativelnteger
LargePositivelnteger
Smalllnteger

LookupKey
Association

Link

Process

Collection

Seq uencea b leCol lection
LinkedList

Semaphore

ArrayedCollection
Array

Bitmap
DisplayBitmap

RunArray
String

Symbol
Text
ByteArray

Interval
OrderedCoilection

SortedCollection
Bag
M a ppedC ol lect ion
Set

Dictionary
IdentityDictionary

Stream
PositionableStream

ReadStream
WriteStream

ReadWriteStream
ExternalStream

FileStream

Random

File
FileDirectory
FilePage

UndefinedObject
Boolean

False
True

ProcessorScheduler
Delay
SharedQueue

Behavior
ClassDescription

Class
MetaClass

Point
Rectangle
BitBit

CharacterScanner

DisplayObject
DisplayMedium

Form
Cursor
DisplayScreen

InfiniteForm
OpaqueForm
Path

Arc
Circle

Curve
Line
LinearFit
Spline

365
Class Pen

As explained in the previous chapter, Forms represent images. Lines
can be created by copying a Form to several locations in another Form
at incremental distances between two designated points. Higher-level
access to line drawing is provided by instances of class Pen.

Pen is a subclass of BitBIt. As such, it is a holder for source and desti-
nation Forms. The source Form can be colored black or white or differ-
ent tones of gray, and copied into the destination Form with different
combination rules, different halftone masks, and with respect to differ-
ent clipping rectangles. The source Form is the Pen's writing tool or
nib. The destination Form is the Pen's writing surface; it is usually the
Form representing the display screen.

In addition to the implementations inherited from BitBIt, a Pen has a
Point that indicates a position on the display screen and a Number that
indicates a direction in which the Pen moves. A Pen understands mes-
sages that cause it to change its position or direction. When its position
changes, the Pen can leave a copy of its Form at its former position. By
moving the Pen to different screen positions and copying its Form to
one or more of these positions, graphic designs are created.

Several programming systems provide this kind of access to line
drawing. In these systems, the line drawer is typically called a "turt le"
after the one first provided in the MIT/BBN Logo language (Seymour
Papert, MindStorms: Children, Computers and Powerful Ideas, Basic
Books, 1980; Harold Abelson and Andrea diSessa, Turtle Geometry: The
Computer as a Medium for Exploring Mathematics, MIT Press, 1981).
The protocol for Pens supports messages that are like the turtle com-
mands provided in Logo. These consist of commands for telling the tur-
tle to go some distance, turn some amount, to place a pen in a down
position, and to place a pen in an up position. When the pen is down
and it moves, a trace of the turtle 's path is created. The corresponding
Pen messages are go: distance, turn: amount, down, and up.

Multiple Pens can be created and their movement on the screen co-
ordinated so that the process of creating a graphical design can itself be
graphically pleasing. The next section contains the protocol that is pro-
vided in class Pen. Subsequent sections give examples of designs that
can be created by sending messages to Pens.

Class Pen Instances of class Pen are created by sending Pen the message new. A
Pen created this way can draw anywhere on the display screen; its ini-
tial position is the center of the screen, facing in a direction towards

366
Pens

the top of the screen. The Pen is set to d r a w (i.e., it is down) wi th a
source Form or nib t h a t is a 1 by 1 b lack dot.

T h e r e a r e two ways to c h a n g e the source Form of a Pen. One way is
to send the Pen the m e s s a g e defaultNib: widthlnteger. The o t h e r way is
to r e se t the source Form by s end ing the Pen the messages it i nhe r i t s
f rom its superc lass , BitBIt. For example , t he me s s a g e sourceForm:
c h a n g e s t he source form, or t h e me s s a g e mask: c h a n g e s the h a l f t one
f o r m (the mask) used in d i sp lay ing the source form. (Note t h a t the de-
fau l t m a s k for d i sp lay ing is black.)

Pen instance protocol

initialize-release
defaultNib: shape

T h u s

A "nib" is the tip of a pen. This is an easy
way to set up a default pen. The Form for the
receiver is a rectangular shape with height
and width equal to (1) the argument, shape, if
shape is an Integer; or (2) the coordinates of
shape if shape is a Point.

bic ~- Pen new defaultNib: 2

c rea t e s a Pen wi th a b lack Form t h a t is 2 bits wide by 2 bits high.
The access ing protocol for a Pen provides access to the Pen ' s c u r r e n t

d i rec t ion, locat ion, a n d d r a w i n g region. The d r a w i n g reg ion is r e f e r r e d
to as t he Pen ' s frame.

Pen instance protocol

accessing
direction

location
frame

frame: aRectangle

Answer the receiver's current direction. 270 is
towards the top of the screen.
Answer the receiver's current location.
Answer the Rectangle in which the receiver
can draw.
Set the Rectangle in which the receiver can
draw to be the argument, aRectangle.

C o n t i n u i n g to use t h e example , bic, a n d a s s u m i n g t h a t the d isp lay
sc reen is 600 bits wide a n d 800 bits high, we have

expression result

bic direction 270
bic location 300 @ 400
bic frame:

(50 @ 50 extent: 200 @ 200)
bic location 300 @ 400

367
Class Pen

Notice t h a t w h e n the Pen d i rec t ion is t owards the top of the display
screen, the angle is 270 degrees. Notice also t h a t the Pen is c u r r e n t l y
outs ide its d r a w i n g region and would have to be placed wi th in the Rec-
tangle, 50@ 50 corner: 250 @ 250, before any of its m a r k s could be seen.

The " t u r t l e " d r a w i n g c o m m a n d s a l t e r the Pen ' s d r a w i n g s tate , o r ien t
its d r a w i n g direct ion, and reposi t ion it.

Pen instance protocol

moving
down

up

turn-degrees

north

go: distance

goto: aPoint

place: aPoint

home

Set the state of the receiver to "down" so that
it leaves marks when it moves.

Set the state of the receiver to '~up" so that it
does not leave marks when it moves.

Change the direction that the receiver faces
by an amount equal to the argument, degrees.

Set the receiver's direction to facing toward
the top of the display screen.

Move the receiver in its current direction a
number of bits equal to the argument, dis-
tance. If the receiver status is "down," a line
will be drawn using the receiver's Form as the
shape of the drawing brush.

Move the receiver to position aPoint. If the re-
ceiver status is '~down", a line will be drawn
from the current position to the new one us-
ing the receiver's Form as the shape of the
drawing brush. The receiver's direction does
not change.
Set the receiver at position aPoint. No lines
are drawn.
Place the receiver at the center of the region
in which it can draw.

T h u s we can p l a c e bic in the cen te r of its f r a m e by e v a l u a t i n g the ex-
press ion

bic home

If we t h e n ask

bic location

the response would be 150 @ 150.
Suppose t h a t we d rew a l ine wi th a Pen and t h e n decided t h a t we

w a n t e d to e rase it. If the l ine had been d r a w n wi th a b lack Form, t hen
we can e rase it by d r a w i n g over it wi th a whi te Form of a t least the
s ame size. Thus

bic go" 100

368
Pens

draws the black line. Then

bic white

sets the drawing mask to be all white (the message white is inheri ted
from the protocol of BitBIt), and then

bic go: - 100

draws over the original line, erasing it.
An exercise tha t is common in the Logo examples is to create various

polygon shapes, such as a square.

4 timesRepeat: [bic go: 100. bic turn: 90]

The following expression creates any polygon shape by computing the
angle of tu rn ing as a function of the number of sides. If nSides is the
number of sides of the desired polygon, then

nSides timesRepeat: [bic go" 100. bic turn: 360 / /nS ides]

will draw the polygon. We can create a class Polygon whose instances
refer to the number of sides and length of each side. In addition, each
Polygon has its own Pen for drawing. In the definition tha t follows, we
specify tha t a Polygon can be told to draw on the display screen; the
method is the one described earlier.

class name
superclass
instance variable names

class methods

instance creation

n e w

1' super new default

Polygon
Object
drawingPen
nSides
length

instance methods

drawing

d r a w

drawingPen black.
nSides timesRepeat: [drawingPen go length' turn: 360/ / nSides]

369
Class Pen

accessing

l ength: n

length ~ n
sides: n

nSides ~- n

private

d e f a u l t
drawingPen ~ Pen new.
self length: 100.
self sides: 4

Then a Polygon can be created and a sequence of polygons drawn by
evaluating the expressions

poly ~- Polygon new.
3 to: 10 do: [:sides I poly sides: sides, poly draw]

The result is shown in Figure 19.1.

Figure 19.1

370
Pens

Geometric
Designs

The Logo books mentioned earlier provide extensive examples of how to
use this kind of access to line drawing in order to create images on a
computer display screen. We provide several examples of methods that
can be added to a Pen so tha t any Pen can draw a geometric design
such as those shown in Figures 19.2 - 19.5. (Note: These methods are in
the system as part of the description of Pen so tha t users can play with
creating geometric designs.)

Spirals
The first design is called a spiral. A spiral is created by having the Pen
draw incremental ly longer lines; after each line is drawn, the Pen turns
some amount. The lines drawn begin at length 1 and increase by 1 each
t ime until reaching a length equal to the first a rgument of the message
spiral:angle:. The second a rgument of the message is the amount the
Pen turns after drawing each line.

spiral : n ang le : a
1 to: n do:

[i I self go i. self turn: a]

Each of the lines in Figure 19.2 was drawn by sending bic the message
spiral:angle:, as follows.

bicsp i ra l : 150 angle: 89

Figure 19.2a

371
Geometr ic Des igns

bic spiral: 150 angle: 91

Figure 19.2b

,.

J .

bic spiral: 150 angle: 121

Figure 19.2c

372
Pens

bic home.
bic spiral: 150 angle: 89.
bic home.
bic spiral: 150 angle: 91

Figure 19.2d

Dragon Curve
Figure 19.3 is an image of a "dragon curve" of order 8 which was
drawn in the middle of the screen by evaluat ing the expression

bic ~ Pen new defaultNib: 4.
bic dragon: 9

The method associated with the message dragon: in class Pen is

dragon: n
n = O

ifTrue: [self go: 10]
ifFalse:

[n > O
ifTrue:

[self dragon: n - 1.
self turn: 90.
self dragon' 1 - n]

ifFalse:
[self d r a g o n : - 1 - n.
self turn: - 90 .
self dragon: 1 + n]]

Figure 19.3

373
Geometric Designs

Dragon curves were discussed by Martin Gardner in his mathematical
games column in Scientific American (March 1967, p. 124, and April
1967, p. 119). Another discussion of dragon curves appears in Donald
Knuth and Chandler Davis, '~Number Representations and Dragon
Curves," Journal of Recreation Mathematics, Vol. 3, 1970, pp. 66-81 and
133-149.

Hilbert Curve
Figure 19.4 is a space-filling curve attributed to the mathematician Da-
vid Hilbert. A space-filling curve has an index; as the index increases to
infinity, the curve tends to cover the points in a plane. The example is
the result of evaluating the expression

Pen n e w hi lber t : 5 side" 8

The index for the example is 5; at each point, a line 8 pixels long is
drawn. The corresponding method for the message hilbert:side is

h i l b e r t : n s i d e : s

t a m 1
n = 0 ifTrue: [tse l f turn: 180].

n > 0 ifTrue: [a ~ 90.

m ~ n - 1]

ifFalse: [a ~ - 9 0 .

m ~ - n + 1].

374
Pens

Figure 19.4

self turn: a.

self hilbert: 0 - m side: s.

self turn: a.

self go: s.

self hilbert: m side: s.

self turn: 0 - a.

self go: s.

self turn: 0 - a.

self hilbert: m side: s.

self go: s.

self turn: a.

self hilbert: 0 -- m side: s.

self turn: a

A Hilbert curve, where the source form is a different shape, creates a
nice effect. Suppose the Form is three dots in a row; this is a system
cursor referred to as wait. The image i n Figure 19.5 was created by
evaluat ing the expressions

bic ~ Pen n e w s o u r c e F o r m : C u r s o r wa i t .

b ic c o m b i n a t i o n R u t e : F o r m under .

b ic h i lber t : 4 s ide: 16

375
C o m m a n d e r Pen

Figure 19.5

Expressions Cursor wait and Form under access a Form and a combina-
tion rule, respectively, that are constants in the system and that are
known to the named classes. Other such constants are listed in a sec-
tion of the next chapter. The messages sourceForm: and
combinationRule: are inherited by Pens from their superclass BitBlt.

Commander
Pen

The next example is shown in Figure 19.6. Although we can not show
the process by which the design was created, it is a nice example for
the reader to try. The basic idea is to create an object that controls sev-
eral Pens and coordinates their drawing a design. We call the class of
this kind of object, Commander. A Commander is an array of Pens.
Pens controlled by a Commander can be given directions by having the
Commander enumerate each Pen and evaluate a block containing Pen
commands. So if a Commander's Pens should each go: 100, for example,
then the Commander can be sent the message

do: [:eachPen I eachPen go: 100]

A Commander also responds to messages to arrange its Pens so that in-
teresting designs based on symmetries can be created. The two mes-

sages given in the description of Commander shown next are fanOut and

376
Pens

l ineUpFrom: startPoint to: endPoint. The first message a r ranges the Pens
so tha t their angles are evenly distr ibuted around 360 degrees. A
Commander 's Pens can be positioned evenly along a line using the mes-
sage lineUpFrom:to:, where the a rguments define the end points of the
line.

A description for Commander follows. The message new: is redefined
so tha t Pens are stored in each e lement of the Array.

class name Commander
superclass Array
class methods

instance creation

new: numberOfPens
I newCommander I
newCommander , -super new: numberOfPens.
1 to: numberOfPens do:

[: index 1 newCommander at: index put: Pen new].
tnewCommander

instance methods

distributing

fanOut
1 to: self size do:

[:index !
(self at: index) turn: (index - 1) , (360 / self size)]

l ineUpFrom: startPoint to: endPoint
1 to: self size do:

[:index I
(self at: index)

place: startPoint + (stopPoint- startPoint,(index- 1) / (self s i ze - 1))]

The methods are useful examples of sending messages to instances of
class Point. The image in Figure 19.6 was drawn by evaluat ing the ex-
pressions

bic ~- Commander new: 4.
bic fanOut.
bic do: [:eachPen i eachPen up. eachPen go: 100. eachPen down].
bic do: [:eachPen I eachPen spiral: 200 angle: 121]

The message do: to a Commander is inheri ted from its Collect ion super-
class.

377
Commander Pen

Figure 19.6

Another example of the use of a Commander is given in Figure 19.7.
This image was created by using the message lineUpFrom:to:. It is a sim-
ple sequence of spirals arranged along a line at an angle, created by
evaluating the expressions

bic ~- Commander new: 6.
bic lineUpFrom: (300@ 150) to: (300@500).
bic do: [eachPen i eachPen spiral: 200 angle 121]

E] Additional Protocol for Commander Pen An expanded description
of Commander adds to Commander each message of the protocol of class
Pen whose behavior changes position or orientation. This additional
protocol supports the ability to send messages that are part of Pen's

378
Pens

Figure 19.7

379
C o m m a n d e r Pen

protocol to the Commander. Each such message is implemented as
broadcast ing the message to the elements of the collection. In this way,
messages to Commander take the same form as messages to any Pen,
r a the r than tha t of a do: message. With the class defined in this way,
drawing sequences to a Commander appear more like drawing se-
quences to a Pen. Moreover, all the Pens commanded by a Commander
draw in parallel; for example, all the spirals of Figures 19.6 or 19.7
would grow at once.

down
self do: [:each each down]

up

self do: [:each each up]
turn: degrees

self do: [:each
north

self do: [:each each north]
go: d istance

set fdo: [:each
goto: aPoint

self do: [:each
place: aPoint

self do: [:each
home

self do: [:each each home]
spiral: n angle: a

1 to: n do:
[: i I self go: i. self turn: a]

each turn: degrees]

each go: distance]

each goto: aPoint]

each place: aPoint]

With this additional protocol, Figure 19.6 can
the expressions

be drawn by evaluat ing

bic ~- Commander new: 4.
bic fanOut.
bic up.
bic go: 100.
bic d o w n .
bic spiral: 200 angle: 121

and Figure 19.7 by the expressions

bic ~ Commander new: 6.
bic l ineUpFrom: (300 ® 150) to: (300 @ 500).
bic spiral: 200 angle: 121

20
Display Objects

Class DisplayObject

Class DisplayMedium

Forms
Other Forms
Cursors
The Display Screen

Display Text

Paths

Image Manipulation with Forms
Magnification
Rotation
Area Filling
The Game of Life

Object

Magnitude
Character
Date
Time

Number
Float
Fraction
Integer

LargeNegativelnteger
LargePositivelnteger
Smalllnteger

LookupKey
Association

Link

Process ,

Collection

SequenceableCollection
LinkedList

Semaphore

Arra yedCo I I ect ion
Array

Bitmap
DisplayBitmap

RunArray
String

Symbol
Text
ByteArray

Interval
OrderedCollection

SortedCollection
Bag
M appedCollection
Set

Dictionary
IdentityDictionary

Stream
PositionableStream

ReadStream
WriteStream

ReadWriteStream
ExternalStream

FileStream

Random

File
FileDirectory
FilePage

UndefinedObject
Boolean

False
True

ProcessorSchedu ler
Delay
SharedQueue

Behavior
ClassDescription

Class
MetaClass

Point
Rectangle
BitBit

CharacterScanner

Pen

383
Class DisplayObject

Graphics in the Smalltalk-80 system begin with the specification of
BitBIt. Supported by Points, Rectangles, Forms, Pens, and Text, a wide
variety of imagery can be created. The images in Figure 20.1 illustrate
some of the graphical entities made possible by extending the use of
these five kinds of objects.

The more artistic images in Figures 20.2 and 20.3 were created using
the additional display objects available in the Smalltalk-80 system. The
methods used in creating these images are described later. This chapter
describes the available kinds of display objects and the various ways to
manipulate them.

Class
Disp layObjec t

A Form is a kind of display object. There are others in the system. The
way in which these objects are implemented is as a hierarchy of classes
whose superclass is named DisplayObject. Form is a subclass in this hi-
erarchy.

A display object represents an image that has a width, a height, an
assumed origin at 0@0, and an offset from this origin relative to which
the image is to be displayed. All display objects are similar in their
ability to copy their image into another image, to be scaled, and to be
translated. They differ in how their image is created.

There are three primary subclasses of DisplayObject. They are
DisplayMedium, DisplayText, and Path.

• DisplayMedium represents images that can be '~colored" (that is,
filled with a gray tone) and bordered (that is, their rectangular
outline is colored).

• DisplayText represents textual images.

• Path represents images composed as collections of images.

A Form is a subclass of DisplayMedium; it adds the bitmap representa-
tion of the image. All DisplayObjects provide source information for im-
ages; Forms provide both the source and the destination information.

Class DisplayObject supports accessing messages for manipulating the
various aspects of the image.

DisplayObject instance protocol

accessing
width

height

extent

Answer the width of the receiver's bounding
box, a rectangle that represents the bound-
aries of the receiver's image.
Answer the height of the receiver's bounding
box.

Answer a Point representing the width and
height of the receiver's bounding box.

llCONSl

A B C D E F G H I J K L M N O P Q R S T
a b c d e fgh ij k I m n o p q r s tuv w x y z
1 2 3 4 5 6 7 8 9 0

ISYMBOLI

IPO,NTS i
m nn--- - - - O @

ITEXTI
The modern age has brought t o
Ikebana the concepts of individual
expression and abs t rac t design
divorced from established rules,

Figure 20.1

IDOCUMENT I

4 4

IBRUSHE8i

i,MAGEi

" . - - r r r ^ - - , 1 .
; n ,"~-L-I,.~- .I - r / I ; ~'1% vm ,.4... " - .~ . . - -~ x ' ~ " " ~ " - - ~ " I~"r
; ;'. I ~ , . . , , ~ . - ~ • l aa ih l lm " ' I "c .%IL'~ I ra" ic • "i'k'li.,eL "mmlllLllP'" mh

; , ' 1 1 ~ ' ' I.hrv'i" ~h ; 'r , .~"~" x '~ ' l " i ' M l ~ l . l ' h "~ I ~ F ' " " # " ¢.~'i'°)'1"
: r .%' r ' " ~ w" '~ " (i"i" " ¢ h - v l m ~ ~w d "11~ v i i i "~-r IiC i r e " IL.h m " ; ' l . , .a l l l " I

- - " ~ -ml,l"~,.l(" t i oh ~%-r/Y'UlhlL ' ; " - r %" t l "1-1 hl'¢"" I~' ;er l ; I~1/'11"¢'1~! d¢"~ m

ii'lll,~.lli " -#- ~"~r;. ~- Iic -iI.-.1¢'-"~- irI-L"lll',,4'.,~la,.,,lll'V #°.11- %"11 "'.ll~"illi I"11

"~'"w" ~ ~ ' l n l l l " ~lri'l"~" I, JM~ irw--- I i . . .M ~,~y. ~ '~ , '1 " : " . - I .4 ~,,,~1~

, - m - ~ . l t - v :. : - 'c ~ - ~ "~".~ - .u '~ ,x " I~ t'~" ~,'~'/" =:. . :Jr" . (: '
- - . - l ~ . - d - " - r Lh- - ' L r ~ " IC I ~ . I - - I l v # : - h ~"..,"~'W:L " ' r n - - I ~ , L

y ~ " - - - ".. - - ' . ~;'~.~"1111" IC

. ,~, l"v C.-~'I"~," " lv ' ih~%" :
~r - i . : . :~ : i i~ i : . i i '~ ! : . : .~:: ! i~!- : : : . .~

r ..::'.':~:: : : i~: : . : ! . . :11~: i : : . : i : ! : !F~!: : -
"-" :~i: . ~ : ! : . : ~ : . : i : i : : ' " ! : i : ~ ,~ ,~ : .L : i : . : ~ i ~ i
:~ ::~..::::.:::~i:.:~ ~ "~i~i~! i !" ":

• . , ~ .~ .~ . , ,:::.:.:,., ~ ~¢:' :~

: i i . ~ . ~ . ~ i I 1 ~ , :

- - ~ (~ !'~" "~'~ L V - d ~ ; ' c Ic ;,.:.~'~ - - - " " . ~ ¢,,i"i'~'~-c ~ 1 ~ ~

- ..~...~..,0.~,.'..~-- : h - , - ,

" iS- T ~ . . . I 4:,1-411:, : , . , - r"

IlDIOM}
?

! I I

3 8 5

: : : : : ' . ' : ~ : ' : ' : F : ' : " . - - - . ' . " , . ~ :. ~ilii

ii!iiii!!ii!!
: ~ i ' :

:!::iii~ii~i~;ili;i

i~ii!i
i~:il

i •

. : . : : - : : ~ : . : . : : . . . - : -

!jiii!!!i lilii ii!iiiiil ,: iiii!i~ii~i ~ ill

i iiiiil iiiiiiiii!!i ~-ii i : / : ~ i

. ," . . •

. . : ~ . .

• " . . : ' .i : ~
! ' :

:~ :~ '~ : ~ ~ - : . ~ ' : ' : ' - . . . -

.~i!:
!':~i I
:~::~

F i g u r e 20 .2

:!::iii~ii~i~:ilil

f . . : . . . : • . . , , . , : ,

" " " - ""':--L

3 8 6

Figure 20.3 387

388
Display Objects

offset

offset: aPoint
rounded

DisplayObject also

Answer a Point representing the amount by
which the receiver should be offset when it is
displayed or its position is tested.
Set the receiver's offset.
Set the receiver's offset to the nearest integral
amount.

provides th ree kinds of messages t h a t suppor t
transforming an image, displaying the image, and compu t ing the dis-
play box, t h a t is, a r e c t a n g u l a r a r ea t h a t r ep resen t s the boundar ie s of
the a r e a for d isp laying the image.

DisplayObject instance protocol

transforming
scaleBy: aPoint Scale the receiver's offset by aPoint.
translateBy: aPoint Translate the receiver's offset by aPoint.
align: alignmentPoint with: relativePoint

Translate the receiver's offset such
alignmentPoint aligns with relativePoint.

display box access
boundingBox

that

Answer the rectangular area that represents
the boundaries of the receiver's space of infor-
mation.

displaying
displayOn: aDisplayMedium

at: aDisplayPoint
clippingBox: clipRectangle
rule: rulelnteger
mask: aForm

Display the receiver at location aDisplayPoint
with rule, rulelnteger, and halftone mask,
aForm. Information to be displayed must be
confined to the area that intersects with
clipRectangle.

There are ac tua l ly several d isplaying messages not shown above. Alter-
na t ive d isplaying messages progress ively omi t a keyword (s tar t ing f rom
the las t one) and provide defaul t masks, rules, c l ipping rectangles , and
positions, w h e n needed. Basical ly the display screen itself is the defaul t
cl ipping rectangle , 0@0 is the defaul t d isplay position, and the object
t h a t r ep resen t s the sys tem display screen, Display, (a global var iable) is
the defaul t d isplay medium.

The message displayAt: aDisplayPoint provides a genera l ly useful mes-
sage w h e n the only p a r a m e t e r not defaul ted is the locat ion at which
the image is to be placed. The message display assumes t h a t the display
locat ion is 0 ® 0.

DisplayObject instance protocol
displayAt: aDisplayPoint

display

Display the receiver at location aDisplayPoint
with rule "over" or "storing"; halftone mask, a
black Form; clipping rectangle the whose dis-
play screen; onto the display screen (Display).
Display the receiver at location 0@0.

389
Class DisplayObject

These last two displaying messages are provided for textual objects such
as String and Text as well, so tha t the p rogrammer can place characters
on the screen by evaluating an expression such as

'This is text to be displayed' displayAt: 100@ 100

Suppose locomotive is the Form tha t looks like

.LOCOMOTIVE

then it can be displayed on the screen with top left corner at location
50@ 150 by evaluat ing the expression

locomotive dispiayAt: 50 @,150

DISPLAY SCREEN

5o,15o
f

390
Display Objects

Class
DisplayMedium

DisplayMedium is a subclass of DisplayObject t h a t r epresen t s an object
onto which images can b e copied. In addit ion to those messages
inher i ted from its superclass, DisplayMedium provides protocol for color-
ing the in ter ior of images and placing borders a round the display boxes
of images. The "colors" are Forms tha t are a l ready avai lable in the sys-
tem. These are black (the b i tmap is all ones), white (all zeros), and vari-
ous gray tones, e i the r gray, veryLightGray, lightGray, or darkGray
(mixtures of ones and zeros). Images of these colors are given below. All
or port ions of the DisplayMedium's a rea can be changed to one of these
colors using the following messages.

DisplayMedium instance protocol

coloring
black
black: aRectangle

white
white: aRectangle

gray
gray: aRectangle

veryLightGray

veryLightGray: aRectangle

Change all of the receiver's area to black.
Change the area of the receiver defined by the
argument, aRectangle, to black.
Change all of the receiver's area to white.
Change the area of the receiver defined by the
argument, aRectangle, to white.
Change all of the receiver's area to gray.
Change the area of the receiver defined by the
argument, aRectangle, to gray.
Change all of the receiver's area to very light
gray.
Change the area of the receiver defined by the
argument, aRectangle, to very light gray.

lightGray
lightGray: aRectangle

darkGray
darkGray: aRectangle

Change all of the receiver's area to light gray.
Change the area of the receiver defined by the
argument, aRectangle, to light gray.
Change all of the receiver's area to dark gray.
Change the area of the receiver defined by the
argument, aRectangle, to dark gray.

In the above messages, the origin of the a rgumen t , aRectangle, is in the
coordinate sys tem of the receiver.

Suppose picture is a kind of DisplayMedium t h a t is 100 pixels in width
and 100 pixels in height , and t h a t box is an ins tance of Rectangle wi th
origin at 30 @ 30 and width and he ight of 40. Then the protocol for fill-
ing the subarea of picture represen ted by box is i l lus t ra ted by the fol-
lowing sequence.

391
Class DisplayMedium

expression result

picture black: box

picture white: box

picture gray: box

m
picture lightGray: box

!iii!iiiiiii!iii!iil
picture veryLightGray: box

. . % ° . - - . - . - . - .

. . - . ° . - % - . - . - .

. ° ° ° ° °%°°° ° - ° ° ° ° ° ° °
° ° ° ° . °%°° ° ° ° ° ° ° ° ° ° .
. ° ° ° ° °%°°° ° ° ° ° ° - ° ° °
° . ° ° . ° % ° ° ° ° ° . ° . ° ° ° °
° °%%°°°°°° ° °%°°%
°o%Oo%-o°oO.%%%
-.%o.%OoO.OoOo%%

392
Display Objects

picture darkGray: box

ilii~i ~iii

P a r t of an i m a g e can be filled wi th a p a t t e r n by s end ing a
DisplayMedium a m e s s a g e to fill a p a r t i c u l a r s u b - a r e a wi th a h a l f t o n e
p a t t e r n . The o t h e r color ing messages use these fi l l ing m e s s a g e s in t h e i r

i m p l e m e n t a t i o n .

DisplayMedium instance protocol
fill: aRectangle mask: aHalftoneForm

Change the area of the receiver defined by the
argument, aRectangle, to white, by filling it
with the 16 x 16-bit pattern, aHalftoneForm.
The combination rule for copying the mask to
the receiver is 3 (Form over).

fill: aRectangle rule: anlnteger mask: aHalftoneForm
Change the area of the receiver defined by the
argument, aRectangle, to white, by filling it
with the 16 x 16 bit pattern, aHalftoneForm.
The combination rule for copying the mask to
the receiver is anlnteger.

As an example , t he r e su l t of e v a l u a t i n g t h e express ions

box ~- 16 @ 16 extent: 64 ® 64.
picture fill" box mask: locomotive

w h e r e locomotive is a 16x16-bit Form, is

The r e su l t of e v a l u a t i n g the sequence of two express ions

picture lightGray: box.
picture fill: box rule: Form under mask: locomotive

is

393
Class DisplayMedium

Note tha t in the above, the rule Form under refers to an Integer combi-
nat ion rule. Messages to Form to access combination rules and halftone
masks were defined in Chapter 18.

Reversing an image means changing all the bits in the area tha t are
white to black and those tha t are black to white. Ei ther all or par t of
an image can be reversed.

DisplayMedium instance Protocol

reverse: aRectangle mask: aHalftoneForm
Change the area in the receiver defined by the
argument, aRectangle, so that, in only those
bits in which the mask, aHalftoneForm, is
black, white bits in the receiver become black
and black become white.

reverse: a R e c t a n g l e Change the area in the receiver defined by the
argument, aRectangle, so that white is black
and black is white. The default mask is Form
black.

reverse Change all of the receiver's area so that white
is black and black is white.

The result of

picture reverse: box

on the last image is

Bordering means Coloring the outline of a rectangle. Bordering is done
using a source Form and mask. Three messages provide methods for
bordering an image.

394
D i s p l a y O b j e c t s

DisplayMedium instance protocol

bordering
border: aRectangle widthRectangle: insets mask: aHalftoneForm

Color an outline around the area within the
receiver defined by the argument, aRectangle.
The color is determined by the mask,
aHalftoneForm. The width of the outline is de-
termined by the Rectangle, insets, such that,
origin x is the width of the left side, origin y
is the width of the top side, corner x is the
width of the right side, and corner y is the
width of the bottom side.

border: aRectangle width: borderWidth mask: aHalftoneForm
Color an outline around the area within the
receiver defined by the argument, aRectangle.
The color is determined by the mask,
aHaiftoneForm. The width of all the sides is
borderWidth.

border: aRectangle width: borderWidth
Color an outline around the area within the
receiver defined by the argument, aRectangle.
The color is Form black. The width of all the
sides is borderWidth.

E x a m p l e s a r e

expression result

picture
border: box
width: 8

picture
border: box
width: 8
mask: Form gray

picture
border: box
widthRectangle:

(4 ® 16 corner: 4 @ 16)
mask: Form darkGray

395
Class DisplayMedium

picture
border: box
width: 16
mask: locomotive

The next sequence of images shows how bordering can be done by ma-
nipulating the size of the rectangle used to designate which area within
picture should be changed.

expression result

frame ~ 48 @ 48 extent: 16 @ 16.
picture white.
picture reverse: frame

frame ~ frame expandBy: 16.
picture

fill: frame
rule" Form reverse
mask: Form black.

396
Display Objects

frame .- frame expandBy: 16.
picture

border: frame
width: 16
mask: locomotive

picture
border: frame
width: 1

Forms Class Form is the only subclass of DisplayMedium in the standard
Smalltalk-80 system. It was introduced in Chapter 18 in which we de-
fined messages that provide access to constants representing masks and
combination rules (modes). As an illustration of the use of Forms in cre-
ating complex images, the following sequence of expressions creates the
image shown at the beginning of this chapter as Figure 20.2.

Suppose we have two Forms available, each 120 bits wide and 180
bits high. We name them face25 and face75. These images were creat-
ed using a scanner to digitize photographs of a gentleman when he was
in his 20's and on the occasion of his 75th birthday.

~ ~ ~ , " ~ t ~ z : ~ ", ,~:,:~... ~-y.-.~

. . - : . . -%-' . . .

~ / /~ - -~ : . . ' : , . . > !~ . : - l i ~ l l l l
~ ~ . ",-" :; '>., '~ri l l l l l i l l ! ! I~12~tltt~II~4~. " -.'.-".,,'.-.-;.'..-;~tiilllllllili .," , . " ",.o..,

.~ " ~ . . : . - • . ~ , . ~
~. - . " - " . . , .

397
F o r m s

The scanned images were scaled to the desired size and then com-
bined with halftone masks in the following way. Two Arrays, each size
8, contain references to the halftone masks (masks) and the Forms
(forms) used in creating each part of the final image.

masks ~ Array new: 8.
masks at: 1 put: Form black.
masks at: 2 put: Form darkGray.
masks at: 3 put: Form gray.
masks at: 4 put: Form lightGray.
masks at: 5 put: Form veryLightGray.
masks at: 6 put: Form lightGray.
masks at: 7 put: Form gray.
masks at: 8 put: Form black.
forms ~- Array new: 8.
forms at: 1 put: face25.
forms at: 2 put: face25.
forms at: 3 put: face25.
forms at: 4 put: face25.
forms at: 5 put: face75.
forms at: 6 put: face75.
forms at: 7 put: face75.
forms at: 8 put: face75

The variable i is the initial index into the first halftone and first Form
used in forming the first sub-image of each row. Each time a complete
row is displayed, i is incremented by 1. Each row consists of 5 elements.
The variable index is used to index 5 halftones and five Forms; index is
set to i at the outset of each row. Thus the first row is made up by com-
bining elements 1, 2, 3, 4, and 5 of masks and forms; the second row is
made up by combining elements 2, 3, 4, 5, and 6 of masks and forms;
and so on. The y coordinate of each row changes by 180 pixels each
time; the x coordinate of each column changes by 120 pixels.

0 to: 540 by: 180 do:
[:Y l index ~ i.

0 to: 480 by: 120 do:
[: x t (forms at: index)

displayOn: Display
at: x@y
clippingBox: Display boundingBox
rule: Form over
mask: (masks at: index).

index ~-index + 1].
i t - i + 1]

398
Display Objects

Other Forms

Two other kinds of forms exist in the system, InfiniteForm and
OpaqueForm. These two classes a r e subclasses of DisplayObject, r a the r
than of DisplayMedium. They therefore do not share Form's inheri ted
ability to be colored and bordered. InfiniteForm represen ts a Form
obtained by replicating a pa t te rn Form indefinitely in all directions.
Typically the overlapping views displayed in the Small talk-80 program-
ming interface (as shown in Chapter 17) are placed over a light gray
background; this background is defined by an InfiniteForm whose repli-
cated pa t te rn is Form gray. OpaqueForms represent a shape as well as a
figure Form. The shape indicates what par t of the background should be
occluded in displaying the image, so tha t pa t terns other than black in
the figure will still appear opaque. Instances of OpaqueForm support
creat ing animations. Nei ther InfiniteForrn nor OpaqueForm adds new
protocol.

Cursors
Form has two subclasses of interest, class Cursor and class
DisplayScreen. The Small talk-80 system makes extensive use of Forms
to indicate both the cur ren t location of the hardware pointing device
and the cur ren t s ta tus of the system. A Form used in this way is re-
ferred to as a cursor since its p r imary purpose is to move over the
screen in order to locate screen coordinates.

Instances of class Cursor are Forms tha t are 16 pixels wide and 16
pixels high. Class Cursor adds three new messages to the displaying pro-
tocol t ha t it inher i ts from DisplayObject.

Cursor instance protocol

displaying
show

showGridded: gridPoint

showWhile: aBIock

Make the receiver be the current cursor
shape.
Make the receiver be the current cursor
shape, forcing the location of cursor to the
point nearest the location, flridPoint.
While evaluating the argument, aBIock, make
the receiver be the cursor shape.

Several different cursors are supplied with the s tandard Small talk-80
system. They a r e shown in Figure 20.4 both small and enlarged in or-
der to i l lustrate their bitmaps. The name of each cursor, given below its
image, is the same as the message to class Cursor which accesses tha t
par t icular Cursor. For example, the following expression shows a cursor
tha t looks like eyeglasses on the screen while the system computes the
factorial of 50. It then reverts to showing the original cursor shape.

399
Forms

normal execute

up

I"" I.,,.
down

r-- [' - - J

origin corner

_1

read write

+ I ES
i

crosshair move

• 0 404 4 4 4

Figure 20.4 marker wait

Cursor read showWhile: [50 factorial]

Changing the cursor shape is a very effective way of communicat ing
with the user. At tent ion is always on the cursor, and changing its shape
does not a l ter the appearance of the display.

400
Display Objects

The Display
Screen

DisplayScreen is another subclass of Form. There is usually only one in-
stance of DisplayScreen in the system. It is referred to as Display, a
global variable used to handle general user requests to deal with the
whole display screen. In addition to the messages it inherits from its
superclasses, DisplayObject, DisplayMedium, and Form, DisplayScreen
provides class protocol for resetting the width, height, and displayed im-
age of the screen.

The one case when multiple instances of DisplayScreen may exist is
when (double-buffered) full screen animation is being done by alternat-
ing which instance of DisplayScreen supplies bits to the display hard-
ware. Typically, full screen animation is not used, rather, animation is
done within a smaller rectangular area. A hidden buffer of bits is used
to form the next image. Each new image is displayed by copying the
bits to the rectangular area using the copyBits: message of a BitBlt.

D i s p l a y T e x t The second subclass of DisplayObject is class DisplayText. An instance of
Text provides a font index (1 through 10) and an emphasis (italic, bold,
underline) for each character of an instance of String. DisplayText con-
sists of a Text and a TextStyle. A TextStyle associates each font index
with an actual font (set of glyphs). In addition to representing this map-
ping to the set of fonts, a DisplayText supports the ability to display the
characters on the screen. It does not support the protocol needed to cre-
ate a user interface for editing either the characters or the choice of
fonts and emphasis; this protocol must be supplied by subclasses of
DisplayText.

Paths A third subclass of DisplayObject is class Path. A Path is an
OrderedCollection of Points and a Form that should be displayed at each
Point. Complex images can be created by copying the Form along the
trajectory represented by the Points.

Class Path is the basic superclass of the graphic display objects that
represent trajectories. Instances of Path refer to an OrderedCollection
and to a Form. The elements of the collection are Points. They can be
added to the Path (add:); all Points that are described by some criterion

401
P a t h s

c a n be r e m o v e d f r o m t h e P a t h (r e m o v e A I I S u c h T h a t :) ; a n d t h e Po in t s c a n

be e n u m e r a t e d , co l l e c t ed , a n d s e l e c t e d (do:, col lec t , a n d select :} .

Path instance protocol

accessing
form
form" aForm

at: index

at: index put: aPoint

size

Answer the Form referred to by the receiver.

Set the Form referred to by the receiver to be
aForm.
Answer the Point that is the indexth element
of the receiver's collection.

Set the argument, aPoint, to be the indexth el-
ement of the receiver's collection.

Answer the number of Points in the receiver's
collection.

testing
isEmpty Answer whether the receiver contains any

Points.

adding
add: aPoint Add the argument, aPoint, as the last element

of the receiver's collection of Points.

removing
removeAllSuchThat: aBIock Evaluate the argument, aBIock, for each Point

in the receiver. Remove those Points for which
aBIock evaluates to true.

enumerating
do: aBIock

collect: aBIock

select: aBIock

Evaluate the argument, aBIock, for each Point
in the receiver.

Evaluate the argument, aBIock, for each Point
in the receiver. Collect the resulting values
into an OrderedCollection and answer the new
collection.

Evaluate the argument, aBIock, for each Point
in the receiver. Collect into an Ordered-
Collection those Points for which aBIock evalu-
ates to true. Answer the new collection.

A s a n e x a m p l e , w e c r e a t e a " s t a r " Path, a n d d i s p l a y a d o t - s h a p e d Form,
referred to by the name dot, at each point on that Path.

aPath ,- Path new form: dot.
aPath add: 150 @ 285.
aPath add: 400 @ 285.
aPath add: 185 @ 430.
aPath add: 280 @ 200.
aPath add: 375 @ 430.

402
Display Objects

aPath add: 150 @ 285.
aPath display

The resulting image is shown as the first path in Figure 20.5.

m

m m

m m

Figure 20.5

403
P a t h s

There are three paths in Figure 20.5.

• an instance of Path, created as indicated above

• an instance of LinearFit, using the same collection of Points

• an instance of Spline, using the same collection of Points

A LinearFit is displayed by connecting the Points in the collection, in or-
der.

aPath ~- LinearFit new form: dot.
aPath add: 150 @ 285.
aPath add: 400 @ 285.
aPath add: 185 @ 430.
aPath add: 280 @ 200.
aPath add: 375 @ 430.
aPath add: 150 @ 285.
aPath display

The Spline is obtained by fitting a cubic spline curve through the Points,
again, in order. The order in which the Points are added to the Path sig-
nificantly affects the outcome.

aPath ~ Spline new form: dot.
aPath add: 150 @ 285.
aPath add: 400 @ 285.
aPath add: 185 @ 430.
aPath add: 280 @ 200.
aPath add: 375 @ 430.
aPath add: 150 @ 285.
aPath computeCurve.
aPath display

LinearFit and Spline are defined as subclasses of Path. In order to sup-
port the protocol of DisplayObject, each of these subclasses implements
the message displayOn:at:clippingBox:rule:mask:.

Straight lines can be defined in terms of Paths. A Line is a Path spec-
ified by two points. An Arc is defined as a quar ter of a circle. Instances
of class Arc are specified to be one of the four possible quarters; they
know their center Point and the radius of the circle. A Circle, then, is a
kind of Arc tha t represents all four quarters. Again, in order to support
the protocol of DisplayObject, each of these three classes (Line, Arc, and
Circle) implements the messages displayOn:at:clippingBox:rule:mask:.

Class Curve is a subclass of Path. It represents a hyperbola tha t is
tangent to lines determined by Points pl, p2 and p2, p3, and tha t passes

404
Display Objects

through Points p l and p3. The displaying message for Curve is defined
as shown in the method below.

displayOn: aDisplayMedium
at: aPoint
clippingBox: aRectangle
rule: antnteger
mask: aForm

I p a p b k s p l p2p31 ine I
line ~ Line new.
line form: self form.
self size < 3 ifTrue: [self error: "Curves are defined by three po in ts '] .
p l ~ self at: 1.
p2 ~- self at: 2.
p3 ~ self at: 3.
s ~ Path new.
s add: p l .
pa ~ p2 - p l .
pb ~ p3 -- p2.
k ~ 5 max: p a x a b s + p a y a b s -I- p b x a b s + p b y a b s / / 20.
"k is a guess as to how many line segments to use to approximate the
curve."
1 to: k do:

[: i l s add:
p a . i / / k -I- p l . (k - - i) -t- (p b . (i - 1) / / k 4- p 2 . (i - 1)) / / (k - 1)] .

s add: p3.
1 to: s size do:

[:il
line at: 1 put: (s at: i).
line at: 2 put: (s at : i + 1).
line displayOn: aDisplayMedium

at: aPoint
cl ippingBox: aRectangle
rule: anlnteger
mask: aForm]

The algorithm was devised by Ted Kaehler. Basically the idea is to di-
vide the line segments pl, p2 and p2, p3 into 10 sections. Numbering
the sections as shown in the diagram, draw a line connecting point 1 on
pl, p2 to point 1 on p2, p3; draw a line connecting point 2 on pl, p2 to
point 2 on p2, p3; and so on. The hyperbola is the path formed from p l
to p3 by interpolating along the line segments formed on the outer
shell.

Several curves are shown in Figure 20.6. The curves are the black
lines; the gray lines indicate the lines connecting the points that were
used to define the curves.

405
Image Manipulation with Forms

Two Curves were used to create the image shown in Figure 20.3. The
Form was one of the images of the gentleman used in Figure 20.2.

Image
Manipulation
with Forms

Magnification

We have shown in Chapter 18 how BitBlt can copy shapes and how re-
peated invocation can synthesize more complex images such as text and
lines. BitBlt is also useful in the manipulation of existing images. For
example, text can be made to look bold by ORing over itself, shifted
right by one pixel. Just as complex images can be built from simple
ones, complex processing can be achieved by repeated application of
simple operations. In addition to its obvious manisfestation in the
DisplayObject protocol, the power of BitBIt is made available for manipu-
lating images through such messages as copy:from:in:rule:.

We present here four examples of such structural manipulation:
magnification, rotation, area filling, and the Game of Life.

A simple way to magnify a stored Form would be to copy it to a larger
Form, making a big dot for every little dot in the original. For a height
h and width w, this would take h*w operations. The algorithm present-
ed here (as two messages to class Form) uses only a few more than h 4- w
operations.

magnify: aRectangle by: scale
I wideForm bigForm spacing I
spacing ~ 0 ® O.

406
Display Objects

P3

Q3

P2

Qz

Figure 20.6 P l
QI

wideForm ~-
Form new

extent: aRectangle width, scale x @ aRectangle height.
wideForm

spread: aRectangle
from: self
by: scale x
spacing: spacing x
direction: 1 @ O.

bigForm ~ Form new extent: aRectangle extent, scale.
bigForm

spread: wideForm boundingBox
from: wideForm
by: scale y
spacing: spacing y
direction: 0 @ 1.

tbigForm

407
Image Manipulation with Forms

spread: rectangle
from: aForm
by: scale
spacing: spacing
direction: dir

I slice sourcePt I
slice ~ 0@0 corner: dir transpose * self extent -t- dir.
sourcePt ~- rectangle origin.

1 to: (rectangle extent dotProduct: dir) do:

[: i l
" slice up original area"
self copy: slice

from: sourcePt
in: aForm
rule: 3.

sourcePt ~ sourcePt --I--. dir.
slice moveBy: d i r , scale].

1 to: sca le- spacing - 1 do:

[: i l
" smear out the slices, leave white space"
self copy: (dir corner: self extent)

from: 0 @ 0
in: self
rule: 7]

The magnification proceeds in two steps. First, it slices up the image
into vertical strips in wideForm separated by a space equal to the mag-
nification factor. These are then smeared, using the ORing function,
over the intervening area to achieve the horizontal magnification. The
process is then repeated from wideFo rm into bigForm, with horizontal
slices separated and smeared in the vertical direction, achieving the de-
sired magnification. Figure 20.7 illustrates the progress of the above al-
gorithm in producing the magnified ~7".

Figure 20.7

self wideForm WideForm bigForm bigForm

B I " " i I = ~ = - - I
m

m

m

m

m

mmmm
m

m
mmmm
m
m

m
m

408
Display Objects

Rotation
Another useful operation on images is rotation by a multiple of 90 de-
grees. Rotation is often thought to be a fundamentally different opera-
tion from translation, and this point of view would dismiss the
possibility of using BitBlt to rotate an image. However, the first trans-
formation shown in Figure 20.8 is definitely a step toward rotating the
image shown; all that remains is to rotate the insides of the four cells
that have been permuted. The remainder of the figure shows each of
these cells being further subdivided, its cells being similarly permuted,
and so on. Eventually each cell being considered contains only a single
pixel. At this point, no further subdivision is required, and the image
has been faithfully rotated.

Each transformation shown in Figure 20.8 would appear to require
successively greater amounts of computation, with the last one requir-
ing several times more than h*w operations. The tricky aspect of the al-
gorithm below is to permute the subparts of every subdivided cell at
once, thus performing the entire rotation in a constant times log2(h) op-
erations. The parallel permutation of many cells is accomplished with
the aid of two auxiliary Forms. The first, mask, carries a mask that se-
lects the upper left quadrant of every cell; the second, temp, is used for
temporary storage. A series of operations exchanges the right and left
halves of every cell, and then another series exchanges the diagonal
quadrants, achieving the desired permutation.

ro ta te
t mask temp quad all I
all ~ self boundingBox.
mask ,--- Form extent: self extent.
temp ~- Form extent: self extent.
mask white. "set up the first mask"
mask black: (0@0 extent: mask ex ten t / / 2).
quad ~ self w i d t h / / 2 .
[quad > = 1] whileTrue:

[" First exchange left and right halves"
temp copy: all from: 0@0 in: mask rule: 3.
temp copy: all from: O@quad negated in: mask rule: 7.
temp copy: all from: 0@0 in: self rule: 1.
self copy: all from: 0@0 in: temp rule: 6.
temp copy: all from: quad@O in: self rule: 6.
self copy: all from: quad@O in: self rule: 7.
self copy: all from: quad negated@O in: temp rule: 6.
"then flip the diagonals"
temp copy: all from: 0@0 in: self rule: 3.
temp copy: all from: quad@quad in: self rule: 6.
temp copy: all from: 0@0 in: mask rule: 1.

409
Image Manipula t ion with Forms

Figure 20.8

410
D i s p l a y O b j e c t s

Figure 20.9

Figure 20.10

self copy: all from: 0@0 in: temp rule: 6.
self copy: all from: quad negated@quad negated in: temp rule: 6.
"Now refine the mask"
mask copy: all from: (quad//2)@(quad//2) in: mask rule: 1.
mask copy: all from: 0@quad negated in: mask rule: 7.
mask copy: all from: quad negated@0 in: mask rule: 7.
quad ~ q u a d / / 2]

Figure 20.9 traces the state of temp and self after each successive opera-
tion.

1 2

self l~!~1 I=I~1
i~1~1 I ' l~ l

Flip left M
and right M OR

,lto i iltO
te~p Io i° ~ i°

3 4 5

AND

i a[ol
DlOl

XOR

Ial0J
lDlol

XOR

I oi :I

6 7

I.IB! I~IAI
i~]~] lc l . l
toJ XOR

AB[O] [AB[0 !

...then...

8 ̧ 9

self !"!~! l"l~l
I~!~1 1~1~1

exchange I
diagonals. XOR

C D . .

10

AND

o[o

11 12

XOR XOR

BD[0

Iolo
IBDIo
I010

M means
the quadrant mask

AB here
means A XOR B

In the Figure 20.9, the offsets of each operation are not shown, though
they are given in the program listing. After twelve operations, the de-
sired permutation has been achieved. At this point the mask evolves to
a finer grain, and the process is repeated for more smaller cells. Figure
20.10 shows the evolution of the mask from the first to the second stage
of refinement.

~i~ i AND Yi!l
I ! I q 1

oR ~[~!iii!~ ~ii I
t o~ Z 1 qll li!~!i! T i i

The algorithm presented here for rotation is applicable only to square
forms whose size is a power of two. The extension of this technique to
arbitrary rectangles is more involved. A somewhat simpler exercise is
to apply the above technique to horizontal and vertical reflections about
the center of a rectangle.

Area Filling

411
Image Manipulat ion with Forms

A useful operation on Forms is to be able to fill the interior of an
outlined region with a halftone mask. The method given here takes as
one a rgument a Point tha t marks a location in the interior of the re-
gion. A mark is placed at this location as a seed, and then the seed is
smeared (in all four directions) into a larger blob until it extends to the
region boundary. At each stage of the smearing process, the original
Form is copied over the blob using the ~erase" rule. This has the effect
of t r imming any growth which would have crossed the region borders.
In addition, after every ten smear cycles, the result ing smear is com-
pared with its previous version. When there is no change, the smear
has filled the region and halftoning is applied throughout .

shapeFill: aMask interiorPoint: interiorPoint
i dirs smearForm previousSmear all cycle noChange [
all ~- self boundingBox.
smearForm ~ Form extent: self extent.
"Place a seed in the interior"
smearForm valueAt: interiorPoint put: 1.
previousSmear ~ smearForm deepCopy.
dirs ~- Array with: 1@0 with: - 1@0 with: 0@1 with: 0 @ - 1.
cycle ,- 0.
[" check for no change every 10 smears"
(cycle ,- cycle --.t-

[previousSmear
1) \ \ 1 0 = 0 and
copy all
f rom 0 @ 0
in: smearForm
rule Form reverse.

noChange ~- previousSmear isAIIWhite.
previousSmear copy' all from: 0@0 in' smearForm rule Form over.
noChange]]

whileFalse:
[dirs do:

[d i r I
'" smear in each of the four directions"
smearForm copy: all

from: dir
in smearForm
rule: Form under.

" After each smear, trim around the region border"
smearForm copy: all f rom 0@0 in self rule Form erase]].

"Now paint the filled region in me with aMask"
smearForm displayOn: self

at 0@,0
cl ippingBox self boundingBox
rule' Form under
mask aMask

412
Display Objects

Figure 20.11 shows a Form with a flower-shaped region to be filled. Suc-
cessive smears appear below, along with the final result.

Figure 20.11

The Game of L ire
Conway's Game of Life is a simple rule for successive populations of a
bitmap. The rule involves the neighbor count for each cell how many
of the eight adjacent cells are occupied. Each cell will be occupied in
the next generation if it has exactly three neighbors, or if it was occu-
pied and has exactly two neighbors. This is explained as follows: three
neighboring organisms can give birth in an empty cell, and an existing
organism will die of exposure with less than two neighbors or from
overpopulation with more than three neighbors. Since BitBlt cannot
add, it would seem to be of no use in this application. However BitBlt's
combination rules, available in the Form operations, do include the
rules for partial sum (XOR) and carry (AND). With some ingenuity and
a fair amount of extra storage, the next generation of any size of
bitmap can be computed using a constant number of BitBlt operations.

n e x t L i f e G e n e r a t i o n
t nbr l nbr2 nbr4 carry2 carry4 all delta I
nbrt ~ Form extent: self extent.

nbr2 ~ Form extent: self extent.

nbr4 ~ Form extent: self extent.

carry2 ~- Form extent: self extent.
carry4 ~ Form extent: self extent.
all ~- self boundingBox.
I to: 8 do:

[: i l
" delta is the offset of the eight neighboring cel ls"

delta ~- ((# (- - 1 0 t 1 1 0 1 - 1) at: i)

@ (# (1 - 1 - 1 0 1 1 1 0) at: i)).
carry2 copy: all from: 0@0 in: nbr l rule: 3.

carry2 copy: all from: delta in: self rule: 1. " A N D for carry into 2 "

Figure 20.12

self

self

nbrl

8 neighbor shifts

413
I m a g e M a n i p u l a t i o n w i t h F o r m s

nbr2

nbr4

nbrl

carry2

neighbor counts next self

1
112 2 1

1 3 1 3 2 1
1 3]4 4 1 ~ "
1 3 1 2 2

111 1
I L

nbr2 nbr4

lnnm nnu
Nnnmmnnnnn

nbri copy: all from: delta in: self rule: 6. "XOR for sum 1"
carry4 copy: all from: 0@0 in: nbr2 rule: 3.
carry4 copy: all from: 0®0 in: carry2 rule: 1. "AND for carry into 4"

nbr2 copy: all from: 0@0 in: carry2 rule: 6. "XOR for sum 2"
nbr4 copy: all from: 0@0 in: carry4 rule: 6].

"XOR for sum 4 (ignore carry into 8)"
self copy: all from: 0@0 in: nbr2 rule: 1.
nbrl copy: all from: 0@0 in: nbr2 rule: 1.
self copy: all from: 0@0 in: nbrl rule: 7.
self copy: all from: 0@0 in: nbr4 rule: 4
" compute next generation"

As shown in Figure 20.12, the number of neighbors is represented using
three image planes for the l 's bit, 2's bit and 4's bit of the count in bi-
nary. The 8's bit can be ignored, since there are no survivors in that
case, which is equivalent to zero (the result of ignoring the 8's bit). This
Smalltalk-80 method is somewhat wasteful, as it performs the full carry
propagation for each new neighbor, even though nothing will propagate
into the 4-plane until at least the fourth neighbor.

~R ,¢.m ~.c i

..~I,,

+.~

~ ° - ° !

E
| | f

P A R T T H R E E

~ ~ - . ~ }
.:El, . Mt.. ~ • .

~' ~,,~i~-'~--:;~..l '~ ' ~ t..,

Par t Three is an example of modeling discrete, event-driven simu-
lations in the Smalltalk-80 system. A simulation is a representa-
tion of a system of objects in a real or fantasy world. The purpose
of creating a computer s imulat ion is to provide a f ramework in
which to unders tand the simulat ion situation. In order to create
the Smalltalk-80 simulations, we first describe a hierarchy of clas-
ses tha t represent probability distributions. Various kinds of prob-
ability distributions are used to determine arrival t imes of objects,
such as customers, into a simulation; they are also used to ran-
domly select response or service t imes for workers in a simulation.
The example class S i m u l a t i o n O b j e c t represents any kind of object

A

that enters into a simulation in order to carry out one or more
tasks; class Simulation represents the simulation itself and provides
the control structures for admitting and assigning tasks to new
SimulationObjects.

The objects that participate in event-driven simulations operate
more or less independently of one another. So it is necessary to
consider the problem of coordinating and synchronizing their ac-
tivities. The Smalltalk-80 system classes, Process, Semaphore, and
SharedQueue, provide synchronization facilities for otherwise inde-
pendent simulation events. The framework of classes defined in
this part support the creation of simulations that use consumable,
nonconsumable, and/or renewable resources. They also provide a
number of ways in which a programmer can gather statistics
about a running simulation.

|

, ~ ~ • ~ :
n

~u- ~ . . . ; ~ , .
. %: i' ; } i

: . ,t, " t , " •

• • • E " • i ; =

! " t " ~ ' • •
. . an i -
== %- ~ •
• • -.an ann • •

, . : : . t : • :
. . . . :

, . " i : . - . ~ " -. ."
I W . . :
: , - - ~.
:, • • t ~ iI
I. " : . : ". ,,.

.
~\" • -o . ' .g -

9 / ' - - • 0 "%

2"1
Probability Distributions

Probability Distribution Framework
Definitions
Introductory Examples
Class ProbabilityDistribution
Class DiscreteProbability
Class ContinuousProbability

Discrete Probability Distributions
The Bernoulli Distribution
The Binomial Distribution
The Geometric Distribution
The Poisson Distribution

Continuous Probability Distributions
The Uniform Distribution
The Exponential Distribution
The Gamma Distribution
The Normal Distribution

418
Probabi l i ty Distr ibutions

Probability
Distribution
Framework

Applications, such as simulations, often wish to obtain values associated
with the outcomes of chance experiments . In such experiments , a num-
ber of possible questions might be asked, such as:

• W h a t is the probabil i ty of a certain event occurring?

• Wha t is the probabil i ty of one of several events occurring?

• W h a t is the probabil i ty that , in the next N trials, at least one suc-
cessful event will occur?

• How m a n y successful events will occur in the next N trials?

• How m a n y trials unti l the next successful event occurs?

Definit ions
In the terminology of simulations, a trial is a tick of the s imulated
clock (where a clock tick might represent seconds, minutes, hours , days,
months, or years, depending on the uni t of t ime appropr ia te to the situ-
ation). An event or success is a job arr ival such as a car ar r iv ing to a car
wash, a customer ar r iv ing in a bank, or a broken machine arr iv ing in
the repai r shop.

In the realm of statistics, the probabil i ty tha t an event will occur is
typically obtained from a large n u m b e r of observations of actual trials.
For example, a long series of observat ions of a repair shop would be
needed in order to de termine the probabil i ty of a broken machine arriv-
ing in t h e shop dur ing a fixed t ime interval. In general, several events
might occur dur ing tha t t ime interval. The set of possible events is
called a sample space. A probability function on a sample space is de-
fined as an association of a numbe r between 0 and 1 with each event in
the sample space. The probabil i ty or chance tha t at least one of the
events in the sample space will occur is defined as 1; if p is the proba-
bility tha t event E will occur, then the probabil i ty tha t E will not occur
is defined as 1 - p.

Sample spaces are classified into two types: discrete and continuous.
A sample space is discrete if it contains a finite n u m b e r of possible
events or an infinite n u m b e r of events tha t have a one-to-one relation-
ship with the positive integers. For example, the six possible outcomes
of a throw of a die const i tute a discrete sample space. A sample space is
cont inuous if it contains an ordered, infinite numbe r of events, for ex-
ample, any n umbe r between 1.0 and 4.0. Probabil i ty functions on each
of these types of sample spaces are appropr ia te ly named discrete proba-
bility functions and continuous probability functions.

A random variable is a real-valued function defined over the events
in a sample space. The adjectives ~discrete" and ~continuous" apply to
random variables according to the character is t ic of thei r range. The

Introductory
Examples

419
Probabil i ty Distr ibution F ramework

probabil i ty function of a r andom variable is called a probability distri-
bution; the values in the range of the function are the probabilit ies of
occurrence of the possible values of the r andom variable. The density is
a function tha t assigns probabili t ies to allowed ranges of the random
variable. Any function can be a density function (discrete or continuous)
if it has only positive values and its integral is 1.

Another useful function tha t plays an impor tan t role in s imulat ions
is called the cumulative distribution function. It gives the probabil i ty
tha t the value of the random variable is within a designated range. For
example, the cumulat ive distr ibution function answers the question:
wha t is the probabil i ty that , in the throw of a die, the side is 4 or less?

The mean is defined as the average value tha t the random variable
takes on. The variance is a measure of the spread of the distribution. It
is defined as the average of the square of the deviations from the mean.

Two examples of sample spaces are given here before enter ing into a
detailed description of the Small ta lk-80 classes. Suppose the sample
space is the possible outcomes of a toss of a die. The sample space con-
sists of

event 1:1 is th rown
event 2 :2 is th rown
event 3 :3 is th rown
event 4 :4 is th rown
event 5 :5 is th rown
event 6 :6 is th rown

Then, for this discrete probabil i ty distribution, the probabil i ty function
for any event is

f(event) = 1/6

If X is a r andom variable over the sample space, then the probabil i ty
dis tr ibut ion of X is g(X) such tha t

g (X = l) = f (e v e n t l) = 1/6, ..., g (X = 6) = f (even t6)= 1/6.

The densi ty of X is 1/6 for any value of X.
The cumulat ive dis tr ibut ion function of X is

c(a, b) = Xbag(X)

For example,

C(2,4) = g(X=2) + g(X=3) + g(X=4) = 1/6 + 1/6 + 1/6 = 1/2

420
Probabil i ty Distributions

As an example of a continuous probabili ty distribution, let the sample
space be the t ime of day where the s tar t of the day is t ime = 12:00 a.m.
and the end of the day is t ime = 11:59:59.99... p.m. The sample space is
the interval between these two times.

The probabili ty function is

f(event) = probabili ty (event i _< t ime < eventj)

where event i < eventj. The density of X is

g(X = any specified time) = 0

Suppose this is a 24-hour clock. Then the probabili ty that , upon looking
at a clock, the t ime is between 1:00 p.m. and 3:00 p.m., is defined by the
cumulat ive distribution function

c(1:00, 3:00) = ~ 3:00 1:0o g(X)

g(X) is uniform over 24 hours. So

Class
P r o b a b i l i t y D i s t r i b u t i o n

c(1:00, 3 :00)= c(1:00, 2 :00)+ c(2:00, 3 :00)= 1/24 ÷ 1/24 = 1/12.

The superclass for probability distributions provides protocol for
obtaining one or more random samplings from the distribution, and for
computing the density and cumulat ive distribution functions. It has a
class variable U which is an instance of class Random. Class Random
provides a simple way in which to obtain a value with uniform proba-
bility distribution over the interval [0,1].

L i ke class Random, Probabi l i tyDistr ibut ion is a Stream t h a t accesses el-
ements gene ra t ed algorithmically. Whenever a random sampling is re -
quired, the message next is sent to the distribution.
PmbabitityDistribution implements next by re turn ing the result of the
message inverseDistribution: var, where the a rgument var is a random
number between 0 and 1. Subclasses of ProbabilityDistribution must im-
plement inverseDistribution: in order to map [0,1] onto thei r sample
space, or else they must override the definition of next. The message
next: is inheri ted from the superclass Stream.

class name ProbabilityDistribution
superclass Stream
class variable names U
class methods

class initialization

in i t ia l i ze
" Uniformly distributed random numbers in the range [0,1]."
U ,- Random new

Class
D i s c r e t e P r o b a b i l i t y

421
Probabili ty Distribution F r a m e w o r k

instance creation

n e w

t self basicNew

instance methods

random sampling

n e x t

"This is a general random number generation method for any probability
law; use the (0, 1) uniformly distributed random variable U as the val-
ue of the law's distribution function. Obtain the next random value and
then solve for the inverse. The inverse solution is defined by the sub-
class. "

1self inverseDistribution: U next

probability functions

d e n s i t y : x

" This is the density function."
self subclassResponsibility

d i s t r i b u t i o n : a C e l l e c t i o n

"This is the cumulative distribution function. The argument is a range of
contiguous values of the random variable. The distribution is mathemati-
cally the area under the probability curve within the specified interval."
self subclassResponsibility

private

i n v e r s e D i s t r i b u t i o n : x

self subclassResponsibility
c o m p u t e S a m p l e : rn eu tOf : n

"'Compute the number of ways one can draw a sample without replace-
ment of size m from a set of size n."
m > n ifTrue: [t'0.0].
tn factorial / (n -m) factorial

In order to initialize the class variable U, evaluate the expression

Probabil i tyDistr ibution initialize

Computing the number of ways one can draw a sample without replace-
ment of size m from a set of size n will prove a useful method shared by
the subclass implementat ions tha t follow.

The two types of probability distributions, discrete and continuous, are
specified as subclasses of class ProbabilityDistribution; each provides an
implementat ion of the cumulat ive distribution function which depends

422
Probabi l i ty Dist r ibut ions

on the densi ty function. These imp lemen ta t ions assume tha t the densi ty
function will be provided in subclasses.

class name
superclass
instance methods

DiscreteProbabil i ty
ProbabilityDistribution

probability functions

distribution: aCollection
"Answer the sum of the discrete values of the density function for each
element in the col lect ion."

I t l
t ~- 0.0.

aCollection do: [:i I t ~- t + (self density: i)].
tt

Class
C o n t i n u o u s P r o b a b i l i t y

class name
superclass
instance methods

ContinuousProbabil i ty
ProbabilityDistribution

probability functions

distribution: aCollection
"This is a slow and dirty trapezoidal integration to determine the area
under the probability function curve y=densi ty (x) for x in the specified
collection. The method assumes that the collection contains numerically-
ordered elements."
I t aStream x l x2 y l y2 I
t ~ 0.0.

aStream ~- ReadStream on: aCollection.
x2 ~ aStream next.
y2 - self density: x2.
[x l ~ x2. x2 ~- aStream next]

whileTrue:

[y l ~ y2.

y2 ~ self density: x2.
t ~ t + ((x 2 - x l) , (y 2 + y l))] .

t t .0 .5

In order to i m p l e m e n t the various kinds of probabi l i ty dis t r ibut ions as
subclasses of class Disc re teProbab i l i t y or Cont inuousProbab i l i t y , both the
densi ty function and the inverse dis t r ibut ion function (or a different re-
sponse to next) mus t be implemented .

423
Discrete Probabili ty Distributions

Discrete
Probabi l i ty
Distributions

As an example of a discrete probability distribution, take the heights of
a class of 20 students and arrange a table indicating the frequency of
students having the same heights (the representat ion of height is given
in inches). The table might be

measured height number of students

60" 3
62" 2
64" 4
66" 3
68" 5
70" 3

Given this information, we might ask the question: what is the proba-
bility of randomly selecting a s tudent who is 5'4" tall? This question is
answered by computing the density function of the discrete probability
associated with the observed information. In particular, we can define
the density function in terms of the following table.

height density

60" 3/20
62" 2/20
64" 4/2O
66" 3/20
68" 5/20
70" 3/20

Suppose we define a subclass of DiscreteProbability which we name
SampleSpace, and provide the above table as the value of an instance
variable of SampleSpace. The response to the message density: x is the
value associated with x in the table (in the example, the value of x is
one of the possible heights); the value of the density of x, where x is not
in the table, is 0. The probability of sampling each element of the col-
lection is equally likely, so the density function is the reciprocal of the
size of the collection. Since there may be several occurrences of a data
element, the probability must be the appropriate sum of the probability
for each occurrence. The implementat ion of the cumulative distribution
function is inherited from the superclass.

424
Probabil i ty Distr ibutions

class name
superclass
instance variable names
class methods

instance creation

data: aCollect ion
1self new setData: aCollection

SampleSpace
DiscreteProbability
data

instance methods

probability functions

density: x
"x must be in the sample space; the probability must sum over all occur-
rences of x in the sample space"
(data includes: x)

ifTrue: [t(data occurrencesOf: x) / data size]
ifFalse: [tO]

private

inverseDistr ibut ion: x
t data at: (x.data size) truncated .-t- 1

setData: aCollect ion
data ~ aCollection

Suppose heights is an instance of SampleSpace. The data is an a r r ay of
20 elements, the height of each s tudent in the example.

heights ~- SampleSpace data:
¢/:(60 60 60 62 62 64 64 64 64 66 66 66 68 68 68 68

68 70 70 70)

Then we can ask heights the question, wha t is the probabil i ty of ran-
domly selecting a s tudent with height 64, or wha t is the probabil i ty of
r andomly selecting a s tudent whose height is between 60" and 64"?
The answer to the first question is the density function, tha t is, the re-
sponse to the message density: 64. The answer to the second is the cu-
mula t ive distr ibution function; tha t is, the answer is the response to the
message distribution: (60 to: 64 by: 2).

: SampleSpace, in m a n y ways, r e sembles a discrete uniform distribu-
tion. In general, a discrete uniform distr ibut ion is defined over a finite
range of values. For example, we might specify a uniform distr ibution
defined for six values: 1, 2, 3, 4, 5, 6, represent ing the sides of a die. The
densi ty function, as the constant 1/6, indicates tha t the die is eclair,"
i.e., the probabil i ty tha t each of the sides will be selected is the same.

We define four kinds of discrete probabil i ty distr ibutions tha t are
useful in s imulat ion studies. They are Bernoulli, Binomial, Geometric,

The Bernoulli
Distribution

425
Discrete Probabil i ty Distr ibutions

and Poisson. A Bernoulli dis tr ibut ion answers the question, will a suc-
cess occur in the next trial? A binomial distr ibution represents N re-
peated, independent Bernoulli distributions, where N is grea ter t han or
equal to one. It answers the question, how m a n y successes are there in
N trials? Taking a slightly different point of view, the geometric distri-
but ion answers the question, how m a n y repeated, independent Bernoul-
li t r ials are needed before the first success is obtained? A Poisson
distr ibut ion is used to answer the question, how m a n y events occur in a
par t icu lar t ime interval? In part icular , the Poisson determines the
probabil i ty t ha t K events will occur in a par t icu lar t ime interval, where
K is g rea te r t han or equal to 0.

A Bernoull i dis tr ibution is used in the case of a sample space of two
possibilities, each with a given probabil i ty of occurrence. Examples of
sample spaces consisting of two possibilities are

• The throw of a die, in which I ask, did I get die side 4? The proba-
bility of success if the die is fair is 1/6; the probabil i ty of failure is
5/6.

• The toss of a coin, in which I ask, did I get heads? The probabil i ty
of success if the coin is fair is 1/2; the probabil i ty of failure is 1/2.

• The draw of a playing card, in which I ask, is the playing card the
queen of hearts? The probabil i ty of success if the card deck is stan-
dard is 1/52; the probabil i ty of failure is 51/52.

According to the specification of class Bernoulli, we create a Bernoulli
dis t r ibut ion using expressions of the form

Bernoulli parameter: 0.17

In this example, we have created a Bernoulli dis tr ibution with a proba-
bility of success equal to 0.17. The probabil i ty of success is also referred
to as the mean of the Bernoulli distribution.

The parameter , prob, of a Bernoulli dis tr ibution is the probabili ty
tha t one of the two possible outcomes will occur. This outcome is typi-
cally referred to as the successful one. The pa rame te r prob is a number
between 0.0 and 1.0. The densi ty function maps the two possible out-
comes, 1 or 0, onto the pa rame te r prob or its inverse. The cumulat ive
distribution, inher i ted from the superclass, can only r e tu rn values prob
or 1.

class name Bernoulli
superclass DiscreteProbability
instance variable names prob

426
Probabi l i ty Distr ibut ions

class methods

instance creation

p a r a m e t e r : a N u m b e r

(aNumber between: 0.0 and: 1.0)
ifTrue: [1"self new setParameter: aNumber]
ifFalse: [self error: 'The probability must be between 0.0 and 1.0 ']

instance methods

accessing

m e a n
l'prob

v a r i a n c e
tprob , (1.0 - prob)

probability functions

d e n s i t y : x

" let 1 denote success"
x = 1 ifTrue: [l'prob].
" " let 0 denote failure"
x = 0 ifTrue: [1 ' l .0-prob].
self error: ' outcomes of a Bernoulli can only be 1 or O'

private

i n v e r s e D i s t r i b u t i o n : x
"Depending on the random variable x, the random sample is 1 or O,
denoting success or failure of the Bernoulli trial."

x < = prob
ifTrue: [1' 1]
ifFalse: [1'0]

s e t P a r a m e t e r : a N u m b e r
prob ~ aNumber

Suppose, at some stage of playing a card game, we wish to de te rmine
whe the r or not the first d raw of a card is an ace. Then a possible (ran-
domly determined) answer is obtained by sampl ing from a Bernoull i
dis t r ibut ion with mean of 4/52.

(Bernoull i parameter: 4 /52) next

Let 's t race how the response to the message next is car r ied out.

The method associated w i t h the u n a r y selector next is found in the
method d i c t i ona ry of class Probabil i tyDistribution. The me thod re tu rns
the va lue of the expression self inverseDistribution: U next. T h a t is, a
uni formly dis t r ibuted n u m b e r be tween 0 and 1 is obtained (U next) in

The Binomial
Distribution

427
Discrete Probabi l i ty Distr ibutions

order to be the a r g u m e n t of inverseDis t r ibut ion: . The method associated
with the selector inverseDistribution: is found in the method dict ionary
of class Bernoulli. This is the inverse dis t r ibut ion function, a mapping
from a value prob of the cumula t ive dis t r ibut ion function onto a value,
x, such tha t prob is the probabil i ty t ha t the random variable is less
than or equal to x. In a Bernoull i distr ibution, x can only be one of two
values; these are denoted by the integers 1 and 0.

In s imulat ions, we use a Bernoull i dis t r ibut ion to tell us whe the r or not
an event occurs, for example, does a car arr ive in the next second or
will a machine break down today? The binomial dis tr ibut ion answers
how m a n y successes occurred in N trials. The density function of a Ber-
noulli dis t r ibut ion tells us the probabil i ty of occurrence of one of two
events. In contrast , the densi ty function of a binomial answers the ques-
tion, wha t is the probabil i ty t ha t x successes will occur in the next N
trials?

The binomial d is t r ibut ion represents N repeated, independent Ber-
noulli trials. It is the same as Bernoull i for N = 1. In the description of
class Binomia l , a subclass of class Bernoul l i , the addit ional instance vari-
able, N, represents the n u m b e r of trials. Tha t is, given an instance of
Binomial, the response to the message next answers the question, how
m a n y successes are there in N trials?

The probabil i ty function for the binomial is

N!

x! (N-x) !
px (1--p)N-x

where x is the number of successes and p is the probabil i ty of success
on each trial. The notat ion ~!" represents the ma themat i ca l factorial
operation. The first t e rms can be reduced to comput ing the n u m b e r of
ways to obtain x successes out of N trials, divided by the n u m b e r of
ways to obtain x successes out of x trials. Thus the implementa t ion giv-
en below makes use of the method computeSample: a outOf: b provided
i n t h e superc lass Probabi l i tyDis t r ibut ion.

class name Binomial

superclass Bernoufli

instance variable names N

class methods

instance creation

e v e n t s : n m e a n : m

n truncated < = 0 ifTrue: [self error:

1'self new events: n mean: m

• number of events must be > 0 '] .

428
Probabi l i ty Distr ibut ions

instance methods

random sampling

n e x t

I t t
"A surefire but slow method is to sample a Bernoulli N times. Since the
Bernoulli returns 0 or 1, the sum will be between 0 and N."
t ~ O .
N timesRepeat: [t ~ t -I- super next].
Tt

probability functions

d e n s i t y : x
(x between: 0 and: N)

ifTrue: [t((setf computeSample: x outOf: N)
/ (self computeSample: x outOf: x))

, (prob raisedTo: x) , ((1.0-prob) raisedTo: N - x)]
ifFalse: [1'0.0]

private

events= n mean= m

N ~- n truncated.
self setParameter: m/N
" setParameter: is implemented in my superclass"

Let 's use flipping coins as our example. In five tr ials of a coin flip,
where the probabil i ty of heads is 0.5, the Bernoull i d is t r ibut ion with pa-
r a m e t e r 0.5 represents one trial, i.e., one coin flip.

sampleA ~- Bernoull i parameter: 0.5

The resul t of

sampleA next

is e i ther 1 or 0, answer ing the question, did I get heads?
Suppose instead we create

sampteB ~ Binomial events: 5 mean: 2.5

The resul t of

sampleB next

The Geometric
Distribution

429
Discrete Probabi l i ty Distr ibutions

is a numbe r between 0 and 5, answer ing the question, how m a n y heads
did I get in 5 trials?

The message

sampleB density: 3

is a n u m b e r between 0 a n d 1 , answer ing the question, wha t is the prob-
abili ty of get t ing heads 3 t imes in 5 trials?

Suppose we wish to answer the question, how m a n y repeated, indepen-
dent Bernoulli tr ials are needed before the first success is obtained?
This new perspective on a Bernoull i dis tr ibution is the geometric distri-
bution. As in the Bernoulli and binomial cases, the probabil i ty of a suc-
cess is between 0.0 and 1.0; the mean of the geometric is~the reciprocal
of the success probability. Thus if we create a geometric distr ibution as

Geometric mean: 5

then the mean is 5 and the probabil i ty of a success is 1/5. The mean
mus t be grea ter than or equal to 1.

A geometric dis tr ibut ion is more suitable for an event-driven simula-
tion design t h a n a Bernoulli or binomial. Instead of asking how m a n y
cars arr ive in the next 20 seconds (a binomial question), the geometric
dis tr ibut ion asks, how m a n y seconds before the next car arrives, in
event-driven simulations, the (simulated) clock jumps to the t ime of the
next event. Using a geometric distr ibution, we can de termine when the
next event will occur, set the clock accordingly, and then carry out the
event, potent ial ly ~saving" a grea t deal of real time.

The probabi l i ty distr ibution function is

p (1 - p) x-1

where x is the numbe r of tr ials required and p is the probabil i ty of suc-
cess on a single trial.

class name Geometric
superclass Bernoulli
class methods

instance creation

m e a n : m

t self parameter: l /m
' " Note that the message parameter: is implemented in the superclass"

430
P r o b a b i l i t y D i s t r i b u t i o n s

instance methOds

accessing

m e a n

1' 1.0 / prob
v a r i a n c e

1 (1.0-prob) / prob squared

probability functions

d e n s i t y : x

x > 0 ifTrue: [tprob . ((1.0- prob) raisedTo: x -1)]
ifFalse: [1"0.0]

private ~

i n v e r s e D i s t r i b u t i o n : x

"Method is from Knuth, Vol. 2, pp.116-117"
t(x In / (l .0 -p rob) In) ceiling

Suppose, on the average, two cars arr ive at a ferry landing every min-
ute. We can express this s ta t is t ical informat ion as

sample ~- Geometric mean: 2 /60

The densi ty function can be used to answer the question, wha t is the
probabi l i ty t ha t it will t ake N t r ia ls before the next success? For exam-
ple, wha t is the probabi l i ty t ha t it will t ake 30 seconds before the next
car arrives?

sample density: 30

The cumula t ive dis t r ibut ion function can be used to answer the ques-
tion, did the next car ar r ive in 30 to 40 seconds?

sample distribution: (30 to: 40)

The Poisson
Distribution

Suppose the quest ion we wish to ask is, how m a n y events occur in a
un i t t ime (or space interval)? The binomial dis t r ibut ion considers the
occurrence of two independen t events, such as drawing a king of hear t s
or a king of spades from a full deck of cards. There are r andom events,
however, t ha t occur at r andom points in t ime or space. These events do
not occur as the outcomes of trials. In these c i rcumstances , it does not
make sense to consider the probabi l i ty of an event happen ing or not
happening. One does not ask how m a n y cars did not ar r ive at a ferry or
how m a n y a i rp lanes did not land at the airport; the appropr ia te ques-
t ions are how m a n y cars did arr ive at the ferry and how m a n y air-
planes did land at the airport , in the next uni t of t ime?

431
Discrete Probabi l i ty Distr ibutions

In simulat ions, the Poisson dis t r ibut ion is useful for sampl ing poten-
tial demands by customers for service, say, of cashiers, salesmen, tech-
nicians, or Xerox copiers. Experience has shown tha t the rate at which
the service is provided often approximates a Poisson probabil i ty law.

The Poisson law describes the probabil i ty tha t exactly x events occur
in a uni t t ime interval , when the mean ra te of occurrence per uni t t ime is
the var iable mu. For a t ime interval of dt, the probabil i ty is mu*dt; mu
must be grea te r t han 0.0.

The probabil i ty function is

a x e-a

x!

where a is the mean ra te (or mu), e the base of na tu ra l logari thms, x is
the n u m b e r of occurrences, and ! the factorial notation.

class name Poisson

superclass DiscreteProbability

instance variable names mu

class methods

instance creation

m e a n : p

"p is the average number of events happening per unit interval."

p > O . O
ifTrue: [tself new setMean: p]

i fFalse [self error: 'mean must be greater than 0.0"]

instance methods

accessing

m e a n

fmu

v a r i a n c e

fmu

random sampling

n e x t

" how many events occur in the next unit interval?"

I p n q I
p ~ mu negated exp.

n , - O .
q ~ 1.0.

[q ~- q , U next.
q > = p]

whileTrue: [n ,- n + 1].
ln

432
Probabil i ty Distributions

probability functions

d e n s i t y : x
"the probability that in a unit interval, x events will occur'"
x > = O

ifTrue: [t((mu raisedTo: x) . (mu negated exp)) / x factorial]
ifFalse: [1"0.0]

private

s e t M e a n : p
m u ~ p

The response to the message next answers the question, how many
events occur in the next unit of t ime or space? The density function of x
determines the probability that , in a unit interval (of t ime or space), x
events will occur. The cumulat ive distribution function of x determines
the probabili ty that , in a unit interval, x events or fewer will occur.

Continuous
Probability
Distributions

The Uniform
Distribution

A continuous random variable can assume any value in an interval or
collection of intervals. In the continuous case, questions similar to those
asked in the discrete case are asked and the continuous probability dis-
t r ibutions show strong correspondence to the discrete ones. An example
of a question one asks of a continuous probability distribution is, what
is the probabili ty of obtaining a t empera tu re at some moment of time.
Tempera tu re is a physical property which is measured on a continuous
scale.

We define four kinds of continuous probability distributions; they are
uniform, exponential , gamma, and normal distributions. The uniform
distribution answers the question, given a set of equally likely events,
which one occurs? Given tha t the underlying events are Poisson distrib-
uted, the exponential distribution is used to answer the question, how
long before the first (next) event occurs? The gamma distribution is re-
lated in tha t it answers the question, how long before the Nth event oc-
curs? The normal or Gaussian distribution is useful for approximat ing
l imiting forms of other distributions. It plays a significant role in statis-
tics because it is simple to use; symmetr ica l about the mean; completely
determined by two parameters , the mean and the variance; and reflects
the distribution of everyday events.

We have already examined the uniform distribution from the perspec-
tive of selecting discrete elements from a finite sample space. The ques-
t ion we asked was, given a set of equally likely descriptions, which one

The Exponential
Distribution

433
Continuous Probabi l i ty Distr ibut ions

to pick? In the continuous case, the sample space is a cont inuum, such
as t ime or the interval between 0 and 1. The class Uniform provided
here extends the capabili t ies of class Random by genera t ing a r andom
variable wi th in any in terval as a response to the message next.

class name Uniform
superclass ContinuousProbability
instance variable names startNumber

stopNumber
class methods

instance creation

f rom: begin to: end
begin > end

ifTrue: [self error: ' i l legal interval ']
ifFalse: [tself new setStart: begin toEnd: end]

instance methods

accessing

m e a n
1' (startNumber + stopNumber)/2

v a r i a n c e
l '(stopNumber - startNumber) squared / 12

probability functions

densi ty : x
(x between: startNumber and: stopNumber)

ifTrue: [1' 1.0 / (stopNumber - startNumber)]
ifFalse: [1'0]

private

inverseDis t r ibu t ion : x
" x is a random number between 0 and 1 "
1'startNumber + (x , (s topNumber - startNumber))

setStar t : begin toEnd: end
startNumber ~- begin.
stopNumber ~ end

Given tha t the under ly ing events are Poisson distr ibuted, the exponen-
tial dis t r ibut ion de termines how long before the next event occurs. This
is more suitable for a s imula t ion des ign than is Poisson in the same
sense tha t the geometric dis t r ibut ion was more suitable t han the bino-
mial, because we can j u m p the s imula ted clock set t ing to the next oc-
currence of an event, r a the r t han stepping sequent ia l ly th rough each
t ime unit.

434
Probabili ty Distributions

As an example of sampling with an exponential, we might ask, when
will the next car arrive? The density function of x is the probability
that the next event will occur in the time interval x, for example, what
is the probability of the next car arr iving in the next 10 minutes?

Exponential is typically used in situations in which the sample dete-
riorates with time. For example, an exponential is used to determine
the probability tha t a light bulb or a piece of electronic equipment will
fail prior to some time x. Exponential is useful in these cases because
the longer the piece of equipment is used, the less likely it is to keep
running.

As in the case of a Poisson, the parameter of the exponential distri-
bution, mu, is in terms of events per unit time, al though the domain of
this distribution is t ime (not events).

The probability function for the exponential distribution is

x
e - a

where a is the mean rate (mu = l / a) between occurrences.

class name Exponential
superclass ContinuousProbability
instance variable names mu
class methods

instance creation

m e a n : p.

" Since the exponential parameter mu is the same as Poisson mu, if we
are given the mean of the exponential, we take reciprocal to get the
probability parameter"
1'self parameter: 1.0/p

p a r a m e t e r : p

p > O . O
ifTrue: [tself new setParameter: p]
ifFalse: [self error:

"The probability parameter must be greater than 0 .0 ']

instance methods

accessing

m e a n
t l . 0 /mu

v a r i a n c e

1" 1.0/(mu , mu)

435
Continuous Probabil i ty Distributions

probability functions

d e n s i t y : x

x > 0 . 0
ifTrue: [tmu , (mu,x) negated exp]
ifFalse: [t0.0]

dis t r ibu t ion : a n i n t e r v a l

anlnterval stop < = 0.0
ifTrue: [t0.0]
ifFalse: [t 1.0 - (mu , anlnterval stop) negated exp -

(anlnterval start > 0.0
ifTrue: [self distribution:

(0.0 to: antnterval start)]
ifFalse: [0.0])]

private

i n v e r s e D i s t r i b u t i o n : x
" implementation according to Knuth, Vol. 2, p. 114"

l'x In negated / mu
s e t P a r a m e t e r : p

m u , - p

The Gamma
Distribution

A distribution related to the exponential is gamma, which answers the
question, how long before the Nth event occurs? For example, we use a
g a m m a distribution to sample how long before the Nth car arrives at
the ferry landing. Each instance of class Gamma represents an Nth
event and the probability of occurrence of tha t Nth event (inherited
from the superclass Exponential). The variable N specified in class Gam-
ma must be a positive integer.

The probabili ty function is

x

X k - 1 e-~

a k (k - 1)!

where k is grea ter than zero and the probabili ty pa ramete r mu is 1/a.
The second te rm of the denominator, (k-l)!, is the gamma function
when it is known tha t k is grea ter t han 0. The implementat ion given
below does not make this assumption.

class name G a m m a
superclass Exponential

instance variable names N

i

436
Probabil i ty Distr ibutions

class methods

instance creation

e v e n t s : k m e a n : p

k ~- k truncated.
k > O

.ifTrue: [t(self parameter: k/p) setEvents: k]

ifFalse: [self error: ' the number of events must be greater than 0 ']

instance methods

accessing

m e a n

1'super m e a n . N
v a r i a n c e

t super va r iance . N

probability functions

d e n s i t y : x

l t l
x > O . O

ifTrue: [t ~- mu . x.
t(mu raisedTo: N) / (self gamma: N)

. (x raisedTo: N - I)

. t negated exp]
ifFalse: [1'0.0]

private

g a m m a : n

l t l
t ~- n - - 1.0.

1'self computeSample: t outOf: t
s e t E v e n t s : e v e n t s

N ~ events

The Normal
Distribution

The normal distr ibution, also called the Gaussian, is useful for summa-
rizing or approximat ing other distributions. Using the normal distribu-
tion, we can ask questions such as how long before a success occurs
(similar to the discrete b inomial distribution) or how m a n y events occur
in a cer tain t ime interval (similar to the Poisson). Indeed, the normal
can be used to approximate a binomial when the number of events is
very large or a Poisson when the mean is large. However, the approxi-
mat ion is only accurate in the regions near the mean; the errors in ap-
proximat ion increase towards the tail.

A n o r m a l dis tr ibut ion is used when there is a central dominat ing
value (the mean), and the probabil i ty of obtaining a value decreases
with a deviation from the mean. If we plot a curve with the possible
values on the x-axis and the probabilit ies on the y-axis, the curve will

437
Continuous Probabil i ty Distributions

look like a bell shape. This bell shape is due to the requi rements tha t
the probabilities are symmetr ic about the mean, the possible values
from the sample space are infinite, and yet the probabilities of all of
these infinite values must sum to 1. The normal distribution is useful
when determining the probabili ty of a measurement , for example, when
measur ing the size of ball bearings. The measurements will result in
values tha t cluster about a central mean value, off by a small amount.

The parameters of a normal distribution are the mean (rnu) and a
s tandard deviation (sigma). The s tandard deviation must be greater
than 0. The probability function is

1 x - - a 2

where a is the pa ramete r mu and b is the s tandard deviation sigma.

class name Normal
superclass ContinuousProbabil i ty

instance variable names

class methods

instance creation

m u

sigma

m e a n : a d e v i a t i o n : b

b > 0 . 0
ifTrue [1`self new setMean: a standardDeviation: b]

i fFalse [self er ror ' standard deviation must be greater than 0 . 0 ']

instance methods

accessing

m e a n

lmu

v a r i a n c e

1" sigma squared

random sampling

n e x t
"Polar method for normal deviates, Knuth vol. 2, pp. 104, 113"

I v l v 2 s rand u I
rand ~- Uniform from: - 1 . 0 to: 1.0.

[v l ~ rand next.

v2 ~- rand next.
s ~ v l squared + v2 squared.

s > = 1] whiteTrue.

u ~ (- -2.0 , s In / s) sqrt.

tmu + (s i gma , v l , u)

438
Probability Distributions

probabi l i ty func t ions

d e n s i t y : x

J t w o P i t I

twoPi ~- 2 . 3 .1415926536 .

t ~ x - m u / s igma.

t (- 0 . 5 . t squared) exp / (s igma . twoPi sqrt)

pr ivate

s e t M e a n : m s t a n d a r d D e v i a t i o n : s

m u ~ m .

s igma ~- s

In subsequent chapters, we define and provide examples of using class
descriptions that support discrete, event-driven simulation. The proba-
bility distributions defined in the current chapter will be used through-
out the example simulations.

|

• • a

• =1 a

1

22
Event-Driven
Simulations

A Framework for Simulations
Simulation Objects
Simulations
A "Default'" Example: NothingAtAII

Implementation of the Simulation Classes
Class SimulationOblect
Class DelagedEvent
Class Simulation
Tracing the Example NothingAtAII

440
Event-Driven Simulations

A simulation is a representat ion of a system of objects in a real or fan-
tasy world. The purpose of creating a computer simulation is to provide
a f ramework in which to unders tand the simulated situation, for exam-
ple, to unders tand the behavior of a waiting line, the workload of
clerks, or the timeliness of service to customers. Certain kinds of simu-
lations are referred to as ~counter simulations." They represent situa-
tions for which there are places or counters in which clerks work.
Customers arrive at a place in order to get service from a clerk. If a
clerk is not available, the customer enters a waiting line. The first cus-
tomer in the line is serviced by the next available clerk. Often a given
simulation has several kinds of places and several customers, each with
an agenda of places to visit. There are many examples of such situa-
tions: banks, car washes, barber shops, hospitals, cafeterias, airports,
post offices, amusement parks, and factories. A computer simulation
makes it possible to collect statistics about these situations, and to test
out new ideas about their organization.

The objects tha t participate in a counter simulation operate more or
less independently of one another. So, it is necessary to consider the
problem of coordinating or synchronizing the activities of the various
simulated objects. They typically coordinate their actions through the
mechanism of message passing. Some objects, however, must synchro-
nize their actions at certain critical moments; some objects can not pro-
ceed to carry out their desired actions without access to specific
resources tha t may be unavailable at a given moment. The
Smalltalk-80 system classes, Process, Semaphore, and SharedQueue,
provide synchronization facilities for otherwise independent activities.
To support a general description of counter simulations, mechanisms
are needed for coordinating

• the use of fixed-size resources,

• the use of fluctuating resources, arid

• the appearance of s imultanei ty in the actions of two objects.

Fixed resources can either be consumable or nonconsumable. For exam-
ple, jelly beans are consumable, fixed resources of a candy store; books
are non-consumable resources of a library. Fluctuat ing resources are
typically referred to as renewable or producer /consumer synchronized.
A store can model its supply of jelly beans as a fluctuating resource be-
cause the supply can be renewed. One can also imagine a resource that
is both renewable ~nd nonconsumable. Such a resource might be mod-
eled in a simulation of car rentals: cars are renewable resources since
new ones are manufactured and added to the available supply of cars to
rent; the cars are also nonconsumable because a rented car is re turned
to the dealer for use by other customers. Actually, most nonconsumable

441
Event-Driven Simulations

resources are consumable, for example, l ibrary books eventual ly become
too ta t te red for continued circulation; the renta l cars eventual ly get
junked. ~Nonconsumable" means, minimally, tha t they are not
consumed during the period of interest in the simulation.

When the actions of two objects in a simulation must be synchro-
nized to give the appearance of carrying out a task together, the two
objects are said to be in a server /c l ient relationship. For example, a
doctor needs the cooperation of the pat ient in order to carry out an ex-
amination. The server is a coordinated resource; it is a s imulat ion ob-
ject whose t asks can only be carr ied out when one or more clients
request the resource.

An impor tan t aspect of simulations is tha t they model si tuations tha t
change over time; customers enter and leave a bank; cars enter, get
washed, get dried, and leave a car wash; airplanes land, unload passen-
gers, load passengers, and take off from airports. It is often the case
tha t these activities are t ime-related; at certain times or with certain
intervals of time, events occur. Therefore, actions have to be synchro-
nized with some notion of time. Often this notion of t ime is itself simu-
lated.

There are a number of ways in which to represent the actions of sim-
ulated objects with respect to real or s imulated time. In one approach,
the clock runs in its usual manner . A t e a c h tick of the clock, all objects
are given the opportuni ty to take any desired action. The clock acts as a
synchronization device for the simulation, providing the opportunity to
give the appearance of paral lel ism since the clock waits unti l all actions
appropriate at the given t ime are completed. Often, no actions will take
place at a given tick of the clock.

Alternatively, the clock can be moved forward according to the t ime
at which the next action will take place. In this case, the system is driv-
en by the next discrete action or event scheduled to occur. The imple-
menta t ion of a s imulat ion using this approach depends on main ta in ing
a queue of events, ordered with respect to s imulated time. Each t ime an
event is completed, the next one is taken from the queue and the clock
is moved to the designated time.

The simulations presented in this chapter are based on this event-
driven approach. They include simulations in which a collection of inde-
pendent objects exist, each with a set of tasks to do (services or re-
sources to obtain), and each needing to coordinate its activity's t imes
with other objects in the s imulated situation.

This chapter describes a f ramework in which such simulations can be
developed. The class SimulationObject describes a general kind of object
tha t might appear in a simulation, tha t is, one with a set of tasks to do.
The message protocol of the class provides a f ramework in which the
tasks are carried out. An instance of class Simulation main ta ins the sim-
ulated clock and the queue of events. The specification of the arr ival of

442
Event-Driven Simulations

new objects into the system (objects such as customers) and the specifi-
cation of resources (such as the clerks) are coordinated in this class.

The next chapter, Chapter 23, deals with ways to collect the data
generated in running a simulation. Statistics gathering can be handled
by providing a gene ra l mechanism in subclasses of class Simulation
and /or class SimulationObject. Alternatively, each example simulation
can provide its own mechanism for collecting information about its be-
havior.

Chapte r 24 describes example simulations that make use of two
kinds of synchronizations, shared use of fixed resources and shared use
of f luctuating resources; Chapter 25 introduces additional support for
coordination between two simulation objects-- those want ing service
and those providing service.

A F r a m e w o r k
for S imulat ions

Simulation
Objects

This section contains a description of the classes tha t provide the basic
protocol for classes SimulationObject and Simulation. These classes are
presented twice. First, a description of the protocol is given with an ex-
planation of how to create a default example; second, an implementa-
tion of these classes is given.

Consider s imulat ing a car wash. Major components of a car wash are
washing places, drying places, paying places, washers, dryers, cashiers,
and vehicles of different sorts such as trucks and cars. We can classify
these components according to behavior. Major classifications are:
places, where workers are located and work is performed; workers, such
as washers, dryers, and cashiers; and the vehicles tha t are the custom-
ers of the places. These classifications might be t ransla ted into three
classes of Small ta lk objects: Place, Worker, and Customer. But each of
these classes of objects is similar in tha t each describes objects tha t
have tasks to d o - - a Customer requests service, a Worker gives service,
and a Place provides resources. In particular, a Place provides a waiting
queue for the times when there are more customers than its workers
can handle. These similarities are modeled in the superclass
SimulationObject, which describes objects tha t appear in a s imulated sit-
uation; a SimulationObject is any object tha t can be given a sequence of
tasks to do. Each object defines a main sequence of activity tha t is initi-
ated when the object enters the simulation. For example, the activities
of a car in a car wash are to request a washer, wait while being
washed, request a dryer, wait while being dried, pay for the service, and
leave.

Class SimulationObject specifies a general control sequence by which
the object enters, carries out its tasks, and leaves the simulation. This

443
A F r a m e w o r k for Simulat ions

sequence consists of sending the object the messages startUp, tasks, and
finishUp. Ini t ial izat ion of descriptive variables is specified as the re-
sponse to message initialize. These messages are invoked by the method
associated wi th startUp. Response to the messages tasks and initialize are
implemented by subclasses of SimulationObject.

SimulationObject instance protocol

initialization
initialize

simulation control
startUp

tasks

finishUp

Initialize instance variables, if any.

Initialize instance variables. Inform the simu-
lation that the receiver is entering it, and
then initiate the r~eceiver's tasks.
Define the sequence of activities that the re-
ceiver must carry out.
The receiver's tasks are completed. Inform the
simulation.

There are several messages tha t any SimulationObject can use in order
to describe its tasks. One is holdFor: aTimeDelay, where the argument
aTimeDelay is some amount of simulated time for which the object de-
lays fu r the r action. The idea of this delay is to create a period of t ime
in which the object is p resumably car ry ing out some activity.

We call the category of these messages, the modeler 's task language
to indicate tha t these are the messages sent to a SimulationObject as
par t of ' the implementa t ion of the message tasks.

A s i m u l a t i o n can contain simple or static resources, like "jelly
beans," t ha t can be acquired by a s imulat ion object. Or a s imulat ion
can consist of coordinated resources, t h a t is, s imula t ion objects whose
tasks mus t be synchronized wi th the tasks of o ther s imula t ion objects.
The task language includes messages for accessing each kind of re-
source, e i ther to get or to give the resource.

There are 3 kinds of messages for static resources. There are 2 mes-
sages for get t ing an amount of the resource named resourceName. They
are

acquire: amount ofResource: resourceName
acquire: amount ofResource: resourceName withPriority: prioritylnteger

There is one for giving an amount of the resource named resourceName,

produce: amount of Resource: resourceName

and one for giving up an acquired static resource,

release: aStaticResource

444
Event-Driven Simulations

There are also 3 kinds of messages for coordinated resources. The mes-
sage for get t ing the resource named resourceName (here, the resource
is a SimulationObject tha t models a kind of customer, and the asker is a
server such as a clerk) is

acquireResource: resourceName

To produce the resource named resourceName (the asker is a customer),
the message is

produceResource: resourceName

and to give up an acquired resource (which is a SimulationObject whose
task events can now be resumed), the message is

resume: anEvent

When a SimulationObject makes a static resource request
(acquire:ofResource: or request:), it can do so by stat ing the level of im-
portance of the request. The number 0 represents the least impor tan t
request, successively higher numbers represent successively higher lev-
els of importance. The message acquire:ofResource: assumes a priori ty
level of 0; acquire:ofResource:withPriority: specifies par t icular levels in
its th i rd argument .

Two queries check whether a static resource is in the s imulat ion and
how much of the resource is available. These are resourceAvailable:
resourceName, which answers whe ther or not the s imulat ion has a re-
source referred to by the String, resourceName; and inquireFor: amount
ofResource: resourceName, which answers whe ther there is at least
amount of the resource remaining.

When a SimulationObject is synchronizing its tasks with tha t of an-
other SimulationObject, it might be useful to know whether such an ob-
ject is available. Two additional inquiry messages support finding out
whe ther a provider or requester of a coordinated task is ava i l ab le - -
numberOfProvidersOfResource: resourceName and numberOf-
RequestersOfResource: resourceName.

In addition, a message to a SimulationObject can request that the
Simulation it is in stop running. This is the message stopSimulation.

SimulationObject instance protocol

task language
holdFor: aTimeDelay Delay carrying out the receiver's next task

until aTimeDelay amount of simulated time
has passed.

445
A F r a m e w o r k f o r S i m u l a t i o n s

acquire: amount ofResource: resourceName
Ask the s imula t ion to provide a s imple re-
source t h a t is refer red to by the String,
resourceName. If one exists, ask it to give the
receiver amount of resources. If one does not
exist, notify the s imula t ion user (programmer)
tha t an er ror has occurred.

acquire: amount ofResource: resourceName withPriority: priorityNumber
Ask the s imula t ion to provide a s imple re-
source t h a t is re fer red to by the String,
resourceName. If one exists, ask it to give the
receiver amount of resources, t ak ing into ac-
count t h a t the pr ior i ty for acquir ing the re-
source is to be set as priorityNumber. If one
does not exist, notify the s imula t ion user (pro-
g rammer) t h a t an er ror has occurred.

produce: amount ofResource: resourceName
Ask the s imula t ion to provide a simple re-
source t h a t is refer red to by the String,
resourceName. If one exists, add to it amount
more of its resources. If one does not exist,
c reate it.

release: aStaticResource The receiver has been using the resource re-
ferred to by the a rgumen t , aSta t icResource . It
is no longer needed and can be recycled.

inquireFor: amount ofResource: resourceName
Answer w h e t h e r or not the s imula t ion has at
least a quant i ty , amount, of a resource re-
ferred to by the String, resourceName.

resourceAvailable: resourceName
Answer w h e t h e r or not the s imula t ion has a
resource re fer red to by the String,
resourceName.

acquireResource: resourceName Ask the simulation to provide a resource sim-
ulation object that is referred to by the String,
resourceName. If one exists, ask it to give the
receiver its services. If one does not exist, no-
tify the s imula t ion user (programmer) t h a t an
e r ror has occurred.

produceResource: resourceName
Have the receiver act as a resource t h a t is re-
ferred to by the String, resourceName. Wait
for ano the r SimulationObject t h a t provides ser-
vice to (acquires) this resource.

r e s u m e : anEvent The receiver has been giving service to the re-
source refer red to by the a rgumen t , anEvent.
The service is completed so t h a t the resource,
a SimulationObject, can cont inue its tasks.

numberOfProvidersOfResource: resourceName
Answer the number of SimulationObjects wait-
ing to coordinate its tasks by ac t ing as the re-
source refer red to by the String, r esourceName.

numberOfRequestersOfResource: resourceName
Answer the number of SimulationObjects wait-
ing to coordinate its tasks by acquir ing the re-
source re fe r red to by the String, r e sourceName .

446
Event-Driven Simulations

stopSimulation Tell the simulation in which the receiver is
running to stop. All scheduled events are re-
moved and nothing more can happen in the
simulation.

The examples we present in subsequent chapters i l lustrate each mes-
sage in the modeler 's task language.

Simulations
The purpose of class Simulation is to manage the topology of simulation
objects and to schedule actions to occur according to simulated time. In-
stances of class Simulation mainta in a reference to a collection of
SimulationObjects, to the current s imulated time, and to a queue of
events waiting to be invoked.

The unit of t ime appropriate to the simulation is saved in an in-
stance variable and represented as a floating-point number. The unit
might be milliseconds, minutes, days, etc. A simulation advances time
by checking the queue to determine when the next event is scheduled
to take place, and by setting its instance variable to the time associated
with that next event. If the queue of events is empty, then the simula-
tion terminates.

Simulation objects enter a simulation in response to one of several
scheduling messages such as

scheduleArrivalOf: aSimulationObjectClass
accordingTo: aProbabilityDistribution or

scheduleArrivalOf: aSimulationObject at: aTimelnteger.
These messages are sent to the simulation either at the time that the
simulation is first initialized, in response to the message
defineArrivalSchedule, or as part of the sequence of tasks that a
SimulationObject carries out. The second a rgument of the first message,
aProbabilityDistribution, is an instance of a probability distribution such
as those defined in Chapter 21. In this chapter, we assume the avail-
ability of the definitions given in Chapter 21. The probability distribu-
tion defines the interval at which an instance of the first argument ,
aSimulationObjectClass, is to be created and sent the message startUp.

In addition, Simulation supports messages having to do with schedul-
ing a part icular sequence of actions. These are schedule: actionBIock at:
timelnteger and schedule: actionBIock after: amountOfTime.

In order to define the resources in the simulation, the modeler can
send the simulation one or more of two possible messages. Either

self produce: amount of: resourceName

where the second argument , resourceName, is a String tha t names a
simple quantifiable resource available in the simulation; the first argu-
ment is the (additional) quant i ty of this resource to be made available.

447
A F r a m e w o r k fo r S i m u l a t i o n s

Or

self coordinate: resourceName

T h e a r g u m e n t , resourceName, is a String t h a t n a m e s a r e s o u r c e t h a t is

to b e p r o v i d e d b y s o m e o b j e c t s i n t h e s i m u l a t i o n a n d r e q u e s t e d b y o t h e r

ob jec t s . F o r e x a m p l e , t h e r e s o u r c e is c a r w a s h i n g , t h e p r o v i d e r is a

w a s h e r o b j e c t a n d t h e r e q u e s t o r is a c a r ob jec t .

Simulation instance protocol

initialization
initialize

modeler's initialization language
defineArrivalSchedule

defineResources

Initialize the receiver's instance variables.

Schedule simulation objects to enter the simu-
lation at specified time intervals, typically
based on probability distribution functions.
This method is implemented by subclasses. It
involves a sequence of messages to the receiv-
er (i.e., to self) that are of the form

schedule:at:, scheduleArrivalOf:at:,
scheduleArrivalOf:accordingTo:, or
scheduleArrivalOf:accordingTo:startingAt:.

See the next category of messages for descrip-
tions of these.

Specify the resources that are initially entered
into the simulation. These typically act as re-
sources to be acquired. This method is
implemented by subclasses and involves a se-
quence of messages to the receiver (i.e., to self)
of the form produce: amount of: resourceName.

modeler's task language
produce: amount of: resourceName

An additional quantity of amount of a re-
source referred to by the String, resourceName,
is to be part of the receiver. If the resource
does not as yet exist in the receiver, add it; if
it already exists, increase its available quanti-
ty.

coordinate: r e s o u r c e N a m e Use of a resource referred to by the String,
resourceName, is to be coordinated by the re-
ceiver.

schedule: actionBIock after: timeDelaylnteger
Set up a program, actionBIock, that will be
evaluated after a simulated amount of time,
timeDelaylnteger, passes.

schedule: actionBIock at: timelnteger
Schedule the sequence of actions (actionBIock)
to occur at a particular simulated time,
timelnteger.

scheduleArrivalOf: aSimulationObject at: timelnteger
Schedule the simulation object, aSimulation-
Object, to enter the simulation at a specified
time, timelnteger.

448
Even t -Dr iven S imula t ions

scheduleArrivalOf: aSimulationObjectClass
accordingTo: aProbabilityDistribution

Schedule simulation objects that are instances
of aSimulationObjectClass to enter the simula-
tion at specified time intervals, based on the
probability distribution aProbabilityDistribution.
The first such instance should be scheduled to
enter now. See Chapter 21 for definitions of
possible probability distributions.

scheduleArrivalOf: aSimulationObjectClass
accordingTo: aProbabilityDistribution
startingAt: timelnteger Schedule simulation objects that are instances

of aSimulationObjectClass to enter the simula-
tion at specified time intervals, based on the
probability distribution aProbabilityDistribution.
The first such instance should be scheduled to
enter at time timelnteger.

Notice t h a t in the above schedul ing messages , scheduleArrivalOf:at:
t akes a SimulationObject ins tance as its f irst a r g u m e n t , whi le
scheduleArrivalOf:accordingTo: t akes a SimulationObject class. These
messages a re used different ly; the f irst one can be used by the
SimulationObject i tself to reschedule itself, whi le the second is used to
in i t i a te the a r r i va l of Simulat ionObjects into the system.

The protocol for Simulation includes severa l accessing messages . One,
the message includesResourceFor : r e sourceName , can be sen t by a
SimulationObject in o rder to d e t e r m i n e w h e t h e r or not a resource hav-
ing a given n a m e ex i s t s in the s imula t ion .

Simulation instance protocol

accessing
includesResourceFor: resourceName

Answer if the receiver has a resource that is
referred to by the String, resourceName. If
such a resource does not exist, then report an
error.

provideResourceFor: resourceName
Answer a resource that is referred to by the
String, resourceName.

time Answer the receiver's current time.

The s imula t ion control f r a m e w o r k is l ike t h a t of class SimulationObject.
In i t ia l iza t ion is h a n d l e d by c rea t ing the Simulation and send ing it the
message startUp. S imu la t i on objects and the schedul ing of new objects
c rea te events t h a t a re placed in the even t queue. Once init ial ized, the
Simulation is m a d e to r u n by send ing it t he message proceed unt i l t he r e
a re no longer a n y events in the queue.

In the course of r u n n i n g the s imula t ion , objects will e n t e r a n d exit.
As p a r t of the protocol for schedul ing a s imu la t ion object, the object in-
forms its s imu la t i on t h a t it is e n t e r i n g or exit ing. The cor responding

A "Default"
Example:
NothingAtAII

449
A F r a m e w o r k for S imula t ions

messages are enter: anObject and exit: anObject. In response to these
messages, s tat is t ics migh t be collected about s imula t ion objects upon
the i r en t r ance and the i r exit to the s imulat ion. Or a subclass migh t
choose to deny an object en t r ance to the s imulat ion; or a subclass migh t
choose to reschedule an object r a t h e r t h a n let it leave the s imulat ion.

Simulation instance protocol

simulation control
startUp

proceed

finishUp

enter: anObject

exit: anObject

Specify the initial simulation objects and the
arrival schedule of new objects.
This is a single event execution. The first
event in the queue, if any, is removed, time is
updated to the time of the event, and the
event is initiated.
Release references to any remaining simula-
tion objects.
The argument, anObject, is informing the re-
ceiver that it is entering.
The argument, anObject, is informing the re-
ceiver that it is exiting.

Of the above messages, the defaul t responses in class Simulation are
most ly to do nothing. In par t icu lar , the response to messages enter: and
exit: are to do nothing. Messages defineArrivalSchedule and
def ineResources also do nothing. As a result , the message startUp
accomplishes nothing. These messages provide the f r amework t h a t
subclasses are to u s e - - a subclass is created t h a t overrides these mes-
sages in order to add simulat ion-specif ic behavior.

Unl ike m a n y of the sys tem class examples of ear l ier chapters , the
superclasses Simulation and SimulationObject typical ly do not i m p l e m e n t
the i r basic messages as

self subclassResponsibility

By not doing so, ins tances of e i ther of these classes can be successfully
created. These ins tances can then be used as pa r t of a basic or a '~de-
faul t" s imula t ion t h a t serves as a skeletal example. As we have seen,
such s imula t ion objects are scheduled to do no th ing and consist of no
events. Development of more subs tan t ive s imula t ions can proceed by
gradua l r e f inement of these defaults. Wi th a running , defaul t example ,
the d e s i g n e r / p r o g r a m m e r can inc remen ta l ly modify and tes t the simu-
lation, replacing the un in t e re s t ing ins tances of the superclasses wi th in-
s tances of appropr ia te subclasses. The example s imula t ion NothingAtAII
i l lus t ra tes the idea of a "defaul t" s imulat ion.

Suppose we l i te ra l ly do noth ing other t h a n to declare the class
NothingAtAII as a subclass of Simulation. A NothingAtAll has no init ial re-

450
E v e n t - D r i v e n S i m u l a t i o n s

sources since it does nothing in response to the message
defineResources. And it has no simulat ion objects arriving at various
intervals, because it does nothing in response to the message
defineArrivalSchedule. Now we execute the following statement.

NothingAtAII new startUp proceed

The result is tha t an instance of NothingAtAII is created and sent the
message startUp. It is a s imulat ion with no resources and no objects
scheduled, so the queue of events is empty. In response to the message
proceed, the s imulat ion determines tha t the queue is empty and does
nothing.

As a modification of the description of NothingAtAII, we specify a re-
sponse to the message defineArrivalSchedule. In it, the objects scheduled
for arrival are instances of class DoNothing. DoNothing is created simply
as a subclass of SimulationObject. A DoNothing has no tasks to carry
out, so as soon as it enters the simulation, it leaves.

class name DoNothing
superclass S im u I ation 0 bject
instance methods

no new methods

class name NothingAtAII
superclass Simulation
instance methods

initialization

def ineArr ivalSchedule
self scheduleArrival©f: DoNothing

accordingTo: (Uniform from: 1 to: 5)

This version of NothingAtAII might represent a series of visitors enter ing
an empty room, looking around without taking time to do so, and leav-
ing. The probability distribution, Uniform, in the example in this chap-
ter is assumed to be the one specified in Chapter 21. According to the
above specification, new instances of class DoNothing should arrive in
the simulat ion every 1 to 5 units of s imulated t ime s tar t ing at t ime 0.
The following expressions, when evaluated, create the simulation, send
it the message startUp, and then iteratively send it the message proceed.

aSimulation ~- NothingAtAII new startUp.
[aSimulation proceed] whileTrue

The message startUp invokes the message defineArrivalSchedule which
schedules instances of DoNothing. Each t ime the message proceed is

451
A F r a m e w o r k fo r S i m u l a t i o n s

sent to the s imulat ion, a DoNothing enters or exits. Eva lua t ion migh t
resul t in the following sequence of events. The t ime of each event is
shown on the left and a descript ion of the event is shown on the right.

0.0 a DoNothing enters
0.0 a DoNothing exits
3.21 a DoNothing enters
3.21 a DoNothing exits
7.76 a DoNothing enters
7.76 a DoNothing exits

and so on.
We can now make the s imula t ion more in te res t ing by scheduling the

ar r iva l of more kinds of s imula t ion objects, ones t h a t have tasks to do.
We define Visitor to be a SimulationObject whose task is to en te r the
e m p t y room and look around, t ak ing be tween 4 and 10 s imula ted uni ts
to do so, t ha t is, a r andom a m o u n t de te rmined by eva lua t ing the ex-
pression (Uniform from: 4 to: 10) next.

class name Visitor
superclass SimulationObject

instance methods

simulation control

tasks
self holdFor: (Uniform from: 4.0 to: 10.0) next

NothingAtAII is now defined as

class name NothingAtAII

superclass S im u latio n
instance methods

initialization

defineArrivalSchedule
self scheduleArrivalOf: DoNothing

accordingTo: (Uniform from: 1 to: 5).
self scheduleArrivalOf: Visitor

accordingTo: (Uniform from: 4 to: 8)
startingAt: 3

Two kinds of objects en te r the s imulat ion, one t ha t t akes no t ime to
look a round (a DoNothing) and one t ha t visits a short while (a Visitor).

Execut ion of

aSimulation ~- NothingAtAII new startUp.
[aSimulation proceed] whileTrue

452
Event-Driven Simulations

might result in the following sequence of events.

0:0 a DoNothing enters
0.0 a DoNothing exits
3.0 a Visitor enters
3.21 a DoNothing enters
3.21 a DoNothing exits
7.76 a DoNothing enters
7.76 a DoNothing exits
8.23 a (the first) Visitor exits after 5.23 seconds

and so on.

Implementat ion
of the
Simulation
Classes

Class
Simuta t ionObjec t

In order to trace the way in which the sequence of events occurs in the
examples provided so far, it is necessary to show an implementat ion of
t h e t w o classes. The implementat ions i l lustrate the control of multiple
independent processes in the Small talk-80 system tha t were described
in Chapter 15.

Every SimulationObject created in the system needs access to the Simu-
lation in which it is functioning. Such access is necessary, for example,
in order to send messages tha t inform the simulat ion tha t an object is
enter ing or exiting. In order to support such access, SimulationObject
has a class variable, ActiveSimulation, tha t is initialized by each in-
stance of Simulation when tha t instance is activated (t h a t is, sent the
message startUp). This approach assumes only one Simulation will be ac-
tive at one time. It means tha t the tasks for any subclass of
SimulationObject can send messages directly to its simulation, for exam-
ple, to determine the cur rent time. SimulationObject specifies no in-
stance variables.

class name SimulationObject
superclass Object
class variable names ActiveSimutation
class methods

class initialization

activeSimulation: existingSimulation
ActiveSimulation ~- existingSimulation

instance creation

n e w

1 super new initialize

453
Implementation of the Simulation Classes

The simulation control framework, sometimes referred to as the ~life
cycle" of the object, involves the sequence startUp~tasks~finishUp.
When the SimulationObject first arrives at the simulation, it is sent the
message startUp.

instance methods

simulation control

initialize
"Do nothing. Subclasses will initialize instance variables."
1self

startUp
ActiveSimulation enter: self.
"First tell the simulation that the receiver is beginning to do my tasks."
self tasks.
self finishUp

tasks
"Do nothing. Subclasses will schedule activities."
tself

finishUp
"Tell the simulation that the receiver is done with its tasks."
ActiveSimulation exit: self

The category task language consists of messages the modeler can use
in specifying the SimulationObject's sequence of actions. The object
might hold for an increment of simulated time (hoidFor:). The object
might try to acquire access to another simulation object that is playing
the role of a resource (acquire:ofResource:). Or the object might deter-
mine whether a resource is available (resourceAvailable:).

task language

holdFor: aTimeDelay
ActiveSimulation delayFor: aTimeDelay

acquire: amount ofResource: resourceName
"Get the resource and then tell it to acquire amount of it. Answers an in-
stance of StaticResource"
t(ActiveSimulation provideResourceFor: resourceName)

acquire: amount
withPriority: 0

acquire: amount
of Resource: resourceName
withPriority: priority

l'(ActiveSimulation provideResourceFor: resourceName)
acquire: amount
withPriority: priority

produce: amount ofResource: resourceName
ActiveSimulation produce: amount of: resourceName

0

454
Event-Driven Simulations

release: aStat icResource
taStaticResource release

inquireFor: amount ofResource: resourceName
l'(ActiveSimulation provideResourceFor: resourceName)

amountAvailable > = amount
resourceAvailable: resourceName

"Does the active simulation have a resource with this attribute available?"
tActiveSimulation includesResourceFor: resourceName

acquireResource: resourceName
t(ActiveSimulation provideResourceFor: resourceName)

acquire
produceResource: resourceName

t(ActiveSimulation provideResourceFor: resourceName)
producedBy: self

resume: anEvent
l'anEvent resume

numberOfProvidersOfResource: resourceName
I resourcel
resource ~- ActiveSimulation provideResourceFor: resourceName.
resource serversWaiting

ifTrue: [1'resource queueLength]
ifFalse: [1'0]

numberOfRequestersOfResource: resourceName
I resourcel
resource ~ ActiveSimulation provideResourceFor: resourceName.
resource customersWaiting

ifTrue: [1'resource queueLength]
ifFalse: [1"0]

stopSimulation
ActiveSimulation finishUp

A Simulation stores a Set of resources. In the case of static resources, in-
stances of class ResourceProvider are stored; in the case of resources
that consist of tasks coordinated among two or more simulation objects,
instances of ResourceCoordinator are stored.

When a SimulationObject requests a static resource
(acquire:ofResource:) and tha t request succeeds, then the
SimulationObject is given an instance of class StaticResource. A
StaticResource refers to the resource tha t created it and the quant i ty of
the resource it represents. Given the methods shown for class
SimulationObject, we can see that a resource responds to the message
amountAvailable to re turn t h e current ly available quant i ty of the re-
source tha t the SimulationObject might acquire. This message is sent in
the method associated wi th inquireFor:ofResource:.

In the methods associated with SimulationObject messages acquire:of-
Resource: and acquire:ofResource:withPriority:, a ResourceProvider is

Class
DelayedEvent

455
Implementat ion of the Simulation Classes

obtained and sent the message acquire: amount withPriority:
priorityNumber. The result of this message is an instance of class
StaticResource. However, if the amount is not available, the process in
which the request was made will be suspended until the necessary re-
sources become available. A StaticResource is sent the message release
in order to recycle the acquired resource.

When a SimulationObject requests a coordinated resource
(acquireResource:), and tha t request succeeds, then the object co-opts
another simulation object acting as the resource (the object in need of
service) until some tasks (services) are completed. If such a resource is
not available, the process in which the request was made will be sus-
pended unti l the necessary resources become available. Instances of
class ResourceCoordinator unders tand messages acquire in order to
make the request to coordinate service tasks and producedBy:
aSimulationObject in order to specify tha t the a rgument is to be co-opted
by another object in order to synchronize activities. As indicated by the
implementa t ion of SimulationObject, a ResourceCoordinator can answer
queries such as customersWaiting or serversWaiting to determine if re-
sources (customers) or service givers (servers) are waiting to coordinate
their activities, and queueLength to say how many are waiting.

Explanat ions of the implementat ions of classes ResourceProvider and
ResourceCoordinator are provided in Chapters 24 and 25.

The implementat ion of a scheduling mechanism for class Simulation
makes extensive use of the Smalltalk-80 processor scheduler classes
presented in the chapter on multiple processes (Chapter 15). There are
several problems tha t have to be solved in the design of class Simulation.
First, how do we store an event tha t must be delayed for some incre-
ment of s imulated time? Second, how do we make certain tha t all pro-
cesses init iated at a par t icular t ime are completed before changing the
clock? And third, in terms of the solutions to the first two problems,
how do we implement the request to repeatedly schedule a sequence of
actions, in particular, instant iat ion and init iation of a par t icular kind of
SimulationObject?

In order to solve the first problem, the Simulation mainta ins a queue
of all the scheduled events. This queue is a SortedCollection whose ele-
ments are the events, sorted with respect to the simulated t ime in
which they must be invoked. Each event on the queue is placed there
within a package tha t i s a n instance of class DelayedEvent. At the t ime
the package is created, the event is the system's active process. As such,
it can be stored with its needed running context by creating a Sema-
phore. When the event is p u t on the queue, the DelayedEvent is sent
the message pause which sends its Semaphore the message wait; when
the event is taken off the queue, it is continued by sending it the mes-
sage resume. The method associated with resume sends the
DelayedEvent's Semaphore the message signal.

456
E v e n t - D r i v e n S i m u l a t i o n s

T h e p ro toco l for i n s t a n c e s of c lass D e l a y e d E v e n t cons i s t s of five mes-
sages.

DelayedEvent instance protocol

accessing
condition

condition: anObject

scheduling
pause

resume

comparing
< = aDelayedEvent

Answer a condition under which the event
should be sequenced.

Set the argument, anObject, to be the condi-
tion under which the event should be s e -
quenced.

Suspend the current active process, that is,
the current event that is running.

Resume the suspended process.

Answer whether the receiver should be se-
quenced before the argument, aDelayedEvent.

A DelayedEvent is c r e a t e d by s e n d i n g t h e c lass t h e m e s s a g e new or

onCondi t ion: anObjec t . T h e i m p l e m e n t a t i o n of c lass D e l a y e d E v e n t is giv-
en nex t .

class name Delayed Event
superclass Object
instance variable names resumptionSemaphore resumptionCondition
class methods

instance creation

n e w
t super new initialize

onCondi t ion: a n O b j e c t
Tsuper new setCondition: anObject

instance methods

accessing

condi t ion
T resumptionCondition

condi t ion: a n O b j e © t
resumptionCondition ~- anObject

comparing

< = a D e l a y e d E v e n t
resumptionCondition isNil

ifTrue: [1'true]

ifFalse: [tresumptionCondition < = aDelayedEvent condition]

Class Simulation

457
I m p l e m e n t a t i o n of t h e S i m u l a t i o n C l a s s e s

scheduling

pause
resumptionSemaphore wait

r e s u m e
resumptionSemaphore signal.

1' resumptionCondition

private

in i t ia l ize
resumptionSemaphore ,- Semaphore new

setCondi t ion: a n O b j e c t
self initialize.

resumptionCondition ~- anObject

According to the above specification, any object used as a resumption
condition must respond to the message < =; SimulationObject is, in gen-
eral, s u c h a c o n d i t i o n .

Instances of class Simulation own four instance variables: a Set of ob-
jects t h a t a c t a s r e s o u r c e s of t h e s i m u l a t i o n (r e s o u r c e s) , a N u m b e r r e p -

r e s e n t i n g the cur ren t t ime (currentTime), a SortedCollection
represent ing a queue of delayed events (eventQueue), and an Integer
denoting the number of processes active at the cur ren t t ime
(processCount).

Init ialization of a Simulation sets the instance variables to initial val-
ues. When the instance is sent the scheduling message startUp, it sends
itself the message activate which informs interested other classes which
Simulation is now the active one.

class name

superclass

instance variable names

Simulation

Object

resources currentTime

eventQueue processCount

class methods

instance creation

n e w
Tsuper new initialize

instance methods

initialization

in i t ia l ize
resources ~ Set new.

currentTime ~- 0.0.

processcount ~- O.

eventQueue ~- SortedCollection new

458
Event-Driven Simulations

activate
" T h i s instance is now the active simulation. Inform class
SimulationObject."
SimulationObject activeSimulation: self.
" Resource is the superclass for ResourceProvider and
ResourceCoordinator"
Resource activeSimulation: self

Initialization messages are also needed by the subclasses. The messages
provided for the modeler to use in specifying arrival schedules and re-
source objects provides an interface to the process scheduling messages.

initialization

defineArrivalSchedule
" A subclass specifies the schedule by which simulation objects dynami-
cally enter into the simulation."
tself

defineResources
"A subclass specifies the simulation objects that are initially entered into
the simulation."
tself

task language

produce: amount of: resourceName
(self includesResourceFor: resourceName)

ifTrue: [(self provideResourceFor: resourceName) produce: amount]
ifFalse: [resources add:

(ResourceProvider named: resourceName with: amount)]
coordinate: resourceName

(self includesResourceFor: resourceName)
ifFalse: [resources add:

(ResourceCoordinator named: resourceName)]
schedule: actionBIock after: t imeDelay

self schedule: actionBIock at: currentTime --t- timeDelay
schedule: aBIock at: t imelnteger

"This is the mechanism for scheduling a single action"
self newProcessFor:

[self delayUntit: timelnteger.
aBIock value]

scheduleArrivalOf: aSimulationObject at: t imelnteger
self schedule: [aSimulationObject startUp] at: timelnteger

scheduleArrivalOf: aSimulationObjectClass
accordingTo: aProbabilityDistribution

"This means start now"
self scheduleArrivalOf: aSimulationObjectClass

accordingTo: aProbabilityDistribution
startingAt: currentTime

459
Implementation of the Simulation Classes

scheduleArrivalOf: aSimulationObjectClass
accordingTo: aProbabilityDistribution
startingAt: timelnteger

"Note that aCtass is the class SimulationObject or one of its
subclasses. The real work is done in the private message
sched u le: startin gAt: andThe n Every: "

self schedule: [aSimulationObjectClass new startUp]
startingAt: timelnteger
andThenEvery: aProbabilityDistribution

The scheduling messages of the task language implement a reference-
counting solution to keeping track of initiated processes. This is the
technique used to solve the second problem cited earlier, that is, how to
make certain that all processes initiated for a particular time are car-
ried out by the single Smalltalk-80 processor scheduler before a differ-
ent process gets the opportunity to change the clock. Using reference
counting, we guarantee that simulated time does not change unless the
reference count is zero.

The key methods are the ones associated with schedule: aBIock at:
timelnteger and schedule: aBIock startingAt: timelnteger andThenEvery:
aProbabilityDistribution. This second message is a pr ivate one called by
the method associated wi th scheduleArrivalOf: aSimulationOb]ectClass
accordingTo: aProbabilityDistribution startingAt: timelnteger. I t provides a
general mechanism for scheduling repeated actions and therefore repre-
sents a solution to the third design problem mentioned earlier, how we
implement the request to repeatedly schedule a sequence of actions.

The basic idea for the schedule: aBIock at: timelnteger is to create a
process in which to delay the evaluation of the sequence of actions
(aBIock) until t h e simulation reaches the appropriate simulated time
(timelnteger). The delay is performed by the message delayUntil:
delayedTime. The associated method creates a DelayedEvent to be added
to the simulation's event queue. The process associated with this
DelayedEvent is then suspended (by sending it the message pause).
When this instance of DelayedEvent is the first in the queue, it will be
removed and the time will be bumped to the stored (delayed) time.
Then this instance of DelayedEvent will be sent the message resume
which will cause the evaluation of the block; the action of this block is
to schedule some simulation activity.

A process that was active is suspended when the Delayed Event is sig-
naled to wait. Therefore, the count of the number of processes must be
decremented (stopProcess). When the DelayedEvent resumes, the pro-
cess continues evaluation with the last expression in the method
delayedUntil:; therefore at this time, the count of the number of process-
es must be incremented (startProcess).

460
Event-Driven Simulations

scheduling

delayUntil: aTime
1 delayEvent I
delayEvent ~- DelayedEvent onCondition: timelnteger.
eventQueue add: defayEvent.
self stopProcess.
delayEvent pause.
self startProcess

delayFor: t imeDelay
self delayUntil: currentTime --t- timeDetay

startProcess
processCount ~ processCount -t- 1

stopProcess
processCount ~- processCount- 1

Reference counting of processes is also handled in the method associat-
ed with class Simulation's scheduling message newProcessFor: aBIock. It
is implemented as follows.

newProcessFor: aBIock
self startProcess.
[aBIock value.
self stopProcess] fork

The first expression increments the count of processes. The second ex-
pression is a block that is forked. When the Smalltalk processor sched-
uler evaluates this block, the simulation sequence of actions, aBIock, is
evaluated. The :completion of evaluating aBIock signals the need to dec-
rement the count of processes. In this way, a single sequence of actions
is scheduled in the event queue of the Simulation and delayed until the
correct simulated time. In summary, the reference count of processes
increments whenever a new sequence of actions is initiated, decrements
whenever a sequence completes, decrements whenever a DelayedEvent
is created, and increments whenever the DelayedEvent is continued.

The method for the private message schedule: aBIock startingAt:
timelnteger andThenEvery: aProbabilityDistribution forks a process that
repeatedly schedules actions. The algor i thm consists of i terations of two
messages,

self delayUntil: timelnteger.
self newProcessFor: aBiock

Repetit ion of the two messages delayUntil: and newProcessFor: depends
on a probability distribution function. The number of repetitions equals
the number of times the distribution can be sampled. The number that
is sampled represents the next time that the sequence of actions (aBIock)

461
Implementation of the Simulation Classes

should be invoked. Elements of the distribution are enumerated by
sending the distribution the message do:.

private

schedule: aBIock
startingAt: timelnteger
andThenEvery: aProbabilityDistribution

self newProcessFor:
["This is the first time to do the action."
self delayUntil: timelnteger.
" Do the action."
self newProcessFor: aBIock copy.
aProbabilityDistribution

do: [:nextTimeDelay I
" For each sample from the distribution,
delay the amount sampled,"
self delayFor: nextTimeDelay.
" then do the action"
self newProcessFor: aBIock copy]]

Simulation itself has a control framework similar to that of
SimulationObject. The response to startUp is to make the simulation the
currently active one and then to define the simulation objects and ar-
rival schedule. The inner loop of scheduled activity is given as the re-
sponse to the message proceed. Whenever the Simulation receives the
message proceed, it checks the reference count of processes (by sending
the message readyToContinue). If the reference count is not zero, then
there are still processes active for the current simulated time. So, the
system-wide processor, Processor, is asked to yield control and let these
processes proceed. If the reference count is zero, then the event queue is
checked. If it is not empty, the next event is removed from the event
queue, time is changed, and the delayed process is resumed.

simulation control

startUp
self activate.
self defineResources.
self defineArrivalSchedule

proceed
t eventProcess I
[self readyToContinue] whileFalse' [Processor yield].
eventQueue isEmpty

ifTrue: [tself finishUp]
ifFalse [eventProcess ~-- eventQueue removeFirst.

currentTime ~ eventProcess time.
eventProcess resume]

462
Event-Driven Simulations

finishUp
"We need to empty out the event queue"

eventQueue ~- SortedCollect ion new.
tfalse

enter: anObject
1'self

exit: anObject
1'self

private

readyToContinue
1'processCount = 0

In addition to these various modeler's languages and simulation control
messages, several accessing messages are provided in the protocol of
S i m u l a t i o n .

access ing

includesResourceFor: resourceName
t test 1
test ~- resources

detect: [:each I each name = resourceName]
ifNone: [nil].

1'test notNil

provideResourceFor: resourceName
1'resources detect: [:each I each name = resourceName]

time
tcurrentTime

The implementations of Simulation and SimulationObject illustrate the
use of messages fork to a BlockContext, yield to a ProcessorScheduler,
and signal and wait to a Semaphore.

Tracing the
Example
N o t h i n g A t A l l

We can now trace the execution of the first example of the simulation,
NothingAtAII, in which DoNothings only were scheduled. After sending
the message

Noth ingAtA I I n e w

the instance variables of the new simulation consist of

resou rces = Set ()
cu r ren tT ime = 0.0

p r o c e s s C o u n t = 0

e v e n t Q u e u e - S o r t e d C o l l e c t i o n ()

463
Implementat ion of the Simulat ion Classes

We then send this s imulat ion the message startUp, which invokes the
message scheduleArrivalOf: DoNothing accordingTo" (Uniform from" 1 to:
5). This is identical to. sending the simulat ion the message

schedule: [DoNothing new startUp]
startingAt: 0.0
andThenEvery: (Uniform from: 1 to: 5)

The response is to call on newProcessFor:.
Step 1. newProcessFor: increments the processCount (self

startProcess) and then creates a new Process tha t evaluates the follow-
ing block, which will be referred to as block A.

[self delayUntil: timelnteger.
self newProcessFor: block copy.
aProbabilityDistribution do:

[:nextTimeDelay I
self delayFor: nextTimeDelay.
self newProcessFor: block copy]

where the variable block is

[DoNothing new startUp]

which will be referred to as block B.
Step 2. When the process re turns to the second expression of the

method newProcessFor:, execution continues by evaluating block A. Its
first expression decrements the process count and suspends an activity
until t ime is 0.0 (i.e., create a DelayedEvent for the active simulation
scheduler to tell the DoNothing to startUp at t ime 0.0; put it on the
event queue).

resources = Set ()
currentTime - 0.0
processCount = 0
eventQueue = SortedCollection (a DelayedEvent 0.0)

Now we send the simulat ion the message proceed. The process count is
0 so readyToContinue re turns true; the event queue is not empty so the
first DelayedEvent is removed, t ime is set to 0.0, and the delayed pro-
cess is resumed (this was the scheduler block A). The next action incre-
ments the process count and evaluates block B. This lets a DoNothing
enter and do its task, which is nothing, so it leaves immediately. The
new processFor: message decrements the process count to 0, gets a
number from the probability distribution, delays for this number of

464
Event-Driven S imula t ions

t ime units, and schedules a new process for some t ime later. The se-
quence cont inues indefinitely, as long as the message proceed is re-sent
to the s imulat ion.

O t h e r tasks will en te r t h e event queue depending on the method as-
sociated wi th the message tasks in a subclass of SimulationObject. Thus
if Visitor is scheduled in NothingAtAII, then the expresson self holdFor:
someTime will en te r an event on the queue, in te rming led wi th events
t ha t schedule new arr ivals of Visitors and DoNothings.

Sta t i s t i c s ~ G a t h e r i n g
in E v e n t - D r i v e n
S i m u l a t i o n s

Duration Statistics

Throughput Histograms

Tallying Events

Event Monitoring :r, ,,£,~ J
, : f ',

| " I "

i ! : I •
; • .

, ~ ~,
• L a

~,zt ~ ~.: h . i _ L

| . . . I . : . I

466
Statistics Gather ing in Event-Driven Simulations

A framework for specifying event-driven simulations was presented in
the previous chapter. This f ramework did not include methods for gath-
ering statistics about a s imulat ion as it is running. Statistics might con-
sist of the amount of t ime each simulat ion object spends in the
simulat ion (and, therefore, how well the model supports carrying out
the kinds of tasks specified by the objects); information about the length
of the queues such as the maximum, min imum and average lengths and
amount of t ime spent in each queue; and information about the utiliza-
tion of the simulation's resources.

There are a number of ways to add statistics gather ing to class Simu-
lation or class SimulationObject. In this chapter, we provide four exam-
ples of statistics gathering: durat ion statistics, th roughput histograms,
event tallying, and event monitoring. Each of these examples involves
creating a subclass of Simulation or SimulationObject in order to provide
a dictionary in which data can be stored or a file into which data can
be written, and, in tha t subclass, modifying the appropriate methods in
order to store the appropriate data.

Duration
Statistics

For the first example of statistics gathering, we create a general sub-
class of Simulation tha t simply stores the t ime an object enters and exits
the simulation. The times are kept in a special record whose fields are
the t ime at which the object entered the simulation (entranceTime) and
the length of t ime the object spent in the simulat ion (duration). Records
are described as follows.

class name Simulat ionObjectRecord

superclass Object

instance variable names entranceTime

duration

instance methods

accessing

ent rance: cur ren tT ime
entranceTime ~ currentTime

exit: currentTi rne
duration ~ entranceTime - currentTime

e n t r a n c e
tentranceTime

exit
t entranceTime + duration

durat ion
tdurat ion

467
D u r a t i o n S t a t i s t i c s

printing

printOn: aStream
entranceTime printOn: aStream.

aStream tab.
duration printOn: aStream

A n e x a m p l e s u b c l a s s of Simulat ion w h i c h u s e s Simu la t ionOb jec tRecords
for g a t h e r i n g s ta t is t ics is Stat is t icsWithSimulat ion. I t is de f ined as fol-

lows.

class name StatisticsWith Simulation
superclass S im u lati on
instance variable names statistics
instance methods

initialization

initialize
super initialize.
statistics ~ Dictionary new

simulation scheduling

enter: anObject
statistics at: anObject

put: (SimulationObjectRecord new entrance currentTime)

exit: anObject
(statistics at: anObject) exit currentTime

statistics

printStatisticsOn: aStream
1 stat l
aStream cr.
aStream nextPutAll: ' Object ' .
aStream tab.
aStream nextPutAIl: 'Entrance T ime' .
aStream tab.
aStream nextPutAll: " Durat ion' .
aStream cr.
"Sort with respect to the time the object entered the simulation. Because
the keys as well as the values are needed, it is necessary to first obtain

the set of associations and then sort them."
stat ~ SortedCollection

sortBtock: [:i :j I i value entrance < = j value entrance].

statistics associationsDo: [:each I stat add: each].

468
Statistics Ga the r ing in Event-Driven Simulat ions

stat do:
[:anAssociation I

aStream cr.
anAssociation key printOn: aStream.
aStream tab.
anAssociation value printOn: aStream
"The value is a SimulationObjectRecord which prints the entrance
time and duration"]

Suppose we created NothingAtAII as a subclass of StatisticsWithSimulation.
In this example, NothingAtAI! schedules two s imula t ion objects: one that
does noth ing (a DoNothing), a r r i v ing according to a un i fo rm d is t r ibu t ion
from 3 to 5 uni ts of t ime s ta r t ing at 0; and one tha t looks a round for 5
units of s imulated t ime (a Visitor), a r r iv ing according to a uniform distri-
but ion from 5 to 10 units of t ime s ta r t ing at 1. Whenever one of these
objects enters the simulation, an en t ry is put in the statistics dictionary.
The key is the object itself; the equals (=) test is the default (= =),
so each object is a unique key. The value is an instance of
SimulationObjectRecord with ent rance data initialized. When the object
exits, the record associated with it is retr ieved and a message is sent to
it in order to set the exit data.

class name DoNothing
superclass SimulationObject
instance methods

no new methods

class name
superclass
instance methods

simulation control

Visitor
SimulationObject

tasks
self holdFor: 5

class name
superclass
instance methods

NothingAtAIt
StatisticsWithSimulation

initialization

def ineArr iva lSchedule
self scheduleArrivalOf: DoNothing

accordingTo: (Uniform from: 3 to: 5).
self scheduleArrivalOf: Visitor

accordingTo: (Uniform from: 5 to: 10)
startingAt: 1

469
Throughput Histograms

Whenever we halt the simulation, we can send the message
printStatisticsOn: aFile (where aFile is a kind of FileStream). The result

might look like:-

Object Entrance Time Duration
a DoNothing 0.0 0.0
a Visitor 1.0 5.0
a DoNothing 4.58728 0.0
a Visitor 6.71938 5.0
a DoNothing 9.3493 0.0
a DoNothing 13.9047 0.0
a Visitor 16.7068 5.0
a DoNothing 17.1963 0.0
a DoNothing 21.7292 0.0
a Visitor 23.2563 5.0
a DoNothing 25.6805 0.0
a DoNothing 29.3202 0.0
a Visitor 32.1147 5.0
a DoNothing 32.686 0.0
a DoNothing 36.698 0.0
a DoNothing 41.1135 0.0
a Visitor 41.1614 5.0
a DoNothing 44.3258 0.0
a Visitor 48.4145 5.0
a DoNothing 48.492 0.0
a DoNothing 51.7833 0.0
a Visitor 53.5166 5.0
a DoNothing 56.4262 0.0
a DoNothing 60.5357 0.0
a Visitor 63.4532 5.0
a DoNothing 64.8572 0.0
a DoNothing 68.7634 0.0
a Visitor 68.921 5.0
a DoNothing 72.4788 0.0
a DoNothing 75.8567 0.0

Throughput
Histograms

A common statistic .gathered in simulations is the throughput of ob-
jects, that is, how many objects pass through the simulation in some
amount of time; this is proportional to how much time each object
spends in the simulation. Gathering such statistics involves keeping
track of the number of objects that spend time within predetermined

470
Statistics Gather ing in Event-Driven Simulat ions

intervals of time. Report ing the results involves displaying the number
of objects, the m i n i m u m time, m a x i m u m time, and the number of ob-
jects whose t imes fall within each specified interval. Such statistics are
especially useful in simulations involving resources in order to deter-
mine whether or not there are sufficient resources to handle r eques t s - -
if objects have to wait a long t ime to get a resource, then they must
spend more t ime in the simulation.

In order to support the gather ing of th roughput statistics, we provide
class Histogram. Histograms main ta in a tally of values within
prespecified ranges. For example, we might tally the number of t imes
various values fall between 1 and 5, 5 and 10, 10 and 20, 20 and 25, 25
and 30, 30 and 35, 35 and 40, and 40 and 45. Tha t is, we divide the in-
terval 5 to 45 into bins of size 5 and keep a running count of the num-
ber of t imes a value is stored into each bin.

Class Histogram is created by specifying the lower bound, the upper
bound, and the bin size. To obtain a Histogram for the above example,
evaluate

Histogram from: 5 to: 45 by: 5

Besides data on the bins, a Histogram keeps t rack of minimum, maxi-
mum, and total values entered. An ent ry might not fit within the
bounds of the interval; an additional variable is used to store all such
entries (extraEntries). The bins are stored as elements of an array; the
a r ray size equals the number of bins (that is, upper bound - lower
bound / / bin size). The message store: aValue is used to put values in
the Histogram. The index of the a r ray e lement to be incremented is 1 +
(aValue - lower b o u n d / / b i n s size). Most of the methods shown support
pr int ing the collected information.

class name
superclass
instance variable names

class methods

Histogram
Object
tallyArray
IowerBound upperBound
step
minValue maxValue
totatValues
extraEntries

class initialization

from: IowerNum to: upperNum by: step
t self new newLower: IowerNum upper: upperNum by: step

471
T h r o u g h p u t H i s t o g r a m s

instance methods

accessing

contains: aValue
1lowerBound < = aValue and: [aValue < upperBound]

store: aValue
I index I
minVatue isNil

ifTrue: [minValue ~- maxValue ~ aValue]
ifFalse: [minValue ~ minValue min: aValue.

maxValue ~- maxValue max: aValue].
totalValues ~ totalValues --t- aValue.
(self contains: aValue)

ifTrue: [index ~- (aValue- IowerBound / / step) + 1.
tallyArray at: index put: (tallyArray at: index) -I- 1]

ifFalse: [extraEntries ~ extraEntries + 1]

printing

printStatisticsOn: aStream
I totalObjs p o s l
self firstHeader: aStream.
aStream cr; tab.
totalObjs ~- extraEntries.
"count the number of entries the throughput records know"
tallyArray do: [:each I totalObjs ~ totalObjs -.I-- each].
totalObjs printOn: aStream.
aStream tab.
minValue printOn: aStream.
aStream tab.
maxVatue printOn: aStream.
aStream tab.
(totalValues / totalObjs) asFIoat printOn: aStream.
aStream cr.
self secondHeader: aStream.
aStream cr.
pos ~ lowerBound.
tallyArray do: ~

[:entry I
pos printOn: aStream.
aStream nextPut: $ - .
(pos ~ pos 4- step)printOn: aStream.
aStream tab.
entry printOn: aStream.
aStream tab.
(entry / totalObjs) asFIoat printOn: aStream.

472
Stat is t ics Ga the r ing in Event -Dr iven Simula t ions

aStream tab.

aStream nextPut: $1 •

" print the X ' s"

entry rounded timesRepeat: [aStream nextPut: $X].

aStream cr]

f i rstHeader: aStream
aStream cr; tab.

aStream nextPutAIl: 'Number o f ' .

aStream tab.

aStream nextPutAIl: ' M in imum' .

aStream tab.

aStream nextPutAIl: ' Max imum ' .

aStream tab.

aStream nextPutAIl: ' Ave rage ' .

aStream cr; tab.

aStream nextPutAIl: ' O b j e c t s ' .

aStream tab.

aStream nextPutAIl: ' Va lue ' .

aStream tab.

aStream nextPutAIl: " V a l u e ' .

aStream tab.

aStream nextPutAIl: "Va lue '

secondHeader: aStream
aStream cr; tab.

aStream nextPutAll: "Number o f ' .

aStream cr.

aStream nextPutAIl: ' Ent ry ' .

aStream tab.

aStream nextPutAIl: " O b j e c t s ' .

aStream tab.

aStream nextPutAIl: ' F requency ' .

private

newLower: IowerNum upper: upperNum by: stepAmount
tal lyArray ~ Array new: (upperNum - towerNum / / stepAmount).

tal lyArray atAIlPut: 0.

IowerBound ~- IowerNum.

upperBound ~ upperNum.

step ~- stepAmount.

minValue ~ maxVatue ~ nil.

totalValues ~ 0.

extraEntries ~ 0

A s imula t ion of visitors to a m u s e u m serves as an example of the use of
a Histogram. Museum is l ike NothingAtAII in t ha t Visitors a r r ive and look
around. The Visitors t ake a vary ing a m o u n t of t ime to look around,

473
T h r o u g h p u t His tograms

depending on the i r in te res t in the m u s e u m artifacts. We assume tha t
this t ime is normal ly d is t r ibuted with a mean of 20 and a s t anda rd de-
viat ion of 5. Visitors come to the m u s e u m th roughou t the day, one every
5 to 10 uni ts of s imula ted time.

class name M useum
superclass Simulation
instance variable names statistics
instance methods

initialization

initialize
super initialize.
statistics ~- Histogram from: 5 to: 45 by: 5

defineArrivalSchedule
self scheduleArrivalOf: Visitor

accordingTo: (Uniform from: 5 to: 10)

scheduling

exit: aSimulationObject
super exit: aSimulationObject.
statistics store: currentTime - aSimulationObject entryTime

printStatisticsOn: aStream
statistics printStatisticsOn: aStream

In order for class Museum to update the statistics, Visitors mus t keep
t r ack of when they en te red the m u s e u m and be able to respond to an
inquiry as to the i r t ime of entry.

class name Visitor
superclass SimulationObject
instance variable names entryTime
instance methods

initialization

initialize
super initialize.
entryTime ,- ActiveSimulation time

accessing

entryTime
tentryTime

simulation control

tasks
self holdFor: (Normal mean: 20 deviation: 5) next

474
Statistics Ga ther ing in Event-Driven Simulat ions

To create and run the simulation, we evaluate

aSimulation ~ Museum new startUp.
[aSimulation time < 50] whileTrue: [aSimulation proceed]

When the Museum was created, a Histogram for statistics w a s created.
Each t ime a Visitor left the Museum, data was stored in the Histogram.
The data consists of the dura t ion of the visit.

After runn ing the s imulat ion unti l t ime 50, we ask the Museum for a
report.

aSimulation printStatisticsOn: (Disk file: 'museum.report')

The method associated with printStatisticsOn: sends the same message,
printStatisticsOn:, to the Histogram, which pr ints the following informa-
tion o n the file museum.report.

Number of Minimum Maximum Average
Objects Value Value Value
64 10.0202 31.2791 20.152

Number of
Entry Objects Frequency
5-10 0 0
10-15 14 0.21875
15-20 16 0.25
20-25 20 0.3125
25-30 13 0.203125
30-35 1 0.015625
35-40 0 0
40-45 0 0

XXXXXXXXXXXXXX
XXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXX
X

Tallying Events As another example of ta l lying the events in a simulation, we present a
commonly -used example of a s imulat ion of Traffic. In this s imulation,
we tal ly the numbe r of cars tha t enter an intersection, dis t inguishing
those tha t drive s t ra ight th rough the intersect ion from those tha t tu rn
left and those tha t t u rn right. By observation, we note tha t twice as
m a n y cars go s t ra ight as tu rn r ight or left, but twice as m a n y tu rn left
as right. A new car arr ives at the intersect ion according to a uniform
distr ibution every 0.5 to 2 units of t ime (self scheduleArrivalOf: Car
accordingTo: (Uniform from: 0.5 to: 2)). We will run the s imulat ion unti l
s imulated t ime exceeds 100.

475
T a l l y i n g E v e n t s

class name

superclass

instance variable names

instance methods

Traffic
Simulation
statistics

initialization

initialize
super initialize.
statistics ~- Dictionary new: 3.
statistics at: .#:straight put: 0.
statistics at: #r ight put: 0.
statistics at: #lef t put: 0

defineArrivalSchedule
self scheduleArrivalOf: Car accordingTo: (Uniform from: 0.5 to: 2).
self schedule: [self finishUp] at: 100

statistics

update: key
statistics at: key put: (statistics at: key) 4- 1

printStatisticsOn: aStream
aStream cr.
aStream nextPutAIt: ' Car Direction Tally'
statistics associationsDo:

[:assoc I
aStream cr.
assoc key printOn: aStream.
aStream tab.
assoc value printOn: aStream]

Note t ha t in the method associated w i t h def ineArr ivalSchedule, the ac-
t ion self f inishUp is s c h e d u l e d to o c c u r a t s i m u l a t e d t i m e 100. T h i s e v e n t

w i l l t e r m i n a t e t h e s i m u l a t i o n as d e s i r e d .

class name Car

superclass S im u I atio n Ob ject
instance methods

simulation control

tasks
" Sample, without replacement, the direction through the intersection that
the car will travel."
I sample I
sample ~- SampleSpace data:

#(left left right straight straight straight
straight straight straight)

ActiveSimulation update: sample next

476
Statistics Gather ing in Event-Driven Simulations

SampleSpace was a class we introduced in Chapter 21. Cars are sched-
uled to enter the simulation with the sole task of picking a direction to
tell the simulation. After running the simulation, we ask the Traffic
simulation to report the tallies by sending it the printStatisticsOn: mes-
sage. A possible outcome of evaluating

aSimulat ion ~ Traff ic new startUp.
[aSimulat ion proceed] whi leTrue.
aSimulat ion printStat ist icsOn: (Disk file: ' t raff ic.data')

is the following information writ ten on the file traffic.data.

Car Direction Tally
straight 57
right 8
left 15

Event
Monitoring

Another possible technique for gather ing data from a simulation is to
note the occurrence of each (major) event, including the entering and
exiting of simulation objects. This is accomplished by creating a sub-
class of SimulationObject tha t we call EventMonitor. In this example, a
class variable refers to a file onto which notations about their events
can be stored. Each message that represents an event to be monitored
must be overridden in the subclass to include the instructions for stor-
ing information on the file. The method in the superclass is still execut-
ed by distr ibuting the message to the pseudo-variable super.

Basically, the notations consist of the time and identification of the
receiver (a kind of SimulationObject), and an annotat ion such as ~en-
ters" or "requests" or "releases."

class name
superclass
class variable names
class methods

class initialization

file: aFile
DataFile ~ aFile

EventMonitor
S i m u I ati o n 0 b ject
DataFile

477
E v e n t M o n i t o r i n g

instance methods

scheduling

startUp
self timeStamp.
DataFile nextPutAIl: 'enters ".
super startUp

finishUp
super finishUp.
self timeStamp.
DataFile nextPutAIl: ' exits '

task language

holdFor: aTimeDelay
self timeStamp.
DataFile nextPutAIl: "holds for ' .
aTimeDelay printOn: DataFile.
super holdFor: aTimeDelay

acquire: amount ofResource: resourceName
I aStaticResource I
" Store fact that resource is being requested."
self timeStamp.
DataFite nextPutAIt: ' requests ' .
amount printOn: DataFile.
DataFile nextPutAIl: ' of ' , resourceName.

" Now try to get the resource."
aStaticResource ~- super acquire: amount

ofResource: resourceName.
" Returns here when resource is obtained; store the fact."
self timeStamp.
DataFile nextPutAIl: ' obtained ' .

amount printOn: DataFile.
DataFile nextPutAIl: 'o f ' , resourceName.
1' aStaticResource

acquire: amount
ofResource: resourceName
withPriority: priorityNumber

t aStaticResource I
"Store fact that resource is being requested"
self timeStamp.
DataFile nextPutAIl: ' requests ' .

amount printOn: DataFile.
DataFile nextPutAll: ' at priority ".
priorityNumber printOn: DataFile.
DataFile nextPutAIl: ' of ' , resourceName.

478
S t a t i s t i c s G a t h e r i n g in E v e n t - D r i v e n S i m u l a t i o n s

" Now try to get the resource. "

aStaticResource ~-

super acquire amount

ofResource: resourceName

withPriority: priorityNumber.

"Returns here when resource is obtained; store the fact."

self timeStamp.

DataFile nextPutAIl" "obtained ' .
amount printOn DataFite.

DataFile nextPutAIl ' of ' , resourceName.

t aStaticResource

produce: amount ofResource: resourceName
self timeStamp.

DataFile nextPutAIl 'p roduces '
amount printOn DataFile.

DataFile nextPutAIl' "of ", resourceName.

super produce amount ofResource resourceName

release: aStat icResource
self timeStamp.

DataFile nextPutAIl' ' releases '

aStaticResource amount printOn: DataFile.
DataFile nextPutAIl "of ", aStaticResource name.

super release: aStaticResource

acquireResource: resourceName
I anEvent I
" Store fact that resource is being requested"

self timeStamp.
DataFile nextPutAIl 'wants to serve for ' .

DataFile nextPutAIl resourceName.

" Now try to get the resource. "

anEvent ~ super acquireResource resourceName.

" Returns here when resource is obtained store the fact."

self timeStamp.
DataFile nextPutAtl ' can serve "

anEvent condition printOn DataFile.

tanEvent

produceResource: resourceName
self timeStamp.
DataFile nextPutAIl "wants to get service as "

DataFile nextPutAll" resourceName.

super produce amount ofResource resourceName

resume: anEvent
self timeStamp.

DataFile nextPutAIl" ' resumes ' .

anEvent condition printOn: DataFile.
super resume: anEvent

private

t imeStamp
DataFile cr.
ActiveSimulation time printOn: DataFile.
DataFile tab.
self printOn: DataFile.

479
Event Moni tor ing

We can moni tor the events of the NothingAtAII s imula t ion consisting of
a r r iva ls of Visitors and defaul t s imula t ions (DoNothings). Except for cre-
a t ing Visitor and DoNothing as subclassses of EventMonitor r a t h e r t h a n
of SimulationObject, the class definit ions are the same.

class name DoNothing
superclass EventMonitor
instance methods

no new methods

class name Visitor
superclass EventMonitor
instance methods

simulation control

tasks
self holdFor (Uniform from 4.0 to 10.0) next

NothingAtAII is redefined so t h a t the
EventMonitor.

defaul t s imula t ion is an

class name NothingAtAII
superclass Simulation
instance methods

initialization

defineArrivalSchedule
self scheduleArrivalOf: DoNothing

accordingTo: (Uniform from: I to: 5).
self scheduleArrivalOf: Visitor

accordingTo: (Uniform from: 4 to: 8)
startingAt: 3

After execut ing

480
Statistics Gather ing in Event-Driven Simulat ions

Visitor file: (Disk file: "NothingAtAIl.events').
"This informs DoNothing too"

aSimulation ~- NothingAtAII new startUp.
[aSimulation time < 25] whileTrue [aSimulation proceed]

the file 'NothingAtAIl.events' contains the fol lowing informat ion

0.0
0.0
3.0
3.0
4.32703
4.327O3
7.74896
7.74896
8.20233
8.20233
10.5885
11.8906
12.5153
12.5153
14.2642
14.2642
16.6951
16.6951
18.7776
19.8544
19.8544
20.5342
20.5342
23.464
23.464
24.9635

a DoNothing enters
a DoNothing exits
a Visitor enters
a Visitor holds for 7.5885
a DoNothing enters
a DoNothing exits
a Visitor enters
a Visitor holds for 4.14163
a DoNothing enters
a DoNothing exits
a Visitor exits
a Visitor exits
a DoNothing enters
a DoNothing exits
a Visitor enters
a Visitor holds for 4.51334
a DoNothing enters
a DoNothing exits
a Visitor exits
a Visitor enters
a Visitor holds for 5.10907
a DoNothing enters
a DoNothing exits
a DoNothing enters
a DoNothing exits
a Visitor exits

Distinctively labeling each arriving SimulationObject might improve the
ability to follow the sequence of events. The goal is to have a trace for
an execution of the NothingAtAII simulation look like the following.

0.0 DoNothing 1 enters
0.0 DoNothing 1 exits
3.0 Visitor 1 enters
3.0 Visitor 1 holds for 7.5885
4.32703 DoNothing 2 enters
4.32703 DoNothing 2 exits
7.74896 Visitor 2 enters

481
Event Moni tor ing

7.74896 Visitor 2 holds for 4.14163
8.20233 DoNothing 3 enters
8.20233 DoNothing 3 exits
10.5885 Visitor 1 exits
11.8906 Visitor 2 exits
12.5153 DoNothing 4 enters
12.5153 DoNothing 4 exits
14.2642 Visitor 3 enters
14.2642 Visitor 3 holds for 4.51334
16.6951 DoNothing 5 enters
16.6951 DoNothing 5 exits
18.7776 Visitor 3 exits
19.8544 Visitor 4 enters
19.8544 Visitor 4 holds for 5.10907
20.5342 DoNothing 6 enters
20.5342 DoNothing 6 exits
23.464 DoNothing 7 enters
23.464 DoNothing 7 exits
24.9635 Visitor 4 exits

Each subclass of EventMonitor mus t create its own sequence of labels.
EventMonitor sets up a label f ramework in which the subclass can im-
p lement a way of dis t inguishing its instances. EventMonitor itself pro-
vides a model tha t the subclasses can duplicate; in this way, a default
s imula t ion using instances of EventMonitor can be used to produce the
t race shown above. In addit ion to the scheduling, task language and pri-
vate, messages shown in the earl ier implementa t ion of EventMonitor,
the class description has the following messages.

class name EventMonitor
superclass SimulationObject
instance variable names label
class variable names DataFile

Counter
class methods

class initialization

fi le: aF i le
DataFite ,-. aFile.
Counter ~- 0

instance methods

initialization

in i t ia l ize
super initialize.
self setLabel

482
Stat is t ics Ga the r ing in Event -Dr iven S imula t ions

accessing

setLabel
Counter ~- Counter -.t- 1.
label ~- Counter printString

label
tlabel

printing

printOn: aStream
self class name printOn: aStream.
aStream space.
aStream nextPutAIt: self label

Visitor, as a subclass of EventMonitor, has to have an independent class
var iable to act as the counter of its instances. The class description of
Visitor is now

class name Visitor
superclass EventMonitor
class variable names MyCounter
class methods

class initialization

file: aFile
super file: aFile.
MyCounter ~- 0

instance methods

accessing

setLabel
MyCounter ~- MyCounter -I- 1.
label ~- MyCounter printString

simulation control

tasks
self hoidFor: (Uniform from: 4.0 to: 10.0) next

MyCounter is set to 0 when the ins tance is tom initialize; the me thod is
found in class EventMonitor . Pr in t ing retr ieves the label t ha t Visitor re-
defines wi th respect to MyCounter. We let DoNothing use the class vari-
able, Counter, of its superclass. Then the desired t race will be produced
using these definitions.

24.
The Use of Resources
in Event-Driven
Simulations

Implement ing Classes ResourceProvider
and StaticResource

Consumable Resources

N o n c o n s u m a b l e Resources
Example of a File System

Renewable Resources
Example of a Ferry Service

484
The Use of Resources in Event-Driven Simulations

In the previous chapters, we introduced a framework in which to speci-
fy event-driven simulations and to gather statistics about such simula-
tions. Without resources to contend for and use, the only real task tha t
an object can perform in a simulation is to hold (wait) for some speci-
fied amount of simulated time. Two kinds of resources are i l lustrated in
this chapter: fixed resources and fluctuating resources. These kinds of
resources were introduced in Chapter 22; the example in that chapter
of classes Simulation and SimulationObject defined a support for re-
sources coordination tha t will be fur ther described in this chapter.

A fixed resource can be consumable. The simulation with a consum-
able resource begins with a given quant i ty of some resource, say, je l ly
beans. As the simulation proceeds, objects acquire the resource, ulti-
mately using up all tha t were originally available. New objects needing
the resource either terminate without successfully completing their
tasks, or are indefinitely delayed waiting for a resource tha t will never
be provided. Alternatively, a fixed resource can be nonconsumable. The
simulation begins with a given quant i ty of some nonconsumable re-
source, say, glass jars. As the simulation proceeds, objects acquire the
resource. When an object no longer needs the resource, it is recycled.
Objects needing the resource either obtain it immediately or are
delayed until a recycled one becomes available.

A fluctuating resource models producer /consumer relationships. A
simulation can begin with a given quant i ty of some resource, say cars.
As the simulation proceeds, objects acquire the resource; when they no
longer need the resource, they recycle it (such as in the used car mar-
ket). New resources can be added (produced), increasing the supply of
the resource. Objects needing the resource either obtain it immediately
or must wait until a recycled one or a new one becomes available. A
fluctuating resource for which additional quantit ies can be produced is
called a renewable resource. The example of the car is an example of a
resource tha t is both renewable and nonconsumable.

Implement ing
ResourceProvider
and
StaticResource

The modeler 's language for specifying resources in a Simulation includes
expressions of the form

self produce: amount of: resourceName

The response to this message is either to create an instance of class Re-
source with amount as its available quant i ty of resources, or to retrieve
an existing Resource and increment its resources by amount. Instances
of ResourceProvider are created by sending ResourceProvider the mes-
sage named: aString or named: aString with: amount.

When a SimulationObject requests a resource (acquire: amount
of Resource: resourceName), the current ly active simulation

485
I m p l e m e n t i n g ResourceProvider and StaticResource

(ActiveSimulation) is asked to provide the corresponding resource
(provideResourceFor:). P r e s u m a b l y the resource exists in the s imula t ion
as a resul t of the ini t ia l izat ion of the Simulation; the Simulation refers to
a Set of ins tances of ResourceProvider and can e n u m e r a t e this Set in
order to find one whose n a m e is resourceName.

Once the SimulationObject has access to a ResourceProvider it can

ask how m a n y resources it has available,
ask its name,
ask to acquire some a m o u n t (and wi th a pa r t i cu la r access priority),
ask to produce some amount .

When a SimulationObject asks to acquire some resources, this request is
added to a queue of such requests, ordered wi th respect to pr ior i ty and,
wi th in ident ical pr ior i ty levels, on a first-come first-served basis. Each
t ime a reques t is made or more resources are produced, the
ResourceProvider checks to see if one or more of its pending requests
can be satisfied.

Each request is s tored as an ins tance of class DelayedEvent.
DelayedEvent was described in Chap te r 22. Each DelayedEvent refers to
a condition. In the case of delayed tasks, the condition is the t ime at
which the tasks should be resumed; in the case of resource requests , the
condition is an ins tance of Stat icResource which is a r epresen ta t ion of
the requested resource and desired amount . Wheneve r a request is
made, the request is stored on the wai t ing queue, pending, and then an
a t t e m p t is made to provide the resource.

Class ResourceProvider is a subclass of class Resource. C las s
ResourceCoordinator, to be presented in the next chapter , is also a sub-
class of Resource. Resource represen ts the resource in t e rms of its
n a m e and the queue of requests t h a t mus t be satisfied. A class var iable
refers to the cu r ren t ly active s imula t ion (ActiveSimulation) for access to
the t ime and process reference counting.

class name
superclass
instance variable names

class variable names
class methods

Resource
Object
pending
resourceName
ActiveSimulation

class initialization

activeSimulation: existingSimulation
ActiveSimulation ~- existingSimulation

instance creation

named: resourceName
1"self new setName: resourceName

486
T h e U s e of R e s o u r c e s i n E v e n t - D r i v e n S i m u l a t i o n s

instance methods

accessing

addRequest: aDelayedEvent
pending add: aDelayedEvent.
self provideResources.
ActiveSimulation stopProcess.
aDelayedEvent pause.
ActiveSimulation startProcess

name
tresourceName

private

provideResources
tself

setName: aString
resourceName ~- aString.
pending ~- SortedCollection new

Notice that the mechanism used for storing requests on the
SortedCotlection, pending, is similar to that used for storing delayed
events on the eventQueue of a Simulation. That is, a process that was
running is suspended so that the reference count for processes in the
Simulation is decremented. At the point that the process continues
again, the reference count is incremented. A Semaphore is used in or-
der to synchronize pausing and resuming the simulation process.

Class ResourceProvider represents resources as simple quantifiable
items that have no tasks to do and are, therefore, not created as actual
SimulationObjects. Rather, a numerical count is kept of the number of
the items. When a SimulationObject successfully acquires this kind of
resource, the SimulationObject is given access to an instance of
StaticResource. The last expression of the method in ResourceProvider
associated with acquire:withPriority: creates and returns a StaticResource.
Prior to evaluating this expression, a DelayedEvent is removed from the
collection of pending requests and the amount requested decremented
from the amount currently available.

class name ResourceProvider
superclass Reso u rce

instance variable names amountAvailable
class methods

instance creation

named: resourceName with: amount
t self new setName: resourceName with: amount

487
I m p l e m e n t i n g ResourceProvider a n d Stat icResource

named: resourceName
1'self new setName: resourceName with: 0

instance methods

accessing

amountAvai lable
t amountAvailable

task language

acquire: amountNeeded withPriority: pr ior i tyNumber
I anEvent I
anEvent ~- DelayedEvent onCondition: (StaticResource

for: amountNeeded
of: self
with Priority: priorityNumber).

self addRequest: anEvent.
t anEvent condition

produce: amount
amountAvailable ~ amountAvaitable -i- amount.
self provideResources

private

provideResources
I anEvent I
[pending isEmpty not

and: [pending first condition amount < = amountAvailable]]

whileTrue:
[anEvent ~ pending removeFirst.
amountAvailable ,- amountAvailable - a n E v e n t condition amount.
anEvent resume]

setName: resourceName with: amount
super setName: aString.
amountAvailable ,-- amount

A Stat icResource represents a Simulat ionObject w i t h no tasks to do oth-
er t h a n to hold quan t i t i es of i tems for some o ther Simulat ionObject.

class name

superclass

instance variable names

class methods

instance creation

StaticResource
SimulationObject
amount
resource
priority

for: amount of: aResource withPriority: aNumber
t self new setAmount: amount resource: aResource withPriority: aNumber

488
The Use of Resources in E v e n t - D r i v e n S i m u l a t i o n s

instance methods

accessing

a m o u n t
tamount

n a m e

t resource name
p r i o r i t y

1' priority

comparing

< = a S t a t i c R e s o u r c e

tpriority < = aStaticResource priority

task language

c o n s u m e : a N u m b e r

amount ~ (amount- aNumber)max: 0
r e l e a s e

resource produce: amount.
amount ~ 0

private

s e t A m o u n t : a N u m b e r

r e s o u r c e : a R e s o u r c e

w i t h P r i o r i t y : p r i o r i t y N u m b e r

amount ~ aNumber.
resource ~ aResource.
priority ~- priorityNumber

Since a SimulationObject can hold on to a r e f e r ence to a StaticResource,
the messages consume: and release are par t of the task language of a
SimutationObject. When a SimulationObject acquires a resource, i t is pre-
sumably consuming that resource, un t i l that resource is returned to the
simulat ion. The amount of resource held in the StaticResource is re-
turned to the s imulat ion by sending the StaticResource the message re-
lease. (Typical ly, however, the SimulationObject sends itself the message
release: aStaticResource so that a un i fo rm style of sending messages to
self is m a i n t a i n e d in t he m e t h o d assoc ia ted With the object 's tasks. This
u n i f o r m i t y s impl i f ies the des ign of a m e t h o d for t r a c in g or m o n i t o r i n g
the even t s of a s imula t ion . Because all t a s k messages a re sen t as mes-
sages to self a n d t h e r e f o r e to a SimulationObject , it is possible to c r ea t e
a subclass of Simulat ionObject (EventMonitor was the e x a m p l e we pres-

489
Consumable Resources

ented in Chapter 23) in which all task messages are intercepted in or-
der to store a notation tha t the task is being done.

Using acquire:ofResource: and release:, the resource is t reated as a
nonconsumable resource. A mixture is possible. The SimulationObject
can acquire some amount of a resource, say 10, consume 5, and re tu rn
5. The message consume: is used to remove resources from the simula-
tion. Thus the example would be accomplished by sending a
StaticResource, acquired with i0 resources, the message consume: 5,
and then the message release (or sending release: aStaticResource to
self).

Consum able
Resources

A simple jelly bean example i l lustrates the idea of a consumable re-
source. R e c a l l the simulation example, NothingAtAil, introduced in
Chapter 22. Suppose tha t whenever a Visitor enters the s imulat ion and
looks around, it has a task to acquire 2 jelly beans, take 2 units of t ime
eat ing the beans, and leave. The simulat ion is initialized with one re-
source consisting of 15 jelly beans. The definition of this version of
NothingAtAIi is

class name NothingAtAII
superclass Simulation
instance methods

initialization

d e f i n e R e s o u r c e s
self produce: I5 of: ' jelly beans'

d e f i n e A r r i v a l S c h e d u l e
self scheduleArrivalOf: Visitor accordingTo: (Uniform from: 1 to: 3)

The Visitor's tasks are expressed in two messages to self found in its
method for tasks.

tasks
self acquire: 2 of Resource: ' jelly beans'.
self holdFor: 2

An example execution of this simulation, in which only exits and
entr ies are monitored, is

0.0 Visitor 1 enters
2.0 Visitor 1 exits
2.03671 Visitor 2 enters

i

490
The Use of Resources in Event -Dr iven Simula t ions

4.03671 Visitor 2 exits
4.34579 Visitor 3 enters
5.92712 Visitor 4 enters
6.34579 Visitor 3 exits
7.92712 Visitor 4 exits
8.46271 Visitor 5 enters
10.4627 Visitor 5 exits
10.5804 Visitor 6 enters
12.5804 Visitor 6 exits
12.7189 Visitor 7 enters
14.7189 Visitor 7 exits
15.0638 Visitor 8 enters
17.6466 Visitor 9 enters
19.8276 Visitor 10 enters

last visitor to get jelly beans
endless waiting from now on

After the seventh Visitor enters , the re are no more jel ly beans, so all the
subsequent Visitors are endlessly delayed wai t ing for resources t h a t will
never be made available. Al ternat ive ly , the Visitor could check to see if
any jel ly beans r e m a i n avai lable (inquireFor:ofResource:). If none re-
main, the Visitor can leave r a t h e r t han get t ing caught in the queue.
This corresponds to the following method for tasks.

tasks
(self inquireFor: 2 of Resource: ' jelly beans')

ifTrue: [self acquire: 2 of Resource: ' jelly beans'
self holdFor: 2]

One addi t ional r e f inement migh t be to inform the s imula t ion t ha t all
resources are used up and t ha t it is t ime to ~close the store." This is
done by sending the Visitor the message stopSimulation. If we were to
send this message the first t ime a Visitor enters who can not acquire
enough jelly beans, then it is possible t ha t a Visitor who has en te red the
store will get locked in. We have to make cer ta in t ha t a Visitor who ac-
quires the last jel ly beans, closes the store upon exit; in this way, a lat-
er Visitor will not lock this last successful one into the store. This
corresponds to the following method for tasks.

tasks

I flag t
(self inquireFor: 2 of Resource: ' jel ly beans')

ifTrue: [self acquire: 2 of Resource: ' jelly beans' .
flag ~- self inquireFor: 2 of Resource: ' jelly beans'
"Are there still 2 left so that the next Visitor can be served?"
self holdFor: 2.
flag ifFalse: [self stopSimulation]]

Here is ano the r example execution of the s imula t ion NothingAtAII, in
which only exits and entr ies are monitored.

491
C o n s u m a b l e R e s o u r c e s

0.0 Visitor 1 enters
2.0 Visitor 1 exits
2.26004 Visitor 2 enters
4.26004 Visitor 2 exits
4.83762 Visitor 3 enters
6.34491 Visitor 4 enters
6.83762 Visitor 3 exits
8.34491 Visitor 4 exits
8.51764 Visitor 5 enters
9.9006 Visitor 6 enters
10.5176 Visitor 5 exits
11.9006 Visitor 6 exits
12.6973 Visitor 7 enters
14.0023 Visitor 8 enters
14.0023 Visitor 8 exits
14.6973 Visitor 7 exits

last successful requestor
nothing available for this Visitor

last successful requestor closes shop on
exit

The EventMonitor class described in the previous chapter also moni tors
the use of resources. So, a t race of NothingAtAll would include the t imes
a t which jel ly beans were requested and obtained.

0.0 Visitor 1 enters
0.0 Visitor 1 requests 2 of jelly beans
0.0 Visitor 1 obtained 2 of jelly beans
0.0 Visitor 1 holds for 2
1.40527 Visitor 2 enters
1.40527 Visitor 2 requests 2 of jelly beans
1.40527 Visitor 2 obtained 2 of jelly beans
1.40527 Visitor 2 holds for 2
2.0 Visitor 1 exits
2.56522 Visitor 3 enters
2.56522 Visitor 3 requests 2 of jelly beans
2.56522 Visitor 3 obtained 2 of jelly beans
2.56522 Visitor 3 holds for 2
3.40527 Visitor 2 exits
4.56522 Visitor 3 exits
5.3884 Visitor 4 enters
5.3884 Visitor 4 requests 2 of jelly beans
5.3884 Visitor 4 obtained 2 of jelly beans
5.3884 Visitor 4 holds for 2
6.69794 Visitor 5 enters
6.69794 Visitor 5 requests 2 of jelly beans
6.69794 Visitor 5 obtained 2 of jelly beans
6.69794 Visitor 5 holds for 2

492
The Use of Resources in Event -Dr iven Simula t ions

7.3884
7.72174
7.72174
7.72174
7.72174
8.69794
9.72174
10.153
10.153
10.153
10.153
11.875
11.875
12.153

Visitor 4 exits
Visitor 6 enters
Visitor 6 requests 2 of jelly beans
Visitor 6 obtained 2 of jelly beans
Visitor 6 holds for 2
Visitor 5 exits
Visitor 6 exits
Visitor 7 enters
Visitor 7 requests 2 of jelly beans
Visitor 7 obtained 2 of jelly beans
Visitor 7 holds for 2
Visitor 8 enters
Visitor 8 exits

At t ime 11.875, all but one jelly bean has been consumed. At t ime
12.153 Visitor n u m b e r 7 stops the s imulat ion.

N o n c o n s u m a b l e
Resources

A car ren ta l s imula t ion serves to i l lus t ra te the use of a nonconsumable
resource. The example s imula t ion is a shor t - t e rm car ren ta l agency
tha t opens up with 15 cars and 3 t rucks available. Renters o f cars ar-
rive with a m e a n ra te of one every 30 minutes , and those requi r ing
t rucks one every 120 minutes . The first car r en t e r arr ives when the
shop opens, and the first t ruck r en te r ar r ives 10 minu tes later. Classes
CarRenter and TruckRenter r epresen t these s imula t ion objects.

RentalAgency is specified as a subclass of Simulation. It implement s
the two ini t ial izat ion messages, defineArrivalSchedule and

defineResources.

class name
superclass
instance methods

initialization

def ineArr ivalSchedule
self scheduleArrivalOf: CarRenter

accordingTo: (Exponential mean: 30).
self scheduleArrivalOf: TruckRenter

accordingTo: (Exponential mean: 120)
startingAt; 10

def ineResources
self produce: 15 of: " car'.
self produce: 3 of: 'truck"

RentalAgency
Simulation

493
Nonconsumable Resources

The tasks for CarRenter and TruckRenter are similar. First acquire a car
or truck; if none are available, wait. Once the vehicle is obtained, use it.
A CarRenter keeps the car between 4 and 8 hours (uniformly distribut-
ed); a TruckRenter keeps the t ruck between 1 and 4 hours (uniformly
distributed). These usage times are indicated by having the renter hold
for the appropriate amount of t ime before re turning the vehicle (i.e., re-
leasing the resource).

In order to monitor the two kinds of SimulationObject, and to have la-
bels that separately identify e a c h kind, the implementat ions of
CarRenter and TruckRenter duplicate the labeling technique demon-
strated earlier for class Visitor.

class name CarRenter

superclass EventMoni tor

class variable names CarOounter

Hour

class methods

class init ial ization

file: f i le
super file: file.

CarCounter ~ O.

Hour ~ 60

instance methods

accessing

setLabe l
CarCounter ~- CarCounter 4-- 1.

label ~- CarCounter printStr ing

simulat ion control

tasks

I car l
car ~ self acquire ' 1 of Resource: ' c a r ' .

self ho ldFo r (Uniform from' 4 ,Hou r t o 8 ,Hour) next.

self release: car

class name TruckRenter

superclass EventMoni tor

class variable names TruckCounter

Hour

class methods

class init ial ization

file: f i le
super file: file,

TruckCounter ~ 0

Hour ~ 60

494
The Use of Resources in Event-Driven Simulat ions

accessing

setLabe l
TruckCounter ~- TruckCounter + 1.
label ~- TruckCounter printString

instance methods

simulation control

tasks
I truck I
truck ,-- self acquire: 1 ofResource: ' truck'.
self holdFor: (Uniform from: Hour to: 4,Hour) next.
self release: truck

The renta l agency s imula t ion is run by invoking

aFile ~ Disk file: 'rental.events'.
CarRenter file: aFile.
TruckRenter file: aFile.
anAgency ,- RentalAgency new startUp.
[anAgency time < 600] whileTrue: [anAgency proceed]

The trace on file rental.events after 10 hours (600 minutes) shows the
following sequence of events.

0
0
0
0
10
10
10
10
26.2079
26.2079
26.2079
26.2079
27.4147
27.4147
27.4147
27.4147
51.5614
51.5614
51.5614
51.5614
78.0957

CarRenter 1 enters
CarRenter 1 requests 1 of Car
CarRenter 1 obtained 1 of Car
CarRenter 1 holds for 460.426
TruckRenter 1 enters
TruckRenter 1 requests 1 of Truck
TruckRenter 1 obtained 1 of Truck
TruckRenter 1 holds for 87.2159
CarRenter 2 enters
CarRenter 2 requests 1 of Car
CarRenter 2 obtained 1 of Car
CarRenter 2 holds for 318.966
CarRenter 3 enters
CarRenter 3 requests 1 of Car
CarRenter 3 obtained 1 of Car
CarRenter 3 holds for 244.867
CarRenter 4 enters
CarRenter 4 requests 1 of Car
CarRenter 4 obtained 1 of Car
CarRenter 4 holds for 276.647
CarRenter 5 enters

78.0957
78.0957
78.0957
93.121
93.121
93.121
93.121
97.2159
97.2159
99.0265
99.0265
99.0265
99.0265
106.649
106.649
106.649
106.649
107.175
107.175
107.175
107.175
121.138
121.138
121.138
121.138
127.018
127.018
127.018
127.018
145.513
145.513
145.513
145.513
166.214
166.214
166.214
166.214
172.253
172.253
172.253
172.253
191.438
191.438
191.438
191.438

495
N o n c o n s u m a b l e R e s o u r c e s

CarRenter 5 requests 1 Of Car
CarRenter 5 obtained 1 of Car
CarRenter 5 holds for 333.212
CarRenter 6 enters
CarRenter 6 requests 1 of Car
CarRenter 6 obtained 1 of Car
CarRenter 6 holds for 359.718
TruckRenter 1 releases 1 of Truck
TruckRenter 1 exits
CarRenter 7 enters
CarRenter 7 requests 1 of Car
CarRenter 7 obtained 1 of Car
CarRenter 7 holds for 417.572
CarRenter 8 enters
CarRenter 8 requests 1 of Car
CarRenter 8 obtained 1 of Car
CarRenter 8 holds for 294.43
CarRenter 9 enters
CarRenter 9 requests 1 of Car
CarRenter 9 obtained 1 of Car
CarRenter 9 holds for 314.198
CarRenter 10 enters
CarRenter 10 requests 1 of Car
CarRenter 10 obtained 1 of Car
CarRenter 10 holds for 467.032
TruckRenter 2 enters
TruckRenter 2 requests 1 of Truck
TruckRenter 2 obtained 1 of Truck
TruckRenter 2 holds for 74.5047
CarRenter 11 enters
CarRenter 11 requests 1 of Car
CarRenter 11 obtained 1 of Car
CarRenter 11 holds for 243.776
CarRenter 12 enters
CarRenter 12 requests 1 of Car
CarRenter 12 obtained 1 of Car
CarRenter 12 holds for 429.247
CarRenter 13 enters
CarRenter 13 requests 1 of Car
CarRenter 13 obtained 1 of Car
CarRenter 13 holds for 370.909
TruckRenter 3 enters
TruckRenter 3 requests 1 of Truck
TruckRenter 3 obtained 1 of Truck
TruckRenter 3 holds for 225.127

496
T h e U s e of R e s o u r c e s i n E v e n t - D r i v e n S i m u l a t i o n s

201.523
201.523
220.102
220.102
220.102
220.102
252.055
252.055
252.055
252.055
269.964
269.964
272.282
272.282
272.282
272.282
292.375
292.375
328.2O8
328.208
328.208
328.208
345.174
345.174
350.53
350.53
350.53
350.53
354.126
354.126
358.269
358.269
358.269
358.269
367.88
367.88
367.88
367.88
389.289
389.289
389.289
389.289
401.079
401.079
402.224

TruckRenter 2 releases 1 of Truck
TruckRenter 2 exits
CarRenter 14 enters
CarRenter 14 requests 1 of Car
CarRenter 14 obtained 1 of Car
CarRenter 14 holds for 334.684
CarRenter 15 enters
CarRenter 15 requests 1 of Car
CarRenter 15 obtained 1 of Car
CarRenter 15 holds for 408.358
CarRenter 16 enters
CarRenter 16 requests 1 of Car
CarRenter 3 releases 1 of Car
CarRenter 3 exits
CarRenter 16 obtained 1 of Car
CarRenter 16 holds for 281.349
CarRenter 17 enters
CarRenter 17 requests 1 of Car
CarRenter 4 releases 1 of Car
CarRenter 4 exits
CarRenter 17 obtained 1 of Car
CarRenter 17 holds for 270.062
CarRenter 2 releases 1 of Car
CarRenter 2 exits
CarRenter 18 enters
CarRenter 18 requests 1 of Car
CarRenter 18 obtained 1 of Car
CarRenter 18 holds for 297.154
CarRenter 19 enters
CarRenter 19 requests 1 of Car
TruckRenter 4 enters
TruckRenter 4 requests 1 of Truck
TruckRenter 4 obtained 1 of Truck
TruckRenter 4 holds for 173.648
TruckRenter 5 enters
TruckRenter 5 requests 1 of Truck
TruckRenter 5 obtained 1 of Truck
TruckRenter 5 holds for 175.972
CarRenter 11 releases 1 of Car
CarRenter 11 exits
CarRenter 19 obtained 1 of Car
CarRenter 19 holds for 379.017
CarRenter 8 releases 1 of Car
CarRenter 8 exits
CarRenter 20 enters

497
N o n c o n s u m a b l e R e s o u r c e s

402.224
402.224
402.224
410.431
410.431
411.307
411.307
416.566
416.566
416.566
416.566
421.373
421.373
422.802
422.802
422.802
422.802
452.839
452.839
46O.426
460.426
512.263
512.263
512.263
512.263
516.598
516.598
531.917
531.917
535.642
535.642
543.162
543.162
543.852
543.852
553.631
553.631
554.786
554.786
574.617
574.617
574.617
574.617
588.171
588.171

CarRenter 20 requests 1 of Car
CarRenter 20 obtained 1 of Car
CarRenter 20 holds for 341.188
TruckRenter 6 enters
TruckRenter 6 requests 1 of Truck
CarRenter 5 releases 1 of Car
CarRenter 5 exits
TruckRenter 3 releases 1 of Truck
TruckRenter 3 exits
TruckRenter 6 obtained 1 of Truck
TruckRenter 6 holds for 119.076
CarRenter 9 releases 1 of Car
CarRenter 9 exits
CarRenter 21 enters
CarRenter 21 requests 1 of Car
CarRenter 21 obtained 1 of Car
CarRenter 21 holds for 241.915
CarRenter 6 releases 1 of Car
CarRenter 6 exits
CarRenter 1 releases 1 of Car
CarRenter 1 exits
CarRenter 22 enters
CarRenter 22 requests 1 of Car
CarRenter 22 obtained 1 of Car
CarRenter 22 holds for 277.035
CarRenter 7 releases 1 of Car
CarRenter 7 exits
TruckRenter 4 releases 1 of Truck
TruckRenter 4 exits
TruckRenter 6 releases 1 of Truck
TruckRenter 6 exits
CarRenter 13 releases 1 of Car
CarRenter 13 exits
TruckRenter 5 releases 1 of Truck
TruckRenter 5 exits
CarRenter 16 releases 1 of Car
CarRenter 16 exits
CarRenter 14 releases 1 of Car
CarRenter 14 exits
CarRenter 23 enters
CarRenter 23 requests 1 of Car
CarRenter 23 obtained 1 of Car
CarRenter 23 holds for 436.783
CarRenter 10 releases 1 of Car
CarRenter 10 exits

498
The Use of Resources in Event-Driven Simulations

591.51 CarRenter 24 enters
591.51 CarRenter 24 requests 1 of Car
591.51 CarRenter 24 obtained 1 of Car
591.51 CarRenter 24 holds for 430.067
595.461 CarRenter 12 releases 1 of Car
595.461 CarRenter 12 exits
598.27 CarRenter 17 releases 1 of Car
598.27 CarRenter 17 exits
599.876 CarRenter 25 enters
599.876 CarRenter 25 requests 1 of Car
599.876 CarRenter 25 obtained 1 of Car
599.876 CarRenter 25 holds for 472.042
642.188 TruckRenter 7 enters
642.188 TruckRenter 7 requests 1 of Truck
642.188 TruckRenter 7 obtained 1 of Truck
642.188 TruckRenter 7 holds for 190.586

A snapshot of the simulation shows that , at t ime 642.188, the following
events are queued in anAgency and the following resources are avail-
able.

Resource (car) no pending requests; 6 available
Resource (truck) no pending requests; 2 available
Event Queue

CarRenter for creation and start up
TruckRenter for creation and start up
9 CarRenters holding
1 TruckRenter holding

Note tha t a nonconsumable resource differs from the description of a
consumable resource only in the SimulationObject's sending the message
release: in order to recycle acquired resources.

Example o f a File
System

The car renta l is an open simulation in which objects (car renters and
t ruck renters) arrive, do thei r tasks, and leave again. A closed simula-
tion is one in which the same objects remain in the simulat ion for the
durat ion of the simulation run. The next example is of a file system; it
was adopted from a book by Graham Birtwistle tha t presents a Simula-
based system named Demos [A System for Discrete Event Modelling on
Simula, Graham M. Birtwistle, MacMillan, London, England, 1979].
The purpose of Demos is to support teaching about the kinds of event-
driven simulations discussed in this chapter. The book is a thorough in-
troduction to this class of simulations and to their implementa t ion in
Simula. There are many useful examples, each of which could be
implemented in the context of the Small talk-80 simulation f ramework

499
N o n c o n s u m a b] e Resources

provided in this and in the previous chapter. We use variat ions of a
Demos file system, a car ferry, and an information system example for
i l lustrat ion in this chapter so that , after seeing how we approach the
Small talk-80 implementat ions, the interested reader can t ry out more
of Birtwistle 's examples.

In the example file system, ~writer" processes update a file, and
~'reader" processes read it. Any number of readers may access the file
at the same time, but wri ters must have sole access to the file. More-
over, wri ters have priori ty over readers. The individual sequencing of
events is shown in the programs below. The example i l lustrates the use
of priori ty queueing for resources as well as another approach to col-
lecting statistics. In this case, the statistics gathered is a tally of the
number of reads and the number of writes.

Suppose there are three system file readers and two file writers, and
only three (nonconsumable) file resources. The initialization method
specifies a statistics dictionary with two zero-valued entries, reads and
writes. The simulat ion is to run for 25 simulated units of time; it sched-
ules itself to receive the message finishUp at t ime 25.

Note in the implementa t ion of def ineAr r iva iSchedu le tha t the
Fi leSys ternReaders and F i leSys temWr i te rs are g i ven a t t r i b u t e s so t h a t

they can be identified in the event traces.

class name
superclass
instance variable names
instance methods

initialize-release

i n i t i a l i z e
super initialize.
statistics ~- Dictionary new: 2.

statistics at: ..#:reads put: 0.

statistics at: ¢/:writes put: 0

d e f i n e A r r i v a l S c h e d u l e

self

FiteSystem
Simulation
statistics

self

scheduleArrivalOf: (FileSystemReader new label ' f i rs t ')

at: 0.0.
scheduleArrivalOf: (FileSystemWriter new label ' f i rst ')

at: 0.0.
self scheduleArrivalOf: (FileSystemReader new label:

at: 0.0.
self scheduleArrivalOf: (FileSystemWriter new label

at: 1.0.
self scheduteArrivalOf: (FiteSystemReader new label:

at: 2.0.
self schedule: [self finishUp] at: 25

d e f i n e R e s o u r c e s
self produce: 3 of: 'F i le"

• second ')

second ')

• third •)

500
The Use of Resources in Event-Driven Simulations

statistics

statisticsAt: aKey changeBy: anlnteger
statistics at: aKey

put: (statistics at: aKey) --t- anlnteger
printStatisticsOn: aStream

statistics printOn: aStream

The Fi leSys temReader repeatedly carries out a sequence of five tasks:
acquire one File resource, hold for an amount of t ime appropriate to
reading the file, release the resource, update the tally of read statistics,
and then hold for an amount of t ime appropriate to using the informa-
tion read from the file. FileSystemWriters acquire three file resources,
hold in order to write on the file, release the resources, and update the
write statistics. The priori ty of a FileSystemReader is set to 1; the prior-
ity of a FileSystemWriter is 2. In this way, the nonconsumable
ResourceProvider" File" will give a t tent ion to FileSystemWriters before
FileSystemReaders.

In order to obtain a t race of the events, the two simulation objects
are created as subclasses of EventMonitor. Since each has a single label
tha t will serve to identify it, only the response to printOn: aStream is
reimplemented.

class name FileSystemReader
superclass EventMonitor
instance methods

accessing

label: aString
label ,- aString

simulation control

tasks
I file I
"The repeated sequence of tasks is as fol lows"
[true]

whileTrue:
[file ~- self acquire: 1 ofResource: "Fi le ' withPriority: 1.
self holdFor: 2.0.
self release: file.
ActiveSimulation statisticsAt: #reads changeBy: 1.
self holdFor: 5.0]

printing

printOn: aStream
aStream nextPutAIl: label.
aStream space.
self class name printOn: aStream

501
Nonconsumable Resources

class name
superclass
instance methods

accessing

label: aString
label ~- aString

simulation control

FiteSystemWriter
EventMonitor

tasks
I file I
"The repeated sequence of tasks is as follows"
[true]

whileTrue:
[" Gather information "
self holdFor: 5.0.
file ~- self acquire: 3 ofResource: 'File" withPriority: 2.
self holdFor: 3.0.
self release: file.
ActiveSimulation statisticsAt: #writes changeBy: 1]

printing

printOn: aStream
aStream nextPutAtl label.
aStream space.
self class name printOn" aStream

The five s imulat ion objects carry out their tasks, until the simulation
stops itself at t ime 25. In specifying the tasks of a SimulationObject, the
modeler has available all the control s t ructures of the Small talk-80 lan-
guage. A trace of the events shows how FileSystemReaders are held up
because of t h e higher priori ty and larger resource needs of the
FileSystemWriters. For example, the first and second FileSystemReaders
are held up at t ime 7.0; the third at t ime 9.0; and all until t ime 11.0,
the t ime at which no FileSystemWriter requires resources.

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

first FileSystemReader enters
first FileSystemReader requests 1 of File
first FileSystemReader obtained 1 of File
first FileSystemReader holds for 2.0
first FileSystemWriter enters
first FileSystemWriter holds for 5.0
second FileSystemReader enters
second FileSystemReader requests 1 of File
second FileSystemReader. obtained 1 of File
second FileSystemReader holds for 2.0

502
T h e U s e of R e s o u r c e s i n E v e n t - D r i v e n S i m u l a t i o n s

1.0
1.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
4.0
4.0
5.0
5.0
5.0
6.0
7.0
7.0
8.0
8.0
8.0
8.0
9.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
13.0
13.0
13.0
13.0
13.0
13.0
13.0
13.0
13.0
16.0
16.0
16.0
16.0
16.0

second FileSystemWriter enters
second FileSystemWriter holds for 5.0
second FileSystemReader releases 1 of File
second FileSystemReader holds for 5.0
first FileSystemReader releases 1 of File
first FileSystemReader holds for 5.0
third FileSystemReader enters
third FileSystemReader requests 1 of File
third FileSystemReader obtained 1 of File
third FileSystemReader holds for 2.0
third FileSystemReader releases 1 of File
third FileSystemReader holds for 5.0
first FiteSystemWriter requests 3 of File
first FileSystemWriter obtained 3 of File
first FileSystemWriter holds for 3.0
second FileSystemWriter requests 3 of File
first FileSystemReader requests 1 of File
second FileSystemReader requests 1 of File
first FileSystemWriter releases 3 of File
first FileSystemWriter holds for 5.0
second FileSystemWriter obtained 3 of File
second FileSystemWriter holds for 3.0
third FileSystemReader requests 1 of File
second FileSystemWriter releases 3 of File
second FileSystemWriter holds for 5.0
first FileSystemReader obtained 1 of File
first FileSystemReader holds for 2.0
second FileSystemReader obtained 1 of File
second FileSystemReader holds for 2.0
third FileSystemReader obtained 1 of File
third FileSystemReader holds for 2.0
third FileSystemReader releases 1 of File
third FileSystemReader holds for 5.0
second FileSystemReader releases 1 of File
second FileSystemReader holds for 5.0
first FileSystemReader releases 1 of File
first FileSystemReader holds for 5.0
first FileSystemWriter requests 3 of File
first FileSystemWriter obtained 3 of File
first FileSystemWriter holds for 3.0
first FileSystemWriter releases 3 of File
first FileSystemWriter holds for 5.0
second FileSystemWriter requests 3 of File
second FileSystemWriter obtained 3 of File
second FileSystemWriter holds for 3.0

503
Renewable Resources

18.0
18.0
18.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
24.0
24.0
24.0
24.0
24.0

first FileSystemReader requests 1 of File
second FileSystemReader requests 1 of File
third FileSystemReader requests 1 of File
second FileSystemWriter releases 3 of File
second FileSystemWriter holds for 5.0
first FileSystemReader obtained 1 of File
first FileSystemReader holds for 2.0
second FileSystemReader obtained 1 of File
second FileSystemReader holds for 2.0
third FileSystemReader obtained 1 of File
third FileSystemReader holds for 2.0
third FileSystemReader releases 1 of File
third FileSystemReader holds for 5.0
second FileSystemReader releases 1 of File
second FileSystemReader holds for 5.0
first FileSystemReader releases 1 of File
first FileSystemReader holds for 5.0
first FileSystemWriter requests 3 of File
first FiteSystemWriter obtained 3 of File
first FileSystemWriter holds for 3.0
first FileSystemWriter releases 3 of File
first FileSystemWriter holds for 5.0
second FileSystemWriter requests 3 of File
second FileSystemWriter obtained 3 of File
second FiteSystemWriter holds for 3.0

At this point, the current time is 25 and the statistics gathered is print-
ed by sending the FileSystem the message printStatisticsOn: aStream
where the Stream is, for example, a FileStream. The result is

reads 9
writes 5

Note that if the FileSystemReaders were not held up by lack of re-
sources and lower priority, there would have been 12 reads during this
timeframe.

R e n e w a b l e
Resources

In simulations involving producer/consumer synchronizations, simula-
tion objects acting as producers make resources available to other ob-
jects acting as consumers. The simUlation starts out with some fixed
amount of resource, perhaps 0. Producer objects increase the available

504
The Use of Resources in Event -Dr iven Simula t ions

resources, consumer objects decrease them. This type of resource differs
from a nonconsumable resource in t h a t there is no l imit to the amoun t s
of resource t ha t can be made available. Such resources are called r e n e w -

a b l e resources. Note t ha t the l imit in the nonconsumable case is
enforced indirect ly by the Simulat ionObject 's r e tu rn ing resources
th rough the Stat icResource.

A s imula t ion of a car dealership provides a s imple example of a re-
newable resource. Suppose a cus tomer comes in to buy a car every two
to six days. The car dealer s ta r t s out wi th 12 cars on the lot; when
these are sold, orders mus t wai t unt i l new cars are delivered. Ten to
twelve new cars are shipped to the dealer every 90 days. We assume
t h a t all the cars are the same and tha t every cus tomer is will ing to
wai t so t h a t no sales are lost if a car is not immedia t e ly available. The
car dealer is in teres ted in giving good service, but he is also unwil l ing
to keep too large an inventory. By examin ing the average length of the
queue of wai t ing customers, the dealer can modify his qua r t e r ly order
of cars in order to min imize cus tomer dissatisfaction and still m a i n t a i n
a smal l inventory of new cars.

Stat is t ics on the a m o u n t of t ime tha t car buyers have to wait to get a
car are k e p t by the s imulat ion. The method used is the same as the
method demons t r a t ed in Chap te r 23 for collecting informat ion on Visi-
tors to a Museum; a Histogram is m a i n t a i n e d by the CarDealer. Each
CarBuyer r e m e m b e r s its en t ry t ime; when it exists the s imulat ion, the
length of t ime the CarBuyer spent in the s imula t ion is logged in the His-
togram. This length of t ime is equivalent to the a m o u n t of t ime the
CarBuyer had to wai t to get a car because the CarBuyer 's only task is to
acquire a car.

class name CarDealer
superclass Simulation
instance variable names statistics
instance methods

initialize-release

init ial ize
super initialize.
statistics ~ Histogram from: 1 to: 365 by: 7

def ineArr iva lSchedu le
self scheduleArrivalOf: CarBuyer

accordingTo: (Uniform from: 2 to: 6)
startingAt: 1.0.

self scheduleArrivalOf: (CarDelivery new) at: 90.0
"only one delivery is scheduled; the instance of CarDelivery will
reschedule itself as the last of its tasks"

def in~Resources
self produce: 12 of: ' Car'

505
Renewable Resources

accessing

exit: aSimulationObject
super exit: aSimulationObject.
" A CarDelivery could be exiting--ignore i t "

(aSimulationObject isKindOf: CarBuyer)
ifTrue: [statistics store: currentTime - aSimutationObject entryTime]

printStatistics: aStream
statistics printStatisticsOn: aStream

All the CarBuyer wants to do is get a car; the CarBuyer only waits if a
car is not immediately available.

class name CarBuyer
superclass S im u tatio nObject
ins tance var iable names entryTime
instance methods

accessing

entryTime
tentryTime

simulation control

initialize
super initialize.
entryTime ,- ActiveSimulation time

tasks
self acquire: 1 of Resource: 'Car"

The CarDelivery produces 10 to 12 new cars. After producing the new
cars, the CarDelivery object schedules itself to return in 90 days. An al-
ternative implementation would have the CarDelivery hold for 90 days
and then repeat its task.

class name CarDelivery
superclass SimulationObject

ins tance methods

simulation control

tasks
"Get access to the Car resource and produce 10, 11, or 12 new cars"
self produce: ((SampleSpace data: #:(10 11 12)) next)

ofResource: "Car ' .
" Schedule a new delivery in 90 days'"
ActiveSimulation scheduleArrivalOf: self

at: ActiveSimulation time 4- 90

The statistics give us the number of buyers, minimum, maximum, and
average wait times for the buyers, and the number of buyers within

506
The Use of Resources in Event-Driven Simula t ions

each wai t - t ime interval . No one wai ted longer t han 204 days. 91 car
buyers came to the dealer; 12 did not have to wait because the dealer
had cars already. Of the 43 t ha t wai ted and were served, they wai ted on
the average of 78.5 days.

At t ime 360.0 the stat is t ics indicates the following information.

Number of Minimum Maximum Average
Objects Value Value Value
55 0.0 197.168 78.5476

Number of
Entry Objects Frequency
1-8 2 0.0363636
8-15 3 0.0545454
15-22 2 0.0363636
22-29 1 0.0181818
29-36 2 0.0363636
36-43 1 0.0181818
43-50 0 0.0
50-57 1 0.0181818
57-64 2 0.0363636
64-71 1 0.0181818
71-78 2 0.0363636
78-85 2 0.0363636
85-92 2 0.0363636
92-99 0 0.0
99-106 0 0.0
106-113 1 0.0181818
113-120 3 0.0545454
120-127 2 0.0363636
127-134 2 0.0363636
134-141 2 0.0363636
141-148 1 0.0181818
148-155 0 0.0
155-162 1 0.0181818
162-169 2 0.0363636
169-176 2 0.0363636
176-183 1 0.0181818
183-190 2 0.0363636
190-197 2 0.0363636
197-204 1 0.0181818
204-211 0 0.0

XX
XXX
XX
X
XX
X

X
XX
X
XX
XX
XX

X
XXX
XX
XX
XX
X

X
XX
XX
X
XX
XX
X

Pending Requests 36 buyers waiting for a car

507
Renewable Resources

From the above information, we can est imate tha t the number of cars
delivered could safely be increased, even doubled, to meet the consumer
demand.

Example of a
Ferry Service

This next example is like one in t h e Birtwistle book. The example is of
a ferry shut t l ing between an island and the mainland, carrying cars
back and forth. The ferry s tar ts service at 7:00 a.m. (420 minutes into
the day) and stops at 10:45 p.m. (1365 minutes into the day) once it has
reached one of its docking locations. The ferry has a capacity of only six
cars.

The ferry's task is to load no more than six of the wait ing cars and
then to cross over the waterway. The crossing takes about eight min-
utes with a s tandard deviation of 0.5 minutes. The activity of crossing
from one side to the other continues until the t ime is 1365 minutes. The
FerrySimutation described next simulates one day's ferry service. Note in
the definition of Ferry the use of the Small talk-80 whileFalse: control
s t ruc ture to repeti t ively send the Ferry from one side to another; also
note the use of messages to split up the task description into parts load,
holdFor: (cross over), unload, and changeSide.

class name Ferry
superclass SimulationObject

instance variable names carsOn Board
currentSide

instance methods

simulation control

ini t ial ize
super initialize.

carsOnBoard ~- 0.

currentSide ~- " Mainland" ::-,

tasks
' " Initialize the count of loaded cars and then keep loading until at most 6

are on board. Stop loading if no more cars are waiting at the dock."

[ActiveSimulation time > 1365.0] whileFalse:

[carsOnBoard ~- 0.

self load.
self holdFor: (Normal mean: 8 deviation: 0.5) next.

self unload.
self changeSide]

load
" " It takes 0.5 minutes to load each car. Only try to acquire a resource, a

car from this side's dock, if it is there. The conditional for the repetition

checks remaining resources and only continues if a car is waiting."

508
The Use of Resources in Event-Driven Simulat ions

[carsOnBoard < 6
and: [self inquireFor: 1 of: currentSide]]

whileTrue:

[self acquire: 1 ofResource: currentSide.
self holdFor: 0.5.
carsOnBoard ~- carsOnBoard + 1]

changeSide
currentSide ~ currentSide= ' Mainland'

ifTrue: [' Is land ']
ifFalse: [' Mainland ']

unload
"It takes 0.5 minutes to unload each car."
self holdFor: carsOnBoard,0.5.

We will need two SimulationObjects in order to s imulate the cars arriv-
ing at the dock of the Main land or at the Island, tha t is, to produce a
car at these locations.

class name IslandArrival
superclass SimulationObject
instance methods

simulation control

tasks
self produce 1 of Resource: ' I s land '

class name MainlandArrival
superclass SimulationObject
instance methods

simulation control

tasks
self produce: 1 ofResource: " Mainland"

The ferry s imula t ion has two kinds of Resources, one for the ma in land
and one for the island, in which to queue the ar r iv ing cars. When these
resources are first created, i.e., the day begins, there are three cars al-
ready wai t ing at the ma in l and dock and no cars wai t ing at the island
dock. The ar r ival schedule says tha t cars arr ive wi th a mean ra te of
0.15 every minute.

class name FerrySimulation
superclass Simulation

509
Renewable Resources

instance methods

initialization

def ineArr iva iSchedule
self scheduleArrivalOf: MainlandArrival

accordingTo: (Exponential parameter: 0.15)
startingAt: 420.0.

self scheduleArrivalOf: IslandArrivat
accordingTo: (Exponential parameter: 0.15)
startingAt: 420.0.

self scheduleArrivalOf: Ferry new at: 420.0

def ineResources
self produce: 3 of: "Main land '
self produce: 0 of: " Is land'

There is some data tha t the s imulat ion should collect while it is accu-
mulat ing. First, the Ferry should count the total n u m b e r of tr ips it
takes, the total cars it carries, and the numbe r of tr ips it takes car ry ing
no cars. This data is obtained by adding three ins tance variables (trips,
totalCars, and emptyTr ips) in the definition of class Ferry and modifying
three methods.

class name
superclass
instance variable names

instance methods

init ial ize
super initialize.
carsOnBoard ~ 0.
currentSide ~ ' Mainland'
trips ~-- 0.
totalCars ,-- 0.
emptyTrips ~ 0

load

Ferry
SimulationObject
emptyTrips
carsOnBoard

currentSide
trips
totalCars
emptyTrips

" Keep a running tally of the cars carried"
[carsOnBoard < 6

and: [self inquireFor: 1 ofResource: currentSide]]
whileTrue:

[self acquire: 1 ofResource: currentSide.
self holdFor: 0.5.

carsOnBoard ~ carsOnBoard + 1.
totalCars ~ totalCars -i-- 1]

510
The Use of Resources in Event-Driven Simulations

tasks

"Check for an empty trip and keep a tally of trips"
[ActiveSimulation time > 1365.0] whileFalse:

[carsOnBoard ~ 0.
self load.
carsOn Board = 0 ifTrue: [emptyTrips ~- emptyTrips + 1].
self holdFor: (Normal mean: 8 deviation: 0.5) next.
self unload.
self changeSide.
trips ,- trips + 1]

In addition, we would like to know the maximum size of the number of
Mainland and Island arrivals, tha t is, the maximum queue waiting for
the Ferry. The FerrySimulation can determine this information by add-
ing two instance variables, maxMainland and maxlsland; each time the
message produce: amount of: resourceName is sent to the simulation
and a resource amount is increased, the corresponding variable can be
reset to the maximum of its current value and that of the resource.

The trace we provide shows the beginning and the ending sequence
of events. The arrival of cars at the Island and the Mainland is listed
separately from the repetitive tasks of the Ferry.

420.000 IslandArrival 1
420.000 MainlandArrival 1
425.290 MainlandArrivai 2
429.380 MainlandArrival 3
430.830 IslandArrival 2
431.302 IslandArrival 3
434.209 IslandArrival 4
438.267 IslandArrival 5
440.864 IslandArrival 6
441.193 MainlandArrival 4
448.044 IslandArrival 7
448.827 IslandArrival 8
453.811 IslandArrival 9
458.804 MainlandArrival 5
467.860 IslandArrival 10
470.800 IslandArrival 11
473.957 MainlandArrival 6
475.508 IslandArrival 12

This continues until ...

1300.87
1301.11
1301.19

IslandArrival 169
MainlandArrival 124
IslandArrival 170

511
R e n e w a b l e R e s o u r c e s

1306.75
1309.30
1315.24
1319.65
1321.80
1322.39
1328.45
1328.99
1329.77
1331.63
1335.43
1338.93
1342.46
1348.11
1358.63
1359.10
1360.79

IslandArrival 171
IslandArrival 172
MainlandArrival 125
MainlandArrival 126
MainlandArrival 127
MainlandArrival 128
IslandArrival 173
IslandArrival 174
MainlandArrival 129
IslandArrival 175
MainlandArrival 130
IslandArrival 176
MainlandArrival 131
IslandArrival 177
MainlandArrival 132
IslandArrival 178
MainlandArrival 133

T h e Ferry s t a r t s a t t h e M a i n l a n d w h e r e t h e r e w e r e t h r e e c a r s w a i t i n g ;

no c a r s a r e a t t h e I s l a n d . I m m e d i a t e l y a c a r a r r i v e s a t e a c h p lace .

420,0

420.0
420.5
421.0
421.5

422.0

430.564

432.564
433.064
433.564

434.064

442.617

Ferry 1 enters
load at Mainland: t he re a re now 4 cars wai t ing at

Ma in l and and 1 car wai t ing at Is land

Ferry 1 obtained 1 of Mainland, holds for 0.5
Ferry 1 obtained 1 of Mainland, holds for 0.5
Ferry 1 obtained 1 of Mainland, holds for 0.5
Ferry 1 obtained 1 of Mainland, holds for 0.5

cross over

Ferry 1 holds for 8.56369
unload 4 cars at Island: t he re are now 2 cars wai t ing

a t Ma in land a n d l car wai t ing at Is land

Ferry 1 holds for 2.0
load at Island: t he r e a re now 2 cars at Ma in land and

3 cars a t Is land

Ferry 1 obtained 1 of Island, holds for 0.5
Ferry 1 obtained 1 of Island, holds for 0.5
Ferry 1 obtained 1 of Island, holds for 0.5

cross over

Ferry 1 holds for 8.55344
unload 3 cars at Mainland: there are now 3 cars wait-
ing at Main land and 3 cars wai t ing at I s land

Ferry 1 holds for 1.5
load at Mainland: t he re is now 3 cars wai t ing at

Ma in land and 0 cars wai t ing at Is land

512
T h e U s e of R e s o u r c e s in E v e n t - D r i v e n S i m u l a t i o n s

444.117
444.617
445.117

445.617

454.598

456.098
456.598
457.098
457.598
458.098
458.598

459.098

467.062

470.062

1299.52
1300.02

1300.52

1307.76

1308.76

1309.26

1317.54
1318.04
1318.54
1319.04

Ferry 1 obtained 1 of Mainland, holds for 0.5
Ferry 1 obtained 1 of Mainland, holds for 0.5
Ferry 1 obtained 1 of Mainland, holds for 0.5

Ferry

Ferry

Ferry
Ferry
Ferry
Ferry
Ferry
Ferry

Ferry

Ferry

Ferry

Ferry
Ferry

Ferry

Ferry

Ferry

Ferry

Ferry
Ferry
Ferry
Ferry

cross over

1 holds for 8.98081
unload 3 cars a t Island: t he re a re now 0 cars wai t ing

a t Ma in land and 6 cars wai t ing a t Is land

1 holds for 1.5
load a t Island: t he re a re now 0 cars wai t ing at Main-

land and 6 Cars wai t ing at Is land

1 obtained 1 of Island, holds for 0.5
1 obtained 1 of Island, holds for 0.5
1 obtained 1 of Island, holds for 0.5
1 obtained 1 of Island, holds for 0.5
1 obtained 1 of Island, holds for 0.5
1 obtained 1 of Island, holds for 0.5
cross o v e r .

1 holds for 7.96448
unload 6 cars at Mainland: t he re is now 1 car wai t ing

at Ma in l and and 0 cars wai t ing at I s land

1 holds for 3.0
load at Mainland: t he re is now 1 car wai t ing at Main-

land and 1 car wai t ing at I s land

1 obtained 1 of Mainland, holds for 0.5
cont inues unt i l

load at I s land

1 obtained 1 of Island, holds for 0.5
1 obtained 1 of Island, holds for 0.5
cross over

1 holds for 7.23914
unload 2 cars a t Ma in land

1 holds for 1.0
load at Mainland: t he re is now 1 car wai t ing at Main-

land and 3 cars wai t ing at Is land

1 obtained 1 of Mainland, holds for 0.5
cross over

1 holds for 7.78433
load at Island: t he re are now 2 cars wai t ing at

Main land and 4 cars wai t ing at Is land

1 obtained 1 of Island, holds for 0.5
1 obtained 1 of Island, holds for 0.5
1 obtained 1 of Island, holds for 0.5
1 obtained 1 of Island, holds for 0.5
cross over

513
R e n e w a b l e R e s o u r c e s

1319.54 Ferry

1328.05 Ferry

1330.05 Ferry
1330.55 Ferry
1331.05 Ferry
1331.55 Ferry
1332.05 Ferry

1332.55 Ferry

1340.72 Ferry

1343.22 Ferry
1343.72 Ferry
1344.22 Ferry
1344.72 Ferry

1345.22 Ferry

1352.98 Ferry

1354.98 Ferry
1355.48 Ferry

1355.98 Ferry

1364.52 Ferry

1365.52 Ferry

1 holds for 8.51123
unload 4 cars at Mainland: there are now 3 cars wait-

ing at Mainland and 0 cars waiting at Island

1 holds for 2.0
load at Mainland: there are now 5 cars waiting at
Mainland and 2 cars waiting at Island

1 obtained 1 of Mainland, holds for 0.5
1 obtained 1 of Mainland, holds for 0.5
1 obtained 1 of Mainland, holds for 0.5
1 obtained 1 of Mainland, holds for 0.5
1 obtained 1 of Mainland, holds for 0.5
cross over

1 holds for 8.17247
unload 5 cars at Island: there is now 1 car wait ing at

Mainland and 4 cars waiting at Is land
1 holds for 2.5
load at Island: there are now 2 cars wait ing at Main-

land and 4 cars wait ing at Island

1 obtained 1 of Island, holds for 0.5
1 obtained 1 of Island, holds for 0.5
1 obtained 1 of Island, holds for 0.5
1 obtained 1 of Island, holds for 0.5
cross over
1 holds for 7.75318
unload at Mainland: there are 2 cars waiting at Main-

land and 1 car waiting at Island
1 holds for 2.0
load at Mainland: there are 2 cars waiting at Main-

land and 1 car waiting at Island
1 obtained 1 of Mainland, holds for 0,5
1 obtained 1 of Mainland, holds for 0.5
cross over
1 holds for 8.54321
unload 2 cars at Island: there are 2 cars waiting at
Mainland and 2 cars waiting at Island

1 holds for 1.0
quitt ing t ime
1 exits

T h e d a t a co l lec ted shows t h a t t h e Ferry took 79 t r ips , c a r r y i n g a t o t a l of
310 ca r s (an a v e r a g e of 3.9 ca r s p e r tr ip). N o n e of t h e t r i p s was done
w i t h a n e m p t y load. T h e M a i n l a n d w a i t i n g l ine h a d a m a x i m u m of 7

ca r s w h i l e t h e I s l a n d h a d a m a x i m u m of 18. A t t h e t i m e t h a t t h e Ferry
closed, two ca r s w e r e lef t a t e a c h loca t ion .

i~
• .." . . ; ~ . ~ :.

.~'~,~i:.'.':. ;
, • i

• " : ~ . 4.'."
, '..,:,:.."..., ~.

. " . " • " . - ' • i ' : .
. . . - . . - : . - ; " . 1 .

• . . . ; . , :." , ' .

.:" ,,'c~ ~ i , " , ~ , . : ; Z '"' ~ ,"
~..':. •

: t. ~ : .~ ~)

~ ..'" ~..,
| o :

l :

; t
: 1 0 .~
| ! •
| I

9

25
Coordinated Resources
for Event-Driven
Simulations

The Implementa t ion oi Class
ResourceCoordinator

Example: A Car Wash Simulat ion

Example: A Fer ry Service for a Special Truck

Example: A Bank

Example: An Informat ion System

516
Coordinated Resources for Event-Driven Simulations

The three kinds of simulation objects, consumable, nonconsumable, and
renewable, coordinate access to quantif iable static resources. Coordina-
tion is also needed in order to synchronize the tasks of two or more sim-
ulation objects. For example, a car washer only carries out its tasks
when a vehicle appears in the car wash; a bank teller gives service to a
customer when the customer appears in the bank.

The mechanism for providing synchronization of tasks among two or
more SimulationObjects is supported by class ResourceCoordinator. Class
ResourceCoordinator is a concrete subclass of class Resource; class Re-
source was defined in Chapter 24. The purpose of this chapter is to de-
scribe the implementat ion of ResourceCoordinator and to give several
examples using this synchronization technique.

The
Implementat ion
of Class
Resource-
Coordinator

A ResourceCoordinator represents a SimulationObject whose tasks must
be synchronized with the tasks of another SimulationObject. One of the
objects is considered the resource or the "customer"; the other object
acquires this resource in order to give it service and can, therefore, be
thought of as a "server" or clerk. At any given time, customers may be
waiting for a server or servers may be waiting for customers, or no one
may be waiting. Only one queue has to be maintained; a variable of a
ResourceCoordinator keeps track of w h e t h e r that queue contains cus'
tomers, servers, or is empty. The variable pending, inherited from the
superclass Resource, refers to the queue; the variable wholsWaiting re-
fers to the status of the queue.

Three inquiries can be made of a ResourceCoordinator, are there cus-
tomers waiting? (customersWaiting), are there servers waiting?
(serversWaiting), and how many are waiting? (queueLength). The mes-
sage acquire comes from a SimulationObject acting as a server who
wants to acquire a customer to serve. If a customer is waiting, then the
SimulationObject can give it service (giveService); otherwise, the
SimulationObject is added to the queue which is set to be a queue of
servers waiting. The message producedBy: aCustomer comes from a
SimulationObject acting as a cus tomer who wants to be served. If a serv-
er is waiting, then the SimulationObject can get service (getServiceFor:
aCustomerRequest); otherwise, the SimulationObject is added to the
queue which is set to be a queue of customers waiting.

In all cases, the queue consists of instances of DelayedEvent. If the
queue consists of customers, then the DelayedEvent condition is the
SimulationObject waiting to get service. If the queue consists of servers,
then the Delayed Event condition is nil until a customer is acquired, at
which point the condition is set to be the customer request (itself a

517
The Implemen ta t ion of Class ResourceCoord inator

Delayed Event tha t was stored when the customer request was first
made). When the Delayed Event is resumed, the condition is r e tu rned to
the requestor; in this way, a server gains access to a cus tomer request.
Once the synchronized tasks are completed, the server c a n resume the
customer 's activities by resuming the request.

class name ResourceCoordinator
superclass mes o u rc e
instance variable names wholsWaiting
instance methods

accessing

customersWaiting
1'wholsWaiting = = ~customer

serversWaiting
twholsWaiting = = ,.#::server

queueLength
1' pending size

task language

acquire
t anEvent I
self customersWaiting ifTrue: [tself giveService].
anEvent ,- DelayedEvent new.
wholsWaiting ~ #server.
self addRequest: anEvent.
"At this point, the condition of anEvent has been set to the customer re-
quest. "
t'anEvent condition

producedBy: aCustomer
I anEvent i
anEvent ~ DelayedEvent onCondition: aCustomer.
self serversWaiting ifTrue: [tself getServiceFor: anEvent].
wholsWaiting ~ #customer.
self addRequest: anEvent

private

getServiceFor: aCustomerRequest
I aServerRequest 1
aServerRequest ~- pending removeFirst.
pending isEmpty ifTrue: [wholsWaiting ,-- #none].
aServerRequest condition: aCustomerRequest.
aServerRequest resume.
ActiveSimulation stopProcess.
aCustomerRequest pause.
ActiveSimulation startProcess

518
C o o r d i n a t e d R e s o u r c e s fo r E v e n t - D r i v e n S i m u l a t i o n s

giveService
I aCustomerRequest I
aCustomerRequest ~- pending removeFirst.
pending isEmpty ifTrue: [wholsWaiting ~- ,:/./::none].
l'aCustomerRequest

setName: aString
super setName: aString.
whotsWaiting ,- -#none

Notice t h a t when a server gives service to a customer , the cus tomer re-
quest is suspended (pause) in which case the s imula t ion process refer-
ence count mus t be dec remented unt i l the service task is resumed.

Example:
A Car Wash
Simulation

The example of a CarWash s imula t ion consists of cars t h a t a r r ive and
ask to be washed or washed and waxed. Washers are avai lable to do the
washing and waxing; when the re are no cars to service, the Washers
are idle. The definit ion of the s imula t ion CarWash follows. There is one
resource coordinator for the var ious car customers. Cars a r r ive for
washing about one every 20 minutes ; cars ar r ive for wash ing and wax-
ing about one every 30 minutes . The Washer ar r ives when the CarWash
first s ta r t s and stays as long as the s imula t ion proceeds.

class name CarWash
superclass S im u lation

instance methods

initialization

defineArrivalSchedule
self scheduleArrivalOf: Wash

accordingTo: (Exponential mean: 20).
self scheduleArrivalOf: WashAndWax

accordingTo: (Exponential mean: 30).
self scheduleArrivalOf: Washer new at: 0.0

defineResources
self coordinate: "CarCustomer"

Each kind of car cus tomer can repor t the service it requires. The Wash-
er tasks depend on the kind of service each car cus tomer wants. F i rs t a
cus tomer is obtained. Then it is given service (wash, wax, or both) and
then the cus tomer ' s own activit ies are continued.

class name Washer
superclass Simulat ionObject

519
Example: A Car Wash Simula t ion

instance methods

simulation control

tasks
I carRequest I
[true] whileTrue:

[carRequest ~ self acquireResource "CarCustomer'.
(carRequest condition wants ' wash')

ifTrue [self holdFor: (Uniform from: 12.0 to: 26.0) next].
(carRequest condition wants" 'wax")

ifTrue' [self holdFor: (Uniform from: 8.0 to' 12.0) next].
self resume carRequest]

The vehicles Wash and WashAndWax are defined next. Each contains
an a t t r ibu te which defines the kinds of service they require. The tasks
of these vehicles are s imply to ask for service and, after get t ing the ser-
vice, to leave.

class name Wash
superclass SimulationObject
instance variable names service
instance methods

accessing

wants: aServ ice
1'service includes: aService

simulation control

ini t ial ize
super initialize.
service ~ # (' w a s h ')

tasks
self produceResource ' CarCustomer'

class name WashAndWax
superclass Wash
instance methods

simulation control

ini t ial ize
super initialize.
service ~ .# ('wash" ' w a x ')

WashAndWax is defined as a subclass of Wash since the only difference
between the two is set t ing the service at t r ibutes . The following t r a c e
was produced by making Wash a subclass of EventMonitor.

0 Wash I enters
0 Wash I wants to get service as CarCustomer

520
C o o r d i n a t e d R e s o u r c e s for E v e n t - D r i v e n S i m u l a t i o n s

0
0
0
0
0
0
7.95236
7.95236
8.42388
8.42388
12.9404
12.9404
14.2509
14.2509
14.2509
14.2509
14.2509
26.6023
26.6023
26.8851
26.8851
29.5632
29.5632
32.1979
32.1979
38.7616
38.7616
39.753
43.5843
43.5843
48.9683
48.9683
48.9683
48.9683
48.9683
51.8478
51.8478
63.244
68.9328
68.9328
70.6705
70.6705
75.0157
75.0157
75.0157
75.0157

WashAndWax 1 enters
WashAndWax 1 wants to get service as CarCustomer
Washer 1 enters
Washer 1 wants to serve for CarCustomer
Washer 1 can serve Wash 1
Washer 1 holds for 14.2509
WashAndWax 2 enters
WashAndWax 2 wants to get service as CarCustomer
Wash 2 enters
Wash 2 wants to get service as CarCustomer
Wash 3 enters
Wash 3 wants to get service as CarCustomer
Washer 1 resumes Wash 1
Washer 1 wants to serve for CarCustomer
Washer 1 can serve WashAndWax 1
Washer 1 holds for 25.502 (wash part)

Wash 1 exits
WashAndWax 3 enters
WashAndWax 3 wants to get service as CarCustomer
Wash 4 enters
Wash 4 wants to get service as CarCustomer
Wash 5 enters
Wash 5 wants to get service as CarCustomer
Wash 6 enters
Wash 6 wants to get service as CarCustomer
Wash 7 enters
Wash 7 wants to get service as CarCustomer
Washer 1 holds for 9.21527 (wax part)
Wash 8 enters
Wash 8 wants to get service as CarCustomer
Washer 1 resumes WashAndWax 1
Washer 1 wants to serve for CarCustomer
Washer 1 can serve WashAndWax 2
Washer 1 holds for 14.2757 (wash part)
WashAndWax 1 exits
WashAndWax 4 enters
WashAndWax 4 wants to get service as CarCustomer
Washer 1 holds for 11.7717 (wax part)
Wash 9 enters
Wash 9 wants to get service as CarCustomer
WashAndWax 5 enters
WashAndWax 5 wants to get service as CarCustomer
Washer 1 resumes WashAndWax 2
Washer 1 wants to serve for CarCustomer
Washer 1 can serve Wash 2
Washer 1 holds for 18.6168

521
Example: Ferry Service for a Special Truck

75.0157
78.0228
78.0228
78.2874
78.2874

WashAndWax 2 exits
Wash 10 enters
Wash 10 wants to get service as CarCustomer
WashAndWax 6 enters
WashAndWax 6 wants to get service as CarCustomer

At 78.2874, there are 12 customers wa i t i ng - -8 are Wash and 4 are
WashAndWax; 2 Wash and 2 WashAndWax have been served.

From this trace one can see that more Washers are needed to service
the demand in this CarWash. It is also possible to collect specific data
on the amount of t ime customers wait (using the durat ion statistics
gather ing technique and throughput his togram from t h e previous chap-
ter) and the percentage of t ime a worker is busy or idle.

Example: A
Ferry Service
for a Specia l
Truck

The last example in Chapter 24 was of a ferry service in which a ferry
crosses between an island and the mainland carrying cars. The cars
were modeled as static resources tha t a ferry could acquire. The ferry's
task was to load as many as six cars, cross over the water, unload the
cars it carried, and repeat the process. The example was like one pro-
vided in the book on Demos by Graham Birtwistle. In that book,
Birtwistle describes the ferry service as coordinating the ferry service
with the travels of a truck. A t ruck goes from the mainland to the is-
land in order to make deliveries, re turns to the mainland to get more
supplies, and then goes to the island again, etc. The ferry only crosses
from one side to the other if it is carrying the truck. This version of the
ferry Simulation requires a coordination of SimulationObjects represent-
ing the ferry and the truck; each has its own tasks to do, but the truck
can not do its tasks without the assistance of the ferry and the ferry
has no tasks to do in the absence of a t ruck to carry.

Ferry service starts at 7:00 a.m. (420.0 minutes into the day) and
ends at 7:00 p.m. (1140 minutes into the day).

class name FerrySimulation
superclass Simulation
instance methods

initialization

d e f i n e A r r i v a l S c h e d u l e
self scheduleArrivalOf Truck new at: 420.0.
self scheduleArrivaiOf Ferry new at: 420.0.

d e f i n e R e s o u r c e s
self coordinate: "TruckCrossing'

522
Coordinated Resources for Event-Driven Simula t ions

The Truck and the Ferry are defined in t e rms of producing and acquir-
ing the resource 'TruckCrossing'.

class name Ferry
superclass S imu latio n 0 b ject
instance methods

simulation control

tasks
I truckRequest I
[ActiveSimutation time > 1140.0] whileFalse:

[truckRequest ~ self acquireResource: ' TruckCrossing'.
self toad.
self crossOver.
self unload.
self resume: truckRequest]

load
self holdFor: 5.0

unload
self holdFor: 3.0

crossOver
self holdFor: (Normal mean: 8 deviation: 0.5) next

The Truck delivers supplies on the is land and picks up supplies on the
main land .

class name
superclass

instance methods

Truck
SimulationObject

simulation control

tasks
[true]

whileTrue:
[self produceResource: ' TruckCrossing'
self deliverSupplies.
self produceResource: 'TruckCrossing'
self pickUpSupplies]

deliverSupplies
self holdFor: (Uniform from: 15 to: 30) next

pickUpSupplies
self holdFor: (Uniform from: 30 to: 45) next

There is no check in the definit ion of Truck or Ferry for a pa r t i cu la r
side, m a i n l a n d or island, because we assume tha t both s imula t ions ob-
jects s t a r t on the same side (the main land) and the i r synchronizat ion
for crossing over gua ran tees t ha t they s tay on the same side. A t race of
the events for r unn ing FerrySimulation is

420.0
420.0
420.0
420.0
420.0
420.0
420.0
425.0
425.0

432.843
432.843
435.843
435.843
435.843
435.843
457.038
457.038
457.038
457.038

462.038
462.038
470.327
470.327
473.327
473.327
473.327
473.327
513.361
513.361
513.361
513.361

518.361
518.361
526.413
526.413
529.413
529.413
529.413
529.413
556.605
556.605
556.605

523
E x a m p l e : F e r r y S e r v i c e for a S p e c i a l T r u c k

Start at the mainland

Ferry enters
Ferry wants to serve for TruckCrossing
Truck enters
TruCk wants to get service as TruckCrossing
Ferry can serve Truck
Ferry load truck
Ferry holds for 5.0
Ferry cross over
Ferry holds for 7.84272

unload the t ruck at the is land side

Ferry unload truck
Ferry holds for 3.0
Ferry resumes Truck
Ferry wants to serve for TruckCrossing
Truck deliver supplies
Truck holds for 21.1949
Truck wants to get service as TruckCrossing
Ferry can serve Truck
Ferry toad truck
Ferry holds for 5.0

cross over back to the ma in l and

Ferry cross over
Ferry holds for 8.28948
Ferry unload truck
Ferry holds for 3.0
Ferry resumes Truck
Ferry wants to serve for TruckCrossing
Truck pick up supplies
Truck holds for 40.0344
Truck wants to get service as TruckCrossing
Ferry can serve Truck
Ferry load truck
Ferry holds for 5.0

back to the island

Ferry cross over
Ferry holds for 8.05166
Ferry unload truck
Ferry' holds for 3.0
Ferry resumes Truck
Ferry wants to serve for TruckCrossing
Truck delivers supplies
Truck holds for 27.1916
Truck wants to get service as TruckCrossing
Ferry can serve Truck
Ferry load truck

524
Coordinated Resources for Event-Driven Simulations

556.605

561.605
561.605
569.137
569.13.7
572.136
572.136
572.136
572.136

Ferry holds for 5.0
back to mainland, etc.

Ferry cross over
Ferry holds for 7.53188
Ferry unload truck
Ferry holds for 3.0
Ferry resumes Truck
Ferry wants to serve for TruckCrossing
Truck pick up supplies
Truck holds for 36.8832

The ferry tasks do not guarantee tha t the resting place for the evening
is the mainland side. This can be done by monitoring which side the
ferry is on and then stopping only after re turning to the mainland.
Only the definition of Ferry must change since the Truck side is syn-
chronized with it.

class name Ferry
superclass S imu lation Object
instance variable names currentSide
instance methods

simulation control

init ial ize
super initialize.
currentSide ~ 'Mainland'

tasks
I truckRequest finished I
finished ,- false
[finished] whileFalse:

[truckRequest ~-- self acquireResource: ' TruckCrossing'.
self load.
self crossOver.
self unload.
self resume: truckRequest.
finished ,---

ActiveSimulation time > 1140.0 and: [currentSide = " Mainland']]
load

self holdFor: 5.0
unload

self holdFor: 3.0
crossover

self holdFor: (Normal mean: 8 deviation: 0.5) next.
,currentSide ,--

currentSide = 'Mainland"
ifTrue: [' Island "]
ifFalse: [' Mainland']

525
Example: Fe r ry Service for a Special Truck

Suppose now tha t cars can ar r ive at the ferry r a m p in order to be car-
ried across. The ferry can car ry as m a n y as 4 cars in addit ion to the
t ruck, but the ferry will not cross over unless the re is a t ruck to carry.
Then the definit ion of the s imula t ion changes by the addit ion of cars
a r r i v i n g at the ma in l and or the island; we in t roduce cars in the same
way we did in Chapte r 2 4 - - a s stat ic resources.

class name FerrySimulation
superclass Simulation
instance methods

initialization

def ineArr iva lSchedule
self scheduleArrivalOf: Truck new at: 420.0.
self scheduleArrivalOf: Ferry new at: 420.0.
self scheduleArrivalOf: MainlandArrival

accordingTo: (Exponential parameter: 0.15)
startingAt: 420.0.

self scheduleArrival©f: fslandArrival
accordingTo: (Exponential parameter: 0.15)
startingAt: 420.0

def ineResources
self coordinate: ' TruckCrossing'.
self produce: 3 of Resource: 'Main land ' .
self produce: 0 of Resource: ' Is land'

T h e definit ions for MainlandArrival and islandArrival are the same as
those given in Chapte r 24.

class name MainlandArrival
superclass SimulationObject
instance methods

simulation control

tasks
self produce: 1 of Resource: 'Mainland'

class name IslandArrival
superclass S imula tio n O b j ect
instance methods

simulation, control

tasks
self produce: 1 of Resource: ' Is land'

The Ferry now mus t t ake into considerat ion loading and unloading any
cars wai t ing at the r a m p of the cu r r en t side.

526
C o o r d i n a t e d Resources for E v e n t - D r i v e n S i m u l a t i o n s

class name
superclass
instance variable names

instance methods

simulation control

i n i t i a l i z e
super initialize.

currentSide ~- "Ma in land ' .

carsOn Board ~ 0

tasks
I truckRequest finished I
finished ~ false,
[finished] whileFalse:

load

Ferry

SimulationObject

currentSide

carsOn Board

[truckRequest ~ self acquireResource: 'TruckCrossing ' .

self load.

self crossOver.

self unload.

self resume: truckRequest.
finished

ActiveSimulationtime > 1140.0and: [currentSide = 'Ma in l and ']]

" t o a d the truck first"

self holdFor: 5.0
" now load any cars that are waiting on the current side"

[carsOnBoard < 4

and: [self inquireFor: 1 ofResource: currentSide]]

whileTrue:

[self acquire: 1 ofResource: currentSide.

self holdFor: 0.5.
carsOnBoard ~ carsOnBoard + 1]

unload
"unload the cars and the truck"

self holdFor: (carsOnBoard , 0.5) -.I-- 3.0

crossOver
self holdFor: (Normal mean 8 deviation: 0.5) next.

currentSide
currentSide = " Mainland'

ifTrue: [' I s land ']

ifFalse: [' Mainland ']

Example: A
Bank

A b a n k t e l l e r on ly ca r r i e s out t a sks w h e n a c u s t o m e r a p p e a r s a t the

te l l e r ' s w indow a nd asks for service. Since the te l le r ' s services a re de-

527
Example: A Bank

pendent on the needs of the customer, the specification of the teller 's
tasks includes requests for information from the customer.

Suppose the bank assigns two bank tellers to work all day. The bank
opens at 9:00 a.m. and closes at 3:00 p.m. Throughout the day, custom-
ers arr ive every 10 minutes with a s tandard deviation of 5 minutes. At
the noon lunch hour, the number of customers increases dramatical ly,
ave rag ing one every three minutes. Two additional bank tellers are
added to handle the increased demand for service. When a regular bank
teller is not serving a customer, the teller has desk work to do.

The arr ival of customers and regular workers into the bank is sched-
uled in the response to the message defineArrivalSchedule to
BankSimulation. The luncht ime increase is represented by a discrete
probabili ty distr ibution tha t is a sample space of twenty 3's, represent-
ing a total of the 60 minutes during which luncht ime customers appear.
Mixed with the normal load of customers, this means tha t 20 or more
customers appear in tha t busiest hour.

We define simulat ion objects BankTeller, Luncht imeTel ler,
BankCustomer, as we l l as the BankSimulat ion.

class name BankSimulation
superclass Simulation
class variable names H our
instance methods

initialization

d e f i n e A r r i v a l S c h e d u l e
self scheduleArrivalOf: BankCustomer

accordingTo: (Normal mean: 10 deviation: 5)
startingAt: 9, Hour.

self scheduleArrivalOf: (BankTeller name: ' f i rs t ') at: 9,Hour
self scheduleArrivalOf: (BankTeller name: "second ') at: 9,Hour.
self scheduleArrivalOf: BankCustomer

accordingTo:
(Sample S paceWith o utRe place m e nt

data: ((1 to: 20) col tect : [: i I 3]))
startingAt: 12, Hour.

self schedule: [self hireMoreTellers] at: 12,Hour.
self schedule: [self finishUp] at: 15,Hour

d e f i n e R e s o u r c e s
self coordinate: "TellerCustomer"

simulation control

h i reMoreTe l le rs
self schedule: [(LunchtimeTeller name: ' f i rs t ') startUp] after: 0.0.
self schedule: [(LunchtimeTeller name: "second ') startUp] after: 0.0

528
Coordinated Resources for Event-Driven Simulations

The ResourceCoord ina tor is responsible for matching customers (t a k e r s
of service) with bank tellers (givers of service). The bank customer 's
task is simple. After enter ing the bank, the customer gets the a t tent ion
of a bank teller and asks for service. After obtaining service, the cus-
tomer leaves. The amount of t ime the customer spends in the bank de-
pends on how long the customer must wait for a teller and how long
the teller takes giving service.

class name BankCustomer
superc]ass S i m u I ation Ob ject
instance methods

simulation control

tasks
self produceResource: "TellerCustomer,

The bank teller 's tasks depend on the needs of the customer. To keep
this example simple, we will assume tha t a BankTeller does about the
same work for each customer, taking between 2 and 15 minutes. Anoth-
er a l ternat ive would be to give each BankCustomer a list of desired ser-
vices as was done in the car wash example; the BankTeiler would
enumera te over the set, taking times appropriate to each kind of ser-
vice. Whenever a customer is not available, the teller does other tasks.
These tasks a r e small and take a short amoun t of time; however, the
teller can not be interrupted. When one of these background desk tasks
is completed, the tel ler checks to see if a customer has arr ived and is
wait ing for service.

class name BankTeller
superclass SimulationObject
instance methods

simulation control

tasks
I customerRequest I
[true] whileTrue:

[(self numberOfProvidersOfResource: "TellerCustOmer') > 0
ifTrue: [self counterWork]
ifFalse: [self deskWork]]

counterWork
I customerRequest I
customerRequest ,-- self acquireResource: ' Tel lerCustomer'.
self hotdFor: (Uniform from: 2 to: 15) next.
self resume: customerRequest

deskWork
self holdFor: (Uniform from: 1 to: 5) next

A LunchtimeTeller has to schedule itself to leave the bank after an hour.

529
Example: A Bank

This scheduling can be specified in the response to initialize. When it is
t ime to leave, the LunchtimeTeller has to make certain tha t all its tasks
are completed before leaving. Therefore, a signal (getDone) is set to true
the first t ime the message finishUp is sent; this signal is checked each
time the teller 's counter work completes. The second time finishUp is
sent, the signal is true and the teller can exit. The LunchtimeTeller, un-
like the regular BankTeller, does not do any desk work when customers
are not available.

class name LunchtimeTeller
superclass BankTelter
instance variable names getDone
instance methods

initialization

initialize
super initialize.
getDone ~- false.
ActiveSimulation schedule: [self finishUp] after: 60

simulation control

finishUp
getDone

ifTrue: [super finishUp]
ifFalse: [getDone ~- true]

tasks
[getDone] whileFalse: [self counterWork].
self finishUp

A partial trace of the events follows.

540
540

54O
54O
540
54O
540
540
540
543.336
543.336
546.298
546.298
549.332
549.332

BankCustomer 1 enters
BankCustomer 1 wants to get service as

TellerCustomer
BankTeller first enters
BankTeller
BankTeller
BankTeller
BankTeller
BankTeller
BankTeller
BankTeiler
BankTeiler
BankTeller
BankTeller
BankTeller
BankTelter

first wants to serve for TellerCustomer
first can serve BankCustomer 1
first holds for 9.33214
second enters
second does desk work
second holds for 3.33594
second doesdesk work
second holds for 2.96246
second does desk work
second holds for 3.56238
first resumes BankCustomer 1
first does desk work

530
C o o r d i n a t e d R e s o u r c e s f o r E v e n t - D r i v e n S i m u l a t i o n s

549.332
549.332
549.819
549.819

549.861
549.861
549.861
551.172
551.172
555.341
555.341
557.948
557.948
559.063
559.063

562.537
562.537
562.537
564.18
564.18
564.18
564.18
565.721
565.721

566.81
566.81
566.81
571.891
571.891
571.891
571.891
575.982
575.982
575.982
575.982
576.59
576.59

BankTeller first holds for 1.83978
BankCustomer 1 exits
BankCustomer 2 enters
BankCustomer 2 wants to get service as

TellerCustomer
BankTeller second wants to serve for TellerCustomer
BankTeller second can serve BankCustomer 2
BankTeller second holds for 14.3192
BankTeller first does desk work
BankTeller first holds for 4.16901
BankTeller first does desk work
BankTeller first holds for 2.60681
BankTeller first does desk work
BankTelter first holds for 4.58929
BankCustomer 3 enters
BankCustomer 3 wants to get service as

TellerCustomer
BankTeller first wants to serve for TellerCustomer
BankTeller first can serve BankCustomer 3
BankTeller first holds for 13.4452
BankTeller second resumes BankCustomer 2
BankTeller second does desk work
BankTeller second holds for 2.63007
BankCustomer 2 exits
BankCustomer 4 enters
BankCustomer 4 wants to get service as

TetlerCustomer
BankTeller second wants to serve for TellerCustomer
BankTeller second can serve BankCustomer 4
BankTeller second holds for 5.08139
BankTeller second resumes BankCustomer 4
BankTeller second does desk work
BankTeller second holds for 4.69818
BankCustomer 4 exits
BankTeller first resumes BankCustomer 3
BankTeller first does desk work
BankTeller first holds for 2.10718
BankCustomer 3 exits
BankTeller second does desk work
BankTeller second holds for 4.04327

... and so on unt i l lunch hour when the ex t ra help arrives;
at this point, 18 customers have entered; BankTeller first is
giving BankCustomer 18 service...

720
720

720
720
720
720
720
720

721.109
721.109
721.663
721.663
721.663
721.663
722.085
722.085

722.085
722.085
723
723

723.2
723.2
723.2
725.095
725.095
726
726

729
729

730.071
730.071
730.071
731.6
731.6

731.6
731.6
731.6

531
E x a m p l e : A B a n k

BankCustomer 19 enters
BankCustomer 19 wants to get service as

TellerCustomer
LunchtimeTeller first enters
LunchtimeTeller first wants to serve for TellerCustomer
LunchtimeTeller first can serve BankCustomer 19
LunchtimeTeller first holds for 11.9505
LunchtimeTeller second enters
LunchtimeTeller second wants to serve for

TellerCustomer
BankTeller second does desk work
BankTeller second holds for 2.09082
BankTeller first resumes BankCustomer 18
BankTeller first does desk work
BankTeller first holds for 3.43219
BankCustomer 18 exits
BankCustomer 20 enters
BankCustomer 20 wants to get service as

TellerCustomer
LunchtimeTeller second ~an serve BankCustomer 20
LunchtimeTeller second holds for 9.51483
BankCustomer 21 enters
BankCustomer 21 wants to get service as

TellerCustomer
BankTeller second wants to serve for TellerCustomer
BankTeller second can serve BankCustomer 21
BankTeller second holds for 9.66043
BankTeller first does desk work
BankTeller first holds for 4.97528
BankCustomer 22 enters
BankCustomer 22 wants to get service as

TellerCustomer
BankCustomer 23 enters
BankCustomer 23 wants to get service as

TellerCustomer
BankTeller first wants to serve for TellerCustomer
BankTeller first can serve BankCustomer 22
BankTeller first holds for 8.17746
LunchtimeTeller second resumes BankCustomer 20
LunchtimeTeller second wants to serve for

TellerCustomer
LunchtimeTeller second can serve BankCustomer 23
LunchtimeTeller second holds for 6.27971
BankCustomer 20 exits

532
Coordinated Resources for Event-Driven Simulat ions

731.95
731.95
731.95
732
732

732
732

LunchtimeTeller first resumes BankCustomer 19
LunchtimeTeller first wants to serve for TellerCustomer
BankCustomer 19 exits
BankCustomer 24 enters
BankCustomer 24 wants to get service as

TellerCustomer
LunchtimeTeller first can serve BankCustomer 24
LunchtimeTeller first holds for 9.52138

... BankCustomer 40 jus t left and lunch t ime is over; there are 3 o ther
customers in the bank; as soon as they finish with thei r cu r ren t cus-
tomers, the LunchtimeTellers will leave...

780.0
780.0

780.918
780..918
780.918
781.968
781.968

784.001
784.001
784.001
787.879
787.879
787.879
789.189
789.189
789.189
789.189
789.189
791.572
791.572
791.572
791.572
793.917
793.917

BankCustomer 44 enters
BankCustomer 44 wants to get service as

TellerCustomer
BankTeller first wants to serve for TellerCustomer
BankTeiler first can serve BankCustomer 44
BankTeller first holds for 13.1566
BankCustomer 45 enters
BankCustomer 45 wants to get service as

TellerCustomer
LunchtimeTeller second resumes BankCustomer 43
LunchtimeTeller second exits
BankCustomer 43 exits
LunchtimeTeller first resumes BankCustomer 42
LunchtimeTeller first exits
BankCustomer 42 exits
BankTeller second resumes BankCustomer 41
BankTeller second wants to serve for TellerCustomer
BankTeller second can serve BankCustomer 45
BankTeller second holds for 2.38364
BankCustomer 41 exits
BankTeller second resumes BankCustomer 45
BankTeller second does desk work
BankTeller second holds for 2.3421.67
BankCustomer 45 exits
BankTeiler second does desk work
BankTeller second holds for 3.19897

and so on...
The da ta tha t would be collected here includes the busy/ id le percent-

ages of the tellers and the customers ' average wai t time.

533
Example: An Information System

Example: An
Information
System

Our last example is also in the Birtwistle book a n d , according to
Birtwistle, is a popular example for simulation systems such as GPSS.
The example is an information system simulation tha t describes remote
terminals at which users can arrive and make retrieval requests. A cus-
tomer with a query arrives at one or the other of the t e rmina l s and
queues, if necessary, to use it. The system scanner rotates from termi-
nal to te rminal seeing if a request is waiting and, if so, provides service.
Service means tha t the scanner copies the query to a buffer unit capa-
ble of holding three queries simultaneously; if no buffer position is
available, the copying process must wait until one becomes available.
Once copying to the buffer succeeds, the system processes the query and
places the answer in the buffer to re turn to the terminal without need
for the scanner again.

Using the data provided by Birtwistle, we will model a system with
six terminals. Customers arrive at terminals with an exponential mean
time of 5 minutes. The buffers are modeled as static resources; the ter-
minals are also static resources; while the terminal services are objects
whose tasks are coordinated with the tasks of the queries.

class name InformationSystem
superclass Simulation
instance methods

initialization

d e f i n e A r r i v a l S c h e d u l e
"Schedule many queries and only one scanner"
self scheduleArrivatOf: Query

accordingTo: (Exponential parameter: 5)
startingAt: 0.0.

self scheduleArrivatOf: SystemScanner new at: 0.0

d e f i n e R e s o u r c e s
self produce: 3 ofResource: ' Buffer'.
0 to: 5 do:

[: n l
self produce: t of Resource: 'Terminal ' , n printString.
self coordinate: 'TerminalService', n printString]

In the above method, we use string concatenation to form the at t r ibute
names of six terminals as static resources and six terminal services as
coordinated services; the names are Terminal0 Terminal5 and
TerminalService0 TerminalService5.

The ResourceCoordinators for terminal service for each of the six ter-
minals are being handled differently here than in the bank and car
wash simulation examples. At a n y t i m e , the queues of customers or

534
Coordinated Resources for Event -Dr iven S imula t ions

servers will contain only one or no elements . Dur ing the s imulat ion, a
Query will en te r a queue to wai t for t e rmina l service. A Sys temScanner
moves from coordinator to coordinator, round-robin fashion, to act as
t he giver of service if a Query is wait ing.

The cus tomer , a Query, mus t first access a t e rmina l resource to get a
reply. On accessing one of the six te rminals , the cus tomer keys in a re-
quest and awai ts the reply. It t akes be tween 0.3 and 0.5 minu tes (uni-
formly distr ibuted) to en te r a query. Then t e rmina l service is requested.
The query now waits for the SystemScanner ; when the Sys temScanner
notices the wai t ing query, it gives it the needed service. This means
t ha t the Sys temScanner obtains a buffer slot for the query and copies
the request into the buffer. It takes 0.0117 minu tes to t r ans fe r a query
to the buffer. Now the reply can be t r ans fe r red to the t e rmina l and
read, the buffer can be freed up, and the t e rmina l released. It takes be-
tween 0.05 and 0.10 (uniformly distr ibuted) to process a query, and
0.0397 minu te s to t rans fe r the reply back to the te rmina l . Customers
t ake be tween 0.6 and 0.8 minu te s (uniformly distr ibuted) to read a re-
ply.

class name Query

superclass S imulationObject

instance methods

scheduling

tasks
I terminal terminalNum I
" pick a terminal"

terminalNum ,- (SampleSpace data: -#:('0' '1" '2 ' "3" '4 ' "5")) next.

" get a terminal resource"

terminal ~- self acquire: 1 of Resource: 'Te rmina l ' , terminalNum.

" got the terminal, now enter the query"

self holdFor: (Uniform from: 0.3 to: 0.5) next.

" act as a resource for a terminal service in order to process the query"

self produceResource: "TerminalService ' , terminalNum.

"the query is now processed; now read the reply"

self holdFor: (Uniform from: 0.6 to: 0.8) next.

" and release the terminal"

self release: terminal

The scanner ' s job is to ro ta te from t e r m i n a l t o t e rmina l seeing if a re-
quest is pending and, if so, to wai t to t r ans fe r a query into a buffer and
then move on. Scanner rota t ion takes 0.0027 minu tes and the same
a m o u n t of t ime to tes t a t e rmina l .

class name System Scanner
superclass S imula tio n O b ject
instance variable names n

535
E x a m p l e : A n I n f o r m a t i o n S y s t e m

instance methods

simulation control

init ial ize
super initialize.
n~- 5

tasks
I terminalServiceRequest buffer test I
[true]

whileTrue:
[n ~ (n + 1) \ \ 6.

self holdFor: 010027.
test ,-

self numberOfProvidersOfResource:
' TerminaIService' , n printString.

self holdFor: 0.0027.
test = 0 ifFalse

[terminalServiceRequest ~-
self acquireResource (' TerminatService' , n printString).

buffer ~ self a c q u i r e l o f R e s o u r c e 'Bu f fe r ' .
" copy the request"
self holdFor 0.0117.
"process the query"
self holdFor (Uniform f rom 0.05 to: 0.10) next.
"return the reply to the terminal"
self hotdFor 0.0397.
"done, release the resources"
self release: buffer.
self resume: terminalServiceRequest]]

The SystemScanner is not idle when no Query is waiting; it continually
moves from terminal to terminal checking for a Query. This movement
stops when a Query is found in order to provide service. When the ser-
vice is completed, the SystemScanner returns to circulating around,
looking for another Query.

Not much happens at first. The first Query enters but it holds for
0.360428 units of time in order to enter its query at Terminal1; mean-
while the SysternScanner moves around the terminals. A second Query
enters at 0.0472472 and requests Terrninal3; a third enters at 0.130608
and requests Terminal4. At 0.360428, the first Query requests service at
Terrninall which is given a short time later at time 0.367198. Between
this time and time 0.478235, the SysternScanner gives service by get-
ting a Buffer, copying the query to the Buffer, processing it, transfer-
ring the reply, and then releasing the Buffer and resuming the Query.
In the meantime, the second Query requested service, and a fourth Que-
ry entered at Terrninal4. The SystemScanner then rotates to Terminal3 to
give service to the second Query waiting there.

536
C o o r d i n a t e d R e s o u r c e s fo r E v e n t - D r i v e n S i m u l a t i o n s

0.0
0.0
0.0
0.0
0.0
0.0
0.0027
0.0054

Query 1 enters
Query 1 requests 1 of Terminal1
Query 1 obtained 1 of Terminal1
Query 1 holds for 0.360428
SystemScanner enters
SystemScanner holds for 0.0027
SystemScanner holds for 0.0027
SystemScanner holds for 0.0027

. . .etc...

0.0432
0.0459
0.0472472
0.0472472
0.0472472
0.0472472
0.0486
0.0513

SystemScanner holds for 0.0027
SystemScanner holds for 0.0027
Query 2 enters
Query 2 requests 1 of Terminal3
Query 2 obtained 1 of Terminal3
Query 2 holds for 0.363611
SystemScanner holds for 0.0027
SystemScanner holds for 0.0027

. . .etc...

O. 1269
0.1296
O. 13O608
O. 130608
O.13O6O8
O. 13O608
0.1323
0.135

SystemScanner holds for 0.0027
SystemScanner holds for 0.0027
Query 3 enters
Query 3 requests 1 of Terminal4
Query 3 obtained 1 of Terminal4
Query 3 holds for 0.445785
SystemScanner holds for 0.0027
SystemScanner holds for 0.0027

. . .etc...

0.356398
0.359098
0.360428
0.361798
0.364498
0.367198

0.367198
0.367198
0.367198
0.367198
0.378898

SystemScanner holds for 0.0027
SystemScanner holds for 0.0027
Query 1 wants to get service as TerminalServicel
SystemScanner holds for 0.0027
SystemScanner holds for 0.0027
SystemScanner wants to give service as

TerminalServicel
SystemScanner can serve as TerminalServicel
SystemScanner requests 1 of Buffer
SystemScanner obtained 1 of Buffer
SystemScanner holds for 0.0117
SystemScanner holds for 0.0596374

537
Example : An In fo rma t ion Sys tem

0.410858
0.41396
0.41396
0.438535
0.478235
0.478235
0.478235
0.478235
0.478235
0.480935
0.483635
0.486335
0.489035

0.489035
0.489035
0.489035
0.489035
0.500735
0.552301
0.576394
0.592001
0.5920O1
0.592001
0.592001
0.592001

Query 2 wants to get service as TerminalService3
Query 4 enters
Query 4 requests 1 of Terminal4
SystemScanner holds for 0.0397
SystemScanner releases 1 of Buffer
SystemScanner resumes Query 1
SystemScanner holds for 0.0027
Query 1 got served as TerminalServicel
Query 1 holds for 0.740207
SystemScanner holds for 0.0027
SystemScanner holds for 0.0027
SystemScanner holds for 0.0027
SystemScanner wants to give service as

TerminaiService3
SystemScanner can serve as TerminalService3
SystemScanner requests 1 of Buffer
SystemScanner obtained 1 of Buffer
SystemScanner holds for 0.0117
SystemScanner holds for 0.0515655
SystemScanner holds for 0.0397
Query 3 wants to get service as TerminalService4
SystemScanner releases 1 of Buffer
SystemScanner resumes Query 2
SystemScanner holds for 0.0027
Query 2 got served as TerminalService3
Query 2 holds for 0.655313

...etc...
For more examples to try, see the Birtwistle book.

I I
M J .

i O 0 -

E!

i ! D ~ ~
-E

d,

iiii~ii

0 0 0 -

ff"ff

@1
E

, D i n
|

i=

P A R T F O U R

The previous three parts of the book described the Smalltalk-80
system from the programmer's point of view: The five chapters in
this part present the system from the implementer's point of view.
Readers who are not interested in how the system is implemented
may skip these chapters. Readers interested only in the flavor of
the implementation can read Chapter 26 alone. Readers interested
in the details of the implementation, including those actually
implementing the system, will want to read the following four
chapters as well.

t

" " " ,i-

_ I •

• ~

1150 ~o
0 ,I, 0 +

÷
+ •

0 + + +

•

÷ 0 0 ÷

• ÷

O

÷ ,1,

O
O
o

O

26
The Implementation

The Compiler
Compiled Methods
The Bytecodes

The Interpreter
Contexts
Block Contexts
Messages
Primitive Methods

The Object Memory

The Hardware

542
The Implementation

Two major components of the Smalltalk-80 system can be distinguished:
the virtual image and the virtual machine.

1. The virtual image consists of all of the objects in the system.

2. The virtual machine consists of the hardware devices and machine
language (or microcode) routines that give dynamics to the objects
in the virtual image.

The system implementer's task is to create a virtual machine. A virtual
image can then be loaded into the virtual machine and the
Smalltalk-80 system becomes the interactive entity described in earlier
chapters.

The overview of the Smalltalk-80 implementation given in this chap-
ter is organized in a top-down fashion, starting with the source methods
written by programmers. These methods are translated by a compiler
into sequences of eight-bit instructions called bytecodes. The compiler
and bytecodes a r e t h e subject of this chapter's first section. The
bytecodes produced by the compiler are instructions for an interpreter,
which is described in the second section. Below the interpreter in the
implementation is an object memory that stores the objects that make
up the virtual image. The object memory is described in the third sec-
tion of this chapter. At the bottom of any implementation is the hard-
ware. The fourth and final section of this chapter discusses the
hardware required to implement the interpreter and object memory.
Chapters 27 - 30 give a detailed specification of the virtual machine's
interpreter and object memory.

T h e C o m p i l e r Source methods written by programmers are represented in the
Smalltalk-80 system as instances of String. The Strings contain se-
quences of characters that conform to the syntax introduced in the first
part of thisbook. For example, the following source method might de-
scribe how instances of class Rectangle respond to the unary message
center. The center message is used to find the Point equidistant from a
Rectangle's four sides.

c e n t e r
t origin + corner / 2

Source methods are translated by the system's compiler into sequences
of instructions for a stack-oriented interpreter. The instructions are

543
The Compiler

eight-bit numbers called bytecodes. For example, the bytecodes corre-
sponding to the source method shown above are,

O, 1, 176, 119, 185, 124

Since a bytecode's value gives us little indication of its meaning to the
interpreter , this chapter will accompany lists of bytecodes with com-
ments about their functions. Any par t of a bytecode's comment that de-
pends on the context of the method in which it appears will be
parenthesized. The unparenthesized par t of the comment describes its
general function. For example, the bytecode 0 always instructs the in-
terpre ter to push the value of the receiver's first instance variable on
its stack. The fact tha t the variable is named origin depends on the fact
tha t this method is used by Rectangles, so origin is parenthesized. The
commented form of the bytecodes for Rectangle center is shown below.

Rectangle
0

176
119
185
124

center
push the value of the receiver's first instance variable (origin) onto the
stack
push the value of the receiver's second instance variable (corner) onto the
stack
send a binary message with the selector +
push the Smalllnteger 2 onto the stack
send a binary message with the selector /
return the object on top of the stack as the value of the message (center)

The stack mentioned in some of the bytecodes is used for several pur-
poses. In this method, it is used to hold the receiver, arguments , and re-
sults of the two messages tha t are sent. The stack is also used as the
source of the result to be re turned from the center method. The stack is
mainta ined by the in terpreter and will be described in greater detail in
the next section. A description of all the types of bytecodes will appear
at the end of this section.

A programmer does not interact directly with the compiler. When a
new source method is added to a class (Rectangle in this example), the
class asks the compiler for an instance of CompiledMethod containing
the bytecode t ranslat ion of the source method. The class provides the
compiler with some necessary information not given in the source
method, including the names of the receiver's instance variables and
the dictionaries containing accessible shared variables (global, class, and
pool variables). The compiler t ranslates the source text into a
CompiledMethod and the class stores the method in its message diction-
ary. For example, the CompiledMethod shown above is stored in Rec-
tangle's message dictionary associated with the selector center.

Another example of the bytecodes compiled from a source method il-
lustrates the use of a store bytecode. The message extent: to a Rectangle

544
The Implementat ion

Compiled Methods

changes the receiver's width and height to be equal to the x and y coor-
dinates of the a rgument (a Point). The receiver's upper left corner (origin)
is kept the same and the lower right corner (corner) is moved.

extent: newExtent
corner ~- origin + newExtent

Rectangle extent:
0 push the value of the receiver's first instance variable (origin) onto the

stack
16 push the argument (newExtent) onto the stack
176 send a binary message with the selector +
97 pop the top object off of the stack and store it in the receiver's second in-

stance variable (corner)
120 return the receiver as the value of the message (extent:)

The forms of source methods and compiled bytecodes are different in
several respects. The variable names in a source method are converted
into instructions to push objects on the stack, the selectors are convert-
ed into instructions to send messages, and the uparrow is converted into
an instruction t o r e t u r n a result. The order of the corresponding compo-
nents is also different in a source method and compiled bytecodes. De-
spite these differences in form, the source method and compiled
bytecodes describe the same actions.

The compiler creates an instance of CompiledMethod to hold the
bytecode t ranslat ion of a source method. In addition to the bytecodes
themselves, a CompiledMethod contains a set of objects called its literal
frame. The literal frame contains any objects tha t could not be referred
to directly by bytecodes. All of the objects in Rectangle center and Rec-
tangle extent: were referred to directly by bytecodes, so the
CompiledMethods for these methods do not need literal frames. As an
example of a CompiledMethod with a literal frame, consider the method
for Rectangle intersects:. The intersects: message inquires whether one
Rectangle (the receiver) overlaps another Rectangle (the argument).

intersects: aRectangle
t(origin max: aRectangle origin) < (corner min: aRectangle corner)

The four message selectors, max:, origin, rain:, and corner are not in the
set tha t can be directly referenced by bytecodes. These selectors are in-
cluded in the CompiledMethod's literal frame and the send bytecodes
refer to the selectors by their position in the literal frame. A
CompiledMethod's literal frame will be shown after its bytecodes.

Rectangle intersects:
0 push the value of the receiver's first instance variable (origin) onto the

stack
16 push the argument (aRectangle)

545
T h e C o m p i l e r

209 send a unary message with the selector in the second literal frame loca-
tion (origin)

224 send a single argument message with the selector in the first literal
frame location (max:)

1 push the value of the receiver's second instance variable (corner) onto the
stack

16 push the argument (aRectangle) onto the stack
211 send a unary message with the selector in the fourth literal frame loca-

tion (corner)
226 send a single argument message with the selector in the third literal

frame location (min:)

178 send a binary message with the selector <
124 return the object on top of the stack as the value of the message (inter-

sects:)

literal frame
max:
~origin
~min:
~corner

T h e ca tegor i e s of objects t h a t can be r e f e r r e d to d i rec t ly by by tecodes

are:

• t h e r e c e i v e r a n d a r g u m e n t s of t h e i n v o k i n g m e s s a g e

• t h e v a l u e s of t h e r ece ive r ' s i n s t a n c e v a r i a b l e s

• t h e v a l u e s of a n y t e m p o r a r y v a r i a b l e s r e q u i r e d by t h e m e t h o d

• s e v e n specia l c o n s t a n t s (true, false, nil, - 1 , 0, 1, a n d 2)

• 32 specia l m e s s a g e se lec tors

T h e 32 specia l m e s s a g e se lec tors a r e l is ted below.

-F - < >

. / \ @

bitShift: \ \ bitAnd: bitOr:
(at:) (at:put:) (size) (next)
(nextPut:) (atEnd) class
blockCopy: value value" (do:)
(new) (new:) (x) (y)

T h e se lec tors in p a r e n t h e s e s m a y be r e p l a c e d w i t h o t h e r se lec tors by

m o d i f y i n g t h e compi l e r a n d r e c o m p i l i n g all m e t h o d s in t h e sys tem. T h e

o t h e r se lec tors a r e bu i l t in to t h e v i r t u a l m a c h i n e .

546
The Imp lemen ta t i on

Any objects refer red to in a CompiledMethod's bytecodes t ha t do not
fall into one of the categories above mus t appea r in its l i teral frame.
The objects ordinar i ly contained in a l i teral f r ame a r e

• shared var iables (global, class, and pool)

• most l i teral cons tants (numbers, characters , strings, ar rays , and
symbols)

• most message selectors (those tha t are not special)

Objects of these th ree types m a y be in te rmixed in the l i teral frame. If
an object in the l i teral f r ame is referenced twice in the same method, it
need only appear in the l i teral f rame once. The two bytecodes t ha t refer
to the object will refer to the same location in the l i teral frame.

Two types of object t ha t were refer red to above, t empora ry var iables
and shared variables, have not been used in the example methods. The
following example method for Rectangle merge: uses both types. The
merge: message is used to find a Rectangle t h a t includes the a reas in
both the receiver and the a rgumen t .

merge: aRectangle
I minPoint maxPoint I
minPoint ~ origin min: aRe ctangte or ig in

maxPoint ~ corner max: aRectangle corner
1'Rectangle origin: minPoint

corner: maxPoint

When a C o m p i l e d M e t h o d uses t e m p o r a r y var iables (maxPo in t and
minPoint in this example), the n u m b e r required is specified in the first

line of its pr in ted form. When a CompiledMethod uses a shared var iable
(Rectangle in this example) an ins tance of Association is included in its
l i teral frame. All CompiledMethods t ha t refer to a pa r t i cu la r shared
var iable ' s name include the same Association in the i r l i teral frames.

Rectangle merge: requires 2 temporary variables
0 push the value of the receiver's first instance variable (origin) onto the

stack
16 push the contents of the first temporary frame location (the argument

aRectangle) onto the stack
209 send a unary message with the selector in the second literal frame loca-

tion (origin)
224 send the single argument message with the selector in the first literal

frame location (min:)
105 pop the top object off of the stack and store in the second temporary

frame location (minPoint)
1 push the value of the receiver's second instance variable (corner) onto the

stack
16 push the contents of the first temporary frame location (the argument

aRectangle) onto the stack

547
The Compi le r

211

226

106

69

17

18

244

124

literal trame

#min:
~origin
max:
#corner
#origin:corner:
Association: #Rectangle ~Rectangle

send a unary message with the selector in the fourth literal frame loca-
tion (corner)
send a single argument message with the selector in the third literal
frame location (max:)
pop the top object off of the stack and store it in the third temporary
frame location (ma×Point)
push the value of the shared variable in the sixth literal frame location
(Rectangle) onto the stack
push the contents of the second temporary frame location (minPoint) onto
the stack
push the contents of the third temporary frame location (ma×Point) onto
the stack
send the two argument message with the selector in the fifth literal
frame location (origin:corner:)
return the object on top of the stack as the value of the message (merge:)

[~] Temporary Variables T e m p o r a r y va r i ab l e s a r e c r ea t ed for a par t ic-
u l a r execu t ion of a CompiledMethod and cease to exis t w h e n the execu-
t ion is comple te . The CompiledMethod indica tes to the i n t e r p r e t e r how
m a n y t e m p o r a r y va r i ab l e s will be requi red . The a r g u m e n t s of the in-
voking m e s s a g e and the va lues of t he t e m p o r a r y va r i ab le s a r e s to red to-
g e t h e r in the temporary frame. The a r g u m e n t s a r e s to red f irs t and the
t e m p o r a r y va r i ab le va lues i m m e d i a t e l y af ter . They a re accessed by the
s a m e type of bytecode (whose c o m m e n t s r e fe r to a t e m p o r a r y f r a m e lo-
cation). Since merge: t a k e s a s ingle a r g u m e n t , i ts two t e m p o r a r y vari-
ables use the second and t h i rd locat ions in the t e m p o r a r y f rame. The
compi le r enforces the fact t h a t t he va lues of t he a r g u m e n t n a m e s can-
not be c h a n g e d by neve r i ssuing a s tore bytecode r e f e r r i n g to the p a r t
of t he t e m p o r a r y f r a m e inhab i t ed by the a r g u m e n t s .

[~] Shared Variables S h a r e d va r i ab les a re found in d ic t ionar ies .

• global variables in a d ic t iona ry whose n a m e s can a p p e a r in any

m e t h o d

• class variables in a d ic t iona ry whose n a m e s can only a p p e a r in the
m e t h o d s of a s ingle class and its subclasses

• pool variables in a d i c t iona ry whose n a m e s can a p p e a r in the

m e t h o d s of severa l classes

548
The Implementation

Shared variables are the individual associations that make up these dic-
tionaries. The system represents associations in general, and shared
variables in particular, with instances of Association. When the compil-
er encounters the name of a shared variable in a source method, the
Association with the same name is included in the CompiledMethod's
literal frame. The bytecodes that access shared variables indicate the
location of an Association in the literal frame. The actual value of the
variable is stored in an instance variable of the Association. In the
CompiledMethod for Rectangle merge: shown above, class Rectangle is
referenced by including the Association from the global dictionary
whose name is the symbol ~Rectangle and whose value is the class
Rectangle.

The Bytecodes
The interpreter understands 256 bytecode instructions that fall into five
categories: pushes, stores, sends, returns, and jumps. This section gives
a general description of each type of bytecode without going into detail
about which bytecode represents which instruction. Chapter 28 de-
scribes the .exact meaning of each bytecode. Since more than 256 in-
structions for the interpreter are needed, some of the bytecodes take
extensions. An extension is one or two bytes following the bytecode,
that further specify the instruction. An extension is not an instruction
on its own, it is only a part of an instruction.

E] Push Bytecodes A push bytecode indicates the source of an object
to be added to the top of the interpreter 's stack. The sources include

• the receiver of the message that invoked the CompiledMethod

• the instance variables of the receiver

• the t empora ry frame (the arguments of the message and the tem-
porary variables)

• the literal frame of the CompiledMethod

• the top of the stack (i.e., this bytecode duplicates the top of the
stack)

Examples of most of the types of push bytecode have been included in
the examples. The bytecode that duplicates the top of the stack is used
to implement cascaded messages.

Two different types of push bytecode use the literal frame as their
source. One is used to push literal constants and the other to push the
va lue of shared variables. Literal constants are stored directly in the
literal frame, but the values of shared variables are stored in an Associ-
ation t h a t is pointed to by the literal frame. The following example
method uses one shared variable and one literal constant.

549
The Compiler

in©rementlndex
t lndex ~ Index + 4

ExampleClass incrementlndex
64 push the value of the shared variable in the first literal frame location

(Index) onto the stack
33 push the constant in the second literal frame location (4) onto the stack
176 send a binary message with the selector +
129,192 store the object on top of the stack in the shared variable in the first lit-

eral frame location (Index)
124 return the object on top of the stack as the value of the message

(incrementlndex)

l i teral frame

Association: # Index ~ 260

4

E] Store Bytecodes The bytecodes compiled from an as s ignment ex-
pression end wi th a store bytecode. The bytecodes before the store
bytecode compute the new value of a var iable and leave it on top of the
stack. A store bytecode indicates the var iable whose value should be
changed. The var iables t h a t can be changed are

• the ins tance var iables of the receiver

• t e m p o r a r y var iables

° shared var iables

Some of the store bytecodes remove the object to be stored from the
stack, and others leave the object on top of the stack, af ter s tor ing it.

El Send Bytecodes A send bytecode specifies the selector of a message
to be sent and how m a n y a r g u m e n t s it should have. The receiver and
a r g u m e n t s of the message are t aken off the in te rp re te r ' s stack, the re-
ceiver from below the a rguments . By t h e t ime the bytecode following
the send is executed, the message 's resul t will have replaced its receiver
and a r g u m e n t s on the top of the stack. The detai ls of sending messages
and r e t u r n i n g r e su l t s is the subject of the next sections of this chapter .
A set of 32 send bytecodes refer direct ly to the special selectors listed
earl ier . The other send bytecodes refer to t h e i r selectors in the l i teral

frame.

E] Return Bytecodes When a r e tu rn bytecode is encountered, the
CompiledMethod in which it was found has been complete ly e x e c u t e d .
Therefore a value is r e tu rned for the message t h a t invoked t h a t
CompiledMethod. The value is usual ly found on top of the stack. F o u r
special r e t u r n bytecodes r e t u r n the message receiver (self), true, false,
and nil.

550
The Implemen ta t ion

E] Jump Bytecodes Ordinari ly, the in t e rp re te r executes the bytecodes
sequent ial ly in the order they appear in a CompiledMethod. The jump
bytecodes indicate tha t the next bytecode to execute is not the one fol-
lowing the jump. There a re two variet ies of jump, unconditional and
conditional. The uncondi t ional jumps t ransfer control whenever they
are encountered. The condit ional jumps will only t ransfer control if the
top of the s tack is a specified value. Some of the conditional jumps
t ransfer if the top object on the stack is true and others if it is false.
The j ump bytecodes are used to implement efficient control s t ructures .

The control s t ruc tures tha t are so optimized by the compiler are the
conditional selection messages to Booleans (i fTrue:, i fFalse:, and
ifTrue:ifFalse:), some of the logical operat ion messages to Booleans (and"
and or:), and the conditional repet i t ion messages to blocks (whileTrue:
and whileFalse:). The jump bytecodes indicate the next bytecode to be
executed relat ive to the position of the jump. In o ther words, they tell
the in te rp re te r how m a n y bytecodes to skip. The following method for
Rectangle includesPoint: uses a condit ional jump.

includesPoint: aPoint
origin < = aPoint

ifTrue' [taPoint < corner]

ifFalse' [t fa lse]

Rectangle
0

16

180
155
16

178
124

122

includesPoint:
push the value of the receiver's first instance variable (origin) onto the
stack
push the contents of the first temporary frame location (the argument
aPoint) onto the stack
send a binary message with the selector < =
jump ahead 4 bytecodes if the object on top of the stack is false
push the contents of the first temporary frame location (the argument
aPoint) onto the stack
push the value of the receiver's second instance variable (corner) onto the
stack
send a binary message with the selector <
return the object on top of the stack as the value of the message
(includesPoint:)

return false as the value of the message (includesPoint:)

The Interpreter The Small ta lk-80 in te rp re te r executes the bytecode instruct ions found
in CompiledMethods. The in te rp re te r uses five pieces of informat ion and
repeatedly performs a three-s tep cycle.

551
T h e I n t e r p r e t e r

3 .

The State of the Interpreter

1. The CompiledMethod whose bytecodes are being executed.

2. The location of the next bytecode to be executed in that
CompiledMethod. This is the interpreter 's instruction pointer.

The receiver and arguments of the message that invoked the
CompiledMethod.

4. Any temporary variables needed by the CompiledMethod.

5. A stack.

The execution of most bytecodes involves the interpreter 's stack. Push
bytecodes tell where to find objects to add to the stack. Store bytecodes
tell where to put objects found on the stack. Send bytecodes remove the
receiver and arguments of messages from the stack. When the result of
a message is computed, it is pushed onto the stack.

The Cycle of the Interpreter

1. Fetch the bytecode from the CompiledMethod indicated by the in-
struction pointer.

2. Increment the instruction pointer.

3. Perform the function specified by the bytecode.

As an example of the interpreter 's function, we will trace its execution
of the CompiledMethod for Rectangle center. The state of the interpret-
er will be displayed after each of its cycles. The instruction pointer will
be indicated by an arrow pointing at the next bytecode in the
CompiledMethod to be executed.

D 0 push the value of the receiver's first instance variable (origin) onto the
stack

The receiver, arguments, temporary variables, and objects on the stack
will be shown as normally printed (their responses to printString). For
example, if a message is sent to a Rectangle, the receiver will be shown
as

Receiver 1 O0 @ 1 O0 corner: 200 @ 200

At the start of execution, the stack is empty and the instruction
pointer indicates the first bytecode in the CompiledMethod. This
CompiledMethod does not require temporaries and the invoking mes-
sage did not have arguments, so these two categories are also empty.

: : T

552
T h e I m p l e m e n t a t i o n

Method for Rectangle center
Ib 0 push the value of the receiver's first instance variable (origin) onto the

176
119
185
124

stack
push the value of the receiver's second instance variable (corner) onto the
stack

send a binary message with the selector 4-

push the Smalllnteger 2 onto the stack

send abinary message with the selector /

return the object on top of the stack as the value of the message (center)

Receiver

Arguments

1 O0 @ 1 O0 corner: 200 @ 200

Temporary Variables

Stack

Fol lowing one cycle of t h e i n t e r p r e t e r , t h e i n s t r u c t i o n p o i n t e r has been

a d v a n c e d a n d t h e v a l u e of t h e r ece ive r ' s f i rs t i n s t a n c e v a r i a b l e has

b e e n copied on to t h e s tack.

Method for Rectangle center

0 1

176
119
185
124

push the value of the receiver's first instance variable (origin) onto the
stack

push the value of the receiver's second instance variable (corner) onto the
stack
send a binary message with the selector 4-

push the Smalllnteger 2 onto the stack

send a binary message with the selector /

return the object on top of the stack as the value of the message (center)

Receiver 1 O0 @ 1 O0 corner: 200 @ 200

Arguments

Temporary Variables

Stack 100@ lO0

T h e i n t e r p r e t e r ' s second cycle has a n effect s i m i l a r to t h e first. T h e
t o p of t h e s t a ck is s h o w n t o w a r d t h e b o t t o m of t h e page. This corre-

s p o n d s to t h e c o m m o n l y used c o n v e n t i o n t h a t m e m o r y loca t ions a re

s h o w n wi th a d d r e s s e s i n c r e a s i n g t o w a r d t h e b o t t o m of t h e page.

553
T h e I n t e r p r e t e r

Method for Rectangle center
0 push the value of the receiver's first instance variable (origin) onto the

$ 176
119
185
124

Receiver

stack
push the value of the receiver's second instance variable (corner) onto the
stack
send a binary message with the selector +

push the Smalllnteger 2 onto the stack

send a binary message with the selector /
return the object on top of the stack as the value of the message (center)

1 O0 @ 1 O0 corner: 200 ® 200

Arguments

Temporary Variables

Stack 1 O0 @ 1 O0
200 @ 200

T h e i n t e r p r e t e r ' s t h i r d cycle e n c o u n t e r s a s end bytecode. I t r e m o v e s two

objects f rom t h e s t ack a n d uses t h e m as t h e r ece ive r a n d a r g u m e n t of a
m e s s a g e w i t h se lec tor -t- . T h e p r o c e d u r e fo r s e n d i n g t h e m e s s a g e will

no t be desc r ibed in de ta i l he re . Fo r t h e m o m e n t , i t is on ly n e c e s s a r y to
k n o w t h a t e v e n t u a l l y t h e r e s u l t of t h e -t-- m e s s a g e will be p u s h e d on to

t h e s tack. S e n d i n g m e s s a g e s will be desc r ibed in l a t e r sect ions.

Method for Rectangle center
0 push the value of the receiver's first instance variable (origin) onto the

176
$ 119

185
124

Receiver

stack
push the value of the receiver's second instance variable (corner) onto the
stack
send a binary message with the selector -t--

push the Smallinteger 2 onto the stack
send a binary message with the selector /
return the object on top of the stack as the value of the message (center)

1 O0 @ 1 O0 corner: 200 @ 200

Arguments

Temporary Variables

Stack 300@300

T h e i n t e r p r e t e r ' s n e x t cycle p u s h e s t h e c o n s t a n t 2 on to t h e s tack.

554
The I m p l e m e n t a t i o n

Method for Rectangle center
0 push the value of the receiver's first instance variable (origin) onto the

176
119

t 185
124

Receiver
Arguments
Temporary Variables
Stack

stack

push the value of the receiver's second instance variable (corner) onto the
stack

send a binary message with the selector +
push the Smalllnteger 2 onto the stack
send a binary message with the selector /
return the object on top of the stack as the value of the message (center)

1 O0 @ 1 O0 corner: 200 @ 200

300@300
2

The i n t e r p r e t e r ' s nex t cycle sends a n o t h e r message whose r e su l t re-
places its r ece ive r and a r g u m e n t s on the stack.

Method for Rectangle center
0 push the value of the receiver's first instance variable (origin) onto the

176
119
185

$ 124

Receiver
Arguments
Temporary Variables
Stack

stack

push the value of the receiver's second instance variable (corner) onto the
stack

send a binary message with the selector +
push the Smalllnteger 2 onto the stack
send a binary message with the selector /
return the object on top of the stack as the value of the message (center)

1 O0 @ 1 O0 corner: 200 @ 200

150 @ 150

Contexts

The f inal bytecode r e t u r n s a r e su l t to the cen te r message . The r e su l t is
found on the s t ack (150@150). It is c lear by this point t h a t a r e t u r n

bytecode m u s t involve push ing the r e su l t onto a n o t h e r stack. The de-
ta i ls of r e t u r n i n g a va lue to a message will be descr ibed a f t e r t he de-
scr ip t ion of send ing a message .

Push , s tore, and j u m p bytecodes r equ i r e only smal l changes to the s t a t e
of the i n t e r p r e t e r . Objects m a y be moved to or f rom the s tack, and the
i n s t ruc t ion po in te r is a lways changed; but mos t of t he s t a t e r e m a i n s the
same. Send and r e t u r n bytecodes m a y r equ i r e m u c h l a rge r changes to
t he i n t e r p r e t e r ' s s ta te . W h e n a m e s s a g e is sent , all five pa r t s of the in-

555
The In te rp re te r

t e rpre te r ' s s ta te may have to be changed in order to execute a different
CompiledMethod in response to this new message. The in te rpre te r ' s old
s t a t e m u s t be r emembered because the bytecodes after the send must
be executed af ter the value of the message is re turned.

The in te rp re te r saves its s tate in objects called contexts. There will
be m a n y contexts in the system at any one time. The context t ha t rep-
resents the cur ren t s tate of the in t e rp re te r is called the active context.
When a send bytecode in the active context 's CompiledMethod requires
a new CompiledMethod to be executed, the active context becomes sus-
pended and a new context is created and made active. The suspended
context re ta ins the state associated wi th the original CompiledMethod
unt i l t ha t context becomes active again. A context mus t r emember the
context t ha t it suspended so t ha t the suspended context can be resumed
when a resul t is re turned. The suspended context is called the new con-
text 's sender.

The form used to show the in te rpre te r ' s s tate in the last section will
be used to show contexts as well. The active context will be indicated by
the word Active in its top delimiter. Suspended contexts will say Sus-
pended. For example, consider a context represent ing the execution of
the CompiledMethod for Rectangle rightCenter wi th a receiver of 100@
100 corner: 200@200. The source method for Rectangle rightCenter is

rightCenter
t self right @ self center y

The in te rpre te r ' s s tate following execution of the first bytecode is
shown below. The sender is some other context in the system.

$ 208
112
209
207
187
124

Active
Method for Rectangle rightCenter

112 push the receiver (self) onto the stack
send a unary message with the selector in the first literal (right)
push the receiver (self) onto the stack
send the unary message with the selector in the second literal (center)
send the unary message with the selector y
send the unary message with the selector ®
return the object on top of the stack as the value of the message
(rightCenter)

literal frame
#r ight
#center

Receiver
Arguments
Temporary Variables
Stack
Sender ~,~,.

1 O0 @ 1 O0 corner: 200 @ 200

1 O0 @ 1 O0 corner: 200 @ 200

556
T h e I m p l e m e n t a t i o n

A f t e r t h e n e x t b y t e c o d e is e x e c u t e d , t h a t c o n t e x t w i l l be s u s p e n d e d . T h e

o b j e c t p u s h e d b y t h e f i r s t b y t e c o d e h a s b e e n r e m o v e d to be u s e d as t h e

r e c e i v e r of a n e w c o n t e x t , w h i c h b e c o m e s ac t i ve . T h e n e w a c t i v e c o n t e x t

is s h o w n a b o v e t h e s u s p e n d e d c o n t e x t .

Active

Method for Rectangle right
$ 1 push the value of the receiver's second instance variable (corner) onto the

stack

206

124

Receiver

send a unary message with the selector x

return the object on top of the stack as the value of the message (right)

Arguments

Temporary Variables

Stack

Sender , ~

1 O0 ® 1 O0 corner: 200 ® 200

Suspended

Method for Rectangle rightCenter
112
208

$ 112
209
207
187
124

l iteral frame

#r ight
#cen te r

Receiver

push the receiver (self) onto the stack

send a unary message with the selector in the first literal (right)

push the receiver (self) onto the stack

send the unary message with the selector in the second literal (center)

send the unary message with the selector y

send the unary message with the selector @

return the object on top of the stack as the value of the message
(rightCenter)

1 O0 @ 1 O0 corner: 200 @ 200

Arguments

Temporary Variables

Stack

Sender , ~

557
T h e I n t e r p r e t e r

T h e n e x t cyc le of t h e i n t e r p r e t e r a d v a n c e s t h e n e w c o n t e x t i n s t e a d of

t h e p r e v i o u s one .

Active

Method for Rectangle right
1 push the value of the receiver's second instance variable (corner) onto the

stack

-0 206
124

Receiver

send a unary message with the selector x

return the object on top of the stack as the value of the message (right)

Arguments

Temporary Variables

Stack

Sender ~

1 O0 @ 1 O0 corner: 200 @ 200

200 @ 200

Suspended

Method for Rectangle rightCenter
112 push the receiver (self) onto the stack

208 send a unary message with the selector in the first literal (right)

Ib 112 push the receiver (self) onto the stack

209 send the unary message with the selector in the second literal (center)

207 send the unary message with the selector y

187 send the unary message with the selector @

124. return the object on top of the stack as the value of the message
(rightCenter)

literal frame

#r ight
#center

Receiver 1 O0 @ 1 O0 corner: 200 @ 200

Arguments

Temporary Variables

Stack

Sender

In t h e n e x t cycle , a n o t h e r m e s s a g e is s en t , p e r h a p s c r e a t i n g a n o t h e r

c o n t e x t . I n s t e a d of f o l l o w i n g t h e r e s p o n s e of t h i s n e w m e s s a g e (x), w e

558
T h e I m p l e m e n t a t i o n

wi l l s k i p to t h e p o i n t t h a t t h i s c o n t e x t r e t u r n s a v a l u e (to right). W h e n

t h e r e s u l t of x h a s b e e n r e t u r n e d , t h e n e w c o n t e x t l ooks l i k e th i s :

Active

Method for Rectangle right
1 push the value of the receiver's second instance variable (corner) onto the

stack

206
124

Receiver

Arguments

Temporary Variables

Stack

Sender ~

send a unary message with the selector x

return the object on top of the stack as the value of the message (right)

1 O0 @ 1 O0 corner: 200 @ 200

200

Suspended

Method for Rectangle rightCenter
112 push the receiver (self) onto the stack

208 send a unary message with the selector in the first literal (right)

I) 112 push the receiver (self) onto the stack

209 send the unary message with the selector in the second literal (center)

207 send the unary message with the selector y

187 send the unary message with the selector @

124 return the object on top of the stack as the value of the message
(rightCenter)

literal frame
#r ight
#center

Receiver

Arguments

1 O0 @ 1 O0 corner: 200 @ 200

Temporary Variables

Stack

Sender
. . . .

T h e n e x t b y t e c o d e r e t u r n s t h e v a l u e on t h e t o p of t h e a c t i v e c o n t e x t ' s

s t a c k (200) a s t h e v a l u e of t h e m e s s a g e t h a t c r e a t e d t h e c o n t e x t (right).

T h e a c t i v e c o n t e x t ' s s e n d e r b e c o m e s t h e a c t i v e c o n t e x t a g a i n a n d t h e

r e t u r n e d v a l u e is p u s h e d on i t s s t a c k .

559
The I n t e r p r e t e r

112
208

0 112
209
207
187
124

Active

Method for Rectangle rightCenter
push the receiver (self) onto the stack

send a unary message with the selector in the first literal (right)

push the receiver (self) onto the stack
send the unary message with the selector in the second literal (center)

send the unary message with the selector y
send the unary message with the selector ®
return the object on top of the stack as the value of the message
(rightCenter)

literal frame
#r ight
#center

Receiver

Arguments

1 O0 @ 1 O0 corner: 200 @ 200

Temporary Variables

Stack 200

Sender

BlOck Contexts
T h e c o n t e x t s i l l u s t r a t e d in t h e l as t sec t ion a r e r e p r e s e n t e d in t h e sys-
t e m by i n s t a n c e s of Me thodCon tex t . A M e t h o d C o n t e x t r e p r e s e n t s t h e ex-
e c u t i o n of a Cornp i ledMethod in r e s p o n s e to a message . T h e r e is a n o t h e r
t y p e of c o n t e x t in t h e s y s t e m , w h i c h is r e p r e s e n t e d by i n s t a n c e s of

BlockContext . A BlockContex t r e p r e s e n t s a b lock in a sou rce m e t h o d
t h a t is no t p a r t of a n o p t i m i z e d con t ro l s t r u c t u r e . T h e c o m p i l a t i o n of

t h e o p t i m i z e d con t ro l s t r u c t u r e s was d e s c r i b e d in t he e a r l i e r sec t ion on
j u m p by tecodes . T h e b y t e c o d e s c o m p i l e d f r o m a n o n o p t i m i z e d con t ro l
s t r u c t u r e a r e i l l u s t r a t e d by t h e fo l lowing h y p o t h e t i c a l m e t h o d in Collec-
tion. Th is m e t h o d r e t u r n s a co l lec t ion of t h e c lasses of t h e r e ce ive r ' s ele-

m e n t s .

classes
T sel fco l tect : [:e tement I element class]

Collection classes requires 1 t emporary variable
112 push the receiver (self) onto the stack

137 push the active context (thisContext) onto the stack
118 push the Smalllnteger 1 onto the stack
200 send a single argument message with the selector blockCopy:

164,4. jump around the next 4 bytes
104 pop the top object off of the stack and store in the first temporary frame

location (element)

560
The Implementa t ion

16

199
125
224

124

push the contents of the first temporary frame location (element) onto the
stack
send a unary message with the selector class
return the object on top of the stack as the value of the block
send a single argument message with the selector in the first literal
frame location (collect:)
return the object on top of the stack as the value of the message (classes)

literal frame
¢/: col lect:

A new BlockContext is created by the blockCopy: message to the active
context. The bytecode that pushes the active context was not described
along with the rest of the push bytecodes since the function of contexts
had not been described at tha t point. The a rgument to blockCopy: (1 in
this example) indicates the number of block arguments the block re-
quires. The BlockContext shares much of the state of the active context
tha t creates it. The receiver, arguments , temporary variables,
CompiledMethod, and sender are all the same. The BlockContext has its
own instruction pointer and stack. Upon re turn ing from the biockCopy:
message, the newly created BlockContext is on the stack of the active
context and the next instruction jumps around the bytecodes that de-
scribe the actions of the block. The active context gave the BlockContext
an initial instruction pointer pointing to the bytecode after this jump.
The compiler always uses an extended (two-byte) jump after a
blockCopy: so that the BlockContext's initial instruction pointer is al-
ways two more than the active context's instruction pointer when it re-
ceives the blockCopy: message.

The method for Collection classes creates a BlockContext, but does
not execute its bytecodes. When the collection receives the collect: m e s -
sage, it will repeatedly send value: messages to the BlockContext with
the elements of the collection as arguments . A BlockContext responds to
value: by becoming the active context, which causes i ts bytecodes to be
executed by the interpreter. Before the BlockContext becomes active,
the a rgument to value: is pushed onto the BiockContext's stack. The
first bytecode executed by the BlockContext stores this value in a tem-
porary variable used for the block argument .

A BlockContext can re turn a value in two ways. After the bytecodes
in the block have been executed, the final value on the stack is re-
turned as the value of the message value or value:. The block can also
re turn a value to the message that invoked the CompiledMethod that
created the BlockContext. This is done with the regular re turn
bytecodes. The hypothetical method for Collection containslnstanceOf:
uses both types of re tu rn from a BlockContext.

conta ins lnstanceOf : aClass
self do" ['element I (element isKindOf: aCiass) ifTrue' [ttrue]].
tfatse

Messages

561
The I n t e r p r e t e r

Col lect ion conta ins lnstanceOf : requires 1 temporary variable
112 push the receiver (self) onto the stack
137 push the active context (thisContext) onto the stack
118 push the Smalllnteger 1 onto the stack
200 send a single argument message with the selector blockCopy:

164,8 jump around the next 8 bytes
105 pop the top object off of the stack and store in the second temporary

frame location (element)

17 push the contents of the second temporary frame location (element) onto
the stack

16 push the contents of the first temporary frame location (aClass) onto the
stack

224 send a single argument message with the selector in the first literal
frame location (isKindOf:)

152 pop the top object off of the stack and jump around 1 byte if it is false
121 return true as the value of the message (containslnstanceOf:)
115 push nil onto the stack
125 return the object on top of the stack as the value of the block
203 send the single argument message with the selector do:

135 pop the top object off the stack
122 return falseas the value of the message (containslnstanceOf:)
l i teral frame

~isKindOf:

W h e n a s end b y t e c o d e is e n c o u n t e r e d , t h e i n t e r p r e t e r f inds t h e
C o m p i l e d M e t h o d i n d i c a t e d by t h e m e s s a g e as follows.

1. Find the message receiver. T h e r e c e i v e r is be low t h e a r g u m e n t s on
t h e s tack . T h e n u m b e r of a r g u m e n t s is i n d i c a t e d in t h e s end
by tecode .

2. Access a message dictionary. T h e o r i g ina l m e s s a g e d i c t i o n a r y is
f o u n d in t h e r e c e i v e r ' s class.

3. Look up the message selector in the message dictionary. T h e selec-
t o r is i n d i c a t e d in t h e s end by tecode .

4. I f the selector is found, t h e a s soc i a t ed C o m p i l e d M e t h o d desc r ibes
t h e r e s p o n s e to t h e m e s s a g e .

5. I f the selector is not found, a n e w m e s s a g e d i c t i o n a r y m u s t be
s e a r c h e d (r e t u r n i n g to s t ep 3). T h e n e w m e s s a g e d i c t i o n a r y wil l be
f o u n d in t h e s u p e r c l a s s of t h e l as t c lass w h o s e m e s s a g e d i c t i o n a r y
w a s s e a r c h e d . This cycle m a y be r e p e a t e d s e v e r a l t imes , t r a v e l i n g

up t h e s u p e r c l a s s cha in .

If t h e s e l ec to r is no t f o u n d in t h e r e c e i v e r ' s c lass n o r in a n y of i ts
supe rc l a s se s , a n e r r o r is r e p o r t e d , a n d e x e c u t i o n of t h e b y t e c o d e s follow-

ing t h e s e n d is s u s p e n d e d .

562
The Implemen ta t ion

E] Superclass Sends A var ia t ion of the send bytecodes called super-
sends uses a sl ightly different a lgor i thm to find the CompiledMethod as-
sociated with a message. Every th ing is the same except for the second
step, which specifies the original message dict ionary to search. When a
super-send is encountered, the following second step is substi tuted.

2. Access a message dictionary. The original message dict ionary is
found in the superclass of the class in which the cur ren t ly execut-
ing CompiledMethod was found.

Super-send bytecodes are used when super is used as the receiver of a
message in a source method. The bytecode used to push the receiver
will be the same as if self had been used, but a super-send bytecode will
be used to describe the selector.

As an example of the use of a super-send, imagine a subclass of Rec-
tangle called ShadedRectangle tha t adds an instance var iable named
shade. A Rectangle might respond to the message shade: by producing
a new ShadedRectangle . ShadedRectangle provides a new method for
the message intersect:, r e tu rn ing a ShadedRectangle ins tead of a Rec-
tangle. This method mus t use super to access its own abili ty to actual ly
compute the intersection.

intersect: aRectangle
1' (super intersect: aRectangle)

shade: shade

ShadedRectangle intersect:
112 push the receiver (self) onto the stack
16 push the contents of the first temporary frame location (the argument

aRectangle) onto the stack
133,33 send to super a single argument message with the selector in the second

literal frame location (intersect:)
2 push the value of the receiver's third instance variable (shade) onto the

stack
224 send a single argument message with the selector in the first literal

frame location (shade:)
124 return the object on top of the stack as the value of the message (inter-

sect:)
literal frame

@shade:
#intersect:
Association: #ShadedRectangle --~ ShadedRectangle

It is impor t an t to note tha t the init ial class searched in response to a
super-send will be the superclass of the receiver 's class only if the
CompileclMethod containing the super-send was originally found the re-

563
The Interpre ter

ceiver's class. If the CompiledMethod was originally found in a super-
class of the receiver's class, the search will s tar t in that class's
superclass. Since the interpreter ' s state does not include the class in
which it found each CompiledMethod, tha t information is included in
the CompiledMethod itself. Every CompiledMethod tha t includes a su-
per-send bytecode refers to the class in whose message dictionary it is
found. The last entry of the literal frame of those CompiledMethods
contains an association referring to the class.

Primitive Methods
The interpreter ' s actions after finding a CompiledMethod depend on
whether or not the CompiledMethod indicates tha t a primitive method
may be able to respond to the message. If no primitive method is indi-
cated, a new MethodContext is created and made active as described in
previous sections. If a primitive method is indicated in the
CompiledMethod, the in terpreter may be able to respond to the message
without actually executing the bytecodes. For example, one of the prim-
itive methods is associated with the + message to instances of
S m a l l l n t e g e r .

+ addend
< primitive: 1 >
1' super .-t.- addend

Smalllnteger + associated with primitive # 1
112 push the receiver (self) onto the stack
16 push the contents of the first temporary frame location (the argument ad-

dend) onto the stack
133,32 send to super a single argument message with the selector in the first lit-

eral frame location (+)
124 return the object on top of the stack as the value of the message (+)
literal frame

+

Even if a primitive method is indicated for a CompiledMethod, the
in terpreter may not be able to respond successfully. For example, the
a rgument of the + message might not be another instance of
Smalllnteger or the sum might not be representable by a Smalllnteger. If
t h e in terpreter cannot execute the primitive for some reason, the primi-
tive is said to fail. When a primitive fails, the bytecodes in the
CompiledMethod are executed as if the primitive method had not been
indicated. The method for Smalllnteger + indicates that the + method
in the superclass (Integer) will be used if the primitive fails.

There are about a hundred primitive methods in the system that per-

564,
The Implementation

form four types of operation. The exact function of all of the primitives
will be described in Chapter 29.

1. Arithmetic

2. Storage management

3. Control

4. Input-output

The Object
M e m o r y

The object memory provides the interpreter with an interface to the ob-
jects that make up the Smalltalk-80 virtual image. Each object is asso-
ciated with a unique identifier called its object pointer. The object
memory and interpreter communicate about objects with object point-
ers. The size of object pointers determines the maximum number of ob-
jects a Smalltalk-80 system can contain. This number is not fixed by
anything about the language, b u t the implementation described in this
book uses 16-bit object pointers, allowing 65536 objects to be referenced.
Implementation of the Smalltalk-80 system with larger object refer-
ences will require changing certain parts of the virtual machine specifi-
cation. It is not within the scope of this book to detail the relevant
changes.

The object memory associates each object pointer with a set of other
object pointers, Every object pointer is associated with the object point-
er of a class. If an object has instance variables, its object pointer is also
associated with the object pointers of their values. The individual in-
stance variables are referred to by zero-relative integer indices. The
value of an instance variable can be changed, but the class associated
with an object cannot bechanged. The object memory provides the fol-
lowing five fundamental functions to the interpreter.

1. Access the value of an object's instance variable. The object point-
er of the instance and the index of the instance variable must be
supplied. The object pointer of the instance variable's value is re-
turned.

2. Change the value of an object's instance variable. The object point-
er of the instance and the index of the instance variable must be
supplied. The object pointer of the new value must also be sup-
plied.

3. Access an object's class. The object pointer of the instance must be
supplied. The object pointer of the instance's class is returned.

4. Create a new object. The object pointer of the new object's class

565
The Object Memory

and the number of instance variables it should have must be sup-
plied. The object pointer of the new instance is returned.

5. Find the number of instance variables an object has. The object's
pointer must be supplied. The number of instance variables is re-
turned.

There is no explicit function of the object memory to remove an object
no longer being used because these objects are reclaimed automatically.
An object is reclaimed when there are no object pointers to it from oth-
er objects. This reclamation can be accomplished either by reference
counting or garbage collection.

There are two additional features of the object memory that provide
efficient representation of numerical information. The first of these sets
aside certain object pointers for instances of class Smaillnteger. The sec-
ond allows objects to contain integer values instead of object pointers.

El Representation of Small Integers The instances of class
Smalllnteger represent the i n t ege r s -16384 through 16383. Each of
these instances is assigned a unique object pointer. These object point-
ers a l l have a 1 in the low-order bit position and the two's complement
representation of their value in the high-order 15 bits. An instance of
Smalllnteger needs no instance storage since both its class and its value
can be determined from its object pointer. Two additional functions are
provided by the object memory to convert back and forth between
Smalllnteger object pointers and numerical values.

6 . Find the numerical value represented by a Smalilnteger. The ob-
ject pointer of the Srnalllnteger must be supplied. The two's com-
plement value is returned.

7. Find the Smalllnteger representing a numerical value. The two's
complement value must be supplied. A Smalllnteger object pointer
is returned.

This representation for Smalllntegers implies that there can be 32768
instances of the other classes in the system. It also implies that equality
(=) and equivalence (= =) will be the same for instances of Smaillnteger.
Integers outside the r a n g e - 1 6 3 8 4 through 16383 are represented by
instances of class LargePositivelnteger or LargeNegativelnteger. There
may be several instances representing the same value, so equality and
equivalence are different.

D Collections of Integer Values Another special representation is in-
cluded for objects representing collections of integers. Instead of storing
the object pointers of the Smalllntegers representing the contents of the

J

566
The Implementation

collection, the actual numerical values are stored. The values in these
special collections are constrained to be positive. There are two variet-
ies of collection, one limiting its values to be less than 256 and the oth-
er limiting its values to be less than 65536. The object memory provides
functions analogous to the first five listed in this section, but for objects
whose contents are numerical values instead of object pointers.

The distinction between objects that contain object pointers and
those that contain integer values is never visible to the Smalltalk-80
programmer. When one of these special numerical collections is
accessed by sending it a message, the object pointer of an object repre-
senting the value is returned. The nature of these special collections is
only evident in that they may refuse to store objects that do not repre-
sent integers within the proper range.

The H a r d w a r e The Smalltalk-80 implementation has been described as a virtual ma-
chine to avoid unnecessary hardware dependencies. It is natural ly as-
sumed tha t the hardware will include a processor and more than
enough memory to store the virtual image and the machine language
routines simulating the interpreter a n d object memory. The current
size of the virtual image requires at least a half megabyte of memory.

The size of the processor and the organization of the memory are not
actually constrained by the virtual machine specification. Since object
pointers are 16 bits, the most convenient arrangement would be a
16-bit processor and a memory of 16-bit words. As with the processor
and memory of any system, the faster the better.

The other hardware requirements are imposed by the primitives that
the virtual image depends on. These input-output devices and clocks are
listed below.

1. A bitmap display. It is most convenient if the bitmap being
displayed can be located in the object memory, although this is
not absolutely necessary.

2. A pointing device.

3. Three buttons associated wi th the pointing device. It is most con-
venient if these are physically located on the device.

4. A keyboard, either decoded ASCII or undecoded ALTO.

5. A disk. The standard Smalltalk-80 virtual image contains only a
skeleton disk system that must be tailored to the actual disk used.

6. A millisecond timer.

7. A real time clock with one second resolution.

" . e L m .
• ~ . 0 +

0 ~ + 0

• •

Specification
of the Virtual Machine

Form of the Specification

Object Memory Interface

Objects Used by the Interpreter
Compiled Methods
Contexts
Classes

568
Specification of the Virtual Machine

Chapter 26 described the function of the Smalltalk virtual machine,
which consists of an interpreter and an object memory. This chapter
and the next three present a more formal specification of these two
parts of the virtual machine. Most implementations of the virtual ma-
chine will be written in machine language or microcode. However, for
specification purposes, these chapters will present an implementation of
the virtual machine in Smalltalk itself. While this is a somewhat circu-
lar proposition, every at tempt has been made to ensure that no details
are hidden as a result.

This chapter consists of three sections. The first describes the con-
ventions and terminology used in the formal specification. It also pro-
vides some warnings of possible confusion resulting from the form of
this specification. The second section describes the object memory rou-
tines used by the interpreter. The implementation of these routines will
be described in Chapter 30. The third section describes the three main
types of object that the interpreter manipulates, methods, contexts, and
classes. Chapter 28 describes the bytecode set and how it is interpreted;
Chapter 29 describes the primitive routines.

Form of the
Specification

Two class descriptions named Interpreter and ObjectMemory make up
the formal specification of the Smalltalk-80 virtual machine. The imple-
mentation of Interpreter will be presented in detail in this chapter and
the following two; the implementation of ObjectMemory in Chapter 30.

A potential source of confusion in these chapters comes from the two
Smalltalk systems involved in the descriptions, the system containing
Interpreter and ObjectMemory and the system being interpreted. Inter-
preter and ObjectMernory have methods and instance variables and they
also manipulate methods and instance variables in the system they in-
terpret. To minimize the confusion, we will use a different set of termi-
nology for each system. The methods of Interpreter and ObjectMemory
will be called routines; the word method will be reserved for the meth-
ods being interpreted. Similarly, the instance variables of Interpreter
and ObjectMemory will be called registers; the word instance variable
will be reserved for the instance variables of objects in the system being
interpreted.

The arguments of the routines and the contents of the registers of In-
terpreter and ObjectMemory will almost always be instances of Integer
(Smalllntegers and LargePositivelntegers). This can also be a source of
confusion since there are Integers in the interpreted system. The Inte-
gers that are arguments to routines and contents of registers represent
object pointers and numerical values of the interpreted system. Some of
these will represent the object pointers or values of Integers in the
interpreted system.

569
Form of the Specification

The interpreter routines in this specification will all be in the form
of Small ta lk method definitions. For example

routineName: argumentName
I temporaryVariable I
temporaryVariable ~- self anotherRoutine: argumentName.
1 ~temporaryVariable - 1

The routines in the specification will contain five types of expression.

1. Calls on other routines of the interpreter. Since both the invocation
and definition of the routine are in Interpreter, they will appear as
messages to self.

• self headerOf: newMethod
• self storelnstruct ionPointerValue: value

inContext: contextPointer

2. Calls on routines of the object memory. An Interpreter uses the
name memory to refer to its object memory, so these calls will ap-
pear as messages to memory.

• memory fetchCiassOf: newMethod
• memory storePointer: sender lndex

ofObject: contextPointer
withValue: act iveContext

3. Arithmetic operations on object pointers and numerical values.
Arithmetic operations will be represented by s tandard Small ta lk
ar i thmetic expressions, so they will appear as messages to the
numbers themselves.

• receiverValue + argumentValue
• selectorPointer bitShift: - 1

4. Array accesses. Certain tables mainta ined by the in terpreter are
represented in the formal specification by Arrays. Access to these
will appear as at: and at:put: messages to the Arrays.

• methodCache at: hash
• semaphoreLis t at: semaphore lndex put: semaphorePointer

5. Conditional control structures. The control s t ructures of the virtu-
al machine will be represented by s tandard Small ta lk conditional
control structures. Conditional selections will appear as messages
to Booleans. Conditional repetitions will appear as messages to
blocks.

570
Specification of the Virtual Machine

• i n d e x < l e n g t h i fT rue: [. . .]
• s i z e F l a g = 1 i fT rue: [. . .]

i fFa lse : [...]
• [c u r r e n t C l a s s ~ = N i l P o i n t e r] w h i l e T r u e : [...]

The definition of Interpreter describes the function of the Smalltalk-80
bytecode interpreter; however, the form of a machine language imple-
mentation of the interpreter may be very different, particularly in the
control structures it uses. The dispatch to the appropriate routine to ex-
ecute a bytecode is an example of something a machine language inter-
preter might do differently. To find the right routine to execute, a
machine ianguage interpreter would probably do some kind of address
arithmetic to calculate where to jump; whereas, as we will see, Interpret-
er does a series of conditionals and routine calls. In a machine language
implementation, the routines that execute each bytecode would simply
jump back to the beginning of the bytecode fetch routine when they
were finished, instead of returning through the routine call structure.

Another difference between Interpreter and a machine language im-
plementation is the degree of optimization of the code. For the sake of
clarity, the routines specified in this chapter have not been optimized.
For example, to perform a task, Interpreter may fetch a pointer from the
object memory several times in different routines, when a more opti-
mized interpreter might save the value in a register for later use. Many
of the routines in the formal specification will not be subroutines in a
machine language implementation, but will be written in-line instead.

Object Memory
Interface

Chapter 26 gave an informal description of the object memory. Since
the routines of Interpreter need to interact with the object memory, we
need its formal functional specification. This will be presented as the
protocol specification of class ObjectMemory. Chapter 30 will describe
one way to implement this protocol specification.

The object memory associates a 16-bit object pointer with

1. the object pointer of a class-describing object and

2. a set of 8- or 16-bit fields that contain object pointers or numerical
values.

The interface to the object memory uses zero-relative integer indices to
indicate an object's fields. Instances of Integer are used for both object
pointers and field indices in the interface between the interpreter and
object memory.

571
Object Memory Interface

The protocol of ObjectMemory contains pairs of messages for fetching
and storing object pointers or numer ica l values in an object's fields.

object pointer access
fetchPointer: fieldlndex ofObject: objectPointer

Return the object pointer found in the field
numbered fieldlndex of the object associated
with objectPointer.

storePointer: fieldlndex ofObject: objectPointer withValue: valuePointer
Store the object pointer valuePointer in the
field numbered fieldlndex of the object associ-
ated with objectPointer.

word access
fetchWord: fieldlndex ofObject: objectPointer

Return the 16-bit numerical value found in
the field numbered fieldlndex of the object as-
sociated with objectPointer.

storeWord: fieldlndex ofObject: objectPointer withValue: valueWord
Store the 16-bit numerical value valueWord in
the field numbered fieldlndex of the object as-
sociated with objectPointer.

byte access
fetchByte: bytelndex ofObject: objectPointer

Return the 8-bit numerical value found in the
byte numbered bytelndex of the object associ-
ated with objectPointer.

storeByte: bytelndex ofObject: objectPointer withValue: valueByte
Store the 8-bit numerical value valueByte in
the byte numbered bytelndex of the object as-
sociated with objectPointer.

Note tha t fetchPointer:ofObject: a n d fetchWord:ofObject: will probably
be implemented in an identical fashion, since they both load a 16-bit
quant i ty . However, the implementa t ion of storePointer:ofObject: will be
different from the implemen ta t ion of storeWord:ofObject: since it will
have to perform reference counting (see Chapte r 30) if the object memo-
ry keeps dynamic reference counts. We have ma in ta ined a separa te in-
terface for fetchPointer:ofObject: and fetchWord:ofObject: for the sake of
symmetry .

Even though most of the ma in tenance of reference counts can be
done au tomat ica l ly in the storePointer:ofObject:withValue: routine, there
are some points at which the in t e rp re te r rout ines mus t directly manip-
ula te the reference counts. Therefore, the following two rout ines are in-
cluded in the object memory interface. If an object memory uses only
garbage collection to reclaim unreferenced objects, these rout ines are
no-ops.

reference counting
increaseReferencesTo: objectPointer

Add one to the reference count of the object
whose object pointer is objectPointer.

572
Specif ica t ion of t he V i r t u a l M a c h i n e

decreaseReferencesTo: objectPointer
Subtract one from the reference count of the
object whose object pointer is objectPointer.

Since eve ry object con ta in s the object po in t e r of its class descr ip t ion,
t h a t p o i n t e r could be cons ide red the con ten t s of one of t h e object 's
fields. U n l i k e o t h e r fields, however , an object 's class m a y be fetched,
bu t its va lue m a y not be changed . Given the special n a t u r e of th is
poin ter , it w a s decided not to access it in t he s a m e way. There fo re ,
t h e r e is a special protocol for f e t ch ing an object 's class.

class pointer access.
fetchClassOf: objectPointer Return the object pointer of the class-describ-

ing object for the object associated with
objectPointer.

The l eng th of an object m i g h t also be t h o u g h t of as t he con ten t s of one
of its fields. However , it is l ike the class field in t h a t it m a y not be
changed . T h e r e a r e two messages in the object m e m o r y protocol t h a t
ask for the n u m b e r of words in an object a n d the n u m b e r of bytes in an
object. No te t h a t we h a v e not m a d e a d i s t inc t ion b e t w e e n words and
po in t e r s in th is case since we a s s u m e t h a t t hey bo th fit in exac t ly one
field.

length access
fetchWordLengthOf: objectPointer

Return the number of fields in the object asso-
ciated with objectPointer.

fetchByteLengthOf: objectPointer
Return the number of byte fields in the object
associated with objectPointer.

A n o t h e r i m p o r t a n t service of t he object m e m o r y is to c r ea t e new ob-
jects. The object m e m o r y m u s t be suppl ied w i th a class a n d a l e n g t h
a n d will r e spond wi th a n e w object poin ter . Again, t h e r e a r e t h r e e ver-
sions for c r e a t i n g objects wi th poin ters , words, or bytes.

object creation
instantiateClass: classPointer withPointers: instanceSize

Create a new instance of the class whose ob-
ject pointer is classPointer with instanceSize
fields that will contain pointers. Return the
object pointer of the new object.

instantiateClass: classPointer withWords: instanceSize
Create a new instance of the class whose ob-
ject pointer is classPointer with instanceSize
fields that will contain 16-bit numerical val-
ues. Return the object pointer of the new ob-
ject.

instantiateClass: classPointer withBytes: instanceByteSize
Create a new instance of the class whose ob-
ject pointer is classPointer with room for
instanceByteSize 8-bit numerical values. Re-
turn the object pointer of the new object.

573
Object Memory Interface

Two rout ines of the object m e m o r y allow the ins tances of a class to be
enumera t ed . These follow an a rb i t r a ry order ing of object pointers. Us-
ing the numer ica l order of the pointers themselves is reasonable.

instance enumeration
initiallnstanceOf: classPointer Return the object pointer of the first instance

of the class whose object pointer is
ciassPointer in the defined ordering (e.g., the
one with the smallest object pointer).

instanceAfter: objectPointer Return the object pointer of the next instance
of the same class as the object whose object
pointer is objectPointer in the defined ordering
(e.g., the one with the next larger object point-
er).

Ano the r rout ine of the object m e m o r y allows the object pointers of two
objects to be in terchanged.

pointer swapping
swapPointersOf: firstPointer and: secondPointer

Make firstPointer refer to the object whose ob-
ject pointer was secondPointer and make
secondPointer refer to the object whose object
pointer was firstPointer.

As described in Chap te r 26, integers between - 1 6 3 8 4 and 16383 are
encoded direct ly as object pointers wi th a 1 in the low-order bit position
and the appropr ia te 2's complemen t value stored in the high-order 15
bits. These objects are ins tances of class Smailinteger. A Smalllnteger 's
value, which would ord inar i ly be stored in a field, is ac tua l ly deter-
mined from its object pointer. So ins tead of s tor ing a value in to a
Small lnteger 's field, the in t e rp re t e r mus t request the object pointer of a
Smalllnteger wi th the desired value (using the integerObjectOf: routine).
And ins tead of fetching the value from a field, it mus t request the value
associated wi th the object pointer (using the integerValueOf: routine).
There are also two rout ines t h a t de t e rmine whe the r an object pointer
refers to a Smalllnteger (islntegerObject:) and w h e t h e r a value is in the
r ight range to be represen ted as a Smalllnteger (islntegerValue:). The
function of the isintegerObject: rout ine can also be performed by re-
quest ing the class of the object and seeing if it is Smalllnteger.

integer access
integerValueOf: objectPointer

integerObjectOf: value

isintegerObject: objectPointer

islntegerValue: value

Return the value of the instance of
Smalllnteger whose pointer is objectPointer.
Return the object pointer for an instance of
Smalllnteger whose value is value.
Return true if objectPointer is an instance of
Smalltnteger, false if not.
Return true if value can be represented as an
instance of Smalllnteger, false if not.

The in t e rp re t e r provides two special rout ines to access fields t ha t con-
ta in Smallinteflers. The Ietchlnteger:otObject: rout ine r e tu rns t h e value

574
Specification of the Virtual Machine

of a Small lnteger whose pointer is stored in the specified field. The
check to make sure tha t the pointer is for a Smalllnteger is made for
uses of this routine when non-Smalllntegers can be tolerated. The
primitiveFail routine will be described in the section on primitive rou-
tines.

fetchlnteger: fieldlndex ofObject: objectPointer
I integerPointerl
integerPointer ~- memory fetchPointer: fieldlndex

ofObject: objectPointer.
(memory islntegerObject: integerPointer)

ifTrue: [1'memory integerValueOf: integerPointer]
ifFalse: [1self primitiveFail]

The storelnteger:ofObject:withValue: rou t ine stores the po in ter of the
Small lnteger with specified value in the specified field.

storelnteger: fieldlndex
ofObject: objectPointer
withValue: integerValue

I integerPointerl
(memory islntegerValue: integerValue)

ifTrue: [integerPointer ~ memory integerObjectOf: integerValue.
memory storePointer: fieldtndex

ofObject: objectPointer
withValue: integerPointer]

ifFalse: [1self primitiveFail]

The interpreter also provides a routine to perform a t ransfer of several
pointers from one object to another. It takes the number of pointers to
transfer, and the initial field index and object pointer of the source and
destination objects as arguments.

transfer: count
fromlndex: firstFrom
ofObject: fromOop
tolndex: firstTo
ofObject: toOop

I fromlndex tolndex lastFrom oop I
fromlndex ~ firstFrom.
lastFrom ~- firstFrom -.I-- count.
tolndex ,- firstTo.
[fromlndex < lastFrom] whileTrue:

[oop ,- memory fetchPointer: fromlndex
ofObject: fromOop.

memory storePointer: tolndex
ofObject: toOop
withVafue: oop..

575
Objects Used by the Interpreter

memory storePointer: f romlndex

ofObject: f romOop

withValue: NitPointer.

f romlndex ~ f romlndex + 1.

to lndex ~- to lndex + 1]

The interpreter also provides routines to extract bit fields from numeri-
cal values. These routines refer to the high-order bit with index 0 and
the low-order bit with index 15.

extractBits: f i rstBit lndex to: lastBit lndex of: an lnteger
l ' (anlnteger bitShift: lastBit lndex - 15)

bitAnd: (2 raisedTo: lastBit lndex - f irstBittndex + 1) - 1

highByteOf: an lnteger
t setf extractBits: 0 to: 7

of: anlnteger

IowByteOf: anlnteger
1'self extractBits: 8 to: 15

of: anlnteger

Objects Used
by the
Interpreter

This section describes what might be called the data structures of the
interpreter. Although they are objects, and therefore more than data
structures, the interpreter treats these objects as data structures. The
first two types of object correspond to data structures found in the in-
terpreters for most languages. Methods correspond to programs, subrou-
tines, or procedures. Contexts correspond to stack frames or activation
records. The final structure described in this section, that of classes, is
not used by the interpreter for most languages but only by the compil-
er. Classes correspond to aspects of the type declarations of some other
languages. Because of the nature of Smalltalk messages, the classes
must be used by the interpreter at runtime.

There are many constants included in the formal specification. They
mostly represent object pointers of known objects or field indices for
certain kinds of objects. Most of the constants will be named and a rou-
tine that initializes them will be included as a specification of their val-
ue. As an example, the following routines initialize the object pointers
known to the interpreter.

i nitia iiz eSmall l ntege rs
"' Smal l lntegers '"

MinusOnePointer ~ 65535.

ZeroPointer ~- 1.

OnePointer ~ 3.

TwoPointer ~ 5

576
Specification of the Virtual Machine

init ial izeGuaranteedPointers
" U n d e f i n e d O b j e c t and B o o l e a n s "

Ni lPointer ~- 2.

FalsePointer ~ 4.

TruePointer ~- 6.

" R o o t "

Schedu le rAssoc ia t ionPo in te r ~ 8.

" C l a s s e s "

C lassSt r ingPoin ter ~ 14.

C lassArrayPoin ter ~ 16.

C lassMethodContex tPo in te r ~ 22.

C lassBIockContex tPo in te r ~ 24.

ClassPointPointer ~- 26.

C lassLargePos i t i ve ln tegerPo in ter ~- 28.

C lassMessagePo in te r ~- 32.

C lassCharac terPo in te r ~ 40.

" S e l e c t o r s "

DoesNo tUnde rs tandSe lec to r ~ 42.

CannotRetu rnSe lec to r ~ 44.

Mus tBeBoo leanSe lec to r ~- 52.

" T a b l e s "

Spec ia lSe lec to rsPo in te r ~- 48.

Charac terTab lePo in ter ~- 50

Compiled Methods
The bytecodes executed by the in terpre ter are found in instances of
CompiledMethod. The bytecodes are stored as 8-bit values, two to a
word. In addition to the bytecodes, a CompiledMethod contains some ob-
ject pointers. The first of these object pointers is called the method
header and the rest of the object pointers make up the method's literal
frame. Figure 27.1 shows the s t ructure of a CompiledMethod and the
following routine initializes the indices used to access fields of
C o m p i l e d M e t h o d s .

Figure 27.1

header

literal f rame

I

÷

by tecodes
÷

+

i

577
Objects Used by the Interpreter

i n i t i a l i z e M e t h o d l n d i c e s

"' Class CompiledMethod"
Headerlndex ~ O.
LiteralStart ~ 1

The header is a Smalllnteger that encodes certain information about the
Comp i l edMethod .

h e a d e r O f : m e t h o d P o i n t e r

1memory fetchPointer: Headerlndex
ofObject: methodPointer

The literal frame contains pointers to objects referred to by the
bytecodes. These include the selectors of messages that the method
sends, and shared variables and constants to which the method refers.

l i t e r a l : o f f s e t o f M e t h o d : m e t h o d P o i n t e r

1'memory fetchPointer: offset --t- LiteralStart
ofObject: methodPointer

Following the header and literals of a method are the bytecodes. Meth-
ods are the only objects in the Smalltalk system that store both object
pointers (in the header and literal frame) and numerical values (in the
bytecodes). The form of the bytecodes will be discussed in the next
chapter.

[~] Method Headers Since the method header is a Smal l ln teger , its val-
ue will be encoded in its pointer. The high-order 15 bits of the pointer
are available to encode information; the low-order bit must be a one to
indicate that the pointer is for a Smalllntefler. The header includes four
bit fields that encode information about the CompiledMethod. Figure
27.2 shows the bit fields of a header.

Figure 27.2

I ' ' i ' ' ' ' I I ' ' ' ' ' I] i t i J a l i i I , 1 1

flag temporary large literal
value count context count

flag

The temporary count indicates the number of temporary variables used
by the CompiledMethod. This includes the number of arguments.

t e m p o r a r y C o u n t O f : m e t h o d P o i n t e r

Tsetf extractBits: 3 to: 7
of: (self headerOf: methodPointer)

The large context flag indicates which of two sizes of MethodContext are
needed. The flag indicates whether the sum of the maximum stack

578
Specification of the Vir tual Machine

I
depth and the number of t emporary variables needed is grea ter than
twelve. The smaller MethodContexts have room for 12 and the larger
have room for 32.

largeContextFlagOf: methodPointer
tsetf extractBits: 8 to: 8

of: (self headerOf: methodPointer)

The literal count indicates the size of the MethodContex t ' s l i teral frame.
This, in turn, indicates where the MethodContext's bytecodes start .

literalCountOf: methodPointer
t self literalCountOfHeader: (self headerOf: methodPointer)

l iteralCountOfHeader: headerPointer
tself extractBits: 9 to: 14

of: headerPointer

The object pointer count indicates the total number of object pointers in
a MethodContext, including the header and li teral frame.

objectPointerCountOf: methodPointer
r(self literalCountOf: methodPointer) + LiteralStart

The following routine re turns the byte index of the first bytecode of a
Compi ledMethod.

initiallnstructionPointerOfMethod: methodPointer
t((setf literalCountOf: methodPointer) + LiteralStart) . 2 -t- 1

The flag value is used to encode the number of a rguments a
Compi ledMethod takes and whether or not it has an associated primi-
tive routine.

flagValueOf: methodPointer
1"self extractBits: 0 to: 2

of: (self headerOf: methodPointer)

The eight possible flag values have the following meanings:

flag value meaning

0-4

5

6

no primitive and 0 to
4 arguments

primitive return of self
(0 arguments)

primitive return of
an instance variable
(0 arguments)

Figure 27.3

Figure 27.4

579
Objects Used by the Interpre ter

a header extension
contains the number
of arguments and a
primitive index

Since the majority of CompiledMethods have four or fewer arguments
and do not have an associated primitive routine, the flag value is usual-
ly simply the number of arguments.

D Special Primitive Methods Small ta lk methods tha t only re turn the
receiver of the message (self)produce CompiledMethods tha t have no
literals or bytecodes, only a header with a flag value of 5. In similar
fashion, Small ta lk methods tha t only re turn the value of one of the re-
ceiver's instance variables produce CompiledMethods tha t contain only
headers with a flag value of 6. All other methods produce
CompiledMethods with bytecodes. When the flag value is 6, the index of
the instance variable to re turn is found in the header in the bit field or-
dinarily used to indicate the number of temporary variables used by the
CornpiledMethod. Figure 27.3 shows a CompiledMethod for a Small talk
method tha t only re turns a receiver instance variable.

II ~ iIO l
! 1

flag
value

I I I
l I I

field
index

', ! 'o 'o 'o ' , , ,o'o, , 'o,'o111

The following routine re turns the index of the field representing the in-
stance variable to be re turned in the case that the flag value is 6.

f ie ldlndexOf: methodPointer
t self extractBits: 3 to 7

of: (self headerOf methodPointer)

E] Method Header Extensions If the flag value is 7, the next to last
literal is a header extension, which is another Smatllnteger. The header
extension includes two bit fields tha t encode the a rgument count and
primitive index of the CompiledMethod. Figure 27.4 shows the bit fields
of a header extension.

I I i i I I I I ! I i i

a rgument primitive
count index

The following routines are used to access a header extension and its bit
fields.

580
Specification of the Vir tual Machine

headerExtensionOf: methodPointer
I l i teralCountl
literalCount ~- self literalCount©f: methodPointer.
tself literal: l i teralCount- 2

ofMethod: methodPointer
argumentCountOf: methodPointer

1 flagValue I
flagValue ~ self flagVatueOf: methodPointer.
flagValue < 5

ifTrue: [tflagValue].
flagValue < 7

ifTrue: [tO]
ifFalse: [tself extractBits: 2 to: 6

of: (self headerExtensionOf: methodPointer)]
primitivelndexOf: methodPointer

I ffagValue I
flagValue ~ self flagValueOf: methodPointer.
f lagVatue=7

ifTrue: [tself extractBits: 7 to: 14
of: (self headerExtensionOf: methodPointer)]

ifFalse: [tO]

Any CompiledMethod tha t sends a superclass message (i.e., a message to
super) or contains a header extension, will have as its las t l i teral an As-
sociation whose value is the class in whose message dictionary the
CompiledMethod is found. This is called the method class and is
accessed by the following routine.

methodClassOf: methodPointer
I literalCount association I
literalCount ~- self literalCount©f: methodPointer,
association ~ self literal: l i teralCount- 1

ofMethod: methodPointer.
tmemory fetchPointer" Valuelndex

of©bject: association

An example of a CompiledMethod whose li teral frame contained a
method class was given in the last chapter. The CompiledMethod for t h e
intersect: message to ShadedRectangle was shown in the section of the
last chapter called Messages.

Contexts

The in terpre ter uses contexts to represent the state of its execution of
CompiledMethods and blocks. A context can be a MethodContext or a
BlockContext. A MethodContext represents the execution of a
CompiledMethod tha t was invoked by a message. Figure 27.5 shows a
MethodContex t and its Compi ledMethod.

581
Objects Used by the In te rpre te r

Figure 27.5

sender

instruction pointer

stack pointer

method

(unused)

receiver

arguments

other
temporaries

stack
contents

header

literal frame

r ÷
bytecodes

t " t I

A B l o c k C o n t e x t represents a block encountered in a C o m p i l e d M e t h o d . A
BlockContext refers to the MethodContext whose CompiledMethod con-
t a ined the block it represents. This is called the BlockContext's home.
Figure 27.6 shows a BlockContext and its home.

The indices used to access the fields of contexts are initialized by the
following routine.

initializeContextlndices
"C lass MethodContext"

Sendertndex ~ 0.

lnstructionPointerlndex ~ 1 .

StackPointerlndex ,- 2.

Methodlndex ,-- 3.

Receiverlndex ~- 5.

TempFrameStar t ~- 6.

" Class BlockContext"

Callerlndex ~- 0.

BlockArgumentCount lndex ~ 3.

tnitiallPlndex ~- 4.

Homelndex ~ 5

Both kinds of context have six fixed fields corresponding to six named
instance variables. These fixed fields are followed by some indexable
fields. The indexable fields are used to store the t emporary frame (argu-
ments and temporary variables) followed by the contents of the evalua-
tion stack. The following routines are used to fetch and store the
instruct ion pointer and stack pointer stored in a context.

582
Specif ica t ion of t he V i r t u a l M a c h i n e

Figure 27.6

sender

instruction pointer

stack pointer

method
(unused)

receiver

arguments

other
temporaries

stack
contents

he

literal frame ~ /

, ~
÷ -

bytecodes
÷

caller "

instruction pointer
stack pointer

argument count

initial i. p.

home

stack
contents m ~

instructionPointerOfContext: contextPointer
1self fetchlnteger: InstructionPointerlndex

ofObject: contextP.ointer
storelnstructionPointerValue: value inContext: contextPointer

self storelnteger: InstructionPointertndex
ofObject: contextPointer
withValue: value

stackPointerOfContext: contextPointer
1"self fetchlnteger: StackPointerlndex

ofObject: contextPointer

583
O b j e c t s U s e d by t h e I n t e r p r e t e r

storeStackPointerValue: value inContext: contextPointer
self storelnteger: StackPointerlndex

ofObject: contextPointer
withValue: value

A BlockContext s t o r e s t h e n u m b e r of b l o c k a r g u m e n t s i t e x p e c t s in o n e

of i t s f ie lds .

argumentCountOfBlock: blockPointer
1'self fetchlnteger: BlockArgumentCountlndex

ofObject: blockPointer

The context t ha t represents the Compi ledMethod or b lock cu r ren t l y be-
ing e x e c u t e d is c a l l e d t h e active context. T h e i n t e r p r e t e r c a c h e s in i ts

r e g i s t e r s t h e c o n t e n t s of t h e p a r t s of t h e a c t i v e c o n t e x t i t u s e s m o s t of-

t e n . T h e s e r e g i s t e r s a re :

act iveContext

homeContext

method

receiver

instructionPointer

stackPointer

Context-related Registers of the Interpreter

This is the active context itself. It is either a
MethodContext or a BlockContext.

If the active context is a MethodContext, the home context
is the same context. If the active context is a BlockContext,
the home context is the contents of the home field of the
active context. This will always be a MethodContext.

This is the CompiledMethod that contains the bytecodes the
interpreter is executing.

This is the object that received the message that invoked
the home context's method.

This is the byte index of the next bytecode of the method
to be executed.

This is the index of the field of the active context contain-
ing the top of the stack.

W h e n e v e r t h e a c t i v e c o n t e x t c h a n g e s (w h e n a n e w Compi ledMethod is

i n v o k e d , w h e n a C o m p i l e d M e t h o d r e t u r n s o r w h e n a p r o c e s s s w i t c h oc-

curs) , a l l of t h e s e r e g i s t e r s m u s t be u p d a t e d u s i n g t h e f o l l o w i n g r o u t i n e .

fetchContextRegisters
(self isBIockContext: activeContext)

ifTrue: [homeContext ~ memory fetchPointer: Hometndex
ofObject: activeContext]

ifFalse: [homeContext ~ activeContext].
receiver ,-- memory fetchPointer: Receiverlndex

ofObject: homeContext.
method ~ memory fetchPointer: Methodlndex

ofObject: homeContext.
instructionPointer ,- (self instructionPointerOfContext: activeContext)- 1.
stackPointer

(self stackPointerOfContext: activeContext) 4--- TempFrameStart - 1

584
Specification of the Vir tual Machine

Note tha t the receiver and method are fetched from the homeContext
and the instructionPointer and stackPointer are fetched f rom the
activeContext. The in terpre ter tells the difference between
MethodContexts and BiockContexts based on the fact tha t
MethodContexts store the method pointer (an object p o i n t e r) a n d
BlockContexts store the number of block a rguments (an integer pointer)
in the same field. If this location contains an integer pointer, the con-
text is a BlockContext; otherwise, it is a MethodContext. The distinction
could be made on the basis of the class of the context, but special provi-
sion would have to be made for subclasses of MethodContext and
BlockContext.

isBIockContext: contextPointer
t methodOrArguments I
methodOrArguments ,- memory fetchPointer: Methodlndex

ofObject: contextPointer.
1'memory islntegerObject: methodOrArguments

Before a new context becomes the active context, the values of the in-
struction pointer and stack pointer must be stored into the active con-
text with the following routine.

storeContextRegisters
self storelnstructionPointerValue: instructionPointer + 1

inContext: activeContext.
self storeStackPointerValue: stackPointer - TempFrameStart + 1

inContext: activeContext

The values of the other cached registers do not change so they do not
need to be stored back into the context. The instruction pointer stored
in a context is a one-relative index to the method's fields because
subscripting in Smal l ta lk (i.e., the at: message) takes one-relative indi-
ces. The memory, however, uses zero-relative indices; so the
fetchContextRegisters routine subt rac ts one to convert it to a memory
index and the storeContextRegisters routine adds the one back in. The
stack pointer stored in a context tells how far the top of the evaluation
stack is beyond the fixed fields of the context (i.e., how far after the
s tar t of the t emporary frame) because subscripting in Smal l ta lk takes
fixed fields into account and fetches from the indexable fields after
them. The memory, however, wants an index relative to the s ta r t of the
object; so the fetchContextRegisters routine adds in the offset of the
s tar t of the t emporary frame (a constant) and the storeContextRegisters
rout ine subtracts the offset.

The following routines perform various operations on the stack of the
active context.

585
Objects Used by the In te rpre te r

push: object
stackPointer ~ stackPointer + 1.
memory storePointer: stackPointer

ofObject: activeContext
withValue: object

popStack
t stackTop I
stackTop ~ memory fetchPointer: stackPointer

ofObject: activeContext.
stackPointer ~- s tackPointer- 1.
tstackTop

stackTop
1memory fetchPointer: stackPointer

ofObject: activeContext
stackValue: offset

tmemory fetchPointer: stackPointer-offset
ofObject: activeContext

pop: number
stackPointer ~ s tackPointer- number

unPop: number
stackPointer ~ stackPointer + number

The active context register must count as a reference to the par t of the
object memory tha t deallocates unreferenced objects. If the object mem-
ory main ta ins dynamic reference counts, the routine to change active
contexts must perform the appropriate reference counting.

newActiveContext: aContext
self storeContextRegisters.
memory decreaseReferencesTo: activeContext.
activeContext ~- aContext.

memory increaseReferencesTo: activeContext.
self fetchContextRegisters

The following routines fetch fields of contexts needed by the in terpre ter
infrequently enough tha t they are not cached in registers. The sender is
the context to be re turned to when a CompiledMethod re turns a value
(either because of a ~'t" or at the end of the method). Since an explicit
r e tu rn from within a block should re tu rn from the CompiledMethod
enclosing the block, the sender is fetched from the home context.

sender
1memory fetchPointer: Senderlndex

ofObject: homeContext

The caller is the context to be re turned to when a BlockContext re turns
a value (at the end of the block).

586
Specification of the Vir tual Machine

c a l l e r

1'memory fetchPointer: Senderlndex
ofObject: activeContext

Since temporar ies referenced in a block are the same as those refer-
enced in the CompiledMethod enclosing the block, the temporar ies are
fetched from the home context.

. t e m p o r a r y : o f f s e t

1'memory fetchPointer: offset + TempFrameStart
ofObject: homeContext

The following routine provides convenient access to the literals of the
current ly executing CompiledMethod.

, l i t e r a l : o f f s e t •

1" self literal: offset
of Method: method

Classes
The in terpre ter finds the appropria te CompiledMethod to execute in re-
sponse to a message by searching a message dictionary. The message
dictionary is found in the class of the message receiver or one of the
superclasses of tha t class. The s t ruc ture of a class and its associated
message dictionary is shown in Figure 27.7. In addition to the message
dictionary and superclass the in terpre ter uses the class's instance speci-
fication to de termine its instances' memory requirements . The other
fields of a class are used only by Smal l ta lk methods and ignored by the
interpreter . The following routine initializes the indices used to access
fields of classes and their message dictionaries.

Figure 27.7

superclass t
message dict.
instance spec.

tally
method array

selectors
m

m

m m

m m

m m

methods

587
Objects Used by the In t e rp re t e r

initializeClasslndices
" Class C lass "

Superc lass lndex ,- 0.

MessageDic t ionary lndex ~ 1.

InstanceSpeci f icat iontndex ~ 2.

"Fields of a message d ic t ionary"

MethodArray lndex ~- 1.

SelectorStart ~- 2

The in t e rp re t e r uses several registers to cache the s ta te of the message
lookup process.

Class-related Registers of the Interpreter

m e s s a g e S e l e c t o r

a r g u m e n t C o u n t

n e w M e t h o d

p r i m i t i v e l n d e x

This is the selector of the message being sent. It is always
a Symbol.

This is the number of arguments in the message currently
being sent. It indicates where the message receiver can be
found on the stack since it is below the arguments.

This is the method associated with the messageSelector.

This is the index of a primitive routine associated with
newMethod if one exists.

A message dic t ionary is an I den t i t yD i c t i ona ry . I d e n t i t y D i c t i o n a r y is a sub-
class of Set wi th an addi t ional Array conta in ing values associated wi th
the contents of the Set. The message selectors are stored in the indexed
ins tance var iables inher i ted from Set. The CompiledMethods are stored
in an Array added by IdentityDictionary. A CompiledMethod has the same
index in t ha t Array t h a t its selector has in the indexable var iables of
the d ic t ionary object itself. The index at which to store the selector and
CompiledMethod are computed by a hash function.

The selectors are ins tances of Symbol, so they m a y be tested for
equal i ty by tes t ing the i r object pointers for equali ty. Since the object
pointers of Symbols d e t e r m i n e equali ty, the hash function m a y be a
function of the object pointer. Since object pointers are al located quasi-
randomly , the object pointer itself is a reasonable hash function. The
pointer shifted r ight one bit will produce a be t te r hash function, since
all object pointers o ther t han Smalllntegers are even.

hash: objectPointer
l 'objectPointer bitShift: -- 1

The message selector lookup assumes t ha t methods have been put into
the dic t ionary using the same hash ing function. The hash ing a lgor i thm
reduces the original hash function modulo the n u m b e r of indexable lo-
cations in the dictionary. This gives an index in the dictionary. To
make the computa t ion of the modulo reduct ion simple, message diction-

588
Specification of the Virtual Machine

aries have an exact power of two fields. Therefore the modulo calcula-
tion can be performed by masking off an appropriate number of bits. If
the selector is not found at the initial hash location, successive fields
are examined until the selector is found or a nil is encountered. If a nil
is encountered in the search, the selector is not in the dictionary. If the
end of the dictionary is encountered whi le searching, the search wraps
around and continues with the first field.

The following routine looks in a dictionary for a CompiledMethod as-
sociated with the Symbol in the messageSelector register. If it finds the
Symbol, it stores the associated CompiledMethod's pointer into the
newMethod register, its primitive index into the primitivelndex register
and re turns true. If the Symbol is not found in the dictionary, the rou-
t ine re turns false. Since finding a nil or an appropriate Symbol are the
only exit conditions of the loop, the routine must check for a full dic-
t ionary (i.e., no nils). It does this by keeping t rack of whether i t has
wrapped around. If the search wraps around twice, the selector is not in
the dictionary.

IookupMethodlnDictionary: dictionary
I length index mask wrapAround nextSelector methodArray I
length ~ memory fetchWordLengthOf: dictionary.
mask ~- l eng th - SelectorStart- 1.
index ~ (mask bitAnd: (self hash: messageSelector)) + SelectorStart.
wraparound ~ false.
[true] whileTrue:

[nextSelector ~ memory fetchPointer: index
of Object: dictionary.

nextSelector=NitPointer ifTrue: [tfalse].
nextSetector = messageSelector

ifTrue: [methodArray ~ memory fetchPointer: MethodArraylndex
of Object: dictionary.

newMethod ~-- memory fetchPointer: index-SetectorStart
ofObject: methodArray.

primitivelndex ~- self primitivelndex©f: newMethod.
ttrue],

index ~- index + 1.
index=length

ifTrue: [wrapAround ifTrue: [tfalse].
wraparound ~- true.
index ~ SelectorStart]]

This routine is used in the following routine to find the method a class
associates with a selector. If the selector is not found in the initial
class's dictionary, it is looked up in the next class on the superclass
chain. The search continues up the superclass chain until a method is
found or the superclass chain is exhausted.

589
Objects Used by the In terpre ter

IookupMethodlnClass: class
I currentClass dictionary t
currentClass ~- class.
[currentClass,--.,= NilPointer] whileTrue:

[dictionary ~ memory fetchPointer: MessageDictionarylndex
ofObject: currentClass.

(self IookupMethodlnDictionary: dictionary)
ifTrue: [ttrue].

currentCtass ~ self superclassOf: currentClass].
messageSelector = DoesNotUnderstandSelector

ifTrue: [self error: ' Recursive not understood error encountered'].
self createActualMessage.
messageSelector ~ DoesNotUnderstandSelector.
1'self IookupMethodlnCfass: class

superclassOf: classPointer
1'memory fetchPointer: Superclasstndex

ofObject: classPointer

The interpreter needs to do something out of the ordinary when a mes-
sage is sent to an object whose class and superclasses do not contain a
CompiledMethod associated with the message selector. In keeping with
the philosophy of Smalltalk, the in terpreter sends a message. A
CompiledMethod for this message is guaranteed to be found. The inter-
preter packages up the original message in an instance of class Mes-
sage and then looks for a CompiledMethod associated with the selector
doesNotUnderstand:. The Message becomes the single i a rgument for the
doesNotUnderstand: message. The doesNotUnderstand: message is de-
fined in Object with a CompiledMethod tha t notifies the user. This
CompiledMethod can be overridden in a. user-defined class to do some-
thing else. Because of this, the iookupMethodlnClass: routine will al-
ways complete by storing a pointer to a CompiledMethod in the
newMethod register.

createActualMessage
I argumentArray message I
argumentArray ~- memory instantiateClass: ClassArrayPointer

withPointers: argumentCount.
message ~- memory instantiateClass: ClassMessagePointer

withPointers: self messageSize.
memory storePointer: MessageSelectorlndex

of Object: message
withValue: messageSelector.

memory storePointer: MessageArgumentslndex
of Object: message
withValue: argumentArray.

590
Specification of the Virtual Machine

self transfer: argumentCount
fromField: stackPointer- (argumentCount- 1)
ofObject: activeContext
toField: 0
ofObject: argumentArray.

self pop: argumentCount.
self push: message.
argumentCount ~ 1

The following routine initializes the indices used to access fields of a
Message.

initializeMessagelndices
MessageSelectorlndex ~ 0.
MessageArgumentslndex ,- 1.
MessageSize ~ 2

The instance specification field of a class contains a Smalllnteger pointer
that encodes the following four pieces of information:

1. Whether the instances' fields contain object pointers or numerical
values

2. Whether the instances' fields are addressed in word or byte quan-
tities

.

3. Whether the instances have indexable fields beyond their fixed
fields

4. The number of fixed fields the instances have

Figure 27.8 shows how this information is encoded in the instance spec-
ification.

Figure 27.8

! I I i o ! : :
1 I

pointers I indexable
words

' ' ' ' ' ' ' ' 111 1 1 1 1 1 1 I 1

number of fixed fields

The four pieces of information are not independent. If the instances'
fields contain object pointers, they will be addressed in word quantities.
If the instances' fields contain numerical values, they will have
indexable fields and no fixed fields.

instancespecificationOf: classPointer
tmemory fetchPointer: Instancespecificationlndex

ofObject classPointer

591
Objects Used by the Interpreter

isPointers: classPointer
I pointersFlag I
pointersFlag ~ self extractBits: 0 to: 0

of: (self instanceSpecif icationOf: classPointer).
lpointersFlag = 1

isWords: classPointer
I wordsFlag I
wordsFlag ~- self extractBits: 1 to: 1

of: (self instanceSpecif icationOf: classPointer).
twordsFlag = 1

islndexable: classPointer
I indexab leF lag l
indexableFlag ~ self extractBits: 2 to: 2

of: (self instanceSpecif icationOf: classPointer).
l ' indexableFlag = 1

f ixedFieldsOf: classPointer
tsetf extractBits: 4 to: 14

of: (self instanceSpecif icationOf: classPointer)

Note: the instance specification of C o m p i l e d M e t h o d does not accurately
reflect the s t ructure of its instances since CompiledMethods are not ho-
mogeneous. The instance specif icat ionsays tha t the instances do not
contain pointers and are addressed by bytes. This is t rue of the
bytecode section of a CompiledMethod only. The storage manager needs
to know tha t CompiledMethods are special and actually contain some
pointers. For all other classes, the instance specification is accurate.

÷

÷

÷

÷
÷

4, ~ 4, 41"

÷

• " .4J,
4-

i , , :
not ÷ ÷

e~. v: •

÷
+

÷ +*+ t

÷ ÷
4"

° O" ÷ O "1"1"'4"
4.

÷ O , O ÷

÷ ÷ : O ÷

÷ ÷ ÷ ÷

÷ ÷ ÷ ~ ÷

÷ **
÷

4"4. ÷

÷ ÷

4.

÷

4.

÷

4"

28
Formal Specification
of the Interpreter

S t a c k B y t e c o d e s

J u m p B y t e c o d e s

S e n d B y t e c o d e s

R e t u r n B y t e c o d e s

594
Formal Specification of the In terpre ter

The main loop of the Smalltalk-80 in terpreter fetches bytecodes from a
CompiledMethod sequentially and dispatches to routines tha t perform
the operations the bytecodes indicate. The fetchByte routine fetches the
byte indicated by the active context's instruction pointer and incre-
ments the instruction pointer.

fetchByte
I byte I
byte ~--- memory fetchByte: instructionPointer

of Object: method.
instructionPointer ~ instructionPointer -t- 1.
tbyte

Since process switches are only allowed between bytecodes, the first ac-
tion in the interpreter ' s main loop is to call a routine tha t switches pro-
cesses if necessary. The checkProcessSwitch routine will be described
with the process scheduling primitive routines in the next chapter. Af-
ter checking for a process switch, a bytecode is fetched (perhaps from a
new process), and a dispatch is made to the appropriate routine.

interpret
[true] whileTrue: [self cycle]

cycle
self checkProcessSwitch.
currentBytecode ~ self fetchByte.
self dispatchOnThisBytecode

The table on page 595 lists the Smalltalk-80 bytecodes. The bytecodes
are listed in ranges tha t have similar function. For example, the first
range includes the bytecodes from 0 through 15 and its entry is shown
below.

0-15 0000 i i i i Push Receiver Variable # i i i i

Each range of bytecodes is listed with a bit pat tern and a comment
about the function of the bytecodes. The bit pa t tern shows the binary
representat ion of the bytecodes in the range. 0s and ls are used in bit
locations tha t have the same value for all bytecodes in the range. Since
all numbers from 0 through 15 have four zeros in their high order bits,
these bits are shown as 0000. Lower case letters are used in bit loca-
tions whose values vary within the range. The value of each letter can
be ei ther 0 or 1. The letters used in the pat tern can be included in the
comment to refer to the value of those bits in a specific bytecode in the
range. The comment for the first range of bytecodes indicates tha t the
low-order four bits of the bytecode specify the index of one of the re-
ceiver's variables to be pushed on the stack.

The variable bits in a bit pat tern are also sometimes used as a zero-
relative index into a list included in the comment. For example, the en-
try

595
Formal Specification of the Interpreter

120-123 011110ii Return (receiver, true, false, nil) [i i] From Message

specifies that the bytecode 120 returns the receiver, bytecode 121 re-
turns true, bytecode 122 returns false and bytecode 123 returns nil.

The entries for bytecodes that take extensions will include more than
one bit pattern. For example,

131 10000011
j j j k k k k k

Send Literal Selector @k k k k k With j jj Arguments

There are four basic types of bytecode.

• s t ack bytecodes move object pointers between the object memory
and the active context's evaluation stack. These include both the
push bytecodes and store bytecodes described in Chapter 26.

• j u m p bytecodes change the instruction pointer of the active context.

• s e n d bytecodes invoke CompiledMethods or primitive routines.

• r e tu rn bytecodes terminate the execution of CompiledMethods.

Not all of the bytecodes of one type are contiguous, so the main dis-
patch has seven branches each of which calls one of four routines
(stackBytecode, jumpBytecode, sendBytecode, or returnBytecode). These
four routines will be described in the next four subsections.

d i s p a t c h O n T h i s B y t e c o d e
(currentBytecode between: 0 and: 119) ifTrue: [tself stackBytecode].
(currentBytecode between: 120 and: 127) ifTrue: [tself returnBytecode].
(currentBytecode between: 128 and: 130) ifTrue: [tself stackBytecode].
(currentBytecode between: 131 and: 134) ifTrue: [tsetf sendBytecode].
(currentBytecode between: 135 and: 137) ifTrue: [tsetf stackBytecode].
(currentBytecode between: 144 and: 175)ifTrue: [tself jumpBytecode].
(currentBytecode between: 176 and: 255)ifTrue: [tself sendBytecode]

The bytecodes 176-191 refer to Arithmetic Messages. These are

-I--, m, <, >, < =
bitOr:

, > = , = , ~ = , *, /, \ k , ®, bitShift:, / / , bitAnd:,

The bytecodes 192-207 refer to Special Messages. These are

at:* at:put:* size*, next* nextPut:* atEnd* , , ~ , |

value, value:, do:* * y* , new*, new:*, x ,
- - , class, biockCopy:,

Selectors indicated with an asterisk (*) can be changed by compiler
modification.

596
F o r m a l Specification of the I n t e r p r e t e r

The Smalltalk-80 Bytecodes

Range Bits Function

0-15
16-31
32-63
64-95
96-103
104-111
112-119
120-123
124-125
126-127
128

129

130

131

132

133

134

135
136
137
138-143
144-151
152-159
160-167

168-171

172-175

176-191
192-207
208-223
224-239
240-255

O 0 0 0 i i i i
O 0 0 1 i i i i
O 0 1 i i i i i
0 1 0 i i i i i
0 1 1 0 0 i i i
0 1 1 0 1 i i i
01 1 1 0 i i i
0 1 1 1 1 0 i i
0 1 1 1 1 1 0 i
0 1 1 1 1 1 1 i
10000000
j j k k k k k k
10000001
j j k k k k k k
10000010
j j k k k k k k
10000011
j j j k k k k k
1000010O

J l l J J J ' l l
k k k k k k k k
10000101
j j j k k k k k
10000110
.

l J l J J l J J
k k k k k k k k
10000111
10001000
10001001

1 O0 1 0 i i i
1 0 0 1 1 i i i
1 0 1 0 0 i i i

J J J J J J J J
1 0 1 0 1 0 i i
.

J J J J J J J J
1 0 1 0 1 1 i i

J j J J J J J J
1 0 1 1 i i i i
1 1 0 0 i i i i
1 ! 0 1 i i i i
1 1 1 0 i i i i
1 1 1 1 i i i i

Push Receiver Variable ~ i i i i
Push Temporary Location ~ i i i i
Push Literal Constant # i i i i i
Push Literal Variable ~ i i i i i
Pop and Store Receiver Variable ~ i i i
Pop and Store Temporary Location ~ i i i
Push (receiver, true, false, nil,-1, 0, 1, 2) [i i i]
Return (receiver, true, false, nil) [i i] From Message
Return Stack Top From (Message, Block) [i]
unused
Push (Receiver Variable, Temporary Location, Lit-
eral Constant, Literal Variable) [j j] ~ k k k k k k
Store (Receiver Variable, Temporary Location, Ille-
gal, Literal Variable) [j j] @k k k k k k
Pop and Store (Receiver Variable, Temporary
Location, Illegal, Literal Variable) [j j] # k k k k k k
Send Literal Selector # k k k k k With j jj Arguments

Send Literal Selector # k k k k k k k k With j j j j j j j j
Arguments

Send Literal Selector ~ k k k k k To Superclass With
j jj Arguments
Send Literal Selector # k k k k k k k k To Superclass
With j j j j j j j j Arguments

Pop Stack Top
Duplicate Stack Top
Push Active Context
unused
Jump i i i+ 1 (i.e., 1 through 8)
Pop and Jump On False i i i+ 1 (i.e., 1 through 8)
Jump (i i i-4).256 + j j j j j j j j

Pop and Jump On True i i*256-I-jj j j j j j j

Pop and Jump On False i i.256 + j j j j j j j j

Send Arthmetic Message #:i i i i
Send Special Message ~ i i i i
Send Literal Selector ~ i i i i With No Arguments
Send Literal Selector ~ i i i i With 1 Argument
Send Literal Selector .#i ii i With 2 Arguments

597
Stack Bytecodes

Stack
Bytecodes

The stack bytecodes all perform simple operations on the active con-
text's evaluation stack.

• 107 bytecodes p u s h an object pointer on the stack

• 99 push an object pointer found in the object memory
• 7 push a constant object pointer
• 1 pushes the interpreter ' s active context register (activeContext)

• 18 bytecodes store an object pointer found on the stack into the ob-
ject memory

• 17 of these also remove it from the stack
• 1 leaves it on the stack

• 1 bytecode removes an object pointer from the stack without
storing it anywhere.

The routines used to manipula te the stack were described in the section
of the previous chapter on contexts (push:, popStack, pop:). The
stackBytecode routine dispatches to the appropriate routine for the cur-
rent bytecode.

stackBytecode
(currentBytecode between: 0 and: 15)

ifTrue: [tsetf pushReceiverVariableBytecode].
(currentBytecode between: 16 and: 31)

ifTrue: [1"self pushTemporaryVariableBytecode].
(currentBytecode between: 32 and: 63)

ifTrue: [1self pushLiteratConstantBytecode].
(currentBytecode between: 64 and: 95)

ifTrue: [!self pushLiteralVariableBytecode].
(currentBytecode between: 96 and: 103)

ifTrue: [1'self storeAndPopReceiverVariableBytecode].
(currentBytecode between: 104 and: 111)

ifTrue: [1self storeAndPopTemporaryVariabteBytecode].
currentBytecode = t12

ifTrue: [1'self pushReceiverBytecode].
(currentBytecode between: 113 and: 119)

ifTrue: [1'self pushConstantBytecode].
currentBytecode = 128

ifTrue: [1'setf extendedPushBytecode].
currentBytecode = 129

ifTrue: [1'self extendedStoreBytecode].
currentBytecode = 130

ifTrue: [1'self extendedStoreAndPopBytecode].

598
Formal Specification of the In te rpre te r

currentBytecode = 135
ifTrue: [tself popStackBytecode].

currentBytecode = 136
ifTrue: [1'self dupticateTopBytecode].

currentBytecode = 137
ifTrue: [1self pushActiveContextBytecode]

There are single byte instructions tha t push the first 16 instance vari-
ables of the receiver and the first 16 temporary frame locations. Recall
tha t the t e m p o r a r y frame includes the a rguments and the t emporary
variables.

pushReceiverVariableBytecode
I f ie ldlndexl
field index ~ self extractBits: 12 to: 15

of: currentBytecode.
self pushReceiverVariable: fieldlndex

pushReceiverVariable: fieldlndex
self push: (memory fetchPointer: fietdlndex

of Object: receiver)
pushTemporaryVariableBytecode

I f ie ldlndexl
fieldlndex ~- self extractBits: 12 to: 15

of: currentBytecode.
self pushTemporaryVariable: fieldlndex

pushTemporaryVariable: temporarylndex
self push: (self temporary: temporarylndex)

There are also single byte instructions tha t reference the first 32 loca-
tions in the li teral f rame of the active context 's method. The contents of
one of these locations can be pushed with pushkiteralConstantBytecode.
The contents of the value field of an Association stored in one of these
locations can be pushed with pushLi tera lVar iab leBytecode.

pushLiteralConstantBytecode
I fieldlndex I
fieldlndex ~ self extractBits: 11 to: 15

of: currentBytecode.
self pushLiteralConstant: fieldlndex

pushLiteralConstant: literallndex
self push: (self literal: literallndex)

pushLiteralVariableBytecode
I f ie ldlndexl
fieldlndex ~- self extractBits: 11 to: 15

of: currentBytecode.
self pushLiteralVariable: fieldlndex

599
Stack Bytecodes

pushLiteralVariable: literallndex
i association I
association ~ self literal: literallndex.
self push: (memory fetchPointer: Valuelndex

of Object: association)

Associations are objects with two fields, one for a name and one for a
value. They are used to implement shared variables (global variables,
class variables, and pool variables). The following routine initializes the
index used to fetch the value field of Associations.

i nitializeAssociationlndex
Valuelndex ~ 1

The extended push bytecode can perform any of the four operations de-
scribed above (receiver variable, t emporary frame location, li teral con-
stant, or l i teral variable). However, instead of a limit of 16 or 32
variables accessible, it can access up to 64 instance variables, t emporary
locations, l i teral constants, or l i teral variables. The extended push
bytecode is followed by a byte whose high order two bits determine
which type of push is being done and whose low order six bits deter-
mine the offset to use.

extendedPushBytecode
I descriptor variableType variablelndex I
descriptor ~ self fetchByte,
variableType ~ self extractBits: 8 to: 9

of: descriptor.
variablelndex ~- self extractBits: 10 to: 15

of: descriptor.
variableType=0 ifTrue: [tself pushReceiverVariable: variablelndex].
variableType= 1 ifTrue: [1"self pushTemporaryVariable: variablelndex].
variableType=2 ifTrue: [1'self pushLiteralConstant: variablelndex].
variableType=3 ifTrue: [1self pushLiteralVariable: variablelndex]

The pushReceiverBytecode rou t ine pushes a po in ter to the active con-
text 's receiver. This corresponds to the use of self or super in a
Smal l ta lk method.

pushReceiverBytecode
self push: receiver

The dupl icateTopBytecode rou t ine pushes another copy of the object
pointer on the top of the stack.

duplicateTopBytecode
1self push: self stackTop

The pushConstantBytecode routine pushes one of seven constant object
pointers (true, false, nil, - 1 , 0, 1, or 2).

600
Formal Specification of the Interpreter

pushConstantBytecode
currentBytecode = 113 ifTrue: [1self push: TruePointer].
currentBytecode = 114 ifTrue: [1"self push: FalsePointer].
currentBytecode - 115 ifTrue: [1'self push: NilPointer].
currentBytecode - 116 ifTrue: [tself push: MinusOnePointer]. -
currentBytecode -- 117 ifTrue: [tself push: ZeroPointer].
currentBytecode - 118 ifTrue: [tself push: OnePointer].
currentBytecode - t 19 ifTrue: [tself push: TwoPointer]

The pushAct iveContextBytecode routine pushes a pointer to the active
contex t i tself. Th is corresponds to the use of th isContext in a Sma]] t a l k
method.

pushActiveContextBytecode
self push: activeContext

The store bytecodes transfer references in the opposite direction from
the push bytecodes; from the top of the stack to the receiver's instance
variables, the temporary frame, or the literal frame. There are single
byte versions for storing into the first eight variables of the receiver or
the temporary frame and then popping the stack.

storeAndPopReceiverVariableBytecode
f variablelndex I
variabteindex ~ self extractBits: 13 to: 15

of: currentBytecode.
memory storePointer: variabletndex

of Object: receiver
withValue: self popStack

storeAndPopTemporaryVariableBytecode
I variabtelndex I
vanabtelndex ~- self extractBits: 13 to: 15

of: currentBytecode.
memory storePointer: variablelndex + TempFrameStart

ofObject: homeContext
withValue: self popStack

Stores into variables other than those accessible by the single byte ver-
sions are accomplished by two extended store bytecodes. One pops the
stack after storing and the other does not. Both extended stores take a
following byte of the same form as the extended push. It is illegal, how-
ever, to follow anextended store with a byte of the form 10xxxxxx since
this would mean changing the value of a literal constant.

extendedStoreAndPopBytecode
self extended StoreBytecode.
self popStackBytecode

extendedStoreBytecode
I descriptor variableType variabtelndex association I

601
Jump Bytecodes

descriptor ~ self fetchByte.
variableType ~ self extractBits: 8 to: 9

of: descriptor.
variablelndex ~- self extractBits: 10 to: 15

of: descriptor.
variableType=O ifTrue:

[1' memory storePointer: variabletndex
of Object: receiver
withValue: self stackTop].

variableType= 1 ifTrue:
[t memory storePointer: variablelndex + TempFrameStart

ofObject: homeContext
withValue: self stackTop].

variableType= 2 ifTrue:
[1' self error: 'illegal store'].

variableType=3 ifTrue:
[association ~- self literal: variablelndex.
1`memory storePointer: Valuelndex

of Object: association
withValue: self stackTop]

The last stack bytecode removes the top object pointer from the stack
without doing anything else with it.

popStackBytecode
self popStack

Jump
Bytecodes

The jump bytecodes change the active context's instruction pointer by a
specified amount. Unconditional jumps change the instruction pointer
whenever they are encountered. Conditional jumps only change the in-
struction pointer if the object pointer on the top of the stack is a speci-
fied Boolean object (either true or false). Both unconditional and
conditional jumps have a short (single-byte) and a long (two-byte) form.

jumpBytecode
(currentBytecode between: 144 and: 151)

ifTrue: [1"self shortUnconditionalJump].
(currentBytecode between: 152 and: 159)

ifTrue: .[1" self shortConditionalJump].
(currentBytecode between: 160 and: 167)

ifTrue: [tsetf tongUnconditionalJump].
(currentBytecode between: 168 and: t75)

ifTrue: [1'self IongConditionalJump]

602
Formal Specification of the Interpreter

The jump bytecodes use the jump: routine to actually change the
bytecode index.

jump: offset
instructionPointer ~ instructionPointer .4--- offset

The eight short unconditional jumps advance the instruction pointer by
1 through 8.

shortUnconditionalJump
I offset I
offset ~ self extractBits: 13 to: 15

of: currentBytecode.
self jump: offset + 1

The eight long unconditional jumps are followed by another byte. The
low order three bits of the jump bytecode provide the high order three
bits of an l 1-bit twos complement displacement to be added to the in-
struction pointer. The byte following the jump provides the low order
eight bits of the displacement. So long unconditional jumps can jump
up to 1023 forward and 1024 back.

IongUnconditionalJump
I offset I
offset ~ self extractBits: 13 to: 15

of: currentBytecode.
self jump: offset - 4 . 256 + self fetchByte

The conditional jumps use the jumplf:by: routine to test the top of the
stack and decide whether to perform the jump. The top of stack is
discarded after it is tested.

jumplf: condition by: offset
I boolean I
boolean ~ self popStack.
boolean = condition

ifTrue: [self jump: offset]

ifFalse: [(boolean =TruePointer) I (boolean = FalsePointer)
ifFalse: [self unPop: l .

self sendMustBeBoolean]]

The conditional jumps are used in the compiled form of messages to
booleans (e.g., ifTrue: and wbileFalse:). If the top of the stack at the time
of a conditional jump is not true or false it is an error since an object
other than a boolean has been sent a message that only booleans under-
stand. Instead of sending doesNotUnderstand:, the interpreter sends
m u s t B e B o o l e a n to it.

603
Send Bytecodes

self sendSelector: MustBeBooleanSelector
argumentCount: 0

The sendSelector:argumentCount: routine is described in the next sec-
tion on send bytecodes.

The eight short conditional jumps advance the instruction pointer by
1 through 8 if the top of the stack is false.

shortConditionalJump
I offset I
offset ,-- self extractBits: 13 to: 15

of: currentBytecode.
self jumplf: FalsePointer

by: offset + 1

So, there are three possible outcomes to a short conditional jump:

• If the top of the stack is false, the jump is taken.

• If the top of the stack is true, the jump is not taken.

• If the top of the stack is neither, mustBeBoolean is sent to it.

Half of the long conditional jumps perform the jump if the top of the
stack is false while the other half perform the jump if it is true. The low
order two bits of the bytecode become the high order two bits of a 10-bit
unsigned displacement. The byte following the jump provides the low
order eight bits of the displacement. So long conditional jumps can
jump up to 1023 forward.

IongConditionaiJump
I offset I
offset ~ self extractBits: 14 to: t5

of: currentBytecode.
offset ~- o f fset , 256 -t- self fetchByte.
(currentBytecode between: 168 and: 171)

ifTrue: [1'self jumplf: TruePointer
by: offset].

(currentBytecode between: 172 and: 175)
ifTrue: [1self jumplf: FalsePointer

by: offset]

Send Bytecodes The send bytecodes cause a message to be sent. The object pointers for
the receiver and the arguments of the message are found on the active
context's evaluation stack. The send bytecode determines the selector of

604
Formal Specification of the Interpreter

the message and how many arguments to take from the stack. The
number of arguments is also indicated in the CornpiledMetbod invoked
by the message. The compiler guarantees that this information is re-
dundant except when a CompiledMetbod is reached by a perform: mes-
sage, in which case it is checked to make sure the CompitedMethod
takes the right number of arguments. The perform: messages will be
discussed in the next chapter in a section on control primitives.

The selectors of most messages are found in the literal frame of the
CornpiledMethod. The literal-selector bytecodes and the extended-send
bytecodes specify the argument count of the message and the index of
the selector in the literal frame. The 32 special-selector bytecodes speci-
fy the offset of the selector and argument count in an Array in the ob-
ject memory. This Array is shared by all Compi ledMethods in the
system.

sendBytecode
(currentBytecode between: 131 and: 134)

ifTrue: [tself extendedSendBytecode].
(currentBytecode between: 176 and: 207)

ifTrue: [1'self sendSpecialSelectorBytecode].
(currentBytecode between: 208 and: 255)

ifTrue: [1'self sendLiteralSelectorBytecode]

The literal-selector bytecodes are single bytes that can specify 0, 1, or 2
arguments and a selector in any one of the first 16 locations of the lit-
eral frame. Both the selector index and the argument count are
encoded in the bits of the bytecode.

sendLiteralSelectorBytecode
t selector I
selector ~- self literal: (self extractBits: 12 to: 15

of: currentBytecode).
self sendSelector: selector

argumentCount: (self extractBits: 10 to: t l
of: currentBytecode) 1

Most of the send bytecodes call the sendSelector:argumentCount: routine
after determining the appropriate selector and a rgumen t count. This
routine sets up the variables messageSelector and argumentCount,
which are available to the other routines in the interpreter that will
lookup the message and perhaps activate a method.

sendSelector., selector argumentCount., count
I newReceiver I
messageSetector ~ selector.
argurnentCount ~ count.
newReceiver ~.- self stackValue: argumentCount.
self sendSelectorToClass: (memory fetchClassOf: newReceiver)

605
Send Bytecodes

sendSelectorToClass: classPointer
self f indNewMethodlnClass: classPointer.
self executeNewMethod

The in te rpre te r uses a method cache to reduce the number of dictionary
lookups necessary to find CompiledMethods associated with selectors.
The method cache may be omitted by subst i tut ing a call on
lookupMethodinClass: for the call on findNewMethodlnClass: in
sendSelectorToClass: above. The IookupMethodlnCiass: routine is de-
scribed in the previous chapter in a section on classes. The cache may
be implemented in various ways. The following routine uses four se-
quential locations in an Array for each entry. The four locations store
the selector, class, CompiledMethod, and primitive index for the entry.
This rout ine does not allow for reprobes.

f indNewMethodlnClass: class
f hash I
hash ~ (((messageSelector bitAnd: class) bitAnd: 16rFF) bitShift: 2) + 1.

((methodCache at: hash)=messageSelector
and: [(methodCache at: hash + 1) = class])

ifTrue: [newMethod ~ methodCache at: hash + 2.
primitivelndex ~ methodCache at: hash --t- 3]

ifFalse: [self IookupMethodlnClass: class.
methodCache at: hash put: messageSetector.
methodCache at: hash -.t- 1 put: class.
methodCache at: hash -I- 2 put: newMethod.
methodCache at: hash -t- 3 put: primitivelndex]

The method cache is initialized with the following routine.

init ializeMethodCache
methodCacheSize ~ !024.
methodCache ~ Array new: methodCacheSize

The e x e c u t e N e w M e t h o d routine calls a primitive routine if one is asso-
ciated with the CompiledMethod. The primitiveResponse routine re turns
false if no primitive is indicated or the primitive routine is unable to
produce a result. In tha t case, the CompiledMethod is activated. Primi-
tive routines and the primitiveResponse routine will be described in the
next chapter.

executeNewMethod
self primitiveResponse

ifFalse: [self activateNewMethod]

The routine tha t activates a method creates a MethodContext and trans-
fers the receiver and a rguments from the current ly active context 's
stack to the new context 's stack. It then makes this new context be the
in terpre ter ' s active context.

606
Formal Specification of the Interpre ter

I contextSize newContext newReceiver I
(self largeContextFlagOf: newMethod)= 1

ifTrue: [contextSize ~ 32 -t- TempFrameStart]
ifFalse: [contextSize ~- 12 + TempFrameStart].

newContext ~- memory instantiateClass: ClassMethodContextPointer
withPointers: contextSize.

memory storePointer: Senderlndex
ofObject: newContext
withValue: activeContext.

self storelnstructionPointerValue:
(self initiallnstructionPointerOfMethod: newMethod)

inContext: newContext.
self storeStackPointerValue: (self temporaryCountOf: newMethod)

inContext: newContext.
memory storePointer: Methodlndex

ofObject: newContext
withVatue: newMethod.

self transfer: argumentCount -.I- 1
fromlndex: stackPointer argumentCount
ofObject: activeContext
tolndex: Receiverlndex
ofObject: newContext.

self pop: argumentCount 4- 1.
self newActiveContext: newContext

There are four extended-send bytecodes. The first two have the same ef-
fect as the literal-selector bytecodes except tha t the selector index and
a rgument count are found in one or two following bytes instead of in
the bytecode itself. The other two extended-send bytecodes are used for
superclass messages.

extendedSendBytecode
currentBytecode = 131 ifTrue: [1self singleExtendedSendBytecode].
currentBytecode = 132 ifTrue: [tself doubleExtendedSendBytecode].
currentBytecode = 133 ifTrue: Itself singleExtendedSuperBytecode].
currentBytecode = 134 ifTrue: [tself doubleExtendedSuperBytecode]

The first form of extended send is followed by a single byte specifying
the number of a rguments in its high order three bits and selector index
in the low order five bits.

singleExtendedSendBytecode
I descriptor selectorlndex I
descriptor ~ self fetchByte.
selectorlndex ~ self extractBits: 11 to: 15

of: descriptor.

607
Send Bytecodes

self sendSelector: (self literal: selectorlndex)
argumentCount: (self extractBits: 8 to: 10

of: descriptor)

The second form of extended send bytecode is followed by two bytes; the
first is the number of arguments and the second is the index of the se-
lector in the literal frame.

doubleExtendedSendBytecode
I count selector I
count ~- self fetchByte.

selector ~- self literal: self fetchByte.

self sendSelector: selector
argumentCount: count

When the compiler encounters a message to super in a symbolic meth-
od, it uses the bytecode that pushes self for the receiver, but it uses an
extended-super bytecode to indicate the selector instead of a regular
send bytecode. The two extended-super bytecodes are similar to the two
extended-send bytecodes. The first is followed by a single byte and the
second by two bytes that are interpreted exactly as for the extended-
send bytecodes. The only difference in what these bytecodes do is that
they start the message lookup in the superclass of the class in which
the current CompiledMethod was found. Note that this is not necessari-
ly the immediate superclass of self. Specifically, it will not be the imme-
diate superclass of self if the CompiledMethod containing the extended-
super bytecode was found in a superclass of self originally. All
CompiledMethods that contain extended-super bytecodes have the class
in which they are found as their last literal variable.

singleExtendedSuperBytecode
I descriptor selectorlndex methodClass 1
descriptor ,- self fetchByte.
argumentCount ~ self extractBits: 8 to: 10

of: descriptor.
selectorlndex ~- self extractBits: 11 to: 15

of: descriptor.
messageSetector ~- self literal: selectorlndex.
methodClass ~ self methodClassOf: method.
self sendSelectorToClass: (self superctassOf: methodClass)

doublelxtendedSuperBytecode
I methodClass I
argumentCount ~- self fetchByte.
messageSelector ~ self literal: self fetchByte.
methodClass ~ self methodCtassOf: method.
self sendSetectorToClass: (self superclassOf: methodClass)

i

608
Formal Specification of the Interpre ter

The set of special selectors can be used in a message without being in-
cluded in the literal frame. An Array in the object memory contains the
object pointers of the selectors in a l ternat ing locations. The a rgument
count for each selector is stored in the location following the selector's
object pointer. The specialSelectorPrimitiveResponse routine will be de-
scribed in the next chapter.

sendSpe©ia lSe lec torBytecode
I selectorlndex selector count I
self specialSelectorPrimitiveResponse

ifFalse: [selectorlndex ~ (currentBytecode - 176) , 2.

selector ~- memory fetchPointer: selectorlndex
ofObject: SpecialSelectorsPointer.

count ~ self fetchlnteger: selectorlndex -.t- 1

ofObject: SpecialSelectorsPointer.
self sendSelector: selector

argumentCount: count]

Return
Bytecodes

There are six bytecodes tha t re turn control and a value from a context;
five re turn the value of a message (invoked explicitly by ~'t" or implicit-
ly at the end of a method) and the other one re turns the value of a
block (invoked implicitly at the end of a block). The distinction between
the two types of re turn is tha t the former re turns to the sender of the
home context while the lat ter re turns to the caller of the active context.
The values re turned from the five re turn bytecodes are: the receiver
(self), true, false, nil, or the top of the stack. The last re tu rn bytecode re-
turns the top of the stack as the value of a block.

r e t u r n B y t e c o d e
currentBytecode = 120

ifTrue: [tself returnValue: receiver
to: self sender].

currentBytecode = 121
ifTrue: [tself returnValue: TruePointer

to: self sender].
currentBytecode = 122

ifTrue: [tself returnVatue: FalsePointer
to: self sender].

currentBytecode = 123
ifTrue: [tself returnValue: NilPointer

to: self sender].

609
Return Bytecodes

currentBytecode = 124
ifTrue: [tself returnValue: self popStack

to: self sender].
currentBytecode = 125

ifTrue: [1'self returnValue: self popStack
to: setf caller]

The simple way to re tu rn a value to a context would be to simply make
it the active context and push the value on its stack.

simpleReturnValue: resultPointer to: contextPointer
self newActiveContext: contextPointer.
self push: resultPointer

However, there are three si tuations in which this routine is too simple
to work correctly. If the sender of the active context were nil; this rou-
tine would store a nil in the in terpre ter ' s active context pointer, bring-
ing the system to an unpleasant halt. In order to prevent this, the actu-
al returnValue:to: routine first checks to see if the sender is nil. The in-
t e rpre te r also prevents re turns to a context tha t has already been
re turned from. It does this by storing nil in the instruction pointer of
the active context on re tu rn and checking for a nil instruction pointer of
the context being re turned to. Both of these situations can arise since
contexts are objects and can be manipula ted by user programs as well
as by the interpreter . If e i ther si tuation arises, the in terpre ter sends a
message to the active context informing it of the problem. The third sit-
uation will arise in systems tha t automatical ly deallocate objects based
on thei r reference counts. The active context may be deallocated as it is
re turning. It, in turn, may contain the only reference to the result be-
ing returned. In this case, the result will be deallocated before it can be
pushed on the new context 's stack. Because of these considerations, the
returnValue: rout ine must be somewhat more complicated.

returnValue: resultPointer to: contextPointer
I senderslP I
contextPointer = Nil Pointer

ifTrue: [self push: activeContext.
self push: resultPointer.
tself sendSelector: CannotReturnSelector

argumentCount: 1].
senderslP ~ memory fetchPointer: InstructionPointerlndex

ofObject: contextPointer.
senders! P = NitPointer

ifTrue: [self push: activeContext.
self push: resultPointer.
1self sendSelector: CannotReturnSelector

argumentCount: 1].

610
Formal Specification of the Interpreter

memory increaseReferencesTo: resultPointer.
self returnToActiveContext: contextPointer.
self push: resultPointer.
memory decreaseReferencesTo: resultPointer

This routine prevents the deallocation of the result being returned by
raising the reference count until it is pushed on the new stack. It could
also have pushed the result before switching active contexts. The
returnToActiveContext: routine is basically the same as the
newActiveContext: routine except that instead of restoring any cached
fields of the context being returned from, it stores nil into the sender
and instruction pointer fields.

re turnToAct iveContext : aContext
memory increaseReferencesTo: aContext.
self nilContextFietds.
memory decreaseReferencesTo: activeContext.
activeContext ~- aContext.
self fetchContextRegisters

ni lContextFie lds
memory storePointer: Senderlndex

ofObject: activeContext
withValue: NilPointer.

memory storePointer: InstructionPointerlndex
ofObject: activeContext
withValue: NilPointer

....--"

+
÷

+

• 4 ' 4 ,
0 4.

,u, ,nn,
~ ,u ,

'a' ,hem ' +

@
@ @

4 , 4 '

@

0 e()

o~

29
Formal Specification
of the Primitive Methods

Arithmetic Primitives

Array and Stream Primitives

Storage Management Primitives

Control Primitives

Input/Output Primitives

System Primitives

612
Formal Specification of the Primitive Methods

When a message is sent, the interpreter usually responds by executing
a Smalltalk CompiledMethod. This involves creating a new
MethodContex t for t ha t Compi ledMethod and execut ing its bytecodes un-
t i l a r e t u r n bytecode is encountered. Some messages, however, m a y be
responded to primitively. A primitive response is performed directly by
the interpreter without creating a new context or executing any other
bytecodes. Each primitive response the interpreter can make is de-
scribed by a primitive routine. A primitive routine removes the message
receiver and arguments from the stack and replaces them with the ap-
propriate result. Some primitive routines have other effects on the ob-
ject memory or on some hardware devices. After a primitive response is
completed, the interpreter proceeds with interpretation of the bytecode
after the send bytecode that caused the primitive to be executed.

At any point in its execution, a primitive routine may determine that
a primitive response cannot be made. This may, for example, be due to
a message argument of the wrong class. This is called primitive failure.
When a primitive fails, the Smalltalk method associated with the selec-
tor and receiver's class will be executed as if the primitive method did
not exist.

The table below shows the class-selector pairs associated with each
primitive routine. Some of these class-selector pairs have not appeared
earlier in this book since they are part of the class's private protocol.
Some of the primitive routines must meet their specification in order
for the system to function properly. Other primitive routines are op-
tional; the system will simply perform less efficiently if they always
fail. The optional primitives are marked with an asterisk. The
Smalltalk methods associated with optional primitive routines must do
everything the primitive does. The Smalltalk methods associated with
required primitive routines need only handle the cases for which the
primitive fails.

The Smal l ta lk Pr imi t ives

Primitive Index Class-Selector Pairs

1 Smalllnteger +
2 Smalllnteger -
3 Smalllnteger <
4 Smalllnteger >
5" Smalllnteger < =
6* Smalllnteger > =
7 Smalllnteger =
8* Smalllnteger ,~=
9 Smalllnteger *
1 O* Smalllnteger /
11 * Smalllnteger \ \
12 Smal l lnteger/ /

13"

14

15

16

17

18"

19

2O

21"

22*

23*

24*

25*

26*

27*

28*

29*

30*

31"

32*

33*

34*

35*

36*

37*

38

39

4O

41

42

43

44

45*

46*

47

48*

49

50

51

52*

53*

54*

55

56
57

58

613
F o r m a l S p e c i f i c a t i o n of t h e P r i m i t i v e M e t h o d s

Smalllnteger quo:

Smalllnteger bitAnd:

Smalllnteger bitOr:

Smalilnteger bitXor:

Smalllnteger bitShift:

Number @

Integer +

Integer -

Integer <

Integer >

Intec~er < =

Intec

inte£

Intec

Intec

Intec

Intec

!er > :

er =

er , -~ :

e r ,

er /

er \ \

LargePositivelnteger +

LargePositivelnteger -

LargePositivelnteger <

LargePositivelnteger >

LargePositivelnteger < =

LargePositivelnteger > =
LargePositivelnteger =

LargePositivelnteger ~ =

LargePosit ivelnteger,

LargePositivelnteger /

LargePositivelnteger \ \

I n tege r / / LargePosi t ivelnteger/ /
Integer quo: LargePositivelnteger quo:

Integer bitAnd: LargePositivelnteger bitAnd:

Integer bitOr: LargePositivelnteger bitOr:

Integer bitXor: LargePositivelnteger bitXor:

Integer bitShift: LargePositivelnteger bitShift:

Smaillnteger asFIoat

Float +

Float -

Float <

Float >

Float < =

Float > =

Float --

Float ~ =

Float *

Float /

Float truncated

Float fractionPart

Float exponent

Float timesTwoPower:

614
F o r m a l S p e c i f i c a t i o n of t h e P r i m i t i v e M e t h o d s

59
60

6t

62

63

64

65*
66*
67*
68
69
70

71

72
73
74
75

76

77
78
79
80*
81

82
83*

LargeNegativelnteger digitAt:
LargePositivelnteger digitAt:
Object at:
Object basicAt:
LargeNegativelnteger digitAt:put:
LargePositivelnteger digitAt:put:
Object basicAt:put:
Object at:put:
ArrayedCollection size
LargeNegativelnteger digitLength
LargePositivelnteger digitLength
Object basicSize
Object size
String size
String at:
String basicAt:
String basicAt:put:
String at:put:
ReadStream next ReadWriteStream next
WriteStream nextPut:
PositionabteStream atEnd
CompiledMethod objectAt:
CompiledMethod objectAt:put:
Behavior basicNew Behavior new
Interval class new
Behavior new:
Behavior basicNew:
Object become:
Object instVarAt:
Object instVarAt:put:
Object asOop
Object hash
Symbol hash
Smalllnteger asObject
Smalllnteger asObjectNoFail
Behavior somelnstance
Object nextlnstance
CompiledMethod class newMethod:header:
ContextPart blockCopy:
BlockContext value:value:value:
BlockContext value:
BlockContext value:
BlockContext value:value:
BlockContext valueWithArguments:
Object perform:with:with:with:

84
85
86
87
88
89
90*
91

92
93
94
95
96
97
98
99
100
101
102
103"

104"
105"

106
107
108
109
110

111
112.
113
114
115
116
117
118
119
120

615
F o r m a l S p e c i f i c a t i o n of t h e P r i m i t i v e M e t h o d s

Object perform:with:
Object perform:with:with:
Object perform:
Object perform:withArguments:
Semaphore signal
Semaphore wait
Process resume
Process suspend
Behavior flushCache
InputSensor primMousePt InputState primMousePt
InputState primCursorLocPut:
InputState primCursorLocPutAgain:
Cursor class cursorLink:
InputState primlnputSemaphore:
InputState primSamplelnterval:
InputState primlnputWord
BitBIt copyBitsAgain BitBIt copyBits
SystemDictionary snapshotPrimitive
Time class secondCIocklnto:
Time class millisecondCIocklnto:
ProcessorScheduler signal:atMilliseconds:
Cursor beCursor
DisplayScreen beDisplay
CharacterScanner scanCharactersFrom:to:in:

rightX:stopConditions:displaying:
BitBlt drawLoopX:Y:
ByteArray primReplaceFrom:to:with:startingAt:
ByteArray replaceFrom:to:withString:startingAt:
String replaceFrom:to:withByteArray:startingAt:
String primReplaceFrom:to:with:startingAt:

Character =
Object
Object class
SystemDictionary coreLeft
SystemDictionary quitPrimitive
SystemDictionary exitToDebugger
SystemDictionary oopsLeft
SystemDictionary signal:atOopsLeft:wordsLeft:

616
Formal Specification of the Primitive Methods

121

122

123

124

125

126

127

An example of a primitive method is the response of instances of
Smalllnteger to messages with selector + . If the a rgument is also an in-
stance of Smalllntefler, and the sum of the values of the receiver and ar-
gument is in the range tha t can be represented by Smalllntefler, then
the primitive method will remove the receiver and a rgument from the
stack and replace them with an instance of Smalllnteger whose value is
the sum. If the a rgument is not a Smalllnteger or the sum is out of
range, the primitive will fail and the Small ta lk method associated with
the selector + in Smalllnteger will be executed.

The control s t ructures used in the specification of the in terpreter giv-
en in this book and the control s t ructures used in a machine language
implementat ion of the in terpre ter will probably use different mecha-
nisms when primitive routines fail to complete. When a failure condi-
tion arises, a machine language primitive routine can decide not to
re turn to its caller and simply jump to the appropriate place in the in-
terpre ter (usually the place tha t activates a CompiledMethod). However,
since the formal specification is wri t ten in Smalltalk, all routines m u s t

re turn to their senders and Interpreter must keep t rack of primitive suc-
cess or failure independently of the routine call structure. Par t of the
book specification, therefore, is a register called success tha t is initial-
ized to true when a primitive is s tar ted and may be set to false if the
routine fails. The following two routines set and test the state of the
primitive success register.

s u c c e s s : s u c c e s s V a l u e
success ~ successVa lue & success

s u c c e s s
f success

The following routines set the state of the success flag in the two com-
mon cases of initialization before a primitive routine runs and discovery
by a primitive routine tha t it cannot complete.

i n i t P r i m i t i v e
success ~ true

p r i m i t i v e F a i l
success ~- false

617
Formal Specification of the Primitive Methods

Many of the primitives manipulate integer quantities, so the interpret-
er includes several routines that perform common functions. The
poplnteger routine is used when a primitive expects a Smalltnteger on
the top of the stack. If it is a Smalllnteger, its value is returned; if not, a
primitive failure is signaled.

poplnteger
I integerPointerl
integerPointer ~- self popStack.
self success: (memory islntegerObject: integerPointer).
self success

ifTrue: [tmemory integerValueOf: integerPointer]

Recall that the fetchlnteger:ofObject: routine signaled a primitive fail-
ure if the indicated field did not contain a Srnaltlnteger. The
pushlnteger: routine converts a value to a Smalllnteger and pushes it on
the stack.

pushlnteger: integerValue
self push: (memory integerObjectOf: integerValue)

Since the largest indexable collections may have 65534 indexable ele-
ments, and Smalllntegers can only represent values up to 16383, primi-
tive routines that deal with indices or sizes must be able to manipulate
LargePositivelntegers. The following two routines convert back and forth
between 16-bit unsigned values and object pointers to Smalllntegers or
LargePositivel ntegers.

positive 16BitlntegerFor: integerValue
t newLargelnteger I
integerValue < 0

ifTrue: [1'self primitiveFail].
(memory islntegerValue: integerValue)

ifTrue: [tmemory integerObjectOf: integerValue].
newLargelnteger ~ memory instantiateClass:

ClassLargePositivelntegerPointer
withBytes: 2.

memory storeByte: 0
ofObject: newLargelnteger
withValue: (self IowByteOf: integerValue).

memory storeByte: 1
ofObject: newLargelnteger
withValue: (self highByteOf: integerVatue).

1 newLarge!nteger
positive 16BitValueOf: integerPointer

1 value I
(memory islntegerObject: integerPointer)

618
Formal Specification of the Primitive Methods

ifTrue: [1' memory integerValueOf: integerPointer].
(memory fetchClassOf: integerPointer)=

ClassLargePositivelntegerPointer
ifFalse: [Tself primitiveFait].

(memory fetchByteLengthOf: integerPointer) = 2
ifFalse: [1'self primitiveFail].

value ~ memory fetchByte: 1
ofObject: integerPointer.

value ~ value.256 4- (memory fetchByte: 0
ofObject: integerPointer).

;value

There are three ways that a primitive routine can be reached in the
process of in te rpre t ing a send-message bytecode.

1. Some primitive routines are associated with send-special-selector
bytecodes for certain classes of receiver. These can be reached
without a message lookup.

2. The two most common primitive routines (returning self or an in-
stance variable) can be indicated in the flag value of the header of
a CompiledMethod. These are only found after a message lookup
has produced a CompiledMethod, but only the header need be ex-
amined.

3. Most primitive routines are indicated by a number in the header
extension of a CompiledMethod. These are also found after a mes-
sage lookup.

The first path to a primitive routine was represented by the call on
specialSelectorPrimit iveResponse in the sendSpecialSelectorBytecode
rout ine. The specialSelectorPrimit iveResponse rout ine selects an appro-
pr iate primitive routine and re turns true if a primitive response was
sucessfully made and false otherwise. Recall tha t the
sendSpecialSelectorBytecode routine looks up the special selector if
specialSelectorPrimitiveResponse re turns false.

specialSelectorPrimitiveResponse
self initPrimitive.
(currentBytecode between: 176 and: 191)

ifTrue: [self arithmeticSelectorPrimitive].
(currentBytecode between: 192 and: 207)

ifTrue: [self commonSelectorPrimitive].
1' self success

A primitive r o u t i n e will be accessed by a special ar i thmetic selector
only if the receiver is a Smalllnteger. The actual primitive routines will
be described in the section on ari thmetic primitives.

619
Formal Specification of the Primitive Methods

ar i thmet icSe lec torPr imi t ive
self success: (memory islntegerObject: (self stackValue: 1)).
self success

ifTrue: [currentBytecode = 176 ifTrue: [tsel f primitiveAdd].
currentBytecode = 177 ifTrue: [tsel f primitiveSubtract].
currentBytecode = 178 ifTrue: [1self primitiveLessThan].
currentBytecode = 179 ifTrue: [1"self primitiveGreaterThan].
currentBytecode = 180 ifTrue: [1'self primit iveLessOrEqual].
currentBytecode = 181 ifTrue: [1"self primitiveGreaterOrEqual].
currentBytecode = 182 ifTrue: [1`self primitiveEqual].
currentBytecode = 183 ifTrue: [1`self primitiveNotEquat].
currentBytecode = 184 ifTrue: [1`self primitiveMultiply].
currentBytecode = I85 ifTrue: [1"self primitiveDivide].
currentBytecode = 186 ifTrue: [1'self primitiveMod].
currentBytecode = 187 ifTrue: [1"self primitiveMakePoint].
currentBytecode = 188 ifTrue: [1"self primitiveBitShift].
currentBytecode = 189 ifTrue: [1'self primitiveDiv].
currentBytecode = 190 ifTrue: [1'self primitiveBitAnd].
currentBytecode = 19 t ifTrue: [1'self primitiveBitOr]]

Only five of the non-ari thmetic special selectors invoke primitives with-
out a message lookup (= =, class, blockCopy:, value, and value:). The
primitive routine for = = is found in the section on system primitives
and the routine for class in storage management primitives. They are
both invoked for any class of receiver. The routines for blockCopy:, val-
ue, a n d value: are found in the section on control primitives. The rou-
tine for blockCopy: will be invoked if the receiver is a MethodContext or
a BiockContext. The routines for value and value: will only be invoked if
the receiver is a BlockContext.

commonSe lec torPr imi t ive
I receiverClass I
argumentCount ~ self fetchtnteger: (cu r ren tBy tecode-176) .2 + 1

ofObject: SpecialSelectorsPointer.
receiverClass

memory fetchClassOf: (self stackValue: argumentCount).
currentBytecode = 198 ifTrue: [1self primitiveEquivalent].
currentBytecode = 199 ifTrue: [1self primitiveClass].
currentBytecode = 200

ifTrue: [self success:
(receiverClass = ClassMethodContextPointer)

I (receiverClass = ClassBIockContextPointer).
1self success ifTrue: [self primit iveBlockCopy]].

(currentBytecode = 201) I (currentBytecode = 202)
ifTrue: [self success: receiverClass=ClassBIockContextPointer .

1`self success ifTrue: [self primitiveValue]].
self primitiveFail

j = : : = - -

620
Formal Specification of the Primitive Methods

The second and third paths to primitive routines listed above are taken
after a CompiledMethod for a message has been found. The presence of
a primitive is detected by the primitiveResponse routine called in
e×ecuteNewMethod. The primitiveResponse routine is similar t o the
specialSelectorPrimitiveResponse routine in tha t it re turns true if a
primitive response was successfully made and false otherwise. Recall
tha t the executeNewMethod routine activates the CompiledMethod that
has been looked up if primitiveResponse re turns false.

primitiveResponse
I flagValue thisReceiver offset I
primitivetndex = 0

ifTrue: [flagValue ~ self flagValueOf: newMethod.
flagValue = 5

ifTrue: [self quickReturnSelf.
ttrue].

flagValue = 6
ifTrue: [self quicktnstanceLoad.

ttrue].
tfalse]

ifFalse: [self initPrimitive.
self dispatchPrimitives.
T self success]

Flag values of 5 and 6 reach the two most commonly found primitives,
a simple re turn of self and a simple re turn of one of the receiver's in-
stance variables. Returning self is a no-op as far as the in terpreter is
concerned since self's object pointer occupies the same place on the
stack as the message receiver tha t it should occupy as the message re-
sponse.

quickReturnSelf

R e t u r n i n g an instance variable of the receiver is almost as easy.

quicklnstanceLoad
l thisReceiver fietdtndex I
thisReceiver ~- self popStack.
fieldlndex ~ self fieldlndexOf: newMethod.
self push: (memory fetchPointer: fieldlndex

ofObject: thisReceiver)

The six types of primitives in the formal specification deal with arith-
metic, subscripting and streaming, storage management , control struc-
tures, input /output , and general system access. These correspond to six
ranges of primitive indices. A range of primitive indices has been re-
served for implementat ion-pr ivate primitive routines. They may be

621
Arithmetic Primitives

assigned any meaning, but cannot be depended upon from interpreter
to interpreter . Since these are not part of the specification, they cannot
be described here.

dispatchPrimitives
primitivelndex < 60

ifTrue: [1' self dispatchArithmeticPrimitives].
primitivelndex < 68

ifTrue: [1self dispatchSubscriptAndStreamPrimitives].
primitivelndex < 80

ifTrue: [tself dispatchStorageManagementPrimitives].
primitivelndex < 90

ifTrue: [1"self dispatchControtPrimitives].
primitivelndex < 110

ifTrue: [tself dispatchlnputOutputPrimitives].
primitivelndex < 128

ifTrue: [1"self dispatchSystemPrimitives].
pnmitivelndex < 256

ifTrue: [1`self dispatchPrivatePrimitives]

Ari thmet i c
Pr imi t ives

There are three sets of ar i thmetic primitive routines, one for
Small lntegers, one for large integers (LargePosit ivelntegers and
LargeNegativelntegers), and one for Floats. The p r im i t i ves for
Smaillntegers and Floats must be implemented, the primitives for large
integers are optional.

dispatchArithmeticPrimitives
primitivelndex < 20

ifTrue: [1 self dispatchlntegerPrimitives].
primitivelndex < 40

i'fTrue: [1`self dispatchLargelntegerPrimitives].
primitivetndex < 60

ifTrue: [1self dispatchFIoatPrimitives]

The first set of ar i thmetic primitive routines all pop a receiver and ar-
gument off the stack and fail if they are not both Smalllntegers. The
routines then push on the stack either the integral result of a computa-
tion or the Boolean result of a comparison, The routines tha t produce
an integral result fail if the value cannot be represented as a
Small lnteger.

dispatchlntegerPrimitives
primitivelndex = 1 ifTrue: [1`self primitiveAdd].
primitivelndex = 2 ifTrue: [1self primitiveSubtract].
primitivelndex = 3 ifTrue: [tself primitiveLessThan].

622
Formal Specification of the Primitive Methods

3rimitive
3nmitive
3rimitive
3r~mitive
3rimitive
3rimitive
3rimitive
3rimitive
3nmitive
3rimitive
3rlmitive
Dnmitive
3nmitive
3rimitive
3nmitive

ndex = 4 ifTrue: [1'self 3rimitiveGreaterThan].
ndex = 5 ifTrue: [1`self 9rimitiveLessOrEqual].
ndex = 6 ifTrue: [1self 3rimitiveGreaterOrEqual].
ndex = 7 ifTrue: [lself 3rimitiveEqual].
ndex = 8 ifTrue: [1'self 3rimitiveNotEqual].
ndex = 9 ifTrue: [1self 3rimitiveMultiply].
ndex = 10 ifTrue: [fself
ndex = 11 ifTrue: [1'self
ndex = 12 ifTrue: [tself
ndex = 13 ifTrue: [l'se
ndex = 14 ifTrue: [tse
ndex = 15 ifTrue: [fse
ndex = 16 ifTrue: [tse
ndex = 17 ifTrue: [tse
ndex = 18 ifTrue: [l'se

3rimitiveDivide].
3rimitiveMod].
3rimitiveDiv].
DrimitiveQuo].
3rimitiveBitAnd].
3rimitiveBitOr].
3rimitiveBitXor].
3rimitiveBitShift].
:~rimitiveMakePoint]

The pr imi t iveAdd, pr imi t iveSubtract , and pr imi t iveMul t ip ly routines are all
identical except for the arithmetic operation used, so only the
primitiveAdd routine will be shown here.

primitiveAdd
I integerReceiver integerArgument integerResult J
integerArgument ~- self poplnteger.
integerReceiver ~ self poplnteger.
self success

ifTrue: [integerResult ~ integerReceiver + integerArgument.
self success: (memory islntegerValue: integerResult)].

self success
ifTrue: [self pushlnteger: integerResult]
ifFatse: [self unPop: 2]

The primitive routine for division (associated with the se lec tor /) is dif-
ferent than the other three arithmetic primitives since it only produces
a result if the division is exact, otherwise the primitive fails. This prim-
itive, and the next three that have to do with rounding division, all fail
if their a rgument is 0.

primitiveDivide
I integerReceiver integerArgument integerResult I
integerArgument ~ self poplnteger.
integerReceiver ~ self poplnteger.
self success: integerArgument,---,=0.
self success: integerReceiver\ \ in tegerArgument=0.
self success

ifTrue: [integerResult ~ integerReceiver// integerArgument.
self success: (memory islntegerValue: integerResult)].

623
Arithmetic Primitives

self success
ifTrue [self push: (memory integerObjectOf: integerResult)]
ifFatse: [self unPop: 2]

The primitive routine for the modulo function (associated with the se-
lector \ X) gives the remainder of a division where the quotient is al-
ways rounded down (toward negative infinity).

primitiveMod
I integerReceiver integerArgument integerResutt I
integerArgument ~- self poplnteger.
integerReceiver ~- self poplnteger.
self success: integerArgument,--,=0.
self success

ifTrue: [integerResult ~ integerReceiverx \integerArgument.
self success: (memory islntegerValue: integerResult)].

self success
ifTrue: [self pushlnteger: integerResult]
ifFalse: [self unPop: 2]

There are two primitive routines for rounding division (associated with
the se l ec to r s / / and quo:). The result of / / is always rounded down (to-
ward negative infinity).

primitiveDiv
I integerReceiver integerArgument integerResult t
integerArgument ~- self poplnteger.
integerReceiver ~ self poplnteger.
self success: integerArgument,~=0.
self success

ifTrue: [integerResult ~ integerReceiver//integerArgument..
self success: (memory islntegerValue: integerResult)].

self success
ifTrue: [self pushlnteger: integerResult]
ifFalse: [self unPop: 2]

The result of quo: is t runcated (rounded toward zero).

primitiveQuo
I integerReceiver integerArgument integerResult I
integerArgument ~ self poplnteger.
integerFleceiver ~ self poplnteger.
self success: integerArgument,-~=O.
self success

ifTrue: [integerResult ~ integerReceiver quo: integerArgument.
self success: (memory istntegerValue: integerResult)].

624
Formal Specification of the Primitive Methods

self success
ifTrue: [self pushlnteger: integerResult]
ifFalse: [self unPop: 2]

The primitiveEqual, primitiveNotEqual, primitiveLessThan, primitive-
LessQrEqual, primitiveGreaterThan, and primitiveGreaterOrEqual rout ines
are all identical except for the comparison operation used, so only the
primitiveEqual routine will be shown here.

primitiveEqual
I integerReceiver integerArgument integerResult I
integerArgument ~ self poplnteger.
integerReceiver ~- self poplnteger.
self success

ifTrue: [integerReceiver = integerArgument
ifTrue: [self push: TruePointer]
ifFalse: [self push: FalsePointer]]

ifFalse: [self unPop: 2]

The primitiveBitAnd, primitiveBitOr, and primitiveBitXor rout ines per form
logical operations on the two's-complement binary representations of
Smalllnteger values. They are identical except for the logical operation
used, so only the primitiveBitAnd routine will be shown here.

primitiveBitAnd
I integerReceiver integerArgument integerResult I
integerArgument ,- self poplnteger.
integerReceiver ,- self poplnteger.
self success

ifTrue: [integerResult ~ integerReceiver bitAnd: integerArgument].
self success

ifTrue: [self pushlnteger: integerResult]
ifFalse: [self unPop: 2]

The primitive routine for shifting (associated with the selector bitShift:)
re turns a Small lnteger whose value represented in two's-complement is
the receiver's value represented in two's-complement shifted left by the
number of bits indicated by the argument. Negative arguments shift
right. Zeros are shifted in from the right in left shifts. The sign bit is
extended in right shifts. This primitive fails if the correct result cannot
be represented as a Smalllnteger.

primitiveBitShift
I integerReceiver integerArgument integerResult 1
integerArgument ~ self poplnteger.
integerReceiver ~- self poplnteger.

625
Arithmetic Primitives

self success
ifTrue: [integerResult ~- integerReceiver bitShift: integerArgument.

self success: (memory islntegerValue: integerResult)].

self success
ifTrue: [self pushlnteger: integerResuit]
ifFalse: [self unPop: 2]

The primitive routine associated with the selector @ returns a new
Point whose x value is the receiver and whose y value is the argument.

primitiveMakePoint
I integerReceiver integerArgument pointResult I
integerArgument ~ self popStack.
integerReceiver ~ self popStack.
self success: (memory islntegerValue: integerReceiver). •
self success: (memory islntegerVatue: integerArgument).
self success

ifTrue: [pointResult ~ memory instantiateClass: ClassPointPointer
withPointers: ClassPointSize,

memory storePointer: XIndex
ofObject: pointResult

kwithValue: integerReceiver.
memory storePointer: Ylndex

ofObject: pointResult
withValue: integerArgument.

self push: pointResult]
ifFalse: [self unPop: 2]

initializePointlndices
Xtndex ~--- 0.
Ylndex ~ 1.
ClassPointSize ~- 2

The primitive indices 21 to 37 are the same as primitives 1 to 17 except
that they perform their operations on large integers (instances of
LargePositivelnteger and LargeNegativelnteger). There are adequate
Smalltalk implementations for all of these operations so the primitive
routines are optional and will not be specified in this chapter. To imple-
ment them, the corresponding Smalltalk methods should be translated
into machine language routines.

dispatchLargelntegerPrimitives
self primitiveFail

Instances of Float are represented in IEEE single-precision (32-bit) for-
mat. This format represents a floating point quantity as a number be-
tween one and two, a power of two, and a sign. A Float is a word-size,
nonpointer object. The most significant bit of the first field indicates the
sign of the number (1 means negative). The next eight most significant

626
Formal Specification of the Primitive Methods

bits of the first field are the 8-bit exponent of two biased by 127 (0
means an exponent of -127, 128 means an exponent of 1, and so on).
The seven least significant bits of the first field are the seven most sig-
nificant bits of the fractional par t of the number between one and two.
The fractional part is 23 bits long and its 16 least significant bits are
the contents of the second field of the Float. So a Float whose fields are

SEEEEEEE E F F F F F F F
F F F F F F F F F F F F F F F F

represents the value

-1 ~ * 2 E-127 * 1 .F

0 is represented as both fields=O. The floating point primitives fail if
the a rgument is not an instance of Float or if the result cannot be rep-
resented as a Float. This specification of the Smalltalk-80 virtual ma-
chine does not specifically include the parts of the IEEE s tandard other
than the representat ion of floating point numbers. The implementat ion
of routines that perform the necessary operations on floating point val-
ues is left to the implementer.

The pr im i t i veAsFIoa t routine converts its Sma l l l n t ege r receiver into a
Float. The routines for primitives 41 th rough 50 perform the same oper-
ations as 1 through 10 or 21 through 30, except that they operate on
Floats. The primitiveTruncated routine re turns a Smalllnteger equal ~to
the value of the receiver without any fractional part. It fails if its
t runcated value cannot be represented as a Smaillnteger. The
primitiveFractionalPart re turns the difference between the receiver and
its t runcated value. The primitiveExponent routine re turns the exponent
of the receiver and the primitiveTimesTwoPower routine increases the
exponent by an amount specified by the argument .

dispatchFIoatPrimitives
primitivelndex = 40 ifTrue: [1'self
primitivelndex
primitivelndex
prnmitivelndex
pnmitivelndex
pnmitivelndex
pnmitivelndex
prlmitiveindex
pnmitivelndex
pnmitivetndex
primitivelndex
primitivelndex

= 41 ifTrue: [1"self
= 42 ifTrue: [Tself
= 43 ifTrue: [tsel f
= 44 ifTrue: [tsel f
= 45 ifTrue: [1'self
= 46 ifTrue: [1"self
= 47 ifTrue: [tsel f
= 48 ifTrue: [1"self
= 49 ifTrue: [rself
= 50 ifTrue: [1'self
= 5 l ifTrue: [tsel f

primitiveAsFIoat].
primitiveFIoatAdd].
primitiveFIoatSubtract].
primitiveFIoatLessThan].
primitiveFl°atGreaterThan]"
primitiveFIoatLessOrEqual].
primitiveFIoatGreaterOrEqual].
primit iveFIoatEqual].
primitiveFIoatNotEqual].
primitiveFIoatMultiply].
primitiveFIoatDivide].
primitiveTruncated].

627
Array and Stream Primitives

primitiveindex = 52 ifTrue: [1self primitiveFractionalPart].
primitivelndex = 53 ifTrue: [1'self primitiveExponent].
primitivelndex = 54 ifTrue: [1`self primitiveTimesTwoPower]

Array and
Stream
Primitives

The second set of primitive routines are for manipula t ing the indexable
fields of objects both directly, by subscripting, and indirectly, by stream-
ing. These routines make use of the 16-bit positive integer routines,
since the limit on indexable fields is 65534.

dispatchSubscriptAndStreamPrimitives
pr,mitivelndex = 60 ifTrue: [tself primitiveAt].
pnmitivetndex = 61 ifTrue: [tself primitiveAtPut].
pnmitivelndex = 62 ifTrue: [tself primitiveSize].
pnmitivefndex = 63 ifTrue: [1'self primitiveStringAt].
pnmitivelndex = 64 ifTrue: [l'self primitiveStringAtPut].
prtmitivelndex = 65 ifTrue: [tself primitiveNext].
pr~mitivelndex = 66 ifTrue: [1self primitiveNextPut].
pnmitivetndex = 67 ifTrue: [1"self primitiveAtEnd]

The following routines are used to check the bounds on subscripting op-
erations and to perform the subscripting accesses. They determine
whether the object being indexed contains pointers, 16-bit integer val-
ues, or 8-bit integer values, in its indexable fields. The check-
IndexableBoundsOf:in: routine takes a one-relative index and deter-
mines whether it is a legal subscript of an object. It must take into ac-
count any fixed fields.

checklndexableBoundsOf: index in: array
I class t
class ~ memory fetchClassOf: array.
self success: index> =1.
self success: index + (self fixedFieldsOf: class)< =(self lengthOf: array)

lengthOf: array
(self isWords: (memory fetchClassOf: array))

ifTrue: [1memory fetchWordLengthOf: array]
ifFalse: [tmemory fetchByteLengthOf: array]

The subscript:with: and subscript:with:storing: routines assume that the
n u m b e r of f i xed f ie lds has been added in to the index, so they use i t as a
one- re la t i ve index in to the object as a whole.

628
Formal Specification of the Pr imi t ive Methods

subscript: array with: index
t class value l
class ~--- memory fetchClassOf: array.
(self isWords: class)

ifTrue: [(self isP0inters: class)
ifTrue: [tmemory fetchPointer: index- 1

of Object: array]
ifFalse: [value ~- memory fetchWord: index-1

of Object: array.
1'self positive 16BitlntegerFor: value]]

ifFalse: [value ~ memory fetchByte: index-1
of Object: array.

1'memory integerObjectOf: value]
subscript: array with: index storing: value

I class I
class ~- memory fetchClassOf: array.
(self isWords: class)

ifTrue: [(self isPointers: class)
ifTrue: [tmemory storePointer: index-1

of Object: array
withValue: value]

ifFalse: [self success: (memory islntegerObject: value).
self success ifTrue:

[tmemory
storeWord: index- 1
of Object: array
withValue: (self positive16BitValueOf:

value)]]]
ifFatse: [self success: (memory islntegerObject: value).

self success ifTrue:
[tmemory storeByte: index- 1

of Object: array
withValue: (self IowByteOf:

(memory integerValueOf:
value))]]

The primit iveAt and primit iveAtPut rout ines s imp ly fetch or store one of
the indexable fields of the receiver. They fail if the index is not a
Smalllnteger or if it is out of bounds.

primitiveAt
I index array arrayClass result I
index ~- self positive16BitValueOf: self popStack.
array ~ self popStack.
arrayCtass ~- memory fetchClassOf: array.
self checklndexabteBoundsOf: index

in: array.

629
Array and Stream Primitives

self success
ifTrue: [index ~-index + (self fixedFieldsOf: arrayClass).

result ~- self subscript: array
with: index].

self success
ifTrue: [self push: result]
ifFalse: [self unPop: 2]

The primitiveAtPut routine also fails if the receiver is not a pointer type
and the second a rgument is not an 8-bit (for byte-indexable objects) or
16-bit (for word-indexable objects) positive integer. The primitive rou-
tine re turns the stored value as its value.

primitiveAtPut
1 array index arrayClass value result I
value ~ self popStack.
index ~ self positive16BitValueOf: self popStack.
array ~ self popStack.
arrayClass ~ memory fetchClassOf: array.
self checklndexableBoundsOf: index

in: array.
self success

ifTrue: [index ~ index + (self fixedFieldsOf: arrayClass).
self subscript: array

with: index
storing: value].

self success
ifTrue: [self push: value]
ifFatse: [self unPop: 3]

The primitiveSize routine re turns the number of indexable fields the re-
ceiver has (i.e., the largest legal subscript).

primitiveSize
I array class length I
array ~ self popStack.
class ~- memory fetchClassOf: array.
length ~- self positive16BitlntegerFor:

(self lengthOf: array).-- (self fixedFieldsOf: class).
self success

ifTrue: [self push: length]
ifFalse: [self unPop: 1]

The primit iveStr ingAt and primit iveStr ingAtPut routines are special re-
sponses to the at: and at:put: messages by instances of String. A String

630
Formal Specification of the Primit ive Methods

actually stores 8-bit numbers in byte-indexable fields, but it communi-
cates through the at: and at:put: messages with instances of Character. A
Character has a single instance variable tha t holds a Smalllnteger. The
value of the Smalllnteger re turned from the at: message is the byte
stored in the indicated field of the String. The primitiveStringAt routine
always re turns the same instance of Character for any part icular value.
It gets the Characters from an Array in the object m e m o r y tha t has a
guaranteed object pointer called characterTablePointer.

primitiveStringAt
I index array ascii character I
index ~ self positive16BitVatueOf: self popStack.
array ~ self popStack.
self checklndexableBoundsOf: index

in: array.
self success

ifTrue: [ascii ,- memory integerValueOf: (self subscript: array
with: index).

character ~- memory fetchPointer: ascii
ofObject: CharacterTablePointer].

self success
ifTrue: [self push: character]
ifFalse: [self unPop: 2]

initializeCharacterindex
CharacterValuetndex ~ 0

The primit iveStr ingAtPut routine stores the value of a Character in one of
the receiver 's indexab]e bytes. I t fai ls i f the second a r g u m e n t of the
at:put: message is not a Character.

primitiveStringAtPut
I index array ascii character I
character ~- self popStack.
index ~ self positive16BitValue0f: self popStack.
array ~- self popStack.
self checklndexableBounds0f: index

in: array.
self success: (memory fetchCtass0f: character)=ClassCharacterPointer.

self success
ifTrue: [ascii ~- memory fetchPointer: CharacterValuelndex

of 0bject: character.
self subscript: array

with: index
storing: ascii].

self success
ifTrue: [self push: character]
ifFatse: [self unPop: 2]

631
Array and S t ream Primitives

The pr im i t i veNext , p r im i t i veNex tPu t , and pr im i t i veAtEnd routines are op-
tional primitive versions of the Smal l ta lk code for the next, nextPut : ,
and atEnd messages to streams. The primitiveNext and primitiveNextPut
routines only work if the object being s t reamed is an Array or a String.

initializeStreamlndices
StreamArraylndex ~- 0.
Streamlndexlndex ~ 1.
StreamReadLimit lndex ~ 2.
StreamWriteLimittndex ~ 3

primitiveNext
I stream index limit array arrayCiass result ascii I
stream ~- self popStack.
array ~ memory fetchPointer: StreamArraylndex

of Object: stream.
arrayClass ~- memory fetchClassOf: array.
index ~ self fetchtnteger: Streamlndexlndex

of Object: stream.
limit ~ self fetchlnteger: StreamReadLimit lndex

of Object: stream.
self success: index < limit.
self success:

(arrayClass = CtassArrayPointer) I (arrayClass = ClassStringPointer).

self checklndexableBoundsOf: index + 1
in: array.

self success
ifTrue: [index ~- index + 1.

result ~- self subscript: array
with: index].

self success
ifTrue: [self storelnteger: Streamlndexlndex

of Object: stream
withValue: index].

self success
ifTrue: [arrayClass = ClassArrayPointer

ifTrue: [self push: result]
ifFalse: [ascii ~- memory integerValueOf: result.

self push: (memory fetchPointer: ascii
of Object:

CharacterTable Pointer)]]

i fFalse: [self unPop: 1]

primitiveNextPut
I value stream index limit arraY arrayClass result ascii I

value ~ self popStack.
stream ~ self popStack.

632
F o r m a l S p e c i f i c a t i o n of t h e P r i m i t i v e M e t h o d s

array - memory fetchPointer: StreamArraylndex
of Object: stream.

arrayCiass ~- memory fetchClassOf: array.
index - self fetchlnteger: Streamlndexlndex

of Object: stream.
limit ~- self fetchlnteger: StreamWriteLimitlndex

of Object: stream.
self success: index < limit.
self success:

(arrayClass = ClassArrayPointer) i (arrayClass = ClassStringPointer).
self checklndexableBoundsOf: index + 1

in: array.
self success

ifTrue: [index ~ index -4- 1 .
arrayClass =ClassArrayPointer

ifTrue: [self subscript: array
with: index
storing: value]

ifFalse: [ascii - memory fetchPointer:
CharacterValuelndex

of Object: value.
self subscript: array

with: index
storing: ascii]].

self success
ifTrue: [self storelnteger: Streamlndexlndex

of Object: stream
withValue: index].

self success
ifTrue: [self push: value]
ifFalse: [self unPop: 2]

primitiveAtlnd
t stream array arrayClass length index limit 1
stream - self popStack.
array ~- memory fetchPointer: StreamArraylndex

of Object: stream.
arrayClass ~ memory fetchClassOf: array.

length ~ self lengthOf: array.
index ~- self fetchlnteger: Streamlndexlndex

of Object: stream.
limit - self fetchlnteger: StreamReadLimitlndex

of Object: stream.

self success:
(array'Class = ClassArrayPointer) I (arrayClass = ClassStringPointer).

633
Storage Management Primitives

self success
ifTrue: [(index > =limit) I (index > =length)

ifTrue: [self push: TruePointer]
ifFalse: [self push: FalsePointer]]

ifFalse: [self unPop: 1]

Storage
Management
Primitives

The storage management primitive routines manipulate the representa-
tion of objects. They include primitives for manipulating object point-
ers, accessing fields, creating new instances of a class, and enumerating
the instances of a class.

dispatchStorageManagementPrimiUves
~rimitivetndex = 68 ifTrue: [1self primitiveObjectAt].
3r mitive ndex = 69 ifTrue: [fself primitive©bjectAtPut].
3nmitive ndex = 70 ifTrue: [tself primitiveNew].
9r, mitive ndex = 71 ifTrue: [1self primitiveNewWithArg].
3rimitive ndex = 72 ifTrue: [tself primi.tiveBecome].
3nmitive ndex = 73 ifTrue: [tsetf primitivelnstVarAt].
3rimitive ndex = 74 ifTrue: [tsetf primitivelnstVarAtPut].
3r mitivelndex = 75 ifTrue: [1self primitiveAsOop].
3nmitivetndex = 76 ifTrue: [tself primitiveAsObject].
3rimitivelndex = 77 ifTrue: [1"self primitiveSomelnstance].
orimitivelndex = 78 ifTrue: [1self primitiveNextlnstance].
orimitivelndex = 79 ifTrue: [1self primitiveNewMethod]

The pr imi t iveObjec tAt and p r im i t i veOb jec tA tPu t r ou t i nes are associated
w i t h the objectAt : and objectAt :put : messages in Comp i l edMethod . T h e y
provide access to the object pointer fields of the receiver (the method
header and the literals) from Smalltalk. The header is accessed with an
index of 1 and the literals are accessed with indices 2 through the num-
ber of literals plus 1. These messages are used primarily by the compil-
er.

primitiveObjectAt
I thisReceiver index I
index ~- self poplnteger.
thisReceiver ~- self popStack.
self success: index > 0.
self success: index < =(sel f objectPointerCountOf: thisReceiver).

self success
ifTrue: [self push: (memory fetchPointer: index--1

ofObject: thisReceiver)]
ifFalse: [self unPop: 2]

634
Formal Specification of the Pr imit ive Methods

primitiveObjectAtPut
I thisReceiver index newValue I
newVatue ~- self popStack.
index ~ self poptnteger.
thisReceiver ~ self popStack.
self success: index > O.
self success: index < =(self objectPointerCountOf: thisReceiver
self success

ifTrue: [memory storePointer: index-1
ofObject: thisReceiver
withValue: newValue.

self push: newValue]
ifFalse: [self unPop: 3]

The primitiveNew rout ine creates a new instance of the receiver (a class)
without indexable fields. The primitive fails if the class is indexable.

primitiveNew
I c lasss ize l
class ~ self popStack.
size ~- self fixedFieldsOf: class.
self success: (self islndexable: c l ass) - - f a l se .
self success

ifTrue: [(self isPointers: class)
ifTrue: [self push: (memory instantiateCtass: class

withPointers: size)]
ifFalse: [self push: (memory instantiateClass: class

withWords: size)]]
ifFalse [self unPoP 1]

The primitiveNewWithArg routine creates a new instance of the receiver
(a class) with the number of indexable fields specified by the integer ar-
gument . The primitive fails if the class is not indexable.

primitiveNewWithArg
I size class I
size ~ self positive16BitValueOf: self popStack.
class ~ self popStack.
self success: (self islndexable: class).
self success

ifTrue: [size ~- size + (self fixedFieldsOf: class).
(self isPointers: class)

ifTrue: [self push: (memory instantiateClass: class
withPointers: size)]

ifFalse: [(self isWords: class)
ifTrue: [self push: (memory instantiateClass:

class
withWords: size)]

635
Storage Managemen t Primit ives

ifFalse: [self push: (memory instantiateClass:
class

withBytes: size)]]]
ifFalse: [self unPop: 2]

The primitiveBecome routine swaps the instance pointers of the receiver
and argument . This means tha t all objects tha t used to point to the re-
ceiver now point to the a rgumen t and vice versa.

primitiveBecome
I thisReceiver otherPointer I
otherPointer ~- self popStack.
thisReceiver ~ self popStack.
self success: (memory islntegerObject: otherPointer) not.
self success: (memory islntegerObject: thisReceiver) not.
self success

ifTrue: [memory swapPointersOf: thisReceiver and: otherPointer.
self push: thisReceiver]

ifFalse: [self unpop: 2]

The pr imit ivelnstVarAt and primit ivelnstVarAtPut rout ines are associated.
w i t h the instVarAt: and instVarAt:put: messages in Object. They are s imi-
|ar to primit iveAt and primit iveAtPut except t ha t the n u m b e r i n g of f ields
s tar ts with the fixed fields (corresponding to named instance variables)
ins tead of with the indexable fields. The indexable fields are numbered
s tar t ing with one more than the number of fixed fields. These routines
need a different rout ine to check the bounds of the sUbscript.

checklnstanceVariableBoundsOf: index in: object
I class I
class ~- memory fetchClassOf: object.
self success: index > = 1.
self success: index < =(self lengthOf: object)

primitivelnstVarAt
I thisRecejver index value I
index ~ self poptnteger.
thisReceiver ~ self popStack.
self checklnstanceVariableBoundsOf: index

in: thisReceiver.
self success

ifTrue: [value ~ self subscript: thisReceiver
with: index].

self success
ifTrue: [self push: value]
ifFalse: [self unPop: 2]

primitivelnstVarAtPut
I thisReceiver index newValue realValue I
newValue ~ self popStack.

636
Formal Specification of the Primitive Methods

index ~ self poplnteger.
thisReceiver ~- self popStack.
self checklnstanceVariableBoundsOf: index

in: thisReceiver.
self success

ifTrue: [self subscript: thisReceiver
with: index
storing: newValue].

self success
ifTrue: [self push: newValue]
ifFalse: [self unPop: 3]

The primitiveAsOop routine produces a Smalllnteger whose value is half
of the receiver's object pointer (interpreting object pointers as 16-bit
signed quantities). The primitive only works for non-Smalllnteger receiv-
ers. Since non-Smaillnteger object pointers are even, no information in
the object pointer is lost. Because of the encoding of Smalllntegers, the
halving operation can be performed by setting the least significant bit
of the receiver's object pointer.

primitiveAsOop
I thisReceiver I
thisReceiver ~- self popStack.
self success: (memory islntegerObject: thisReceiver)= =false.
self success

ifTrue: [self push: (thisReceiver bitOr: 1)]
ifFalse: [self unPop: 1]

The primitiveAsObject routine performs the inverse operation of
primitiveAsOop. It only works for Smalllnteger receivers (it is associated
with the asObject message in Srnalllnteger). It produces the object point-
er that is twice the receiver's value. The primitive fails if there is no
object for that pointer.

primitiveAsObject
I thisReceiver newOop I
thisReceiver ~- self popStack.
newOop ~ thisReceiver bitAnd: 16rFFFE.
self success: (memory hasObject: newOop).
self success

ifTrue: [self push: newOop]
ifFalse: [self unPop: 1]

The pr imi t iveSomelnstance and pr imi t iveNext fnstance routines allow for
the enumeration of the instances of a class. They rely on the ability of
the object memory to define an ordering on object pointers, to find the
first instance of a class in that ordering, and, given an object pointer, to
find the next instance of the same class.

637
Control Primitives

primitiveSomelnstance
I class I
class ~- self popStack.
(memory instancesOf: class)

ifTrue: [self push: (memory initiallnstanceOf: class)]
ifFalse: [self primitiveFait]

primitiveNexUnstance
1 object I
object ~- self popStack.
(memory isLastlnstance: object)

ifTrue: [self primitiveFail]
ifFalse: [self push: (memory instanceAfter: object)]

The pr imi t iveNewMethod rou t ine is associated w i t h the
newMethod:header: message in Compi ledMethod class. Instances of
Compi tedMethod are created w i t h a special message. Since the par t of a
Compi ledMethod that contains pointers instead of bytes is indicated in
the header, all CompiledMethods must have a valid header. Therefore,
CompiledMethods are created with a message (newMethod:header:) that
takes the number of bytes as the first argument and the header as the
second argument. The header, in turn, indicates the number of pointer
fields.

primiUveNewMethod
I header bytecodeCount class size I
header ~- self popStack.
bytecodeCount ~ self poplnteger.
class ~- self popStack.
size ~ (self literalCountOfHeader: header) 4-- 1 , 2 + bytecodeCount.
self push: (memory instantiateClass: class

withBytes: size)

Control
Pr imit ives

The control primitives provide the control structures not provided by
the bytecodes. They include support for the behavior of BlockConte×ts,
Processes, and Semaphores. They also provide for messages with pa-
rameterized selectors.

dispatchControlPrimitives
primitivelndex = 80 ifTrue: [1self primitiveBIockCopy].
primitivelndex = 81 ifTrue: [1"self primitiveValue].
primitivelndex = 82 ifTrue: [1`self primitiveValueWithArgs].
primitivelndex = 83 ifTrue: [1'self primitivePerform].
primitivelndex = 84 ifTrue: [1'self primitivePerformWithArgs].
primitivelndex = 85 ifTrue: [1"self primitiveSignal].

638
Formal Specification of the Primitive Methods

primitivelndex = 86 ifTrue: [1'self primitiveWait].
primitivelndex = 87 ifTrue: [tself primitiveResume].
primitivelndex = 88 ifTrue: [1'self primitiveSuspend].
primitivelndex = 89 ifTrue: [tself primitiveFlushCache]

The pr imit iveBIockCopy rou t ine is associated w i t h the blockCopy: mes-
sage in both BlockContext and MethodContext . Th is message is on ly pro-
duced by the compiler. The number of block arguments the new
BlockConte×t takes is passed as the argument . The primitiveBIockCopy
routine creates a new instance of BlockConte×t. If the receiver is a
MethodContext, it becomes the new BlockContext's home context. If the
receiver is a BlockConte×t, its home context is used for the new
BlockConte×t's home context.

primitiveBIockCopy
I context methodContext blockArgumentCount newContext initiallP
contextSize I
blockArgumentCount ~ self popStack.
context ~ self popStack.
(self isBIockContext: context)

ifTrue: [methodContext ~- memory fetchPointer: Homelndex
of Object: context]

ifFalse: [methodContext ~ context].
contextSize ~- memory fetchWordLengthOf: methodContext.
newContext ~- memory instantiateClass: ClassBIockContextPointer

withPointers: contextSize.
initiallP ~- memory integerObjectOf: instructionPointer -t- 3.
memory storePointer: InitiallPIndex

ofObject: newContext
withValue: initiallP.

memory storePointer: InstructionPointerlndex
ofObject: newContext
withValue: initiallP.

self storeStackPointerValue: 0
inContext: newContext.

memory storePointer: BlockArgumentCountlndex
ofObject: newContext
withValue: blockArgumentCount.

memory storePointer: Homelndex
ofObject: newContext
withValue: methodContext.

self push: newContext

The primitiveValue routine is associated with all revalue" messages in
BlockContext (value, value:, value:value:, and so on). It checks tha t the
receiver takes the same number of block arguments tha t the "value"
message did and then transfers them from the active context's stack to

639
Control Primitives

the receiver's stack. The primitive fails if the number of arguments do
not match. The primitiveValue routine also stores the active context in
the receiver's caller field and initializes the receiver's instruction point-
er and stack pointer. After the receiver has been initialized, it becomes
the active context.

primitiveValue
I blockContext blockArgumentCount initiallP I
blockContext ~- self stackValue: argumentCount.
blockArgumentCount ~ self argumentCountOfBIock: blockContext.
self success: argumentCount=blockArgumentCount.
self success

ifTrue: [self transfer: argumentCount
fromlndex: stackPointer-argumentCount -t- 1
ofObject: activeContext
totndex: TempFrameStart
ofObject: blockContext.

self pop: argumentCount -I- 1.
initiatlP ~ memory fetchPointer: InitiallPtndex

ofObject: blockContext.
memory storePointer: InstructionPointerlndex

ofObject: blockContext
withValue: initiallP.

self storeStackPointerVatue: argumentCount
inContext: blockContext.

memory storePointer: Callerlndex
ofObject: blockContext
withValue: activeContext.

self newActiveContext: btockContext]

The primit iveValueWithArgs rou t ine is associated w i t h the
valueWithArguments: messages in BlockContext. I t is bas ica l ly the same
as the primitiveValue rou t ine except tha t the block arguments come in a
single Array a rgumen t to the valueWithArguments: message instead of as
multiple arguments to the revalue" message.

primitiveValueWithArgs
i argumentArray blockContext blockArgumentCount
arrayCtass arrayArgumentCount initialtP I
argumentArray ~- self popStack.
blockContext ~- self popStack.
blockArgumentCount ~ self argumentCountOfBIock: blockContext.
arrayCtass ~- memory fetchClassOf: argumentArray.
self success: (arrayClass = ClassArrayPointer).
self success

ifTrue: [arrayArgumentCount ~ memory fetchWordLengthOf:
argumentArray.

self success: arrayArgumentCount=blockArgumentCount].

640
Formal Specification of the Primitive Methods

self success
ifTrue: [self transfer: arrayArgumentCount

fromlndex: 0
ofObject: argumentArray
tolndex: TempFrameStart
ofObject: blockContext.

initiallP ,- memory fetchPointer: InitiallPIndex
ofObject: blockContext.

memory storePointer: InstructionPointerlndex
ofObject: btockContext
withValue: initiallP.

self storeStackPointerValue: arrayArgumentCount
inContext: blockContext.

memory storePointer: Callerlndex
ofObject: blockContext
withValue: activeContext.

self newActiveContext: blockContext]
ifFalse: [self unPop: 2]

The primitivePerform routine is associated with all ~perform" messages
in Object (perform:, perform:with:, perform:with:with:, and so on). I t is
equivalent to sending a message to the receiver whose selector is the
first argument of and whose arguments are the remaining arguments.
It is, therefore, similar to the sendSelector:argumentCount: routine ex-
cept that it must get rid of the selector from the stack before calling
executeNewMethod and it must check that the CompiledMethod it finds
takes one less argument that the "perform" message did, The primitive
fails if the number of arguments does not match.

primitivePerform
I performSelector newReceiver selectorlndex I
performSelector ~- messageSelector.
messageSelector ~- self stackValue: argumentCount- 1.
newReceiver ~- self stackValue: argumentCount.
self IookupMethodlnCtass: (memory fetchClassOf: newReceiver).
self success: (self argumentCountOf: newMethod)=(argumentCount-1).
self success

ifTrue: [selectorlndex ~ stackPointer-argumentCount -I- 1.
self transfer: argumentCount- 1

fromlndex: selectorindex -I- 1
ofObject: activeContext
tolndex: selectorlndex
ofObject: activeContext.

self pop: 1.
argumentCount ,-- argumentCount- 1.
self executeNewMethod]

ifFalse: [messageSelector ~ performSelector]

641
Control Primitives

The primitivePerformWithArgs rout ine is associated w i th the
perforrnWithArguments: messages in Object. I t is basical ly the same as
the primitivePerform rout ine except tha t the message arguments come in
a single Array a rgument to the performWithArguments: message instead
of as multiple arguments to the ~perform" message.

primitivePerformWithArgs
I thisReceiver performSelector argumentArray arrayClass arraySize
index I
argumentArray ~ self popStack.
arraySize ~ memory fetchWordLengthOf: argumentArray.
arrayClass ~ memory fetchClassOf argumentArray.
self success: (stackPointer + arraySize)

< (memory fetchWordLengthOf: activeContext).
self success: (arrayClass = ClassArrayPointer).
self success

ifTrue: [performSelector ,--- messageSelector.
messageSetector ~- self popStack.
thisReceiver ,- self stackTop.
argumentCount ~ arraySize.
index ~ 1.
[index < = argumentCount]

whiteTrue: [self push (memory fetchPointer: index-1
ofObject: argumentArray).

index ~ index --t- 1].
self IookupMethodlnClass:

(memory fetchClassOf: thisReceiver).
self success (self argumentCountOf: newMethod)

=argumentCount.
self success

ifTrue: [self executeNewMethod]
ifFalse: [self unPop: argumentCount.

self push messageSelector.
self push' argumentArray.
argumentCount ~ 2.
messageSelector ~ performSetector]]

ifFalse: [self unPop: 1]

The next four primitive routines (for primitive indices 85 through 88)
are used for communication and scheduling of independent processes.
The following routine initializes the indices used to access Processes,
ProcessorSchedulers, and Semaphores.

initializeSchedulerlndices
"Class ProcessorScheduler"
ProcessListslndex ~ 0.
ActiveProcesslndex ~ 1.

642
Formal Specification of the Pr imi t ive Methods

" Class LinkedList"
FirstLinklndex ~- 0.
LastLinklndex ~- 1.
" Class Semaphore"
ExcessSignalslndex ~ 2.
" Class Link"
NextLinkindex ~ 0.
" Class Process"
SuspendedContexttndex ~ 1.
Prioritylndex ~ 2.
MyListlndex ~ 3

Process switching mus t be synchronized wi th the execut ion of
bytecodes. This is done using the following four in t e rp re t e r registers
and the four routines: checkProcessSwitch, asynchronousSignal: ,
synchronousSignal:, and transferTo:.

Process-related Registers of the Interpreter

newProcessWait ing

newProcess

semaphoreList

semaphore lndex

The newProcessWaiting register will be true if a process
switch is called for and false otherwise.

If newProcessWaiting is true then the newProcess register
will point to the Process to be transferred to.

The semaphoreList register points to an Array used by the
interpreter to buffer Semaphores that should be signaled.
This is an Array in Interpreter, not in the object memory. It
will be a table in a machine-language interpreter.

The semaphorelndex register holds the index of the last
Semaphore in the semaphoreList buffer.

The asynchronousSignal: rou t ine adds a Semaphore to the buffer.

asynchronousSignal: aSemaphore
semaphorelndex ~- s e m a p h o r e l n d e x + 1.

semaphoreList at: semaphorelndex put: aSemaphore

The Semaphores will ac tua l ly be signaled in the checkProcessSwitch
rou t ine wh ich calls the synchronousSignal: rou t ine once for each Sema-
phore in the buffer. I f a Process is wa i t i ng for the Semaphore, the
synchronousSignal: rou t ine resumes it. I f no Process is wa i t ing , the
synchronousSignal: rou t ine inc rements the Semaphore 's count of excess
signals. The isEmptyList:, resume:, and removeFirstLinkOfList: rout ines
a redescr ibed la te r in th is section.

643
Control Pr imi t ives

synchronousSignah aSemaphore
I excessSignals I
(self isEmptyList: aSemaphore)

ifTrue: [excessSignals ~ self fetchlnteger: ExcessSignalsindex
ofObject: aSemaphore.

self storelnteger: ExcessSignalslndex
ofObject: aSemaphore
withValue: excessSignals + 1]

ifFalse: [self resume: (self removeFirstLinkOfList: aSemaphore)]

The transferTo: routine is used whenever the need to switch processes is
detected. It sets the newProcessWaiting and newProcess registers.

transferTo: aProcess
newProcessWaiting ~ true.
newProcess ~ aProcess

The checkProcessSwitch routine is called before each bytecode fetch (in
the interpret routine) and performs the actual process switch if one has
been called for. It stores the active context pointer in the old Process,
stores the new Process in the ProcessorScheduler ' s active process field,
and loads the new active context out of t ha t Process.

checkProcessSwitch
I activeProcessl
[semaphoretndex > O]

whileTrue:
[self synchronousSignal: (semaphoreList at: semaphorelndex).
semaphorelndex ~- semaphorelndex-- 1].

newProcessWaiting
ifTrue: [newProcessWaiting ~ false.

activeProcess ~- self activeProcess.
memory storePointer: SuspendedContextlndex

ofObject: activeProcess
withValue: activeContext.

memory storePointer: ActiveProcesslndex
of Object: self schedulerPointer
withVatue: newProcess.

self newActiveContext:
(memory fetchPointer: SuspendedContextlndex

ofObject: newProcess)]

Any routines desiring to know what the active process will be must
take into account the newerocessWaiting and newerocess registers.
Therefore, they use the following routine.

644
Formal Specification of the Primitive Methods

act iveProcess
newProcessWaiting

ifTrue: [l'newProcess]
6

ifFalse: [1memory fetchPointer: ActiveProcesslndex
of Object: self schedulerPointer]

The instance of ProcessorScheduler responsible for scheduling the actu-
al processor needs to be known globally so that the primitives will
know where to resume and suspend Processes. This ProcessorScheduler
is bound to the name Processor in the Smalltalk global dictionary. The
association corresponding to Processor has a guaranteed object po in t e r ,
so the appropriate ProcessorScheduler can be found.

schedulerPointer
1memory fetchPointer: Valuelndex

ofObject: SchedulerAssociationPointer

When S m a l l t a l k is started up, the initial active context is found
through the scheduler's active Process.

f i rs tContext
newProcessWaiting ~- false.
1"memory fetchPointer: SuspendedContextlndex

of Object: self active Process

If the object memory automatically deallocates objects on the basis of
reference counting, special consideration must be given to reference
counting in the process scheduling routines. During the execution of
some of these routines, there will be times at which there are no refer-
ences to some object from the object memory (e.g., after a Process has
been removed from a Semaphore but before it h a s b e e n placed on one
of the ProcessorScheduler's LinkedLists). I f the object memory uses gar-
bage collection, it simply must avoid doing a collection in the middle of
a primitive routine. The routines listed here ignore the reference-count-
ing problem in the interest of clarity. Implementations using reference
counting will have to modify these routines in order to prevent prema-
ture deallocation of objects.

The following three routines are used to manipulate LinkedLists.

removeFirstLinkOfList : aLinkedList
I firstLink lastLink nextLink I
firstLink ~- memory fetchPointer: FirstLinktndex

ofObject: aLinkedList.
lastLink ~- memory fetchPointer: LastLinklndex

ofObject: aLinkedList.
lastLink = firstLink

ifTrue: [memory storePointer: FirstLinklndex
ofObject: aLinkedList
withValue: NilPointer.

645
Control Primitives

memory storePointer: LastLinklndex
ofObject: aLinkedList
withValue: NilPointer]

ifFalse: [nextLink ~- memory fetchPointer: NextLinklndex
ofObject: firstLink.

memory storePointer: FirstLinklndex
ofObject aLinkedList
withValue: nextLink].

memory storePointer: NextLinklndex
ofObject: firstLink
withValue" NilPointer.

l"firstLink
addLastLink: aLink toList: aLinkedList

t lastLinkl
(self isEmptyList: aLinkedList)

ifTrue' [memory storePointer: FirstLinklndex
ofObject: aLinkedList
withValue aLink]

ifFalse: [lastLink ~ memory fetchPointer: LastLinktndex
ofObject: aLinkedList.

memory storePointer: NextLinklndex
ofObject: lastLink
withValue' aLink].

memory storePointer: LastLinklndex
ofObject: aLinkedList
withValue" aLink.

memory storePointer: MyListlndex
ofObject: aLink
withValue: aLinkedList

isEmptyList: aLinkedList
1'(memory fetchPointer FirstLinklndex

ofObject: aLinkedList)
= NilPointer

These three LinkedList routines are used, in turn, to implement the fol-
lowing two routines tha t remove links from or add links to the
ProcessorScheduler 's LinkedLists of quiescent Processes.

wakeHighestPriority
I priority processLists processList I
processLists ~- memory fetchPointer: ProcessListslndex

of Object: self schedulerPointer.
priority ~- memory fetchWordLengthOf: processLists.
[processList ~- memory fetchPointer: priority-1

ofObject: processLists.
self is EmptyList: processList] whileTrue: [priority ~- priority - 1].

646
Formal Specification of the Primitive Methods

1self removeFirstLinkOfList: processList!
sleep: aProcess

I priority processLists processList I
priority ~- self fetchlnteger: Prioritylndex

ofObject: aProcess.
processLists ~ memory fetchPointer: ProcessListslndex

of Object: self schedulerPointer.
process List ~- memory fetchPointer: pr ior i ty- 1

ofObject: processLists.
self addLastLink: aProcess

toList: processList

These two routines are used, in turn, to implement the following two
routines that actually suspend and resume Processes.

suspendActive
self transferTo: self wakeHighestPriority

resume: aProcess
I activeProcess activePriority newPriority I
activeProcess ~ self activeProcess.
activePriority ~ self fetchlnteger: Prioritytndex

ofObject: activeProcess.
newPriority ~- self fetchlnteger: Prioritylndex

ofObject: aProcess.
newPriority > activePriority

ifTrue: [self sleep: activeProcess.
self transferTo: aProcess]

ifFalse: [self sleep: aProcess]

The primit iveSignal routine is associated with the signal message in
Semaphore. Since i t is called in the process of interpreting a bytecode,
it can use the synchronousSignal: routine. Any other signaling of Sema-
phores by the interpreter (for example, for timeouts and keystrokes)
must use the asynchronousSignal: routine.

primitiveSignal
self synchronousSignal: self stackTop.

The primit iveWait r ou t i ne is associated, w i t h the wait message in Sema-
phore. If the receiver has an excess signal count greater than O, the
primitiveWait routine decrements the count. If the excess signal count is
O, the primitiveWait suspends the active Process and adds it to the re-
ceiver's list of Processes.

primitiveWait
I thisReceiver excessSignals I
thisReceiver ~ self stackTop.
excessSignals ~ self fetchlnteger: ExcessSignalslndex

ofObject: thisReceiver.

647
I n p u t / O u t p u t Primit ives

excessSignals > 0
ifTrue: [self storelnteger: ExcessSignalslndex

ofObject: thisReceiver
withValue: excessSignals- 1]

ifFalse: [self addLastLink: self activeProcess
toList: thisReceiver.

self suspendActive]

The primit iveResume routine is associated with the resume message in
Process. It simply calls the resume: routine with the receiver as argu-
m e n t .

primitiveResume
self resume: self stackTop

The primit iveSuspend rout ine is associated with the suspend message in
Process. The primitiveSuspend rout ine suspends the receiver i f i t is the
active Process. If the receiver is not the active Process, the primitive
fails.

primitiveSuspend
self success: self stackTop=self activeProcess.
self success

ifTrue: [self popStack.
self push: NilPointer.
self suspendActive]

The primitiveFlushCache routine removes the contents of the method
cache. Implementa t ions tha t do not use a method cache can t rea t this
as a no-op.

primitiveFlushCache
self initializeMethodCache

Input/Output
Primitives

The inpu t /ou tpu t primitive routines provide Smal l ta lk with access to
the s t a t e of the hardware devices. Since the implementa t ion of these
routines will be dependent on the s t ruc ture of the implement ing ma-
chine, no routines will be given, just a specification of the behavior of
the primitives.

dispatchlnputOutputPrimitives
primitivelndex = 90 ifTrue: [1'self primitiveMousePoint].
primitivelndex = 9I ifTrue: [1'self primitiveCursorLocPut].
primitivelndex = 92 ifTrue: [1self primitiveCursorLink].

648
Formal Specification of the Primitive Methods

primitivelndex
pnmitivelndex
primitivelndex
pnmitivelndex
primitivelndex
prmmitivelndex
prlmitivelndex
pnmitivelndex
pnmitivelndex
primitivelndex
primitivelndex
primitivelndex
primitivelndex

= 93 ifTrue: [tself. primitivelnputSemaphore].
= 94 ifTrue: [1'self primitiveSamplelnterval].
= 95 ifTrue: [1'self primitivelnputWord].
= 96 ifTrue: [1'self primitiveCopyBits].
= 97 ifTrue: [1'self primitiveSnapshot].
= 98 ifTrue: [1self primitiveTimeWordslnto].
= 99 ifTrue: [1`self primitiveTickWordslnto].
= 100 ifTrue: [tself primitiveSignalAtTick].
= 10t ifTrue: [tself primitiveBeCursor].
= 102 ifTrue: [1"self primitiveBeDisplay].
= 103 ifTrue: [1`self primitiveScanCharacters].
= t04 ifTrue: [lsel f primitiveDrawLoop].
= t05 ifTrue: [1`self primitiveStringReplace]

Four of the primitive routines are used to detect actions by the user.
The two types of user action the system can detect are changing the
state of a bi-state device and moving the pointing device. The bi-state
devices are the keys on the keyboard, three buttons associated with the
pointing device and an optional five-paddle keyset. The buttons associ-
ated with the pointing device may or may not actually be on the physi-
cal pointing device. Three of the four input primitive routines
(p r im i t i ve lnpu tSemaphore , p r im i t i ve lnpu tWord , and pr im i t i veSample ln te rva l)
provide an active or event-initiated mechanism to detect either state
change or movement. The other primitive routine (primitiveMousePoint)
provides a passive or polling mechanism to detect pointing device loca-
tion.

The event-initiated mechanism provides a buffered stream of 16-bit
words that encode changes to the bi-state devices or the pointing device
location. Each time a word is placed in the buffer, a Semaphore is sig-
naled (using the asynchronousSignal: routine). The Semaphore to signal
is initialized by the primitivelnputSemaphore routine. This routine is as-
sociated with the primlnputSemaphore: message in InputState and the
argument of the message becomes the Semaphore to be signaled. The
primitivelnputWord routine (associated with the primlnputWord message
in InputState) returns the next word in the buffer, removing it from the
buffer. Since the Semaphore is signaled once for every word in the buff-
er, the Smalltalk process emptying the buffer should send the Sema-
phore a wait message before sending each primlnputWord message. There
are six types of 16-bit word placed in the buffer. Two types specify the
t ime of an event, two types specify state change of a bi-state device, and
two types specify pointing device movement. The type of the word is
stored in its high order four bits. The low order 12-bits are referred to
as the parameter.

The six type codes have the following meanings.

649
Inpu t /Ou tpu t Primitives

type code meaning

Delta time (the parameter is
the number of milliseconds
since the last event of any
type)
X location of the pointing
device
Y location of the pointing
device
Bi-state device turned on
(the parameter indicates
which device)
Bi-state device turned off
(the parameter indicates
which device)
Absolute time (the parame-
ter is ignored, the next two
words in the buffer contain
a 32-bit unsigned number
that is the absolute value of
the millisecond clock)

Whenever a device state changes or the pointing device moves, a time
word is put into the buffer. A type 0 word will be used if the number of
milliseconds since the last event can be represented in 12 bits. Other-
wise, a type 5 event is used followed by two words representing the ab-
solute time. Note tha t the Semaphore will be signaled 3 times in the
lat ter case. Following the time word(s) will be one or more words of
type 1 through 4. Type 1 and 2 words will be generated whenever the
pointing device moves at all. It should be remembered tha t Small talk
uses a left-hand coordinate system to talk about the screen. The origin
is the upper left corner of the screen, the x dimension increases toward
the right, and the y dimension increases toward the bottom. The mini-
mum time span between these events can be set by the
primitiveSamplelntervat routine which is associated with the
primSamplelnterval: message in lnputState. The a rgument to
primSamplelnterval: specifies the number of milliseconds between move-
ment events if the pointing device is moving constantly.

Type 3 and 4 words use the low-order eight bits of the parameter to
specify which device changed state. The number ing scheme is set up to
work with both decoded and undecoded keyboards. An undecoded key-
board is made up of independent keys with independent down and up
transitions. A decoded keyboard consists of some independent keys and
some ~meta" keys (shift and escape) tha t cannot be detected on their

650
Formal Specification of the Primit ive Methods

own, but tha t change the value of the other keys. The keys on a
decoded keyboard only indicate their down transit ion, not their up t ran-
sition. On an undecoded keyboard, the s tandard keys produce parame-
ters tha t are the ASCII code of the charac ter on the keytop without
shift or control information (i.e,, the key with ~A" on it produces the
ASCII for '~a" and the key with ~2" and ¢¢@" on it produces the ASCII
for ~2"). The other s tandard keys produce the following parameters .

key parameter

backspace 8
tab 9
line feed 10
return 13
escape 27
space 32
delete 127

For an undecoded keyboard, the meta keys have the following parame-
ters.

key parameter

left shift 136
right shift 137
control 138
alpha-lock 139

For a decoded keyboard, the full shifted and ~controlled" ASCII should
b e used as a pa rame te r a n d successive type 3 and 4 words should be
produced for each keystroke.

The remain ing bi-state devices have the following parameters .

key parameter

left or top "pointing device" 128
button

center '~pointing device" 129
button

right or bottom '~pointing device" 130
button

keyset paddles right to left 131 through 135

651
Inpu t /Ou tpu t Primitives

The primitiveMousePoint routine allows the location of the pointing de-
vice to be polled. It allocates a new Point and stores the location of the
pointing device in its x and y fields.

The display screen is a rectangular set of pixels tha t can each be one
of two colors. The colors of the pixels are determined by the individual
bits in a specially designated instance of DisplayScreen. DisplayScreen is
a subclass of Form. The instance of DisplayScreen tha t should be used to
update the screen is designated by sending it the message beDisplay.
This message invokes the primitiveBeDisplay primitive routine. The
screen will be updated from the last recipient of beDisplay approximate-
ly 60 t imes a second.

Every time the screen is updated, a c u r s o r is ORed into its pixels.
The cursor image is determined by a specially designated instance of
Cursor. Cursor is a subclass of Form whose instances always have both
width and height of 16. The instance of Cursor tha t should be ORed into

the screen is designated by sending it the message beCursor. This mes-
sage invokes the primitiveBeCursor primitive routine.

The location at which the cursor image should appear is called the
c u r s o r l o c a t i o n . The cursor location may be linked to the location of the
pointing device or the two locations may be independent. Whether or
not the two locations are linked is determined by sending a message to
class Cursor with the selector cursorLink: and either true or false as the
argument . If the a rgument is true, then the two locations will be t he
same; if it is false, they are independent. The cursorLink: message in
Cursor's metaclass invokes the primitiveCursorLink primitive routine.

The cursor can be moved in two ways. If the cursor and pointing de-
vice have been linked, then moving the pointing device moves the
cursor. The cursor can also be moved by sending the message
primCursorLocPut: to an instance of lnputState. This message takes a
Point as an a rgument and invokes the primitiveCursorLocPut primitive
routine. This routine moves the cursor to the location specified by the
argument . If the cursor and pointing device are linked, the
primitiveCursorLocPut routine also changes the location indicated by the
pointing device.

The primitiveCopyBits routine is associated with the copyBits message
in BitBIt and performs an operation on a bi tmap specified by the receiv-
er. This routine is described in Chapter 18.

The primitiveSnapshot routine writes the current state of the object
memory on a file of the same format as the Smalltalk-80 release file.
This file can be resumed in exactly the same way tha t the release file
was originally started. Note tha t the pointer of the active context at the
time of the primitive call must be stored in the active Process on the
file.

The primitiveTimeWordslnto and primitiveTickWordslnto routines are
associated with the timeWordslnto: and tickWordsinto: messages in Sen-

652
Formal Specification of the Primitive Methods

sor. Both of these messages take a byte indexable object of at least four
bytes as an argument. The primitiveTimeWordslnto routine stores the
number of seconds since the midnight previous to January 1, 1901 as an
unsigned 32-bit integer into the first four bytes of the argument. The
primitiveTickWordslnto routine stores the number of ticks of the millisec-
ond clock (since it last was reset or rolled over) as an unsigned 32-bit
integer into the first four bytes of the argument.

The primitiveSignalAtTick routine is associated with the siflnal:atTick:
messages in ProcessorScheduler. This message takes a Semaphore as
the first argument and a byte indexable object of at least four bytes as
the second argument. The first four bytes of the second argument are
interpreted as an unsigned 32-bit integer of the type stored by the
primitiveTickWordslnto routine. The interpreter should signal the Sema-
phore argument when the millisecond clock reaches the value specified
by the second argument. If the specified time has passed, the Sema-
phore i s s igna led immediately. This primitive signals the last Sema-
phore to be passed to it. If a new call is made on it before the last t imer
value has been reached, the last Semaphore will not be signaled. If the
first a rgument is not a Semaphore, any currently waiting Semaphore
will be forgotten.

The primitiveScanCharacters routine is an optional primitive associat-
ed with the scanCharactersFrom:to:in:rightX:stopConditions:displaying
message in CharacterScanner. If the function of the Smalltalk method
is duplicated in the primitive routine, text display will go faster. T h e
primitiveDrawLoop routine is similarly an optional primitive associated
with the drawLoopX:Y: message in BitBIt. If the function of the
Smalltalk method is duplicated in the primitive routine, drawing lines
will go faster.

System
Primitives

The seven final primitives are grouped together as system primitives.

dispatchSystemPrimitives
primitivelndex = 110 ifTrue: [tself primitiveEquivatent].
primitivelndex = 111 ifTrue: [1self primitiveClass].
primitivelndex = 112 ifTrue: [tself primitiveCoreLeft].
primitivelndex = t 13 ifTrue: [tsetf primitiveQuit].
primitivetndex = 114 ifTrue: [1"self primitiveExitToDebugger].
primitivelndex = 115 ifTrue: [tsel f primitiveOopsLeft].
primitivelndex = 116 ifTrue: [tself primitiveSignalAtOopsLeftWordsLeft]

653
System Primitives

The primitiveEquivalent routine is associated with the = = message in
Object. It re turns true if the receiver and a rgument are the same object
(have the same object pointer) and false otherwise.

primitiveEquivalent
I thisObject otherObject I
otherObject ~- self popStack.
thisObject ~ self popStack.
thisObject = otherObject

ifTrue: [self push: TruePointer]
ifFalse: [self push: FalsePointer]

The primitiveClass rout ine is associated with the class message in Object.
It re turns the object pointer of the receiver's class.

primitiveClass
1 instancet
instance ~ self popStack.
self push: (memory fetchClassOf: instance)

The pr imit iveCoreLeft rout ine re turns the number of unallocated words
in the object space. The primitiveQuit routine exits to another operating
system for the host machine, if one exists. The primitiveExitToDebugger
rout ine calls the machine language debugger, if one exists.

I
0

0

• ÷ 0 ° * ÷ o . j •
++ • °

.'!: "...- .
• - ~ , " Q

÷ • •

• + • ÷

°, 0 . * I , h I ÷
• l , • • + I ' I l l i i

4, ~ ,11 , + 4, +

, i , P + ÷

÷
4.

3 0
Formal Specification
of the Object Memory

H e a p S t o r a g e
Compaction

T h e O b j e c t T a b l e
Object Pointers
Object Table Entries
Unallocated Space

A l l o c a t i o n a n d D e a l l o c a t i o n
An Allocation Algorithm
A Deallocation Algorithm
A Compaction Algorithm

G a r b a g e C o l l e c t i o n
A Simple Reference-counting Collector
A Space-efficient Reference-counting Collector
A Marking Collector

N o n p o i n t e r O b j e c t s
CompiledMethods

I n t e r f a c e to t he B y t e c o d e I n t e r p r e t e r

656
Formal Specification of the Ob jec tMemory

The two major components of any Small talk-80 implementa t ion are the
bytecode in te rpre te r and the object memory. Chapters 28 and 29 de-
scribed an implementa t ion of the bytecode interpreter . This chapter de-
scribes an implementa t ion of the object memory. The function of the
object memory is to create, store, and destroy objects, and to provide ac-
cess to their fields.

Memory-managemen t systems fall into two major categories, real-
memory implementat ions and virtual-memory implementat ions. In a
rea l -memory implementat ion, all the objects in the envi ronment reside
in p r imary memory tha t is directly addressable by the program. In a
v i r tua l -memory implementat ion, objects reside in more than one level
of a memory h ierarchy and must be shuffled among the various levels
during execution. This chapter describes the design of Real-
ObjectMemory, an object memory for a rea l -memory Smalltalk-80.

Although Smal l ta lk can be implemented on computers of any word
size, this presentat ion will be simplified by several assumptions in the
s tandard algorithms. The routines of RealObjectMemory assume

• tha t there are eight bits in a byte,

• tha t there are two bytes in a word,

• tha t the .more significant byte of a word precedes the less signifi-
cant byte, and

• tha t the target computer is word addressed and word indexed.

Moreover, the routines assume tha t the address space is part i t ioned
into 16 or fewer segments of 64K (65,536) words apiece. The s tandard al-
gori thms can be systematical ly changed to adapt them to hardware
with different properties. The routines of RealObjectMemory deal al-
most exclusively with 16-bit integers, as would a machine- language im-
plementat ion.

To access locations in the address space of the host machine, machine
language implementa t ions use load and store instructions. In
RealObjectMemory, the load and store instructions are symbolized by
messages to an instance of RealWordMemory whose name is
wordMemory. The protocol of RealWordMemory is shown below

RealWordMemory instance protocol

segment: s word: w Return word w of segment s
segment: s word: w put: value Store value into word w of segment s; return

value.
segment: s word: w byte: byteNumber

Return byte byteNumber of word w of segment s.
segment: s word: w byte: byteNumber put: value

Store value into byte byteNumber of word w of
segment s; return value.

657
Heap Storage

segment: s word: w bits: firstBitlndex to: lastBitlndex
Return bits firstBitlndex to lastBitlndex of word
w of segment s.

segment: s word: w bits: firstBitlndex to: lastBitlndex put: value
Store value into bits firstBitlndex to lastBitlndex
of word w of segment s; return value.

When it is necessary to distinguish the two bytes of a word, the left
(more significant) byte will be referred to with the index 0 and the right
(less significant) byte with the index 1. The most significant bit in a
word will be referred to with the index 0 and the least significant with
the index 15. Note that self is an instance of class R e a l O b j e c t M e m o r y in
all routines of this chapter.

The most important thing about any implementation of the object
memory is that it conform to the functional specification of the object
memory interface given in Chapter 27. This chapter describes a range
of possible implementations of that interface. In particular, simple ver-
sions of some routines are presented early in the chapter and refined
versions are presented later as the need for those refinements becomes
clear. These preliminary versions will be flagged by including the com-
ment, "**Preliminary Version**", on the first line of the routine.

Heap Storage

Figure 30.1

In a real-memory implementation of Smalltalk, all objects are stored in
an area called the heap. A new object is created by obtaining space to
store its fields in a contiguous series of words in the heap. An object is
destroyed by releasing the heap space it occupied. The format of an al-
located object in the heap is shown in Figure 30.1. The actual data of
the object are preceded by a two-word header. The size field of the
header indicates the number of words of heap that the object occupies,
including the header. It is an unsigned 16-bit number, and can range
from 2 up to 65,536.

size = N + 2

CLASS

Field 0

Field 1

Field N - 2

Field N - 1

i Header

Body

658
F o r m a l Specif icat ion of the Object M e m o r y

W h e n m e m o r y is segmented , it is Usually conven ien t for a Smal l t a lk -80
i m p l e m e n t a t i o n to divide the heap into heap segments, each in a differ-
en t m e m o r y segment . As s t a t ed ear l ier , the rou t ines in this c h a p t e r as-
s u m e t h a t the t a r g e t c o m p u t e r is s egmen ted into address spaces of
65,536 words.

Heap Related Constants

HeapSegmentCount

FirstHeapSegment

LastHeapSegment

HeapSpaceStop

HeaderSize

The number of heap segments used in the implementation.

The index of the first memory segment used to store the
heap.

The index of the last memory segment used to store the
heap (FirstHeapSegment + HeapSegmentCount- 1).

The address of the last location used in each heap segment.

The number of words in an object header (2).

Figure 30.2

Free

Free 1
(a)

Fragmented Memory

Allocation
Request

/

Free

(b)
Compacted Memory

Compaction

659
The Object Table

Suppose for a moment tha t an object once allocated never changes its
location in the heap. To allocate a new object, a space between existing
objects must be found tha t is large enough to hold the new object. After
a While, the memory '~fragments" or '~checkerboards." That is, an allo-
cation request is bound to arrive for an amount of space smaller than
the total available memory but larger than any of the disjoint pieces
(Figure 30.2a). This can occur even if there is a large amount of avail-
able space and a relatively small allocation request.

Fragmenta t ion cannot be tolerated in an interactive system tha t is
expected to preserve a dynamic envi ronment for hundreds of hours or
more without reinitialization. Therefore when memory fragments, it
must be compacted. Memory is compacted by moving all objects tha t
are still in use towards one end of the heap, squeezing out all the free
space between them and leaving one large unallocated block at the oth-
er end (see Figure 30.2b).

Each heap segment is compacted separately. Even on a linearly-ad-
dressed machine it is preferable to segment a lar~ge heap to reduce the
durat ion of each compaction.

The Object
Table

When an object is moved during compaction, all pointers to its heap
memory must be updated. If many other objects contain pointers direct-
ly to the old location, then it is t ime-consuming on a sequential comput-
er to find and update those references to point to the new location.
Therefore to make the pointer update inexpensive, only one pointer to
an object's heap memory is allowed. That pointer is stored in a table
called the object table. All references to an object must be indirected
through the object table. Thus, the object pointers found in Small ta lk
objects are really indices into the object table, in which pointers into
the heap are in tu rn found (see Figure 30.3).

Indirection through the object table provides another benefit. The
number of objects of average size Z addressable by an n-bit pointer is on
the order of 2 n instead of 2n/Z. In our experience, objects average 10
words in size (Z~10), so a significant gain in address space can be real-
ized by indirection.

Throughout the object table, abandoned entries can occur tha t are
not associated with any space on the heap. These entries are called free
entries and their object pointers are called free pointers. It is easy to re-
cycle a free entry, because all object table entries are the same size.
Compaction of the object table is difficult and generally unnecessary, so
it is not supported.

Although the heap is segmented, the object table is stored in a single
segment so tha t an object pointer can be 16 bits and thus fit in one

=

660
Formal Specification of the Object Memory

object object
pointer table heap

object
pointer

Figure 30.3

Object Pointers

Figure 30.4

word. Consequently, the number of objects that can be addressed in real
memory is limited to the number of object table entries that can fit in
one segment. A common arrangement is for each object table entry to
occupy two words and for the entire table to occupy 64K words or less,
yielding a maximum capacity of 32K objects.

An object pointer occupies 16 bits, apportioned as in Figure 30.4.

I' ObjectTablelndex ! Oi

I Immediate Signed Integer Jl !

When the low-order bit of the object pointer is 0, the first 15 bits are an
index into the object table. Up to 215 (32K) objects can be addressed.
When the low-order bit of the object pointer is 1, the first 15 bits are an
immediate signed integer, and no additional space in the object table or
the heap is utilized. The benefit of giving special t reatment to integers
in the range ±214 is that they come and go with high frequency during
arithmetic and many other operations. The cost of their efficient repre-
sentation is the number of tests the interpreter must perform to distin-
guish object pointers of small integers from object pointers of other
objects.

The islntegerObject: routine tests the low order bit of objectPointer to
determine whether the rest of the pointer is an immediate integer val-
ue rather than an object table index.

islntegerObject: objectPointer
t(objectPointer bitAnd: 1) = 1

Object Table
Entries

Figure 30.5

661
The Object Table

Every other object-access routine requires tha t its object pointer argu-
ment real ly be an object table index. The cantBelntegerObject: routine
is used to t rap erroneous calls. If the hardware, the bytecode interpret-
er, and the object memory manage r are bug free, then this error condi-
tion is never encountered.

cantBelntegerObject." objectPointer
(self islntegerObject: objectPointer)

ifTrue: [Sensor notify:' A small integer has no object table entry']

The format of an object table en t ry is shown in Figure 30.5. If the free
en t ry bit is on, then the ent ry is free. If the free ent ry bit is off, then
the four segment bits select a heap segment and the 16 location bits lo-
cate the beginning of the space in tha t segment tha t is owned by the
object table entry. The count field, the odd length bit (O), and the point-
er fields bit will be explained la ter in the chapter.

LOCATION I

Object Table Related Constants

ObjectTableSegment

ObjectTableStart

ObjectTableSize

HugeSize

NilPointer

The number of the memory segment containing the object
table.

The location in objectTableSegment of the base of the ob-
ject table.

The number of words in the object table (an even number
-< 64K).

The smallest number that is too large to represent in an
eight-bit count field; that is, 256.

The object table index of the object nil

The following set of routines accesses the first word of object table
entr ies in four different ways: loading the whole word, storing the
whole word, loading a bit field, and storing a bit field. These routines in
tu rn utilize routines of wordMemory, an instance of RealWordMemory.
They assume tha t objectPointer is expressed as an even word offset rela-
tive to objectTableStart, the base of the object table in segment
objectTableSegment. Note tha t ot is an abbreviation for ~object table."

ot: objectPointer
self cantBetntegerObject: objectPointer.
fwordMemory segment: ObjectTableSegment

word: ObjectTableStart + objectPointer

662
Formal Specification of the Object Memory

ot: objectPointer put: value
self cantBelntegerObject: objectPointer.
TwordMemory segment: ObjectTableSegment

word: ObjectTableStart + objectPointer
put: value

ot: objectPointer bits: firstBitlndex to: lastBitlndex
self cantBelntegerObject: objectPointer.
1"wordMemory segment: ObjectTableSegment

word: ObjectTableStart + objectPointer
bits: firstBitlndex
to: lastBitlndex

ot: objectPointer bits: firstBitlndex to: lastBiUndex put: value
self cantBelntegerObject: objectPointer.
1"wordMemory segment: ObjectTableSegment

word: ObjectTableStart + objectPointer
bits: firstBitlndex
to: lastBitlndex
put: value

The following 12 object-access subroutines load or store the various
fields of the object table entry of objectPointer.

countBitsOf: objectPointer
t self ot: objectPointer bits: 0 to: 7

countBitsOf: objectPointer put: value
1self ot: objectPointer bits: 0 to: 7 put: value

oddBitOf: objectPointer
1'self ot: objectPointer bits: 8 to: 8

oddBitOf:-objectPointer put: value
t self ot: objectPointer bits: 8 to: 8 put: value

pointerBitOf: objectPointer
t self ot: objectPointer bits: 9 to: 9

pointerBitOf: objectPointer put: value
tself ot: objectPointer bits: 9 to: 9 put: value

freeBitOf: ,objectPointer
1"self ot: objectPointer bits: 10 to: 10

freeBitOf: objectPointer put: value
tself ot: objectPointer bits: 10 to: 10 put: value

segmentBitsOf: objectPointer
1self ot: objectPointer bits: 12 to: 15

segmentBitsOf: objectPointer put: value
tself ot: objectPointer bits: t2 to: 15 put: value

IocationBitsOf: objectPointer
self cantBelntegerObject: objectPointer.
twordMemory segment: ObjectTableSegment

word: ObjectTableStart + objectPointer + 1

663
The Object Table

IocationBitsOf: objectPointer put: value
self cantBelntegerObject: objectPointer.
1'wordMemory segment: ObjectTabteSegment

word: ObjectTabteStart -I-objectPointer + 1
put: value

For objects tha t occupy a chunk of heap storage (those whose free bit is
0), the following four object-access subroutines load or store words or
bytes from the chunk.

heapChunkOf: objectPointer word: offset
twordMemory segment: (self segmentBitsOf: objectPointer)

word: ((self IocationBitsOf: objectPointer) --I- offset)
heapChunkOf: objectPointer word: offset put: value

TwordMemory segment: (self segmentBitsOf: objectPointer)
word: ((self IocationBitsOf: objectPointer) + offset)
put: value

heapChunkOf: objectPointer byte: offset
rwordMemory segment: (self segmentBitsOf: objectPointer)

word: ((self IocationBitsOf: objectPointer) + (offset//2))
byte: (offset\ \2)

heapChunkOf: objectPointer byte: offset put: value
l'wordMemory segment: (self segmentBitsOf: objectPointer)

word: ((self IocationBitsOf: objectPointer)+ (offset//2))
byte: (offset\ \2) put: value

The next four object-access subroutines are more specialized in tha t
they load or store words of the object header.

sizeBitsOf: objectPointer
tself heapChunkOf: objectPointer word: 0

sizeBitsOf: objectPointer put: value
t self heapChunkOf: objectPointer word: 0 put: value

classBitsOf: objectPointer
1'self heapChunkOf: objectPointer word: 1

ciassBitsOf: objectPointer put: value
1`self heapChunkOf: objectPointer word: 1 put: value

The remaining two object-access subroutines are functionally identical
to sizeBitsOf: in the versions shown below. Later in this chapter, refine-
ments to the object-memory manager will require new versions of both
of these subroutines tha t will re turn something different from the ob-
ject size in certain cases. For tha t reason, these methods are marked
'~preliminary."

lastPointerOf: objectPointer Preliminary Version** "
1"self sizeBitsOf: objectPointer

spaceOccupiedBy: objectPointer Preliminary Version**"
1'self sizeBitsOf: objectPointer

664
F o r m a l Specif icat ion of t he Object M e m o r y

Una lloca ted Space
All f ree en t r i e s in the object t ab le a re kep t on a l inked list h e a d e d a t
the locat ion n a m e d freePointerkist . The l ink f rom one f ree e n t r y to the
nex t is an object po in t e r in its locat ion field (see F i g u r e 30,6).

Figure 30.6

Free Pointer
List Head free

fre~

in use

free

in use

IolPIFI ! s
L

i ii

11
End of List

11 i111
Link

i]] o l l

111111
Link

'1) 1ol I

j ~

U n a l l o c a t e d space in the heap is g rouped into free chunks (contigu-
ous blocks) of a s so r t ed sizes and each of those f ree c h u n k s is ass igned
an object t ab le en t ry . F r e e c h u n k s a re l inked t o g e t h e r on lists, each
c o n t a i n i n g c h u n k s of the s a m e size. The l ink f rom one free c h u n k to the
n e x t is in its class field (F igure 30.7). To keep the tab le of l ist heads
smal l , all f ree c h u n k s b igger t h a n 20 words a re l inked onto a s ingle list.

Free Space Related Constants

FreePointerList

BigSize

FirstFreeChunkList

LastFreeChunkLis t

NonPointer

The location of the head of the linked list of free object ta-
ble entries,

The smallest size of chunk that is not stored on a list
whose chunks are the same size. (The index of the last free
chunk list).

The location of the head of the linked list of free chunks of
size zero. Lists for chunks of larger sizes are stored in con-
tiguous locations following FirstFreeChunkkist. Note that
the lists at FirstFreeChunkList and FirstFreeChunkList + 1
will always be empty since all chunks are at least two
words long.

The location of the head of the linked list of free chunks of
size BiflSize or larger.

Any sixteen-bit value that cannot be an object table index,
e.g., 21~- 1.

A s e p a r a t e set of f ree c h u n k lists is m a i n t a i n e d for each heap segmen t ,
bu t only one free po in t e r list is m a i n t a i n e d for the object table. No te
t h a t the object t ab le e n t r y assoc ia ted wi th a ¢~free c h u n k " is not a ~'free

665
The Object Table

Figure 30.7

2
3

4
5

6

7
8

9
10

11
12

13
14
15
16
17

18

19

20
21

List Heads

Object Table

k

o I I Iol I - - - t - - ~ , 1 9

Heap Segment

End of list

entry." It is not on the free pointer list, and its free en t ry bit is not set.
The way a free chunk is distinguished from an allocated chunk is by
sett ing the count field of the object table en t ry to zero for a free chunk
and to nonzero for a n allocated chunk.

The following four routines manage the free pointer list headed at
freePointerList in segment objectTableSegment. The first two routines
simply load and store the list head.

headOfFreePointerList
l'wordMemory segment: ObjectTableSegment

word: FreePointerList
headOfFreePointerListPut: objectPointer

twordMemory segment: ObjectTableSegment
word: FreePointerList
put: objectPointer

The routine toFreePointerListAdd: adds a free en t ry to the head of the
list.

666
Formal Specification of the Object Memory

toFreePointerListAdd: objectPointer
self IocationBitsOf: objectPointer

put: (self headOfFreePointerList).
self headOfFreePointerListPut' objectPointer

The rout ine removeFromFreePointerList removes the f i rst ent ry from
the list and returns it; if the list was empty, it returns nil. The distin-
guished value NonPointer signifies the end of a linked list. A good value
for NonPointer is 21~- 1, a value that is easily detected on most comput-
ers and that cannot be confused with an actual object table entry ad-
dress because it is an odd number.

removeFromFreePointerList
I objectPointerl
objectPointer ~ self headOfFreePointerList.
objectPointer NonPointer ifTrue: [tnil].
self headOfFreePointerListPut: (self IocationBitsOf: objectPointer).
tobjectPointer

The following routines manage the free-chunk lists headed at
FirstFreeChunkList + 2 through LastFreeChunkList of each heap seg-
ment. The i r behavior is exactly analogous to that of the routines above.
The first three routines work in the segment specified or implied by
their second parameter. The fourth routine works in the segment speci-
fied by the register zurrentSegment.

headOfFreeChunkList: size inSegment: segment
twordMemory segment' segment

word: FirstFreeChunkList .4-- size
headOfFreeChunkList." size

inSegment: segment
put: objectPointer

TwordMemory segment: segment
word" FirstFreeChunkList -I-- size
put: objectPointer

toFreeChunkList: size add." objectPointer
I segment I
segment ~ self segmentBitsOf: objectPointer.
self classBitsOf: objectPointer

put: (self headOfFreeChunkList: size inSegment: segment).
self headOfFreeChunkList: size

inSegment: segment
put: objectPointer

removeFromFreeChunkList: size
I objectPointer secondChunk I
objectPointer ~ self headOfFreeChunkList: size

inSegment: currentSegment.
objectPointer = NonPointer ifTrue [1'nil].

667
Allocation and Deallocation

secondChunk ~- self classBitsOf: objectPointer.
self headOfFreeChunkList: size

inSegment: currentSegment
put: secondChunk.

l'objectPointer

The routine resetFreeChunkList:inSegment: resets the specified free-
chunk list to an empty list.

resetFreeChunkList: size inSegment: segment
self headOfFreeChunkList: size

inSegment: segment
put: NonPointer

Allocat ion and
Deal locat ion

To allocate an object, an entry is obtained from the object table and suf-
ficient space for the header and data is obtained from some heap seg-
ment. The heap segment in which space is found is called the current
segment. It becomes the first segment in which to look for space to allo-
cate the next object. The only register required by the object memory
holds the index of the current segment.

currentSegment

Registers of the Object Memory

The index of the heap segment currently being used for al-
location.

To allocate a ~Iarge" object requiring n words of heap space (n > =
BigSize), the list beginning at kastFreeChunkList in the current segment
is searched for a free chunk whose size is ei ther n words or at least n÷
headerSize words. If the free chunk found is larger than n words, it is
subdivided and only n of the words are used to satisfy the allocation re-
quest.

To allocate a "small" object requiring n words of heap space
(headerSize < = n < BigSize), the list beginning at freeChunkLists+ n is
searched. If the list is nonempty, its first free chunk is removed and
used for the new object. If the list is empty, the above algori thm for
"large" objects is used.

If no chunk of sufficient size is found in the current segment, then
the next segment is made current and the search continues there. The
new current segment is compacted first to improve the chances of find-
ing sufficient space. In a compacted segment, all the allocated objects
are at one end and the (presumably large) space at the other end is all

668
Formal Specification of the Object Memory

in one large chunk, the sole member of the list LastFreeChunkLists. If
enough space is not found in any segment, execution is halted.

When an object is dea]located, its space is recycled on the list of free
chunks of the appropriate size. However, to simplify the presentat ion in
this chapter, the s tandard algori thms leave the unused par t of any
subdivided chunk on the list of big free chunks even if tha t par t is
small in size.

An Allocation
Algorithm

The allocate:class: routine is presented below as an example of a simple
allocation routine. It takes as parameters the size of the desired chunk
(in words, including header) and the class of the object tha t chunk will
represent. The actual allocation routine takes several other parameters
and so the allocate:class: routine will be flagged as preliminary. A more
complete routine, allocate:extra:class:, is presented in a later section and
the actual routine used in the implementat ion, allocate:odd:pointer:-
extra:class:, is presented after that.

allocate: size class: c lassPointer Preliminary Version
I objectPointer I
objectPointer ~- self allocateChunk: size. " a c t u a l l y allocate"
self classBitsOf: objectPointer put: classPointer. " f i l l in class"
" initialize all fields to the object table index of the object nil"
(headerSize to: size-1) do:

[:i I self heapChunkOf: objectPointer word: i put: NilPointer].
self sizeBitsOf: objectPointer put: size.
"return the new object's pointer"
tobjectPointer

The routine allocateChunk: ei ther succeeds in its allocation task, or it
reports an unrecoverable error. It uses a subroutine, attempt-
ToAIIocateChunk:, tha t either completes the job or re turns nil if no space
can be found.

al locateChunk: size Preliminary Version
I objectPointer I
objectPointer ~-self attemptToAIIocateChunk: size.
objectPointer isNil ifFalse: [lobjectPointer].
1'self error: "Out of memory'

The attemptToAllocateChunk: rout ine f irst tries to al locate in
currentSegment, the segment current ly targeted for allocations. I t does
so using the subroutine attemptToAIIocateChunklnCurrentSegment:. If
the subroutine fails (returns nil), then the routine compacts the next
segment and retries the allocation there. This procedure continues unt i l
the original segment has been compacted and searched. If no space can
be found anywhere, t he routine returns nil. Note that i t uses implemen-
tation-dependent constants: HeapsegmentCount, FirstHeapsegment, and
LastHeapsegment.

669
Allocation and Deallocation

attemptToAIIocateChunk: size
I objectPointerl
objectPointer ,,- self attemptToAIIocateChunklnCurrentSegment: size.
objectPointer isNil ifFalse: [tobjectPointer].
1 to: HeapSegmentCount do:

[:il
currentSegment ~- currentSegment --t- 1.
currentSegment > LastHeapSegment

ifTrue: [currentSegment ~ FirstHeapSegment].
self compactCurrentSegment.
objectPointer

self attemptToAIIocateChunklnCurrentSegment: size.
objectPointer isNil ifFalse: [lobjectPointer]].

1"nil

The a t temptToAI IocateChunk lnCurrentSegment : r ou t i ne searches the cur-
r en t heap segment's free-chunk lists for the first chunk that is the right
size or that can be subdivided to yield a chunk of the right size. Because
most objects are smaller than BigSize and most allocation requests can
be satisfied by recycling deallocated objects of the desired size, most al-
locations execute only the first four lines of the routine.

attemptToAIlocateChunklnCurrentSegment: size
I objectPointer predecessor next availableSize excessSize newPointer I

size < BigSize
ifTrue: [objectPointer ~- self removeFromFreeChunkList: size].

objectPointer notNil
ifTrue: [1'objectPointer]. " small chunk of exact size handy so use it"

predecessor ~- NonPointer.
"remember predecessor of chunk under consideration"

objectPointer ,- self headOfFreeChunkList: LastFreeChunkList
inSegment: currentSegment.

"the search loop stops when the end of the linked list is encountered"
[objectPointer = NonPointer] whileFalse:

[availableSize ~ self sizeBitsOf: objectPointer.
availableSize = size

ifTrue: " exact fit - - remove from free chunk list and return"
[next ~ self classBitsOf: objectPointer.

" ' t h e link to the next chunk"
predecessor = N on Pointer

ifTrue: "it was the head of the list; make the next item the head "
[self headOfFreeChunkList: LastFreeChunkList

inSegment: currentSegment put: next]
ifFalse: " it was between two chunks; link them together"

[self classBitsOf: predecessor
put: next].

lobjectPointer].

670
Formal Specification of the Object Memory

"this chunk was either too big or too small; inspect the amount of
variance "

excessSize ~ availableSize-size.
excessSize > = HeaderSize

ifTrue: " can be broken into two usable parts: return the second part"
[" obtain an object table entry for the second part"
newPointer ~ self obtainPointer: size

location: (self IocationBitsOf: objectPointer)
-I- excessSize.

newPointer isNil ifTrue: [tnii].

"correct the size of the first part (which remains on the free list)"
self sizeBitsOf: objectPointer put: excessSize.
tnewPointer]

ifFalse: " not big enough to use; try the next chunk on the list"
[predecessor ~ objectPointer.
objectPointer ~- self classBitsOf: objectPointer]].

tnil " t h e end of the linked list was reached and no fit was found"

The subroutine obtainPointer : locat ion: used by the above routine obtains
a free object table entry, zeroes its free entry bit as well as the rest of
the first word of the entry, points the entry at the specified location,
and sets the size field of the header to the specified size.

obtainPointer: size location: location
I objectPointer I
objectPointer ~ self removeFromFreePointerList.
objectPointer isNil ifTrue: [tnil].
self ot: objectPointer put: O.
self segmentBitsOf: objectPointer put: currentSegment.
self IocationBitsOf: objectPointer put: location.
self sizeBitsOf: objectPointer put: size.
tobjectPointer

A Deallocation
Algorithm

It is much simpler to deallocate an object than to allocate one. The
chunk is recycled on a free-chunk list. The following routine expects
the count field to have been reset to zero by a higher-level routine.

deallocate: objectPointer Preliminary Version
I space I
space ~-- self spaceOccupiedBy: objectPointer.
self toFreeChunkList: (space min: BigSize)

add: objectPointer

Note that this routine computes the space occupied by the object using
spaceOccupiedBy: instead of sizeBitsOf:. The reason will become clear
later in the chapter when spaceOccupiedBy: is redefined.

671
Allocation and Deallocation

A Compaction
Algorithm

The compactCurrentSegment routine invoked above by
attemptToAIIocateChunk: sweeps th rough a heap segment, massing a]]
allocated objects together and updating their object table entries. For
the benefit of subsequent allocation, it also links the object table entries
reclaimed from the free chunk lists onto the free pointer list and cre-
ates a single free chunk from the unused portion of the heap segment.
The algorithm for compactCurrentSegment will be presented shortly, af-
ter some preparatory discussion.

After a heap segment is compacted a number of times, relatively per-
manent objects sift to the bottom of the segment and most allocation
and deallocation activity occurs nearer to the top. The segment consists
of a densely packed region of allocated chunks, followed by a region of
both allocated and free chunks. During compaction, chunks in the
densely packed region never move, because there is no space beneath
them to eliminate. Therefore, the compacter expends effort only on
chunks above the first free chunk, whose location is referred to as
IowWaterMark.

The abandonFreeChunkslnSegment: rout ine computes IowWaterMark.
I t also f inds al l deal]ocated chunks, recycles the i r object table entr ies
onto the l ist of free pointers using the subrout ine releasePointer:, and
changes their class fields to the distinguished value nonPointer. During
the subsequent sweep, when the compacter encounters objects so
marked it can recognize them as deallocated chunks.

abandonFreeChunkslnSegment: segment
t IowWaterMark objectPointer nextPointer I
lowWaterMark - HeapSpaceStop. "f irst assume that no chunk is free"
HeaderSize to: BigSize do: "for each free-chunk list"

[:size I
objectPointer ~ self headOfFreeChunkList: size

inSegment: segment.
[objectPointer = NonPointer] whileFalse:

[IowWaterMark ~ IowWaterMark
min: (self IocationBitsOf: objectPointer).

nextPointer ~ self classBitsOf: objectPointer.
" link to next free chunk"

self classBitsOf: objectPointer put: NonPointer.
" distinguish for sweep"

self releasePointer: objectPointer.
" add entry to free-pointer list"

objectPointer ~ nextPointer].
self resetFreeChunkList: size inSegment: segment].

t IowWaterMark
releasePointer: objectPointer

self freeBitOf: objectPointer put: 1.
self toFreePointerListAdd: objectPointer

672
Formal Specification of the Object Memory

A heap segment is compacted by sweeping through it from bottom to
top. Each allocated object is moved as far down in the segment as possi-
ble without overwriting other allocated objects. For each object moved,
the corresponding object table entry is found and its location field is
updated to point to the new location of the object.

It is by no means trivial to find the object table entry of an object en-
countered during a sweep of the heap segment. The representation of
the object in the heap does not include a pointer back to the object ta-
ble entry. To avoid the cost of such a backpointer for every object or
making the compacter search the object table after every object is
moved, a trick called "reversing pointers" is employed. During compac-
tion, instead of the usual arrangement in which the object table entry
points to the header in the heap, the header points temporarily to the
object table entry.

Pointers are reversed before starting to sweep through a heap seg-
ment. The object table is scanned to find every in-use entry whose seg-
ment field refers to the segment being compacted and whose location
field is above IowWaterMark. Each such entry points to the header of an
object that is to be moved (Figure 30.8a). The pointer is then reversed,
i.e., the object's own object pointer is stored in the first word of its
header. This causes the header to point to the object table entry. By do-
ing this, the size field of the header is overwritten.: To prevent losing
the size, it is saved in the second word of the object table entry (Figure
30.8b). By doing that, the location field is overwritten, but that is of no

Object Table

I ! i l i

(a) Forward Pointer

Object Table

i [1 [i
SIZE r

Heap
SIZE

Heap

Figure 30.8 (b) Reversed Pointer

673
Allocation and Deallocation

consequence, because the compacter recomputes the object's heap loca-
tion after the move.

reverseHeapPointersAbove: IowWaterMark
I size I
0 to: ObjectTableSize-2 by: 2 do:

[:objectPointer I
(self freeBitOf: objectPointer)=O

ifTrue: "the Object Table entry is in use"
[(self segmentBitsOf: objectPointer) = currentSegment

ifTrue: " t h e object is in this segment"
[(self IocationBitsOf: objectPointer) < IowWaterMark

ifFalse: "the object will be swept"
[size ~ self sizeBitsOf: objectPointer.

" rescue the size"
self sizeBitsOf: objectPointer

put: objectPointer. " reverse the pointer"
self IocationBitsOf: objectPointer

put: size " save the size"]]]]

After all preparations for compaction are complete, the current heap
segment is swept using the sweepCurrentSegmentFrom routine. It
maintains two pointers into the segment, si (source index) and di (desti-
nation index). The pointer si points to the header of an object currently
being considered for retention or elimination. The pointer di points to
the location where that object will be moved if retained.

sweepCurrentSegmentFrom: IowWaterMark
I si di objectPointer size space I
si ~- di ~ IowWaterMark.
[si < HeapSpaceStop]

whileTrue: " f o r each object, s i ' "

[(wordMemory segment: currentSegment word: si + 1) = NonPointer
ifTrue: " unallocated, so skip it"

[size ~ wordMemory segment: currentSegment word: si.
si ~- si + size]

ifFalse: " allocated, so keep it, but move it to compact storage"
[objectPointer

wordMemory
segment: currentSegment word: si.

size ~- self IocationBitsOf: objectPointer.
"the reversed size"

self tocationBitsOf: objectPointer
put: di. " point object table at new location"

self sizeBitsOf: objectPointer
put: size. "restore the size to its proper place"

si ~- si -I- 1. " s k i p the size"
di ~ di -t- 1. " s k i p the size"

674
Formal Specification of the Object Memory

2 to: (self spaceOccupiedBy: objectPointer) do:
" move the rest of the object"

[: i l
wordMemory segment: currentSegment

word: di
put: (wordMemory segment:

currentSegment
word: si).

tdi

si ~- si--t- 1.
di ~- di + 1]]].

Note tha t while pointers are reversed, it is impossible to access the
heap memory of an object from its object table entry. Therefore the
Small ta lk in terpreter cannot run during compaction.

The compactCurrentSegment routine invokes the above routines in
the proper order and then creates the single free chunk at the top of
the heap segment.

c o m p a c t C u r r e n t S e g m e n t
t IowWaterMark bigSpace I
IowWaterMark ,,- self abandonFreeChunkslnSegment: currentSegment.
fowWaterMark < HeapSpaceStop

ifTrue:
[self reverseHeapPointersAbove: IowWaterMark.
bigSpace ~ self sweepCurrentSegmentFrom: IowWaterMark.
self deallocate: (self obtainPointer:

(HeapSpaceStop+ 1-bigSpace)
location: bigSpace)]

If there are no free chunks within the segment when this routine is in-
voked, then it does not move any objects.

Garbage
Collection

In Smalltalk, a new object is allocated explicitly (e.g., when the message
new is sent to a class) but there is no explicit language construct tha t
causes an object to be deallocated. Such a construct would be unsafe,
because it could be used to deallocate an object even though ~Mangling"
references to it still existed in other objects. An environment containing
dangling references would be inconsistent and would be likely to exhibit
unintended behavior and to suffer unrecoverable errors.

Most noninteractive programming systems require explicit
deallocation. The burden of avoiding dangling references is placed on
the programmer. If a dangling reference arises, the programmer is

675
Garbage Collection

expected to find the bug that created it, fix that bug, and restart the
program. In an interactive environment like Smalltalk (as well as most
LISP and APL systems), to require a restart because of a common bug
would be unacceptable, since it could require the user to redo a poten-
tially large amount of work.

Because there is no explicit deallocation in Smalltatk, the memory
manager m u s t identify objects that have become inaccessible and
deallocate them automaticsLlly. This task is traditionally known as gar-
bage collection. As compared with explicit deallocation, garbage collec-
tion entails a large performance penalty. The penalty is incurred
because the computer must manage deallocation at execution time in-
stead of relying on the programmer to have done so during coding time.
However, the cost is well worth the reliability it adds to an interactive
system.

There are two traditional approaches to identifying inaccessible ob-
jects in an object memory: marking and reference counting. A marking
garbage collector performs an exhaustive search of memory for accessi-
ble objects and marks them all. Then it scans memory in search of ob-
jects that are unmarked and thus inaccessible and deallocates them. A
reference-counting garbage collector maintains a count of how many
references there are to each object from other objects. When the count
of references to some object reaches zero, that object is known to be in-
accessible, and the space it occupies can be reclaimed.

Reference-counting systems do not deal properly wi th so-called "cy-
clic structures." Such a structure is said to occur when an object refer-
ences itself directly or when an object references itself indirectly via
other objects that reference it. In a reference-counting system, when a
cyclic structure becomes inaccessible to the program, it will have non-
zero reference counts due to the intrastructure references. Therefore
the memory manager doesn't recognize that the structure should be
deallocated, and the objects that constitute the structure are not
deallocated. These inaccessible objects waste space; but, unlike dangling
references, they do not cause inconsistency in the environment.

Both reference counting and marking involve performance penalties
on conventional computers. In a reference-counting system, the fre-
quently performed operation of storing a reference to an object involves
overhead for reference-count maintenance, so programs run significant-
ly more slowly. In a marking garbage collector, an extensive search of
memory must be performed whenever space is entirely depleted. There-
fore, program execution is subject to relatively lengthy interruptions
that can be quite annoying in an interactive system. Both approaches
incur space overhead. In a reference-counting system, space must be
provided to store reference counts. In a marking system, extra space
must be allotted in the heap to allow garbage to accumulate between
collections. Otherwise, collections occur too frequently.

676
Formal Specification of the Object Memory

The approach to garbage collection that should be used in a particu-
lar implementation of Smalltalk depends in part on the capacity of the
hardware. If a relatively small amount of memory (e.g., 100 kilobytes) is
available, a reference counting system is intolerable, because it can
waste precious space by leaving inaccessible cyclic structures allocated.
On the other hand, a marking collector is quite acceptable in these cir-
cumstances, in spite of the interruption that occurs when it is invoked,
because when memory is small, the duration of the interruption can be
so brief as to be imperceptible. If an abundant supply of memory (e.g.,
two megabytes) is available, the time it takes to mark all accessible ob-
jects can be so long as to be intolerable. On the other hand, there is
enough space available that a moderate number of inaccessible objects
can be tolerated.

The contrast between the two approaches is accentuated in a large
virtual-memory system. Marking is even more costly because so much
time is spent in random accesses to secondary memory. Reference
counting is even less costly because unreclaimed cyclic structures sim-
ply migrate to secondary memory where wasted space is less bother-
some. When memory is abundant, a reference-counting garbage
collector is appropriate. However, Smalltalk programmers should take
precautions to avoid the accumulation of an excessive number of inac-
cessible cyclic structures, otherwise even a large memory will be deplet-
ed. To break a cyclic structure before it becomes inaccessible, the
program can change any pointer that participates in the cycle to nil.

The two approaches to garbage collection can be combined. Refer-
ences can be counted during normal operation and marking collections
performed periodically to reclaim inaccessible cyclic structures. A com-
bined approach is suitable for all but the smallest real-memory imple-
mentations. If a small-to-medium-size memory is available, a marking
collection can be performed whenever compaction fails to recover
enough space. If an abundant memory is available, marking collections
can be performed nightly or at other convenient intervals.

A Simple
Reference-counting
Collector

In the reference-counting collector described in this chapter, the refer-
ence count of an object is recorded in the count field of its object table
entry. If an object pointer is an immediate integer, it is its own only
reference, so its reference count is not recorded explicitly. Reference
counts are updated during store operations. When an object pointer ref-
erencing object P is stored into a location that formerly contained an
object pointer referencing object Q, the count field of P is incremented
and the count field of Q is decremented. Because the count field of an
object table entry has only eight bits, it is possible for an incremented
count to overflow. To facilitate overflow detection on most computers,
the high order bit of the count field serves as an overflow bit. Once the

677
Garbage Collection

count field reaches 128, it remains at tha t value and it will not increase
or decrease. The algori thm for incrementing a reference count is

countUp: objectPointer
I count I
(self islntegerObject: objectPointer)

ifFatse:
[count ~- (self countBitsOf: objectPointer) + 1.
count < 129 ifTrue: [self countBitsOf: objectPointer put: count]].

tobjectPointer

If the decremented reference count of an object reaches zero, then that
object is deallocated. Before doing so, the count field of every object ref-
erenced from tha t object is decremented, because once the object is
deallocated it will no longer reference those other objects. Note that
this procedure recurs if any of the lat ter counts reach zero. A recursive
procedure tha t can traverse the original object plus all the objects it
references is expressed below as the routine forAI IObjectsAccess ib leFrom:-
suchThat:do: . This routine takes two procedural a rguments represented
by blocks, a predicate tha t decrements a count and tests for zero and an
action tha t deallocates an object. Between evaluating the predicate and
the action, the procedure's subroutine, forAIIOtherObjectsAccessibleFrom:-
suchThat:do:, recursively processes every pointer in the object. The pro-
cedure is allowed to alter the count as a side effect, so the action argu-
ment must restore the count to zero in preparat ion for deallocation.

countDown: rootObjectPointer
I count I
(self islntegerObject: rootObjectPointer)

ifTrue: [t rootObjectPointer]
ifFatse: "this is a pointer, so decrement its reference count"

[t self forAllObjectsAccessibleFrom: rootObjectPointer
suchThat:

"the predicate decrements the count and tests for zero"
[:objectPointer I

count ,-- (self countBitsOf: objectPointer)- 1.
count < 127

ifTrue: [self countBitsOf: objectPointer
put: count].

count=0]
do: "the action zeroes the count and deallocates the object"

[:objectPointer l
self countBitsOf: objectPointer put: 0.
self deallocate: objectPointer]]

The traversal routine shown below first tests the predicate on the sup-
plied object. It then invokes a subroutine tha t (1) recursively processes

678
Formal Specification of the Object Memory

A Space-efficient
Reference-counting
Collector

all objects referenced from within the supplied object that satisfy predi-
cate, and (2) per forms action on the suppl ied object.

forAIIObjectsAccessibleFrom: objectPointer
suchThat: predicate
do: action

(predicate value: objectPointer)
ifTrue:

[1'self forAIlOtherObjectsAccessibleFrom: objectPointer
suchThat: predicate
do: action]

forAilOtherObjectsAccessibleFrom: objectPointer
suchThat: predicate
do: action

I next I
1 to: (self lastPointerOf: objectPointer)-1 do:

[:offset I
next ~ self heapChunkOf: objectPointer word: offset.
((self islntegerObject: next)= =false and: [predicate value: next])

ifTrue: " it's a non-immediate object and it should be processed"
[self forAllOtherObjectsAccessibleFrom: next

suchThat: predicate
do: action]].

" all pointers have been followed; now perform the action"
action value: objectPointer.
tobjectPointer

The traversal algorithm outlined above is recursive and, therefore,
must use a stack in its execution. To guard against stack overflow, the
depth of the stack must be greater than the longest chain of pointers in
memory. This requirement is difficult to satisfy when memory space is
limited. To guarantee that enough space is available, the pointer chain
itself can be used as the stack. If object A references object B from A's
ith field, and object B references object C from B's j~h field, and object C
references another object from C's k th field, and so on, the pointer chain
can be represented as A.i~B.j~C.k (Figure 30.9a). To use the
pointer chain as a stack for the recursion of the traversal algorithm,
the chain is temporarily reversed to C k~B.j- ,A. i so that each
field in the chain points to its predecessor instead of to its successor
(Figure 30.9b).

Each step of the traversal algorithm's recursion must be completed
by "popping the stack." After processing any object in the chain (e.g., C),
its predecessor (e.g., B) is found by following the reversed pointer chain.
The algorithm also needs to know which field of the predecessor was
being worked on. To maintain this information, the algorithm must be
changed at the earlier stage where it left B to process C. At that stage,
the index of the field, j, is copied into the count field of the object t a b l e

Figure 30.9

679
G a r b a g e Collection

Object
Table

A

Heap

Object
Table

.J
r !

B

(a) Forward Chain

Heap
J

i
Object
Table Heap

. , ,

Object
Table Heap

~[

(b) Reversed Chain

entry of B. The count can be overwrit ten because the object is being
deallocated. But if the size of B exceeds 255 words, then the count field
will not be large enough to store every field index. Instead, the alloca-
tor is revised to over-allocate by one word any object tha t is HugeSize
(256) words or more and to reserve tha t extra word for use by the tra-
versal a lgori thm to store offset.

To accommodate over-allocation, the allocation routine is revised to
accept an additional argument , extraWord, tha t is ei ther 0 or 1. It is
also necessary for the allocator to increment the reference count of the
new object's class before storing the class into the header of the new ob-
ject. (In fact, this must be accomplished even earlier, before calling
allocateChunk:, to assure tha t the class is not deallocated accidentally
by some side effect of tha t subroutine.)

al loCate: s ize extra: e x t r a W o r d class: c lassPo in te r
. . . . Preliminary Version
I objectPointer t
self coumUp: classPointer.

"increment the reference count of the class"
objectPointer ~- self allocateChunk: size + extraWord.

" allocate enough"
self ctassBitsOf: objectPointer put: classPointer.

680
Formal Specification of the Object Memory

HeaderSize to: size-1 do:
[: i l self heapChunkOf: objectPointer word: i put: NilPointer].

" the next statement to correct the SIZE need only be executed if
extraWord > 0"

self sizeBitsOf: objectPointer put: size.
tobjectPointer

The actual heap space occupied by an object with at least HufleSize
fields is one greater than that stated in its size field, because of the ex-
t ra word allocated. Therefore, the spaceOccupiedBy: routine must be
changed to account for the difference.

spaceOccupiedBy: objectPointer Preliminary Version
I size I
size ~- self sizeBitsOf: objectPointer.
size < HugeSize

ifTrue: [tsize]
ifFalse: [tsize + 1]

The deallocation algorithm must also be revised because deallocated ob'
jects have no provision for an extra word not counted in the size field.

deallocate: objectPointer
I space I
space ~ self spaceOccupiedBy: objectPointer.
self sizeBitsOf: objectPointer put: space.
self toFreeChunkList: (space min: BigSize)add: objectPointer

The following routine implements the space-efficient traversal algo-
rithm, with A, B, and C of the above example represented by the vari-
ables prior, current, and next. To simplify the loop test, the method scans
the fields of each chunk in reverse order. Thus the class field is pro-
cessed last.

Note that the last s tatement of the method restores the pointer chain
to get B.j again pointing to C instead of to A. It is easy to do so when
returning to B from processing C, because object pointer of C can sim-
ply be stored in the jth field of B. One might think that step unneces-
sary, because B is being deallocated. However, t he same traversal
algorithm can be used by a marking collector in which B is not being
deallocated.

forAIlOtherObjectsAccessibleFrom: objectPointer
suchThat: predicate
do: action

I prior current offset size next I
"compute prior, current, offset, and size to begin p rocess ing
objectPointer"
prior ~ NonPointer.

681
Garbage Collection

current ~ objectPointer.
offset ~ size ~ self lastPointerOf: objectPointer.
[true] whileTrue: " for all pointers in all objects traversed"

[(offset ~ offset - 1) > 0 " d e c r e m e n t the field index"

ifTrue: " t h e class field hasn't been passed yet"
[next~ self heapChunkOf: current word: offset.

" one of the pointers"

((self islntegerObject: next)= =fa lse
and: [predicate value: next])

ifTrue: " i t ' s a non-immediate object and it should be pro-

cessed"
[" reverse the pointer chain"
self heapChunkOf: current word: offset put: prior.
"save the offset either in the count field or in the extra

word "

size < HugeSize
ifTrue: [self countBitsOf: current put: offset]
ifFalse: [self heapChunkOf: current

word: size + 1 put: offset].
"compute prior, current, offset, and size to begin pro-

cessing next"
prior ~ current, current ~ next.
offset ~- size ~ self tastPointerOf: current]]

ifFalse:
[" all pointers have been followed; now perform the action"

action value: current.
"did we get here from another object?"
pr ior= NonPointer

ifTrue: "this was the root object, so we are done"
[t" objectPoi nter].

" restore next, current, and size to resume processing prior"
next ~- current, current ~- prior.
size ~ self lastPointerOf: current.
" restore offset either from the count field or from the extra word"

size < HugeSize
ifTrue: [offset ~- self countBitsOf: current]
ifFalse: [offset ,-- self heapChunkOf: current word: size + 1].

" restore prior from the reversed pointer chain"
prior ~ self heapChunkOf: current word: offset.
"restore (unreverse) the pointer chain"
self heapChunkOf: current word: offset put: next]]

The machine-language implementation can deal with the procedural ar-
guments either by passing a pair of subroutine addresses to be called
indirectly or by expanding the subroutines in line. If the hardware has
enough registers, it is possible to keep the variables next, current, prior,
size, and offset in registers for additional speed of execution.

682
Formal Specification of the Object Memory

A Marking
Collector

The job of the marking garbage collector is to mark all accessible ob-
jects so that the remaining inaccessible objects can be identified and
added to the lists of free chunks. Accessible objects can be found most
easily by a recursive search from the '~roots of the world," namely, the
interpreter 's stacks and the table of global variables (the Dictionary
named Smalitalk).

The following algorithm is performed on each root object. In the ob-
ject table entry of the object, set the count field to 1 to mean "marked."
Apply the algorithm of this paragraph to each unmarked object refer-
enced by the object.

Note that the above marking algorithm is inherently recursive. In its
implementation, the same traversal routine used for reference counting
can be used, in either the simple or the space-efficient version. Before
marking begins, the count fields of all objects are reset to 0 to mean
"unmarked." After marking ends, all unmarked objects are deallocated
and the reference counts of all marked objects are recomputed. The
routine that performs all the necessary steps is called
reclaimlnaccessibleObjects.

reclaimlnaccessibleObjects
self zeroReferenceCounts.
self markAccessibteObjects.
self rectifyCountsAndDealtocateGarbage

The subroutine that sets the count fields of all objects to 0 is called
zeroReferenceCounts. It is superfluous to zero the count field of a free
chunk or of a free entry. Nevertheless, the following version zeroes the
count field of every entry, because on most computers, it takes less time
to zero the first byte of an entry than it takes to test the status of that
entry.

zeroReferenceCounts
0 to: ObjectTableSize-2 by: 2 do:

[:objectPointer I
self countBitsOf: objectPointer put: 0]

The subroutine markAccessibleObjects invokes the marking algorithm
markObjectsAccessibleFrom: for every object in the list root-
ObjectPointers. Typically, the list rootObjectPointers includes the object
pointer of the current process and the object pointer of the global vari-
able dictionary, from which all other accessible objects are referenced
directly or indirectly.

markAccessibleObjects
rootObjectPointers do:

[:rootObjectPointer I
self markObjectsAccessibleFrom: rootObjectPointer]

683
Garbage Collection

The marking algori thm markObjectsAccessibleFrom: calls the same tra-
versal routine as the reference-counting collector did. Its predicate suc-
ceeds for unmarked objects and it marks them with a count of 1 as a
side effect. Its action restores the count field to 1 because the space-effi-
cient version of the traversal routine could have changed tha t field to
any nonzero value as a side effect.

markObjectsAccessibleFrom: rootObjectPointer
I unmarked I
1'self forAIlObjectsAccessibleFrom: rootObjectPointer

suchThat: "the predicate tests for an unmarked object and marks it"
[:objectPointer I

unmarked ~ (self countBitsOf: objectPointer) = O.
unmarked ifTrue: [self countBitsOf: objectPointer put: 1].
unmarked]

do: "the action restores the mark to count= 1"
[:objectPointer I

self countBitsOf: objectPointer put: 1]

After the marking algori thm has been executed, every non-free object
table entry is examined using the subroutine rectify-
CountsAndDeallocateGarbage. If the entry is unmarked, then the entry
and its heap chunk are added to the appropriate free lists. If the entry
is marked, then the count is decremented by one to u n m a r k it, and the
counts of all objects tha t it references directly are incremented. Note
tha t when a marked object is processed, its count may exceed 1 because
objects previously processed may have referenced it. That is why it is
unmarked by subtraction instead of by setting its count to 0.

During the examinat ion of object table entries, chunks tha t were al-
ready free before the marking collection began will be encountered. The
count field of an already-free chunk is zero just like an unmarked ob-
ject, so it will be added to a free-chunk list. Doing so would cause a
problem if the chunk were already on a free-chunk list. Therefore be-
fore the scan begins, all heads of free-chunk lists are reset.

As a final step, the reference count of each root object is incremented
to assure tha t it is not deallocated accidentally.

rectifyCountsAndDeallocateGarbage
I count I
" reset heads of free-chunk lists"
FirstHeapSegment to: LastHeapSegment do: "for every segment"

[:segment I
HeaderSize to: BigSize do: "for every free chunk list"

[:size l "reset the list head"
self resetFreeChunkList: size inSegment: segment]].

"rectify counts, and deallocate garbage"

684
Formal Specification of the Object Memory

0 to: ObjectTableSize-2 by: 2 do: "for every object table entry"
[:objectPointer t

(self freeBitOf: objectPointer)=0
ifTrue: " if it is not a free entry"

[(count ~ self countBitsOf: objectPointer) = 0
ifTrue: "it is unmarked, so deallocate it"

[self deallocate: objectPointer]
ifFalse: " it is marked, so rectify reference counts"

[count < 128 ifTrue: " subtract 1 to compensate for the mark"
[self countBitsOf: objectPointer put: coun t -1] .

1 to: (self lastPointerOf: objectPointer)-1 do:
[:offset I " increment the reference count of each

pointer"
self countUp: (self heapChunkOf: objectPointer

word: offset)]]]].
" be sure the root objects don't disappear"

rootObjectPointers do:
[:rootObjectPointer I self countUp: rootObjectPointer].

self countBitsOf: NilPointer put: 128

The allocateChunk: routine can now be revised so tha t it a t tempts a
mark ing collection if compaction of all segments has failed to yield
enough space to satisfy an allocation request.

al locateChunk: size
I objectPointer I
objectPointer ~- self attemptToAIIocateChunk: size.
objectPointer isNil ifFalse: [l'objectPointer].
self reclaimlnaccessibleObjects. " garbage collect and try again"
objectPointer ~- self attemptToAIIocateChunk: size.
objectPointer isNil ifFalse: [1'objectPointer].
self outOfMemoryError " give up"

Nonpointer
Objects

The object format presented in this chapter is not part icularly space ef-
ficient, but since its uniformity makes the system software small and
simple, the inefficiency can generally be forgiven. There are two classes
of object for which the inefficiency is intolerable, namely, character
strings and bytecoded methods. There are usually many strings and
methods in memory, and when stored one character or one bytecode per
word, they are quite wasteful of space.

To store such objects more efficiently, an al ternate memory format is
used in which the data part of an object contains 8-bit or 16-bit values

685
Nonpointer Objects

that are interpreted as unsigned integers ra ther than as object pointers.
Such objects are distinguished by the setting of the pointer-fields bit of
the object table entry: when that bit is 1, the data consist of object
pointers; when that bit is 0, the data consist of positive 8- or 16-bit inte-
gers. When there are an odd number of bytes of data in a nonpointer
object, the final byte of the last word is 0 (a slight waste of space), and
the odd-length bit of the object table entry, which is normally 0, is set
to 1. To support nonpointer objects, the allocator needs two additional
parameters, pointerBit and oddBit. In the case of a nonpointer object
(pointerBit=0), the default initial value of the elements is 0 instead of
nil. The final version of the allocation routine is shown below.

allocate: size
odd: oddBit
pointer: pointerBit
extra: extraWord
class: classPointer

i objectPointer default t
self countUp: classPointer.
objectPointer ~ self allocateChunk: size 4- extraWord.
self oddBitof: objectPointer put: oddBit.
self pointerBitOf: objectPointer put: pointerBit.
self classBitsOf: objectPointer put: classPointer.
default ~- pointerBit=0 ifTrue: [0] ifFalse: [NitPointer].
HeaderSize to: size-1 do:

[:i I self heapChunkOf: objectPointer word' i put: default].
self sizeBitsOf: objectPointer put: size.
tobjectPointer

The garbage-collecting traversal routines need only process the class
field of each nonpointer object, because the data contain no pointers. To
make this happen, the routine lastPointerOf: is changed as follows:

lastPointerOf: objectPointer Preliminary Version
(self pointerBitOf: objectPointer)=O

ifTrue:
[lHeaderSize]

ifFatse:
[1'self sizeBitsOf: objectPointer]

The value of lastPointerOf: is never as large as 256 for a nonpointer ob-
ject, so a nonpointer object never needs to be over-allocated. Therefore,
spaceOccupiedBy: is revised again as follows:

spaceOccupiedBy: objectPointer
I size t
size ~ self sizeBitsOf: objectPointer.
(size < HugeSize or: [(self pointerBitOf: objectPointer) = 0])

ifTrue: [1 size]
ifFalse: [tsize + 1]

686
Formal Specification of the Object Memory

CompiledMethods
A CompiledMethod is an anomaly for the memory manager because its
data are a mixture of 16-bit pointers and 8-bit unsigned integers. The
only change needed to support CompiledMethods is to add to
lastPointerOf: a computation similar to that in the bytecode interpret-
er's routine bytecodelndexOf:. MethodClass is the object table index of
CompiledMethod.

lastPointerOf: objectPointer
I methodHeader I
(self pointerBitOf: objectPointer)=0

ifTrue:
[tHeaderSize]

ifFalse:
[(self classBitsOf: objectPointer) = MethodClass

ifTrue: [methodHeader ~ self heapChunkOf: objectPointer
word: HeaderSize.

tHeaderSize + 1 -4-((methodHeader bitAnd: 126)
bitShift: - 1)]

ifFalse: [tself sizeBitsOf: objectPointer]]

Interface to the
Bytecode
Interpreter

The final step in the implementation of the object memory is to provide
the interface routines required by the interpreter. Note that
fetchClassOf: objectPointer returns InteflerClass (the object table index
of Smalllnteger) if its argument is an immediate integer.

object pointer access

fetchPointer: fieldlndex ofObje©t: objectPointer
self heapChunkOf: objectPointer word: HeaderSize + fieldlndex

storePoi.nter: fieldindex
ofObject: objectPointer
withValue: valuePointer

I chunklndext
chunklndex ~ HeaderSize + fieldlndex.
self countUp: valuePointer.
self countDown: (self heapChunkOf: objectPointer word: chunklndex).
1self heapChunkOf: objectPointer word: chunklndex put: valuePointer

word access

fetchWord: wordlndex ofObject: objectPointer
1'self heapChunkOf: objectPointer word: HeaderSize -t- wordlndex

storeWord: wordlndex
ofObject: objectPointer
withValue: valueWord

1'self heapChunkOf: objectPointer word: HeaderSize -I-- wordlndex
put: valueWord

687
I n t e r f a c e to t h e B y t e c o d e I n t e r p r e t e r

byte access

fetchByte: bytelndex ofObject: objectPointer
tself heapChunkOf: objectPointer byte: (HeaderSize,2 + bytetndex)

storeByte: bytelndex
ofObject: objectPointer
withValue: valueByte

1'self heapChunkOf: objectPointer
byte: (HeaderSize,2 -I-- bytelndex)
put: vatueByte

reference counting

increaseReferencesTo: objectPointer
self countUp: objectPointer

decreaseReferencesTo: objectPointer
self countDown: objectPointer

class pointer access

fetchClassOf: objectPointer
(self islntegerObject: objectPointer)

ifTrue: [tlntegerClass]
ifFalse: [1self classBitsOf: objectPointer]

length access

fetchWordLengthOf: objectPointer
t(setf sizeBitsOf: objectPointer)-HeaderSize

fetchByteLengthOf: objectPointer
1' (self loadWordLengthOf: objectPointer),2 - (self oddBitOf: objectPointer)

object creation

instantiateClass: classPointer withPointers: length
I size extra I
size ~- HeaderSize ÷ length.
extra ~ size < HugeSize ifTrue: [0] ifFalse: [1].
1"self allocate: size odd: 0 pointer: t extra: extra class: classPointer

instantiateClass: classPointer withWords: length
I size I
size ~ HeaderSize + length.
t self allocate: size odd: 0 pointer: 0 extra: 0 class: classPointer

instantiateClass: classPointer withBytes: length
1 size !
size ~ HeaderSize -Á-- ((length ÷ 1)/2).
1'self allocate: size odd: length\ \ 2 pointer: 0 extra: 0 class: classPointer

688
Formal Specification of the Object ~Iemory

instance enumeration

initiallnstanceOf: classPointer
0 to: ObjectTableSize-2 by: 2 do:

[:pointer I
(self freeBitOf: pointer)=0

ifTrue: [(self fetchClassOf: pointer)=classPointer
ifTrue: [tpointer]]].

tNilPointer
instanceAfter: objectPointer

I c lassPointer l
objectPointer to: Objec tTab leSize-2 by: 2 do:

[:pointer I
(self freeBitOf: pointer)=0

ifTrue: [(self fetchClassOf: pointer)=classPointer
ifTrue: [tpointer]]].

tNilPointer

pointer swapping

swapPointersOf: firstPointer and: secondPointer
I firstSegment firstLocation firstPointer firstOdd I
firstSegment ~- self segmentBitsOf: firstPointer.
firstLocation ~- self IocationBitsOf: firstPointer.
firstPointer ~ self pointerBitOf: firstPointer.
firstOdd ~ self oddBitOf: firstPointer,
self segmentBitsOf: firstPointer put: (self segmentBitsOf: secondPointer).
self tocationBitsOf: firstPointer put: (self IocationBitsOf: secondPointer),
self pointerBitOf: firstPointer put: (self pointerBitOf: secondPointer).
self oddBitOf: firstPointer put: (self oddBitOf: secondPointer).
self segmentBitsOf: secondPointer put: firstSegment.
self tocationBitsOf: secondPointer put: firstLocation.
self pointerBitOf: secondPointer put: firstPointer.
self oddBit©f: secondPointer put: firstOdd

integer access

integerValueOf: objectPointer
1' objectPointer/2

integerObjectOf." value
1'(value bitShift: t) + 1

islntegerObject: objectPointer
l(objectPointer bitAnd: 1) = 1

islntegerVa.lue." valueWord
l'valueWord < = - 16384 and: [valueWord > 16834]

Indexes

Subject Index

There are four indexes to this book. The first is t h e type of index found in most books. It is
called the subject index and includes the concepts discussed in the book. The other three indexes
include the class names, variable names and message selectors referred to in the book. The
system index includes names and selectors found in the actual Smalltalk-80 system. The example
class index includes the names of classes introduced as examples but not found in the system.
The implementation index includes the names and selectors used in the formal specification
found in Par t Four of the book.

Abelson, Hal, 365
abstract class. See class, abstract
accept command, 303-304, 306
accessing parts, 99-100
active context. See context, active
active process. See process, active
Algol, 13, 34, 119, 165
allocation, 667-671, 679-680, 684
animation, 331, 333, 400
argument. See message argument

count, 582-584, 587, 604, 606, 608
name. See expression, message argument name

arithmetic, 13, 24, 564, 569, 620-627, 660
on Dates 111
on Numbers 119-130
on Points 341-343
on Times 113

array, 13, 19, 21, 36-37, 69, 96, 126, 569
ASCII, 650
assignment, 563. See expression, assignment
association,

See also Association (system index)
bag, 13
binary message. See expression, message, binary
Birtwistle, Graham, 498-499, 507, 521, 533
bit,

fields, 575, 577, 579
manipulation, 128-129

BitBlt, 333-334, 336, 349, 355, 405, 408, 412
combination rule, 336-337, 354, 361

bitmap, 15, 292, 331, 383, 398, 412
See also display

691

692
Subject Index

block, 15, 18, 31-37, 125-126, 128, 135-138, 151,
159, 164, 180, 188, 215, 239, 251-252, 460, 550,
559-560, 569, 580-581, 585-586, 608

See also expression, block
argument, 35-37, 138, 253, 560, 583-584, 638
context, 559-561

See also BlockContext (system index)
browser, 41, 43, 292-293, 297-307, 318
bytecode, 542-551, 554, 556, 558-560, 562, 568,

576-579, 581-583, 594-610, 612, 642, 646
extensions, 548, 560, 595, 599-600, 606-607
interpreter. See interpreter
jump, 550, 554, 595, 601-603

conditional, 550, 603
unconditional, 550

return, 549, 554, 595, 608-610, 612
special, 549

send, 549, 554-555, 561-562, 595, 603-608,
612, 618

super, 562-563, 607
stack, 595, 597-601

push, 548-549, 554, 595, 599-600
store, 549, 554, 595, 600

caller, 582, 608, 639
capitalization, 22, 40, 45
carat, 294-295
cascading. See expression, message, cascaded
categories command, 305
category. See message, category; class, category
change and update. See dependency
character, 19-21
class, 8, 16, 18, 40, 45-46, 53, 56-59, 73, 76, 95,

269-270, 300, 547, 561-564, 568, 570, 575, 580,
586-591, 605, 612, 618, 633, 636, 653, 657

See also subclass; superclass
abstract, 66-68, 72-73, 78, 81, 134, 198

See also subclassResponsibility (system in-
dex)

category, 80, 284, 298, 300, 303
comment, 283-284
creation, 77
definition, 303-307
description, 58, 269, 300, 568, 572

See also implementation description; pro-
tocol description

editing, 297
methods, 79, 269

See also method
name, 9, 40, 43, 57-58, 62, 269, 283-284, 288,

312
variable, 44, 53, 84, 219, 276, 288, 547
view, 297

clipping rectangle, 334, 351-352
clock, 566

close command, 317
collections, 133-141, 145, 172, 195, 212-234, 565,

617
See also array; bag; dictionary; set; string
of integers, 565-566, 684
ordered. See SequenceableCollection (system

index)
unordered. See Dictionary ; Bag ; Set (system

index)
compaction, 659, 667-668, 671-674, 676, 684
comparing, 96-97, 107, 160, 166-167
compiler, 272-273, 285, 542-545, 550, 559, 575,

607, 633
concatenation, 155
conditionals. See bytecode, jump, conditional; con-

trol structures
context, 15, 555-556, 558-560, 575, 580-586, 612

active, 555, 558, 560, 563, 583-585, 595, 597,
599-600, 603, 605, 608-610, 638-639, 643-644,
651

home, 581-583, 585, 608, 638
suspended, 555-556, 561

control structures, 13, 23, 32-35, 550, 559, 564,
569-570, 616, 620, 637-647

See also enumeration; expression, block
conditional repetition, 13, 34-35, 550, 569
conditional selection, 13, 34, 238-239,

569-570
independent processes. See independent pro-

cesses
iteration, 164-165
of the interpreter. See interpreter, control

structures
converting, 123, 127

Characters, 116
Collections, 140-141, 157, 169, 175, 217
Dates and Times, 113
Strings, 167

copying, 97-99, 155-156, 285
cumulative distribution function, 419, 424, 430
cursor, 15, 292-297, 299, 302, 311-312, 398-399,

651
cut command, 296
cyclic structures, 675-676
dangling reference, 674
data structures, 13, 21, 24

See also collections
of the interpreter. See interpreter data struc-

tures
stack and queue, 157-158
tree structure. See examples, tree structure

Davis, Chandler, 373
deallocation, 667, 670-671, 674-675, 677, 683

debug command, 318, 320
debugger, 314, 320-327
definition command, 304
density function, 419, 423-424, 430
dependency, 240-243
deselection, 300
dictionary, 7-8, 13, 24, 45, 543, 547, 605

See also subclass examples
diSessa, Andrea, 365
disk, 566
display, 292, 331, 333, 365-367, 388, 398, 400,

566, 649, 651
dolt command, 297, 309-310
enumeration, 126, 128, 136-137, 151-152,

156-157, 165, 188, 195, 197, 215, 221, 233, 281,
573, 633, 636

See also do: (system index)
equality, 96, 145, 565, 587

See also comparing
equivalence, 96, 136, 145, 565

See also comparing
error reporting, 51, 61, 72-73, 102-103, 135-136,

138, 148, 214, 217, 237, 314-317, 561, 589, 602, 609
evaluating expressions. See expression evaluation
event, 418
examples,

See also example class index
calculator, 245-246
card game, 172-181
event-driven simulations. See simulation exam-

ples
financial transactions, 10, 25, 27
game of Life, 412-413
geometric designs. See geometric designs
hardware interrupt, 263-265
image manipulation, 405-413
multiple pens, 375-379
mutual exclusion, 258-262
probability distributions, 205, 418

See also probability distributions
random walk, 181-185
resource sharing, 262
traffic lights, 241-243
tree structure, 185-192, 208

exception handling, 135
expression, 18, 37, 297

assignment, 22, 27, 32, 37, 49-50
block. See block
evaluation, 297, 309, 324, 327
format, 30
literal, 18-19,22, 37, 5 0
message, 18, 24-31

See also message
argument name, 42, 491 51, 53, 323-324

693
Subject Index

binary, 27-30, 37
cascaded, 30, 37, 548
keyword, 26, 28-30, 36-37
pattern, 41, 48-49, 53, 57
unary, 26, 28-30, 37, 77

parsing, 28-30
pseudo-variable name, 23, 37, 49-50, 62-63,

73
variable name, 18, 21-22, 37, 58, 283, 544

extended bytecode. See bytecode extensions
field indices, 570-571, 574-576, 581, 586, 590
files, 15, 209, 286-288, 466
fixed-length object, 231, 280-281
flag value, 577-579, 618, 620
font, 15, 166, 334, 354, 400
formatting. See expression format
fragmentation, 659
free chunk, 664-671, 674, 682-683
free entry, 659, 664-665, 670, 683
free pointer, 659, 665, 671
freehand drawing, 331
garbage collection, 565, 571, 644, 674-685

marking, 675-676, 680, 682-684
reference counting. See reference counting

Gardner, Martin, 373
geometric designs, 370-375

dragon curve, 372-373
Hilbert curve, 373-375
spiral, 370-372, 377

global variable, 44-45, 53, 308, 547, 644, 682
declaration, 48

GPSS, 533
graphics, 292, 331-362, 365, 383

See also BitBlt
halftone, 336, 392, 411
hardware devices, 263-265, 542, 566, 612, 647

See also input/output
hashing, 70-72, 96, 222-224, 587
header. See method header or object header
heap, 657-659, 663-664

See also segment, heap
hierarchy, 83, 270-271, 273, 275, 277

See also inheritance; subclass; superclass
Hilbert, David, 373
home context. See context, home
Hydra, 7
identifier, 22-23
IEEE floating point standard, 625-626
image,

See also DisplayMedium (system index)
area filling, 390-392, 411-412
bordering, 393-395
display box, 388
displaying, 388-389

694
Subject Index

image (cont.)
magnifying, 405-407
reversing, 393
rotating, 408-410
transforming, 349, 388

immutable object, 107, 115
implementation description, 41, 43, 45-46, 53,

57-58, 78-81, 84
independent processes. See process
indexing, 46, 96, 145, 153, 627-630
inheritance, 58, 61, 81

See also multiple inheritance; subclass; super-
class

initialization, 81
of classes, 77, 84-88
of instances, 77, 87, 274

input/output, 251, 564, 566, 620, 647-652
See also display; keyboard; pointing device

inspector, 311, 313, 323
instance, 8, 16, 18, 40, 46, 53, 56-58, 62, 76, 95,

269-270, 565, 591, 633-634, 636
creation, 40, 45, 47, 68, 76, 78, 80-81, 84, 87,

98, 110, 112, 115, 139-140, 160-161, 163, 168,
199, 212-213, 266, 269, 273-275, 287-288, 344,
564, 572, 633-634, 656

methods, 79
See also method

specification, 586, 590-591
variable 8, 16, 44-47, 53, 58, 61, 76, 96,

283-284, 311, 313, 543, 545, 548-549, 552,
564-565, 568, 578-579, 599-600, 618, 620, 630.
See private variable, instance

indexed, 45-47, 56-57, 99, 153, 212,
275-276, 281, 581, 587, 590

named, 45-47, 56-57, 99, 246-247, 276,
280, 543, 581, 590

instruction pointer, 551-552, 554, 560, 581-582,
584, 595, 602-603, 609-610, 639

interface, 8, 16, 40
See also message

interpreter, 272, 542, 547-548, 550-564, 566,
568-571, 574-576, 583-587, 589, 594-610, 612, 656,
660, 674, 682, 685

control structures, 569, 616
data structures, 575
registers, 583, 587, 642
state, 551, 554-555, 563

intervals. See Interval (system index)
iteration. See control structures, iteration
Kaehler, Ted, 404
key, 145, 148, 157, 161, 165, 168-169

See ~.lso collections
keyboard, 251, 292, 566, 648-650

keyword, 26, 37
See also expression, message, keyword

keyword message. See expression, message, key-
word

Knuth, Donald, 130, 185, 373, 430, 437
large context flag, 577
Lehmer, 130, 204
line drawing, 351-352, 365, 403

See also Pen (system index)
Lisp, 100
list,

selection. See selection, list
view, 297, 302

literal, 546, 548, 579-580, 586, 633
See also expression, literal
constant. See expression, literal
count, 577-578
frame, 544, 546, 548-549, 563, 576-578,

580-582, 600, 604, 608
logarithmic functions, 124
logical operations, 238
Logo, 365, 368, 370
mapping. See MappedCollection (system index)
mean, 419
memory management, 656, 675, 685

See also object memory; compaction; fragmen-
tation

real memory, 656-657
virtual memory, 656, 676

menu, 15, 296-297, 304
command. See name of command
selection. See selection, menu

message, 6-7, 16, 18, 24, 40, 56-66, 243-246,
543-545, 549, 551, 553-554, 558-559, 562-563, 566,
575, 580, 583, 587, 589, 603, 608, 612, 618, 640

argument, 25-26, 37, 42, 543, 545, 547-549,
551, 553-554, 560-561, 563, 568, 577-578,
581-582, 587, 603-605, 612, 616, 621, 635,
639-641

category, 42, 53, 80, 284-285, 298-300,
305-307

computed, 243-244
dictionary, 561-563, 580, 586-589

See also method dictionary
expression. See expression, message
receiver. See receiver
response, 27
selector, 25, 27, 37, 40, 57, 61, 243-244, 273,

299-300, 307, 544, 546, 549, 553, 561, 577,
586-589, 603-606, 637, 640

value, 18, 558

metaclass, 76-89, 269-271, 284
See also Metaclass (system index)
reference to, 77

method, 8, 16, 18, 40, 43-44, 48, 53, 56-57, 61-66,
77, 300, 322, 542-543, 545, 562, 568-569, 576-582,
585-588, 608, 684

See also message; primitive method or routine
cache, 605, 647
class, 580
determination, 61-66, 84, 86-89

See also overriding a method
dictionary, 273-276, 278

See also message dictionary
editing, 300, 305-307
header, 576-582, 618, 633, 637

extension, 579-580, 618
view, 298

modularity, 7
mouse. See pointing device

buttons, 292-297, 299, 302, 304, 312, 566,
648, 650

multiple inheritance, 57
mutual exclusion. See examples, mutual exclusion
nonpointer objects, 684-686
notifier, 314-315, 317-320
number, 13, 19-20, 96, 119-130, 546, 565-566,

569, 577
coercion, 125
generality, 124-125, 127

object, 6, 16, 18, 40, 56,76, 95, 269, 542
header, 657, 663, 667, 670, 672
memory, 542, 564-566, 568-575, 585, 595,

612, 630, 636, 651, 656-688
pointer, 564-566, 568-572, 575-576, 578, 584,

587, 590, 595, 597, 601, 603, 608, 636, 644,
653, 659-661, 680, 685

table, 659-667
entry, 661-663, 666, 670-672, 674, 676,

683, 685 See also free entry; free pointer
overriding a method, 57, 64-66, 72-73, 87, 100,

212, 274, 589
Papert, Seymour, 365
parsing. See expression, parsing
pattern matching, 167
period, 31, 48, 52, 309
pixel, 331, 334, 336, 338, 340, 344, 349, 398, 651
pointing device, 251, 292, 398, 566, 648-649, 651

See also mouse buttons
pool, 47-48
pool variable, 44, 276, 547
primitive failure, 102, 563, 612, 616-617, 624,

626, 629, 634, 639-640, 647
primitive index, 579, 588, 605, 620

695
Subject Index

primitive method or routine, 9, 16, 52-53, 84,
100, 102, 213, 246-247, 563-564, 566, 568, 574,
578-579, 587, 595, 605, 612-653

See also method
optional, 612

printing and storing, 100-101, 127, 201-202,
218-219, 284-287, 313, 467-468, 503

printlt command, 297, 309-310, 320
private method category, 80, 214, 612

See also message category
private variable, 22, 47

See also instance variable; temporary variable
probability distributions, 418-438, 446

continuous, 420, 432-438
exponential, 432-435
gamma, 432, 435-436
normal or Gaussian, 432, 436-438
uniform, 420, 424, 432-433

discrete, 419, 423-432
Bernoulli, 425-427, 429
binomial, 425, 427-430
geometric, 425, 429-430
Poisson, 425, 430-432

probability function, 418
process, 15, 162, 251-266, 452, 459-461, 486, 583,

594, 641-647
active, 643
priorities, 254-257
scheduling, 254, 455, 644

See also ProcessorScheduler (system index)
programming environment, 7, 15, 41, 51, 243,

275, 278, 283-284, 287, 292-327, 398, 674
See also browsers

programming style, 7, 69, 72-73, 81, 84, 97, 100,
212, 214, 219, 247, 274, 449-452, 488

See also subclassResponsibility (system index)
protocol. See interface; message
protocol description, 41-42, 53
prototype, 98-99
pseudo-variable name. See expression, pseudo-vari-

able name
queue. See data structures, stack and queue
random number generation, 129-130

See also Random (system index)
random variable, 418-419
raster, 338
rational numbers. See Fraction (system index)
realtime clock, 251, 263, 266
receiver, 6, 16, 18, 24-25, 27, 37, 61, 543, 545,

548-549, 551, 553-554, 556, 560-563, 579, 581-582,
586, 599-600, 603, 605, 607-608, 612, 616, 619-621,
635, 640, 653

See also message

i:

696
Subject Index

rectangle, 8, 24, 311-312, 366
reference counting, 565, 571, 585, 609-610, 644,

675-683
in simulations, 459-461, 486

registers, 568, 570, 583-585, 588, 616, 642
resources, 440-444, 446-447, 454-455, 484-513,

516-537
consumable, 489-492
coordinated, 516-537
nonconsumable, 492-503
renewable, 503-513

result, 543-544, 549, 553-555, 612
returning values 585. See value, returning a
reversing pointers, 673-674, 678-680
routines, 568-570, 594, 616-617, 642
sample space, 172, 418-420
scheduling. See process or simulation
screen. See display
scroll bar, 302
scrolling, 302
seed, 204

See also random number generation
segments, 656, 658, 666

current, 667-669
heap, 658-659, 661, 667, 671-674

selection, 15, 292-293
list, 298-299
menu, 296
text, 293-295, 297

selector. See message selector
sender, 555, 558, 581-582, 585, 608-610
set, 13
shared variable, 22, 58, 288, 543, 546-549, 577,

599
See also class variable; global variable; pool

variable
Simula, 7, 57, 119, 498
simulation, 7, 418, 440-464

event-driven, 441
examples,

bank, 526-532
car dealership, 504-507
car rental, 492-498
car traffic, 474-476
car wash, 442, 518-521
default (do nothing), 449-452, 462-464
ferry service, 507-513, 521-526
file system, 498-503
information system, 533-537
jelly bean store, 489-492
museum visitors, 472-474

resources. See resources
scheduling, 448-449, 453, 455, 458-462

statistics gathering. See statistics gathering
time, 441, 443, 446

sorting, 145, 159-160
special constants, 545
special message selectors, 545, 549, 604, 608,

618-619
special return bytecodes. See bytecode, return, spe-

cial
stack, 542-544, 548-552, 554, 558, 560-561, 575,

577, 581-583, 595, 597, 600-605, 608, 610, 612,
616-617, 620-621, 638-640, 682

See also data structures, stack and queue
stack pointer, 581-582, 584, 639
statistics gathering, 442, 466-483, 499, 509-510

durations, 466-469
event monitoring, 476-483
event tallying, 474-476
throughput histograms, 469-474, 504-506

storage management, 564, 591, 620, 633-637
See also garbage collection; reference counting

storing. See printing and storing
streaming. See Stream (system index)
strike format, 354
string, 13, 19-21, 126, 546, 684

See also concatenation; pattern matching
subclass, 57-60, 64-65, 73, 269-270, 300, 547, 562,

584
examples, 62, 64, 66-72

subview, 297-300, 302, 313, 320
superclass, 57-60, 64-66, 73, 81, 269, 322,

561-563, 580, 586, 588, 606-607
suspended process, 252-253, 266, 314, 317-318,

320, 561, 644, 646
See also debugger; notifier

symbol, 19, 21, 37
synchronization, 251, 257, 265

See also Semaphore (system index)
system browser. See browser
system classes, 11, 14, 16
temporary count, 577
temporary frame, 547-548, 581-582, 599-600
temporary variable, 44, 51-53, 86, 138, 323-324,

545-549, 551, 560, 577-578, 581-582, 585
testing, 95, 97, 115, 150, 197, 278-281, 348
text, 15, 166, 292, 302, 331, 351, 383, 400, 405

display, 354-355
editing, 296, 298
selection. See selection, text

trial, 418
trigonometric functions, 124
turtle drawing. See line drawing

unary message. See expression, message, unary
uparrow. See T (system index)
user interface. See programming environment
value,

See also message value; variable value
returning a, 27, 49, 544, 549, 558, 560, 579,

608-610, 620
variable, 21, 57

declaration, 43-48, 51, 58, 84
name. See expression, variable name
private. See private variable
shared. See shared variable
value, 549

697
Subject Index

variable-length object, 100, 215, 231, 274,
280- 281, 289

variance, 419
view, 15, 292-293, 296, 302

See also browser; workspace
virtual image, 542, 564, 566
virtual machine, 251, 254, 263, 542, 545, 564,

566, 568-569
See also interpreter; object memory
formal specification, 568-688

window, 15, 334
See also view

workspace, 292-293, 298, 309

System Index

#, 21, 168
$, 2o

' 20
@, 182, 340

See also Point
Arc, 403
Array, 46, 52, 72, 96, 98, 100, 133, 136, 139, 145,

154-157, 165, 172-174, 197, 202, 216, 219, 231, 253,
269, 276, 376, 397, 569, 587, 604-605, 608, 631, 639

used on, 68-69, 71, 242, 259, 411, 472
ArrayedCollection, 145, 157, 165-166, 219, 231,

269, 278
Association, 148-150, 220, 225-226, 546, 580, 599

used on, 224
See also association (subject index)

at:, 46, 148, 153, 584, 595, 629-630
defined on, 99, 229, 232, 234

at:put:, 46-47, 148, 153, 308, 595, 629-630
defined on, 99, 230, 232, 234

Bag, 133-135, 140-141, 145, 148, 152, 169, 181,
183, 185

defined on, 147, 220-222
used on, 184, 217

become:
defined on, 246
used on, 247

Behavior, 269-270, 272, 283, 288
defined on, 273-282, 285

BitBIt, 334, 349, 355, 361-362, 365-366, 368, 375,
383, 400, 405, 651-652

defined on, 350-352
Bitmap, 333, 338
BlockContext, 253, 462, 559-560, 580-581,

583-585, 619, 637-639
defined on, 254-255
See also block (subject index)

Boolean, 15, 23, 34, 119, 215, 237, 239, 550, 569,
601-602, 621

defined on, 238
See also true; false

ByteArray, 112, 145, 165-166, 231
Character, 107, 114, 133, 136, 139-140, 145,

165-166, 168, 201, 209, 630
defined on, 115-116

CbaracterScanner, 354, 652
Circle, 403
Class, 76, 78, 81, 84, 87-89, 269-271, 281,

283-284, 289-290
defined on, 288-289

ClassDescription, 81, 269-270, 283-284, 288
defined on, 285-286

collect:, 36, 38, 138
defined on, 137, 215, 225, 227, 230, 233-234

Collection, 95, 145-148, 150-151, 153, 163, 165,
168, 174, 188, 201, 212, 227, 269, 282, 376

defined on, 134, 136-137, 139-141, 213-219,
221

used on, 284

699

. . . . i

700
System Index

CompiledMethod, 273, 543-544, 546-551, 555,
559-563, 576-581, 586-589, 591, 594-595, 604-605,
607, 612, 616, 618, 620, 633, 637, 640, 685

Cursor, 374-375, 399, 651
defined on, 398

Curve, 403, 405
defined on, 404

Date, 40, 7778, 107-108, 114
defined on, 109-111, 113

Delay, 251, 263
defined on, 266

detect:, 138
defined on, 137, 215

Dictionary, 56, 133, 145, 148, 157, 168, 220-221,
233, 269

defined on, 149-152, 224-226
used on, 44, 80, 467, 475

Disk, 210, 283, 287, 474, 476, 480, 494
Display, 388, 400

used on, 397
displayAt:, 389

defined on, 388
DisplayBitmap, 333
DisplayMedium, 383, 396, 398, 400

defined on, 390, 392-394
DisplayObject, 390, 398, 400, 403, 405

defined on, 383, 388
DisplayScreen, 333, 398, 400, 651
DisplayText, 383, 400
do:, 36, 38, 148, 151, 164, 197, 461, 595

defined on, 136, 215, 226, 228, 230, 233-234
doesNotUnderstand:, 61, 323, 589

defined on, 102
error:, 51, 136, 138, 317

defined on, 102
ExternalStream, 208

defined on, 209
False, 237, 239
false, 23, 34-35, 85, 238, 545, 549550, 599,

601-603, 608
File, 210
FileDirectory, 210
FilePage, 210
FileStream, 209-210, 469
Float, 119, 124-127, 130, 621, 625-626
fork, 251-252

defined on, 253-254
Form, 331, 333-334, 336, 352, 354, 365-367,

374-375, 383, 389-390, 393, 396-398, 400, 405, 651
defined on, 338-340
used on, 406, 408, 411-412

Fraction, 119-120, 124-127
IdentityDictionary, 145, 148, 226, 587

ifFaise:, 34, 38, 550
defined on, 238-239

ifFalse:ifTrue:, 37
defined on, 238-239

ifTrue:, 34, 37, 550, 602
defined on, 238-239

ifTrue:ifFalse:, 34, 37, 550
defined on, 238-239

InfiniteForm, 398
inject:into:, 138-139, 148, 185, 216

defined on, 137, 216
used on, 180

InputState, 648-649, 651
inspect, 311
Integer, 51, 108, 119, 122-124, 127, 164, 175, 209,

220, 224, 568, 570, 573
defined on, 128-129
See also bit manipulation

Interval, 125-126, 136, 145, 157, 165, 174-175,
216, 219

defined on, 163164, 229-230
LargeNegativetnteger, 119, 124-125, 127, 565,

621, 625
LargePositivelnteger, 119, 124125, 127, 209, 565,

568, 617, 621, 625
Line, 403
LinearFit, 403
Link, 145, 161-162, 185, 190, 205-206, 227, 286
LinkedList, 145, 157, 162, 185, 205-208, 229, 286,

644-645
defined on, 161, 227-228

LookupKey, 107, 145
Magnitude, 111, 114, 166

defined on, 107-108
MappedCollection, 145-146, 157, 168-169, 216,

219
defined on, 233-234

Message, 243, 589-590
Metaclass, 77-78, 81, 89, 269-271, 283-284

defined on, 287
MethodContext, 559, 563, 577-578, 580-581,

583-584, 605, 612, 638
new, 40, 81-84, 139, 274, 595

See also instance creation
new:, 47, 81, 139, 595

See also instance creation
nil, 23, 32, 34.35, 45, 47, 51, 76, 84, 97, 138,

237238, 336, 545, 549, 588, 599, 608-610
Number, 107, 119, 145, 164-165, 219, 340-341,

365
defined on, 120, 122-123, 125-126

Object, 60-62, 67, 73, 76, 78, 81, 84, 88, 107-108,
114, 134, 148, 195, 201, 215-216, 218, 226, 237-239,
242, 269-271, 274, 277, 290, 300, 589, 635, 641, 653

defined on, 95-97, 99-103, 240-241, 244,
246-247

OpaqueForm, 398
OrderedCollection, 30, 40, 46-47, 130, 133, 136,

140, 145, 157, 161, 165, 173, 175-177, 179, 182-183,
195, 201, 277, 279-280, 400-401

defined on, 158-159, 231-233
used on, 174, 178, 180, 184, 217

Path, 383, 400, 403
defined on, 401

Pen, 365, 368, 370-379, 383
defined on, 366-367
used on, 369

perform:, 246
defined on, 244
used on, 245
See also message, computed

Point, 9, 18, 77-78, 182, 338, 340, 348, 365, 376,
383, 400-401, 403, 411, 544, 625, 651

defined on, 341, 343-344
Polygon

defined on, 368-369
PositionableStream, 195, 198, 273

defined on, 199-200
Process, 162, 251-252, 254, 256-258, 260-266,

440, 463, 637, 641-647, 651
defined on, 253, 255

Processor, 254-255, 258, 264, 644
used on, 265, 461

ProcessorScheduler, 251, 254-255, 462, 641,
643-645, 652

defined on, 256-257
Random, 129-130, 172, 174, 183, 195, 274

defined on, 204-205
used on, 175, 184, 420

ReadStream, 198, 204
defined on, 200

ReaclWriteStrearn, 198, 204, 208
Rectangle, 9, 18, 56, 77-78, 298-299, 304, 338,

343, 367, 383, 390, 542-544, 546, 548, 550-551, 562
defined on, 344-349

reject:, 138
defined on, 137, 216

RunArray, 165-166
select:, 137- • 38

defined on, 136, 226-227, 233-234
self, 23, 50-51, 53, 62-64, 66, 69-70, 88, 323, 549,

562, 569, 578, 599, 607-608, 620
Semaphore, 162, 251, 257, 260, 262, 440, 455,

462, 486, 637, 641-642, 644, 646, 648-649, 652
defined on, 258, 261

701
System Index

used on, 263-265, 457
Sensor, 651-652
SequenceabfeCoilection, 145, 158, 161, 163-164,

168, 174-175, 188, 195, 198, 212, 229, 231-233, 247
defined on, 153-157, 226-227

Set, 101, 133, 136, 140-141, 145, 148, 152,
180-181, 185, 201, 224-225, 269, 276-277, 279, 282,
587

defined on, 222-223
used on, 217, 457

SharedQueue, 251, 262, 440
defined on, 265

shouldNotimplement, 73, 212
defined on, 102

size, 47, 153, 595
defined on, 100, 215, 226, ,229, 231, 234

Smalllnteger, 95, 115, 119, 124-125, 127, 133, 145,
209, 282, 563, 565-566, 568, 573-5?5, 579, 587, 590,
618, 621, 624, 626, 628, 630, 636, 685

Smalltalk, 47, 53, 308, 682
SortedCollection, 133, 140-141, 145, 159, 166,

233, 277, 279
defined on, 160
used on, 217, 264, 457, 462, 467, 486

species
defined on, 216

Spline, 403
Stream, 101, 166, 195, 198, 201, 203-206, 208,

219, 420
defined on, 196-197

String, 9, 101, 116, 133, 139, 145, 154-155, 157,
160, 165, 190, 201-203, 206, 209, 219, 231, 273-274,
276-277, 286, 389, 400, 542, 629-631

defined on, 166-167
subclassResponsibility, 72-73, 107-108, 212, 449

defined on, 102
super, 23, 63-66, 73, 82-84, 88, 222, 562, 580, 599,

607
See also bytecode, send, super

Symbol, 101, 115, 149, 160, 167, 169, 172-173,
197, 201, 206, 219, 231, 273, 587-588

defined on, 168
Text, 145, 155, 165-166, 231, 276-277, 383, 389,

400
TextStyle, 400

See also cloth
Time, 40, 77-78, 107, 111, 114, 297

defined on, 112-113
used on, 265

timesRepeat:, 33
used on, 174

True, 237

702
System Index

true, 23, 34-35, 85, 238-239, 545, 549-550, 599,
601-603, 608

UndefinedObject, 237-238
value, 31-35, 37, 252, 560, 595, 619, 638

used on, 239
value:, 36-37, 164, 560, 595, 619, 638
whileFalse:, 35, 38, 507, 550, 602

whileTrue:, 35, 38, 550
WriteStream, 198, 200-201, 204, 226

defined on, 202-203
used on, 227, 234

[], See expression, block
1', 50, 53, 544, 585, 608
~, 22
I , 35, 51

Example Class Index

ActiveSimulation
defined on, 452

AuditTrail, 287
defined on, 286

BankCustomer
defined on, 528
used on, 527

BankSimulation
defined on, 527

BankTeller, 529
defined on, 528
used on, 527

Bernoulli, 427-428
defined on, 425-426

BinaryTree
Binomial

defined on, 427-428
BitBItSimulation, 355

defined on, 356-361
Calculator

defined on, 245
CarBuyer

defined on, 505
used on, 504

Card, 172, 177
defined on, 176

CardDeck, 172, 179-180
defined on, 177-178

CarDealer
defined on, 504

CarDelivery
defined on, 505
used on, 504

CardHand, 172
defined on, 179-180

CarRenter
defined on, 493
used on, 492

CarWash, 521
defined on, 518

Commander, 375-379
defined on, 376, 379

ContinuousProbability
defined on, 422

DeductibleHistory, 61-62, 66, 81, 84, 86-88
defined on, 59-60, 85, 87

DelayedEvent, 455, 459-460, 463, 486, 516
defined on, 456-457
used on, 460, 487, 517

DiscreteProbability, 421, 423
defined on, 422

DoNothing, 462-464, 482
defined on, 450, 468, 479
used on, 451

DrunkenCockroach, 172, 185
defined on, 183-184

703

704
E x a m p l e Class Index

DualListDictionary, 67-72
defined on, 68

Entry, 163
defined on, 162

EventMonitor, 491, 500, 519
defined on, 476-479, 481-482

Exponential
defined on, 434-435
used on, 492, 509, 518, 525, 533

FastDictionary, 66-72
defined on, 71

Ferry
defined on, 507-510, 522, 524, 526
used on, 521, 525

FerrySimulation, 507, 510, 522
defined on, 508-509, 521-522, 525

FileSystem, 503
defined on, 499-500

FileSystemReader, 501, 503
defined on, 500
used on, 499

FileSystemWriter, 500
defined on, 501
used on, 499

FinancialHistory, 10, 16, 25, 41, 44-48, 59-62, 66,
76, 80-88, 292, 303, 308, 314-315, 317

defined on, 42-44, 78
Four, 65

defined on, 64
Gamma

defined on, 435-436
Geometric, 428

defined on, 429-430
Histogram

defined on, 470-472
used on, 473

InformationSystem
defined on, 533

Insurance, 98
Interpreter, 568-570, 616
IslandArrival

defined on, 508, 525
Light, 243

defined on, 241
used on, 242

LinkedListStream, 205, 207
defined on, 206

LunchtimeTeller, 528
defined on, 529
used on, 527

MainlandArrival
defined on, 508, 525

Museum, 472, 474, 504
defined on, 473

Node, 172, 185, 188, 190, 208
defined on, 186-187

Normal
defined on, 437-438
used on, 473, 507, 510, 522, 524, 526

NothingAtAII, 449, 462-464
defined on, 450-451, 468, 479, 489

ObjectMemory, 568, 570
defined on, 571-573

One, 63-65
defined on, 62

PersonnelRecord, 98-99
Poisson

defined on, 431-432
ProbabilityDistribution, 205, 426

defined on, 420-421
Product, 147
Query

defined on, 534
used on, 533

RealObjectMemory, 656-657
RealWordMemory

defined on, 656-657
Record, 289

defined on, 290
RentalAgency

defined on, 492
Resource, 484, 516

defined on, 485-486
used on, 458

ResourceCoordinator, 454-455, 485, 516, 528, 533
defined on, 517-518
used on, 458

ResourceProvider, 454-455, 484-489, 500
used on, 458

SafeSharedQueue, 265
defined on, 262-263

SampleSpace, 205, 423, 476
defined on, 424
used on, 475, 505, 534

SampleSpaceWithoutReplacement, 172, 176-177
defined on, 175
used on, 178, 527

SampleSpaceWithReplacement, 172, 175, 183
defined on, 173

ShadedRectangle, 562, 580
SimpleQueue, 260, 262

defined on, 258-259
SimpleSharedQueue

defined on, 260-262
Simulation, 441-442, 444, 446, 452, 454-455, 460,

466-467, 484-486
defined on, 447-449, 457-459

705
E x a m p l e Class Index

SimulationObject, 441-442, 448-451, 455, 462, 464,
466, 476, 479-480, 484-489, 501, 504, 516, 521

defined on, 443-446, 452-454
used on, 458

SimulationObjectRecord
defined on, 466-467

SmaliDictionary, 66-72, 76
defined on, 69

StaticResource, 454, 484-486, 504
defined on, 487-488

StatisticsWithSimulation
defined on, 467-468

SystemScanner
defined on, 534-535
used on, 533

Three, 65
defined on, 64

Tile, 172, 183
defined on, 181-182
used on, 184

Traffic, 474, 476
defined on, 475

TrafficLight, 243
defined on, 242

Tree, 172, 185, 191, 208
defined on, 188-189

Truck
defined on, 522
used on, 521, 525 .

TruckRenter
defined on, 493-494
used on, 492

Two, 63-65
defined on, 62

Uniform, 463
defined on, 433
used on, 437, 450-451, 468, 473, 475, 479,

483, 489, 493-494, 504, 519, 522, 528, 534-535
Visitor, 464, 472, 474, 504

defined on, 451, 468, 473, 479, 482, 490
used on, 489

Wakeup, 263
defined on, 264-265

Wash, 521
defined on, 519

WashAndWax, 521
defined on, 519

Washer
defined on, 518-519

WordLink, 206, 208
defined on, 207

WordNode, 172
defined on, 190-191

Implementation Index

583
583-586, 590, 606, 609-610, 640, 643

abandonFreeChunkslnSegment:
defined on, 671
used on, 674

activateNewMethod
defined on, 606
used on, 605

activeContext
defined on,
used on,

activeProcess
defined on, 644
used on, 643-644, 646-647

addLastLink:toList:
defined on, 645
used on, 646-647

allocate:class:
defined on, 668

allocate:extra: class:
defined on, 679

allocate:odd:pointer:extra:class:
defined on, 685
used on, 687

allocateChunk:
defined on, 668, 684
used on, 668, 679, 685

argumentCount
defined on, 587
used on, 589-590, 604, 606-607, 619, 639-641

argumentCountOf:
defined on, 580
used on, 640-641

argumentCountOfBIock:
defined on, 583
used on, 639

arithmeticSelectorPrimitive
defined on, 619
used on, 618

asynchronousSignal:
defined on, 642

attemptToAllocateChunk:, 671
defined on, 669
used on, 668, 684

attemptToAIiocateChunklnCurrentSegment:
defined on, 669
used on, 669

caller
defined on, 586
used on, 609

cantBelntegerObject
defined on, 661
used on, 661-663

check l nde xab le Bou ndsOf: i n:
defined on, 627, 635
used on, 628-632, 635-636

checkProcessSwitch, 642
defined on, 643
used on, 594

707

708
I m p l e m e n t a t i o n I n d e x

classBitsOf:
defined on, 663
used on, 666-671, 679, 685-687

commonSelectorPrimitive
defined on, 619
used on, 618

compactCurrentSegment, 671
defined on, 674
used on, 669

countBitsOf:
defined on, 662
used on, 677, 681-684

countDown:
defined on, 677
used on, 686-687

countUp:
defined on, 677
used on, 679, 684-687

createActu al M essag e
defined on, 589
used on, 589

currentSegment
defined on, 667
used on, 667, 674

cycle
defined on, 594
used on, 594

deallocate:
defined on, 670, 680
used on, 674, 677, 684

decreaseReferencesTo:
defined on, 572, 687
used on, 585, 610

dispatchArithmeticPrimitives
defined on, 621
used on, 621

dispatchControlPrimitives
defined on, 637
used on, 621

dispatchFIoatPrimitives
defined on, 626
used on, 621

dispa tc h I n putO u tp ut Pri m itives
defined on, 647
used on, 621

dispatchlntegerPrimitives
defined on, 621
used on, 621

dispatch Largel ntegerPrimitives
defined on, 625
used on, 621

dispatchOnThisBytecode
defined on, 595
used on, 594

dispatchPrimitives
defined on, 621
used on, 620

dispatchPrivatePrimitives
used on, 621

dispatchStorageManagementPrimitives
defined on, 633
used on, 621

dispatchSubscriptAndStreamPrimitives
defined on, 627
used on, 621

dispatchSystemPrimitives
defined on, 652
used on, 621

doubleExtendedSendBytecode
defined on, 607
used on, 606

doubleExtendedSuperBytecode
defined on, 607
used on, 606

duplicateTopBytecode
defined on, 599
used on, 598

executeNewMethod
defined on, 605
used on, 605, 640-641

extendedPushBytecode
defined on, 599
used on, 597

extendedSendBytecode
defined on, 606
used on, 604

extendedStoreAndPopBytecode
defined on, 600
used on, 597

extendedStoreBytecode
defined on, 600-601
used on, 597, 600

extractBits:to:of:
defined on, 575

fetchByte
defined on, 594
used on, 594, 599, 601-602, 606-607

fetchByte:ofObject:
defined on, 571, 687

fetchByteLengthOf:
defined on, 572, 687
used on, 618, 627

fetchClassOf:
defined on, 572, 687

712
I m p l e m e n t a t i o n I n d e x

primitivel ndexOf:
defined on, 580
used on, 588

primitivelnstVarAt
defined on, 635
used on, 633

primitivelnstVarAtPut
defined on, 635
used on, 633

primitiveMakePoint
defined on, 625
used on, 619, 622

primitiveMod
defined on, 623
used on, 619, 622

primitiveNew
defined on, 634
used on, 633

primitiveNewMethod
defined on, 637
used on, 633

primitiveNewWithArg
defined on, 634
used on, 633

primitiveNext
defined on, 631
used on, 627

primitiveNextlnstance, 636
defined on, 637
used on, 633

primitiveNextPut
defined on, 631
used on, 627

primitiveObjectAt
defined on, 633
used on, 633

primitiveObjectAtPut
defiRed on, 634
used on, 633

primitivePerform
used on, 637

primitivePerformWithArgs
defined on, 641
used on, 637

primitiveQuo
defined on, 623
used on, 622

primitiveResponse
defined on, 620
used on, 605

primitiveResume
defined on, 647
used on, 638

primitiveSignal
defined on, 646
used on, 637

primitiveSize
used on, 627

primitiveSomel nstance,
defined on, 637
used on, 633

primitiveStringAt,. 629
defined on, 630
used on, 627

primitiveStringAtPut, 629
defined on, 630
used on, 627

primitiveSuspend
defined on, 647
used on, 638

primitiveValue, 638
defined on, 639
used on, 619, 637

primitiveValueWithArgs
used on, 637

primitiveWait
defined on, 646
used on, 638

push:, 597
defined on, 585

636

used on, 590, 598-600, 609-610, 617, 620,
623-624, 629-638, 641, 647, 653

pushActiveContextBytecode
defined on, 600
used on, 598

pushConstantBytecode
defined on, 600
used on, 597

pushlnteger:
defined on, 617
used on, 622-625

pushLiteralConstant:
defined on, 598
used on, 598

push LiteralConstantBytecode
defined on, 598
used on, 597

pushLiteralVariable:
defined on, 599
used on, 598

push LiteralVariableBytecode
defined on, 598
used on, 597

push Receiver Byt ecode
defined on, 599
used on, 597

pushReceiverYariable:
defined on, 598
used on, 598

pushReceiverVariableBytecode
defined on, 598
used on, 597

methodClassOf:
defined on, 580
used on, 607

newActiveContext:, 610
defined on, 585
used on, 606, 609, 639-640, 643

newMethod, 589
defined on, 587
used on, 588, 605, 620, 640-641

newProcess
defined on, 642
used on, 643

newProcessWaiting
defined on, 642
used on, 643-644

nilContextFields
defined on, 610
used on, 610

objectPointerCountOf:
defined on, 578
used on, 633-634

obtainPointer:location:
defined on, 670
used on, 670, 674

oddBitsOf:
defined on, 662
used on, 685, 688

or:
defined on, 661-662
used on, 670

ot:bits:to:
defined on, 662
used on, 662

pointerBitOf:
defined on, 662
used on, 685-686, 688

pop:, 597
defined on, 585
used on, 590, 606, 639-640

poplnteger
defined on, 617
used on, 622-624, 633-637

popStack, 597
defined on, 585
used on, 600-602, 609, 617, 620, 625,

628-639, 641, 647, 653
popStackBytecode

defined on, 601
used on, 598, 600

positive 16Biti ntegerFor:
defined on, 617
used on, 628-629

711
I m p l e m e n t a t i o n Index

positive 16 BitValueOf:
defined on, 617-618
used on, 628-630, 634

primitiveAdd
defined on, 562

primitiveAsObject
defined on, 636
used on, 633

primitiveAsOop
defined on, 636
used on, 633

primitiveAt
defined on, 628
used on, 627

primitiveAtEnd, 631
defined on, 632
used on, 627

primitiveAtPut, 628
used on, 627

primitiveBecome
defined on, 635
used on, 633

primitiveBitAnd
defined on, 624
used on, 619, 622

primitiveBitShift
defined on, 624
used on, 619, 622

primitiveBIockCopy
defined on, 638
used on, 637

primitiveClass
defined on, 653
used on, 619, 652

primitiveDiv
defined on, 623

primitiveDivide
defined on, 622
used on, 619, 622

primitiveEqual
defined on, 624
used on, 619, 622

primitiveEquivalent
-defined on, 653
used on, 619, 652

primitiveFail
defined on, 616
used on, 574, 617-619, 625, 637

primitiveFlushCache
defined on, 647
used on, 638

primitivelndex
defined on, 587
used on, 588, 605, 620

710
I m p l e m e n t a t i o n Index

instantiateClass:withBytes:
defined on, 572, 687
used on, 617, 635, 637

instantiateClass:with Pointers:
defined on, 572, 687
used on, 589, 606, 625, 634, 638

instantiateClass:withWords:
defined on, 572, 687
used on, 634

instructionPointer
defined on, 583
used on, 583-584, 594, 602, 638

instructionPointerOfContext:
defined on, 582
used on, 583

integerObjectOf:.
defined on, 573, 688
used on, 617, 623, 628, 638

integerValueOf:
defined on, 573, 688
used on, 617-618, 628, 630-631

interpret, 643
isBIockContext:

defined on, 584
used on, 583, 638

isEmptyList:, 642
defined on, 645
used on, 643, 645

islndexable:
defined on, 591
used on, 634

isl ntegerObject:
defined on, 573, 660, 688
used on, 617, 619, 628, 635-636, 660,

677-678, 681, 687
islntegerValue:

defined on,
used on,

isLastlnstance:
used on, 637

isPointers:
defined on, 591
used on, 628, 634

isWords:
defined on, 591
used on, 628, 634

jump:
defined on, 602
used on, 602

jumpBytecode
defined on, 601
used on, 595

573, 688
617, 622-623, 625

jumplf:by:
defined on, 602
used on, 603

largeContextFlagOf:
defined on, 578
used on, 606

lastPointerOf:
defined on, 663, 685-686
used on, 678, 681, 684

iengthOf:
defined on, 627
used on, 627, 629, 632, 635

literal:
defined on, 586
used on, 599, 604, 607

literal: of Method:
defined on, 577
used on, 580, 586

literalCountOf:
defined on, 578
used on, 578, 580

literalCountOfHeader:
defined on, 578
used on, 578, 637

IocationBitsOf:
defined on, 662-663
used on, 663, 666, 670-671, 673, 688

iongConditionalJump
defined on, 603
used on, 601

IongUnconditionalJump
defined on, 602
used on, 601

IookupMethodlnClass:
defined on, 589
used on, 605, 640-641

IookupMethodlnDictionary:
defined on, 588
used on, 589

IowByteOf:
defined on, 575
used on, 617, 628

markAccessibleObjects
defined on, 682
used on, 682

markObjectsAccessibleFrom:
defined on, 683
used on, 682

messageSelector
defined on, 587
used on, 588-589, 604, 607, 640-641

method, 584
defined on, 583
used on, 583

709
I m p l e m e n t a t i o n Index

used on, 618-619, 627-632, 635, 639-641, 653,
688

fetchContextRegisters, 584
defined on, 583
used on, 585, 610

fetch lnteger:ofObject:
defined on, 574
used on, 582-583, 608, 619, 631-632, 643, 646

fetchPointer:ofObject:
defined on, 571, 686

fetchWord:ofObject:
defined on, 571, 686

fetchWordLengthOf:
defined on, 572, 687
used on, 627, 638-639, 641, 645

fieldlndexOf:
defined on, 579
used on, 620

fin d NewM et hod I nClass:
defined on, 605
used on, 605

firstContext
defined on,

fixeclFieldsOf:
defined on,
used on,

flagValueOf:
defined on,
used on,

644

591
627, 629, 634

578
580, 620

forAIIObjectsAccessibleFrom:suchThat:do:
defined on, 678
used on, 677, 683

forAI IOtherO bjectsAccessible Fro m: such That: do:
defined on, 678, 680
used on, 678

freeBitOf:
defined on, 662
used on, 671, 673, 684, 688

hash:
defined on, 587

hasObject:
used on, 636

headerExtensionOf:
defined on, 580

headerOf:
defined on, 577

headOfFreeChunkList:inSegment:
defined on, 666
used on, 666-667, 669, 671

headOfFreePointerList
defined on, 665
used on, 666

heapChunkOf:byte:
defined on, 663
used on, 687

heapChunkOf:word:
defined on, 663
used on, 663, 668, 678, 680-681, 684-686

highByteOf:
defined on, 575
used on, 617

homeContext, 584
defined on, 583
used on, 583, 600

increaseReferencesTo:
defined on, 571, 687
used on, 585, 610

i nitiallnstanceOf:
defined on, 573, 688
used on, 637

initial I n structio n P oi nterOf M eth od:
defined on, 578
used on, 606

initializeAssociationlndex
defined on, 599

initializeClassl ndicies
defined on, 587

initializeContextl ndicies
defined on, 581

initializeGuaranteedPointers
defined on, 576

initializeMessagelndices
defined on, 590

initializeMethodCache
used on, 605, 647

initializeMethodlndicies
defined on, 577

initializePointlndices
defined on, 625

initializeSchedulerl ndices
defined on, 641

initializeSmalllntegers
defined on, 575-576

initializeStreamlndices
defined on, 631

initPrimitive
defined on, 616
used on, 618, 620

instanceAfter:
defined on, 573, 688
used on, 637

instancesOf:
used On, 637

instanceSpecificationOf:
defined on, 590
used on, 591

713
I m p l e m e n t a t i o n I n d e x

pushTemporaryVariable:
defined on, 598
used on, 598

pushTemporaryVariableBytecode
defined on, 598
used on, 597

quicklnstanceLoad
defined on, 620
used on, 620

quickReturnSelf
defined on, 620
used on, 620

receiver, 584
defined on, 583
used on, 583, 598-600, 608

reclaimlnaccessibleObjects
defined on, 682
used on, 684

r ectifyCou n tsAnd Deal locate G abage
defined on, 683
used on, 682

releasePointer:
defined on, 671
used on, 671

removeFirstLinkOf:, 642
defined on, 644
used on, 643, 646

removeFromFreeChunkList:
defined on, 666-667
used on, 669

removeFromFreePointerList
defined on, 666
used on, 670

resetFreeChunkList:inSegment:
defined on, 667
used on, 671, 683

resume:, 642
defined on, 646
used on, 643, 647

returnBytecode
defined on, 608
used on, 595

returnToActiveContext:
defined on, 610
used on, 610

returnValue:to:
defined on, 609
used on, 608-609

reverse HeapPointersAbove:
defined on, 673
used on, 674

schedulerPointer
defined on, 644
used on, 644-646

segment:word:
defined on, 656

segment:word:bits:
defined on, 657

segment:word:byte:
defined on, 656

segmentBitsOf:
defined on, 662
used on, 663, 670, 673, 688

semaphorelndex
defined on, 642
used on, 642-643

semaphoreList
defined on, 642
used on, 642-643

sendBytecode
defined on, 603
used on, 595

sender
defined on, 585
used on, 608-609

send Literal Selector Byt ecode
defined on, 604
used on, 604

sendM ustBeBoolean
defined on, 603
usedon, 602

sendSelector:argumentCount:
defined on, 604
used on, 603-604, 607-609

sendSelector:toClass:
defined on, 605
used on, 604, 607

sendSpeciaiSelectorBytecode,
defined on, 608
used on, 604

shortConditionalJump
defined on, 603
used on, 601

shortUnconditionalJump
defined on, 602
used on, 601

simpleReturnValue:to:
defined on, 609

singleExtendedSendBytecode
defined on, 606
used on, 606

singleExtendedSuperBytecode
defined on, 607
used on, 606

618

714
I m p l e m e n t a t i o n Index

sizeBitsOf:
defined on, 663
used on, 663, 668-670, 673, 680, 685-687

sleep:
defined on, 646
used on, 646

spaceOccupiedBy:
defined on, 663, 680
used on, 670, 674, 680, 685

speciaiSelectorPrimitiveResponse
defined on, 618
used on, 608

stackBytecode
defined on, 597
used on, 595

stackPointer
defined on, 583
used on, 583-585, 590, 606, 640-641

stackPointerOfContext:
defined on, 582
used on, 583

stackTop
defined on, 585
used on, 599, 641, 646-647

stackValue:
defined on, 585
used on, 604, 619, 639-640

storeAndPopReceiverVariableBytecode
defined on, 600
used on, 597

storeAndPopTemporaryVariableBytecode
defined on, 600
used on, 597

storeByte:ofObject:withValue:
defined on, 571, 687

storeContextRegisters
defined on, 584
used on, 585

storelnstructionPointerValue:inContext:
defined on, 582
used on, 584, 606

storelnteger:ofObject:withValue:
defined on, 574
used on, 582-583, 631-632, 643, 647

storePointer:ofObject:withValue:
defined on, 571, 686

storeStack Poi nterV alue: i nCo ntext:
defined on, 583
used on, 584, 606, 638-640

storeWord:ofObject:withValue:
defined on, 571, 686

subscript:with:, 627
defined on, 628
used on, 629-631, 635

subscript:with:storing:, 627
defined on, 628
used on, 629-630, 632, 636

success
defined on, 616
used on, 617-620, 622-625, 628-636, 639-641,

647
success:

defined on,
used on,

616
617, 619, 622-623, 625, 627-628,

630-636, 639-641, 647
superclassOf:

defined on, 589
used on, 589, 607

suspendActive
defined on, 646
used on, 647

swapPointersOf:and:
defined on, 573
used on, 635

sweepCurrentSegmentFrom:
defined on, 673
used on, 674

synchronousSignal:, 642
defined on, 643
used on, 643, 646

temporary:
defined on, 586
used on, 598

temporaryCountOf:
defined on, 577
used on, 606

toFreeChunkList:add:
defined on, 666
used on, 670, 680

toFreePointerListAdd:
defined on, 666
used on, 671

transfer:from Index: ofObject:tol ndex: of Object:
defined on, 574
used on, 590, 606, 639, 641

transferTo:, 642
defined on, 643
used on, 646

unPop:
defined on, 585
used on, 602, 622-625, 629-636, 640-641

wak eH ig hest Priority
defined on, 645

zeroReferencecounts
defined on, 682
used,on, 682

t i ' "~1 digits t
~]digits~ ~ j ~ digits~ digits ~ v

[~poci~ character]

, r , i L _
r

I
~'--~d:~t ~--f I

I ~]) "~l identifier t
I ~in~ry se'e~t~

keyw'°rd"] 1

• character

character

number

~---~, symbol

"--~[character constant'J --~

array

J'l identifier]

J number [

~-~ 'symbol constant.

.-.{ch~ct~ ~on=t~nt}--,
~---~, string

array constant ,,]--,

"J identifier] "!

..I identifier] "l

0

special eharaetert_.~I

Ji!,!{iN N N NN!ili!ii!ii!!il

ii::~i~i~ii::iii~{i~:.::i@;ii::i:::i~:;~i::~@:~:;:~:~:~:#:i~i~:;i~i~ii~::i~::i!ii?~:.ii~;ii::iii:::'.~!::;ii::i::iiii~::::~;::iii::ii~::i:::.i~::~i~!;i:i@fii~i~::iiiiiii~]

iiiiiil ':i~:i# i~:;~::iiiii~ii ii@ii!i!iiii::i::i::ii ~i@~i::ii~{i iiiiiii::!::!iiiiiiii ii!iii':~ili~:iii !@i!i~diiii~!ilili iiiiii~::i~iii~ii4iiiii~iiiiii iiiiii!iiiiiiiiiiiiiiiiii@i@~iiii', 't

O0

~1 i variable name [

'3 literal] "1

,~ block ! i

d express ion] N

"' primary] 7

. • unary expressionl I

-' unary object description]

IbJ binary expression] "1

0

,3 unary object description ["1

"1 • binary object description I

,~ binary object description t .

"J unary selector "l

d binary selector "1
. d 7 keyword

._i.1 unary expression]

J binary expression 7 "7 i

"J keyword expression]

.~ unary object description]

~I binary object description]

d unary selector] ,~ message expression 1 " "1 ©
binary selector

keyword

H unary object description ,

H binary object description

variable name

4 I

I • - - - ~ - - - - - ~ expresskm]

expresskm I

0

q

f©

P[unary selector

binary selector

keyword

~r wtriabJe name

.n variaMe name "1

~[message pattern]

temporaries ~ statements

